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ABSTRACT

Energy-Based Deep Ensembles for Reliable

Out-of-distribution Detection

by

Hyeokjun Kwon

Department of Mechanical Engineering

Seoul National University

Models used for prediction tasks like classification and regression should ideally

possess two properties: (i) any model should be able to determine whether an in-

put x is in-distribution (an inlier, i.e., drawn from the data distribution p(x)),

or out-of-distribution (an outlier, or OOD), and (ii) once outliers have been fil-

tered out, the model should offer a quantifiable measure of predictive uncertainty.

Deep Ensemble (DE) methods that employ multiple probabilistic prediction mod-

els, together with their recent variants, are widely used precisely because of these
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two properties. Yet for OOD detection tasks, the performance of existing ensem-

ble methods leaves much to be desired; we claim that this is because the models

do not learn p(x). We propose in this thesis Energy-Based Deep Ensemble (EBDE)

methods, in which the prediction model p(y|x) and input data distribution p(x) are

learned simultaneously. Specifically, p(x) is formulated as an energy-based model,

with the ensemble disagreement (i.e., the collective variance of the predictions made

by each model) used as the energy function. Experiments involving a wide range

of datasets confirm that EBDE significantly outperforms existing DEs for OOD

detection tasks, while achieving comparable performance in prediction and uncer-

tainty quantification.

Keywords: Deep Ensembles, Out-of-distribution detection, Uncertainty quantifi-

cation, Energy-based models, Ensemble diversification.

Student Number: 2020-22845
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1
Introduction

Deep neural networks (DNNs) have recently shown remarkable performance in pre-

diction tasks [1, 2, 3, 4, 5], e.g., classification and regression, in which models

are used to predict the label y given an input x. Besides having good prediction

performance, any prediction model should ideally possess two additional proper-

ties. First, given an input x, the model should be able to determine whether it is

in-distribution (inlier) or out-of-distribution (OOD, outlier) [6] (by an outlier we

mean an input x that is unlikely to be drawn from the input training data dis-

tribution p(x)). Secondly, after outliers have been filtered out, the models should

offer a quantifiable measure of the predictive uncertainty of inliers [7, 8]. These

are essential features of any trustworthy machine learning system.

Among existing approaches [9, 10, 11, 12, 13] that attempt to design predic-

tion models with the two aforementioned properties, Deep Ensemble (DE) meth-

ods [14] that employ multiple probabilistic DNN models {p(y|x; θi)}Mi=1 are widely

used precisely because of these two properties. DE uses ensemble disagreement, the

1



2

degree to which each model in the ensemble disagrees, to detect whether an in-

put is an inlier or outlier – if the variance of the models’ prediction values for

an input x is high, then x is classified as an outlier – and the predictive un-

certainty is computed by using the average of the probabilistic model predictions

1/M
∑M

i=1 p(y|x; θi) (e.g., the entropy of the mean prediction model).

As an OOD detector, the vanilla version of DE, in which each model is trained

individually, is fundamentally limited. It relies solely on the stochasticity of the

training procedure (e.g., random network initialization) and naively expects each

model to predict a different value y for an outlier x. However, the vanilla DE often

does not work in the expected way [15, 16, 17].

To detect outliers, a model should necessarily learn the input data distribution

p(x). Any data that has a low probability of being sampled from p(x) can reason-

ably be considered an outlier; in fact, many unsupervised OOD detection methods

attempt to learn p(x) without using labels. As such, for DE methods to be success-

ful in OOD detection tasks, the ensemble disagreement used as the OOD detection

criterion in DE should be related to p(x). Specifically, the higher the ensemble dis-

agreement, the lower should be the likelihood. However, both vanilla DE and its

recent variants [18, 15, 19, 16] that attempt to diversify models in the ensemble

during training, do not learn p(x) (or more specifically, the ensemble disagreement

is irrelevant to p(x)), thus limiting their performance as OOD detectors.

In this thesis, we propose Energy-Based Deep Ensemble (EBDE) methods that

simultaneously learn the prediction model and the input data distribution, with

the ensemble disagreement used for the energy-based modelling of p(x). Specifi-

cally, given a scalar-valued energy function Eed(x; θens) for θens = {θ1, . . . , θM} that
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Figure 1.1: Training procedure of EBDE.

measures the degree of ensemble disagreement for x, we first define the energy-

based model p(x; θens) ∝ exp(−Eed(x; θens)). We then minimize the joint loss func-

tion that consists of the original DE loss term and the p(x; θens) learning loss term.

Finally, the ensemble disagreement of DE captures p(x) and becomes a valid OOD

detection criterion.

We define an Ensemble Pairwise Divergence Score (EPDS) for Eed(·) that en-

hances stable training of EBDE. As shown in Figure 1.1, during the training of

EBDE, outliers that are thought to be inliers, i.e., input data x with low EPDS,

are sampled, and the EBDE is trained to increase the EPDS of the sampled data

points. Finally, the learned EBDE assigns high EPDS for outliers, i.e, the learned

density model p(x; θens) produces low likelihood for outliers.

We use two different types of OOD score functions for EBDE using the learned

data density p(x; θens): (i) the negative log-likelihood and (ii) the gradient norm

of the log-likelihood. We then compare EBDE’s OOD detection performance with

existing state-of-the-art deep ensemble methods, e.g., DE, w-WGD, f-WGD, based

on both synthetic (1-d regression and 2-D classification) and real data experiments

(Image classification and UCI regression benchmarks).

The main contributions of this thesis can be summarized as follows:
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1. We propose EBDE, a new family of DE methods that jointly learns p(y|x) and

p(x);

2. We propose EPDS, a new measure of ensemble disagreement tailored for EBDE

training;

3. We empirically show that EBDE is highly effective for OOD detection even

using a relatively small number of models.



2
Background

In this chapter, we give backgrounds for the proposed method, the Energy-Based

Deep Ensembles. First, we introduce the problem definition of prediction and pre-

dictive uncertainty quantification. Second, we introduce the Deep Ensemble meth-

ods and their variants that can perform not only prediction but also predictive

uncertainty quantification. Last, we introduce a category of generative models, the

energy-based model, which is a key idea of our proposed method.

2.1 Problem Definition

Let X ⊂ RD be an input space, a subspace of D-dimensional real Cartesian space,

and Y be an output space (either discrete or continuous). A set of input-output

paired data D = {(xn, yn)}Nn=1 assumed to be i.i.d. samples from a joint distri-

bution p(x, y) is given. For K-classes classification problem, we assume that the

target y ∈ Y indicates one of K classes, y ∈ {1, . . . ,K}. For K-dimensional re-

gression problem, we assume that the target is K-dimensional real-valued vector

5



2.1. Problem Definition 6

y ∈ RK . To solve the K-classes classification and K-dimensional regression prob-

lems, we train DNN model fθ : X → Y on a dataset D.

Although the DNN model shows remarkable predictive performance in many

prediction tasks [1, 2, 3, 4, 5], it is hard to build a perfect DNN model with a

limited dataset and computational budget. Therefore, if the model’s prediction is

inaccurate for some reason, it is necessary to quantify it and this is called predic-

tive uncertainty quantification.

Predictive uncertainty can be divided into two types depending on the source.

The first is caused by the existence of data, which is called epistemic uncertainty.

This kind of uncertainty gradually decreases as more diverse training data are col-

lected. The second is the uncertainty caused by the observation noise of the input

x, which is also called aleatoric uncertainty. The aleatoric uncertainty can not be

reduced by collecting more data, to reduce it, more information must be provided

in the input observation. Both types of uncertainty make it difficult to fully trust

the model’s prediction, and by modeling these well, the DNN model’s prediction

can become more reliable. Also, information about what types of uncertainty dom-

inate at test time can tell the direction of improvement of the DNN prediction

system. The Figure 2.1 illustrate the types of uncertainties.

The epistemic uncertainty quantification is related to the out-of-distribution

detection problem. The out-of-distribution data (or outlier) means that the input

unlikely to be sampled from the input data distribution p(x). For outliers, it is not

possible to know what kind of prediction the trained model will make, and even

in some cases, ground truth targets of inputs can lie on the out of the pre-defined

output space Y, so it is necessary to filter it separately. To detect outliers, we can

use an OOD detector, which is defined with OOD score function s : RD → R

that outputs lower values for inliers and higher values for outliers, and classifies
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Figure 2.1: The types of uncertainty.

an input x as OOD if s(x) > η for some threshold value η.

Among the remaining inputs after filtering outliers, there might exist falsely

predicted inputs. This is because of either underfitting of the DNN model or aleatoric

uncertainty in given inputs. In any case, it is a risk that trusts the model predic-

tions unconditionally. One choice to handle this problem is modeling conditional

probability density function of target p(y|x; θ) rather than the DNN model fθ()

just predict target y ∈ Y.

That is to say, we target the problem of learning (i) a binary classifier that

judges whether an input x ∈ X is an inlier or not, called an OOD detector, and

(ii) a probabilistic prediction model, i.e., a conditional probability density function

p(y|x).
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2.2 Uncertainty quantification using prediction models

2.2.1 Probabilistic DNNs

The deep neural networks (DNNs) consist of an input layer, a number of hidden

layers, and an output layer. Normally, the output layer for the DNN prediction

model is the linear layer that takes the hidden feature z and outputs a prediction

ŷ. Then training of the DNN prediction model is proceeded by minimizing mean-

squared-error (MSE)
∑

x,y∈D ∥y − ŷ∥22.

However such point estimation ŷ couldn’t have any notion of predictive uncer-

tainty. Therefore, the probabilistic DNN that has an additional output layer on

top of DNN is widely used. In the case of classification problems, an output layer

consists of a linear layer and softmax function in equation 2.2.1.

yk =
exp(zk)∑K
i=1 exp(zi)

(2.2.1)

The softmax function makes output y to sum-to-one vector, i.e.,
∑K

k=1 yk = 1.

Then the k-th element of output vector is used as conditional probability p(y =

k|x) and the probabilistic DNN model with softmax funciton is trained by min-

imizing cross-entropy loss in equation 2.2.2. Minimizing the cross-entropy loss is

equal to minimizing Kullback-Leibler divergence between ground truth probability

density and predicted probability density.

Lce = −
∑

x,y∈D

K∑
k=1

yk log ŷk (2.2.2)

In the case of regression, it is not intuitive to design output probability density

p(y|x). One of popular choice is model output probability distribution p(y|x) using

exponential family (e.g., a Gaussian distribution). In other word the DNN model
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outputs parameters of exponential family (e.g., mean µ ∈ RK and variance Σ ∈

RK×K). In the rest of this thesis, we assume 1-dimensional regression problem

and model output probability distribution as the Gaussian distribution p(y|x; θ) =

N(y;µθ(x), σ
2
θ(x)) (where mean µθ : RK → R and variance σ2

θ : RK → R).

2.2.2 Deep Ensemble

Deep Ensemble (DE) consists of multiple probabilistic deep neural network models,

each of which is a conditional probability density function denoted by p(y|x; θi) for

i = 1, · · · ,M where θi is the parameter of the i-th model. We will denote the set

of model parameters by θens := {θ1, · · · , θM} and the mean prediction model by

pE(y|x) := 1/M
∑M

i=1 p(y|x; θi).

In the original DE paper [14], under the expectation that each model in the

ensemble predicts diverse values y for an outlier x, the OOD detector is defined

using the following score function:

sev(x; θens) :=
M∑
i=1

DKL(p(y|x, θi)∥pE(y|x)), (2.2.3)

where DKL(·||·) denotes the KL divergence. This score function measures diversity

of the model predictions for an input x. We call sev(x; θens) an Ensemble Vari-

ance Score (EVS) of x. Meanwhile, the predictive uncertainty can be quantified

using the mean prediction model; one popular choice is the entropy of the mean

prediction, i.e., H(pE(y|x)) := Ey∼pE(y|x)[− log pE(y|x)], which is often called the

total uncertainty.
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2.3 Ensemble diversification

To successfully detect outliers, DE methods should be trained in a way such that

the variances of the models’ prediction values (e.g., EVS) are high for outliers x

and low for inliers. While the vanilla DE method has shown only limited perfor-

mance for OOD detection, some training methods [18, 15, 19, 16] have been sug-

gested to increase the diversity of the models in the ensemble, expecting the pre-

dicted values for outliers to diverge. These methods maximize the following form

of joint loss function:

α ·
M∑
i=1

(
E(x,y)∼p(x,y)[log p(y|x; θi)]

)
+Diversity({NN(x; θi)}Mi=1), (2.3.4)

where the second term is a measure of the diversity between neural network mod-

els NN(x; θi), i = 1, · · · ,M in the ensemble. In this framework, training results are

heavily dependent on how the model diversity is defined, or equivalently, how dif-

ferences between models are measured. The simplest way is to use the Euclidean

distance in the weight space [18, 16], i.e., ∥θi− θj∥, but this cannot properly cap-

ture the difference between functions.

A better way is to use function space distance metrics [15, 19, 16], which in

general take the form Ex∼q(x)[D({NN(x; θi)}Mi=1)], where the sampling distribution

q and diversity measure D that computes the degree of differences between net-

work output values at given x are engineering choices. Considering that only the

prediction values for outliers should diverge, while those for inliers should be con-

sistent, outliers should be more likely to be sampled from the sampling distribution

q(x). However, there is no straightforward method nor principle for designing such

a q. Indeed, existing works [15, 19, 16] use mostly ad hoc choices, e.g., the kernel

density estimator (KDE) fitted to the training dataset or a uniform distribution,
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resulting in much less than desirable OOD detection performance.

The EBDE, by learning p(x), naturally achieves the desired property of maxi-

mizing the diversity of the model’s predictions for outliers only. Interestingly, dur-

ing EBDE training, outliers that are thought to be inliers are sampled without

needing to define the sampling distribution q(x) as in existing approaches, and

their prediction values are also diversified.

2.4 Energy-based models

An energy-based model (EBM) represents a probability density function p(x; θ)

with an unnormalized scalar-valued energy function E(·; θ) : RD → R via the

Gibbs distribution, i.e.,

p(x; θ) :=
1

Ωθ
exp(−E(x; θ)/T ), (2.4.5)

where θ is a parameter, T ∈ (0,∞) is called the temperature, and Ωθ is the nor-

malization constant.

Although it is expensive to compute Ωθ and hence difficult to calculate an ex-

act likelihood p(x; θ), one can still perform maximum likelihood training of θ with

the following gradient computation method [20]:

Ex∼p(x)[−∇θ log p(x; θ)] = Ex∼p(x)[∇θE(x; θ)]/T +∇θ log Ωθ

= Ex∼p(x)[∇θE(x; θ)]/T − Ex∼p(x;θ)[∇θE(x; θ)]/T.
(2.4.6)

The gradient of the log normalization constant ∇θ log Ωθ is evaluated from the

expected energy gradients of the samples generated from the model x ∼ p(x; θ),

which are often called the “negative” samples. The detailed derivation of equa-

tion 2.4.6 is in Section A.1.
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Likelihood maximization is achieved by minimizing the expected energy gradi-

ents of the “positive” samples generated from the data distribution p(x) – we often

use the empirical distribution – and maximizing the expected energy gradients of

the “negative” samples generated from p(x; θ). When p(x; θ) becomes identical to

p(x), the two gradient terms in the equation cancel each other, and training of

EBM converges. In practice, the two expectations are approximated with a mini-

batch of samples during each training iteration, where negative samples are often

sampled using MCMC, e.g., Langevin Monte Carlo (LMC). For more details on

EBMs and their training methods, we refer the reader to [21].



3
Energy-BasedDeep Ensembles

In this chapter, we propose the Energy-Based Deep Ensemble (EBDE), a new

family of DE that improves OOD detection performance. The EBDE consists of

not only a prediction model p(y|x), but also a density estimator p(x). Given an

ensemble of multiple prediction models {p(y|x; θi)}Mi=1, the conditional probability

density function p(y|x) is defined in the usual way as the mean prediction model

pE(y|x). In this thesis, we introduce an energy-based model for the input data

probability density function p(x; θens), which is then jointly trained with prediction

models.

3.1 Ensemble Disagreement as an Energy Function

A data point x is an outlier if it is unlikely to be sampled from the input data

distribution p(x). In this sense, it is natural to connect the OOD detection criteria

of DE, the degree of disagreement between each model’s prediction, to the data

density p(x). Let Eed(x; θens) be some measure of the Ensemble Disagreement,

13
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Figure 3.1: Comparison of EVS and EPDS as energy functions for EBDE.

i.e., how different the p(y|x; θi) are for i = 1, · · · ,M . We then model p(x; θens) by

treating Eed as an energy function:

p(x; θens) =
1

Ωθens

exp(−Eed(x; θens)/T ). (3.1.1)

If θens is optimized not only to learn {p(y|x; θi)}Mi=1 but also p(x; θens), then for

data x that have a lower likelihood, the trained models in the ensemble will dis-

agree more than for data that have a higher likelihood.

The Ensemble Variance Score (EVS) of equation (2.2.3) is one straightforward

choice for the ensemble disagreement energy function Eed(x; θens). However, for

such a choice, we empirically discover that training the energy-based model is nu-

merically quite challenging. Specifically, when sampling from the model p(x; θens),
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which is a necessary step for training an energy-based model as explained in Sec-

tion ??, we experience the gradient vanishing problem, strongly diminishing the

performance of the sampling algorithm. As shown in Figure 3.1, when using EVS

as the energy function, −∇xEed(x) vanishes at both high and low energy regions.

Thus, the sampled points are often confined within the high energy region while

it is desired to be sampled from the low energy region. On the other hand, using

EPDS (defined below) as the energy function does not suffer from the gradient

vanishing problem. A more in-depth analysis of this phenomenon is provided in

the Appendix.

In this thesis, we propose to use another measure of the ensemble disagreement

as an energy function, an Ensemble Pairwise Divergence Score (EPDS): [Ensemble

Pairwise Divergence Score (EPDS)] Given multiple probabilistic prediction models

{p(y|x; θi)}Mi=1, an ensemble pairwise divergence score for an input x ∈ X ⊂ RD is

sepd(x; θens) =
1

M(M − 1)

∑
i ̸=j

D(p(y|x; θi)∥p(y|x; θj)), (3.1.2)

where D is some divergence measure (e.g., K-L divergence). Any divergence D

can be selected; throughout this thesis, we always use the K-L divergence unless

otherwise specified. This score function is a valid measure of the ensemble dis-

agreement, in the sense that the score is zero if and only if the predictions are

the same for all i = 1, · · · ,M . Using the EPDS as the energy function has mul-

tiple practical advantages over EVS. First, when sampling from the energy-based

model, it does not suffer from the gradient vanishing problem as illustrated in

Figure 3.1. Second, while EVS often does not have close-form expressions (even

when the K-L divergence D and Gaussian prediction model p(y|x; θi) are used),

EPDS has closed-form expressions if the terms
∑

i ̸=j D(p(y|x; θi)∥p(y|x; θj)) in the

summation have analytic expressions (which for most cases is true).
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For EBDE training, we jointly learn the ensemble of prediction models p(y|x; θi),

classifiers or regressors, and the energy-based density model p(x; θens) ∝ exp(−sepd(x; θens)/T )

by maximizing the following joint objective function:

α ·
M∑
i=1

(
E(x,y)∼p(x,y)[log p(y|x; θi)]

)
+ Ex∼p(x)[log p(x; θens)], (3.1.3)

where α > 0. The gradient of the objective function (needed to apply stochas-

tic gradient descent methods) can be computed as in usual prediction model and

energy-based model training methods; the resulting implementation is given in Al-

gorithm 1.

3.2 OOD Score Function

In this section, we propose two types of OOD score function for EBDE by exploit-

ing the learned input data density function p(x; θens): (i) negative log-likelihood

and (ii) gradient norm of the log-likelihood. Given a learned data density, ex-

isting works on OOD detection have suggested roughly two directions for defin-

ing the OOD score function. The first direction is to use the log-likelihood, i.e.,

s(x; θens) := − log p(x; θens), based on the idea that data that have a lower likeli-

hood are more likely to be outliers. In our case, the OOD score function is propor-

tional to the ensemble pairwise divergence score, EPDS, a measure of the ensem-

ble disagreement. We may use other measures of the ensemble disagreement as the

OOD score function, e.g., the ensemble variance score, EVS, as in usual DE ap-

proaches, although they are not strictly equivalent to the negative log-likelihood.

Somewhat counter-intuitively, we empirically find that using EVS results in much

better OOD detection performance than using EPDS. The comparison results are

included in Appendix.
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The other direction is to consider the probability mass rather than the likeli-

hood. While it is reasonable to regard data with a low likelihood to be outliers, it

is possible for data to have high likelihood yet be nearly impossible to be sampled.

To be specific, a single data point may have high density but if its neighborhood

points have very low densities, then the local probability mass around that data

point is small and that point is less likely to be sampled. This phenomenon has ac-

tually been reported in [22, 23] across various types of density models [24, 25, 26].

For this class of high-likelihood outliers, the probability density is expected to

change rapidly nearby, and hence the gradient norm of the log-likelihood is ex-

pected to be large. Based on this expectation, [27] proposed following OOD score

function:

s(x; θens) =

∥∥∥∥(∂ log p(x; θens)

∂x

)∥∥∥∥
2

, (3.2.4)

referred to as an Approximate Mass Score (AMS). Following [27], we also use AMS

in our work.
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Algorithm 1 EBDE

Input : Training data D = {(xn, yn)}Nn=1, probabilistic prediction models

{p(y|x; θi)}Mi=1, weight α, batch size B

Output: Parameters of ensemble model θens = {θi}Mi=1

while not converged do

Sample positive mini-batch B+ = {(xb, yb)}Bb=1 ⊂ D

Sample negative mini-batch B− = {xb}Bb=1 ∼ p(x; θens) (Section ??)

Compute energy based model objective Lebm:

Lebm ← 1
B

∑
x∈B+ Eed(x; θens)− 1

B

∑
x∈B− Eed(x; θens)

while i = 1, . . . ,M do

Sample positive mini-batch B+i = {(xb, yb)}Bb=1 ⊂ D

Compute i-th model’s negative log-likelihood L(i)nll:

L(i)nll ← −
1
B

∑
(x,y)∈B+

i
log p(y|x; θi)

Compute gradients ∆θi ← α∇θiL
(i)
nll +∇θiLebm

end

while i = 1, . . . ,M do

Update parameters θi based on ∆θi using optimizer

end

end



4
Results andDiscussion

In this section, we compare the proposed EBDE with the vanilla DE and its vari-

ants, the ensemble diversification methods introduced in Section ??, for classifi-

cation and regression tasks. In classification, we use a neural network model that

first maps an input x to the logit space, and then a softmax layer takes the logit

and outputs a probability vector. In regression, we model the output distribution

as the Gaussian N (µ(x; θ), σ2(x; θ)) unless otherwise specified. The baseline meth-

ods that are subject to comparisons are:

Vanilla DE consists of multiple probabilistic deep neural network models, and

they are trained individually with differently initialized network weights.

w-WGD [16] defines the ensemble diversity measure between models {NN(x; θi)}Mi=1

in the weight space (the second term in equation (2.3.4).

f-WGD [16] defines the ensemble diversity measure in the function space. As

discussed in Section ??, to measure the difference between neural network mod-

els in the function space, we need to determine the sampling distribution q in the

input space and the diversity measure D in the neural network output space. For

19
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regression tasks, we use the empirical data distribution with added noise for q,

and the diversity measure D is defined by using the predicted mean values, i.e.,

we compute the diversity of {µ(x; θi)}Mi=1. For classification tasks, we use the em-

pirical data distribution both with and without added noise for q, and the diversity

measure D is either defined in logit space, i.e., intermediate feature space right be-

fore the output space, or the output space after the softmax layer. Therefore, we

test four combinations: (i) without noise, logit space (f-WGD-l), (ii) with noise,

logit space (f-WGD-l-n), (iii) without noise, output space (f-WGD-sm), and (iv)

with noise, output space (f-WGD-sm-n).

In our implementations, for w-WGD and f-WGD, we use the RBF kernels when

computing the diversity measure with the median heuristics to choose the kernel

bandwidths following [18, 16].

Evaluation Metrics. For quantitative comparisons, we use the following three

evaluation metrics: (i) Mean Squared Error (MSE) and Accuracy for regression

and classification, respectively, used to compute the prediction performances, (ii)

Negative Log Likelihood (NLL) of the mean prediction model used to measure

the performance of the predictive uncertainty quantification, and (iii) Area Un-

der the Receiver Operating Characteristic (AUROC), a threshold-free measure for

evaluating OOD detector, computed with two score functions EVS and AMS in

Section 3.2.

4.1 Synthetic Experiments

1D regression. We qualitatively evaluate the performance of the proposed method

on a one-dimensional toy regression task. For each method, we train 5 MLP model

to fit a constant-valued function, y = 0 · x. For training, we use 40 points, where
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Figure 4.1: The 1D regression on y = 0 · x.

20 points are sampled from Uniform(-1.25, 0.75) and the other 20 points are sam-

pled from Uniform(0.75, 1.25), visualized as orange dots in Figure 4.1. The width

of blue shaded area represents degree of the ensemble disagreement (measured by

EPDS), the wider the higher. For all methods, five DNN models are used.

As shown in Figure 4.1, the mean predictions of all methods (blue solid lines)

fit well on training inputs. The width of blue shaded area represents the degree of

the ensemble disagreement (the wider, the higher). The w-WGD and f-WGD pro-

duce slightly better results than the vanilla DE, yet the EBDE only successfully

produces high ensemble disagreements for all three OOD regions (left, middle, and

right parts). In addition, we note that f-WGD results in high ensemble disagree-

ment even for inliers (both ends of training data), as prediction values for samples

near training data are diversified in the f-WGD training.
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Figure 4.2: The qualitative results on 2D classification benchmarks, two moons

(top row) and five blobs (bottom row) benchmarks.

2D classification. We investigate the EBDE and the other baseline meth-

ods on two-dimensional toy classification tasks, two moons and five blobs. First,

we compare qualitatively as shown in the Figure 4.2. In the figures, the colors of

dots represent predicted classes by the mean prediction model. The background

color represents the ensemble pairwise divergence score (EPDS), the brighter the

higher. For all methods, two DNN models are used. The vanilla DE, w-WGD,

and f-WGD-l-n fail to produce high EPDS for most of the outliers that are far

from the classification boundaries. The f-WGD-sm-n produces slightly better re-

sults, still there are some outliers that have low EPDS. In addition, there are some

inliers that have high EPDS as observed in the above toy regression example. The

EBDE shows the best results compared to the other baselines.

Secondly, we provide quantitative comparison results of OOD detection perfor-

mance using synthetic outliers. To generate the synthetic outliers, from uniformly

sampled candidate points in a square region surrounding the training data, we
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only accept points of which l2 norm are at least ϵ (we fix ϵ = 0.3) away from all

training data. We investigate the OOD detection performance of EBDE and the

other baseline methods by changing the number of models in the ensemble. For

all experiments, we report AUROC using EPDS as an OOD score, run each ex-

periment 5 times at different seeds, and report averages and standard errors. The

best one is bolded. As shown in Table 4.1, EBDE outperforms the other baseline

methods and shows robust OOD detection performances even when using a small

number of models. Details of experiments are in Appendix.

Table 4.1: 2D synthetic OOD detection results.

Dataset # of models Deep Ensembles w-WGD f-WGD-l-n f-WGD-sm-n EBDE (ours)

Two moons

2 19.75(±1.30) 23.29(±3.21) 17.99(±1.74) 93.41(±5.79) 98.46(±1.35)

3 21.55(±1.79) 25.94(±1.33) 27.22(±2.64) 99.61(±0.06) 99.78(±0.06)

5 23.43(±4.37) 38.75(±12.87) 26.49(±2.69) 99.87(±0.13) 99.83(±0.11)

10 26.33(±1.60) 44.42(±3.41) 37.58(±2.26) 99.90(±0.04) 99.95(±0.02)

Five blobs

2 47.00(±1.19) 60.07(±3.08) 55.66(±2.09) 97.27(±1.16) 99.52(±0.15)

3 47.94(±0.99) 71.87(±1.34) 55.12(±2.76) 99.35(±0.06) 99.49(±0.18)

5 49.72(±1.55) 70.24(±3.26) 51.89(±4.60) 99.62(±0.15) 99.72(±0.13)

10 50.18(±0.74) 77.62(±1.15) 57.59(±2.16) 99.33(±0.06) 99.71(±0.04)

4.2 Image Classification

Moving on to real-world data, we compare performances of EBDE and the baseline

methods in the prediction, uncertainty quantification, and OOD detection tasks

on the FashionMNIST [28] dataset. For OOD detection, we use MNIST [29], KM-

NIST [30], and Omniglot [31] as OOD datasets. We compare the prediction perfor-

mance of our methods and the others by classification accuracy and compare un-

certainty quantification by negative log-likelihood (NLL) for the test dataset. Also,
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we provide OOD detection performance against three OOD datasets (MNIST, KM-

NIST, Omniglot). As the OOD score s(·), we use both ensemble variance score

(EVS) and approximate mass score (AMS). We run each experiment 5 times at

different seeds and report a mean and standard error. The best one is bolded.

Details of experiments are in Appendix.

Table 4.3 shows that the EBDE outperforms the other baselines for most cases

in OOD detection tasks. Furthermore, we empirically observe that the EBDE does

not degrade the prediction and uncertainty quantification performances compared

to the vanilla DE as shown in the Table 4.2 (the Accuracy is even higher, and the

NLL is even lower). In addition, we provide the density plot in Figure 4.3, which

is a continuous version of the histogram of the ensemble variance score (EVS).

The horizontal axis is log-scale ensemble variance scores (EVS) normalized with

minimum and maximum values, and the vertical axis is the density. Similarly, for

EBDE, the density graphs between the inlier dataset and OOD datasets are more

separated than the other baselines.

Table 4.2: The predictive performance on the FashionMNIST dataset.

Method Accuracy NLL

Vanilla DE 89.98(±0.11) 0.2945(±0.0013)

w-WGD 89.78(±0.10) 0.3027(±0.0013)

f-WGD-l 89.78(±0.08) 0.3006(±0.0022)

f-WGD-l-n 89.77(±0.07) 0.3071(±0.0043)

f-WGD-sm 89.65(±0.21) 0.3816(±0.0041)

f-WGD-sm-n 89.85(±0.13) 0.3042(±0.0024)

EBDE (ours) 90.17(±0.09) 0.2939(±0.0042)
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Table 4.3: The OOD detection performance on the FashionMNIST dataset.

Method

AUROC against OOD (EVS/AMS)

MNIST KMNIST Omniglot

Vanilla DE 87.85(±0.58) / 89.02(±0.58) 85.57(±0.39) / 86.54(±0.42) 90.80(±0.53) / 92.51(±0.31)

w-WGD 91.19(±0.40) / 92.05(±0.49) 88.39(±0.08) / 89.84(±0.24) 90.73(±0.92) / 92.18(±0.82)

f-WGD-l 92.43(±0.18) / 92.29(±0.78) 89.20(±0.35) / 89.19(±0.69) 91.35(±0.66) / 91.99(±0.86)

f-WGD-l-n 92.45(±0.38) / 92.64(±0.47) 88.17(±0.65) / 88.13(±1.15) 90.95(±0.70) / 91.51(±1.03)

f-WGD-sm 77.18(±0.63) / 84.81(±0.91) 71.25(±0.45) / 79.15(±0.39) 78.03(±1.92) / 86.95(±0.86)

f-WGD-sm-n 93.96(±0.93) / 93.73(±0.62) 96.66(±0.31) / 96.71(±0.20) 92.16(±0.79) / 91.61(±0.53)

EBDE (ours) 96.36(±0.65) / 97.93(±0.23) 93.06(±0.70) / 95.17(±0.44) 92.76(±0.36) / 95.02(±0.51)

4.3 Generative results

Figure 4.4 shows images sampled from vanilla DE, w-WGD, f-WGD-sm-n, and

EBDE where liners were FMNIST. For all methods, we updated images to have

low energy starting from random noise using Langevin dynamics until sampled

images had a similar or lower energy to the inliers energy ((a), (b), (c), and (d) in

Figure 4.4). For EBDE, we provide the other images obtained from the persistence

chain during training ((e) in Figure 4.4).

As shown in Figure 4.4, the images which are sampled from vanilla DE, w-

WGD, and f-WGD-sm-n, didn’t look like inliers even though they had energy as

low as inliers’ energy ((a), (b), and (c) in Figure 4.4). On the other hand, EBDE

generated the images that look like inliers ((d) and (e) in Figure 4.4). This quali-

tative results support that density model of EBDE p(x; θens) learns data distribu-

tion p(x) and then inliers are likely to be drawn from learned probability density

p(x; θens). However, the other methods (vanilla DE, w-WGD, and f-WGD) aren’t

learning data distribution p(x), so even images that look like noise are assigned

to low EPDS (ensemble disagreement).
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Figure 4.3: The FMNIST vs. OOD datasets density plots (MNIST, KMNIST, and

Omniglot) using ensemble variance score (EVS).
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Figure 4.4: The sampled images where inliers are FMNIST.

4.4 Regression on UCI Datasets

In this section, we use six UCI regression datasets following [14, 15, 11, 32]. To

measure the OOD detection performances, we first generate synthetic outliers us-

ing the normalizing flow model, the RealNVP [33], which is a model for p(x) where

we can sample data from and that can be used to measure the likelihood of given

data. Specifically, (i) we train the RealNVP model prealNVP(x) on UCI regression

data, (ii) we sample data points from Gaussian distribution (large enough to en-

capsulate the training data), and (iii) we accept the sampled points as outliers if

the likelihood of them estimated by the trained RealNVP are lower than those of

all inliers with some margin.
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In the Table 4.4 and the Table 4.5, we report the mean squared error (MSE),

negative log-likelihood (NLL), and AUROC for synthetic OOD detection. We run

each experiment 10 times at different train/valid/test splits and report mean val-

ues. The best and the second best are bolded, and the worst is colored red. The

OOD detection performances using the other scores (EPDS and AMS) and the

other experimental details are in Appendix. As shown in Table 4.5, both f-WGD

and EBDE outperform vanilla DE and w-WGD in terms of OOD detection per-

formance. Meanwhile, EBDE shows comparable prediction and uncertainty quan-

tification performance with DE and w-WGD, whereas f-WGD does not.

Table 4.4: Regression results on the 6 UCI benchmarks datasets.

Datasets
MSE NLL

DE w-WGD f-WGD EBDE DE w-WGD f-WGD EBDE

Concrete 0.1615 0.1608 0.3981 0.1623 0.3654 0.3565 0.5953 0.3766

Energy 0.0491 0.0499 0.0711 0.0512 -0.5135 -0.4995 -0.3200 -0.4276

Housing 0.1505 0.1505 0.3654 0.1482 0.2898 0.2799 0.7448 0.2836

Power 0.0543 0.0536 0.3891 0.0543 -0.0584 -0.0703 -0.0314 -0.0567

Wine 0.5479 0.5526 2.1321 0.5428 1.0868 1.0845 1.1323 1.0807

Yacht 0.0549 0.0835 0.1840 0.0526 -1.3939 -1.0980 -1.0114 -1.1087

We plot the trade-off curve (red curve in Figure 4.5) of NLL and (1-AUROC)

to investigate the effect of α in equation 3.1.3 in EBDE (The lower and more left,

the better.). The trade-off curve for EBDE and f-WGD are obtained by chang-

ing α (in equation 3.1.3) and the magnitude of noise added to input, respectively.

Averages (dots) and standard errors (ellipses) are computed with 10 times exper-

iments. As α increases, the AUROC decreases (in the graph, it goes right) and

the NLL decreases (in the graph, it goes down). Compared to the other meth-

ods, the trade-off curve of EBDE is located lower and more left, meaning that the
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Figure 4.5: The trade-off curve between NLL and ”1-AUROC”.
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Table 4.5: Synthetic OOD detection results on the 6 UCI benchmarks datasets.

Datasets
AUROC (EVS)

DE w-WGD f-WGD EBDE

Concrete 98.58 98.58 99.88 99.69

Energy 99.92 99.87 100.0 99.92

Housing 96.82 96.94 99.27 98.46

Power 99.90 99.77 99.98 99.96

Wine 92.87 93.74 99.06 99.46

Yacht 90.10 89.81 99.69 93.33

EBDE outperforms in both aspects, uncertainty quantification and OOD detec-

tion. Additionally, for f-WGD, we test how NLL and AUROC vary by changing

the magnitude of noise added to input data. Regardless of the noise level, the f-

WGD produces high NLL, and the yellow curve located upper and more right than

the red curve.



5
ExperimentalMethods

5.1 Experimental Details

Synthetic 1D regression. We used 40 points as a training dataset, where 20

points were sampled from U(−1.25, 0.75) and the other 20 from U(0.75, 1.25). Tar-

get y of each point is all 0, i.e., ground truth was constant-valued function, y =

0 · x.

In each experiment, we train five differently initialized MLP models of size (1-

128-128-128-2) with a leaky ReLU activation function. The first output was used

for the mean of Gaussian µ(x; θ), and the second output was used for the vari-

ance of Gaussian σ2(x; θ). Because the variance of Gaussian should be positive,

we passed the second dimension of outputs to softplus function softplus(z) =

log(1 + exp(z)). We trained the models for 1000 epochs using an Adam [34] op-

timizer with a learning rate of 1e-4 for all methods. For w-WGD, f-WGD and

EBDE, we fixed α as 1 in equation (8). Additive noise on inputs in f-WGD did

follow N (0, 1).

31



5.1. Experimental Details 32

Synthetic 2D classification. For both two moons and five blobs dataset, we

used 1000 points for training and different 1000 points for testing. To generate

synthetic outliers, (i) we sample 10000 candidate points from U(−3, 3), (ii) and

only accept points of which l2 norm is at least 0.3 away from all training data.

The 0.3 is a number selected so that the generated outliers and training set are

visually disjoint.

In each experiment, we trained differently initialized MLP models of size (2-

256-256-256-K) with a leaky ReLU activation function where K was the number

of classes. We trained the models for 5000 epochs using an Adam [34] optimizer

with a learning rate of 1e-4 for all methods. For w-WGD and f-WGDs(f-WGD-l,

f-WGD-l-n, f-WGD-sm, and f-WGD-sm-n), we fixed α as 1 in equation (8) fol-

lowing [16]. Additive noise on inputs in f-WGD-l-n and f-WGD-sm-n did follow

N (0, 0.0625I). For EBDE, the weight of EBM loss was 0.001, and we selected this

number by reducing the weight of EBM loss from 1.0 until the losses of prediction

models {p(y|x; θi)}Mi=1 stably reduced.

FMNIST classification. All datasets (FMNIST, MNIST, KMNIST, and Om-

niglot) used in experiments are downloaded through each dataset class in the Py-

TorchVision library. For all datasets, we normalized the images to [-1, 1]. For FM-

NIST, we split it as 58000/2000/10000 for training/validation/testing sets respec-

tively. During the training, we applied random horizontal flipping with 0.5 proba-

bility and random cropping with size 4 padding. For MNIST, KMNIST and Om-

niglot, we use their test split (10000/10000/13180 images respectively) as outliers

for the OOD detection task. Because the Omniglot has a higher pixel value on the

background of images, we invert the pixel values of Omniglot in our experiments.

In each experiment, we trained three differently initialized MLP models of size

(784-500-500-100-10) with a ReLU activation function. For all methods, we trained



5.1. Experimental Details 33

the models for 100000 iterations using an Adam [34] optimizer. The batch size was

250. The results in Table 2 and Figure 5 were reported using the model with the

lowest negative log-likelihood (NLL) on the validation set. For each method, the

learning rate was selected among [1e-4, 5e-4, 1e-3, 5e-3] based on the lowest NLL

on the validation set. The selected learning rates were 5e-4, 1e-3, 1e-3, and 1e-3

for vanilla DE, w-WGD, f-WGDs, and EBDE respectively. Also, for EBDE, we use

betas of the Adam optimizer as [0., 0.9] following [27]. For w-WGD and f-WGDs,

we fixed α as 1 in equation (8) following [16]. The standard deviation of additive

noise for f-WGD-l-n and f-WGD-sm-n was selected among [0.05, 0.1, 0.25, 0.5, 1.0],

and 0.5 was selected based on the lowest NLL on the validation set. For EBDE,

α was selected as 0.2 among [0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0] based on the

lowest NLL on the validation set. For each method, we repeated experiments five

times on different random seeds (337, 1337, 2337, 3337, 4337)

UCI regression. All datasets (concrete, energy, housing, power, wine, and

yacht) were randomly divided for training/validation/testing at ratios of 0.8/0.1/0.1

respectively (this split was changed during repeating each experiment).

In each experiment, we trained five differently initialized MLP models of size

(D-50-50-50-2) with a ReLU activation function (where D denotes the dimension

of input space). As in synthetic 1D regression, the first and second dimensions of

outputs were used as the mean and variance of Gaussian respectively. For in Table

3, we trained the models for 100 epochs using Adam [34] optimizer with a learning

rate of 1e-4 and reported performance using the model with the lowest NLL on

the validation set. The batch size was 50. For w-WGD and f-WGDs, we fixed α

as 1 in equation (8) following [16]. The standard deviation of additive noise for f-

WGD-l-n and f-WGD-sm-n was selected among [0.0, 1.0, 5.0, 10.0] based on NLL

on the validation set. For EBDE, we fixed α as 1 excepting wine dataset. In the
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cases of wine, α was selected as 0.1 among [0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0,

5.0, 10.0] based on NLL on the validation set.

5.2 Persistent Contrastive Divergence for EBM training

For all EBDE experiments, we trained an energy-based model (EBM) using PCD [35].

In PCD, negative samples are generated from persistence chains, i.e., Langevin

Monte Carlo (LMC) sampling starts from past negative samples which are stored

in a replay buffer. The sampling process using PCD is given in the following al-

gorithm:

Algorithm 2 PCD sampling

Input : The number of sample steps η, step size β, standard deviation of noise

γ, replay buffer B, replay ratio ρ, gradient clipping magnitude a, initial

random noise distribution R, energy funciton E(·; θens)

Output: Negative sample x̂η

Initialize Sample x̂0 ∼ B with probability 1− ρ, else x̂0 ∼ R.

while t = 1, . . . , η do

Compute gradient of energy at current input x̂t−1, g ← ∂Eed(x̂t−1;θens)
∂x̂t−1

Clip gradient, g ← max(min(g, |a|),−|a|)

Sample noise of Langevin dynamics, ϵ ∼ N (0, I)

Update sample, x̂t = x̂t−1 − β · g + γ · ϵ
end

Push negative sample x̂η to replay buffer B

For all EBDE experiments, the parameters of PCD sampling were chosen so

that both prediction models {p(y|x; θi)}Mi=1 and density model p(x; θens) are trained

stably (i.e., training losses of each prediction model were reduced stably and EBM
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loss oscillated near zero). Empirically, appropriate gradient clipping was effective

for the stability of the sampling procedure, and the number of sample steps η was

quite significant for the quality of sampling which is crucial for successful EBM

training. The longer η is better, but it increases training costs.

Specifically, for synthetic experiments, we used the number of sample steps 10,

step size 5, a standard deviation of noise 0.005, size of replay buffer 1000, replay

ratio 0.9, and gradient clipping magnitude 0.01. Initial random noise distributions

R were N (0, 0.25I) and N (0, 25I) for 1D regression and 2D classification respec-

tively.

For FMNIST experiments, we used the number of samples steps 50, step size

1, a standard deviation of noise 0.01, size of replay buffer 10000, replay ratio 0.95,

and initial random noise distribution U(−1, 1).

For UCI regression experiments, we used the number of sample steps 50, step

size 1, a standard deviation of noise 0.01, size of replay buffer 10000, replay ra-

tio 0.95, gradient clipping magnitude 0.1, and initial random noise distribution

U(−5, 5).

5.3 GPU Usage

All experiments were performed on RTX 3090 GPU with 24GB RAM while each

experiment use 2 ∼ 6GB memory. Because of the sampling procedure in EBDE

training, the training time for EBDE increased in proportion to the number of

sample steps η, e.g., for each sample step, one time of both energy function eval-

uation and backpropagation is required.



6
Conclusion

In this thesis, we have proposed Energy-Based Deep Ensemble (EBDE) methods,

in which the prediction model p(y|x) and input data distribution p(x) are learned

simultaneously, with the ensemble disagreement used for the energy-based mod-

elling of p(x). For stable EBDE training, we have defined an Ensemble Pairwise

Divergence Score (EPDS) as a new ensemble disagreement measure, and after the

training, the learned EBDE assigns high EPDS for outliers, i.e., the learned den-

sity model produces low likelihood for outliers. We use two different types of OOD

score functions for EBDE: (i) the negative log-likelihood and (ii) the gradient norm

of the log-likelihood. Through extensive synthetic and real-world regression and

classification experiments and comparisons with other state-of-the-art deep ensem-

ble methods, we haven show performance advantages of the proposed EBDE es-

pecially from the perspective of OOD detection. We have also verified that the

EBDE does not degrade the prediction accuracy and uncertainty quantification

performance compared to the vanilla DE.
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Appendix

A.1 (Approximate) computation of log normalization constant

In maximum-likelihood training of the energy-based models, computing the gradi-

ent of the log normalization constant can be approximately calculated as follows:

∇θ log Ωθ = ∇θ log

∫
exp(−Eθ(x))dx (A.1.1)

= (

∫
exp(−Eθ(x))dx)

−1∇θ

∫
exp(−Eθ(x))dx (A.1.2)

= (

∫
exp(−Eθ(x))dx)

−1

∫
exp(−Eθ(x))(−∇θEθ(x))dx (A.1.3)

=

∫
exp(−Eθ(x))

Ωθ
(−∇θEθ(x))dx (A.1.4)

=

∫
pθ(x)(−∇θEθ(x))dx (A.1.5)

= Ex∼pθ(x)[−∇θEθ(x)] (A.1.6)

≈ 1

|Bneg|
∑

xneg∈Bneg

−∇θEθ(xneg) (A.1.7)
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The Monte-Carlo approximation is used in equation A.1.7 and negative inputs

xneg ∈ Bneg are sampled from the probability density model pθ(x).

A.2 Ensemble Disagreements

As shown in Figure 3.1 in the main script, ensemble variance score (EVS) which

is widely employed as an OOD detection criterion in ensemble methods, suffers a

gradient vanishing problem when generating negative samples for training EBM.

We confirm that this phenomenon occurs when using a softmax layer for a clas-

sification task. When predictions of models in an ensemble are clearly disagreed,

as the gradient at the softmax layer becomes 0, the gradient of energy w.r.t input

∇xEed(x) also becomes 0. In a regression task, this problem may not exist be-

cause the each prediction model p(y|x, θ) does not employ a softmax layer, but it

is not straightforward for computing divergence between each prediction p(y|x; θi)

and mean model prediction pE(y|x; θens) = 1/M
∑M

i=1 p(y|x; θi).

On the other hand, EPDS in equation 3.1 does not suffer the gradient vanish-

ing problem as illustrated in Figure 3.1 and is computed easily in the regression

task (the summation of divergences between two unimodal Gaussian).

A.3 Relation to Joint Probability Training

The training objective of the proposed EBDE consists of vanilla DE objective and

density model p(x; θens) learning objective. Meanwhile, If we train the ensemble by

minimizing a negative log-likelihood of the mean prediction model p(y|x; θens) =

1/M
∑M

i=1 p(y|x; θi), we can try another objective for training the EBDE:
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α · E(x,y)∼p(x,y)[log p(y|x; θens)] + Ex∼p(x)[log p(x; θens)], (A.3.8)

If α is 1, then the inside of objective in equation A.3.8 becomes to log joint

probability log p(x, y; θens). While it is still ambiguous which objective is better

in theoretically and empirically, we expect that this joint probability model in-

terpretation of the EBDE might improve or extend the EBDE e.g., an EBDE

trained with equation A.3.8 can provide unnormalized conditional probability den-

sity p̃(x|y; θens) ∝ p(y|x; θens)p̃(x; θens).

A.4 Limitations

Maximum likelihood training of energy-based models is required negative samples

as discussed in section 2.2 in the main script. Therefore, EBDE also requires a neg-

ative sampling procedure that η times both energy function evaluation (forward-

propagation) and back-propagation is required for each training iteration. Further-

more, MCMC-based negative sampling causes instability during training EBMs [27,

36, 37]. These challenges in the MCMC-based EBM training make it hard to scale

up EBDE to larger-scale benchmarks such as CIFAR10 [38], ImageNet [39], etc.

Nevertheless, we expect that the training speed and stability of EBDE can be im-

proved by applying recent works [37, 40, 21, 41] which improve both the training

speed and stability of EBM training.

A.5 Additional Experimental Results

In this section, we report OOD detection performance using the other OOD score

functions which are introduced in section 3.2 but not reported in Table 4.3 and
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Table 4.5.

A.5.1 FMNIST classification

Table A.1, A.2 and Table A.3 extends the Table 4.3 in the main script. We re-

port the OOD detection performance of each method using various OOD detection

scores, i.e., EVS, EPDS, and AMS. As reported in previous works [27, 23, 22],

OOD detection performances of EBDE are degraded when we directly use EPDS

as the OOD score function. While EBDE still outperforms most of the baseline

methods when using EVS and AMS as the OOD score function. In the tables, we

run each experiment 5 times at different seeds and report a mean and standard

error. The best one is bolded.

Table A.1: The FashionMNIST vs. MNIST OOD detection benchmark results.

Method
AUROC against OOD

EVS EPDS AMS

Vanilla DE 87.85(±0.58) 88.89(±0.55) 89.02(±0.58)

w-WGD 91.19(±0.40) 92.25(±0.44) 92.05(±0.49)

f-WGD-l 92.43(±0.18) 93.18(±0.60) 92.29(±0.78)

f-WGD-l-n 92.45(±0.38) 93.79(±0.35) 92.64(±0.47)

f-WGD-sm 77.18(±0.63) 74.02(±1.41) 84.81(±0.91)

f-WGD-sm-n 93.96(±0.93) 94.82(±0.76) 93.73(±0.62)

EBDE (ours) 96.36(±0.65) 86.23(±3.48) 97.93(±0.23)
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Table A.2: The FashionMNIST vs. KMNIST OOD detection benchmark results.

Method
AUROC against OOD

EVS EPDS AMS

Vanilla DE 85.57(±0.39) 86.61(±0.41) 86.54(±0.42)

w-WGD 88.39(±0.08) 89.58(±0.17) 89.84(±0.24)

f-WGD-l 89.20(±0.35) 90.05(±0.64) 89.19(±0.69)

f-WGD-l-n 88.17(±0.65) 89.09(±0.86) 88.13(±1.15)

f-WGD-sm 71.25(±0.45) 67.38(±0.86) 79.15(±0.39)

f-WGD-sm-n 96.66(±0.31) 97.31(±0.24) 96.71(±0.20)

EBDE (ours) 93.06(±0.70) 81.77(±2.10) 95.17(±0.44)

A.5.2 UCI regression

Table A.4 and Table A.5 extend Table 4.5 in the main script. Table A.4 and Ta-

ble A.5 show the OOD detection performance of each method where OOD scores

are EPDS and AMS. Similar to when EVS was used as the OOD score (Table 4.5),

f-WGD and EBDE performed better than vanilla DE and w-WGD. In the tables,

we run each experiment 10 times and report average and standard error. In the

case of f-WGD, the summary statistics are computed using only the results of suc-

cessfully learned models out of 10 times. The best and the second best are bolded,

and the worst is colored red.
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Table A.3: The FashionMNIST vs. Omniglot OOD detection benchmark results.

Method
AUROC against OOD

EVS EPDS AMS

Vanilla DE 90.80(±0.53) 91.59(±0.51) 92.51(±0.31)

w-WGD 90.73(±0.92) 91.52(±0.93) 92.18(±0.82)

f-WGD-l 91.35(±0.66) 91.87(±0.88) 91.99(±0.86)

f-WGD-l-n 90.95(±0.70) 91.48(±0.92) 91.51(±1.03)

f-WGD-sm 78.03(±1.92) 72.79(±1.92) 86.95(±0.86)

f-WGD-sm-n 92.16(±0.79) 92.71(±0.73) 91.61(±0.53)

EBDE (ours) 92.76(±0.36) 72.13(±5.48) 95.02(±0.51)

Table A.4: The synthetic OOD detection results on UCI regression dataset using

(AUROC using EPDS).

Datasets Vanilla DE w-WGD f-WGD EBDE

Concrete 97.54(±0.33) 97.76(±0.38) 99.91(±0.05) 99.39(±0.12)

Energy 99.79(±0.06) 99.72(±0.09) 100.0(±0.00) 99.87(±0.09)

Housing 97.38(±0.37) 97.01(±0.50) 99.08(±0.16) 98.88(±0.13)

Power 99.98(±0.00) 99.99(±0.00) 99.99(±0.00) 99.99(±0.00)

Wine 91.88(±1.01) 93.04(±0.78) 99.07(±0.22) 99.49(±0.12)

Yacht 99.87(±0.06) 99.84(±0.05) 99.94(±0.03) 99.84(±0.08)
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Table A.5: The synthetic OOD detection results on UCI regression dataset using

(AUROC using AMS).

Datasets Vanilla DE w-WGD f-WGD EBDE

Concrete 87.87(±1.40) 90.21(±1.18) 99.76(±0.09) 95.68(±0.63)

Energy 98.16(±0.46) 97.53(±0.57) 100.0(±0.00) 99.16(±0.26)

Housing 96.73(±0.43) 96.00(±0.75) 98.98(±0.24) 98.35(±0.25)

Power 99.89(±0.03) 99.97(±0.01) 99.97(±0.00) 99.98(±0.01)

Wine 88.68(±1.18) 89.39(±0.88) 98.63(±0.36) 99.55(±0.11)

Yacht 99.75(±0.10) 99.63(±0.11) 99.94(±0.03) 99.73(±0.12)
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국문초록

분류 및 회귀와 같은 예측 작업에 사용되는 모델은 이상적으로 두 가지 속성을 가

져야 한다. 우선, 입력 x가 분포 내(즉, 데이터 분포 p(x)에서 도출된)인지 분포 외

(이상치 또는 OOD 데이터)인지 결정할 수 있어야 한다. 이상치가 필터링된 후에는,

모델은 예측의 불확실성의 정량적인 측도를 제공해야 한다. 최근에, 확률적 예측을

하는 딥 뉴럴넷 모델을 여러개 사용하는 딥 앙상블(DE) 방법과 DE의 몇가지 변형된

방법들은 이러한 두 가지 기능을 갖추어 널리 사용되어져 오고 있다. 그러나 OOD 감

지 작업의 경우 기존 앙상블 방법의 성능은 아쉬운 점이 있는데, 이는 모델이 p(x)를

학습하지 않기 때문이라고 주장한다. 본 학위논문에서는 예측 모델 p(y|x)와 입력 데

이터 분포 p(x)를 동시에 학습하는 에너지 기반 딥 앙상블(EBDE) 방법을 제안한다.

구체적으로, p(x)는 앙상블 불일치(즉, 각 모델에 의한 예측들의 분산)를 에너지 함

수로 사용하여 에너지 기반 모델로 모델링 되어진다. 여러 종류의 데이터셋을 이용한

실험에서 제안한 EBDE가 예측 및 불확실성 정량화에서 기존의 방법들과 유사한 성

능을 달성하는 동시에, OOD 탐지 작업에 대한 기존 방법보다 더 나은 성능을 보임을

확인하였다.

주요어: 딥 앙상블, Out-of-distribution 감지, 불확실도 정량화, 에너지 기반 모델, 앙

상블 다양화

학번: 2020-22845
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