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Abstract

Estimation of Sparse Cross Correlation Matrix

Cao Yin

The Department of Statistics

The Graduate School

Seoul National University

In this thesis, we are motivated by an integrative study of multi-omics data

and are interested in estimating the cross correlation matrix of two high dimen-

sional random vectors. We rewrite the problem to a multiple testing problem

and propose a new method to estimate it by testing individual components of

the matrix simultaneously. We apply the proposed method to the integrative

analysis of the protein expression data (X) and the mRNA expression data (Y)

in TCGA breast cancer cohort.

Keywords: cross-correlation matrix, integrative analysis, local false discovery

rate, multiple testing, multi-omics data
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Chapter 1

Introduction

The occurrence of high-dimensional data in a large amount of applications has

prompted sustained interest in statistics in recent years. Statistical analysis

of such high-dimensional data sometimes requires knowledge of covariance or

correlation matrices with dimension far greater than the sample size. Exam-

ples include microarray analysis (Jaeger et al., 2003; Shedden and Taylor, 2004;

Qiu and Yakovlev, 2007), financial risk management (Fan et al., 2008), and

machine learning (Hastie et al., 2009). All of these applications include esti-

mating variance-covariance matrices of one variable vector, but a lot of times

researchers are more interested in finding the association between two mutually

exclusive sets of variables. Estimation of cross correlation matrix RXY, the off-

diagonal submatrix of correlation matrix, is highly involved in data integration

problems, especially in the context of multi-omics studies. A typical example

is measuring the same gene at two different molecular levels, with one set of

data measure the molecular template synthesis of the other set of data (DNA

to RNA, or RNA to protein). Using expression data for non-coding RNAs such
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as microRNAs, coupled with mRNA and proteomics data, to reveal the degree

of post-transcriptional regulation is another common scenario (Cheng et al.,

2005). In this paper, we consider estimation and multiple testing of cross corre-

lation matrix with the structural assumption - sparse cross correlation matrix,

that is, most entries are zero (Bickel and Levina, 2008; Rothman et al., 2009;

Cai and Liu, 2011; Wang and Fan, 2017).

Multiple testing of covariance structures is a widely used methodology in

analysis of high-dimensional data. Liu (2013) considers multiple testing for par-

tial correlations under a Gaussian graphical model. Cai and Liu (2016) proposed

methods for simultaneous testing of correlations. Xia et al. (2015) proposed

methods for differential network analysis. Aimed for detecting significant cor-

relations between variables, large-scale multiple testing for correlations is an

important area in statistics with a wide range of applications including gene

expression (Carter et al., 2004; Dubois et al., 2010), spatial epidemiology (El-

liott and Wartenberg, 2004), and brain imaging (Bennett et al., 2009; Lindquist

and Mejia, 2005). The null hypotheses are usually

H0jk : ρjk = 0,

where ρjk is the correlation between variable Xj and Yk for 1 ⩽ j ⩽ p, and

1 ⩽ k ⩽ q. With thousands or even millions of tests to perform at the same

time, it becomes challenging to control the overall Type I error rate while

maintaining the desired power due to complicated dependence structures. In

high-dimensional studies, controlling the false discovery rate (FDR), the pro-

portion of falsely rejected hypotheses among all rejected hypotheses, becomes

a common goal.

Methods of controlling FDR has been developed by a lot of researchers since

its first proposal by Benjamini and Hochberg in 1995. Under the assumption
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that test statistics are independent, the BH step-up procedure (Benjamini and

Hochberg, 1995) controls FDR by thresholding the p-values of each individ-

ual test. Storey (2002) introduced the q-value which estimates the FDR for a

given cutoff value. Efron (2004) proposed an empirical Bayes analysis method

to examine the local false discovery rate. However, in the presence of strong

correlation, particularly when the matrices are sparse, the situation becomes

more difficult. Multiple testing procedures are very unstable when test statistics

are correlated because they have a high variability of the number of false and

true discoveries from sample to sample (Qiu et al., 2005). Some multiple testing

adjustment methods dealing with certain dependence types include Benjamini

and Yekutieli (2001) and Fan et al. (2012).

In this paper, we propose a multiple testing procedure for cross correla-

tions. We start from the sample correlation coefficient rjk and use Fisher’s

z-transformation to construct the test statistic zjk for testing an individual

hypothesis H0jk. We then use local false discovery rate procedure to perform

multiple testing. As a comparison of simulation performance, we apply both

our procedure and procedure proposed by Cai and Liu (2016) to breast can-

cer cohorts with paired proteomic data (X) and transcriptomic data (Y). We

identify significant correlation pairs for both procedures. The resulting cross

correlation matrix of our procedure has a higher coverage rate of known tran-

scription regulatory networks catalogued in the cancer cell biology literature.

The rest of the paper is organized as follows. In Section 2, we review the

large-scale multiple testing procedure proposed by Cai and Liu (2016) as well as

some other FDR control procedure. In Section 3, we give a detailed description

of our procedure. A comparison between the method proposed and that of Cai

and Liu (2016) numerically using breast cancer data is also discussed in this

section. We conclude the paper with a few remarks for the proposed procedure
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in Section 4.
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Chapter 2

Review

2.1 Cross covariance matrix and correlation matrix

Suppose for subject i = 1, ..., n, we observed a vector pair (Xi,Yi), where

Xi = (Xi1, Xi2, . . . , Xip)
⊤ and Yi = (Yi1, Yi2, . . . , Yiq)

⊤ are two random vectors

with dimension p and q, respectively. We assume the data Zi = (X⊤
i ,Y

⊤
i )

⊤

for each subject follows the multivariate normal distribution with mean and

variance

µ =

µX

µY

 ,Σ =

ΣXX ΣXY

ΣYX ΣYY

 .

The mean vectors µX and µY have length p and q, respectively. The covariance

matrices ΣXX, ΣXY and ΣYY are of size p×p, p×q and q×q respectively. We

further arrange Xi of all subjects into one matrix X ∈ Rn×p so that each row of

X contains data X⊤
i for subject i. Similarly for Yi, we have matrix Y ∈ Rn×q.
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The resulting matrices can be represented as follows

X =


X⊤

1

X⊤
2

...

X⊤
n

 =


X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

. . .
...

Xn1 Xn2 · · · Xnp

 ,

and

Y =


Y⊤

1

Y⊤
2

...

Y⊤
n

 =


Y11 Y12 · · · Y1q

Y21 Y22 · · · Y2q
...

...
. . .

...

Yn1 Yn2 · · · Ynq

 .

We are interested in the simultaneous correlation tests between Xj and Yk,

H0jk : cov(Xj , Yk) = 0 versus H1jk : cov(Xj , Yk) ̸= 0,

for 1 ⩽ j ⩽ p and 1 ⩽ k ⩽ q. That is to say, we will apply multiple testing

procedure to find non-zero covariance pairs while controlling the false discovery

rate, the proportion of falsely rejected hypotheses among all rejected hypotheses

at given level α, at the same time.

2.2 Procedure by Cai and Liu (2016)

Cai and Liu (2011; 2016) proposed an adaptive thresholding method for sparse

covariance matrix estimation and a large-scale multiple testing procedure for

correlations in one sample case. In order to use their method, we rewrite the

paired vector data (Xi,Yi) as Zi = (X⊤
i ,Y

⊤
i )

⊤, a single vector of length p+ q.

The procedure simultaneously tests the hypotheses

H0jk : σjk = 0 versus H1jk : σjk ̸= 0,
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for 1 ⩽ j < k ⩽ p+ q. They suggest using the test statistic

Tjk =

∑n
i=1(Zij − Z̄j)(Zik − Z̄k)√

nθ̂jk

,

where

Z̄j =
1

n

n∑
i=1

Zij ,

θ̂jk =
1

n

n∑
i=1

[(Zij − Z̄j)(Zik − Z̄k)− σ̂jk]
2,

σ̂jk =
1

n

n∑
i=1

(Zij − Z̄j)(Zik − Z̄k).

Let 0 < α < 1, the threshold level is defined as

t̂ = inf
{
0 ⩽ t ⩽

√
4 log p− 2 log log p :

G(t)(p2 − p)/2

max{
∑

1⩽j<k⩽p+q I(|Tjk| ⩾ t), 1}
⩽ α

}
,

where G(t) = 2−2Φ(t). If t̂ does not exist, they set t̂ =
√
4 log p. The procedure

rejects H0jk whenever |Tjk| ⩾ t̂.

2.3 Multiple testing

Multiple testing is a statistical analysis involving a set of tests simultaneously.

In general, if m mutually independent tests are each conducted at α level, the

probability of making at least one Type I error is 1 − (1 − α)m. As the num-

ber of tests being conducted increases, the probability of at least one Type I

error increases. Over the years, different strategies have been proposed to ad-

dress for the problem of multiplicity. These methods usually require a stringent

significance level with which each individual hypothesis can be rejected.

The family-wise error rate (FWER), defined as FWER = P(V ⩾ 1), has

been widely used to account for the problem of multiplicity. The Bonferroni

correction provides the classic FWER control method. It tests each hypothesis
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Null is true Alternative is true Total

Declared significant V S R

Declared non-significant U T m−R

Total m0 m−m0 m

Table 2.1 Classification of tested hypotheses

at level α/m so that the FWER is guaranteed not exceed the prespecified level

α. A review of FWER procedures is give by Hochberg and Tamhane (1987) and

Shaffer (1995).

2.3.1 False discovery rate

As the number of tests increases, the power to reject an alternative hypothesis

while controlling FWER at the same time is greatly reduced. The false discovery

rate (FDR), or expected proportion of false rejections among all rejections, is

an alternative to FWER in multiple testing control. It has been showed that

the FDR has greater power to find true discoveries while still controlling the

proportion of Type I errors at α. Using the notation in Table 2.1, the FDR is

defined as

FDR = E(
V

R
|R > 0).

FDR is zero when no hypothesis is rejected.

2.3.2 BH step-up procedure

A common technique for controlling the FDR is provided by Benjamini and

Hochberg (1995). Consider testing simultaneouslym null hypothesesH1, H2, ...,Hm

with p1, p2, ..., pm their corresponding p-values. Let p(1) ⩽ p(2) ⩽ ... ⩽ p(m) be

ordered p-values, and denote H(i) the null hypothesis corresponding to p(i). The
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BH procedure is the following step-up procedure:

Let k = max{i : p(i) ⩽ iα/m}, then reject all H(i)for i = 1, 2, . . . , k.

When the test statistics are independent, the BH procedure controls the FDR

at level α. The procedure does not need any assumption of p-value distribution;

it controls the FDR regardless of the distribution of p-values. However, without

the distribution information in the sample, BH (2000) argued that the procedure

is conservative when some of the hypotheses are from non-null distributions. In

fact, the BH step-up procedure controls the FDR at level (1− p)α, where p is

the proportion of non-nulls.

2.3.3 Storey’s q-value procedure

Realizing the conservativeness of the BH step-up procedure, Storey (2002) in-

troduced the positive False Discovery Rate (pFDR) and the q-value. Storey’s

approach uses the information of p and estimated the FDR for a given cutoff,

contrary to the BH step-up procedure, where level α is fixed and cutoff values

are estimated.

Let p be the proportion of non-nulls and G be the marginal distribution of

the p-value. For a given p-value cutoff λ, the pFDR is defined as

pFDR(λ) = E(
V

R
|R > 0) =

(1− p)λ

G(λ)
.

For a set of m hypotheses with independent p-values and rejection region [0, γ],

the q-value is the minimum pFDR level such that a hypothesis with p-value pi

is just rejected, that is

q(pi) = inf
γ⩾pi

{pFDR(γ)} = inf
γ⩾pi

{
(1− p)γ

G(γ)

}
.
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Chapter 3

Estimation sparse correlation
matrix

3.1 Procedure

In this section, we propose a large-scale multiple testing procedure for esti-

mating sparse cross correlation matrices. We first construct a test statistic for

testing no correlation between each pair (Xj , Yk), H0jk : σjk = 0, so that the

constructed test statistic asymptotically follows a standard normal distribution

under the null hypothesis H0jk. Then we use the local false discovery rate to

handle the problem of multiplicity when testing a large number of hypotheses.

The overall FDR is controlled under given level α.

The typical statistic for correlation detection is the sample correlation co-

efficient, rjk, which is defined as

rjk =

∑n
i=1(Xij − X̄j)(Yik − Ȳk)√∑n

i=1(Xij − X̄j)2
√∑n

i=1(Yik − Ȳk)2
,

where X̄j =
1
n

∑n
i=1Xij , and Ȳk = 1

n

∑n
i=1 Yik.
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Since the variance of sample correlation coefficient becomes smaller as the

population correlation coefficient gets closer to ±1, we use the variance stabi-

lization method, Fisher’s z-transformation, so that the resulting variable ap-

proximately follows a normal distribution with a variance that is stable for

different values of correlation. Fisher’s z-transformation of rjk is defined as

F (rjk) =
1

2
ln
1 + rjk
1− rjk

,

where rjk is the sample correlation coefficient. Under the condition of (X⊤
i ,Y

⊤
i )

⊤

follows a multivariate normal distribution, it has been showed that F (rjk) ap-

proximately follows a normal distribution (for large samples, n > 50) with mean

µ = 0 and standard deviation σ = 1√
n−3

,where n is the sample size.

Using the approximation, the following statistic is standardized normal

zjk =
F (rjk)− µ

σ
=

√
n− 3F (rjk) → N(0, 1).

We will use zjk as the test statistics and then apply local false discovery rate

procedure to those z values.

3.1.1 Local false discovery rate

The traditional FDR calculates a rate applying generally to all hypotheses

in the same rejection region. In practical application, the fact that some test

statistics are much more extreme than others, or to say, that not all hypotheses

are equally likely to contribute the false discoveries makes the FDR a somewhat

unsatisfying metric.

The local false discovery rate proposed by Efron (2004) extends the concept

of FDR to give a posterior probability at the single hypothesis level. It is a Bayes

version of Benjamini and Hochberg (1995)’s procedure focusing on densities

rather than tail areas.
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Suppose m null hypotheses, each with its own test statistic, are test simul-

taneously

Null hypotheses: H01, H02, . . . ,H0i, . . . ,H0m

Test statistics: z1, z2, . . . , zi, . . . , zm.

Assume each ofm hypotheses is either null with prior probability p0 and density

f0(z) or non-null with prior probability p1 = 1− p0 and density f1(z)

p0 = Pr(null is true) density = f0(z) if null

p1 = Pr(non-null is true) density = f1(z) if non-null.

Define the mixture density

f(z) = p0f0(z) + p1f1(z).

The local false discovery rate is the posterior probability that a case is null

given that we observed test statistic z. Using Bayes rule, it can be expressed as

fdr(z) = P(null | z) = p0f0(z)

f(z)
.

In our procedure, the test statistics are zjk’s for j = 1, 2, ..., p and k = 1, 2, ..., q.

The usual cutoff threshold is fdr ⩽ 0.2.

3.1.2 fdr Estimation

Mixture Density Estimation

Assume the distribution of z values are smooth, Efron (2005) estimate the

mixture density f(z) with Poisson regression using Lindsey’s method. The range

of the sample z1, . . . , zm is divided into K equal intervals, with sk being the

number of z values in interval k, and z(k) being the midpoint of interval k. The

Lindsey’s method assumes counts sk follow an independent Poisson distribution,

sk
ind∼ Poi(λk) k = 1, 2, . . . ,K

12



with

λk = m∆f(z(k)),

where ∆ is the width of interval.

The method estimates log(λk) with a pth degree polynomial function of z(k),

so that the mixture density f(z) can be estimated by maximum likelihood of

the following function

f(z) = exp

{ p∑
j=0

βjz
j

}
satisfying

∫
f(z) = 1.

Efron (2005) also remarked that Lindsey’s method with a Poisson regression

is almost efficient for estimating f(z) when zi’s are independent. Although under

most cases zi’s are dependent and over dispersed, Lindsey’s method will still be

nearly unbiased at the cost of losing estimating efficiency.

Empirical Null Estimation

The theoretical null distribution zi ∼ N(0, 1) is usually used in individual

hypothesis test. With thousands of z values to exam at once, the conventional

theoretical null may be inappropriate for the situation in large-scale hypothesis

testing. Estimating the empirical null distribution adjusts the theoretical null

for the dataset at hand.

Efron and Hastie (2016) assume the two-class model with f0(z) normal

f0(z) ∼ N(δ0, σ
2
0).

To estimate the three parameters (δ0, σ0, p0), the mean and standard deviation

of the null density and the proportion of null cases, Efron and Hastie (2016)

make the zero assumption that p0 is large, and that most of the zi near 0 are

13



null cases. R-package locfdr (Efron et al., 2005; Efron, 2016) uses the following

steps to estimate the null distribution: let A0 be the set near 0, and let

z0 = {zi : zi ∈ A0, i = 1, 2, . . . ,m},

I0 = {i : zi ∈ A0, i = 1, 2, . . . ,m},

m0 = |z0|.

Define

ϕδ0,σ0(z) =
1√
2πσ2

0

e
− (z−δ0)

2

2δ20 ,

P (δ0, σ0) =

∫
A0

ϕδ0,σ0(z)dz,

and

θ = p0P (δ0, σ0).

Then the density of z0 is the product of two terms: probability of having m0

of zi in A0, and conditional probability of those zi in A0,

fδ0,σ0,p0(z0) =

[(
m

m0

)
θm0(1− θ)m−m0

][∏
I0

ϕδ0,σ0(zi)

P (δ0, σ0)

]
.

Maximum likelihood based on the above density gives the empirical null esti-

mates (δ̂0, σ̂0). θ̂ = m0
m can be obtained from the first binomial probability term,

so then p̂0 =
θ̂

P (δ̂0,σ̂0)
.

3.2 Data

We next applied the proposed method to integrative analysis of the protein

expression data (X) and the mRNA expression data (Y) in TCGA breast cancer

cohort, with group information representing the co-regulation of gene expression

by complexes of transcription factor proteins. In total, 76 subjects have both

transcriptomics and proteomics data as distributed through the data portals
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of TCGA and Clinical Proteomic Tumor Analysis Consortium (CPTAC). In

invasive ductal carcinomas, the gene expression variation across patients is well

known to be determined by the expression level of the estrogen receptor (ER)

protein in the tumor (Rosato et al., 2018), which in turn acts as a nuclear

transcription factor and drives gene expression program for cell proliferation.

As a benchmark analysis, we first aimed to verify that the non-zero elements of

the cross covariance matrix between the transcription factor and co-activator

proteins (denoted by TFA hereafter) and the mRNA expression levels of their

target genes are the most pronounced variation in the data.

We capitalized on the fact that the TFAs are assembled into protein com-

plexes while in action, and thus hypothesized that utilizing the protein-protein

interaction will allow us to first identify the TFA groups associated with large

variation in the proteomics data, and their target gene expression levels should

be consistently reflected in the transcriptomics data. To this end, we collected

bona fide protein-protein interaction data from credible sources (Razick et al.,

2008; Huttin et al., 2015) for the human TFA proteins (1195 proteins), which

have been known to regulate as many as 3114 target genes according to the

TF and regulatory element databases such as TRED (Zhao et al., 2005), ITFP

(Zheng et al., 2008), ENCODE, and TRRUST (Han et al., 2015).

3.3 Results

Figure 3.1 shows the histogram of the 1195 × 3114 = 3, 121, 230 z-values. The

green curve, f(z), is the Poisson regression fit to the histogram counts. Curve

f(z) emphasizes the central peak around z = 0, showing that a large proportion

of (TFA, mRNA) pairs are not correlated. The blue dashed curve is the density

p0f0 estimated by MLE. Both the MLE and central matching estimates (CME)
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give nearly close approximation of null distribution N(0, 1).

Our procedure of estimating cross correlation matrix uses fdr cutoff value

0.1. More than 99.9% of the entries are penalized to zero, resulting in a sparse

estimate of correlation matrix. A total of 60,693 (TFA, mRNA) pairs have non-

zero correlation, with more than 89% pairs having correlation values less than

|0.5| and around one hundred pairs having large correlations.

Figure 3.1 Histogram of z-values

We also estimated sparse cross correlation matrix using the adaptive thresh-

olding procedure proposed by Cai and Liu (2016). Since their procedure is

designed for testing correlation between elements of one vector from one sam-

ple, we put together the transcriptomics data (q = 3114) and the proteomics

data (p = 1195) of all subjects into a single matrix Z, and estimated sparse

variance-covariance matrix of the entire data first, and took the submatrix cor-

responding to the cross covariance matrix after the whole estimation process. A

total of 163,726 pairs are found significant or have non-zero covariance. Among

non-zero values, more than 59% are between -0.1 and 0.1, suggesting that the
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cross covariance matrix has relatively small values compared to the values of

variance-covariance matrix. The problem of over-penalization of cross correla-

tion matrix arises: we only need a p× q part of the variance-covariance matrix

but in fact we used values of the whole matrix when deciding thresholds.

Figure 3.2 Venn Diagram

As a part of procedure accuracy measurement process, we benchmark (TFA,

mRNA) pairs with non-zero correlation against the known transcription regu-

latory networks, and compare the coverage rate between two procedures. The

Venn diagram showing the number of non-zero correlation (TFA, mRNA) pairs

with and without benchmark for both procedures is given by Figure 3.2. The

TF-target pairs are benchmark pairs used. For our procedure, for example, a

total of 60,693 (TFA, mRNA) pairs have non-zero correlation, and among these

3304 pairs are also in the known transcription regulatory literature database.

The pairs with non-zero correlation founded using our procedure have a higher
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proportion that overlaps literature-based regulation, almost two times than

the overlap rate of adaptive thresholding procedure. The adaptive thresholding

procedure produced a substantial amount of unique non-zero correlation pairs

(n3 = 108, 299), more than 60% ( n3
n1+n3

) of its all non-zero correlation pairs

compared to about 10% ( n2
n1+n2

) using our procedure. However, the proportion

of unique non-zero correlation pairs under benchmark among all unique non-

zero correlation pairs (m2
n2

and m3
n3

) are nearly the same, around 1.7%, suggesting

that the adaptive thresholding procedure is not efficient in finding unique pairs.
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Chapter 4

Conclusion

In this thesis, we propose a new method to estimate the cross-correlation matrix

of RXY of two random vectors X and Y based on a multiple testing procedure.

The new method rewrites the problem as a multiple testing problem, and es-

timate the support by testing individual hypotheses on ρjks. In doing so, we

adapt the Efron’s local false discovery rate procedure (Efron, 2004) to test the

hypotheses simultaneously. Using the analysis of breast cancer data in TCGA,

we show the procedure performs better than Cai and Liu (2016)’s procedure.

However, with the recent advances in multiple testing literature, we may be

able to refine our procedure in this thesis. We leave this as our next step.

19



Bibliography

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate:

a practical and powerful approach to multiple testing. Journal of the Royal

Statistical Society, Series B, 57, 289–300.

Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false

discovery rate in multiple testing with independent statistics. Journal of Ed-

ucational and Behavioral Statistics, 25, 60–83.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate

in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.

Bennett, C. M., Wolford, G. L., and Miller, M. B. (2009). The principled control

of false positives in neuroimaging. Social Cognitive and Affecive Neuroscience,

4, 417–422.

Bickel, P. and Levina, E. (2008). Covariance regularization by thresholding. The

Annals of Statistics, 36, 2577–2604.

Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix

estimation. Journal of the American Statistical Association, 106, 672–684.

20



Cai, T. and Liu, W. (2016). Large-scale multiple testing of correlations. Journal

of the American Statistical Association, 111, 229–240.

Carter, S. L., Brechbühler, C. M., Griffin, M., and Bond, A. T. (2004). Gene

co-expression network topology provides a framework for molecular charac-

terization of cellular state. Bioinformatics, 20, 2242–2250.

Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., et al. (2005).

Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution.

Science, 308, 1149–1154.

Dubois, P. C., Trynka, G., Franke, L., Hunt, K. A., Romanos, J., Curtotti,

A., Zhernakova, A., Heap, G. A. R., et al.(2010). Multiple common variants

for celiac disease influencing immune gene expression. Nature genetics, 42,

295–302.

Efron, B. (2004). Large-scale simultaneous hypothesis testing: the choice of a

null hypothesis. Journal of the American Statistical Association, 99, 96–104.

Efron, B. (2005). Local false discovery rates. URL:

http://statweb.stanford.edu/ ckirby/brad/papers/2005LocalFDR.pdf.

Efron, B. and Hastie, T. (2016). Computer Age Statistical Inference: Algorithms,

Evidence, and Data Science. Cambridge University Press, New York.

Efron, B., Turnbull, B., Narasimhan, B., and Strimmer, K.

(2005). locfdr: Computes Local False Discovery Rates. URL:

https://CRAN.R-project.org/package=locfdr.

Elliott, P. and Wartenberg, D. (2004). Review Spatial epidemiology: current

approaches and future challenges. Environmental Health Perspectives, 112,

998–1006.

21



Fan, J., Fan, Y., and Lv, J. (2008). High dimensional covariance matrix esti-

mation using a factor model. Journal of Econometrics, 147, 186–197.

Fan, J., Han, X., and Gu, W.(2012). Estimating false discovery proportion

under arbitrary covariance dependence. Journal of the American Statistical

Association,107, 1019–1035.

Han, H., Shim, H., Shin, D., Shim, J. E., Ko, Y., et al. (2015). TRRUST: a

reference database of human transcriptional regulatory interactions. Scientific

Reports, 5, 11432.

Hastie, T. J., Tibshirani, R., and Friedman, J. (2009). The Elements of Statis-

tical Learning: Data Mining, Inference, and Prediction (2nd ed). Springer,

New York.

Huttlin, E. L., Ting, L., Bruckner, R. J., Gebreab, F., Gygi, M. P., et al. (2015).

The bioplex network: A systematic exploration of the human interactome.

Cell, 162, 425–440.

Hochberg, Y. and Tamhane, A. C. (1987). Multiple Comparison Procedures.

John Wiley & Sons, New York.

Jaeger, J., Sengupta, R., and Ruzzo, W. L. (2003). Improved gene selection for

classification of microarrays. Pacific Symposium on Biocomputing, 8, 53–64.

Lindquist, M. A. and Mejia, A. (2015). Zen and the art of multiple comparisons.

Psychosomatic Medicine,77, 114–125.

Liu, W. (2013). Gaussian graphical model estimation with false discovery rate

control. The Annals of Statistics, 41, 2948–2978.

Qiu, X., Klebanov, L., and Yakovlev, A. Y. (2005). Correlation between gene ex-

pression levels and limitations of the empirical Bayes methodology for finding

22



differentially expressed genes. Statistical Applications in Genetics and Molec-

ular Biology, 4, 1–32.

Qiu, X. and Yakovlev, A. (2007). Comments on probabilistic models behind the

concept of false discovery rate. Journal of Bioinformatics and Computational

Biology, 5, 963–975.

Razick, S., Magklaras, G., and Donaldson, I. M. (2008). iRefIndex: A consol-

idated protein interaction database with provenance. BMC Bioinformatics,

9, 405.

Rosato, A., Tenori, L., Cascante, M., De Atauri Carulla, P. R., Martins Dos

Santos, V. A., and Saccenti, E. (2018). From correlation to causation: analysis

of metabolomics data using systems biology approaches. Metabolomics, 14,

37.

Rothman, A., Levina, E., and Zhu, J. (2009). Generalized thresholding of large

covariance matrices. Journal of the American Statistical Association, 104,

177–186.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology,

46, 561–584.

Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans,

A., Rapoport, J., and Giedd, J. (2006). Intellectual ability and cortical de-

velopment in children and adolescents. Nature, 440, 676–679

Shedden, K. and Taylor, J. (2004). Differential correlation detects complex as-

sociations between gene expression and clinical outcomes in lung adenocar-

cinomas. Methods of Microarray Data Analysis IV. Springer, New York.

23



Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the

Royal Statistical Society, Series B, 64, 479–498.

Wang, W. and Fan, J. (2017). Asymptotics of empirical eigenstructure for high

dimensional spiked covariance. The Annals of Statistics, 45, 1342–1374.

Xia, Y., Cai, T., and Cai, T. T. (2015). Testing differential networks with ap-

plications to detecting gene-by-gene interactions. Biometrika, 102, 247–266.

Zhao, F., Xuan, Z., Liu, L., and Zhang, M. Q. (2005). TRED: a Transcriptional

Regulatory Element Database and a platform for in silico gene regulation

studies. Nucleic Acids Research, 33, D103–D107.

Zheng, G., Tu, K., Yang, Q., Xiong, Y.,Wei, C., Xie, L., Zhu, Y., and Li, Y.

(2008). ITFP: an integrated platform of mammalian transcription factors.

Bioinformatics, 24, 2416–2417.

24



국문초록

이 논문에서, 우리는 다중 오믹스 데이터에 대한 통합 연구를 통해 동기를 부여받

았으며 두 개의 고차원 무작위 벡터의 교차 상관 행렬을 추정하는 데 관심이 있다.

우리는 문제를 다중 테스트 문제로 다시 작성하고 매트릭스의 개별 구성 요소를

동시에테스트하여추정하는새로운방법을제안한다.제안된방법을 TCGA유방

암 코호트에서 단백질 발현 데이터(X)와 mRNA 발현 데이터(Y)의 통합 분석에

적용한다.

주요어: cross-correlation matrix, integrative analysis, local false discovery rate,

multiple testing, multi-omics data

학번: 2020-26660

25


	Abstract
	1 Introduction
	2 Review
	2.1 Cross covariance matrix and correlation matrix
	2.2 Procedure by Cai and Liu (2016)
	2.3 Multiple testing
	2.3.1 False discovery rate
	2.3.2 BH step-up procedure
	2.3.3 Storey's q-value procedure


	3 Estimation sparse correlation matrix  
	3.1 Procedure  
	3.1.1 Local false discovery rate  
	3.1.2 fdr Estimation  

	3.2 Data
	3.3 Results  

	4 Conclusion  
	Bibliography  
	국문초록  


<startpage>9
Abstract 1
1 Introduction 1
2 Review 5
 2.1 Cross covariance matrix and correlation matrix 5
 2.2 Procedure by Cai and Liu (2016) 6
 2.3 Multiple testing 7
  2.3.1 False discovery rate 8
  2.3.2 BH step-up procedure 8
  2.3.3 Storey's q-value procedure 9
3 Estimation sparse correlation matrix   10
 3.1 Procedure   10
  3.1.1 Local false discovery rate   11
  3.1.2 fdr Estimation   12
 3.2 Data 14
 3.3 Results   15
4 Conclusion   19
Bibliography   20
국문초록   25
</body>

