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Abstract 

 

To secure the resilience of the modern society, structural systems should achieve a 

proper level of reliability in the processes of design and maintenance decisions. Such 

procedures can assure the reliability of structural systems by preventing the risk of 

unexpected failures. Thus, appropriate strategies are required for reliability 

assessment and optimization to support the decision-making process of structural 

systems. However, reliability assessment generally needs to evaluate the system’s 

performance repeatedly and thus may result in high computational costs. This issue 

is exacerbated especially when the structural system requires complex and high-

dimensional models to describe the system’s performance accurately. To effectively 

design and assess complex structural systems under various uncertainties, this 

dissertation introduces active learning frameworks for reliability assessment and 

reliability-based design optimization (RBDO) using adaptive surrogate models of 

system performance trained by computational simulation data and presents 

numerical applications. 

First, an efficient active learning-based reliability assessment framework is 

developed. The proposed Probability-Adaptive Kriging in n-Ball (PAK-Bn) method 

predicts the limit-state surfaces using Gaussian process (GP) model, also known as 

Kriging, and adaptively trains the surrogate model using active learning. The 

proposed PAK-Bn incorporates the probabilistic density of the random variable space 

into the adaptive training procedure of identifying the surrogate limit-state surface. 

In addition, alternative sampling in n-ball domain is used as the candidate points for 

statistical learning, and the best candidate for training is determined in terms of 
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influence on the reliability estimation. The numerical examinations are carried out 

to demonstrate the efficiency and applicability of the proposed PAK-Bn method. 

Although PAK-Bn is effective for reliability problems up to around 10 random 

variables, its applications are limited in high-dimensional problems, which are often 

needed to evaluate the reliability of structural systems subjected to natural and 

human-made hazards, e.g., wind loads, earthquakes, and collisions. To tackle such 

challenge and extend the applicability to stochastic dynamical systems, an active 

learning-based heteroscedastic Gaussian process (AL-HGP) is developed. 

Considering uncertainties arising from the structural system and the environmental 

wind loads, the proposed formulation by a mixture distribution of Gaussian densities, 

each of which represents the conditional distribution of the maximum response, 

enables estimation of first-passage probability using GP-based surrogates with 

heteroscedastic noises. In addition, an adaptive training process for surrogates can 

identify the best experimental designs achieving efficient convergence. The 

examples of engineering applications demonstrate the performance of the proposed 

AL-HGP method. 

Next, the active learning framework is further developed for RBDO problems 

that aim to identify the optimal reliable design of complex structures. A new RBDO 

method, termed quantile surrogates by adaptive Gaussian process (QS-AGP), 

employs quantile surrogates of the limit-state functions to identify the admissible 

domain concerning reliability requirement. The GP-based quantile surrogates are 

trained adaptively through an exploration-exploitation trade-off based on inherent 

randomness and the model uncertainty of the surrogate. The adaptive training 

process in QS-AGP guides the computational simulations toward the domain, which 
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makes the greatest contribution to the optimization process. It is found that the 

proposed QS-AGP requires fewer performance function evaluations in achieving 

convergence to a reliable optimum design than existing RBDO approaches. 

Finally, to promote the application of the ideas in QS-AGP to high-dimensional 

engineering systems, a new RBDO method termed, quantile surrogates and 

sensitivity by adaptive Gaussian process (QS2-AGP) is developed. To this end, a non-

sampling-based procedure is proposed for efficient estimation of the quantile 

surrogates based on input uncertainties and model error of surrogates. Moreover, to 

perform quantile-surrogate-based RBDO without relying on pre-generated design 

samples, the parameter sensitivity of the quantile surrogate is implemented. The 

computational efficiency of the proposed QS2-AGP is demonstrated by a variety of 

RBDO examples including a large number of design parameters. 

The performance of the proposed methods is demonstrated by numerical 

examples incorporating high-fidelity computational simulations. The compelling 

results confirm the merits and potential of the outcomes of this study, which will 

eventually enhance the resilience of modern engineering systems facilitated by 

reliability assessment and reliability-based optimization for design and maintenance 

decisions. 

  

Keyword: Active learning, Decision-making, Design of experiment, Gaussian 
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Chapter 1. Introduction 
 

 

 

 

1.1 Motivation 

 
The modern infrastructures are inevitably affected by the uncertainties, arising from 

lack of data, modeling approximations, or inherent randomness in the systems and 

their environment. Such uncertainties may have a significant impact on the system 

performance, which may induce catastrophic damage or losses. With the growing 

complexity of modern engineering systems, it is essential to manage the impact of 

such uncertainties in their processes of design and performance assessment. Thus, 

appropriate strategies are required for reliability assessment and design optimization 

to support the decision-making process of structures and other engineering systems. 

To assure the reliability of structural systems, structural reliability analysis and 

reliability-based design optimization (RBDO) have been widely studied and applied 

(Du and Chen 2004; Der Kiureghian and Ditlevsen 2009; Dubourg et al. 2011; Zhang 

et al. 2017). Reliability analysis aims to assess the effects of uncertainties by 

estimating the associated failure probability with respect to some relevant limit state 

functions. RBDO aims to achieve reliable optimal design of systems whose optimal 

solution satisfies given reliability constraints. To evaluate the reliability in the 

processes of designing and assessing structural systems, researchers developed 

various methods which can be categorized as classical first and second-order 

reliability methods (FORM, SORM; Der Kiureghian 2022), simulation-based 

strategies (Au and Beck 2004; Kurtz and Song 2013; Wang et al. 2019), and 

surrogate-based approaches (Echard et al. 2011; Marelli and Sudret 2018). 
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However, the reliability evaluation generally requires repetitive structural 

analyses and thus may result in high computational costs. These enormous 

computational costs might hamper their engineering practice applications that often 

entail challenging and time-consuming simulations, e.g., nonlinear dynamic 

structural analyses, finite element simulations. This issue can be exacerbated when 

the engineering system requires complex and high-dimensional models to describe 

the system’s performance accurately. 

To address the issue, some researchers have investigated various machine 

learning algorithms to alleviate the computational burden caused by time-consuming 

structural analysis procedures. One of the compelling approaches to increase the 

computational efficiency for complex engineering analyses is the surrogate model 

approach (Jones et al. 1998; Dubourg et al. 2011; Zhang et al. 2017; Kim et al. 2020). 

A surrogate model, also termed a meta-model, approximates the results of expensive 

computational simulations based on the training dataset of input-output pairs. The 

accuracy and efficiency of the surrogate-based predictions rely on the training data 

collection and their learning strategies. Thus, the surrogate models and its 

applications need to be developed from the viewpoint of structural reliability and 

reliability-based design optimization. 

This dissertation aims to address the computational challenges in reliability 

assessment and RBDO applications by improving the accuracy of predictions and 

extending the applicability to more practical engineering systems. To this end, the 

Gaussian process (GP) model, which is one of the machine learning-based surrogate 

model, are employed as a tool to predict the structural responses and quantify the 

prediction uncertainties. To improve the efficiency and accuracy in surrogate-based 
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predictions, an active learning algorithm is utilized to train the surrogate models by 

adaptively selecting the simulation points. Through the active learning frameworks 

developed using GP-based surrogate models, it is possible to assess the reliability 

and achieve reliable optimal design of complex engineering systems with 

significantly reduced computational costs and dataset. 

 

1.2 Objectives and scopes 

 
The research described in this dissertation aims to achieve four goals: (1) developing 

an active learning framework for reliability assessment of challenging and complex 

engineering systems, (2) extending the method to high-dimensional reliability 

problems that incorporates the stochastic sequences of wind excitations, (3) enabling 

RBDO applications for decision-making, and (4) facilitating the applications to high-

dimensional RBDO problems.  

The dissertation first focuses on developing an active learning reliability 

method, termed probability-adaptive Kriging in n-ball (PAK-Bn). The main objective 

of PAK-Bn is to carry out an adaptive selection of simulation points, i.e., adaptive 

training of Kriging surrogates, with low computational costs from a reliability 

analysis standpoint. Next, to estimate the reliability of structures subjected to 

stochastic wind excitations, an active-learning-based heteroscedastic Gaussian 

process (AL-HGP) method is developed by incorporating high-dimensional 

sequences of stochastic winds. Next, a new active learning-based RBDO method, 

quantile surrogates by adaptive Gaussian process (QS-AGP) is developed using 

quantile-based formulation to identify the probability-feasible design domain. 

Finally, an extension is made to promote the applications of QS-AGP to high-
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dimensional RBDO problems in which the number of design parameters is 

considerably large. The extended method is referred to as quantile surrogates and 

sensitivity by adaptive Gaussian process (QS2-AGP) because the sensitivity-based 

optimization algorithm is employed to handle a large number of design parameters 

without requiring any random samples. 

Compared with the existing reliability analysis and RBDO methods, the 

proposed active learning-based methods have the following benefits: (1) accurate 

estimation of the reliability of structures including stochastic dynamical systems is 

obtained with significantly less computational efforts; (2) the optimal reliable design 

of structural systems can be efficiently identified considering various uncertainties 

in engineering systems and/or their environment; (3) the high-dimensional reliability 

and RBDO problems can be solved without losing the benefits and merits of the 

proposed methods; (4) the methods successfully deal with high-fidelity and time-

consuming computational simulations, e.g., finite element analyses; (5) it is possible 

to deal with challenging engineering systems featuring highly nonlinear performance 

functions, various distribution types, and complexity; and (6) the proposed risk-

informed design frameworks can be employed for the recent performance-based 

engineering frameworks and decision-making for modern structural systems under 

various disasters. 

 

1.3 Organization 

 
The dissertation is organized into six chapters. Chapters 2 and 3 address the 

development of active learning reliability methods, i.e., PAK-Bn and AL-GHP, for 

assessing structural reliability for both static and dynamic systems. In Chapters 4 and 
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5, the proposed active learning-based RBDO methods are introduced to handle a 

considerably large number of design parameters. More details on the specific 

subjects covered in each chapter are presented below. 

Chapter 2 describes the development of PAK-Bn method that improves the 

efficiency and accuracy of reliability analysis by incorporating the probabilistic 

density of the random variable space into the adaptive procedure of identifying the 

surrogate limit-state surface. In addition, samples distributed uniformly inside the n-

ball domain are used as the candidate points to enrich the experimental design, and 

the best candidate for simulation is determined in terms of influence on the failure 

probability estimation. The efficiency and accuracy of the proposed PAK-Bn method 

are demonstrated by several reliability examples characterized by highly non-linear 

limit-state functions, small failure probability, multiple design points, and 

engineering applications. The results confirm that the method facilitates convergence 

to the failure probability with a smaller number of function evaluations. 

Chapter 3 begins with a discussion on the reliability measures of structural 

systems against stochastic loads caused by natural and man-made hazards, e.g., wind 

loads, earthquakes, and collisions, which lead to a high-dimensional reliability 

analysis problem. Since the PAK-Bn method in Chapter 2 has limitations in the high-

dimensional applications, a new AL-HGP method is introduced to efficiently 

estimate the reliability under stochastic excitations. The AL-HGP introduces an 

alternative formulation using the conditional distribution of the maximum response 

to handle the high-dimension of stochastic excitation sequences. The method 

employs the Gaussian-process-based surrogate model with heteroscedastic noises to 

fit the distribution parameter functions considering uncertainties arising from the 
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structural system and the environmental loads. In addition, an adaptive training 

process for surrogates is introduced to identify the best experimental designs 

achieving efficient convergence. The numerical examples of an eight-story building 

and a transmission tower demonstrate that the proposed method can produce accurate 

estimation results with fewer structural simulations than existing methods. 

Chapter 4 describes the RBDO problem that incorporates various uncertainties 

into the design optimization of structures and other engineering systems. Many 

RBDO methods have been developed, but their practical applications can be limited 

if the reliability consideration entails a large number of evaluations of performance 

functions, especially for those requiring time-consuming simulations. To overcome 

the challenge, this chapter proposes a new RBDO method that employs quantile 

surrogates of the performance functions to identify the admissible domain, termed 

the probability-feasible design domain. Gaussian process models of the quantile 

surrogates are updated adaptively through an exploration-exploitation trade-off 

based on inherent randomness and the model uncertainty of the surrogate. The 

method guides the computational simulations toward the domain in which the 

quantile estimation can make the greatest contribution to the optimization process. 

The validity and efficiency of the proposed RBDO method using QS-AGP are 

demonstrated using several numerical examples. The results confirm that QS-AGP 

facilitates convergence to a reliable optimum design with a significantly reduced 

number of function evaluations compared to existing RBDO approaches. 

Chapter 5 extends the applicability of the QS-AGP method in Chapter 4 to high-

dimensional RBDO applications. Since QS-AGP uses pre-generated design samples 

to check whether the design samples satisfy the reliability requirements, the 
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approach could be computationally expensive in high-dimensional applications that 

may require an insurmountable memory. To alleviate this difficulty, a new quantile 

surrogate-based RBDO framework is proposed in this chapter. To this end, a non-

sampling-based procedure is proposed for efficient estimation of the quantile 

surrogates based on both input uncertainties and model error of surrogates. Moreover, 

to perform quantile-surrogate-based RBDO without relying on pre-generated design 

samples, the parameter sensitivity of the quantile surrogate is implemented. The 

computational efficiency of the proposed QS2-AGP is demonstrated by a variety of 

RBDO examples featuring up to 15 design parameters. 

Finally, Chapter 6 provides a summary of the developments and discusses the 

major findings. This dissertation is concluded by discussions on current limitations, 

requirements, and recommended topics for future research. 
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Chapter 2. Active Learning-based Reliability Analysis 

Using Probability-Adaptive Kriging in n-

Ball (PAK-Bn) 
 

 

 

 

2.1 Introduction  

 
Complexity of today’s engineering systems inevitably makes the computational 

simulation of their performance challenging and time-consuming. Since structural 

reliability analysis methods generally repeat such computational simulations, it is 

essential to reduce the number of function evaluations required to achieve reliable 

estimates. In research efforts to fulfill this aim, adaptive Kriging methods have 

gained significant interest because of their desirable properties and accuracy of the 

surrogate model (Jones et al. 1998; Echard et al. 2010; Dubourg et al. 2011; Zhang 

et al. 2017). However, the existing adaptive Kriging approaches may not be flexible 

enough to fit the complex shape and orientation of the critical points especially when 

a structural reliability problem has small failure probability of complex failure 

domains (Wen et al. 2016; Lelièvre et al. 2018). Thereby, the adaptive Kriging needs 

to guide the simulation data to the vicinity of limit-state surface while giving 

priorities to critical regions from the viewpoint of reliability analysis. 

This chapter first presents a brief overview of structural reliability problem and 

basic theories of Gaussian process model. The overview includes the AK-MCS 

method that is one of the most widely used active learning reliability method and its 

limitations. Next, details of the new adaptive Kriging method, PAK-Bn, will be 

introduced: (1) alternative sampling in n-ball, (2) new learning function, and (3) the 
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adaptive algorithm for reliability analysis. Through numerical examples of 

challenging reliability problems, the proposed approach will be tested in terms of (1) 

robustness against multiple design points and high non-linearity of limit-state 

functions, and (2) accuracy and efficiency with respect to the number of function 

evaluations for various levels of failure probability. In each example, the final 

experimental designs and the identified limit-state surface will be visualized to 

provide further insight. Lastly, a summary of the results and concluding remarks are 

provided (Kim and Song 2020). 

 

2.2 Kriging-based reliability analysis 

 
2.2.1 Structural reliability analysis 

 

In a reliability problem described by an 𝑛-vector of basic random variables, 𝐗, the 

failure probability 𝑃𝑓 is defined as the 𝑛-fold integral 

𝑃𝑓 = ∫ 𝑓𝐱(𝒙)
 

𝐺(𝒙)≤0

𝑑𝒙 (2.1) 

where 𝑓𝐱(𝒙) is the joint probability density function (PDF) of 𝐗; and 𝐺(𝒙) is the 

limit-state function whose negative sign indicates the occurrence of the failure event 

of interest. In general structural reliability problems, the computation of Eq. (2.1) 

can be a difficult task since the integration of 𝑓𝐱(𝒙) over the failure domain is time-

consuming, and/or identifying the limit-state surface, i.e., {𝒙|𝐺(𝒙) = 0}  is 

challenging. Thus, various methods have been developed in order to assess structural 

reliability efficiently but without compromising accuracy. 

The first and second order reliability methods (FORM, SORM) are the most 

widely used reliability methods, which estimate the failure probability based on 
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approximation of the limit-state surface at the richest point in terms of probability 

density, termed design point or most probable point (MPP) (Der Kiureghian 2022). 

However, in this approach, finding the design point is quite difficult in some 

problems, and the error caused by approximating limit-state surface can be 

significant if the function shows a high level of nonlinearity, or has multiple design 

points or critical regions (Kim and Song 2018). Figure 2.1 shows an example of 

design point for a component reliability problem with two random variables. As an 

alternative, Monte Carlo Simulation (MCS) is often used to estimate the failure 

probability based on computational simulations at sample points, and known to be 

robust against the type and dimension of a given reliability problem. On the other 

hand, MCS may require a large number of function evaluations especially in small 

failure probability problems. In order to reduce the variance of the failure probability 

estimated by MCS, various alternatives, e.g., Importance Sampling, Directional 

Simulation, Subset Simulation, and Line Sampling (Nie and Ellingwood 2000; Au 

and Beck 2001; Schuëller et al. 2004; Kurtz and Song 2013), have been proposed. 

 

 

Figure 2.1 Design point for a component reliability problem with two random 

variables 
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In order to construct an accurate Kriging model with a small set of simulation 

points, many adaptive schemes have been developed and used for optimization and 

reliability assessment (Jones et al. 1998; Echard et al. 2010). A Kriging approach is 

considered “adaptive” when the information from the prior stages is utilized in 

selecting the next experiment points, i.e., the values of 𝒙 where the function 𝐺(𝒙) 

will be actually evaluated. Echard et al. (2010) proposed an adaptive Kriging method 

that can efficiently estimate the failure probability by pursuing adaptive design of 

experiments in surrogate model construction. In their approach termed AK-MCS, the 

limit-state function is evaluated for only a small subset of Monte Carlo samples, and 

drastically decreases the number of function calls compared to other surrogate-based 

methods. In each iteration, the next point for function evaluation is adaptively 

selected based on the learning function 𝑈(𝒙)  representing the trade-off between 

Kriging mean and variance. The sample point with the minimum 𝑈(𝒙) is selected 

as the next point to enrich the experimental design. Several other methods, e.g., AK-

OIS, AK-SS and AK-SYS (Fauriat and Gayton 2014; Huang et al. 2016; Zhang et al. 

2020), were also developed to improve the efficiency of adaptive Kriging method. 

During the adaptive refinement process of the Kriging surrogate model, the 

influence of the misclassification error depends on relative importance of the 

corresponding locations. In reliability problems, critical domains such as areas 

including the design point are important for accurate estimation of failure probability 

and reliability index. Therefore, adaptive refinement focusing on such critical 

domains is desired. Since the learning function 𝑈(𝒙)  in AK-MCS is defined in 

terms of the Kriging mean and variance only, the relative importance of 𝒙, which is 

determined by the corresponding probability density, is not incorporated into the 
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adaptive procedure. Furthermore, it is noted that the assessment of low failure 

probability is still challenging even when an adaptive Kriging method is used. When 

the failure probability is extremely low (e.g., 10−3~10−7 ), a large size of MCS 

sample populations are required to identify the failure region, which may cause a 

memory problem. 

 

2.2.2 Basic theories of Gaussian process model 

 

A Gaussian process model, also known as Kriging, has been widely used to construct 

a surrogate of a complex function based on the function evaluations at a few input 

points, which are selected among samples through so-called Design of Experiment 

(DoE) process. The main assumption behind the GP-based surrogates is that the 

response at the input 𝒙, 𝑦(𝒙) is the realization of a Gaussian process (Rasmussen 

and Willians 2006; Rasmussen and Nickisch 2015), that is, 

𝑦(𝒙)~𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙′; 𝚯)) (2.2) 

where 𝑚(𝒙) = E[𝑦(𝒙)]  is the mean function; 𝑘𝑦(𝒙, 𝒙′) = E[(𝑦(𝒙) −

𝑚(𝒙))(𝑦(𝒙′) − 𝑚(𝒙′))] is the covariance function (or “kernel” function); and 𝚯 

is a set of parameters that characterize the process, often termed hyperparameters. 

For example, Matérn class of covariance function (Rasmussen and Willians 2006), 

adopted in this study, is defined as 

𝑘(𝒙, 𝒙′; 𝚯) =
𝜎𝑓

2

2𝜈−1Γ(𝜈)
(

√2𝜈‖𝒅‖

𝑙
)

𝜈

𝐾𝜈 (
√2𝜈‖𝒅‖

𝑙
) (2.3) 

where 𝐾𝜈  and Γ(⋅)  are respectively the modified Bessel function of order 𝜈 , 

which is usually set to 𝜈 = 3/2 or 𝜈 = 5/2 (Rasmussen and Willians 2006), and 
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the gamma function; ‖𝒅‖ = ‖𝒙 − 𝒙′‖ denotes the distance between the two inputs 

𝒙  and 𝒙′ ; and 𝜎𝑓
2  and 𝑙  are the hyperparameters in 𝚯 , respectively denote the 

process variance and correlation length. Figure 2.2 denotes the Matérn class of 

covariance functions and corresponding realizations of Gaussian process with 

different parameters of correlation length 𝑙. 

 

  

  (a)   (b) 

Figure 2.2 Examples of Matérn class covariances for different correlation length 

parameters: (a) covariance functions, and (b) realization of Gaussian process 

 

In using GP model, it is typically assumed that the observations 𝒴 include the 

Gaussian noise, i.e., 

𝒴 = 𝑦(𝒙) + 휀 (2.4) 

where 휀  denotes the Gaussian noises that are statistically independent and 

identically distributed with fixed variance 𝜎𝑛
2. Given the 𝑛 pair of the training set 

𝓓 = {𝒙𝓓, 𝓨𝓓},  i.e., input points 𝒙𝓓 = [𝒙1, … , 𝒙𝑛]T  and corresponding noisy 

observations 𝓨𝓓 = [𝒴(𝒙1), … , 𝒴(𝒙𝑛)]T,  the computational simulation results at 

the selected DoE points representing material properties, the optimal estimates of the 

hyperparameters, �̂� can be obtained by the maximum likelihood estimation (MLE) 

method (Rasmussen and Williams 2006) as 
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�̂� = argmax
𝚯

ln 𝑝(𝓨𝓓|𝒘𝓓, 𝚯) where (2.5a) 

ln 𝑝(𝓨𝓓|𝒘𝓓, 𝚯) = −
1

2
𝓨𝓓

T(𝑲 + 𝜎𝑛
2𝑰)−𝟏𝓨𝓓 −

1

2
ln|𝑲 + 𝜎𝑛

2𝑰| −
𝑛

2
ln(2𝜋) (2.5b) 

where 𝑲 is the covariance matrix whose element is determined as 𝐾𝑖,𝑗 = 𝑘(𝒙𝑖 , 𝒙𝑗),

𝑖, 𝑗 = 1, … , 𝑛; and 𝑰 is the (𝑛 × 𝑛) identity matrix. 

Then, the GP model with the estimated model parameters can predict the 

response at unexplored input points. Consider a prediction point 𝒙∗ whose response 

is unknown yet. The GP-based estimate of 𝑦 at a new point 𝒙∗ and corresponding 

prediction variance are respectively given as the conditional mean 𝜇�̂�(𝒙∗)  and 

variance 𝜎�̂�
2(𝒙∗) of the Gaussian distribution 

𝑝(𝑦∗|𝒙∗, 𝒙𝓓, 𝓨𝓓, �̂�)~𝑁 (𝜇�̂�(𝒙∗), 𝜎�̂�
2(𝒙∗)) with (2.6) 

𝜇�̂�(𝒙∗) = 𝑚(𝒙∗) + 𝒌∗
T(𝐊 + 𝜎𝑛

2𝐈)−1 (𝓨𝓓 − 𝑚(𝒙𝓓)) (2.7) 

𝜎�̂�
2(𝒙∗) = 𝑘∗∗ − 𝒌∗

T(𝐊 + 𝜎𝑛
2𝐈)−1𝒌∗ (2.8) 

where 𝒌∗ = [𝑘(𝒙∗, 𝒙1), … , 𝑘(𝒙∗, 𝒙𝑛)]T denotes the covariance matrix between the 

prediction location 𝒙∗  and n observed points 𝒙𝓓 ; and 𝑘∗∗ = 𝑘(𝒙∗, 𝒙∗).  The GP 

model not only provides the mean estimate 𝜇�̂�(𝒙∗)  but also quantifies the 

uncertainty of the prediction by 𝜎�̂�
2(𝒙∗). It is also noted that the prediction variance 

is usually negligible near the observation points because of the correlation described 

by the covariance function. For example, a typical visualization of the predictive 

mean and variance of Gaussian process given observations is provided in Figure 2.3. 

In this research, the GPML Toolbox (Rasmussen and Nickisch 2015) in MATLAB® 

is utilized to build the GP model and obtain the predictions. 
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2.2.3 Reliability analysis using adaptive Kriging methods 

 

When constructing a Kriging model, the number of DoE points should be sufficiently 

large to achieve an accurate surrogate. However, this may entail large computational 

costs especially when the evaluation of the original function is computationally 

expensive. For an efficient enrichment in DoE, a number of adaptive methods have 

been developed in recent years to add points sequentially based on the information 

from the previous iterations (Picheny et al. 2010; Dubourg et al. 2011; Marelli and 

Sudret 2018). The main goal of such an adaptive scheme is to identify the region in 

the input space whose exploration is expected to be most effective in terms of 

Kriging modeling. 

To compute the failure probability efficiently using an adaptive Kriging 

approach, Echard et al. (2011) proposed to combine Kriging and Monte Carlo 

simulation. The method, termed AK-MCS, first generates Monte Carlo sample 

points with respect to the probability density function. To assess the importance of 

 

Figure 2.3 Example Gaussian process model and predictions 
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each Monte Carlo sample based on previous simulation results, the learning function 

is defined as 

𝑈(𝒙) =
|𝜇𝐺(𝒙)|

𝜎�̂�(𝒙)
 (2.9) 

where 𝜇𝐺(𝒙)  and 𝜎𝐺(𝒙)  respectively denote the Kriging (mean) prediction and 

corresponding standard deviation. AK-MCS selects the Monte Carlo sample 

minimizing the learning function as the next simulation point. Since the minimum 

value of 𝑈(𝒙)  indicates that 𝜇𝐺(𝒙)  is close to zero and 𝜎𝐺(𝒙)  is large, the 

learning function guides AK-MCS to explore the region which is expected to close 

to the limit-state surface, but requires more simulations to reduce the prediction 

uncertainty. This active learning process is continued until the stopping criterion, e.g., 

min(𝑈(𝒙)) ≥ 2 , is satisfied, i.e., until the probability of correct classification of 

each MCS sample is reduced to 1 − Φ(−2) = 0.9772 . As the size of the initial 

MCS population becomes large enough to guarantee a small coefficient of variation, 

the failure probability is estimated as �̂�𝑓 = 𝑛𝐺<0/𝑛𝑀𝐶  where 𝑛�̂�<0  and 𝑛𝑀𝐶 

respectively denote the number of MCS points whose Kriging predictions indicate 

failure, and the size of initial MCS population. 

Since the learning function in Eq. (2.9) guides the sample selection toward the 

vicinity of the limit-state surface, i.e., the surface discerning the failure and safe 

domain, AK-MCS can facilitate finding an effective DoE for the purpose of 

reliability analysis. In particular, the exploration-exploitation trade-off enables the 

algorithm to identify the limit-state surface efficiently. Several other active-learning 

methods have been later proposed to further reduce the number of evaluations of the 

original limit-state function, e.g., AK-SS (combining with subset simulation), AK-
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SYS (for system reliability), AK-OIS (combining with importance sampling), 

metaAK-IS (combining meta-IS algorithm) (Dubourg et al. 2013; Cadini et al. 2014; 

Fauriat and Gayton 2014; Huang et al. 2016; Zhang et al. 2020). 

 

2.3 Proposed method: PAK-Bn 

 
The aforementioned adaptive Kriging method, AK-MCS, uses Monte Carlo samples 

as candidate points for Kriging prediction. The active-learning process is carried out 

using the Kriging predictions of the learning function at the sample points. It is noted 

that when a structural reliability problem has small failure probability or complex 

failure domains, such adaptation may not be flexible enough to fit the complex shape 

and orientation of the critical points (Wen et al. 2016; Lelièvre et al. 2018). Therefore, 

in this chapter, a new adaptive reliability analysis method named PAK-Bn is proposed 

by re-defining the learning function and using alternative sampling in n-ball instead 

of Monte Carlo sampling. In particular, the exploration-exploitation trade-off on the 

limit state surface is now extended to incorporate probabilistic density of each 

sample to identify the sample point in the vicinity of the limit-state surface that 

contributes most to the failure probability. In other words, the adaptive Kriging 

guides the DoE to the vicinity of limit-state surface while giving priorities to critical 

regions from the viewpoint of reliability analysis. Note that, in this chapter, the term 

‘sample’ refers to a candidate point sampled for the purpose of active-learning, while 

the term ‘simulation’ means actual evaluation of the true function at the sample 

selected by the active-learning process. 
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2.3.1 Alternative sampling for adaptive selection of simulation point 

 

In AK-MCS, Monte Carlo sample points 𝒙  are generated with respect to the 

probabilistic density of random variables, 𝑓𝐱(𝒙). Hereafter, it is assumed that, the 

random variable space has been transformed to the standard normal space (Der 

Kiureghian 2022), and 𝑓𝐱(𝒙)  denotes the joint probability density function of n 

uncorrelated standard normal random variables. Then, the integral in Eq. (2.1) is 

estimated as �̂�𝑓 = 𝑛�̂�<0/𝑛𝑀𝐶, i.e., based on whether the Gaussian process predicts 

each MC sample is in the failure domain or not. Most of the generated samples, 

however, are located in the vicinity of the peak of the density of random variables, 

e.g., mean point for the multivariate Gaussian random variables, which naturally 

restricts the domain to explore. As a result, a limit-state surface showing complex 

shape or located far from the peak may not be captured by Monte Carlo population. 

Thus, PAK-Bn adopts samples from the uniform density in the domain of n-ball, 

i.e., samples uniformly distributed over the interior of an n-dimensional hypersphere 

of radius 𝑅, whose volume is denoted as 𝑉ℬ(𝑅). PAK- Bn adopts the n-ball domain 

in order to (1) promote a balanced search in the uncorrelated standard normal space 

whose density 𝑓𝐱(𝒙)  is rotationally-symmetric; and (2) facilitate adaptive 

expansion of the domain in terms of the radius 𝑅. In addition, the uniform density 

is selected, instead of the original density 𝑓𝐱(𝒙) to promote effective Kriging-based 

identification. Figure 2.4 compares the 105 random samples generated by MCS and 

those by proposed n-ball approach in a three-dimensional space of random variables. 
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To incorporate the alternative (uniform) sampling density, Eq. (2.1) is re-

formulated as 

𝑃𝑓 = ∫ [
𝐼{𝐺(𝒙)≤0}𝑓𝐱(𝒙)

ℎ𝐱(𝒙)
] ℎ𝐱(𝒙) 𝑑𝒙 = 𝐸ℎ [

𝐼{𝐺(𝒙)≤0}𝑓𝐱(𝒙)

ℎ𝐱(𝒙)
] (2.10) 

where 𝐼{𝐺(𝒙)≤0} is the binary indicator function which gives “1” if the limit-state 

function 𝐺(𝒙)  is negative or zero, and “0” otherwise; and 𝐸ℎ[⋅]  denotes the 

mathematical expectation with respect to the alternative density ℎ𝐱(𝒙), i.e., the joint 

PDF of the uniform distribution in the n-ball, which is defined as ℎ𝐱(𝒙) = 1/𝑉ℬ(𝑅) 

if ‖𝒙‖2 ≤ 𝑅  and ℎ𝐱(𝒙) = 0  otherwise. From samples 𝒙𝑖 , 𝑖 = 1, … , 𝑁  generated 

from ℎ𝐱(𝒙), the failure probability is then estimated as 

𝑃𝑓 ≅
𝑉ℬ(𝑅)

𝑁
∑[𝐼{�̂�(𝒙𝑖)≤0}𝑓𝐱(𝒙𝑖)]

𝑁

𝑖=1

 (2.11) 

where it is noted that the index function is defined in terms of the response predicted 

by the Kriging model, 𝐺(𝒙𝑖). The volume of the n-ball, 𝑉ℬ(𝑅) is derived as 

  

(a) (b) 

Figure 2.4 Random samples generetaed by (a) MCS and (b) n-ball sampling 
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𝑉ℬ(𝑅) =
𝜋

𝑛
2

Γ (
𝑛
2

+ 1)
𝑅𝑛 (2.12) 

The variance of the failure probability estimate can be derived as 

𝑉𝑎𝑟[𝑃�̂�] =
1

𝑁
(

1

𝑁
∑ [𝐼{�̂�(𝒙𝑖)≤0} (

𝑓𝐱(𝒙𝑖)

ℎ𝐱(𝒙𝑖)
)

2

]

𝑁

𝑖=1

− 𝑃�̂�
2

)

=
1

𝑁
(

𝑉ℬ
2(𝑅)

𝑁
∑[𝐼{�̂�(𝒙𝑖)≤0}𝑓𝐱(𝒙𝑖)2]

𝑁

𝑖=1

− 𝑃�̂�
2

) 

(2.13) 

The coefficient of variation 𝛿𝑃𝑓
 of the failure probability estimate is estimated as 

𝛿𝑃𝑓
=

√𝑉𝑎𝑟[𝑃�̂�]

𝑃�̂�

 (2.14) 

To further improve convergence, this study employs low-discrepancy samples, often 

termed quasi-random samples. One of the most widely used quasi-random sequence 

called “Sobol and Halton sequence” is adopted. The improvement of the 

convergence rate by low-discrepancy of samples in structural reliability problems 

has been discussed in the literature (Caflisch 1998; Wang and Fang 2003). 

 

2.3.2 Determining radius of n-ball sampling domain 

 

Unlike general importance sampling methods requiring a proper selection of 

sampling density parameters, the only initial assumption required by the proposed 

sampling scheme is the radius of the n-ball, denoted by 𝑅(1). A small radius may 

yield inaccurate estimate if the sampling domain cannot properly cover the failure 

domain. On the other hand, a large radius may require unnecessarily large 

computational costs. Thus, PAK-Bn aims to identify a proper radius of the n-ball by 

increasing the radius with the increment Δ𝑅 until the failure probability estimate is 
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converged. 

Let 𝑅(𝑘)  denote the n-ball radius used for the 𝑘 -th round of the reliability 

analysis. From Eq. (2.11), the corresponding estimate of the failure probability is 

𝑃�̂�
(𝑘)

=
𝑉ℬ(𝑅(𝑘))

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑘)

∑ [𝐼{�̂�(𝒙𝑖)≤0}𝑓𝐱(𝒙𝑖)]

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑘)

𝑖=1

 (2.15) 

where 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑘)

  is the total number of the generated samples accumulated over k 

rounds. To determine whether additional round of analysis is needed, new 𝑁𝑘+1 

samples are generated in the domain 𝑅(𝑘) < 𝑅 ≤ 𝑅(𝑘) + Δ𝑅 . Using the Kriging 

predictions at 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑘+1)

(= 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑘)

+ 𝑁𝑘+1)  sample points, the failure probability is 

estimated using Eq. (2.15). Since this task is to check the needs for expanding the 

ball, no actual function evaluations are needed. 

The convergence is checked in terms of the relative increment of the reliability 

index instead of the failure probability. This is to avoid numerical issues caused by 

low failure probability. In particular, using the generalized reliability index �̂�𝑔 =

−Φ−1(�̂�𝑓), the convergence condition is formulated as 

|
�̂�𝑔

(𝑘)
− �̂�𝑔

(𝑘+1)

�̂�𝑔
(𝑘)

| < 𝜖𝑡𝑜𝑙 (2.16) 

where �̂�𝑔
(𝑘)

 and �̂�𝑔
(𝑘+1)

 respectively denote the generalized reliability index after 

the 𝑘-th round and that based on 𝑁𝑡𝑜𝑡𝑎𝑙
(𝑘+1)

 Kriging predictions discussed above; and 

𝜖𝑡𝑜𝑙 is a specified tolerance value. From the experience, it is recommended to choose 

a tolerance value in the range 10−5 < 𝜖𝑡𝑜𝑙 < 10−3 depending on the target level of 

accuracy. Geometric illustration of convergence criteria for determining proper 

radius is given in Figure 2.5. 
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It is noted that the n-ball samples refer to candidate points for statistical learning, 

and the actual evaluation is performed on a sample point that is selected by the 

active-learning process. Therefore, compared to the conventional response surface 

methodology that builds a second order mathematical response model based on a 

factorial or fractional factorial design with center points, termed central composite 

design (Myers et al. 2004), the proposed adaptive Kriging model can achieve 

efficient experimental designs from the viewpoint of reliability analysis. 

  

2.3.3 Learning function for probability-adaptive Kriging 

 

To enrich DoE by adaptive Kriging, it is important to take into account relative 

contributions of samples to the failure probability. In other words, the learning 

criteria should be defined so as to fit limit-state surface sufficiently well especially 

in the region that contributes most to the failure probability 𝑃𝑓. This chapter propose 

 

Figure 2.5 Geometric representations of convergence criteria in PAK-Bn method 
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a new learning function to facilitate this probability-adaptive Kriging, which guides 

the search process to the most enriched areas named critical regions having 

significant effects on 𝑃𝑓 . Multiplying Eq. (2.9) by a penalty function 𝛾(𝒙) , the 

learning function of the probability-adaptive Kriging is defined as 

𝛼(𝒙) =
|𝜇𝐺(𝒙)|

𝜎�̂�(𝒙)
⋅ 𝛾(𝒙) (2.17) 

where 𝛾(𝒙) is introduced to discourage the search toward less-critical domains. For 

a sample 𝒙𝑖 in the 𝑘-th round, the penalty function is defined as 

𝛾(𝒙𝑖) = {

|𝑅(𝒙𝑖) − �̂�∗|

𝑅(𝑘)
    Δ𝑐.𝑝 ≥ 𝑡𝑜𝑙

          1                Δ𝑐.𝑝 < 𝑡𝑜𝑙
 (2.18) 

where 𝑅(𝒙𝑖)  denotes the Euclidean distance of 𝒙𝑖  from the origin; �̂�∗  is the 

estimated distance from the origin to the nearest failure point (termed “critical point” 

in this chapter); and Δ𝑐.𝑝 is the distance between the critical points identified in the 

current and previous learning-steps. If Δ𝑐.𝑝 is larger than the specified tolerance, 

i.e., Δ𝑐.𝑝 ≥ 𝑡𝑜𝑙, which means that the estimated location of the critical point has 

shown a critical change, the penalty function discourages the search toward samples 

relatively far from the critical point. If Δ𝑐.𝑝 is small, on the other hand, the penalty 

function is equal to one to reduce Eq. (2.17) back to Eq. (2.9), which means that the 

same trade-off between mean and standard deviation as AK-MCS is used. The 

distance to the critical point can be estimated by Kriging predictions, i.e., 

�̂�∗ = ‖�̂�∗‖2   𝑤ℎ𝑒𝑟𝑒 �̂�∗ = argmax
𝒙𝑖

[𝐼{�̂�(𝒙𝑖)≤0}𝑓𝐱(𝒙𝑖)] (2.19) 

where ‖∙‖2  denotes 2-norm, i.e., Euclidean distance; 𝐺(𝒙𝑖)  is the limit-state 

function value estimated by the Kriging prediction at 𝒙 = 𝒙𝑖; and �̂�∗ represents the 
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critical point in the space. 

In summary, the left-hand side term in Eq. (2.17) guides the search to the 

vicinity of target limit-state surface {𝒙|𝐺(𝒙) = 0} while the right-hand side term 

guides toward the critical regions which have significant impact on the failure 

probability. Through the learning process, 𝛼(𝒙)  leads samples near the critical 

point with a priority. Next, as the variance of the searched regions is reduced, the 

learning guides the search toward less critical areas. 

 

2.4 Algorithm of PAK-Bn 

 
The algorithm of the proposed PAK-Bn is summarized as follows (see Figure 2.6 for 

the flowchart): 

 

Figure 2.6 Flowchart of PAK-Bn algorithm 

 

1. Construct the initial DoE: 𝑛0  samples 𝒙 = [𝒙1, … , 𝒙𝑁0
]

T
  are generated 

by Latin Hypercube Sampling (LHS) in the standard normal space. The 
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domain of LHS is set to ‖𝒙‖1 ≤ 𝑑𝐿𝐻𝑆. The limit-state function 𝐺(𝒙) is 

evaluated on these points to construct the initial DoE of the adaptive-

Kriging model. The size of initial DoE, 𝑛0 needed to ensure an accurate 

estimation tends to increase with the dimension of the random variables. 

The sample size 𝑛0 = 10~30  if dimension 𝑛 ≤ 10 , and 𝑛0 = 2𝑛 + 1 

otherwise, seems a reasonable choice from the author’s experience for the 

investigated examples. 

2. Generate samples in design space: Generate 𝑁𝑖 samples according to the 

sampling density ℎ𝐱(𝒙) = 1/𝑉ℬ(𝑅)  if ‖𝒙‖2 ≤ 𝑅(𝑖)  and ℎ𝐱(𝒙) =

0 otherwise. These sample populations are used as candidate locations for 

active-learning. The initial population size 𝑁1 = 104~105 seems to be a 

good trade-off from the experience. 

3. Construct Kriging model: Construct a Kriging model at the sample points 

using the current DoE. In this chapter, GPML toolbox in MATLAB® is 

utilized for this purpose. The Matérn class of auto-correlation function in 

Eq. (2.3) is chosen as the correlation model (see Section 2.2.2 for more 

details). 

4. Perform active-learning process: Identify the sample point where the 

learning function 𝛼(𝒙)  in Eq. (2.17) is minimized as the next best 

simulation point. The DoE is enriched by acquiring function evaluation at 

the point to update the Kriging model. The enrichment of DoE, i.e., 

evaluating the function at the best points, continues until the stopping 

condition is satisfied. The stopping condition for the active-learning process 

is Δ�̂�𝑔 < 휀𝛽𝑡𝑜𝑙
 , which means that the estimated generalized reliability 
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index �̂�𝑔  converges. Note that this stopping condition differs from the 

convergence criteria described in the following. 

5. Check the convergence criteria: Once the active-learning process is 

terminated, its corresponding convergence condition in Eq. (2.16) is 

computed to guess whether the increase in the radius would affect the 

failure probability estimate. If the procedure fails to achieve convergence, 

go back to Step 2 to create additional samples in the expanded n-ball and 

repeat the steps described above until the convergence is achieved. 

6. End of PAK-Bn: If the convergence criteria is satisfied, PAK-Bn stops and 

provides the estimate of the failure probability in the current size of n-ball 

as the final estimate. 

 

2.5 Numerical examples 

 
The proposed PAK-Bn procedure and its performance are demonstrated by numerical 

examples. Examples of series and parallel systems are introduced to check the 

performance in system reliability problems. Also investigated are examples featuring 

small failure probability, high non-linearity, e.g., a large curvature around design 

point, and multiple design points. Then, applications to engineering systems, e.g., 

nonlinear oscillator and cantilever tube, are provided to examine the effects of 

dimension and distribution type on the performance of the proposed method. The 

number of initial DoE, 𝑛0 is set to 10, with LHS bound 𝑑𝐿𝐻𝑆 = 6, and the initial 

radius and interval of sampling domain are set to 𝑅(1) = 5 , and Δ𝑅 = 0.2 

respectively. The initial number of population is 𝑁1 = 50,000. 
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2.5.1 Applications to benchmark reliability problems 

 

2.5.1.1 Series system with multiple design points 

 

First, consider a series system with three design points, whose limit-state function is 

given as (Cadini et al 2014; Dubourg et al. 2014) 

𝐺(𝒙) = min {
𝑐 − 1 − 𝑥2 + exp(−𝑥1

2/10) + (𝑥1/5)4

𝑐2/2 − 𝑥1 ⋅ 𝑥2
} (2.20) 

where 𝑥1 and 𝑥2 are uncorrelated standard normal variables; and 𝑐 is an integer 

parameter. The limit-state function features three design points whose coordinates 

are 𝒙∗(𝟏) = [0, 𝑐]T,  𝒙∗(𝟐) = [𝑐/√2, 𝑐/√2]
T

,  and 𝒙∗(𝟑) = [−𝑐/√2, −𝑐/√2]
T

. 

Figure 2.7 shows the final experimental designs and the identified limit-state surface 

for the parameter 𝑐 = 4. 

The analysis results by PAK-Bn method are presented in Table 2.1, which shows 

the typical number of function calls and the corresponding failure probability 

representing more than 20 independent runs of analysis. The results are compared to 

those by crude MCS and several other widely used reliability methods reported in 

(Echard et al. 2011; Der Kiureghian 2022). The accuracy and efficiency of the 

different methods are compared in terms of 𝑁𝑐𝑎𝑙𝑙, i.e., the number of actual function 

evaluations required to estimate the failure probability, the failure probability 𝑃𝑓, 

the coefficient of variation of the failure probability, 𝛿𝑃𝑓
 , and the generalized 

reliability index 𝛽𝑔. 𝑁𝑐𝑎𝑙𝑙 in the tables denotes the total number of simulations. For 

AK-MCS and PAK-Bn, 𝑁𝑐𝑎𝑙𝑙  is the sum of the initial DoE (𝑛0 ) points and the 

number of the simulations during the active-learning process described in Section 

2.3.3. FORM approximation for series system (Der Kiureghian 2022) is calculated 
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as 𝑃𝑓(𝐸𝑠𝑦𝑠) = 1 − Φ𝑚(𝛃, 𝐑)  where 𝛃 = [𝛽1, … , 𝛽𝑚]T , i.e., the vector of the 

reliability indices from m individual component reliability analyses by FORM, 𝐑 is 

the matrix of correlation coefficients between the standard normal random variables 

representing the component failure events, and Φ𝑚  is the m-variate standard 

normal CDF. Since the system has four components, i.e. 𝑚 = 4 , the number of 

simulations of four FORM analyses, each of which use the mean as the starting point, 

are summed up to obtain 𝑁𝑐𝑎𝑙𝑙. 

A parametric study is performed with respect to the parameter 𝑐. Since the three 

design points are located with the common distance from the origin, i.e., ‖𝒙∗‖ = 𝑐, 

a larger parameter yields a lower failure probability. The results by crude MCS 

estimations are considered reference values here. It is seen that PAK-Bn saves a 

significant amount of function evaluations compared to the other sampling-based 

approaches while producing results similar to the reference value 𝑃𝑓,𝑀𝐶𝑆. It is worth 

noting that the performance of PAK-Bn is not hampered by low failure probability 

thanks to sampling in the n-ball. In Table 2.1, the numbers in the parentheses 

represent those of initial MCS samples. Note that the AK-MCS requires a large 

number of samples when 𝑐 = 5 , more than 108  samples, which may result in 

memory problems and inaccurate estimations. 

The final experimental designs are shown in Figure 2.7. Using the initial DoE 

points, represented by black circles, the initial surrogate model is constructed. The 

red-cross markers are the most suitable training sample points selected at each 

iteration according to the learning function in Eq. (2.17). The blue solid and black 

dotted lines represent the true limit-state function and Kriging prediction using the 
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final DoE respectively. Most of the selected sample points reside around the true 

limit-state surface, especially in the critical regions near the three design points, 

which helps to construct an effective surrogate model for reliability analysis purpose. 

 

Table 2.1 Comparison between the results by PAK-Bn and those by several 

reliability analysis methods for series system example 

Case Method 𝑁𝑐𝑎𝑙𝑙  𝑃𝑓  𝛿𝑃𝑓
 (%)  𝛽𝑔  

c=3 MCS 1.20 × 105  3.47 × 10−3  4.89 2.70 

AK-MCS 10+85 (105) 3.52 × 10−3  4.40 2.69 

PAK-Bn 10+32 𝟑. 𝟑𝟖 × 𝟏𝟎−𝟑  1.67 2.71 

c=4 MCS 4.60 × 106  8.94 × 10−5  4.93 3.75 

AK-MCS 
10+101 (105) 8.33 × 10−5  4.85 3.76 

10+106 (106) 8.79 × 10−5  4.92 3.75 

PAK-Bn 10+52 𝟗. 𝟎𝟏 × 𝟏𝟎−𝟓  1.80 3.75 

c=5 MCS 4.30 × 108  9.48 × 10−7  4.95 4.76 

AK-MCS - - - - 

PAK-Bn 10+70 𝟗. 𝟎𝟐 × 𝟏𝟎−𝟕  1.91 4.77 

 

 

Figure 2.7 Final experimental designs for series system 

with multiple design points (c=4). 

 

𝑐
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To further clarify the proposed adaptive search process, Figure 2.8 provides the 

close-ups of the last step results that are respectively trained by the learning functions 

𝑈(𝒙)  and 𝛼(𝒙)  given the same conditions. It is confirmed that 𝑈(𝒙)  tries to 

capture the limit-state function and surface overall while the proposed learning 

function guides the search so that more simulations are performed in the critical 

regions. Therefore, the critical regions from the viewpoint of failure probability 

estimation is enriched with a priority, which leads to more efficient estimation of the 

failure probability. 

Figure 2.9 shows the angle of the position vectors representing the critical 

points identified during the iteration procedure. The horizontal dash-dotted lines 

represent the locations of the design points having the angles θ = π/4, π/2, and 

−3π/4 (rad) in polar coordinate. The asterisks show the estimated locations of the 

critical points, i.e., �̂�∗ in Eq. (2.19) at each iteration. It is shown that all critical 

  

(a) (b) 

Figure 2.8 Close-ups of final steps of DoE for series system with multiple design 

points using (a) 𝑈(𝒙), and (b) 𝛼(𝒙) as the learning function 
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areas near the three design points are well identified by the probability-adaptive-

learning of PAK-Bn, which performs computational simulations predominantly in 

critical regions of the reliability analysis problem. 

 

2.5.1.2 Parallel system with small failure probability 

 

In the next numerical example, PAK-Bn is applied to a parallel system with two 

components (Kurtz and Song 2013) whose limit-state function is 

𝐺(𝒙) = max[𝑥1
2 − 8𝑥2 + 16, −16𝑥1 + 𝑥2

2 + 32] (2.21) 

where 𝑥1 and 𝑥2 are uncorrelated standard normal variables. Figure 2.10(a) shows 

the limit-state surface and the “joint” design point discussed in Kurtz and Song 

(2013). The limit-state function shows highly nonlinear feature that is sharply 

concave in the direction away from the origin in the uncorrelated standard normal 

space. Figure 2.10(b) and (c) illustrate the adaptive simulations using the learning 

 

Figure 2.9 Direction of critical points estimated through iterations 

for series system example (𝑐=3). 
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functions 𝛼(𝒙) and 𝑈(𝒙) respectively after 9 iterations. In particular, the yellow 

markers represent the best simulation points identified based on the red circular 

markers from the previous simulations. The comparison between Figures 2.10(b) and 

(c) clearly shows that the proposed learning function 𝛼(𝒙) guides the search toward 

the critical area near the joint design point. The final experimental designs trained 

by the proposed PAK-Bn is given in Figure 2.11. 

 

   

(a) (b) (c) 

Figure 2.10 (a) The limit-state surface of a parallel system example, and adaptation 

of DoE over 9 iterations using (b) the probability-adaptive learing function 𝛼(𝒙), 

and (c) the learning function 𝑈(𝒙) 

 

 

Figure 2.11 Final experimental designs for parallel system example 
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Table 2.2 presents the estimated failure probabilities along with the number of 

function evaluations. The MCS results are obtained using 1.70 × 107  sample 

population. The FORM approximation is performed as 𝑃𝑓(𝐸𝑠𝑦𝑠) = Φ𝑚(−𝛃, 𝐑) . 

Due to the strong non-linearity, the FORM approximation shows large error. It is 

noted that in AK-MCS method, even with a large number of initial MCS samples 

(~107), cannot provide a reliable estimate since the learning process terminates if 

the failure cases are not identified in the initial iteration procedure. It is also shown 

that the choice of the initial radius of domain 𝑅(1) does not significantly affect the 

performance of PAK-Bn. 

 

Table 2.2 Comparison between the results by PAK-Bn and those by several 

reliability analysis methods for parallel system example 

Method Initial 

parameter 

𝑁𝑐𝑎𝑙𝑙  
𝑃𝑓  𝛿𝑃𝑓

 (%)  
𝛽𝑔  

MCS  1.70 × 107  6.23 × 10−6  9.72 4.37 

FORM  4 5.18 × 10−4  - 3.28 

AK-MCS  - 0 - - 

PAK-Bn 𝑅(1) = 4.0  10+48 𝟓. 𝟗𝟎 × 𝟏𝟎−𝟔  9.92 4.38 

 𝑅(1) = 5.0  10+43 𝟔. 𝟓𝟔 × 𝟏𝟎−𝟔  9.62 4.36 

 𝑅(1) = 6.0  10+33 𝟔. 𝟎𝟖 × 𝟏𝟎−𝟔  9.93 4.37 

 

 

 

2.5.2 Applications to engineering systems 

 

2.5.2.1 Dynamic response of a non-linear oscillator 

 

As an engineering application example, the non-linear undamped single degree of 

freedom (SDOF) system with bilinear restoring force. In figure 12, which is 

subjected to a rectangular load pulse, is investigated. The limit-state function is 

described as (Bucher and Bourgund 1990; Echard et al. 2011) 
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𝐺(𝑘1, 𝑘2, 𝑚, 𝑅, 𝑡1, 𝐹1) = 3𝑅 − 𝑧𝑚𝑎𝑥 

= 3𝑅 − |
2𝐹1

𝑚𝜔0
2 sin (

𝜔0𝑡1

2
)| (2.22) 

where 𝑘1  and 𝑘2  are the initial stiffness of the nonlinear springs; 𝜔0 =

√(𝑘1 + 𝑘2)/𝑚 ; 𝑡1  and 𝐹1  represent duration and amplitude of load pulse 

respectively; 𝑅 denotes the displacement at which one of the springs yields; and 

𝑧𝑚𝑎𝑥 is the maximum displacement response of the system. This problem is selected 

to test PAK-Bn in real structural reliability problems described by a larger number of 

random variables, i.e., six. Table 2.3 summarizes types of distributions of all random 

variables and parameters. Table 2.4 shows that PAK-Bn method successfully deals 

with the dimension producing accurate results. 

 

Figure 2.12 Non-linear oscilator subjected to a rectangular load pulse (Echard et al. 

2011) 

 

 

Table 2.3 Distribution type and parameters of the random variables 

Random variables Distribution Mean Standard deviation 

𝑚 Gaussian 1 0.05 

𝑘1 Gaussian 1 0.1 

𝑘2 Gaussian 0.1 0.01 

𝑅 Gaussian 0.5 0.05 

𝑡1 Gaussian 1 0.2 

𝐹1 Gaussian 0.6 0.2 
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Table 2.4 Comparison between the results by PAK-Bn and those by several 

reliability analysis methods for non-linear oscilator example 

Method 𝑁𝑐𝑎𝑙𝑙  𝑃𝑓  𝛿𝑃𝑓
 (%)  𝛽𝑔  

MCS 1.0 × 106  5.46 × 10−4  4.28 3.27 

FORM 26 6.46 × 10−4  - 3.22 

AK-MCS >300 5.49 × 10−4  4.81 3.26 

PAK-Bn 20+106 𝟓. 𝟓𝟎 × 𝟏𝟎−𝟒  4.78 3.26 

 

 

 

2.5.2.2 Cantilever tube 

 

The cantilever tube in Figure 2.13 is subjected to forces 𝐹1, 𝐹2 and 𝑃, and torsion 

𝑇. The limit-state function is defined as (Du 2008; Xiao et al. 2018) 

𝐺(𝒙) = 𝑆𝑦 − √𝜎𝑥
2 + 3𝜏𝑧𝑥

2  (2.23) 

where 𝑆𝑦  is the yield strength; and 𝜎x  and 𝜏𝑧𝑥  denote the normal stress and 

torsional stress on the top of surface of the tube at the origin respectively. The stresses 

𝜎x and 𝜏𝑧𝑥 are respectively derived as 

𝜎x =
𝑃 + 𝐹1 sin(𝜃1) + 𝐹2 sin(𝜃2)

𝐴
+

𝑀𝑑

2𝐼
 (2.24a) 

𝜏𝑧𝑥 =
𝑇𝑑

2𝐽
 (2.24b) 

in which 𝑀 = 𝐹1𝐿1 cos(𝜃1) + 𝐹2𝐿2 cos(𝜃2) ;  𝐴 = (𝜋/4)[𝑑2 − (𝑑 − 2𝑡)2];  𝐼 =

(𝜋/64)[𝑑4 − (𝑑 − 2𝑡)4];  and 𝐽 = 2𝐼.  Table 2.5 summarizes the properties of a 

total of nine random variables. 
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Figure 2.13 A cantilever tube (Du 2008) 

 

 

Table 2.5 Distribution type and parameters of the random variables 

Random variables Distribution Parameter1* Parameter2* 

𝑡 (𝑚𝑚) Gaussian 5 0.1 

𝑑 (𝑚𝑚) Gaussian 42 0.5 

𝐿1 (𝑚𝑚) Uniform 119.75 120.25 

𝐿2 (𝑚𝑚) Uniform 59.75 60.25 

𝐹1 (𝑁) Gaussian 3000 300 

𝐹2 (𝑁) Gaussian 3000 300 

𝑃 (𝑁) Gumbel 12000 1200 

𝑇 (𝑁 ⋅ 𝑚𝑚) Gaussian 90000 9000 

𝑆𝑦 (𝑀𝑃𝑎) Gaussian 220 22 

Note: Parameter1 and Parameter2 respectively denote the mean and standard deviation for 

Gaussian distribution, and location and scale parameters for Gumbel distribution, and the 

lower and upper bounds for Uniform distributions. 

 

 

 

Table 2.6 shows that PAK-Bn needs only 168 (= 50 + 118) function calls to 

obtain accurate estimation results while the AK-MCS demands more than 400 

function evaluations. 

While the proposed method is effective for engineering applications shown in 

the Section 2.5.2, the performance may degenerate if the random variables of 

engineering problem feature extreme value distribution types, e.g., Weibull and 

Gumbel, which requires a highly nonlinear transformation to uncorrelated standard 
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normal space and thus makes a response far away from the Gaussian distribution. 

This feature has usually been observed in nonlinear dynamical systems with 

hysteretic behavior and thus need to be further investigated. 

 

Table 2.6 Comparison between the results by PAK-Bn and those by other methods 

for cantilever tube example 

Method 𝑁𝑐𝑎𝑙𝑙  𝑃𝑓  𝛿𝑃𝑓
 (%)  𝛽𝑔  

MCS 2.0 × 106  2.19 × 10−4  4.77 3.52 

AK-MCS >400 2.21 × 10−4  4.58 3.51 

PAK-Bn 50+118 𝟐. 𝟐𝟐 × 𝟏𝟎−𝟒  4.75 3.51 

 

 

 

2.6 Summary 

 
This chapter proposed a probability-adaptive Kriging method based on sampling in 

n-ball (PAK-Bn method), for structural reliability analysis. The main objective of 

PAK-Bn is to carry out an adaptive selection of simulation points with low 

computational costs from reliability analysis standpoint. The method utilized a new 

learning criterion designed to identify important points that are located in the vicinity 

of the limit-state surface and, at the same time, contribute most to the failure 

probability. This probability-adaptive procedure further reduced the number of 

computational simulations by utilizing samples uniformly distributed in an n-ball 

domain as candidate sets of simulation, and adaptively determining a proper radius 

of n-ball that achieves efficient convergence. 

Accuracy and efficiency of the proposed method were demonstrated through 

several benchmarks reliability problems: a system problem with high non-linearity, 

small failure probability and multiple design points, and general engineering 

problems with moderate dimension. In each example, the proposed method needs a 
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small number of limit-state function evaluations to achieve accurate and converged 

estimates. PAK-Bn is expected to effectively deal with such challenging and time-

consuming problems in practical engineering with robustness against the types of 

limit-state surface. 
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Chapter 3. First-Passage Probability Estimation 

under Stochastic Wind Excitations Using 

Active Learning  
 

 

 

 

3.1 Introduction  

 
Structural failures caused by natural or human-made hazards may induce 

catastrophic damage or losses. Thus, it is essential to evaluate the reliability of 

structural systems against stochastic excitations, e.g., wind loads, earthquake ground 

motions, and collisions, for managing the risk. The first-passage probability, i.e., the 

probability of the event that maximum structural response over a given time interval 

exceeds a prescribed threshold, is of great engineering interest as a reliability 

measure of a system under such conditions. It is crucial to consider the variability 

arising from the external stochastic excitations and the uncertainties associated with 

the structural systems and hazard models in evaluating the first-passage probability 

(Au and Beck 2003; Suksuwan and Spence 2018; Kanjilal et al. 2021). 

In general, evaluating the first-passage probability is challenging because it 

requires multidimensional integration of a random process over time. No exact 

solution of this probability exists in general cases, and thus many attempts have been 

made to derive approximate solutions including system-reliability-based methods, 

simulation approaches, surrogate approaches (Lutes and Sarkani 2004; Andrieu-

Renaud et al. 2004; Zuev et al. 2012; Yang et al. 2017; Chun et al. 2019; Wang et al. 

2019; Kanjilal et al. 2021; Yi and Song 2021). A primary challenge in employing 

surrogate models for stochastic dynamical systems is incorporating the high-
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dimensional sequences used for describing desirable time or frequency-domain 

characteristics of stochastic excitations (Gidaris et al. 2015; Suksuwan and Spence 

2018; Jensen et al. 2020). This leads to a high-dimensional reliability analysis 

problem, which may degenerate the performance of surrogate-based approximations 

in the first-passage probability estimation. 

To employ surrogate models without exacerbating performance, a new active 

learning-based heteroscedastic Gaussian process (AL-HGP) method is proposed in 

this chapter. To this end, the proposed method alternatively formulates the first-

passage probability as a mixture distribution of Gaussian densities, each of which 

represents the conditional distribution of the maximum response. This procedure 

employs a GP model with heteroscedastic noises to fit the distribution parameters of 

mixture distribution, considering uncertainties arising from the structural system and 

the environmental wind loads. In addition, the framework trains the surrogates 

through an adaptive selection of simulation points in terms of their influence on the 

estimation of the first-passage probability given threshold level. 

This chapter first provides a brief overview of the first-passage probability 

problem and stochastic wind-field model used to generate the random excitations of 

wind forces. Next, the following details of the proposed AL-HGP method are 

introduced: (1) an alternative formulation of the first-passage probability, (2) 

distribution parameter function estimations by a heteroscedastic GP model, (3) 

corresponding active-learning-based training process of surrogates, and (4) the 

adaptive learning algorithm of AL-HGP. The several numerical examples 

demonstrate the efficiency and applicability of the proposed AL-HGP method. Lastly, 

a summary of the results and concluding remarks are provided (Kim et al. Under 
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review). 

3.2 Background 

 
3.2.1 First-passage probability problem 

 

The first-passage probability, commonly utilized as a reliability measure of structural 

systems subject to stochastic excitations, refers to the probability that the maximum 

response exceeds a prescribed threshold within a given time interval 𝑡 ∈ [0, 𝜏]. A 

general mathematical formulation of the probability is  

𝑝𝑓(𝑢0; 𝜏) = 𝑃(𝑚𝑎𝑥
0<𝑡≤𝜏

|𝑢(𝑿, 𝒁, 𝑡)| ≥ 𝑢0) (3.1) 

where |⋅| denotes absolute value expression; 𝑢0 is the prescribed threshold on the 

response; and 𝑢(⋅) is the response time history, which is assumed to be affected by 

the two vectors of random variables 𝑿 and 𝒁. First, the "basic" random variables 

𝑿 ∈ ℝ𝑛𝑥 include time-invariant random parameters associated with the structural 

system, such as damping ratios and story stiffnesses, and the wind hazard model, e.g., 

3-second gust wind speed and turbulence intensity. On the other hand, the 

"environmental" random variables 𝒁 ∈ ℝ𝑛𝑧  characterize the stochasticity of the 

wind loads in the time or frequency domains. Thus 𝑿 and 𝒁 are assumed to be 

independent of each other. Note that 𝒙 and 𝒛, respectively, denote the realizations 

of the random vectors 𝑿 and 𝒁. The failure domain ℱ is defined as the event that 

the maximum structural response exceeds a prescribed threshold, i.e., ℱ = {(𝒙, 𝒛) ∶

𝑚𝑎𝑥
0<𝑡≤𝜏

|𝑢(𝒙, 𝒛, 𝑡)| ≥ 𝑢0}. 

Eq. (3.1) can be computed by the following multidimensional integral by using 

the indicator function of the failure domain: 
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𝑝𝑓 = ∫ ∫ 𝐼ℱ(𝒙, 𝒛)𝑓𝑿(𝒙)𝑓𝒁(𝒛) 𝑑𝒙𝑑𝒛 (3.2) 

where 𝑓𝐱(𝒙) and 𝑓𝒁(𝒛), respectively, denote the joint probability density functions 

(PDFs) of the random vectors 𝑿  and 𝒁 ; and 𝐼𝐹(𝒙, 𝒛)  is the binary indicator 

function which gives "1" if (𝒙, 𝒛) ∈ ℱ and "0" otherwise. The integral in Eq. (3.2) 

incorporates the PDF of environmental random variables 𝑓𝒁(𝒛),  which often 

involves the sequence of stochastic excitation. This makes the reliability estimation 

a high-dimensional problem (generally more than hundreds), which may forbid the 

efficient assessment of the structural system's reliability (Alibrandi 2014; Suksuwan 

and Spence 2018). Moreover, the complexity of the failure event hampers the 

practical implementation of Eq. (3.2). It has been known that no exact solution exists 

for general cases, and thus the assessment of the first-passage probability entails a 

large number of dynamic simulations. 

 

3.2.2 Stochastic wind-field model 

 

Various modeling approaches have been developed for wind loads – data-driven 

methods, computational-fluid-dynamics (CFD), and stochastic simulation methods 

(Wood et al. 2001; Chen and Kareem 2004; Wang et al. 2013; Spence et al. 2016). 

In this chapter, the stochastic wind-field model is adopted to characterize the 

stochastic nature of wind excitations. Based on the conventional quasi-steady theory, 

the stochastic wind load at the ith location can be expressed as (Li and Kareem 1993; 

Spence et al. 2016) 

𝑓𝑖(𝑡) =
1

2
𝜌𝑎𝐶𝐷𝐴𝑖(�̅�(ℎ𝑖) + 𝑣(ℎ𝑖 , 𝑡))2 ≅ 𝜌𝑎𝐶𝐷𝐴𝑖�̅�(ℎ𝑖)𝑣(ℎ𝑖 , 𝑡) (3.3) 

where ℎ𝑖 is the height of interest, e.g., the top of a building structure; 𝐴𝑖 is the 
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tributary area at ℎ𝑖 ; 𝜌𝑎  is the air density; 𝐶𝐷  is the drag coefficient; �̅�(ℎ𝑖) 

denotes the temporal average of the wind speed at ℎ𝑖 ; and 𝑣(ℎ𝑖, 𝑡)  denotes the 

zero-mean fluctuating component of the wind speed at ℎ𝑖. Based on ASCE 07, the 

temporal average of the wind speed at ℎ𝑖 is given as (ASCE 2017) 

�̅�(ℎ𝑖) = 𝑉𝑏�̅� (
ℎ𝑖

10
)

�̅�

 (3.4) 

where �̅� and �̅� are the constants characterizing the exposure condition; and 𝑉𝑏 is 

the basic wind speed (or 3-second gust wind speed). 

The along-wind velocity fluctuation component at ℎ𝑖, i.e., 𝑣(ℎ𝑖, 𝑡) in Eq. (3.4) 

can be defined through the power spectral density (PSD) model in the frequency 

domain (Kaimal et al. 1972; Cheynet et al. 2018) 

𝑆𝑖(𝜔) = 𝑣∗
2

𝑎𝑠ℎ𝑖

�̅�(ℎ𝑖)

1

(1 + 𝑏𝑠
𝜔ℎ𝑖

�̅�(ℎ𝑖)
)

5/3
 

(3.5) 

where 𝜔  denotes the turbulence frequency; 𝑎𝑠  and 𝑏𝑠  are the spectrum 

coefficients; and 𝑣∗ is the friction velocity of the wind flow, defined as 

𝑣∗ = 𝑉𝑏�̅�
𝜅𝑎

ln(10/ℎ0)
 (3.6) 

where 𝜅𝑎 is the von Kármán constant; and ℎ0 is the roughness height at the site of 

interest. To incorporate the correlation between the fluctuating wind components at 

arbitrary heights ℎ𝑖 and ℎ𝑘, the following coherence function (Davenport, 1972) is 

incorporated: 

𝛾𝑖𝑘(𝜔) = exp [−
𝜔𝐶𝑧|ℎ𝑖 − ℎ𝑘|

0.5[�̅�(ℎ𝑖) + �̅�(ℎ𝑘)]
] (3.7) 

in which 𝛾𝑖𝑘(𝜔) denotes the exponentially decaying coherence function between 



 

 
44 

the two stochastic wind processes 𝑣(ℎ𝑖, 𝑡)  and 𝑣(ℎ𝑘 , 𝑡) ; and 𝐶𝑧  is the decay 

coefficient. Then, the spectral models in Eqs. (3.5)-(3.7) constitute the cross-PSD 

matrix 𝑺(𝜔) whose element is defined as follows: 

𝑆𝑖𝑘(𝜔) = √𝑆𝑖(𝜔)𝑆𝑘(𝜔)𝛾𝑖𝑘(𝜔) (3.8) 

 

3.2.3 Simulation of stochastic wind time history 

 

Because the cross-PSD matrix 𝑺(𝜔) is Hermitian and positive definite, the matrix 

can be decomposed by a lower triangular matrix 𝑯(𝜔)  and the transpose of its 

complex conjugate 𝑯∗(𝜔),  i.e., 𝑺(𝜔) = 𝑯(𝜔)𝑯∗(𝜔)T  using the Cholesky 

decomposition method. Then, the components of the 𝑚 -variate (representing 𝑚 

different locations) wind vector process 𝒗(𝑡)  can be simulated by the spectral 

representation method (Deodatis 1996), defined as 

𝑣(ℎ𝑖, 𝑡) = 2 ∑ ∑|𝐻𝑖𝑟(𝜔𝑟𝑠)|√𝛥𝜔 cos[𝜔𝑟𝑠(𝑡) − 𝛼𝑖𝑟(𝜔𝑟𝑠) + 𝜙𝑟𝑠]

𝑛𝑠

s=1

𝑚

𝑟=1

,

𝑖 = 1, … , 𝑚 

(3.9) 

where 𝐻𝑖𝑟  is an element of the lower triangular matrix 𝑯(𝜔);  Δ𝜔  is the 

discretization resolution in frequency; 𝑛𝑠 is the total number of sampling points; 

and 𝜔𝑟𝑠 = (𝑠 − 1)𝛥𝜔 + 𝑟𝛥𝜔/𝑚, 𝑠 = 1, … , 𝑛𝑆 . 𝜙𝑟𝑠  describes the 𝑚  sequences 

of 𝑛𝑠  independent random phase angles uniformly distributed over the range of 

[0,2𝜋]; and 𝛼𝑖𝑟 is the complex phase angle of the simulated time histories, defined 

as 

𝛼𝑖𝑟(𝜔) = tan−1
Im[𝐻𝑖𝑟(𝜔)]

Re[𝐻𝑖𝑟(𝜔)]
 (3.10) 

where Re[⋅] and Im[⋅] are the real and imaginary parts of the complex number, 
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respectively. In particular, the elements of random phase angles 𝜙𝑟𝑠 characterize 

the inherent randomness of stochastic wind excitations and belong to the 

environment random vector 𝒁  in Eq. (3.1) and Eq. (3.2). Figure 3.1 shows the 

comparison between the normalized target PSD model for along-wind velocity in Eq. 

(3.5) with the normalized PSD of a randomly generated sample by spectral 

representation method in Section 3.2.3. 

 

 

Figure 3.1 Comparisons between target and simulated normalized PSD of the wind 

velocity 

 

3.3 Challenges in employing surrogate models for stochastic 

dynamical systems 

 
A Gaussian process model, also known as Kriging, is often used to construct a 

surrogate of a complex function, e.g., response of a nonlinear structural system, 

based on training datasets of input-output pairs. In the first-passage probability 

problem in Eq. (3.1), the response quantity of interest might be the absolute value of 

maximum displacement response, i.e., ℳ ≡ 𝑚𝑎𝑥
0<𝑡≤𝜏

|𝑢(𝑿, 𝒁, 𝑡)|  which could be 

predicted using surrogates. Thus, one can directly collect the pair of the training set 
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by obtaining the structural responses ℳ at the input points of all-inclusive random 

vectors in Eq. (3.1), i.e., 𝑾 = [𝑿, 𝒁]T.  However, the high dimensionality of the 

input parameters associated with wind's stochastic characteristics,  𝒁 often makes 

predictions using such an approach infeasible. Therefore, it is desirable to handle the 

influences of the two random vectors 𝑿 and 𝒁 on first-passage failure probability 

separately (Gidaris et al. 2015; Kanjilal et al. 2021). 

The proposed method thus aims to address the aforementioned first-passage 

probability problem by developing a surrogate-based method to consider 

variabilities arising from the external wind excitation and structural system 

parameters. In addition, an adaptive surrogate training process is developed to 

identify the experimental design, effectively reducing the computational costs 

(Dubourg et al. 2011; Zhang et al. 2017; Wang and Broccardo 2020). To this end, 

the proposed AL-HGP introduces an alternative first-passage probability formulation 

whose distribution parameter functions are identified by a heteroscedastic Gaussian 

process model. An active learning framework is also introduced to train the 

surrogates through an adaptive selection of simulation points achieving efficient 

convergence. 

 

3.4 Development of active learning-based heteroscedastic 

Gaussian process (AL-HGP) 

 
3.4.1 Alternative formulation using conditional distribution 

 

To handle the influences of the two random vectors 𝑿  and 𝒁  on first-passage 

failure probability separately, the probability of failure in Eq. (3.2) is alternatively 

expressed using the conditional first-passage probability given the outcomes of the 
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basic random variables without loss of generality, i.e., 

𝑝𝑓 = ∫ 𝑝𝑓|𝑿(𝒙∗)𝑓𝑿(𝒙∗)
𝒙∗∈ℝ𝑛𝑥

𝑑𝒙∗ (3.11) 

where 𝑝𝑓|𝑿(𝒙∗)  is the conditional first-passage probability given 𝒙 = 𝒙∗, 

expressed as 

𝑝𝑓|𝑿(𝒙∗) = ∫ 𝐼ℱ(𝒙∗, 𝒛)𝑓𝒁(𝒛)
𝒛∈ℝ𝑛𝑧

𝑑𝒛 (3.12) 

where 𝐼ℱ(⋅)  is the indicator function introduced in Eq. (3.2). The conditional 

probability in Eq. (3.12) describes the influence of the variability stemming from 

stochastic sequences on a deterministic structure represented by 𝒙 = 𝒙∗. 

This conditional probability is usually approximated as follows using the 

lognormal distribution, which is commonly utilized within the performance-based 

wind engineering framework (Ellingwood et al. 2004; Masoomi et al. 2018; 

Subgranon and Spence 2021; Abdelhady et al. 2022): 

𝑝𝑓|𝑿(𝒙∗) = 1 − 𝑃[ℳ(𝒙∗, 𝒛) ≤ 𝑢0] = 1 − Φ (
ln 𝑢0 − λ(𝒙∗)

휁(𝒙∗)
) (3.13) 

where ℳ(𝒙∗, 𝒛) is the stochastic response of interest for a specific input 𝒙∗; Φ(⋅) 

denotes the cumulative distribution function (CDF) of the standard Gaussian 

distribution; and λ(⋅) and 휁(⋅) are the mean and standard deviation of the natural 

logarithm of the response, respectively. Substituting Eq. (3.13) into Eq. (3.11), the 

first-passage probability can be estimated as 

        �̂�𝑓 = ∫ [1 − Φ (
ln 𝑢0 − λ(𝒙∗)

휁(𝒙∗)
)] 𝑓𝑿(𝒙∗)

𝒙∗∈ℝ𝑛𝑥

𝑑𝒙∗

≅ 1 −
1

𝑛𝑘
∑ Φ (

ln 𝑢0 − λ(𝒙𝑘)

휁(𝒙𝑘)
)

𝑛𝑘

𝑘=1

 

(3.14) 
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where 𝒙𝑘  is the kth random sample generated from 𝑓𝑿(𝒙),  𝑘 = 1, … , 𝑛𝑘 .  Eq. 

(3.14) computes the first-passage probability by a mixture of Gaussian densities, 

each of which is obtained at a random sample 𝒙𝑘. 

As a result of the conditional distribution based formulation and the lognormal 

distribution approximation, the first-passage probability problem can be solved by 

estimating the two distribution parameter functions λ(𝒙) and 휁(𝒙). It is also noted 

that other distribution types, e.g., Gumbel distribution, Weibull distribution, can be 

adopted in this formulation using a proper transformation from the standard Gaussian 

space (Der Kiureghian 2022). A geometric representation of the proposed 

formulation of the first-passage probability is provided in Figure 3.2. 

 

 

Figure 3.2 Conditional distribution based formulation of the first-passage 

probability 

 

3.4.2 Estimation of distribution parameters 

 

As discussed in Section 3.4.1, the distribution parameter functions in Eq. (3.14) 

describe the trends of the mean and standard deviation of the log-observations over 

the input space 𝒙. A naive estimation of these parameters would require repetitive 
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dynamic simulations per each 𝒙, which can be prohibitive in computational costs 

(Gidaris et al. 2015; Ghosh et al. 2018). Therefore, it is essential to estimate the 

distribution parameter functions with a minimal computational burden for efficient 

evaluations of the first-passage probability. The proposed AL-HGP predicts the 

distribution parameter functions by constructing GP-based surrogates, denoted by 

�̂�𝐺𝑃(𝒙) and 휁̂𝐺𝑃(𝒙) as follows. 

 

3.4.2.1 Heteroscedastic Gaussian process 

 

Let us first consider the inputs of the simulations, 𝒙𝓓 = [𝒙1, … , 𝒙𝑛]T  and the 

corresponding log-responses observed at independently sampled sequences of 

excitations, i.e., ln 𝓜𝓓 = [ln ℳ(𝒙1, 𝒛1) , … , ln ℳ(𝒙𝑛, 𝒛𝑛)]T.  These observations 

exhibit a certain level of noise because of the uncertainties stemming from the 

stochastic characteristics of wind loads. Furthermore, the influence of the excitation 

sequences on the response varies across the input space 𝒙, and thus the prediction 

model should incorporate the input-dependent noise (Kyprioti and Taflanidis 2021). 

This noise is not commonly assumed in the standard GP model that describes the 

additive noise with fixed variance, i.e., homoscedastic noise. 

Therefore, the proposed method employs a GP model with input-dependent 

noise, i.e., heteroscedastic noise, to predict the distribution parameter functions. Let 

us consider the GP model in Eq. (2.4) in Section 2.2.2, that is, 𝒴 = 𝑦(𝒙) + 휀 . 

Replacing the general output 𝒴 by the log-observation ln ℳ, and introducing the 

Gaussian heteroscedastic noise 휀(𝒙), the GP model is described as 

ln ℳ = 𝑦(𝒙) + 휀(𝒙)   where  휀(𝒙)~𝑁(0, 𝑟(𝒙)) (3.15) 
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where 𝑟(𝒙) = exp(𝑔(𝒙))  is the variance of the heteroscedastic noise 

parameterized to ensure a positive value. The noise variance can be modeled by 

placing another GP prior 𝑔(𝒙)~𝐺𝑃(𝜇0, 𝑘𝑔(𝒙, 𝒙′)). The model is then composed of 

two latent functions 𝑦(𝒙) and 𝑔(𝒙) with the augmented hyperparameters 𝚯𝐴 =

{𝜽𝑦, 𝜽𝑔 , 𝜇0}, in which 𝜽𝑦 and 𝜽𝑔 respectively denote the hyperparameters for the 

kernel functions 𝑘𝑦(𝒙, 𝒙′) and 𝑘𝑔(𝒙, 𝒙′). Because of the additional latent function 

on the heteroscedastic noise, the marginal likelihood in Eq. (2.5), and the predictive 

distributions of response in Eqs. (2.6)-(2.8) are now analytically intractable. 

 

3.4.2.2 Predictions of distribution parameters 

 

Lázaro-Gredilla and Titsias (2011) introduced the marginalized variational (MV) 

bound to identify the best-factorized approximation of the predictions in terms of 

Kullback-Leibler (KL) divergence. Based on the MV approximation, a rigorous and 

analytically tractable lower bound of the exact marginal likelihood can be obtained 

in terms of two sets of parameters – mean vector 𝒎 and covariance matrix 𝑽 – as 

follows: 

𝐵𝑀𝑉(𝒎, 𝑽) = ln 𝑓𝑁(ln 𝓜𝓓 ; 𝟎, 𝑲𝒚 + 𝑹) −
1

4
tr(𝑽)

− KL(𝑓𝑁(𝒈; 𝒎, 𝑽)‖𝑓𝑁(𝒈; 𝜇0𝟏, 𝑲𝒈)) 
(3.16) 

where 𝑓𝑁(⋅) is the PDF of a multivariate Gaussian distribution; 𝟎 is the vector of 

zeros; 𝑲𝒚 and 𝑲𝒈 are the covariance matrices of 𝑦(𝒙) and 𝑔(𝒙), respectively; 

 𝑹 is the diagonal matrix with elements 𝑅𝑖,𝑖 = exp(𝑚𝑖 − 𝑉𝑖,𝑖/2) , 𝑖 = 1, … , 𝑛; tr(⋅) 

is a trace operator of the matrix; KL(⋅) expresses the KL divergence between the 

two distributions; and 𝟏 denotes the vectors of ones. Then, the optimal estimates of 
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the augmented hyperparameters, �̂�𝐴  can be obtained by maximizing this lower 

bound. For an efficient optimization, a positive semi-definite diagonal matrix 𝚲 can 

be introduced to re-parametrize the variational parameters 𝒎 and 𝑽 in a reduced 

order (Lázaro-Gredilla et al. 2013; Rogers et al. 2020). 

Next, with the optimal hyperparameters, the predictive distribution at a new 

point 𝒙∗, 𝑝(ln ℳ∗) can be computed by the following integral: 

𝑝(ln ℳ∗) = ∫ ∫ 𝑝(ln ℳ∗ |𝑦∗, 𝑔∗)𝑝(𝑦∗)𝑝(𝑔∗) 𝑑𝑦∗ 𝑑𝑔∗ 

= ∫ 𝑓𝑁(ln ℳ∗ ; 𝑎∗, 𝑐∗
2 + exp(𝑔∗))𝑓𝑁(𝑔∗; 𝜒∗, 𝛾∗

2) 𝑑𝑔∗ 
(3.17) 

where 𝑎∗ = 𝒌𝒚∗
T (𝑲𝒚 + 𝑹)−1 ln 𝓜𝓓  and 𝑐∗

2 = 𝑘𝑦∗∗
− 𝒌𝒚∗

T (𝑲𝒚 + 𝑹)−1𝒌𝒚∗
  are 

respectively the posterior mean vector and covariance matrix of 𝑦(𝒙) while 𝜒∗ =

𝒌𝒈∗
T (𝚲 −

1

2
𝑰)𝟏 + 𝜇0  and 𝛾∗

2 = 𝑘𝑔∗∗ − 𝒌𝒈∗
T (𝑲𝒈 + 𝚲−1)−1𝒌𝒈∗  are those for 𝑔(𝒙) . 

The predictive mean and standard deviation functions of ln ℳ∗ at input point 𝒙∗ 

then can be derived in terms of GP kernel functions as follows (Lázaro-Gredilla and 

Titsias 2011): 

�̂�𝐺𝑃(𝒙∗) = E𝑝[ln ℳ∗] = 𝑎∗ (3.18) 

휁̂𝐺𝑃(𝒙∗) = √Var𝑝[ln ℳ∗] = √exp(𝜒∗ + 𝛾∗
2/2) + 𝑐∗

2 (3.19) 

where E𝑝[⋅]  and Var𝑝[⋅]  respectively denote the mathematical expectation and 

variance under 𝑝(ln ℳ∗). As a result, the predictive mean and standard deviation in 

Eqs. (3.18) and (3.19) serve as GP-based estimates of distribution parameter 

functions �̂�𝐺𝑃(𝒙)  and 휁̂𝐺𝑃(𝒙)  respectively, under the heteroscedastic noise 

assumption. AL-HGP utilizes both predictions for estimating the first-passage 

probability in Eq. (3.14). The heteroscedastic GP model can predict the distribution 
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parameter functions without requiring repetitive simulations per each 𝒙. It is also 

noted that AL-HGP needs to establish only one surrogate model to estimate both 

distribution parameter functions �̂�𝐺𝑃(𝒙∗) and 휁̂𝐺𝑃(𝒙∗) and therefore, they do not 

need to be trained separately. 

 

3.4.3 Adaptive training of surrogates 

 

For efficiency, the proposed method employs an adaptive Design of Experiment 

(DoE) scheme (Dubourg et al. 2011; Zhang et al. 2017) to obtain surrogate-based 

predictions by as few dynamic simulations as possible. In detail, the proposed 

adaptive learning method iteratively refines the surrogates by computational 

simulations at locations recommended by a learning function instead of attempting 

to fit limit-state boundaries in the entire domain. 

To effectively enrich the DoE, the learning function should be designed to guide 

the search process to DoE areas that would significantly improve the first-passage 

probability estimation. For this, the random samples 𝒙𝑘 introduced in Eq. (3.14) are 

directly used as candidate points for the next DoE. In particular, the formulation in 

Eq. (3.14) introduces a mixture of 𝑛𝑘 Gaussian CDFs evaluated at given threshold 

level 𝑢0, each of which indicates the conditional probability of first-passage failure 

at the sample point 𝒙𝑘. Note that each GP-based conditional failure probability at 

𝒙𝑘 directly presents the relative importance of the corresponding locations in terms 

of the total first-passage probability. Therefore, after constructing the surrogates 

based on the initial DoE points, AL-HGP selects the random sample that minimizes 

the learning function as the next simulation point, that is, 
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𝒙𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝒙𝑘

𝑝𝑓|𝑿(𝒙𝑘) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒙𝑘

Φ (
ln 𝑢0 − �̂�𝐺𝑃(𝒙𝑘)

휁̂𝐺𝑃(𝒙𝑘)
) (3.20) 

where �̂�𝐺𝑃(𝒙𝑘) and 휁̂𝐺𝑃(𝒙𝑘) are the logarithmic mean and standard deviation in 

Eq. (3.18) and Eq. (3.19) estimated at 𝒙 = 𝒙𝑘 , respectively. Because the Gaussian 

CDF Φ(⋅) is a monotonically increasing function, the logarithmic mean �̂�𝐺𝑃(⋅) in 

the numerator encourages computational simulations in the vicinity of the current 

maximum over the threshold. On the other hand, the logarithmic standard deviation 

휁̂𝐺𝑃(⋅) in the denominator promotes simulations at less-explored areas, especially 

for those under the threshold level (where the numerator is positive) because most 

of the observations are usually lower than the given threshold in typical first-passage 

probability problems. Therefore, the learning criteria help guide the search toward 

the regions that have a significant influence on the first-passage probability in terms 

of the given threshold level 𝑢0, utilizing the GP-based predictions on distribution 

parameter functions. 

To illustrate this point, Figure 3.3 shows the GP-based densities at two 

candidate points denoted by 𝒙1  and 𝒙2  respectively representing points with 

relatively large mean and small variability (standard deviation) and those with 

relatively small mean and large variability. Given the threshold level, the 

corresponding conditional failure probability at 𝒙2 is greater than that of 𝒙1, and 

thus AL-HGP method will prioritize 𝒙2  as the next point of the computational 

simulation. 
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Figure 3.3 Illustration of conditional probabilities of failure for sample points (𝒙1 

and 𝒙2) using the GP-based densities giben threshold level 

 

3.4.4 Convergence criteria 

 

The proposed adaptive learning procedure updates the first-passage probability until 

satisfying the selected convergence criterion. Inspired by the CDF distance metric 

utilized for adaptive seismic fragility analysis (Chun et al. 2000; Kim et al. 2021), 

the proposed method employs the convergence criteria defined in terms of the 

normalized probability distance (NPD) as follows: 

휀𝑖
𝑁𝑃𝐷 =

(∫ (𝑢𝑖−1
𝑝

− 𝑢𝑖
𝑝

)21

0
𝑑𝑝)

1/2

𝜇𝑢𝑖

 (3.21) 

where 𝑢𝑖
𝑝

  denotes the 𝑝 -quantile of the first-passage probability function in Eq. 

(3.14), i.e., the threshold level that makes the first-passage probability 𝑝,  i.e., 

�̂�𝑓(𝑢𝑝) = 𝑝, at the ith learning step. The denominator 𝜇𝑢𝑖
 denotes the mean value 

of the quantiles from the ith iteration, normalizing the NPD. As shown in Figure 3.4, 

NPD considers the relative increment of the first-passage probability curve, 

capturing the differences in both mean and variability. This curve can be obtained by 
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calculating the proposed formulation in Eq. (3.14) at a set of thresholds using the 

trained surrogates at each learning step. Thus, the NPD quantifies the overall distance 

(or difference) between the first-passage probability curves identified in the current 

and previous learning steps. 

 

  
(a) (b) 

Figure 3.4 NPD measure capturing the difference in (a) mean and (b) variability of 

the first-passage probability curves 

 

The AL-HGP monitors whether the NPD at two consecutive steps becomes 

small and stagnant as the learning process proceeds. To this end, the NPD value at 

the ith learning step, 휀𝑖
(1)

= 휀𝑖
𝑁𝑃𝐷 and the convergence "trend" defined as 휀𝑖

(2)
=

|휀𝑖−1
(1)

− 휀𝑖
(1)

| are calculated at each iteration. If both 휀𝑖
(1)

 and 휀𝑖
(2)

 become smaller 

than the specified tolerances 휀𝑡𝑜𝑙
(1)

 and 휀𝑡𝑜𝑙
(2)

, respectively, the iteration is terminated. 

 

3.4.5 Algorithm 

 

The algorithm of the proposed AL-HGP is summarized as follows and illustrated by 

the flowchart in Figure 3.5: 
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1. Construct the initial DoE points: 𝑛0  initial DoE samples 𝒙𝓓 =

[𝒙1, … , 𝒙𝑛0
]T are generated from the vector of basic random variables 𝑿 

(time-invariant random parameters) using Latin Hypercube Sampling 

(LHS). The domain of LHS is set to ‖𝒙‖1 ≤ 𝜇𝑋 + 3𝜎𝑋. 

2. Generate random samples: Generate 𝑛𝑘  samples 𝒙𝑘 , 𝑘 = 1, … , 𝑛𝑘 

according to the sampling density 𝑓𝐱(𝒙) . These sample populations are 

used as candidate locations for computational simulations, that is, 

candidates for statistical learning. The first-passage probability is 

determined based on the predictions on these sample points. The population 

size 𝑛𝑥 = 104~105 seems to be a reasonable choice from the experience. 

 

Figure 3.5 Flowchart of AL-HGP algorithm 
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3. Perform dynamic analyses: Perform dynamic analyses under stochastic 

wind loads and obtain the maximum displacement responses at each DoE 

point. The datasets of input-output pairs are used to construct the surrogate 

models. Note that samples of environmental random vector 𝒁  are 

generated to simulate stochastic wind loads for each DoE point. 

4. Estimate the distribution parameter functions by GP-based surrogates: 

Obtain the estimates of the optimal augmented hyperparameters, �̂�𝐴 by 

maximizing the MV approximation bound in Eq. (3.16) using the current 

DoE points. Then, construct a GP-based surrogate model with 

heteroscedastic noise. The predictive mean and standard deviation in Eq. 

(3.18) and Eq. (3.19) are utilized for calculating the first-passage 

probability in Eq. (3.14). 

5. Train surrogates by active learning process: Identify the sample point 

minimizing the learning function as the next best simulation point 𝒙𝑏𝑒𝑠𝑡 

as described in Eq. (3.20). At this stage, the DoE is enriched by acquiring 

dynamic simulation at 𝒙𝑏𝑒𝑠𝑡  to update the surrogate model and 

corresponding predictions on distribution parameter functions. 

6. Check the convergence criteria: Repeat Steps 2-5 as enriching the DoE until 

both convergence criteria 휀(1)  and 휀(2)  become smaller than the 

predefined tolerances. 

7. End of AL-HGP: Once converged, AL-HGP stops the iteration and provides 

the current estimate of the first-passage probability as the final estimate. 
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3.5 Numerical examples 

 
3.5.1 Application to an eight-story building 

 

The first example investigates an eight-story walled building structure in Figure 3.6 

where only the walls contribute to the lateral resistance against the wind loads. The 

structure is modeled as a linear elastic building subject to dynamic forces caused by 

fluctuating winds. Table 3.1 and Table 3.2 present the building properties and wind 

hazard model parameters, respectively, adopted from the final report of the Applied 

Technology Councils (ATC) project and ASCE 07 (ASCE 2017; FEMA 2018). 

Figure 3.7 shows one of the simulated fluctuating wind speed time histories, 𝑣(ℎ, 𝑡) 

at the eighth-story of the building. The duration of the simulated time history is 

assumed to be 10 minutes (600 seconds). In this example, the following two cases 

are considered regarding the type and dimension of random variables. 

 

 

Figure 3.6 Structural model of eight-story building 
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Figure 3.7 Simulated fluctuating wind speed time history at the eighth story 

 

Table 3.1 Structural parameters of eight-story building model 

Name Parameter Value 

Building height (ft) 𝐵ℎ 106 

Building width (ft) 𝐵𝑑 120 

Building weight (kip) 𝐵𝑤 21,276 

The first mode period (s) 𝑇1 1.13 

Story stiffnesses (kip/in) 𝑘𝑗 6,200 

Damping ratios 𝑐𝑗 0.02 

     * For 𝑗 = 1, … ,8 

 

 

Table 3.2 Parameters of wind hazard model 

Name Parameter Value 

Basic wind speed (mph) 𝑉𝑏 95 

Air density (kg/m3) 𝜌𝑎 1.226 

Exponent parameter �̅� 0.25 

Gust parameter �̅� 0.45 

Drag coefficient 𝐶𝐷 1.3 

Decay coefficient 𝐶𝑧 10 

Von Kármán constant 𝜅𝑎 0.4 

Spectrum coefficients 
𝑎𝑠 105 

𝑏𝑠 33 

 

 

 

3.5.1.1 Case 1: uncertain parameter in the wind hazard model 

 

Let us first consider the case in which a wind hazard model parameter is considered 

a random variable. To this end, the basic wind speed (or 3-second gust wind speed) 

in Eqs. (3.4)-(3.6) is parameterized by 𝑉𝑏 = �̃�𝑏휀𝑣 where �̃�𝑏 is the nominal value 



 

 
60 

and 휀𝑣  is a non-dimensional random variable, assumed to follow the Gaussian 

distribution with a mean 𝜇𝜀𝑣
= 1  and a standard deviation 𝜎𝜀𝑣

= 0.1,  that is, 

휀𝑣~𝑁(1,0.12).  The nominal value is set to �̃�𝑏 = 95  (mph). Thus, 휀𝑣  is 

considered a random variable included in the random vector 𝑿 in Eq. (3.1). 

Following the procedure described in Section 3.4, the AL-HGP method is 

applied with 50 initial DoEs. The convergence tolerances 휀𝑡𝑜𝑙
(1)

 and 휀𝑡𝑜𝑙
(2)

 are set to 

0.001, which was recommended in a previous study on structural fragility (Kim et 

al. 2021). The responses of interest are eighth-story and first-story drifts whose 

displacement thresholds are 𝑢0 = 0.16 (𝑖𝑛)  and 𝑢0 = 0.0325 (𝑖𝑛),  respectively. 

Figure 3.8 presents initial stages of adaptive learning with the DoEs at top drift, 

denoted by the red-plus markers. The solid curves show the reference values of 

distribution parameter functions, i.e., �̂�𝑀𝐶𝑆(𝑥) and �̂�𝑀𝐶𝑆(𝑥) ± 휁̂𝑀𝐶𝑆(𝑥), obtained 

by 50,000 Monte Carlo Simulation (MCS) on each point 𝑥 . The distribution 

parameter functions estimated by GP-based surrogates, �̂�𝐺𝑃(𝑥)  and �̂�𝐺𝑃(𝑥) ±

휁̂𝐺𝑃(𝑥)  are represented by dashed-line respectively. Based on the estimated 

parameters, the two conditional distributions of the maximum response at 𝑥 = 1 

and 𝑥 = 1.3 are shown in Figure 3.8. It is noted that the relative contributions of 

the location at 𝑥 = 1.3  are more significant than those at 𝑥 = 1  because of the 

conditional first-passage failure computed by Eq. (3.13). 
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Figure 3.8 Initial stage of adaptive learning with AL-HGP 

 

Figure 3.9 shows the trained surrogates and all DoE points explored up to the 

final step to illustrate the progress of AL-HGP after 38 simulations for the eighth- 

story drift. In particular, the blue-cross markers indicate the sample selected by the 

adaptive procedure in Eq. (3.20), 𝒙𝑏𝑒𝑠𝑡 . The result confirms that most of the sample 

points selected by AL-HGP reside in the critical domain, improving the prediction 

accuracy of the surrogate model selectively around the specific region. Therefore, 

AL-HGP can construct an effective surrogate model from the viewpoint of the first-

passage probability problem and thus fit the distribution parameter functions 

sufficiently well, especially in the region that contributes most to the first-passage 

probability 𝑝𝑓. 

 

PDF at 

PDF at 
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Figure 3.9 Final experimental designs for eight-story building system with basic 

wind speed as random variable 

 

To investigate the accuracy of the GP-based surrogate, Figure 3.10 plots the KL 

divergence between the two Gaussian distributions whose parameters are, 

respectively, obtained by MCS (solid lines in Figures 3.7 and 3.8) and GP-based 

surrogates (dashed-lines in Figures 3.7 and 3.8). The KL divergence measure 𝐷𝐾𝐿 

(Kurtz and Song 2013; Kanjilal et al. 2021) is computed as 

𝐷𝐾𝐿 = ln
휁̂𝐺𝑃(𝑥)

휁̂𝑀𝐶𝑆(𝑥)
+

휁̂𝑀𝐶𝑆
2 (𝑥) + (�̂�𝑀𝐶𝑆(𝑥) − �̂�𝐺𝑃(𝑥))2 

2휁̂𝐺𝑃
2 (𝑥)

−
1

2
 (3.22) 

Figure 3.10 shows the changes of the KL divergence in the domain of 𝑥 = 휀𝑣 

over the adaptive learning procedure after identifying 1, 12, and 38 simulations for 

the eighth-story drift. AL-HGP successfully converges the GP-based surrogate 

toward the reference distribution by adaptively enriching surrogates, especially in 

the critical domains, which contributes most to the first-passage failure. 
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Figure 3.10 KL divergence between the references from the MCS and estimates by 

GP-based surrogates through iterations 

 

Figure 3.11 compares the first-passage probability by the proposed method 

(blue-dashed line) with the reference (black-solid line) estimated by MCS (105 

dynamic simulations leading to a coefficient of variation of 5% at the threshold level). 

It is noted that only 48 and 33 dynamic simulations are additionally performed to 

obtain the first-passage probability estimates after 50 simulations on initial DoE 

points for the eighth-story and first-story drifts, respectively. The results confirm that 

the proposed method produces accurate estimates with a significantly reduced 

number of dynamic simulations. The gray curves in the plots are 200 first-passage 

probabilities, each of which is a surrogate-based prediction based on the randomly 

selected DoE points. For comparison, each curve uses the same total number of 

simulations as AL-HGP, i.e., 98(=50+48) and 83(=50+33) simulations, respectively. 

In detail, the curves show the "non-adaptive" results by surrogate-based predictions 

using only Steps 1-4 of the algorithm in Section 3.4.5. These curves demonstrate 

large variability one could introduce by using randomly selected DoE points instead 

Iteration proceeds
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of active learning of surrogates. 

Figure 3.12 shows the convergence histories of NPD in Eq. (3.21) during the 

active learning procedure. The red-cross markers show the NPDs between 

consecutive learning steps whose values decrease as the iteration proceeds. The blue-

plus markers are the NPDs between the first-passage probability calculated at each 

step and the optimal estimates at the final learning stage. It is noted that the blue 

markers are calculated only to demonstrate that the estimated first-passage 

probabilities are converging to the final estimates. The convergence histories of the 

AL-HGP analysis, starting from the initial experimental designs, confirm that the 

proposed method facilitates convergence to the final values through a small number 

of iterations. 

 

 

  

(a) (b) 

Figure 3.11 First-passage probabilities by AL-HGP and MCS for (a) eighth-story 

and (b) first-story drift 
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3.5.1.2 Case 2: uncertain parameters in both structural system and 

hazard model 

 

The second case of the example considers the random variables associated with the 

structural system and wind hazard model. The modal damping coefficients of the 

building are parameterized by 𝑐𝑗 = 휀𝑐𝑗�̃�𝑗, 𝑗 = 1, … ,8 where �̃�𝑗 are nominal values 

set to 0.02 and 휀𝑐𝑗  are random variables following a multivariate Gaussian 

distribution with means of one and covariance matrix in which the covariance 

between 휀𝑐𝑗  and 휀𝑐𝑘  is defined as Σ𝑗𝑘 = (0.2)2 exp[−(𝑗 − 𝑘)2/22].  The 

exponential function is introduced to represent the decaying correlation of damping 

coefficients (Zhang et al. 2017). For wind loading, the basic wind speed and air 

density are also modeled using random variables 휀𝑣  and 휀𝜌 , respectively, i.e., 

𝑉𝑏 = �̃�𝑏휀𝑣  and 𝜌𝑎 = �̃�𝑎휀𝜌 . The nominal values are respectively set to �̃�𝑏 = 95 

(mph) and �̃� = 1.226 (𝑘𝑔/𝑚3) . The parameters 휀𝑣  and 휀𝜌  are modeled as 

  

(a) (b) 

Figure 3.12 The normalized probability differences (NPDs) of the estimated first-

passage probability with respect to the previous learning step and final estimates 

for (a) eighth-story and (b) first-story drift 
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Gaussian random variables with the coefficient of variations (c.o.v.) 0.10 and 0.04, 

respectively (Slot et al. 2020; Abdelhady et al. 2022). As shown in Table 3.3, the 

random vector 𝑿  includes ten variables describing uncertain parameters in the 

structural system and wind hazard model. 

 

 

Table 3.3 Random variables associated with the structural system and wind hazard 

model for an eight-story building example (Case 2) 

Random variables Mean c.o.v. Distribution 

Damping coefficients, 휀𝑐𝑗 1 0.20 Correlated Gaussian 

Basic wind speed, 휀𝑣 1 0.10 Gaussian 

Air density, 휀𝜌 1 0.04 Gaussian 

* For 𝑗 = 1, … ,8 

 

 

Figure 3.13 presents the results of the AL-HGP method. The AL-HGP method 

is applied with 200 initial DoEs and convergence tolerance values 0.001. The 

response of interest is the eighth-story drift, whose threshold is 𝑢0 = 0.195 (𝑖𝑛). 

The correlated random samples can be generated by applying proper transformations 

to samples generated from uncorrelated standard Gaussian variables (Der 

Kiureghian 2022). The estimated first-passage probabilities and the convergence 

histories of NPDs are presented in Figures 3.13(a) and 3.13(b). Using the proposed 

method, only 358(=200+158) dynamic simulations are needed to estimate the first-

passage probability whose results are compatible with those by MCS, obtained by 

5 × 105 simulations leading to a coefficient of variation of 5% at the threshold. The 

results indicate that the AL-HGP method successfully addresses the dimension while 

producing accurate estimates with fewer dynamic analyses 
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(a) (b) 

Figure 3.13 First-passage probabilities of the eighth-story response in the eight-

story building example (Case 2): (a) comparison between those by MCS and AL-

HGP; and (b) convergence histories of NPDs 

 

The convergence histories of AL-HGP analysis starting from different initial 

DoE points are given in Figure 3.14. In each case, the first-passage probability at 

threshold level, �̂�𝑓(𝑢0 = 0.195)  is converged to the reference MCS value after 

identifying 160, 230, and 256 simulations, despite randomness in the initial DoEs. 

The convergence histories confirm that the AL-HGP method quickly identifies the 

area of importance and DoE, enabling rapid convergence to the optimal first-passage 

probability. 

 

 

Figure 3.14 Convergence histories of AL-HGP during learning procedure for the 

eight-story building example (Case 2) 
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3.5.2 Application to a transmission tower 

 

The next engineering application example investigates a transmission tower 

structure subjected to stochastic wind loads. Figure 3.15 shows the finite element 

model of a steel lattice tower structure, created using SAP2000 software to perform 

the nonlinear time-history analyses under stochastic wind loads. The tower's height 

is 122.8 m, and each tower section consists of several continuous panels with cross-

arms. The tower's foundation is assumed to be rigid, i.e., the model is fixed at the 

base. The environmental wind forces caused by fluctuating winds are simulated by 

the stochastic wind-field model in Section 3.2.2 and applied to the transverse 

direction, as shown in Figure 3.15. Thus, the failure event is defined using the 

displacement responses of the transverse direction at the top of the tower with a 

displacement threshold of 1.46 m (Albermani et al. 2009; Cai et al. 2019). The time 

duration of consideration is 10 minutes (600 seconds). 

The wind model parameters listed in Table 3.2 are used again to simulate the 

wind loads except for the basic wind speed, which is considered a random variable 

in this example. The material properties, i.e., modulus of elasticity 𝐸  and yield 

strength 𝑓𝑦, of two steel types in the tower structure are also considered random 

variables, which may have dominant effects on the failure of the tower (Cai et al. 

2019; Mohammadi et al. 2020; Kim et al. 2021). Table 3.4 summarizes the types and 

parameters of the distributions of all random variables. 
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(b) 

 
(a) (c) 

Figure 3.15 Finite element model of transmission tower example: (a) perspective 

view, (b) plan view, and (c) front view 

 

 

Table 3.4 Distribution types and parameters of the random variables in a 

transmission tower example 

Random variables Distribution Mean c.o.v. 

𝑉𝑏 (mph) Gaussian 120 0.07 

𝐸𝑆275 (Mpa) Lognormal 200000 0.03 

𝐸𝑆360 (Mpa) Lognormal 200000 0.03 

𝑓𝑦,𝑆275 (Mpa) Lognormal 275 0.05 

𝑓𝑦,𝑆360 (Mpa) Lognormal 360 0.05 
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After the AL-HGP method is initiated with 100 initial DoEs, i.e., 100 time-

history analyses of the tower structure, the surrogate models are refined by the 

proposed active learning procedure. Figure 3.16(a) presents the estimated first-

passage probability compared with the MCS result by 5,000 simulation data, while 

the convergence histories of the NPDs are shown in Figure 3.16(b). The AL-HGP 

method needs only 236(=100+136) time-consuming simulations to obtain accurate 

estimates. Figure 3.17 demonstrates that the proposed method facilitates 

convergence to the optimal first-passage probability requiring only 102, 130, and 

139 simulations even if different experimental designs are used in the initial stages. 

This example confirms that the AL-HGP successfully deals with first-passage 

problems involving high computational costs. 

 

  

(a) (b) 

Figure 3.16 Results of applying AL-HGP to transmission tower example: (a) 

comparison of the first-passage probability, and (b) convergence histories of NPDs 
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Figure 3.17 Convergence histories of AL-HGP during learning procedure for 

transmission tower example 

 

3.6 Summary 

 
This chapter proposed a new adaptive surrogate-based analysis framework for first-

passage problems, termed active-learning-based method by Gaussian process with 

heteroscedastic noise (AL-HGP method). The main objective of the AL-HGP is to 

carry out an adaptive selection of simulation points with low computational costs 

from the reliability analysis standpoint under stochastic wind loads. The method 

utilized the Gaussian-process-based surrogates whose predictive mean and variance 

were employed to capture the conditional distribution of maximum response given 

the time-invariant basic random variable while handling heteroscedastic noise. This 

framework considered both uncertainties arising from the structural systems and the 

environmental wind loads. The proposed active learning framework further reduced 

the number of computational simulations by identifying the critical design of 

experiment (DoE) points that contribute most to the first-passage probability. The 

applications to the eight-story building system and transmission tower structure 

successfully demonstrated the performance and merits of the proposed method. In 

each example, the proposed method required fewer dynamic simulations to achieve 

accurate results, while the "non-adaptive" surrogate-based estimations could produce 
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inaccurate results with considerable variability. The transmission tower example 

demonstrated that AL-HGP could deal with high-fidelity computational simulations, 

e.g., finite element analyses, without losing the benefits and merits of the proposed 

method. Thus, AL-HGP is expected to effectively deal with such challenging and 

time-consuming problems in practical engineering. 
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Chapter 4. Reliability-Based Design Optimization 

Using Active Learning-based Quantile 

Surrogates 
 

 

 

 

4.1 Introduction   

 
Uncertainties in engineering systems, arising from lack of data, modeling 

approximations, or inherent randomness in the systems and their environment, may 

have a significant impact on the system performance. With the growing complexity 

of modern engineering systems, it is essential to manage the impact of such 

uncertainties in their design process. A design procedure that properly handles these 

uncertainties can assure the reliability of engineering systems by preventing the risk 

of unexpected failures that may eventually result in catastrophic damage or losses. 

Thus, appropriate strategies are required for uncertainty quantification and 

optimization in the design process of structures and other engineering systems. To 

this end, reliability-based design optimization (RBDO) has been extensively studied 

to achieve reliable optimal design of systems whose failure probability, i.e., the 

probability of violating the given constraints is lower than the target level of failure 

probability (Tu et al. 1998; Dubourg et al. 2011; Chun et al. 2016; Byun and Royset 

2021). 

However, it is challenging to accurately obtain the reliable optimal design since 

RBDO needs to evaluate the system’s performance repeatedly, which may prevent 

unique and converged design solutions (Du and Chen 2004; Youn and Choi 2004; 

Jensen et al. 2020). This issue is exacerbated especially when the computational cost 
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of system performance evaluation is high. Reducing the number of function 

evaluations, therefore, is an essential task for effective RBDO in engineering practice. 

In these research efforts, adaptive surrogate methods were employed for efficient 

RBDO by constructing the “quantile surrogates” directly with Gaussian process 

model. 

To overcome the aforementioned challenges in applications of RBDO, this 

chapter develops a new adaptive RBDO method employing quantile-surrogates, 

termed quantile surrogates by adaptive Gaussian process (QS-AGP). To identify the 

probability-feasible design domain, which is formulated in terms of the quantile of 

the performance function, Gaussian process models are utilized to build surrogates 

of the quantile. Both inherent randomness of the input random variables and 

epistemic uncertainty of surrogate model errors are considered in predicting the 

quantile using the surrogate model. At each step of the adaptive DoE procedure, the 

quantile estimate and the corresponding prediction variance are derived at each 

sample of 𝜽  from the mixture distribution based on the GP model and inherent 

randomness of 𝑿. In addition, a new learning function is introduced to facilitate the 

exploration-exploitation trade-off based on the quantile surrogate model in trying to 

identify the best design of structures. 

The chapter first provides a brief overview of the RBDO problem and quantile 

formulation of probabilistic constraints in RBDO that are employed to represent 

probability-feasible design domain in the proposed method. Then, the following 

details of QS-AGP will be introduced: (1) the optimization by design samples, (2) 

the quantile estimation by mixture distribution, (3) the learning function proposed 

for exploration-exploitation trade-off, and (4) the adaptive RBDO algorithm. 
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Through numerical examples of challenging RBDO problems, the QS-AGP will be 

tested in terms of (1) accuracy for highly nonlinear performance functions, (2) 

robustness against various distribution types, and (3) efficiency, i.e., the number of 

performance function evaluations required for convergence. Lastly, a summary and 

concluding remarks are provided (Kim and Song 2021a). 

 

4.2 Reliability-based design optimization (RBDO) 

 
4.3.1 General RBDO formulation 

 

RBDO generally aims to find the values of design parameters that minimize the cost 

function while satisfying deterministic and probabilistic constraints representing the 

given requirements. Given the probabilistic distribution model of the random vector 

𝑿, a general mathematical formulation of RBDO problems can be written as 

min
𝜽

 𝑓(𝜽) 

𝑠. 𝑡.  𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0] ≤ 𝑃𝑓𝑖

𝑡 , 𝑖 = 1, … , 𝑛𝑐 

                        ℎ𝑗(𝜽) ≤ 0, 𝑗 = 1, … , 𝑛𝑏 , 𝜽𝐿 ≤ 𝜽 ≤ 𝜽𝑈 

(4.1) 

where 𝑓(⋅) denotes the cost (or objective) function; 𝜽 ∈ ℝ𝑛𝑑 represents the vector 

of design parameters, which often includes the means of the random vector 𝑿; 𝑔𝑖(⋅) 

and 𝑃𝑓𝑖

𝑡  are respectively the ith performance (or limit-state) function indicating the 

occurrence of the failure event by 𝑔𝑖(⋅) ≤ 0, and the corresponding target failure 

probability, 𝑖 = 1, … , 𝑛𝑐 ; ℎ𝑗(⋅)  is the jth deterministic constraint function, 𝑗 =

1, … , 𝑛𝑏; and 𝜽𝐿 and 𝜽𝑈 are the lower and upper bounds on the vector of design 

parameters 𝜽, respectively. Since distribution parameters of the random vector 𝑿 

are often considered as design parameters in 𝜽,  the design under consideration, 

represented by 𝜽, should satisfy the probabilistic constraints in Eq. (4.1). To check 
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whether the design at each iteration step satisfies the probabilistic constraints, RBDO 

needs to perform reliability analysis repeatedly, which is a main computational 

challenge in RBDO (Enevoldsen and Sorensen 1994; Youn and Choi 2004; Nguyen 

et al. 2010). The general concept of RBDO is illustrated in Figure 4.1. 

 

4.3.2 Reviews on RBDO methods 

 

In order to handle the probabilistic constraints in RBDO effectively, various 

approaches have been developed (Enevoldsen and Sorensen 1994; Youn et al. 2003; 

Nguyen et al. 2010; Liang et al. 2007; Nguyen et al. 2010; Chun et al. 2019). RBDO 

methods based on the concept of the First Order Reliability Method (FORM), e.g., 

Reliability Index Approach (RIA) (Enevoldsen and Sorensen 1994) and Performance 

Measure Approach (PMA) (Tu et al. 1998; Youn et al. 2003), perform nonlinear 

 

Figure 4.1 Concept of reliability-based design optimization process 
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constrained optimization in standard Gaussian space (Der Kiureghian 2022). The 

RIA and PMA approaches respectively use Hasofer-Lind Rackwitz-Fiessler (HL-RF) 

and Advanced Mean Value (AMV) optimization algorithms to identify the reliability 

measures given design parameters, which may prevent unique and converged design 

solutions if the RBDO problem features small failure probability and/or high 

nonlinearity. These approaches are often called a “double-loop” problem since each 

step of the design iterations involves another iteration for reliability analysis. The 

double-loop computation, thus, can be prohibitive especially when the cost of 

function evaluation is high. As an effort to reduce the computational burden of 

double-loop procedure, many RBDO approaches have been proposed in the literature 

(Du and Chen 2004; Liang et al. 2007; Nguyen et al. 2010; Moustapha et al. 2016). 

For example, Sequential Optimization and Reliability Assessment (SORA) (Du and 

Chen 2004) was proposed to decouple the deterministic design optimization and 

reliability analysis. The method aims to find the optimal solution by solving a “serial” 

single loop optimization, which moves the probabilistic constraints toward 

deterministic constraints by use of shift vectors. Several other single-loop (SL) 

approaches have been proposed to approximate the solution of the inner-loop 

optimization. In these approaches, e.g., SL-KKT (using the Karush–Kuhn–Tucker 

(KKT) optimality condition), SL-SV (using single-loop single-vector method), SL-

RDS (using the concept of reliable design space) (Chen et al. 1995; Liang et al. 2007; 

Shan and Wang 2008), the inner-loop is replaced by an equivalent deterministic 

constraint using an approximation scheme. Figure 4.2 provides the concepts of four 

RBDO methods. 
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4.3 Quantile-based formulation for RBDO 

 
4.3.1 Performance measure 

 

RBDO aims to find the values of 𝜽 that minimize the cost function while satisfying 

both probabilistic and deterministic constraints. To check the design at each iteration 

step with regard to the probabilistic constraints, RBDO algorithms usually rely on 

the estimates of the failure probability for 𝜽, i.e., 𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0]. Therefore, it is 

desirable to construct surrogates in the design parameter space 𝜽 for computational 

efficiency. In particular, the proposed method aims to identify the admissible design 

domain in 𝜽,  termed “probability-feasible design domain,” where any design 

choice satisfies the reliability requirements, by use of surrogates representing the 

quantile of the performance function (Lee and Jung 2008; Shan and Wang 2008; 

Moustapha et al. 2016). 

To this end, the probabilistic constraints in Eq. (4.1) is described alternatively 

by the cumulative distribution function (CDF) of the performance function and the 

 

Figure 4.2 Illustration of four RBDO methods 
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target reliability index 𝛽𝑖
𝑡, that is, 

𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0] = 𝐹𝑔𝑖(𝑿;𝜽)(0) ≤ 𝑃𝑓𝑖

𝑡 = Φ(−𝛽𝑖
𝑡) (4.2) 

where 𝐹𝑔𝑖
(⋅) denotes the CDF of the ith performance function 𝑔𝑖(⋅); and Φ(⋅) is 

the CDF of the standard Gaussian distribution. For an alternative description of Eq. 

(4.2), let us consider the 𝑃𝑓𝑖

𝑡 -quantile of the performance function, i.e.,  

𝑔𝑝(𝜽) = 𝐹𝑔(𝑿;𝜽)
−1 (𝑃𝑓

𝑡) = inf{𝑔 ∈ ℝ ∶ 𝐹𝑔(𝑿;𝜽)(𝑔) ≥ 𝑃𝑓
𝑡} (4.3) 

where 𝑔𝑝 is the 𝑃𝑓
𝑡-quantile of performance function (often termed “performance 

measure” (Tu et al. 1998; Youn et al. 2003)); and 𝐹𝑔
−1(⋅) denotes the inverse CDF 

of the performance function. During the optimization process, any design choice in 

{𝜽|𝑔𝑝(𝜽) = 0} is considered located at the boundary discerning the satisfactory and 

unsatisfactory designs from viewpoint of reliability requirement (often termed an 

inverse most probable point (MPP) in PMA method (Tu et al. 1998; Youn et al. 

2003)). On the other hand, the probability-feasible design domain 𝒮𝑝  can be 

described in terms of the quantile of the performance function as 𝒮𝑝 =

{𝜽|𝑔𝑝(𝜽) ≥ 0}.  Geometric illustrations of the quantile-based formulation for 

satisfactory and unsatisfactory design cases are given in Figures 4.3(a) and Figure 

4.3(b) respectively. 
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(a) Satisfactory design 

 

 
(b) Unsatisfactory design 

 

Figure 4.3 Geometric representations of performance measure 𝑔𝑝 for (a) 

satisfactory design, and (b) unsatisfactory design (Note: 𝑢1 and 𝑢2 in the figure 

denote the axes of uncorrelated standard Gaussian space transformed from the 

original random variable space (Der Kiureghian 2022), which are introduced to 

facilitate illustration of the quantile concept, but not required in the proposed 

method) 

 

4.3.2 Identification of probability-feasible design domain 

 

The proposed scheme aims to construct a surrogate of the quantile, 𝑔𝑝(𝜽)  to 

approximately identify the boundary of the probability feasible domain, i.e., 

{𝜽|𝑔𝑝(𝜽) = 0}. This concept is illustrated by Figure 4.4. (In the proposed method, 

the cost function 𝑓(𝜽) is also approximated by a surrogate 𝑓(𝜽) to facilitate the 

design optimization.) It is noteworthy that the quantiles are the functions of the 
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design variables 𝜽  only since 𝜽  determines the joint probability density of the 

input random variables 𝑿. In order to construct the surrogate models using as small 

number of simulation points as possible, an adaptive DoE scheme (Zhang et al. 2017; 

Marelli and Sudret 2018) is employed in the proposed method. The main goal is to 

identify the domains in the design space where a further computational simulation, 

i.e., a performance function evaluation, is expected to be the most effective in terms 

of finding the optimal design using the quantile surrogate model. The scheme 

basically guides the simulation locations toward boundaries of the probability-

feasible design domain, {𝜽|𝑔𝑝(𝜽) = 0}, because the optimal solutions are usually 

located at the boundary of a constraint (Shan and Wang 2008; Moustapha et al. 2016). 

Note that, in this chapter, the term “samples” refers to the candidate points in 𝜽, 

which are generated for the purpose of active-learning, while the term “simulation” 

means actual evaluation of the true performance function at the sample point selected 

by the active-learning process. 

 

 

Figure 4.4 Illustration of probability-feasible design domain in QS-AGP method 
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4.4 Proposed quantile surrogates by adaptive Gaussian 

process (QS-AGP) 

 
To check if a design belongs to the aforementioned probability-feasible design 

domain {𝜽|𝑔𝑝(𝜽) ≥ 0}, the quantile of the performance function at a given design, 

𝑔𝑝(𝜽) is estimated based on the probabilistic distributions of input random variables 

𝑿.  In addition, the model uncertainty of the surrogate-based estimation of the 

quantile needs to be quantified for the exploration-exploitation trade-off during the 

active-learning process (Jones et al. 1998; Picheny et al. 2010). To this end, the 

proposed QS-AGP constructs quantile surrogates by Gaussian Process. A learning 

function of QS-AGP is also introduced to encourage computational simulations in 

the vicinity of the boundary {𝜽|𝑔𝑝(𝜽) = 0}  while giving priorities to more 

desirable domains in 𝜽 from the viewpoint of design optimization, i.e., domains 

where the cost function is smaller. 

 

4.4.1 Optimization based on design samples 

 

Obtaining the sensitivities (or derivatives) of cost and/or constraint functions with 

respect to design parameters can be a cumbersome or infeasible task in many 

engineering practice, which may prohibit the use of gradient-based optimizer. The 

proposed QS-AGP relies on samples uniformly distributed in the design space, 

𝜽𝑙 , 𝑙 = 1, … , 𝑛𝑙, termed design samples. These design samples are candidate points 

for computational simulations, i.e., candidates for statistical learning. Using the 

computational simulation results at the initial DoE points and those later selected by 

the GP-based adaptive DoE procedure, the quantile estimate and the corresponding 

prediction variance are derived at each of the design samples 𝜽𝑙. To further improve 
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convergence, this study adopts low-discrepancy samples, often termed quasi-random 

samples. The improvement of the convergence rate by low discrepancy of samples, 

e.g., Sobol and Halton sequence, has been discussed in the literature (Caflisch 1998; 

Wang and Fang 2003). 

At each step of the adaptive learning process, the probabilistic constraint 

feasibility is checked by the signs of the quantile surrogate predictions 𝑔𝑝(𝜽𝑙), 𝑙 =

1, … , 𝑛𝑙 .  Then, among the (approximately) feasible samples, the one with the 

minimal cost according to another GP-surrogate of the cost function, 𝑓(𝜽)  is 

determined as an approximately optimal solution. Thus, the proposed RBDO method 

does not require an additional optimizer or any gradient information regarding the 

performance and cost function because it aims to identify one of the design samples 

that minimizes 𝑓(𝜽) while satisfying the probabilistic constraint according to the 

surrogate 𝑔𝑝(𝜽) through an active-learning process. 

 

4.4.2 Quantile surrogates by mixture distribution 

 

Using GP-based surrogate models, one can quantify the epistemic uncertainty in the 

model error caused by the lack of simulations, in the form of GP prediction variance 

in Eq. (2.8). On the other hand, inherent randomness in the RBDO problem is 

represented by the probabilistic distributions of 𝑿. It is essential to handle both types 

of uncertainties in estimating the quantile of the performance function in RBDO 

(Girard et al. 2003; Der Kiureghian and Ditlevsen 2009; Li and Wang 2019). 

To incorporate both uncertainties into the quantile estimation by surrogates, let 

us first consider the Gaussian distribution of GP in Eq. (2.6), i.e., 

𝑝(𝑦∗|𝒙∗, 𝒙𝓓, 𝒚𝓓, �̂�). Replacing the general output 𝑦∗ by the performance function 
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𝑔,  and introducing 𝓓 = {𝒙𝓓, 𝒈𝓓}  to represent the pair of simulation inputs and 

corresponding outputs, the GP-based prediction of the performance function at 

𝒙 = 𝒙∗ based on simulations at DoE points can be denoted by 𝑝(𝑔|𝒙∗, 𝓓, �̂�). By 

the total probability theorem, the predictive distribution of the performance function 

is derived as (Girard et al. 2003) 

𝑝(𝑔|𝜽, 𝓓) = ∫ 𝑝(𝑔|𝒙∗, 𝓓, �̂�)𝑝(𝒙∗|𝜽) 𝑑𝒙∗ (4.4) 

in which 𝑝(𝒙∗|𝜽)  is the probability density function (PDF) of the input random 

variables at 𝒙 = 𝒙∗,  affected by the design parameters 𝜽 . The predictive 

distribution is then fitted by a mixture of the GP-based densities of 𝑔, each of which 

is obtained at random samples generated from 𝑝(𝒙∗|𝜽), i.e., 

𝑝(𝑔|𝜽, 𝓓) ≅
1

𝑛𝑚
∑ 𝑝(𝑔|𝒙∗

𝑘 , 𝓓, �̂�)

𝑛𝑚

𝑘=1

=
1

𝑛𝑚
∑ 𝑓𝑁(𝑔; 𝜇𝑔

𝑘 , 𝜎𝑔
𝑘)

𝑛𝑚

𝑘=1

= 𝑓𝑔(𝑔) (4.5) 

where 𝒙∗
𝑘  is the kth random sample generated from 𝑝(𝒙∗|𝜽)  representing the 

aleatoric uncertainty in 𝑿,  𝑘 = 1, … , 𝑛𝑚;  and 𝑓𝑁(⋅)  denotes the PDF of the 

Gaussian distribution. The distribution parameters 𝜇𝑔
𝑘 and 𝜎𝑔

𝑘 are respectively the 

predictive mean and standard deviation of the corresponding GP surrogate in Eq. 

(2.7) and Eq. (2.8). The approximated distribution in Eq. (4.5) converges to the true 

distribution as the number of the samples randomly generated from 𝑝(𝒙∗|𝜽) grows. 

It is noted that, as a result of the marginalization in Eq. (4.4), the distribution of the 

performance function is now given in terms of 𝜽 only. Then, from Eq. (4.5), the 

CDF of the performance function, denoted by 𝐹𝑔(𝑔), is approximated as 
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𝐹𝑔(𝑔) ≅
1

𝑛𝑚
∑ 𝐹𝑁(𝑔; 𝜇𝑔

𝑘 , 𝜎𝑔
𝑘)

𝑛𝑚

𝑘=1

=
1

𝑛𝑚
∑ Φ (

𝑔 − 𝜇𝑔
𝑘

𝜎𝑔
𝑘 )

𝑛𝑚

𝑘=1

 (4.6) 

where 𝐹𝑁(⋅) is the CDF of a general Gaussian distribution. 

Next, the 𝑃𝑓
𝑡-quantile of the performance function can be estimated by solving 

the equation 𝐹𝑔(𝑔) = 𝑃𝑓
𝑡 for 𝑔. The equation can be solved numerically as follows: 

𝑔𝑝(𝜽) = argmin
𝑔∈ℝ

|𝑄(𝑔)| 
(4.7a) 

𝑄(𝑔) =
1

𝑛𝑚
∑ Φ (

𝑔 − 𝜇𝑔
𝑘

𝜎𝑔
𝑘 )

𝑛𝑚

𝑘=1

− 𝑃𝑓
𝑡 (4.7b) 

Since the Gaussian CDF Φ(⋅) is a monotonically increasing function, Eq. (4.7) can 

be solved by a line search algorithm using the sensitivity 

𝜕𝑄

𝜕𝑔
=

1

𝑛𝑚
∑

1

𝜎𝑔
𝑘

𝜑 (
𝑔 − 𝜇𝑔

𝑘

𝜎𝑔
𝑘 )

𝑛

𝑘=1

 (4.8) 

where 𝜑(⋅) is the PDF of the standard Gaussian distribution. In summary, during 

RBDO, at each of the design samples 𝜽𝑙 , 𝑙 = 1, … , 𝑛𝑙 , the quantile of performance 

function, 𝑔𝑝(𝜽) can be estimated by using the mixture of Gaussian CDFs in Eq. 

(4.5) which are derived from the GP surrogate. A geometric representation of the 

quantile estimation using the GP surrogate is provided in Figure 4.5. 
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Because the quantile is estimated in Eq. (4.7) by use of 𝑛𝑚 mixture samples, 

statistical uncertainty exists in the estimate. Therefore, the solution of Eq. (4.7) is 

considered as the mean, i.e., 𝑔𝑝(𝜽) = 𝜇�̂�𝑝
(𝜽), while the statistical uncertainty is 

quantified by the variance 𝜎�̂�𝑝

2 , which can be derived using standard order statistics 

theory (Arnold et al. 1992) as follows: 

𝜎�̂�𝑝

2 (𝜽) =
𝑃𝑓

𝑡(1 − 𝑃𝑓
𝑡)

𝑛𝑚 [𝑓𝑔 (𝐹𝑔
−1(𝑃𝑓

𝑡))]
2 ≅

𝑃𝑓
𝑡(1 − 𝑃𝑓

𝑡)

𝑛𝑚[𝑓𝑔(�̂�𝑝)]
2 (4.9) 

where 𝑓𝑔(�̂�𝑝) =
1

𝑛𝑚
∑ 𝑓𝑁(�̂�𝑝; 𝜇𝑔

𝑘 , 𝜎𝑔
𝑘)

𝑛𝑚
𝑘=1   from Eq. (4.5). It is noted that the 

estimation variance converges to zero as the probabilistic density at prediction point, 

𝑓𝑔(𝑔𝑝) increases or the sample size 𝑛𝑚 is large. 

 

4.4.3 Training of quantile surrogates 

 

For efficiency, the proposed RBDO refines the GP surrogate by computational 

simulations at locations recommended by a learning function instead of trying to fit 

all boundaries of the probability feasible design domain. Inspired by the adaptive 

 

Figure 4.5 Quantile estimation by GP-surrogate-based mixture distribution 
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learning procedure that was developed for reliability analysis (Kim and Song 2020), 

the GP surrogates are trained adaptively using a learning function as follows. 

At a given RBDO iteration, based on the surrogate-based estimation of the 

quantile and cost function, the optimal design 𝜽∗ is identified among the design 

samples 𝜽𝑙 as 

𝜽∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜽𝑙

𝑓(𝜽𝑙) 

𝑠. 𝑡.  𝑔𝑝,𝑖(𝜽𝑙) ≥ 0,   𝑖 = 1, … , 𝑛𝑐 , 𝑙 = 1, … , 𝑛𝑙  
(4.10) 

To enrich the DoE effectively in the next RBDO iteration, the learning criteria is 

defined so as to fit the boundary of the feasible domain {𝜽|𝑔𝑝,𝑖(𝜽) = 0, 𝑖 =

1, … , 𝑛𝑐} well especially in the areas making significant contribution to the current 

optimum 𝑓∗ = 𝑓(𝜽∗). To achieve this goal through exploration-exploitation trade-

off, the proposed method introduces to select the sample minimizing the following 

learning function featuring a penalty term 𝛾�̂�(𝜽), as the next simulation point: 

𝛼(𝜽) =
|𝜇�̂�𝑝,𝑐𝑡

(𝜽)|

𝜎�̂�𝑝,𝑐𝑡
(𝜽)

⋅ 𝛾�̂�(𝜽) (4.11) 

𝑤𝑖𝑡ℎ  𝛾�̂�(𝜽) = {|
𝑓(𝜽) − 𝑓∗

𝑓∗
|   if  Δ𝑜.𝑝 ≥ 𝑡𝑜𝑙

     1          otherwise

 (4.12) 

in which 𝜇�̂�𝑝,𝑐𝑡
(𝜽) and 𝜎�̂�𝑝,𝑐𝑡

(𝜽) are respectively the mean and standard deviation 

of the performance quantile derived in Eq. (4.7) and Eq. (4.9); 𝛾�̂�(𝜽) is the penalty 

function; 𝑓(𝜽) is the GP-surrogate-based estimate of the cost function at 𝜽; Δ𝑜.𝑝 

is the distance between the optimal 𝜽 values obtained by Eq. (4.10) at the current 

and previous learning-steps; and 𝑡𝑜𝑙  is the prescribed threshold of convergence. 

The numerator |𝜇�̂�𝑝,𝑐𝑡
(𝜽)|  of the ratio in Eq. (4.11) encourages computational 
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simulations in the vicinity of the boundary {𝜽|𝑔𝑝(𝜽) = 0} while the denominator 

𝜎�̂�𝑝,𝑐𝑡
(𝜽) promotes simulations at less-explored areas, i.e., more uncertain areas. On 

the other hand, the penalty term helps guide the search toward cost-effective regions 

which have significant impact on the optimal design. In Eq. (4.11), the learning 

function is defined for the performance function with the minimum 𝜇�̂�𝑝,𝑖
(𝜽) for 

𝑖 = 1, … , 𝑛𝑐, denoted by the index 𝑐𝑡, as proposed by Fauriat and Gayton (2014). 

The use of the composite index 𝑐𝑡  means no evaluation for the performance 

functions that have little or no influence at a current step, and thus only one 

performance function 𝑔𝑐𝑡 is evaluated per each iteration. 

After the best design point is identified as 𝜽𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜽𝑙

𝛼(𝜽𝑙),  the 

location of the performance function evaluation, 𝒙𝑏𝑒𝑠𝑡 is determined as 

𝒙𝑏𝑒𝑠𝑡 = argmin
𝒙𝑘

|𝜇�̂�𝑐𝑡
(𝒙𝑘; 𝜽𝑏𝑒𝑠𝑡)|

𝜎�̂�𝑐𝑡
(𝒙𝑘; 𝜽𝑏𝑒𝑠𝑡)

 (4.13) 

where 𝜇�̂�𝑐𝑡
(𝒙; 𝜽𝑏𝑒𝑠𝑡)  and 𝜎�̂�𝑐𝑡

(𝒙; 𝜽𝑏𝑒𝑠𝑡)  respectively denote the GP-based 

predictive mean and standard deviation of performance function at 𝒙 given 𝜽𝑏𝑒𝑠𝑡, 

which are denoted by 𝜇𝑔
𝑘 and 𝜎𝑔

𝑘 in Eq. (4.5). Thus, Eq. (4.13) represents another 

GP-based exploration-exploitation trade-off to choose the next location of the 

performance function evaluation among the random samples 𝒙𝑘, 𝑘 = 1, … , 𝑛𝑚 , 

generated from 𝑝(𝒙|𝜽𝑏𝑒𝑠𝑡) near the approximate limit-state surface. It is noted that 

the locations of performance function, 𝒙𝑏𝑒𝑠𝑡 are different from 𝜽𝑏𝑒𝑠𝑡 because of 

inherent randomness of input uncertainties. In summary, the proposed optimization 

scheme enriches the DoE by [𝜽𝑏𝑒𝑠𝑡 , 𝑔𝑐𝑡(𝒙𝑏𝑒𝑠𝑡; 𝜽𝑏𝑒𝑠𝑡), 𝑓(𝜽𝑏𝑒𝑠𝑡)]T. 

The following convergence criteria are introduced to check the convergence 
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with regards to the relative increment of optimal cost and refinement of surrogate 

constraint: 

|
𝑓(𝜽(𝑚)

∗ ) − 𝑓(𝜽(𝑚−1)
∗ )

𝑓(𝜽(𝑚)
∗ )

| ≤ 휀𝑓 (4.14) 

𝑚𝑎𝑥
𝑖

[𝜎�̂�𝑝,𝑖
(𝜽(𝑚)

∗ )] ≤ 휀𝑝, 𝑖 = 1, … , 𝑛𝑐 (4.15) 

where 𝜽(𝑚)
∗  is the optimal design at the 𝑚-th learning step; and 휀𝑓 and 휀𝑝 are 

pre-specified tolerance values for the criteria. The tolerance values depend on the 

target level of accuracy, and 휀𝑓 , 휀𝑝 ∈ (10−4, 10−2) are recommended based on the 

experience of the authors. 

 

4.4.4 Algorithm of QS-AGP 

 

The algorithm of the proposed QS-AGP is summarized as follows (see Figure 4.6 

for the flowchart): 

 

1. Generate samples in design space: Generate 𝑛𝑙  design samples 𝜽𝑙 , 𝑙 =

1, … , 𝑛𝑙 that are uniformly distributed in the design space. These sample 

populations are used as candidate locations for active-learning, and finally 

the optimal solution is determined among these samples. The sample 

population size 𝑛𝑙 = 104~105 seems to be a reasonable choice from the 

experience. 

2. Construct the initial DoE: Generate 𝑛0 samples 𝜽𝓓 = [𝜽1, … , 𝜽𝑛0
]

T
 by 

Latin Hypercube Sampling (LHS) in the design space. Then, corresponding 

samples 𝒙𝓓 = [𝒙1, … , 𝒙𝑛0
]

T
 are also generated with input variations, i.e., 



 

 
90 

𝒙𝓓 = 𝜽𝓓 + 𝜺x where 𝜺x~𝑁(0, 𝚺𝑥). The cost function 𝑓(𝜽) and each of 

the performance functions 𝑔𝑖(𝒙), 𝑖 = 1, … , 𝑛𝑐, are respectively evaluated 

on the DoE points 𝜽𝓓  and 𝒙𝓓  to construct the initial DoE of the 

surrogate models. 

3. Obtain GP-based quantile surrogates: Construct GP-based quantile 

surrogates at the design sample points using the current DoE. That is, for 

each of the design samples points 𝜽𝑙, the mean of quantile, 𝜇�̂�𝑝
(𝜽) in Eq. 

(4.7) and the corresponding standard deviation of estimated quantile, 

𝜎�̂�𝑝
(𝜽)  in Eq. (4.9) are calculated from the mixture CDF for each 

performance function. The derived quantities of quantiles are utilized for 

the exploration-exploitation trade-off in the proposed learning function. 

 

Figure 4.6 Flowchart of QS-AGP algorithm 
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4. Perform active-learning process: Identify the sample point where the 

learning function 𝛼(𝜽)  in Eq. (4.11) is minimized, as 𝜽𝑏𝑒𝑠𝑡 . Then, the 

next location of the performance function evaluation, 𝒙𝑏𝑒𝑠𝑡 is determined 

by Eq. (4.13). The DoE is enriched by performance function evaluation 

𝒙 = 𝒙𝑏𝑒𝑠𝑡 and cost function calculation at 𝜽 = 𝜽𝑏𝑒𝑠𝑡 . Next, the estimate 

of the optimal GP hyperparameters, �̂� is obtained again by MLE with the 

enriched DoE in Eq. (2.5). 

5. Check the convergence criteria: Once the best simulation point is 

determined, the convergence conditions in Eq. (4.14) and Eq. (4.15) are 

calculated to check the convergence in terms of surrogate refinements and 

learning convergences. If the procedure has not achieved the prescribed 

level of convergence, repeat Steps 3-5 as enriching the DoE. 

6. End of QS-AGP: Once converged, QS-AGP stops the iteration to determine 

the current design 𝜽(𝑚)
∗  and cost 𝑓(𝜽(𝑚)

∗ ) as the optimal design and cost, 

respectively. 

 

4.5 Numerical examples 

 
4.5.1 Highly nonlinear performance function 

 

First, consider a two-dimensional RBDO example with highly non-linear 

performance function, which is formulated as (Lee and Jung 2008; Moustapha and 

Sudret 2019) 
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min
𝜽

 𝑓(𝜽) = (𝜃1 − 3.7)2 + (𝜃2 − 4)2 

𝑠. 𝑡.  𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0] ≤ 𝑃𝑓𝑖

𝑡 , 𝑖 = 1,2 

         0 ≤ 𝜃1 ≤ 3.7, 0 ≤ 𝜃2 ≤ 4.0 

with 𝑔1(𝒙) = −𝑥1 sin(4𝑥1) − 1.1𝑥2 sin(2𝑥2) 

         𝑔2(𝒙) = 𝑥1 + 𝑥2 − 3 

(4.16) 

where 𝒙  is realization of the random vector 𝑿  consisting of two independent 

Gaussian random variables 𝑋1 and 𝑋2; 𝑿 has the means 𝜽 and the same constant 

standard deviation 𝜎 = 0.1 , i.e., 𝑋𝑗~𝑁(𝜃𝑗 , 𝜎2), 𝑗 = 1,2 . The generalized target 

reliability index 𝛽𝑖
𝑡 is set to 2 for both constraints. The solid curves in Figures 4.7-

4.9 show the limit-state surfaces by the true performance functions. 

Table 4.1 shows typical results (among more than 20 independent runs) by the 

proposed QS-AGP, compared with those by RIA, PMA, SORA and SL-KKT 

reported in the literature (Enevoldsen and Sorensen 1994; Tu et al. 1998; Du and 

Chen 2004; Liang et al. 2007). The accuracy and efficiency of the different methods 

are compared in terms of the values of the final optimal design parameters (𝜽𝑜𝑝𝑡), 

the optimal cost (𝑓𝑜𝑝𝑡 ), and the numbers of evaluations for the two performance 

functions (𝑁𝑔1
 and 𝑁𝑔2

), and the number of the cost function evaluation (𝑁𝑓). The 

proposed method obtains an optimal design using fewer function evaluations, i.e., 

19 and 12 for the first and second performance functions respectively despite their 

high nonlinearity. It is noted that the RBDO result by SL-KKT cannot converge to a 

similar result due to the high non-linearity of the performance function. 

Figure 4.7 illustrates the adaptive search process of the proposed method. 

Figure 4.7(a) presents initial stages of adaptive learning with the initial set of DoE, 

which is denoted by the circular markers. The limit state surfaces estimated by 
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surrogates are represented by dashed-line for the two performance functions 

respectively. Figures 4.7(b)-(d) show the progresses after 2, 4 and 12 simulations 

respectively. In particular, the double red-circle markers are the design samples 

selected by the adaptive procedure in Eq. (4.11), i.e., 𝜽𝑏𝑒𝑠𝑡. The cross-marker “x” is 

the corresponding location of function evaluations, i.e., 𝒙𝑏𝑒𝑠𝑡, and a subscript of the 

marker denotes the index of the evaluated performance function. For instance, at the 

location denoted by the marker “x₁,” QS-AGP evaluates performance function 

𝑔1(𝒙) only. It is confirmed that the proposed method guides the search so that more 

  

(a) (b) 

  

(c) (d) 

Figure 4.7 Progresses of DoE by QS-AGP for example with highly nonlinear 

performance functions: (a) 𝑚 = 0 (initial stage), (b) 𝑚 = 2, (c) 𝑚 = 4, and (d) 

𝑚 = 12 
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simulations are performed in the near-optimal regions from the viewpoint of RBDO. 

 

 

Table 4.1 Comparison between the results by the proposed QS-AGP method and 

other RBDO methods for example with highly nonlinear performance 

functions 

RBDO Method 𝜽𝒐𝒑𝒕  𝑓𝑜𝑝𝑡  𝑁𝑔1
/𝑁𝑔2

  𝑁𝑓  

PMA [2.82, 3.28] 1.30 991/129 24 

RIA [2.82, 3.28] 1.30 588/97 23 

SORA [2.82, 3.28] 1.30 42/53 33 

SL-KKT [2.83, 3.22] 1.37 152/152 76 

QS-AGP [2.81, 3.28] 1.31 19/12 23 

 

 

 

Figure 4.8 shows the approximate limit-state surface along with all DoE points 

explored up to the final step. The diamond marker represents the final reliable 

optimum 𝜽𝑜𝑝𝑡 reported in Table 4.1. The result confirms that most of the sample 

points selected by QS-AGP are located around the true limit-state surface, especially 

in the cost-effective regions, which facilitates construction of effective surrogate 

models for the purpose of RBDO. Figure 4.9 provides a close-up of DoE around the 

optimal design along with refined surrogate-based boundaries of probability-feasible 

design domain, i.e., {𝜽|𝑔𝑝(𝜽) = 0}. It is observed that the final reliable optimum, 
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active on the first performance function constraint, is successfully obtained by the 

quantile surrogates refined by the adaptive learning. The convergence histories of 

QS-AGP are given in Figure 4.10 (in which estimated design parameters are 

normalized by the final optimal solution 𝜽𝑜𝑝𝑡). The convergence histories of QS-

AGP analysis, starting from the initial experimental designs, confirm that the cost 

and design parameters are converged to the final values by a small number of 

iterations through the estimated quantile surrogates constructed by GP-based 

surrogates. 

 

 

Figure 4.8 Final DoE for example with highly nonlinear performance functions 
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Figure 4.9 Close-ups of DoE around the final optimum along with boundaries of 

probability-feasible design domain 

 

  

(a) (b) 

Figure 4.10 Convergence histories of QS-AGP for example with highly nonlinear 

performance functions: (a) optimal cost, and (b) design parameters (normalizaed by 

𝜽𝑜𝑝𝑡) 

 

4.5.2 Passive vehicle suspension design 

 

As an engineering application example, a design of passive vehicle suspension in 

Figure 4.11 is investigated (Chan et al. 2007). The objective of design is to minimize 

the mean square value of the vertical acceleration of the vehicle body while 
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satisfying the following four constraints: lower bound on the road-holding ability of 

the vehicle (𝑔1) , upper bound on the rolling angle (𝑔2) , lower bound on the 

suspension’s dynamic displacement (𝑔3), and lower bound on tire stiffness (𝑔4). 

The means of three random parameters, i.e., the spring stiffness 𝑐 (𝑘𝑔/𝑐𝑚), tire 

stiffness 𝑐𝑘  (𝑘𝑔/𝑐𝑚),  and shock absorber damping coefficient 𝑘  (𝑘𝑔/𝑐𝑚 ⋅ 𝑠) 

are considered as design variables, i.e., 𝜽 = [𝜇𝑐 , 𝜇𝑐𝑘
, 𝜇𝑘]. The RBDO problem is 

formulated as: 

min
𝜽={𝜇𝑐,𝜇𝑐𝑘,𝜇𝑘}

 𝑍2̈̅̅ ̅ = (𝜋𝐴𝑉/𝑚2)(𝜇𝑐𝑘
𝜇𝑘 + (𝑀 + 𝑚)𝜇𝑐

2𝜇𝑘
−1) 

𝑠. 𝑡.  𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0] ≤ 𝑃𝑓𝑖

𝑡 , 𝑖 = 1, … ,4 

        350 ≤ 𝜇𝑐 ≤ 450, 1400 ≤ 𝜇𝑐𝑘
≤ 1500, 0 ≤ 𝜇𝑘 ≤ 50 

with 𝑔1(𝒙) = 1 − (
𝜋𝐴𝑉𝑚

𝑏0𝑔2𝑘
) ((

𝑐𝑘

𝑀 + 𝑚
−

𝑐

𝑀
)

2

+
𝑐2

𝑀𝑚
+

𝑐𝑘𝑘2

𝑚𝑀2) 

         𝑔2(𝒙) = 1 − 7.6394(4000(𝑀𝑔)−1.5𝐶 − 1)−1 

         𝑔3(𝒙) = 1 − 0.5(𝑀𝑔)0.5(𝑘2𝑐𝑘𝑐−1(𝑀 + 𝑚)−1 + 𝑐)−0.5 

         𝑔4(𝒙) = 1 − ((𝑀 + 𝑚)𝑔)
0.877

𝑐𝑘
−1 

(4.17) 

where 𝐴 = 1 𝑐𝑚2/𝑐𝑦𝑐𝑙𝑒 ⋅ 𝑚 , 𝑏0 = 0.27 , 𝑉 = 10𝑚/𝑠 , 𝑀 = 3.2633𝑘𝑔 ⋅ 𝑠2/𝑐𝑚 

and 𝑚 = 0.8158𝑘𝑔 ⋅ 𝑠2/𝑐𝑚 are the system parameters of the vehicle suspension. 

The deterministic optimum solution for the problem was reported as [𝑐∗, 𝑐𝑘
∗ , 𝑘∗]= 

[391.21, 1442.6, 21.27]. Due to manufacturing variability, the stiffness and damping 

coefficient, i.e., 𝑐, 𝑐𝑘 and 𝑘 are considered to be Gaussian random variables with 

standard deviations 𝜎𝑿 = [7.5, 7.5, 5]. The generalized target reliability index is set 

as 𝛽𝑖
𝑡 = 2 for all constraints. 
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Figure 4.11 Passive vehicle suspension design (Chan et al. 2007) 

 

As shown in Table 4.2, QS-AGP needs 9, 12, 16 and 13 evaluations of the four 

performance functions respectively to obtain a reliable optimal design. The 

convergence histories of QS-AGP are given in Figure 4.12. The convergence 

histories demonstrate quick identification of the regions of interest, which enables a 

rapid convergence to the reliable optimal design. 

 

Table 4.2 Comparison between the results by the proposed QS-AGP method and 

other RBDO methods for passive vehicle suspension design 

RBDO Method 𝜽𝒐𝒑𝒕(× 𝟏𝟎𝟐)  𝑓𝑜𝑝𝑡(× 106)  𝑁𝑔1
/𝑁𝑔2

/𝑁𝑔3
/𝑁𝑔4

  𝑁𝑓  

PMA [4.06, 14.6, 0.31] 3.16 115/124/112/112 32 

RIA [4.06, 14.6, 0.31] 3.16 104/94/94/92 31 

SORA [4.06, 14.6, 0.31] 3.16 104/114/114/114 101 

SL-KKT [4.06, 14.6, 0.31] 3.16 78/78/78/78 39 

QS-AGP [4.06, 14.6, 0.31] 3.16 9/12/16/13 26 
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(a) (b) 

Figure 4.12 Convergence histories of QS-AGP for passive vehicle suspension 

design: (a) optimal cost, and (b) design parameters (normalizaed by 𝜽𝑜𝑝𝑡) 

 

 

4.5.3 A welded beam structure 

 

In the next example, QS-AGP is applied to the design of welded beam structure 

shown in Figure 4.13 (Chen et al. 2013). The problem has four design parameters 

characterizing the depth and size of beam structures, and five probabilistic 

constraints related to the shear stress 𝜏(𝒙) , bending stress 𝜎(𝒙) , buckling load 

𝑃𝑐(𝒙) and end deflection 𝛿(𝒙). The cost function represents the cost of the design 

of welded beam. The RBDO formulation is given as 

min
𝜽

 𝑓(𝜽) = 𝑐1𝜃1
2𝜃2 + 𝑐2𝜃3𝜃4(𝑧2 + 𝜃2) 

𝑠. 𝑡.  𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0] ≤ 𝑃𝑓𝑖

𝑡 , 𝑖 = 1, … ,5 

        3.175 ≤ 𝜃1 ≤ 10, 15 ≤ 𝜃2 ≤ 254, 200 ≤ 𝜃3 ≤ 220, 3.175 ≤ 𝜃4 ≤ 10 

with 𝑔1(𝒙) = 1 − 𝜏(𝒙)/𝑧6, 𝑔2(𝒙) = 1 − 𝜎(𝒙)/𝑧7 

         𝑔3(𝒙) = 1 − 𝑥1/𝑥4, 𝑔4(𝒙) = 1 − 𝛿(𝒙)/𝑧5 

         𝑔5(𝒙) = 𝑃𝑐(𝒙)/𝑧1 − 1 

         𝜏(𝒙) = [𝑡(𝒙)2 +
2𝑡(𝒙)𝑡𝑡(𝒙)𝑥2

2𝑅(𝒙)
+ 𝑡𝑡(𝒙)2]

0.5

 

(4.18) 



 

 
100 

         𝑡(𝒙) =
𝑧1

√2𝑥1𝑥2

, 𝑡𝑡(𝒙) =
𝑀(𝒙)𝑅(𝒙)

𝐽(𝒙)
 

         𝑀(𝒙) = 𝑧1(𝑧2 + 0.5𝑥2), 𝑅(𝒙) = √[𝑥2
2 + (𝑥1 + 𝑥3)2]/4 

         𝐽(𝒙) = √2𝑥1𝑥2[𝑥2
2/12 + (𝑥1 + 𝑥3)2/4] 

         𝜎(𝒙) =
6𝑧1𝑧2

𝑥3
2𝑥4

, 𝛿(𝒙) =
4𝑧1𝑧2

3

𝑧3𝑥3
3𝑥4

 

         𝑃𝑐(𝒙) =
4.013𝑥3𝑥4

3√𝑧3𝑧4

6𝑧2
2 (1 −

𝑥3

4𝑧2
√

𝑧3

𝑧4
) 

where 𝑧 and 𝑐 are the fixed system parameters listed in Table 4.3. The random 

vector 𝑿  consists of independent Gaussian random variables with the means 𝜽 

and standard deviations 𝜎𝑿 = [0.1693, 0.1693, 0.0107, 0.0107]. The generalized 

target reliability index 𝛽𝑖
𝑡 is set to 3 for all constraints. 

 

 

Figure 4.13 A welded beam structure (Chen et al. 2013) 

 

Table 4.3 System parameters of the welded beam structure 

Parameters Value Parameters Value 

𝑧1 2.67 × 104 (𝑁) 𝑧5 9.38 × 10 (𝑀𝑃𝑎) 

𝑧2 3.56 × 102 (𝑚𝑚) 𝑧7 2.07 × 102 (𝑀𝑃𝑎) 

𝑧3 2.07 × 105 (𝑀𝑃𝑎) 𝑐1 6.74 × 10−5 ($/𝑚𝑚3) 

𝑧4 8.27 × 104 (𝑀𝑃𝑎) 𝑐2 2.94 × 10−6 ($/𝑚𝑚3) 

𝑧5 6.35 (𝑚𝑚)   
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Table 4.4 presents the estimated optimal design and optimal costs along with 

the number of function evaluations. The results show that QS-AGP method 

successfully deals with the dimension while producing accurate results with smaller 

number of function evaluations. Note that the RIA approach fails to converge 

because of the inactive probabilistic constraint (𝑔4), which may yield the reliability 

index for that constraint, 𝛽4, into infinite value that prohibits the feasibility check of 

reliability requirement. 

 

 

Table 4.4 Comparison between the results by the proposed QS-AGP method and 

other RBDO methods for passive vehicle suspension design 

RBDO 

Method 
𝜽𝒐𝒑𝒕 𝑓𝑜𝑝𝑡 𝑁𝑔1

/ …/𝑁𝑔4
 𝑁𝑓 

PMA 
[5.73, 2.01 × 102, 2.11

× 102, 6.24] 
2.59 138/138/138/145/147 46 

RIA - - - - 

SORA 
[5.73, 2.01 × 102, 2.11

× 102, 6.24] 
2.59 99/99/110/101/119 96 

SL-KKT 
[5.85, 1.95 × 102, 2.11

× 102, 6.24] 
2.57 92/92/92/92/92 46 

QS-AGP 
[𝟓. 𝟕𝟐, 𝟐. 𝟎𝟎 × 𝟏𝟎𝟐, 𝟐. 𝟏𝟏

× 𝟏𝟎𝟐, 𝟔. 𝟐𝟓] 
2.59 26/13/20/12/13 35 

 

 

 

4.6 Summary 

 
In this chapter, a new RBDO method using quantile surrogates enriched by adaptive 

Gaussian process (QS-AGP) was proposed. The QS-AGP aims at an adaptive 

selection of simulation points which would reduce computational costs for RBDO. 

The method utilized a quantile-based formulation to identify the probability-feasible 

design domain which satisfies the reliability requirements. The adaptive learning 

procedure was designed to further reduce the number of computational simulations 
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by utilizing the exploration-exploitation trade-off based on quantile surrogates. The 

proposed optimization scheme relies on design samples, and thus does not use an 

optimization algorithm or gradient information of cost and performance functions. 

Accuracy and efficiency of the proposed method were successfully tested through 

several RBDO problems featuring highly nonlinear performance functions, various 

distribution types and complexity. In each example, the proposed method needed 

fewer performance function evaluations in achieving convergence to accurate results. 

QS-AGP is expected to effectively deal with such challenging and time-consuming 

RBDO problems in engineering practice.  
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Chapter 5. Development of Active Learning Methods 

for High-Dimensional RBDO Applications 
 

 

 

 

5.1 Introduction  

 
To obtain the optimal structural design satisfying probabilistic requirements, RBDO 

has been widely studied and applied. However, its practical applications have been 

often hampered by huge computational costs. To address the challenge, an RBDO 

method termed quantile surrogates by adaptive Gaussian process (QS-AGP) in 

Chapter 4 are developed, which approximates the quantiles of the performance 

functions adaptively using Gaussian process models to check whether the pre-

generated design samples satisfy the reliability requirements. It has been shown that 

QS-AGP requires much fewer evaluations of performance functions than existing 

RBDO methods. Although the efficiency of the QS-AGP method was shown superior 

to that of existing RBDO methods, its applications to high-dimensional systems is 

limited because the quantiles and objective function are evaluated at each of the pre-

generated design samples. If an RBDO problem features many design parameters, 

the search space becomes high-dimensional, which requires an insurmountable 

memory to handle design samples generated to cover the space, and thus may 

degenerate the performance of the method. Moreover, QS-AGP generates Monte 

Carlo (MC) samples to estimate the quantiles using the mixture distribution (Kim 

and Song 2021a), which further decreases the computational efficiency. 

To promote the application of the ideas in QS-AGP to high-dimensional 

engineering systems, this chapter proposes a new RBDO method termed, quantile 
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surrogates and sensitivity by adaptive Gaussian process (QS2-AGP). The QS2-AGP 

method utilizes the Gaussian process model to build quantile surrogates, identifying 

the admissible design domain concerning reliability requirement. Both inherent 

randomness of the input variables and epistemic uncertainty of surrogate model 

errors are incorporated to characterize the system performance, but without requiring 

any MC samples. The quantile surrogates are trained through adaptive selections of 

simulation points, and the design optimization is performed with the trained quantile 

surrogates. To speed up the RBDO iterations, QS2-AGP uses a gradient-based 

optimizer based on the parameter sensitivity of the quantile surrogate with respect to 

design parameters, i.e., without requiring additional training data. 

This chapter first provides a primary challenge in high-dimensional 

applications using QS-AGP method introduced in Chapter 4. Next, the following 

details of the proposed QS2-AGP method will be introduced: (1) the proposed kernel-

based quantile surrogate model, (2) corresponding adaptive training process, (3) 

design parameter sensitivity of quantile surrogates, and (4) overall algorithm of 

RBDO by QS2-AGP. Through numerical examples of challenging RBDO problems, 

QS2-AGP will be tested in terms of (1) accuracy for highly nonlinear performance 

functions, (2) applicability to high-dimensional problems, and (3) computational 

efficiency in terms of the number of performance function evaluations required for 

convergence. Lastly, a summary and concluding remarks are provided (Kim and 

Song 2021b). 
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5.2 Challenges in high-dimensional applications using QS-

AGP 

 
The method employs the design samples 𝜽𝑙 , 𝑙 = 1, … , 𝑛𝑙 , which are uniformly 

distributed in the design parameter space, as candidate points for statistical learning 

and optimal design solution. Thus, as the quantile surrogates 𝑔𝑝(𝜽) are updated, 

QS-AGP checks the feasibility of each design sample with respect to the given 

probabilistic constraints by the signs of the corresponding quantile surrogate 

predictions 𝑔𝑝(𝜽𝑙), 𝑙 = 1, … , 𝑛𝑙 . Then, among the feasible samples, the one with 

the minimal cost according to another GP-surrogate of the cost function, 𝑓(𝜽) is 

approximately identified as an optimal solution. At each step of the optimization 

process, the quantile surrogates 𝑔𝑝(𝜽) are estimated from the mixture distribution 

based on the GP model, fitted by the random MC samples 𝒙𝑚, 𝑚 = 1, … , 𝑛𝑚 

generated from the input variable distribution  𝑝(𝒙|𝜽) . To facilitate the RBDO 

process by quantile surrogates, the iterative active-learning process is conducted 

until the design solutions are converged. Thus, the adaptive refinement of quantile 

surrogates and design optimization are simultaneously performed based on the pre-

generated design samples. 

To facilitate the RBDO process assisted by quantile surrogates, QS-AGP, 

employs the pre-generated design samples that are uniformly distributed in the 

design space. In addition, QS-AGP generates MC samples to identify the 

distributions of quantile surrogates by the mixture distributions. Consequentially, 

when the mixture model is fitted by 𝑛𝑚 MC samples at each of 𝑛𝑙 pre-defined 

design samples, the total number of MC samples required at each RBDO iteration is 

𝑛𝑙 × 𝑛𝑚. This approach may demand an insurmountable memory for larger systems 
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and thus degenerate the performance of the method. Moreover, the number of pre-

generated design samples required for accurate estimation exponentially increases, 

which hampers applications to high-dimensional RBDO problems (Spence and 

Gioffrè 2012; Li et al. 2019; Jerez et al. 2022). 

 

5.3 Proposed quantile surrogates and sensitivity by adaptive 

Gaussian process (QS2-AGP) 

 
In this chapter, an efficient quantile-surrogate-based RBDO framework named QS2-

AGP is proposed to facilitate applications to high-dimensional problems. In 

particular, the quantile surrogates that incorporate both the input uncertainties and 

error of surrogate models are now constructed without generating any MC samples. 

Moreover, a sensitivity formulation of the quantile surrogate is also introduced to 

facilitate the use of a gradient-based optimizer in RBDO, without requiring and 

handling pre-generated design samples. 

 

5.3.1 Kernel-based derivation of quantile surrogates 

 

In RBDO employing surrogate models, it is essential to properly quantify both 

epistemic uncertainty in the model error caused by the lack of simulations, 

represented by the prediction variance of GP in Eq. (2.8), and inherent randomness 

represented by the probabilistic distributions of the input 𝑿.  Therefore, it is an 

important task to consider both types of uncertainties in constructing the surrogates 

for probabilistic constraints, i.e., 𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0], in RBDO (Der Kiureghian and 

Ditlevsen 2009; Li and Wang 2019; Kim and Song 2021a). To this end, a method 

that can incorporate both uncertainties into the GP surrogate modeling of the quantile 
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of performance functions 𝑔  is introduced as follows. Suppose, after a proper 

transformation (Der Kiureghian 2022), the input distribution is described as 

Gaussian 𝑿~𝑁(𝜽, 𝚺𝐱)  where 𝜽  is the mean vector of 𝑿 , used as the design 

parameter of RBDO; and 𝚺𝐱  is the covariance matrix. By the total probability 

theorem, the predictive distribution of the performance function is obtained as 

follows (Girard et al. 2003): 

𝑝(𝑔|𝜽, 𝓓) = ∫ 𝑝(𝑔|𝒙∗, 𝓓, �̂�)𝑝(𝒙∗|𝜽) 𝑑𝒙∗ (5.1) 

in which 𝑝(𝒙∗|𝜽)  is the probability density function (PDF) of the input random 

variables at 𝒙 = 𝒙∗,  affected by the design parameters 𝜽 ; and 𝑝(𝑔|𝒙∗, 𝓓, �̂�)  is 

the PDF of the GP-based prediction of 𝑔 at 𝒙∗ from Eq. (2.6). 

Since the calculation of the integral in Eq. (5.1) is generally intractable due to 

the complexity of 𝑝(𝑔|𝒙∗, 𝓓, �̂�), a numerical approximation, e.g., Taylor expansion, 

MC approach, is often employed (Girard et al. 2003). By contrast, QS2-AGP utilizes 

the following derivations of the “exact” predictive moments, i.e., mean 𝑚�̂�(𝜽) =

E𝑔[𝑝(𝑔|𝜽, 𝓓)]  and variance 𝑣�̂�(𝜽) = Var𝑔[𝑝(𝑔|𝜽, 𝓓)]  (Mchutchon and 

Rasmussen 2011): 

𝑚�̂�(𝜽) = E𝒙∗
[𝜇�̂�(𝒙∗)] (5.2) 

𝑣�̂�(𝜽) = E𝒙∗
[𝜎�̂�

2(𝒙∗)] + Var𝒙∗
[𝜇�̂�(𝒙∗)] (5.3) 

where E𝒙∗
[⋅]  and Var𝒙∗

[⋅]  respectively denote the mathematical expectation and 

variance under 𝑝(𝒙∗|𝜽);  and 𝜇�̂�(𝒙∗)  and 𝜎�̂�
2(𝒙∗)  are the posterior mean and 

variance of GP model in Eq. (2.7) and Eq. (2.8). This study adopts zero-mean 

function and automatic relevance determination (ARD) squared exponential (SE) 
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covariance function (Rasmussen and Nickisch 2015), expressed as: 

𝑘(𝒙, 𝒙′; 𝚯) = 𝜎𝑓
2 exp (−

1

2
(𝒙 − 𝒙′)𝑇𝚲−1(𝒙 − 𝒙′)) (5.4) 

where 𝚲 = diag[𝜆1
2, … , 𝜆𝐷

2 ]; and 𝐷 is the dimension of input variable 𝒙. 𝜎𝑓
2 and 

𝜆𝑖, 𝑖 = 1, … , 𝐷  are hyperparameters in 𝚯 , which respectively denote the process 

variance and correlation length-scale. The ARD kernel is useful for handling 

problems composed of different dimensional inputs (Rasmussen and Nickisch 2015) 

since the kernel facilitates the use of different length-scales on input dimensions. 

Then, the exact expressions of the predictive mean and variance can be derived 

in terms of SE kernel in Eq. (5.4) as follows (Deisenroth 2009): 

𝑚�̂�(𝜽) = 𝛀T𝒒 (5.5) 

𝑣�̂�(𝜽) = 𝜎𝑓
2 − tr([𝑲 + 𝜎𝑛

2𝑰]−1𝑸) + 𝛀T𝑸𝛀 − 𝑚�̂�(𝜽)2 (5.6) 

where 𝛀 ≡ (𝐊 + 𝜎𝑛
2𝐈)−1𝒈𝓓; 𝒈𝓓 are the observations of the performance function; 

and tr(⋅) is the trace operator of the matrix. The terms 𝒒 and 𝑸 are related to the 

moments of the kernel function, whose elements are determined as 

𝑞𝑖 = 𝜎𝑓
2|𝚺𝐱𝚲−1 + 𝑰|−

1
2 exp (−

1

2
(𝒙𝑖 − 𝜽)T(𝚺𝐱 + 𝚲)−1(𝒙𝑖 − 𝜽)) (5.7) 

𝑄𝑖𝑗 =
𝑘(𝒙𝑖, 𝜽)𝑘(𝒙𝑗, 𝜽)

|2𝚺𝐱𝚲−1 + 𝑰|
1
2

exp ((𝒛 − 𝜽)T (𝚲 +
1

2
𝚲𝚺𝐱

−1𝚲)
−1

(𝒛 − 𝜽)) (5.8) 

where 𝒛 = (𝒙𝑖 + 𝒙𝑗)/2. Thus, the predictive moments in Eq. (5.5) and Eq. (5.6) 

provide the surrogate modeling of the performance function for the given design 

parameter 𝜽  under both aleatoric and epistemic uncertainties. The details of the 

derivations are provided in the literatures (Deisenroth 2009). 
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Then, approximating the predictive distribution in Eq. (5.1) as a Gaussian 

distribution, the quantile in Eq. (4.3) can be described in terms of the predictive 

moments as 

𝑔𝑝(𝜽) = 𝑚�̂�(𝜽) + Φ−1(𝑃𝑓
𝑡)√𝑣�̂�(𝜽) (5.9) 

where Φ−1(⋅) denotes the inverse CDF of the standard Gaussian distribution. This 

quantile surrogate 𝑔𝑝(𝜽)  incorporates both input variation and surrogate model 

uncertainty. It is noted that the quantile surrogate in Eq. (5.9) can be computed 

efficiently using the function of kernel matrix directly, i.e., without generating MC 

samples as in QS-AGP (Kim and Song 2021a). The error that may occur from the 

Gaussian assumption of the predictive distribution decreases gradually as the 

surrogate models are refined. This is because the PDF 𝑝(𝑔|𝒙∗, 𝓓, �̂�) in Eq. (5.1) 

converges to a narrow distribution especially in the area of interests, i.e., the vicinity 

of the optimal solution. The concept of the proposed GP-based quantile surrogate 

estimation is illustrated in Figure 5.1. 

 

 

 

Figure 5.1 Illustration of GP-surrogate-based estimation of the quantile of the 

performance function by QS-AGP 
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5.3.2 Learning criteria for adaptive training 

 

For efficiency, the proposed RBDO method employs an adaptive DoE scheme 

(Dubourg et al. 2011; Zhang et al. 2017) that refines the quantile surrogates by as 

few simulation points as possible. To determine the location of the next simulation 

of the performance function 𝑔(𝑿; 𝜽),  the method uses the two-stage learning 

described below since RBDO usually incorporates the distribution parameters in the 

design parameters 𝜽. 

First, in the space of the design parameters 𝜽, to focus the simulations around 

the boundary of the probability-feasible design domain, the best location is 

determined as 

𝜽𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜽

 |𝑚�̂�𝑐𝑡
(𝜽) + Φ−1(𝑃𝑓𝑐𝑡

𝑡 )√𝑣�̂�𝑐𝑡
(𝜽)| ⋅ 𝛾�̂�(𝜽) (5.10) 

where 𝑚�̂�𝑐𝑡
(𝜽) and 𝑣�̂�𝑐𝑡

(𝜽) are respectively the predictive mean and variance of 

the performance function derived in Eq. (5.5) and Eq. (5.6); and 𝑐𝑡 is the index of 

the most critical performance function, i.e., the one with the minimum value of 

|𝜇�̂�𝑝,𝑖
(𝜽)/𝜎�̂�𝑝,𝑖

(𝜽)| for 𝑖 = 1, … , 𝑛𝑐, as proposed by Fauriat et al. (2014). Using the 

composite index 𝑐𝑡 in Eq. (5.10) means that no simulations are performed for the 

performance functions that have little or no influence at the design iteration step. 

Namely, only one performance function is evaluated per each iteration. On the other 

hand, 𝛾�̂�(𝜽) in Eq. (5.10) is a penalty function introduced to give priorities to more 

desirable domains in 𝜽 from the viewpoint of the design optimization, i.e., domains 

where the cost function is smaller. In detail, the penalty function is defined as 
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𝛾�̂�(𝜽) = {|
𝑓(𝜽) − 𝑓∗

𝑓∗

|   if  Δ𝑜.𝑝 ≥ 𝑡𝑜𝑙

     1          otherwise

 (5.11) 

in which 𝑓(𝜽) is the GP-surrogate-based estimate of the cost function at 𝜽; 𝑓∗ =

𝑓(𝜽∗)  is the current optimum at a given RBDO iteration; Δ𝑜.𝑝  is the distance 

between the optimal 𝜽 at the current and previous learning-steps; and 𝑡𝑜𝑙 is the 

prescribed threshold. In summary, the learning function in Eq. (5.10) guides the 

search toward the vicinity of the critical boundary of the probability-feasible domain 

while giving a priority to the objective of the optimal design, instead of trying to 

improve the quantile surrogate regarding all boundaries. 

Next, once the best location in the design parameter space, 𝜽𝑏𝑒𝑠𝑡 is identified, 

the location of the performance function evaluation, 𝒙𝑏𝑒𝑠𝑡 is determined as 

𝒙𝑏𝑒𝑠𝑡 = argmin
𝒙𝑚

|𝜇�̂�𝑐𝑡
(𝒙𝑚; 𝜽𝑏𝑒𝑠𝑡)|

𝜎�̂�𝑐𝑡
(𝒙𝑚; 𝜽𝑏𝑒𝑠𝑡)

 (5.12) 

where 𝜇�̂�𝑐𝑡
(𝒙; 𝜽𝑏𝑒𝑠𝑡)  and 𝜎�̂�𝑐𝑡

(𝒙; 𝜽𝑏𝑒𝑠𝑡)  respectively denote the mean and 

standard deviation of GP predictions for performance function at 𝒙 given 𝜽𝑏𝑒𝑠𝑡, 

which are computed by Eq. (2.7) and Eq. (2.8), respectively. Thus, Eq. (5.12) 

represents GP-based exploration-exploitation trade-off to choose the location of the 

performance function evaluation among the random samples 𝒙𝑚, 𝑚 = 1, … , 𝑛𝑚 , 

generated from 𝑝(𝒙|𝜽𝑏𝑒𝑠𝑡),  near the approximate limit-state surface, i.e., 

{𝒙|�̂�𝑐𝑡(𝒙; 𝜽𝑏𝑒𝑠𝑡) = 0}. Note that the random samples are utilized only one time per 

each iteration to identify the simulation location of the performance function. To this 

end, the location of the next performance function is determined as 𝒙𝑏𝑒𝑠𝑡, and the 

performance function is enriched with the new simulation point 

[𝒙𝑏𝑒𝑠𝑡 , 𝑔𝑐𝑡(𝒙𝑏𝑒𝑠𝑡; 𝜽𝑏𝑒𝑠𝑡)]T at each iteration. 
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5.3.3 Design parameter sensitivity 

 

To use efficient gradient-based optimization algorithms for RBDO and facilitate the 

convergence, it is essential to accurately calculate the sensitivity of the estimated 

failure probability with respect to design parameters. Since the RBDO formulation 

involves both random variables and design parameters, the sensitivity analysis often 

requires the probabilistic transformation of random variables or simulation-based 

techniques (Youn and Choi 2003; Dubourg et al. 2011; Lee at al. 2011). Furthermore, 

if surrogate models are used in RBDO, it is essential to incorporate the surrogate 

model uncertainties into sensitivity analysis for successful performance of RBDO. It 

is noted that QS-AGP (Kim and Song 2021a) relies on pre-generated design samples, 

and thus does not use the parameter sensitivity of quantile surrogates. 

By contrast, QS2-AGP utilizes the sensitivity of quantile surrogates with respect 

to design parameters to improve the efficiency of the surrogate model-based RBDO 

process. The sensitivity of quantile surrogates for the 𝑖th performance function with 

respect to design parameters 𝜽  can be analytically derived by taking the partial 

derivative of Eq. (5.9), i.e., 

𝜕𝑔𝑝𝑖
(𝜽)

𝜕𝜽
=

𝜕𝑚�̂�𝑖
(𝜽)

𝜕𝜽
+ Φ−1(𝑃𝑓𝑖

𝑡 )
1

2√𝑣�̂�𝑖
(𝜽)

𝜕𝑣�̂�𝑖
(𝜽)

𝜕𝜽
 

(5.13) 

which shows that the quantile sensitivity consists of the gradients of the mean 

𝑚�̂�𝑖
(𝜽)  and variance 𝑣�̂�𝑖

(𝜽)  that are presented in Eq. (5.5) and Eq. (5.6), 

respectively. Since the predictive moments are defined as functions of the given DoE 

and GP model, the gradient terms in Eq. (5.13) can be obtained by taking the 

derivatives of the predictive mean and variance with respect to design parameters 𝜽 
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as follows: 

𝜕𝑚�̂�𝑖
(𝜽)

𝜕𝜽
= 𝛀T𝒒𝜽 (5.14) 

𝜕𝑣�̂�𝑖
(𝜽)

𝜕𝜽
= −tr([𝑲 + 𝜎𝑛

2𝑰]−1𝑸𝜽) + 𝛀T𝑸𝜽𝛀 − 2𝑚�̂�𝑖
(𝜽)

𝜕𝑚�̂�𝑖
(𝜽)

𝜕𝜽
 (5.15) 

where 𝒒𝜽 and 𝑸𝜽 respectively denote the Jacobian matrices of 𝒒 and 𝑸, given 

in Eq. (5.7) and Eq. (5.8). As a result, the derivatives of the predictive mean and 

variance can be easily obtained through the GP kernel function without additional 

simulation data. It is noted that the design parameter sensitivities of quantile 

surrogates do not require any mathematical model of structural response since it is 

obtained through the constructed surrogate surface. After calculating the predictive 

moments for the current design point, the required sensitivity of the predictive mean 

and variance can be obtained based on Eq. (5.14) and Eq. (5.15), and the sensitivity 

of quantile surrogates can be derived accordingly by Eq. (5.13). 

 

5.3.4 Algorithm of QS2-AGP 

 

The algorithm of the proposed QS2-AGP integrates the adaptive training process of 

quantile surrogates and gradient-based optimization employing parameter sensitivity 

of quantile surrogates. Each step of the proposed algorithm, illustrated by the 

flowchart in Figure 5.2, is summarized as follows: 

1. Construct the initial DoE: Generate 𝑛0 samples, 𝜽𝓓 = [𝜽1, … , 𝜽𝑛0
]

T
 by 

Latin Hypercube sampling (LHS) in the design parameter space. Then, the 

corresponding samples in the random variable space, 𝒙𝓓 = [𝒙1, … , 𝒙𝑛0
]

T
 

are also generated as 𝒙𝓓 = 𝜽𝓓 + 𝜺x  where 𝜺x~𝑁(𝟎, 𝚺𝐱).  The cost 
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function 𝑓(𝜽)  and performance functions 𝑔𝑖(𝒙), 𝑖 = 1, … , 𝑛𝑐 , are 

respectively evaluated on these points to construct the initial DoE of the 

surrogate models. 

2. Obtain the quantile surrogate model: Obtain the estimates of the optimal 

GP hyperparameters, �̂� by MLE with the current DoE. Then, construct the 

GP-surrogate of the cost function 𝑓(𝜽)  and the quantile surrogates 

𝑔𝑝,𝑖(𝜽), 𝑖 = 1, … , 𝑛𝑐 as described in Eq. (5.9). The quantile surrogates are 

derived using the predictive moments of GP model in Eq. (5.5) and Eq. 

(5.6). The derived estimates of quantiles are utilized for both active-

learning process and design optimization procedure. 

 

Figure 5.2 Flowchart of RBDO algorithm by QS2-AGP 
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3. Train the model by active-learning process: Identify the best design point 

𝜽𝑏𝑒𝑠𝑡  by minimizing the learning function in Eq. (5.10). To this end, a 

global optimization algorithm, e.g., genetic algorithm, particle swarm 

optimization, can be utilized. Then, the location of the next performance 

function evaluation, 𝒙𝑏𝑒𝑠𝑡 is determined by Eq. (5.12). At this stage, the 

DoE is enriched by performance function evaluation at 𝒙 = 𝒙𝑏𝑒𝑠𝑡 , and this 

refinement process is repeated 𝑛𝑎  times. From the experience, the 

recommended number of enrichment points is 𝑛𝑎 ∈ (2,7). 

4. Calculate the parameter sensitivity of surrogate: Using the quantile 

surrogates identified from the previous steps, calculate the parameter 

sensitivity of the surrogate at the current point, as described in Eqs. (5.13)-

(5.15). Note that the sensitivity of quantile surrogates can be obtained 

without additional training data. 

5. Update design parameters by optimization algorithm: Based on the 

calculated parameter sensitivity, move on to the next step of design as 

𝜽∗
(𝑘)

→ 𝜽∗
(𝑘+1)

  using a gradient-based optimizer, e.g., interior-point 

algorithm, sequential quadratic programming. Note that the updated design 

𝜽∗
(𝑘+1)

 is utilized for the penalty function in Eq. (5.11) and enrichment of 

DoE for cost function surrogate 𝑓(𝜽) . Steps 2-5 are repeated until the 

convergence is achieved. 

6. End of Algorithm: Once the optimization algorithm achieves convergence, 

the current design 𝜽∗
(𝑘+1)

  and cost 𝑓 (𝜽∗
(𝑘+1)

)  are obtained as the 

optimal design and cost, respectively. 
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5.4 Numerical examples 

 
5.4.1 Benchmark RBDO problem 

 

First, let us consider a two-dimensional benchmark RBDO example involving three 

performance functions, which is formulated as (Youn and Choi 2003; Moustapha 

2016) 

min
𝜽

 𝑓(𝜽) = 𝜃1 + 𝜃2 

𝑠. 𝑡.  𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0] ≤ 𝑃𝑓𝑖

𝑡 , 𝑖 = 1, … ,3 

    0 ≤ 𝜃1 ≤ 10, 0 ≤ 𝜃2 ≤ 10 

with 𝑔1(𝒙) =
𝑥1

2𝑥2

20
− 1 

𝑔2(𝒙) =
(𝑥1 + 𝑥2 − 5)2

30
+

(𝑥1 − 𝑥2 − 12)2

120
− 1 

𝑔3(𝒙) =
80

𝑥1
2 + 8𝑥2 + 5

− 1 

(5.16) 

where 𝒙  denotes a realization of the random vector 𝑿  consisting of two 

independent Gaussian random variables 𝑋1  and 𝑋2 ; the means of 𝑿  are design 

parameters, i.e., 𝜽 = 𝝁𝐗 while the common standard deviation is given as 𝜎 = 0.2, 

i.e., 𝑋𝑗~𝑁(𝜃𝑗, 0.22), 𝑗 = 1,2. The generalized target reliability index 𝛽𝑖
𝑡 is set to 3 

for both constraints. The solid curves in Figure 5.3 and Figure 5.4 show the exact 

limit-state surface by the performance functions. 

Following the procedure described in Section 5.3, the QS2-AGP method is 

applied with an initial design point 𝜽(0) = [5,5]T and 10 initial DoEs. Two points 

are added at each design iteration for surrogate refinement. Figure 5.3 illustrates the 

adaptive search process of the proposed method. Figure 5.3(a) presents the initial 

stages of adaptive learning with the initial set of DoE 𝒙𝓓, which is denoted by the 



 

 
117 

circular markers. The estimated limit state surfaces are represented by the dash-

dotted lines for the three performance functions respectively. Figure 5.3(b) shows 

the progress after 2 iterations along with the three boundaries of probability-feasible 

design domain represented by the quantile surrogates, i.e., {𝜽|𝑔𝑝,𝑖(𝜽) = 0}, 𝑖 =

1, … ,3. Here, the cross-markers “x” indicate the locations of performance function 

evaluations selected by the adaptive procedure in Eq. (5.12), i.e., 𝒙𝑏𝑒𝑠𝑡 , and a 

subscript of the marker denotes the index of the evaluated performance function, i.e., 

ct in Eqs. (5.10) and (5.12). For instance, at the location denoted by the marker “x₁,” 

QS2-AGP evaluates performance function 𝑔1(𝒙)  only. The black-arrow with 

dashed lines shows the trajectory of the design parameter starting from the initial 

design 𝜽(0) guided by the parameter sensitivity. 

Figure 5.4 shows the approximate limit-state surface along with all DoE points 

explored up to the final step. The purple diamond marker represents the final reliable 

  

(a) (b) 

Figure 5.3 Progresses of RBDO by QS2-AGP method for benchmark RBDO 

example: (a) 𝑘 = 0 (initial stage); and (b) 𝑘 = 2. 
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optimum 𝜽𝑜𝑝𝑡. The results demonstrate that the proposed method guides the search 

such that more simulations are performed in the near-optimal regions from the 

RBDO viewpoint. It is also confirmed that most of the training points selected by 

QS2-AGP are located around the true limit-state surface, especially in the cost-

effective regions, which facilitates construction of effective surrogate models for the 

purpose of RBDO. It is observed that the final reliable optimum, active on the first 

and second performance function constraints, is successfully obtained by the 

proposed method. 

Table 5.1 presents the convergence history of design parameters, cost function 

values and the estimated values of quantiles for the three constraints, i.e., 𝑔𝑝,𝑖(𝜽),

𝑖 = 1, … ,3 , respectively. The positive signs of the quantiles indicate that the 

corresponding probabilistic constraints are satisfied. An optimal design 𝜽𝑜𝑝𝑡 =

 

Figure 5.4 Final experimental designs for benchmark RBDO example 
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[3.31, 2.91] is achieved after 10 iterations by QS2-AGP method. Table 5.2 shows 

typical results (among more than 20 independent runs) by the proposed QS2-AGP, 

compared to those by several RBDO methods reported in Enevoldsen and Sorensen 

(1994), Youn and Choi (2003), Du and Chen (2004) and Liang et al. (2007). The 

accuracy and efficiency of the different methods are compared in terms of the values 

of the final optimal design parameters (𝜽𝑜𝑝𝑡), the optimal cost (𝑓𝑜𝑝𝑡), and the total 

numbers of performance function evaluations (𝑛𝑔). The numbers in the parenthesis 

denotes the those of function evaluations needed for each performance function. 

Each of the selected methods provides a solution with a good accuracy for the two-

dimensional example. It is observed that both surrogate-based RBDO methods, QS-

AGP and QS2-AGP, obtain an optimal design using significantly fewer function 

evaluations than the other RBDO methods. 

 

 

 

Table 5.1 Design convergence history by QS2-AGP method for benchmark RBDO 

example 

Iteration Design point 
Quantile surrogates for each constraint, �̂�𝑝,𝑖(𝜽) 

Cost 
𝑖 = 1 𝑖 = 2 𝑖 = 3 

1 [5.00, 5.00] 3.51 0.555 -0.002 10.0 

2 [4.14, 4.36] 1.63 0.404 0.200 8.50 

3 [3.57, 3.70] 0.53 0.291 0.439 7.27 

4 [3.34, 3.36] 0.17 0.141 0.584 6.70 

5 [3.30, 3.21] 0.083 0.092 0.645 6.51 

6 [3.30, 3.02] 0.009 0.036 0.702 6.32 

7 [3.31, 2.96] 0.003 0.014 0.740 6.28 

8 [3.31, 2.93] 0.002 0.006 0.727 6.23 

9 [3.31, 2.91] 0.002 0.001 0.728 6.21 

10 [3.31, 2.91] 0.002 0.001 0.710 6.21 
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Table 5.2 Comparison between the results by the proposed method (QS2-AGP) and 

other RBDO method for benchmark RBDO example 

RBDO Method 𝜽𝒐𝒑𝒕 𝑓𝑜𝑝𝑡  𝑛𝑔  

PMA [3.30, 2.90] 6.19 234 (76/78/80) 

RIA [3.30, 2.90] 6.19 175 (63/56/56) 

SORA [3.30, 2.90] 6.19 170 (46/56/68) 

SL-KKT [3.31, 2.90] 6.21 96 (32/32/32) 

QS-AGP [3.30, 2.92] 6.22 42 (16/12/14) 

QS2-AGP [3.31, 2.91] 6.21 46 (11/15/20) 

 

 
 

5.4.2 High-dimensional RBDO problem 

 

The second example deals with a high-dimensional RBDO example, involving 15 

design parameters with nonlinear performance functions. The problems are 

formulated as (Li et al. 2019) 

min
𝜽

 𝑓(𝜽) = 𝜃14 + 𝜃15 − ∑ 𝜃𝑖

13

𝑖=1

 

𝑠. 𝑡.  𝑃[𝑔𝑖(𝑿; 𝜽) ≤ 0] ≤ 𝑃𝑓𝑖

𝑡 , 𝑖 = 1, … ,12 

        2 ≤ 𝜃𝑗 ≤ 4, 𝑗 = 1, … ,15 

with 𝑔1(𝒙) = 3𝑥5
2 + 𝑥7

2 + 2𝑥13
2 + 𝑥1𝑥10 + 2𝑥4𝑥6 + 3𝑥2𝑥9 + 4𝑥3𝑥8

+ 5𝑥11𝑥12 + 0.001(𝑥14 + 𝑥15) − 200 

         𝑔2(𝒙) = 2𝑥2
2 + 4𝑥3

2 + 5𝑥1𝑥10 + 4𝑥4𝑥5 + 3𝑥6𝑥7 + 2𝑥9𝑥8 + 𝑥11𝑥12

+ 𝑥13𝑥12 + 0.001(𝑥14 + 𝑥15) − 200 

         𝑔3(𝒙) = 4𝑥1
2 + 𝑥5

2 + 2𝑥10
2 + 2𝑥13

2 + 𝑥2𝑥8 + 3𝑥4𝑥6 + 2𝑥3𝑥7 + 2𝑥9𝑥13

+ 3𝑥11𝑥12 + 0.001(𝑥14 + 𝑥15) − 180 

         𝑔4(𝒙) = 2𝑥2
2 + 1.5𝑥3

2 + 2𝑥4
2 + 𝑥7

2 + 𝑥1𝑥13 + 2𝑥8𝑥12 + 3𝑥6𝑥11

+ 2𝑥4𝑥5 + 3𝑥10𝑥3 + 3𝑥1𝑥9 + 0.001(𝑥14 + 𝑥15) − 180 

         𝑔5(𝒙) = 2𝑥2
2 + 2𝑥6

2 + 3𝑥7
2 + 𝑥11

2 + 𝑥12𝑥13 + 2𝑥8𝑥10 + 3𝑥3𝑥9

+ 2𝑥4𝑥5 + 𝑥1𝑥3 + 0.001(𝑥14 + 𝑥15) − 180 

         𝑔6(𝒙) = 10𝑥1 + 9𝑥2 + 8𝑥3 + 7𝑥4 + 6𝑥5 + 5𝑥6 + 4𝑥7 + 3𝑥8 + 2𝑥9

+ 𝑥10 + 6𝑥11 + 4𝑥12 + 2𝑥13 + 0.001(𝑥14 + 𝑥15) − 200 

(5.17) 
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         𝑔7(𝒙) = 10𝑥1 + 8𝑥2 + 6𝑥3 + 4𝑥4 + 2𝑥5 + 5𝑥6 + 4𝑥7 + 3𝑥8 + 2𝑥9

+ 𝑥10 + 𝑥11 + 3𝑥12 + 5𝑥13 + 0.001(𝑥14 + 𝑥15) − 170 

         𝑔8(𝒙) = 4𝑥1 + 3𝑥2 + 2𝑥3 + 𝑥4 + 10𝑥5 + 9𝑥6 + 8𝑥7 + 7𝑥8 + 6𝑥9

+ 5𝑥10 + 4𝑥11 + 3𝑥12 + 2𝑥13 + 0.001(𝑥14 + 𝑥15) − 200 

         𝑔9(𝒙) = ∑ 𝑥𝑖

13

𝑖=1

+ 0.001(𝑥14 + 𝑥15) − 300, 

        𝑔10(𝒙) = ∑ 𝑥𝑖

13

𝑖=1

+ 0.001(𝑥14 + 𝑥15) − 280 

         𝑔11(𝒙) = 0.001 ∑ 𝑥𝑖

13

𝑖=1

− 10𝑥14
2 𝑥15 + 200 

       𝑔12(𝒙) = 0.001 ∑ 𝑥𝑖

13

𝑖=1

− 4(𝑥14 + 𝑥15 − 5)2 − (𝑥14 − 𝑥15 − 12)2

+ 120 

where 𝒙 is a realization of the random vector 𝑿 composed with 15 independent 

Gaussian random variables; the means of 𝑿  are design parameters 𝜽 ; and the 

random variables have the common standard deviation 𝜎 = 0.3 , i.e., 

𝑋𝑗~𝑁(𝜃𝑗, 0.32), 𝑗 = 1, … ,15. The generalized target reliability index is set as 𝛽𝑖
𝑡 =

3.0115 for all constraints. The performance of the proposed method is demonstrated 

with the initial design 𝜽(0) = [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3]T . After building the 

initial surrogates with 20 DoEs, 5 samples are added at each iteration. 

The performance of QS2-AGP method on the high-dimensional RBDO problem 

is compared with those by PMA, RIA, SORA and SL-KKT. The results by QS-AGP 

are not reported because, to fill in the large dimension of the design parameter space, 

the QS-AGP method required an insurmountable number of design samples, more 

than 109, which resulted in memory problems and inaccurate estimations. Table 5.3 

shows the estimated optimal designs obtained by the proposed method and the other 

RBDO methods. In the table, the results by RIA are not shown because it failed to 

converge because of the inactive probabilistic constraints (𝑔7, 𝑔9, 𝑔10), which made 
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the corresponding reliability indices infinity, which prohibits the feasibility check of 

the reliability requirements. Table 5.4 summarizes the performance regarding the 

probabilistic constraints, represented by the reliability index computed at the optimal 

designs along with the objective function values, and total numbers of performance 

function evaluations. Here, the reliability indices at the optimums are evaluated by 

using the brute force MCS with 106 samples. It is noted that QS2-AGP properly 

treats all performance of probabilistic constraints by the quantile surrogates and 

provides reliable optimal solutions with a significantly reduced number of function 

evaluations even if the dimension of variables is high. It is confirmed that the 

performance of QS2-AGP is not hampered by high-dimensionality, unlike QS-AGP 

and superior to the other RBDO methods.



 

 

 

 

 

 

 

Table 5.3 Comparison of optimal designs obtained by the proposed method (QS2-AGP) and other RBDO methods for high-dimensional RBDO 

example 

RBDO Method 
Design parameters 

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7 𝜃8 𝜃9 𝜃10 𝜃11 𝜃12 𝜃13 𝜃14 𝜃15 

PMA 2.00 2.77 2.00 2.51 2.00 2.00 3.42 4.00 4.00 3.05 2.00 4.00 3.09 3.44 3.29 

SORA 2.00 2.78 2.00 2.51 2.00 2.00 3.42 3.99 3.99 3.05 2.00 3.99 3.11 3.45 3.29 

SL-KKT 2.00 2.78 2.00 2.53 2.01 2.00 3.40 3.99 4.00 3.08 2.02 4.00 3.09 3.43 3.29 

QS2-AGP 2.00 2.78 2.00 2.50 2.00 2.00 3.40 4.00 4.00 3.05 2.00 4.00 3.06 3.47 3.29 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

Table 5.4 Reliability index at the optimums and the number of function evaluations for high-dimensional RBDO example 

RBDO Method 
Reliability index at optimal designs 𝜽𝒐𝒑𝒕 𝑓𝑜𝑝𝑡 𝑛𝑔 

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6 𝑔7 𝑔8 𝑔9 𝑔10 𝑔11 𝑔12 

PMA 2.99 4.07 2.95 2.97 4.01 4.50 ∞ 2.99 ∞ ∞ 3.01 3.04 -30.11 2462 

SORA 2.97 3.99 2.93 2.96 4.20 4.35 ∞ 3.03 ∞ ∞ 2.97 3.07 -30.14 2376 

SL-KKT 2.93 4.01 2.94 2.92 4.01 ∞ ∞ 2.99 ∞ ∞ 2.93 3.04 -30.18 2178 

QS2-AGP 3.01 4.04 3.04 3.00 4.20 4.31 ∞ 3.03 ∞ ∞ 3.07 3.04 -30.03 369 
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5.4.3 Crashworthiness of vehicle side impact 

 

As an engineering application, crashworthiness model of a vehicle side impact is 

often used to enhance the side impact crash performance of the vehicle (Youn and 

Choi 2004; Chakri et al. 2018). The system model represents the side impact event 

of vehicle when it is hit in the side by another vehicle at 49.89 km/h (31 mph). To 

formulate the RBDO problem, finite element (FE) structure models in Figure 5.5, 

including side impact dummy model and deformable barrier model, were constructed 

to simulate the side impact. Then, stepwise response surfaces model was explicitly 

constructed to approximate the objective function and constraints based on a few 

selected FE simulation results. The objective is to minimize the weight of vehicle 

while satisfying the 10 constraints on vehicle safety standard including deflections, 

velocities at different vehicle and dummy locations. The means of 9 random 

variables, i.e., the thickness (𝜃1, … , 𝜃7)  and material property (𝜃8, 𝜃9)  of the 

critical part, are considered as design parameters. The RBDO problem of the vehicle 

side impact is formulated as: 

min
𝜽

 Weight(𝜽) 

𝑠. 𝑡.    𝑃[𝐹𝐴𝑏𝑑𝑜𝑚 ≥ 1.0 𝑘𝑁] ≤ 𝑃𝑓
𝑡 

          𝑃 [𝐷𝑒𝑓𝑟𝑖𝑏𝑗
≥ 32 𝑚𝑚] ≤ 𝑃𝑓

𝑡 , 𝑗 = 1, … ,3 

          𝑃[𝑉𝐶𝑢𝑝𝑝𝑒𝑟𝑚
≥ 0.32 𝑚/𝑠] ≤ 𝑃𝑓

𝑡 , 𝑚 = 1, … ,3 

          𝑃[𝐹𝑜𝑟𝑐𝑒𝑝𝑢𝑏𝑙𝑖𝑐 ≥ 4.0 𝑘𝑁] ≤ 𝑃𝑓
𝑡 

          𝑃[𝑉𝑒𝑙𝐵−𝑝𝑖𝑙𝑙𝑎𝑟 ≥ 9.9 𝑚𝑚/𝑚𝑠] ≤ 𝑃𝑓
𝑡 

          𝑃[𝑉𝑒𝑙𝑑𝑜𝑜𝑟 ≥ 15.7 𝑚𝑚/𝑚𝑠] ≤ 𝑃𝑓
𝑡 

           𝜽𝐿 ≤ 𝜽 ≤ 𝜽𝑈 

(5.18) 

The detailed mathematical expressions of the objective function and constraints are 
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presented in the references (Youn and Choi 2004; Chakri et al. 2018). Due to 

manufacturing variability, the thicknesses and material properties of the critical parts 

are considered to be Gaussian random variables with standard deviations 𝜎𝑿. The 

details of these parameters are listed in Table 5.5. The generalized target reliability 

index is set as 𝛽𝑡 = 3.0  for all constraints. The performance of QS2-AGP is 

demonstrated with the initial design 𝜽(0) = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.3,0.3]T. 

 

Table 5.5 Design parameters for crashworthiness of vehicle side impact 

Design parameters 𝜽 𝜽𝑳 𝜽𝑳 
Standard 

deviation 

Thickness of B-Pillar inner (mm) 𝜃1 0.5 1.5 0.03 

Thickness of B-Pillar reinforcement (mm) 𝜃2 0.45 1.35 0.03 

Thickness of floor side inner (mm) 𝜃3 0.5 1.5 0.03 

Thickness of cross member #1 and #2 

(mm) 
𝜃4 0.5 1.5 0.03 

Thickness of door beam (mm) 𝜃5 0.875 2.625 0.05 

Thickness of door belt line reinforcement 

(mm) 
𝜃6 0.4 1.2 0.03 

Thickness of roof rail (mm) 𝜃7 0.4 1.2 0.03 

Material property of B-Pillar inner 

(mm) 
𝜃8 0.333 0.357 0.006 

Material property of floor side inner 

(mm) 
𝜃9 0.180 0.204 0.006 

 

Figure 5.5 Finite element structural models for vehicle side impact (Youn and Choi 

2004) 
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Figure 5.7 Hitories of quantile surrogate estimation by QS2-AGP for 

crashworthiness of vehicle side impact example 

 

 

 

After QS2-AGP method is initiated with 15 DoE points, three points are added 

in surrogate refinement at each iteration. Figure 5.6 presents the convergence 

histories of cost function and design parameters. Figure 5.7 shows the convergence 

histories of the quantiles estimated by the surrogate models. The convergence 

histories of QS2-AGP analysis confirm that the cost and design parameters are 

converged to the final values by a small number of iterations. Table 5.6 shows that 

  

(a) (b) 

Figure 5.6 Convergence histories of QS2-AGP for crashworthiness of vehicle side 

impact example: (a) cost function; and (b) design parameters 
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QS2-AGP needs fewer function evaluations than other RBDO methods while 

producing accurate results. 

 

Table 5.6 Comparison between the results by the proposed method (QS2-AGP) and 

other RBDO method for crashworthiness of vehicle side impact example 

RBDO Method PMA SORA SL-KKT QS2-AGP 

𝜃1 0.50 0.50 0.50 0.50 

𝜃2 1.32 1.32 1.31 1.32 

𝜃3 0.50 0.50 0.50 0.51 

𝜃4 1.29 1.29 1.30 1.30 

𝜃5 0.87 0.87 0.87 0.87 

𝜃6 1.15 1.14 1.14 1.13 

𝜃7 0.40 0.40 0.40 0.41 

𝜃8 0.36 0.36 0.36 0.35 

𝜃9 0.19 0.19 0.19 0.19 

Weight(𝜽) 24.5 24.6 24.5 24.7 

𝑛𝑔 1064 593 480 171 

 

 

 

5.5 Comparison of computational time of QS-AGP and QS2-

AGP 

 
The computational costs of the two quantile-surrogates-based RBDO methods, QS-

AGP and QS2-AGP, are compared in Figure 5.8 through the RBDO examples 

investigated in this chapter and the previous research in Chapter 4 (Kim and Song 

2021a). The computational costs are normalized by that of the QS2-AGP method for 

the 2-dimensional problem in this chapter. Note that the computational times in 

Figure 5.8 only incorporate the CPU times for design iterations except those for the 

performance function evaluations. The results confirm that the proposed QS2-AGP 

requires dramatically less computational time than QS-AGP, and effectively deals 

with high-dimensional RBDO problem while QS-AGP fails to find the optimal 

designs when the dimension of the design parameter space exceeds 7. 
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5.6 Summary 

 
The new RBDO method proposed in this chapter, termed quantile surrogates and 

sensitivity by adaptive Gaussian process (QS2-AGP), aims to find the reliable 

optimal solution accurately and efficiently by combining the adaptive training 

process of the quantile surrogates with the design optimization procedure guided by 

the parameter sensitivity of quantile surrogates. By avoiding the use of pre-generated 

design samples and the MC-sample based procedure to fit the quantile surrogate in 

the previous quantile-surrogate-based RBDO method termed QS-AGP, QS2-AGP 

achieved a superior level of efficiency especially for RBDO problems with a larger 

number of design parameters. The formulations of the parameter sensitivity of the 

 

Figure 5.8 Comutational time comparison for RBDO by QS-AGP and QS2-AGP (a 

= benchmark RBDO problem, b = passive vehicle suspension design, c 

= welded beam design, d = speed reducer design (Chen et al. 2013), e = 

crashworthiness of vehicle side impact, f = high-dimensional RBDO 

problem). Times are normalized with respect to the 2-dimensional 

problem computation by QS2-AGP (42 seconds in this case) 
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quantile surrogate also helped further reduce the computational costs.  

The performance and merits of the proposed method were successfully 

demonstrated through several numerical examples including high-dimensional 

RBDO problem up to 15 design parameters and engineering applications. In each 

example, the proposed method required fewer performance function evaluations in 

achieving convergence to accurate results than other RBDO methods. QS2-AGP is 

expected to effectively deal with a variety of challenging and time-consuming 

RBDO problems in engineering practice. 
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Chapter 6. Conclusions 
 

 

 

 

6.1 Summary and contributions of this dissertation 

 
This dissertation focuses on developing active learning methods and applications to 

reliability assessment and design optimization for challenging and complex 

engineering systems. The four research objectives proposed in Chapter 1 were 

fulfilled: (1) PAK-Bn method was developed to assess the reliability of complex 

structural systems using active learning-based Kriging model; (2) The proposed AL-

HGP efficiently estimated first-passage probability under stochastic wind excitations, 

the high-dimensional reliability problem; (3) QS-AGP method was proposed to 

identify the reliable optimal design of complex structures by constructing quantile 

surrogates and training the model; and (4) The further developed method, QS2-AGP 

treated high-dimensional RBDO problems using kernel-based quantile surrogates 

and sensitivity. The major developments and findings of this study are summarized 

as follows: 

 

• PAK-Bn method was developed for structural reliability analyses. The main 

objective of PAK-Bn was to carry out an active learning process, i.e., adaptive 

selection of simulation points, with low computational costs from a reliability 

analysis standpoint. The method utilized a new learning criterion designed to 

identify important points that are located in the vicinity of the limit-state surface 

and, at the same time, contribute most to the failure probability. The uniformly 
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distributed samples in n-ball domain could further reduce the number of 

computational simulations and achieved efficient convergence. 

• Several benchmark reliability problems, e.g., a system problem with high non-

linearity, small failure probability, and multiple design points, and general 

engineering problems with moderate dimension, were investigated to 

demonstrate the accuracy and efficiency of the PAK-Bn method. In each 

example, the proposed method needed a small number of limit-state function 

evaluations to achieve accurate and converged estimates. PAK-Bn is expected 

to effectively deal with such challenging and time-consuming problems in 

practical engineering with robustness against the types of limit-state surface. 

• The first-passage probability problems under stochastic wind loads were solved 

by the proposed AL-HGP method. AL-HGP utilized the Gaussian-process-

based surrogates whose predictive mean and variance were employed to capture 

the conditional distribution of maximum response given the time-invariant 

basic random variable while handling heteroscedastic noise. This framework 

considered both uncertainties arising from the structural systems and the 

environmental wind loads. The proposed active learning framework further 

reduced the number of computational simulations by identifying the critical 

design of experiment (DoE) points that contribute most to the first-passage 

probability. 

• The applications to the eight-story building system and transmission tower 

structure successfully demonstrated the performance and merits of the proposed 

AL-HGP method. In each example, the proposed method required fewer 

dynamic simulations to achieve accurate results, while the "non-adaptive” 
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surrogate-based estimates could produce inaccurate results with considerable 

variability. The transmission tower example demonstrated that AL-HGP could 

deal with high-fidelity computational simulations, e.g., finite element analyses, 

without losing the benefits and merits of the proposed method. Thus, AL-HGP 

is expected to effectively deal with such challenging and time-consuming 

problems in practical engineering.  

• A new RBDO method using QS-AGP was proposed. The method utilized a 

quantile-based formulation to identify the probability-feasible design domain 

that satisfies the reliability requirements. An adaptive learning procedure was 

designed to further reduce the number of computational simulations by utilizing 

the exploration-exploitation trade-off based on quantile surrogates. The 

proposed optimization scheme relied on design samples and, thus, did not use 

an optimization algorithm or gradient information on cost and performance 

functions. 

• The accuracy and efficiency of the QS-AGP were successfully tested through 

several RBDO problems featuring highly nonlinear performance functions, 

various distribution types, and complexity. In each example, the proposed 

method needed fewer performance function evaluations to achieve convergence 

to accurate results. QS-AGP is expected to effectively deal with such 

challenging and time-consuming RBDO problems in engineering practice. 

• The quantile surrogate-based RBDO framework was further developed to 

handle the high-dimensional RBDO applications. The proposed QS2-AGP aims 

to find the reliable optimal solution accurately and efficiently by combining the 

adaptive training process of the quantile surrogates with the design optimization 
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procedure guided by the parameter sensitivity of quantile surrogates. By 

avoiding the use of pre-generated design samples and the MC-sample based 

procedure to fit the quantile surrogate in the previous QS-AGP, QS2-AGP 

achieved a superior level of efficiency, especially for RBDO problems with a 

larger number of design parameters. The formulations of the parameter 

sensitivity of the quantile surrogate also helped further reduce the 

computational costs. 

• The performance and merits of the proposed QS2-AGP method were 

successfully demonstrated through several numerical examples including high-

dimensional RBDO problems up to 15 design parameters and engineering 

applications. In each example, the proposed QS2-AGP method required fewer 

performance function evaluations in achieving convergence to accurate results 

than other RBDO methods. In addition, the proposed QS2-AGP demanded 

dramatically less computational cost than QS-AGP and treated high-

dimensional RBDO problems effectively. Thus, QS2-AGP is expected to 

effectively deal with a variety of challenging and time-consuming RBDO 

problems including complex engineering systems and high-dimensional RBDO 

problems in which the number of the design parameters is considerably large. 

 

6.2 Recommendations for future studies 

 
In order to propose a new active learning-based method that covers more realistic 

engineering systems and advance the frontiers of applications relevant to this study, 

the following topics are recommended for future research: 
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• The performance of PAK-Bn is successfully demonstrated for problems with up 

to 9 random variables. If the dimension of input random variable space, 𝑛 is 

considerably larger, e.g., 𝑛 > 40, the probability density function of standard 

normal variables will be concentrated around the “important ring” region 

characterized by 𝑅 ≈ √𝑛  (Wang and Song 2016). Just as seen in other 

reliability analysis approaches, alternative modeling and analysis techniques, 

such as dimension reduction or sparse surrogate modeling (Zhang and Pandey 

2013), need to be incorporated for effective applications of PAK-Bn to high-

dimensional problems through future research efforts. 

• Although AL-HGP focuses on the estimation of the first-passage probability 

under stochastic wind loads, the concept and framework can be applied to other 

engineering fields under various types of natural or human-made hazards, e.g., 

structural failure caused by a strong earthquake, or wire cable failure due to the 

mechanical vibration. 

• While this study demonstrated that AL-HGP was effective for the reliability 

assessment of stochastic wind-excited systems, the design optimization 

considering these reliabilities is also an essential task for desirable decision-

making under uncertainties. This can be achieved by extending the applicability 

of AL-HGP to the reliability-based design optimization of structures subjected 

to stochastic wind excitations. 

• This study solved the RBDO problem to achieve a reliable optimal design of 

structures whose failure probability, i.e., the probability of violating the given 

constraints is lower than the target level for each component. However, the 

structural failure is often described by a system event, i.e., a logical function of 
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multiple failure modes. A systematic approach incorporating system reliability 

methods needs to be proposed to handle the complex events and achieve 

resilience of systems. 

• Since the proposed quantile surrogate-based RBDO method, QS2-AGP finds the 

optimal solution using a gradient-based optimizer using quantile surrogates and 

corresponding design parameter sensitivity, the design solution identified by the 

proposed framework can be local optimum if the performance and/or cost 

functions of structural systems are complex. Thus, incorporating a global 

optimization scheme can be a promising future research topic. 

• In this study, even though several numerical examples including nonlinear limit-

state functions are examined to demonstrate the performance of the proposed 

methods, their validation to experiment datasets is required to extend the 

applicability of the active learning methods to real world engineering problems. 

In addition, refined frameworks are needed to properly predict the structural 

responses having highly complex and nonlinear behavior, e.g., dynamic 

response showing hysteric characteristic. 

• Since the proposed methods employ GP-based surrogate models for response 

predictions, the performance may degenerate if the distribution of structural 

system response is non-Gaussian, which is usually shown in the nonlinear 

dynamical systems having hysteretic behaviors. Thus, it is expected that 

incorporating other stochastic surrogate models having non-Gaussian 

assumptions (Yang and Perdikaris 2019; Zhu and Sudret 2021) will promote the 

future applications of active-learning methods to a wide class of structural 

systems. 
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• To mitigate the damage and losses to structures during severe disasters, it is 

important to define the damage state and social losses, which can be 

incorporated into the widely used performance-based engineering frameworks. 

Therefore, the applications of developed active learning-based methods to 

performance-based design optimization can be a promising future research topic. 

• In structural design optimization, commonly considered design parameters are 

elements of structural systems, e.g., thickness or cross-sectional areas, and the 

topology of the design domain is assumed to be fixed. To determine the optimal 

material layouts and connectivities in a design domain, topology optimization 

has been widely studied and applied. Therefore, applications of the proposed 

active learning frameworks to topology optimization can be a promising future 

research topic in various engineering fields. 
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초  록 

 

김정호 

건설환경공학부 

서울대학교 대학원 

 

현대사회의 재난 복원력을 확보하기 위해서는 구조 시스템이 설계 및 

유지보수 과정에서 적절한 수준의 신뢰도를 확보하는 것이 필수적이다. 

이러한 설계 절차는 궁극적으로 치명적인 손상이나 손실을 초래할 수 있는 

예기치 않은 고장의 위험을 방지함으로써 구조 시스템의 신뢰도를 보장할 

수 있다. 따라서, 구조물 및 기타 공학시스템의 설계 과정에서 신뢰성 평가 

및 최적화를 위한 방안 구축이 필수적이다. 하지만 신뢰성 해석은 반복적인 

시스템 성능 평가를 요구하기 때문에 높은 계산 비용을 초래한다. 이 

문제는 특히 구조 시스템이 시스템 성능을 정확하게 모사하기 위해 

복잡하고 고차원적인 모델을 필요로 할 때 더욱 악화된다. 다양한 불확실성 

하에서 복잡한 구조 시스템을 효율적으로 설계하고 평가하기 위해, 본 

학위논문은 신뢰도 평가 및 신뢰도 기반 최적 설계(Reliability-based Design 

Optimization; RBDO)를 위해 계산 시뮬레이션 데이터로 학습된 시스템 

성능의 적응형 대리모델을 활용하는 능동학습(Active learning) 기법을 

제안하고자 한다. 

최소한의 실험 데이터로 구조물의 신뢰도를 추정하기 위해 능동학습 

기반 신뢰도 평가 기법을 제안하였다. 제안된 Probability-Adaptive Kriging in n-

Ball (PAK-Bn) 방법은 크리깅(Kriging), 혹은 가우시안 프로세스(Gaussian 

Process; GP)로 알려진 대리모델을 활용하여 한계상태함수를 근사하고 이를 

적응형 능동학습으로 학습시켰다. 제안된 PAK-Bn은 무작위 변수 공간의 

확률적 밀도를 근사 한계상태함수를 식별하는 적응형 학습 절차에 

통합하였다. 또한 통계적 학습을 위한 후보점으로 n차원 구체, n-ball 샘플링 

기법을 도입하여, 구조물의 신뢰도 평가에 가장 큰 영향을 미치는 최적의 
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학습 후보를 결정하였다. 수치 예제를 통하여 개발된 PAK-Bn 방법의 적용 

가능성 및 정확성을 입증하였다. 

앞서 개발된 PAK-Bn은 10개까지의 확률변수를 포함하는 신뢰성 문제에 

효과적이지만, 고차원 적용은 제한적이며, 이 문제는 풍하중, 지진 및 

충돌과 같은 자연 및 인위적 위험에 노출되는 구조 시스템의 신뢰도를 

평가하는 데 필수적이다. 이러한 문제를 해결하고 확률적 바람 가진 구조 

시스템에 대한 적용 가능성을 확장하기 위해 Active learning-based 

Heteroscedastic Gaussian process (AL-HGP)를 제안하였다. 각각 최대 응답의 

조건부 분포를 나타내는 가우스 혼합 분포에 의해 제안된 공식은 구조 

시스템과 환경 풍하중에서 발생하는 불확실성을 고려하며 이분산 노이즈를 

갖는 GP 대리모델에 의한 신뢰성 예측을 가능하게 하였다. 또한 

대리모델의 적응형 학습 과정을 통해 효율적인 수렴을 달성하는 최적의 

실험 배치를 수립하였다. 공학시스템 응용 사례는 제안된 AL-HGP 방법의 

성능을 입증하였다. 

복잡 구조물의 신뢰도 기반 최적 설계안을 도출하기 위해 능동학습 

기반 RBDO 방법을 개발하였다. 개발된 RBDO 방법, 즉 Quantile Surrogates 

by Adaptive Gaussian Process (QS-AGP)는 한계상태 함수의 분위(Quantile)를 

효율적인 대리모델로 근사하여 목표 신뢰도를 만족하는 허용 설계 공간을 

식별하였다. 유도한 분위 대리모델은 내재적 불확실성과 대리모델 오차를 

모두 고려하여 탐색-활용(Exploration-Exploitation) 트레이드오프를 통해 

적용형으로 학습시켰다. 이 과정에서 신뢰도 기반 최적 설계 도출에 가장 

큰 영향을 미치는 영역으로 적응형 학습이 수행되도록 학습 함수를 

제안하였다. 제안된 QS-AGP는 기존 RBDO 접근법보다 신뢰도 기반 최적 

설계안을 도출하는 데 있어 더 적은 수의 성능 평가가 필요함을 

확인하였다. 

개발된 QS-AGP의 아이디어를 고차원 공학시스템의 신뢰도 기반 설계 

최적화에 적용하기 위해 Quantile Surrogates and Sensitivity by Adaptive Gaussian 

Process (QS2-AGP) 기법을 제안하였다. 한계상태함수의 분위 예측식을 

가우시안 프로세스의 커널(Kernel) 함수로 구축하고 비표본 기반 최적화 
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절차를 제안하였다. 또한, 미리 생성된 샘플에 의존하지 않고 고차원 

신뢰도 기반 최적 설계를 수행하기 위해 설계변수 민감도를 수치 식으로 

제시하였다. 고차원 RBDO를 포함한 다양한 예제로 개발된 QS2-AGP 

기법의 적용 가능성과 효율성을 입증하였다. 

제안된 방법론의 성능은 높은 충실도(High Fidelity)의 계산 

시뮬레이션을 포함한 수치 예시로 입증하였다. 본 학위논문에서 개발된 

능동학습 기반 신뢰도 평가 및 신뢰도 기반 최적화 방법론은 현대 

인프라구조 시스템의 설계 및 유지보수 결정 지원과 재난 복원력 향상에 

기여할 것으로 기대된다. 

 

주요어: 가우시안 프로세스, 구조신뢰성, 능동 학습, 의사 결정, 대리모델, 

신뢰도 평가, 신뢰도 기반 최적 설계, 실험계획법, 위험 기반 설계, 

최적화, 추계학적 하중 
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