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Background: To investigate the effects of a glucagon-like peptide-1 receptor agonist on functional brain activation in lean and 
obese individuals with type 2 diabetes mellitus (T2DM) in response to visual food cues.
Methods: In a randomized, single-blinded, crossover study, 15 lean and 14 obese individuals with T2DM were administered lix-
isenatide or normal saline subcutaneously with a 1-week washout period. We evaluated brain activation in response to pictures of 
high-calorie food, low-calorie food, and nonfood using functional magnetic resonance imaging and measured appetite and ca-
loric intake in participants who were given access to an ad libitum buffet.
Results: Obese individuals with T2DM showed significantly greater activation of the hypothalamus, pineal gland, parietal cortex 
(high-calorie food vs. low-calorie food, P<0.05), orbitofrontal cortex (high-calorie food vs. nonfood, P<0.05), and visual cortex 
(food vs. nonfood, P<0.05) than lean individuals with T2DM. Lixisenatide injection significantly reduced the functional activa-
tion of the fusiform gyrus and lateral ventricle in obese individuals with T2DM compared with that in lean individuals with T2DM 
(nonfood vs. high-calorie food, P<0.05). In addition, in individuals who decreased their caloric intake after lixisenatide injection, 
there were significant interaction effects between group and treatment in the posterior cingulate, medial frontal cortex (high-calo-
rie food vs. low-calorie food, P<0.05), hypothalamus, orbitofrontal cortex, and temporal lobe (food vs. nonfood, P<0.05).
Conclusion: Brain responses to visual food cues were different in lean and obese individuals with T2DM. In addition, acute ad-
ministration of lixisenatide differentially affected functional brain activation in these individuals, especially in those who de-
creased their caloric intake after lixisenatide injection.
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INTRODUCTION

Obesity is a major risk factor for type 2 diabetes mellitus 

(T2DM) [1,2], and its prevalence has been increased globally 
over the past four decades [3]. The pathogenesis of obesity is 
complex, but abnormalities in neural circuits that regulate en-
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ergy intake and energy expenditure are crucial to the develop-
ment of obesity [4]. In the control of energy homeostasis, the 
hypothalamus plays an essential role by integrating internal 
and external signals and influencing consequent metabolic re-
sponses [5,6]. The hypothalamus also has extrahypothalamic 
connections to the brainstem, mesolimbic system, pituitary 
gland, and vagus nerve, all of which help to maintain metabol-
ic homeostasis [5]. In this process, leptin, the melanocortin 
system, and gut-derived peptides, including glucagon-like 
peptide-1 (GLP-1), serve as regulators of appetite and feeding 
behavior [4,5]. Therefore, the central regulation of energy bal-
ance is a key component of the pathophysiology of obesity [7].

GLP-1 is an incretin hormone that is mainly secreted from 
enteroendocrine L cells in response to the ingestion of nutri-
ents. GLP-1 enhances glucose-stimulated insulin secretion and 
suppresses glucagon secretion in a glucose-dependent manner 
[8]. Currently, guidelines recommend GLP-1 receptor agonists 
for the treatment of T2DM [9,10]. GLP-1 receptor agonists 
also promote significant weight loss in obese individuals [11], 
and 3.0 mg of liraglutide has been approved for the treatment 
of obesity [12]. A recent study showed that 0.05 to 0.4 mg of 
oral semaglutide per day resulted in a >15% and >20% weight 
loss in 7% to 56% and 4% to 27% of obese individuals without 
diabetes mellitus, respectively [13]. In rodents, the GLP-1 re-
ceptor agonist not only decreases energy intake but also in-
creases energy expenditure through white adipose tissue 
browning and brown adipose tissue thermogenesis [14-16]. 
On the other hand, in humans, the GLP-1 receptor agonist in-
duces weight loss by decreasing appetite and energy intake 
rather than increasing energy expenditure [17]. GLP-1 directly 
stimulates proopiomelanocortin/cocaine- and amphetamine-
regulated transcript neurons and indirectly inhibits agouti-re-
lated peptide/neuropeptide Y neurons via gamma-aminobu-
tyric acid signaling in the arcuate nucleus to reduce food intake 
[18]. Moreover, GLP-1 affects the hindbrain and vagal affer-
ents, leading to meal termination [19-21]. However, the mech-
anism underlying the effects of GLP-1 on energy intake is not 
fully understood.

In studies using functional magnetic resonance imaging 
(fMRI), individuals with obesity or T2DM exhibited differenc-
es in the functional activities of the brain compared with those 
in normal individuals. The affected brain regions were associ-
ated with appetite, the reward system, and emotions [22,23]. In 
obese individuals with or without T2DM, peripherally admin-
istered GLP-1 receptor agonists altered the activation of the 

hypothalamus, insula, putamen, and amygdala in response to 
visual food cues [23-27]. On the other hand, in lean individu-
als without T2DM, intravenous exenatide infusion did not af-
fect the functional activities of these brain regions [25]. How-
ever, it is uncertain whether the functional activation of the 
brain and its response to GLP-1 receptor agonist are different 
in lean and obese individuals with T2DM. Therefore, in the 
present study, we investigated the effects of a GLP-1 receptor 
agonist on functional brain activation in lean and obese indi-
viduals with T2DM in response to visual food cues.

METHODS

Study participants and ethical statement
Fifteen lean (body mass index [BMI] <23 kg/m2) and 15 obese 
(BMI >26 kg/m2) individuals with T2DM were included in the 
present study. The BMI categories used were based on obesity-
related health risk in the East Asian population [28]. Eligible 
participants were adults aged 19 to 70 years with an estimated 
glomerular filtration rate of >30 mL/min/1.73 m2, aspartate 
aminotransferase and alanine aminotransferase levels of <2.5 
times of the upper limit of the normal range, and a glycosylat-
ed hemoglobin (HbA1c) of <8.5%. All participants were treat-
ed for T2DM through lifestyle modification and/or oral antidi-
abetic drugs. We excluded individuals who were diagnosed 
with type 1 diabetes mellitus, had a history of insulin therapy, 
and could not perform magnetic resonance imaging (MRI) 
scan due to the adverse effects of contrast media or claustro-
phobia. The present study is registered at ClinicalTrials.gov 
(ClinicalTrails.gov Identifier: NCT02745470). The study pro-
tocol was approved by the Institutional Review Board of Seoul 
National University Hospital (IRB No. 1507-038-686). All par-
ticipants provided written informed consent before participat-
ing in any study-related activities.

Study design and procedure
The present study was a randomized, single-blinded, crossover 
study. The study consisted of two interventions with a 1-week 
washout period. Ten micrograms of lixisenatide or normal sa-
line was administered subcutaneously to the participants at 
9:00 AM after an overnight (12 hours) fast. At 30 minutes after 
the lixisenatide or saline injection, the functional activity of the 
brain was evaluated in response to visual food cues with fMRI. 
Seventy minutes after the fMRI session, the participants were 
presented with an ad libitum buffet consisting of bread, banan-
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as, boiled eggs, and juice for 20 minutes. We calculated their 
food intake in calories by measuring the amount of food before 
and after the buffet. Appetite was assessed using visual analog 
scales for five domains (hunger, satiety, fullness, craving, and 
nausea) [29] before the lixisenatide or saline injection, after the 
MRI session, and after the ad libitum buffet as follows: 0 
(none), 1 to 3 (mild), 4 to 7 (moderate), 8 to 10 (severe). After 
1 week, the participants switched from a lixisenatide to a saline 
injection or from a saline to a lixisenatide injection, depending 
upon which they received during the first intervention, and the 
same protocol was performed. Fig. 1 shows the study design 
and procedure.

Task fMRI protocol
The participants were asked to look at a screen through a mir-
ror on the head coil of the MRI instrument and to focus on the 
screen contents during the fMRI. There were three types of 
pictures that showed food with high caloric content, food with 
low caloric content, and nonfood (Supplementary Fig. 1). The 
pictures were obtained from a database of food images for the 

study of eating and appetite (http://www.eat.sbg.ac.at/) [30]. 
As shown in Fig. 1, seven consecutive pictures of the same type 
were presented in a block for 21 seconds followed by 9 seconds 
of a white ‘+’ sign on a black background (baseline block). A 
set of each type of picture block and the white ‘+’ sign was in-
cluded twice in each run. There were two runs in total, in 
which the second run used a different order for the picture 
type blocks to prevent the sequence effect.

Image acquisition and analyses
The T1-weighted (T1) and task fMRI data were acquired using 
a 3 Tesla scanner with 32 channels that had a coil (MAGNE-
TOM TrioTim syngo MR B17; Siemens, Erlangen, Germany). 
The T1 images had the following parameters: repetition time 
1,670 ms, echo time 1.89 ms, voxel size 1×1×1 mm3, field of 
view 250 mm, flip angle 9°, and number of slices 208. The task 
fMRI images were acquired using echo-planar imaging with 
the following parameters: repetition time 2,000 ms, echo time 
30 ms, voxel size 3.4×3.4×3.4 mm3, field of view 220 mm, flip 
angle 80°, and a generalized autocalibrating partially parallel 

Fig. 1. Study design and procedure. Fifteen lean and 14 obese individuals with type 2 diabetes mellitus were studied in a random-
ized, single-blinded, crossover study. (A) The study participants were randomly assigned to either the lixisenatide or saline injec-
tion group after an overnight fast. After administration of the injection, the brain responses to visual food cues were evaluated us-
ing functional magnetic resonance imaging (fMRI). After the fMRI session, the participants were given access to an ad libitum 
buffet to measure caloric intake. Appetite surveys were taken before the injection, after the fMRI session, and after the ad libitum 
buffet. One week apart, the participants were switched to the other condition group and performed the same procedure. (B) fMRI 
paradigm. One run consisted of six blocks of pictures that included high-calorie food, low-calorie food, and nonfood contents. 
Each type of picture was presented in a block with seven other pictures for 21 seconds and were shown twice in each run. The 
blocks were separated by 9 seconds of a black background with a white fixation cross. Each fMRI session had two runs of blocks 
with different orders to prevent the sequence effect. MR, magnetic resonance; T1, T1-weighted; DTI, diffusion tensor imaging.
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acquisition factor of 2.
The magnetic resonance images were preprocessed using a 

standard process in the Statistical Parametric Mapping 12 soft-
ware (SPM12; Wellcome Trust Centre for Neuroimaging, Lon-
don, UK). First, two time point volumes were removed from 
each image to reduce magnetic inhomogeneity at the begin-
ning of the scans. After correcting for the slice timing differ-
ence, the functional images were coregistered to the structural 
image, which was followed by segmentation and normaliza-
tion to the Montreal Neurological Institute standard template. 
Finally, the resulting images were smoothed with a Gaussian 
kernel of full width at a half maximum of 6 mm. Using a gen-
eral linear model implemented in SPM12, the β parameter of 
each type of picture was estimated, which was used to obtain 
the contrast map between food with high caloric content ver-
sus food with low caloric content and food versus nonfood. 
Each contrast map was tested for whole brain group differenc-
es using factorial analyses implemented in the second level 
general linear models in SPM12 on the basis of the main fac-
tors, including group and treatment, and the interaction be-
tween them. In addition, we performed subgroup analyses for 
individuals whose caloric intake was decreased after lixisena-
tide injection. The cluster-level threshold was set to 10 voxels 
with an uncorrected P<0.001 for multiple comparisons. We 
presented the distinct brain areas in one data set when they 
showed simultaneous changes in functional activation in the 
same contrast map.

Statistical analyses
The sample size was determined to yield a power of 90% at a 
significance level of 0.01 based on the minimum sample size 
needed to achieve statistical significance in fMRI neuroimag-
ing studies [31]. All data except the images were analyzed by 
GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA, 
USA). The baseline characteristics of the participants are pre-
sented as the mean±standard deviation for continuous vari-
ables and the number or proportion for categorical variables. 
In the image analyses, the β parameter for each type of picture 
is presented as the mean±standard error of the mean in the 
graphs. Caloric intake was analyzed by repeated measures 
analysis of variance (ANOVA). The association between the β 
parameters and the results of the appetite survey was assessed 
by the Pearson correlation coefficient. P values <0.05 were re-
garded as statistically significant.

RESULTS

Characteristics of the study participants
A total of 30 individuals with T2DM were evaluated for the 
present study, but one individual was excluded because of in-
sufficient fMRI data to obtain an image. Ultimately, 29 individ-
uals (15 lean and 14 obese individuals) were included in the 
analysis. In lean individuals, the mean age was 61.6±4.5 years, 
BMI was 21.9±0.8 kg/m2, and HbA1c level was 6.7%±0.5%. In 
obese individuals, the mean age was 59.4±5.9 years, BMI was 
28.1±2.2 kg/m2, and HbA1c level was 6.8%±0.4%. The base-
line characteristics of the participants are described in Table 1. 

Table 1. Baseline characteristics of the study participants

Characteristic Lean T2DM 
(n=15)

Obese T2DM 
(n=14) P value

Age, yr 61.6±4.5 59.4±5.9 0.28
Sex, % (no. of men/women) 26.7 (4/15) 46.7 (7/14) 0.45
BMI, kg/m2 21.9±0.8 28.1±2.2 <0.01
Fasting plasma glucose,  

mg/dL
128±24 133±23 0.62

HbA1c, % 6.7±0.5 6.8±0.4 0.53
Total cholesterol, mg/dL 162±21 157±29 0.59
Triglycerides, mg/dL 103±32 139±46 0.02
HDL-C, mg/dL 58±19 55±30 0.75
eGFR, mL/min/1.73 m2 94.4±14.6 91.8±18.2 0.57
AST, IU/L 19±4 24±7 0.03
ALT, IU/L 16±6 31±18 0.01
Duration of T2DM, yr 10.2±5.2 8.1±4.7 <0.01
Antidiabetic agents, n
   Metformin 14 13
   Sulfonylurea 4 6
   DPP-4 inhibitor 9 7
   Thiazolidinedione 0 1
Diabetic complications, n
   Retinopathy 2 1
   Nephropathy 1 0
   Neuropathy 2 0
   Coronary artery disease 0 2
   Carotid artery disease 1 0

Values are presented as mean±standard deviation. 
T2DM, type 2 diabetes mellitus; BMI, body mass index; HbA1c, gly-
cosylated hemoglobin; HDL-C, high density lipoprotein cholesterol; 
eGFR, estimated glomerular filtration rate; AST, aspartate amino-
transferase; ALT, alanine aminotransferase; DPP-4, dipeptidyl pepti-
dase-4.
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The participants reported no treatment-emergent adverse 
events except for nausea. The incidence of nausea was 34.5% 
and 20.7% for lixisenatide and saline, respectively, and most 
cases were mild to moderate according to the visual analog 
scales. Two participants reported severe nausea after lixisena-
tide injection but completed the study.

Brain responses to visual food cues
Obese individuals showed significantly greater functional acti-
vation of the hypothalamus, pineal gland, and parietal cortex in 
the high-calorie food versus low-calorie food contrast than lean 
individuals (P<0.05) (Fig. 2A and B). Obese individuals also 
showed greater activation of the orbitofrontal cortex in the high-
calorie food versus nonfood contrast than lean individuals 
(P<0.05) (Fig. 2C). In the food versus nonfood contrast, the 
functional activation of the visual cortex was significantly higher 
in obese individuals than in lean individuals (P<0.05) (Fig. 2D).

Effects of lixisenatide injection on brain responses to visual 
food cues
Lixisenatide injection significantly reduced the functional acti-
vation of the fusiform gyrus and lateral ventricle in obese indi-
viduals compared with lean individuals, only for the nonfood 
versus high-calorie food contrast (P<0.05) (Fig. 3). The direc-
tion of the treatment effect was opposing between the two 
groups. In the subgroup analysis of individuals whose caloric 
intake was decreased after lixisenatide injection (n=17), there 
were significant interaction effects between group and treat-
ment in the posterior cingulate and medial frontal cortex for 
the high-calorie food versus low-calorie food contrast (P<0.05) 
(Fig. 4A). For the food versus nonfood contrast, significant in-
teraction effects were also shown between group and treatment 
in the hypothalamus, temporal lobe, and orbitofrontal cortex 
(P<0.05) (Fig. 4B).

Fig. 2. Differences in brain responses to visual food cues in lean and obese individuals with type 2 diabetes mellitus (T2DM). (A) 
Activation of the hypothalamus and pineal gland in response to viewing high-calorie food pictures (high-calorie food vs. low-cal-
orie food). (B) Activation of the parietal cortex in response to viewing low-calorie food pictures (low-calorie food vs. high-calorie 
food). (C) Activation of the orbitofrontal cortex in response to viewing high-calorie food pictures (high-calorie food vs. non-
food). (D) Activation of the visual cortex in response to viewing food pictures (food vs. nonfood). The color bar indicates the T 
value of the functional activity in each voxel. The blood oxygen level-dependent signal intensity (effect size) is presented as the 
mean and the standard error of the mean. The cluster level threshold was set to 10 voxels with an uncorrected P<0.001. x, y, and z 
indicate the x-axis (sagittal plane), y-axis (coronal plane), and z-axis (transverse plane) used in magnetic resonance imaging.
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Fig. 3. Alteration in the responses to visual food cues in the brain in lean and obese individuals with type 2 diabetes mellitus 
(T2DM) after the administration of lixisenatide. The color bar indicates the T value of the functional activity in a voxel. The clus-
ter level threshold was set to 10 voxels with an uncorrected P<0.001. x, y, and z indicate the x-axis (sagittal plane), y-axis (coronal 
plane), and z-axis (transverse plane) used in magnetic resonance imaging.

Fig. 4. Alteration in brain responses to visual food cues in 17 of 29 individuals (eight lean and nine obese individuals) with type 2 
diabetes mellitus (T2DM) who had decreased caloric intake after the administration of lixisenatide. (A) Activation of the posteri-
or cingulate and medial frontal cortex in response to viewing high-calorie food pictures (high-calorie food vs. low-calorie food). 
(B) Activation of the hypothalamus, temporal lobe, and orbitofrontal cortex in response to viewing food pictures (food vs. low-
calorie food). The color bar indicates the T value of the functional activity in a voxel. The cluster level threshold was set to 10 vox-
els with an uncorrected P<0.001. x, y, and z indicate the x-axis (sagittal plane), y-axis (coronal plane), and z-axis (transverse 
plane) used in magnetic resonance imaging.
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Changes in caloric intake and appetite
Lixisenatide injection reduced caloric intake in 17 of 29 partic-
ipants, including eight lean and nine obese individuals. Chang-
es in caloric intake were not significantly different between lean 
and obese individuals (1±72 kcal vs. −8±62 kcal, P=0.56). 
However, in the high-calorie food versus low-calorie food con-
trast, the functional activation of the hypothalamus and pineal 
gland was associated with baseline fullness (r=0.34, P=0.01), 
post-fMRI satiety (r=0.31, P=0.01), and post-fMRI fullness 
(r=0.41, P<0.01). Moreover, in the food and nonfood contrast, 
the functional activation of the visual cortex was inversely cor-
related with post-buffet satiety (r=0.40, P<0.01), post-buffet 
fullness (r=0.38, P<0.01), post-fMRI satiety (r=0.25, P=0.03), 
and post-fMRI craving (r=0.25, P=0.03). In the subgroup 
analysis of individuals with decreased caloric intake after lix-
isenatide injection, the functional activation of the posterior 
cingulate and medial frontal cortex was associated with base-
line craving (r=0.38, P=0.02) and post-fMRI hunger (r=0.31, 
P=0.04) in the high-calorie food versus low-calorie food con-
trast (Supplementary Fig. 2). The results of the appetite assess-
ment are detailed in Supplementary Table 1.

DISCUSSION

We found that brain responses to visual food cues were differ-
ent in lean and obese individuals with T2DM. The functional 
activation of certain brain regions was associated with appetite. 
We also found that lixisenatide injection differentially affected 
the functional activation of the fusiform gyrus and lateral ven-
tricle in lean and obese individuals with T2DM. The changes 
in caloric intake were not significantly different between the 
two groups. However, in individuals with decreased caloric in-
take after lixisenatide injection, there were significant interac-
tion effects between group and treatment in brain regions that 
are known to be involved in appetite and the reward system.

In response to visual food cues, lean and obese individuals 
who did not receive a lixisenatide injection showed differential 
functional activation of the hypothalamus, pineal gland, pari-
etal cortex, orbitofrontal cortex, and visual cortex. These brain 
regions are included in central nervous system (CNS) circuits 
that regulate appetite, feeding behavior, and body weight 
[32,33]. The hypothalamus is crucial to nutrient sensing and 
signaling [34], and its dysfunction contributes to impaired en-
ergy homeostasis [35]. Previously, differences in hypothalamic 
activity were reported between lean and obese individuals 

without T2DM [25]. In our study, we found that these differ-
ences were also present in those with T2DM. However, little is 
known about the functional activation of the pineal gland in 
obesity. In a small study using MRI, pineal gland volume was 
found to be smaller in obese individuals than in lean individu-
als [36]. Given that melatonin deficiency is associated with cir-
cadian disruption and metabolic disorders [37], it may be 
plausible that pineal gland activity is different in lean and obese 
individuals. The parietal cortex integrates sensory, cognitive, 
and motor functions during a variety of tasks [38]. In fMRI 
studies, the activation of the parietal cortex was decreased in 
response to images of highly desirable food [26] and inversely 
correlated with weight loss [39]. The expression of GLP-1 re-
ceptors observed in the human parietal cortex [26] and the si-
multaneous alteration of the functional activation of the pari-
etal cortex and hypothalamus in our study suggest that lix-
isenatide could have direct and indirect effects on this region. 
The orbital cortex is involved in food rewards [40,41] and un-
derlies the valuation of food by incorporating information 
about nutritional constituents [42]. For this reason, the func-
tional activation of the orbitofrontal cortex might be associated 
with a change in food preference after GLP-1 receptor agonist 
treatment [43]. In addition, adaptation in the visual cortex was 
attenuated in individuals prone to weight gain compared with 
those resistant to weight gain [44], and obese individuals 
showed enhanced attention to visual food cues [45,46]. In our 
study, the functional activation of the hypothalamus, pineal 
gland, and visual cortex were associated with satiety, fullness, 
and craving, but they were not associated with changes in ca-
loric intake. Overall, CNS responses to visual food cues were 
different in lean and obese individuals with T2DM, and this 
affected the control of appetite in these individuals.

Lixisenatide injection altered the functional activation of the 
fusiform gyrus in response to visual food cues differentially in 
lean and obese individuals with T2DM. The fusiform gyrus is 
an important region involved in high-level object recognition 
[47,48] and is related to the neural processing of visual food 
cues [49]. Recently, researchers demonstrated that the func-
tional connectivity of the fusiform gyrus and prefrontal cortex 
was involved in the estimation of food energy density and as-
sociated with central reward circuits in humans [50]. In line 
with these findings, functional changes in the fusiform gyrus 
were observed only in contrasts with high-calorie food in our 
study. Notably, the fusiform gyrus has not been found to ex-
press GLP-1 receptor [51,52]. However, the activity of the fusi-
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form gyrus was inversely correlated with plasma insulin levels 
[53] and reduced after intranasal insulin administration [54] 
in healthy normal-weight individuals. Obese individuals were 
found to have a low cerebrospinal fluid (CSF) to plasma insulin 
ratio despite hyperinsulinemia due to insulin resistance [55]. 
These findings suggest that decreased insulin levels in the brain 
might be related to different responses to visual food cues and 
lixisenatide injection in the fusiform gyrus in lean and obese 
individuals, but this needs to be confirmed.

Along with functional changes in the fusiform gyrus, lix-
isenatide injection also differentially altered the functional ac-
tivation in the lateral ventricle, which appeared to occur in the 
region of the choroid plexus [56] in lean and obese individuals 
with T2DM. In adult mice, the choroid plexus supports the re-
cruitment and proliferation of neural stem cells [57] and ex-
presses receptors for several hormones, including GLP-1 [58] 
and leptin [59]. The GLP-1 receptors in the choroid plexus are 
involved in the modulation of CSF [58], but their metabolic 
role is unknown. The choroid plexus also plays a role as a bar-
rier or transporter in the brain along with the blood-brain bar-
rier. GLP-1 reached pharmacologically active concentrations 
in the CSF after intracerebroventricular injection but not after 
subdural or intraparenchymal injection [60]. In addition, plas-
ma liraglutide concentrations were not associated with CSF li-
raglutide concentrations in individuals with T2DM [61]. Inter-
estingly, megalin, which is a promiscuous receptor expressed 
in the choroid plexus, mediated the transport of leptin across 
the blood-CSF barrier [62]. Similar to megalin, the GLP-1 re-
ceptor in the choroid plexus might be involved in the transport 
of GLP-1 or GLP-1 receptor agonists to the brain, and this 
needs to be evaluated in additional studies. Further investiga-
tion is required to determine the role of GLP-1 receptor that is 
expressed in the choroid plexus.

Finally, there were significant interaction effects between 
obesity and lixisenatide injection in the posterior cingulate, 
medial frontal cortex, hypothalamus, orbitofrontal cortex, and 
temporal lobe in individuals whose caloric intake was de-
creased. These brain regions are involved in appetite control 
and central reward circuits [33]. In our study, the functional 
activation of the posterior cingulate and medial frontal cortex 
was associated with craving and hunger. Glycemic and weight 
responses to GLP-1 receptor agonists vary in individuals with 
T2DM or obesity [63-65]. The interaction effects found in our 
study may explain the differences in the treatment responses to 
GLP-1 receptor agonists in these individuals.

Previous studies showed that both short-acting [23,25] and 
long-acting GLP-1 receptor agonists [26,27] affected CNS acti-
vation that was involved in the regulation of appetite and the 
food reward system. Accordingly, GLP-1 receptor agonists 
may have similar effects on brain activity. However, short-act-
ing and long-acting GLP-1 receptor agonists vary in their 
pharmacokinetics and pharmacodynamics and have different 
effects on postprandial insulin secretion and gastric emptying 
time, which might influence the neural control of appetite and 
feeding behavior [66]. Therefore, further investigation is need-
ed to elucidate the effects of different GLP-1 receptor agonists 
on brain activity in terms of dose, treatment duration, and dif-
ferent study populations.

The present study has some limitations. First, we evaluated 
the effects of acute administration of lixisenatide injection on 
functional brain activation. The long-term effects should be 
examined in lean and obese individuals with T2DM. Second, 
we did not assess the dose-response relationship between lix-
isenatide and functional activities in the brain. Third, we did 
not evaluate differences in brain responses in consideration of 
the presence of oral antidiabetic drugs. Finally, we did not 
evaluate explanatory variables in more detail because the pow-
er and sample size calculations were performed for the prima-
ry endpoint.

In conclusion, our study showed that brain responses to vi-
sual food cues were different in lean and obese individuals 
with T2DM, and acute administration of lixisenatide differen-
tially affected the functional activation of the brain in these in-
dividuals, especially those with decreased caloric intake after 
treatment.
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Supplementary Fig. 1. Pictures used for the task functional magnetic resonance imaging protocol. (A) Pictures of food with high 
caloric contents. (B) Pictures of food with low caloric contents. (C) Nonfood pictures.
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Supplementary Fig. 2. Association of functional brain activation and appetite in study participants. Correlation of activation of 
the hypothalamus and pineal gland with (A) baseline fullness, (B) post-functional magnetic resonance imaging (fMRI) satiety, 
and (C) post-fMRI fullness (high-calorie food vs. low-calorie food). Inverse correlation of activation of the visual cortex with (D) 
post-buffet satiety, (E) post-buffet fullness, (F) post-fMRI satiety, and (G) post-fMRI craving (food vs. nonfood). Correlation of 
activation of the posterior cingulate and medial frontal cortex with (H) baseline craving and (I) post-fMRI hunger (high-calorie 
food vs. low-calorie food) in individuals with decreased caloric intake after lixisenatide injection.
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