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Abstract 
 

 
Crystal structure prediction aims to find the ground-state structure in a given 

composition. This is of great interest as it can establish a list of all synthesizable 

materials prior to experiments. However, the main challenge in predicting crystal 

structure comes from the efficiency of the algorithm: the NP-hardness of the problem 

and the high cost of density functional theory, which is employed as a structure 

optimizer and an energy evaluator, limit the widespread use of the algorithm in 

searching complex multinary systems. To accelerate the speed of crystal structure 

prediction, there have been several attempts to employ machine learning potentials 

as a surrogate model of density functional theory calculations. However, 

constructing the training set is not straightforward because prior knowledge of the 

configurations is not available before making predictions. Previous researches 

employed random sampling and on-the-fly sampling methods to train machine 

learning potentials but did not achieve enough efficiency and accuracy to be utilized 

in multinary systems. 

In this dissertation, we develop the crystal structure prediction program using 

neural network potentials as the surrogate model of density functional theory 

calculations. Our main idea is to construct the training set with the disordered 

structures sampled from molecular dynamics simulations. The energies calculated 

by trained potentials show a good correlation with the energies calculated by density 

functional theory calculations, which indicates that the neural network potential can 

be a hi-fidelity surrogate model for crystal structure prediction. Then, we develop 

the crystal structure prediction method by optimizing algorithms for constructing 

training sets, training neural network potentials, and searching structures with 

evolutionary algorithms. The developed program is tested on the experimental 
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database and theoretical structures predicted by other crystal structure prediction 

methods. The tests show that the developed method can identify the global minimum 

in most cases at a reasonable computational cost. Using the developed method, we 

are now discovering the missing ternary metal oxides and Li superionic conducting 

oxide materials. By harnessing the accuracy and efficiency of neural network 

potentials, this dissertation will pave the way to the wide material discoveries in 

various research fields. 

 

Keyword : crystal structure prediction, machine learning potential, neural network 

potential 

Student Number : 2016-20761 
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Chapter 1 

 

 

Introduction 

 

 

1.1 Overview of crystal structure prediction 
 

In modern times, the discovery of new inorganic materials catalyzes the 

advancement of diverse technologies such as InGaZnO4 for transparent flexible 

electronics [1], Li10GeP2S12 for solid-state batteries [2], Cs2AgBiBr6 as 

photovoltaics [3], and La[O1−xFx]FeAs [4], H3S [5] and LiH10 [6,7] as high-Tc 

superconductors. Indeed, ~200,000 materials have been registered in the Inorganic 

Crystal Structure Database (ICSD), which contains information of most the 

synthesized inorganic materials, and its size increases by ~5,000 every year [8]. 

However, such experimental throughput for discovering new materials is not 

enough to complete the list of material database: based on a rough estimate, only 

~16% of ternary materials and ~1% of quaternary materials are known among the 

possibly synthesizable materials list [9], and only ~1% of ternary materials and ~0.05% 

of quaternary materials are newly discovered every year.  

Computational methods based on density functional theory (DFT) are widely 

employed in material searches because this can predict materials properties much 

faster than experiments without any prior knowledge [10]. In DFT calculations, 

crystal information of materials is the essential input that defines the Hamiltonian of 
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the given system. However, crystal structures of as-yet-synthesized materials are not 

available, so most of the experimental researches focus on screening already existing 

materials in the current database(e.g., ref. [11,12]). 

To resolve this issue, one needs a crystal structure prediction (CSP) algorithm, 

which is a computational method to predict the crystal structures of solids from first 

principles [13]. In principle, an efficient CSP algorithm can identify all the 

synthesizable but as-yet-synthesized materials. Therefore, developing a practical 

CSP algorithm has been a dream of theoretical materials scientists. However, CSP is 

an NP-hard problem with no general solution [14]. 

Two kinds of CSP algorithms have been developed to mitigate this frustration: the 

first one is a data-driven method and the other one is a heuristic approach. The first 

systematic data-mining method is developed by Fischer et al. [15]. In this approach, 

the correlation between structures in terms of constituent elements is learned from 

the experimental database by machine learning. A similar algorithm has been 

developed by Hautier et al., which uses the machine learning model that learns the 

substitutional probability for element pairs for the given composition [16]. Within 

these or other data-driven methods, the new metal nitrides [17], 18-ABX 

compounds [18], and Li-ion batteries [19] are discovered followed by the 

experimental verification. However, this approach is not possible to find a material 

with a new prototype that is not in the database. In addition, the biased elemental 

frequencies in the experimental database might risk deficient prototypes in certain 

materials groups. In specific, oxygen is the most abundant element in the ICSD of 

which frequency is 3 times higher than the next most abundant elements (Fe, Si, and 

S). Therefore, the prototype database for other compounds than oxides may be 

deficient to construct a reliable statistical model. 

To directly explore the configurational space instead of using statistical relations, 

several heuristic approaches, such as random structure sampling [20,21], 

metadynamics [22], simulated annealing [23], minima hopping [24], basin 
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hopping [25], particle-swarm optimization (PSO) [26,27], and genetic 

algorithm [28], are developed. The most popular approaches are the genetic 

algorithm developed by Oganov et al. (USPEX code) [29], PSO method developed 

by Ma et al. (CALYPSO code) [30] and random sampling developed by Pickard et 

al. (AIRSS code) [20]. These algorithms often accompany thousands or more DFT 

calculations which takes large computation time. Therefore, diverse techniques, such 

as random structure generation using symmetry operators, and antiseed option are 

developed for the efficient search of the ground-state structures in the short 

generations limited by the speed of DFT calculations [31]. With this method, new 

materials are successfully discovered such as the high-pressure phase of transparent 

sodium [32], the unusual stoichiometry of sodium chlorides [33], and H-based novel 

high-Tc superconductors [34–36]. However, the current researches based on CSP are 

often limited to short evolutionary generations [18,37], because the computational 

cost of DFT-based CSP is still demanding. 

Recently, machine learning potentials are gaining much attention because they 

can be a surrogate model of DFT with much lower computational cost and the linear 

scaling with the number of atoms in contrast to the cubic scaling of DFT 

calculations [38–40]. Machine learning potentials learn structure-energy relations 

from DFT calculations via flexible functional forms. Therefore, machine learning 

potentials require the construction of a training set which consists of DFT calculation 

results on reference structures that contains every configurational information of 

target simulation. However, in the case of CSP, this encounters a significant 

challenge, because of the prior information of target simulation is not known before 

one makes the prediction. To resolve this, previous studies utilized random sampling 

or on-the-fly sampling method for training machine learning potentials for CSP [41–

43]. The developed potentials were tested on unary crystals and clusters. However, 

these methods are less effective in more complicated multinary materials because 

they unnecessarily gather high-energy structures that are irrelevant to the local 
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minimums around the ground-state. Consequently, there is an urgent need for 

efficient strategies for training reliable machine learning potentials during CSP 

procedures and new search algorithms that is optimized for machine learning 

potentials. 
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1.2 Goal of the dissertation 

 

The main goal of this dissertation is to develop an efficient and accurate CSP method 

using machine learning potentials. The CSP algorithm consists of two parts, global 

optimization, and local relaxation. In inorganic materials, the local relaxation part 

takes most of the time because it is conducted by DFT calculations. We first develop 

an efficient method to train neural network potentials (NNPs) employed for local 

relaxation and energy evaluation of structures that appear during the global 

minimization. The key strategy is to use disordered structures, which are generated 

from DFT-based melt-quench-annealing simulations, as a training set of NNP. We 

demonstrate that the generated potentials can be a high-fidelity surrogate model of 

DFT in CSP of multinary systems. 

When applying NNPs in CSP, we find that the conventional global optimization 

algorithms are inefficient for NNP-based CSP because the conventional algorithms 

are only optimized for DFT calculations. Therefore, we develop the CSP code that 

is optimized for NNP. In addition, we additionally optimize the DFT-MD procedure, 

training methods, and quality monitoring of NNP. Based on these algorithms, we 

develop the code named SPINNER (Structure Prediction of Inorganic crystals using 

Neural Network potentials with Evolutionary and Random searches). We conduct 

two tests to evaluate the performance of the program: the first one is a blind test on 

the experimental structures and the other one is a benchmark test on theoretical 

structures predicted by other CSP algorithms. In both tests, it is confirmed that 

SPINNER can mostly identify a global minimum for a given composition within a 

reasonable computational cost. 

Finally, we present two practical applications of CSP: identifying missing ternary 

oxides and discovering novel Li superionic conductors. We establish the strategies 

to efficiently search large materials space using SPINNER.   

 



 

 ６ 

1.3 Organization of the dissertation 
 

The dissertation consists of five chapters. Chapter 1 provides an introduction, which 

presents an overview of crystal structure predictions, the goal of the dissertation, and 

the organization of this dissertation. Chapter 2 gives the theoretical background on 

density-functional theory, machine learning potentials, and crystal structure 

prediction. Chapter 3 provides the discussion on the development of the neural-

network potentials and the optimization of the crystal structure prediction algorithm. 

With the developed code, two performance tests are conducted. In Chapter 4, we 

discuss the practical applications of CSP. Finally, in Chapter 6, we summarize and 

conclude the dissertation. 
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Chapter 2 

 

 

Theoretical background 

 

 

2.1 Density functional theory calculations 
 

 

2.1.1 Born-Oppenheimer approximation 
 

When trying to calculate the material properties within atomic level without any 

empirical knowledge, one requires to solve the Schrödinger equation, which is the 

basic governing equation describing all physics in atomic scale. For the problems in 

materials science, systems consist of multiple nuclei and electrons. In this case, the 

Schrödinger equation is written as: 

 

𝐻Ψ = 𝐸Ψ,                         (2.1) 

 

where the Hamiltonian operator 𝐻 is represented as: 

 

𝐻 = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2

𝑖

− ∑
ℏ2

2𝑀𝐼
∇𝐼

2

𝐼

+
1

2
∑

𝑒2

|𝐫𝑖 − 𝐫𝑗|
𝑖≠𝑗

+
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝐫𝐼 − 𝐫𝐽|
𝐼≠𝐽

+ ∑
𝑍𝐽𝑒2

|𝐫𝑖 − 𝐫𝐽|
𝑖,𝐽

. 

(2.2) 

Here, i, j are the index for electrons, I, J are the atomic index, r is the position of 

https://ko.wikipedia.org/wiki/%CE%A8
https://ko.wikipedia.org/wiki/%CE%A8
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electrons and atoms, Z is the charges of electrons and atoms, and M is the nuclear 

mass. The first two terms in equation (2.2) is the kinetic energy of electrons and 

nuclei, and the next terms correspond to the electrostatic interactions of electron-

electron, nucleus-nucleus, and electron-nucleus, respectively. 

Solving the equations (2.1) and (2.2) is a many-body problem which has no 

general solution except for the case of a hydrogen atom. Density functional theory 

(DFT) applies several approximations to provide reasonable first-principles 

solutions. The first one is the Born-Oppenheimer approximation [44]. In this 

approximation, the nuclei is assumed to be fixed while only the movements of 

electrons are considered. This is because the electron mass is orders of magnitude 

smaller than the nucleus mass. The kinetic energy of the nuclei approaches to zero, 

and the nuclei are just considered as a source of charge. Mathematically, equation 

(2.2) changes into: 

 

𝐻 = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2

𝑖

+ ∑ 𝑉ext(𝐫𝑖)

𝑖

+
1

2
∑

𝑒2

|𝐫𝑖 − 𝐫𝑗|
𝑖≠𝑗

+
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝐫𝐼 − 𝐫𝐽|
𝐼≠𝐽

, 

(2.3) 

where 𝑉ext(𝐫𝑖) is the external potential applied to the electron from the nucleus 

charges, which is defined as: 

 

𝑉ext(𝐫𝑖) =
1

2
∑

𝑍𝐼𝑒2

|𝐫𝑖 − 𝐫𝐼|
𝐼

. 

(2.4) 

The last term in equation (2.3) is the constant, so one has to consider the first three 

terms to solve this equation. Therefore, one can rewrite Hamiltonian of the system 

as follows: 
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𝐻 = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2

𝑖

+ ∑ 𝑉ext(𝐫𝑖)

𝑖

+
1

2
∑

𝑒2

|𝐫𝑖 − 𝐫𝑗|
𝑖≠𝑗

. 

(2.5) 
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2.1.2 Hohenberg-Kohn theorem 
 

The key principle to solve equation (2.5) is the Hohenberg-Kohn theorem [45]. 

Hohenberg-Kohn theorem consists as follows: 

 

(1) For electrons under external potential, 𝑉ext(𝐫), the ground state is uniquely given 

as a function of electron density (𝜌(𝐫)).  

(2) A universal functional for energy, 𝐸[𝜌(𝐫)], exists as a function of 𝜌(𝐫), where 

the ground state energy is the global minimum of this functional in density, 𝜌0.   

 

The Hamiltonian in equation (2.5) is defined by 𝜌0. Therefore, with this theorem, 

the energy functional is written as follows: 

 

𝐸[𝜌(𝐫)] = ∫ 𝑉ext(𝐫)𝜌(𝐫)𝑑𝐫 + 𝐹[𝜌], 

(2.6) 

where, 

 

𝐹[𝜌] = 𝑇[𝜌] + 𝑉ee[𝜌].                     (2.7) 

 

Here, 𝑇[𝜌] is the kinetic energy and 𝑉ee[𝜌] is the electron-electron interaction 

term.  

According to the Hohenberg-Kohn theorem, the wave functions (i.e., all properties) 

are completely given by 𝜌0. When assuming there exists no degeneracy, this can be 

proven as follows: suppose there are two different external potentials 𝑉ext(𝐫) and 

𝑉ext
′ (𝐫)  which lead to the same 𝜌0 . These two potentials give two different 

Hamiltonians, 𝐻 and 𝐻′, and corresponding different wave functions, 𝜓 and 𝜓′. 

Then, energy of the system, E is given by: 
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𝐸 = ⟨𝜓|𝐻|𝜓⟩,                       (2.8) 

 

and also the following relation is satisfied because 𝜓  is the ground state of 

Hamiltonian 𝐻: 

 

𝐸 = ⟨𝜓|𝐻|𝜓⟩ < ⟨𝜓′|𝐻|𝜓′⟩ = ⟨𝜓′|𝐻′|𝜓′⟩ + ⟨𝜓′|𝐻 − 𝐻′|𝜓′⟩

= 𝐸′ + ⟨𝜓′|𝐻 − 𝐻′|𝜓′⟩ = 𝐸′ + ∫[𝑉ext(𝐫) − 𝑉ext
′ (𝐫)]𝜌0(𝐫)𝑑𝐫. 

(2.9) 

Conversely, the below relation satisfies: 

 

𝐸′ < 𝐸 + ∫[𝑉ext
′ (𝐫) − 𝑉ext(𝐫)]𝜌0(𝐫)𝑑𝐫. 

(2.10) 

Equations (2.9) and (2.10) are contradictory to each other, so this means that the 

assumption that two different wave functions exist for the same 𝜌0 is wrong.  

Despite the fact that Hohenberg-Kohn theorem proves that 𝐸[𝜌(𝐫)] exists, it 

does not demonstrate any actual form of the functional. Chapters 2.1.4 provides 

descriptions to make a reasonable approximations of 𝐸[𝜌(𝐫)]. 
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2.1.3 Kohn-Sham equation 
 

To effectively address the difficulties in the many-body problem of solving 

Schrödinger equation, Kohn and Sham assumed that the electron density 𝜌(𝐫) of N 

electrons can be divided into the sum of orbital charges of each electron [46]: 

 

𝜌(𝐫) = ∑ |𝜙𝑖(𝐫)|2

𝑁

𝑖=1

. 

(2.11) 

The one-electron orbital 𝜙𝑖(𝐫) is called Kohn-Sham orbital. This is the mean-field 

approximation which transforms many-body problem in to the set of one-body 

problems. Transforming equation (2.5) using equation (2.11), Kohn-Shan equation 

is given as: 

 

(−
ℏ2

2𝑚𝑒
∇𝑖

2 + 𝑉eff(𝐫)) 𝜙𝑖(𝐫) = 𝜀𝑖𝜙𝑖(𝐫), 

(2.12) 

where i is the atomic index, 𝜀𝑖 is the Kohn-Shan eigenvalue of ith electron, and 

𝑉eff(𝐫) is the effective potential written as: 

 

𝑉eff(𝐫) = 𝑉ext(𝐫) + 𝑉Hartree(𝐫) + 𝑉xc(𝐫).             (2.13) 

 

Here, 𝑉Hartree(𝐫)  is the Hartree energy which corresponds to the Coulomb 

interaction term of an electron with itself: 

 

𝑉Hartree(𝐫) =
e2

2
∫ 𝑑𝐫𝑑𝐫′

𝜌(𝐫)𝜌(𝐫′)

|𝐫 − 𝐫′|
 . 

(2.14) 

𝑉xc(𝐫) is the exchange-correlation energy which includes all the corrections from 
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the many-body interactions among electrons. The exact formulation of the functional 

is not known. Therefore, the approximated functionals are used, which will be 

discussed in the next subsection. 

When trying to solve equation (2.12), one encounters the self-consistency problem 

between the electron density and the wave function. To resolve this problem, iterative 

method is used: First, the electron density is guessed from the scratch. Then, the 

wave function can be determined by solving equation (2.12). With wave function, 

the electron density is update. And then, get the wave function again by solving 

equation (2.12). This iterations are performed until the electron density is consistent 

to the wave function. 
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2.1.4 Exchange-correlation energy 
 

In this Chapter, we discuss the exchange-correlation energy (𝐸xc). The exact form of 

𝐸xc is now known, so one needs to use an approximate form. The simplest 

approximation of 𝐸xc  is the local density approximation (LDA)  [46], which 

assumes that the local exchange-correlation energy is same as that of the free 

electrons with the same electron density. Therefore, LDA form of 𝐸xc is written as: 

 

𝐸XC
LDA = ∫ 𝑑𝐫𝜌(𝐫)𝜖XC[𝜌(𝐫)]. 

(2.15) 

Generally, LDA provides reasonable results for the systems with slowly varying 

charge density. However, for systems with an electronic structure that significantly 

deviate from the uniform electron gas, LDA shows a large error. To refine this, 

generalized gradient approximation (GGA) 𝐸xc  considers the gradient of the 

electron density in the functional form [47,48]: 

 

𝐸XC
𝐺GA = ∫ 𝑑𝐫𝜌(𝐫)𝜖XC[𝜌(𝐫), ∇𝜌(𝐫)]. 

(2.16) 

GGA tends to provide more reliable results compared to LDA. However, both GGA 

and LDA functionals show a non-negligible error. For instance, both functionals 

severely underestimate the band gap by 30-40%. This error is originated from the 

fact that the functionals do not consider the electron self-interaction energy and also 

derivative discontinuity at the integer number of electrons. Beyond-DFT methods 

such as GW approximation [49] or hybrid functionals [50] are known to partly 

address this problems. However these functionals take orders of magnitude longer 

time compared to LDA or GGA. Recently, SCAN functional is developed that can 

provide accurate energy orderings and structural properties with much lower 
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computational cost compared to GW other advanced methods [51,52]. However, 

SCAN functional still underestimates the bandgap [53,54]. 
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2.2 Neural network potential 
 

While DFT calculations provides accurate prediction of various properties, this 

demands a substantial computational cost. Recently, machine learning potentials are 

gaining much attention, as they can achieve similar accuracy to the DFT calculations 

but at a much higher speed. In addition, linear scaling of machine learning potentials 

with the number of atoms makes them more advantageous in modeling large systems. 

The first practical machine learning potential developed is Behler-Parinello type 

neural network potential (NNP) [38]. Since then, several types of machine learning 

potentials, such as Gaussian approximation potential (GAP) [40] and moment tensor 

potential (MTP) [55], have been developed. These potentials are successfully 

applied to diverse studies such as modeling amorphous structures [56] and 

describing the phase transition of hydrogen liquids [57].  

Among various machine learning potentials, NNP and GAP are most studied and 

applied to various kinds of simulations. NNP is based on an artificial neural network 

that can describe any functional form when the number of parameters is sufficient in 

principle [58]. Therefore, they are suitable for learning diverse materials systems. 

Neural network potentials require a large amount of reference training set, and the 

training requires a high computational cost. On the other hand, GAP is based on the 

kernel-based model that consists of the linear combination of kernel functions that 

represent each reference point in the training set. Mathematically, this corresponds 

to the artificial neural network with 1 layer, but with a much larger number of nodes. 

The training of kernel-based models is directly performed by matrix algebra, so the 

training cost is marginal. However, the computational load for performing simulation 

with GAP increases with the number of data points in the training set because the 

kernels of every pair of training points should be included in the model. Therefore, 

one needs to reduce the number of reference structures in the training set with 

advanced techniques such as CUR matrix decomposition methods [59]. 

Throughout this study, we use NNP as a machine learning potential to describe the 
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potential energy surface of DFT. In this Chapter, we describe the model, descriptor, 

training techniques for NNP. 
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2.2.1 Model 
 

NNP adopts a feed forward neural network to describe the structure-property relation. 

The schematic illustration of a neural network is shown in Figure 2.1. 

Mathematically, this is formulated as: 

 

𝑥𝑘
𝑖+1 = 𝜎 (∑ 𝑥𝑗

𝑖𝑤𝑗𝑘
𝑖 + 𝑏𝑘

𝑖

𝑁𝑗

𝑗

), 

(2.17) 

where 𝑥𝑗
𝑖 indicates the jth node of the ith layer, and 𝜎 is the activation function 

which gives the non-linearity of the model. The fitting parameters are 𝑤𝑗𝑘
𝑖  and 𝑏𝑘

𝑖  

where the former is the weight parameter connecting the jth node of the ith layer and 

kth node of the i+1th layer, and the latter is a bias added to the ith layer. For activation 

functions, sigmoid function, hyperbolic tangent function, and rectifying linear unit 

(ReLU) functions [60] are usually employed. In this dissertation, we mainly adopt 

the hyperbolic tangent function as the activation function: 

 

𝜎(𝑥) =
e−𝑥 − e𝑥

e−𝑥 + e𝑥
. 

(2.18) 

The activation function is not used for connecting the last hidden layer and the output 

layer. Instead, they are linearly connected. 

When constructing the NNP models, one can simply set the atomic coordinates as 

an input layer and total energy as an output [39]. However, in this case, the length of 

the input layer changes with the number of atoms. Thus this model is only applicable 

to the system that consists of the same number of atoms as the reference structures 

in the training set. To resolve this problem, Behler-Parrinello type NNP (BP-NNP) 

is introduced [38]. The key idea of this model is to decompose the total energy of the 

system (𝐸tot) into the sum of atomic energies (𝐸at) of individual atoms in the system 
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as follows:  

 

𝐸tot = ∑ 𝐸at(𝐆𝑖)

𝑁at

𝑖=1

, 

(2.19) 

where i is the atomic index, 𝑁at is the number of atoms in the system and the 𝐆𝑖 

is the input descriptor that captures the local environment of atom i. 𝐸at of each 

atom is calculated by an artificial neural network. The atoms in the same atomic 

species share the same NNP. The BP-NNP model is schematically illustrated in 

Figure 2.2. 

The atomic forces (𝐅) and stress (𝐒static) can be also obtained by differentiate 

equation (2.19) with atomic coordinates [61]: 

 

𝐹𝑖,𝛼 = −
𝜕𝐸tot

𝜕𝑅𝑖,𝛼
= − ∑ ∑

𝜕𝐸𝑖

𝜕𝐺𝑖,𝑗

𝜕𝐺𝑖,𝑗

𝜕𝑅𝑖,𝛼

𝑀𝑖

𝑗=1

𝑁

𝑖=1

, 

(2.20) 

 

𝑆𝑖,𝛼
𝑠tatic = 𝑆𝑖,𝛼

𝑠tatic,rad + 𝑆𝑖,𝛼
𝑠tatic,ang

, 

(2.21) 

𝑆𝑖,𝛼𝛽
𝑠tatic,rad = ∑ ∑(𝑅𝑖,𝛼

𝑁

𝑗=1

− 𝑅𝑗,𝛼)𝐹𝑗,𝛽

𝑁

𝑖=1

, 

(2.22) 

𝑆𝑖,𝛼𝛽
𝑠tatic,ang

= ∑ ∑(𝑅𝑖,𝛼

𝑁

𝑗=1

− 𝑅𝑗,𝛼)𝐹𝑗,𝛽

𝑁

𝑖=1

+ ∑ ∑ (𝑅𝑖,𝛼

𝑁

𝑚=1

− 𝑅𝑚,𝛼)𝐹𝑚,𝛽

𝑁

𝑖=1

, 

(2.23) 

 

where i is the atomic index, 𝛼  and 𝛽  denotes the xyz index,  𝜎static,rad  and 
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𝜎static,ang  indicate the radial and angular parts of the stress components, 

respectively. The sum of atomic stresses is equal to the total stress of the system. 
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Fig. 2.1: Schematic illustration of artificial neural network. 
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Fig. 2.2: Schematic illustration of neural network potential. 
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2.2.2 Descriptor 

 
As an input layer, NNPs require descriptors that reflect the local structure 

information around each atom. Previous studies suggested several descriptors, such 

as Coulomb matrix [62], bag of bonds (BoB) [63], bispectrum of density [40], 

smooth-overlap of atomic positions (SOAP) [64], and atom-centered symmetry 

function (ACSF) [61]. Good descriptors should satisfy the invariance over 

translation, rotation, and permutation of atoms with the same elements. ACSF and 

SOAP both satisfy such invariance so that they are widely utilized in diverse 

chemical systems. In particular, ACSF is known to be well fitted to NNPs. 

The Behler-Parinello type of ACSF is the most popular choice with the NNPs [61]. 

The generally used symmetry functions are radial symmetry function (𝐺radial), and 

angular symmetry function (𝐺angular) which are written as follows: 

 

𝐺𝑖
radial = ∑ e−𝜂(𝑅𝑖𝑗−𝑅𝑠)

2

𝑗

𝑓c(𝑅𝑖𝑗), 

(2.24) 

 

𝐺𝑖
angular

= 21−𝜁 ∑ (1 + 𝜆𝑐𝑜𝑠𝜃𝑖𝑗𝑘)
𝜁

𝑒−𝜂(𝑅𝑖𝑗
2+𝑅𝑗𝑘

2+𝑅𝑖𝑘
2)

𝑗,𝑘≠𝑖

 

× 𝑓𝑐(𝑅𝑖𝑗)𝑓𝑐(𝑅𝑗𝑘)𝑓𝑐(𝑅𝑖𝑘),  

 (2.25) 

where i,j, and k are the atomic indices, 𝜂, 𝜁, and 𝜆 are the hyperparameters, and 

𝑓c is the cutoff function that is expressed as below: 

 

𝑓c(𝑅𝑖𝑗) = {
0.5 [cos (

𝜋𝑅𝑖𝑗

𝑅c
) + 1] ,   if 𝑅𝑖𝑗 < 𝑅c

0,                                       otherwise

 

(2.26) 
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Here, 𝑅c is the given cutoff radius. The multiple outputs of 𝐺𝑖
radial and 𝐺𝑖

angular
 

are obtained within the given set of hyperparameters and are collected as a vector to 

be used as a descriptor of NNP. 

  For multi-element systems, symmetry functions are separately calculated for each 

element pair. For example, in the case of element A in the A-B system, radial 

symmetry functions of A-A pairs and A-B pairs are calculated. For angular symmetry 

functions, A-A-A, A-A-B, and A-B-B interaction values are included in the training 

set. Note that the number of symmetry vectors increases with the number of elements 

in the system. Therefore, the symmetry function that does not modify the structure 

when changing the number of elements have been developed [65], but the reliability 

of this descriptor in various environment should be tested.  
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2.2.3 Training methods 
 

The training of NNPs is conducted by optimizing the weights and biases. The 

training process is carried out by minimizing the difference between the errors of 

target properties predicted by the model. The minimization target is called the loss 

function (Г), which is generally defined as follows: 

 

Г =  
1

𝑁tr
∑ (

𝐸𝑖
DFT − 𝐸𝑖

NNP

𝑁at,𝑖
)

2𝑁str

𝑖=1

 

+
𝜇

3 ∑ 𝑁at,𝑖
𝑁tr
𝑖=1

∑ ∑|𝐅𝑖
DFT − 𝐅𝑖

NNP|
2

𝑁at,𝑖

𝑗=1

𝑁tr

𝑖=1

 

+
𝛿

6𝑁tr
∑ (

𝑆𝑖
DFT − 𝑆𝑖

NNP

𝑁at,𝑖
)

2𝑁str

𝑖=1

, 

(2.27) 

where 𝐸𝑖
DFT (𝐸𝑖

NNP), 𝐅𝑖
DFT (𝐅𝑖

NNP), 𝑆𝑖
DFT (𝑆𝑖

NNP) are energy, force, and stress of 

ith atom calculated by DFT (NNP), Ntr is the number of structures in the training set, 

Nat,i is the number of atoms in the ith structure, and 𝜇  and 𝛿  are the 

hyperparameters that determine the importance of force and stress in the training 

process, respectively. Generally, the initial weights and biases of NNPs are set 

randomly in a normal distribution small standard deviation. The gradient of the 

weights (∂Г/ ∂𝑤) is updated by the backpropagation method. In a simple gradient 

descent algorithm, each weight is updated by follows: 

 

𝑤 → 𝑤 − 𝛼
∂Г

∂𝑤
, 

(2.28) 

where 𝛼 is the learning rate. 𝛼 is one of the most important hyperparameters in 

training artificial neural network [66]: if the learning rate is too small, the 
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convergence of Г would be very slow, and if the learning rate is too high, Г would 

remain high or even diverge. 

To reduce the computational cost for training NNPs, the batch training method is 

widely used. This method trains over only a few reference data points in each 

iteration instead of using a full training set. The batch is chosen every iteration. 

About the optimizer, advanced techniques such as Adam [67], AdaGrad [68], and L-

BFGS [69] have been suggested in addition to the gradient descent algorithm. 

Throughout this dissertation, we choose Adam optimizer with batch training method 

where the batch size is set to 10-15. 

In training a neural network, a tfraction of data points are used as training (which 

is called training set), and the others are used for validation of the potential (which 

is called validation set). One significant challenge in neural network training is the 

overfitting problem which refers to the situation where the validation loss function 

increases while the loss function of the training set consistently decreases. This often 

happens when the absolute values of weights become too large [66]. One way to 

prevent overfitting is to use the regularization method. This method adds an 

additional term in the loss function that represents the dispersion of the weights. 

Using this, the minimization of loss function prevents the weight distribution 

becomes complex. One popular choice is the L2-regularization which adds the sum 

of the square of the weights in the loss function. 
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2.3 Crystal structure prediction 
 

Crystal structure prediction (CSP) aims to find the global minimum in the 

configuration-energy space. Two methods are typically used, the data-mining of the 

known prototypes [15,16] and heuristic approaches such as random structure 

generation [20,21], genetic algorithm [28], particle swarm optimization  [26,27], 

simulated annealing [23], minima hopping [24], basin hopping [25] and 

metadynamics [22]. While the goal of both methods is the same (finding the ground-

state crystal structure), the advantages and disadvantages of these methods are 

distinct. Data mining methods examine the correlation between composition 

information and structure prototypes. The method is fast because this only requires 

the probability calculations on a machine-learning model following a few DFT 

calculations. However, this method cannot predict the crystal structures with new 

prototypes that do not exist in the chosen database. On the other hand, heuristic 

approaches directly navigate the configuration space by modifying the given 

structures. DFT calculations are utilized for local relaxations and evaluations of the 

free energies. However, this requires a large computation time. Therefore, several 

techniques, such as topological random generation [70] and antiseed scheme, are 

proposed to accelerate navigating the configuration space in heuristic approaches. In 

this Chapter, we review the technical details of the widely used CSP methods, and 

also discuss the key algorithms that have been developed recently. 
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2.3.1 Data-mining approaches 
 

The first data-mining method is suggested by Fischer et al. in ref. [15] A machine 

learning model was trained to represent the correlations between crystal structures 

in different compositions in the experimental database. The authors first define the 

representation of entire crystal systems in the database by vector X, which is defined 

as: 

 

𝑿 = (𝑥𝐸1
, 𝑥𝐸2

, … , 𝑥𝐸𝑛
, 𝑥𝑐1

, 𝑥𝑐2
, … , 𝑥𝑐𝑛

),             (2.29) 

 

where 𝑐𝑖 represents the composition, 𝑥𝑐𝑖
 represents one crystal structure prototype 

of which composition 𝑐𝑖 can have (e.g., if ci is AB2C4, 𝑥𝑐𝑖
 can have values such as 

spinel), and 𝑥𝐸𝑖
 indicates the system’s constituents (e.g., Ei = Ag, Cu, Na, etc). The 

e vector is additionally defined to represent the information on the existing crystal 

structures of the target system. For instance, the Ag-Zr system can be represented as  

 

𝐞 = (𝑥𝐸1
= Ag, 𝑥𝐸2

= Mg, 𝑥Ag = FCC,  𝑥Ag3Mg = ZrCl3 type, 𝑥AgMg =

CsCl type,  𝑥Mg = Mg type).  

(2.30) 

To predict the crystal structure of e in undiscovered composition cu, one needs to 

evaluate P(𝑥𝑐𝑢
|e) for all possible crystal structures in 𝑥𝑐𝑢

 (namely, P(X)). For 

example, in order to predict the crystal structure of AgMg3, one needs to evaluate all 

possible P(𝑥𝑐𝑢
|e), such as P(Cu3P type|e), P(BiF3 type|e), P(IrAl3 type|e), etc, and 

choose the candidate structures with high probability. P(X) can be expanded as 

follows [71]: 

 

P(𝑿) = ∏ P(𝑥𝑖) ∏ 𝑔2(𝑥𝑗, 𝑥𝑘) ∏ 𝑔2(𝑥𝑙 , 𝑥𝑚, 𝑥𝑛)

𝑙<𝑚<𝑛

…

𝑗<𝑘𝑖

, 
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(2.31) 

where g2 and g3 denote the cumulant functions which represent the correlation among 

pairs and triplets of structures, respectively. Generally, this extension is terminated 

for triplets and higher-order, and can be written as: 

 

P(𝑿) =
1

𝑍
∏ P(𝑥𝑖) ∏ 𝑔2(𝑥𝑗, 𝑥𝑘),

𝑗<𝑘𝑖

 

(2.32) 

where Z is the normalization factor. Morita identified the cumulant functions as 

follows [71]: 

  

𝑔2(𝑥𝑗, 𝑥𝑘) =
P(𝑥𝑖 , 𝑥𝑗)

P(𝑥𝑖)P(𝑥𝑗)
. 

(2.33) 

Therefore, the parameters {P(𝑥𝑖, 𝑥𝑗)} and {P(𝑥𝑖)} are essential in calculating 2.27. 

These probabilities are learned from experimental database using Bayesian 

estimation method. 

Hautier et al. devised a similar but different machine learning model for predicting 

crystal structures [16]. This method examines similarities to whether structures 

containing two elements have the same prototype. It provides the probability of 

substitution of one element into other elements when the composition is given. In 

this method, the compound consisting of n different ions are represented as follows: 

 

𝐗 = (𝑋1, 𝑋2, … , 𝑋𝑛),                    (2.34) 

 

where variable Xj are defined in Ω, which denotes the set of existing ion species: 

 

Ω = {Fe2+, Fe3+, La3+, … }.                 (2.35) 
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Then, one needs to know 𝑝𝑛(𝐗, 𝐗′)  which is the probability of how likely ion 

substitution from 𝐗 to 𝐗′. This is expressed as follows:   

 

𝑝𝑛(𝐗, 𝐗′) = 𝑝𝑛(𝑋1, 𝑋2, … , 𝑋𝑛, 𝑋′1, 𝑋′2, … , 𝑋′𝑛).          (2.36) 

 

𝑝𝑛(𝐗, 𝐗′) can be a guide to determine how likely the composition 𝑿′ can have the 

crystal structure of 𝐗. 

  The probability function is multidimensional so that can not be evaluated directly 

and only can be approximated. In the literature, this is defined using binary indicator 

f, which is called a feature function. In this case, f is defined as follows: 

 

𝑓𝑘
𝑎.𝑏(𝐗, 𝐗′) = {

1,       if 𝑋𝑘 = 𝑎 𝑎𝑛𝑑 𝑋′
𝑘 = 𝑏

0,                                       otherwise
 

(2.37) 

where a and b denotes the ion index. Then, 𝑝(𝐗, 𝐗′) can be approximated as follows: 

 

𝑝(𝐗, 𝐗′) ≈
𝑒∑ 𝜆𝑖𝑓𝑖(𝐗,𝐗′)𝑖

𝑍
, 

(2.38) 

where i denotes the possible set of (a,b,k), Z is the partition function, and 𝜆’s are the 

fitting parameters. These values can be determined over crystal information in the 

experimental database. 

Using the above methods, high-throughput searches on missing ternary oxides [72] 

and nitrides [17] were performed. The later findings successfully lead to the 

experimental realization as stated in the same literature. However, this method is 

restricted to finding materials with known structure prototypes and fails to identify 

the global minimum when the prototype information is not known in advance [73]. 
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2.3.2 Heuristic approaches 
 

In this Chapter, we briefly overview the most popular five global optimization 

methods of CSP. 

 

Random structure sampling 

Random structure sampling generates numerous structures randomly and finds the 

lowest energy structures which is famously implemented in AIRSS [20]. To 

effectively generate relevant random structures, distance constraints and symmetry 

constraints are often applied. 

 

Genetic algorithm 

Genetic algorithm is the most popular method for crystal structure prediction, which 

is implemented in several packages such as USPEX [29] and XtalOpt [74]. The 

schematic illustration of the genetic algorithm is shown in Figure 2.3. In this method, 

the structures in the pool compete with each other in terms of energy, and only the 

low-energy structures are survived and are inherited to the next generations. 

Structures of a fixed proportion are generated randomly and the others are generated 

from mutations such as crossover, lattice mutation and permutation. With crossover 

(or heredity) operator, two structures are cut in half and merged to a new structure. 

The spatially reasonable parts of the structures are selected using order-fitness 

correlation [31]. The lattice mutation alters the lattice vectors of a structure, and the 

permutation swaps two atoms of different atomic species. In addition, softmutation 

algorithm is implemented in USPEX which modify the structure along the direction 

of the phonons that are approximately estimated from the simple spring model [29]. 

 

Particle swarm optimization 

Particle swarm optimization (PSO) aims to find the global minimum by iteratively 

improving the candidate solution by sharing information between the particles [30]. 



 

 ３２ 

Here, the particles are defined as the positions in the searching space. In the problem 

of CSP, the individual crystal structures in the pool correspond to the particles. In 

specific, the particles’ positions (𝑥𝑘 ) and velocities (𝑣𝑘 ) in search space are as 

follows: 

 

𝑥𝑖
(𝑘+1)

← 𝑥𝑖
(𝑘)

+ 𝑣𝑖
(𝑘+1)

,                  (2.39) 

 

 

𝑣𝑖
(𝑘+1)

← 𝑣𝑖
(𝑘)

+ r1(𝑝𝑖 − 𝑥𝑖
(𝑘)

) + r2(𝑔 − 𝑥𝑖
(𝑘)

),       (2.40) 

 

where k is the iteration step i is the particle index, pi is the position of the solution 

that ith particle found, and g is the best-known solution. r1 and r2 are the 

hyperparameters that determine the significance of the experiences of particle itself, 

and the particle with the best solution. 

 

Metadynamics 

Metadynamics is the sampling technique that adds the repulsive potential to the 

already sampled region [75]. (The definition of sampled regions is defined by the 

collective variables.) Therefore, the molecular dynamics simulation tends to find 

untrained regions with metadynamics and avoid being trapped in the local minima. 

Thus this method can search wide configuration space. Usually, this method is used 

to sample the reaction pathways of which activation barriers are high so that is 

difficult to be captured by molecular dynamics with finite temperature [76]. In 

ref. [22] the method is used to discover the high-pressure phases of materials using 

the components of lattice vectors as collective variables. In addition, the 

metadynamics method is combined with an evolutionary algorithm to find the crystal 

structures in ambient conditions [77]. However, this method is challenging to be used 

as a general CSP method in defining the general collective variables.  
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Minima hopping 

Minima hopping is the global minimization technique that explores the 

configurational space by avoiding revisiting already visited regions [27]. This 

algorithm is based on two principles. The first one is the built-in feedback 

mechanism which recognizes the previously visited regions and prevents revisiting 

them. The second one is the Bell-Evans-Polanyi principle which states that the free-

energy difference has a linear correlation with the reaction barrier. This is not strictly 

followed in all cases but works in an average manner. The minima hopping algorithm 

finds crystal structure as following steps: First, the algorithm starts from the current 

local minima on the configurational space and tries escape step using a short 

molecular dynamics (MD) simulation in a soft direction. The MD simulations are 

terminated as soon as potential energy maxima have been crossed certain criteria. 

Then, a local geometry relaxation is performed. The algorithm determines whether 

to take the new minimum based on the energy difference. If the energy difference 

does not exceed the given threshold, the same step is repeated. If the new structure 

is accepted, another escape is tried at the new local minima.  
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Fig. 2.3: Schematic illustration of the evolutionary algorithm-based crystal structure 

prediction 
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2.3.3 Local optimization and energy evaluation  
 

In all heuristic methods, structural relaxations are accompanied by global 

optimizations after generating the structure. This corresponds to the optimization of 

the minimum of the near basin in the potential energy surface. This part takes the 

longest time in the whole CSP algorithm because the cost of DFT calculations is high. 

The typically used algorithms are the conjugate-gradient (CG) method, quasi-

Newton algorithm, and damped molecular dynamics. On the other hand, in the case 

of CSP, the structural relaxation mostly starts from the randomly generated structures 

of which chemical orders largely deviate from those of the local minima, 

accompanying large structural change during relaxation. Therefore, this generally 

takes much longer relaxation steps compared to the simple ones which marginally 

changes the local orders. Because the structure relaxations are performed by DFT, 

the total computational cost is significant. To mitigate this problem, Oganov et al. 

suggested a multistage strategy, where relaxation proceeds in 3-5 stages [29]. At the 

initial stage, the accuracy of DFT settings is loosely set, and then the precision of 

DFT calculations increases with proceeding the rest of the stages. For instance, one 

can set the k-point spacing to 0.2 Å –1 at the initial stage, and consistently decrease 

the value so that the final value is 0.08 Å –1. This can reduce the total computation 

time by a few times. 
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2.3.4 Structure similarity   
 

The heuristic CSP approaches generate numerous structures during the algorithm. If 

the identical structures are included in the structure pool, the search efficiency of the 

algorithm can be lowered. To evaluate whether the structures are the same or not, 

similarity metrics should be required. Previous studies suggested several metrics 

such as bond order parameters [78], landscape statics [79–81], disconnectivity 

graph [82], etc. However, these works are not developed to be used in crystal 

structure prediction, but for specific purposes such as analyzing kinetics and physical 

properties of clusters and disordered structures. Thus, it is unclear that these 

descriptors can judge the similarity of the structures with various local orders 

generated during the structure search. In this section, we introduce two widely used 

metrics: fingerprint function and bond characterization matrix. 

  The fingerprint function is suggested by Oganov et al. [83] and implemented in 

the USPEX code [29]. The fingerprint matrix (F) is a 𝑁 × 𝑁 matrix where 𝑁 is 

the number of atoms. The component of F for atomic type pairs AB (FAB) is defined 

as follows:  

 

𝐹AB(𝑅) = ∑ ∑
𝛿(𝑅 − 𝑅𝑖𝑗)

4𝜋𝑅𝑖𝑗
2 𝑁A𝑁B

𝑉
∆B𝑗A𝑖,cell

− 1 = 𝑔AB(𝑅) − 1, 

(2.41) 

where i is the atomic index of type A, and j is the index of B atoms within the cutoff 

distance. 𝛿 is the delta-function, Rij is the distance between ith and jth atoms, NA 

(NB) is the number of atom A (B) in the unit cell, and ∆ is the width of the bins for 

FAB. gAB is the partial radial function between atomic species A and B. The final 

fingerprint of structure is defined as the concatenate of weighted elements of F. The 

weight for the AB components of F is defined as: 
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𝑤AB = √
𝑁A𝑁B

∑ 𝑁A𝑁Bcell
. 

 (2.42) 

The cosine distance are used to measure the distance between structure I and J: 

 

𝐷cosine =
1

2
(1 −

∑ ∑ 𝐹𝐼,AB(𝑘)𝐹𝐽,AB(𝑘)𝑤AB
2

𝑘𝐴𝐵

|𝐹𝐼,AB(𝑘)𝑤AB| · |𝐹𝐼,AB(𝑘)𝑤AB|
). 

 (2.43) 

The bond characterization matrix is developed by Wang et al. and implemented in 

the CALYPSO code [30]. This metric is a modification of the bond-orientational 

order metrics (Ql) suggested by Seinhardt et al. [78], where the spherical harmonic 

and exponential functions are employed to identify the bond angles and lengths, 

respectively. Specifically, it is defined as: 

 

𝑄𝑙𝑚

𝛿𝐴𝐵
=

1

𝑁𝛿𝛼𝛽

∑ e−𝛼(𝑟𝑖𝑗−𝑏𝐴𝐵)

𝑖∈𝐴,𝑗∈𝐵 

𝑌𝑙𝑚(𝜃𝑖𝑗, 𝜙𝑖𝑗), 

 (2.44) 

where A and B are the indices for atomic types, i and j are indices for individual 

atoms, 𝛿𝛼𝛽 , and 𝑁𝛿𝛼𝛽
 indicate bond type and the number of bond types, 

respectively, 𝑟𝑖𝑗 is the interatomic distance of atom i and j, and Y is the spherical 

harmonics. To make the metric rotationally invariant, the modified metric is defined 

as follows: 

 

𝑄𝑙
𝛿𝐴𝐵 = √

4𝜋

2𝑙 + 1
∑ |𝑄𝑙𝑚

𝛿𝐴𝐵
|
2

𝑙

𝑚=−𝑙

, 

 (2.45) 

where l values of 0, 2, 4, 6, 8, 10 were used as a type of bonds in the reference. 
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Finally, the similarity distance between structure u and v (Duv) is defined as follows: 

 

𝐷𝑢𝑣 = √
1

𝑁type
∑ ∑ (𝑄𝑙

𝛿𝐴𝐵,𝑢 − 𝑄𝑙

𝛿𝐴𝐵,𝑣)
2

𝑙𝛿𝐴𝐵

. 

 (2.46) 

where Ntype denotes the number of bond types. 
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2.3.5 Advanced techniques on genetic algorithm   
 

As mentioned above, global optimization takes significant computation time due to 

the large cost of DFT. Therefore, several techniques have been developed to reduce 

the number of generations for finding the global minimum. Some important 

additional techniques used with the genetic algorithm are introduced in this 

subsection. 

 

Symmetry-based random structure generation 

Most of CSP programs employ the symmetry-based random structure generation 

algorithm [20,29,30,84]. The algorithm first randomly selects the space group and 

then selects the lattice vectors in accordance with the chosen space group. Then, 

Wyckoff sites are randomly selected to put atoms in the cell. Then, the structure is 

checked whether it satisfies the distance constraints. If the structure does not satisfy 

the constraints, it selects other Wyckoff sites. If this iteration exceeds the given 

number, then the space group is selected again and repeated the process until the 

structure satisfies the constraints. As a result, the symmetric structure having a 

randomly chosen space group is generated. This method is proven to be more 

effective for CSP than just a simple random structure generation method only using 

distance constraints [20]. 

 

Topology-based random structure generation 

To further improve the efficiency of CSP, Bushlanov et al. developed the other 

random structure generation method from the given topology [70]. The topology is 

defined by the connectivity of the atoms in the material. In this method, one topology 

is selected from the ToposPro database [85], and then the structure having this 

topology is generated. In principle, an infinite number of structures can be generated 

from one topology. This method is tested to be more efficient in finding the low-

energy structures [70]. However, we note that this method is not completely ab initio, 
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because this uses the structure information of materials in the database. 

 

Increasing the diversity 

To search the wide configurational space of materials in a short generation, it is 

important to maximize the diversity of the structure pool during the evolution. In this 

sense, it would be lower the efficiency of the algorithm if the already-sampled 

structures survive too long generations. To discourage the already sampled structures 

from surviving to the next generation, the penalty is added to the survived structures 

which relate to the similarities of the structure compared to the other previously 

sampled structures. This potential is name antiseed (A) [31] which is defined as: 

 

𝐴 = ∑ 𝑊𝑎exp (−
𝐷𝑖𝑎

2

2𝜎𝑎
2)

𝑎

, 

 (2.47) 

where a indicates the index for structures that are obtained in the previous 

generations, Dia is the structural distance (see Chapter 2.3.4) between ith and ath 

structure, and parameter σa and Wa is set to proportional to the fitness variance. This 

antiseed weight is updated every generation. On the other hand, the parameter setting 

can be very sensitive, so multiple trials over the various set of parameters may be 

needed. 

 

Multi-objective optimization 

The general purpose of CSP is to find the ground-state structures. On the other hand, 

metastable structures such as diamonds can also have good target properties. To find 

these materials, multi-objective optimization techniques are employed in 

evolutionary CSP [86]. In this method, two fitness’s are optimized at the same time. 

The survival of the structure is not determined by energy alone, but structures at the 

Pareto front of two fitness’s (such as energy and band gap) all survive into the next 
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generation. 

 

Variable-composition method 

Most structure searches aim to find the global minimum in the fixed composition. 

However, the optimal composition is not known in advance in most cases. The 

variable-composition method is developed to search the various compositions at the 

same time [33]. This algorithm starts with the initial random structures with various 

compositions and does not fix the composition during the structure generation by 

crossover. The fitness corresponds to the hull energy (energy above the convex hull). 

This can be especially effective for metals and high-pressure phases [33] where 

various compositions are allowed [87]. However, this may not be favorable for 

searching semiconducting materials at ambient conditions because the oxidation 

number is very sensitive to the stability of the phase in this case. 
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Chapter 3 

 

 

CSP with machine learning potentials 

 

 

3.1 Training machine learning potentials  
 

When developing machine learning potentials (MLPs), constructing reference 

structures for the training set plays the most important role, because MLPs only 

describe potential energy surfaces from the configurations included in the training 

set. Therefore, the configurations that may appear during a target simulation must be 

sampled in advance. This poses a distinct challenge when training MLP for crystal 

structure prediction (CSP), where the target material is unknown before making 

predictions. To address this issue, previous researches suggested methods to sample 

training set by random sampling or evolutionary search in an on-the-fly manner [41–

43]. These methods were tested on unary materials such as boron clusters, boron 

bulk allotropes, high-pressure sodium, and carbon allotropes. However, these 

methods require ~1000 DFT relaxations which may be inefficient for complex 

ternary or higher (multinary, henceforth) compounds. In addition, the errors of the 

MLPs are larger than 40 meV/atom, which were not accurate enough to identify fine 

energy differences among metastable structures near the global minimum. 

Here, we propose a method to construct MLP as a surrogate model of DFT. Our 

main idea is to use DFT molecular dynamics trajectories of disordered structures 
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(amorphous and liquid) as a training set to construct MLPs. DFT melt-quench-

annealing simulations can be started from scratch, eliminating the need for prior 

knowledge of chemical information of the target materials. In addition, these 

trajectories include diverse local orders that may appear during the CSP procedure. 

Note that this idea was first suggested by Deringer et al. [88]. However, the previous 

study has tested this idea only on carbon systems that are expected to have the 

simpler potential energy surface than complex multinary compounds. Therefore, the 

question remains whether MLPs trained by this method can correctly reproduce 

potential energy surfaces of more complicated systems.  

In this Chapter, we aim to develop the method to train MLPs for multinary systems 

using disordered structures. We use Behler-Parinello type neural network potentials 

(NNPs) [38] but the present method can be also used with other types of MLPs, such 

as Gaussian approximation potentials [40] and moment tensor potentials [55]. The 

method is tested on four multinary materials, Mg2SiO4, LiAlCl4, Ba2AgSi3, and 

InTe2O5F, of which crystal information is presented in the ICSD database [8]. To 

test the quality of NNPs, we compare DFT and NNP energies for experimental and 

metastable structures that appear during DFT-based CSP algorithms. Impressively, 

NNP consistently rank the energies of experimental structures lower than those of 

metastable structures in all cases. Using the developed NNPs, we also conduct CSP 

using evolutionary algorithm program. This identifies the experimental structure of 

LiAlCl4. On the other hand, the method fails to find the ground states for other 

materials, but only finds metastable structures within an energy range of 10-41 

meV/atom compared to the ground states.  
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3.1.1 Melt-quench-annealing simulation  
 

We perform a molecular dynamics (MD) simulation of a melt-quench-annealing 

procedure using DFT calculations for each material to generate a training set for an 

NNP. All DFT calculations in the present work are performed by using Vienna Ab-

initio Simulation Package (VASP) code [89]. We adopt the Perdew-Burke-

Ernzerhof (PBE) version of generalized gradient approximation for exchange-

correlation functional [90]. The Γ-point is used for k-point sampling for all materials, 

and cutoff energies of Mg2SiO4, LiAlCl4, Ba2AgSi3, and InTe2O5F are set to 450, 

300, 250, 500 eV, respectively. These settings are chosen by convergence tests on 

the superheated structures with energy, maximum atomic force, and pressure limits 

are set to 20 meV/atom, 0.3 eV/Å , and 10 kbar, respectively. The time step for MD 

simulations is set to 2 fs. 

First, we perform a superheating simulation of 5 ps at 4000 K for a randomly 

generated structure of ~100 atoms with the same stoichiometry as each target 

compound. We determine the ad hoc melting temperature (Tm) as the lowest 

temperature at which the mean square displacements of all atomic types are linear 

with time. Tm of Mg2SiO4, LiAlCl4, Ba2AgSi3, and InTe2O5F are determined to be 

3500, 1500, 1500, and 2000 K, respectively. Then the volume of the cell is 

determined so that the external pressure is zero at Tm. The trajectory of the liquid 

structure is generated by the MD simulation for 20 ps at Tm, and the structure is 

quenched at a rate of 100 K/ps to 300 K. We also perform the annealing simulation 

at 500 K for 15 ps to further sample low-energy amorphous structures. The reference 

structures for training set are selected every 10 steps. 
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3.1.2 Training NNP  
 

To train NNP, we use SIMPLE-NN code [91]. We employ a Behler-Parinello type 

NNP which provides the DFT energy as the sum of the atomic energies predicted by 

artificial neural networks [38]. We use 132-30-30-1 (212-30-30-1) architectures of 

NNP for ternary (quaternary) compounds with atom-centered symmetry 

functions [61] as input layers. The cutoff distance of the symmetry functions is set 

to 6 Å . The symmetry function vectors are transformed by principal component 

analysis and then whitened in order to avoid using highly correlated symmetry 

functions. In addition, all the components of symmetry functions are normalized [92]. 

The loss function of the training is set to the sum of energy, force, and stress errors 

and the L2 regularization term. One-tenth of the reference data is randomly chosen 

and used as validation structures. The training is conducted with ADAM 

optimization method [67] with a batch size of 10-15, until the root mean square 

errors (RMSEs) of the validation set become smaller than 10 meV/atom, 0.2 eV/Å  

(except for InTe2O5F: 0.4 eV/Å ), and 10 kbar for the energies, forces, and stresses, 

respectively. We also check that the overfitting does not exist during the training. 

The LAMMPS package is employed for NNP calculations [93]. 
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3.1.3 Evaluation of the quality of NNP  
 

To test the quality of NNP, we choose three ternary and one quaternary 

compounds from the ICSD, Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F (see Figure 

3.1). These materials contains diverse structural orders: Ba2AgSi3 has a layered 

structure formed by Si2Ag, with Ba atoms intercalated between them, Mg2SiO4 

consists of Mg-O octahedron and Si-O tetrahedron and contains both edge- and 

corner-sharing of them, LiAlCl4 consists of Li-Cl and Al-Cl tetrahedrons where they 

are all connected by corner-sharing, and InTe2O5F is a multi-anion compound with 

corner-shared In-O-F and Te-O polyhedrons. In addition, their space groups are 

different from each other (Fddd, Pnma, Pmn21, and C2221, for Ba2AgSi3, Mg2SiO4, 

LiAlCl4, and InTe2O5F, respectively). We emphasize that the materials with low 

symmetries, not simple compounds with high symmetries (e.g., SrTiO3), are chosen 

to stress-test our method. In addition, these materials have distinct physical 

properties and are therefore being applied to the various applications: Ba2AgSi3 is a 

member of Ba-Ag-Si system which has been investigated for potential high-Tc 

superconductors [94]. Mg2SiO4 have a high fracture toughness so that it is 

considered as a material for bioceramic implants [95]. The ICSD database also 

includes three other metastable phases of Mg2SiO4. LiAlCl4 is a Li superionic 

conductor under aliovalent doping [96]. Two similar-energy structures of LiAlCl4 

exist in the ICSD (P21/c and Pmn21), and we find that Pmn21 is slightly more stable 

from DFT calculations within PBE level. Finally, InTe2O5F has been studied as a 

potential nonlinear optical material due to the noncentrosymmetric structure [97]. 

The theoretical bandgaps calculated within the HSE06 functional [50] are 0.25, 6.70, 

7.17, and 4.71 eV for Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F, respectively.  

To investigate the accuracy of the developed NNPs as an energy evaluator in CSP, 

we compare NNP and DFT energies of metastable structures. Here, the metastable 

structures are generated by the CSP algorithm using evolutionary algorithm and DFT 
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calculations, implemented in the Universal Structure Predictor: Evolutionary 

Xtallography (USPEX) package [29]. The formula unit (Z) of each ground-state 

experimental structure is used for each materials. The population size is set to about 

twice the number of atoms in the unit cell, which corresponds to 20-60. We use 

random seeding, and mutation operators to generate structures. For the former, we 

use either symmetry-based random structure generation [31] or topological structure 

generation methods [70]. For mutation operators, we use crossover (also called 

heredity), permutation, lattice mutation and soft mutation. The initial ratio of 

operators are set to 16.6%, 16.6%, 41.6%, 8.3%, 8.3%, and 8.3% for symmetry-

based random structure generator, topological structure generator, crossover, 

permutation, lattice mutation and soft mutation, respectively. The proportions of 

these operators are set automatically in every generations to diversify the structures 

in the pool. All structures in the pool are relaxed until atomic forces and total stress 

is less than 0.1 eV/Å  and 20 kbar, respectively, or the number of relaxation steps 

becomes 400. Note that we used multistage relaxation method described in Chapter 

2.3.3. The weighted partial radial distribution functions (pRDF)  [83] are used as 

structure similarity metric of the structures. We use antiseed option, which add 

repulsive Gaussian energies for sampled structures that prevents the global 

optimization trapping into the local minima [31]. 

We gather all structures that emerged during the whole evolutionary searches (10-

20 generations) and use them in the benchmark test of NNP. On average, 274 

metastable structures are sampled. The energies relative to that of the stable phase 

(ΔEtot) are less than 500 meV/atom for all materials. The lowest ΔEtot’s are 46.5, 28.2, 

1.9, and 33.2 meV/atom for Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F, 

respectively, which means that the evolutionary algorithm did not find the reference 

structures. 

NNP energies are evaluated within the fixed geometries obtained from DFT 

relaxations. Figure 3.2 shows the correlation between ΔEtot’s evaluated by DFT 
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(Δ𝐸tot
DFT) and those obtained by NNP (Δ𝐸tot

NNP). It is noticeable that NNP and DFT 

energies are highly correlated especially in the low-energy regions (Δ𝐸tot
DFT < 200 

meV/atom). The Pearson coefficients in this region are 0.769, 0.864, 0.977, and 

0.962 for Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F, respectively. This is 

impressive considering the fact that the NNPs were only trained over disordered 

structures and none of the metastable crystal structures used for the tests were not 

included. This means that the melt-quench-annealing trajectories sample diverse 

structural motifs contained in low-energy metastable structures. In addition, each 

NNP consistently ranks the most stable experimental structure to be the most stable 

among all structures appeared in Figure 3.2. We also observe the same ordering when 

the structures are fully relaxed using NNP. This indicates that NNP can act as a 

suitable surrogate model of DFT in the CSP algorithms. 

In Figure 3.2, RMSEs of Δ𝐸tot
NNP’s with respect to Δ𝐸tot

DFT’s are 27.4, 29.6, 10.7, 

and 63.7 meV/atom for Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F, respectively, in 

the low-energy region (Δ𝐸tot
DFT < 200 meV/atom). These errors are larger than the 

training errors because local motifs in disordered structures may not exactly equal 

with those in the crystalline phases. Nevertheless, the trained NNPs can still serve as 

a surrogate model in CSP because final candidates in certain energy window are re-

evaluated by DFT calculations at the final stage of CSP (discussed in section 3.2.4). 

It can be seen in Figure 3.2 that the NNP errors in high-energy region (Δ𝐸tot
DFT > 

200 meV/atom) are larger than those of lower-energy structures. This might be 

attributed from the fact that the structural motifs in high-energy structures were not 

sufficiently sampled in disordered structures: the disordered structures are generated 

entropy-driven, so the high-energy phases have low chances to be sampled. It is also 

noticeable that the systematic upward deviation exists in Figure 3.2 rather than the 

downward deviation. This is because the structures are first relaxed by DFT, and 

then evaluated by NNP. Therefore, there exist slight deviations from the equilibrium 

positions of NNP. We also observed the opposite trends when DFT energies are 
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evaluated by NNP-relaxed structures. 

  To further verify whether the training set encompass the configurational space of 

metastable structures, we plot distributions of symmetry function (G) vectors of the 

training set and those of metastable structures of Ba2AgSi3. In Figure 3.3, the G 

vectors are aligned by PCA, and the distribution over principal axis is shown. It can 

be seen that most G points from metastable crystal structures and experimental 

structures lie within those from the training set. Other materials also show similar 

trends to that of Ba2AgSi3. The only exception is Al in LiAlCl4, where the G 

components of Al atoms from high-energy metastable structures largely deviate from 

the training structures. However, the G components of low-energy structures well 

fitted in the training set. Therefore, it is explicitly verified that the local orders of 

metastable structures generated by the evolutionary algorithm and the experimental 

structures are well included in the configuration space of the training set. 

Even though the training set contains overall local motifs similar to the target 

structures, the exact local motifs in the low-energy metastable structures may not be 

included in the liquid and amorphous structures. This can be seen in Figure 3.2a that 

the large error (~100 meV/atom) occurs near the ground-state structure of Ba2AgSi3. 

This is because any hexagonal Si4Ag2 in the experimental structures does not exist 

in the training set. This might be attributed from the high quenching speed and small 

simulation cell. This problem can be resolved by using an iterative training scheme 

that adds metastable structures to the training set and refines NNPs (see section 3.2.1). 
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Fig. 3.1: The crystal structures of (a) Ba2AgSi3, (b) Mg2SiO4, (c) LiAlCl4, and (d) 

InTe2O5F. 
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Fig. 3.2: Correlation between DFT and NNP energies. For both Δ𝐸tot
NNP and Δ𝐸tot

DFT, 

the reference energy is the DFT energy of the experimental phase. Experimental 

structures are plotted as red squares. (a) Ba2AgSi3, (b) Mg2SiO4, (c) LiAlCl4, and (d) 

InTe2O5F 
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Fig. 3.3: The distribution of G of Ba2AgSi3 projected onto the first two principal-

component axes (PC1 and PC2). The distribution of (a) Ba (b) Ag, and (c) Si atoms.  
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3.1.4 Structure searching with NNP  
 

In the last Chapter, we confirm that NNPs trained over disordered structures can 

be a hi-fidelity surrogate model for CSP. Therefore, we perform CSP with 

constructed NNPs for the four test materials. We interface USPEX [29] with 

LAMMPS [93] code for the implementation of NNPs in structural relaxations and 

energy evaluations. The computational parameters for USPEX are set the same as 

those in Chapter 3.1.3, except this time we set the number of generations to 120. This 

is longer than 10-20 generations that were available within DFT-USPEX but the 

computational time is much shorter due to the much faster speed of NNP. At the end 

of the 120 generations, we to relax 10-20 lowest-energy candidate structures with 

DFT utilizing AMP2 code [98]. The relaxation is performed until all the atomic 

forces and the stress components are less than 0.02 eV/Å and 4 kbar. 

Despite the longer generations compared to the conventional settings in previous 

studies (mostly for unary or binary materials) [31,99,100], USPEX fails to identify 

the most stable experimental structures except for LiAlCl4. This may represents the 

complicated configuration spaces of multinary compounds. The structures with the 

lowest ΔEtot values are shown in Figure 3.4 and the corresponding energies are 41.2, 

27.7, 0, and 11.5 meV/atom for Ba2AgSi3, Mg2SiO4, LiAlCl4, and InTe2O5F, 

respectively. While the structures of three candidate structures are similar to the 

ground states, there are local orders are distinct from them: final candidate of 

Ba2AgSi3 (Figure 3.4a) consists of only Si-Ag rings but does not contains exact 

Si4Ag2 and Si6 rings in the experimental structure (Figure 3.1a). Mg2SiO4 found by 

USPEX with NNP (Figure 3.2a) only has tetrahedral Mg and Si atoms while they 

are corner-sharing with each other by O atoms. However, this is largely deviate from 

the most stable experimental structure of Mg2SiO4 which contains octahedral Mg 

atoms with mixed corner- and edge-sharing O atoms. Nevertheless, the NNP energy 

of this structure is close to the experimental structure, which implies that the ground-

state structure can be found in longer generations. In the case of InTe2O5F, the 
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experimental and the predicted structures have similar structural motifs with 

threefold Te and twofold O. However, the major differences are observed for local 

orders around In: the In atoms in the experimental structure (Figure 3.1d) are corner-

shared with other In atoms by F atoms, resulting in twofold F atoms. However, the 

predicted structure (Figure 3.4d) contains edge-sharing singly coordinated F. Even 

so, the ΔEtot of InTe2O5F is only 11.5 meV/atom, which implies that it has a rugged 

energy landscape where the structural similarity is weakly correlated with the energy 

differences. 

So far, we set Z as those of the most stable experimental structures. However, this 

information is not known when searching unknown materials for the practical 

purpose. Therefore, one has to try various Z values to find the correct ground state. 

In this sense, NNP is expected to be much more advantageous than DFT in searching 

with various Z due to the order-N scaling. (DFT scales with order-N3.) 

About the computational cost, the main load originates from constructing the 

training set by melt-quench-annealing simulation by DFT calculations. It took about 

a couple day to generate training set and a half day for training NNPs using 4-CPU 

(8-CPU) clusters for ternary (quaternary) materials. The Intel Xeon Phi 7250, 1.4 

GHz (68 cores per CPU) is used in this study. CPU times for structural relaxations 

in CSP were 2,072 (69,594) and 11,532 (244,646) s/CPU for LiAlCl4 and InTe2O5F, 

respectively. It took 1 day for NNP to finish 120 generations of USPEX calculations 

and 3-4 days for DFT to finish 10-20 generations. 

As mentioned above, CSP of complicated multinary compounds may require 

generations much longer than 100. In principle, NNP can reach this generation 

because the calculation speed of the structural relaxation and the energy evaluation 

using NNP is ~1000 times faster than DFT. However, the speed of USPEX using 

NNP for 120 generations is only 30 times faster than USPEX using DFT. This means 

that the fast speed of NNP is not fully reflected in the CSP algorithm with USPEX. 

We speculate this by three reasons: First, the structure generations and pRDF 
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calculations of generated structures are done sequentially. The whole process takes 

about few minutes. The longest part is the random structure generation using 

topology information [70]. This load is not taken seriously when using DFT-based 

CSP because this is marginal compared to the calculation time of DFT calculations. 

However, when using NNP, the structural relaxation takes only about few minutes, 

so the structure generations take similar time to the structural relaxations. This load 

would be much more reduced if it is done parallel. The second reason is that the 

parallelization of the structure relaxations in USPEX is done by submitting multiple 

queue jobs. When using NNP, the computation time for one job of structural 

relaxation mostly takes less than a minute (the longest job can take few minutes), so 

this puts excessive loads on the main CPU for uploading and unloading multiple jobs 

in a short time. This often results in the systematic time delays and weakens the 

stability of the cluster server. Third, we find that the rest of the post-processing time 

increases linearly with the number of generations. We cannot find the exact reason 

for this because the main code of USPEX is not open in public. We speculate that it 

is attributed to the comparison of pRDFs of new 4structures with all the previous 

structures for eliminating duplicate structures and calculating antiseed weights.  
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Fig. 3.4: The most stable structures of (a) Ba2AgSi3, (b) Mg2SiO4, (c) LiAlCl4, and 

(d) InTe2O5F found by NNP-USPEX.  
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3.2 Developing and optimizing CSP algorithm 

 

In this Chapter, we develop the NNP-based CSP algorithm that can address the 

problems mentioned in Chapter 3.1.4. First, we optimize the training procedure of 

NNPs to further increase the accuracy of NNP and reduce the computational cost of 

constructing training set. Then, we optimize the global optimization algorithm to 

fully harnessing the speed of NNP. Finally, we demonstrate the parallelization 

scheme that are used in this study. We note that modifying other CSP code is not an 

option because the most of popular CSP codes such as USPEX [29] and 

CALYPSO [30] are not open in public. 
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3.2.1 Optimization of training procedure  
 

As mentioned in Chapter 3.1.4, the computational cost to generate the training set 

takes the most significant amount of time during the whole process. To reduce the 

time cost, we reduce the number of atoms in the unit cell from 100 to 80 in MD 

simulations. This reduces the computational costs in half. In addition, we reduce the 

melting time from 20 ps to 16 ps, increase quenching speed from 100 K/ps to 200 

K/ps, and reduce annealing time from 15 ps to 5 ps to further save the computational 

cost. The computational time for training of NNPs and structural relaxations with 

NNPs can be further reduced by changing the cutoff radius of the G vectors. We 

reduce the cutoff radius of the angular parts of G vectors from 6 to 4.5. This reduces 

the training time and structure relaxation time by about half. Note that the mentioned 

changes may sacrifice the accuracy of the NNP. Nevertheless, we demonstrate that 

the quality of NNPs are good enough in most cases for CSP which will be discussed 

in the section 3.3. 

The above-mentioned settings are used for the calculations in Chapter 3.2. On the 

other hand, we confirm that the further increase in computational speed is possible 

by further loosening the settings with the additional tests. We reduce the number of 

atoms in the unitcell to ~64. In addition, melting time is set to 10 ps, and quenching 

is done only for 1500 K (e.g., 2500 K → 1000 K). We use this setting for the 

calculations for applications of CSP in Chapter 4. 

As mentioned in Chapter 3.1.3, the large deviation of NNP energies from DFT 

energies (~100 meV/atom) is found near the ground-state structure of Ba2AgSi3 in 

Figure 3.2a. This is because the Si and Si-Ag hexagonal rings are not exactly 

included in the training set. The metastable structures sampled from the NNP-based 

CSP can be utilized as an additional training set to update NNPs. To test this idea, 

we add 22 lowest-energy candidate structures of Ba2AgSi3 to the training set and 

construct the new NNP. In specific, we included the DFT relaxation trajectories of 

candidate materials and their distorted geometries due to the elastic deformation in 
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the training set. Figure 3.5 shows the correlation of DFT and NNP energies using the 

trained potential. (We use the same test structures that were employed to generate 

Figure 3.2a.) Compared to Figure 3.2a, much more accurate correlations between 

NNP and DFT energies are obtained, which is a result of configurations including 

Si-Ag rings to the training set. In specific, the Pearson coefficient in the low-energy 

region (Δ𝐸tot
NNP) increases from 0.769 to 0.828 after refining the potential. This 

significant improvement in NNP can boost identifying the global minimum in CSP.  

This advancement in Ba2AgSi3 can occur generally in other materials as well 

because the exact local orders in the training set do not exactly match the local orders 

in the training set. We construct a systematic approach to iteratively refine a training 

set which is presented in Figure 3.6. With the constructed NNP from melt-quench-

trajectories, we proceed 50 generations of genetic algorithm and collect 10 structures. 

5 lowest-energy structures and 5 structures with the lowest antiseed weights are 

sampled within 100 meV/atom. The antiseed weight represents the degree of 

distinction of a given structure from the other structures in the pool. Here, the 

antiseed weight of ith structure is defined as follows: 

 

𝐴𝑖 = ∑ exp (−
𝑑𝑖𝑎

2

2𝜎2
)

𝑎

, 

(3.1) 

where the summation runs over structures in the low-energy pool (bottom 200 

meV/atom), dia is the similarity distance between the ath and ith structures measured 

by pRDF, and σ is a Gaussian width. Unlike the original scheme [31], we did not 

consider all the structures that emerged in the previous generations but only include 

the structures in the low-energy pool in the current generation. The relaxation 

trajectories of the collected structures are included in the training set to refine NNP. 

The structure relaxation is performed until the maximum atomic forces in the cell 

and the stress components are less than 0.1 eV Å −1 and 20 kbar, respectively. We 
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find that the initial cell structure sometimes changes significantly during the 

relaxation due to the imperfect accuracy of NNPs. Therefore, the k-point spacing is 

monitored every 10 relaxation steps and adapted if the spacing becomes different 

from the original k-point spacing. Then, we proceed CSP and refine NNPs in the 

same way at 100, 200, and 400 generations, but remove structures already sampled 

from the previous generations. During evolutionary algorithm, we use symmetric 

random generation [31], crossover algorithm, permutation and lattice mutation as 

structure generators. 

We find that this iterative scheme is effective in training high-accuracy NNPs in 

many cases (further discussed in the Chapter 3.3). In particular, the crossover 

algorithm is found effective in sampling diverse structural motifs that may be absent 

in the original training set. One intriguing example is the refinement of the NNP of 

BKS2. The experimental structure of BKS2 is shown in Figure 3.7a: it has a B-S 

hexagonal ring structure connected with K atoms. Before perform iterative training, 

the ground state structure is not predicted as the lowest-energy structure as shown in 

Figure 3.8a. On the other hand, the crossover algorithm samples the metastable 

structure in Figure 3.7b, which contains a ring structure of B-S. After training this 

configuration, the correlation of NNP energies and DFT energies of metastable 

structures and the experimental structure is significantly improved (Figure 3.8). 
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Fig. 3.5: Energy correlation between DFT and refined NNP for Ba2AgSi3 with 

structures in Fig. 3.2a after collecting the training set with structures from USPEX-

NNP.  
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Fig. 3.6: Iterative training scheme of NNP.  
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Fig. 3.7: (a) The experimental structure of BKS2. (b) The sampling of the six-fold 

ring by crossover algorithm.  
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Fig. 3.8: Energy correlation of (a) before and (b) after refining NNP.  
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3.2.2 Optimization of global optimization  
 

As discussed in Chapter 3.1.4, the previous CSP codes are only optimized for DFT-

based CSP methods that need to find ground states in short generations due to the 

large computation time of DFT calculations. Therefore, this takes large efforts in 

pre-processing and post-processing in order to effectively explore the 

configurational space. On the other hand, we failed to find the global minimum of 

Mg2SiO4, Ba2AgSi3, InTe2O5F with USPEX [29] using NNP. This implies that the 

current CSP codes are not well optimized for searching the complicated multinary 

compounds with NNPs which is expected to take large generations. Here, we 

develop an efficient CSP algorithm that can fully harness the speed and accuracy of 

NNPs. 

We first develop the evolutionary algorithm similar to the conventional 

methods [28] as shown in Figure 2.3. In every generation, the fraction of structures 

in the pool are newly generated by random structure generation, and the others are 

inherited from the low-energy structures (200 meV/atom for refining stages and 100 

meV/atom for main CSPs) in the previous generations by crossover, permutation and 

lattice mutation. The structures within 100 meV/atom (50 meV/atom) energy 

window further survives from the last generation during refining (main CSP) stage. 

For random structure generation, we use symmetry-based structure generation 

method implemented in RandSpg code [84], which is similar to the random structure 

generation methods in other CSP codes such as USPEX [29] and CALYPSO [30]. 

This method creates random structures by randomly selecting space groups, lattice 

vectors, and Wyckoff positions. In the case of the crossover algorithm, we use atomic 

energies to rationally select slabs of inheriting structures and translation vectors 

when emerging structures. We use similar permutation and lattice mutation 

algorithms that are implemented in the DFT-based CSP code [29].  

The crossover algorithm tends to sample diverse local motifs, which is useful in 

training hi-fidelity NNPs (also discussed in Chapter 3.1.4). On the other hand, we 
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find that the crossover algorithm is not effective in finding the global minimum 

because it consistently generates low-energy structures especially for large unit cell. 

This does not effectively navigate a rugged energy landscape in multinary 

compounds as the case of InTe2O5F discussed in Chapter 3.1.3. (The effect of 

structure generation operators for finding global minimum is further discussed in 

Chapter 3.3.1.) Therefore, when refining NNPs, the ratios of random generation, 

crossover, permutations, and lattice mutations are set to 30%, 50%, 10%, and 10%, 

respectively, while during the final CSP to the find global minimum, we eliminate 

crossover and the ratios are changed to 70%, 20%, and 10% for random structure 

generation, permutations, and lattice mutations. 

Figure 3.9 shows the parallelization scheme of our algorithm. To reduce the pre-

process and post-process times, we perform structure generation, structure relaxation, 

and pRDF calculation in parallel. In addition, the pRDFs are compared only among 

the low-energy structures not among all structures that emerged during the previous 

generations. The main code is written in Python. The parallelization is carried out 

using mpi4py module. Structure generation and relaxation is performed by RandSpg 

code [84] and LAMMPS code [93], respectively. Both of codes are written in C++, 

so we bind these code to the main Python code using pybind11 module. The speeds 

of the algorithms are close to the original versions of C++ code, which is much faster 

than Python-based codes. Therefore, the total pre-process and post-process times 

only take few seconds. 

Unlike DFT calculations, NNP calculations always run the risk of falling into 

untrained domain during structural relaxation. To minimize this risk, we use 

constraints for atomic pairs during the generation of random structures. This highly 

prevents the generation of unphysical structures as initial structures that largely 

deviate the training set. The distance constraints are determined for each atomic pair 

as the minimum distance of the atomic pair that appear in the melt-quench-annealing 

trajectory. This constraints often extend to 2–3 Å  for some pairs, which are much 
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tighter than simple constraints preventing too short bonds (usually set to 0.7–1 Å ). 

Therefore, this filters out 99% of structures in the structure generation stage. The 

same distance constraints are used as the cutoff distances for the restrain option 

during the structure relaxation. (The restrain option is implemented in LAMMPS 

code.) The restrain option prevents atom pairs to be in the cutoff distance by applying 

repulsive harmonic force when the two atoms are closer than the cutoff distance. 

To further reduce the computation time for structure relaxation, we first relax the 

structure with the fixed lattice. Then, the structure is inspected whether it violates 

the distance constraint and the vacuum constraint (6 Å ). If it does not violate both 

constraints, it is further checked whether the energy is lower than 0.5 eV/atom 

compared to the lowest-energy structure in the previous generation. If the structure 

satisfy this criteria, relaxation further proceeds to structural relaxations of both 

atomic coordinates and lattice parameters. If the structure does not satisfy one of 

these constraints, the relaxation stop after the lattice-fix relaxation and then the 

energy is read. 

Even though we applied distance constraints to minimize the risk, the unphysical 

structures that are not in the training set can appear during the simulation in any time. 

Most of these structures have high energies in NNP that are discarded in the next 

generation, so does not affect the performance of CSP. On the other hand, some 

unphysical structures with high DFT energies can have the lowest NNP energy 

among the other structures in the pool even though the structure satisfy the distance 

constraint. In this case, only unphysical structures survive into the next generation. 

To prevent this situation, we monitor the DFT energy of the lowest structures every 

1000 generations (see Figure 3.10). 

We construct a CSP code by integrating the developed algorithms, which is named 

as SPINNER (Structure Prediction of Inorganic crystals using Neural Network 

potentials with Evolutionary and Random searches). The summary of the algorithm 

is presented in Figure 3.11. For an input chemical composition (elements and 
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stoichiometry), SPINNER conduct a melt-quench-annealing simulation and trains an 

NNP over the reference structures consists of this disordered structures. Then, NNP 

is iteratively retrained over ordered structures in low-energy region. In the final CSP 

proceeding up to 5000 generations, SPINNER gathers low-energy candidate 

structures (< 50 meV/atom), which are finally sorted after relaxations by DFT 

calculations. 
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Fig. 3.9: Parallelization scheme of developed code in this dissertation. 
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Fig. 3.10: Schematic illustration of main CSP with quality monitoring. 
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Fig. 3.11: Schematic illustration of the entire algorithm of SPINNER. 
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3.3 Performance test 
 

In this Chapter, we conduct the performance test of the developed algorithm by two 

tests: the first one is the blind test over randomly selected experimental structures 

and the second one is the benchmark test on theoretical structures that are predicted 

by other CSP methods. Then, we evaluate the computational cost of our algorithm. 

The results of both tests suggest that the SPINNER can mostly identify the global 

minimum of the multinary species in a reasonable time scale. 
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3.3.1 Blind tests on experimental database 
 

In testing search algorithms dealing with NP-hard problems, the global minimum is 

usually not known. However, the reference structures in CSP is already known 

because the overall minimum of the potential energy surface for a given 

thermodynamic and chemical condition is identified by experiment. Therefore, it is 

possible to estimate the performance of an algorithm by performing blind tests with 

configurations reported in experimental databases such as ICSD. 

In this study, we select ternary compounds as reference structures for the blind test 

because the database of ternary compounds contains various chemical and structural 

motifs. First, we randomly select 50 materials based on five criteria: (1) we choose 

crystals that have high-quality (R < 0.1) ordered phases and are stable under ambient 

conditions. (2) We exclude molecular crystals and only select inorganic crystals. (3) 

We also did not select compounds including 3d transition metals (V-Zn), lanthanides, 

and actinides because NNPs cannot delineate magnetic orderings in those materials. 

(Note that the meaningful achievements are made recently [101,102]). (4) To stress 

test the algorithm, we constrain the unit (Z) to be greater than 4. (The minimum 

number of atoms in the cell are at least 12.) (5) Then, we force that at least one crystal 

is selected from 32 crystallographic point groups. If the ICSD has multiple distinct 

crystal structures in a composition, the most stable structure within the PBE 

functional is chosen as the reference structure. We additionally handpick 10 materials 

that have diverse local motifs and chemistries. The information of 60 selected 

materials are listed in Table 3.1. Among 60 selected materials, 18 of them are metals, 

13 are semiconductors (band gap is between 0 and 2 eV), and 29 are insulators 

(bandgap is over 2 eV). (The band gaps are calculated with one-shot hybrid 

functional scheme using AMP2 code [98].) Most structures have hull energy of 0 in 

the Materials Project database [103] which means that they are stable under phase 

separation. 

In the blind test, we set Z values as the value of the experimental structures. Figure 
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3.12a shows the energy difference of the predicted structure by SPINNER and the 

reference structure (ΔEmin) after proceeding with 5000 generations of structure 

searching. Since the number of the structures in the pool is 24-80, up to half a million 

structure relaxations are performed for each composition which is enabled by the fast 

speed of NNP. The color of the data represents the generation at which the minimum 

energy structure is emerged (Ng). SPINNER correctly identifies reference structures 

(ΔEmin = 0) or lower-energy structures (ΔEmin < 0) in 45 compositions out of 60 (75%). 

Most of them (38 out of 60) are identified within 1000 generations. At the bottom of 

Figure 3.12a, the unit cells of successfully identified structures are displayed. Among 

the failed cases, the largest ΔEmin occurs for Sr2Pt3In4 (36 meV/atom). 

In Figure 3.12a, the six materials have negative ΔEmin, which means that the 

structure predicted by SPINNER is more stable than the reference structures in the 

ICSD database within the PBE functional. We note that in all cases both structures 

have similar local orders and the difference is only about 4 Å  in the distance range. 

This might attribute to the internal errors in the PBE functional. In fact, the PBE 

functional has been reported to incorrectly rank the order of metastable phases for 

some binary materials [52]. In the previous research, it is reported that the SCAN 

functional partly resolved this issue [51,104]. To verify whether SCAN can correctly 

rank the energy orders in these 6 cases, we re-relax the structures and evaluate the 

energies of the predicted structures and the reference structures with the SCAN 

functional. The empty squares in Figure 3.12a are the ΔEmin’s obtained by the SCAN 

functional. The ΔEmin values becomes positive except for LiYSn and PbOsO3. On the 

other hand, we tested SCAN functional on the 10 opposite cases (ΔEmin =0), the 

SCAN functional correctly rank the energy orderings of the reference structures to 

be the lowest. This verifies that the SCAN functional is more accurate than PBE in 

respect of the energy order. Furthermore, the existence of spin-orbit coupling (SOC) 

can correct the accuracy of the PBE functional especially for materials including 

heavy elements. We recalculate the energies of Tl3PbCl5 and PbOsO3 with SOC and 
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find that ΔEmin for Tl3PbCl5 and PbOsO3 increases to −0.2 and 16 meV/atom, 

respectively (see sun crosses in Figure 3.12). This demonstrates that the relative 

stability should be further checked by introducing more sophisticated methods. 

(Even so, the PBE functional correctly identifies equilibrium structures in many 

materials including Tl, Pb, and Bi). 

The accuracy of NNPs are evaluated by two metrics: the first one is the absolute 

energy difference (ΔE0) between DFT and NNP for the reference structures which 

are relaxed by each method. This demonstrates how well NNP reproduces the 

structure and energy of the global minimum. The second metric is the averaged 

energy difference (ΔĒ) of metastable structures within an energy window of 50 

meV/atom. This relates to how NNP well describes the potential energy surface near 

the global minimum. The values of ΔE0 and ΔĒ are presented in Table 3.1. The ΔE0 

and ΔĒ of successful cases (ΔEmin ≤ 0) are 12.9 and 11.8 meV/atom, respectively. 

This means that the potential energy surfaces of NNP and DFT are in good agreement 

near the global minimum. The remaining errors are partly attributed to the lack of 

resolution to delineate medium- to long-order correlations beyond the cutoff radii of 

the descriptors (6 and 4.5 Å  for radial and angular parts, respectively). This can be 

further improved by using more sophisticated descriptors, but this increases the 

computational cost of the computation.  

In contrast to the impressive error of NNPs for the successful cases, ΔE0 and ΔĒ 

for the unsuccessful cases (ΔEmin > 0) are 41.0 and 43.3 meV/atom, respectively, 

which are approximately four times greater than the successful cases. In particular, 

SnGeS3 and Sr2Pt3In4 showed largest ΔE0 (ΔĒ) of 75.5 (227.3) and 83.5 (140.0) 

meV/atom, respectively. Therefore, locating equilibrium structures by NNP would 

be much more difficult for these materials. The origin of the poor quality of NNPs is 

not completely resolved yet. (Increasing the cutoff radii of the descriptors was not 

helpful.) On the other hand, the qualities of NNPs are sufficiently low for some 

materials in the failed cases. In these materials, it is expected that the ground 
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minimum will be found in principle by increasing the number of generations over 

5000. 

We note that BaGe2S5, Na3SbO3, and YPdGe have rather pointed primitive cells 

while their conventional unit cells have more isotropic with larger Z. However, 

RandSpg [84], the random structure generation code only generates random 

structures based on the conventional unit cell, which may lower the search efficiency. 

We further conduct CSP with Z equal to that of the conventional cells for these 

materials. In all cases, SPINNER identifies experimental or theoretically more stable 

structures (see diamonds in Figure 3.12a). 

To analyze how SPINNER effectively finds the global minimum, we analyze the 

discovery process of the cases for ΔEmin ≤ 0 based on two parameters, Nt and Nm, 

schematically illustrated in Figure 3.12b. Nt is the number of generations from the 

random structure to the first appearance of the equilibrium structure at Ng. Nm 

indicates the number of mutations that takes to find the experimental structure from 

the initial random structure. The distributions of Nt and Nm are shown in Figure 

3.12b. It is intriguing that Nt is 0 for almost half of the cases, which means that a 

minimum-energy structure is obtained directly by relaxing a random structure 

without any mutations. Even in the cases that take mutations, Nm is mostly within 5. 

This indicates that the relaxation of randomly generated structures is very close to 

the global minimum. We think there are two reasons to this: first, pair-wise minimum 

distance constraints filter out ~99% of the structures that are unlikely to be relaxed 

into physically relevant structures. It also efficiently prohibits atomic configurations 

from relaxing into high-energy unphysical structures during relaxations. Second, we 

find that more than half of the initial random structures, evolving into the global 

minimum within relaxation with NNP, are not relaxed into the same structure when 

relaxed by DFT but are relaxed into the high-energy metastable structures. This 

indicates that the potential energy surface at the high-energy regions is significantly 

different between DFT and NNP. This can be rationalized by follows: NNP 



 

 ７７ 

unintentionally smooths the potential energy surface in the high energy region 

because it is not included in the training set while DFT adaptively forms chemical 

bonds that can stabilize the initial structure and the relaxation stops at a high-energy 

metastable structure (illustrated in Figure 3.12c). As a result, the potential energy 

surface of NNP becomes more efficient than DFT. 

We also study whether SPINNER can discover experimental metastable structures 

other than the one in global minimum. According to ICSD, TlSbO3, TlGaSe2, Na3PS4 

have ordered metastable compounds with high diffraction qualities (R < 0.1) and Z 

less than or equal to the ground state. These structures lie below the energy range of 

50 meV/atom within PBE and are all successfully identified by SPINNER. 

To test SPINNER on compounds other than in ternary compositions, we perform 

CSP on TiO2, P3N5, NbPd3, Li10GeP2S12, and InGaZnO4 whose experimental 

structures can be extracted from the ICSD. SPINNER successfully finds the ground 

states within 5000 generations. Among them, TiO2 is well known for its rich 

polymorphism [105]. With Z values of 4 and 8, SPINNER identifies all the 

experimental polymorphs (C2/m, anatase, brookite, columbite, rutile) within 50 

meV/atom. Even though the test is conducted on the small set of materials, these 

results support that the SPINNER effectively finds ground states regardless of 

material complexity. Nevertheless, more complicated quaternary or higher-order 

materials may generally require longer generations than in this work, which will be 

the subject of future study. 
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Fig. 3.12: Main results for the blind test on experimental structures. (a) The energy 

difference between the lowest-energy structures predicted by SPINNER and the 

reference experimental structure. Some identified crystal structures are shown below 

for example. (b) Distribution of Nt and Nm. (c) Schematic potential energy surface of 

NNP and DFT. 
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Table 3.1: The information of test materials for blind tests. The columns under ICSD 

are data on the most stable phase in the ICSD. Z and Nat denote the numbers of 

formula units and atoms in the unit cell, respectively. Band gaps (Eg’s) are calculated 

by one-shot hybrid functional calculations [98] and hull energies (Ehull’s) are 

extracted from the Materials Project [103]. We additionally distinguish the energy 

difference calculated by SCAN functional (†), or by PBE when the spin-orbit 

coupling is considered (‡). Also, the numbers with the * mark indicate the energy 

difference between the most stable structure found within ICSD structure 

conventional cell size and the ICSD structure. The unit for Ehull, Ng, ΔE0, ΔĒ, and 

ΔEmin are meV/atom.   

Formula 

ICSD  SPINNER 

ID 
Point 

group 
Z Nat Eg (eV) Ehull  Ng ΔE0 ΔE̅ ΔEmin 

PbOsO3 23444 m3̅ m 4 20 0 0  5 64.1 20.3 
–15.6/ 
–4.0†/ 

16.0‡ 

Tl3PbCl5 1262 4 4 36 6.0 9  11 3.8 5.9 

–13.6/ 

6.0†/ 

-0.2‡ 

Na3PS4 72860 4̅ 2m 2 16 3.3 0  1 8.1 16.4 
–9.1/ 

22.3† 

RbInI4 36601 3m 6 36 3.5 0  990 2.9 11.9 
–4.0/ 

6.4† 

KAlCl4 1704 2 4 24 6.8 0  238 2.9 10.1 
–2.7/ 
9.5† 

LiYSn 32041 6mm 8 24 0 0  13 3.3 12.6 
–1.7/ 

–2.0† 

Na3AsSe3 50491 23 4 28 2.8 0  4004 1.4 7.3 0 

AuOCl 8190 3 ̅ 6 18 2.3 0  723 22.0 20.1 0 

Li3AuO3 15113 4/mmm 4 28 3.5 0  80 9.4 11.2 0 
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Na3AuO2 62066 4/mmm 4 24 3.1 0  344 2.5 3.1 0 

KMo3Se3 603628 6/m 2 14 0 0  6 2.1 4.8 0 

MgIrB 409979 622 6 18 0 0  46 1.1 4.3 0 

TlBO2 36404 4 8 32 3.8 0  5 0.1 4.7 0 

LiBaGe2 162583 mmm 4 16 0 0  17 9.1 13.6 0 

Li2BPt3 156466 432 4 24 0 0  7 3.9 5.2 0 

LiBiO3 82277 mmm 8 40 1.2 0  3032 16.1 5.5 0 

Sr2P7Br 429306 23 4 40 2.8 0  98 61.6 26.4 0 

CaPdSi 69790 2/m 4 12 0 2  90 9.0 19.8 0 

CdI2O6 1397 222 4 36 4.5 0  3030 9.0 19.8 0 

Cs2SbCl6 49706 4/mmm 4 36 1.6 0  4 21.7 12.2 0 

LiWCl6 409938 3 4 32 0 12  739 8.1 14.4 0 

TlGaS2 157537 2/m 8 32 2.4 0  3 0.0 7.1 0 

TlGaSe2 1573 m 8 32 2.1 4  737 32.6 28.1 0 

HfNbP 75009 mmm 4 12 0 0  32 3.7 2.6 0 

Zr2Pd2In 107332 4/mmm 4 20 0 135  4 3.7 6.9 0 
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IrSbTe 640967 23 4 12 1.3 0  22 9.9 6.0 0 

Li2TeSe3 415121 2/m 4 24 0.19 0  161 12.7 10.1 0 

PbN2O6 174004 m3 ̅ 4 36 5.5 0  8 0.2 8.6 0 

Na3SbTe3 75513 23 4 28 2.0 16  190 14.1 12.3 0 

TlSbO3 4123 3̅ m 4 20 3.3 135  27 5.2 7.5 0 

Tl3PS4 201062 mmm 4 32 2.7 0  21 10.2 12.4 0 

BaIn2Te4 41168 mmm 2 14 1.6 0  2802 10.1 16.9 0 

Rb2ZrTe3 410735 2/m 4 24 0.14 0  25 44.4 8.6 0 

Ag2HgO2 280333 422 4 20 1.3 0  321 22.1 16.3 0 

RbAgO 40155 4/mmm 4 12 2.7 0  3577 19.8 9.7 0 

AsNb3Te3 79934 6/m 2 14 0 0  408 48.2 35.5 0 

PbSnS3 23462 mmm 4 20 1.6 7  1528 35.1 16.0 0 

CaPS3 405192 2/m 4 20 4.1 0  131 4.9 11.9 0 

HfSiO4 31177 4/mmm 2 12 7.0 0  35 14.9 27.2 0 

NaScS2 644971 3̅ m 1 4 2.7 0  68 5.0 13.7 0 

MgTa2O6 202688 4/mmm 2 18 4.2 0  9 2.4 7.3 0 
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Mg2SiO4 15627 mmm 4 28 6.4 0  152 1.8 3.0 0 

Na2SO3 31816 3 ̅ 2 12 6.4 41  761 3.0 7.0 0 

Ta4SiTe4 40207 mmm 4 36 0 0  860 11.6 9.6 0 

KBS2 79614 3̅ m 6 24 3.8 0  113 10.1 17.3 0 

AlCaSi 155193 6 6 18 0 0  5 15.3 47.9 1.1 

NaPt2Se3 78788 6mm 4 24 1.6 0  989 2.2 7.6 1.2 

BaAl2Si2 249559 mmm 4 20 0 0  4 40.6 20.7 4.6 

BaGe2S5 66868 m3̅ m 
4/

16 

32/ 

128 
3.2 0  131 43.3 12.7 

5.3/ 

−2.3* 

RbPSe3 173419 32 6 30 2.0 0  8 57.6 15.3 5.7 

CsIn3O5 23630 mmm 4 36 2.8 0  2017 1.2 6.0 6.8 

KAsSe2 65297 1 4 16 2.3 0  4909 40.9 34.2 8.0 

CaAsPt 60828 4mm 6 18 0 0  10 7.4 4.0 9.0 

AlBiCl6 414261 2/m 4 32 5.0 0  23 14.3 7.6 13.0 

Na3SbO3 23346 4̅ 3m 
4/
8 

28/ 
56 

4.1 0  4958 2.4 8.1 
13.3/ 
0.0* 

Sb2OS2 12120 1 ̅ 8 40 1.8 1  172 38.0 16.1 18.6 

Na2AuSn3 107556 6/mmm 4 24 0 0  2357 36.6 8.3 25.3 
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SnGeS3 411241 2/m 4 20 1.9 0  4993 75.5 227.3 30.0 

YPdGe 391466 mm2 
6/

12 

18/ 

36 
0 0  680 21.6 9.9 

32.9/ 

0.0* 

Sr2Pt3In4 410703 6̅ m2 4 36 0 0  3575 83.5 140.0 36.6 
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3.3.2 Benchmark test on other CSP methods 
 

To compare the accuracy of SPINNER with other CSP algorithms, we conduct a 

benchmark test on ternary compounds that were theoretically predicted by either 

data-mining known prototypes [17,18,106,107] or using DFT-based evolutionary 

algorithms such as a genetic algorithm [73,87,108] and particle swarm 

optimization [109]. The materials are listed in Figure 3.13a. As far as we know, none 

of these compositions has been synthesized except for KScS2, Sc2C3N6, and ScPtBi. 

We perform CSP using SPINER on these compositions for 1000 generations with Z 

ranging from 2 to 8. The energy difference between the predicted structure and the 

reference structure in the literature (ΔEmin) is shown in the upper part of Figure 3.12a. 

(The structures extracted from the references are again fully relaxed within the 

present calculation methods.) SPINNER successfully identifies lower-energy 

structures in most cases (13 out of 21) and the same structures for the rest. For 

Sn5S4Cl2 and Cd4SF6, CSP is performed within the PBEsol functional [110] instead 

of PBE in ref. [73]. For comparison, we calculate ΔEmin with PBEsol and find that 

the compounds identified in this study are still more energetically favorable than the 

reference structures by 31 and 4 meV/atom for Sn5S4Cl2 and Cd4SF6, respectively. 

We note that Sn5S4Cl2, Cd4SF6, and TaCN3 have positive hull energies for both 

reference structures and those identified by SPINNER. Nevertheless, any sign of 

phase separations is found in the final structures (see Cd4SF6, and TaCN3 in Figure 

3.13a). This demonstrates that the lower-energy structures discovered by SPINNER 

are not artifacts of the phase separation. The lower plot of Figure 3.13a represents Z 

values of the primitive unitcells of the predicted structure by SPINNER (solid 

squares) in comparison with those in the references (solid circles). SPINNER finds 

the lowest-energy structure often at a larger Z than that of the reference structures. 

This indicates that multiple trials of CSPs with diverse Z numbers are important. In 

this respect, the NNP is much more advantageous compared to DFT owing to the 

linear scaling of the computation time with respect to the number of atoms, in 
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contrast to the cubic scaling of DFT.  

The structures found by SPINNER usually have similar local structural motifs to 

reference structures (e.g. KScS2 and W4Mo4B15 in Figure 3.13b). On the other hand, 

different local orders can be found in materials such as Li2TiN2, Cd4SF6, and TaCN3 

(see Figure 3.13b). It is intriguing that Cd4SF6 and TaCN3 were discovered by DFT-

based evolutionary searches. We think that the failure of the previous research in 

identifying the current low-energy structures might be attributed to smaller Z 

numbers than our calculations and fewer generations. In Figure 3.13a, Na3OsN2 has 

the largest energy difference. Both structures have the same local orders, but the 

reference structure is significantly distorted. We note that metastable structures can 

have distinct materials properties from the ground state. For instance, the tetragonal 

phase of HfO2 is metastable by 57 meV/atom but has a much higher dielectric 

constant (70) than that of the monoclinic phase (16) [111]. This stresses the 

importance of finding the true global minimum in CSP for the reliable prediction of 

materials properties. 

We check the existence of prototypes in the ICSD for the 13 identified structures 

employing AFLOW-XtalFinder [112]. We find that the structures of 10 of 13 

materials do not match any existing prototypes in the ICSD (star-marked in Figure 

3.13a). This illustrates that the present prototypes of ternary materials are not 

sufficiently discovered. It is noticeable that the prototype of Zr3O3N2 and Ti3O3N2 is 

Ti3O5 which is the same as the structure reported in the reference. However, the 

energies of both structures are lower than those of the structures in the literature. We 

think that ref. [106] missed the exact ground state because the partial ion exchanges 

of O and N are not fully considered. 

Sc2C3N6 has been recently synthesized with the structure predicted by data-mining 

known prototypes and was also identified by SPINNER [113]. About KScS2, there 

was an experimental report [114] on the synthesis of the material, but not recognized 

by ref. [107]. The experimentally found structure is consistent with the present work, 
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which is slightly more stable than that of ref. [107] by 2.5 meV/atom. The crystal 

structure of ScPtBi was predicted and identified by the synthesis in ref. [18]. 

Although it was discovered as a multiphase, SPINNER did not recognize any 

metastable structure within 50 meV/atom.  
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Fig. 3.13: (a) Upper plot shows energy difference between the structure predicted by 

SPINNER and the structure predicted in literature (ΔEmin) by data mining or 

evolutionary algorithms [17,18,73,87,106–109,115]. The lower part compares the Z 

between the reference structure and the value at which the lowest energy is found. 

The compounds marked with stars do not have corresponding structural prototypes 

in the ICSD. (b) Examples illustrating the structural difference between the crystal 

structures in references (top) and ones identified by SPINNER (bottom). 
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3.3.3 Computational cost 
 

About the computational cost, the whole process from the melt-quench annealing 

molecular dynamics to CSP steps takes 3–5 days on a 36-core node (CPU of Intel®  

Xeon Platinum 8000-series). For 1000 evolution steps, it takes 3–5 days. On average, 

the workload of DFT-MD, training NNP, SPINNER, and DFT relaxation of crystals 

take about 25%, 10%, 60%, and 5%, respectively. The computational time for each 

part varies widely depending on the materials system. The SPINNER part is largely 

scalable using many parallel computers. As an example of LiWCl6, it takes 84 hours 

for 5000 generations with a population size of 64 with Z = 4. When tested using 

identical resources and conditions, a DFT-based evolutionary algorithm [29] only 

proceeds up to 6 generations under the suggested setting in the manual. In addition, 

we compare the energy evolution over time using USPEX and SPINNER as shown 

in Figure 3.14. The energies of the most stable compound in each generation remain 

larger than 300 meV/atom using USPEX during ~100 CPU hours. The first few 

generations of SPINNER also remain similar energies compared to USPEX. 

However, the energy drops quickly over generations, and the reference structure is 

found around 1000 generations. This only takes ~80 hours including DFT-MD and 

NNP training time. The estimation of the computational cost demonstrates that it 

would be possible to construct large databases of as-yet-synthesized materials at a 

reasonable cost and in a reasonable time scale.  
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Fig. 3.14: Comparison of the energy evolution over computation time of USPEX and 

SPINNER. The test material in this Figure is Mg2SiO4. 
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3.4. Transfer learning over compositions 
 

Despite the impressive performance of the SPINNER, the trained NNP is only 

effective for one composition and may be difficult to be utilized in other 

compositions because the training set is constructed within a specific stoichiometry. 

Nevertheless, dynamic fluctuations in the melt-quench-annealing process may 

extend the local composition range of the training set, which extend the 

transferability of NNP into other composition. For instance, we conduct CSP for 

MgSiO3 with the NNP developed for Mg2SiO4 and the experimental structure is 

successfully identified by SPINNER. However, we observe the constant energy 

shifts between DFT and NNP energies for MgSiO3 because NNP was trained over a 

single stoichiometry so the atomic energy offsets among elements become 

arbitrary [92]. To mitigate this problem, we test the transfer learning: the initial NNP 

trained over disordered structures in the composition of Mg2SiO4 are refined over a 

small number of MgSiO3 crystals which effectively removes the energy offsets. We 

also verify that the transfer learning well works even for the cases involving valence 

changes: MoPdO5  MoPdO4 and InPbO3  In2PbO4. This transfer learning scheme 

is expected to be effective when one tries to discover many possible stoichiometries 

for unknown materials. 
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Chapter 4 

 

 

Applications of CSP 

 

 

4.1 Synthesizability of missing ternary oxides  
 

Oxides are the most widely studied materials: the frequency of the oxygen in the 

ICSD is three times higher than that of the most frequent elements (Fe, Si, and S). 

Indeed, all combinations of binary metal oxides (for which atomic number less than 

83) have been synthesized and reported. On the other hand, we find that ~24% of 

combinations of ternary metal oxides are still missing in the three major 

experimental databases, ICSD [8], COD [116], and ICDD [117]. Figure 4.1 shows 

the missing combinations of ternary metal oxides in the three databases. The gray 

colored combinations exist in the database, and the white colored combinations 

cannot be found in the database. (We exclude semi-metals here.) In addition, we 

represent the cases in black when the full phase diagram of the system exists in the 

FactSage database [118], but no ordered phase exists in the diagram. In this case, the 

stable ternary metal oxides are not expected to exist at the ambient condition. The 

atom tags in Figure 4.1 is ordered by the scarcity of the elements. It is noticeable that 

the number of missing compounds increases with increasing scarcity. Specifically, a 

large portion of metal oxides including 5d elements are not been identified by 

experiments yet. On the other hand, many of Be compounds are missing although 
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the scarcity of the element is not poor. We believe this is due to its toxicity preventing 

potential researchers from trying to synthesize Be-containing compounds. 

Crystal structure prediction can identify whether the missing combinations of 

oxides are synthesizable (but not synthesized yet) or not-synthesizable. We conduct 

CSP with SPINNER on missing combinations of ternary metal oxides. For simplicity, 

we consider the simple composition conditions: the most stable oxidation numbers 

of elements are employed, the composition is fixed to the 1:1 of pseudobinary 

materials (e.g., Ag-W-O: (Ag2O)1(WO3)1 = Ag2WO4), and two formula units (Z), 3 

and 4. Our assumption here is that materials with low hull energies in the 1:1 

composition may also have low hull energies in other compositions. To test this idea, 

we conduct CSP for 7 materials in which any stable phase in the 1:1 composition is 

not reported, but only in other compositions. We find that all of these materials have 

low hull energies (< 50meV/atom in PBE and < 40meV/atom in SCAN functional).  

Figure 4.2 shows the results for the searching of ternary metal oxides in 1:1 

composition. Here, we exclude 3d metals (V-Cu), lanthanides, and actinides due to 

the magnetic ordering in the materials. The hull energy of the most stable compound 

in each composition is represented as colors. Among 173 compositions, we find 45 

stable compounds. For compositions composed of low scarcity elements (Al-Ga), 

we only find two compounds (Rb2MgO2 and RbBaO2) with negative hull energies. 

On the other hand, negative-hull-energy materials are much more frequently found 

in combinations containing scarce elements. Particularly, Au is predicted to form 15 

stable compounds with other elements. This trend indicates that most combinations 

of earth-abundant elements are well studied due to the high economical interest and 

the most of unreported compositions in this domain are indeed unsynthesizable. On 

the other hand, the large number of synthesizable combinations with earth-deficient 

elements indicates that the materials in this domain are not synthesized yet due to 

the lack of enough effort to synthesize. 

As future work, we first plan to complete the search on all missing combinations. 
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On the other hand, there might be a need to further investigate some compositions 

with high engineering interests (namely, with low scarcity). We plan to search other 

composition than 1:1 for combinations where the hull energies in the 1:1 

composition are lower than 50 meV/atom (such as Mg-La-O and Zr-Ga-O). The 

transfer learning technique (see Chapter 3.4) can be used to construct the neural 

network potential in each composition. 
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Fig. 4.1: Representation of missing ternary metal oxides. White means that the 

combinations of the compound are missing, gray means that at least one compound 

exists at the corresponding combination combinations, and black means that the 

whole phase diagram information exists in the database. 
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Fig. 4.2: Hull energies of the most stable structures identified by SPINNER.  
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4.2 Li superionic solid electrolyte  
 

Discovering Li superconducting materials is the most essential part of developing 

all-solid-state batteries [119]. Until now, the best-known candidate is Li10GeP2S12 

(LGPS) because of the good Li conductivity and good mechanical stability [2]. 

However, this material is vulnerable to water because H2O causes degradation of 

LGPS and produces toxic H2S gas [120]. Oxide materials are much more stable than 

sulfides but show much poorer Li conductivity than sulfides [121]. Therefore, novel 

Li superionic conducting oxides with higher Li conductivity would be necessary. 

  Crystal structure prediction can boost identifying novel superionic conducting 

materials. We test SPINNER on existing Li or Na superionic conducting materials. 

Figure 4.3 shows the test materials. SPINNER successfully identifies all materials 

except for Li7La3Zr2O12 (LLZO). LLZO has 96 atoms in the primitive unit cell due 

to the complicated composition. We find that it takes too much time on generating 

structures and performing local relaxations for LLZO. So that the future work would 

be the fine-tuning of the algorithm to find complicated Li superionic conductors.  

When trying to perform CSP on novel composition, one also faces another 

challenge in choosing composition because a large degree of freedom in composition 

exists in quaternary materials. We use design principles on composition suggested 

in ref. [122]: the fact that the all known promising oxide Li superionic conductor 

have compositions as LixAy(MO6/2)m(TO4/2)n where M and T are the metal elements 

that form octahedral and tetrahedral, respectively, and Li and A are the metals that 

incorporate into the empty space in between the corner-sharing (MO6/2)m(TO4/2)n 

framework. (Note that M also can be Li.) For most oxides Li superionic conductors, 

m:n is typically 1:1, 1:2, 2:1, 2:3, and 3:2. For instance, La3xLa2/3-xTiO3 with 

NASICON structure and LLZO correspond to the case of m = 3 and m = 2. Ref. [122] 

also found new material, LiTa2PO8, in m = 1 and n = 2. This design principle is 

reasonable because if the structure consists of only tetrahedral or octahedral, it would 

have a too compact structure so that the space for Li conduction would be limited.  
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As a preliminary result, we test this design principle on Li2ZrSiO5. Figure 4.4a 

shows the atomic structure discovered by SPINNER. As expected, Zr and Si are 

located in octahedral and tetrahedral sites, respectively, where all polyhedrons are 

corner-shared. As future work, we are planning to discover oxide Li superionic 

conductors with new structural frameworks using SPINNER. 
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Fig. 4.3: Test materials of SPINNER for testing performance on existing Li (or Na) 

superionic conducting materials. 
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Fig. 4.4. Predicted crystal structure of Li2ZrSiO5. 
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4.3 Challenges and perspectives  
 

In this chapter, we discuss the remaining challenges for the CSP algorithm developed 

in this study to be used in practical matters. The first challenge is that the algorithm 

is limited for predicting the crystal that consists of a large number of atoms (> 50) 

due to the high structure-generation and structure-relaxation times (also discussed in 

the previous Chapter). We think that it is hard to find general solution to this problem. 

Rather, one may need the case-by-case approach for each material system. For 

instance, in the case of Li superionic conductors, the complexity of the structure 

arises from the soft potential energy surface of Li. Therefore, one can generate 

structures without Li and put Li atoms later by Monte Carlo simulations. The second 

challenge is predicting crystal structures of magnetic materials. The current version 

of NNP is hard to directly consider the magnetic interactions. The magnetic 

interactions are generally local, so NNP might predict the atomic energies in the most 

stable spin configurations without directly encoding the spin information. However, 

building the training set is challenging for antiferromagnetic materials because the 

stable spin configurations in disordered structures are almost impossible to 

determine. The possible strategy is to train the initial NNP with ferromagnetic 

conditions and then train NNP antiferromagnetic ordered crystals in the refining 

stage by transfer learning. The last challenge we would like to discuss is accelerating 

the efficiency of CSP algorithm by integrating heuristic approaches and data-mining 

methods. As discussed in the Introduction section, these two methods have 

conflicting strengths and weaknesses: heuristic approaches are accurate but time-

consuming while data-mining methods are opposite. The reason for the low accuracy 

of data-mining models is the deficiency of the crystal prototypes of inorganic 

materials in the experimental database. SPINNER can create rich prototypes in the 

unexplored materials domain where the data mining models are less reliable and so 

that can increase the accuracy of the data-mining model in diverse types of materials. 

Therefore, it would be possible to achieve both high accuracy and speed using a dual 
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model using SPINNER and a data-mining model.   
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Chapter 5 
 

 

 

Conclusion 

 

 

 

We develop the efficient and accurate crystal structure prediction (CSP) algorithm 

with neural network potentials (NNPs) and suggest possible applications. The NNP 

is trained over disordered structures constructed from molecular dynamics (MD) 

using density functional theory (DFT) calculations. This training procedure is tested 

on three ternary and one quaternary material. In all cases, the correlation between 

NNP and DFT energies is high enough to use NNP as a surrogate model of DFT. 

Then, we develop the CSP code which is named SPINNER combining iterative 

training scheme and quality monitoring scheme with the evolutionary searching 

algorithm. The program is tested over the experimental database, and successfully 

identifies experimental structure (or lower-energy structures) for 80% of cases. 

When tested over theoretical structures generated by other CSP packages, SPINNER 

provides the same or lower-energy structures compared to the reference structures. 

Finally, we apply the program for finding missing ternary metal oxides and Li 

superionic conductors and discuss the remaining challenges for applying SPINNER 

to the practical problems. By harnessing the efficiency and accuracy of NNP in CSP, 

this thesis will extend to the various materials discoveries.   
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초록 

  

 

결정구조예측은 주어진 조성에서 가장 안정한 결정구조 상태를 찾는 

방법이다. 결정구조예측 방법론을 이용한다면 원리적으로는 물질에 대한 

합성 실험 이전에 합성 가능한 물질들의 라이브러리를 모두 수립할 수 

있기 때문에 최근 결정구조예측 방법론은 많은 각광을 받고 있다. 

하지만, 결정구조예측 방법의 한계는 알고리즘의 효율이 느리다는 

것이다. 이는 결정구조예측 알고리즘이 많은 수의 제일원리계산을 

동반하기 때문이다. 따라서, 제일원리계산 기반의 결정구조예측 방법은 

복잡한 삼성분계 이상의 재료를 대량으로 스크리닝하는 연구들에 거의 

사용되지 않고 있다. 이러한 결정구조예측 방법론의 속도를 높이기 

위해서 기계학습 퍼텐셜을 제일원리계산의 대체 모델로 사용하려는 

시도들이 있다. 하지만, 기계학습 퍼텐셜을 학습하기 위한 학습 

데이터셋을 지정하는 것이 어려운데, 그 이유는 결정구조예측의 문제 

특성상 시뮬레이션을 하기 전에 어떤 구조가 나올지 미리 알 수 없기 

때문이다. 이러한 한계를 극복하기 위해 기존 연구들에서는 무작위 

샘플링 방식과 실시간 학습 방식이 사용되어왔다. 하지만 기존의 이러한 

방법론들은 삼성분계 이상의 시스템에 적용될 만큼 높은 정확도와 

속도를 보이지는 않았다. 

본 학위 논문에서는 인공신경망 퍼텐셜을 기반으로 한 결정구조예측 

프로그램을 만드는 것을 목표로 하였다. 핵심 아이디어는 분자동역학 

계산을 통해 만든 비정질 구조들을 인공신경망 퍼텐셜의 학습 

데이터셋으로 사용하는 것이다. 이 학위논문에서는 이렇게 학습된 
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퍼텐셜로 계산된 에너지는 제일원리계산으로 얻어진 에너지와 높은 

상관관계에 있다는 것을 밝혔다. 이는 인공 신경망 모델이 

제일원리계산의 대체모델로서 사용될 수 있다는 의미이다. 이러한 인공 

신경망 퍼텐셜을 기반으로 결정구조예측 프로그램인 SPINNER를 

개발하였다. 프로그램은 실험 구조 데이터베이스와 이론적으로 예측된 

구조들에 대하여 테스트 되었으며, 테스트 결과 개발된 방법론은 가장 

안정한 결정구조를 합리적인 계산 시간 안에 찾아낼 수 있다는 것을 

확인하였다. 개발된 방법론을 사용하여 진행하고 있는 삼성분계의 

산화물들과 리튬 고체 전해질에 대한 탐색 연구에 대해 소개하였으며 

개발된 프로그램의 한계와 발전 방향에 대하여 논하였다. 본 

학위논문에서 개발된 결정구조예측 알고리즘은 우수한 미래 재료 

발견으로 이어질 수 있을 것으로 기대된다. 
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