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Abstract

Crystal structure prediction aims to find the ground-state structure in a given
composition. This is of great interest as it can establish a list of all synthesizable
materials prior to experiments. However, the main challenge in predicting crystal
structure comes from the efficiency of the algorithm: the NP-hardness of the problem
and the high cost of density functional theory, which is employed as a structure
optimizer and an energy evaluator, limit the widespread use of the algorithm in
searching complex multinary systems. To accelerate the speed of crystal structure
prediction, there have been several attempts to employ machine learning potentials
as a surrogate model of density functional theory calculations. However,
constructing the training set is not straightforward because prior knowledge of the
configurations is not available before making predictions. Previous researches
employed random sampling and on-the-fly sampling methods to train machine
learning potentials but did not achieve enough efficiency and accuracy to be utilized
in multinary systems.

In this dissertation, we develop the crystal structure prediction program using
neural network potentials as the surrogate model of density functional theory
calculations. Our main idea is to construct the training set with the disordered
structures sampled from molecular dynamics simulations. The energies calculated
by trained potentials show a good correlation with the energies calculated by density
functional theory calculations, which indicates that the neural network potential can
be a hi-fidelity surrogate model for crystal structure prediction. Then, we develop
the crystal structure prediction method by optimizing algorithms for constructing
training sets, training neural network potentials, and searching structures with
evolutionary algorithms. The developed program is tested on the experimental

i I



database and theoretical structures predicted by other crystal structure prediction
methods. The tests show that the developed method can identify the global minimum
in most cases at a reasonable computational cost. Using the developed method, we
are now discovering the missing ternary metal oxides and Li superionic conducting
oxide materials. By harnessing the accuracy and efficiency of neural network
potentials, this dissertation will pave the way to the wide material discoveries in

various research fields.

Keyword : crystal structure prediction, machine learning potential, neural network
potential
Student Number : 2016-20761
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Chapter 1

Introduction

1.1 Overview of crystal structure prediction

In modern times, the discovery of new inorganic materials catalyzes the
advancement of diverse technologies such as InGazZnO, for transparent flexible
electronics [1], LiwoGeP;Si;2 for solid-state batteries [2], Cs:AgBiBrs as
photovoltaics [3], and La[O,xFx]JFeAs [4], HsS[5] and LiHi [6,7] as high-T
superconductors. Indeed, ~200,000 materials have been registered in the Inorganic
Crystal Structure Database (ICSD), which contains information of most the
synthesized inorganic materials, and its size increases by ~5,000 every year [8].

However, such experimental throughput for discovering new materials is not
enough to complete the list of material database: based on a rough estimate, only
~16% of ternary materials and ~1% of quaternary materials are known among the
possibly synthesizable materials list [9], and only ~1% of ternary materials and ~0.05%
of quaternary materials are newly discovered every year.

Computational methods based on density functional theory (DFT) are widely
employed in material searches because this can predict materials properties much
faster than experiments without any prior knowledge [10]. In DFT calculations,
crystal information of materials is the essential input that defines the Hamiltonian of
.
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the given system. However, crystal structures of as-yet-synthesized materials are not
available, so most of the experimental researches focus on screening already existing
materials in the current database(e.qg., ref. [11,12]).

To resolve this issue, one needs a crystal structure prediction (CSP) algorithm,
which is a computational method to predict the crystal structures of solids from first
principles [13]. In principle, an efficient CSP algorithm can identify all the
synthesizable but as-yet-synthesized materials. Therefore, developing a practical
CSP algorithm has been a dream of theoretical materials scientists. However, CSP is
an NP-hard problem with no general solution [14].

Two kinds of CSP algorithms have been developed to mitigate this frustration: the
first one is a data-driven method and the other one is a heuristic approach. The first
systematic data-mining method is developed by Fischer et al. [15]. In this approach,
the correlation between structures in terms of constituent elements is learned from
the experimental database by machine learning. A similar algorithm has been
developed by Hautier et al., which uses the machine learning model that learns the
substitutional probability for element pairs for the given composition [16]. Within
these or other data-driven methods, the new metal nitrides [17], 18-ABX
compounds [18], and Li-ion batteries [19] are discovered followed by the
experimental verification. However, this approach is not possible to find a material
with a new prototype that is not in the database. In addition, the biased elemental
frequencies in the experimental database might risk deficient prototypes in certain
materials groups. In specific, oxygen is the most abundant element in the ICSD of
which frequency is 3 times higher than the next most abundant elements (Fe, Si, and
S). Therefore, the prototype database for other compounds than oxides may be
deficient to construct a reliable statistical model.

To directly explore the configurational space instead of using statistical relations,
several heuristic approaches, such as random structure sampling [20,21],
metadynamics [22], simulated annealing [23], minima hopping [24], basin
.
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hopping [25], particle-swarm  optimization (PSO) [26,27], and genetic
algorithm [28], are developed. The most popular approaches are the genetic
algorithm developed by Oganov et al. (USPEX code) [29], PSO method developed
by Ma et al. (CALYPSO code) [30] and random sampling developed by Pickard et
al. (AIRSS code) [20]. These algorithms often accompany thousands or more DFT
calculations which takes large computation time. Therefore, diverse techniques, such
as random structure generation using symmetry operators, and antiseed option are
developed for the efficient search of the ground-state structures in the short
generations limited by the speed of DFT calculations [31]. With this method, new
materials are successfully discovered such as the high-pressure phase of transparent
sodium [32], the unusual stoichiometry of sodium chlorides [33], and H-based novel
high-T. superconductors [34—36]. However, the current researches based on CSP are
often limited to short evolutionary generations [18,37], because the computational
cost of DFT-based CSP is still demanding.

Recently, machine learning potentials are gaining much attention because they
can be a surrogate model of DFT with much lower computational cost and the linear
scaling with the number of atoms in contrast to the cubic scaling of DFT
calculations [38—40]. Machine learning potentials learn structure-energy relations
from DFT calculations via flexible functional forms. Therefore, machine learning
potentials require the construction of a training set which consists of DFT calculation
results on reference structures that contains every configurational information of
target simulation. However, in the case of CSP, this encounters a significant
challenge, because of the prior information of target simulation is not known before
one makes the prediction. To resolve this, previous studies utilized random sampling
or on-the-fly sampling method for training machine learning potentials for CSP [41-
43]. The developed potentials were tested on unary crystals and clusters. However,
these methods are less effective in more complicated multinary materials because
they unnecessarily gather high-energy structures that are irrelevant to the local

.

-
|

3



minimums around the ground-state. Consequently, there is an urgent need for
efficient strategies for training reliable machine learning potentials during CSP
procedures and new search algorithms that is optimized for machine learning

potentials.



1.2 Goal of the dissertation

The main goal of this dissertation is to develop an efficient and accurate CSP method
using machine learning potentials. The CSP algorithm consists of two parts, global
optimization, and local relaxation. In inorganic materials, the local relaxation part
takes most of the time because it is conducted by DFT calculations. We first develop
an efficient method to train neural network potentials (NNPs) employed for local
relaxation and energy evaluation of structures that appear during the global
minimization. The key strategy is to use disordered structures, which are generated
from DFT-based melt-quench-annealing simulations, as a training set of NNP. We
demonstrate that the generated potentials can be a high-fidelity surrogate model of
DFT in CSP of multinary systems.

When applying NNPs in CSP, we find that the conventional global optimization
algorithms are inefficient for NNP-based CSP because the conventional algorithms
are only optimized for DFT calculations. Therefore, we develop the CSP code that
is optimized for NNP. In addition, we additionally optimize the DFT-MD procedure,
training methods, and quality monitoring of NNP. Based on these algorithms, we
develop the code named SPINNER (Structure Prediction of Inorganic crystals using
Neural Network potentials with Evolutionary and Random searches). We conduct
two tests to evaluate the performance of the program: the first one is a blind test on
the experimental structures and the other one is a benchmark test on theoretical
structures predicted by other CSP algorithms. In both tests, it is confirmed that
SPINNER can mostly identify a global minimum for a given composition within a
reasonable computational cost.

Finally, we present two practical applications of CSP: identifying missing ternary
oxides and discovering novel Li superionic conductors. We establish the strategies

to efficiently search large materials space using SPINNER.



1.3 Organization of the dissertation

The dissertation consists of five chapters. Chapter 1 provides an introduction, which
presents an overview of crystal structure predictions, the goal of the dissertation, and
the organization of this dissertation. Chapter 2 gives the theoretical background on
density-functional theory, machine learning potentials, and crystal structure
prediction. Chapter 3 provides the discussion on the development of the neural-
network potentials and the optimization of the crystal structure prediction algorithm.
With the developed code, two performance tests are conducted. In Chapter 4, we
discuss the practical applications of CSP. Finally, in Chapter 6, we summarize and

conclude the dissertation.



Chapter 2

Theoretical background

2.1 Density functional theory calculations

2.1.1 Born-Oppenheimer approximation

When trying to calculate the material properties within atomic level without any
empirical knowledge, one requires to solve the Schrddinger equation, which is the
basic governing equation describing all physics in atomic scale. For the problems in
materials science, systems consist of multiple nuclei and electrons. In this case, the

Schrédinger equation is written as:
HY = EY, (2.1)

where the Hamiltonian operator H is represented as:

h? . o1 e? 1O Z1Z,e? Zje?
He =g Y Vi) o +3 ). +3). ). :
me 7 T 1 ey |ri - r]| = |r1 - l‘]| 77 |rl‘ — l']|

(2.2)

Here, i, j are the index for electrons, I, J are the atomic index, r is the position of
1] O

-
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electrons and atoms, Z is the charges of electrons and atoms, and M is the nuclear
mass. The first two terms in equation (2.2) is the kinetic energy of electrons and
nuclei, and the next terms correspond to the electrostatic interactions of electron-
electron, nucleus-nucleus, and electron-nucleus, respectively.

Solving the equations (2.1) and (2.2) is a many-body problem which has no
general solution except for the case of a hydrogen atom. Density functional theory
(DFT) applies several approximations to provide reasonable first-principles
solutions. The first one is the Born-Oppenheimer approximation [44]. In this
approximation, the nuclei is assumed to be fixed while only the movements of
electrons are considered. This is because the electron mass is orders of magnitude
smaller than the nucleus mass. The Kkinetic energy of the nuclei approaches to zero,
and the nuclei are just considered as a source of charge. Mathematically, equation

(2.2) changes into:

oo ZVZ+ZV ( )+lz LIy Ae
=- i ext(Ij Py —y 5 — )
2m, l_ i 2 ~ |r; rj| 2 oy |r; — 1y

(2.3)
where Vqy(1;) is the external potential applied to the electron from the nucleus

charges, which is defined as:

1 Ze?

Vext(11) == .
ext\ti 2 - |rl _ rll

(2.4)
The last term in equation (2.3) is the constant, so one has to consider the first three
terms to solve this equation. Therefore, one can rewrite Hamiltonian of the system

as follows:



Zme

Z VZ + Z Vet (1) + = > Z

i#j

Irl—rjl

A&

i)

(2.5)

-]

]| '@}

] L8



2.1.2 Hohenberg-Kohn theorem

The key principle to solve equation (2.5) is the Hohenberg-Kohn theorem [45].

Hohenberg-Kohn theorem consists as follows:

(1) For electrons under external potential, Ve:(r), the ground state is uniquely given
as a function of electron density (p(r)).
(2) A universal functional for energy, E[p(r)], exists as a function of p(r), where

the ground state energy is the global minimum of this functional in density, pg.

The Hamiltonian in equation (2.5) is defined by p,. Therefore, with this theorem,

the energy functional is written as follows:

E[p(r)] = j Ver(@p@dr + Flp],

(2.6)

where,

Flpl = Tlp] + Veelpl. (2.7)

Here, T[p] is the kinetic energy and V,.[p] is the electron-electron interaction
term.

According to the Hohenberg-Kohn theorem, the wave functions (i.e., all properties)
are completely given by p,. When assuming there exists no degeneracy, this can be
proven as follows: suppose there are two different external potentials V,.(r) and

oxt(T) which lead to the same p,. These two potentials give two different
Hamiltonians, H and H’, and corresponding different wave functions, y and .

Then, energy of the system, E is given by:

10



E = (p|H|p), (2.8)

and also the following relation is satisfied because i is the ground state of

Hamiltonian H:

E = (lHIY) < (W' IHW') = @' [H' ') + (' |H — H'[9')
=B+ (| H— By = E' + f Vet (1) — Ve (]9 (0.

(2.9)

Conversely, the below relation satisfies:

B < B+ [ V) = Ve 0o @

(2.10)

Equations (2.9) and (2.10) are contradictory to each other, so this means that the
assumption that two different wave functions exist for the same p, is wrong.

Despite the fact that Hohenberg-Kohn theorem proves that E[p(r)] exists, it

does not demonstrate any actual form of the functional. Chapters 2.1.4 provides

descriptions to make a reasonable approximations of E[p(r)].

11 A2t



2.1.3 Kohn-Sham equation

To effectively address the difficulties in the many-body problem of solving
Schrédinger equation, Kohn and Sham assumed that the electron density p(r) of N

electrons can be divided into the sum of orbital charges of each electron [46]:

N
p() = Y 1B
i=1

(2.11)
The one-electron orbital ¢;(r) is called Kohn-Sham orbital. This is the mean-field
approximation which transforms many-body problem in to the set of one-body
problems. Transforming equation (2.5) using equation (2.11), Kohn-Shan equation

is given as:

hZ
(‘ 5 Vi + Veff(r)> ¢i(r) = g(r),
e
(2.12)
where i is the atomic index, ¢; is the Kohn-Shan eigenvalue of ith electron, and

Vers(r) is the effective potential written as:

Veff(r) = Vext(r) + VHartree(r) + Ve (r). (213)

Here, Vyartree(r) is the Hartree energy which corresponds to the Coulomb

interaction term of an electron with itself:

2 !
c ] e PP

VHartree (I‘) = ? |1‘ — r,l

(2.14)

Vi (r) is the exchange-correlation energy which includes all the corrections from _
12 A =TH



the many-body interactions among electrons. The exact formulation of the functional
is not known. Therefore, the approximated functionals are used, which will be
discussed in the next subsection.

When trying to solve equation (2.12), one encounters the self-consistency problem
between the electron density and the wave function. To resolve this problem, iterative
method is used: First, the electron density is guessed from the scratch. Then, the
wave function can be determined by solving equation (2.12). With wave function,
the electron density is update. And then, get the wave function again by solving
equation (2.12). This iterations are performed until the electron density is consistent

to the wave function.

13 A



2.1.4 Exchange-correlation energy

In this Chapter, we discuss the exchange-correlation energy (Ey.). The exact form of
Ey.is now known, so one needs to use an approximate form. The simplest
approximation of E,. is the local density approximation (LDA) [46], which
assumes that the local exchange-correlation energy is same as that of the free

electrons with the same electron density. Therefore, LDA form of E,. is written as:

B2 = [ drp@exclo®)

(2.15)
Generally, LDA provides reasonable results for the systems with slowly varying
charge density. However, for systems with an electronic structure that significantly
deviate from the uniform electron gas, LDA shows a large error. To refine this,
generalized gradient approximation (GGA) E,. considers the gradient of the

electron density in the functional form [47,48]:

BE = [ dnp@exclo(), o)1

(2.16)
GGA tends to provide more reliable results compared to LDA. However, both GGA
and LDA functionals show a non-negligible error. For instance, both functionals
severely underestimate the band gap by 30-40%. This error is originated from the
fact that the functionals do not consider the electron self-interaction energy and also
derivative discontinuity at the integer number of electrons. Beyond-DFT methods
such as GW approximation [49] or hybrid functionals [50] are known to partly
address this problems. However these functionals take orders of magnitude longer
time compared to LDA or GGA. Recently, SCAN functional is developed that can
provide accurate energy orderings and structural properties with much lower
<

-
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computational cost compared to GW other advanced methods [51,52]. However,

SCAN functional still underestimates the bandgap [53,54].
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2.2 Neural network potential

While DFT calculations provides accurate prediction of various properties, this
demands a substantial computational cost. Recently, machine learning potentials are
gaining much attention, as they can achieve similar accuracy to the DFT calculations
but at a much higher speed. In addition, linear scaling of machine learning potentials
with the number of atoms makes them more advantageous in modeling large systems.
The first practical machine learning potential developed is Behler-Parinello type
neural network potential (NNP) [38]. Since then, several types of machine learning
potentials, such as Gaussian approximation potential (GAP) [40] and moment tensor
potential (MTP) [55], have been developed. These potentials are successfully
applied to diverse studies such as modeling amorphous structures [56] and
describing the phase transition of hydrogen liquids [57].

Among various machine learning potentials, NNP and GAP are most studied and
applied to various kinds of simulations. NNP is based on an artificial neural network
that can describe any functional form when the number of parameters is sufficient in
principle [58]. Therefore, they are suitable for learning diverse materials systems.
Neural network potentials require a large amount of reference training set, and the
training requires a high computational cost. On the other hand, GAP is based on the
kernel-based model that consists of the linear combination of kernel functions that
represent each reference point in the training set. Mathematically, this corresponds
to the artificial neural network with 1 layer, but with a much larger number of nodes.
The training of kernel-based models is directly performed by matrix algebra, so the
training cost is marginal. However, the computational load for performing simulation
with GAP increases with the number of data points in the training set because the
kernels of every pair of training points should be included in the model. Therefore,
one needs to reduce the number of reference structures in the training set with
advanced techniques such as CUR matrix decomposition methods [59].

Throughout this study, we use NNP as a machine learning potential to describe the
16 5 CH
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potential energy surface of DFT. In this Chapter, we describe the model, descriptor,

training techniques for NNP.
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2.2.1 Model

NNP adopts a feed forward neural network to describe the structure-property relation.
The schematic illustration of a neural network is shown in Figure 2.1.

Mathematically, this is formulated as:

NJ

xitt=o0 Z Xjwji + by, |,
J

(2.17)

where x} indicates the jth node of the ith layer, and ¢ is the activation function

which gives the non-linearity of the model. The fitting parameters are w, and b}
where the former is the weight parameter connecting the jth node of the ith layer and
kth node of the i+1th layer, and the latter is a bias added to the ith layer. For activation
functions, sigmoid function, hyperbolic tangent function, and rectifying linear unit
(ReLU) functions [60] are usually employed. In this dissertation, we mainly adopt

the hyperbolic tangent function as the activation function:

(2.18)
The activation function is not used for connecting the last hidden layer and the output
layer. Instead, they are linearly connected.

When constructing the NNP models, one can simply set the atomic coordinates as
an input layer and total energy as an output [39]. However, in this case, the length of
the input layer changes with the number of atoms. Thus this model is only applicable
to the system that consists of the same number of atoms as the reference structures
in the training set. To resolve this problem, Behler-Parrinello type NNP (BP-NNP)
is introduced [38]. The key idea of this model is to decompose the total energy of the

system (Ey) into the sum of atomic energies (E,;) of individual atoms in the system
18 A1 = TH



as follows:

Nat

Eiot = Z Eat(Gi):

(2.19)

where i is the atomic index, N, is the number of atoms in the system and the G;

is the input descriptor that captures the local environment of atom i. E,, of each

atom is calculated by an artificial neural network. The atoms in the same atomic

species share the same NNP. The BP-NNP model is schematically illustrated in
Figure 2.2.

The atomic forces (F) and stress (SSt4€) can be also obtained by differentiate

equation (2.19) with atomic coordinates [61]:

Fo 6Et0t zz JE; E)Gl]
e 0G;;0R; 4

i=1j=
(2.20)
ic _ cstaticrad static,ang
s = sgporad . gpateane,
(2.21)
Sstatlc ;rad Z Z(R )
Lap La = ] a
i=1j=
(2.22)
N N N N
tat
lsaaﬁlc = Z Z a1, a’) + Z Z (Ri,a - Rm,a)Fm,B'
.=1 =1 i=1m=1
(2.23)

where i is the atomic index, @ and B denotes the xyz index, gstaticrad gnq

19 A



gst@ticang jndicate the radial and angular parts of the stress components,

respectively. The sum of atomic stresses is equal to the total stress of the system.

2.0 2] 21



Hidden layers

Fig. 2.1: Schematic illustration of artificial neural network.
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Fig. 2.2: Schematic illustration of neural network potential.
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2.2.2 Descriptor

As an input layer, NNPs require descriptors that reflect the local structure
information around each atom. Previous studies suggested several descriptors, such
as Coulomb matrix [62], bag of bonds (BoB) [63], bispectrum of density [40],
smooth-overlap of atomic positions (SOAP) [64], and atom-centered symmetry
function (ACSF) [61]. Good descriptors should satisfy the invariance over
translation, rotation, and permutation of atoms with the same elements. ACSF and
SOAP both satisfy such invariance so that they are widely utilized in diverse
chemical systems. In particular, ACSF is known to be well fitted to NNPs.

The Behler-Parinello type of ACSF is the most popular choice with the NNPs [61].
The generally used symmetry functions are radial symmetry function (¢"241a!), and

angular symmetry function (G2"8%ar) which are written as follows:

Gradial = Z e (Rij=Rs)’ fe(Rij),

J

(2.24)
GiangUIar = 21_6 z (1 + Acosgijk)(e_n(Rij2+Rjk2+Rik2)
J.k#i
X fo(Rij)fe (R ) fo (Rur),
(2.25)

where i,j, and k are the atomic indices, n, ¢, and A are the hyperparameters, and

f is the cutoff function that is expressed as below:

R 0.5 [ ( ij) + 1] ifR;: <R
.D | COoS , 1 i

]C( ij) Rc Y €

0, otherwise

(2.26)
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i

Here, R. is the given cutoff radius. The multiple outputs of GF24@! and G
are obtained within the given set of hyperparameters and are collected as a vector to
be used as a descriptor of NNP.

For multi-element systems, symmetry functions are separately calculated for each
element pair. For example, in the case of element A in the A-B system, radial
symmetry functions of A-A pairs and A-B pairs are calculated. For angular symmetry
functions, A-A-A, A-A-B, and A-B-B interaction values are included in the training
set. Note that the number of symmetry vectors increases with the number of elements
in the system. Therefore, the symmetry function that does not modify the structure

when changing the number of elements have been developed [65], but the reliability

of this descriptor in various environment should be tested.
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2.2.3 Training methods

The training of NNPs is conducted by optimizing the weights and biases. The
training process is carried out by minimizing the difference between the errors of
target properties predicted by the model. The minimization target is called the loss

function (T'), which is generally defined as follows:

Nstr 2
F 1 (EiDFT _ EiNNP>
Nir o Nati
=1
Nir Nati
n K |[FDFT — FNNP|2
BZNtr N i i
i=1""atl j=1 j=1

Nstr 2
SiDFT SiNNP>
)

+
6Ntr o < Nat,i
i=1

(2.27)
where EPFT (ENNPy EPFT (FNNP), sPFT (SNNP) are energy, force, and stress of
ith atom calculated by DFT (NNP), Ny is the number of structures in the training set,
Nati is the number of atoms in the ith structure, and u and & are the
hyperparameters that determine the importance of force and stress in the training
process, respectively. Generally, the initial weights and biases of NNPs are set
randomly in a normal distribution small standard deviation. The gradient of the
weights (dT'/ dw) is updated by the backpropagation method. In a simple gradient

descent algorithm, each weight is updated by follows:

or
ﬁ — [R—
wow—a e

(2.28)
where « is the learning rate. a is one of the most important hyperparameters in
training artificial neural network [66]: if the learning rate is too small, the

7]

-
|
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convergence of T' would be very slow, and if the learning rate is too high, T' would
remain high or even diverge.

To reduce the computational cost for training NNPs, the batch training method is
widely used. This method trains over only a few reference data points in each
iteration instead of using a full training set. The batch is chosen every iteration.
About the optimizer, advanced techniques such as Adam [67], AdaGrad [68], and L-
BFGS [69] have been suggested in addition to the gradient descent algorithm.
Throughout this dissertation, we choose Adam optimizer with batch training method
where the batch size is set to 10-15.

In training a neural network, a tfraction of data points are used as training (which
is called training set), and the others are used for validation of the potential (which
is called validation set). One significant challenge in neural network training is the
overfitting problem which refers to the situation where the validation loss function
increases while the loss function of the training set consistently decreases. This often
happens when the absolute values of weights become too large [66]. One way to
prevent overfitting is to use the regularization method. This method adds an
additional term in the loss function that represents the dispersion of the weights.
Using this, the minimization of loss function prevents the weight distribution
becomes complex. One popular choice is the L2-regularization which adds the sum

of the square of the weights in the loss function.



2.3 Crystal structure prediction

Crystal structure prediction (CSP) aims to find the global minimum in the
configuration-energy space. Two methods are typically used, the data-mining of the
known prototypes [15,16] and heuristic approaches such as random structure
generation [20,21], genetic algorithm [28], particle swarm optimization [26,27],
simulated annealing [23], minima hopping [24], basin hopping [25] and
metadynamics [22]. While the goal of both methods is the same (finding the ground-
state crystal structure), the advantages and disadvantages of these methods are
distinct. Data mining methods examine the correlation between composition
information and structure prototypes. The method is fast because this only requires
the probability calculations on a machine-learning model following a few DFT
calculations. However, this method cannot predict the crystal structures with new
prototypes that do not exist in the chosen database. On the other hand, heuristic
approaches directly navigate the configuration space by modifying the given
structures. DFT calculations are utilized for local relaxations and evaluations of the
free energies. However, this requires a large computation time. Therefore, several
techniques, such as topological random generation [70] and antiseed scheme, are
proposed to accelerate navigating the configuration space in heuristic approaches. In
this Chapter, we review the technical details of the widely used CSP methods, and

also discuss the key algorithms that have been developed recently.
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2.3.1 Data-mining approaches

The first data-mining method is suggested by Fischer et al. in ref. [15] A machine
learning model was trained to represent the correlations between crystal structures
in different compositions in the experimental database. The authors first define the
representation of entire crystal systems in the database by vector X, which is defined

as:

X = (xEl,xE2, s Xg 5 Xepr Xey) ...,xcn), (2.29)

where ¢; represents the composition, x., represents one crystal structure prototype
of which composition ¢; can have (e.g., if ciis AB2Cs, x., can have values such as
spinel), and xg, indicates the system’s constituents (e.g., Ei = Ag, Cu, Na, etc). The
e vector is additionally defined to represent the information on the existing crystal

structures of the target system. For instance, the Ag-Zr system can be represented as

e = (xg, = Ag, xg, = Mg, xpg = FCC, xpg,mg = ZrCl3 type, xpgmg =
CsCltype, xmg = Mg type).

(2.30)
To predict the crystal structure of e in undiscovered composition cy, one needs to
evaluate P(x., |e) for all possible crystal structures in x. (namely, P(X)). For
example, in order to predict the crystal structure of AgMgs, one needs to evaluate all
possible P(x., [e), such as P(CusP typele), P(BiFs typele), P(IrAls typele), etc, and
choose the candidate structures with high probability. P(X) can be expanded as

follows [71]:

P(X) = 1_[ P(x;) ngz(x]-,xk) 1_[ G2 (X, X, X)) oo

j<k l<m<n
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(2.31)
where g? and g® denote the cumulant functions which represent the correlation among
pairs and triplets of structures, respectively. Generally, this extension is terminated

for triplets and higher-order, and can be written as:

1
P(X) = 7 l_[ P(x) 1_[ 9% (%), %),

<k
(2.32)
where Z is the normalization factor. Morita identified the cumulant functions as

follows [71]:

P(x;, x;
9 (%) = P(JEL-)LP(Jx),-)'
(2.33)
Therefore, the parameters {P(x;, x;)} and {P(x;)} are essential in calculating 2.27.
These probabilities are learned from experimental database using Bayesian
estimation method.
Hautier et al. devised a similar but different machine learning model for predicting
crystal structures [16]. This method examines similarities to whether structures
containing two elements have the same prototype. It provides the probability of

substitution of one element into other elements when the composition is given. In

this method, the compound consisting of n different ions are represented as follows:
X= (Xl,Xz, ...,Xn), (234)
where variable X are defined in Q, which denotes the set of existing ion species:

Q = {Fe?*,Fe3t, La3", ...} (2.35)
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Then, one needs to know p,(X,X") which is the probability of how likely ion

substitution from X to X'. This is expressed as follows:
Pn(X.X") = pn (X1, Xo, oo, Xn, X'1, X'y 0, X)), (2.36)

pn(X,X") can be a guide to determine how likely the composition X’ can have the
crystal structure of X.

The probability function is multidimensional so that can not be evaluated directly
and only can be approximated. In the literature, this is defined using binary indicator

f, which is called a feature function. In this case, f is defined as follows:

1 ifX, =a and X', = b
ab ~N_ L k k
fi? XX = {0, otherwise
(2.37)

where a and b denotes the ion index. Then, p(X,X") can be approximated as follows:

eZidifi(XX)
PXX)~ ———,

(2.38)
where i denotes the possible set of (a,b,k), Z is the partition function, and A’s are the
fitting parameters. These values can be determined over crystal information in the
experimental database.

Using the above methods, high-throughput searches on missing ternary oxides [72]
and nitrides [17] were performed. The later findings successfully lead to the
experimental realization as stated in the same literature. However, this method is

restricted to finding materials with known structure prototypes and fails to identify

the global minimum when the prototype information is not known in advance [73].
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2.3.2 Heuristic approaches

In this Chapter, we briefly overview the most popular five global optimization

methods of CSP.

Random structure sampling

Random structure sampling generates numerous structures randomly and finds the
lowest energy structures which is famously implemented in AIRSS [20]. To
effectively generate relevant random structures, distance constraints and symmetry

constraints are often applied.

Genetic algorithm

Genetic algorithm is the most popular method for crystal structure prediction, which
is implemented in several packages such as USPEX [29] and XtalOpt [74]. The
schematic illustration of the genetic algorithm is shown in Figure 2.3. In this method,
the structures in the pool compete with each other in terms of energy, and only the
low-energy structures are survived and are inherited to the next generations.
Structures of a fixed proportion are generated randomly and the others are generated
from mutations such as crossover, lattice mutation and permutation. With crossover
(or heredity) operator, two structures are cut in half and merged to a new structure.
The spatially reasonable parts of the structures are selected using order-fitness
correlation [31]. The lattice mutation alters the lattice vectors of a structure, and the
permutation swaps two atoms of different atomic species. In addition, softmutation
algorithm is implemented in USPEX which modify the structure along the direction

of the phonons that are approximately estimated from the simple spring model [29].

Particle swarm optimization
Particle swarm optimization (PSO) aims to find the global minimum by iteratively

improving the candidate solution by sharing information between the particles [30].
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Here, the particles are defined as the positions in the searching space. In the problem
of CSP, the individual crystal structures in the pool correspond to the particles. In
specific, the particles’ positions (x*) and velocities (v*) in search space are as

follows:

xHD xl.(k) + vl.(k+1), (2.39)

4

k k
vl.( o vl.( )+ ri(p; — xi(k)) +ry(9 — xi(k)), (2.40)
where K is the iteration step i is the particle index, pi is the position of the solution
that ith particle found, and g is the best-known solution. r; and r, are the
hyperparameters that determine the significance of the experiences of particle itself,

and the particle with the best solution.

Metadynamics

Metadynamics is the sampling technique that adds the repulsive potential to the
already sampled region [75]. (The definition of sampled regions is defined by the
collective variables.) Therefore, the molecular dynamics simulation tends to find
untrained regions with metadynamics and avoid being trapped in the local minima.
Thus this method can search wide configuration space. Usually, this method is used
to sample the reaction pathways of which activation barriers are high so that is
difficult to be captured by molecular dynamics with finite temperature [76]. In
ref. [22] the method is used to discover the high-pressure phases of materials using
the components of lattice vectors as collective variables. In addition, the
metadynamics method is combined with an evolutionary algorithm to find the crystal
structures in ambient conditions [77]. However, this method is challenging to be used

as a general CSP method in defining the general collective variables.
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Minima hopping

Minima hopping is the global minimization technique that explores the
configurational space by avoiding revisiting already visited regions [27]. This
algorithm is based on two principles. The first one is the built-in feedback
mechanism which recognizes the previously visited regions and prevents revisiting
them. The second one is the Bell-Evans-Polanyi principle which states that the free-
energy difference has a linear correlation with the reaction barrier. This is not strictly
followed in all cases but works in an average manner. The minima hopping algorithm
finds crystal structure as following steps: First, the algorithm starts from the current
local minima on the configurational space and tries escape step using a short
molecular dynamics (MD) simulation in a soft direction. The MD simulations are
terminated as soon as potential energy maxima have been crossed certain criteria.
Then, a local geometry relaxation is performed. The algorithm determines whether
to take the new minimum based on the energy difference. If the energy difference
does not exceed the given threshold, the same step is repeated. If the new structure

is accepted, another escape is tried at the new local minima.
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2.3.3 Local optimization and energy evaluation

In all heuristic methods, structural relaxations are accompanied by global
optimizations after generating the structure. This corresponds to the optimization of
the minimum of the near basin in the potential energy surface. This part takes the
longest time in the whole CSP algorithm because the cost of DFT calculations is high.
The typically used algorithms are the conjugate-gradient (CG) method, quasi-
Newton algorithm, and damped molecular dynamics. On the other hand, in the case
of CSP, the structural relaxation mostly starts from the randomly generated structures
of which chemical orders largely deviate from those of the local minima,
accompanying large structural change during relaxation. Therefore, this generally
takes much longer relaxation steps compared to the simple ones which marginally
changes the local orders. Because the structure relaxations are performed by DFT,
the total computational cost is significant. To mitigate this problem, Oganov et al.
suggested a multistage strategy, where relaxation proceeds in 3-5 stages [29]. At the
initial stage, the accuracy of DFT settings is loosely set, and then the precision of
DFT calculations increases with proceeding the rest of the stages. For instance, one
can set the k-point spacing to 0.2 A * at the initial stage, and consistently decrease
the value so that the final value is 0.08 A . This can reduce the total computation

time by a few times.
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2.3.4 Structure similarity

The heuristic CSP approaches generate numerous structures during the algorithm. If
the identical structures are included in the structure pool, the search efficiency of the
algorithm can be lowered. To evaluate whether the structures are the same or not,
similarity metrics should be required. Previous studies suggested several metrics
such as bond order parameters [78], landscape statics [79-81], disconnectivity
graph [82], etc. However, these works are not developed to be used in crystal
structure prediction, but for specific purposes such as analyzing kinetics and physical
properties of clusters and disordered structures. Thus, it is unclear that these
descriptors can judge the similarity of the structures with various local orders
generated during the structure search. In this section, we introduce two widely used
metrics: fingerprint function and bond characterization matrix.

The fingerprint function is suggested by Oganov et al. [83] and implemented in
the USPEX code [29]. The fingerprint matrix (F) isa N X N matrix where N is
the number of atoms. The component of F for atomic type pairs AB (Fag) is defined

as follows:

6(R —R;;
(—U)_lngB(R)_lr

Fpp(R) = Z Z NaMs ,

Apcell 'B; ATRY =57
(2.41)
where i is the atomic index of type A, and j is the index of B atoms within the cutoff
distance. § is the delta-function, Rjj is the distance between ith and jth atoms, Na
(Ng) is the number of atom A (B) in the unit cell, and A is the width of the bins for
Fag. gas is the partial radial function between atomic species A and B. The final
fingerprint of structure is defined as the concatenate of weighted elements of F. The

weight for the AB components of F is defined as:
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AB Zcell NANB

The cosine distance are used to measure the distance between structure | and J:

(2.42)

_ ( 2a Xk F1.aB(K)Fj ap(K)wap 2)
Dcosine ==|1- .
2 |Fiag(K)wag| - |Fi ag(K)wag|

(2.43)

The bond characterization matrix is developed by Wang et al. and implemented in
the CALYPSO code [30]. This metric is a modification of the bond-orientational
order metrics (Qi) suggested by Seinhardt et al. [78], where the spherical harmonic
and exponential functions are employed to identify the bond angles and lengths,

respectively. Specifically, it is defined as:

—b4 1 —alri—
m =N Z e Cimban) Vi (811, b15),
Sap i€A,jEB
(2.44)
where A and B are the indices for atomic types, i and j are indices for individual

atoms, d,p, and N5,z indicate bond type and the number of bond types,

respectively, r;; is the interatomic distance of atom i and j, and Y is the spherical

harmonics. To make the metric rotationally invariant, the modified metric is defined

as follows:

l

4 —84p|?
Sap _ AB
@ 2l+1 z U | -

m=-1

(2.45)
where | values of 0, 2, 4, 6, 8, 10 were used as a type of bonds in the reference.
:| -I

-
|
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Finally, the similarity distance between structure u and v (D) is defined as follows:

1 Sau _ A0apv)>
Duv = N ZZ(QI ABu — Ql 4B ) .
type 5 4

(2.46)

where Niype denotes the number of bond types.
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2.3.5 Advanced techniques on genetic algorithm

As mentioned above, global optimization takes significant computation time due to
the large cost of DFT. Therefore, several techniques have been developed to reduce
the number of generations for finding the global minimum. Some important
additional techniques used with the genetic algorithm are introduced in this

subsection.

Symmetry-based random structure generation

Most of CSP programs employ the symmetry-based random structure generation
algorithm [20,29,30,84]. The algorithm first randomly selects the space group and
then selects the lattice vectors in accordance with the chosen space group. Then,
Wyckoff sites are randomly selected to put atoms in the cell. Then, the structure is
checked whether it satisfies the distance constraints. If the structure does not satisfy
the constraints, it selects other Wyckoff sites. If this iteration exceeds the given
number, then the space group is selected again and repeated the process until the
structure satisfies the constraints. As a result, the symmetric structure having a
randomly chosen space group is generated. This method is proven to be more
effective for CSP than just a simple random structure generation method only using

distance constraints [20].

Topology-based random structure generation

To further improve the efficiency of CSP, Bushlanov et al. developed the other
random structure generation method from the given topology [70]. The topology is
defined by the connectivity of the atoms in the material. In this method, one topology
is selected from the ToposPro database [85], and then the structure having this
topology is generated. In principle, an infinite number of structures can be generated
from one topology. This method is tested to be more efficient in finding the low-

energy structures [70]. However, we note that this method is not completely ab initio,
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because this uses the structure information of materials in the database.

Increasing the diversity

To search the wide configurational space of materials in a short generation, it is
important to maximize the diversity of the structure pool during the evolution. In this
sense, it would be lower the efficiency of the algorithm if the already-sampled
structures survive too long generations. To discourage the already sampled structures
from surviving to the next generation, the penalty is added to the survived structures
which relate to the similarities of the structure compared to the other previously

sampled structures. This potential is name antiseed (A) [31] which is defined as:

D?
A= 2 W,exp (— —“12>,
- 204

(2.47)
where a indicates the index for structures that are obtained in the previous
generations, Di, is the structural distance (see Chapter 2.3.4) between ith and ath
structure, and parameter o, and Ws is set to proportional to the fitness variance. This
antiseed weight is updated every generation. On the other hand, the parameter setting
can be very sensitive, so multiple trials over the various set of parameters may be

needed.

Multi-objective optimization

The general purpose of CSP is to find the ground-state structures. On the other hand,
metastable structures such as diamonds can also have good target properties. To find
these materials, multi-objective optimization techniques are employed in
evolutionary CSP [86]. In this method, two fitness’s are optimized at the same time.
The survival of the structure is not determined by energy alone, but structures at the

Pareto front of two fitness’s (such as energy and band gap) all survive into the next
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generation.

Variable-composition method

Most structure searches aim to find the global minimum in the fixed composition.
However, the optimal composition is not known in advance in most cases. The
variable-composition method is developed to search the various compositions at the
same time [33]. This algorithm starts with the initial random structures with various
compositions and does not fix the composition during the structure generation by
crossover. The fitness corresponds to the hull energy (energy above the convex hull).
This can be especially effective for metals and high-pressure phases [33] where
various compositions are allowed [87]. However, this may not be favorable for
searching semiconducting materials at ambient conditions because the oxidation

number is very sensitive to the stability of the phase in this case.
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Chapter 3

CSP with machine learning potentials

3.1 Training machine learning potentials

When developing machine learning potentials (MLPs), constructing reference
structures for the training set plays the most important role, because MLPs only
describe potential energy surfaces from the configurations included in the training
set. Therefore, the configurations that may appear during a target simulation must be
sampled in advance. This poses a distinct challenge when training MLP for crystal
structure prediction (CSP), where the target material is unknown before making
predictions. To address this issue, previous researches suggested methods to sample
training set by random sampling or evolutionary search in an on-the-fly manner [41-
43]. These methods were tested on unary materials such as boron clusters, boron
bulk allotropes, high-pressure sodium, and carbon allotropes. However, these
methods require ~1000 DFT relaxations which may be inefficient for complex
ternary or higher (multinary, henceforth) compounds. In addition, the errors of the
MLPs are larger than 40 meV/atom, which were not accurate enough to identify fine
energy differences among metastable structures near the global minimum.

Here, we propose a method to construct MLP as a surrogate model of DFT. Our
main idea is to use DFT molecular dynamics trajectories of disordered structures
.

-
|
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(amorphous and liquid) as a training set to construct MLPs. DFT melt-quench-
annealing simulations can be started from scratch, eliminating the need for prior
knowledge of chemical information of the target materials. In addition, these
trajectories include diverse local orders that may appear during the CSP procedure.
Note that this idea was first suggested by Deringer et al. [88]. However, the previous
study has tested this idea only on carbon systems that are expected to have the
simpler potential energy surface than complex multinary compounds. Therefore, the
guestion remains whether MLPs trained by this method can correctly reproduce
potential energy surfaces of more complicated systems.

In this Chapter, we aim to develop the method to train MLPs for multinary systems
using disordered structures. We use Behler-Parinello type neural network potentials
(NNPs) [38] but the present method can be also used with other types of MLPs, such
as Gaussian approximation potentials [40] and moment tensor potentials [55]. The
method is tested on four multinary materials, Mg.SiOs, LiAICls, Ba,AgSis, and
InTe20sF, of which crystal information is presented in the ICSD database [8]. To
test the quality of NNPs, we compare DFT and NNP energies for experimental and
metastable structures that appear during DFT-based CSP algorithms. Impressively,
NNP consistently rank the energies of experimental structures lower than those of
metastable structures in all cases. Using the developed NNPs, we also conduct CSP
using evolutionary algorithm program. This identifies the experimental structure of
LiAICls. On the other hand, the method fails to find the ground states for other
materials, but only finds metastable structures within an energy range of 10-41

meV/atom compared to the ground states.
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3.1.1 Melt-quench-annealing simulation

We perform a molecular dynamics (MD) simulation of a melt-quench-annealing
procedure using DFT calculations for each material to generate a training set for an
NNP. All DFT calculations in the present work are performed by using Vienna Ab-
initio Simulation Package (VASP) code [89]. We adopt the Perdew-Burke-
Ernzerhof (PBE) version of generalized gradient approximation for exchange-
correlation functional [90]. The I'-point is used for k-point sampling for all materials,
and cutoff energies of M@,SiO4, LIAICLs, Ba2AgSis, and InTe,OsF are set to 450,
300, 250, 500 eV, respectively. These settings are chosen by convergence tests on
the superheated structures with energy, maximum atomic force, and pressure limits
are set to 20 meV/atom, 0.3 eV/A, and 10 kbar, respectively. The time step for MD
simulations is set to 2 fs.

First, we perform a superheating simulation of 5 ps at 4000 K for a randomly
generated structure of ~100 atoms with the same stoichiometry as each target
compound. We determine the ad hoc melting temperature (Tm) as the lowest
temperature at which the mean square displacements of all atomic types are linear
with time. T, of M@2SiO4, LIAICls, Ba2AgSis, and InTe,OsF are determined to be
3500, 1500, 1500, and 2000 K, respectively. Then the volume of the cell is
determined so that the external pressure is zero at Tm. The trajectory of the liquid
structure is generated by the MD simulation for 20 ps at Tm, and the structure is
quenched at a rate of 100 K/ps to 300 K. We also perform the annealing simulation
at 500 K for 15 ps to further sample low-energy amorphous structures. The reference

structures for training set are selected every 10 steps.
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3.1.2 Training NNP

To train NNP, we use SIMPLE-NN code [91]. We employ a Behler-Parinello type
NNP which provides the DFT energy as the sum of the atomic energies predicted by
artificial neural networks [38]. We use 132-30-30-1 (212-30-30-1) architectures of
NNP for ternary (quaternary) compounds with atom-centered symmetry
functions [61] as input layers. The cutoff distance of the symmetry functions is set
to 6 A. The symmetry function vectors are transformed by principal component
analysis and then whitened in order to avoid using highly correlated symmetry
functions. In addition, all the components of symmetry functions are normalized [92].
The loss function of the training is set to the sum of energy, force, and stress errors
and the L2 regularization term. One-tenth of the reference data is randomly chosen
and used as validation structures. The training is conducted with ADAM
optimization method [67] with a batch size of 10-15, until the root mean square
errors (RMSESs) of the validation set become smaller than 10 meV/atom, 0.2 eV/A
(except for InTe,OsF: 0.4 eV/A), and 10 kbar for the energies, forces, and stresses,
respectively. We also check that the overfitting does not exist during the training.

The LAMMPS package is employed for NNP calculations [93].
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3.1.3 Evaluation of the quality of NNP

To test the quality of NNP, we choose three ternary and one quaternary
compounds from the ICSD, Ba,AgSis, MgzSiO4, LIAICl4, and InTe,OsF (see Figure
3.1). These materials contains diverse structural orders: Ba.AgSis has a layered
structure formed by Si,Ag, with Ba atoms intercalated between them, Mg.SiOa
consists of Mg-O octahedron and Si-O tetrahedron and contains both edge- and
corner-sharing of them, LiAICl, consists of Li-Cl and Al-Cl tetrahedrons where they
are all connected by corner-sharing, and InTe;OsF is a multi-anion compound with
corner-shared In-O-F and Te-O polyhedrons. In addition, their space groups are
different from each other (Fddd, Pnma, Pmn2;, and C222;, for Ba,AgSis, Mg2SiOs,
LiAICl,, and InTe20OsF, respectively). We emphasize that the materials with low
symmetries, not simple compounds with high symmetries (e.g., SrTiOs), are chosen
to stress-test our method. In addition, these materials have distinct physical
properties and are therefore being applied to the various applications: Ba;AgSis is a
member of Ba-Ag-Si system which has been investigated for potential high-T.
superconductors [94]. Mg,SiO4 have a high fracture toughness so that it is
considered as a material for bioceramic implants [95]. The ICSD database also
includes three other metastable phases of Mg.SiO.. LiAICls is a Li superionic
conductor under aliovalent doping [96]. Two similar-energy structures of LiAICl,
exist in the ICSD (P2:/c and Pmn2;), and we find that Pmn2; is slightly more stable
from DFT calculations within PBE level. Finally, InTe,OsF has been studied as a
potential nonlinear optical material due to the noncentrosymmetric structure [97].
The theoretical bandgaps calculated within the HSEO6 functional [50] are 0.25, 6.70,
7.17,and 4.71 eV for BapAgSiz, M@.SiOs, LIAICI4, and InTe,OsF, respectively.

To investigate the accuracy of the developed NNPs as an energy evaluator in CSP,
we compare NNP and DFT energies of metastable structures. Here, the metastable

structures are generated by the CSP algorithm using evolutionary algorithm and DFT
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calculations, implemented in the Universal Structure Predictor: Evolutionary
Xtallography (USPEX) package [29]. The formula unit (Z) of each ground-state
experimental structure is used for each materials. The population size is set to about
twice the number of atoms in the unit cell, which corresponds to 20-60. We use
random seeding, and mutation operators to generate structures. For the former, we
use either symmetry-based random structure generation [31] or topological structure
generation methods [70]. For mutation operators, we use crossover (also called
heredity), permutation, lattice mutation and soft mutation. The initial ratio of
operators are set to 16.6%, 16.6%, 41.6%, 8.3%, 8.3%, and 8.3% for symmetry-
based random structure generator, topological structure generator, crossover,
permutation, lattice mutation and soft mutation, respectively. The proportions of
these operators are set automatically in every generations to diversify the structures
in the pool. All structures in the pool are relaxed until atomic forces and total stress
is less than 0.1 eV/A and 20 kbar, respectively, or the number of relaxation steps
becomes 400. Note that we used multistage relaxation method described in Chapter
2.3.3. The weighted partial radial distribution functions (pRDF) [83] are used as
structure similarity metric of the structures. We use antiseed option, which add
repulsive Gaussian energies for sampled structures that prevents the global
optimization trapping into the local minima [31].

We gather all structures that emerged during the whole evolutionary searches (10-
20 generations) and use them in the benchmark test of NNP. On average, 274
metastable structures are sampled. The energies relative to that of the stable phase
(AEt) are less than 500 meV/atom for all materials. The lowest AE:’s are 46.5, 28.2,
1.9, and 33.2 meV/atom for Ba,AgSis, Mg.SiOs, LIAICL;, and InTe.OsF,
respectively, which means that the evolutionary algorithm did not find the reference
structures.

NNP energies are evaluated within the fixed geometries obtained from DFT
relaxations. Figure 3.2 shows the correlation between AEq:’s evaluated by DFT

.
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(AERET) and those obtained by NNP (AENNP). It is noticeable that NNP and DFT
energies are highly correlated especially in the low-energy regions (AERET < 200
meV/atom). The Pearson coefficients in this region are 0.769, 0.864, 0.977, and
0.962 for BaAgSis, M@.SiO4, LIAICIls, and InTe,OsF, respectively. This is
impressive considering the fact that the NNPs were only trained over disordered
structures and none of the metastable crystal structures used for the tests were not
included. This means that the melt-quench-annealing trajectories sample diverse
structural motifs contained in low-energy metastable structures. In addition, each
NNP consistently ranks the most stable experimental structure to be the most stable
among all structures appeared in Figure 3.2. We also observe the same ordering when
the structures are fully relaxed using NNP. This indicates that NNP can act as a
suitable surrogate model of DFT in the CSP algorithms.

In Figure 3.2, RMSEs of AERNNP’s with respect to AERET’s are 27.4, 29.6, 10.7,
and 63.7 meV/atom for Ba2AgSis, Mg2SiOs, LIAICls, and InTe,OsF, respectively, in
the low-energy region (AERET < 200 meV/atom). These errors are larger than the
training errors because local motifs in disordered structures may not exactly equal
with those in the crystalline phases. Nevertheless, the trained NNPs can still serve as
a surrogate model in CSP because final candidates in certain energy window are re-
evaluated by DFT calculations at the final stage of CSP (discussed in section 3.2.4).

It can be seen in Figure 3.2 that the NNP errors in high-energy region (AERET >
200 meV/atom) are larger than those of lower-energy structures. This might be
attributed from the fact that the structural motifs in high-energy structures were not
sufficiently sampled in disordered structures: the disordered structures are generated
entropy-driven, so the high-energy phases have low chances to be sampled. It is also
noticeable that the systematic upward deviation exists in Figure 3.2 rather than the
downward deviation. This is because the structures are first relaxed by DFT, and
then evaluated by NNP. Therefore, there exist slight deviations from the equilibrium
positions of NNP. We also observed the opposite trends when DFT energies are
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evaluated by NNP-relaxed structures.

To further verify whether the training set encompass the configurational space of
metastable structures, we plot distributions of symmetry function (G) vectors of the
training set and those of metastable structures of Ba,AgSis. In Figure 3.3, the G
vectors are aligned by PCA, and the distribution over principal axis is shown. It can
be seen that most G points from metastable crystal structures and experimental
structures lie within those from the training set. Other materials also show similar
trends to that of Ba,AgSis. The only exception is Al in LiAICls, where the G
components of Al atoms from high-energy metastable structures largely deviate from
the training structures. However, the G components of low-energy structures well
fitted in the training set. Therefore, it is explicitly verified that the local orders of
metastable structures generated by the evolutionary algorithm and the experimental
structures are well included in the configuration space of the training set.

Even though the training set contains overall local motifs similar to the target
structures, the exact local motifs in the low-energy metastable structures may not be
included in the liquid and amorphous structures. This can be seen in Figure 3.2a that
the large error (~100 meV/atom) occurs near the ground-state structure of Ba,AgSis.
This is because any hexagonal SisAg. in the experimental structures does not exist
in the training set. This might be attributed from the high quenching speed and small
simulation cell. This problem can be resolved by using an iterative training scheme

that adds metastable structures to the training set and refines NNPs (see section 3.2.1).
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Fig. 3.1: The crystal structures of (a) Ba,AgSis, (b) Mg:SiOs, (c) LiAICl,, and (d)
InTe,OsF.
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3.1.4 Structure searching with NNP

In the last Chapter, we confirm that NNPs trained over disordered structures can
be a hi-fidelity surrogate model for CSP. Therefore, we perform CSP with
constructed NNPs for the four test materials. We interface USPEX [29] with
LAMMPS [93] code for the implementation of NNPs in structural relaxations and
energy evaluations. The computational parameters for USPEX are set the same as
those in Chapter 3.1.3, except this time we set the number of generations to 120. This
is longer than 10-20 generations that were available within DFT-USPEX but the
computational time is much shorter due to the much faster speed of NNP. At the end
of the 120 generations, we to relax 10-20 lowest-energy candidate structures with
DFT utilizing AMP? code [98]. The relaxation is performed until all the atomic
forces and the stress components are less than 0.02 eV/A and 4 kbar.

Despite the longer generations compared to the conventional settings in previous
studies (mostly for unary or binary materials) [31,99,100], USPEX fails to identify
the most stable experimental structures except for LiAICl4. This may represents the
complicated configuration spaces of multinary compounds. The structures with the
lowest AEq values are shown in Figure 3.4 and the corresponding energies are 41.2,
27.7, 0, and 11.5 meV/atom for Ba,AgSis, Mg,SiO4, LiAICls, and InTe,OsF,
respectively. While the structures of three candidate structures are similar to the
ground states, there are local orders are distinct from them: final candidate of
Ba,AgSis (Figure 3.4a) consists of only Si-Ag rings but does not contains exact
SiaAgz and Sis rings in the experimental structure (Figure 3.1a). Mg.SiO4 found by
USPEX with NNP (Figure 3.2a) only has tetrahedral Mg and Si atoms while they
are corner-sharing with each other by O atoms. However, this is largely deviate from
the most stable experimental structure of Mg.SiO. which contains octahedral Mg
atoms with mixed corner- and edge-sharing O atoms. Nevertheless, the NNP energy
of this structure is close to the experimental structure, which implies that the ground-

state structure can be found in longer generations. In the case of InTe2OsF, the
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experimental and the predicted structures have similar structural motifs with
threefold Te and twofold O. However, the major differences are observed for local
orders around In: the In atoms in the experimental structure (Figure 3.1d) are corner-
shared with other In atoms by F atoms, resulting in twofold F atoms. However, the
predicted structure (Figure 3.4d) contains edge-sharing singly coordinated F. Even
S0, the AE of InTe2OsF is only 11.5 meV/atom, which implies that it has a rugged
energy landscape where the structural similarity is weakly correlated with the energy
differences.

So far, we set Z as those of the most stable experimental structures. However, this
information is not known when searching unknown materials for the practical
purpose. Therefore, one has to try various Z values to find the correct ground state.
In this sense, NNP is expected to be much more advantageous than DFT in searching
with various Z due to the order-N scaling. (DFT scales with order-N3.)

About the computational cost, the main load originates from constructing the
training set by melt-quench-annealing simulation by DFT calculations. It took about
a couple day to generate training set and a half day for training NNPs using 4-CPU
(8-CPU) clusters for ternary (quaternary) materials. The Intel Xeon Phi 7250, 1.4
GHz (68 cores per CPU) is used in this study. CPU times for structural relaxations
in CSP were 2,072 (69,594) and 11,532 (244,646) s/CPU for LiAICls and InTe,OsF,
respectively. It took 1 day for NNP to finish 120 generations of USPEX calculations
and 3-4 days for DFT to finish 10-20 generations.

As mentioned above, CSP of complicated multinary compounds may require
generations much longer than 100. In principle, NNP can reach this generation
because the calculation speed of the structural relaxation and the energy evaluation
using NNP is ~1000 times faster than DFT. However, the speed of USPEX using
NNP for 120 generations is only 30 times faster than USPEX using DFT. This means
that the fast speed of NNP is not fully reflected in the CSP algorithm with USPEX.
We speculate this by three reasons: First, the structure generations and pRDF
<
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calculations of generated structures are done sequentially. The whole process takes
about few minutes. The longest part is the random structure generation using
topology information [70]. This load is not taken seriously when using DFT-based
CSP because this is marginal compared to the calculation time of DFT calculations.
However, when using NNP, the structural relaxation takes only about few minutes,
so the structure generations take similar time to the structural relaxations. This load
would be much more reduced if it is done parallel. The second reason is that the
parallelization of the structure relaxations in USPEX is done by submitting multiple
gueue jobs. When using NNP, the computation time for one job of structural
relaxation mostly takes less than a minute (the longest job can take few minutes), so
this puts excessive loads on the main CPU for uploading and unloading multiple jobs
in a short time. This often results in the systematic time delays and weakens the
stability of the cluster server. Third, we find that the rest of the post-processing time
increases linearly with the number of generations. We cannot find the exact reason
for this because the main code of USPEX is not open in public. We speculate that it
is attributed to the comparison of pRDFs of new 4structures with all the previous

structures for eliminating duplicate structures and calculating antiseed weights.
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Fig. 3.4: The most stable structures of (a) Ba;AgSis, (b) MgzSiOs4, (c) LiAICI4, and

(d) InTe,OsF found by NNP-USPEX.
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3.2 Developing and optimizing CSP algorithm

In this Chapter, we develop the NNP-based CSP algorithm that can address the
problems mentioned in Chapter 3.1.4. First, we optimize the training procedure of
NNPs to further increase the accuracy of NNP and reduce the computational cost of
constructing training set. Then, we optimize the global optimization algorithm to
fully harnessing the speed of NNP. Finally, we demonstrate the parallelization
scheme that are used in this study. We note that modifying other CSP code is not an
option because the most of popular CSP codes such as USPEX [29] and
CALYPSO [30] are not open in public.
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3.2.1 Optimization of training procedure

As mentioned in Chapter 3.1.4, the computational cost to generate the training set
takes the most significant amount of time during the whole process. To reduce the
time cost, we reduce the number of atoms in the unit cell from 100 to 80 in MD
simulations. This reduces the computational costs in half. In addition, we reduce the
melting time from 20 ps to 16 ps, increase quenching speed from 100 K/ps to 200
K/ps, and reduce annealing time from 15 ps to 5 ps to further save the computational
cost. The computational time for training of NNPs and structural relaxations with
NNPs can be further reduced by changing the cutoff radius of the G vectors. We
reduce the cutoff radius of the angular parts of G vectors from 6 to 4.5. This reduces
the training time and structure relaxation time by about half. Note that the mentioned
changes may sacrifice the accuracy of the NNP. Nevertheless, we demonstrate that
the quality of NNPs are good enough in most cases for CSP which will be discussed
in the section 3.3.

The above-mentioned settings are used for the calculations in Chapter 3.2. On the
other hand, we confirm that the further increase in computational speed is possible
by further loosening the settings with the additional tests. We reduce the number of
atoms in the unitcell to ~64. In addition, melting time is set to 10 ps, and quenching
is done only for 1500 K (e.g., 2500 K — 1000 K). We use this setting for the
calculations for applications of CSP in Chapter 4.

As mentioned in Chapter 3.1.3, the large deviation of NNP energies from DFT
energies (~100 meV/atom) is found near the ground-state structure of Ba,AgSis in
Figure 3.2a. This is because the Si and Si-Ag hexagonal rings are not exactly
included in the training set. The metastable structures sampled from the NNP-based
CSP can be utilized as an additional training set to update NNPs. To test this idea,
we add 22 lowest-energy candidate structures of Ba,AgSis to the training set and
construct the new NNP. In specific, we included the DFT relaxation trajectories of

candidate materials and their distorted geometries due to the elastic deformation in
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the training set. Figure 3.5 shows the correlation of DFT and NNP energies using the
trained potential. (We use the same test structures that were employed to generate
Figure 3.2a.) Compared to Figure 3.2a, much more accurate correlations between
NNP and DFT energies are obtained, which is a result of configurations including
Si-Ag rings to the training set. In specific, the Pearson coefficient in the low-energy
region (AERNP) increases from 0.769 to 0.828 after refining the potential. This
significant improvement in NNP can boost identifying the global minimum in CSP.

This advancement in Ba,AgSis can occur generally in other materials as well
because the exact local orders in the training set do not exactly match the local orders
in the training set. We construct a systematic approach to iteratively refine a training
set which is presented in Figure 3.6. With the constructed NNP from melt-quench-
trajectories, we proceed 50 generations of genetic algorithm and collect 10 structures.
5 lowest-energy structures and 5 structures with the lowest antiseed weights are
sampled within 100 meV/atom. The antiseed weight represents the degree of
distinction of a given structure from the other structures in the pool. Here, the

antiseed weight of ith structure is defined as follows:

2

d;
A=) exp(-5%),

a

(3.1)
where the summation runs over structures in the low-energy pool (bottom 200
meV/atom), dia is the similarity distance between the ath and ith structures measured
by pRDF, and ¢ is a Gaussian width. Unlike the original scheme [31], we did not
consider all the structures that emerged in the previous generations but only include
the structures in the low-energy pool in the current generation. The relaxation
trajectories of the collected structures are included in the training set to refine NNP.
The structure relaxation is performed until the maximum atomic forces in the cell
and the stress components are less than 0.1 eV A ' and 20 kbar, respectively. We
.
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find that the initial cell structure sometimes changes significantly during the
relaxation due to the imperfect accuracy of NNPs. Therefore, the k-point spacing is
monitored every 10 relaxation steps and adapted if the spacing becomes different
from the original k-point spacing. Then, we proceed CSP and refine NNPs in the
same way at 100, 200, and 400 generations, but remove structures already sampled
from the previous generations. During evolutionary algorithm, we use symmetric
random generation [31], crossover algorithm, permutation and lattice mutation as
structure generators.

We find that this iterative scheme is effective in training high-accuracy NNPs in
many cases (further discussed in the Chapter 3.3). In particular, the crossover
algorithm is found effective in sampling diverse structural motifs that may be absent
in the original training set. One intriguing example is the refinement of the NNP of
BKS,. The experimental structure of BKS; is shown in Figure 3.7a: it has a B-S
hexagonal ring structure connected with K atoms. Before perform iterative training,
the ground state structure is not predicted as the lowest-energy structure as shown in
Figure 3.8a. On the other hand, the crossover algorithm samples the metastable
structure in Figure 3.7b, which contains a ring structure of B-S. After training this
configuration, the correlation of NNP energies and DFT energies of metastable

structures and the experimental structure is significantly improved (Figure 3.8).
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Fig. 3.7: (a) The experimental structure of BKS,. (b) The sampling of the six-fold
ring by crossover algorithm.
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3.2.2 Optimization of global optimization

As discussed in Chapter 3.1.4, the previous CSP codes are only optimized for DFT-
based CSP methods that need to find ground states in short generations due to the
large computation time of DFT calculations. Therefore, this takes large efforts in
pre-processing and post-processing in order to effectively explore the
configurational space. On the other hand, we failed to find the global minimum of
Mg.SiO4, Ba,AgSis, InTe20sF with USPEX [29] using NNP. This implies that the
current CSP codes are not well optimized for searching the complicated multinary
compounds with NNPs which is expected to take large generations. Here, we
develop an efficient CSP algorithm that can fully harness the speed and accuracy of
NNPs.

We first develop the evolutionary algorithm similar to the conventional
methods [28] as shown in Figure 2.3. In every generation, the fraction of structures
in the pool are newly generated by random structure generation, and the others are
inherited from the low-energy structures (200 meV/atom for refining stages and 100
meV/atom for main CSPSs) in the previous generations by crossover, permutation and
lattice mutation. The structures within 100 meV/atom (50 meV/atom) energy
window further survives from the last generation during refining (main CSP) stage.
For random structure generation, we use symmetry-based structure generation
method implemented in RandSpg code [84], which is similar to the random structure
generation methods in other CSP codes such as USPEX [29] and CALYPSO [30].
This method creates random structures by randomly selecting space groups, lattice
vectors, and Wyckoff positions. In the case of the crossover algorithm, we use atomic
energies to rationally select slabs of inheriting structures and translation vectors
when emerging structures. We use similar permutation and lattice mutation
algorithms that are implemented in the DFT-based CSP code [29].

The crossover algorithm tends to sample diverse local motifs, which is useful in

training hi-fidelity NNPs (also discussed in Chapter 3.1.4). On the other hand, we
65 - 21l

-
Ll



find that the crossover algorithm is not effective in finding the global minimum
because it consistently generates low-energy structures especially for large unit cell.
This does not effectively navigate a rugged energy landscape in multinary
compounds as the case of InTe;OsF discussed in Chapter 3.1.3. (The effect of
structure generation operators for finding global minimum is further discussed in
Chapter 3.3.1.) Therefore, when refining NNPs, the ratios of random generation,
crossover, permutations, and lattice mutations are set to 30%, 50%, 10%, and 10%,
respectively, while during the final CSP to the find global minimum, we eliminate
crossover and the ratios are changed to 70%, 20%, and 10% for random structure
generation, permutations, and lattice mutations.

Figure 3.9 shows the parallelization scheme of our algorithm. To reduce the pre-
process and post-process times, we perform structure generation, structure relaxation,
and pRDF calculation in parallel. In addition, the pRDFs are compared only among
the low-energy structures not among all structures that emerged during the previous
generations. The main code is written in Python. The parallelization is carried out
using mpi4py module. Structure generation and relaxation is performed by RandSpg
code [84] and LAMMPS code [93], respectively. Both of codes are written in C++,
so we bind these code to the main Python code using pybind11 module. The speeds
of the algorithms are close to the original versions of C++ code, which is much faster
than Python-based codes. Therefore, the total pre-process and post-process times
only take few seconds.

Unlike DFT calculations, NNP calculations always run the risk of falling into
untrained domain during structural relaxation. To minimize this risk, we use
constraints for atomic pairs during the generation of random structures. This highly
prevents the generation of unphysical structures as initial structures that largely
deviate the training set. The distance constraints are determined for each atomic pair
as the minimum distance of the atomic pair that appear in the melt-quench-annealing
trajectory. This constraints often extend to 2-3 A for some pairs, which are much

.
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tighter than simple constraints preventing too short bonds (usually set to 0.7-1 A).
Therefore, this filters out 99% of structures in the structure generation stage. The
same distance constraints are used as the cutoff distances for the restrain option
during the structure relaxation. (The restrain option is implemented in LAMMPS
code.) The restrain option prevents atom pairs to be in the cutoff distance by applying
repulsive harmonic force when the two atoms are closer than the cutoff distance.

To further reduce the computation time for structure relaxation, we first relax the
structure with the fixed lattice. Then, the structure is inspected whether it violates
the distance constraint and the vacuum constraint (6 A). If it does not violate both
constraints, it is further checked whether the energy is lower than 0.5 eV/atom
compared to the lowest-energy structure in the previous generation. If the structure
satisfy this criteria, relaxation further proceeds to structural relaxations of both
atomic coordinates and lattice parameters. If the structure does not satisfy one of
these constraints, the relaxation stop after the lattice-fix relaxation and then the
energy is read.

Even though we applied distance constraints to minimize the risk, the unphysical
structures that are not in the training set can appear during the simulation in any time.
Most of these structures have high energies in NNP that are discarded in the next
generation, so does not affect the performance of CSP. On the other hand, some
unphysical structures with high DFT energies can have the lowest NNP energy
among the other structures in the pool even though the structure satisfy the distance
constraint. In this case, only unphysical structures survive into the next generation.
To prevent this situation, we monitor the DFT energy of the lowest structures every
1000 generations (see Figure 3.10).

We construct a CSP code by integrating the developed algorithms, which is named
as SPINNER (Structure Prediction of Inorganic crystals using Neural Network
potentials with Evolutionary and Random searches). The summary of the algorithm
is presented in Figure 3.11. For an input chemical composition (elements and
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stoichiometry), SPINNER conduct a melt-quench-annealing simulation and trains an
NNP over the reference structures consists of this disordered structures. Then, NNP
is iteratively retrained over ordered structures in low-energy region. In the final CSP
proceeding up to 5000 generations, SPINNER gathers low-energy candidate
structures (< 50 meV/atom), which are finally sorted after relaxations by DFT

calculations.
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3.3 Performance test

In this Chapter, we conduct the performance test of the developed algorithm by two
tests: the first one is the blind test over randomly selected experimental structures
and the second one is the benchmark test on theoretical structures that are predicted
by other CSP methods. Then, we evaluate the computational cost of our algorithm.
The results of both tests suggest that the SPINNER can mostly identify the global

minimum of the multinary species in a reasonable time scale.
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3.3.1 Blind tests on experimental database

In testing search algorithms dealing with NP-hard problems, the global minimum is
usually not known. However, the reference structures in CSP is already known
because the overall minimum of the potential energy surface for a given
thermodynamic and chemical condition is identified by experiment. Therefore, it is
possible to estimate the performance of an algorithm by performing blind tests with
configurations reported in experimental databases such as ICSD.

In this study, we select ternary compounds as reference structures for the blind test
because the database of ternary compounds contains various chemical and structural
motifs. First, we randomly select 50 materials based on five criteria: (1) we choose
crystals that have high-quality (R < 0.1) ordered phases and are stable under ambient
conditions. (2) We exclude molecular crystals and only select inorganic crystals. (3)
We also did not select compounds including 3d transition metals (V-Zn), lanthanides,
and actinides because NNPs cannot delineate magnetic orderings in those materials.
(Note that the meaningful achievements are made recently [101,102]). (4) To stress
test the algorithm, we constrain the unit (Z) to be greater than 4. (The minimum
number of atoms in the cell are at least 12.) (5) Then, we force that at least one crystal
is selected from 32 crystallographic point groups. If the ICSD has multiple distinct
crystal structures in a composition, the most stable structure within the PBE
functional is chosen as the reference structure. We additionally handpick 10 materials
that have diverse local motifs and chemistries. The information of 60 selected
materials are listed in Table 3.1. Among 60 selected materials, 18 of them are metals,
13 are semiconductors (band gap is between 0 and 2 eV), and 29 are insulators
(bandgap is over 2 eV). (The band gaps are calculated with one-shot hybrid
functional scheme using AMP? code [98].) Most structures have hull energy of 0 in
the Materials Project database [103] which means that they are stable under phase
separation.

In the blind test, we set Z values as the value of the experimental structures. Figure
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3.12a shows the energy difference of the predicted structure by SPINNER and the
reference structure (AEmin) after proceeding with 5000 generations of structure
searching. Since the number of the structures in the pool is 24-80, up to half a million
structure relaxations are performed for each composition which is enabled by the fast
speed of NNP. The color of the data represents the generation at which the minimum
energy structure is emerged (Ng). SPINNER correctly identifies reference structures
(AEmin=0) or lower-energy structures (AEmin < 0) in 45 compositions out of 60 (75%).
Most of them (38 out of 60) are identified within 1000 generations. At the bottom of
Figure 3.12a, the unit cells of successfully identified structures are displayed. Among
the failed cases, the largest AEmin 0ccurs for SroPtzlns (36 meV/atom).

In Figure 3.12a, the six materials have negative AEmin, which means that the
structure predicted by SPINNER is more stable than the reference structures in the
ICSD database within the PBE functional. We note that in all cases both structures
have similar local orders and the difference is only about 4 A in the distance range.
This might attribute to the internal errors in the PBE functional. In fact, the PBE
functional has been reported to incorrectly rank the order of metastable phases for
some binary materials [52]. In the previous research, it is reported that the SCAN
functional partly resolved this issue [51,104]. To verify whether SCAN can correctly
rank the energy orders in these 6 cases, we re-relax the structures and evaluate the
energies of the predicted structures and the reference structures with the SCAN
functional. The empty squares in Figure 3.12a are the AEmin’s obtained by the SCAN
functional. The AEminvalues becomes positive except for LiYSn and PbOsOs. On the
other hand, we tested SCAN functional on the 10 opposite cases (AEmin =0), the
SCAN functional correctly rank the energy orderings of the reference structures to
be the lowest. This verifies that the SCAN functional is more accurate than PBE in
respect of the energy order. Furthermore, the existence of spin-orbit coupling (SOC)
can correct the accuracy of the PBE functional especially for materials including
heavy elements. We recalculate the energies of TIsPbCls and PbOsO; with SOC and
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find that AEmin for TIsPbCls and PbOsOs increases to —0.2 and 16 meV/atom,
respectively (see sun crosses in Figure 3.12). This demonstrates that the relative
stability should be further checked by introducing more sophisticated methods.
(Even so, the PBE functional correctly identifies equilibrium structures in many
materials including TI, Pb, and Bi).

The accuracy of NNPs are evaluated by two metrics: the first one is the absolute
energy difference (AEo) between DFT and NNP for the reference structures which
are relaxed by each method. This demonstrates how well NNP reproduces the
structure and energy of the global minimum. The second metric is the averaged
energy difference (AE) of metastable structures within an energy window of 50
meV/atom. This relates to how NNP well describes the potential energy surface near
the global minimum. The values of AEy and AE are presented in Table 3.1. The AE,
and AFE of successful cases (AEmin < 0) are 12.9 and 11.8 meV/atom, respectively.
This means that the potential energy surfaces of NNP and DFT are in good agreement
near the global minimum. The remaining errors are partly attributed to the lack of
resolution to delineate medium- to long-order correlations beyond the cutoff radii of
the descriptors (6 and 4.5 A for radial and angular parts, respectively). This can be
further improved by using more sophisticated descriptors, but this increases the
computational cost of the computation.

In contrast to the impressive error of NNPs for the successful cases, AEo and AE
for the unsuccessful cases (AEmin > 0) are 41.0 and 43.3 meV/atom, respectively,
which are approximately four times greater than the successful cases. In particular,
SnGeS; and SryPtslns showed largest AEq (AE) of 75.5 (227.3) and 83.5 (140.0)
meV/atom, respectively. Therefore, locating equilibrium structures by NNP would
be much more difficult for these materials. The origin of the poor quality of NNPs is
not completely resolved yet. (Increasing the cutoff radii of the descriptors was not
helpful.) On the other hand, the qualities of NNPs are sufficiently low for some
materials in the failed cases. In these materials, it is expected that the ground
.
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minimum will be found in principle by increasing the number of generations over
5000.

We note that BaGe,Ss, NasSbOs, and YPdGe have rather pointed primitive cells
while their conventional unit cells have more isotropic with larger Z. However,
RandSpg [84], the random structure generation code only generates random
structures based on the conventional unit cell, which may lower the search efficiency.
We further conduct CSP with Z equal to that of the conventional cells for these
materials. In all cases, SPINNER identifies experimental or theoretically more stable
structures (see diamonds in Figure 3.12a).

To analyze how SPINNER effectively finds the global minimum, we analyze the
discovery process of the cases for AEmin < 0 based on two parameters, N; and N,
schematically illustrated in Figure 3.12b. N is the number of generations from the
random structure to the first appearance of the equilibrium structure at Ng. Nm
indicates the number of mutations that takes to find the experimental structure from
the initial random structure. The distributions of Nt and Nm are shown in Figure
3.12b. It is intriguing that N; is O for almost half of the cases, which means that a
minimum-energy structure is obtained directly by relaxing a random structure
without any mutations. Even in the cases that take mutations, Ny, is mostly within 5.
This indicates that the relaxation of randomly generated structures is very close to
the global minimum. We think there are two reasons to this: first, pair-wise minimum
distance constraints filter out ~99% of the structures that are unlikely to be relaxed
into physically relevant structures. It also efficiently prohibits atomic configurations
from relaxing into high-energy unphysical structures during relaxations. Second, we
find that more than half of the initial random structures, evolving into the global
minimum within relaxation with NNP, are not relaxed into the same structure when
relaxed by DFT but are relaxed into the high-energy metastable structures. This
indicates that the potential energy surface at the high-energy regions is significantly
different between DFT and NNP. This can be rationalized by follows: NNP
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unintentionally smooths the potential energy surface in the high energy region
because it is not included in the training set while DFT adaptively forms chemical
bonds that can stabilize the initial structure and the relaxation stops at a high-energy
metastable structure (illustrated in Figure 3.12c¢). As a result, the potential energy
surface of NNP becomes more efficient than DFT.

We also study whether SPINNER can discover experimental metastable structures
other than the one in global minimum. According to ICSD, TISbOs, TIGaSe,, NasPSs
have ordered metastable compounds with high diffraction qualities (R < 0.1) and Z
less than or equal to the ground state. These structures lie below the energy range of
50 meV/atom within PBE and are all successfully identified by SPINNER.

To test SPINNER on compounds other than in ternary compositions, we perform
CSP on TiO;, P3Ns, NbPds;, LiioGeP;S12, and InGaZnOs whose experimental
structures can be extracted from the ICSD. SPINNER successfully finds the ground
states within 5000 generations. Among them, TiO; is well known for its rich
polymorphism [105]. With Z values of 4 and 8, SPINNER identifies all the
experimental polymorphs (C2/m, anatase, brookite, columbite, rutile) within 50
meV/atom. Even though the test is conducted on the small set of materials, these
results support that the SPINNER effectively finds ground states regardless of
material complexity. Nevertheless, more complicated quaternary or higher-order
materials may generally require longer generations than in this work, which will be

the subject of future study.
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Table 3.1: The information of test materials for blind tests. The columns under ICSD
are data on the most stable phase in the ICSD. Z and N4 denote the numbers of
formula units and atoms in the unit cell, respectively. Band gaps (Eg’s) are calculated
by one-shot hybrid functional calculations [98] and hull energies (Enu’s) are
extracted from the Materials Project [103]. We additionally distinguish the energy
difference calculated by SCAN functional (}), or by PBE when the spin-orbit
coupling is considered (). Also, the numbers with the * mark indicate the energy

difference between the most stable structure found within

ICSD structure

conventional cell size and the ICSD structure. The unit for Enui, Ng, AEo, AE, and
AEnmin are meV/atom.

Formula

Pb0303

TIsPbCls

Na3PS4

Rbinl,

KAICI,

LiYSn

NazAsSe;

AuOCI

Li3AU03

ICSD SPINNER
ID Point Ne Ey(v) E Ny AE, AE  AEm
group at g hull g 0 min
-15.6/
23444 m3 m 20 0 0 5 64.1 20.3 —4.01/
16.0¢
-13.6/
1262 4 36 6.0 9 11 3.8 5.9 6.0/
-0.2¢
72860 42m 16 3.3 0 1 8.1 16.4 .U
. . ’ 2237
-4.0/
36601 3m 36 35 0 990 2.9 119 64"
1704 2 24 6.8 0 238 2.9 10.1 §25.’r7/
-1.7/
32041 6mm 24 0 0 13 3.3 12.6 Y
50491 23 28 2.8 0 4004 14 7.3 0
8190 3 18 2.3 0 723 220 201 0
15113 4/mmm 28 35 0 80 9.4 11.2 0
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NazAuO, 62066 4/mmm 4 24

31 0 344 2.5
KMo3Se; 603628  6/m 2 14 0 0 6 2.1 4.8
MglrB 409979 622 6 18 0 0 46 11 4.3
TIBO; 36404 4 8 32 3.8 0 5 0.1 4.7
LiBaGe, 162583  mmm 4 16 0 0 17 9.1 13.6
Li,BPt; 156466 432 4 24 0 0 7 3.9 5.2
LiBiOs 82277 mmm 8 40 1.2 0 3032 161 55
SryP;Br 429306 23 4 40 2.8 0 98 61.6 26.4
CaPdSi 69790 2/m 4 12 0 2 90 9.0 19.8
CdI,06 1397 222 4 36 45 0

3030 9.0 1938

Cs,ShCls 49706 4/mmm 4 36

1.6 0 4 21.7 122 0
LiWClg 409938 3 4 32 0 12 739 8.1 14.4 0
TIGaS, 157537 2/m 8 32 2.4 0 3 0.0 7.1 0
TIGaSe; 1573 m 8 32 2.1 4 737 326 28.1 0
HfNbP 75009 mmm 4 12 0 0 32 3.7 2.6 0
Zr,PdsIn 107332 4/mmm 4 20 0 135 4 3.7 6.9 0
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IrShTe

LizTeSeg

PbN,Og

Na3SbTe3

TISbOs

TIsPS,

Baln,Te,

szZrTeg,

AngQOQ

RbAgO

AsN b3T93

PbSnS;

CaPS3

HfSiO,

NaScS;

MgTQQOQ

640967

415121

174004

75513

4123

201062

41168

410735

280333

40155

79934

23462

405192

31177

644971

202688

23

2/m

23

mmm

mmm

2/m

422

4/mmm

6/m

mmm

2/m

4/mmm

4/mmm

12

24

36

28

20

32

14

24

20

12

14

20

20

12

18

13

0.19

55

2.0

3.3

2.7

1.6

0.14

13

2.7

1.6

4.1

7.0

2.7

4.2

81

16

135

22

161

190

27

21

2802

25

321

3577

408

1528

131

35

68

9.9

12.7

0.2

14.1

5.2

10.2

10.1

44.4

221

19.8

48.2

35.1

49

14.9

5.0

2.4

6.0

10.1

8.6

12.3

75

12.4

16.9

8.6

16.3

9.7

35.5

16.0

11.9

27.2

13.7



Mg,SiO,

Na,SO3

Ta,SiTey

KBS;

AlCaSi

NaPtst3

BaAl;Si,

BaGe,Ss

RbPSes

CslInzOs

KAsSe;

CaAsPt

AIBiCls

N3.3Sb03

Sb,0S;

Na,AuSn;

15627

31816

40207

79614

155193

78788

249559

66868

173419

23630

65297

60828

414261

23346

12120

107556

mmm

bl

mmm

6mm

mmm

32

mmm

4mm

2/m

6/mmm

4/
16

28

12

36

24

18

24

20

32/
128

30

36

16

18

32

28/

40

24

6.4

6.4

3.8

1.6

3.2

2.0

2.8

2.3

5.0

1.8

8 2

41

152

761

860

113

989

131

2017

4909

10

23

4958

172

2357

1.8

3.0

11.6

10.1

15.3

2.2

40.6

43.3

57.6

1.2

40.9

7.4

14.3

24

38.0

36.6

3.0

7.0

9.6

173

479

7.6

20.7

12.7

15.3

6.0

34.2

4.0

7.6

8.1

16.1

8.3

11

1.2

4.6

5.3/
-2.3"

5.7

6.8

8.0

9.0

13.0

13.3/

18.6

253



SnGeS; 411241  2/m 4 20 1.9 0 4993 755 2273 30.0

6/ 18/ 32.9/
YPdGe 391466 mm2 12 3 0 0 680 216 9.9 00"
SryPtslng 410703 6 m2 4 36 0 0 3575 835 1400 36.6
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3.3.2 Benchmark test on other CSP methods

To compare the accuracy of SPINNER with other CSP algorithms, we conduct a
benchmark test on ternary compounds that were theoretically predicted by either
data-mining known prototypes [17,18,106,107] or using DFT-based evolutionary
algorithms such as a genetic algorithm [73,87,108] and particle swarm
optimization [109]. The materials are listed in Figure 3.13a. As far as we know, none
of these compositions has been synthesized except for KScS;, Sc.CsNs, and ScPtBi.
We perform CSP using SPINER on these compositions for 1000 generations with Z
ranging from 2 to 8. The energy difference between the predicted structure and the
reference structure in the literature (AEmin) is Shown in the upper part of Figure 3.12a.
(The structures extracted from the references are again fully relaxed within the
present calculation methods.) SPINNER successfully identifies lower-energy
structures in most cases (13 out of 21) and the same structures for the rest. For
SnsS4Cl; and CdaSFs, CSP is performed within the PBEsol functional [110] instead
of PBE in ref. [73]. For comparison, we calculate AEmi» with PBEsol and find that
the compounds identified in this study are still more energetically favorable than the
reference structures by 31 and 4 meV/atom for SnsS4Cl, and CdsSFs, respectively.
We note that SnsS4Cl,, CdaSFs, and TaCNs have positive hull energies for both
reference structures and those identified by SPINNER. Nevertheless, any sign of
phase separations is found in the final structures (see CdsSFs, and TaCNs in Figure
3.13a). This demonstrates that the lower-energy structures discovered by SPINNER
are not artifacts of the phase separation. The lower plot of Figure 3.13a represents Z
values of the primitive unitcells of the predicted structure by SPINNER (solid
squares) in comparison with those in the references (solid circles). SPINNER finds
the lowest-energy structure often at a larger Z than that of the reference structures.
This indicates that multiple trials of CSPs with diverse Z numbers are important. In
this respect, the NNP is much more advantageous compared to DFT owing to the

linear scaling of the computation time with respect to the number of atoms, in
8 4 7
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contrast to the cubic scaling of DFT.

The structures found by SPINNER usually have similar local structural motifs to
reference structures (e.g. KScS; and W4Mo4B3s in Figure 3.13b). On the other hand,
different local orders can be found in materials such as Li,TiN,, CdsSFe, and TaCNs
(see Figure 3.13b). It is intriguing that CdsSFs and TaCN3 were discovered by DFT-
based evolutionary searches. We think that the failure of the previous research in
identifying the current low-energy structures might be attributed to smaller Z
numbers than our calculations and fewer generations. In Figure 3.13a, NasOsN; has
the largest energy difference. Both structures have the same local orders, but the
reference structure is significantly distorted. We note that metastable structures can
have distinct materials properties from the ground state. For instance, the tetragonal
phase of HfO, is metastable by 57 meV/atom but has a much higher dielectric
constant (70) than that of the monoclinic phase (16) [111]. This stresses the
importance of finding the true global minimum in CSP for the reliable prediction of
materials properties.

We check the existence of prototypes in the ICSD for the 13 identified structures
employing AFLOW-XtalFinder [112]. We find that the structures of 10 of 13
materials do not match any existing prototypes in the ICSD (star-marked in Figure
3.13a). This illustrates that the present prototypes of ternary materials are not
sufficiently discovered. It is noticeable that the prototype of Z;303N; and TizO3N; is
TizOs which is the same as the structure reported in the reference. However, the
energies of both structures are lower than those of the structures in the literature. We
think that ref. [106] missed the exact ground state because the partial ion exchanges
of O and N are not fully considered.

ScoCsNs has been recently synthesized with the structure predicted by data-mining
known prototypes and was also identified by SPINNER [113]. About KScS,, there
was an experimental report [114] on the synthesis of the material, but not recognized
by ref. [107]. The experimentally found structure is consistent with the present work,

<

-
|

85



which is slightly more stable than that of ref. [107] by 2.5 meV/atom. The crystal
structure of ScPtBi was predicted and identified by the synthesis in ref. [18].
Although it was discovered as a multiphase, SPINNER did not recognize any

metastable structure within 50 meV/atom.
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Fig. 3.13: (a) Upper plot shows energy difference between the structure predicted by
SPINNER and the structure predicted in literature (AEmin) by data mining or
evolutionary algorithms [17,18,73,87,106-109,115]. The lower part compares the Z
between the reference structure and the value at which the lowest energy is found.
The compounds marked with stars do not have corresponding structural prototypes
in the ICSD. (b) Examples illustrating the structural difference between the crystal
structures in references (top) and ones identified by SPINNER (bottom).
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3.3.3 Computational cost

About the computational cost, the whole process from the melt-quench annealing
molecular dynamics to CSP steps takes 3-5 days on a 36-core node (CPU of Intel®
Xeon Platinum 8000-series). For 1000 evolution steps, it takes 3-5 days. On average,
the workload of DFT-MD, training NNP, SPINNER, and DFT relaxation of crystals
take about 25%, 10%, 60%, and 5%, respectively. The computational time for each
part varies widely depending on the materials system. The SPINNER part is largely
scalable using many parallel computers. As an example of LiWCls, it takes 84 hours
for 5000 generations with a population size of 64 with Z = 4. When tested using
identical resources and conditions, a DFT-based evolutionary algorithm [29] only
proceeds up to 6 generations under the suggested setting in the manual. In addition,
we compare the energy evolution over time using USPEX and SPINNER as shown
in Figure 3.14. The energies of the most stable compound in each generation remain
larger than 300 meV/atom using USPEX during ~100 CPU hours. The first few
generations of SPINNER also remain similar energies compared to USPEX.
However, the energy drops quickly over generations, and the reference structure is
found around 1000 generations. This only takes ~80 hours including DFT-MD and
NNP training time. The estimation of the computational cost demonstrates that it
would be possible to construct large databases of as-yet-synthesized materials at a

reasonable cost and in a reasonable time scale.
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Fig. 3.14: Comparison of the energy evolution over computation time of USPEX and
SPINNER. The test material in this Figure is Mg2SiOa.
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3.4. Transfer learning over compositions

Despite the impressive performance of the SPINNER, the trained NNP is only
effective for one composition and may be difficult to be utilized in other
compositions because the training set is constructed within a specific stoichiometry.
Nevertheless, dynamic fluctuations in the melt-quench-annealing process may
extend the local composition range of the training set, which extend the
transferability of NNP into other composition. For instance, we conduct CSP for
MgSiO; with the NNP developed for Mg,SiO4 and the experimental structure is
successfully identified by SPINNER. However, we observe the constant energy
shifts between DFT and NNP energies for MgSiOs because NNP was trained over a
single stoichiometry so the atomic energy offsets among elements become
arbitrary [92]. To mitigate this problem, we test the transfer learning: the initial NNP
trained over disordered structures in the composition of Mg.SiO, are refined over a
small number of MgSiOs crystals which effectively removes the energy offsets. We
also verify that the transfer learning well works even for the cases involving valence
changes: MoPdOs — MoPdO, and InPbOz — In,PbOs. This transfer learning scheme
is expected to be effective when one tries to discover many possible stoichiometries

for unknown materials.
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Chapter 4

Applications of CSP

4.1 Synthesizability of missing ternary oxides

Oxides are the most widely studied materials: the frequency of the oxygen in the
ICSD is three times higher than that of the most frequent elements (Fe, Si, and S).
Indeed, all combinations of binary metal oxides (for which atomic number less than
83) have been synthesized and reported. On the other hand, we find that ~24% of
combinations of ternary metal oxides are still missing in the three major
experimental databases, ICSD [8], COD [116], and ICDD [117]. Figure 4.1 shows
the missing combinations of ternary metal oxides in the three databases. The gray
colored combinations exist in the database, and the white colored combinations
cannot be found in the database. (We exclude semi-metals here.) In addition, we
represent the cases in black when the full phase diagram of the system exists in the
FactSage database [118], but no ordered phase exists in the diagram. In this case, the
stable ternary metal oxides are not expected to exist at the ambient condition. The
atom tags in Figure 4.1 is ordered by the scarcity of the elements. It is noticeable that
the number of missing compounds increases with increasing scarcity. Specifically, a
large portion of metal oxides including 5d elements are not been identified by
experiments yet. On the other hand, many of Be compounds are missing although
.
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the scarcity of the element is not poor. We believe this is due to its toxicity preventing
potential researchers from trying to synthesize Be-containing compounds.

Crystal structure prediction can identify whether the missing combinations of
oxides are synthesizable (but not synthesized yet) or not-synthesizable. We conduct
CSP with SPINNER on missing combinations of ternary metal oxides. For simplicity,
we consider the simple composition conditions: the most stable oxidation numbers
of elements are employed, the composition is fixed to the 1:1 of pseudobinary
materials (e.g., Ag-W-O: (Ag20)1(WO3);1 = Ag2WO,), and two formula units (Z), 3
and 4. Our assumption here is that materials with low hull energies in the 1:1
composition may also have low hull energies in other compositions. To test this idea,
we conduct CSP for 7 materials in which any stable phase in the 1:1 composition is
not reported, but only in other compositions. We find that all of these materials have
low hull energies (< 50meV/atom in PBE and < 40meV/atom in SCAN functional).

Figure 4.2 shows the results for the searching of ternary metal oxides in 1:1
composition. Here, we exclude 3d metals (V-Cu), lanthanides, and actinides due to
the magnetic ordering in the materials. The hull energy of the most stable compound
in each composition is represented as colors. Among 173 compositions, we find 45
stable compounds. For compositions composed of low scarcity elements (Al-Ga),
we only find two compounds (RboMgO., and RbBaO>) with negative hull energies.
On the other hand, negative-hull-energy materials are much more frequently found
in combinations containing scarce elements. Particularly, Au is predicted to form 15
stable compounds with other elements. This trend indicates that most combinations
of earth-abundant elements are well studied due to the high economical interest and
the most of unreported compositions in this domain are indeed unsynthesizable. On
the other hand, the large number of synthesizable combinations with earth-deficient
elements indicates that the materials in this domain are not synthesized yet due to
the lack of enough effort to synthesize.

As future work, we first plan to complete the search on all missing combinations.
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On the other hand, there might be a need to further investigate some compositions
with high engineering interests (namely, with low scarcity). We plan to search other
composition than 1:1 for combinations where the hull energies in the 1:1
composition are lower than 50 meV/atom (such as Mg-La-O and Zr-Ga-O). The
transfer learning technique (see Chapter 3.4) can be used to construct the neural

network potential in each composition.
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Fig. 4.1: Representation of missing ternary metal oxides. White means that the
combinations of the compound are missing, gray means that at least one compound
exists at the corresponding combination combinations, and black means that the
whole phase diagram information exists in the database.

ALY



Erun (meV/atom)

Al CaNaMg K TiBa Sr ZrRbZnla Y Sc Li NbGaPb Hf CsBe SnTa WMo Tl In CdHgAg Pd Bi Pt AuOsRu Ir RhRe

: 539388825, 37800804 F203

[TT[Fe

&

S

2

8

Z

T

‘@

m m:

-F

¥

m E

- N e

il

-2

=

e

8

-9

=

. B

=]

ra EE

|| 5

-

-9

-8

-2

N

I IJ [

-E

-

= Emmm- " m E

=

e 2

T _,______,__,__,__,______, ,__,_IN
B EERSFETR FRPCEF ST LGSR UEEF2 TR I§8NGEFR*¥2383
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4.2 Li superionic solid electrolyte

Discovering Li superconducting materials is the most essential part of developing
all-solid-state batteries [119]. Until now, the best-known candidate is LiioGeP2S12
(LGPS) because of the good Li conductivity and good mechanical stability [2].
However, this material is vulnerable to water because H,O causes degradation of
LGPS and produces toxic H.S gas [120]. Oxide materials are much more stable than
sulfides but show much poorer Li conductivity than sulfides [121]. Therefore, novel
Li superionic conducting oxides with higher Li conductivity would be necessary.
Crystal structure prediction can boost identifying novel superionic conducting
materials. We test SPINNER on existing Li or Na superionic conducting materials.
Figure 4.3 shows the test materials. SPINNER successfully identifies all materials
except for LizLasZr,0O1 (LLZO). LLZO has 96 atoms in the primitive unit cell due
to the complicated composition. We find that it takes too much time on generating
structures and performing local relaxations for LLZO. So that the future work would
be the fine-tuning of the algorithm to find complicated Li superionic conductors.
When trying to perform CSP on novel composition, one also faces another
challenge in choosing composition because a large degree of freedom in composition
exists in quaternary materials. We use design principles on composition suggested
in ref. [122]: the fact that the all known promising oxide Li superionic conductor
have compositions as LixAy(MOe/2)m(TOa2)n Where M and T are the metal elements
that form octahedral and tetrahedral, respectively, and Li and A are the metals that
incorporate into the empty space in between the corner-sharing (MOg/2)m(TOua2)n
framework. (Note that M also can be Li.) For most oxides Li superionic conductors,
m:n is typically 1:1, 1:2, 2:1, 2:3, and 3:2. For instance, LaslayzxTiOz with
NASICON structure and LLZO correspond to the case of m=3and m = 2. Ref. [122]
also found new material, LiTa;POs, in m = 1 and n = 2. This design principle is
reasonable because if the structure consists of only tetrahedral or octahedral, it would

have a too compact structure so that the space for Li conduction would be limited.
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As a preliminary result, we test this design principle on Li»ZrSiOs. Figure 4.4a
shows the atomic structure discovered by SPINNER. As expected, Zr and Si are
located in octahedral and tetrahedral sites, respectively, where all polyhedrons are
corner-shared. As future work, we are planning to discover oxide Li superionic

conductors with new structural frameworks using SPINNER.
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Li,PSs  Li,CdCl, Na,PS, Li;LasZr,01,

Fig. 4.3: Test materials of SPINNER for testing performance on existing Li (or Na)
superionic conducting materials.
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Fig. 4.4. Predicted crystal structure of Li>ZrSiOs.
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4.3 Challenges and perspectives

In this chapter, we discuss the remaining challenges for the CSP algorithm developed
in this study to be used in practical matters. The first challenge is that the algorithm
is limited for predicting the crystal that consists of a large number of atoms (> 50)
due to the high structure-generation and structure-relaxation times (also discussed in
the previous Chapter). We think that it is hard to find general solution to this problem.
Rather, one may need the case-by-case approach for each material system. For
instance, in the case of Li superionic conductors, the complexity of the structure
arises from the soft potential energy surface of Li. Therefore, one can generate
structures without Li and put Li atoms later by Monte Carlo simulations. The second
challenge is predicting crystal structures of magnetic materials. The current version
of NNP is hard to directly consider the magnetic interactions. The magnetic
interactions are generally local, so NNP might predict the atomic energies in the most
stable spin configurations without directly encoding the spin information. However,
building the training set is challenging for antiferromagnetic materials because the
stable spin configurations in disordered structures are almost impossible to
determine. The possible strategy is to train the initial NNP with ferromagnetic
conditions and then train NNP antiferromagnetic ordered crystals in the refining
stage by transfer learning. The last challenge we would like to discuss is accelerating
the efficiency of CSP algorithm by integrating heuristic approaches and data-mining
methods. As discussed in the Introduction section, these two methods have
conflicting strengths and weaknesses: heuristic approaches are accurate but time-
consuming while data-mining methods are opposite. The reason for the low accuracy
of data-mining models is the deficiency of the crystal prototypes of inorganic
materials in the experimental database. SPINNER can create rich prototypes in the
unexplored materials domain where the data mining models are less reliable and so
that can increase the accuracy of the data-mining model in diverse types of materials.

Therefore, it would be possible to achieve both high accuracy and speed using a dual
100 H = TH
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model using SPINNER and a data-mining model.
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Chapter 5

Conclusion

We develop the efficient and accurate crystal structure prediction (CSP) algorithm
with neural network potentials (NNPs) and suggest possible applications. The NNP
is trained over disordered structures constructed from molecular dynamics (MD)
using density functional theory (DFT) calculations. This training procedure is tested
on three ternary and one quaternary material. In all cases, the correlation between
NNP and DFT energies is high enough to use NNP as a surrogate model of DFT.
Then, we develop the CSP code which is named SPINNER combining iterative
training scheme and quality monitoring scheme with the evolutionary searching
algorithm. The program is tested over the experimental database, and successfully
identifies experimental structure (or lower-energy structures) for 80% of cases.
When tested over theoretical structures generated by other CSP packages, SPINNER
provides the same or lower-energy structures compared to the reference structures.
Finally, we apply the program for finding missing ternary metal oxides and Li
superionic conductors and discuss the remaining challenges for applying SPINNER
to the practical problems. By harnessing the efficiency and accuracy of NNP in CSP,

this thesis will extend to the various materials discoveries.
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