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Background
Single-cell RNA sequencing is a powerful method used to generate transcriptome with 
greater resolution [1], identify rare cells [2], and compare cell heterogeneity [3]. Single-
cell technology also provides additional functionality such as the ability to discriminate 
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and a new algorithm is required. We assessed the extents and effects of misalignment 
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total reads, but such reads were concentrated to few genes that were greatly affected. 
Human and mouse mixed single‑cell data, analyzed using our pipeline, clustered well 
with unmixed data and showed higher k‑nearest‑neighbor batch effect test and Local 
Inverse Simpson’s Index scores than those derived from Cell Ranger (10 × Genomics). 
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breast cancer xenograft tissue and successfully identified all samples using genomic 
array and expression. Moreover, diverse cell types in the tumor microenvironment were 
well captured.

Conclusion: We present our bioinformatics pipeline for mixed human and mouse 
single‑cell data, which can also be applied to pooled libraries to obtain cost‑effective 
single‑cell data. We also address misalignment, multi‑mapping error, and ambient RNA 
as a major consideration points when analyzing multispecies single‑cell data.
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the expression of human cells from mouse cells in human-mouse xenograft specimens or 
human-mouse cell coculture data [4, 5]. A simple method to process human and mouse 
mixed single-cell data is to align the data to human and mouse combined reference data 
(henceforth called “combined reference”). Cell Ranger (10 × Genomics, Pleasanton, CA, 
USA) provides a combined reference and flags cellular barcodes where both human and 
mouse cells are presumably contained in a same droplet (henceforth called “cross-spe-
cies doublet”) using read count distribution. However, similar sequences between each 
reference may cause human-originated reads to align to the mouse reference [6, 7]. In 
addition, because many mouse and human genes are homologous, some reads may have 
the best matching sequence in both references, leading to multi-mapping reads.

We measured the extent of misalignment error and multi-mapping events in single-cell 
data when using the combined reference to align human and mouse mixed single-cell 
data. We developed a new realignment pipeline called Realignment- and Expression-
based Multispecies deconvolution for Single cell (REMS) to minimize the errors while 
using minimum prior information about the sequence data. We also expanded and 
applied REMS to multisample, multispecies pooled single-cell library, enabling us to 
generate cost-effective single-cell libraries with minimal sequencing batch effects.

Results
Misalignment in the combined reference

To summarize the extent of misalignment in single-cell data, we compared the alignment 
of the combined reference and the human reference for several human single-cell data-
sets (Table 1). When aligning human-derived single-cell data to the combined reference, 
one would expect reads to align to the human part of the combined reference. Most 
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reads indeed aligned to human genes, but depending on the data type and sequencing 
throughput, 3000–480,000 reads misaligned to the mouse genes. These misalignments 
cause expression loss of genes in which the reads should have been mapped. Mis-
alignment errors were more prominent in tumor samples, and errors were also found 
on aligning mouse-derived single-cell data to the combined reference. Multi-mapping 
reads, defined as reads which align to more than one exonic locus, also increased 2.7–
13.4% in the combined reference compared to the matching reference (Additional file 1). 
Although multi-mapping read it self is not included in the gene expression, increase in 
multi-mapping reads also indicates loss of gene expression. All together, when com-
paring data analyzed using the combined reference and the human reference, 13,000–
300,000 fewer reads aligned to human genes in the combined reference than in the 
human reference.

While all error in combined reference accounted for only 0.4–1.4% of total reads, these 
reads were concentrated to few genes, leading to strong false signals (Fig. 1, Additional 
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file 2). For example, 30–65% of reads of HNRNPA3 were lost in human cells, and nearly 
all reads (99.8%) of Erf1 were lost in mouse cells. Genes related to RNA binding and 
human leukocyte antigen genes had high rates of misalignment errors. Interestingly, 
the genes affected by misalignment and the degree of misalignment were not iden-
tical between samples and tissues. Genes with read gain and genes with read loss did 
not overlap for human and mouse data, suggesting that misalignment was not a simple 
switch-of-position.

Mixed data analysis pipeline

To assess the misalignment error in human and mouse mixed single-cell data, we gener-
ated both mixed and separate libraries of human lung tissue, human gastric organoids, 
and mouse intestinal organoids. Our mixed data also had misalignment error when we 
aligned the data to the combined reference (Additional file 3). The error was higher, pos-
sibly owing to ambient RNA contamination and undetected doublets. To overcome this 
issue, we generated a pipeline based on expression-based species deconvolution with 
species matching reference realignment to remove doublets and ambient RNA signals 
for error-free downstream analysis (Fig. 2A, flowchart available in Additional file 4).

First, we aligned mixed data to the combined reference and identified species and 
cross-species doublets. Then, we applied a minimum quality filter during the first step, 
because the quality distribution for human and mouse cells may differ widely. To identify 
cross-species doublets, we used transcriptome-wide expression levels to calculate the 
correlation to known single-cell data (Fig. 2B). As misalignment occurs for a proportion 
of genes, the overall expression pattern would be more robust to error. True cross-spe-
cies doublets would show expression patterns of both human and mouse cells. We note 
that although barcodes with low read counts did not reach the threshold for doublet 
identification, > 90% of all cells with a low correlation value were filtered in future steps.

After removing cross-species doublets, we realigned the data to each species matching 
reference and selected barcodes of the corresponding species. When multiple identities 
were pooled, we used a variant-based deconvolution method to assign identity to each 
droplet and detect intersample doublets generated from different cell identities. After 
doublet filtration, we applied quality filters for each identity to account for sample level 
quality variation, and then used a doublet detection algorithm based on artificial doublet 
generation to identify intrasample doublets originating from the same identity.

Although we used species matching reference to remove misalignment errors, human 
singlet cells sequenced from mixed data contained reads that were not expressed in sep-
arately sequenced human cell data, namely FABP1 and RBP2 (Fig. 2C). Reads aligning to 
these genes were found in ambient RNA of the mixed data and in separately sequenced 
mouse data aligned to the human reference, but not in ambient RNA of separately 
sequenced human data. These findings suggested that mouse RNA was introduced into 
human cell containing droplets in the form of ambient RNA, and it misaligned to human 
genes.

Since ambient RNA generated reads from the other species misalign similarly in case 
of empty droplets and human cells, methods that remove ambient RNA signals based 
on expression levels of empty droplets will remove ambient RNA signals generated from 
both species. We strictly removed ambient RNA using a contamination rate derived by 
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adding contamination level calculated from each species with an additional 0.05. After 
ambient RNA removal, all false signals in FABP1 and RBP2 were removed.

Table 2 Comparison of integration metrics between Cell Ranger and REMS pipeline. 0 indicates no 
integration and 1 indicates full integration

Data type kBET LISI

Cell ranger REMS Difference Cell ranger REMS Difference

mIO04 0.80 0.80 0.00 0.95 0.96 0.00

hGO03 0.11 0.84 0.73 0.91 0.94 0.03

hLT02 0.25 0.36 0.10 0.92 0.95 0.03

T cell (merged) 0.91 0.01 − 0.90 0.91 0.94 0.04

Macrophage 0.62 0.91 0.29 0.92 0.95 0.03

Ciliated 0.32 0.57 0.25 0.93 0.93 0.01

Neutrophil 0.80 0.99 0.19 0.95 0.95 ‑0.01

Monocyte 0.92 0.98 0.07 0.94 0.96 0.02

Endothelial_1 0.99 0.97 − 0.03 0.93 0.96 0.03

Mast 0.98 0.97 − 0.01 0.92 0.97 0.04

Endothelial_2 0.99 0.97 − 0.02 0.97 0.94 ‑0.02

Alveolar Type 2 0.94 0.98 0.03 0.94 0.97 0.03

Fig. 3 Cell identity (A) and cell type (B) after REMS pipeline
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To examine the downstream effect of misalignment, we compared the integration level 
between mixed and unmixed data for the data generated by Cell Ranger and that gener-
ated by REMS pipeline (Additional file 5). A total of 98.9% of cells clustered to identi-
cal cell types for each dataset, suggesting a small overall effect of misalignment error. 
However, some samples and cell types had drastic changes in integration metrics. Even 
after batch effect correction using Harmony, a large difference in the kBET was found 
for gastric organoid tissue and macrophages, ciliated cells, and neutrophils in lung tis-
sue (Table 2). The LISI had an overall high value for both datasets; REMS generally had 
higher integration values.

We then applied our pipeline to another library containing breast cancer patient-
derived xenograft tissue and multiple organoids. Because the gene expression of tumor 
cells may not resemble that of normal cells, we additionally used copy number cluster-
ing in the cross-species doublet identification step. In depth comparison of result with 
and without copy number filtering is presented in Additional file  6. From 23,642 ini-
tial cells called by Cell Ranger, we identified 6,738 human cells with six different identi-
ties and 7,580 mouse cells with two different identities (Fig. 3A, B). Human tumor cells 
(xBC42) had a high level of aneuploidy, and the copy number pattern was identical to 
that in exome sequencing-derived data (Additional file 7). Four of the human cell identi-
ties were lung organoids: three normal organoids (hLO13, hLO18, and hLO19) clustered 
evenly while one treated with interleukin 13 (hLO11) had a distinct cluster. The remain-
ing human cell identity was breast organoid (hBO25); fewer cells than expected had 
this identity. All human identities had best matching genotypes to the corresponding 
genomic array data. Two mouse identities are microenvironment of xenograft sample 
(xME42) and mouse pancreatic islet organoid (mPO31). The diverse tumor microenvi-
ronment was well captured. Moreover, two groups of macrophages, endothelial, stro-
mal, and muscle cells as well as normal alveolar, luminal, and myoepithelial cells were 
identified.

Discussion
When analyzing multispecies single-cell data, misalignment errors and multi-mapping 
events greatly affect the results for some genes. The errors were not identical across tis-
sues or cell types, and some cells had > 10% of reads misaligned to genes of other species. 
Due to misalignment, cross-species doublet identification via read count or read major-
ity [5, 8] may lead to inaccurate calls. In addition, ambient RNA from other species can 
generate strong false-positive signals, which may disturb downstream analysis.

To cope with misalignment error, we highlight three major consideration points. First, 
the origin of reads in a single droplet should be identical. Identifying species for each 
droplet while confidently removing cross-species doublet is required. Second, realigning 
each droplet to the corresponding reference is required to minimize misalignment error 
and multiple-mapping events. Third, ambient RNA should be adequately estimated and 
should be removed.

We developed a novel pipeline called REMS using expression-based species deconvo-
lution. Our method can handle pooled library and can be used to generate cost efficient 
single-cell libraries. Overloading a single-cell library to target 40,000 droplets, accompa-
nied by adequate doublet removal can reduce the cost of library generation to as much 
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as 1/10 per singlet. Our pipeline is not restricted to any specific tool, and one can use 
other methods as long as they can minimize misalignment error and adequately remove 
ambient RNA signals. When cancer cells are pooled together, we used copy number pro-
filing as an additional method to remove cross-species doublets. We highly recommend 
using copy number filtering if one’s point of interest lies in mouse cells, since this step 
adequately removes cancer containing doublets from mouse data. Also, although we fil-
tered all doublets found with DoubletFinder for simplicity, manual inspection of Dou-
bletFinder result may increase the quality of the final data.

Multiple deconvolution methods with or without external treatment are available for 
multisample pooling. CITE-seq [9] uses oligo-tagged antibodies that target commonly 
expressed cell surface proteins. MULTI-seq [10] uses a similar method but with lipid-
tagged indices that merge into the membrane of cells or nuclei. Variant-based method 
uses natural genetic variation sequenced in RNA reads to identify each cell [4, 11].

Most methods cannot be applied to xenograft samples or human and mouse cocul-
tured samples, wherein mouse and human cells cannot be separated. Lipid-tagged bar-
codes are agnostic to species and currently there is no variant-based deconvolution tool 
that handles multispecies data. Cell barcode antibodies that target human cells or mouse 
cells separately or a conventional cell sorting technique can be used to separate mixed 
cells [12]. However, both methods need additional processing, which induces stress in 
the cells. We attempted to establish an unbiased approach using minimal treatment.

Currently there is no technology to tag mouse or human RNA on a molecular level. 
Thus we could not quantify misalignment error in mixed-species single cell data, as we 
cannot verify the true expression value in the existence of ambient RNA from the other 
species. We presented extreme cases where expression was lost or non-existing expres-
sion was found; but for other genes, we could not quantify the degree of misalignment 
error.

During the development of REMS, we found that some droplets had high mitochon-
drial gene percentage of the other species, but they were not detected as cross-species 
doublets using multiple detection methods. The mitochondrial gene percentage in 
these droplets was much higher than that in ambient RNA, and the possibility of ambi-
ent RNA owing to its expression was low. We hypothesize that small cell debris may 
get mixed with droplets and generate partial cross-species doublets that may be much 
harder to detect than cross-species doublets. Cell debris from the same species may also 
form partial doublets and may be mistaken as novel cell types or transient cell states. In 
this study, cells were handled swiftly by experienced personnel to minimize stress and all 
cells with high mitochondrial percentage were stringently filtered.

Conclusion
In summary, we identified misalignment error and multi-mapping event while using 
the combined reference and present our realignment pipeline, which is robust for mis-
alignment to generate error-corrected gene matrix for downstream analysis. Tools for 
multispecies single-cell data are lacking, and we encourage researchers to optimize our 
pipeline strategy using advanced computational methods.
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Methods
Tissue preparation

Normal human tissues were obtained from early-stage lung, breast, and stomach can-
cer surgery. Pathologists confirmed the absence of cancer cells. Three samples of human 
lung tissues were obtained from tissue donations of three patients with idiopathic pul-
monary fibrosis who underwent lung transplantation. A bronchoscopic brushing sample 
was collected from healthy bronchus obtained from a patient who received bronchos-
copy. Furthermore, a breast cancer patient-derived xenograft mouse was sacrificed 
6 weeks after tumor injection.

Fresh human tissues were treated using the Multi Tissue Dissociation Kit 1 (Miltenyi 
Biotec, Bergisch Gladbach, Germany) along with the gentleMACS Octo Dissociator 
(Miltenyi Biotec) and 37C_Multi_A_01 program. The brushing sample was centrifuged 
at 400g for 5  min at 4  °C and the pellet was resuspended in Advanced DMEM/F12 
(Gibco, Dublin, Ireland) with Glutamax (Gibco), HEPES (Gibco), Penicillin–Streptomy-
cin (Gibco)  (ADF+++), and 1 mg/mL collagenase IV (Sigma, St. Louis, MO, USA), fol-
lowed by digestion for 15 min at 37 °C.

Patient derived xenograft model was established with female immunodeficient CIEA 
NOG mouse (NOD.Cg-PrkdcscidIL2γgtm1 Sug/JicKoat, KOATECH) and human tumor. 
After euthanize mouse with CO2 chamber, Resected xenograft tumor tissue was dissoci-
ated into a single cell suspension using the Tumor Dissociation Kit 1, human (Miltenyi 
Biotec) along with the 37C_h_TDK_3 program. Mouse normal islet and intestine tissues 
were obtained from a 12-week-old female C57BL/6 mouse. Mouse islet cells were puri-
fied using Ficoll-Paque (Cytiva, Marlborough, MA, USA) and digested using TrypLE™ 
(Gibco) for 15 min at 37 °C. Mouse intestinal crypt cells were isolated using the Gentle 
Cell Dissociation Reagent (STEMCELL Technologies, Vancouver, Canada) for 20 min at 
room temperature followed by squeezing using a microscope cover glass.

Each digested tissue (without intestinal crypt cells) suspension was strained using a 
70-μm filter. The suspension was then centrifuged at 400g for 5 min at 4 °C with 10 mL 
of  ADF+++. The pellet was resuspended in 1 mL of 1 × Red Blood Cell Lysis Solution 
(Miltenyi Biotec) for 10 min at room temperature for lysis of erythrocytes, followed by 
the addition of  ADF+++ and centrifugation at 400g for 5 min. The pellet was then resus-
pended in an appropriate volume of  ADF+++ and kept on ice for organoid culture or 
library generation.

Organoid culture

After digestion and erythrocyte lysis, the cell pellets were seeded in Corning® Matrigel® 
Growth Factor Reduced Basement Membrane Matrix (Corning, Corning, NY, USA), 
solidified for 15 min at 37 °C, and cultured on each organ-specific media for human lung 
[13], human breast [14], human gastric [15], mouse islet [16], and mouse intestine [17] 
cells. The media was changed every 2–3  days and the tissues were subcultured every 
2–3 weeks depending on the density and growth rates of organoids.

Single-cell RNA sequencing

We performed single-cell RNA sequencing according to the standard 10 × Genomics 3′ 
V3.1 chemistry protocol (10 × Genomics). Before loading cells on the G chip, cells were 
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counted to determine the cell concentration. The number of loading cells per library was 
calculated via the multiplexing cost calculator (satijalab.org/costpercell/). The libraries 
were sequenced using the NovaSeq 6000 (Illumina, San Diego, CA, USA) platform S4 
with paired-end 100 bp.

Assessment of misalignment

We aligned the data to species matching reference data (refdata-gex-GRCh38-2020-A 
or refdata-gex-mm10-2020-A) using Cell Ranger 4.0.0 (10 × Genomics). Seurat v3.2.3 
[18] was used to filter barcodes by low total read count, low expressed gene count, and 
high mitochondrial gene percentage. We extracted these cellular barcodes from the data 
aligned to the combined reference (refdata-gex-GRCh38-and-mm10-2020-A) and com-
pared the alignment result. We defined misaligned read as the following: (1) read aligned 
to a gene of the other species or (2) read difference between the combined reference 
and the species matching reference. We defined “misaligned gene” as the following: (1) 
average read count higher than 0.1 per cell and (2) > 10% difference in the read count 
between the species matching reference and the combined reference. Pathway analysis 
for misaligned genes was performed using the web server g:Profiler [19].

We defined multi-mapping reads as reads which align to more than one exonic loci, 
since reads mapped to intronic and intergenic region does not contribute to expression 
count matrix. In detail, we excluded reads of the following criteria; (1) reads mapped to 
multiple non-exonic loci; (2) read mapped to multiple loci with only one exonic locus, 
since Cell Ranger adjusts the mapping quality and aligns the read to the exonic locus; 
(3) reads mapped to multiple loci, but primarily to the other species. We calculated the 
error in combined reference as the sum of (1) reads misaligned to other species and (2) 
the increment of multi-mapping reads; compared to total reads in the matching refer-
ence. The total count of align reads may differ for each reference due to (1) difference in 
multi-mapping reads; (2) reads mapped to non-exonic loci in one species may map to an 
exonic region of the other species, which increases the count of the other species.

REMS pipeline step 1: Alignment and prefilter

We aligned human and mouse mixed single-cell data to the combined reference using 
Cell Ranger 4.0.0. Seurat v3.2.3 [18] was used to filter cells, normalize expression, clus-
ter, and visualize data. The EmptyDrops method [20] was used to identify droplets that 
had an expression pattern similar to that of ambient RNA. We defined ambient RNA as 
“RNA molecules present in cell containing droplets, which does not originate from the 
cell”. The expression of ambient RNA was calculated with barcodes which had less than 
100 reads. We selected barcodes with expressed gene count ≥ 200 in the human refer-
ence and/or mouse reference. We removed barcodes if their percentage of mitochon-
drial genes was twice or higher than the percentage of mitochondrial genes in ambient 
RNA; this was performed separately for human and mouse genes.

REMS pipeline step 2: Expression-based cross-species doublet identification

For data containing nontumor cells, we used the single cell Human Cell Landscape 
(scHCL) [21] and single cell Mouse Cell Atlas (scMCA) [22] correlation values to esti-
mate cross-species doublets. The cutoff was set to 99% confidence interval of median 
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normalized correlation value for human and mouse cells. Barcodes with both high cor-
relations to human cells and mouse cells were classified as cross-species doublets. Other 
barcodes were classified as human cells or mouse cells according to read majority and 
correlation value. We removed barcodes with discrepancies. When expression for each 
species could be clearly separated by clustering, minor species in each cluster were 
removed.

For data containing tumor cells, we used copy number cluster result from CopyKAT 
[23] in addition to correlation values to identify tumor cells with low correlation value. 
We selected CopyKAT since it is currently the only program which requires no addi-
tional information other than gene expression matrix. We defined aneuploid barcodes as 
tumor cells. Barcodes with both valid copy number result and mouse read majority were 
additionally classified as cross-species doublets.

REMS pipeline step 3: Species matching reference realignment

After species identification, we realigned data to the human reference or mouse refer-
ence, and selected species matching barcodes. When multiple samples were pooled, we 
used Souporcell [11] to identify intersample doublets. We selected singlets identified 
using Souporcell, and when the expression for each sample could be clearly separated, 
minor identities in each cluster were removed. Normal cells with noisy copy number 
segments were also removed.

For each sample, we applied a quality filter separately to account for sample variation. 
Cells with low total read count, low expressed gene count, and high mitochondrial gene 
percentage were filtered. Separately filtered barcodes were merged and DoubletFinder 
[24] was used to identify intrasample doublets.

REMS pipeline step 4: Ambient RNA removal

SoupX [25] was used to estimate the ambient RNA expression from barcodes with ≤ 100 
reads. We calculated the contamination rate in human and mouse cells separately. We 
additionally added 0.05 to the contamination rate to stringently remove ambient RNA 
signals.

Result comparison

Harmony [26] was used to remove batch effect from mixed and separately sequenced 
libraries. Cell type was identified by the consensus of scHCL correlation for each cluster. 
We used the k-nearest-neighbor batch effect test (kBET) [27] with top 20 Harmony com-
ponents and Local Inverse Simpson’s Index (LISI) [26] with Uniform Manifold Approxi-
mation and Projection (UMAP) coordinates calculated from Harmony components. 
We calculated integration metrics for each sample and celltypes with ≥ 100 cells. Each 
metric was normalized to a 0–1 scale, 0 indicating no integration and 1 indicating full 
integration.

Genomic array

DNA was extracted from tissue or cultured organoids using DNeasy Blood & Tissue 
Kit (Qiagen, Germantown, MD, USA). Axiom Korea Biobank Array (ThermoFisher 
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Scientific, Waltham, MA, USA) [28] was used to genotype samples. Quality control and 
filtering was performed following the Korea Biobank Array protocol.

Identification of pooled sample

Souporcell generates estimated genotypes for each sample which it deconvoluted. 
PLINK v1.0.9 identity-by-descent [29] was used along with linkage disequilibrium vari-
ants pruned genomic array data as true genotype to confirm single-cell deconvoluted 
sample identity.
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