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Abstract 

 
The statistical relationship between Arctic and Eurasian surface air 

temperature (SAT) has been observed in multiple time scale, from subseasonal 

to multi-decadal time scales. This relationship and the underlying mechanisms 

are revisited using reanalysis data and climate model experiments. Since the 

possible mechanisms could differ by the time scale, the subseasonal and 

interannual-to-long term trend relationship are investigated separately.  

The subseasonal relationship between Arctic and Eurasian SAT is re-

examined first. Consistent with previous studies, a significant negative 

correlation is observed in cold season from November to February, but with a 

local minimum in late December. This relationship is dominated not only by the 

warm Arctic-cold Eurasia (WACE) pattern, which becomes more frequent 

during the last two decades, but also by the cold Arctic-warm Eurasia (CAWE) 

pattern. The budget analyses reveal that both WACE and CAWE patterns are 

primarily driven by the temperature advection associated with sea level 

pressure anomaly over the Ural region, partly cancelled by the diabatic heating. 

It is further found that, although the anticyclonic anomaly of WACE pattern 

mostly represents the Ural blocking, about 20% of WACE cases are associated 

with nonblocking high pressure systems. This result indicates that the Ural 

blocking is not a necessary condition for the WACE pattern, highlighting the 

importance of transient weather systems in the subseasonal Arctic-Eurasian 

SAT co-variability. 
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The interannual-to-long term trend relationship between the Arctic and 

Eurasia is also investigated. Unlike the subseasonal Arctic-Eurasian relationship, 

Arctic sea ice is likely attribute to the recent Eurasian winter SAT change on 

interannual-to-decadal time scale. The present study quantifies the statistical 

relationship between Arctic sea-ice loss and Eurasian winter surface air-

temperature change by a break-point trend analysis and maximum covariance 

analysis. A significant time-lagged covariability is observed between the Arctic 

sea-ice concentration over the Barents–Kara seas and the Eurasian winter 

surface air temperature, with the former leading the latter by approximately 

two months. More importantly, the timing of an abrupt decline in the autumn 

Arctic sea ice that occurred in the late 1990s is coincident with the beginning of 

the Eurasian winter cooling. This concurrent trend change is statistically 

significant and robustly found in both the break-point analysis and maximum 

covariance analysis. These results suggest that both the interannual variability 

and decadal trend change of the Eurasian winter surface air temperature are 

likely influenced by regional sea-ice changes over the Barents–Kara seas.  

However, climate models often fail to reproduce the impact of Arctic sea ice 

change on Eurasian winter cooling in historical simulations. The present study 

re-examines the impact of Arctic sea ice loss on the Eurasian winter SAT trend 

by isolating the effect of the sea ice loss in coupled model simulations. In the 

large ensemble simulations, Eurasian winter cooling is observed in only half of 

the ensemble members, whereas others show warming trend, resulting in a 

near-zero trend when all 35 ensemble members are averaged. The cooling trend 

appears when the polar warming is not confined to the near-surface but extends 
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deep into the upper troposphere with a hint of stratospheric warming. When 

the polar warming is shallow in the model, the Eurasian SAT trend becomes 

positive. This result suggests that Eurasian winter cooling in the recent past is 

most likely caused by atmospheric internal variability, and highly dependent on 

the vertical extent of a polar warming and stratospheric processes, rather than 

Arctic surface warming itself. 

Keywords : warm Arctic-cold Eurasia, Ural blocking, transient anomaly, Arctic 

sea ice loss, internal variability, deep Arctic warming 

Student Number : 2016-37590 
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Overview 

 Arctic amplification, which is Arctic temperature raises more rapidly 

than lower latitude, has been intensified in recent decades (Cohen et al. 2014). 

The Arctic warming can possibly cause climate change over the high latitude. 

For instance, the drastic decreases in Arctic sea ice extent and thickness have 

been observed as a consequence of the Arctic warming (Stroeve et al. 2012). 

This Arctic sea ice change can amplify Arctic warming as surface albedo 

decreases over the Arctic, which causes more radiative energy absorbed in the 

atmosphere. This so-called ice-albedo feedback is one of the dominant factor 

contributing the Arctic warming in cold season. 

 However, the impacts of Arctic warming are not limited to the Arctic 

region. Previous studies suggested that the recent Arctic warming can affect 

midlatitude weather and climate. Francis and Vavrus (2012) argued that the 

Arctic amplification have reduced the meridional temperature gradient and this 

weakened temperature gradient causes the weak and meandering jet stream, 

which could result in the extreme cold winters. Based on the statistical 

relationship between the Arctic warming and midlatitude cooling, the Arctic 

warming has been suspected as a driver of the weather and climate change in 

midlatitude. 

  What is important here is that this statistical relationship between 

Arctic and Eurasia is observed in multiple time scales, from subseasonal to long-

term time scale. In general, similar atmospheric phenomena with the different 
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temporal and spatial scales can be modulated by difference dynamical 

mechanisms. For instance, the cold weather in Eurasia is highly associated with 

the blocking high over the Ural region, while the Eurasian winter climate is 

linked with the Siberian high. Thus, to understand the impact of Arctic warming 

on the midlatitude weather and climate, this covariability is required to be 

discussed on individual time scales. This study aims to quantify the statistical 

association between Arctic and Eurasian surface air temperature and to 

understand the impact of Arctic warming on Eurasian weather and climate in 

subseasonal and interannual-to-long term time scale.  
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1. Subseasonal relationship of Arctic and Eurasia 

1.1. Introduction 

 The warm Arctic-Cold Eurasia (WACE) pattern is well recognized as a 

dominant interannual climate variability in the boreal winter (Zhang et al. 2008; 

Mori et al. 2014; Kim and Son 2016). This seesaw-like surface air temperature 

(SAT) variability has recently received a significant attention due to the time lag. 

It was particularly found that the Arctic sea ice reduction and the resulting 

warm SAT anomaly over the Barents-Kara seas (BKS) often precede cold SAT 

anomaly over the Eurasia by a few months (Cohen et al. 2014; Kim et al. 2014; 

Overland et al. 2015; Kim and Son 2020). Such a relationship implies that Arctic 

climate variability can be used as a potential source for seasonal prediction of 

Eurasian SAT anomaly (Jung et al. 2014; Furtado et al. 2016), especially when 

combined with North Atlantic sea surface temperature (Matsumura and Kosaka 

2019). 

The WACE relationship also appears on the subseasonal time scale (Zhang 

et al. 2012; Wu et al. 2013; Kug et al. 2015; Luo et al. 2016a; Sorokina et al. 2016; 

Gong and Luo 2017; Yao et al. 2017; Luo et al. 2019; Tyrlis et al. 2020). Kug et 

al. (2015) showed that the low-frequency variability of BKS SAT typically leads 

Eurasian SAT by approximately two weeks. This time lag becomes much shorter 

if the high-frequency variability is considered. Luo et al. (2019), for instance, 

showed that daily BKS SAT anomaly accompanies Eurasian SAT anomaly with 

only one-day time lag. This short-term co-variability is not directly induced by 

Arctic sea ice loss but caused by atmospheric circulation (Luo et al. 2016a; Yao 
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et al. 2017; Tyrlis et al. 2020). A series of studies have shown that daily BKS sea 

ice change is a response to atmospheric circulation over the Ural region rather 

than a trigger (Sorokina et al. 2016; Gong et al. 2017; Tyrlis et al. 2020).  

As a key driver of the subseasonal WACE pattern, the Ural blocking has 

been highlighted in the literature (Luo et al. 2016a; Luo et al. 2016b; Yao et al. 

2017; Tyrlis et al. 2020). A blocking high can effectively generate an anti-

correlation between BKS and Eurasian SAT anomalies by modulating the 

moisture and temperature advection, especially when the background wind or 

the potential vorticity gradient is weak (Luo et al. 2019; Yao et al. 2019). 

Physically, the Arctic warm anomaly has been often attributed to the increased 

downward longwave radiation by the enhanced moisture transport into the 

Arctic (Park et al. 2015; Yao et al. 2017; Chen et al. 2018). Likewise, Eurasian 

cold anomaly has been related to the reduced downward longwave radiation 

(Yao et al. 2017). However, warm anomaly in the Arctic, resulting from the Ural 

blocking could immediately increase the upward longwave radiation, resulting 

in a weak net longwave radiation (Kim et al. 2019). In this regard, other studies 

have suggested the temperature advection as a key driver (Panagiotopoulos et 

al. 2005; Mori et al. 2014; Ye and Messori 2020). The relative importance of the 

temperature advection and diabatic heating, however, is not well quantified.  

Although the subseasonal WACE pattern has been related to the Ural 

blocking (Luo et al. 2016a; Luo et al. 2016b; Yao et al. 2017; Tyrlis et al. 2020), 

it is not clear whether the Ural blocking, which is quasi-stationary or slowly 

moves westward in time, is a necessary condition. A transient system that 



 

 ５ 

travels eastward in time could also generate the WACE pattern. Such possibility, 

however, has not been addressed in the literature.  

In this study, we revisit the daily relationship between Arctic and Eurasian 

SAT anomalies. Since the relationship could vary from month to month as 

background flow changes, its subseasonality is first examined. Unlike previous 

studies which have focused on the WACE pattern, both the WACE pattern and 

its opposite, the so-called cold Arctic-warm Eurasia (CAWE) pattern CAWE, are 

considered. Although the CAWE pattern is inferred from the mode of 

interannual SAT variability (Zhang et al. 2008; Mori et al. 2014; Kim and Son 

2016), its spatio-temporal distribution and the driving mechanism have been 

rarely addressed on the subseasonal time scale.  

When examining the WACE pattern, the presence of the Ural blocking is not 

presumed. Instead the WACE pattern associated with the Ural blocking is 

compared to that without blocking. The physical processes responsible for the 

WACE and CAWE patterns are then quantified by computing the temperature 

budget. The budget analysis reveals the relative importance of the temperature 

advection against the diabatic heating. 
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1.2. Data 

 The six-hourly and daily atmospheric variables, which include SAT, sea 

level pressure (SLP), geopotential height (Z), and zonal wind (U), are obtained 

from the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-

Analysis-Interim (ERA-Interim; Dee et al. 2011) for the period of 1979-2017. 

The spatial resolution of these data is 1.5° × 1.5°. The daily anomaly is defined 

as the deviation from the long-term climatology for each calendar day. The long-

term trend is not removed here as its impact is minimal. Although not shown, 

overall results do not change much when the detrened data are utilized. 
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1.3. Methodology 

1.3.1. Lead-lag regression 

 To investigate the optimal time lag between the two variables, a time-

lagged linear regression analysis is applied:   

𝑦(𝑑, 𝑡 + 𝜏) = 𝑟(𝑑, 𝜏)𝑥(𝑑, 𝑡) + 𝜀(𝑑, 𝜏)      (1) 

where 𝑟(𝑑, 𝜏)  is a regression coefficient of 𝑦(𝑑, 𝑡 + 𝜏)  with respect to 

𝑥(𝑑, 𝑡) for the selected calendar day 𝑑 (= 1 to 365 days) with time lag 𝜏 (=

−20 to 20 days). The last term, 𝜀(𝑑, 𝜏) , is the residual. In Eq. (1), 𝑡  is a 

regression window which is set to 30 days, starting from calendar day 𝑑. Here 

the calendar day d starts from 1 July 1979 to 30 June 1980 to examine the 

seasonal variability centered on winter. To keep the same length, the time 

series is constructed for 38 years starting from the selected 𝑑. For instance, if 

𝑑 is 1 July, the time series is constructed by combining the following 30 days 

(i.e., 1–30 July) from 1979 to 2016 (30 days × 38 years = total of 1,140 days). 

The statistical significance of the regression coefficient is evaluated with the 

Student’s t-test. The effective number of degrees of freedom is determined by 

considering the autocorrelation (Bretherton et al. 1999). 
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1.3.2. Case selection  

 The composite analyses are further conducted for WACE and CAWE 

cases. These cases are first identified by computing the dipole index (DI): 

DI = 𝑆𝐴𝑇𝐵𝐾 − 𝑆𝐴𝑇𝐸𝑢𝑟𝑎𝑠𝑖𝑎       (2) 

where 𝑆𝐴𝑇𝐵𝐾  and 𝑆𝐴𝑇𝐸𝑢𝑟𝑎𝑠𝑖𝑎  are area-averaged SAT anomalies over BKS 

and Eurasia, respectively. The BKS domain is set to 30°–70°E and 70°–80°N, 

whereas the Eurasian domain is set to 50°–130°E and 35°–50°N from a daily 

correlation map (Fig. 1.1.). This definition is similar to the seasonal-mean WACE 

index used in some previous studies (Luo et al. 2016b; Outten and Esau 2012). 

When the WACE pattern is pronounced, DI is expected to be positive. The 

opposite is true for the CAWE pattern. Both WACE and CAWE cases are defined 

as a time period when the DI index exceeds one standard deviation for at least 

three consecutive days. The minimum interval between the DI maxima is set to 

15 days to avoid duplicated selections. If multiple DI maxima are detected 

within 15 days, the largest one is selected as a case. The date of maximum (or 

minimum) DI index is assigned as the WACE (or CAWE) date, and the time lags 

from -10 to 10 days are allowed for the case composite. A total of 78 WACE cases 

(about 2.05 times per year) and 70 CAWE cases (about 1.84 times per year) are 

identified from November to February (NDJF).  
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Figure 1.1. Correlation coefficients of (a) SAT and (b) SLP with respect to daily 

SAT anomalies averaged over the BKS for the period from 1979/1980 to 

2016/2017 NDJF. Only the values that are statistically significant at the 95% 

confidence level are shaded. The analysis domains of the BKS and the Eurasian 

continent are denoted with boxes in (a). Likewise, the Ural region is denoted 

with a box in (b). 
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1.3.3. Temperature tendency equation  

The Arctic-Eurasian SAT (co-)variability is investigated by computing 

the temperature tendency equation at 850 hPa: 

𝜕𝑇

𝜕𝑡
= −𝑉𝐻 ∙ ∇𝐻𝑇 + 𝑆𝑝𝜔 + Q + Res        (3) 

where ∂𝑇/ ∂𝑡 is the temperature tendency at 850 hPa, horizontal advection 

 −𝑉𝐻 ∙ ∇𝐻𝑇, adiabatic heating and vertical advection  𝑆𝑝𝜔, diabatic heating Q, 

and residual Res. In Eq. (3), 𝑉𝐻  is the horizontal wind vector, 𝜔 is the p-

velocity, and 𝑆𝑝 is the stability parameter represented by 𝑆𝑝 = (𝑅/𝐶𝑝)(T/

𝑝) − (𝜕𝑇/𝜕𝑝) where R is the gas constant for dry air (=287 J kg−1 K−1) and 

𝐶𝑝 is the specific heat at constant pressure. Unlike other variables, Q is derived 

from the ECMWF forecast. The last term in Eq. (3), Res, includes both the 

forecast errors and the numerical errors. To clarify the mechanism for the 

temperature change over complex terrain, the same budget analysis is applied 

at 925hPa. Each budget term is calculated using six-hourly raw data and 

averaged into daily. The daily anomalous budget is examined, instead of the raw 

daily budget, in order to quantify the contribution of individual terms to the 

temporal evolution of temperature tendency. 
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1.4. Results 

1.4.1. Subseasonal relationship of Arctic and Eurasian SAT 

Figure 1.2 shows the time-lagged regression coefficients between the 

BKS and Eurasian SAT anomalies as a function of the calendar day (see section 

2.2.1). A significant negative relationship appears in the cold season (Fig. 1.2). 

Such relationships, which are evident only from November to February, are 

maintained for over a month, indicating that their time scale is longer than a 

synoptic scale. This result also suggests that WACE/CAWE relationships is 

unique only in the boreal winter. Although not shown, the same analyses with 

other reanalysis data show essentially the same results.  

The BKS-Eurasian SAT anomalies exhibit a maximum co-variability at 

lag +2 days, the former leading the latter (Fig. 1.2). The similar lags ranging from 

+1 to +5 days, depending on the analysis domain, are also found in previous 

studies (Yao et al. 2017; Luo et al. 2019). This lagged relationship, however, does 

not indicate that the Arctic sea ice or sea surface temperature condition drives 

the Eurasian SAT variability. Although the BKS SAT anomalies are closely related 

to local sea ice and sea surface temperature anomalies, they often lead the Arctic 

surface condition on a daily time scale (Luo et al. 2019; Tyrlis et al. 2020).  
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Figure 1.2. Lead–lag regression coefficients of BKS and Eurasian SAT anomalies 

during the period of 1980-2016. The y-axis is the starting day of the 30-day 

combined time series and the x-axis is the time lag. Only the values that are 

statistically significant at the 95% confidence level are shaded. 
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The lagged relationship is instead largely driven by the SLP anomaly 

over the Ural region (Gong and Luo 2017; Luo et al. 2019; Tyrlis et al. 2020). 

Figures 1.3a and b show strong positive correlations between the BKS SAT and 

Ural SLP anomalies and negative correlations between the Eurasian SAT and 

Ural SLP anomalies, respectively. Here the Ural SLP anomaly is calculated over 

30°-100°E and 50°-70°N (Fig. 1.1). While no time lag is observed in Fig. 1.3a, a 

2-day time lag is evident in Fig. 1.3b. This result suggests that the lagged 

relationship of the BKS-Eurasian SAT anomalies is caused by the delayed 

response of the Eurasian SAT to the Ural SLP anomalies. This result is consistent 

with previous studies (Zhang et al. 2012; Yao et al. 2017; Luo et al. 2019; Tyrlis 

et al. 2020), showing that the WACE-like SAT pattern is mainly caused by the 

blocking high over the Ural region rather than the short-term sea ice variability. 

However, our analysis does not presume the presence of blocking, generalizing 

the previous findings which are based on blocking composites. 
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Figure 1.3. Lead–lag regression coefficients of (a) Eurasian SAT and (b) Ural 

SLP anomalies onto BKS SAT anomalies during the period of 1980-2016. The y-

axis is the starting day of the 30-day combined time series and the x-axis is the 

time lag. Only the values that are statistically significant at the 95% confidence 

level are shaded. 
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1.4.2. Possible mechanisms of subseasonal relationship  

The co-variability of the BKS-Eurasian SAT anomalies is further 

illustrated in Fig. 1.4 for WACE and CAWE cases separately. Here, only the boreal 

winter, NDJF, is considered for the case selection. A strong warm anomaly over 

the BKS and a cold anomaly over the Eurasia are well defined in the WACE cases. 

Unlike the BKS SAT anomaly, the Eurasian SAT anomaly expands southeastward 

in time. This temporal evolution is in agreement with the time lag between the 

Ural SLP and Eurasian SAT anomalies shown in Fig. 1.3b.  

The anticyclonic anomaly over the Ural region is quasi-stationary and 

maintained over 10 days, representing the Ural blocking (Luo et al. 2016b; Yao 

et al. 2017). To quantify the contribution of the Ural blocking to the WACE SAT 

variability, the WACE cases are grouped into those with and without the Ural 

blocking. Here, the blocking is identified with the Tibaldi-Molteni index (Tibaldi 

and Molteni 1990), which is defined as a gradient reversal of geopotential 

height at 500 hPa from south (ϕS=40°N+ ∆) to north (ϕN=80°N+ ∆). The choice 

of ∆ is from -4.5° to 4.5° in 1.5° increment. The Ural blocking is identified when 

the gradient reversal persists more than three consecutive days over the 

longitude band of 30-100°E. The blocking-related WACE cases are then 

classified when the Ural blocking is detected within ± 3 days of the WACE date 

(lag 0). Otherwise, the WACE cases are not related to the Ural blocking.  
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Figure 3.4. The lead-lag composite mean of SAT (shaded) and SLP (contour) 

anomalies and wind (vector) anomalies at 850 hPa for (left) WACE and (right) 

CAWE cases at lags (a-b) -6 days, (c-d) -4 days, (e-f) -2 days, (g-h) 0 days, (i-j) 2 

days, and (k-l) 4 days with respect to the local maximum of DI. The contour 

interval for SLP anomalies is 2 hPa and the negative values are contoured in 

dashed line. Only the values that are statistically significant at the 95% 

confidence level are shaded. 
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It turns out that 78% of the WACE cases are accompanied with the Ural 

blocking which slowly moves westward in time (left column of Fig. 1.5). This 

result is consistent with the previous studies that suggest the Ural blocking as a 

key driver of the subseasonal WACE pattern (Luo et al. 2016b; Yao et al. 2017; 

Ye and Messori 2020). However, the other 22% are not directly related to the 

Ural blocking (right column in Fig. 1.5). They are instead associated with an 

eastward-moving anticyclone. The number of blocking and non-blocking WACE 

differs by the criteria (Table 3.1). When the WACE date (0 day) only considered 

as a blocking day, about 67% of WACE cases accompany Ural blocking. 

 

Table 3.1. The number of blocking related WACE cases and the ratio to the 

entire WACE cases.  

criteria number of cases ratio (%) 

0 day 52 67 

-3 day to 3 day 61 78.21 

-5 day to 5 day 65 83.33 
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This result indicates that the Ural blocking is not a necessary condition 

for the WACE pattern. A well-defined anticyclonic anomaly can result in the 

WACE pattern. It is noticeable that although the amplitude of SAT anomaly is 

comparable between the blocking and non-blocking WACE cases, the Ural 

blocking leads to more persistent anomaly in a broader region over the Eurasia. 

This implies that the Ural blocking is still an important factor in determining 

SAT anomalies (compare Fig. 1.5g and h).  

The CAWE cases show a similar result to the WACE cases with an 

opposite sign (right column in Fig. 1.4). One distinctive difference from the 

WACE cases is the propagation of the Ural SLP anomaly. Unlike the quasi-

stationary SLP anomaly of the WACE cases due to the mixture of the westward-

moving Ural blocking and the eastward-moving transient anticyclone, the SLP 

anomaly of the CAWE cases migrates eastward through time. Its structure more 

resembles the SLP anomaly of the non-blocking WACE cases (right column in 

Fig. 1.5). This result indicates that the CAWE pattern is mainly determined by 

the transient cyclonic anomaly over the Ural region. 
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Figure 3.5. Same as Figure 3.4. but for (left) WACE with blocking and (right) 

without blocking cases. 
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To identify the physical processes that determine the WACE and CAWE 

patterns, temperature budget is computed at the 850-hPa pressure level (see 

section 1.3.3). The 850-hPa temperature (T850) is used here to minimize the 

topographic effect over the Eurasia. Figure 1.6a and b shows the spatial 

distribution of the SAT tendency, averaged from -5 to 0 day, for the WACE and 

CAWE cases. They are well captured by T850 tendency (Fig. 1.6c and d), 

justifying the use of T850 instead of SAT in temperature budget analysis (see 

also Fig. 1.7a and b).  

For the WACE cases, the horizontal temperature advection (Fig. 1.6e) 

explains most of the temperature change over the BKS and Eurasia. The diabatic 

heating shows an opposite sign to the temperature advection (Fig. 1.6g). The 

adiabatic heating matches well with the SLP anomalies (Fig. 1.6i). Downward 

motion over the anticyclonic anomaly results in the adiabatic warming, while it 

also accompanies the adiabatic cooling in the northwest and southeast. Here it 

is important to note that both diabatic (Fig. 1.6g) and adiabatic heatings (Fig. 

1.6i) cancel the advective warming over the BKS and cooling over the Eurasia. 

This result is in stark contrast to the previous studies which highlighted the role 

of the diabatic heating especially the downward longwave radiation (Yao et al. 

2017; Ye and Messori 2020).  
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Figure 1.6. (a-b) The SAT tendency, (c-d) T850 tendency, (e-f) horizontal 

temperature advection, (g-h) diabatic heating, (i-j) adiabatic heating averaged 

from -5 to 0 days for (left) WACE and (right) CAWE cases. Note that all values 

are slightly smoothed by applying a nine-point local smoothing once and the 

underground values are excluded. Only the values that are statistically 

significant at the 95% confidence level are shaded. 
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Figure 1.7c and e confirms the results presented in Fig. 1.6. They show 

the temporal evolution of BKS and Eurasia T850 anomalies during the growth 

(-10 to 0 days) and decay phases (0 to 10 days). As shown in Fig. 1.6, the 

horizontal temperature advection (green) dominates the BKS T850 tendency 

(Fig. 1.7c). Both diabatic (blue) and adiabatic heatings (red) cancel the 

advective warming. Before the WACE date (lag 0), net diabatic heating is 

negative, and this is statistically significant. The adiabatic cooling appears 

around lag 0 day, largely cancelling the temperature advection during the WACE 

date. A similar mechanism holds for the Eurasian T850 tendency (Fig. 1.7e) with 

a larger cancellation between the advective cooling and adiabatic warming.  
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Figure 1.7. (a) Time evolution of lead-lag composites of BK (black) and 

Eurasian (gray) SAT (solid line) and T850 (dashed line) and Ural SLP (blue) for 

the WACE cases. Lead-lag composites of temperature tendency and budget 

terms in (c) BK seas and (e) Eurasia. (b,d,f) Same as in (a,c,e) but for CAWE cases. 

The statistically significant values at the 95% confidence level are bolded. 
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The same analysis is also conducted for the WACE cases with and 

without blocking (Fig. 1.8). As shown in Fig. 1.4, the amplitude of SAT anomalies 

over BKS is comparable although the Eurasian SAT and Ural SLP anomalies of 

the blocking WACE cases are much stronger (Fig. 1.8a and b). This result may 

imply that temperature anomaly over BKS is only weakly dependent on the 

presence of the Ural blocking while the Eurasian cold temperature anomaly is 

strongly influenced by the Ural blocking. It is further found that regardless of 

the presence of blocking, the temperature advection is the primary process that 

drives the WACE pattern. Figures 1.8b, d, and f show the T850 budget for the 

CAWE cases. Overall results are consistent with the WACE cases. It is concluded 

that both WACE and CAWE cases are mainly driven by the horizontal 

temperature advection. 
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Figure 1.8. same as Figure 1.7 but for WACE cases with and without blocking. 
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To examine the sensitivity of the result to the choice of the pressure 

level, the temperature budget at 850 hPa integrated from lag -5 to 0 days is 

further compared to that at 925 hPa (Fig. 1.9). The diabatic heating is re-

calculated as a residue by subtracting the all terms from the temperature 

tendency. This allows to mask the missing values over the complex terrain in 

Eurasia. A small residue in Fig. 1.7 justifies this approach. During the WACE 

growth phase from –lag 5 to 0 days, the mechanism holds at both 850 and 925 

hPa (Fig. 1.9a and c). Although the diabatic heating becomes stronger near the 

surface (e.g. for BKS, -4.5K at 850hPa to -10.0K at 925 hPa), while the horizontal 

advection also becomes stronger (e.g. for BKS, 11.2K at 850hPa to 16.7K at 925 

hPa). They are effectively cancelled out. The same result is also found for the 

CAWE cases (Fig. 1.9b and d). 
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Figure 1.9. The time-integrated temperature tendency and budget terms for lag 

-5 to 0 days over (a-b) BKS and (c-d) Eurasia for (left) WACE and (right) CAWE 

cases. 
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1.4.3. Seasonality of the subseasonal co-variability 

The remaining question here is why the seesaw-like BKS-Eurasian SAT 

variability is absent in summer. The SLP anomaly over the Ural region exists in 

all seasons, possibly exciting dipolar SAT anomalies even in summer. The Ural 

high (not necessarily blocking) cases in winter (NDJF) and summer (June to 

August; JJA) are compared in Fig. 1.10. The sampling method is identical to the 

WACE and CAWE samplings, but the time series of Ural SLP anomaly is utilized 

as a reference. Figure 1.10 illustrates the composite SAT anomalies and T850 

climatology when the Ural SLP is anomalously high. In winter, SAT anomalies 

exhibit the WACE-like north-south dipole pattern. However, those in summer 

show the west-east dipole pattern that is not well projected onto the WACE 

pattern. This difference is due to the background temperature distribution. In 

summer, climatological temperature has a zonally-symmetric distribution over 

the Eurasian continent (T850 contours in Fig. 1.10b). This allows only 

meridional temperature advection, resulting in the dipolar SAT anomalies in 

western and central Eurasia. However, in winter, cold temperature is centered 

over Siberia due to the Siberia High (T850 contours in Fig. 1.10a). This allows 

both zonal and meridional temperature advections over the central Eurasia. 
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Figure 1.10. The composite mean of SAT anomalies (shaded) and T850 

climatology (contour) for the high Ural SLP cases in (a) NDJF and (b) JJA. The 

contour interval for T850 climatology is 6K. 
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1.4.4. Subseasonal variability of the subseasonal co-

variability  

Figure 1.2 further reveals a bimodal distribution of SAT co-variability. 

It peaks in November and January with a local minimum in late December. This 

feature is also found in the regression coefficients of the Ural SLP anomaly (Fig. 

1.3a and b), implying that the double peaks likely result from the circulation 

anomaly over the Ural region. The regression coefficient between the BKS and 

Eurasian SAT anomalies at lag 2 days (blue) and the standard deviation of the 

Ural SLP anomaly (black) are depicted in Fig. 1.11. for the same period. It 

becomes clear that the subseasonal variation of the BKS-Eurasian SAT co-

variability is strongly influenced by the Ural SLP variability. This result 

highlights the crucial role of the weather systems over the Ural region in driving 

dipolar SAT anomalies between the BKS and Eurasia.  
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Figure 1.11. Regression coefficient (blue) at +2 days in Figure 3.2. and the 

standard deviation of Ural SLP anomalies. The y-axis is the starting day of the 

30-day combined time series. Only the values that are statistically significant at 

the 95% confidence level are bolded in blue line. 
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To understand the bimodal distribution of the SLP activity, we 

construct the probability distribution function of the polar-cap averaged 

geopotential height anomaly at 50 hPa (Fig. 1.12) It turns out that the WACE 

cases in late winter are slightly biased to the negative geopotential height 

anomaly or weak polar vortex as in the interannual WACE cases. This bias is 

absent in the CAWE cases, indicating a subtle difference between the WACE and 

CAWE cases. 

 

Figure 1.12. Histogram of polar cap (north of 65°N) averaged geopotential 

height anomaly at 50 hPa for (a) WACE and (b) CAWE cases in January and 

February. For each WACE or CAWE case, lag -3 to 3 days are considered to obtain 

the histogram. 
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1.4.5. Decadal variability of the subseasonal co-variability 

The WACE and CAWE cases show different decadal variability. When 

the number of WACE and CAWE cases are counted before and after year 2000, 

the WACE cases increase from 1.55 to 2.44 cases per year. But the CAWE cases 

decrease from 2.65 to 0.89 cases per year (Fig. 1.13). This asymmetry is 

consistent with more frequent Ural blockings (Francis and Vavrus 2012; Yao et 

al. 2017; Tyrlis et al. 2020) and weakened Eurasian storm activities in the recent 

decade (Zhang et al. 2012; Wang et al. 2017). It was argued that the reduced 

meridional temperature gradient, resulting from the Arctic amplification, 

weakens the local baroclinicity and storm activities (Francis and Vavrus 2012; 

Tang et al. 2013; Yao et al. 2017; Wang et al. 2017). This provides a favorable 

condition for more persistent and stationary blockings (Yao et al. 2017; Luo et 

al. 2017; Luo et al. 2018), increasing the possibility of more frequent WACE 

cases. This result suggests that although the daily BKS-Eurasian SAT co-

variability is a natural feature, the ratio of the WACE cases to the CAWE cases 

has changed (and will change) with time in response to the Arctic amplification. 

To better understand such change, the decadal variability of the WACE and 

CAWE cases in climate models warrants further investigation. 
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Figure 3.13. Frequency of the WACE (red) and CAWE (blue) cases during 1980 

to 2017. Note that the last decade indicates the frequency of WACE and CAWE 

for 8 years of 2010-2017. 
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2. Interannual and long-term trend relationship of Arctic 

and Eurasia 

2.1. Introduction 

A negative trend of surface air temperature (SAT) has been observed 

over central and eastern Eurasia in boreal winter from the late 1990s to the 

early 2010s when Arctic sea ice extent has been rapidly declining (Cohen et al. 

2014; Mori et al. 2014; Kim and Son 2020). This cooling trend played a key role 

in determining the strength of the global warming hiatus in the early 2000s 

(Deser et al. 2017). Statistical analyses of observational and reanalysis datasets 

have consistently demonstrated that Eurasian winter SAT is closely related to 

Arctic warming, especially sea ice loss over the Barents–Kara Seas (BKS), on 

both the interannual and decadal time scales (Francis and Vavrus 2015; 

Overland et al., 2015; Kim and Son 2020). For instance, the dipole pattern of the 

SAT anomaly, namely the WACE pattern, appears to be one of the leading modes 

of wintertime SAT variability on the interannual time scales and this mode is 

significantly correlated with the BKS sea ice change (Mori et al. 2014; Kim and 

Son 2016; Kim and Son 2020). 

Numerous modeling studies have been conducted to verify the causal 

relationship between Arctic sea ice loss and Eurasian cooling (e.g., Mori et al. 

2014; Cohen et al. 2014; Screen et al. 2018; Cohen et al. 2020). It has been 

revealed that the Eurasian SAT response to Arctic sea ice loss is generally 

weaker in climate models than the observations. Some models, especially those 
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with fully resolved stratosphere (Nakamura et al. 2016; Zhang et al. 2018), 

qualitatively reproduce the Eurasian SAT change, while others don’t. The recent 

studies instead suggest that atmospheric internal variability is likely to play a 

critical role in driving both Arctic and Eurasian SAT changes (Screen et al. 2018; 

Xu et al. 2019; Blackport et al. 2019; He et al. 2020; Labe et al. 2020). He et al. 

(2020) showed that Arctic warming extending to the mid-troposphere is crucial 

to simulate the WACE pattern by examining historical simulations from Coupled 

Model Intercomparison Project Phase 5 (CMIP5). Labe et al. (2020) argued that 

this so-called “deep Arctic warming” or “full Arctic amplification”, rather than 

surface warming driven by Arctic sea surface temperature (SST) and sea ice 

changes, was linked to an equatorward shift of the eddy-driven jet and Eurasian 

cooling. 

The aforementioned studies, however, mainly focus on the interannual 

WACE relationship, which is not necessarily applicable to long-term trend 

relationship (e.g., McCusker et al. 2016). It has been well documented that, 

although most climate models can successfully reproduce the WACE pattern on 

the interannual time scale, the long-term WACE trend that appears in 

observations is not evident in these models (McCusker et al. 2016; Ogawa et al. 

2018). Modeling studies with atmosphere-only models, for example, in which 

Arctic SST and sea ice concentrations were prescribed, showed no clear 

evidence of Arctic surface climate change that impacted the Eurasian SAT trend 

(Li et al. 2015; McCusker et al. 2016; Sun et al. 2016; Ogawa et al. 2018). A recent 

study using an atmosphere–ocean coupled model, in which the observed Arctic 

sea ice concentration was nudged, revealed a weak influence of Arctic warming 
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on mid-latitude circulation and SAT trends (Sun et al. 2018). However, as this 

study utilized only five ensembles, the results were questionable. More 

ensemble members are required to better quantify the impact of the declining 

Arctic sea ice on the long-term WACE trend more effectively.  

To update and extend these studies, the present study quantifies the 

statistical relationship between the Arctic SIC and Eurasian winter SAT by using 

observation and revisits the possible impact of the Arctic sea ice change on the 

Eurasian SAT using the climate model simulations. We first determine the year 

(or period) when the decadal trend change of Arctic SIC and Eurasian winter 

SAT begins. Specifically, the starting year of the Eurasian winter cooling is 

objectively identified by conducting a break-point analysis, and this result is 

compared with the timing of the abrupt decline in Arctic SIC. The interannual 

covariability of Arctic SIC and Eurasian SAT anomalies is also quantitatively 

evaluated using a maximum covariance analysis. This method aims to better 

quantify the optimal time lag between Arctic SIC and Eurasian winter SAT 

variability without removing their linear trends. The possible impact of Arctic 

SIC change on Eurasian winter cooling is also briefly discussed by decomposing 

the SAT trend into that linearly congruent trend with the Arctic SIC loss and 

others. 

Finally, the present study revisits the possible impact of the declining 

Arctic sea ice on the Eurasian winter SAT trend in an atmosphere-ocean 

coupled model by incorporating large ensemble simulations, with a total of 35 

ensemble members, using the Geophysical Fluid Dynamics Lab Climate Model 
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version 2.1 (GFDL-CM2.1; Delworth et al. 2006). A large ensemble enables more 

effective quantification of the impact of Arctic sea ice loss on the midlatitude 

circulation and SAT trends, specifically the WACE trend. By dividing the 

ensemble members into two groups, with and without Eurasian cooling, this 

study demonstrates that the vertical extent of a polar warming and the 

stratospheric warming could be crucial for driving the WACE-like SAT trend. 
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2.2. Data 

To quantify the statistical lagged relationship, we use the in-situ 

observation for SIC and SAT. The monthly mean SIC data is obtained from the 

Nimbus-7 Scanning Multichannel Microwave Radiometer and the US Defense 

Meteorological Satellite Program Special Sensor Microwave/Imager-Special 

Sensor Microwave Imager Sounder Passive Microwave Data set, version 1 using 

the NASA Team sea-ice algorithm (https://nsidc.org/data/NSIDC-0051; 

Cavalieri et al. 1996). These data were originally generated from brightness 

temperature data in a polar stereographic projection with a 25-km horizontal 

resolution but are interpolated into latitude and longitude grids with a 1-degree 

resolution. Following previous studies, the Eurasian SAT is primarily related to 

the BKS SIC.  

The monthly-mean observed SAT is obtained from the NASA’s 

Goddard’s Global Surface Temperature Analysis (GISTEMP) data set. These data 

combine the SAT from the Global Historical Climatology Network data set 

version 3 and the SST from the Extended Reconstructed Sea Surface 

Temperature (ERSST) data set version 3b (Hansen et al. 2010) for the period 

1979-2014. The temperature anomalies, relative to the reference period of 

1951-1980, are available in a 2-degree resolution. The regional domains are set 

to 35-60°N and 50-130°E for Eurasia and 25-50°N and 75-120°W for North 

America.  
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Note that the analysis period for break point analysis and MCA is set to 

1979-2014, since the break-point analysis (see below) is sensitive to the 

analysis period. This is not a specific problem of the break-point analysis; rather, 

it is a common linear regression issue. To reduce unnecessary noise, it is 

important to properly set the starting and ending years. In this study, the 

starting year is set to 1979 to match the sea-ice data. However, in consideration 

of the anomalously warm Eurasian SATs in the winters of 2014/15 and 2015/16 

winters, the ending year is set to 2014 (e.g., Blunden & Arndt 2016, 2017; Xu et 

al. 2018). As this study aims to identify the Eurasian SAT trend change that begin 

began when the Arctic sea ice abruptly started to decrease, the most recent few 

years are excluded in from the analysis. 

For the long-term trend analysis, we use the reanalysis data to compare 

the climate model experiments. Daily and monthly atmospheric variables, such 

as SAT, SLP, zonal wind, and geopotential height, were obtained from the fifth-

generation European Centre for Medium-range Weather Forecasts atmospheric 

reanalysis (ERA5; Hersbach et al. 2020) with a horizontal resolution of 1.5° × 

1.5°. Their anomaly is defined as a deviation from the daily or monthly 

climatology over the period of 1986-2015; that is, the analysis period of the 

model simulation, as described below. Note that the analysis periods for break 

point analysis and the climate model simulations are not identical because of 

the model spin-up time.  
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2.3. Methodology 

2.3.1. Break point analysis 

One of the main goals of the present study is to detect the change in a 

linear trend. Many approaches have been proposed to incorporate trend 

change(s) in linear regression models. We adopt the regression model that 

allows only one time-break point in the linear trend (Perron and Yabu 2009; 

Estrada et al. 2013).  

𝑦(𝑡) = α𝑡 + β𝑑𝑡 + 𝑦o + 𝑛(𝑡) (4) 

𝑑𝑡 = 𝑡 − 𝑡B     𝑡 > 𝑡B  (5) 

𝑑𝑡 = 0    𝑡 ≤ 𝑡B  (6) 

 

Here, 𝑦  and 𝑡  denote the interest and time in years, respectively. 

The two coefficients, α and β , determine the first trend before the break 

point (𝑡B) and the second trend after the break point, respectively. The linear 

trend from 𝑡 = 1 to 𝑡 = 𝑡B  is set by α, whereas the later trend from 𝑡 =

𝑡B + 1 to 𝑡 = 𝑡max is set by α + β. Since the analyzed time period is 35 years, 

from 1979 to 2013, 𝑡max is 35. The last two terms in the equation, 𝑦o  and 

𝑛(𝑡), are the y intercept and the residual component, respectively. Note that Eq. 

(4) differs from a simple linear regression because of 𝑑𝑡. This term, which is 

absent in a simple linear regression model, defines the break point in the linear 

trend.  
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The best estimate of the break year, 𝑡B, is determined with the least 

squared error. With the initial guess of the break year 𝑡B ranging from 1 to 35, 

the value that satisfies the minimum squared error between the observed time 

series and the two regressions fits from 𝑡 = 1 to 𝑡 = 𝑡B and from 𝑡 = 𝑡B +

1 to 𝑡 = 𝑡max is considered the best estimation. The uncertainty of the trend 

change is then evaluated by examining the confidence interval proposed by 

Chang and Perron (2016). Only when the 95% confidence interval does not 

cross either the start (1979) or the end years (2013) of the analyzed period is 

the detected break point believed to be physically or statistically meaningful. 

Otherwise, the time series is considered to have no trend change. 

Before the break-point analysis is conducted, the stationarity of the 

time series that is required for the linear regression analysis (Fuller 1995) must 

be evaluated with the unit root test incorporating the break point (Kim and 

Perron 2009). Although not shown, it was found that both the SAT and SIC time 

series, averaged over the analysis domains, are stationary at a 1 % significance 

level. This implies that the area-averaged SAT and SIC time series are suitable 

for the regression analysis with a break point. 
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2.3.2. MCA analysis  

To better understand the interannual covariability between the Arctic 

SIC and mid-latitude SAT, we also performed a MCA. The MCA is based on the 

singular value decomposition (SVD) of the covariance matrix of the two 

variables (Bretherton et al. 1992; Wallace et al. 1992). Only the eastern 

hemisphere is considered for both the Arctic SIC (0-180°E and 60-90°N) and 

extratropical SAT anomalies (0-180°E and 30-90°N), as in Mori et al. (2014). To 

find the optimal time lag, September to November (SON), October to December 

(OND), November to January (NDJ), and December to February (DJF) SIC 

anomalies are tested against DJF SAT anomalies.  

Although detrended data are often used in the MCA, raw data are used 

in this study. Detrended data would be more useful than the raw data for 

isolating interannual covariability, only if the variables of interest have linear 

trends. As shown later in this paper, both the Arctic SIC and Eurasian SAT have 

nonlinear trends with a significant trend change in the late 1990s. This makes 

the use of detrended data questionable. The use of raw data also allows us to 

investigate whether the leading expansion coefficient (EC) time series (see 

below) can reproduce the observed break point.  
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The MCA is specifically conducted as follows. The 𝑆𝐴𝑇(𝑥, 𝑡) at a grid 

point 𝑥  and time 𝑡  and the 𝑆𝐼𝐶(𝑥, 𝑡 + 𝜏) at time 𝑡 + 𝜏  are expanded in 

the MCA. 

𝑆𝐴𝑇∗(𝑥, 𝑡) = ∑ 𝐴𝑛(𝑥)𝑎𝑛(𝑡)N
𝑛          (7) 

𝑆𝐼𝐶∗(𝑥, 𝑡 + 𝜏) = ∑ 𝐵𝑛(𝑥)𝑏𝑛(𝑡 + 𝜏)N
𝑛    (8) 

where 𝑆𝐴𝑇∗ and 𝑆𝐼𝐶∗ denote SAT and SIC anomalies, respectively. The time 

series  𝑎𝑛(𝑡)  and 𝑏𝑛(𝑡 + 𝜏)  are the nth EC time series obtained from the 

projection of the nth singular vectors 𝐴𝑛(𝑥) and 𝐵𝑛(𝑥), obtained by the SVD 

of the covariance matrix, onto their original data. Here, the singular vectors are 

normalized and nondimensionalized, but the ECs have the same dimension as 

the raw data. Because we are mainly interested in SIC-induced SAT changes, 

𝜏 is set to zero to negative values (e.g., 𝜏 =  −1 for NDJ SIC versus DJF SAT 

anomalies). The homogeneous SIC map and the heterogeneous SAT map are 

constructed by projecting 𝑆𝐼𝐶∗(𝑥, 𝑡 + 𝜏) and 𝑆𝐴𝑇∗(𝑥, 𝑡), respectively, onto 

𝑏𝑛(𝑡 + 𝜏) (Bretherton et al. 1992; Czaja and Frankignoul 2002). Before the 

projection, 𝑏𝑛(𝑡 + 𝜏) is scaled to make the homogeneous and heterogeneous 

maps have the same dimensions as the input data.  

There is no formal procedure to evaluate the statistical significance of 

a MCA. As such, an empirical significance test, based on the bootstrap method, 

is carried out, as in Czaja and Frankignoul (2002). The MCA is repeated with the 

original SIC data and the randomly resampled DJF SAT data. This resampling is 
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conducted 100 times. The statistical significance is then evaluated by 

considering two metrics: the squared covariance fraction (SCF), which is a ratio 

of the squared covariance of a first leading mode against the squared covariance 

of all others, and the correlation coefficient (CC) between the leading EC time 

series of the SAT and SIC datasets. The significance level is defined by the 

percentage of resamples with an SCF or CC value equal to or greater than the 

value being tested.  
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2.3.3. Decomposition of a linear trend  

The SAT anomalies, after the break point, are further decomposed into 

linearly congruent components with the SIC anomalies averaged over the BKS 

(𝑆𝐼𝐶∗
BKS  ) and residuals (Thomson et al. 2000). When the 𝑆𝐼𝐶∗

BKS  time 

series is represented by the linear trend (α) and the residual 𝜖1(𝑡),  

𝑆𝐼𝐶∗
BKS(𝑡) = α𝑡 + 𝜖1(𝑡) ,     (9) 

the 𝑆𝐴𝑇∗ time series can be regressed against 𝑆𝐼𝐶∗
BK, as below: 

𝑆𝐴𝑇∗(𝑥, 𝑡) = β(𝑥)𝑆𝐼𝐶∗
BKS(𝑡) + 𝜖2(𝑥, 𝑡) =  αβ(𝑥)𝑡 + 𝜖3(𝑥, 𝑡),  (10) 

where β(𝑥)  is the regression coefficient of 𝑆𝐴𝑇∗  onto 𝑆𝐼𝐶∗
BKS , and 

𝜖2(𝑥, 𝑡) is the residual in Eqn. 7. The coefficient αβ(𝑥) corresponds to the 

linear trend of 𝑆𝐴𝑇∗ that is congruent with the 𝑆𝐼𝐶∗
BKS trend. The residual 

trend, i.e., the trend of 𝜖3 , is considered to be independent of the 𝑆𝐼𝐶∗
BKS 

trend. The linearly congruent trend is statistically significant only when both α 

and β are statistically significant. 
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2.3.4. Blocking index  

 A number of blocking detection algorithms have been applied in the 

literature (Dunn-Sigouin et al. 2013; Woolings et al. 2018; Hwang et al. 2020). 

The indices are largely grouped into anomaly, gradient-reversal, and mixed 

blocking indices. The mixed index, which combines the anomaly and gradient-

reversal approaches, was employed in this study. Specifically, the MIX index 

described by Woolings et al. (2018) was used. Although not shown, it is noted 

that the overall results are not sensitive to the selection of the blocking index.  

A blocking is detected from the daily geopotential height field at 500 

hPa (Z500) over 45° to80°N. A large anomaly is first detected when the Z500 

anomaly is greater than the 90th percentile within three months. If this anomaly 

covers at least 2 × 106 𝑘𝑚2 and satisfies a spatial overlap more than 50% 

within successive days for at least five days, it is classified as a blocking anomaly. 

It is ensured that this anomaly is accompanied by the gradient reversal, 𝐺𝑅, as 

follows: 

𝐺𝑅(𝜆, 𝜙) =  
𝑍500(𝜆, 𝜙: 𝜙 + ∆𝜙) − 𝑍500(𝜆, 𝜙: 𝜙 − ∆𝜙)

∆𝜙
> 0 

𝜙𝑚𝑎𝑥 − ∆𝜙/2 <  𝜙 <  𝜙𝑚𝑎𝑥 + ∆𝜙/2 

where, 𝜆 and 𝜙 are the longitude and latitude, respectively, whereas 𝜙𝑚𝑎𝑥  

and ∆𝜙 are the latitude of the maximum Z500 variance and detection window 

of 15°, respectively. See MIX index in Woolings et al. (2018) for further details.  
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2.4. Climate model simulations  

The GFDL-CM2.1 was used in this study. This model is a fully coupled 

model consisting of atmosphere, land, ocean, and sea ice models. The 

atmosphere and land models have a horizontal resolution of approximately 2.5° 

longitude × 2° latitude, while the ocean and sea ice models have a resolution of 

approximately 1° × 1° in the tripolar grid. The vertical levels in the atmosphere 

and ocean were set to 26 and 50, respectively. 

This model was forced by nudging the historical Arctic SST, north of 

65°N, with a five-day relaxation time scale. The Extended Reconstructed Sea 

Surface Temperature (ERSST) v3b was used (Smith et al. 2008). All other 

forcings, such as greenhouse gases, anthropogenic aerosols and solar insolation, 

were fixed at the levels of the 1990s. A total of 35 ensemble members, with 

different initial conditions selected from the long-term equilibrium simulation, 

were conducted from 1951 to 2016. Among these, 15 members were identical 

to those used in Kim et al. (2020) whereas 20 members are newly added. Only 

the last 30 winters from 1986 to 2015 were analyzed in this study, with the first 

35 years discarded as a spin-up period. 
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2.5. Results 

2.5.1. Interannual and long-term trend relationship of 

Arctic and Eurasian SAT 

Figure 2.1a-c presents the SAT time series and their linear trends in the 

NH extratropics, Eurasia and North America for summer (June-August; JJA) and 

winter (December-February; DJF). Not surprisingly, the NH-extratropical SAT 

has steadily increased from 1979 to 2014 in both seasons. However, the regional 

SAT trends have markedly different characteristics between seasons. In JJA, 

both the Eurasian and North American SATs show steady warming trends, with 

relatively weak interannual variabilities (red lines in Fig. 2.1b, c). In contrast, 

the DJF SATs show abrupt trend changes in the late 1990s with large 

variabilities (blue lines in Fig. 2.1b, c).  

The break-point analysis revealed that the Eurasian and North 

American DJF SAT trends significantly changed in the late 1990s (Fig. 2.1b, c). 

The break point was particularly prominent in 1998. Note that although the 

detected year, 1998, has been empirically used in the literature (e.g., Kaufmann 

et al. 2011; Li et al. 2015), it is objectively identified as a break-point year in this 

study. Notably, the detected year is somewhat sensitive to the choice of the 

analysis domain. With varying domain size, the break-point changes slightly but 

is still observed in the late 1990s (not shown). Importantly, as Fig. 2.1b and c 

show, that the break point is statistically significant as the confidence interval 

does not cross the start and end years of the analysed period. Although a weak 
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hint of the trend change is observed in the NH-extratropical SAT (Fig. 2.1a), this 

change is not significant. Likewise, the JJA SAT does not show any hint of the 

trend change.  

Notably, the sign of both the Eurasian and North American SAT trends 

switched at the same time (e.g., year 1998 in Fig. 2.1b,c) with the different 

confidence intervals. This result raises at least two possibilities: (1) there was a 

NH circulation change that coherently affected both the Eurasian and North 

American SATs; or (2) two different physical processes, which independently 

affected the Eurasian and North American SATs, occurred by chance in the late 

1990s.  

This issue is briefly addressed by examining the spatial structure of the 

DJF SAT trends before and after 1998 (Fig. 2.1d,e). Before 1998, significant 

warming occurred in central to south-east Eurasia and the east coast of North 

America. A weak warming trend is also evident in northern Europe. In contrast, 

weak and insignificant cooling occurred at high latitudes, north of 60°N. These 

trends, i.e., the strong mid-latitude warming and weak Arctic cooling, basically 

flipped after 1998 (compare Fig. 2.1d and e). The Eurasian and North American 

warming trends were replaced by statistically significant cooling trends. 

Likewise, the Arctic warming became particularly strong especially over the 

Greenland and Barents seas.  

Figure 2.1e further shows that the SAT trends over the North Pacific are 

statistically significant in the latter period. These trend patterns resemble the 

negative phase of the PDO (Bond et al. 2003) and are connected to the North 
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American cooling trend through a wave-like trend pattern. These results may 

suggest that the DJF SAT-trend change in 1998 was likely associated with not 

only rapid warming in the Arctic but also a phase change in the PDO. The role of 

the PDO has been extensively discussed in the literature, and it is now well 

accepted that North American SAT trend changes are influenced by PDO phase 

changes (Meehl et al. 2011; Kosaka and Xie 2013; Meehl et al. 2013). However, 

the PDO cannot directly change the Eurasian SAT trend, as Eurasia is located 

upstream of the PDO region (Kosaka and Xie 2013). Instead, Eurasian cooling is 

more closely associated with Arctic warming and related atmospheric 

circulation changes (Honda et al. 2009; Petoukhov and Semenov 2010; Mori et 

al. 2014; Peings and Magnusdottir 2014; Barnes and Screen 2015; Overland et 

al. 2015; Nakamura et al. 2016; Mori et al. 2019). 
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Figure 2.1. Area-mean SAT and its linear trend in DJF (blue) and JJA (red): (a) 

the Northern Hemisphere extratropics, (b) Eurasia and (c) North America. 

Dashed lines represent an extended trend in the absence of a breakpoint, and 

the black solid lines running parallel to the x-axis are the 95% confidence 

interval of the estimated break point indicated by the black dashed lines. The 

right column shows the DJF SAT trend (d) before and (e) after 1998. The values 

that are statistically significant at the 95% confidence level are dotted. Two 

boxes denote the Eurasian and North American domains. 
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Did Arctic sea-ice loss start at the same time (or period) as Eurasian 

winter cooling? To address the SIC–SAT trend relationship, a break-point 

analysis was also performed with the BKS SIC time series (Fig. 2.2). Notably, the 

BKS SICs in autumn and winter abruptly decreased in approximately1998 (Fig. 

2.2a-d), coincident with the timing of the Eurasian winter cooling (compare Fig. 

2.1b and Fig. 2.2a-d). Unless they happened by chance, these results may 

suggest that the recent Eurasian cooling was partly associated with the BKS sea-

ice loss.  

Figure 2.2e-h illustrates the spatial pattern of the Arctic SIC trend since 

1998. In autumn (SON), the SIC shows a significant negative trend over broad 

regions from the BKS to Chukchi seas (Fig. 2.2e). This negative trend is 

maintained in large areas of the Arctic ocean until the early winter (Fig. 2.2f,g) 

but is mainly restricted to the BKS seas in DJF (Fig. 2.2h). This result indicates 

that BK SIC loss is a robust heat source to the atmosphere from autumn to 

winter. However, it is difficult to determine whether the autumn SIC decrease 

(and the accumulated heat release from the ocean to the atmosphere until 

winter) is more important than the concurrent winter SIC change.  
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Figure 2.2. (a) SON, (b) OND, (c) NDJ, and (d) DJF SIC and their linear trends 

over the BKS. The overall format is identical to that of Fig. 2.1a. Right panels 

show the linear trend in SIC in each season since 1998. The values that are 

statistically significant at the 95% confidence level are dotted. The boxes in the 

right column denote the domain of BKS. 
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To identify the optimal time lag (or the absence of the time lag), the 

relationship between the Arctic SIC and Eurasian winter SAT anomalies is 

further quantified by MCA. The optimal time lag is determined with a maximum 

and statistically significant SCF. Note that although CC can be also used to define 

the lag, it does not allow a direct comparison among MCAs as each CC is 

computed with different EC time series. Table 2.1 summarizes the information 

explained by the leading mode obtained from the MCA. The SCF of the leading 

modes exceeds 70% and the CC is greater than 0.7 for all time lags. More 

specifically, the first leading mode accounts for approximately 50% of the SIC 

variance and approximately 25% of the SAT variance. This indicates that the 

MCA results are robust regardless of the SIC reference season. However, not all 

results are statistically significant. The first mode of DJF SAT against DJF SIC 

shows a 23% significance level, which is much larger than any others (see the 

last column of Table 2.1). This result suggests that the mid-latitude SAT 

anomalies lag behind the Arctic SIC anomalies by at least one month.  

Table 2.1. SCF, CC, percent variances of SIC and SAT, and their significant levels 

explained by the first leading mode derived from the maximum covariance 

analysis (MCA) for SON to DJF SICs and DJF SAT.  

 SCF CC SIC SAT Sig. level 

SON SIC vs. DJF SAT 83.07 0.74 48.14 25.59 3 

OND SIC vs. DJF SAT 86.80 0.72 53.02 26.93 1 

NDJ SIC vs. DJF SAT 78.63 0.74 54.19 23.29 10 

DJF SIC vs. DJF SAT 72.36 0.85 54.21 20.47 23 
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Based on the maximum SCF and the MCA significance, the optimal 

covariability is found between the OND SIC and DJF SAT anomalies. The 

statistically significant CC in ECs in OND SIC and DJF SAT also implies that this 

mode well represents the association of winter SAT change with the autumn SIC 

change. Figure 2.3c and d illustrate the spatial and temporal structures of the 

leading mode of the OND SIC and DJF SAT anomalies, . These figures clearly 

showing the WACE-like pattern. More importantly, the resulting EC time series 

(Fig. 2.3a,b) are closely related to the BKS SIC (Fig. 2.2b) and Eurasian SAT time 

series (Fig. 2.1b). Their CCs are 0.94 for the SIC time series and 0.92 for the SAT 

time series. Both the interannual variability and the decadal trend change are 

well captured by the leading EC time series. Note that although the break point 

of the SAT EC time series appears in 2001, it is not significantly different from 

the observed break point in 1998, as the confidence interval overlaps. 

Essentially, the same result is also found when monthly data, instead of three-

month-averaged data, are used (not shown). 
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Figure 2.3. (left) EC time series of the leading mode of the MCA and their trends 

of the (a) OND SIC and (b) DJF SAT. The overall format is identical to that of Fig. 

2.1a. The numbers in the top right corners of (a) and (b) denote the correlation 

coefficients with the Barents-Kara SIC time series (Fig. 2.2b) or the Eurasian 

SAT time series (Fig. 2.1b). The right column shows the (c) homogeneous (OND 

SIC projection onto the leading EC time series of OND SIC) and (d) 

heterogeneous (DJF SAT projection onto the leading EC time series of OND SIC) 

maps for 1979-2013. Note that the latitudinal domain of (c) is different from 

that of (d). 

  



 

 ５８ 

Here, we emphasize that the MCA results have at least two novel 

characteristics. (1) Because the SAT and SIC data in the Eastern Hemisphere, 

rather than those in a specified domain (e.g., Fig. 2.1), are used, the detected 

break points in Fig. 2.3a and 2.3b are free from the influence of the analysis 

domain choice and prove the presence of the WACE-like trend change in the late 

1990s. (2) The optimal time lag between the SIC and SAT anomalies is identified 

to be approximately two months based on interannual to decadal time scales. 

Although this result does not guarantee causality, it suggests that Eurasian SAT 

anomalies and their trends are likely influenced by Arctic sea ice and related 

large-scale atmospheric circulations. 

This lagged relationship can instead be explained by the stratospheric 

pathway. The key idea of this pathway is that the heat released by Arctic sea ice 

loss can generate vertically propagating waves that weaken the stratospheric 

polar vortex. The weakened polar vortex can then affect the troposphere in a 

manner similar to the tropospheric circulation change in response to 

stratospheric sudden warming (Jaiser et al. 2013; Cohen et al. 2014; Kim et al. 

2014; Garcia-Serrano et al. 2015; Sun et al. 2015; Nakamura et al. 2016; Wu & 

Smith 2016; Zhang et al. 2018). The stratospheric pathway is examined by the 

heterogeneous regression map onto the EC time series of OND SIC (Fig. 2.4). The 

BKS warming induced by the sea ice loss causes the anomalous SLP near the 

BKS, and the associated vertical structure is stretched to the stratosphere. 

Figure 2.4 shows the lagged relationship with the OND SIC EC time series with 

the DJF circulation anomalies. Figure 2.5 further shows that the EC time series 

of OND SIC is more relevant to the DJF stratosphere than to the OND 
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stratosphere, implying that the Arctic sea ice loss is likely responsible for the 

changes in atmospheric vertical structure. 

 

 

Figure 2.4. same as Figure 2.3(d) but for DJF (a) SLP, (b) Z500, and (c) Z50. 
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Figure 2.5. lead-lag regression map of PCI Z onto the leading EC time series of 

OND SIC for 1979-2013. 
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Although not shown, the second mode is also examined. The EC time 

series of SIC in this mode is not strongly correlated with the BK SIC time series 

(r = 0.44 in SON, r = 0.18 in OND, r = 0.00 in NDJ, and r = 0.09 in DJF). This 

indicates that the second mode does not represent BK SIC variability. Instead, 

the second mode is closely related to the AO index. The correlations between 

the second EC time series of the SAT and the AO index are 0.78 in OND, 0.82 in 

NDJ and 0.82 in DJF. These results complement those of Kim and Son (2016), 

who identified WACE as the first leading mode of the NH winter SAT variability, 

while the second leading mode is AO-related. 

The possible impact of Arctic sea-ice loss on the SAT trend is further 

quantified by decomposing the SAT trend from 1998 to 2013 into a trend that 

is linearly congruent with the OND sea-ice loss and the leftover. The DJF SAT 

trend, which is linearly congruent with the OND BK SIC decrease, is presented 

in Fig. 2.6b. This trend resembles the DJF SAT trend very well (Fig. 2.6a), a result 

that again suggests that the Eurasian winter cooling since 1998 has at least 

partly been associated with the loss of autumn SIC over the BK seas. 

It is noteworthy from Fig. 2.6b that the SAT cooling over North America 

is partly related to the BKS sea-ice loss. However, this cooling is unlikely to be 

directly associated with BKS sea-ice loss. As discussed in Screen (2017), North 

American SAT is more sensitive to sea-ice variability in the East Siberian–Laptev 

seas and Greenland Sea. Because Arctic sea-ice loss is not limited to the BKS but 

is observed to varying degrees in most Arctic Oceans, the North American 

cooling is likely associated with the overall Arctic sea-ice loss. 
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Figure 2.6. (a) Linear trend in the DJF SAT, (b) the trend that is linearly 

congruent with the OND SIC trend over the BKS seas, and (c) the residual 

component for 1998-2013. The values that are statistically significant at the 95% 

confidence level are dotted. 
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2.5.2. Polar restoring experiments in GFDL CM2.1 

The stratospheric pathway, however, is not robust in climate models 

experiments. Even if a model that fully resolves the stratosphere, may fail to 

reproduce the WACE-like SAT response to Arctic sea-ice loss (Li et al. 2015). In 

such models, the WACE-like climate variability is not well reproduced 

(McCusker et al. 2016; Sun et al. 2016), making the stratospheric pathway 

questionable. Recent modelling studies have further argued that recent 

Eurasian winter cooling has simply been caused by natural variability 

(McCusker et al. 2016; Sun et al. 2016; Ogawa et al. 2018).  

However, it is impatient to conclude that Arctic sea ice changes cannot 

be attributed to Eurasian SAT trend change, based on the results from the 

climate model experiments. One of the possible reasons is that the way to 

impose Arctic warming or sea ice loss in climate models differs (e.g. controlling 

the albedo, heat flux, sea ice concentration and sea ice thickness, etc., Screen et 

al. 2018). In addition, it was argued that an ensemble-mean response over the 

Eurasia could not be found when the number of ensemble members is less than 

80 (Mori et al. 2014). Therefore, this study attempted to mimic the realistic sea 

ice reduction to simulate the Eurasian temperature trend change with enough 

ensemble members. 

Figure 2.7. shows the observed and simulated seasonal cycle of SST and 

SIC over Arctic and BKS. For SST, in both Arctic and BKS, the overall seasonal 

cycles are well captured in climate model simulation (Fig. 2.7a,c). It is quite 
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obvious since the observed SST is nudged to the experiments. Then, the 

seasonal cycle of Arctic SIC, which is produced in the model by using the nudged 

SST is compared to the observation (Fig. 2.7b). The seasonal cycle of SIC tends 

to be consistent with the observation, while the seasonal variability is quite 

overestimated. The monthly mean SIC is less than observation when the sea ice 

decreases and is greater than observation when the sea ice is generated. This 

results imply that the seasonal variability of Arctic SIC seems to be comparable 

with the observation (Fig. 2.7b,d). 

 

 

Figure 2.7. Seasonal cycle of Arctic (a) SST and (b) SIC in ERA-5 (green) and 

ensemble mean (black) and individual ensembles (gray) in CM2.1 polar 

restoring experiment. (c-d) same as in (a-b) but for BKS. 
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After removing their seasonal cycle, the interannual variability and 

decadal trend of SST and SIC over entire Arctic and BKS are examined (Fig. 2.8). 

The interannual variability of the annual mean Arctic SST in individual 

ensembles generally well matches to the observed SST. The ensemble-mean 

Arctic SST (black) is almost identical to the observation (green). This means that 

the interannual variability of the Arctic SST is well reflected in each experiments. 

Unlike annual mean Arctic SST, however, DJF Arctic SST time series in the 

individual ensemble members have different interannual variabilities (Fig. 2.8c). 

This may result in the nature of the coupled climate model, which generates the 

sea ice by applying the nudged SST, so that the open sea grid differs between 

each experiment and observations. The hypothesis is supported by the larger 

interannual variability of the SST over BKS, where the sea ice variability is the 

largest (Fig. 2.8e). For the SIC time series, the long-term negative trend follows 

the observed trend over both entire Arctic seas and BKS, while their interannual 

variability is sensitive to the ensemble members. 
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Figure 2.8. (a-b) Annual mean Arctic (70-90N) (a) SST and (b) SIC anomalies in 

ERA-5 (green) and ensemble mean (black) and individual ensembles (gray) in 

CM2.1 polar restoring experiment. (c-d) same as in (a-b) but for DJF season. (e-

f) same as in (c-d) but for BKS. 
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2.5.3. Long-term trend in polar restoring experiments 

Figure 2.9 shows the observed long-term trend of atmospheric 

variables, such as SAT, SLP, zonal wind at 300 hPa (U300), and blocking 

frequency, during 1986-2015 DJF. A strong warming trend is prevalent over the 

Arctic seas, while the cooling trend is found in central Eurasia (Fig. 2.9a). As 

mentioned above, this dipolar structure of SAT trends, known as WACE pattern, 

has been predominantly observed after the 2000s, concurrently with an abrupt 

sea ice loss in the preceding autumn and winter (Cohen et al. 2014; Kim and Son 

2020; Ye and Messori 2020). As suggested in the previous studies (Francis and 

Vavrus 2012; Cohen et al. 2014; Xu et al. 2019), Arctic warming can induce 

anomalous large-scale atmospheric circulation at midlatitudes such as a high 

SLP anomaly in Siberia (Fig. 2.9b) through the weakening and eastward shift of 

the upper tropospheric jet stream (Fig. 2.9c). Under these conditions, blocking 

over the Ural Mountains occurs more frequently (Fig. 2.9d; see also Luo et al. 

2016; Yao et al. 2017). Hence, both the southward cold air advection induced by 

the intensified Siberian High and a more occurrence of extreme cold days 

associated with an increased Ural blocking frequency result in the Eurasian 

cooling trends in the recent decades. 
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Figure 2.9. DJF-mean (a) SAT, (b) SLP, (c) U300, and (d) blocking frequency 

trend over the 1986-2015 from ERA5. Only the values that are statistically 

significant at the 95% confidence level are dotted. 

 
Although the trends in Arctic sea ice loss and Eurasian winter cooling 

are concurrently found in the observations, there still be a discrepancy in the 

midlatitude responses among the climate model simulations (Li et al. 2015; 

McCusker et al. 2016; Sun et al. 2016; Ogawa et al. 2018). This is partly due to 

the opposite effects of tropics on the midlatitude jet, thus, the tropical upper 

tropospheric warming could lead to a poleward shift of the midlatitude jet while 

Arctic warming results in an equatorward shift of jet. This “tug-of-war paradigm” 

between the Arctic and tropics indicates that the historical all forcing 

simulations may not be suitable to understand the role of Arctic sea ice on 

midlatitude circulation changes. In this regard, the polar restoring experiments 

have been conducted in the present study to isolate the impact of Arctic 

warming associated with sea ice loss on the midlatitude atmospheric 

circulation without any consideration of radiative heating (see methods). 
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Figure 2.10 shows the long-term trend of atmospheric variables in the 

ensemble-mean (a total of 35 members) of coupled model simulations. A 

statistically significant SAT trend is confined only in Arctic seas, and its 

amplitude is much smaller than the observation. The ensemble-mean signal of 

SAT trends is not significant particular in Eurasia where the ensemble spread is 

larger than the other regions (not shown). This implies that the observed 

cooling trends in Eurasia through the modulation of atmospheric circulation 

(Fig. 2.9) are not likely due to the Arctic sea ice decline alone, as suggested by 

the previous studies (Li et al. 2015; McCusker et al. 2016; Sun et al. 2016; Ogawa 

et al. 2018). Not surprisingly, statistically significant changes in atmospheric 

circulation, which can alter Eurasian temperature, are not evident in the 

ensemble-mean trends (Figs. 2.10b-d). 

 

 

Figure 2.10. Same as Figure 2.9. but for the ensemble mean of 35 experiments 

in GFDL CM2.1. 
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To further estimate the ensemble spread of the changes in midlatitude 

atmospheric circulation, the area-averaged SLP trends over the Ural region (30-

100°E and 50-70°N) are defined in individual ensemble members. Besides, their 

relationships to each corresponding trend in SATs over Eurasia (40-60°E and 

50-130°N) and BKS (30-70°E and 70-80°N) are illustrated in Fig. 2.11 and 2.12. 

Only a half of the total ensemble members (17 of 35) shows a Eurasian cooling 

trend. For the relationship between Ural SLP and Eurasia SAT trends (Fig. 2.11), 

there is a strong inter-member correlation coefficient (r=-0.82) which value is 

statistically significant at the 95% confidence level. This result is consistent 

with the previous studies that they found the inter-member or inter-model 

relationship associated with internal atmospheric variability (McCusker et al. 

2016; Sun et al. 2016). The individual BKS SAT trends, however, are not 

significantly related to each Ural SLP trend (Fig. 2.12). Although all ensemble 

members show a positive sign of BKS SAT trends, the Ural SLP trends have both 

positive and negative signs. These results confirm that the Eurasia SAT trends 

in each ensemble member are thermodynamically associated with the 

atmospheric circulations over the Ural region as in the observed long-term 

trends, but those circulations are not predominantly determined by the BKS SAT 

trends in the model. 

Notably, although the previous studies have considered the observed 

Eurasian winter cooling as an extreme case outside the range between multi-

model simulations (McCusker et al. 2016; Sun et al. 2016; Ogawa et al. 2018), 

our experiments suggest that the observed Eurasian cooling trend is within the 

range of ensemble spread. This result implies that the observed trend could be 



 

 ７１ 

one of the realizations produced by the internal variability without any other 

radiative heating. However, the observed Ural SLP and BKS SAT trends are is 

slightly beyond the range of ensemble spread. Especially in BKS warming (y-

axis in Fig. 2.12), the observed trend reaches 2.81 K per decade which value is 

almost 30% larger than the maximum value in the model experiments (2.1 K 

per decade). These results indicate that the recent BKS warming is not 

explained only by sea ice retreat (Labe et al. 2020; Cai et al. 2021). It hints that 

the other direct and indirect effect of radiative heating, which is not considered 

in our model experiments, may reinforce BKS warming. 
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Figure 2.11. Relationship of the Ural SLP trend to Eurasian SAT trend in ERA5 

(green) and the ensemble mean (black) and individual ensemble members 

(grey) in GFDL CM2.1 for the period of 1986-2015. Note that the ensemble 

members of Ural+ group are denoted in light pink, while that in Ural- group are 

denoted in light blue. The ensemble means of Ural+ and Ural- are denoted in red 

and blue, respectively.  
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Figure 2.12. Same as Figure 2.11. but for BKS SAT trend. 
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To understand the critical role of internal variability on the trends in 

atmospheric circulation, we compare the extreme cases according to the sign of 

Ural SLP trends. Two groups – Ural High and Ural Low – are classified in which 

the Ural SLP trends exceed ±one standard deviation of individual trends. Hence, 

the three ensemble members are included in Ural High cases, and the eight 

ensemble members are considered as Ural Low cases. Note that the ensemble 

means of Ural High and Ural Low cases have similar magnitudes of trends in 

BKS SAT. 

The difference between the Ural High and the Ural Low cases is further 

investigated by comparing the composites of long-term trends (Fig. 2.13). The 

SAT and SLP trends in the Ural High cases represent quite similar patterns to 

the observed ones (compare Figs. 2.9a, b and Figs. 2.13a, c). In the Ural Low 

cases, however, the BKS warming tends to expand to the Eurasia region. 

Furthermore, although Arctic warming is found, a decreasing trend in SLP over 

the entire Arctic seas and its southward extension to the Ural region are evident 

(Fig. 2.13d). The substantial difference between two groups is also found in the 

trends of the tropospheric upper-level jet (Figs. 2.13e and f). A weakened and 

equatorward shifted jet stream corresponds to an anomalous surface high-

pressure circulation in the Ural High cases (Figs. 2.13c and e). These 

atmospheric circulation changes with a barotropic structure located in the Ural 

region are also evident in the Ural Low cases but with an opposite sign (Figs. 

2.13d and f). The long-term trends in the upper tropospheric jet stream are 

further linked with an increase and decrease in Ural blocking frequency in both 

groups, respectively (Figs. 2.13g and h). This result implies that Eurasian 
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cooling can occur under the Arctic warming conditions, only when the 

anomalous anticyclonic circulation exists in the Ural region accompanied by the 

weakening of upper tropospheric jet. 

 

Figure 2.13. Same as Figure 2.10. but for ensemble means of (left) Ural+ group 

and (right) Ural- group.  
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The following question is what determines the circulation changes in 

the upper troposphere. To explain possible mechanisms for this question, the 

vertical structure of zonal-mean air temperature in both the Ural High and the 

Ural Low cases are investigated focusing on high-latitude (Fig. 2.14). Although 

the amplitude of Arctic surface warming near the BKS is similar in both cases 

(Fig. 2.14b), the vertical structures are quite different. For Ural High cases, the 

surface warming trend is well developed vertically, a statistically significant 

warming is found up to 400 hPa level (Fig. 2.14a). This deep Arctic warming 

tends to reduce the meridional temperature gradient in the upper troposphere. 

It is likely responsible for the weakening trends in upper-level jet, resulting in 

the anomalous anticyclonic circulation and increased blocking frequencies over 

the Ural region. However, in the Ural Low cases, Arctic warming is shallow and 

trapped in the lower layer below 850hPa even the cooling exhibits above 700 

hPa level (Fig. 2.14b). This prevalent cooling trend in the upper troposphere 

increases the meridional temperature gradient, which induces an 

intensification of the upper tropospheric jet stream. 
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Figure 2.14. Vertical cross section of the zonally averaged DJF temperature 

trend over 1986-2015 in ensemble means of (a) Ural+ group and (b) Ural- group. 

Only the values that are statistically significant at the 95% confidence level are 

dotted. 
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The vertical structure of Arctic warming turns out to be an important 

factor for determining the atmospheric circulation change related to the 

Eurasian cooling trends. Thus, the linkage between the vertical extent of Arctic 

warming and the Ural SLP has been further investigated in individual ensembles 

(Fig. 2.15). To determine the indicator of the vertical extent of Arctic warming, 

we simply used the polar cap (> 65 °N) tropospheric temperature defined by 

vertically averaged air temperature from 700 to 300 hPa (PCI_T700-300hPa). It 

is found that there is a non-negligible linear relationship (r=0.60) between the 

trends in PCI_T700-300hPa and Ural SLP. It indicates that the Eurasian cooling 

is more pronounced as Arctic warming is deeper in the vertical. When Arctic 

warming is confined near the surface, however, the Eurasian SAT trend becomes 

even positive. It highlights the importance of the vertical structure of Arctic 

warming in simulating the Arctic-Eurasian climate co-variability.  

This result is in agreement with the recent studies (Xu et al. 2019; He 

et al. 2020; Labe et al. 2020), they have suggested that the vertical distribution 

of Arctic warming can control the Eurasian temperature responses on 

interannual time scale. Although there are some hints for causes of deep Arctic 

warming, such as an increased atmospheric poleward energy transport due to 

remote SST changes (Screen et al. 2012) or high-to-mid latitude eddy-mean 

interactions (He et al. 2020), it needs further studies to determine the causality. 

It is noteworthy that the present study suggests the internal variability as a 

possible mechanism rather than the climate model-dependent bias and 

responses. 
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Figure 2.15. Same as Figure 2.11. but for the PCI_T averaged from 700 to 300 

hPa. 
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2.5.4. Interannual variability in polar restoring 

experiments 

One of the key points of the interannual-to-decadal WACE relationship 

is time lag between the Arctic and Eurasia. As state above, the BKS SIC anomalies 

in OND season is more related to the DJF Eurasian SAT anomalies compare to 

relationship with the concurrent SIC anomalies. This lead-lag relationship is one 

of the reasons why many of previous studies used Arctic sea ice forcing in 

climate simulations. Thus, the lead-lag relationship between the BKS SIC and 

Eurasia is re-examined in the polar restoring experiments (Fig. 2.16). While the 

observation shows clear time lag which peaks on OND season (green line in Fig. 

2.16), there is no time lag between the BKS SIC and Eurasian SAT anomalies 

(black line). We further examine the Arctic-Eurasia relationship in Ural+ and 

Ural- ensemble groups. In both groups, there is no time lag between the BKS SIC 

and Eurasian SAT anomalies, while the Ural + ensembles have relatively larger 

correlation than in the Ural – ensembles. This is somewhat obvious since there 

is no clear relationship between the Arctic surface warming which is likely due 

to the Arctic sea ice loss and Ural SLP (Fig. 2.12). Additionally, the time-lagged 

relationship between the Arctic and Eurasia is often considered as an evidence 

of stratospheric pathway (Cohen et al. 2014; Kim et al. 2014). Since the GFDL 

CM2.1 model is low top model, the lagged relationship via stratosphere is 

missed in the model.  
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Figure 2.16. Lead-lag correlation between the BKS SIC and Eurasian SAT for 

the period of 1986-2015 in observation (green), the ensemble mean (black), 

Ural+ mean (blue), and Ural- mean (red). The ensemble spreads are denoted in 

grey bars.  
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The deeply extended Arctic warming is critical on both interannual and 

multi-decadal time scales (Fig. 2.14; Labe et al. 2020; He et al. 2020). This raise 

a question whether there is a governing mechanism covering for both 

interannual and multi-decadal WACE relationship or not. Thus we further show 

the relationship between the interannual relationship and long-term trend in 

Fig. 2.17. The color bars denote the same ensembles as in Fig. 2.11 and Fig. 2.12. 

The polar restoring experiments well capture the interannual relationship 

between the deep Arctic warming and the Ural SLP (compare black and green 

bars). Rather, the correlations in Ural + and Ural- group are both larger than the 

observed correlation between the vertically well-developed Arctic warming and 

Ural SLP. This is consistent with the previous studies showed that there is clear 

interannual co-variability between the tropospheric warming and Eurasian cold 

winter (Labe et al. 2020; He et al. 2020). However, in individual ensemble 

members (light color bars), there is no linear relationship between the 

interannual and long term trend in ensemble members. This result implies that 

the mechanisms regulate the interannual WACE relationship and their long 

term trend might differ, though they seem to occur by the similar dynamics. 
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Figure 2.17. Correlation coefficient between the Ural SLP anomaly and PCI T 

anomaly averaged over the 700hPa to 300hPa for the period of 1986-2015 in 

observation (green), the ensemble mean (black), Ural+ mean (blue), Ural- 

mean (red), and individual ensembles (light colors). The Ural+ and Ural- 

ensemble members are denoted in light pink and light blue. 
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3. Summary and discussion 

The Arctic-Eurasian SAT relationship has been examined from 

subseasonal to interannual-to-decadal time scale. On subseasonal time scale, a 

negative relationship between the BKS and Eurasian SAT anomalies is identified 

on a daily time scale. This relationship is primarily caused by synoptic weather 

systems over the Ural region. This is consistent with the previous studies that 

highlighted the role of the Ural blocking (Luo et al. 2016b; Yao et al. 2017; Tyrlis 

et al. 2020), but is more generalized as not only quasi-stationary blocking highs 

but also transient weather systems are considered in this study. It is further 

found that the dipolar SAT relationship is driven not only by the WACE cases but 

also by the CAWE cases. Both of them are frequently observed from November 

through February with a local minimum in late December, although what makes 

a local minimum is not clear. 

It is found that the key process by which the Ural SLP anomaly 

determines temporal evolution of the WACE and CAWE cases is the horizontal 

temperature advection. Although previous studies often addressed the 

importance of the downward longwave radiation and surface heat flux 

especially on warm Arctic, the net radiative heating over the BKS, estimated 

from ERA-Interim model output, is negative. Its impact is mostly confined in the 

lower level. Note that the previous studies have considered only one or two 

terms in temperature budget (e. g., horizontal advection, surface fluxes, or 

downward long wave radiation; Panagiotopoulos et al. 2005; Mori et al. 2014; 

Ye and Messori 2020). In this study, all terms including horizontal advection, 
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adiabatic heating, and diabatic heating, are computed and the cancellation 

between the horizontal temperature advection and the diabatic heating is 

highlighted. 

On interannual-to-decadal time scale, we investigate the interannual 

co-variability in Arctic and Eurasia. First we analyzed the relationship with 

Arctic sea ice and Eurasian SAT. The Eurasian winter SAT anomalies have 

maximum co-variability with the autumn BKS SIC anomalies with a time lag of 

approximately two months. Also, the Eurasian winter SAT have correlated with 

BKS SAT with a month lag. The 38 year is not enough long to understand the 

interannual variability and the independence of the BKS SIC related phenomena 

and the BKS SAT related phenomena. While the BKS SIC and BKS SAT have been 

tightly related, more samples are required to distinguish the mechanisms.  

A coupled model is integrated by relaxing Arctic SST poleward of 70°N. 

This polar restoring experiment successfully reproduces Arctic warming from 

1985 to 2016, but essentially no surface air temperature trend in midlatitude. 

This result indicates that Eurasian winter cooling in the recent decades is not 

likely a forced response to Arctic warming. No Eurasian temperature trend 

results from the cancellation between ensemble members with Eurasian 

cooling and those with warming. The former, characterized as warm Arctic-cold 

Eurasia (WACE) trend, typically accompanies the vertically well-organized 

Arctic warming, while the latter has shallow Arctic warming confined near the 

surface. This finding is consistent with idealized model, atmospheric general 

circulation model, and coupled model experiments on interannual WACE 
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relationship (Sellevold et al. 2016; He et al. 2020; Labe et al. 2020).  

It is argued that the vertically well-extended Arctic warming effectively 

weakens the background wind. The weakened wind then allows more frequent 

and persistent Ural blockings (Yao et al. 2017; Luo et al. 2019). The resulting 

anticyclonic circulation drives Eurasia cooling while enhancing Arctic warming, 

through meridional temperature advection (Kim et al. 2021).  

It is not clear what determines the vertical extent of Arctic warming. 

Since all ensemble members are forced by identical Arctic SST, it is likely set by 

atmospheric internal variability. Here it should be stated that the observed 

Arctic warming has a much deeper vertical extent than any ensemble members 

in this study. Since all forcings, except Arctic SST, are fixed constant in this study, 

deeper warming in the observation could result from greenhouse warming, 

aerosol forcing, and atmosphere-ocean circulations which have changed over 

time. The factor(s) that determines the vertical extent of Arctic warming in both 

the observation and climate models deserves further investigation. 

The present study utilized only one model, i.e., GFDL-CM2.1. To test the 

robustness of the result, it would be useful to conduct similar experiments with 

multiple models. The high-top models, which fully resolve stratospheric 

processes, would be particularly useful. It has been argued that stratospheric 

processes are crucial for WACE-like temperature patterns (Kim et al. 2014; 

Nakamura et al. 2016; Zhang et al. 2018). The relative importance of 

stratospheric warming and tropospheric warming could be evaluated by 

comparing the simulations with high-top and low-top models. 
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북극과 유라시아 기후 변동성 사이의 
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북극과 유라시아 지표 기온은 계절내 규모에서 장기 트렌드에 이르기까지 다양

한 시간 규모에서 높은 통계적 연관성을 보인다. 본 연구에서는 크게 계절내 규

모와 경년 및 장기 변동성으로 구분하여 이러한 연관성을 설명하는 메커니즘을 

재검증하였다. 먼저 북극과 유라시아 기온 사이의 계절내 변동성의 경우, 11월

부터 2월까지의 추운 계절에만 발생하며 12월에 약화되는 계절 변도성이 나타

나는 것을 확인하였다. 기존 연구에서는 계절내 규모의 북극-유라시아 기온 변

동성을 좌우하는 것은 우랄 지역의 블로킹에 의해 유도된 따뜻한 북극-차가운 

유라시아 기온 패턴이라고 알려져 왔으나, 반대 사례인 차가운 북극-따뜻한 유

라시아 기온 패턴 역시 겨울철에 나타남을 확인하였다. 즉 본 연구 결과는 북극

과 유라시아 기온의 계절내 변동성을 좌우하는 것은 우랄 블로킹이 아닌, 우랄

지역을 지나가는 기상 시스템임을 확인하였다. 또한 경년 및 장기 트렌드 시간 

규모에서 역시 북극과 유라시아 기온 사이의 높은 연관성이 나타난다. 가을철부

터 급격하게 감소하는 북극 해빙이 최근 겨울철의 급격한 기온 감소현상의 원

인으로 지목되었으며, 통계분석 결과 경년 및 장기 트렌드 시간 규모에서 높은 

연관성을 보임을 정량적으로 검증하였다. 그러나 모형 실험 결과 북극 해빙은 

겨울철 유라시아의 기온 변동성을 야기하는 원인으로는 충분하지 않음을 확인

하였다. 오히려 북극 해빙을 실험에 반영하였을 때, 북극 기온의 변화가 연직으
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로 잘 발달하는 일부 실험에서만 유라시아에 강한 기온 감소 현상이 나타나는 

것이 확인되었다. 이 결과는 유라시아 겨울철 기온 감소현상이 대기 내부 변동

성에 크게 의존하고 있음을 시사한다. 

주요어: 따뜻한 북극-차가운 유라시아 패턴, 우랄 블로킹, 북극 해빙 감소, 대

기 내부 변동성 

학  번: 2016-37590 
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