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Myeloid cell leukemia-1 expression 
in cancers of the oral cavity: a scoping review
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Abstract 

Background: B cell lymphoma‑2 (Bcl‑2) family members play important roles in cell survival as well as cell death. The 
role of myeloid cell leukemia‑1 (Mcl‑1), an important member of the Bcl‑2 family, is well established in hematopoietic 
malignancies. However, the association between Mcl‑1 and oral cavity, cancers is not clearly defined.

Methods: A scoping review was conducted until June 30, 2021, using four major databases, PubMed, Scopus, Web 
of Science, and Embase. Medical subject headings keywords for Mcl‑1, along with its other identifiers, and head and 
neck cancers (only oral cavity tumors) were used to evaluate the expression, function, molecular association, and 
therapeutic approach of Mcl‑1 in oral cavity cancers and precancers.

Findings: Mcl‑1 expression was associated with the progression of oral cavity cancers. The molecular mechanism 
and pathways of Mcl‑1 in oral cavity cancers established via experimental results have been highlighted in this review. 
Moreover, the various synthetic and naturally derived therapeutic agents targeting Mcl‑1 have been documented.

Novelty/Improvement: Based on our present review, Mcl‑1 appears to be an effective anticancer target that can be 
used in the therapeutic management of oral cancers.
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Background
Cancerous lesions in the oral cavity
Oral cancers are a malignant tumors that occur in the 
mouth, and oropharynx and on the lips; oral cancers 
account for approximately 2% of all malignancies world-
wide [1]. More than 90% of these cancers are squamous 
cell carcinomas (SCC) [2], and approximately 3 ~ 5% sali-
vary gland tumors (SGTs) [3]. The potentially malignant 
lesions of the oral cavity (OPML) include conditions such 
as leukoplakia, erythroplakia, and submucous fibrosis [4]. 
Despite various advancements in therapeutic regimens, 
survival of patients with oral cancers has not significantly 
improved, and most chemotherapeutic or combination 

interventions have not been proven successful [5]. Thus, 
the identification of predictive molecules that preempt 
the malignant transformation to oral squamous cell 
carcinomas(OSCC) might prove to be useful in the devel-
opment of effective therapies.

Myeloid cell leukemia‑1
Myeloid cell leukemia-1 (Mcl-1) was first identified in a 
myeloid leukemia cell line by Kozopas et al. in 1993 [6]. 
It is located at 1q.21, which is frequently amplified in 
cases of multiple myeloma [7]. Mcl-1 is involved in nor-
mal cell homeostasis and function. Under normal con-
ditions, it protects the cells from apoptosis and plays an 
important role in cell survival. It also plays a significant 
role during embryogenesis. The deletion of this gene in 
murine embryonic stem cells resulted in peri-implan-
tation embryonic lethality [8]. Mcl-1 also promotes the 
maintenance of normal mitochondrial morphology and 
energy production by exerting both anti-apoptotic and 
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mitochondrial effects [9]. Just as anti-apoptotic Bcl-2 
family members antagonize pro-apoptotic BH3-only 
proteins to inhibit the essential apoptosis effectors 
Bak/BAX [10], Mcl-1 exerts its anti-apoptotic func-
tion by sequestering the pro-apoptotic proteins Bak/
BAX [11]. Mcl-1 is regulated via modifications at the 
transcriptional, post-transcriptional, translational, or 
post-translational levels, and the functional activity and 
stability of Mcl-1 is determined by its post-translational 
modifications [12–14]. Notably, alternative splicing can 
specifically affect Mcl-1 function by yielding a longer 
isoform, which is anti-apoptotic, or a shorter isoform, 
which is pro-apoptotic [13].

Mcl-1 overexpression has been associated with poor 
outcomes and therapeutic responses in hematologic 
malignancies [15] and breast [16, 17], lung [18], and gas-
tric cancers [19]. Its overexpression in different cancers, 
particularly in leukemia, has resulted in an increased 
focus on the therapeutic targeting of this protein [20] 
leading to the development and identification of various 
synthetically produced, naturally occurring, or syntheti-
cally derived natural analogous compounds targeting 
Mcl-1 [21–24]. In addition to single compounds, com-
bination therapies that target Mcl-1 reportedly show 
promising effects [24]. On the basis of the information 
currently available, we hypothesize that Mcl-1 can be a 
promising target for anticancer therapy.

The aim of the current review was to evaluate the 
expression, regulation, function, associated features, and 
potential therapeutic agents of Mcl-1 in oral cancers.

Methods
A previously established method was used to conduct a 
scoping review by applying the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses for Scoping 
Reviews guidelines.

Search strategy
A literature search was conducted using the PubMed, 
Scopus, Embase, and Web of Science databases as well as 
a gray literature search using Research Gate and Google 
Scholar until June 30, 2021. Medical subject head-
ings (MeSH) terms were used to explore Mcl-1 along 
with other aliases, such as oral cancer, SGT, precancer-
ous lesion, head and neck SCCs; other tumors were not 
included for this review. Only the studies published in 
English were evaluated, and duplicated records, posters, 
and abstracts were excluded (Fig. 1).

Eligibility criteria
The articles were reviewed by two authors of this study 
(SJC and NS) for eligibility and included after evaluation 
using the SPIDER criteria (Table 1).

Mcl‑1 expression in clinical oral cancer samples
OPMLs have a high likelihood to progress to cancer, and 
the identification of oncogenic proteins that aid in the 
progression to oral cancer can be extremely helpful for 
better therapeutic planning. Several authors have verified 
that Mcl-1 is overexpressed in OPMLs. Ribeiro et al. [25] 
observed gains in Mcl-1 in two patients with leukopla-
kia and erythroleukoplakia. Similarly, Mallick et  al. [26] 
reported the upregulation of Mcl-1 in malignant and pre-
malignant tissues in vivo, interestingly indicating that the 
expression of Mcl-1 in homogeneous leukoplakia tended 
to be higher than in non-homogeneous leukoplakia. 
Our group also previously showed that Mcl-1 is overex-
pressed in oral lichen planus compared with the normal 
oral mucosa [27]. Sulkshane et  al. reported that Mcl-1 
was upregulated in OPMLs and demonstrated a posi-
tive correlation between Mcl-1 and USP9X in leukopla-
kia [28]. Moreover, Yu et al. found that an increase in the 
Bak/Mcl-1 ratio had favorable therapeutic outcomes after 
on photodynamic therapy for oral verrucous hyperplasia 
and leukoplakia [29]. These results indicate the essential 
role of Mcl-1 in the malignant transformation of OPMLs.

Mcl-1 overexpression is well documented in various 
solid and hematological tumors, including oral can-
cer, and has been demonstrated as genetic amplifica-
tions [25] and in mRNA [26, 30, 31] and protein [26, 
28, 32, 33] levels. According to a study by Nagata et al., 
strong Mcl-1 expression was observed in tongue SCC 
(SCCKN and SAS) cell lines compared with fibroblasts 
from normal lips [32]. The results of a study by Shin 
et  al. [33] were valuable in terms of Mcl-1 expression 
through analysis of normal oral mucosa, human OSCC 
tissues (n = 14 and 25, respectively) and various OSCC 
cell lines (HSC2, HSC3, HSC4, HN22, OSC-20, Ca9.22, 
and SAS). In addition, Sulkshane et  al. [28] confirmed 
the strong expression of Mcl-1 in other OSCC cell lines 
(AW8507, AW13516, and SCC029B). SGTs form a het-
erogeneous group of tumors that can be aggressive in 
nature; their gene expression patterns are similar to 
those of OPMLs and OSCC. The ubiquitous overex-
pression of Mcl-1 was reported in various types of 
malignant parotid gland tumors; the highest expres-
sion was observed in SCC of the parotid gland [34]. 
Although an isolated finding, Mcl-1 amplification was 
observed in high-grade stage III adenoid cystic car-
cinoma [35]. Determining the associations between 
Mcl-1 and the various categories and stages of oral 
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Fig. 1 PRISMA flow chart of the scoping review. Summary of evidence search and selection

Table 1 SPIDER inclusion criteria for literature evaluation

Sample Excised human tissue samples; oral cancer cell lines; and in vivo models (using oral cancer cell lines or SGT cell lines)

Phenomenon of interest Regulation, function, and therapeutic mechanisms (agents)

Design Observational study, case study, focus group, and experimental studies

Evaluation Characteristics and effects

Research type Qualitative, quantitative, and mixed methods peer‑reviewed studies and gray literature including third sector and 
government reports and briefings and educational theses
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cancer can enhance our understanding of its potential 
impact on the clinical progression of the disease. Stud-
ies on the associations between Mcl-1 overexpression 
and advanced tumor stages [28, 30] and lymph node 
metastasis [30] are limited. Mcl-1 overexpression has 
been reported more in recurrent tumors than in pri-
mary tumors [28]. In addition, increased Mcl-1 expres-
sion has been associated with reduced overall survival 
[28, 30], disease-free survival, and survival time [31, 
36]. Various histopathological indicators have been 
used to predict the progression of OSCC. Interest-
ingly, increased Mcl-1 expression was associated with 

well-differentiated tumors [26, 32]. Mcl-1 plays an 
important role in keratinocyte differentiation as it helps 
to maintain mitochondrial function [37]. These findings 
indicate a complex interaction, wherein histological 
function is maintained despite the poor clinicopatho-
logical stages. Taken together, the consistent findings of 
Mcl-1 overexpression in cancers indicates its associa-
tion with carcinogenesis, and it is suggested that Mcl-1 
has a significant impact on the development and pro-
gression of oral cancer. The associations between Mcl-1 
and the different features of OPMLs, OSCC, and SGTs 
are summarized in Fig. 2; Table 2.

Fig. 2 Scamper diagram showing Mcl‑1 expression in oral cavity cancers and association with various clinicopathological features
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Molecular associations of Mcl‑1
Despite evidence on the role of Mcl-1 as an important 
molecular target in oral cancer, the molecular mecha-
nisms involved in oral cancer have not been well docu-
mented compared with those in other cancers. Isolated 
reports on the regulation and interactions of Mcl-1 in 
oral cancer have been identified [32, 38, 39]. The activity 
of Mcl-1 in oral cancer is found to be regulated by parac-
rine signaling mechanisms, physical forces, or intracellu-
lar regulatory mechanisms [28, 39, 40].

The Mcl-1 mRNA expression was upregulated by 
STAT3 activation and stabilized by Akt-mediated GSK3β 
inactivation in chemotherapy-resistant OSCC [38]. The 
tumorigenesis regulating gene MYB is capable of upregu-
lating Mcl-1 in adenoid cystic carcinoma cell lines [41]. 
FBW7 stabilizes Mcl-1 and promotes Mcl-1 addiction in 
oral cancer [42]. USP9X modulates the stability of Mcl-1 
and prevents its degradation by deubiquitinating the pro-
tein [28]. Hyperosmotic stress has been shown to coun-
teract Mcl-1 in head and neck SCC [39]. The upregulation 
of Noxa acts as a link between the osmotic pressure in 
the tumor environment and mitochondrial priming, 
thereby counteracting the anti-apoptotic properties of 
Mcl-1 in head and neck SCC. LncRNA FGD-AS1 inhib-
ited the proliferation and migration/invasion of oral can-
cer, acting as a sponge for miR-153-3p and miR-153-3p 
to inhibit Mcl-1 expression [43]. Furthermore, the non-
coding RNA HOXA10 AS was found to increase Mcl-1 
mRNA levels [44]. Mcl-1 function can be also regulated 

through alternative splicing; a study demonstrated that 
Mcl-1 L transcripts were highly expressed compared with 
those of Mcl-1 S and Mcl-1ES in oral cells, thus indicat-
ing the predominance of the anti-apoptotic isoform [26, 
30]. This variation in the isoform has a significant impact 
on Mcl-1 function and even on its clinical presentation 
[30, 45]. The effects of Mcl-1 on different oncogenic cas-
cades have been evaluated in interference studies. Mcl-1 
siRNA inhibited cell growth and induced apoptosis by 
inhibiting the FAK–MAPK pathway in OSCC [32]. Mith-
ramycin inhibits Mcl-1 and RNAi regulates Bax to induce 
apoptosis in oral cancer cell lines [33]. These results sug-
gest that Mcl-1 is affected and regulated by a variety of 
protein kinases, transcription factors, miRNA, etc. The 
molecular interactions and associations of Mcl-1 in oral 
cancers are summarized in Table 3, whereas and the pro-
tein–protein interactions (PPIs) between the identified 
biomarkers are presented in Fig. 3.

Therapeutic strategy targeting Mcl‑1
Various compounds that can result in apoptosis can 
reduce the expression level of Mcl-1 by inhibiting its 
translation or increasing its rate of degradation. These 
compounds have been found to have an effect on the 
levels of Mcl-1 when used alone or in combination with 
other agents. Therefore, the key factors that inhibit Mcl-1 
can be used as potential treatment strategies in the treat-
ment of oral cancer.

Table 2 Expression of Mcl‑1 in oral cancers and precancerous lesions

Refs. Subject sample type Lesion type Findings

[92] Human HNSCC Human HNSCC MCL‑1 positively correlated with Bak expression

[93] Human HNSCC HNSCC Higher Mcl‑1 associated with complete remission

[26] Human OSCC, OPML OPML, OSCC Upregulated in OPML, OSCC; associated with well‑differentiated OSCC

[32] Human OSCC OSCC Upregulated in OSCC, associated with well‑differentiated OSCC

[94] Human OSCC OSCC MCL‑1 associated with reduced disease‑free survival

[95] Human SGT SGT Upregulated in parotid tumors

[96] Human HNSCC Oropharyngeal cancer SNP in MCL‑1 in association with HPV16 associated with oropharyngeal cancer

[33] Human OSCC OSCC MCL‑1 upregulated in OSCC

[29] Human OPML OPML Better therapeutic response with higher Bak/Mcl‑1 ratio

[95] Human serum with HNSCC HNSCC MCL‑1 mRNA levels significantly upregulated in the serum of patients with HNSCC

[30] Human OSCC OSCC MCL‑1 L Upregulated in OSCC, associated with nodal metastasis, advanced tumor, 
reduced overall survivin

[35] Human SGT SGT Amplified in one case, grade 3 AdCC

[27] Human OPML OPML Upregulated in OPML

[25] Human OPML, OSCC OPML, OSCC Amplified in OPML and OSCC

[38] Human OSCC OSCC Increased expression of Mcl‑1 in chemoresistant OSCC

[31] Human OSCC OSCC Overexpression of Mcl‑1 in OSCC when compared with adjacent normal tissues

[28] Human OPML, OSCC OPML, OSCC Overexpression in OPML, OSCC. Associated with advanced tumors, recurrent 
tumors, and reduced overall survival
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Synthetic compounds
Several direct and indirect approaches to inhibit the 
activity of Mcl-1 have been used. Although small mole-
cule inhibitors that directly target Mcl-1 by interrupting 
the PPIs have been developed, no drugs that can directly 
target this protein have been used in the treatment of oral 
cancer to date. Alternatively, some synthetic or natural 
compounds were found to target Mcl-1 indirectly as a 
part of their mechanism of action.

A Bcl-2 inhibitor, obatoclax, was found to induce 
apoptosis in head and neck SCC in an Mcl-1-depend-
ent manner [46]. ABT-737 repressed cellular Mcl-1 by 

upregulating Noxa [47]. TW-37 was reported to sensitize 
cryptotanshinone-mediated apoptosis in OSCC cells by 
suppressing STAT3–Mcl-1 signaling [48]. Furthermore, 
the proteasome inhibitor MG132 induced the accu-
mulation of Bik, which can activate Bak sequestered by 
Mcl-1, to sensitize the TRAIL-mediated apoptosis [49]. 
Several kinase inhibitors have been shown to downregu-
late Mcl-1 in oral cancer; e.g., the aurora-A kinase inhibi-
tor, alisertib, degraded Mcl-1 in HPV E7-expressing head 
and neck SCC cells [50]. Similarly, the multikinase inhibi-
tor sorafenib induced apoptosis in mucoepidermod car-
cinoma cells through the STAT3/Mcl-1/t-Bid signaling 

Table 3 Mechanistic associations of Mcl‑1 in oral cancer

Factor/Phenomenon Biological effects Refs.

 STAT3 Mcl‑1 mRNA was upregulated by STAT3 activation. Mcl‑1 protein was stabilized by Akt‑mediated GSK3β inactivation
It regulates chemoresistance in OSCC.

[38]

 MYB Mcl‑1 expression was dependent on MYB expression [41]

 FBW7 FBW7 mutation stabilizes Mcl‑1. [42]

 LncRNA FGD5‑AS1 LncRNA FGD5‑AS1 acted as an oncogene by regulating Mcl‑1 via sponging miR‑153‑3p [43]

 Alternative splicing Mcl‑1 L transcripts overexpressed in oral cancer cell lines, and it was associated with poor prognostic indicators like 
advanced tumor size, lymph node metastasis, decreased survival, chemoresistance, and radioresistance

[30, 45]

 HOXA10 antisense 
RNA (HOXA10‑AS)

HOXA10‑AS increased the stem cell property of OSCC stem cells via miR‑29a/Mcl‑1/PI3K/Akt signaling pathway [44]

 Noxa Noxa binds to and sequesters Mcl‑1, which releases Bak from Bak/Mcl‑1 complex to be activated. Noxa overexpres‑
sion enhanced the apoptotic effects of ABT‑263

[39]

 USP9X Mcl‑1 is primarily degraded by the ubiquitin–proteasome pathway in OSCC. USP9X interacts with Mcl‑1 and stabilizes 
it to prevent its degradation

[28]

 Mcl‑1 p‑FAK was decreased by treatment with Mcl‑1 siRNA, resulting in decreases in phosphorylation of MEK1/2 and MAPK [32]

 Mcl‑1 Inhibition of Mcl‑1 leads to cellular apoptosis via caspase cascade via Caspase‑3, 9 [33]

Fig. 3 STRING protein–protein interaction (PPI) analyses. PPI network connectivity for proteins identified following the review. Nodes represent the 
proteins required for interaction. Edges represent the associations between the proteins. The STRING web resource (http:// www. strin gdb. org) was 
used in the prediction of the PPI (Protein–Protein Interaction) network whereby an interaction score of > 0.900 denoted a significant interactive 
relationship

http://www.stringdb.org
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pathway [51]. EGFR inhibitors induced apoptosis in 
head and neck SCC by downregulating Mcl-1 expres-
sion [52, 53]. Mithramycin A reduced the expression of 
Mcl-1 in oral cancer cells, leading to an increase in Bax 
protein, followed by its translocation into the mito-
chondria and oligomerization [33]. An HDAC inhibi-
tor, panobinostat, suppressed Sp1 and downregulated 
Mcl-1 levels [54]. An inhibitor of the splicing factor 3B1, 
meayamycin B, reportedly to inhibited SF3B, leading to 
a reduction in the anti-apoptotic Mcl-1  L isoform and 
the generation of the pro-apoptotic Mcl1-S by switch-
ing the splicing pattern of the Mcl-1 pre-mRNA [55]. 
YM155 inhibited Mcl-1 through lysosomal-dependent 
degradation to induce apoptosis in head and neck SCC 
cell lines [56]. Aspirin downregulated the Mcl-1 protein, 
followed by a significant reduction in ERK-1/2 and Akt 
phosphorylation and significant increase in IκB-α phos-
phorylation, thus resulting in the activation of NF-κB 
[57]. The immunosuppressant FTY720 downregulated 
Akt/NF-κB signaling through a Mcl-1-dependent mech-
anism [58]. Propofol induced apoptosis via a significant 
reduction in Mcl-1 and an increase in phospho-Mcl-1 
(Ser 159) thereby indicating its effect on the stability of 
Mcl-1 protein [59]. Biochemical synthetic products such 
as glucosamine hydrochloride and the anti-malaria semi-
synthetic dihydroartemisinin demonstrated a reduction 
in Mcl-1 in OSCC cell lines [60–63]. Several combination 
treatments affected the function of Mcl-1;e.g., a combi-
nation of fenretinide and ABT263 induced Mcl-1 degra-
dation [64]. Co-treatment with C6 ceramide significantly 
augmented PKC412-induced lethality by downregulating 
Mcl-1 in head and neck cell lines and animal models [65]. 
These results suggest that synthetic compounds targeting 
Mcl-1 is a promising therapeutic strategy for the treat-
ment of oral cavity cancers.

The combination of thioridazine and carboplatin 
induced apoptosis by downregulating c-FLIP and Mcl-1 
[66], indicating that Mcl-1 can be used as a molecular 
target of combination therapy in oral cancer. Clinical 
studies on Mcl-1 inhibitors are under way, and antican-
cer effects have been identified in several cancers other 
than those of the oral cavity [31]. Venetoclax and others 
drugs are under clinical trials for the treatment of acute 
myeloid leukemia and other hematological malignancies 
[24]. Table 4 summarizes various synthetic agents used to 
target Mcl-1.

Natural compounds
Many natural compounds are known to affect STAT3, 
which is known as one of the major upstream molecules 
of Mcl-1 in oral cancers [67]. Epigallocatechin gallate 
abrogated the interleukin-6-induced phosphorylation of 
STAT3 and downregulated its target gene products [68]. 

Licochalcone C inhibited the JAK2/STAT3 pathway, and 
downregulated Bcl-2 and Mcl-1 [69]. Nitidine chloride 
decreased the Mcl-1 protein by inhibiting the STAT3 
pathway [70]. Additionally, bitter melon extract inhib-
ited the c-Met signaling pathway and reduced the down-
stream signaling molecules such as phospho-STAT3 
(Tyr705) and Mcl-1 [71]. These findings suggest that 
the STAT3/Mcl-1 signaling axis is a promising molecu-
lar mechanism that can be used in the treatment of oral 
cancers.

Various phytochemicals may mimic the effects of BH-3 
proteins. Guggulsterone phytosterol targets 14-3-3 zeta 
to initiate apoptosis through the intrinsic mitochondrial 
pathway by the dephosphorylation of p-Bad and suppres-
sion of the expression level of Mcl-1 in OSCC cells [72]. 
Furano-1,2-naphthoquinone upregulated Bax and Bad 
and downregulated Mcl-1 in Ca9.22 cells [73]. Conval-
laria keiskei reduced the expression level of Mcl-1, lead-
ing to a truncated Bid-induced mitochondrial apoptosis 
in salivary gland cancer cell lines [74]. Lycorine hydro-
chloride induced the mitochondria-mediated apopto-
sis pathway through the downregulation of Mcl-1 [75]. 
Treatment with Juniperus squamata induced a mitotic 
catastrophe, leading to apoptosis via Mcl-1 reduction in 
OSCC cell lines [76].

Extracts from various plants were found to target Sp1, 
which combines with a specific DNA sequence and is 
overexpressed in many cancers [77]. Sp1, a transcription 
factor that binds to the Mcl-1 promoter region [78], has 
already been tested and found to play important physi-
ological roles, such as in apoptosis, by targeting Mcl-1 
in cancer [54, 79]. Honokiol inhibited Sp1 and reduced 
Mcl-1 and survivin leading to the induction of apopto-
sis in OSCC cells [80]. Manumycin A inhibited Mcl-1 by 
downregulating Sp1 [81]. Sanguisorba officinalis [82] and 
C. officinale Makino, C. bursapastoris [83], and Dian-
thus chinensis and Acalypha australis [84] were found to 
reduce Mcl-1 via Sp1 and induce apoptosis in oral cancer 
cell lines.

ROS production results in a reduction in the mito-
chondrial transmembrane potential which leads to mito-
chondria-dependent apoptosis in human cancer cells 
[85]. ROS has been implicated in the activation of vari-
ous cellular signaling pathways and transcription factors 
[86]. Phenethyl isothiocyanate induced G2/M cell cycle 
arrest and apoptosis by inducing ROS production and 
reducing Mcl-1 expression [87]. Benzyl isothiocyanate 
led to a reduction in Mcl-1 followed by the development 
of mitochondria-mediated apoptosis in oral cancer [88]. 
Cardiac glycosides induced apoptosis by lowering Mcl-1 
levels in OSCC cell lines [89]. Wogonin was noted to 
selectively kill cisplatin-resistant head and neck SCC cells 
by targeting Nrf2, which was then accompanied by the 
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downregulation of Mcl-1 [90]. Cyclocommunol down-
regulated the phosphorylation/expression of Akt/mTOR 
and Mcl-1 leading to the generation of ROS [91]. Taken 
together, the most commonly observed mechanism of 
action of these natural compounds in the regulation 
of Mcl-1 was through the inhibition of STAT3 or Sp1. 
Table 5 presents an overview of the effects of the natural 
compounds on Mcl-1.

Conclusions
In this paper, we attempted to review the expression, 
function, molecular mechanism and pathway, and ther-
apeutic approach of Mcl-1 in oral cavity cancers. Mcl-1 
is frequently amplified and upregulated in cancerous 
lesions of oral cavity and affects the clinical progression 
and survival of patients with oral cancer. Various tran-
scription factors and protein kinases affect Mcl-1 activity, 
which further facilitates cancer progression. These find-
ings indicate its significant role in oral carcinogenesis. 
This review also successfully summarized the agents, 
both synthetic and natural, that have an inhibitory effect 
on Mcl-1 in oral cancer. To the best of our knowledge, 
this review is the first specific summary suggesting that 
Mcl-1 is a promising molecular target for the treatment 
of oral cancer. Although the development of direct Mcl-1 
inhibitors remains challenging, this review will help 
researchers and clinicians to identify the avenues that can 
be investigated to provide better disease prediction and 
therapeutic planning of oral cancers expressing Mcl-1 in 
the future.
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