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ARTICLE

Robust coherence analysis for long-memory processes
Yaeji Lim a and Hee-Seok Ohb

aDepartment of Applied Statistics, Chung-Ang University, Seoul, Korea; bDepartment of Statistics, Seoul National University, Seoul, Korea

ABSTRACT
This paper investigates the linear relationships between two time-series in the frequency domain,
termed coherence analysis. It is widely used in various fields, including signal processing, engineer-
ing, and meteorology. However, conventional coherence analysis tends to be sensitive to outliers.
Laplace cross-periodogram and a corresponding robust coherence analysis based on the least-
absolute deviation (LAD) regression have recently been developed to improve this shortcoming. In
this paper, to extend the scope of Laplace cross-periodogram, we study a robust cross period-
ogram for long-memory processes and derive its asymptotic distribution. Through numerical
studies, we demonstrate the usefulness of the proposed robust coherence analysis for long-
memory processes.
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I. Introduction

The primary purpose of the cross-spectral analysis is
to quantify how the variabilities of two time series are
interrelated in the frequency domain. In general, the
cross-spectral analysis is performed using a phase
spectrum and coherence (coherency spectrum). In
this paper, we focus on coherence, which is
a measure of the degree of similarity between two
signals in the frequency domain rather than the time
domain, so that it may be influenced by the informa-
tion of power and phase relations from the two sig-
nals. Coherence is widely used for analysing multiple
time series that are observed from various fields,
includingmeteorology, communications, and biology
(Carter 1987; Grinsted, Moore, and Jevrejeva 2004;
Sun, Miller, and D’Esposito 2004; Govindan et al.
2005; Maharaj and D’Urso 2010).

It is well known that the ordinary coherence ana-
lysis based on a cross-periodogram is efficient for
cases that satisfy the Gaussian assumption; however,
it suffers from considerable degradation in perfor-
mance when the series follows a heavy-tailed or asym-
metric distribution. To overcome such a problem, Li
(2010) proposed Laplace cross-periodogram and its
related concepts, which are more robust to outliers
that might follow a heavy-tailed process.

Long-memory is a common situation that we
encounter in analysing time series data. If the rate

of decay of the statistical dependence of two points
in the time series is slower than an exponential
decay, we call the phenomenon as long-memory.
In the literature, various studies have been con-
ducted related to the long-memory process (Beran
1994; Granger and Ding 1996). Since the long-
memory properties are commonly observed in
stock returns, a large number of studies have been
done in economics (Cheung and Lai 1995; Bollerslev
and Mikkelsen 1996; Al-Yahyaee, Mensi, and Yoon
2018). On the other hand, the behaviour of stock
market co-movement is a crucial issue in finance,
and correlation/coherence analysis for these data has
also been studied (Longin and Solnik 1995; Berben
and Jansen 2005; Aloui and Hkiri 2014). However,
only a few studies investigate coherency for long-
memory processes as far as we know.

In this study, along the line of Li (2010), we
investigate a robust coherence analysis for long-
memory processes that can significantly extend
the scope of robust coherence analysis, which is
the main contribution of this study. Furthermore,
we provide a theoretical background of Laplace
cross-periodogram for long-memory processes.

The rest of this paper is organized as follows. In
Section II, we briefly review the conventional coher-
ence analysis and the Laplace cross-periodogram.
Laplace cross-periodogram for long-memory
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processes and its theoretical property are discussed
in Section III. Section IV presents numerical experi-
ments, including real data analysis about money
supply growth. Concluding remarks are given in
Section V.

II. Coherence analysis

Ordinary coherence analysis

Suppose that we have jointly stationary and mean
zero real-valued time series fYjtg, fYktg,
t ¼ 1; 2; . . . ; n. The cross-spectrum of the two ser-
ies is defined by the Fourier transform of the cross-
covariance function γjkðhÞ :¼ EðYj;tþhYk;tÞ,

fjkðωÞ :¼ 1
2π

X1
h¼�1

γjkðhÞexpð�iωhÞ; �π�ω�π;

under the assumption that the cross-covariance
function is absolutely summable. The cross-
spectrum is a complex function as

fjkðωÞ ¼ 1
2π

X1
h¼�1

γjkðhÞ expð�iωhÞ

¼ 1
2π

X1
h¼�1

γjkðhÞ cos ðωhÞ

� i
1
2π

X1
h¼�1

γjkðhÞ sin ðωhÞ

¼ cjkðωÞ � iqjkðωÞ;
where cjkðωÞ and qjkðωÞ are called cospectrum and
quadrature spectrum, respectively. The cospectrum
measures the extent to which the series oscillate
with the same phase, and the quadrature spectrum
measures the extent to which they oscillate with
a phase difference of a quarter cycle in either
direction.

The coherence (or the squared coherency spec-
trum) at frequency ω of the series fYjtg and fYktg is
defined by

K2
jkðωÞ ¼

jfjkðωÞj2
fjjðωÞfkkðωÞ j�k: (1)

The coherence K2
jkðωÞ denotes square of the corre-

lation coefficient between ω-components of fYjtg
and fYktg. By Cauchy–Schwarz inequality, it can be
easily shown that 0 � jK2

jkðωÞj � 1, and a value of

K2
jkðωÞ close to 1 implies that the ω-components of

the two series are strongly linearly related.
In general, for jointly stationary and mean

zero real-valued time series fYjt; t ¼ 1; . . . ; ng
ðj ¼ 1; . . . ; pÞ, the matrix of periodograms is
defined as

I ðωÞ :¼ ½I jkðωÞ�pj;k¼1 ¼ z ðωÞ zHðωÞ;

where z ðωÞ :¼ ½Z1ðωÞ; . . . ;ZpðωÞ�T , I jkðωÞ :¼
ZjðωÞZH

k ðωÞ, and

ZjðωÞ ¼ 1ffiffiffi
n

p
Xn
t¼1

Yjt expð�itωÞ

is the Fourier transform of fYjtg. Note that the
superscript H denotes the complex conjugate
transpose. The coherence of (1) can then be esti-
mated by the following squared ratio of cross-
periodogram and periodograms,

jI jkðωÞj2
I jjðωÞI kkðωÞ :

In order to reduce the variability of periodograms,
various smoothed periodograms have been used.
The general form of a smoothed periodogram is

Î ðω,Þ :¼
Xm

,
0¼�m

W
,
0 Iðω

,�,
0 Þ; (2)

where IðωÞ denotes a raw periodogram and W,

denotes nonnegative weights that sum up to one. In
this study, we employ the modified Daniell-kernel
with the span of filter m (Bloomfield 2000). Hence,
the coherence is estimated by

K̂2
jkðωÞ ¼

Î 2
jkðωÞ

Î jjðωÞÎ kkðωÞ
: (3)

Robust coherence analysis

It is well known that ordinary coherence analysis
performs well under a Gaussian assumption; hence,
it is sensitive to outliers. To alleviate this problem,
Li (2010) proposed Laplace cross-periodogram for
robust coherence analysis. The Laplace cross-
periodogram is defined as
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LðωÞ :¼ ½LjkðωÞ�pj;k¼1 ¼ uðωÞ uHðωÞ; (4)

where uðωÞ :¼ ½U1ðωÞ; . . . ;UpðωÞ�T , LjkðωÞ :¼
UjðωÞUH

k ðωÞ, and UjðωÞ denotes the Laplace-
Fourier transform of fYjtg which is defined by

UjðωÞ ¼ 1
2

ffiffiffi
n

p fβj1ðωÞ � iβj2ðωÞg:

Here, βj denotes a solution of the following least-
absolute-deviations (LAD)

βjðωÞ :¼ ½βj1ðωÞ; βj2ðωÞ�T

¼ arg min
β2R2

Xn
t¼1

jYjt � ψT
t ðωÞβ j;

(5)

where ψtðωÞ :¼ ½cos ðωtÞ; sin ðωtÞ�T . On replacing
the LAD criteria in (5) by the least square, LðωÞ
becomes identical to the ordinary cross-
periodogram I ðωÞ.

For robust coherence analysis of two time series
fYjtg and fYktg, we further consider a smoothed

Laplace cross periodogram L̂jkðω,Þ as in (2) and
the corresponding estimator of the robust coher-
ence ΓðωÞ can be defined as

Γ2jkðωÞ :¼
L̂2
jkðωÞ

L̂jjðωÞL̂kkðωÞ
: (6)

III. Laplace coherence analysis of long-memory
processes

For any fixed j, we consider a stationary process
with mean zero and unit variance
fYjt; t ¼ 1; . . . ; ng. Then, the process fYjtg is said
to be long-memory, if there exists dj 2 ð0; 1=2Þ
such that the spectral density at the origin can be
represented as

fjðωÞ,Cjω
�2djasω ! 0þ; (7)

where Cj > 0 and dj is called the long-memory para-
meter. It can be also defined by the correlation
function as

ρjðhÞ :¼CorrðYj;tþh;Yj;tÞ,cjðhÞh2dj�1 as h!1;

(8)

where cjðhÞ is positive for large h and varies slowly
at infinity. A common example of long-memory
processes is the fractionally integrated white noise
and fractionally integrated ARMA (FARIMA)
models. In these models, the parameter dj corre-
sponds to the integration order. A long-memory
process can be defined as a short-memory process
for dj ¼ 0, and generally, the process is stationary if
dj < 1=2 and invertible if dj > � 1=2. A stationary
process with dj 2 ð0; 1=2Þ is characterized as
a long-memory process.

We now derive the asymptotic distribution of the
Laplace cross-periodogram for a long-memory pro-
cess. We assume that the process is modelled as
Yjt ¼ ψT

t β0 þ �jtðt ¼ 1; . . . ; nÞ, where �jt :¼
GjðZjtÞ; Gj is a measurable function from R to R ,
and fZjtg is a stationarymean zero and unit variance
Gaussian process that satisfies the long-memory
property of (7). We further consider the following
assumptions for the asymptotic results of a Laplace
cross-periodogram under multiple long-memory
processes fYjt; t ¼ 1; . . . ; ng ðj ¼ 1; . . . ; pÞ.

(C1) ð ΨTΨÞ�1 exists for all n � p, where Ψ
denotes an n� p matrix whose t-th row
is ψT

t .
(C2) maxt n1=2 kψT

t D
�1k¼ Oð1Þ, where D ¼

ð ΨTΨÞ1=2.
(C3) The cumulative distribution of fYjtg, Fjt has

a uniformly continuous density function fjt
on Ω :¼ fx 2 R : 0< FjtðxÞ< 1g such that
fjt > 0 almost everywhere on Ω, is positive
and continuous at 0, and Fjtð0Þ ¼ 1=2.

(C4) For any given j and k, fYjtg and fYktg are
jointly stationary in the zero crossings in
the sense that PfYjtYks < 0g ¼ $jkðt � sÞ
for all t and s.

(C5) The function G is strictly monotonic and
has a finite Fisher information.

Theorem 3.1. Under the assumptions (C1)-(C5), the
time series fYjt; t ¼ 1; . . . ; ng ðj ¼ 1; . . . ; pÞ are
observed from the model Yjt ¼ ψT

t β0 þ �jt, where
�jt :¼ GjðZjtÞ, Gj is a measurable function, and fZjtg
is a stationary mean zero and unit variance Gaussian
process that satisfies the long-memory property of (7).

Let δ :¼ ðδinvδTinvÞ, where δinv ¼ ½δ�1
1;n; . . . ; δ

�1
p;n�T ,
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δj;n :¼ nð1�djÞ=2jc1=2j ðnÞj, dj is a long-memory para-

meter, and cjðnÞ is a slowly varying function of fZjtg
defined in (8). From LðωÞ ¼ uðωÞuHðωÞ,we define
~uðωÞ :¼ ½δ�1

1;n U1ðωÞ; . . . ; δ�1
p;n UpðωÞ�T: Then, as

n ! 1,

δ�1=2 ~uðωÞ,Ncð0; ½ΥjkðωÞ�pj;k¼1Þ;

where Υjk :¼ ½λjksjkðωÞ� with λjk ¼ 1=ð4fjð0Þfkð0ÞÞ
and sjkðωÞ :¼

P1
h¼�1f1� 2$jkðhÞg expð�ihωÞ:

(9) Proof. From the results of Corollary 2 in Koul
and Mukherjee (1993), we have

δ�1
j;n Dðβladj � β0Þ ¼ ffjð0Þg�1ðδj;nDÞ�1

X
t

ψt
1
2
� Ið�jt � 0Þ

� �
þ opð1Þ; (9)

where βladj denotes the coefficients of the LAD in
(5). Since ψt is the harmonic regressor, we obtain
ΨTΨ :¼ Pn

t¼1 ψtðωÞψT
t ðωÞ ¼ ðn=2ÞIþ oð1Þ,

which implies D ! ffiffiffiffiffiffiffiffi
n=2

p
I. In addition, since

β0 ¼ 0, it follows that the result (9) becomes

δ�1
j;n

ffiffiffi
2

p
UjðωÞ¼δ�1

j;n

ffiffiffi
n
2

r
fβladj1 ðωÞ�iβladj2 ðωÞg

¼ffjð0Þg�1δ�1
j;n

ffiffiffi
2
n

r X
t

ηð�jtÞe�itωþopð1Þ

By letting xjðωÞ :¼ 1ffiffi
n

p
P

t ηð�jtÞe�itω, we further
derive

δ�1
j;n

ffiffiffi
2

p
UjðωÞ ¼ δ�1

j;n

ffiffiffi
2

p
ffjð0Þg�1xjðωÞ þ opð1Þ:

Then for x ðωÞ :¼ ½x1ðωÞ; . . . ; xpðωÞ�T , it follows
that

lim
n!1 Efx ðωÞx ðωÞHg ¼ 1

4
½sjkðωÞ�pj;k¼1;

where sjkðωÞ :¼
P1

h¼�1f1� 2$jkðhÞg expð�ihωÞ:
By the central limit theorem, we obtain x ðωÞ !
Ncð0; 1=4½sjkðωÞ�pj;k¼1Þ; and for ~uðωÞ ¼ ½δ�1

1;n U1ðωÞ;
. . . ; δ�1

p;n UpðωÞ�T ,

δ�1=2 ~uðωÞ,Ncð0; ½ΥjkðωÞ�pj;k¼1Þ:

IV. Numerical experiments

Simulation study

Example 1 We consider two long-memory pro-
cesses that follow the models, namely

Xt ¼ 2at þ �1t

Yt ¼ at�2t;

where fatg is a nonnegative periodic sequence of the
form 1:0þ 0:9 cosðω0tÞ with ω0 ¼ 2π � 0:1, and �1t
and �2t are independent FARIMA(0, 0.3, 0) processes
with three different error distributions: Gaussian dis-
tribution, t-distribution with 2.1 degrees of freedom,
and Cauchy distribution with a scale parameter of
0:25. For each combination of fXtg and fYtg, the
noise type, and n ¼ 600, 1000 datasets are generated.
For each generated dataset, the ordinary and Laplace
coherence are performed. Note that the ordinary
coherence is computed by (3) and the Laplace coher-
ence is computed by (6). Figure 1 shows the averages
of ordinary and Laplace coherences according to the
noise type. Overall, the Laplace coherence efficiently
detects the common frequency of ω0. Especially, for
the heavy-tailed noise distributions, the Laplace
coherence outperforms the ordinary coherence in
terms of identifying the frequency information ω0

while retaining its robustness.

Example 2 Let fXtg be a FARIMA(2, 0.3, 0) process
with parameters ϕ1 ¼ 1:2 cosð2π � 0:25Þ and ϕ2 ¼
�ð0:6Þ2 (McLeod, Yu, and Krougly 2007). We con-
sider the following two time series

Y1t ¼ c1ðXt þ �t1Þ

Y2t ¼ c2ðαXt�5 þ �t2Þ;
where �t1 and �t2 aremutually independent i.i.d. white
noise Nð0; 3:162Þ, and the scale parameters c1 and c2
are chosen such that VarðXtÞ ¼ VarðYtÞ ¼ 1. By
following the approach of Li (2010), we try to detect
the common component in the two series fY1tg and
fY2tg by coherence analysis. For this purpose, we
perform the following hypothesis testing H0 : α ¼ 0
vs. H1 : α�0 with the rejection rule: reject H0 if the
maximum absolute coherency is higher than
a threshold.
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For evaluation, we consider the receiver operat-
ing characteristic (ROC) curve of a binary classifier
system. The ROC curve depicts the relative trade-
off between benefits and costs. Therefore, a point in
a ROC curve is more suitable than another if it is
located in the upper-left area.

We generate 1000 data sets. Among them, the
first 500 data sets are generated with α ¼ 0, and the
next 500 data sets are generated with α�0. Further,
we consider four noise types: (G) Gaussian, (LG)
log gamma with shape parameter 1 and scale para-
meter 2 (Hogg and Klugman 2009), and (C)
Cauchy distribution with scale parameter 0:25.

Figure 2 shows the ROC curves for the ordinary
and Laplace coherence analyses under the four
noise scenarios. It can be seen that the Laplace
coherence outperforms the ordinary one for non-
Gaussian distributed noise cases.

Real data example: money supply growth

We analyse the monthly measures of the monetary
aggregates from January 1959 to May 2018 obtained
from https://www.federalreserve.gov/releases/h6/
about.htm. M1 consists of easily accessible money,
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Figure 1. Averages of ordinary coherences and Laplace coherences in Example 1: (top) Gaussian distributed error model, (middle) t
distributed error model, and (bottom) Cauchy distributed error model.
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such as currency and demand deposits, whereas M2
consists of money that requires more time for access,
such as savings deposits and money market accounts.
Since M1 is included in M2, we consider the non-M1
components of M2, which are primarily household
holdings of savings deposits, small time deposits, and
retail money market mutual funds (Sela and Hurvich
2012). The non-M1 components ofM2 are denoted as
M1(M2). Figure 3 shows the log differences of two
time-series. Further, from the periodograms in Sela
and Hurvich (2012), it is seen that the two series are
long-memory processes. Figure 4 shows the ordinary
and Laplace coherency plots. For the result of the
ordinary coherence, the main peak occurs around
a frequency of 0.05, which corresponds to a period
of nearly 20 months, and some minor peaks appear
over other frequencies. On the other hand, Laplace
coherence provides two main peaks; one is around
0.05, and the other appears near the frequency of 0.35,
which corresponds to a period of just under 3months.

For the evaluation of this peak, we obtain the
Laplace periodograms of Li (2008) for the two
time series M1 and M1(M2), which are dis-
played in Figure 5. We note that the Laplace
periodogram is a robust version of the ordinary
periodogram and can be obtained from the
Laplace coherence with j ¼ k ¼ 1 in (4). It can
be seen that there is a common peak near 0.35
as well. We finally remark that this frequency
can also be identified by the ordinary coherence,
but it is not distinct, compared to other fre-
quencies, whereas the peak can be easily
detected by the Laplace coherence.

V. Concluding remarks

In this paper, we have considered a robust
coherence analysis for long-memory processes
based on Laplace cross-periodogram. We have
investigated the asymptotic distribution of
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Figure 2. ROC curves of the maximum absolute coherency test by the ordinary coherency (black) and the Laplace coherency (red)
under different noise distributions: Gaussian, log gamma, and Cauchy distribution. The results are based on 1,000 simulated data sets.
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Laplace cross-periodogram to justify the utility
of Laplace cross-periodogram-based coherence
analysis. We believe that this is the main

contribution of this paper. In addition, we
have conducted simulated examples, showing
that the proposed robust coherence analysis is
capable of understanding the linear relation-
ships between two long-memory processes in
the frequency domain. Furthermore, we have
performed real data analysis for money supply
growth and successfully detected two main
peaks between two long-memory monetary-
related processes. For possible future research,
the Laplace cross-periodogram is worth extend-
ing to a quantile cross-periodogram for long-
memory processes. Quantile cross-periodogram
may reveal hidden relationships between two
long-memory processes, which can provide
a richer interpretation of the time-series data
compared to the Laplace cross-periodogram.
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