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Abstract

Measuring the Impact of 
Supply Network Topology on the 
Material Delivery Robustness in 

Construction Projects 

Chan Heo
Department of Architecture

The Graduate School
Seoul National University

  The robustness of a supply chain (i.e., the ability to cope with ex-

ternal and internal disruptions and disturbances) becomes more critical 

in ensuring the success of a construction project because the supply 

chain of today’s construction project includes more and diverse 

suppliers. Previous studies indicate that topological features of the sup-

ply chain critically affect its robustness, but there is still a great chal-

lenge in characterizing and quantifying the impact of network topo-

logical features on its robustness. In this context, this study aims to 

identify network measures that characterize topological features of the 

supply chain and evaluate their impact on the robustness of the supply 

chain. Network centrality measures that are commonly used in assessing 

topological features in social network analysis are identified. Their val-



idity in capturing the impact on the robustness of the supply chain was 

evaluated through an experiment using randomly generated networks and 

their simulations. Among those network centrality measures, the 

PageRank centrality and its standard deviation are found to have the 

strongest association with the robustness of the network, with a positive 

correlation coefficient of 0.6 at the node level and 0.74 at the network 

level. The findings in this study allows for the evaluation of the supply 

chain network’s robustness based only on its topological design, thereby 

enabling practitioners to better design a robust supply chain and easily 

identify vulnerable links in their supply chains.

Keyword : material delay; supply network management; supply network 
robustness; supplier ranking; social network analysis

Student Number : 2020-24531
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Chapter 1. Introduction

1.1. Motivation

  Construction materials often contribute for 50-60% of the construction 

project’s total cost, and they can affect up to 80% of a project’s time-

line[1]. Accordingly, material delays often lead to schedule delay at 

construction sites, resulting in increased costs [2,3]. Studies have found 

that late delivery of construction materials was responsible for approx-

imately a quarter of total project delays in construction projects in 

Kuwait [4] and that late delivery of material ranked 1st among 25 fac-

tors contributing to main causes of schedule delays in the United 

Kingdom [5]. It is undeniable that effective materials management in 

construction projects has positive impacts on project cost, schedule and 

quality. The supply of materials in construction projects is exposed to 

different kinds of risks such as late delivery and natural hazards(e.g. 

tsunamis, earthquakes and economic crisis) [6]. In particular, in recent 

years, raw material shortages have occurred in the aftermath of the 

pandamic and war between countries, which has led to burdensome de-

lays on construction projects. To effectively manage the possible risks 

in material supply, the concept of robustness has became a fundamental 

requirement in construction projects. Robustness of supply network is 
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the network’s ability to cope with external and inernal disruptions and 

disturbances. Previous studies have developed various models to assess 

and interpret the robustness of the supply network.

Figure 1-1. (a) A network representation of a recent real contruction project 
supply chain (b) A network representation of related suppliers of a supplier in 

the network

  As construction projects get larger and more material suppliers en-

gage from various countries, suppliers are connected in the form of a 

network and interact with one another. As a result, the inter-

dependencies and complexity of the construction material supply net-

work have been grown consistently [7]. As an exmaple, Figure 1-1. is 

a network representation of a recent real contruction project supply 

chain. Recent supply chain in construction projects includes multiple 

suppliers, related with high complexity and high connectivity. In accord-

ance with Figure 1-1. (b), it is no wonder even disruptions on the 

smallest suppliers in the network could affect the entire system due to 

its complex relationships between material suppliers. Accordingly, there 
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clearly exist a need of identifying the most influential suppliers and 

evaluating the robustness of the supply network based on its topology 

to effeciently ultilize the limited amount of managing capacity and to 

design a more robust supply network in advance.

 Over the past decade, concepts and procedures to enhance the robust-

ness of the supply network have evolved in response to the changing 

global environment. In traditional material supply networks, material 

suppliers, manufacturing facilities, distribution services, and customers 

were all linked and interpreted as a linear forward flow of materials 

and a feedback flow of information or materials [8,9].

  However, recent studies have shown that supply network analysis 

based on such assumptions is no longer valid in today’s complicated 

global supply network. To understand the complicated nature of recent 

supply network, social network analysis methodologies have been adopt-

ed instead of linear flow and feedback system [10,11].

  Social network analysis, the technique of examining social structures 

using networks and graph theory, categorizes networked systems into 

nodes(individual actors or suppliers) and links(relationships or inter-

actions between nodes) that connect them. The concept of social net-

work analysis has been proven to be useful to study the patterns of 

complex interactions and material movement between suppliers in the 

network from a macro perspective [12]. Furthermore, social network 

analysis can be useful in material supply network analysis in that it al-

lows us to quantitatively measure the topological characteristics of the 

material suppliers and the network itself. Along with these benefits of 
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using social network analysis, recent studies have adopted the concept 

of social network analysis to anticipate the possible risks on the supply 

network and assess the network’s robustness against the risks.
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1.2. Problem Statement

  Along with the growing complexity and diversity of the material sup-

ply network, there have been studies to capture the complex nature of 

supply networks and enhance its performance. By adopting social net-

work analysis, Kim et al. [12] discovered that topological characteristics 

of the network impact its robustness, which symbolized the supply net-

work’s capacity to cope with external and internal shocks and 

disturbances. Recent studies [13,14] have also found that supply net-

work interruptions(such as delays of materials caused by suppliers) even 

in the smallest suppliers result in enormous delays in the end owing to 

poor supply network topology design. In these studies, computational 

models and simulations with synthetic data were used to evaluate the 

network topology design and its impact on the supply network 

robustness. Computational decision model using synthetic or real dataset 

allows systemic exploration of possible risks of supply networks.

 However, the complexity of these computational models raises a great 

challenge in using them to design the network topology in practice at 

the early stage of a project. As supply network data is often exclusive 

and resource intensive to collect, practitioners often rely on synthetic 

data or context-specific case studies which can easily be questioned 

about their validity for general application [11].

  Moreover, in construction industry, each construction project neces-

sitates the development of a single one-of-a-kind product that requires 
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the collaboration of dozens, if not hundreds, of participants [15]. Since 

owners, contractors, subcontractors and suppliers work for a definite 

amount of time to deliver the project to the consumer and then move 

on to new projects, all activities in construction industry are often 

short-lived and therefore computational models with context-specific 

studies and datasets often loose their applicability for a construction 

project.

 Accordingly, there needs a more generally adoptable managing method 

to proactively design the robust network topology to address possible 

disruptive events in construction material supply networks.
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1.3. Research Objectives

  This study aims (1) to identify topological indicators that best repre-

sents the influence of suppliers in today’s complicated construction sup-

ply network  and (2) to predict and evaluate the robustness of the sup-

ply network based only on its topological characteristics. To achieve 

this goal, we identify network indicators that can easily characterize 

topological features(e.g. the position of the suppliers in the network or 

relationships with adjacent suppliers of a supplier) of the supply net-

work and evaluates their impact on its robustness. This study identifies 

various network centrality measures that are commonly used to evaluate 

an importance of a vertex in social network analysis, and evaluate their 

effectiveness in predicting the robustness by simulating randomly gen-

erated supply networks with various structures under disruptive events 

such as material delay on raw material suppliers.
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Chapter 2. Background

2.1. Computational Models for Robust Supply Network

 Since the real-world supply network data is difficult to obtain, pre-

vious studies have relied on qualitative methodologies to acquire theo-

retical and practical insights on how to establish a robust network [16]. 

 While qualitative interpretations have their own merits, their validity is 

compromised by a researcher's limited reasoning, which includes an in-

ability to comprehend the supply network's complexity. 

 In this context, many previous studies have used computational simu-

lation models to design a robust supply network. Decision makers can 

use computational models to analyze the influence of network structure 

on its robustness, detect risk diffusion patterns, and evaluate alternative 

scenarios [11]. For instance, Kamal Ahmadi et al. [17] found that pro-

curement from a few dependable suppliers is more effective than pro-

curement from a large number of susceptible suppliers, while Behzadi 

et al. [18] investigated the usefulness of dispersing supply demand in 

mitigating agriculture disruption. Basole et al. [11] developed a compu-

tational system model to assess and visualize the impact of network 

topology on risk diffusion.
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2.2. Social Network Analysis for Robust Supply Network

 Social network analysis(SNA) is the process of investigating social 

structures through the use of networks and graph theory. It classifies 

networked systems as nodes (individual actors, persons, or items in the 

network) and ties, edges, or links (relationships or interactions) that 

connect them. Scholars are beginning to see the potential of social net-

work analysis to combine the operations and supply management dis-

cipline in that it allows us to capture structural characteristics of supply 

network with other branches of management science [19-21]. The ideas 

of social network analysis are particularly well suited to investigating 

how patterns of inter-firm(or inter-supplier) linkages in a supply net-

work translate to advantages through material mobility and information 

dispersion management.

  Recent studies have employed social network analysis to explore the 

impact of network topology on its robustness with context-specific case 

studies. Kim et al. [12] demonstrated how to use social network analy-

sis to investigate the structural characteristics of supply networks via a 

case study in an automobile industry. In construction industry, previous 

studies have more focused on the information exchange and communi-

cation between suppliers in the network. For instance, Chinowsky et al. 

[22] has adopted social network analysis to focus on discovering effec-

tive social communication structure in construction project management. 

Akgul et al. [23] used SNA approach to investigate the partnership be-
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havior of Turkish contractors in international construction projects. 

Shabani et al. [24] analyzed the effect of different procurement methods 

using SNA metrics. 

  SNA based strategic management in supply network in previous stud-

ies have embraced strategy analysis at two different level: Macro lev-

el(Network level) and Micro level(Node level) [12, 25].

Ÿ Macro level Analysis(Network level Analysis) uses metrics that com-

pute how the overall network ties are organized form the per-

spective of an observer that has the bird’s eye view of the network 

to explore behavioral mechanisms of entire supply networks.

Ÿ Micro level Analysis(Node level Analysis) uses metrics that measure 

how an individual node(or supplier) is embedded in a network from 

that individual node’s perspective.

  However, it is yet unclear how and to what extent the network top-

ology impacts the robustness of the material delivery network in the 

construction industry, and thereby, a gap exists in how to characterize 

and assess the topology of supply networks. In this context, this study 

focuses on identifying and validating the network indicators that can re-

liably characterize the network topology and help predict the robustness 

of the supply network.
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Chapter 3. Identifying Topological Characteristics 

of Suppliers and Supply Networks (SNA)

  In social network analysis, various centrality measures have been pro-

posed and used to characterize an important vertex in the network. 

These centrality measures assign numbers or rankings to nodes corre-

sponding to their position in the network, thereby allowing the observer 

to estimate how important a node or an edge is for the connectivity or 

information flow of the network. Thus, this study focuses on whether 

and which centrality measures can predict the robustness of the supply 

networks in construction. We identify several centrality measures from 

the social network analysis literature (Section 3.1), and compute their 

values for randomly generated supply networks. A number of supply 

networks with different topology are created based on the data from a 

real-world project (Section 3.2 and 3.3). Then the computational models 

to simulate these networks are developed (Section 3.4) and used to 

compute a delay of the material arrival at the network end (e.g., con-

struction project) under random disruptive events (Section 3.5) on one 

node of the network (e.g., material delay of one supplier). Finally, the 

correlation between centrality measure values and simulated delay time 

at the network end is conducted to identify the most relevant measure.
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Figure 3-1. Process diagram of this study
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3.1. Adoption of Common Network Centrality Measures

  As mentioned in Section 2, this study uses various network measures 

to identify an important vertex in the network or distinctive character-

istics of a network. One of the most common applications of SNA is 

to identify the major actors in a supply network [26]. The relative sig-

nificance of individual nodes in a network is measured by centrality. 

The centrality of a node in a social network has a considerable influ-

ence on its behavior and well-being, as well as that of others [27]. 

There are several forms of centrality measures, each of which identifies 

significant nodes in different ways. Among various centrality metrics, 

this study identified several dominant centrality measures that have been 

used in various domains such as material procurement management, so-

cial network analysis and supply chain information flow management. 

Degree centrality, In-Degree centrality, Out-Degree centrality, Closeness 

centrality, Betweenness centrality and PageRank centrality were used in 

this study to capture the topological characteristics of each node in a 

material delivery network. Following descriptions for each centrality 

measures are based on the network with the set of nodes 

     (note that  represents each nodes in the network).
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Ÿ Degree Centrality () is a measure that is based on the number 

of direct connections that a node(a supplier) has.   of the node  

is the average number of adjacent links to  (1). Degree centrality 

is arguably the most common measure of centrality. This idea is 

based on the fact that the more direct linkages a node has, the 

more central it is. When a node is connected to a large number of 

other nodes, the node has high degree centrality.

Figure 3-2. Illustration of degree centrality 

  In material supply networks, the connections are directed, and thus 

we can distinguish between backward(In-Degree Centrality) and for-

ward(Out-Degree Centrality) supply network connections.

  


  ≤  ≤  (1)
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Ÿ In-Degree Centrality (
) is a measure that is based on the num-

ber of direct inbound adjacent connections that a node(a supplier) 

has. 
 of the node  is the average number of adjacent inbound 

linkages to  (2). In terms of supply network, In-Degree Centrality 

is a measure with regard to the number of incoming materials or 

information.

Figure 3-3. Illustration of in-degree centrality 

  Nodes with higher In-Degree Centrality may be more prone to face 

supply challenges simply because of the greater amount of upstream 

materials required.


 


  ≤ 

≤  (2)



16

Ÿ Out-Degree Centrality (
) is a measure that is based on the 

number of direct outbound adjacent connections that a node(a sup-

plier) has. 
 of the node  is the average number of adjacent 

outbound linkages to  (3). In terms of supply network, Out-Degree 

Centrality is a measure with regard to the connectivity of a node 

with other material supplier, distribution center or the construction 

site.

Figure 3-4. Illustration of out-degree centrality

  A greater Out-Degree Centrality of a node indicates that there are 

more suppliers or distribution centers engaged in the delivery of the 

product platform.


 


  ≤ 

≤  (3)
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Ÿ Closeness Centrality () is the measure of closeness in a network 

and can be used to determine the length of the average shortest 

path between the node(supplier) and all other nodes(suppliers) in the 

network.  of the node  is the inverse of its farness central-

ity(note that the farness centrality is the sum of a node’s distances 

to all other nodes in the network) (4). In terms of supply network, 

Closeness Centrality measures how close a supplier is to all other 

suppliers in the supply network beyond ones that it is directly con-

nected to. Closeness Centrality includes indirect linkages since a 

supplier is central if it can rapidly reach all the others.

Figure 3-5. Illustration of closeness centrality

  A node with a high Closeness Centrality is less influenced by others 

and has more ability for autonomous activity. These nodes grow less 

dependant on one other.

 


  ≠ 









≤  ≤



(4)
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Ÿ Betweenness Centrality () measures how often a node lies on the 

shortest path between all combinations of pairs of other nodes.  

of the node  counts the number of shortest path that pass through 

a specific node(supplier) from all nodes(suppliers) to all others (5). 

For suppliers with high Betweenness Centrality, because they are in-

volved in the providing of many materials, either directly via manu-

facturing or indirectly through ownership by the same organization, 

these nodes can be considered major players in the supply chain 

(country or company).

Figure 3-6. Illustration of betweenness centrality

  
 ≠ ≠


  (5)
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  Note that   is total number of shortest paths from   to ; and 

  is the number of shortest paths from   to   passing the node 

(supplier) . 

  When a node with a high betweenness centrality is removed, material 

or information flows are more likely to be disrupted than if a random 

node is removed. The loss of any of these nodes is likely to have an 

impact on the entire supply chain network's performance, hence high-

lighting these nodes is critical.
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Ÿ PageRank Centrality () was invented by Google founders Larry 

Page and Sergei Brin and was designed for ranking web content, 

using hyperlinks between pages as a measure of importance [28]. 

PageRank Centrality  of  is calculated by the sum of inbound 

nodes’  over the number of links connected to previous nodes 

 (the number of outbound links of ) (6). Many prior research 

have discovered that Google page ranking is directly linked to 

search and search engine optimization (SEO) strategy, and that the 

ranking score reflects the efficacy of SEO strategy [29]. 

Figure 3-7. Illustration of PageRank centrality

  In terms of supply network, PageRank Centrality measures a suppli-

er’s influence in the network by taking account the influence of its ad-

jacent suppliers. It assumes that the centrality score of a supplier is 

  
∈∈




(6)



21

proportional to the sum of the centrality scores of the neighbours 

(previous suppliers if the network is directed).

  These centrality measures are computed for each node of a network 

for the node level analysis, which gives us insights on how important 

the node is in the network. To assess how the network topology affects 

the nodes and robustness of the whole network, measures for network 

level analysis were identified. The set of centrality values of all nodes 

in each network are collected separately, then mean, standard deviation, 

and maximum and minimum centrality are calculated for each network 

to capture the topological characteristics of the network.
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3.2. Representation of Supply Network in SNA

  A supply network is a set of temporal and geographical operations 

carried out at facility nodes and via distribution connections that pro-

vide value to consumers by making and delivering items [30]. It refers 

to the broad condition of affairs in which all types of materials (both 

work-in-process and finished products) are changed and transferred be-

tween various value-added locations in order to maximize consumer 

value. It is often represented as a graph consist of nodes and links. In 

this study, the supply network was represented by a directed graph 

(since the link between suppliers represent the transportation of con-

struction materials)    where          is the set 

of nodes (note that  represents material suppliers), and 

       ∈ is the set of edges (note that  represents 

material transportation from supplier  to supplier ).

  The adjacency matrix    ≤  ≤  , is a × symmetric ma-

trix which the element  takes 1 or 0 depending on whether  and 

 are connected or not. This is a common method in many previous 

studies in modeling the supply network [31].
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  In summary, construction material delivery supply network is repre-

sented as a graph (an illustrative example of network representation is 

provided in Figure 3-8.), and defined as follows :

Ÿ Graph     : Supply Network

Ÿ Nodes          : Material Suppliers

Ÿ Edges        ∈ : Material Transportations

Figure 3-8. An illustrative example of supply network representation
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Chapter 4. Supply Network Robustness 

Performance Simulation Under Disruption

4.1. Random Network Generation from Real 

Construction Project Dataset

  Random supply networks were generated based on the supply net-

work data from one mega plant construction project in Canada (Figure 

3-9). This construction project’s supply network included suppliers for 

around 800,000 types of construction materials, and a lag time in each 

supplier (e.g., processing time) of this project was also used as the 

baseline data of randomly created supply networks in this project. 

While the total number of suppliers remains the same, the topological 

designs of supply networks were modified in a way to assign a random 

role (i.e., raw material supplier, fabrication shop, and module shop) to 

each supplier. The networks only included four different levels (i.e., 

tiers) of the nodes (raw material supplier, fabrication shop, module 

shop, and construction site) as they are commonly used as tier setting 

in supply network modeling [32]. Then the links between the suppliers 

were randomly created considering their tiers. Though the links between 

suppliers in the network were connected in a random way, there were 

several restrictions to reflect the material delivery process based on the 

real supply network for a construction project. (e.g., raw material sup-
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pliers are only connected to fabrication shops or module shops and 

cannot be directly connected to a construction site).
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Figure 4-1. Network representation of a construction project in Canada
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  To generate random networks, the network topology of real material 

supply network in Figure 4-1 was modified. Randomly generated net-

works were represented in the form of node data and link data. 30 

Nodes (note that each node represents the supplier) were created for 

each random network with identical index for each node. Node data 

file contained (1) the index of the node, (2) the tier of the node, (to 

identify whether the node is a raw material supplier, a fabrication shop, 

a module shop or a construction site) (3) the  and  location, 

(synthetic relative coordinates just for the visualization in the simulation 

tool) (4) and the capacity (material holding capacity for each node). 

Link data file contained the set of (1) source node index (the point at 

which construction materials depart for transportation) and target index 

(the point at which construction materials arrive by transportation).

  Construction materials within the real construction project supply 

chain are produced by raw material suppliers and subjected to fab-

rication and assembly through the process of transportation of the sup-

ply chain. Therefore, the following regulations or assumptions are re-

quired when connecting links between suppliers :

Ÿ Raw material suppliers are only connected to fabrication shops or 

module shops and cannot be directly connected to a construction 

site.

Ÿ All suppliers delivering module-worked materials must be connected 

to the construction site.

Ÿ The supply network must be a direct network (where all links have 

a source and a target).
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Ÿ There is no link where the higher level tier supplier becomes the 

source (there is no retrograde transportation).

  The generated node, link information and adjacency matrix of the 

random networks are input values of the NetworkX (a Python package 

for the creation, manipulation, and study of the structure, dynamics, and 

functions of complex networks) and the material delivery simulation 

model. An illustrative example of generating random supply network is 

illustrated in Figure 4-2.
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Figure 4-2. An illustrative example of the process of random network generation
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4.2. Material Flow Simulation Modeling

  The material flow under a supply network was simulated using an 

agent-based model. The simulation model takes a set of supply network 

data consisting of node data (node index, capacity, tier, etc.) and link 

data (source node index and target node index) as an input. Nodes rep-

resenting suppliers are generated based on the input node data. At    

nodes are connected based on the input link data. Nodes assigned as 

raw material suppliers produce materials at each time step  and 

search for the next possible target nodes to send the material. Target 

node for each material is selected randomly from the linked nodes (a 

set of nodes connected to the current node). Material is sent from the 

current node  to the assigned target node   with material trans-

portation time . Once the material is delivered to the target node,  

and   are updated. The node assigned as a fabrication shop or mod-

ule shop takes materials delivered from the former nodes and holds it 

for storage time   for the storage and material fabrication. After the 

delay, material is sent to the target node  sequentially. The node as-

signed as a site takes materials from former nodes and records the ma-

terial arrival time and current storage volume. When all the materials 

arrive at the node assigned as construction site, the iteration is termi-

nated and records the total time taken  .
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  The storage capacity of each node is set in propotion to the number 

of inbound links of the node, considering the amount of materials the 

nodes have to process. During the material transportation, if the storage 

of the node is full, that node is temporarily eliminated from the linked 

node list and the material searches for another available target. If 

there’s no available target at the moment, materials stay in the queue 

until at least one target node is available.

  Input parameters for initiating the material delivery simulation is pro-

vided in Table 4-1 and the schematic outline of simulation initiating is 

illustrated in Figure 4-3. The overall process models of raw material 

suppliers and fabrication/module shops are provided in Figure 4-4 and 

Figure 4-5.
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Agent Category Input

Network

Number of suppliers

Tier of each suppliers

Node information

Link information (set of source and target)

Raw material supplier

Material production time interval 

Material storage time 

Material storage capacity

Material production volume

Fab shop / Mod shop
Material storage time 

Material storage capacity

Material

Material transportation time 

Current node index 

Available target node list

Table 4-1. Input parameters for agents in material delivery simulation

Figure 4-3. Schematic outline of material flow simulation initiating
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Figure 4-4. Process model of raw material supplier agents

Figure 4-5. Process model of Fab/Mod shop agents
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Figure 4-6. State chart of material agents

  Materials are initially produced in the source block of raw material 

suppliers at each time step  and search for available target suppliers 

that are not full of storage capacity (note that the supplier that can be 

designated as a target must be linked to the provider that sends the 

material). If there is at least one supplier that can be targeted, supplier 

agent send a message “move” to the material. If there’s no target sup-

plier available, the material waits in the queue block until there’s a 

supplier with spare storage capacity. Receiving the “move” message 

from the supplier agent, the material exits the supplier changing its 

state from ‘At raw material supplier’ to ‘At link (at transportation)’. By 

the arrival of material to a new supplier, the material change its state 

to ‘At node’ and is stored or processed in the process model of the 

supplier agent. The produced materials and suppliers will repeat this 

process until the available target nodes for the materials are set to the 

construction site. Material suppliers on the brink of the construction site 

send the message “move to site” at the exit block to the material 
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which make the material change the state from ‘At link’ to the state 

‘At construction site’. By entering the process model of the construction 

site agent, the delivered material records the total time taken  .

  Material delivery simulation procedure was done by using AnyLogic, 

a simulation modeling software supporting agent-based, discrete event, 

and system dynamics simulation methodologies.

Figure 4-7. Screenshot of material delivery simulation in AnyLogic
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4.3. Embodiment of Disruptive Event in the Simulation

  The robustness of the network can be evaluated by its ability to cope 

with disruption in one of its nodes [33]. In this study, experiments 

were conducted by selecting an arbitrary supplier and caused a dis-

ruptive event on that supplier. The total material transportation time that 

varies by supplier was compared. As disruption in the network, a delay 

in a random supplier, was created and simulated with the increased 

storage time. While the storage time of a supplier was assumed to have 

a triangular distribution of 0–1–2 days, the storage time of a disrupted 

supplier was assumed to have a triangular distribution of 3–4–5 days. 

The values of storage time parameter were set referring to the real con-

struction supply network data mentioned in Chapter 4.1.

Figure 4-8. Variation of storage time as a disruptive event in the simulation 
model
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Chapter 5. Correlation Analysis between Network 

Topology and Supply Network Performance

5.1. Experimental Setup for Correlation Analysis

  To evaluate the relevance of the selected centrality measures, we con-

ducted an experiment using supply network simulation. A total of 300 

supply networks were created, and each supply network was simulated 

for 30 iterations, resulting in total 9,000 iterations. The scenario for the 

simulation experiment was designed in two main directions. Scenario 1, 

the base case scenario was designed to be used as a control group, 

where storage time of all suppliers was set to be a triangular dis-

tribution of 0–1–2 days, without any disruption. Scenario  (note that  

= disrupted node index,  ≤  ≤ ), was designed to observe the impact 

of disruption of each supplier on the material delivery performance of 

the network. In scenario , we caused a disruption on the supplier with 

index  by setting the material storage time to a triangular distribution 

of 3–4–5 days. In each iteration, the following relative delay rate was 

computed: Relative delay rate (RDR)    _ _ 

(total time taken for material delivery under disruptive event (under sce-

nario )/total time taken for material delivery under normal state (under 

the base case scenario)).
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Scenario Representation (example) Features

Scenario 1
(Base Case)

Disrupted node index = None

Storage time of all suppliers = 

triangular distribution of 0–1–2 days

Scenario 

( = disrupted node 
index,  ≤  ≤ )

Disrupted node index = 

Storage time of supplier  = 

triangular distribution of 3–4–5 days

Storage time of other suppliers = 

triangular distribution of 0–1–2 days

Table 5-1. Overview of the modelled scenarios
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  After all 30 experiments within one network are completed, the ex-

periment is conducted again with another randomly generated network 

topology. We repeated experiments in which information from the newly 

generated random network is put as input to the material transport sim-

ulation model and regenerate the supply chain within the model to 

transport the materials from the raw material suppliers to the con-

struction site agent. 300 randomly generated networks were simulated 

resulting in total 9,000  records and topological metrics data. 

Material delivery simulation was conducted by implementing the follow-

ing pseudo-code:

1: for  = 1 to 300:

2: generate random node and link data

3: initialize the simulation model

4: for  = 1 to 30:

5: set scenario 

6: run material delivery simulation model

7: if done:

8: return recorded  data
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5.2. Correlation Analysis to Identify Influential Suppliers

  To analyze the impact of disruption on material supply delay on each 

supplier in the supply chain network, the correlation analysis between 

the  data obtained through simulation and the topological metrics 

of each supplier was conducted. For topological metrics of each suppli-

er in node level correlation analysis, as mentioned in Chapter 3.1, 

Degree, In–degree, Out–degree, Closeness, Betweenness and PageRank 

Centralities were chosen. Total 9,000 topological metrics and  val-

ues from the material delivery simulation were used. Each set of values 

of topological indicators and  values were normalized before the 

analysis. Let    be a network or graph with node set  and 

edge set . Let    be the number of vertices of . Let  be 

the value of the metric  evaluated on the graph . Let  be the 

number of networks generated for the simulation. We normalized the 

measurements following the process of [34]. The measurements of the 

metric     are normalized by the expression 

  , where  is a normal-

ization function of the metric . Table 5-2. shows the topological met-

rics  and corresponding normalization function  used in this study. 

Pearson correlation coefficient was used in this study (for   , it is 

said to be a strong correlation).
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Metric  Normalization function  Representation

Degree Centrality    


  ≤  ≤ 

In-degree Centrality  
 


  ≤ 

≤ 

Out-degree Centrality  
 


  ≤ 

≤ 

Closeness Centrality 
 


   ≠









≤  ≤ 

Betweenness Centrality    
 ≠ ≠


 

PageRank Centrality –   
∈∈





Table 5-2. Metrics and normalization functions used in node level analysis
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5.3. Correlation Analysis to Assess the Robustness of 

Supply Network

  To analyze the impact of disruption on material supply delay on each 

network topology, the correlation analysis between the  data ob-

tained through simulation and the topological metrics of each random 

network was conducted. For topological metrics of each random net-

work in network level correlation analysis, mean, standard deviation, 

and maximum and minimum centrality values of 300 networks and cor-

responding 300 mean and max  values were used. A total of 9000 

node data were grouped between node data existing in the same ran-

dom network, and for each network, the average, standard deviation, 

maximum, and minimum values of the centrality values of node data in 

the network were calculated. The calculated network level metrics were 

then analyzed and compared with the mean and maximum  values 

of corresponding random networks. Table 4-3. shows the topological 

metrics of  random network   ≤  ≤  used in correlation anal-

ysis (note that  is the set of centrality values of all nodes in the 

network ). As in the node level correlation analysis mentioned in 

Chapter 5.2, Pearson correlation coefficient was used in the network 

level analysis.
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Category Metric (for  = 1 to 300)

Degree Centrality

mean 

SD 

max 

min 

In-degree Centrality

mean 


SD 


max 


min 


Out-degree Centrality

mean 


SD 


max 


min 


Closeness Centrality

mean 

SD 

max 

min 

Betweenness Centrality

mean  

SD  

max  

min  

PageRank Centrality

mean 

SD 

max 

min 


mean 

max 

Table 5-3. Metrics used in network level analysis
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Chapter 6. Results of Correlation Analysis

6.1. Network Topology Indicators Associated with the 

Influence of Disruption on Suppliers

  Node level topological metrics shown in Table 5-2 were compared to 

the material delivery performance () obtained from the simulation 

model. It was found that the PageRank centrality has the greatest corre-

lation with the network robustness with the positive correlation co-

efficient of 0.6 (see Table 6-1). The degree, in-degree, and closeness 

centrality measures were also found to have a strong correlation with 

the network robustness at the node level with the correlation coefficient 

value of 0.55, 0.53, 0.52 correspondingly. The result indicates that the 

topological characteristics of suppliers in the network impact the materi-

al delivery performance of the whole supply network. By looking at the 

natural characteristics of topological indicators with relatively higher 

correlation coefficient values (e.g., PageRank, Closeness and In-degree 

centralities), metrics that also consider relationships with remote pro-

viders, including directly connected suppliers, have been identified to 

have more significant impact on the material delivery performance than 

those that do not.
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Degree Centrality 0.55

In-degree Centrality 0.53

Out-degree Centrality 0.25

Betweenness Centrality 0.44

Closeness Centrality 0.52

PageRank Centrality 0.60

Table 6-1. Correlation Coefficients between 
Centrality Measures and  (Node-Level)

Figure 6-1. Heatmap of Correlation Coefficients in Node-Level Analysis
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6.2. Network Topology Indicators Associated with the 

Robusteness of the Supply Network

  Standard deviation (SD) of PageRank centrality of the network was 

found to have the greatest correlation with the robustness of the supply 

network (see Table 6-2). In addition, standard deviation of out-degree, 

mean of closeness, and mean of betweenness measures were found to 

have a strong correlation with mean, max, and max RDR, respectively, 

but the standard deviation of PageRank centrality was the only measure 

that shows a strong correlation with both the mean and max RDRs. 

This indicates that the variance of PageRank centrality is highly rele-

vant to the robustness of the network. As in the results of node-level 

correlation analysis, the results in network-level analysis suggests that 

indicators that also count links with far-connected suppliers, including 

adjacent suppliers, are more influential than those that do not. 

Furthermore, it was found that the deviation of topological measures 

among the suppliers in the same network seem to have more impact on 

the material delivery performance than the maximum, minimum, or 

mean values of most centrality measures (e.g., Degree, In-degree, 

Out-degree, and PageRank centralities). 
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Figure 6-2. Heatmap of Correlation Coefficient in Network-Level Analysis
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Degree Centrality In-degree Centrality Out-degree Centrality

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Mean  0.05 -0.44 0.05 -0.07 0.05 -0.49 0.19 -0.20 0.05 -0.56 0.40 -0.33

Max  -0.38 -0.06 -0.03 0.04 -0.38 -0.15 0.20 -0.18 -0.38 -0.38 0.22 -0.19

Closeness Centrality Betweenness Centrality PageRank Centrality

Mean SD Min Max Mean SD Min Max Mean SD Min Max

Mean  0.33 -0.03 0.15 -0.32 0.34 0.01 0.14 -0.13 0.01 0.74 0.22 0.19

Max  0.53 0.36 0.20 -0.35 0.70 0.46 0.06 -0.07 0.01 0.62 0.08 -0.06

Table 6-2. Correlation Coefficients between Centrality Measures and  (Network-Level)
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Chapter 7. Discussion

7.1. PageRank Centrality as a Measure of the Influence 

of Suppliers

  This result indicates that a disruption on the node with a higher 

PageRank centrality would produce a higher delay rate of the entire 

network in the simulation. An example is visualized in Figure 6-1. The 

size of each node represents its PageRank value. Each node’s impact 

on material delay rate was compared to its PageRank. Nodes with a 

higher PageRank centrality value tend to receive more materials from 

front-end suppliers with high centrality. In other words, suppliers with 

higher PageRank centrality have to deal with more supply load, not on-

ly affecting the adjacent material receivers but also the construction site 

at the end. Unexpected delays on suppliers with higher PageRank cen-

trality can thus consequently result in more impact(schedule delay in 

this case) on the construction site. Thus, the PageRank centrality of a 

node represents the relative impact of that node on the network. 

  Furthermore, in terms of material delivery management, the result in-

dicates that the supplier managing strategy focusing on suppliers with 

relatively higher PageRank values might be more effective rather than 

treating the importance of all suppliers equally. With the limited amount 
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of managing capacity, whether it be the cost, time or human resource, 

ranking suppliers with PageRank centrality and focusing on high rank 

suppliers would reduce the management cost during the construction 

project. Additionally, as previous management methods mainly focused 

on suppliers that are responsible for great amount of important materi-

als, material delivery management strategy also considering topological 

characteristics of each supplier might bring the chance of discovering 

suppliers previously considered less important, but have significant im-

pact due to unique topological characteristics of themselves.
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Figure 7-1. PageRank Centrality and RDR Comparison of an Example Network
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7.2. Standard Deviation of PageRank Centrality as a 

Measure of Supply Network Robustness under 

Disruption

  Networks with higher standard deviation of PageRank centrality tend 

to have more high-centrality nodes connected to comparably low-central-

ity nodes, resulting in higher delay rates in the simulation. Figure 6-2 

shows an illustrative example of two different supply networks with 

significant discrepancy of the network performance and the standard de-

viation values of PageRank among suppliers. The imbalanced centrality 

between adjacent nodes causes significant supply load on low-centrality 

nodes when adjacent high-degree nodes are under disruption. In terms 

of material delivery, supply networks with higher PageRank SD might 

suffer from exessive amount of concentrated supply load caused by ma-

terial delays compared to networks with relatively lower PageRank SD. 

Thus, it was observed that networks with lower standard deviation of 

PageRank centrality (where nodes with equal or similar centrality are 

often linked) are more robust, reducing the impact of material delay of 

suppliers on the construction site.

  Moreover, in terms of material delivery management, the result in-

dicates that the supply networks with lower value of standard deviation 

of PageRank values among suppliers are more robust to cascading im-

pact of bottleneck phenomenon by dispersing the responsibility of mate-



53

rial flow to adjacent suppliers. Therefore, practitioners might advantage 

from designing the supply network in a way that reduces the deviation 

of PageRank values (e.g. sourcing from multiple suppliers or having 

multiple distribution centers) or any other metrics that shown to have 

significant impact on material delivery performance in advance as a 

precautionary strategy even before the operation of the supply chain.



54

Figure 7-2. Illustrative Example of Supply Networks (Layout: Yifan Hu[35])
(a)       ; and (b)       



55

Chapter 8. Conclusion

  This study analyzed the association of topological features of suppli-

ers with the robustness of the material delivery network. Through simu-

lations and correlation analysis, it was found that PageRank centrality 

has the greatest association with the robustness of the network in both 

node and network levels among various topological metrics. Based on 

the results of the correlation analysis, it is suggested that suppliers with 

relatively higher PageRank values must be dealt with higher priority. 

The result also indicates that the managers might advantage from de-

signing the supply network with lower standard deviation of PageRank 

values of suppliers in the whole network by preventing the cascading 

impact of bottleneck phenomenon among linked suppliers. Findings in 

this study will enable practitioners in construction projects to evaluate 

the robustness of supply networks in advance, based only on the net-

work topology. Thus, managers will be able to adopt precautionary 

strategies to uncertain disturbances in material delivery with minimum 

information in the early stage of a project. However, this work consid-

ered materials to be homogeneous. Future study will include analysis on 

different characteristics of construction materials in terms of shipping 

manners and lead time.
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국 문 초 록

  
  최근 건설 공급망은 COVID-19, 나라 간 전쟁 및 원자재 가격 

상승 등으로 인한 자재 지연 및 프로젝트 스케쥴 지연으로 

어려움을 겪고 있다. 이에, 공급망의 강건성(공급망 외부 및 

내부에서 발생하는 예기치 못한 자재지연에 대처할 수 있는 

능력)은 건설 프로젝트의 성공을 보장하는 데 있어 더욱 

중요해지고 있다. 오늘날의 건설 프로젝트의 공급망에는 더 많고 

다양한 공급업체가 포함되고, 그 관계 또한 복잡해지고 있기 

때문에, 이전 선행연구들의 건설 공급망을 선형적인 모델로 

분석하는 방법은 더 이상 최근 공급망에 유효하지 않다. 이에, 본 

연구는 복잡화되고 있는 건설 공급망의 위상적 특징을 정량화하는 

지표들과 공급망의 퍼포먼스 사이 상관관계를 분석하여 어떤 

위상적 특성을 가지는 공급자들이 먼저 관리되어야 하고, 자재 

지연에 강건한 공급망은 어떻게 설계되어야 하는지 확인하는 것을 

목표로 한다. Social Network Analysis에서 위상적 특징을 

수치화하는 데 일반적으로 사용되는 지표들이 활용되었고, 실제 

건설 프로젝트 데이터에 기반하여 다양한 위상적 특성을 가지는 

공급망을 무작위로 생성하여 자재 지연 발생시의 공급망의 

퍼포먼스를 시뮬레이션을 통해 평가하였다. 공급망의 다양한 위상 

지표들 중 PageRank Centrality가 공급망의 강건성과 가장 

연관성이 큰 것으로 확인되었으며, 개별 공급자 수준 분석에서 0.6, 

공급망 전체 수준 분석에서 0.74의 양의 상관계수를 가짐을 

보였다. 본 연구의 결과는 실무자로 하여금 공급망의 위상적 특징을 
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기반으로 그 강건성을 평가하여 더 강건한 공급망을 설계할 수 

있게 하며, 다른 공급자 대비 더 영향력 있는 공급자를 식별하여 

집중 관리의 대상으로 선정할 수 있게 한다.

주요어: 자재 지연; 건설공급망 관리; 건설공급망 강건성; 소셜 
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