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Abstract

To secure the resilience of the modern society, structural systems should achieve a
proper level of reliability in the processes of design and maintenance decisions. Such
procedures can assure the reliability of structural systems by preventing the risk of
unexpected failures. Thus, appropriate strategies are required for reliability
assessment and optimization to support the decision-making process of structural
systems. However, reliability assessment generally needs to evaluate the system’s
performance repeatedly and thus may result in high computational costs. This issue
is exacerbated especially when the structural system requires complex and high-
dimensional models to describe the system’s performance accurately. To effectively
design and assess complex structural systems under various uncertainties, this
dissertation introduces active learning frameworks for reliability assessment and
reliability-based design optimization (RBDO) using adaptive surrogate models of
system performance trained by computational simulation data and presents
numerical applications.

First, an efficient active learning-based reliability assessment framework is
developed. The proposed Probability-Adaptive Kriging in n-Ball (PAK-B") method
predicts the limit-state surfaces using Gaussian process (GP) model, also known as
Kriging, and adaptively trains the surrogate model using active learning. The
proposed PAK-B" incorporates the probabilistic density of the random variable space
into the adaptive training procedure of identifying the surrogate limit-state surface.
In addition, alternative sampling in #-ball domain is used as the candidate points for

statistical learning, and the best candidate for training is determined in terms of



influence on the reliability estimation. The numerical examinations are carried out
to demonstrate the efficiency and applicability of the proposed PAK-B" method.

Although PAK-B" is effective for reliability problems up to around 10 random
variables, its applications are limited in high-dimensional problems, which are often
needed to evaluate the reliability of structural systems subjected to natural and
human-made hazards, e.g., wind loads, earthquakes, and collisions. To tackle such
challenge and extend the applicability to stochastic dynamical systems, an active
learning-based heteroscedastic Gaussian process (AL-HGP) is developed.
Considering uncertainties arising from the structural system and the environmental
wind loads, the proposed formulation by a mixture distribution of Gaussian densities,
each of which represents the conditional distribution of the maximum response,
enables estimation of first-passage probability using GP-based surrogates with
heteroscedastic noises. In addition, an adaptive training process for surrogates can
identify the best experimental designs achieving efficient convergence. The
examples of engineering applications demonstrate the performance of the proposed
AL-HGP method.

Next, the active learning framework is further developed for RBDO problems
that aim to identify the optimal reliable design of complex structures. A new RBDO
method, termed quantile surrogates by adaptive Gaussian process (QS-AGP),
employs quantile surrogates of the limit-state functions to identify the admissible
domain concerning reliability requirement. The GP-based quantile surrogates are
trained adaptively through an exploration-exploitation trade-off based on inherent
randomness and the model uncertainty of the surrogate. The adaptive training
process in QS-AGP guides the computational simulations toward the domain, which

A

1] O 1 &)

s



makes the greatest contribution to the optimization process. It is found that the
proposed QS-AGP requires fewer performance function evaluations in achieving
convergence to a reliable optimum design than existing RBDO approaches.

Finally, to promote the application of the ideas in QS-AGP to high-dimensional
engineering systems, a new RBDO method termed, quantile surrogates and
sensitivity by adaptive Gaussian process (QS*-AGP) is developed. To this end, a non-
sampling-based procedure is proposed for efficient estimation of the quantile
surrogates based on input uncertainties and model error of surrogates. Moreover, to
perform quantile-surrogate-based RBDO without relying on pre-generated design
samples, the parameter sensitivity of the quantile surrogate is implemented. The
computational efficiency of the proposed QS*-AGP is demonstrated by a variety of
RBDO examples including a large number of design parameters.

The performance of the proposed methods is demonstrated by numerical
examples incorporating high-fidelity computational simulations. The compelling
results confirm the merits and potential of the outcomes of this study, which will
eventually enhance the resilience of modern engineering systems facilitated by
reliability assessment and reliability-based optimization for design and maintenance

decisions.
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Chapter 1. Introduction

1.1 Motivation

The modern infrastructures are inevitably affected by the uncertainties, arising from
lack of data, modeling approximations, or inherent randomness in the systems and
their environment. Such uncertainties may have a significant impact on the system
performance, which may induce catastrophic damage or losses. With the growing
complexity of modern engineering systems, it is essential to manage the impact of
such uncertainties in their processes of design and performance assessment. Thus,
appropriate strategies are required for reliability assessment and design optimization
to support the decision-making process of structures and other engineering systems.

To assure the reliability of structural systems, structural reliability analysis and
reliability-based design optimization (RBDO) have been widely studied and applied
(Du and Chen 2004; Der Kiureghian and Ditlevsen 2009; Dubourg et al. 2011; Zhang
et al. 2017). Reliability analysis aims to assess the effects of uncertainties by
estimating the associated failure probability with respect to some relevant limit state
functions. RBDO aims to achieve reliable optimal design of systems whose optimal
solution satisfies given reliability constraints. To evaluate the reliability in the
processes of designing and assessing structural systems, researchers developed
various methods which can be categorized as classical first and second-order
reliability methods (FORM, SORM; Der Kiureghian 2022), simulation-based
strategies (Au and Beck 2004; Kurtz and Song 2013; Wang et al. 2019), and

surrogate-based approaches (Echard et al. 2011; Marelli and Sudret 2018).



However, the reliability evaluation generally requires repetitive structural
analyses and thus may result in high computational costs. These enormous
computational costs might hamper their engineering practice applications that often
entail challenging and time-consuming simulations, e.g., nonlinear dynamic
structural analyses, finite element simulations. This issue can be exacerbated when
the engineering system requires complex and high-dimensional models to describe
the system’s performance accurately.

To address the issue, some researchers have investigated various machine
learning algorithms to alleviate the computational burden caused by time-consuming
structural analysis procedures. One of the compelling approaches to increase the
computational efficiency for complex engineering analyses is the surrogate model
approach (Jones et al. 1998; Dubourg et al. 2011; Zhang et al. 2017; Kim et al. 2020).
A surrogate model, also termed a meta-model, approximates the results of expensive
computational simulations based on the training dataset of input-output pairs. The
accuracy and efficiency of the surrogate-based predictions rely on the training data
collection and their learning strategies. Thus, the surrogate models and its
applications need to be developed from the viewpoint of structural reliability and
reliability-based design optimization.

This dissertation aims to address the computational challenges in reliability
assessment and RBDO applications by improving the accuracy of predictions and
extending the applicability to more practical engineering systems. To this end, the
Gaussian process (GP) model, which is one of the machine learning-based surrogate
model, are employed as a tool to predict the structural responses and quantify the

prediction uncertainties. To improve the efficiency and accuracy in surrogate-based



predictions, an active learning algorithm is utilized to train the surrogate models by
adaptively selecting the simulation points. Through the active learning frameworks
developed using GP-based surrogate models, it is possible to assess the reliability
and achieve reliable optimal design of complex engineering systems with

significantly reduced computational costs and dataset.

1.2 Objectives and scopes

The research described in this dissertation aims to achieve four goals: (1) developing
an active learning framework for reliability assessment of challenging and complex
engineering systems, (2) extending the method to high-dimensional reliability
problems that incorporates the stochastic sequences of wind excitations, (3) enabling
RBDO applications for decision-making, and (4) facilitating the applications to high-
dimensional RBDO problems.

The dissertation first focuses on developing an active learning reliability
method, termed probability-adaptive Kriging in n-ball (PAK-B"). The main objective
of PAK-B" is to carry out an adaptive selection of simulation points, i.e., adaptive
training of Kriging surrogates, with low computational costs from a reliability
analysis standpoint. Next, to estimate the reliability of structures subjected to
stochastic wind excitations, an active-learning-based heteroscedastic Gaussian
process (AL-HGP) method is developed by incorporating high-dimensional
sequences of stochastic winds. Next, a new active learning-based RBDO method,
quantile surrogates by adaptive Gaussian process (QS-AGP) is developed using
quantile-based formulation to identify the probability-feasible design domain.

Finally, an extension is made to promote the applications of QS-AGP to high-



dimensional RBDO problems in which the number of design parameters is
considerably large. The extended method is referred to as quantile surrogates and
sensitivity by adaptive Gaussian process (QS?--AGP) because the sensitivity-based
optimization algorithm is employed to handle a large number of design parameters
without requiring any random samples.

Compared with the existing reliability analysis and RBDO methods, the
proposed active learning-based methods have the following benefits: (1) accurate
estimation of the reliability of structures including stochastic dynamical systems is
obtained with significantly less computational efforts; (2) the optimal reliable design
of structural systems can be efficiently identified considering various uncertainties
in engineering systems and/or their environment; (3) the high-dimensional reliability
and RBDO problems can be solved without losing the benefits and merits of the
proposed methods; (4) the methods successfully deal with high-fidelity and time-
consuming computational simulations, e.g., finite element analyses; (5) it is possible
to deal with challenging engineering systems featuring highly nonlinear performance
functions, various distribution types, and complexity; and (6) the proposed risk-
informed design frameworks can be employed for the recent performance-based
engineering frameworks and decision-making for modern structural systems under

various disasters.

1.3 Organization

The dissertation is organized into six chapters. Chapters 2 and 3 address the
development of active learning reliability methods, i.e., PAK-B" and AL-GHP, for

assessing structural reliability for both static and dynamic systems. In Chapters 4 and



5, the proposed active learning-based RBDO methods are introduced to handle a
considerably large number of design parameters. More details on the specific
subjects covered in each chapter are presented below.

Chapter 2 describes the development of PAK-B" method that improves the
efficiency and accuracy of reliability analysis by incorporating the probabilistic
density of the random variable space into the adaptive procedure of identifying the
surrogate limit-state surface. In addition, samples distributed uniformly inside the n-
ball domain are used as the candidate points to enrich the experimental design, and
the best candidate for simulation is determined in terms of influence on the failure
probability estimation. The efficiency and accuracy of the proposed PAK-B" method
are demonstrated by several reliability examples characterized by highly non-linear
limit-state functions, small failure probability, multiple design points, and
engineering applications. The results confirm that the method facilitates convergence
to the failure probability with a smaller number of function evaluations.

Chapter 3 begins with a discussion on the reliability measures of structural
systems against stochastic loads caused by natural and man-made hazards, e.g., wind
loads, earthquakes, and collisions, which lead to a high-dimensional reliability
analysis problem. Since the PAK-B" method in Chapter 2 has limitations in the high-
dimensional applications, a new AL-HGP method is introduced to efficiently
estimate the reliability under stochastic excitations. The AL-HGP introduces an
alternative formulation using the conditional distribution of the maximum response
to handle the high-dimension of stochastic excitation sequences. The method
employs the Gaussian-process-based surrogate model with heteroscedastic noises to

fit the distribution parameter functions considering uncertainties arising from the



structural system and the environmental loads. In addition, an adaptive training
process for surrogates is introduced to identify the best experimental designs
achieving efficient convergence. The numerical examples of an eight-story building
and a transmission tower demonstrate that the proposed method can produce accurate
estimation results with fewer structural simulations than existing methods.

Chapter 4 describes the RBDO problem that incorporates various uncertainties
into the design optimization of structures and other engineering systems. Many
RBDO methods have been developed, but their practical applications can be limited
if the reliability consideration entails a large number of evaluations of performance
functions, especially for those requiring time-consuming simulations. To overcome
the challenge, this chapter proposes a new RBDO method that employs quantile
surrogates of the performance functions to identify the admissible domain, termed
the probability-feasible design domain. Gaussian process models of the quantile
surrogates are updated adaptively through an exploration-exploitation trade-off
based on inherent randomness and the model uncertainty of the surrogate. The
method guides the computational simulations toward the domain in which the
quantile estimation can make the greatest contribution to the optimization process.
The validity and efficiency of the proposed RBDO method using QS-AGP are
demonstrated using several numerical examples. The results confirm that QS-AGP
facilitates convergence to a reliable optimum design with a significantly reduced
number of function evaluations compared to existing RBDO approaches.

Chapter 5 extends the applicability of the QS-AGP method in Chapter 4 to high-
dimensional RBDO applications. Since QS-AGP uses pre-generated design samples

to check whether the design samples satisfy the reliability requirements, the



approach could be computationally expensive in high-dimensional applications that
may require an insurmountable memory. To alleviate this difficulty, a new quantile
surrogate-based RBDO framework is proposed in this chapter. To this end, a non-

sampling-based procedure is proposed for efficient estimation of the quantile

surrogates based on both input uncertainties and model error of surrogates. Moreover,

to perform quantile-surrogate-based RBDO without relying on pre-generated design
samples, the parameter sensitivity of the quantile surrogate is implemented. The
computational efficiency of the proposed QS*-AGP is demonstrated by a variety of
RBDO examples featuring up to 15 design parameters.

Finally, Chapter 6 provides a summary of the developments and discusses the
major findings. This dissertation is concluded by discussions on current limitations,

requirements, and recommended topics for future research.



Chapter 2. Active Learning-based Reliability Analysis
Using Probability-Adaptive Kriging in n-
Ball (PAK-B")

2.1 Introduction

Complexity of today’s engineering systems inevitably makes the computational
simulation of their performance challenging and time-consuming. Since structural
reliability analysis methods generally repeat such computational simulations, it is
essential to reduce the number of function evaluations required to achieve reliable
estimates. In research efforts to fulfill this aim, adaptive Kriging methods have
gained significant interest because of their desirable properties and accuracy of the
surrogate model (Jones et al. 1998; Echard et al. 2010; Dubourg et al. 2011; Zhang
et al. 2017). However, the existing adaptive Kriging approaches may not be flexible
enough to fit the complex shape and orientation of the critical points especially when
a structural reliability problem has small failure probability of complex failure
domains (Wen et al. 2016; Leliévre et al. 2018). Thereby, the adaptive Kriging needs
to guide the simulation data to the vicinity of limit-state surface while giving
priorities to critical regions from the viewpoint of reliability analysis.

This chapter first presents a brief overview of structural reliability problem and
basic theories of Gaussian process model. The overview includes the AK-MCS
method that is one of the most widely used active learning reliability method and its
limitations. Next, details of the new adaptive Kriging method, PAK-B", will be

introduced: (1) alternative sampling in #-ball, (2) new learning function, and (3) the



adaptive algorithm for reliability analysis. Through numerical examples of
challenging reliability problems, the proposed approach will be tested in terms of (1)
robustness against multiple design points and high non-linearity of limit-state
functions, and (2) accuracy and efficiency with respect to the number of function
evaluations for various levels of failure probability. In each example, the final
experimental designs and the identified limit-state surface will be visualized to
provide further insight. Lastly, a summary of the results and concluding remarks are

provided (Kim and Song 2020).

2.2 Kriging-based reliability analysis
2.2.1 Structural reliability analysis

In a reliability problem described by an n-vector of basic random variables, X, the

failure probability P is defined as the n-fold integral

P = - (x)d
) fG L @)

where fy(x) is the joint probability density function (PDF) of X; and G(x) is the
limit-state function whose negative sign indicates the occurrence of the failure event
of interest. In general structural reliability problems, the computation of Eq. (2.1)
can be a difficult task since the integration of f,(x) over the failure domain is time-
consuming, and/or identifying the limit-state surface, i.e., {x|G(x) =0} is
challenging. Thus, various methods have been developed in order to assess structural
reliability efficiently but without compromising accuracy.

The first and second order reliability methods (FORM, SORM) are the most

widely used reliability methods, which estimate the failure probability based on



approximation of the limit-state surface at the richest point in terms of probability
density, termed design point or most probable point (MPP) (Der Kiureghian 2022).
However, in this approach, finding the design point is quite difficult in some
problems, and the error caused by approximating limit-state surface can be
significant if the function shows a high level of nonlinearity, or has multiple design
points or critical regions (Kim and Song 2018). Figure 2.1 shows an example of
design point for a component reliability problem with two random variables. As an
alternative, Monte Carlo Simulation (MCS) is often used to estimate the failure
probability based on computational simulations at sample points, and known to be
robust against the type and dimension of a given reliability problem. On the other
hand, MCS may require a large number of function evaluations especially in small
failure probability problems. In order to reduce the variance of the failure probability
estimated by MCS, various alternatives, e.g., Importance Sampling, Directional
Simulation, Subset Simulation, and Line Sampling (Nie and Ellingwood 2000; Au

and Beck 2001; Schuéller et al. 2004; Kurtz and Song 2013), have been proposed.

/‘\

Gu) = G(u) <0

Failure domain

G(u) >0 \ U,

Safe domain

Figure 2.1 Design point for a component reliability problem with two random
variables
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In order to construct an accurate Kriging model with a small set of simulation
points, many adaptive schemes have been developed and used for optimization and
reliability assessment (Jones et al. 1998; Echard et al. 2010). A Kriging approach is
considered “adaptive” when the information from the prior stages is utilized in
selecting the next experiment points, i.e., the values of x where the function G(x)
will be actually evaluated. Echard ef al. (2010) proposed an adaptive Kriging method
that can efficiently estimate the failure probability by pursuing adaptive design of
experiments in surrogate model construction. In their approach termed AK-MCS, the
limit-state function is evaluated for only a small subset of Monte Carlo samples, and
drastically decreases the number of function calls compared to other surrogate-based
methods. In each iteration, the next point for function evaluation is adaptively
selected based on the learning function U(x) representing the trade-off between
Kriging mean and variance. The sample point with the minimum U(x) is selected
as the next point to enrich the experimental design. Several other methods, e.g., AK-
OIS, AK-SS and AK-SYS (Fauriat and Gayton 2014; Huang et al. 2016; Zhang et al.
2020), were also developed to improve the efficiency of adaptive Kriging method.

During the adaptive refinement process of the Kriging surrogate model, the
influence of the misclassification error depends on relative importance of the
corresponding locations. In reliability problems, critical domains such as areas
including the design point are important for accurate estimation of failure probability
and reliability index. Therefore, adaptive refinement focusing on such critical
domains is desired. Since the learning function U(x) in AK-MCS is defined in
terms of the Kriging mean and variance only, the relative importance of x, which is

determined by the corresponding probability density, is not incorporated into the
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adaptive procedure. Furthermore, it is noted that the assessment of low failure
probability is still challenging even when an adaptive Kriging method is used. When
the failure probability is extremely low (e.g., 1073~1077), a large size of MCS
sample populations are required to identify the failure region, which may cause a

memory problem.

2.2.2 Basic theories of Gaussian process model

A Gaussian process model, also known as Kriging, has been widely used to construct
a surrogate of a complex function based on the function evaluations at a few input
points, which are selected among samples through so-called Design of Experiment
(DoE) process. The main assumption behind the GP-based surrogates is that the
response at the input x, y(x) is the realization of a Gaussian process (Rasmussen

and Willians 2006; Rasmussen and Nickisch 2015), that is,

y(x)~GP(m(x), k(x,x'; ©)) 2.2)
where m(x) = E[y(x)] is the mean function; k,(x,x") = E[(y(x) —
m(x))(y(x') —m(x"))] is the covariance function (or “kernel” function); and ©
is a set of parameters that characterize the process, often termed hyperparameters.

For example, Matérn class of covariance function (Rasmussen and Willians 2006),

adopted in this study, is defined as

k(x,x';0) =

of (xfz_vlldll> K, <x/2_v||d||> o)

2V-Ir(v) l l
where K, and T'(:) are respectively the modified Bessel function of order v,

which is usually set to v =3/2 or v = 5/2 (Rasmussen and Willians 2006), and
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the gamma function; ||d|| = |[x — x’|| denotes the distance between the two inputs
x and x'; and afz and [ are the hyperparameters in 0, respectively denote the
process variance and correlation length. Figure 2.2 denotes the Matérn class of
covariance functions and corresponding realizations of Gaussian process with

different parameters of correlation length [.

06

k(x-x’

1=0.01
/=04 1
—1=1

X-X X

(@) (b)

Figure 2.2 Examples of Matérn class covariances for different correlation length
parameters: (a) covariance functions, and (b) realization of Gaussian process

In using GP model, it is typically assumed that the observations Y include the

Gaussian noise, i.e.,

Y=yx)+e (2.4)
where & denotes the Gaussian noises that are statistically independent and
identically distributed with fixed variance ¢;2. Given the n pair of the training set

D = {xp,Yp)}, ie., input points x5 = [xq,...,x,]"

and corresponding noisy
observations Yq = [Y(xy), ..., Y(x,,)]T, the computational simulation results at
the selected DoE points representing material properties, the optimal estimates of the

hyperparameters, ® can be obtained by the maximum likelihood estimation (MLE)

method (Rasmussen and Williams 2006) as
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0 = argmaxInp(Yp|wp, ®) where (2.5a)
o .

Inp(Yplwp, ©) = — %yDT(K + 02D 1Yp — % In|K + o21| — gln(Zﬂ) (2.5b)
where K is the covariance matrix whose element is determined as K; ; = k(x;, x;),
i,j=1,..,n;and I isthe (n X n) identity matrix.

Then, the GP model with the estimated model parameters can predict the
response at unexplored input points. Consider a prediction point x, whose response
is unknown yet. The GP-based estimate of y at a new point x, and corresponding
prediction variance are respectively given as the conditional mean up(x,) and

variance 05 (x,) of the Gaussian distribution

p(y.1x., xp, Yy, ©)~N (M;?(x*),ayg (x*)) with (2.6)
up(x,) = m(x) + kI (K+ o2D? (‘yD - m(xp)) (2.7
of(x.) = k.. — KT(K+ 02Dk, (2.8)

where k, = [k(x,,x), ..., k(x,,x,)]T denotes the covariance matrix between the
prediction location x, and n observed points xq; and k., = k(x,, x,). The GP
model not only provides the mean estimate pp(x,) but also quantifies the
uncertainty of the prediction by aé (x,). It is also noted that the prediction variance
is usually negligible near the observation points because of the correlation described
by the covariance function. For example, a typical visualization of the predictive
mean and variance of Gaussian process given observations is provided in Figure 2.3.
In this research, the GPML Toolbox (Rasmussen and Nickisch 2015) in MATLAB®

is utilized to build the GP model and obtain the predictions.
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Figure 2.3 Example Gaussian process model and predictions

2.2.3 Reliability analysis using adaptive Kriging methods

When constructing a Kriging model, the number of DoE points should be sufficiently
large to achieve an accurate surrogate. However, this may entail large computational
costs especially when the evaluation of the original function is computationally
expensive. For an efficient enrichment in DoE, a number of adaptive methods have
been developed in recent years to add points sequentially based on the information
from the previous iterations (Picheny et al. 2010; Dubourg et al. 2011; Marelli and
Sudret 2018). The main goal of such an adaptive scheme is to identify the region in
the input space whose exploration is expected to be most effective in terms of
Kriging modeling.

To compute the failure probability efficiently using an adaptive Kriging
approach, Echard et al. (2011) proposed to combine Kriging and Monte Carlo
simulation. The method, termed AK-MCS, first generates Monte Carlo sample

points with respect to the probability density function. To assess the importance of
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each Monte Carlo sample based on previous simulation results, the learning function

is defined as

lug ()|

Uiy = og(x)

(2.9)

where ps(x) and og(x) respectively denote the Kriging (mean) prediction and
corresponding standard deviation. AK-MCS selects the Monte Carlo sample
minimizing the learning function as the next simulation point. Since the minimum
value of U(x) indicates that ps(x) is close to zero and ops(x) is large, the
learning function guides AK-MCS to explore the region which is expected to close
to the limit-state surface, but requires more simulations to reduce the prediction
uncertainty. This active learning process is continued until the stopping criterion, e.g.,
min(U (x)) > 2, is satisfied, i.e., until the probability of correct classification of
each MCS sample is reduced to 1 — ®(—2) = 0.9772. As the size of the initial
MCS population becomes large enough to guarantee a small coefficient of variation,
the failure probability is estimated as P} = Ngeo/Muc Where ng.o and nyc
respectively denote the number of MCS points whose Kriging predictions indicate
failure, and the size of initial MCS population.

Since the learning function in Eq. (2.9) guides the sample selection toward the
vicinity of the limit-state surface, i.e., the surface discerning the failure and safe
domain, AK-MCS can facilitate finding an effective DoE for the purpose of
reliability analysis. In particular, the exploration-exploitation trade-off enables the
algorithm to identify the limit-state surface efficiently. Several other active-learning
methods have been later proposed to further reduce the number of evaluations of the

original limit-state function, e.g., AK-SS (combining with subset simulation), AK-
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SYS (for system reliability), AK-OIS (combining with importance sampling),
metaAK-IS (combining meta-IS algorithm) (Dubourg et a/. 2013; Cadini et al. 2014;

Fauriat and Gayton 2014; Huang et al. 2016; Zhang et al. 2020).

2.3 Proposed method: PAK-B"

The aforementioned adaptive Kriging method, AK-MCS, uses Monte Carlo samples
as candidate points for Kriging prediction. The active-learning process is carried out
using the Kriging predictions of the learning function at the sample points. It is noted
that when a structural reliability problem has small failure probability or complex
failure domains, such adaptation may not be flexible enough to fit the complex shape
and orientation of the critical points (Wen et al. 2016; Leliévre et al. 2018). Therefore,
in this chapter, a new adaptive reliability analysis method named PAK-B" is proposed
by re-defining the learning function and using alternative sampling in n-ball instead
of Monte Carlo sampling. In particular, the exploration-exploitation trade-off on the
limit state surface is now extended to incorporate probabilistic density of each
sample to identify the sample point in the vicinity of the limit-state surface that
contributes most to the failure probability. In other words, the adaptive Kriging
guides the DoE to the vicinity of limit-state surface while giving priorities to critical
regions from the viewpoint of reliability analysis. Note that, in this chapter, the term
‘sample’ refers to a candidate point sampled for the purpose of active-learning, while
the term ‘simulation’ means actual evaluation of the true function at the sample

selected by the active-learning process.
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2.3.1 Alternative sampling for adaptive selection of simulation point

In AK-MCS, Monte Carlo sample points x are generated with respect to the
probabilistic density of random variables, f,(x). Hereafter, it is assumed that, the
random variable space has been transformed to the standard normal space (Der
Kiureghian 2022), and f,(x) denotes the joint probability density function of n
uncorrelated standard normal random variables. Then, the integral in Eq. (2.1) is
estimated as ISf = Ng<o/Nuc, 1-€., based on whether the Gaussian process predicts
each MC sample is in the failure domain or not. Most of the generated samples,
however, are located in the vicinity of the peak of the density of random variables,
e.g., mean point for the multivariate Gaussian random variables, which naturally
restricts the domain to explore. As a result, a limit-state surface showing complex
shape or located far from the peak may not be captured by Monte Carlo population.

Thus, PAK-B" adopts samples from the uniform density in the domain of n-ball,
i.e., samples uniformly distributed over the interior of an #n-dimensional hypersphere
of radius R, whose volume is denoted as Vz(R). PAK- B™ adopts the n-ball domain
in order to (1) promote a balanced search in the uncorrelated standard normal space
whose density fy(x) is rotationally-symmetric; and (2) facilitate adaptive
expansion of the domain in terms of the radius R. In addition, the uniform density
is selected, instead of the original density f,(x) to promote effective Kriging-based
identification. Figure 2.4 compares the 10° random samples generated by MCS and

those by proposed n-ball approach in a three-dimensional space of random variables.
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Figure 2.4 Random samples generetaed by (a) MCS and (b) n-ball sampling

To incorporate the alternative (uniform) sampling density, Eq. (2.1) is re-

formulated as

LG <03 fx (%)

Igo<0y/fx(X)
P = f [ o< fi(x e (2.10)

hx(x)

hy(x)dx = Ej, [

where I(;(x)<oy is the binary indicator function which gives “1” if the limit-state
function G(x) is negative or zero, and “0” otherwise; and Ej[-] denotes the
mathematical expectation with respect to the alternative density h,(x), i.e., the joint
PDF of the uniform distribution in the n-ball, which is defined as hy(x) = 1/V5(R)
if [|x]l, < R and hy(x) = 0 otherwise. From samples x;,i =1,...,N generated

from hy(x), the failure probability is then estimated as

N
Vs(R
Py = —BIE, )Z[I{G(xi)so}fx(xi)] (2.11)
i=1

where it is noted that the index function is defined in terms of the response predicted

by the Kriging model, G (x;). The volume of the n-ball, Vz(R) is derived as

i - i-,-1]|ﬁ1 T



N3

Vg(R) = :—R" (2.12)

r (7 + 1)
The variance of the failure probability estimate can be derived as
N 2
P, 1(1 f x(xi) —2
Var[P;] = N(NZ Iie <o) <m 7

N

1 (® B

- N( N Z[l{@(xi)so}fx(xi)z] — P

i=1

i=1
The coefficient of variation 6p ; of the failure probability estimate is estimated as

V var [ﬁ;] (2.14)

6Pf= P;

(2.13)

To further improve convergence, this study employs low-discrepancy samples, often
termed quasi-random samples. One of the most widely used quasi-random sequence
called “Sobol and Halton sequence” is adopted. The improvement of the
convergence rate by low-discrepancy of samples in structural reliability problems

has been discussed in the literature (Caflisch 1998; Wang and Fang 2003).

2.3.2 Determining radius of n-ball sampling domain

Unlike general importance sampling methods requiring a proper selection of
sampling density parameters, the only initial assumption required by the proposed
sampling scheme is the radius of the n-ball, denoted by R™. A small radius may
yield inaccurate estimate if the sampling domain cannot properly cover the failure
domain. On the other hand, a large radius may require unnecessarily large
computational costs. Thus, PAK-B" aims to identify a proper radius of the n-ball by

increasing the radius with the increment AR until the failure probability estimate is
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converged.
Let R® denote the n-ball radius used for the k-th round of the reliability
analysis. From Eq. (2.11), the corresponding estimate of the failure probability is

(G9)

V (R( )) total

& _ VB

b= N Z [ep<ofi(xo)] (2.15)
total i=1

where Nt(ot)al is the total number of the generated samples accumulated over k

rounds. To determine whether additional round of analysis is needed, new Njq
samples are generated in the domain R® < R < R® 4+ JR. Using the Kriging

NUEFD (2 0

predictions at N, Nioiar

+ Ni,1) sample points, the failure probability is
estimated using Eq. (2.15). Since this task is to check the needs for expanding the
ball, no actual function evaluations are needed.

The convergence is checked in terms of the relative increment of the reliability

index instead of the failure probability. This is to avoid numerical issues caused by

low failure probability. In particular, using the generalized reliability index [?g =
-1 (Isf), the convergence condition is formulated as

p(k) _ pk+1)
9 9

T < €tol (2.16)

B(k+ )

where Bg(k and respectively denote the generalized reliability index after

the k-th round and that based on N (

total) Kriging predictions discussed above; and

€01 1s aspecified tolerance value. From the experience, it is recommended to choose
a tolerance value in the range 107> < €,4; < 10™3 depending on the target level of
accuracy. Geometric illustration of convergence criteria for determining proper

radius is given in Figure 2.5.
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Figure 2.5 Geometric representations of convergence criteria in PAK-B" method

It is noted that the n-ball samples refer to candidate points for statistical learning,
and the actual evaluation is performed on a sample point that is selected by the
active-learning process. Therefore, compared to the conventional response surface
methodology that builds a second order mathematical response model based on a
factorial or fractional factorial design with center points, termed central composite
design (Myers et al. 2004), the proposed adaptive Kriging model can achieve

efficient experimental designs from the viewpoint of reliability analysis.

2.3.3 Learning function for probability-adaptive Kriging

To enrich DoE by adaptive Kriging, it is important to take into account relative
contributions of samples to the failure probability. In other words, the learning
criteria should be defined so as to fit limit-state surface sufficiently well especially

in the region that contributes most to the failure probability Pr. This chapter propose

:r -
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a new learning function to facilitate this probability-adaptive Kriging, which guides
the search process to the most enriched areas named critical regions having

significant effects on P;. Multiplying Eq. (2.9) by a penalty function y(x), the

learning function of the probability-adaptive Kriging is defined as

_ lug ()|
og(x)

a(x) y(x) 2.17)

where y(x) isintroduced to discourage the search toward less-critical domains. For

a sample x; inthe k-th round, the penalty function is defined as

[RGD —R|
y(x) = R €p = (2.18)
1 Acp < tol

where R(x;) denotes the Euclidean distance of x; from the origin; R* is the
estimated distance from the origin to the nearest failure point (termed “critical point”
in this chapter); and A.,, is the distance between the critical points identified in the
current and previous learning-steps. If A.,, is larger than the specified tolerance,
i.e., Aqp = tol, which means that the estimated location of the critical point has
shown a critical change, the penalty function discourages the search toward samples
relatively far from the critical point. If A, is small, on the other hand, the penalty
function is equal to one to reduce Eq. (2.17) back to Eq. (2.9), which means that the
same trade-off between mean and standard deviation as AK-MCS is used. The

distance to the critical point can be estimated by Kriging predictions, i.e.,

R* = ||x*|l, where®* = argmax[l{é(xi)so}fx(xi)] (2.19)
e

4

where |||, denotes 2-norm, i.e., Euclidean distance; G(x;) is the limit-state

function value estimated by the Kriging prediction at x = x;;and X* represents the
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critical point in the space.

vicinity of target limit-state surface {x|G(x) = 0} while the right-hand side term
guides toward the critical regions which have significant impact on the failure
probability. Through the learning process, a@(x) leads samples near the critical

point with a priority. Next, as the variance of the searched regions is reduced, the

In summary, the left-hand side term in Eq. (2.17) guides the search to the

learning guides the search toward less critical areas.

2.4 Algorithm of PAK-B"

The algorithm of the proposed PAK-B" is summarized as follows (see Figure 2.6 for

the

flowchart):

sampling density hy(x)

i
Set initial parameters i P N
(no, Ny, R®, AR, £,5) || Construct the ny initial Generate N, samples from

|

Update Kriging with enriched
DoE and estimate ﬁf

Active-Learning:

[

Identify the best simulation

point Xpege 10 Nt(ft)al samples

‘probability-adaptive’
Kriging

T
1. Construct the initial DoE: n, samples x = [xl, ...,xNO] are generated

by Latin Hypercube Sampling (LHS) in the standard normal space. The

}

Compute ‘Critical Point’
= al‘gmax[’m(xl)ia}ﬁc(xi)]
xi

—

J

with radius R

| oy

n-ball sampling:
‘Candidate’ point
for simulation

s Y q
Construct Kriging surrogate E-
x ~ G(x) !
A J 1
I

| |

- N i

Compute Kriging

prediction: (ug(x), 0z (x))
.

!

Draw N4 sampling in
interval with increment AR

Convergence Check:
Is it sufficient to cover
failure domain?

e e | _ _|  Final estimates
on f’f

Figure 2.6 Flowchart of PAK-B" algorithm
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domain of LHS is set to ||x]|; < dyys- The limit-state function G(x) is
evaluated on these points to construct the initial DoE of the adaptive-
Kriging model. The size of initial DoE, n, needed to ensure an accurate
estimation tends to increase with the dimension of the random variables.
The sample size ny = 10~30 if dimension n < 10, and nyg =2n+1
otherwise, seems a reasonable choice from the author’s experience for the
investigated examples.

Generate samples in design space: Generate N; samples according to the
sampling density hy(x) = 1/Vg(R) if |lx|l, <R® and h,(x) =
0 otherwise. These sample populations are used as candidate locations for
active-learning. The initial population size N; = 10*~10° seems to be a
good trade-off from the experience.

Construct Kriging model: Construct a Kriging model at the sample points
using the current DoE. In this chapter, GPML toolbox in MATLAB® is
utilized for this purpose. The Matérn class of auto-correlation function in
Eq. (2.3) is chosen as the correlation model (see Section 2.2.2 for more
details).

Perform active-learning process: Identify the sample point where the
learning function a(x) in Eq. (2.17) is minimized as the next best
simulation point. The DoE is enriched by acquiring function evaluation at
the point to update the Kriging model. The enrichment of DoE, i.e.,
evaluating the function at the best points, continues until the stopping
condition is satisfied. The stopping condition for the active-learning process

is A,[;’g < €g,,,» Which means that the estimated generalized reliability

i
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index ﬁg converges. Note that this stopping condition differs from the
convergence criteria described in the following.

5. Check the convergence criteria: Once the active-learning process is
terminated, its corresponding convergence condition in Eq. (2.16) is
computed to guess whether the increase in the radius would affect the
failure probability estimate. If the procedure fails to achieve convergence,
go back to Step 2 to create additional samples in the expanded n-ball and
repeat the steps described above until the convergence is achieved.

6. End of PAK-B": If the convergence criteria is satisfied, PAK-B" stops and
provides the estimate of the failure probability in the current size of n-ball

as the final estimate.

2.5 Numerical examples

The proposed PAK-B" procedure and its performance are demonstrated by numerical
examples. Examples of series and parallel systems are introduced to check the
performance in system reliability problems. Also investigated are examples featuring
small failure probability, high non-linearity, e.g., a large curvature around design
point, and multiple design points. Then, applications to engineering systems, e.g.,
nonlinear oscillator and cantilever tube, are provided to examine the effects of
dimension and distribution type on the performance of the proposed method. The

number of initial DoE, n, is set to 10, with LHS bound d;ys = 6, and the initial
radius and interval of sampling domain are set to R =5, and AR = 0.2

respectively. The initial number of population is N; = 50,000.
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2.5.1 Applications to benchmark reliability problems
2.5.1.1 Series system with multiple design points

First, consider a series system with three design points, whose limit-state function is

given as (Cadini et al 2014; Dubourg et al. 2014)

606 = min {c —1—x, +exp(—x2/10) + (x1/5)4} (2.20)

/2 —x; - x,
where x; and x, are uncorrelated standard normal variables; and ¢ is an integer

parameter. The limit-state function features three design points whose coordinates

ae @ =1[0,c]T, @ =[c/VZc/V2], and x*® =[-c/NZ,—c/VZ] .
Figure 2.7 shows the final experimental designs and the identified limit-state surface
for the parameter ¢ = 4.

The analysis results by PAK-B" method are presented in Table 2.1, which shows
the typical number of function calls and the corresponding failure probability
representing more than 20 independent runs of analysis. The results are compared to
those by crude MCS and several other widely used reliability methods reported in
(Echard et al. 2011; Der Kiureghian 2022). The accuracy and efficiency of the
different methods are compared in terms of N4, 1.€., the number of actual function

evaluations required to estimate the failure probability, the failure probability Py,
the coefficient of variation of the failure probability, &p e and the generalized
reliability index B;. N¢gy in the tables denotes the total number of simulations. For
AK-MCS and PAK-B", N.q;; is the sum of the initial DoE (n,) points and the

number of the simulations during the active-learning process described in Section

2.3.3. FORM approximation for series system (Der Kiureghian 2022) is calculated
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as Pf(ESyS) =1-&,,(B,R) where B=[By .., m]", ic., the vector of the
reliability indices from m individual component reliability analyses by FORM, R is
the matrix of correlation coefficients between the standard normal random variables
representing the component failure events, and @, is the m-variate standard
normal CDF. Since the system has four components, i.e. m = 4, the number of
simulations of four FORM analyses, each of which use the mean as the starting point,
are summed up to obtain N_g;.

A parametric study is performed with respect to the parameter c. Since the three
design points are located with the common distance from the origin, i.e., ||x*|| = c,
a larger parameter yields a lower failure probability. The results by crude MCS
estimations are considered reference values here. It is seen that PAK-B" saves a
significant amount of function evaluations compared to the other sampling-based
approaches while producing results similar to the reference value P ycs. It is worth
noting that the performance of PAK-B" is not hampered by low failure probability
thanks to sampling in the n-ball. In Table 2.1, the numbers in the parentheses
represent those of initial MCS samples. Note that the AK-MCS requires a large
number of samples when ¢ =5, more than 108 samples, which may result in
memory problems and inaccurate estimations.

The final experimental designs are shown in Figure 2.7. Using the initial DoE
points, represented by black circles, the initial surrogate model is constructed. The
red-cross markers are the most suitable training sample points selected at each
iteration according to the learning function in Eq. (2.17). The blue solid and black

dotted lines represent the true limit-state function and Kriging prediction using the
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Figure 2.7 Final experimental designs for series system
with multiple design points (c=4).

final DoE respectively. Most of the selected sample points reside around the true
limit-state surface, especially in the critical regions near the three design points,

which helps to construct an effective surrogate model for reliability analysis purpose.

Table 2.1 Comparison between the results by PAK-B" and those by several
reliability analysis methods for series system example

Case  Method Nean Py 8p, (%) By
c=3 MCS 1.20 x 105 3.47 x 1073 4.89 2.70
AK-MCS 10485 (10°) 3.52x 1073 4.40 2.69
PAK-B" 10+32 3.38x 1073 1.67 2.71
c=4 MCS 4,60 x 10° 8.94 x 107> 493 3.75
10+101 (10°) 8.33x 1075 4.85 3.76
AK-MCS 10+106 (10°)  8.79 x 1075 4.92 3.75
PAK-B" 10452 9.01 x 105 1.80 3.75
c=5 MCS 430 x 108 9.48 x 1077 4.95 4.76
AK-MCS - - - -
PAK-B" 10+70 9.02 x 1077 1.91 4.77
:'x‘i-! '-j." 1
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Figure 2.8 Close-ups of final steps of DoE for series system with multiple design
points using (a) U(x), and (b) a(x) as the learning function

To further clarify the proposed adaptive search process, Figure 2.8 provides the
close-ups of the last step results that are respectively trained by the learning functions
U(x) and a(x) given the same conditions. It is confirmed that U(x) tries to
capture the limit-state function and surface overall while the proposed learning
function guides the search so that more simulations are performed in the critical
regions. Therefore, the critical regions from the viewpoint of failure probability
estimation is enriched with a priority, which leads to more efficient estimation of the
failure probability.

Figure 2.9 shows the angle of the position vectors representing the critical
points identified during the iteration procedure. The horizontal dash-dotted lines
represent the locations of the design points having the angles 8 = /4, m/2, and
—3m/4 (rad) in polar coordinate. The asterisks show the estimated locations of the

critical points, i.e., X* in Eq. (2.19) at each iteration. It is shown that all critical
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Figure 2.9 Direction of critical points estimated through iterations
for series system example (c=3).

areas near the three design points are well identified by the probability-adaptive-
learning of PAK-B", which performs computational simulations predominantly in

critical regions of the reliability analysis problem.

2.5.1.2 Parallel system with small failure probability

In the next numerical example, PAK-B" is applied to a parallel system with two

components (Kurtz and Song 2013) whose limit-state function is

G(x) = max[x? — 8x, + 16, —16x; + x5 + 32] (2.21)
where x; and x, areuncorrelated standard normal variables. Figure 2.10(a) shows
the limit-state surface and the “joint” design point discussed in Kurtz and Song
(2013). The limit-state function shows highly nonlinear feature that is sharply
concave in the direction away from the origin in the uncorrelated standard normal

space. Figure 2.10(b) and (c) illustrate the adaptive simulations using the learning
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functions a(x) and U(x) respectively after 9 iterations. In particular, the yellow
markers represent the best simulation points identified based on the red circular
markers from the previous simulations. The comparison between Figures 2.10(b) and
(c) clearly shows that the proposed learning function a(x) guides the search toward
the critical area near the joint design point. The final experimental designs trained

by the proposed PAK-B" is given in Figure 2.11.

() (b) ()
Figure 2.10 (a) The limit-state surface of a parallel system example, and adaptation

of DoE over 9 iterations using (b) the probability-adaptive learing function a(x),
and (c) the learning function U(x)

T T T T / T o
6l Tl'l..le. functior.\ ) o / /
= = =Kriging prediction V4
O Initial DoE

%X Added DoE
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Table 2.2 presents the estimated failure probabilities along with the number of
function evaluations. The MCS results are obtained using 1.70 x 107 sample
population. The FORM approximation is performed as Pf(Esys) = ®,,(—B,R).
Due to the strong non-linearity, the FORM approximation shows large error. It is
noted that in AK-MCS method, even with a large number of initial MCS samples
(~107), cannot provide a reliable estimate since the learning process terminates if
the failure cases are not identified in the initial iteration procedure. It is also shown
that the choice of the initial radius of domain R does not significantly affect the

performance of PAK-B™.

Table 2.2 Comparison between the results by PAK-B" and those by several
reliability analysis methods for parallel system example

Method Initial N
parameter ot Py 8p; (%) P
MCS 1.70 x 107 6.23 x 107° 9.72 437
FORM 4 5.18 x 10~* - 3.28
AK-MCS - 0 - -
PAK-B" RM =40 10+48 5.90 x 107 9.92 4.38
RW =50 10+43 6.56 x 10°° 9.62 4.36
RW =60 10+33 6.08 x 10°° 9.93 4.37

2.5.2 Applications to engineering systems
2.5.2.1 Dynamic response of a non-linear oscillator

As an engineering application example, the non-linear undamped single degree of
freedom (SDOF) system with bilinear restoring force. In figure 12, which is
subjected to a rectangular load pulse, is investigated. The limit-state function is

described as (Bucher and Bourgund 1990; Echard ef al. 2011)
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G(ky, koM, R, t1, Fy) = 3R — Zygy

2F. wot
=3R— | —L sin( 0 1) (2.22)
mwyg 2

where k; and k, are the initial stiffness of the nonlinear springs; wg =

W ; t; and F; represent duration and amplitude of load pulse
respectively; R denotes the displacement at which one of the springs yields; and
Zmax 18 the maximum displacement response of the system. This problem is selected
to test PAK-B" in real structural reliability problems described by a larger number of
random variables, i.e., six. Table 2.3 summarizes types of distributions of all random
variables and parameters. Table 2.4 shows that PAK-B" method successfully deals

with the dimension producing accurate results.

F(t)

z(t)

A

t

Figure 2.12 Non-linear oscilator subjected to a rectangular load pulse (Echard et al.
2011)

Table 2.3 Distribution type and parameters of the random variables

Random variables Distribution Mean Standard deviation
m Gaussian 1 0.05
ky Gaussian 1 0.1
k, Gaussian 0.1 0.01
R Gaussian 0.5 0.05
t Gaussian 1 0.2
F; Gaussian 0.6 0.2
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Table 2.4 Comparison between the results by PAK-B" and those by several
reliability analysis methods for non-linear oscilator example

Method Nean Pf 8Pf (%) ﬁg

MCS 1.0 x 10° 5.46 x 1074 4.28 3.27
FORM 26 6.46 x 10~* - 3.22
AK-MCS >300 5.49 x 10™* 4.81 3.26
PAK-B" 20+106 5.50 x 1074 4.78 3.26

2.5.2.2 Cantilever tube

The cantilever tube in Figure 2.13 is subjected to forces F;, F, and P, and torsion

T. The limit-state function is defined as (Du 2008; Xiao et al. 2018)

G(x) =S, — /a,f + 312, (2.23)

where S, is the yield strength; and oy and 7, denote the normal stress and
torsional stress on the top of surface of the tube at the origin respectively. The stresses

oy and t,, are respectively derived as

_ P+ F;sin(6,) + F; sin(6;) 4 Md
B A 21

oy (2.24a)

Td

T =gp (2.24b)

in which M = F;L; cos(8;) + F,L,cos(8,); A= (m/4)[d*>—(d—2t)?]; I=
(m/64)[d* — (d — 2t)*]; and ] = 2. Table 2.5 summarizes the properties of a

total of nine random variables.
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Figure 2.13 A cantilever tube (Du 2008)

Table 2.5 Distribution type and parameters of the random variables

Random variables  Distribution Parameterl* Parameter2*

t (mm) Gaussian 5 0.1
d (mm) Gaussian 42 0.5

L; (mm) Uniform 119.75 120.25

L, (mm) Uniform 59.75 60.25
F; (N) Gaussian 3000 300
F, (N) Gaussian 3000 300

P (N) Gumbel 12000 1200

T (N -mm) Gaussian 90000 9000
Sy (MPa) Gaussian 220 22

Note: Parameterl and Parameter2 respectively denote the mean and standard deviation for
Gaussian distribution, and location and scale parameters for Gumbel distribution, and the
lower and upper bounds for Uniform distributions.

Table 2.6 shows that PAK-B" needs only 168 (= 50 + 118) function calls to
obtain accurate estimation results while the AK-MCS demands more than 400
function evaluations.

While the proposed method is effective for engineering applications shown in
the Section 2.5.2, the performance may degenerate if the random variables of
engineering problem feature extreme value distribution types, e.g., Weibull and

Gumbel, which requires a highly nonlinear transformation to uncorrelated standard
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normal space and thus makes a response far away from the Gaussian distribution.
This feature has usually been observed in nonlinear dynamical systems with

hysteretic behavior and thus need to be further investigated.

Table 2.6 Comparison between the results by PAK-B" and those by other methods
for cantilever tube example

Method Ncau Pf 5Pf (%) ,Bg

MCS 2.0 x 10° 2.19 x 1074 477 3.52
AK-MCS >400 2.21x 1074 4.58 3.51
PAK-B" 50+118 2.22x107% 4.75 3.51

2.6 Summary

This chapter proposed a probability-adaptive Kriging method based on sampling in
n-ball (PAK-B" method), for structural reliability analysis. The main objective of
PAK-B" is to carry out an adaptive selection of simulation points with low
computational costs from reliability analysis standpoint. The method utilized a new
learning criterion designed to identify important points that are located in the vicinity
of the limit-state surface and, at the same time, contribute most to the failure
probability. This probability-adaptive procedure further reduced the number of
computational simulations by utilizing samples uniformly distributed in an r-ball
domain as candidate sets of simulation, and adaptively determining a proper radius
of n-ball that achieves efficient convergence.

Accuracy and efficiency of the proposed method were demonstrated through
several benchmarks reliability problems: a system problem with high non-linearity,
small failure probability and multiple design points, and general engineering

problems with moderate dimension. In each example, the proposed method needs a
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small number of limit-state function evaluations to achieve accurate and converged
estimates. PAK-B" is expected to effectively deal with such challenging and time-
consuming problems in practical engineering with robustness against the types of

limit-state surface.
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Chapter 3. First-Passage Probability Estimation
under Stochastic Wind Excitations Using
Active Learning

3.1 Introduction

Structural failures caused by natural or human-made hazards may induce
catastrophic damage or losses. Thus, it is essential to evaluate the reliability of
structural systems against stochastic excitations, e.g., wind loads, earthquake ground
motions, and collisions, for managing the risk. The first-passage probability, i.e., the
probability of the event that maximum structural response over a given time interval
exceeds a prescribed threshold, is of great engineering interest as a reliability
measure of a system under such conditions. It is crucial to consider the variability
arising from the external stochastic excitations and the uncertainties associated with
the structural systems and hazard models in evaluating the first-passage probability
(Au and Beck 2003; Suksuwan and Spence 2018; Kanyjilal er al. 2021).

In general, evaluating the first-passage probability is challenging because it
requires multidimensional integration of a random process over time. No exact
solution of this probability exists in general cases, and thus many attempts have been
made to derive approximate solutions including system-reliability-based methods,
simulation approaches, surrogate approaches (Lutes and Sarkani 2004; Andrieu-
Renaud et al. 2004; Zuev et al. 2012; Yang et al. 2017; Chun et al. 2019; Wang et al.
2019; Kanjilal et al. 2021; Yi and Song 2021). A primary challenge in employing

surrogate models for stochastic dynamical systems is incorporating the high-
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dimensional sequences used for describing desirable time or frequency-domain
characteristics of stochastic excitations (Gidaris et al. 2015; Suksuwan and Spence
2018; Jensen et al. 2020). This leads to a high-dimensional reliability analysis
problem, which may degenerate the performance of surrogate-based approximations
in the first-passage probability estimation.

To employ surrogate models without exacerbating performance, a new active
learning-based heteroscedastic Gaussian process (AL-HGP) method is proposed in
this chapter. To this end, the proposed method alternatively formulates the first-
passage probability as a mixture distribution of Gaussian densities, each of which
represents the conditional distribution of the maximum response. This procedure
employs a GP model with heteroscedastic noises to fit the distribution parameters of
mixture distribution, considering uncertainties arising from the structural system and
the environmental wind loads. In addition, the framework trains the surrogates
through an adaptive selection of simulation points in terms of their influence on the
estimation of the first-passage probability given threshold level.

This chapter first provides a brief overview of the first-passage probability
problem and stochastic wind-field model used to generate the random excitations of
wind forces. Next, the following details of the proposed AL-HGP method are
introduced: (1) an alternative formulation of the first-passage probability, (2)
distribution parameter function estimations by a heteroscedastic GP model, (3)
corresponding active-learning-based training process of surrogates, and (4) the
adaptive learning algorithm of AL-HGP. The several numerical examples
demonstrate the efficiency and applicability of the proposed AL-HGP method. Lastly,

a summary of the results and concluding remarks are provided (Kim et a/. Under
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review).

3.2 Background
3.2.1 First-passage probability problem

The first-passage probability, commonly utilized as a reliability measure of structural
systems subject to stochastic excitations, refers to the probability that the maximum
response exceeds a prescribed threshold within a given time interval t € [0, 7]. A

general mathematical formulation of the probability is

pr(o; 7) = P(max |u(X, Z, )| = uo) (3.1
where |-| denotes absolute value expression; u, is the prescribed threshold on the
response; and u(-) is the response time history, which is assumed to be affected by
the two vectors of random variables X and Z. First, the "basic" random variables
X € R™ include time-invariant random parameters associated with the structural
system, such as damping ratios and story stiffnesses, and the wind hazard model, e.g.,
3-second gust wind speed and turbulence intensity. On the other hand, the
"environmental" random variables Z € R™z characterize the stochasticity of the
wind loads in the time or frequency domains. Thus X and Z are assumed to be
independent of each other. Note that x and z, respectively, denote the realizations
of the random vectors X and Z. The failure domain F is defined as the event that
the maximum structural response exceeds a prescribed threshold, i.e., F = {(x, z) :
ggglsaglu(x, z,t)| = up}.

Eq. (3.1) can be computed by the following multidimensional integral by using

the indicator function of the failure domain:
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Py = f f Ix(x,2) fx(x)fz(2) dxdz (3.2)

where fy(x) and f7(z), respectively, denote the joint probability density functions
(PDFs) of the random vectors X and Z; and Ig(x,z) is the binary indicator
function which gives "1" if (x,z) € F and "0" otherwise. The integral in Eq. (3.2)
incorporates the PDF of environmental random variables fz(z), which often
involves the sequence of stochastic excitation. This makes the reliability estimation
a high-dimensional problem (generally more than hundreds), which may forbid the
efficient assessment of the structural system's reliability (Alibrandi 2014; Suksuwan
and Spence 2018). Moreover, the complexity of the failure event hampers the
practical implementation of Eq. (3.2). It has been known that no exact solution exists
for general cases, and thus the assessment of the first-passage probability entails a

large number of dynamic simulations.

3.2.2 Stochastic wind-field model

Various modeling approaches have been developed for wind loads — data-driven
methods, computational-fluid-dynamics (CFD), and stochastic simulation methods
(Wood et al. 2001; Chen and Kareem 2004; Wang et al. 2013; Spence et al. 2016).
In this chapter, the stochastic wind-field model is adopted to characterize the
stochastic nature of wind excitations. Based on the conventional quasi-steady theory,
the stochastic wind load at the ith location can be expressed as (Li and Kareem 1993;

Spence et al. 2016)

1 _ _
fi(®) = EpaCDAi(V(hi) +v(h;, ©))* = paCpA;V (h)v(hy, t) (3.3)

where h; is the height of interest, e.g., the top of a building structure; A; is the
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tributary area at h;; p, is the air density; Cj is the drag coefficient; V(h;)
denotes the temporal average of the wind speed at h;; and v(h; t) denotes the
zero-mean fluctuating component of the wind speed at h;. Based on ASCE 07, the

temporal average of the wind speed at h; is given as (ASCE 2017)

_ _hi\®
V(hy) = V,b (E) (3.4)
where @ and b are the constants characterizing the exposure condition; and V}, is
the basic wind speed (or 3-second gust wind speed).
The along-wind velocity fluctuation component at h;,i.e., v(h;,t) inEq. (3.4)

can be defined through the power spectral density (PSD) model in the frequency

domain (Kaimal et al. 1972; Cheynet et al. 2018)

5(0)) _ 1_72 ashi 1
' - V(h) wh; 5/3 (3.5)
(1+ bsmm)

where w denotes the turbulence frequency; a, and bg are the spectrum
coefficients; and v, is the friction velocity of the wind flow, defined as

— Vb —8
Ve = P (10 /hy) (3.6)

where k, is the von Karman constant; and h, is the roughness height at the site of
interest. To incorporate the correlation between the fluctuating wind components at
arbitrary heights h; and h,, the following coherence function (Davenport, 1972) is

incorporated:

wCZlhi - hkl
0.5[V(hy) + V(hy)]

Yir(w) = exp [— (3.7)

in which y;;(w) denotes the exponentially decaying coherence function between
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the two stochastic wind processes v(h;,t) and v(hy,t); and C, is the decay
coefficient. Then, the spectral models in Egs. (3.5)-(3.7) constitute the cross-PSD

matrix S(w) whose element is defined as follows:

Sik (@) = /Si(@)Sk (@)Y (w) (3.8)

3.2.3 Simulation of stochastic wind time history

Because the cross-PSD matrix S(w) is Hermitian and positive definite, the matrix
can be decomposed by a lower triangular matrix H(w) and the transpose of its
complex conjugate H*(w), ie., S(w)=H(w)H*(w)T using the Cholesky
decomposition method. Then, the components of the m-variate (representing m
different locations) wind vector process v(t) can be simulated by the spectral

representation method (Deodatis 1996), defined as

U(hi' t) =2 lellHir(wrs)lmcos[wrs(t) - air(wrs) + ¢rs] , (39)
i=1,..m

where H;. is an element of the lower triangular matrix H(w); Aw is the
discretization resolution in frequency; ng is the total number of sampling points;
and w, = (s — DAw +rdw/m,s =1, ...,ng. ¢,¢ describes the m sequences
of ng independent random phase angles uniformly distributed over the range of
[0,27]; and a;, is the complex phase angle of the simulated time histories, defined

as

1 Im[Hir (w)]

air(w) = tan~ m

(3.10)

where Re[:] and Im[:] are the real and imaginary parts of the complex number,

a4 = 4



respectively. In particular, the elements of random phase angles ¢, characterize
the inherent randomness of stochastic wind excitations and belong to the
environment random vector Z in Eq. (3.1) and Eq. (3.2). Figure 3.1 shows the
comparison between the normalized target PSD model for along-wind velocity in Eq.
(3.5) with the normalized PSD of a randomly generated sample by spectral

representation method in Section 3.2.3.

10°

Target spectra
—-=-— Simulated

10 1073 102 107 10°
wz/V

Figure 3.1 Comparisons between target and simulated normalized PSD of the wind
velocity

3.3 Challenges in employing surrogate models for stochastic
dynamical systems

A Gaussian process model, also known as Kriging, is often used to construct a
surrogate of a complex function, e.g., response of a nonlinear structural system,
based on training datasets of input-output pairs. In the first-passage probability
problem in Eq. (3.1), the response quantity of interest might be the absolute value of

maximum displacement response, i.e., M = gggxlu(X,Z, t)| which could be
<T

predicted using surrogates. Thus, one can directly collect the pair of the training set
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by obtaining the structural responses M at the input points of all-inclusive random
vectors in Eq. (3.1), i.e., W = [X, Z]T. However, the high dimensionality of the
input parameters associated with wind's stochastic characteristics, Z often makes
predictions using such an approach infeasible. Therefore, it is desirable to handle the
influences of the two random vectors X and Z on first-passage failure probability
separately (Gidaris ef al. 2015; Kanjilal ef al. 2021).

The proposed method thus aims to address the aforementioned first-passage
probability problem by developing a surrogate-based method to consider
variabilities arising from the external wind excitation and structural system
parameters. In addition, an adaptive surrogate training process is developed to
identify the experimental design, effectively reducing the computational costs
(Dubourg et al. 2011; Zhang et al. 2017; Wang and Broccardo 2020). To this end,
the proposed AL-HGP introduces an alternative first-passage probability formulation
whose distribution parameter functions are identified by a heteroscedastic Gaussian
process model. An active learning framework is also introduced to train the
surrogates through an adaptive selection of simulation points achieving efficient

convergence.

3.4 Development of active learning-based heteroscedastic
Gaussian process (AL-HGP)

3.4.1 Alternative formulation using conditional distribution

To handle the influences of the two random vectors X and Z on first-passage
failure probability separately, the probability of failure in Eq. (3.2) is alternatively

expressed using the conditional first-passage probability given the outcomes of the
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basic random variables without loss of generality, i.e.,

pr = fx ERnxPﬂX(x*)fx(x*) dx, (3.11)

where prx(x,) is the conditional first-passage probability given x = x,,

expressed as

prx(x.) = f Iy (x.,2)f(2) dz (3.12)

zZER™z

where Iz(:) is the indicator function introduced in Eq. (3.2). The conditional
probability in Eq. (3.12) describes the influence of the variability stemming from
stochastic sequences on a deterministic structure represented by x = x,.

This conditional probability is usually approximated as follows using the
lognormal distribution, which is commonly utilized within the performance-based
wind engineering framework (Ellingwood et al. 2004; Masoomi et al. 2018;

Subgranon and Spence 2021; Abdelhady et al. 2022):

(3.13)

prx(x) =1—-P[M(x,2) Supgl =1—- <M>

¢(x.)
where M (x,,2) is the stochastic response of interest for a specific input x,; ®(-)
denotes the cumulative distribution function (CDF) of the standard Gaussian
distribution; and A(-) and {(-) are the mean and standard deviation of the natural
logarithm of the response, respectively. Substituting Eq. (3.13) into Eq. (3.11), the

first-passage probability can be estimated as

. Inug — A(x,)
Pre 'L*ERnx [1 - (((T)] fx(x.) dx.

Nk 314
“ 1o 1 ® <1n Ug — A(xk)> .19
k=1

ng {(xy)
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where xj is the kth random sample generated from fy(x), k =1,...,n,. Eq.
(3.14) computes the first-passage probability by a mixture of Gaussian densities,
each of which is obtained at a random sample xj.

As a result of the conditional distribution based formulation and the lognormal
distribution approximation, the first-passage probability problem can be solved by
estimating the two distribution parameter functions A(x) and {(x). It is also noted
that other distribution types, e.g., Gumbel distribution, Weibull distribution, can be
adopted in this formulation using a proper transformation from the standard Gaussian
space (Der Kiureghian 2022). A geometric representation of the proposed

formulation of the first-passage probability is provided in Figure 3.2.

InM A prix(x.)

% Observations

R P L — e e o

Figure 3.2 Conditional distribution based formulation of the first-passage
probability

3.4.2 Estimation of distribution parameters

As discussed in Section 3.4.1, the distribution parameter functions in Eq. (3.14)
describe the trends of the mean and standard deviation of the log-observations over
the input space x. A naive estimation of these parameters would require repetitive

A 21
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dynamic simulations per each x, which can be prohibitive in computational costs
(Gidaris et al. 2015; Ghosh et al. 2018). Therefore, it is essential to estimate the
distribution parameter functions with a minimal computational burden for efficient
evaluations of the first-passage probability. The proposed AL-HGP predicts the
distribution parameter functions by constructing GP-based surrogates, denoted by

Acp(x) and {cp(x) as follows.

3.4.2.1 Heteroscedastic Gaussian process

Let us first consider the inputs of the simulations, xq = [xy,...,Xx,]T and the
corresponding log-responses observed at independently sampled sequences of
excitations, i.e., InMp = [In M (x4,2,),...,In M (x,,,2,)]T. These observations
exhibit a certain level of noise because of the uncertainties stemming from the
stochastic characteristics of wind loads. Furthermore, the influence of the excitation
sequences on the response varies across the input space x, and thus the prediction
model should incorporate the input-dependent noise (Kyprioti and Taflanidis 2021).
This noise is not commonly assumed in the standard GP model that describes the
additive noise with fixed variance, i.e., homoscedastic noise.

Therefore, the proposed method employs a GP model with input-dependent
noise, i.e., heteroscedastic noise, to predict the distribution parameter functions. Let
us consider the GP model in Eq. (2.4) in Section 2.2.2, that is, Y = y(x) + €.
Replacing the general output Y by the log-observation In M, and introducing the

Gaussian heteroscedastic noise £(x), the GP model is described as

InM = y(x) + e(x) where e(x)~N(0,7r(x)) (3.15)
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where 7r(x) =exp(g(x)) is the variance of the heteroscedastic noise
parameterized to ensure a positive value. The noise variance can be modeled by
placing another GP prior g(x)~GP (o, kg(x,x")). The model is then composed of
two latent functions y(x) and g(x) with the augmented hyperparameters @4 =
{0,,04, 4o}, in which 6, and 6, respectively denote the hyperparameters for the
kernel functions k,, (x,x") and k4 (x,x"). Because of the additional latent function
on the heteroscedastic noise, the marginal likelihood in Eq. (2.5), and the predictive

distributions of response in Egs. (2.6)-(2.8) are now analytically intractable.

3.4.2.2 Predictions of distribution parameters

Lazaro-Gredilla and Titsias (2011) introduced the marginalized variational (MV)
bound to identify the best-factorized approximation of the predictions in terms of
Kullback-Leibler (KL) divergence. Based on the MV approximation, a rigorous and
analytically tractable lower bound of the exact marginal likelihood can be obtained
in terms of two sets of parameters — mean vector m and covariance matrix V — as

follows:

1
BMv(m, V) = lan(lnMD;O, Ky + R) _Ztr(V)

(3.16)
— KL(fy(g: mV)|lfv(g; o1, Ky))

where fy(-) is the PDF of a multivariate Gaussian distribution; 0 is the vector of
zeros; K, and K, are the covariance matrices of y(x) and g(x), respectively;
R is the diagonal matrix with elements R;; = exp(mi — Vili/Z) ,i=1,..,n; tr()
is a trace operator of the matrix; KL(-) expresses the KL divergence between the

two distributions; and 1 denotes the vectors of ones. Then, the optimal estimates of
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the augmented hyperparameters, ®, can be obtained by maximizing this lower
bound. For an efficient optimization, a positive semi-definite diagonal matrix A can
be introduced to re-parametrize the variational parameters m and V in a reduced
order (Lazaro-Gredilla et al. 2013; Rogers et al. 2020).

Next, with the optimal hyperparameters, the predictive distribution at a new

point x,, p(InM,) can be computed by the following integral:

p(InM,) = f f p(In M, |y., g )r(v.)p(g.) dy. dg.

= ffN(lnM*;a*,Cf + exp(g.))fn (g X, ¥E) dg. e

where a, =k, (K,+R)™'InMp and c? =k, —kj.(K,+R) 'k, are
respectively the posterior mean vector and covariance matrix of y(x) while y, =
kg*(A - %I)l + o and y2 = kg — k;*(Kg +A™") 7'k, are those for g(x).
The predictive mean and standard deviation functions of In M, at input point x,

then can be derived in terms of GP kernel functions as follows (Lazaro-Gredilla and

Titsias 2011):

Aep(x.) = E,[InM.] = a, (3.18)

Cop(x,) = ’Varp[ln]\/[*] = Jexp(x, +¥2/2) + c? (3.19)

where Ep[-] and Var,[-] respectively denote the mathematical expectation and

variance under p(In M,). As a result, the predictive mean and standard deviation in
Egs. (3.18) and (3.19) serve as GP-based estimates of distribution parameter
functions Agp(x) and {;p(x) respectively, under the heteroscedastic noise
assumption. AL-HGP utilizes both predictions for estimating the first-passage

probability in Eq. (3.14). The heteroscedastic GP model can predict the distribution
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parameter functions without requiring repetitive simulations per each x. It is also
noted that AL-HGP needs to establish only one surrogate model to estimate both
distribution parameter functions Agp(x,) and {zp(x,) and therefore, they do not

need to be trained separately.

3.4.3 Adaptive training of surrogates

For efficiency, the proposed method employs an adaptive Design of Experiment
(DoE) scheme (Dubourg ef al. 2011; Zhang et al. 2017) to obtain surrogate-based
predictions by as few dynamic simulations as possible. In detail, the proposed
adaptive learning method iteratively refines the surrogates by computational
simulations at locations recommended by a learning function instead of attempting
to fit limit-state boundaries in the entire domain.

To effectively enrich the DoE, the learning function should be designed to guide
the search process to DoE areas that would significantly improve the first-passage
probability estimation. For this, the random samples x introduced in Eq. (3.14) are
directly used as candidate points for the next DoE. In particular, the formulation in
Eq. (3.14) introduces a mixture of nj, Gaussian CDFs evaluated at given threshold
level uy, each of which indicates the conditional probability of first-passage failure
at the sample point xj. Note that each GP-based conditional failure probability at
X, directly presents the relative importance of the corresponding locations in terms
of the total first-passage probability. Therefore, after constructing the surrogates
based on the initial DoE points, AL-HGP selects the random sample that minimizes

the learning function as the next simulation point, that is,
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<1n Ug — iGP(xk)> (3.20)

6GP(xk)

Xpest = argmax pgix(xy) = argmin @
Xk Xk

where Agp(x,) and {gp(xy) are the logarithmic mean and standard deviation in
Eq. (3.18) and Eq. (3.19) estimated at x = x,, respectively. Because the Gaussian
CDF ®(-) is a monotonically increasing function, the logarithmic mean A;p(-) in
the numerator encourages computational simulations in the vicinity of the current
maximum over the threshold. On the other hand, the logarithmic standard deviation
{cp(+) in the denominator promotes simulations at less-explored areas, especially
for those under the threshold level (where the numerator is positive) because most
of the observations are usually lower than the given threshold in typical first-passage
probability problems. Therefore, the learning criteria help guide the search toward
the regions that have a significant influence on the first-passage probability in terms
of the given threshold level u,, utilizing the GP-based predictions on distribution
parameter functions.

To illustrate this point, Figure 3.3 shows the GP-based densities at two
candidate points denoted by x; and x, respectively representing points with
relatively large mean and small variability (standard deviation) and those with
relatively small mean and large variability. Given the threshold level, the
corresponding conditional failure probability at x, is greater than that of x4, and
thus AL-HGP method will prioritize x, as the next point of the computational

simulation.
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Figure 3.3 lllustration of conditional probabilities of failure for sample points (x;
and x,) using the GP-based densities giben threshold level

3.4.4 Convergence criteria

The proposed adaptive learning procedure updates the first-passage probability until
satisfying the selected convergence criterion. Inspired by the CDF distance metric
utilized for adaptive seismic fragility analysis (Chun et al. 2000; Kim et al. 2021),
the proposed method employs the convergence criteria defined in terms of the

normalized probability distance (NPD) as follows:

1. p . Dy2 1/2
glNPDz(fO(ui_l u;) dp) (3.21)

#ui

where uf denotes the p-quantile of the first-passage probability function in Eq.
(3.14), i.e., the threshold level that makes the first-passage probability p, i.e.,
pr(uP) = p, at the ith learning step. The denominator u,,, denotes the mean value

of the quantiles from the ith iteration, normalizing the NPD. As shown in Figure 3.4,
NPD considers the relative increment of the first-passage probability curve,

capturing the differences in both mean and variability. This curve can be obtained by
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calculating the proposed formulation in Eq. (3.14) at a set of thresholds using the
trained surrogates at each learning step. Thus, the NPD quantifies the overall distance
(or difference) between the first-passage probability curves identified in the current

and previous learning steps.
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Figure 3.4 NPD measure capturing the difference in (a) mean and (b) variability of
the first-passage probability curves

The AL-HGP monitors whether the NPD at two consecutive steps becomes

small and stagnant as the learning process proceeds. To this end, the NPD value at

i(l) = ¢NPP and the convergence "trend" defined as e? =

the ith learning step, & i

)

are calculated at each iteration. If both si(l and ei(z) become smaller

D @™
i-1 7 & |

E

®
tol

()

than the specified tolerances &,,; and €., ;, respectively, the iteration is terminated.

3.4.5 Algorithm

The algorithm of the proposed AL-HGP is summarized as follows and illustrated by

the flowchart in Figure 3.5:

2] S &
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[ Set initial values of parameters: -:nu.nk,efsz,s(z)‘ ]

tol)

Construct ny initial DoE points by LHS

!

Generate ny samples as learning candidates

}

Perform dynamic analyses for obtaining

— . - -
maximum responses on DoE points
Construct the heteroscedastic GP-based surrogates
and predict the distribution parameter functions
Active learning: Enrich the DoE l
& Train hyperparameters

Calculate the first-passage probability using
the predictive distribution parameter functions

[ End of method: p;(ug; 7) ]

Figure 3.5 Flowchart of AL-HGP algorithm

Construct the initial DoE points: mg initial DoE samples xp =
[%1, ) Xp 0]T are generated from the vector of basic random variables X
(time-invariant random parameters) using Latin Hypercube Sampling
(LHS). The domain of LHS is setto [|x||; < ux + 30y.

Generate random samples: Generate n;, samples x,,k =1,..,1n%
according to the sampling density f;(x). These sample populations are
used as candidate locations for computational simulations, that is,
candidates for statistical learning. The first-passage probability is

determined based on the predictions on these sample points. The population

size n, = 104~10° seems to be a reasonable choice from the experience.
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Perform dynamic analyses: Perform dynamic analyses under stochastic
wind loads and obtain the maximum displacement responses at each DoE
point. The datasets of input-output pairs are used to construct the surrogate
models. Note that samples of environmental random vector Z are
generated to simulate stochastic wind loads for each DoE point.

Estimate the distribution parameter functions by GP-based surrogates:
Obtain the estimates of the optimal augmented hyperparameters, ©, by
maximizing the MV approximation bound in Eq. (3.16) using the current
DoE points. Then, construct a GP-based surrogate model with
heteroscedastic noise. The predictive mean and standard deviation in Eq.
(3.18) and Eq. (3.19) are utilized for calculating the first-passage
probability in Eq. (3.14).

Train surrogates by active learning process: ldentify the sample point
minimizing the learning function as the next best simulation point Xj g
as described in Eq. (3.20). At this stage, the DoE is enriched by acquiring
dynamic simulation at xj., to update the surrogate model and
corresponding predictions on distribution parameter functions.

Check the convergence criteria: Repeat Steps 2-5 as enriching the DoE until
both convergence criteria €™ and £® become smaller than the
predefined tolerances.

End of AL-HGP: Once converged, AL-HGP stops the iteration and provides

the current estimate of the first-passage probability as the final estimate.
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3.5 Numerical examples
3.5.1 Application to an eight-story building

The first example investigates an eight-story walled building structure in Figure 3.6
where only the walls contribute to the lateral resistance against the wind loads. The
structure is modeled as a linear elastic building subject to dynamic forces caused by
fluctuating winds. Table 3.1 and Table 3.2 present the building properties and wind
hazard model parameters, respectively, adopted from the final report of the Applied
Technology Councils (ATC) project and ASCE 07 (ASCE 2017; FEMA 2018).
Figure 3.7 shows one of the simulated fluctuating wind speed time histories, v(h,t)
at the eighth-story of the building. The duration of the simulated time history is
assumed to be 10 minutes (600 seconds). In this example, the following two cases

are considered regarding the type and dimension of random variables.

Stochastic wind loads

—mfSli - @m

IVIIIII/I:;:;;:::J;::;;;;::;

Figure 3.6 Structural model of eight-story building
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Fluctuating wind speed (m/s)

Time (s)

Figure 3.7 Simulated fluctuating wind speed time history at the eighth story

Table 3.1 Structural parameters of eight-story building model
Name Parameter Value

Building height (ft) By, 106
Building width (ft) By 120
Building weight (kip) B, 21,276
The first mode period (s) T, 1.13
Story stiffnesses (kip/in) k; 6,200
Damping ratios Cj 0.02
*For j=1,..,8
Table 3.2 Parameters of wind hazard model
Name Parameter Value
Basic wind speed (mph) Vy 95
Air density (kg/m®) Pa 1.226
Exponent parameter a 0.25
Gust parameter b 0.45
Drag coefficient Cp 1.3
Decay coefficient C, 10
VVon Karman constant K, 0.4
- ag 105
Spectrum coefficients b, 33

3.5.1.1 Case 1: uncertain parameter in the wind hazard model

Let us first consider the case in which a wind hazard model parameter is considered
a random variable. To this end, the basic wind speed (or 3-second gust wind speed)

in Egs. (3.4)-(3.6) is parameterized by V,, = V&, where V, is the nominal value
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and &, is a non-dimensional random variable, assumed to follow the Gaussian
distribution with a mean u, =1 and a standard deviation g, = 0.1, that is,
£,~N(1,0.1%2). The nominal value is set to V¥, =95 (mph). Thus, &, is
considered a random variable included in the random vector X in Eq. (3.1).
Following the procedure described in Section 3.4, the AL-HGP method is
applied with 50 initial DoEs. The convergence tolerances egl) and st(gl) are set to
0.001, which was recommended in a previous study on structural fragility (Kim et
al. 2021). The responses of interest are eighth-story and first-story drifts whose
displacement thresholds are u, = 0.16 (in) and u, = 0.0325 (in), respectively.
Figure 3.8 presents initial stages of adaptive learning with the DoEs at top drift,
denoted by the red-plus markers. The solid curves show the reference values of
distribution parameter functions, i.e., Aycs(x) and Aycs(x) + Cyes(x), obtained
by 50,000 Monte Carlo Simulation (MCS) on each point x. The distribution
parameter functions estimated by GP-based surrogates, Agp(x) and Agp(x) +
{ep(x) are represented by dashed-line respectively. Based on the estimated
parameters, the two conditional distributions of the maximum response at x = 1
and x = 1.3 are shown in Figure 3.8. It is noted that the relative contributions of
the location at x = 1.3 are more significant than those at x = 1 because of the

conditional first-passage failure computed by Eq. (3.13).
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Figure 3.8 Initial stage of adaptive learning with AL-HGP

Figure 3.9 shows the trained surrogates and all DoE points explored up to the
final step to illustrate the progress of AL-HGP after 38 simulations for the eighth-
story drift. In particular, the blue-cross markers indicate the sample selected by the
adaptive procedure in Eq. (3.20), Xp.s- The result confirms that most of the sample
points selected by AL-HGP reside in the critical domain, improving the prediction
accuracy of the surrogate model selectively around the specific region. Therefore,
AL-HGP can construct an effective surrogate model from the viewpoint of the first-
passage probability problem and thus fit the distribution parameter functions
sufficiently well, especially in the region that contributes most to the first-passage

probability py.
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Figure 3.9 Final experimental designs for eight-story building system with basic
wind speed as random variable

To investigate the accuracy of the GP-based surrogate, Figure 3.10 plots the KL
divergence between the two Gaussian distributions whose parameters are,
respectively, obtained by MCS (solid lines in Figures 3.7 and 3.8) and GP-based
surrogates (dashed-lines in Figures 3.7 and 3.8). The KL divergence measure Dy,

(Kurtz and Song 2013; Kanjilal ez al. 2021) is computed as

lop () Cocs () + Apes(x) — Agp(x))? _l
chs(x) i Zzép () 2 (3:22)

DKL = ln

Figure 3.10 shows the changes of the KL divergence in the domain of x = ¢,
over the adaptive learning procedure after identifying 1, 12, and 38 simulations for
the eighth-story drift. AL-HGP successfully converges the GP-based surrogate
toward the reference distribution by adaptively enriching surrogates, especially in

the critical domains, which contributes most to the first-passage failure.
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Figure 3.10 KL divergence between the references from the MCS and estimates by
GP-based surrogates through iterations

Figure 3.11 compares the first-passage probability by the proposed method
(blue-dashed line) with the reference (black-solid line) estimated by MCS (10°
dynamic simulations leading to a coefficient of variation of 5% at the threshold level).
It is noted that only 48 and 33 dynamic simulations are additionally performed to
obtain the first-passage probability estimates after 50 simulations on initial DoE
points for the eighth-story and first-story drifts, respectively. The results confirm that
the proposed method produces accurate estimates with a significantly reduced
number of dynamic simulations. The gray curves in the plots are 200 first-passage
probabilities, each of which is a surrogate-based prediction based on the randomly
selected DoE points. For comparison, each curve uses the same total number of
simulations as AL-HGP, i.e., 98(=50+48) and 83(=50+33) simulations, respectively.
In detail, the curves show the "non-adaptive" results by surrogate-based predictions
using only Steps 1-4 of the algorithm in Section 3.4.5. These curves demonstrate

large variability one could introduce by using randomly selected DoE points instead
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Figure 3.11 First-passage probabilities by AL-HGP and MCS for (a) eighth-story
and (b) first-story drift
of active learning of surrogates.

Figure 3.12 shows the convergence histories of NPD in Eq. (3.21) during the
active learning procedure. The red-cross markers show the NPDs between
consecutive learning steps whose values decrease as the iteration proceeds. The blue-
plus markers are the NPDs between the first-passage probability calculated at each
step and the optimal estimates at the final learning stage. It is noted that the blue
markers are calculated only to demonstrate that the estimated first-passage
probabilities are converging to the final estimates. The convergence histories of the
AL-HGP analysis, starting from the initial experimental designs, confirm that the
proposed method facilitates convergence to the final values through a small number

of iterations.
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Figure 3.12 The normalized probability differences (NPDs) of the estimated first-
passage probability with respect to the previous learning step and final estimates
for (a) eighth-story and (b) first-story drift

3.5.1.2 Case 2: uncertain parameters in both structural system and
hazard model

The second case of the example considers the random variables associated with the
structural system and wind hazard model. The modal damping coefficients of the
building are parameterized by ¢; = &.;¢;,j = 1,...,8 where ¢; are nominal values
set to 0.02 and &.; are random variables following a multivariate Gaussian
distribution with means of one and covariance matrix in which the covariance
between &, and &g is defined as Xy = (0.2)? exp[—(j — k)?/2%]. The
exponential function is introduced to represent the decaying correlation of damping
coefficients (Zhang et al. 2017). For wind loading, the basic wind speed and air
density are also modeled using random variables &, and ¢,, respectively, i.e.,
Vy, = Vpe, and p, = Pa€p- The nominal values are respectively set to 7, =95

(mph) and j = 1.226 (kg/m®). The parameters &, and ¢, are modeled as
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Gaussian random variables with the coefficient of variations (c.0.v.) 0.10 and 0.04,
respectively (Slot et al. 2020; Abdelhady ef al. 2022). As shown in Table 3.3, the
random vector X includes ten variables describing uncertain parameters in the

structural system and wind hazard model.

Table 3.3 Random variables associated with the structural system and wind hazard
model for an eight-story building example (Case 2)

Random variables Mean C.0.V. Distribution
Damping coefficients, &.; 1 0.20 Correlated Gaussian
Basic wind speed, ¢, 1 0.10 Gaussian
Air density, &, 1 0.04 Gaussian

*For j=1,..,8

Figure 3.13 presents the results of the AL-HGP method. The AL-HGP method
is applied with 200 initial DoEs and convergence tolerance values 0.001. The
response of interest is the eighth-story drift, whose threshold is uy = 0.195 (in).
The correlated random samples can be generated by applying proper transformations
to samples generated from uncorrelated standard Gaussian variables (Der
Kiureghian 2022). The estimated first-passage probabilities and the convergence
histories of NPDs are presented in Figures 3.13(a) and 3.13(b). Using the proposed
method, only 358(=200+158) dynamic simulations are needed to estimate the first-
passage probability whose results are compatible with those by MCS, obtained by
5 x 10° simulations leading to a coefficient of variation of 5% at the threshold. The
results indicate that the AL-HGP method successfully addresses the dimension while

producing accurate estimates with fewer dynamic analyses
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Figure 3.13 First-passage probabilities of the eighth-story response in the eight-
story building example (Case 2): (a) comparison between those by MCS and AL-
HGP; and (b) convergence histories of NPDs

The convergence histories of AL-HGP analysis starting from different initial
DoE points are given in Figure 3.14. In each case, the first-passage probability at
threshold level, pf(uo = 0.195) is converged to the reference MCS value after
identifying 160, 230, and 256 simulations, despite randomness in the initial DoEs.
The convergence histories confirm that the AL-HGP method quickly identifies the

area of importance and DoE, enabling rapid convergence to the optimal first-passage

probability.
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Figure 3.14 Convergence histories of AL-HGP during learning procedure for the
eight-story building example (Case 2)
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3.5.2 Application to a transmission tower

The next engineering application example investigates a transmission tower
structure subjected to stochastic wind loads. Figure 3.15 shows the finite element
model of a steel lattice tower structure, created using SAP2000 software to perform
the nonlinear time-history analyses under stochastic wind loads. The tower's height
is 122.8 m, and each tower section consists of several continuous panels with cross-
arms. The tower's foundation is assumed to be rigid, i.e., the model is fixed at the
base. The environmental wind forces caused by fluctuating winds are simulated by
the stochastic wind-field model in Section 3.2.2 and applied to the transverse
direction, as shown in Figure 3.15. Thus, the failure event is defined using the
displacement responses of the transverse direction at the top of the tower with a
displacement threshold of 1.46 m (Albermani et al. 2009; Cai et al. 2019). The time
duration of consideration is 10 minutes (600 seconds).

The wind model parameters listed in Table 3.2 are used again to simulate the
wind loads except for the basic wind speed, which is considered a random variable
in this example. The material properties, i.e., modulus of elasticity E and yield

strength f,,, of two steel types in the tower structure are also considered random

variables, which may have dominant effects on the failure of the tower (Cai et al.
2019; Mohammadi ef al. 2020; Kim et al. 2021). Table 3.4 summarizes the types and

parameters of the distributions of all random variables.

68 =Y



v
/TN TS
0

v»:«»:«'
Ve w7

X

(@)

Figure 3.15 Finite element model of transmission tower example: (a) perspective
view, (b) plan view, and (c) front view

Table 3.4 Distribution types and parameters of the random variables in a
transmission tower example

Random variables Distribution Mean C.0.v.
V, (mph) Gaussian 120 0.07
Eg,75 (Mpa) Lognormal 200000 0.03
Eg360 (Mpa) Lognormal 200000 0.03
fy,s275 (Mpa) Lognormal 275 0.05
fy,s360 (Mpa) Lognormal 360 0.05

o : ,H *_ 1_-_]'| '@} o

e



After the AL-HGP method is initiated with 100 initial DoEs, i.e., 100 time-
history analyses of the tower structure, the surrogate models are refined by the
proposed active learning procedure. Figure 3.16(a) presents the estimated first-
passage probability compared with the MCS result by 5,000 simulation data, while
the convergence histories of the NPDs are shown in Figure 3.16(b). The AL-HGP
method needs only 236(=100+136) time-consuming simulations to obtain accurate
estimates. Figure 3.17 demonstrates that the proposed method facilitates
convergence to the optimal first-passage probability requiring only 102, 130, and
139 simulations even if different experimental designs are used in the initial stages.
This example confirms that the AL-HGP successfully deals with first-passage

problems involving high computational costs.
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Figure 3.16 Results of applying AL-HGP to transmission tower example: (a)
comparison of the first-passage probability, and (b) convergence histories of NPDs
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Figure 3.17 Convergence histories of AL-HGP during learning procedure for
transmission tower example

3.6 Summary

This chapter proposed a new adaptive surrogate-based analysis framework for first-
passage problems, termed active-learning-based method by Gaussian process with
heteroscedastic noise (AL-HGP method). The main objective of the AL-HGP is to
carry out an adaptive selection of simulation points with low computational costs
from the reliability analysis standpoint under stochastic wind loads. The method
utilized the Gaussian-process-based surrogates whose predictive mean and variance
were employed to capture the conditional distribution of maximum response given
the time-invariant basic random variable while handling heteroscedastic noise. This
framework considered both uncertainties arising from the structural systems and the
environmental wind loads. The proposed active learning framework further reduced
the number of computational simulations by identifying the critical design of
experiment (DoE) points that contribute most to the first-passage probability. The
applications to the eight-story building system and transmission tower structure
successfully demonstrated the performance and merits of the proposed method. In
each example, the proposed method required fewer dynamic simulations to achieve

accurate results, while the "non-adaptive" surrogate-based estimations could produce
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inaccurate results with considerable variability. The transmission tower example
demonstrated that AL-HGP could deal with high-fidelity computational simulations,
e.g., finite element analyses, without losing the benefits and merits of the proposed
method. Thus, AL-HGP is expected to effectively deal with such challenging and

time-consuming problems in practical engineering.
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Chapter 4. Reliability-Based Design Optimization
Using Active Learning-based Quantile
Surrogates

4.1 Introduction

Uncertainties in engineering systems, arising from lack of data, modeling
approximations, or inherent randomness in the systems and their environment, may
have a significant impact on the system performance. With the growing complexity
of modern engineering systems, it is essential to manage the impact of such
uncertainties in their design process. A design procedure that properly handles these
uncertainties can assure the reliability of engineering systems by preventing the risk
of unexpected failures that may eventually result in catastrophic damage or losses.
Thus, appropriate strategies are required for uncertainty quantification and
optimization in the design process of structures and other engineering systems. To
this end, reliability-based design optimization (RBDO) has been extensively studied
to achieve reliable optimal design of systems whose failure probability, i.e., the
probability of violating the given constraints is lower than the target level of failure
probability (Tu ef al. 1998; Dubourg et al. 2011; Chun et al. 2016; Byun and Royset
2021).

However, it is challenging to accurately obtain the reliable optimal design since
RBDO needs to evaluate the system’s performance repeatedly, which may prevent
unique and converged design solutions (Du and Chen 2004; Youn and Choi 2004;

Jensen et al. 2020). This issue is exacerbated especially when the computational cost
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of system performance evaluation is high. Reducing the number of function
evaluations, therefore, is an essential task for effective RBDO in engineering practice.
In these research efforts, adaptive surrogate methods were employed for efficient
RBDO by constructing the “quantile surrogates” directly with Gaussian process
model.

To overcome the aforementioned challenges in applications of RBDO, this
chapter develops a new adaptive RBDO method employing quantile-surrogates,
termed quantile surrogates by adaptive Gaussian process (QS-AGP). To identify the
probability-feasible design domain, which is formulated in terms of the quantile of
the performance function, Gaussian process models are utilized to build surrogates
of the quantile. Both inherent randomness of the input random variables and
epistemic uncertainty of surrogate model errors are considered in predicting the
quantile using the surrogate model. At each step of the adaptive DoE procedure, the
quantile estimate and the corresponding prediction variance are derived at each
sample of @ from the mixture distribution based on the GP model and inherent
randomness of X. In addition, a new learning function is introduced to facilitate the
exploration-exploitation trade-off based on the quantile surrogate model in trying to
identify the best design of structures.

The chapter first provides a brief overview of the RBDO problem and quantile
formulation of probabilistic constraints in RBDO that are employed to represent
probability-feasible design domain in the proposed method. Then, the following
details of QS-AGP will be introduced: (1) the optimization by design samples, (2)
the quantile estimation by mixture distribution, (3) the learning function proposed

for exploration-exploitation trade-off, and (4) the adaptive RBDO algorithm.
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Through numerical examples of challenging RBDO problems, the QS-AGP will be
tested in terms of (1) accuracy for highly nonlinear performance functions, (2)
robustness against various distribution types, and (3) efficiency, i.e., the number of
performance function evaluations required for convergence. Lastly, a summary and

concluding remarks are provided (Kim and Song 2021a).

4.2 Reliability-based design optimization (RBDQO)
4.3.1 General RBDO formulation

RBDO generally aims to find the values of design parameters that minimize the cost
function while satisfying deterministic and probabilistic constraints representing the
given requirements. Given the probabilistic distribution model of the random vector
X, a general mathematical formulation of RBDO problems can be written as

min £(6)

s.t. P[gi(X;0) <01 <Pf, i=1,..n (4.1)

hi(@) <0, j=1,..,m, ol <o <o’

where f(:) denotes the cost (or objective) function; @ € R™@ represents the vector
of design parameters, which often includes the means of the random vector X; g;(:)
and Pfti are respectively the ith performance (or limit-state) function indicating the
occurrence of the failure event by g;(-) < 0, and the corresponding target failure
probability, i =1,...,n.; h;(-) is the jth deterministic constraint function, j =
1,..,np; and @Y and @Y are the lower and upper bounds on the vector of design
parameters 6, respectively. Since distribution parameters of the random vector X
are often considered as design parameters in 6, the design under consideration,

represented by 6, should satisfy the probabilistic constraints in Eq. (4.1). To check
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Figure 4.1 Concept of reliability-based design optimization process

whether the design at each iteration step satisfies the probabilistic constraints, RBDO
needs to perform reliability analysis repeatedly, which is a main computational
challenge in RBDO (Enevoldsen and Sorensen 1994; Youn and Choi 2004; Nguyen

et al. 2010). The general concept of RBDO is illustrated in Figure 4.1.

4.3.2 Reviews on RBDO methods

In order to handle the probabilistic constraints in RBDO effectively, various
approaches have been developed (Enevoldsen and Sorensen 1994; Youn et al. 2003;
Nguyen et al. 2010; Liang et al. 2007; Nguyen et al. 2010; Chun ef al. 2019). RBDO
methods based on the concept of the First Order Reliability Method (FORM), e.g.,
Reliability Index Approach (RIA) (Enevoldsen and Sorensen 1994) and Performance

Measure Approach (PMA) (Tu ef al. 1998; Youn et al. 2003), perform nonlinear
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constrained optimization in standard Gaussian space (Der Kiureghian 2022). The
RIA and PMA approaches respectively use Hasofer-Lind Rackwitz-Fiessler (HL-RF)
and Advanced Mean Value (AMV) optimization algorithms to identify the reliability
measures given design parameters, which may prevent unique and converged design
solutions if the RBDO problem features small failure probability and/or high
nonlinearity. These approaches are often called a “double-loop” problem since each
step of the design iterations involves another iteration for reliability analysis. The
double-loop computation, thus, can be prohibitive especially when the cost of
function evaluation is high. As an effort to reduce the computational burden of
double-loop procedure, many RBDO approaches have been proposed in the literature
(Du and Chen 2004; Liang et al. 2007; Nguyen et al. 2010; Moustapha et al. 2016).
For example, Sequential Optimization and Reliability Assessment (SORA) (Du and
Chen 2004) was proposed to decouple the deterministic design optimization and
reliability analysis. The method aims to find the optimal solution by solving a “serial”
single loop optimization, which moves the probabilistic constraints toward
deterministic constraints by use of shift vectors. Several other single-loop (SL)
approaches have been proposed to approximate the solution of the inner-loop
optimization. In these approaches, e.g., SL-KKT (using the Karush—-Kuhn—Tucker
(KKT) optimality condition), SL-SV (using single-loop single-vector method), SL-
RDS (using the concept of reliable design space) (Chen et al. 1995; Liang et al. 2007;
Shan and Wang 2008), the inner-loop is replaced by an equivalent deterministic
constraint using an approximation scheme. Figure 4.2 provides the concepts of four

RBDO methods.
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Figure 4.2 Illlustration of four RBDO methods

4.3 Quantile-based formulation for RBDO

4.3.1 Performance measure

RBDO aims to find the values of @ that minimize the cost function while satisfying
both probabilistic and deterministic constraints. To check the design at each iteration
step with regard to the probabilistic constraints, RBDO algorithms usually rely on
the estimates of the failure probability for 0, i.e., P[g;(X;0) < 0]. Therefore, it is
desirable to construct surrogates in the design parameter space 8 for computational
efficiency. In particular, the proposed method aims to identify the admissible design
domain in 6, termed “probability-feasible design domain,” where any design
choice satisfies the reliability requirements, by use of surrogates representing the
quantile of the performance function (Lee and Jung 2008; Shan and Wang 2008;
Moustapha et al. 2016).

To this end, the probabilistic constraints in Eq. (4.1) is described alternatively

by the cumulative distribution function (CDF) of the performance function and the
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target reliability index S, that is,

P[gi(X; 8) < 0] = Fy,(x,9)(0) < Pf, = &(—Bf) (4.2)
where Fj,(-) denotes the CDF of the ith performance function g;(-); and ®(-) is

the CDF of the standard Gaussian distribution. For an alternative description of Eq.

(4.2), let us consider the Pfti-quantile of the performance function, i.e.,

9p(0) = Fyixe)(P) = inflg € R : Fyoxen(9) = Pf) 43)
where g, is the P}f -quantile of performance function (often termed “performance
measure” (Tu et al. 1998; Youn et al. 2003)); and Eq'l(-) denotes the inverse CDF
of the performance function. During the optimization process, any design choice in
{0]g,(8) = 0} is considered located at the boundary discerning the satisfactory and
unsatisfactory designs from viewpoint of reliability requirement (often termed an
inverse most probable point (MPP) in PMA method (Tu et al. 1998; Youn et al.
2003)). On the other hand, the probability-feasible design domain &, can be
described in terms of the quantile of the performance function as &, =
{0| gp(0) = 0}. Geometric illustrations of the quantile-based formulation for

satisfactory and unsatisfactory design cases are given in Figures 4.3(a) and Figure

4.3(b) respectively.
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Figure 4.3 Geometric representations of performance measure g,, for (a)

satisfactory design, and (b) unsatisfactory design (Note: u, and u, in the figure
denote the axes of uncorrelated standard Gaussian space transformed from the
original random variable space (Der Kiureghian 2022), which are introduced to
facilitate illustration of the quantile concept, but not required in the proposed
method)

4.3.2 Identification of probability-feasible design domain

The proposed scheme aims to construct a surrogate of the quantile, §,(8) to
approximately identify the boundary of the probability feasible domain, i.e.,

{01g,(8) = 0}. This concept is illustrated by Figure 4.4. (In the proposed method,

the cost function f(@) is also approximated by a surrogate (@) to facilitate the
design optimization.) It is noteworthy that the quantiles are the functions of the
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design variables @ only since 6 determines the joint probability density of the
input random variables X. In order to construct the surrogate models using as small
number of simulation points as possible, an adaptive DoE scheme (Zhang et al. 2017;
Marelli and Sudret 2018) is employed in the proposed method. The main goal is to
identify the domains in the design space where a further computational simulation,
1.e., a performance function evaluation, is expected to be the most effective in terms
of finding the optimal design using the quantile surrogate model. The scheme
basically guides the simulation locations toward boundaries of the probability-

feasible design domain, {8|g,(8) = 0}, because the optimal solutions are usually

located at the boundary of a constraint (Shan and Wang 2008; Moustapha et al. 2016).

Note that, in this chapter, the term “samples” refers to the candidate points in 8,
which are generated for the purpose of active-learning, while the term “simulation”
means actual evaluation of the true performance function at the sample point selected

by the active-learning process.

A Limit-state surface: {X|g(X) = 0} Bt déalin
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Figure 4.4 lllustration of probability-feasible design domain in QS-AGP method
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4.4 Proposed quantile surrogates by adaptive Gaussian
process (QS-AGP)

To check if a design belongs to the aforementioned probability-feasible design
domain {8|g,(8) = 0}, the quantile of the performance function at a given design,
gp(0) is estimated based on the probabilistic distributions of input random variables
X. In addition, the model uncertainty of the surrogate-based estimation of the
quantile needs to be quantified for the exploration-exploitation trade-off during the
active-learning process (Jones et al. 1998; Picheny et al. 2010). To this end, the
proposed QS-AGP constructs quantile surrogates by Gaussian Process. A learning
function of QS-AGP is also introduced to encourage computational simulations in
the vicinity of the boundary {6|g,(8) = 0} while giving priorities to more
desirable domains in @ from the viewpoint of design optimization, i.e., domains

where the cost function is smaller.

4.4.1 Optimization based on design samples

Obtaining the sensitivities (or derivatives) of cost and/or constraint functions with
respect to design parameters can be a cumbersome or infeasible task in many
engineering practice, which may prohibit the use of gradient-based optimizer. The
proposed QS-AGP relies on samples uniformly distributed in the design space,
0,1l =1,..,n termed design samples. These design samples are candidate points
for computational simulations, i.e., candidates for statistical learning. Using the
computational simulation results at the initial DoE points and those later selected by
the GP-based adaptive DoE procedure, the quantile estimate and the corresponding

prediction variance are derived at each of the design samples ;. To further improve
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convergence, this study adopts low-discrepancy samples, often termed quasi-random
samples. The improvement of the convergence rate by low discrepancy of samples,
e.g., Sobol and Halton sequence, has been discussed in the literature (Caflisch 1998;
Wang and Fang 2003).

At each step of the adaptive learning process, the probabilistic constraint
feasibility is checked by the signs of the quantile surrogate predictions §,(8;),l =
1,...,n;. Then, among the (approximately) feasible samples, the one with the
minimal cost according to another GP-surrogate of the cost function, (@) is
determined as an approximately optimal solution. Thus, the proposed RBDO method
does not require an additional optimizer or any gradient information regarding the
performance and cost function because it aims to identify one of the design samples
that minimizes f(@) while satisfying the probabilistic constraint according to the

surrogate g, (@) through an active-learning process.

4.4.2 Quantile surrogates by mixture distribution

Using GP-based surrogate models, one can quantify the epistemic uncertainty in the
model error caused by the lack of simulations, in the form of GP prediction variance
in Eq. (2.8). On the other hand, inherent randomness in the RBDO problem is
represented by the probabilistic distributions of X. It is essential to handle both types
of uncertainties in estimating the quantile of the performance function in RBDO
(Girard et al. 2003; Der Kiureghian and Ditlevsen 2009; Li and Wang 2019).

To incorporate both uncertainties into the quantile estimation by surrogates, let
us first consider the Gaussian distribution of GP in Eq. (2.6), ie.,

p(y*lx*, XD, YD) @). Replacing the general output y, by the performance function
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g, and introducing D = {xp, gp} to represent the pair of simulation inputs and
corresponding outputs, the GP-based prediction of the performance function at
x = x, based on simulations at DoE points can be denoted by p(g|x.,D,®). By
the total probability theorem, the predictive distribution of the performance function

is derived as (Girard ef al. 2003)

r(gl6,D) = f p(glx.,D,0)p(x.16) dx, (4.4)

in which p(x,|@) is the probability density function (PDF) of the input random
variables at x = x,, affected by the design parameters 6 . The predictive
distribution is then fitted by a mixture of the GP-based densities of g, each of which
is obtained at random samples generated from p(x,|0), i.e.,

N, N

1 ~ 1
P96, D) = — > p(glah,D,0) =— > fulgiub,of) = fyl)  (45)
k=1 M k=1

where x¥ is the kth random sample generated from p(x,|@) representing the

aleatoric uncertainty in X, k =1,..,n,; and fy(-) denotes the PDF of the
Gaussian distribution. The distribution parameters yz and ag are respectively the
predictive mean and standard deviation of the corresponding GP surrogate in Eq.
(2.7) and Eq. (2.8). The approximated distribution in Eq. (4.5) converges to the true
distribution as the number of the samples randomly generated from p(x,|@) grows.
It is noted that, as a result of the marginalization in Eq. (4.4), the distribution of the
performance function is now given in terms of @ only. Then, from Eq. (4.5), the

CDF of the performance function, denoted by F,;(g), is approximated as
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where Fy(-) is the CDF of a general Gaussian distribution.

Next, the Pft -quantile of the performance function can be estimated by solving

the equation F;(g) = Pft for g. The equation can be solved numerically as follows:

9p(0) = ar§£1n|Q(g)| (4.7a)
1G9,
Q(g)—nm;q’( P ) Pf (4.7b)

Since the Gaussian CDF ®(+) is a monotonically increasing function, Eq. (4.7) can

be solved by a line search algorithm using the sensitivity

30 11 (g—u’g‘>

FriRE A d
dg N &= 04 ag

(4.8)

where () is the PDF of the standard Gaussian distribution. In summary, during
RBDO, at each of the design samples 0,1 = 1, ...,n,;, the quantile of performance
function, §,(@) can be estimated by using the mixture of Gaussian CDFs in Eq.

(4.5) which are derived from the GP surrogate. A geometric representation of the

quantile estimation using the GP surrogate is provided in Figure 4.5.
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Figure 4.5 Quantile estimation by GP-surrogate-based mixture distribution

Because the quantile is estimated in Eq. (4.7) by use of n,, mixture samples,
statistical uncertainty exists in the estimate. Therefore, the solution of Eq. (4.7) is
considered as the mean, i.e., §,(0) = Hg, (@), while the statistical uncertainty is
quantified by the variance agp, which can be derived using standard order statistics
theory (Arnold et al. 1992) as follows:

RO-)  _ BO-F)
m[fy (F2(PD))] mnla(80))

a;,(6) = (4.9)

where fg(ﬁp) =$ZZ’="1 fN(gp;uz,qé‘) from Eq. (4.5). It is noted that the

estimation variance converges to zero as the probabilistic density at prediction point,

fq (gp) increases or the sample size n,, is large.

4.4.3 Training of quantile surrogates

For efficiency, the proposed RBDO refines the GP surrogate by computational
simulations at locations recommended by a learning function instead of trying to fit

all boundaries of the probability feasible design domain. Inspired by the adaptive

1]
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learning procedure that was developed for reliability analysis (Kim and Song 2020),
the GP surrogates are trained adaptively using a learning function as follows.

At a given RBDO iteration, based on the surrogate-based estimation of the
quantile and cost function, the optimal design 8 is identified among the design

samples 0, as

0* = argmin £(0,)

6, (4.10)
s.t. §pi(0) =0, i=1,..,n,l=1,..,m
To enrich the DoE effectively in the next RBDO iteration, the learning criteria is
defined so as to fit the boundary of the feasible domain {0|g,;(8) =0,i =
1, ...,n.} well especially in the areas making significant contribution to the current
optimum f* = f(8*). To achieve this goal through exploration-exploitation trade-

off, the proposed method introduces to select the sample minimizing the following

learning function featuring a penalty term y; (@), as the next simulation point:

|,u Op.ct (0)|
a(f) = ———-y#(0) (4.11)
O-.gp,ct(e) f
f@ -7 .
with y(0) = ‘— if Aop = tol (4.12)
1 otherwise

in which Hg, (@) and TG . (@) are respectively the mean and standard deviation
of the performance quantile derived in Eq. (4.7) and Eq. (4.9); yf(B) is the penalty
function; f(0) is the GP-surrogate-based estimate of the cost function at ; Dop
is the distance between the optimal @ values obtained by Eq. (4.10) at the current

and previous learning-steps; and tol is the prescribed threshold of convergence.

The numerator |”ép,ct(0)| of the ratio in Eq. (4.11) encourages computational
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simulations in the vicinity of the boundary {6|g,(8) = 0} while the denominator
TG et (@) promotes simulations at less-explored areas, i.e., more uncertain areas. On

the other hand, the penalty term helps guide the search toward cost-effective regions
which have significant impact on the optimal design. In Eq. (4.11), the learning

function is defined for the performance function with the minimum ,ugpl.(e) for

i =1,..,n., denoted by the index ct, as proposed by Fauriat and Gayton (2014).
The use of the composite index ct means no evaluation for the performance
functions that have little or no influence at a current step, and thus only one
performance function g, is evaluated per each iteration.

After the best design point is identified as @, = argmina(6;), the
0,

location of the performance function evaluation, X, is determined as

k.
Xpos; = argmin |Mgct (x5 Opest)|
best —
es xk OGet (xk; Opest)

(4.13)

where pg  (X;0pest) and o, (x;0pese) respectively denote the GP-based
predictive mean and standard deviation of performance function at x given Qppq,
which are denoted by y'g‘ and aé‘ in Eq. (4.5). Thus, Eq. (4.13) represents another
GP-based exploration-exploitation trade-off to choose the next location of the
performance function evaluation among the random samples x*, k =1, ..., 1,
generated from p(x|0,,.5:) near the approximate limit-state surface. It is noted that
the locations of performance function, xp.s; are different from 0., because of
inherent randomness of input uncertainties. In summary, the proposed optimization

scheme enriches the DoE by [gbest' Ict (xbest; Hbest): f(ebest)]T-

The following convergence criteria are introduced to check the convergence
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with regards to the relative increment of optimal cost and refinement of surrogate

constraint:

f(00my) = f(8(m-1)) -
/ < 4.14
f(e?m)) gf ( )

max [agp'i(egm))] <&, i=1,..,n, (4.15)
where Bzm) is the optimal design at the m-th learning step; and & and ¢, are

pre-specified tolerance values for the criteria. The tolerance values depend on the

target level of accuracy, and &, €, € (107%,1072) are recommended based on the

experience of the authors.

4.4.4 Algorithm of QS-AGP

The algorithm of the proposed QS-AGP is summarized as follows (see Figure 4.6

for the flowchart):

1. Generate samples in design space. Generate n; design samples 0,1 =
1, ...,m; that are uniformly distributed in the design space. These sample
populations are used as candidate locations for active-learning, and finally
the optimal solution is determined among these samples. The sample
population size n; = 10*~10° seems to be a reasonable choice from the
experience.

2. Construct the initial DoE: Generate ng samples O = [01, ...,HnO]T by

Latin Hypercube Sampling (LHS) in the design space. Then, corresponding

T o _ .
samples xp = [xl, . xno] are also generated with input variations, i.e.,
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Figure 4.6 Flowchart of QS-AGP algorithm

xXp = O0p + & where g,~N(0,X,). The cost function f(8) and each of
the performance functions g;(x),i =1, ...,n., are respectively evaluated
on the DoE points 85 and xp to construct the initial DoE of the
surrogate models.

3. Obtain GP-based quantile surrogates: Construct GP-based quantile
surrogates at the design sample points using the current DoE. That is, for

each of the design samples points 6,, the mean of quantile, Hg, () inEq.

(4.7) and the corresponding standard deviation of estimated quantile,

agp(e) in Eq. (4.9) are calculated from the mixture CDF for each

performance function. The derived quantities of quantiles are utilized for

the exploration-exploitation trade-off in the proposed learning function.
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4. Perform active-learning process: ldentify the sample point where the
learning function a(@) in Eq. (4.11) is minimized, as @p.s. Then, the
next location of the performance function evaluation, X, is determined
by Eq. (4.13). The DoE is enriched by performance function evaluation
X = Xpes; and cost function calculation at @ = 0, Next, the estimate
of the optimal GP hyperparameters, © is obtained again by MLE with the
enriched DoE in Eq. (2.5).

5. Check the convergence criteria: Once the best simulation point is
determined, the convergence conditions in Eq. (4.14) and Eq. (4.15) are
calculated to check the convergence in terms of surrogate refinements and
learning convergences. If the procedure has not achieved the prescribed
level of convergence, repeat Steps 3-5 as enriching the DoE.

6. End of OS-AGP: Once converged, QS-AGP stops the iteration to determine

the current design B’Em) and cost f (G’Em)) as the optimal design and cost,

respectively.

4.5 Numerical examples
4.5.1 Highly nonlinear performance function

First, consider a two-dimensional RBDO example with highly non-linear
performance function, which is formulated as (Lee and Jung 2008; Moustapha and

Sudret 2019)

91 & el )



min £(8) = (6, — 3.7) + (6, — 4)?

s.t. P[g;(X;0) < 0] < Pf,, i=1,2

0<6,<37,0<6,<40 (4.16)

with g; (x) = —x; sin(4x;) — 1.1x, sin(2x5,)
g2(x) =x1 +x;, =3

where x is realization of the random vector X consisting of two independent
Gaussian random variables X; and X,; X hasthe means 6 and the same constant
standard deviation ¢ = 0.1, i.e., Xj~N(9j,02),j = 1,2. The generalized target
reliability index Bf is set to 2 for both constraints. The solid curves in Figures 4.7-
4.9 show the limit-state surfaces by the true performance functions.

Table 4.1 shows typical results (among more than 20 independent runs) by the
proposed QS-AGP, compared with those by RIA, PMA, SORA and SL-KKT
reported in the literature (Enevoldsen and Sorensen 1994; Tu et al. 1998; Du and
Chen 2004; Liang et al. 2007). The accuracy and efficiency of the different methods
are compared in terms of the values of the final optimal design parameters (6,p¢),
the optimal cost (f,p¢), and the numbers of evaluations for the two performance
functions (Ng, and N, ), and the number of the cost function evaluation (N¢). The
proposed method obtains an optimal design using fewer function evaluations, i.e.,
19 and 12 for the first and second performance functions respectively despite their
high nonlinearity. It is noted that the RBDO result by SL-KKT cannot converge to a
similar result due to the high non-linearity of the performance function.

Figure 4.7 illustrates the adaptive search process of the proposed method.
Figure 4.7(a) presents initial stages of adaptive learning with the initial set of DoE,

which is denoted by the circular markers. The limit state surfaces estimated by
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Initial DoE

Figure 4.7 Progresses of DoE by QS-AGP for example with highly nonlinear
performance functions: (a) m = 0 (initial stage), (b)) m = 2, (c) m = 4, and (d)
m=12

surrogates are represented by dashed-line for the two performance functions
respectively. Figures 4.7(b)-(d) show the progresses after 2, 4 and 12 simulations
respectively. In particular, the double red-circle markers are the design samples
selected by the adaptive procedure in Eq. (4.11), i.e., Op,s¢. The cross-marker “x” is
the corresponding location of function evaluations, i.e., Xj.g, and a subscript of the
marker denotes the index of the evaluated performance function. For instance, at the

location denoted by the marker “xi,” QS-AGP evaluates performance function

g1(x) only. It is confirmed that the proposed method guides the search so that more
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simulations are performed in the near-optimal regions from the viewpoint of RBDO.

Table 4.1 Comparison between the results by the proposed QS-AGP method and
other RBDO methods for example with highly nonlinear performance

functions
RBDO Method ~ 8,,¢ fopt Ng,/Ng, Ny
PMA [2.82, 3.28] 1.30 991/129 24
RIA [2.82, 3.28] 1.30 588/97 23
SORA [2.82, 3.28] 1.30 42/53 33
SL-KKT [2.83, 3.22] 1.37 152/152 76
QS-AGP [2.81, 3.28] 1.31 19/12 23

Figure 4.8 shows the approximate limit-state surface along with all DoE points
explored up to the final step. The diamond marker represents the final reliable
optimum 6,,; reported in Table 4.1. The result confirms that most of the sample
points selected by QS-AGP are located around the true limit-state surface, especially
in the cost-effective regions, which facilitates construction of effective surrogate
models for the purpose of RBDO. Figure 4.9 provides a close-up of DoE around the
optimal design along with refined surrogate-based boundaries of probability-feasible

design domain, i.e., {8]g,(8) = 0}. It is observed that the final reliable optimum,
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Figure 4.8 Final DoE for example with highly nonlinear performance functions

active on the first performance function constraint, is successfully obtained by the
quantile surrogates refined by the adaptive learning. The convergence histories of
QS-AGP are given in Figure 4.10 (in which estimated design parameters are
normalized by the final optimal solution 6,,.). The convergence histories of QS-
AGP analysis, starting from the initial experimental designs, confirm that the cost
and design parameters are converged to the final values by a small number of
iterations through the estimated quantile surrogates constructed by GP-based

surrogates.

Rk R

e
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Figure 4.9 Close-ups of DoE around the final optimum along with boundaries of
probability-feasible design domain

Cost function
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Figure 4.10 Convergence histories of QS-AGP for example with highly nonlinear
performance functions: (a) optimal cost, and (b) design parameters (normalizaed by

eopt)

4.5.2 Passive vehicle suspension design

As an engineering application example, a design of passive vehicle suspension in
Figure 4.11 is investigated (Chan et al. 2007). The objective of design is to minimize

the mean square value of the vertical acceleration of the vehicle body while
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satisfying the following four constraints: lower bound on the road-holding ability of
the vehicle (g;), upper bound on the rolling angle (g,), lower bound on the
suspension’s dynamic displacement (g3), and lower bound on tire stiffness (g,).
The means of three random parameters, i.e., the spring stiffness ¢ (kg/cm), tire
stiffness ¢, (kg/cm), and shock absorber damping coefficient k (kg/cm - s)
are considered as design variables, i.e., 8 = [uc, Ue k,yk]. The RBDO problem is

formulated as:

min 72 = WAV /m?) (e i + (M +m)pdui?)
9={#c‘#ck‘#k}

s.t. P[g;(X;0) < 0] < Pf,, i=1,..4
350 < pe < 450,1400 < p,, < 1500,0 < py < 50
nAVm) <( Cr _i)z 2 ck_k2> (4.17)
bog?k/\\M+m M Mm  mM?
g2(x) =1 —7.6394(4000(Mg)~*>C — 1)1

g3(x) =1-05Mg)°>(k?cic™* (M + m)~1 + ¢)7%°
0.877

g.x)=1—-((M+m)g)  ci*

where A =1 cm*“/cycle-m, =0.27, V=10m/s, =3. -s%/cm
here A =1 cm?/cycl by =027, V =10 M =3.2633kg - s2

with g, (x) =1 — (

and m = 0.8158kg - s?/cm are the system parameters of the vehicle suspension.
The deterministic optimum solution for the problem was reported as [c*, ¢k, k*]=
[391.21, 1442.6, 21.27]. Due to manufacturing variability, the stiffness and damping
coefficient, i.e., ¢, ¢, and k are considered to be Gaussian random variables with
standard deviations oy = [7.5,7.5,5]. The generalized target reliability index is set

as fBf = 2 for all constraints.
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Figure 4.11 Passive vehicle suspension design (Chan et al. 2007)

As shown in Table 4.2, QS-AGP needs 9, 12, 16 and 13 evaluations of the four
performance functions respectively to obtain a reliable optimal design. The
convergence histories of QS-AGP are given in Figure 4.12. The convergence
histories demonstrate quick identification of the regions of interest, which enables a

rapid convergence to the reliable optimal design.

Table 4.2 Comparison between the results by the proposed QS-AGP method and
other RBDO methods for passive vehicle suspension design

RBDO Method eopt(x 102) fopt(x 106) Ngl/Ngz/Ngg/Ng4 Nf
PMA [4.06,14.6,0.31] 3.16 115/124/112/112 32
RIA [4.06,14.6,0.31] 3.16 104/94/94/92 31
SORA [4.06,14.6,0.31] 3.16 104/114/114/114 101
SL-KKT [4.06,14.6,0.31] 3.16 78/78/78/78 39
QS-AGP [4.06,14.6,0.31] 3.16 9/12/16/13 26
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Figure 4.12 Convergence histories of QS-AGP for passive vehicle suspension
design: (a) optimal cost, and (b) design parameters (normalizaed by 8,,,;)

4.5.3 A welded beam structure

In the next example, QS-AGP is applied to the design of welded beam structure
shown in Figure 4.13 (Chen et al. 2013). The problem has four design parameters
characterizing the depth and size of beam structures, and five probabilistic
constraints related to the shear stress 7(x), bending stress o(x), buckling load
P.(x) and end deflection §(x). The cost function represents the cost of the design

of welded beam. The RBDO formulation is given as

min f(0) = 1020, + ¢c,030,(z, + 6,)
s.t. P[gi(X;0) < 0] < Pf,, i=1,..,5
3175 <6, <£10,15 < 09, < 254,200 < 65 < 220,3.175< 6, <10
withg;(x) =1 -1(x)/z5, g.(x) =1—-0(x)/z, (4.18)
93(x) =1 —x1/x,, 9a(x) =1-38(x)/zs
9s(x) = F(x)/z; = 1

2t(x)tt(x)x,
2R(x)

0.5

(x) = |t(x)? + + tt(x)?
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Z; _ M(x)R(x)
V2x,%, t(x) = J(x)

t(x) =

M(x) = z,(z, + 0.5x5), R(x) = \/[xzz + (x; + x3)2] /4

J(x) = V2xyx,[x3 /12 + (xy + x3)%/4]

62,2, 4z,73
ox)=——, x)=—=
xX3x, Z3X3 %,
4.013x3x3. /232, X3 |23
P.(x) = : 1-5 |5
625 475 |z4

where z and c are the fixed system parameters listed in Table 4.3. The random
vector X consists of independent Gaussian random variables with the means 6
and standard deviations oy = [0.1693,0.1693,0.0107,0.0107]. The generalized

target reliability index B} issetto 3 for all constraints.

Structure F F
weldment ‘ 6
vl
f
Beam | 63
- .l

Figure 4.13 A welded beam structure (Chen et al. 2013)

Table 4.3 System parameters of the welded beam structure

Parameters Value Parameters  Value

7, 2.67 x 10* (N) Zs 9.38 x 10 (MPa)

Z, 3.56 x 102 (mm)  z, 2.07 x 102 (MPa)

Z3 2.07 x 10> (MPa) ¢, 6.74 x 107° ($/mm3)
Z, 8.27 x 10* (MPa) «c, 2.94 X 107% ($/mm?)
Zs 6.35 (mm)

3 1]
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Table 4.4 presents the estimated optimal design and optimal costs along with
the number of function evaluations. The results show that QS-AGP method
successfully deals with the dimension while producing accurate results with smaller
number of function evaluations. Note that the RIA approach fails to converge
because of the inactive probabilistic constraint (g,), which may yield the reliability
index for that constraint, (3, into infinite value that prohibits the feasibility check of

reliability requirement.

Table 4.4 Comparison between the results by the proposed QS-AGP method and
other RBDO methods for passive vehicle suspension design

RBDO

B0 O foor No/ /N, N,
2

PMA £<517032 260214? 105211 559 138/138/138/145/147 46

RIA i i i i
2

SORA 51752 260214? 105211 559 99/99/110/101/119 96
2

SLKkT 585 16'92543‘ 105211 557 92/92/92/92/92 46

2
QS-AGP £<5'17022' : gg]" 105211 559 26/13/20/12/13 35

4.6 Summary

In this chapter, a new RBDO method using quantile surrogates enriched by adaptive
Gaussian process (QS-AGP) was proposed. The QS-AGP aims at an adaptive
selection of simulation points which would reduce computational costs for RBDO.
The method utilized a quantile-based formulation to identify the probability-feasible
design domain which satisfies the reliability requirements. The adaptive learning

procedure was designed to further reduce the number of computational simulations
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by utilizing the exploration-exploitation trade-off based on quantile surrogates. The
proposed optimization scheme relies on design samples, and thus does not use an
optimization algorithm or gradient information of cost and performance functions.
Accuracy and efficiency of the proposed method were successfully tested through
several RBDO problems featuring highly nonlinear performance functions, various

distribution types and complexity. In each example, the proposed method needed

fewer performance function evaluations in achieving convergence to accurate results.

QS-AGP is expected to effectively deal with such challenging and time-consuming

RBDO problems in engineering practice.

102 il Tl



Chapter 5. Development of Active Learning Methods
for High-Dimensional RBDO Applications

5.1 Introduction

To obtain the optimal structural design satisfying probabilistic requirements, RBDO
has been widely studied and applied. However, its practical applications have been
often hampered by huge computational costs. To address the challenge, an RBDO
method termed quantile surrogates by adaptive Gaussian process (QS-AGP) in
Chapter 4 are developed, which approximates the quantiles of the performance
functions adaptively using Gaussian process models to check whether the pre-
generated design samples satisfy the reliability requirements. It has been shown that
QS-AGP requires much fewer evaluations of performance functions than existing
RBDO methods. Although the efficiency of the QS-AGP method was shown superior
to that of existing RBDO methods, its applications to high-dimensional systems is
limited because the quantiles and objective function are evaluated at each of the pre-
generated design samples. If an RBDO problem features many design parameters,
the search space becomes high-dimensional, which requires an insurmountable
memory to handle design samples generated to cover the space, and thus may
degenerate the performance of the method. Moreover, QS-AGP generates Monte
Carlo (MC) samples to estimate the quantiles using the mixture distribution (Kim
and Song 2021a), which further decreases the computational efficiency.

To promote the application of the ideas in QS-AGP to high-dimensional
engineering systems, this chapter proposes a new RBDO method termed, quantile

:l b

—
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surrogates and sensitivity by adaptive Gaussian process (QS*-AGP). The QS?-AGP
method utilizes the Gaussian process model to build quantile surrogates, identifying
the admissible design domain concerning reliability requirement. Both inherent
randomness of the input variables and epistemic uncertainty of surrogate model
errors are incorporated to characterize the system performance, but without requiring
any MC samples. The quantile surrogates are trained through adaptive selections of
simulation points, and the design optimization is performed with the trained quantile
surrogates. To speed up the RBDO iterations, QS*-AGP uses a gradient-based
optimizer based on the parameter sensitivity of the quantile surrogate with respect to
design parameters, i.e., without requiring additional training data.

This chapter first provides a primary challenge in high-dimensional
applications using QS-AGP method introduced in Chapter 4. Next, the following
details of the proposed QS?-AGP method will be introduced: (1) the proposed kernel-
based quantile surrogate model, (2) corresponding adaptive training process, (3)
design parameter sensitivity of quantile surrogates, and (4) overall algorithm of
RBDO by QS?-AGP. Through numerical examples of challenging RBDO problems,
QS2-AGP will be tested in terms of (1) accuracy for highly nonlinear performance
functions, (2) applicability to high-dimensional problems, and (3) computational
efficiency in terms of the number of performance function evaluations required for
convergence. Lastly, a summary and concluding remarks are provided (Kim and

Song 2021b).
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5.2 Challenges in high-dimensional applications using QS-
AGP

The method employs the design samples 0,1 =1, ...,n;, which are uniformly
distributed in the design parameter space, as candidate points for statistical learning
and optimal design solution. Thus, as the quantile surrogates §,(8) are updated,
QS-AGP checks the feasibility of each design sample with respect to the given
probabilistic constraints by the signs of the corresponding quantile surrogate

predictions §,(8;),l = 1,...,n;. Then, among the feasible samples, the one with

the minimal cost according to another GP-surrogate of the cost function, f(@) is
approximately identified as an optimal solution. At each step of the optimization
process, the quantile surrogates g, (@) are estimated from the mixture distribution
based on the GP model, fitted by the random MC samples x™, m =1, ...,ny,
generated from the input variable distribution p(x|@). To facilitate the RBDO
process by quantile surrogates, the iterative active-learning process is conducted
until the design solutions are converged. Thus, the adaptive refinement of quantile
surrogates and design optimization are simultaneously performed based on the pre-
generated design samples.

To facilitate the RBDO process assisted by quantile surrogates, QS-AGP,
employs the pre-generated design samples that are uniformly distributed in the
design space. In addition, QS-AGP generates MC samples to identify the
distributions of quantile surrogates by the mixture distributions. Consequentially,
when the mixture model is fitted by n,, MC samples at each of n; pre-defined
design samples, the total number of MC samples required at each RBDO iteration is

n; X n,,. This approach may demand an insurmountable memory for larger systems
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and thus degenerate the performance of the method. Moreover, the number of pre-
generated design samples required for accurate estimation exponentially increases,
which hampers applications to high-dimensional RBDO problems (Spence and

Gioffre 2012; Li et al. 2019; Jerez et al. 2022).

5.3 Proposed quantile surrogates and sensitivity by adaptive
Gaussian process (QS?-AGP)

In this chapter, an efficient quantile-surrogate-based RBDO framework named QS?-
AGP is proposed to facilitate applications to high-dimensional problems. In
particular, the quantile surrogates that incorporate both the input uncertainties and
error of surrogate models are now constructed without generating any MC samples.
Moreover, a sensitivity formulation of the quantile surrogate is also introduced to
facilitate the use of a gradient-based optimizer in RBDO, without requiring and

handling pre-generated design samples.

5.3.1 Kernel-based derivation of quantile surrogates

In RBDO employing surrogate models, it is essential to properly quantify both
epistemic uncertainty in the model error caused by the lack of simulations,
represented by the prediction variance of GP in Eq. (2.8), and inherent randomness
represented by the probabilistic distributions of the input X. Therefore, it is an
important task to consider both types of uncertainties in constructing the surrogates
for probabilistic constraints, i.e., P[g;(X;0) < 0], in RBDO (Der Kiureghian and
Ditlevsen 2009; Li and Wang 2019; Kim and Song 2021a). To this end, a method

that can incorporate both uncertainties into the GP surrogate modeling of the quantile
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of performance functions g is introduced as follows. Suppose, after a proper
transformation (Der Kiureghian 2022), the input distribution is described as
Gaussian X~N(0,Z,) where 0 is the mean vector of X, used as the design
parameter of RBDO; and X, is the covariance matrix. By the total probability
theorem, the predictive distribution of the performance function is obtained as

follows (Girard et al. 2003):

p(g16,D) = fp(glx*,D, 0)p(x.|0) dx, (5.1)

in which p(x,|@) is the probability density function (PDF) of the input random
variables at x = x,, affected by the design parameters 8; and p(glx*,i), @) 1S
the PDF of the GP-based prediction of g at x, from Eq. (2.6).

Since the calculation of the integral in Eq. (5.1) is generally intractable due to
the complexity of p( glx., D, @), a numerical approximation, e.g., Taylor expansion,
MC approach, is often employed (Girard et al. 2003). By contrast, QS>-AGP utilizes

the following derivations of the “exact” predictive moments, i.e., mean m4(8) =
E;[p(gl0,D)] and variance v4(@) = Vary[p(g|@,D)] (Mchutchon and

Rasmussen 2011):
mg(0) = Ey [pg(x.)] (5.2)

v5(0) = E, [0 (x,)] + Vary, [uz(x.)] (5.3)
where E, [-] and Var, [-] respectively denote the mathematical expectation and
variance under p(x,|0); and ugz(x,) and crgz(x*) are the posterior mean and

variance of GP model in Eq. (2.7) and Eq. (2.8). This study adopts zero-mean

function and automatic relevance determination (ARD) squared exponential (SE)
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covariance function (Rasmussen and Nickisch 2015), expressed as:

k(xx"@)zo'zex _1 — +»"N\TA-1 o
e f p 2(x .X') A (x .X') (54)

where A = diag[A3,...,A4%]; and D is the dimension of input variable x. afz and
A;,1=1,..,D are hyperparameters in @, which respectively denote the process
variance and correlation length-scale. The ARD kernel is useful for handling
problems composed of different dimensional inputs (Rasmussen and Nickisch 2015)
since the kernel facilitates the use of different length-scales on input dimensions.
Then, the exact expressions of the predictive mean and variance can be derived

in terms of SE kernel in Eq. (5.4) as follows (Deisenroth 2009):
mg(6) = Q"q (5.5)

v5(0) = of —tr([K + o2 1]171Q) + QTQQ — m4(6)? (5.6)

where Q = (K + 021)"1gp; gp are the observations of the performance function;
and tr(:) is the trace operator of the matrix. The terms q and Q are related to the

moments of the kernel function, whose elements are determined as

_1 1 _
qi = o-lezxA—l + Il 2 exp <_§(xi — e)T(ZX + A) 1(xi - 0)) (57)
k(x;, 0)k(x;, 0 1 -1
Qij =—— ( 1) exp( (z—6)T (A + EAZ;”\) (z—0) (5.8)
125, A1 + 12

where z = (xl- + xj) /2. Thus, the predictive moments in Eq. (5.5) and Eq. (5.6)

provide the surrogate modeling of the performance function for the given design
parameter 6 under both aleatoric and epistemic uncertainties. The details of the

derivations are provided in the literatures (Deisenroth 2009).
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Then, approximating the predictive distribution in Eq. (5.1) as a Gaussian
distribution, the quantile in Eq. (4.3) can be described in terms of the predictive

moments as

Gp(68) = my(6) + @~ (Pf) |v5(6) (5.9)
where ®~1(.) denotes the inverse CDF of the standard Gaussian distribution. This
quantile surrogate g,(@) incorporates both input variation and surrogate model
uncertainty. It is noted that the quantile surrogate in Eq. (5.9) can be computed
efficiently using the function of kernel matrix directly, i.e., without generating MC
samples as in QS-AGP (Kim and Song 2021a). The error that may occur from the
Gaussian assumption of the predictive distribution decreases gradually as the
surrogate models are refined. This is because the PDF p(glx*,l), @) in Eq. (5.1)
converges to a narrow distribution especially in the area of interests, i.e., the vicinity
of the optimal solution. The concept of the proposed GP-based quantile surrogate

estimation is illustrated in Figure 5.1.

A

p A - GP
L N(m;(8),v;(0)) p(glx.,D,0)

3
S
N
S
A Y

-

Bzﬂx X

Figure 5.1 Illustration of GP-surrogate-based estimation of the quantile of the
performance function by QS-AGP
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5.3.2 Learning criteria for adaptive training

For efficiency, the proposed RBDO method employs an adaptive DoE scheme
(Dubourg et al. 2011; Zhang et al. 2017) that refines the quantile surrogates by as
few simulation points as possible. To determine the location of the next simulation
of the performance function g(X;®), the method uses the two-stage learning
described below since RBDO usually incorporates the distribution parameters in the
design parameters 6.

First, in the space of the design parameters 6, to focus the simulations around
the boundary of the probability-feasible design domain, the best location is

determined as

Opest = argmin. |my,,(8) + @7 (Ff,) Vs, (0)| 0 (5.10)

where mg_,(0) and vg (@) are respectively the predictive mean and variance of
the performance function derived in Eq. (5.5) and Eq. (5.6); and ct is the index of
the most critical performance function, i.e., the one with the minimum value of
|“§p,i (9)/0%1 (@)| for i =1,...,n.,as proposed by Fauriat et al. (2014). Using the
composite index ct in Eq. (5.10) means that no simulations are performed for the
performance functions that have little or no influence at the design iteration step.
Namely, only one performance function is evaluated per each iteration. On the other
hand, yz.g) in Eq. (5.10) is a penalty function introduced to give priorities to more
desirable domains in @ from the viewpoint of the design optimization, i.e., domains

where the cost function is smaller. In detail, the penalty function is defined as
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f@& -1 .
— - >
v7(6) = ‘ 7| ep 2ol (5.11)
1 otherwise

in which (@) is the GP-surrogate-based estimate of the cost function at 8; f, =
f(0,) is the current optimum at a given RBDO iteration; A,p is the distance
between the optimal @ at the current and previous learning-steps; and tol is the
prescribed threshold. In summary, the learning function in Eq. (5.10) guides the
search toward the vicinity of the critical boundary of the probability-feasible domain
while giving a priority to the objective of the optimal design, instead of trying to
improve the quantile surrogate regarding a// boundaries.

Next, once the best location in the design parameter space, @, is identified,

the location of the performance function evaluation, Xp.s; 1s determined as

. |'u§ct(xm; 0best)|
Xpest = argmin

5.12
xm  Og., (X™; Opest) ( )

where ug (%, 0pe5:) and gy, (X;0pes) respectively denote the mean and

standard deviation of GP predictions for performance function at x given 0.4,
which are computed by Eq. (2.7) and Eq. (2.8), respectively. Thus, Eq. (5.12)
represents GP-based exploration-exploitation trade-off to choose the location of the

performance function evaluation among the random samples x™

,ym=1,..,n,,
generated from p(x|0,.s:), near the approximate limit-state surface, i.e.,
{x|Gct(x; BOpest) = 0}. Note that the random samples are utilized only one time per
each iteration to identify the simulation location of the performance function. To this
end, the location of the next performance function is determined as X, and the

performance function 1is enriched with the new simulation point

[Xpest» Gct (Xpest; Opest)]T at each iteration.
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5.3.3 Design parameter sensitivity

To use efficient gradient-based optimization algorithms for RBDO and facilitate the
convergence, it is essential to accurately calculate the sensitivity of the estimated
failure probability with respect to design parameters. Since the RBDO formulation
involves both random variables and design parameters, the sensitivity analysis often
requires the probabilistic transformation of random variables or simulation-based
techniques (Youn and Choi 2003; Dubourg ef al. 2011; Lee at al. 2011). Furthermore,
if surrogate models are used in RBDO, it is essential to incorporate the surrogate
model uncertainties into sensitivity analysis for successful performance of RBDO. It
is noted that QS-AGP (Kim and Song 202 1a) relies on pre-generated design samples,
and thus does not use the parameter sensitivity of quantile surrogates.

By contrast, QS?>-AGP utilizes the sensitivity of quantile surrogates with respect
to design parameters to improve the efficiency of the surrogate model-based RBDO
process. The sensitivity of quantile surrogates for the ith performance function with
respect to design parameters @ can be analytically derived by taking the partial

derivative of Eq. (5.9), i.e.,

09,,(6) _ my,(6) 1 9v,(0)

= +o~(Pf)
00 20 ) [—Ugi(e) 20 (5.13)

which shows that the quantile sensitivity consists of the gradients of the mean

mg,(0) and variance v, (@) that are presented in Eq. (5.5) and Eq. (5.6),
respectively. Since the predictive moments are defined as functions of the given DoE
and GP model, the gradient terms in Eq. (5.13) can be obtained by taking the

derivatives of the predictive mean and variance with respect to design parameters 6
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as follows:

amg‘l(e) AT
e %4 (5.14)
9v;,(6) am;, (6)

where qg and Qg respectively denote the Jacobian matrices of q and @, given
in Eq. (5.7) and Eq. (5.8). As a result, the derivatives of the predictive mean and
variance can be easily obtained through the GP kernel function without additional
simulation data. It is noted that the design parameter sensitivities of quantile
surrogates do not require any mathematical model of structural response since it is
obtained through the constructed surrogate surface. After calculating the predictive
moments for the current design point, the required sensitivity of the predictive mean
and variance can be obtained based on Eq. (5.14) and Eq. (5.15), and the sensitivity

of quantile surrogates can be derived accordingly by Eq. (5.13).

5.3.4 Algorithm of QS2-AGP

The algorithm of the proposed QS?-AGP integrates the adaptive training process of
quantile surrogates and gradient-based optimization employing parameter sensitivity
of quantile surrogates. Each step of the proposed algorithm, illustrated by the
flowchart in Figure 5.2, is summarized as follows:
1. Construct the initial DoE: Generate n, samples, 04 = [61, s HnO]T by
Latin Hypercube sampling (LHS) in the design parameter space. Then, the
corresponding samples in the random variable space, xq = [xl, ...,an]T

are also generated as xqp = O + & where &~N(0,Z,). The cost
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2.

Start with ()

Construct ng initial DoE
samples by LHS

l

Construct GP surrogate model

!

Adaptive training of

+«——— quantile surrogates

Obtain the quantile surrogate
by GP

Enrich the DoE &
Train hyperparameters

!

Identify the best simulation
point by learning functions

v

Calculate the parameter sensitivity
of the quantile surrogate

!

Optimization: update design

parameter to ngﬂ)

Design optimization with
parameter sensitivity

Converged?

[ End of method: 8%+7, f(a%*™) J

Figure 5.2 Flowchart of RBDO algorithm by QS2-AGP

function f(@) and performance functions g;(x),i=1,..,n,, are

respectively evaluated on these points to construct the initial DoE of the

surrogate models.

GP hyperparameters, ® by MLE with the current DoE. Then, construct the
GP-surrogate of the cost function f(@) and the quantile surrogates
Gp,i(0),i=1,...,n. as described in Eq. (5.9). The quantile surrogates are
derived using the predictive moments of GP model in Eq. (5.5) and Eq.

(5.6). The derived estimates of quantiles are utilized for both active-

Obtain the quantile surrogate model: Obtain the estimates of the optimal

learning process and design optimization procedure.
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Train the model by active-learning process: ldentify the best design point
0.5t by minimizing the learning function in Eq. (5.10). To this end, a
global optimization algorithm, e.g., genetic algorithm, particle swarm
optimization, can be utilized. Then, the location of the next performance
function evaluation, X, is determined by Eq. (5.12). At this stage, the
DoE is enriched by performance function evaluation at x = x4, and this
refinement process is repeated n, times. From the experience, the
recommended number of enrichment points is n, € (2,7).

Calculate the parameter sensitivity of surrogate: Using the quantile
surrogates identified from the previous steps, calculate the parameter
sensitivity of the surrogate at the current point, as described in Egs. (5.13)-
(5.15). Note that the sensitivity of quantile surrogates can be obtained
without additional training data.

Update design parameters by optimization algorithm: Based on the
calculated parameter sensitivity, move on to the next step of design as
Bik) - 0£k+1) using a gradient-based optimizer, e.g., interior-point
algorithm, sequential quadratic programming. Note that the updated design
0£k+1) is utilized for the penalty function in Eq. (5.11) and enrichment of
DoE for cost function surrogate f(@). Steps 2-5 are repeated until the

convergence is achieved.

End of Algorithm: Once the optimization algorithm achieves convergence,
the current design 0£k+1) and cost f (B,Ek“)) are obtained as the

optimal design and cost, respectively.
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5.4 Numerical examples
5.4.1 Benchmark RBDO problem

First, let us consider a two-dimensional benchmark RBDO example involving three
performance functions, which is formulated as (Youn and Choi 2003; Moustapha

2016)

mein f(e) = 91 +92
s.t. P[gi(X;0) < 0] < Pf,, i=1,..3
0<6,<10,0<6,<10

x2x 5.16
with g; (x) = ;02 -1 (>.16)
(x1+x,—5)% (% —x, —12)2
= —1
92(%) 30 + 120
) 80
X)=——————
93 x%+8x, +5

where x denotes a realization of the random vector X consisting of two
independent Gaussian random variables X; and X,; the means of X are design
parameters, i.e., 8 = px while the common standard deviation is givenas o = 0.2,
ie., Xj~N(9j, 0.22),j = 1,2. The generalized target reliability index B} is set to 3
for both constraints. The solid curves in Figure 5.3 and Figure 5.4 show the exact
limit-state surface by the performance functions.

Following the procedure described in Section 5.3, the QS?-AGP method is
applied with an initial design point 8 = [5,5]T and 10 initial DoEs. Two points
are added at each design iteration for surrogate refinement. Figure 5.3 illustrates the
adaptive search process of the proposed method. Figure 5.3(a) presents the initial

stages of adaptive learning with the initial set of DoE x4, which is denoted by the
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(@ (b)

Figure 5.3 Progresses of RBDO by QS?-AGP method for benchmark RBDO
example: (a) k = 0 (initial stage); and (b) k = 2.

circular markers. The estimated limit state surfaces are represented by the dash-
dotted lines for the three performance functions respectively. Figure 5.3(b) shows
the progress after 2 iterations along with the three boundaries of probability-feasible
design domain represented by the quantile surrogates, i.e., {0| Gp,i(0) = O},i =
1, ...,3. Here, the cross-markers “x” indicate the locations of performance function
evaluations selected by the adaptive procedure in Eq. (5.12), i.e., Xpest, and a
subscript of the marker denotes the index of the evaluated performance function, i.e.,
ctin Egs. (5.10) and (5.12). For instance, at the location denoted by the marker “xi,”
QS?-AGP evaluates performance function g,(x) only. The black-arrow with
dashed lines shows the trajectory of the design parameter starting from the initial
design 8@ guided by the parameter sensitivity.

Figure 5.4 shows the approximate limit-state surface along with all DoE points

explored up to the final step. The purple diamond marker represents the final reliable
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0,100 X,

Figure 5.4 Final experimental designs for benchmark RBDO example

optimum Bopt. The results demonstrate that the proposed method guides the search
such that more simulations are performed in the near-optimal regions from the
RBDO viewpoint. It is also confirmed that most of the training points selected by
QS?-AGP are located around the true limit-state surface, especially in the cost-
effective regions, which facilitates construction of effective surrogate models for the
purpose of RBDO. It is observed that the final reliable optimum, active on the first
and second performance function constraints, is successfully obtained by the
proposed method.

Table 5.1 presents the convergence history of design parameters, cost function
values and the estimated values of quantiles for the three constraints, i.e., g, ;(8),
i=1,..,3, respectively. The positive signs of the quantiles indicate that the

corresponding probabilistic constraints are satisfied. An optimal design 6,,; =
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[3.31,2.91] is achieved after 10 iterations by QS?-AGP method. Table 5.2 shows
typical results (among more than 20 independent runs) by the proposed QS*-AGP,
compared to those by several RBDO methods reported in Enevoldsen and Sorensen
(1994), Youn and Choi (2003), Du and Chen (2004) and Liang et al. (2007). The
accuracy and efficiency of the different methods are compared in terms of the values
of the final optimal design parameters (8,,;), the optimal cost (f,,), and the total
numbers of performance function evaluations (ng). The numbers in the parenthesis
denotes the those of function evaluations needed for each performance function.
Each of the selected methods provides a solution with a good accuracy for the two-
dimensional example. It is observed that both surrogate-based RBDO methods, QS-
AGP and QS*-AGP, obtain an optimal design using significantly fewer function

evaluations than the other RBDO methods.

Table 5.1 Design convergence history by QS?-AGP method for benchmark RBDO
example

Quantile surrogates for each constraint, g, ;(8)

Iteration  Design point - - - Cost
i=1 i=2 i=3
1 [5.00, 5.00] 3.51 0.555 -0.002 10.0
2 [4.14, 4.36] 1.63 0.404 0.200 8.50
3 [3.57, 3.70] 0.53 0.291 0.439 1.27
4 [3.34, 3.36] 0.17 0.141 0.584 6.70
5 [3.30, 3.21] 0.083 0.092 0.645 6.51
6 [3.30, 3.02] 0.009 0.036 0.702 6.32
7 [3.31, 2.96] 0.003 0.014 0.740 6.28
8 [3.31, 2.93] 0.002 0.006 0.727 6.23
9 [3.31, 2.91] 0.002 0.001 0.728 6.21
10 [3.31, 2.91] 0.002 0.001 0.710 6.21
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Table 5.2 Comparison between the results by the proposed method (QS?-AGP) and
other RBDO method for benchmark RBDO example

RBDO Method eopt fopt Ny

PMA [3.30, 2.90] 6.19 234 (76/78/80)
RIA [3.30, 2.90] 6.19 175 (63/56/56)
SORA [3.30, 2.90] 6.19 170 (46/56/68)
SL-KKT [3.31, 2.90] 6.21 96 (32/32/32)
QS-AGP [3.30, 2.92] 6.22 42 (16/12/14)
QS?-AGP [3.31, 2.91] 6.21 46 (11/15/20)

5.4.2 High-dimensional RBDO problem

The second example deals with a high-dimensional RBDO example, involving 15
design parameters with nonlinear performance functions. The problems are

formulated as (Li et al. 2019)

13
min £(8) = 0y, + 15— ) 6,
i=1

s.t. P[g;(X;0) < 0] < Pf,, i=1,..,12
2<6;<4, j=1,..,15

with g (x) = 3x2 + xZ + 2x2; + x1x19 + 2X,%g + 3XXg + 4X3Xg
+ 5x11x12 + 0001(3(14 + xls) - 200

g2(X) = 2x% + 4x3 + 5x1x19 + 4X4X5 + 3xX; + 2XgXg + X11X12
+ x13x12 + 0001(X14 + X15) - 200 (517)

g3(x) = 4x? + x2 + 2x%, + 2x% + xyxg + 3x,%6 + 2X3%; + 2X9Xq3
+ 3x11x12 + 0001(x14 + x15) - 180

ga(x) = 2x2 + 1.5x2 + 2x2 + x2 + x, %13 + 2XgX15 + 3%¢X11
+ ZX4X5 + 3X10X3 + 3X1X9 + 0001(X14 + X15) - 180

gs(xX) = 2x% + 2x2 + 3x2 + x?; + Xq%13 + 2XgX10 + 3X3%g
+ ZX4X5 + X1X3 + 0001(X14_ + X15) - 180

Je(x) = 10x; + 9x, + 8x3 + 7x, + 6x5 + 5x¢ + 425 + 3xg + 24
+ x10 + 6x11 + 4x12 + 2x13 + 0.001(.X14 + x15) - 200
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g7(x) = 10x; + 8x, + 6x3 + 4x, + 2x5 + 5x¢ + 425 + 3xg + 24
+ x10 + x11 + 3X12 + 5x13 + 0.001(X14 + x15) - 170

gs(x) = 4xy + 3x, + 2x3 + x4 + 10x5 + 9xg + 8x; + 7xg + 6x4
+ 5x10 + 4X11 + 3x12 + 2x13 + 0.001(X14 + x15) - 200
13

gg(x) = Z X + 0001(.’)614 + x15) - 300,

i=1
13

J10(x) = in +0.001(xq4 + x;5) — 280
i=1
13
911(%) = 0.0012 X; — 10x2,%,5 + 200
i=1
13

912(x) = 0-0012351' — 4(x14 + x15 — 5)% = (14 — x15 — 12)?
+120
where x is a realization of the random vector X composed with 15 independent
Gaussian random variables; the means of X are design parameters O; and the
random variables have the common standard deviation o = 0.3 , i.e.,
Xj~N(9j, 0.32),j =1, ...,15. The generalized target reliability index is set as ff =
3.0115 for all constraints. The performance of the proposed method is demonstrated
with the initial design 8© = [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3]T. After building the
initial surrogates with 20 DoEs, 5 samples are added at each iteration.

The performance of QS?-AGP method on the high-dimensional RBDO problem
is compared with those by PMA, RIA, SORA and SL-KKT. The results by QS-AGP
are not reported because, to fill in the large dimension of the design parameter space,
the QS-AGP method required an insurmountable number of design samples, more
than 10°, which resulted in memory problems and inaccurate estimations. Table 5.3
shows the estimated optimal designs obtained by the proposed method and the other

RBDO methods. In the table, the results by RIA are not shown because it failed to

converge because of the inactive probabilistic constraints (g7, g9, g10), Which made

121 N = L



the corresponding reliability indices infinity, which prohibits the feasibility check of
the reliability requirements. Table 5.4 summarizes the performance regarding the
probabilistic constraints, represented by the reliability index computed at the optimal
designs along with the objective function values, and total numbers of performance
function evaluations. Here, the reliability indices at the optimums are evaluated by
using the brute force MCS with 10° samples. It is noted that QS>-AGP properly
treats all performance of probabilistic constraints by the quantile surrogates and
provides reliable optimal solutions with a significantly reduced number of function
evaluations even if the dimension of variables is high. It is confirmed that the
performance of QS?-AGP is not hampered by high-dimensionality, unlike QS-AGP

and superior to the other RBDO methods.
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Table 5.3 Comparison of optimal designs obtained by the proposed method (QS?-AGP) and other RBDO methods for high-dimensional RBDO
example

Design parameters
91 02 93 94 95 96 97 98 99 910 911 912 913 914 915

RBDO Method

PMA 200 277 200 251 200 200 342 400 400 3.05 200 400 3.09 344 329
SORA 200 278 200 251 200 200 342 399 399 305 200 399 311 345 3.29
SL-KKT 200 278 200 253 201 200 340 399 400 3.08 202 400 3.09 343 329

QS*>-AGP 200 278 200 250 200 200 340 400 400 3.05 200 400 3.06 347 3.29




Table 5.4 Reliability index at the optimums and the number of function evaluations for high-dimensional RBDO example

Reliability index at optimal designs 6,

RBDO Method fopt ng
91 92 93 9s s Je 97 9gs 9o d10 911 912

PMA 299 407 295 297 4.01 450 00 2.99 00 () 3.01 304 -30.11 2462

SORA 297 399 293 296 4.20 4.35 00 3.03 00 () 297 3.07 -30.14 2376

SL-KKT 293 401 294 292 4.01 00 00 2.99 00 00 293 3.04 -30.18 2178

QS?-AGP 3.01 404 3.04 300 420 431 00 3.03 00 [o%) 3.07 3.04 -30.03 369




5.4.3 Crashworthiness of vehicle side impact

As an engineering application, crashworthiness model of a vehicle side impact is
often used to enhance the side impact crash performance of the vehicle (Youn and
Choi 2004; Chakri et al. 2018). The system model represents the side impact event
of vehicle when it is hit in the side by another vehicle at 49.89 km/h (31 mph). To
formulate the RBDO problem, finite element (FE) structure models in Figure 5.5,
including side impact dummy model and deformable barrier model, were constructed
to simulate the side impact. Then, stepwise response surfaces model was explicitly
constructed to approximate the objective function and constraints based on a few
selected FE simulation results. The objective is to minimize the weight of vehicle
while satisfying the 10 constraints on vehicle safety standard including deflections,
velocities at different vehicle and dummy locations. The means of 9 random
variables, i.e., the thickness (84,...,0) and material property (6g,089) of the
critical part, are considered as design parameters. The RBDO problem of the vehicle

side impact is formulated as:

mein Weight(0)
s.t. P[Fapgom = 1.0 kN] < Pf
P|Defriy, = 32mm| <P, j=1,..3
P[VCypper,, 2032m/s|<Pf, m=1,.3 (5.18)
P[Forceyypic = 4.0 kN| < Pf
P[Velp_piiar = 9.9 mm/ms| < Pf
P[Velgoor = 15.7 mm/ms] < Pf
0,<0<86y,

The detailed mathematical expressions of the objective function and constraints are
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Figure 5.5 Finite element structural models for vehicle side impact (Youn and Choi

2004)

presented in the references (Youn and Choi 2004; Chakri et al. 2018). Due to

manufacturing variability, the thicknesses and material properties of the critical parts

are considered to be Gaussian random variables with standard deviations oy. The

details of these parameters are listed in Table 5.5. The generalized target reliability

index is set as B* =3.0 for all constraints. The performance of QS?-AGP is

demonstrated with the initial design 8® = [1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.3,0.3]".

Table 5.5 Design parameters for crashworthiness of vehicle side impact

. Standard
Design parameters 0 0, 0, deviation
Thickness of B-Pillar inner (mm) 0, 0.5 1.5 0.03
Thickness of B-Pillar reinforcement (mm) 0, 0.45 1.35 0.03
Thickness of floor side inner (mm) 05 0.5 15 0.03
'(Fr::r::;(ness of cross member #1 and #2 0, 05 15 003
Thickness of door beam (mm) 05 0.875 2.625 0.05
'(I'rgrlg;mess of door belt line reinforcement 0, 0.4 12 003
Thickness of roof rail (mm) 0, 0.4 1.2 0.03
(I\r/lna:;e;rlal property of B-Pillar inner 0, 0.333 0.357 0.006
Material property of floor side inner 0, 0.180 0204 0006

(mm)
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Figure 5.6 Convergence histories of QS2-AGP for crashworthiness of vehicle side
impact example: (a) cost function; and (b) design parameters

Quantiles of performance functions

Iteration number

Figure 5.7 Hitories of quantile surrogate estimation by QS?-AGP for
crashworthiness of vehicle side impact example

After QS2-AGP method is initiated with 15 DoE points, three points are added
in surrogate refinement at each iteration. Figure 5.6 presents the convergence
histories of cost function and design parameters. Figure 5.7 shows the convergence
histories of the quantiles estimated by the surrogate models. The convergence
histories of QS2-AGP analysis confirm that the cost and design parameters are

converged to the final values by a small number of iterations. Table 5.6 shows that
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QS%-AGP needs fewer function evaluations than other RBDO methods while

producing accurate results.

Table 5.6 Comparison between the results by the proposed method (QS?-AGP) and
other RBDO method for crashworthiness of vehicle side impact example

RBDO Method PMA SORA SL-KKT QS*-AGP
04 0.50 0.50 0.50 0.50
0, 1.32 1.32 131 1.32
03 0.50 0.50 0.50 0.51
0, 1.29 1.29 1.30 1.30
s 0.87 0.87 0.87 0.87
O¢ 1.15 1.14 1.14 1.13
0, 0.40 0.40 0.40 0.41
Og 0.36 0.36 0.36 0.35
Oy 0.19 0.19 0.19 0.19
Weight(0) 24.5 24.6 245 24.7
ng 1064 593 480 171

5.5 Comparison of computational time of QS-AGP and QS?-
AGP

The computational costs of the two quantile-surrogates-based RBDO methods, QS-
AGP and QS*-AGP, are compared in Figure 5.8 through the RBDO examples
investigated in this chapter and the previous research in Chapter 4 (Kim and Song
2021a). The computational costs are normalized by that of the QS?-AGP method for
the 2-dimensional problem in this chapter. Note that the computational times in
Figure 5.8 only incorporate the CPU times for design iterations except those for the
performance function evaluations. The results confirm that the proposed QS*-AGP
requires dramatically less computational time than QS-AGP, and effectively deals
with high-dimensional RBDO problem while QS-AGP fails to find the optimal

designs when the dimension of the design parameter space exceeds 7.
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Figure 5.8 Comutational time comparison for RBDO by QS-AGP and QS2-AGP (a
= benchmark RBDO problem, b = passive vehicle suspension design, ¢
= welded beam design, d = speed reducer design (Chen et al. 2013), e =
crashworthiness of vehicle side impact, f = high-dimensional RBDO
problem). Times are normalized with respect to the 2-dimensional
problem computation by QS2-AGP (42 seconds in this case)

5.6 Summary

The new RBDO method proposed in this chapter, termed quantile surrogates and

sensitivity by adaptive Gaussian process (QS*-AGP), aims to find the reliable

optimal solution accurately and efficiently by combining the adaptive training

process of the quantile surrogates with the design optimization procedure guided by

the parameter sensitivity of quantile surrogates. By avoiding the use of pre-generated

design samples and the MC-sample based procedure to fit the quantile surrogate in

the previous quantile-surrogate-based RBDO method termed QS-AGP, QS*-AGP

achieved a superior level of efficiency especially for RBDO problems with a larger

number of design parameters. The formulations of the parameter sensitivity of the
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quantile surrogate also helped further reduce the computational costs.

The performance and merits of the proposed method were successfully
demonstrated through several numerical examples including high-dimensional
RBDO problem up to 15 design parameters and engineering applications. In each
example, the proposed method required fewer performance function evaluations in
achieving convergence to accurate results than other RBDO methods. QS*-AGP is
expected to effectively deal with a variety of challenging and time-consuming

RBDO problems in engineering practice.
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Chapter 6. Conclusions

6.1 Summary and contributions of this dissertation

This dissertation focuses on developing active learning methods and applications to
reliability assessment and design optimization for challenging and complex
engineering systems. The four research objectives proposed in Chapter 1 were
fulfilled: (1) PAK-B" method was developed to assess the reliability of complex
structural systems using active learning-based Kriging model; (2) The proposed AL-
HGP efficiently estimated first-passage probability under stochastic wind excitations,
the high-dimensional reliability problem; (3) QS-AGP method was proposed to
identify the reliable optimal design of complex structures by constructing quantile
surrogates and training the model; and (4) The further developed method, QS?-AGP
treated high-dimensional RBDO problems using kernel-based quantile surrogates
and sensitivity. The major developments and findings of this study are summarized

as follows:

o PAK-B" method was developed for structural reliability analyses. The main
objective of PAK-B" was to carry out an active learning process, i.e., adaptive
selection of simulation points, with low computational costs from a reliability
analysis standpoint. The method utilized a new learning criterion designed to
identify important points that are located in the vicinity of the limit-state surface

and, at the same time, contribute most to the failure probability. The uniformly
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distributed samples in n-ball domain could further reduce the number of
computational simulations and achieved efficient convergence.

Several benchmark reliability problems, e.g., a system problem with high non-
linearity, small failure probability, and multiple design points, and general
engineering problems with moderate dimension, were investigated to
demonstrate the accuracy and efficiency of the PAK-B" method. In each
example, the proposed method needed a small number of limit-state function
evaluations to achieve accurate and converged estimates. PAK-B" is expected
to effectively deal with such challenging and time-consuming problems in
practical engineering with robustness against the types of limit-state surface.
The first-passage probability problems under stochastic wind loads were solved
by the proposed AL-HGP method. AL-HGP utilized the Gaussian-process-
based surrogates whose predictive mean and variance were employed to capture
the conditional distribution of maximum response given the time-invariant
basic random variable while handling heteroscedastic noise. This framework
considered both uncertainties arising from the structural systems and the
environmental wind loads. The proposed active learning framework further
reduced the number of computational simulations by identifying the critical
design of experiment (DoE) points that contribute most to the first-passage
probability.

The applications to the eight-story building system and transmission tower
structure successfully demonstrated the performance and merits of the proposed
AL-HGP method. In each example, the proposed method required fewer

dynamic simulations to achieve accurate results, while the "non-adaptive”
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surrogate-based estimates could produce inaccurate results with considerable
variability. The transmission tower example demonstrated that AL-HGP could
deal with high-fidelity computational simulations, e.g., finite element analyses,
without losing the benefits and merits of the proposed method. Thus, AL-HGP
is expected to effectively deal with such challenging and time-consuming
problems in practical engineering.

A new RBDO method using OS-4AGP was proposed. The method utilized a
quantile-based formulation to identify the probability-feasible design domain
that satisfies the reliability requirements. An adaptive learning procedure was
designed to further reduce the number of computational simulations by utilizing
the exploration-exploitation trade-off based on quantile surrogates. The
proposed optimization scheme relied on design samples and, thus, did not use
an optimization algorithm or gradient information on cost and performance
functions.

The accuracy and efficiency of the QS-AGP were successfully tested through
several RBDO problems featuring highly nonlinear performance functions,
various distribution types, and complexity. In each example, the proposed
method needed fewer performance function evaluations to achieve convergence
to accurate results. QS-AGP is expected to effectively deal with such
challenging and time-consuming RBDO problems in engineering practice.

The quantile surrogate-based RBDO framework was further developed to
handle the high-dimensional RBDO applications. The proposed OS’-AGP aims
to find the reliable optimal solution accurately and efficiently by combining the

adaptive training process of the quantile surrogates with the design optimization
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procedure guided by the parameter sensitivity of quantile surrogates. By
avoiding the use of pre-generated design samples and the MC-sample based
procedure to fit the quantile surrogate in the previous QS-AGP, QS*-AGP
achieved a superior level of efficiency, especially for RBDO problems with a
larger number of design parameters. The formulations of the parameter
sensitivity of the quantile surrogate also helped further reduce the
computational costs.

e The performance and merits of the proposed QS?-AGP method were
successfully demonstrated through several numerical examples including high-
dimensional RBDO problems up to 15 design parameters and engineering
applications. In each example, the proposed QS*-AGP method required fewer
performance function evaluations in achieving convergence to accurate results
than other RBDO methods. In addition, the proposed QS*-AGP demanded
dramatically less computational cost than QS-AGP and treated high-
dimensional RBDO problems effectively. Thus, QS*:-AGP is expected to
effectively deal with a variety of challenging and time-consuming RBDO
problems including complex engineering systems and high-dimensional RBDO

problems in which the number of the design parameters is considerably large.

6.2 Recommendations for future studies

In order to propose a new active learning-based method that covers more realistic
engineering systems and advance the frontiers of applications relevant to this study,

the following topics are recommended for future research:
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o The performance of PAK-B" is successfully demonstrated for problems with up
to 9 random variables. If the dimension of input random variable space, n is
considerably larger, e.g., n > 40, the probability density function of standard
normal variables will be concentrated around the “important ring” region
characterized by R ~+/n (Wang and Song 2016). Just as seen in other
reliability analysis approaches, alternative modeling and analysis techniques,
such as dimension reduction or sparse surrogate modeling (Zhang and Pandey
2013), need to be incorporated for effective applications of PAK-B" to high-
dimensional problems through future research efforts.

o Although AL-HGP focuses on the estimation of the first-passage probability
under stochastic wind loads, the concept and framework can be applied to other
engineering fields under various types of natural or human-made hazards, e.g.,
structural failure caused by a strong earthquake, or wire cable failure due to the
mechanical vibration.

e While this study demonstrated that AL-HGP was effective for the reliability
assessment of stochastic wind-excited systems, the design optimization
considering these reliabilities is also an essential task for desirable decision-
making under uncertainties. This can be achieved by extending the applicability
of AL-HGP to the reliability-based design optimization of structures subjected
to stochastic wind excitations.

e This study solved the RBDO problem to achieve a reliable optimal design of
structures whose failure probability, i.e., the probability of violating the given
constraints is lower than the target level for each component. However, the

structural failure is often described by a system event, i.e., a logical function of
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multiple failure modes. A systematic approach incorporating system reliability
methods needs to be proposed to handle the complex events and achieve
resilience of systems.

Since the proposed quantile surrogate-based RBDO method, QS?>-AGP finds the
optimal solution using a gradient-based optimizer using quantile surrogates and
corresponding design parameter sensitivity, the design solution identified by the
proposed framework can be local optimum if the performance and/or cost
functions of structural systems are complex. Thus, incorporating a global
optimization scheme can be a promising future research topic.

In this study, even though several numerical examples including nonlinear limit-
state functions are examined to demonstrate the performance of the proposed
methods, their validation to experiment datasets is required to extend the
applicability of the active learning methods to real world engineering problems.
In addition, refined frameworks are needed to properly predict the structural
responses having highly complex and nonlinear behavior, e.g., dynamic
response showing hysteric characteristic.

Since the proposed methods employ GP-based surrogate models for response
predictions, the performance may degenerate if the distribution of structural
system response is non-Gaussian, which is usually shown in the nonlinear
dynamical systems having hysteretic behaviors. Thus, it is expected that
incorporating other stochastic surrogate models having non-Gaussian
assumptions (Yang and Perdikaris 2019; Zhu and Sudret 2021) will promote the
future applications of active-learning methods to a wide class of structural

systems.
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e To mitigate the damage and losses to structures during severe disasters, it is
important to define the damage state and social losses, which can be
incorporated into the widely used performance-based engineering frameworks.

Therefore, the applications of developed active learning-based methods to

performance-based design optimization can be a promising future research topic.

¢ In structural design optimization, commonly considered design parameters are
elements of structural systems, e.g., thickness or cross-sectional areas, and the
topology of the design domain is assumed to be fixed. To determine the optimal
material layouts and connectivities in a design domain, topology optimization
has been widely studied and applied. Therefore, applications of the proposed
active learning frameworks to topology optimization can be a promising future

research topic in various engineering fields.
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