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Abstract

Coeflicients of ¢, ;; of chromatic
quasisymmetric functions

Jeong Hyun Sung
Department of Mathematical Sciences

The Graduate School

Seoul National University

Coefficients of chromatic quasisymmetric functions for the class of unit
interval graphs with bipartite complement in the elementary basis can be
characterized as certain g-hit numbers. We introduce a bounce ¢-hit number
which is a refined notion of a ¢-hit number. We characterize coefficients of
en—1,1 of chromatic quasisymmetric functions for the class of unit interval
graphs on the elementary basis and show that it is positive. This is par-
tial proof of the Stanley-Stembridge conjecture on chromatic quasisymmetric

functions.
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1 Introduction

In 1995, Stanley [12] introduced a chromatic symmetric function Xg(x),
which is a symmetric function generalization of a chromatic polynomial of a

simple graph G. Given a simple graph G = (V| E) it is defined as

Xg({L') = Z H Tk(v)

k veVvV

where the sum runs through all proper colorings of the vertices k : V(G) — N.
A coloring k is proper if k(u) # k(v) whenever {u,v} € E. It is straight-
forward to confirm that Xg(z) lies in A which is the algebra of symmetric
functions. There has been plenty of researche about the chromatic symmetric
function in diverse areas. [11, 2, 9, 3, 8, 1, 4]

Recall that the incomparability graph inc(P) of a poset P is a graph with
vertex P, edges of which are pairs of incomparable elements. Also, a poset
P is called (r7+s)-free if P does not contain an induced subposet isomorphic
to the direct sum of an r element chain and s element chain. We say that
symmetric function f is e-positive if coefficients of f with respect to the
elementary basis (e))xepar of A are all nonnegative. The following is one of the
famous conjectures on chromatic symmetric function presented by Stanley

and Stembridge.

Conjecture 1.1. (Stanley-Stembridge Conjecture [13, Conjecture 5.5]).
Let G = (V,E) be the incomparability graph of a (3+1)-free poset. Then

Xqg(x) is e-positive.

In 2016, Shareshian and Wachs [11] introduced a chromatic quasisym-
metric function which is a quasisymmetric refinement of the chromatic sym-

metric function. For a simple graph G = (V, E), the refinement is given as

Xa(z,q) = Z H ¢ Py

k veV
where asc(k) = |{{i,j} € F :i < j and k(i) < k(j)}|. Then Xg(z,1) =
Xg(z) and Xg(x,q) € QSym[q]. Moreover it is well known that X (z,q) €

follows.



Alg] when G is incomparability graph of (3+1)-free poset [11, Theorem 4.5].
This lets us refine the Stanley-Stembridge conjecture.

Conjecture 1.2. ([11, Conjecture 1.3]). Let G be the incomparability graph
of a (8+1)-free poset. Then Xq(x,q) is e-positive. That is, if Xg(x,q) =
>ty aj(x)g’ then a;j(x) is e-positive for all j.

It has been proved in various ways that Xq(z,q) is e-positive for a unit
interval graph G = (V, EY) which has a bipartite complement, i.e., 3 nonzero
distinct sets A, B such that AUB =V and {i,j} ¢ E, Vi € Aand j € B.
The goal of this paper is to find a positive formula of the coefficient of e,,_1 1
of X¢(x,q) for an arbitrary unit interval graph G. For a partition A contained
in an x n board, let H}'(A) denotes the ¢g-hit number as in [4]. When ¢ =1,
HZ()) counts the number of rook placements with n rooks on a n x n board
such that precisely j rooks are in A. The goal can be accomplished by proving

the following main theorem.

Theorem 1.3. Let A = (A, A, ..., \x) be a partition with \y < n — 1 and
k<n-—1.
q[n — 2 H%(N\) + q[n — l]qH[’g;in()\) if M,k <n—2,
Xa(2,9) lenrn= 9 [0 = 1gHF 2 (N2, ..., Ar)) if\ =n—1,
n—1,Hy 2 (M —1,..., 0 — 1)) ifk=mn—1.

We can easily find out that it is a g-polynomial, every coeflicient of which
is nonnegative. This is very partial proof of Conjecture 1.2.

The paper is organized as follows. In Section 2, we lay out some known
results required to prove Theorem 1.3. In Section 3, we review Abreu and
Nigro’s results about rook placements and ¢-hit numbers. Also, we introduce
a generalized definition of g-hit numbers with rook placements and some of

their properties. In Section 4, we prove Theorem 1.3.



2 Preliminaries

2.1 Natural unit interval orders

A chromatic quasisymmetric function is a function from a finite simple
graph to Afg] and we want to focus on the case that the finite simple graph
is an incomparability graph of some (3+1)-free poset. But it is quite com-
plicated to deal with such a graph. In this section, we introduce the way to
substitute our object from graph to partition. It starts from the following

result, which Guay-Paquet introduced in 2013.

Theorem 2.1. ([7, Theorem 5.1]). If Conjecture 1.1 holds for every incom-
parability graph of (3+1)-free and (2+2)-free poset, then it also holds for
every incomparability graph of (3+1)-free poset.

So, it is enough to consider the set of (3+1)-free and (2+2)-free posets
which is a subset of the set of (3+1)-free posets. Natural unit interval order

describes our reduced set.

Definition 2.2. ([11]). Let P be a poset on finite subset of N. We say P is

a natural unit interval order if it satisfies both conditions:

e © <py implies x < y in the natural order on N, and

e if the direct sum {z <p z} + {y} is an induced subposet of N then

xr <y < z in the natural order in N.

Theorem 2.3. ([11, Proposition 4.1]). Let P be a poset on [n]. The following

conditions on P are equivalent.

1. P is a natural unit interval order.

2. There exist n real numbers y; < ... < y, such that, for i,j € [n],
yi +1 <yj if and only if i <p j.

3. There ezist weakly increasing sequence m = (my,...,m,_1) such that

1 <m; <n foralliandi<p j if only if m; < j.

3
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Figure 1: P(m), inc(P) and A\p when m = (2,3,5,5)

It is easy to check that if P is a (3+1)-free and (2+2)-free poset on [n],
then P is a natural unit interval order. Furthermore, if poset P on [n] satisfies
condition 2 above, then it is (3+1)-free and (2+2)-free (See [10]). Therefore
we can conclude that the set of (341)-free and (2+2)-free posets on [n] is
equal to the set of posets on [n] satisfying condition 3.

For a given sequence in 3, let A be a partition defined by \; = n —m;
for 1 < i < n — 1. Note that there is a one-to-one correspondence between
m and a partition A contained in ¢, = (n — 1,n — 2,...,1). Consequently,
for given positive integer n there is one-to-one correspondence between the
partitions contained in §,, = (n —1,n —2,...,1) and incomparability graphs
of (3+1)-free and (2+2)-free posets. For a partition A contained in d,,, denote
P, to be a corresponding poset. (See Figure 1)



2.2 Linear relation

Denote [n] = {1,2,...,n}, [n], = qn__ll
q
Also, let A, be the algebra of symmetric functions with coefficients in Q(q).

and [n],! = [[;_,[F], as usual.

Definition 2.4. We say that a function f : {Partitions of N} — A, satisfies

the linear relation if

(2.1) (L+a) fN) = FA%) +af(X)
whenever one of the following conditions hold

1. There exists ¢ > 2 such that \; +2 < A\_; and A\_y,1 = Ay,
Moreover, X' and A\* satisfy Aj = A if j # i and A} = X 4 a for a =
1,2.

2. p°, p! and p? satisfies the condition 1 when p* is a transposition of \*
for k = 0,1,2.

Let us call condition 1 and 2 be a row condition and column condition respec-
tively. Then we say f satisfies the row linear relation|column linear relation)
if the equation (2.1) holds for A\”’s which satisfies the row condition [column

condition)].

AA LI\
]

)\2

Figure 2: A%, A\! and \? satisfying condition 1.



Theorem 2.5. ([9, Theorem 3.4]). Chromatic quasisymmetric function sat-

1sfies the linear relation.

Theorem 2.6. ([1, Theorem 1.1]). Chromatic quasisymmetric function X
: {unit interval graphs} — A, is the unique function that has the following

three properties.
e [t satisfies the linear relation.
o [t is multiplicative, Xa,uc, = Xa, Xa,-
e It has values at complete graphs given by X, = [n],le,.

Theorem 2.7. ([1, Theorem 1.2]). Let A be a Q(q)-algebra and let f : {unit
interval graphs} — A be a function that satisfies the linear relation. Then f
is determined by its values f(K,, UK,,U---UK, ) at the disjoint ordered.



3 Rook placements and ¢-hit numbers

Rook placements that count the number of placing non-attacking rooks
on a given board are a generalization of permutation diagrams. Garsia and
Remmel give g-analogs of rook placements by counting inversions [6]. It has
been revealed that there is a strong connection between rook placements and
chromatic quasisymmetric functions [1, 2, 4]. In this section, we present a
generalized definition of ¢-hit numbers with rook placements and some of
their properties. Our new definition will appear in section 4 to illustrate an
explicit formula of the coefficient of e,,_; ;. First, we review the known results.

Let A be a partition contained in a n x n board. Define B}()) to be the
set of placements of n rooks on a n x n board such that precisely j rooks are
in A. Each rook placement has a A\-weight defined as in [5]. The weight is the

number of cells ¢ in a n X n board such that

1. there is no rook in c,
2. there is no rook to the left of ¢,
3. if ¢ is in A then the rook on the same column of ¢ is in A and below ¢,

4. if cis not in A then the rook on same column of ¢ is either in A or below

C.

We define a ¢-hit number

HY(A) = Z g,

o€BL(A)
where wty (o) is the A-weight of o.
Theorem 3.1. ([1, Theorem 4.3])

Remark. For partition A, if A\; < j or I(A) < j then H*(\) = 0. If not,
¢[m — j — 1H"(A) is the coefficient of en,_j11; of Xy(z,¢) by Theorem
3.1. Recall that chromatic quasisymmetric function is transpose invariant
ie., Xa(z,q) = Xx(z,q) ([1, Theorem 1.2.]). Hence ¢’[m — j — 1];H*(\) =

7



¢ [m —j — 1H7(A)". In conclusion, H*(A) = HJ*(A\") namely ¢-hit numbers

are transpose invariant.

Definition 3.2. Let A be a partition contained in a n x n board. Define
B .(A) to be the set of placements of n rooks on a n x n board such that

precisely two rooks satisfying the following condition are in .

e Let ¢; and ¢, be cells in A containing rook and ¢y locates lower than c¢;.
Then a + b = m + 1 when ¢; and ¢y are cells with a — th column and

b — th row respectively.

For each rook placement define bounce A-weight with refined statistic. The

bounce weight is the number of cells ¢ in a n x n board such that

1. there is no rook in c,
2. there is no rook to the left of c,
3. if ¢ is in A then the c satisfies both of the followings

(a) the rook on the same column of ¢ is in A and below ¢

(b) if the rook on the same column is not the rightmost rook in A, the

rook on the same row is in .

4. if cis not in A then the rook on same column of ¢ is either in A or below

C.

See Figure 3 for an example, where the black circles are the rooks, while the
¢ corresponds to the cells ¢ satisfying the above condition and gray cells are
partition A.

We define bounce q-hit number

Hi ) = T
UEBE(LJ,l],m(/\)

where bwty (o) is the bounce A-weight of o.

Proposition 3.3. Bounce g-hit number satisfies the linear relation.



Figure 3: A rook placement in B[%,l]’?()\) with bounce A-weight 5 with A\ =
(4,4,2,2)

Proof. We need to show that (2.1) holds for H, ,, , with a partition satisfying
row or column condition of Definition 2.4..
Let us starts from the row linear relation. Let A\°, A' and A\? be partitions

satisfying row condition with i-th row. Then for k£ = 0,1,2 By ,, (AF) is the

,m

union of four disjoint subsets:
o Ay ={o € Bj,,,(\) | there is a rook on (i,7) and r > \; + 2}
e By={o¢€ B[T(L],l],m(Ak> | there is a rook on (i,r) and r < \;}
o O, ={0¢€ B[’(‘]’le(Ak) | there is a rook on (i,r) and r = X\; + 1}
e D, ={o€ Bfé’l]’m()\k) | there is a rook on (i,7) and r = \; + 2}

Let oy, 7. be placements of rooks on a n x n board, location of which are
exactly same for all k. If oy, € A, btwyo(og) = btwyi(o1) + 1 = btwyz(02)

4+ 2. So we can induce

(31) (1 +q) Z qbwt)\l(o') — Z qutAO(O') +q Z qbwt)\g(a)‘

oA oc€Ay g€As

If o), € By, btwyo(og) = btwyi(01) = btwy2(03). And this gives

(32) (1 + q) Z qbwt/\l(d) — Z qbwtko(a) +q Z qbwtxz(a)‘

oeBy oc€By oeBsy

Define a transition map S [Sr°%] to be a function that maps rook place-
ments on a n X n board to themselves by switching the location of rooks on

the ¢ — th and i 4+ 1 — th column [row]. (See Figure 4)

9
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Figure 4: S5

Now assume o, € Cy and 7, € Dj. Then btwyi(oy) = btwyz(o2) and
btwyi (1) + 1 = btwyo(79). This gives

(33) q Z qbwt)\l(a) =q Z qbwtﬂ(cf)’ q Z qutAI(T) _ Z C]bWtAO(T).

ceCy oeCyq TeDq T€Dg

claim: 3, _p, ¢ 0 = 5, g g0l

(i) Assume that the rook on the A\; +2 —th column is not in the partition
A. Then 8%, is a bijection from M = {o € Cy | the rook on the A; +2 - th
column is not in the partition A} to Dgl) = {0 € D | the rook on the \; +1
- th column is not in the partition A} and btwyi((11)) = btwy (S5 (00)) =
btw o (0p).

(ii) Assume contrary that the rook on the \; + 2 — th column is in the
partition A. We can number rooks in the partition from right to left. Since
there are only two rooks in the partition, we call the rightmost rook the 1st
rook and the leftmost rook the 2nd rook.

If the rook on the A; +-2 — th column is the 2nd rook, §§%, is a bijection
from C’é2) = {0 € Cp | the rook on the A\; + 2 - th column is the 2nd rook
in the partition A} to DY = {o € Dy | the rook on the A\; + 1 - th column
is the 2nd rook in the partition A} and bounce q-hit weights are invariant
under this map.

If the rook on the A; + 2 — th column is the 1st rook, S;?, 8%, is a
bijection from C’(()g') = {o € Cy | the rook on the A\; + 2 - th column is the
Ist rook in the partition A} to Df’) = {0 € D, | the rook on the \; + 1 -
th column is the 1st rook in the partition A} and bounce g-hit weights are
invariant under this map.

Note that Cy and D, are the disjoint unions of C’éi)’s and D(()i)’s. So the

10



multiset of bounce g-hit weights of Cj is equal to that of Dy. This proves the
claim.

claim: Y . ") = g3 gPVao(),

Similar to the previous claim, it can be proved with the following function.
Let

Srovy S (o) if the rook on the A\;41-th column is the 1st rook,

flo) =

S5 (o) if the rook on the \;4+1-th column is the 2nd rook.

Then f is a bijection from C} to Dy such that bwtyi(o) + 1 = bwtyo(f(0)).
So the claim is proved.
Combining (3.1) - (3.3) and two claims,

(1+ @) B 11,m(A) = B 11 (A°) + aBfg 11 (A?).

Therefore H[o 1m satisfies the row linear relation.

Now let us move on to the column linear relation. The technique of proof
is exactly the same as the row case. Let A%, A\! and A? be partitions satisfying
column condition in definition 2.4. with A} +1 = A} = A2 and A}, +1 =
Aty = A% Then for k = 0,1,2, Bj,,, ()\k’) is the union of four disjoint
subsets:

o Ay ={o € By, (A *) | rooks on the j-th and j + 1-th row are not in

el
o By = {0 € By,,,(\*) | rooks on the j-th and j + 1-th row are in \° }

e Cp,={0€ B[%’l]’m()\k) | the rook on the j-th row is not in A? and the
rook on the j + 1-th row is in A° }

e D, ={o€ B[%J]’m()\k) | the rook on the j-th row is in A’ and the rook
on the j + 1-th row is not in A\? }

o By, ={o € By, (A¥) | the rook on the j-th row is on A?-th column
and the rook on the j + 1-th row is in A\° }

o [, ={0c sz)’u’m()\k) | the rook on the j-th row is on in A\° and the

rook on the j + 1-th row is on A3-th column }

11



o Gy ={0 € Bj,,, (A¥) | the rook on the j-th row is on A3-th column
and the rook on the j + 1-th row is not in A? }

o Hy = {0 € Bj,,,(X*) | the rook on the j-th row is on not in A* and
the rook on the 7 + 1-th row is on )\?—th column }

First, notice that F;, F5 and F; are empty sets.

With an identity map, we can obtain the following.

Z qut)\l =g Z qut)\Q . q Z qbthl Z qbwt)\o(a

ocA; o€As o€A; og€Ap
Z qutAI Z qbtho . q Z qbthl =g Z qutAQ(U)’
oc€B; o€By ceB; geBy
q Z qut)\l =g Z qbwt)\z . q Z qut)\l(U Z qbwt)\o((r)
ceCy oeCy o€Dy o€Dg
q Z qutAl (o) _ Z qbtho Z qutA1 (o) _ =g Z qbwt)\z(a
ceF o€eFy oeGq geGa
q Z qbwt)\l(a) _ Z qbwt)\o(a)‘
occH, o€Hy
Let
S if the rook on the j-th or j+1-th row is the 1st rook,

g(o) =
Sl _;8;°“(a) if the rook on the j-th or j+1-th row is the 1st rook.

By g we can obtain

Z qutAI(U =g Z qutAQ g Z qutxl Z qutXO(U

ceCy g€Dsy oceDy oceCy

bwt,1 (o bwt, o bwt,1 bwt,o (o
> ") = N T ghvihol) g N i) — g Y g ()
o€l o€k ceGy oc€H>

Lastly, the map S7° draws

Z qbwt/\l(a) _ Z qutA()(O')

oc€H, c€Go

Add whole equations. Then we can see that the column linear relation

12



also holds. Both row and column linear relations hold. Finally, proposition
3.3. is proved. O]

13
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4 Coefficients of e,

In this section, we find the coefficient of e,_;; of chromatic quasisym-
metric function with the expansion of elementary basis e.
For partition A\ and p let X(z,q) |, be the coefficient of e, with the

expansion of elementary basis e.

Theorem 4.1 (Theorem 1.3.). Let A = (A1, Ao, ..., A\x) be a partition with
M<n—1and k<n-—1.

gln = 2JH 72 () +gln — U H 7, (N if Mk <n—2,

X,\(JE;Q) ‘en,Ll: [n— 1]qu_2((>\27---7)\k)) Zf)\l =n — 17
n—1],Hy 2(M —1,..., % — 1)) ifk=mn—1.

If A, k=n—1, H 2((Na, ..., \)) and HF 2((\y — 1,..., M\, — 1)) are
both zeros. So X,(z, q) | is well defined.

€n—1,1

Lemma 4.2. For m € N and a partition X in a (m — 1) X (m — 1) board,
H{"((m, A)) = Hg"(A)-

Proof. Let f = &/o% -85S « B*((m, A)) — B*(\). Since every rook
in partition of the o € B{*((m, A)) is on the first row, it is a bijection. For
any o € B"((m, \)), Wt (0) = wta(f(0)). So,

H™(m,\) = quwm,»(o) — qum(ﬂo)) = HI*()N).

Lemma 4.3. For m € N and partition A,
Hg'(N) = [ml Hy" ™ (A) + H"' ().

Proof. To show that H}"(\) the is addition of two different ¢-hit numbers, I
will divide BZ*()\) into two disjoint sets and map each of them to BJ' *()\)
and B""'()\) respectively.

14



Board sizes of BJ*()\) and B;*~'(\) are different and it makes it hard to
compare them. So from now on let us identify an element in B} '(\) with
an element in B}*(\) by locating all rooks as before and adding one more
rook in the bottom right corner. Note that A-weight of them are equal.

First, let us think of ¢ € Bj*(\) bottom rook on which is on the k-
th column and there is no rook on (i, A; + 1) if \; < k (first and second
coordinates imply row and column respectively). Let A C BJ*(A\) be a set of
such elements.f

Let f; =S, ...8° 8 - Bl Y(\) = By*(\) fori=1,...,m—1 and
fo: By H(\) — Bi*(A) be the identity map. Then f;’s are injective and

m—1
A= || f(BE ).

=0

Moreover, for o € By ()\), i + wty(0) = wty(fi(o)). Therefore,

(4.1) ZthA(J) = mz_:l Z th)\(fi(o')) — [m]q Z th’\(U).

ocA =0 geB () oc€BT ()

Now let 7 € Bi*(\)\ A which has a rook on (m, [). Then we can correspond

7 to an element in B *(\) using the following algorithm;

1. Choose the rightmost cell containing a rook among (i, A\; + 1) for i =
1,2,...,m (there exist a cell containing rook since 7 € Bj*(A) \ A) and
let the cell be (k, A\, + 1).

: col col col
2. Put 7 in S - - S5 ,SNL

3. Remove rooks on (m,[) and (k,m) and put rooks on (k,[) and (m,m)

to replace them.

Let g : B (A)\ A — BJ" *()\) be the function that represents the algorithm.
Since we can exactly reverse the given algorithm, ¢ is a bijection. And it is
not that hard to check that wty(7) = wty(g(7)). Therefore,

(42) Z thA(T) — Z th)\(g(T)) _ Z thA(T).

TEBF(M)\A TEB (N TEB (V)

15



Combine (4.1) and (4.2). Then

Z th/\(U + Z th/\(T)

oc€A TEBT' (A

=[ml, Y thA()—l— Z th*(T):[m]qH(’)”*l(A)JrHT*l()\).

c€BI () reBY(

Now we are ready to prove our main theorem.

proof of Theorem 4.1. Let

gln = 2]HY72(\) +gqln — U Hg 7, (N if Ak <n—2,

hA) =19 [n—1),Hr 2((Na, - Me) if A\ =n—1,
n— 1 Hy 2 (M —1,..., 0 — 1)) if k=n—1.

for convenience. By Theorem 2.7, it is enough to prove the following two

statements.

Lo XK, UKy, (T5,Q) ey 1= A(Kn, U Ky, U=+ U K, ) for arbitrary
disjoint complete graph I, ’s.

2. h satisfies the linear relation.

Ifn=1 X4(z,q) =D 1o, zxr = €; and h(¢) = 0. So from now on assume
that n > 2.
Let us begin with 1. By the second property of Theorem 2.6,

XKn1UKn2U"'UKnm = XKnl Xan T XKnm = [nl]q' U [nm]qlenl e enm'

So the coefficient of e, ; of a chromatic quasisymmetric function is nonzero
only if K3 UK,,_; and it is [n —1],!. The corresponding partition of K3 UK,y
is(n—1)or (1,1,...,1) (n — 1 many 1’s). Moreover,

h((n — 1)) = [n — 1, Hy(8) = [n— 1,1,
AL, 1., 1)) = [n— 1, Hy () = [n — 1],

16



and
h(A) =0

for the other partition A because HJ' *()\) = H[’S;in(/\) = 0 (since A touches
diagonal line from (n, 1) to (1,n) there should be more rooks in \). So, we
proved what we want.

Now we need to show that h satisfies the linear relation.

First, assume that A is inside the (n—2) x (n—2) board i.e., A;, k < n—2.
By [1, Lemma 4.2.] and Proposition 3.4., both ¢-hit numbers and bounce ¢-
hit numbers satisfy the linear relation. So h(\) = g[n — 2], H () + q[n —
1),H, Eé’lfn()\) also satisfies the linear relation.

Second, assume that A = (A, Ay, ..., A1) with Ay =n—1and \,_; = 1.
To show that A satisfies the linear relation with such A\, we have to show
that it satisfies both row and column linear relations. Let us see the row
linear relation first. Let A° = (A, ..., —2,..., 1), AL = (A, ., A —
1,..., A1) and \? = X be partitions satisfy the row condition. If i # 1,
h(A%) = h(A') = h(A?) = 0. So the equation (2.1) holds. So, now we suppose
that 4 = 1. Let 4’ be the partition that can be obtained by subtracting the
first column of M ie, ! = (n —4+ 7, —1,...,\s_1 — 1). Then,

h(A") = [ — 1], Hy (1),
h(A') = [n = 1], Hy (1),

h(A\?) = 0.

Let A = {0 € By ?(u°) | there is a rook on top right corner}. With the

identity map and S, it can be easily shown that

Do = qH (), Y e = HR ).

ocA c€BlA\A

Therefore,

(1+@)h(A") = [n— 1(1+ ¢) Hy > (u')
= — 1), H (%) = B®) = hO) + B(2).

17



So, the row linear relation holds for such A. Since the g-hit number is trans-
pose invariant, it follows from row linearity that A also satisfies the column
linear relation.

Third, assume that A = (n — 1, Ay, ..., A¢) with £ <n — 2 and let X =
(A2, ..., k). The column linear relation and the row linear relation with
regard to the m-th row for (m > 2) follow from the linearity of Hj 2. So it

is enough to show the following equation.
(1+a)(gln — 20 H7 7 (n = 2,X) + gln — 1 Hig 7, (n = 2, X))

(4.3) = qln =2, H(n—3,X) +qln - 1Hy 7, (n—3,\)
+[n — 1] Hg (V)

Let
(1) = [n = 2017 (n — 2,X) + [n — 1 Hy F (n — 2, X)
—([n = 2H 7 (n = 3,X) + [n — 1 Hyj (= 3, X))
and
(2) = qln — 2], H} (0 — 2,X) +q[n — 1, Hy 17, (n — 2, \)

—[n — 1] Hg *(X).

Then equation (4.3) holds iff (1) + (2) = 0. Let B = {0 € By, 2 . (A?) | there
is a rook on top right corner} and C' = {0 € B[o Hn(A D there is a rook on

top right corner}. Then,

(1) = [0 = 2o(Hy 7 (X) = gH7 > (N)) + [n = 1y (Y ™ =Y g™,

o€EB oeC

By lemma 4.2.,

(2) = qln — 1, H 1}, (n — 2, ') = Hy7(X).

[0,1],n

18



Adding (1) and (2) and applying Lemma 4.2. gives

(1) +(2) = = 10,3 ") = 37" 4 gH? (0 —2,X) — Hy (V).

oceB oeC

So, I want to show that

DT fgHR R (n—2,X) = "™+ HPT).
cEB oceC
With maps we used to prove Lemma 4.3, the equation similarly can be
proven. So we omit this part.
In the last case when A = (Aq,...,\,_2,1) with A\; < n — 2, it can be
proved as the same as the third case. Hence we finally proved that h satisfies

the linear relation. O
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