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Abstract 

Background: Although anti‑apoptotic proteins of the B‑cell lymphoma‑2 (BCL2) family have been utilized as thera‑
peutic targets in acute myeloid leukaemia (AML), their complicated regulatory networks make individualized therapy 
difficult. This study aimed to discover the transcriptional signatures of BCL2 family genes that reflect regulatory 
dynamics, which can guide individualized therapeutic strategies.

Methods: From three AML RNA‑seq cohorts (BeatAML, LeuceGene, and TCGA; n = 451, 437, and 179, respectively), 
we constructed the BCL2 family signatures (BFSigs) by applying an innovative gene‑set selection method reflecting 
biological knowledge followed by non‑negative matrix factorization (NMF). To demonstrate the significance of the 
BFSigs, we conducted modelling to predict response to BCL2 family inhibitors, clustering, and functional enrichment 
analysis. Cross‑platform validity of BFSigs was also confirmed using NanoString technology in a separate cohort of 47 
patients.

Results: We established BFSigs labeled as the BCL2, MCL1/BCL2, and BFL1/MCL1 signatures that identify key anti‑
apoptotic proteins. Unsupervised clustering based on BFSig information consistently classified AML patients into 
three robust subtypes across different AML cohorts, implying the existence of biological entities revealed by the 
BFSig approach. Interestingly, each subtype has distinct enrichment patterns of major cancer pathways, including 
MAPK and mTORC1, which propose subtype‑specific combination treatment with apoptosis modulating drugs. The 
BFSig‑based classifier also predicted response to venetoclax with remarkable performance (area under the ROC curve, 
AUROC = 0.874), which was well‑validated in an independent cohort (AUROC = 0.950). Lastly, we successfully con‑
firmed the validity of BFSigs using NanoString technology.

Conclusions: This study proposes BFSigs as a biomarker for the effective selection of apoptosis targeting treatments 
and cancer pathways to co‑target in AML.
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Background
Acute myeloid leukaemia (AML) is an aggressive hema-
tologic cancer of myeloid cell lineage characterized by 
the interruption of myeloid precursor cells’ differentia-
tion and clonal proliferation, resulting in the accumula-
tion of leukemic cells [1]. Despite improvements in our 
knowledge to help understand the biology of AML and 
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identify potential therapeutic targets for AML [2], the 
overall prognosis for AML remains poor [1, 3].

The evasion of apoptosis is a hallmark of cancer [4], 
and the B-cell lymphoma-2 (BCL2) protein family plays 
a critical role in regulating intrinsic apoptosis. Depend-
ing on their functions, they are divided into pro- and 
anti-apoptotic proteins [5]. Expansion of abnormal cells 
often occurs due to the imbalance of these anti- and pro-
apoptotic BCL2 family proteins and depends on specific 
anti-apoptotic proteins [6]. Therefore, targeting the can-
cer apoptosis pathway to manipulate these proteins has 
been rigorously explored. Among these, a combination 
of the BCL2-selective inhibitor, venetoclax, with con-
ventional chemotherapeutic agents is a representative 
success in AML treatment [7, 8]. Despite the success of 
venetoclax in AML, both inherent and acquired resist-
ance are frequently observed. One of the representative 
resistance mechanisms to venetoclax is attributable to 
MCL1, an alternative anti-apoptotic protein. Accord-
ingly, several MCL1-selective inhibitors are under clinical 
investigation in AML. Likewise, BFL1, another alterna-
tive anti-apoptotic protein, has also been highlighted as 
a potential biomarker of venetoclax resistance in AML [9, 
10]. Altogether, these emphasize the importance of iden-
tifying individual dependency on anti-apoptotic proteins 
for personalized medicine in AML.

Due to the distinct dual roles of proteins in intrinsic 
apoptosis, knowledge on their protein-protein inter-
action (PPI) has been accumulated from a biological 
perspective. For example, pro-apoptotic proteins acti-
vate mitochondrial outer membrane permeabilization, 
whereas anti-apoptotic proteins counteract them and 
inhibit apoptosis [5, 7]. PPI networks of intrinsic apop-
tosis have been well studied [11] and specific interactions 
between pro- and anti-apoptotic proteins have been dis-
covered [7]. More importantly, well-known cancer path-
ways, such as TP53, NF-κB, and TGF-β pathways, are 
closely linked to the BCL2 family [12–20], which implies 
that these pathways could be potential targets for com-
bination treatment with apoptosis modulating agents. 
Given the BCL2 family PPIs and their association with 
cancer pathways, we speculated that the transcriptional 
signatures reflecting the complicated regulatory net-
works of the BCL2 family exist and may guide individual-
ized treatment strategies targeting the BCL2 family.

Non-negative matrix factorization (NMF) is an unsu-
pervised approach used to extract biologically hidden 
meaningful signatures in the gene expression matrix [21–
23]. In brief, NMF factorizes expression matrix A (g × 
n) into two non-negative matrices, W and H by the rank 
k, where g and n denote the number of genes and the 
number of samples, respectively. In this study, the k vec-
tors of the W matrix summarize the gene-wise patterns, 

while those of the H matrix summarize the sample-wise 
patterns.

In high dimensional transcriptome data, data-driven 
feature selection can cause many false-positive genes and 
overlook meaningful genes due to the low signal-to-noise 
ratio [24, 25]. Moreover, many noise genes can arise from 
the various intrinsic or extrinsic factors that are dataset-
specific [26–28]. To discover transcriptional signatures 
guiding precision treatment in AML, considering these 
challenges, we devised a novel approach based on estab-
lishing an innovative gene selection method, followed by 
the application of NMF. We hypothesized that applica-
tion of NMF to identify “BCL2 family” signatures could 
be successful only after optimally selecting a set of genes 
representing the complex regulatory network of the 
BCL2 family. In brief, genes were selected based on well-
established domain knowledge to overcome the low sig-
nal-to-noise ratio [24], followed by dataset-specific gene 
optimization for noise reduction using a novel approach 
developed by us. The optimized genes were finally pro-
cessed into BCL2 family signatures (BFSig) using NMF.

Here, we present how BFSigs can efficiently classify 
AML into three subtypes, provide subtype-specific treat-
ment guidance, including drug combination, and predict 
response to BCL2 family inhibitors. We also present the 
validity of BFSigs using NanoString nCounter panel in 
AML samples from Seoul National University Hospital 
(SNUH).

Methods
Transcriptome datasets and drug response information
We utilized multiple transcriptome datasets as follows: 
four patient-based RNA-seq datasets of AML [BeatAML 
(n = 451) [29], LeuceGene (n = 437) [9], TCGA-LAML 
(n = 179), Tavor (n = 43) [30, 31]] and other hematologic 
malignancies [TCGA-DLBC (diffuse large B-cell lym-
phoma; n = 48) [32] and CLLE-ES (chronic lymphocytic 
leukaemia; n = 111) [33]]; a cell line-based AML RNA-
seq dataset [(Cancer Cell Line Encyclopedia (CCLE; n 
= 34) [34]]; and an AML NanoString dataset [35] of 47 
bone marrow samples acquired from randomly chosen 
patients (23 of male and 24 of female from 22 to 84 of 
age) with AML diagnosed in Seoul National University 
Hospital (SNUH) during the period between April 2016 
and September 2019, whose RNA was available for the 
experiment.

For BeatAML and LeuceGene datasets, we obtained 
partially available venetoclax responses from 186 and 
23 samples in the original study. For Tavor dataset, we 
obtained venetoclax responses from 47 samples from 43 
patients. We downloaded response to MCL1 inhibitors 
(AZD5991, MIM1, and UMI1-77; n = 11–12) of CCLE 
dataset samples from Genomics of Drug Sensitivity in 
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Cancer2 (GDSC2). Acquisition of datasets and pre-pro-
cessing of gene expression data is described in Additional 
file 1.

Figure  1 describes which analysis was performed 
with which dataset. BeatAML, LeuceGene, and TCGA-
LAML datasets were used for the BFSigs discovery, sub-
typing, and functional analysis, and these results were 
compared with those of other hematologic malignancy 
datasets (TCGA-DLBC and CLLE-ES). Using BeatAML, 
LeuceGene, and Tavor datasets whose subsets have 
drug response information, we searched BFSigs-asso-
ciated drugs and developed a venetoclax response clas-
sifier. Additionally, we analysed predicting response to 
MCL1 inhibitor using GDSC2-availble CCLE samples. 
NanoString dataset was used for cross-platform valida-
tion for the BFSgis, and a subset of 7 samples was sub-
jected to a venetoclax assay.

Selection of genes that reflect the regulation network 
of the BCL2 family
In this study, we propose novel transcriptional signatures 
reflecting the regulation network of the BCL2 family. 
The BFSigs were calculated in two steps: (1) gene collec-
tion and (2) NMF-based gene optimization (Additional 
file  1). In brief, for the gene selection step, we identi-
fied genes closely related to the BCL2 family from a 
curated gene-set database [36–62] (Additional file 1). In 
each AML dataset, subsequently, a backward selection 
was conducted to remove high-noise genes with a pos-
tulation that they may not be helpful in the imputation 
of the profiles of the BCL2 family genes (BCL2, MCL1, 
BFL1, BCLXL, and BCLW) [63, 64] (Additional file 2: Fig. 
S1). In this respect, we sought to minimize the imputa-
tion error by reconstructing their profiles using NMF 
with datasets simulated with missing BCL2 family gene 
expression (NA value in R).

Fig. 1 Flowchart of the study. From AML RNA‑seq datasets (BeatAML, LeuceGene, and TCGA), gene optimization is independently conducted for 
capturing regulation factors of the BCL2 family. Afterward, the BCL2 family signatures (BFSigs) are calculated using the selected genes. Using the 
signatures, three novel subtypes are identified and functionally characterized. A classifier for predicting venetoclax response is developed and 
validated. Additionally, drug response analysis reveals the signature‑based subtype‑specific drug sensitivity. Finally, the validity of our selected 
genes is confirmed in a custom NanoString panel. *For external validation of BeatAML results, the BFSigs were re‑extracted after batch effect 
correction
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Calculation of the transcriptional signature of BCL2 family
Optimized genes that minimized the imputation error 
were finally processed into BFSigs using NMF. The cal-
culation was performed using the NNLM (ver. 0.4.3) R 
package with the loss function as mean Kullback-Leibler 
divergence [65]. For optimal rank selection in NMF, we 
used a cophenetic correlation coefficient which reflects 
the stability of sample clustering for multiple ranks, using 
the NMF (v0.21.0) R package [66]. Moreover, a detailed 
consensus matrix was obtained from the connectivity 
matrices of the repeatedly calculated H matrix using the 
cophenetic correlation coefficient. Finally, we selected 
the rank in which the cophenetic correlation coefficient 
begins to fall.

To confirm the validity of BFSigs, we compared them 
between venetoclax response groups in addition to the 
original expression of the BCL2 family using Welch’s 
t-test. To avoid bias from multiple samples from the same 
patient, only those samples with the latest time point 
were chosen when the samples were assigned to the same 
response group (Additional file 3: Table S1).

Identification of AML subtypes based on the signatures
To identify the subtype defined by BFSig, we conducted 
hierarchical clustering with average linkage and Pear-
son correlation distance. Visualization of clustering and 
profiling signatures was conducted using the pheatmap 
(v1.0.12) R package.

We compared the number of samples included in the 
subtypes using the chi-square test. For identifying sub-
type-wise pathway enrichments, we performed gene set 
enrichment analysis (GSEA) using fgsea (v1.10.1) [67]. In 
this study, the following pathways of MsigDB (v7.0) were 
considered: KEGG, GO, hallmark, BioCarta, Reactome, 
and PID [68]. The result of GSEA was derived as the nor-
malized enrichment score (NES) and its p-value. In this 
step, we applied two types of NES calculation (one vs. 
others, one vs. one).

Drug response screening across BCL2 family signature 
subtypes
To explore the drugs that act differently across the identi-
fied BFSig-based subtypes, we analysed the responses of 
122 drugs available from the BeatAML dataset. We ana-
lysed associations between BFSigs subtypes and the area 
under the drug response curve (AUC) using Kruskal-
Wallis test and Wilcoxon rank-sum test. Validation was 
performed using Tavor dataset in which the area above 
the drug response curve (ACC) was available.

Classifier for predicting venetoclax response
We developed a binary classifier using BeatAML, 
which predicts the response to venetoclax using BFSig. 

Performance evaluation was repeated 10 times to avoid 
overfitting. For each run, 70 and 30% of the samples were 
randomly assigned to train and test sets, respectively. We 
developed a logistic regression model with the train set 
and evaluated this model with the test set. For each sam-
ple, a probability of sensitivity was calculated by averag-
ing the predicted probability from the 10 times repeated 
training-testing scheme. Additionally, we computed the 
area under the ROC curve (AUROC) by combining the 
predicted probabilities of all repeats, and its significance 
was tested with two-sided DeLong’s test using the pROC 
R package (v 1.16.2). Response groups were separated by 
binarizing them as sensitive if  IC50 ≤ 1 μM and resistant 
if  IC50 ≥ 10 μM (Additional file 2: Fig S2A). The classi-
fier was compared with other variables: original expres-
sion of (1) three anti-apoptotic proteins BCL2, MCL1, 
and BFL1, (2) former genes plus BCLXL, and BCLW, 
and (3) top 5, 10, 30, and 50 differential expression genes 
(DEGs), which were estimated based on the fold change 
between the sensitive and resistance groups. Addition-
ally, other machine learning methods were compared: (1) 
Lasso logistic regression, (2) random forest, and (3) sup-
port vector machine using the sklearn (v0.20.4) package 
in python 3.4.9.

We performed an external validation using Leuce-
Gene and Tavor datasets. For Tavor dataset, the response 
groups were separated as in BeatAML (Additional file 2: 
Fig S2B). For LeuceGene dataset, we used the binary 
response group information provided in the original 
study [9]. After batch effect correction and gene opti-
mization, the BFSigs were re-extracted from the merged 
data (Additional file  1). The sensitivity probabilities of 
samples in LeuceGene and Tavor datasets were calcu-
lated using a classifier re-trained using whole samples of 
BeatAML dataset.

Classifier for predicting MCL1‑selective inhibitor response
We used 34 AML cell line RNA-seq data from CCLE 
and matched drug response (AUC; area under the 
dose-response curve) of BCL2 family inhibitors from 
GDSC2. Due to an insufficient number of samples, we 
extracted the BFSigs for cell lines from the merged data 
of BeatAML and CCLE. After correcting the batch effect 
and optimizing genes, we extracted the BFSigs (Addi-
tional file  1). Afterward, we measured prediction per-
formance for the inhibitory response. Due to a small 
number of samples (n = 11 or 12), we did not separate 
test sets and instead used LOOCV (Leave-One-Out 
Cross-Validation). Because the sample sizes were too 
small to apply the sensitive and resistant group thresh-
olds for binary classification, we used a linear regression 
model for predicting drug’s AUC. NRMSE (Normalized 
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Root Mean Square Error) was calculated to measure the 
performance.

Results
Outline of study
The overall workflow of the study is described in Fig. 1. 
First, from public RNA-seq datasets [BeatAML (n = 
451), LeuceGene (n = 437), and TCGA (n = 179)], gene 
selection was conducted for capturing regulation fac-
tors of the BCL2 family. We first collected genes related 
to BCL2 family regulation from an extensive collection 
of domain knowledge. Subsequently, we optimized the 
above genes to filter out noise independently for each 
dataset using our novel NMF-based approach. Second, 
the optimized genes were processed into dataset-specific 
BFSigs using NMF. Using the BFSigs, we identified three 
AML subtypes and conducted functional enrichment 
analysis for each subtype. These analyses showed remark-
able concordance results. In the subtypes, we discovered 
subtype-specific drug sensitivity. Moreover, we trained 
a simple classifier to predict venetoclax response, then 
evaluated its performance via internal and external vali-
dation. We designed an expression panel to validate our 
BFSigs in extracting signatures and subtyping an inde-
pendent SNUH AML cohort with the selected genes.

Construction of highly concordant BFSigs
First, we collected 236 genes related to BCL2 family 
regulation from multiple curated gene-set databases 
and literature [36–62] (Additional file  1). Next, utiliz-
ing NMF-based imputation, we optimized the gene col-
lection to filter out genes that do not contribute to the 
imputation of the BCL2 family genes that are set to the 
missing values in the simulated datasets (Additional 
file 2: Fig S1A; details in “Methods”). As a result, 97, 107, 
and 127 genes were chosen for BeatAML, LeuceGene, 
and TCGA, respectively (Additional file  2: Fig S1B and 
Additional file 3: Table S2). Interestingly, up to 84.5% of 
genes were commonly identified in at least two datasets 
(84.5, 83.2, and 63.0% for BeatAML, LeuceGene, and 
TCGA, respectively), which reflects high concordance of 
the proposed approach.

After gene selection, to extract BFSigs, we decomposed 
the expression matrix of the optimized genes from each 
dataset into two matrices that represent summarized pat-
terns of genes (W) and samples (H), respectively (Addi-
tional file 4: Table S3). We determined the optimal rank 
of these matrices, and therefore the number of signa-
tures, as three, and confirmed that the optimal rank is 
identical across all the datasets (Additional file 2: Fig S3). 
With the putative venetoclax- resistant factors (BCL2, 
MCL1, and BFL1; identified in Additional file 2: Fig S4), 

we classified each BFSig as BCL2, MCL1/BCL2, or BFL1/
MCL1 signatures, then performed interpretation.

Interestingly, all of the AML datasets showed con-
sistent patterns of the BFSigs (H matrix), as shown in 
Fig. 2A. Moreover, our identified BFSigs showed that the 
optimal genes consistently contributed to each signature 
across three datasets (Fig. 3; Spearman’s rho = 0.41–0.93 
between BeatAML, LeuceGene, and TCGA). Especially, 
the putative venetoclax-resistant factors (BCL2, MCL1, 
and BFL1) consistently dominated the BFSigs (Addi-
tional file 2: Fig S5A; Spearman’s rho = 1). In the other 
hematologic malignancies, on the other hand, these 
genes showed inconsistent contribution to the signatures, 
which results in different signatures from those of AML 
(Spearman’s rho −0.31–0.29, p > 0.05), except the BCL2 
signature of chronic lymphocytic leukaemia (Spearman’s 
rho 0.59, p < 0.01) (Additional file  2: Fig S5 and S6A). 
These results suggest that the BFSigs are heterogeneous 
across hematologic malignancies.

In addition, we identified not only BCL2 family genes 
but also other optimized genes with comparable roles in 
closely regulating BCL2 family genes, such as ARL6IP5 
and RAC2 in the BCL2 signature and TRAF6, ATF4, and 
PP1R15A in the MCL1/BCL2 signature (Fig.  3). These 
findings implied that the BFSigs reflect the regulation link 
between BCL2 family genes and their specific co-contrib-
uting genes (explained in the “Discussion” section).

Signature‑based AML subtyping shows distinct 
pathobiology among AML
Our signature analysis of the three AML datasets 
revealed that the AML samples could be classified into 
three molecular subtypes (Fig. 2A). We annotated these 
subtypes as BCL2 signature, MCL1/BCL2 signature, and 
BFL1/MCL1 signature subtypes based on the dominantly 
expressed signature in each subtype. The sample propor-
tion of subtypes was not different across datasets (Fig. 2B, 
chi-square p = 0.51), meaning that the BFSigs-based 
AML subtypes are consistently distributed regardless of 
the datasets. In both BeatAML and LeuceGene datasets, 
the venetoclax-resistant group showed significantly lower 
BCL2 signature and higher BFL1/MCL1 signature than 
the venetoclax-sensitive group (Welch’s t-test p < 0.01 
and p < 0.05, respectively; Fig. 2C).

From the GSEA results, we discovered that the sig-
nature-based subtypes manifest distinct enrichment 
patterns (Fig.  4 and Additional file  5: Table  S4), which 
explain their biological characteristics. BFL1/MCL1 
signature subtype showed significant enrichment of 
NF-κB pathway, p53, mitogen-activated protein kinase 
(MAPK), and mammalian target of rapamycin com-
plex 1 (mTORC1) pathways (FDR < 0.05); MCL1/BCL2 
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signature subtype presented significant enrichment of 
the NF-κB and TGF-β pathways (FDR < 0.05); the BCL2 
signature subtype was linked to upregulation of Myc and 
E2F target genes (FDR < 0.05). Of course, other hemato-
logic malignancies showed different enrichment results 
in these pathways (Additional file 2: Fig S6B). Additional 

mutation analysis showed no significant difference 
among subtypes in AML (Additional file 2: Fig S7).

Relationship between BFSigs and sensitivity to mTORC1 
and MAPK pathway inhibitor
The drug screening analysis revealed that not only vene-
toclax but also other drugs showed subtype-specific 

Fig. 2 Identification of BCL2 family‑based acute myeloid leukaemia (AML) subtypes. A Profiles of BCL2 family signatures calculated using optimized 
genes in each RNA‑seq dataset (BeatAML, LeuceGene, and TCGA). These datasets show three distinct clusters annotated as BCL2, MCL1/BCL2, 
and BFL1/MCL1 signature subtypes. Columns are clustered using hierarchical clustering with average distance. B Sample proportion of these 
subtypes. C Comparison of BCL2 family signatures between venetoclax response groups in BeatAML (81 sensitive and 72 resistant) and LeuceGene 
(20 sensitive and 3 resistant). P‑values are calculated by Welch’s t‑test. * < 0.05, ** < 0.01, ns > 0.10. D A profile of BCL2 family signatures in the 
NanoString dataset. The samples are also divided into three clusters resulting from RNA‑seq datasets
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sensitivity. In BeatAML dataset, BFL1/MCL1 sub-
type was more sensitive to rapamycin, an inhibitor of 
mTORC1, than other subtypes (p < 0.01) (Fig.  5 and 
Additional file  2: Fig S8). Blocking MAPK pathway 
was also more effective in BFL1/MCL1 subtype (p < 
0.05). Especially, the result of trametinib, an inhibi-
tor of MEK, was validated in Tavor dataset (p < 0.07) 
(Fig. 5 and Additional file 2: Fig S9). These results were 
in line with the GSEA results in which mTORC1 and 

MAPK pathways were enriched in BFL1/MCL1 subtype 
samples.

BFSigs and prediction of response to apoptosis 
modulating anticancer drugs
After excluding duplicated samples from same patient 
in the same response group, 153 samples (81 sensi-
tive and 72 resistant) and 34 samples (32 sensitive 
and 2 resistant) were used in the BeatAML and Tavor 

Fig. 3 Concordance of BCL2 family signatures between acute myeloid leukaemia (AML) datasets. Weight of optimized genes in the definition of the 
BCL2 family signatures (BCL2, MCL1/BCL2, and BFL1/MCL1 signature). BCL2, MCL1, and BFL1 are marked in cyan, magenta, and yellow, respectively. 
Some determinant components of the signatures are marked in black. Four AML datasets show the consistent weight of optimized genes. Each 
weight of genes is normalized to sum 1. Correlation coefficients are calculated using Spearman’s rho

Fig. 4 Functional analysis of BCL2 family‑based acute myeloid leukaemia (AML) subtypes. Gene set enrichment analysis (GSEA) from the 
comparison between one subtype and the others identifies enriched gene sets in each subtype. Enrichment patterns are consistent across three 
AML datasets. NES indicates a normalized enrichment score. The gene set of the MAPK pathway is from the GO database. The others are from the 
hallmark database
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analysis, respectively (Additional file 3: Table S1). Using 
the BFSigs, we built a classifier for predicting venetoclax 
response using BeatAML (n = 153). From internal valida-
tion using our 10-times repeated training-testing scheme, 
our signature-based classifier outperformed other 

classifiers using original expression- or machine learning-
based approaches (Fig. 6A, B). First, our signature-based 
classifier using logistic regression achieved an AUROC 
of 0.874 in the testing dataset (95% CI 0.841–0.906), 
which was substantially superior to the classifiers using 

Fig. 5 Association between BFSigs and drug responses. Comparison of drug responses between the subtypes in BeatAML and Tavor datasets. The 
lower the y‑axis value, the more sensitive to the drugs. P‑values above the panel and between the box plots are calculated by Kruskal‑Wallis test and 
Wilcoxon rank‑sum test, respectively. * < 0.05, ** < 0.01, *** < 0.001, ns > 0.05
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the original expression of the anti-apoptotic BCL2 family 
or DEGs (AUROC 0.634–0.822, p < 0.002). Furthermore, 
our signature-based classifier showed better perfor-
mance (p < 0.05 except for two models with p < 0.07) in 
comparison to three machine learning methods (sup-
port vector machine, lasso, and random forest; AUROC 
0.756–0.847). In the external validation using the 

batch-corrected LeuceGene and Tavor datasets (n = 23 
+ 34) (Additional file 2: Fig S10A and B), the signature-
based classifier trained with whole BeatAML also showed 
improved performance (AUROC = 0.950, 95% CI 0.899–
1) relative to all other approaches (AUROC 0.562–0.912), 
with the exception of five anti-apoptotic BCL family 
gene-based approach (AUROC = 0.943, 95% CI 0.887–1) 

Fig. 6 Prediction response to venetoclax. A Probability of sensitivity to venetoclax calculated from BCL2 family signature‑based logistic regression 
model in training set (BeatAML; 81 sensitive and 72 resistant) and external validation set (LeuceGene and Tavor; 20+32 sensitive and 3+2 
resistant). The sensitivity probabilities of BeatAML represent the average probability from the 10‑times repeated training‑testing scheme. Those of 
LeuceGene and Tavor are calculated from the whole BeatAML‑based classifier. P‑values are calculated using Wilcoxon rank‑sum test by comparing 
the probability rank between the response groups. B Comparison of prediction performance between venetoclax response classifiers. The black 
bar indicates the BCL2 family signature‑based logistic regression model. The dark grey bars indicate logistic regression models using the original 
expression of five BCL family genes (BCL2+MCL1+BFL1+BCLXL+BCLW), three BCL2 family genes (BCL2+MCL1+BFL1), and top differentially 
expressed genes (DEGs), respectively. The light grey bars indicate machine learning‑based models using total genes or pre‑collected genes related 
to BCL2 family regulation. The used machine learning methods are support vector machine, Lasso, and random forest (RF). Error bar indicates 95% 
confidence interval (CI). P‑values are calculated compared with the signature model using DeLong’s test. * < 0.05, ** < 0.01, *** < 0.001
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(Fig. 6A and Additional file 2: Fig S11). DeLong’s test was 
not conducted because of the small number of resistant 
samples (n = 5) in the external validation set.

Here, we confirmed the possibility that BFSig can be 
applied in predicting drug response to not only BCL2 
inhibitors but also MCL1 inhibitors (UMI-77, MIM1, and 
AZD5991). To extend the proposed approach to MCL1 
inhibitors, we further extracted the signatures from the 
batch-corrected CCLE dataset (Additional file  2: Fig 
S10C and S12; Additional file 4: Table S3). From the lin-
ear regression model for predicting AUC (area under the 
dose-response curve) (Additional file 6: Table S5), UMI-
77 was more predictable (LOOCV NRMSE = 0.36) when 
using the BFSigs rather than using an original expression. 
In AZD5991, MIM1, and venetoclax, the BFSigs showed 
similar performance with three BCL2 family genes 
(BCL2+MCL1+BFL1) (Additional file 2: Fig S13).

In methodological view, we showed that the gene opti-
mization and rank selection significantly enhanced pre-
diction power in BeatAML (p < 0.05) (Additional file 2: 
Fig S14); AUROCs of the non-optimized NMF-based 
signature and PCA (principal component analysis)-based 
signature were 85.0 and 82.3, respectively. The prediction 
power was decreased when the signatures were calcu-
lated using optimized genes in other datasets (LeuceGene 
or TCGA) or intersection of the optimized genes in the 
three datasets (Additional file 2: Fig S1B and S15). These 
results emphasize the effect of dataset-specific gene 
optimization.

Cross‑platform validation of BFSigs
We designed a custom NanoString nCounter expression 
panel with our 82 optimized genes and conducted an 
independent study using 47 AML samples from SNUH. 
The 82 target genes were selected with criteria of opti-
mal genes in BeatAML and additionally in LeuceGene or 
TCGA (Additional file 2: Fig S1B). Among these 82 genes, 
our optimization algorithm yielded 50 genes (Additional 
file 3: Table S2) and three BFSigs were calculated (Fig. 2D 
and Additional file 4: Table S3).

The additional study showed that the BFSigs can be 
successfully reproduced using the NanoString platform in 
an independent cohort despite using different sequencing 
technology. The optimal rank and the number of sub-
types in the NanoString dataset were identical to those 
of RNA-seq datasets, showing the consistence of BFSigs 
(Additional file  2: Fig S3, Fig.  2B, D). In the BFSigs of 
the NanoString dataset, in addition, the weight of genes 
showed significantly correlated with those from the three 
development RNA-seq datasets (Spearman’s rho = 0.36–
0.84, p < 0.05), especially on the anti-apoptotic proteins, 
except the BCL2 signature of TCGA dataset (Spearman’s 
rho = 0.14, p > 0.05) (Fig. 3). The BCL2 signature subtype 

showed higher sensitivity to venetoclax than other sub-
types, in a subset of 7 samples from the NanoString data-
set subjected to an apoptosis assay (Additional file 2: Fig 
S16). These results confirmed the validity of our gene sig-
natures in extracting BFSigs and subtyping AML.

Discussion
In this study, we discovered three BFSigs whose key pro-
teins were BCL2, MCL1/BCL2, and BFL1/MCL1, respec-
tively in AML. The combination of the non-biased NMF 
approach with a novel gene selection method based on 
biological knowledge gave birth to BFSigs with biologi-
cal and clinical relevance. We could validate the robust-
ness of suggested BFSigs from biological, statistical, and 
clinical viewpoints. First, the BFSigs successfully and 
consistently divided the samples from multiple and inde-
pendent AML datasets into three subtypes. Second, our 
imputation-based noise reduction approach for resolving 
the heterogeneity showed its performance and suggested 
its broad applicability. Third, the BFSigs demonstrated 
both its prediction power that outperforms the conven-
tional marker-based approaches and its robustness from 
a cross-platform validation study. Accordingly, BFSigs 
revealed the underlying biology of BCL2 family proteins 
and suggested clinical utility for AML patient care.

BFSigs reflect the regulation network of the BCL2 fam-
ily as a result of optimal utilization of the established 
domain knowledge with our novel approach. Notably, we 
could confirm the biological relevance of our BFSigs: (1) 
RAC2 and ARL6IP5, which are well-known regulators 
of BCL2, were the main determinants of BCL2 signature 
[53, 69, 70]. (2) Similarly, among the MCL1/BCL2 signa-
ture’s determinants, PPP1R15A, and TRAF6 are involved 
in MCL1 stabilization [71] and another determinant, 
ATF4, regulates the transcription of NOXA, a strong 
selective antagonist of MCL1 [72]. (3) The BFL1/MCL1 
signature was enriched in monocytic AMLs that have 
been reported to be resistant to BCL2 inhibition (Addi-
tional file  2: Fig S17) [73, 74]. This signature was also 
highly correlated with an existing monocyte signature 
correlated with BFL1 and MCL1 expression and veneto-
clax resistance (Additional file 2: Fig S18) [75].

From a clinical perspective, BFSigs classified AML into 
three subtypes, with the identification of key anti-apop-
totic proteins. The classification was consistent in three 
AML cohorts with high similarity, indicating the robust-
ness of this discovery. Therapeutically, as the BCL2 sig-
nature subtype that shows sensitivity to BCL2 inhibitors, 
as observed in this study, we can assume that the MCL1/
BCL2 signature subtype might be sensitive to dual inhibi-
tion of MCL1 and BCL2. In fact, based on in vivo stud-
ies, several clinical trials have utilized dual inhibition of 
MCL1 and BCL2 in BCL2 inhibitor-resistant AML [76]. 
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Likewise, although there are no effective methods for 
dual inhibition of BFL1 and MCL1 thus far, it is clear 
that both proteins are associated with resistance to BCL2 
inhibitors. Based on recent development of a dual inhibi-
tor targeting them, we encourage studies on the BFL1/
MCL1 signature subtype [77]. Based on our results, an 
umbrella trial utilizing BCL2, MCL1/BCL2, and BFL1/
MCL1 inhibitors based on BFSigs seems to be an ideal 
design to maximize the success of apoptosis inducing 
agents in AML [78].

It is also worth focusing on the observations that spe-
cific cancer pathways are enriched in AML subtypes 
based on BFSigs. The cancer pathways, including P53, 
NF-κB, TGF-β, MYC, and E2F, are well-known regu-
lators of the BCL2 family, but little is known about the 
exact control mechanisms [12–19, 47, 79–81]. Subtype-
specific enrichment of these pathways per BFSig-based 
subtype suggests each BCL2 family protein has specific 
regulation mechanisms. In addition to the further dissec-
tion of biological mechanisms, our findings have clinical 
value. For example, MAPK and mTORC1 pathways are 
enriched in the BFL1/MCL1 signature subtype (Fig.  4), 
and drug response screening analysis shows that block-
ing these pathways is effective in the BFL1/MCL1 signa-
ture subtype (Fig. 5 and Additional file 2: Fig S8). Hence, 
pathway-level characterization of the BFSigs in our study 
could be utilized to develop novel treatment strategy in 
AML per subtype, such as combining inhibition of the 
determinant proteins and the enriched pathways.

Finally, we could confirm the potential for utilization of 
BFSigs in AML patient care from a cross-platform valida-
tion study using the NanoString platform. As our results 
suggest, the clinical utility of BFSigs in several perspec-
tives, including umbrella trials, we endeavour to inves-
tigate the possibility of clinical application of BFSigs. 
While it is well-known that although whole transcrip-
tome sequencing (WTS) contains plentiful information 
enabling novel research, it is difficult to standardize, lim-
iting its clinical application. Accordingly, we validated 
BFSigs using the NanoString platform, which has already 
been adopted in clinical practice.

However, there is more to be studied based on our 
results. Of note, it is necessary to study MCL1 or BFL1 
inhibition further. We only identified MCL1 or BFL1-
related signatures and discovered that some patients are 
enriched with these signatures. However, it is uncertain 
if using the signatures could ultimately be associated 
with the inhibitory effect of MCL1 or BFL1 as we could 
not analyse these due to a lack of inhibitors for BFL1. 
It is also a limitation that our analysis on MCL1 inhibi-
tors was based on a small number of cell lines due to a 
lack of clinical data with MCL1 inhibitors. In addition, 
there was heterogeneity in each BFSig-based subtype 

(Fig.  2A), especially in BFL1/MCL1 signature subtype. 
It requires additional investigation to identify their role 
in the future.

Conclusions
In summary, we successfully overcame data discrepan-
cies between multiple RNA-seq datasets and between 
platforms by unsupervised filtering of noise genes not 
related to the BCL2 family. Our approach replicated the 
results of extraction signatures and signature-based sub-
typing from the RNA-seq datasets, using an independent 
AML cohort and technology (NanoString). Based on our 
study’s clear and consistent results, we suggest BFSigs 
as easy-to-calculate biomarkers for effective selection of 
strategy in manipulating the BCL2 family in individual-
ized treatment.
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