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Abstract 
 

 

Path Tracking Control of Four Wheel 
Independent Steering and Driving 
Autonomous Vehicle Based on Adaptive 
Weight Optimal Control 
 

Kyungtack Lee 

School of Mechanical Engineering 

The Graduate School 

Seoul National University 
 

An optimal controller applying an adaptive weight strategy is 

designed for path tracking control of a four-wheel independent 

steering and driving (4WISD) vehicle. This system changes the 

driving mode and modifies the priority of states according to the 

driving situation to improve the overall performance of the vehicle. It 

is implemented by modifying the performance index of an optimal 

control according to the predicted states using model predictive 

control (MPC). To do this, a dynamic model and a path tracking model 

of a 4WISD vehicle are determined and used as reference models for 

MPC. The path tracking controller is designed using MPC, and 

tracking performance is secured through state constraint conditions. 

The proposed adaptive weight strategy modifies the coefficients of 

the performance index depending on the expected driving conditions. 

In this study, the future state values of the MPC are used as the 

expected driving conditions. Lastly, the adaptive weight function is 
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optimized through learning using an evolutionary strategy. The 

fitness function of the evolutionary strategy includes the conditions 

of a vehicle that are not considered by the path tracking model such 

as ride comfort. Handling stability and ride comfort are optimized 

while maintaining the lateral position error within criteria, using the 

constraints of MPC and optimization of adaptive weight function. 

Learning and simulation were conducted in a MATLAB/CarSim 

environment. The proposed method is compared with conventional 

models, and the verification results for lateral position error, yaw rate 

error, lateral acceleration and lateral jerk are presented to confirm 

the improvement of the overall performance of the vehicle. 

 

 

Keyword: path tracking control, model predictive control, adaptive 

weight matrix, evolution strategy, four-wheel independent steering 

and driving 
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Nomenclature 

 
   

 𝑎௬ lateral acceleration of vehicle 

 𝛾 yaw rate of vehicle 

 𝑣௫ Longitudinal velocity of vehicle 

 𝑣௬ Lateral velocity of vehicle 

 𝑀 Mass of vehicle 

 𝐼௭ Yaw moment of inertia of vehicle 

 𝐹௫௜ Tire longitudinal force of i wheel 

 𝐹௬௜ Tire lateral force of i wheel 

 𝐹௭௜ Tire vertical force of i wheel 

 𝛿௜   Steering angle of i wheel 

 𝑙௜ Distance from center of mass to i wheel 

 𝐿 Wheelbase 

 𝐵 Track 

 𝑀௭ Yaw moment 

 𝑀௭௔ Additional yaw moment 

 𝛼௜ Tire slip angle of i wheel 

 𝐶௜ Cornering stiffness of i wheel 

 𝜓 Heading angle of vehicle 

 𝜓ௗ Heading angle of desired path 

 𝑦 Lateral position of vehicle 

 𝑦ௗ Lateral position of desired path 

 𝜅 Curvature of desired path 
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Chapter 1. Introduction 

1.1. Study background 

 

In recent years, the paradigm of automobiles has changed rapidly 

to autonomous driving and electrification. Autonomous driving can 

prevent accidents caused by human drivers by tracking the desired 

path with guaranteed performance. Meanwhile, an electric vehicle 

using an electric motor as a driving source not only positively affects 

the environment by reducing harmful emissions but also has a fast 

control response. These characteristics facilitate more accurate 

control and improved stability and performance of an autonomous 

vehicle compared to conventional internal combustion engine vehicles. 

With these advantages, autonomous driving and electrification are 

already becoming a large trend in the automobile industry. 

Furthermore, not only the driving system but also the chassis 

system is being electrified. Vehicle chassis systems such as brakes, 

steering, and suspensions are developed into by-wire modules with 

no mechanical connection. Each of these modules is integrated into 

one modular system called the e-corner module (ECM). Accordingly, 

a new electric vehicle platform is expected. The structure of future 

electric vehicles is expected to be integrated with ECM on a 

skateboard platform including batteries. This structure is not only 

suitable for autonomous vehicles but also increases the design 

freedom and cabin compatibility. In terms of control, this structure 

has the characteristics of four wheels operating independently. 
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The vehicles with four-wheel independent steering and driving 

(4WISD) have more control inputs than conventional vehicles. In 

addition, path tracking control affects not only tracking performance 

but also the overall performance of the vehicle, such as handling 

stability and ride comfort. In summary, the path tracking control 

problem of 4WISD vehicles is a form of multimodal function problem, 

which needs to deal with many control inputs. Therefore, optimal 

control is widely used for path tracking control of 4WISD vehicles. 

In previous studies, the path tracking performance is compared 

with active front steering (AFS), direct yaw control(DYC), and 4WIS 

using linear quadratic regulator (LQR)[Mashadi11]. The method 

using LQR and feedforward control is applied to obtain steering 

angles under high speed trajectory tracking condition [Liu18]. The 

front and rear steering angles are obtained using sliding mode control 

for path tracking [Lei22]. In consideration of desired yaw rate and 

desired side slip angle, not only path tracking but also handling 

stability was studied. The rear wheel steering angle is obtained using 

nonlinear model predictive control (MPC) and the steering angles and 

additional yaw moment are obtained using robust control and optimal 

control to improve performance of path tracking and handling stability 

[Yu21, Hang17]. A parameter varying model with longitudinal 

velocity integrated into the path follow controller was controlled 

using LQR [Hang21].  

In summary, the 4WISD vehicle is controlled by various methods 

for various object such as path tracking, handling stability, and 

longitudinal velocity control. However, the above studies only 

specified appropriate values of the weight matrix of performance 

index but did not express the derivation process and optimality. In 
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addition, the previous studies have not considered factors that cannot 

be expressed in path tracking models, such as the ride comfort. 

This paper focused on the fact that the weight matrix of the 

performance index determines the priority of the vehicle 

performance and the various driving modes of the 4WISD vehicle. By 

changing the ratio of the state weight matrix, it is possible to 

determine whether the position error or the handling stability is 

prioritized. Modifying the input weighting matrix can also determine 

whether to use front or rear wheel steering actively, or how much 

torque vectoring is performed. 

 

1.2. Purpose of the research 

A new method has been proposed to tailor the driving mode and 

performance index of an optimal controller to the driving conditions, 

which increases the overall performance of vehicle. The method is 

realized by modifying the weight matrix of the optimal control 

performance index according to the future states predicted by the 

MPC. 

To do this, the followings process has been conducted. First, a 

dynamic model and a path tracking model were determined as the 

reference model of the MPC. Second, the path tracking controller was 

designed using MPC. By applying state constraints to MPC, it is 

possible to secure path tracking performance that satisfies the 

criteria such as lateral position and heading angle errors. Third, the 

adaptive weight method is integrated to MPC. The future position 

error through the controller is selected as the driving situation index. 

The method changes the weight of the performance index depending 
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on the predicted states in online. Finally, adaptive weight function is 

optimized through learning using evolutionary strategies. The 

optimization method based on exploration was utilized to optimize 

performance index with nonlinear characteristics such as ride 

comfort and handling stability. 

The simulation was conducted on a MATLAB/CarSim 

environment. The conventional vehicle with front wheel steering and 

direct yaw moment control, a 4WISD vehicle using constant weights, 

and a 4WISD vehicle using proposed adaptive weights were 

compared. The proposed method is verified on double lane change 

condition, and the simulation results show improvement in path 

tracking, handling stability, and driving comfort. 
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Chapter 2. Modeling for path tracking control 

 

 

This chapter discusses the model of 4WISD vehicles for path 

tracking control. The relationship between the inputs of the vehicle 

and the states of path tracking is expressed as the state space 

equation. 

2.1. Lateral vehicle dynamics model 

 

To lessen the complexity of control, the lateral dynamics model 

of a vehicle in which four wheels operate independently is simplified 

as a bicycle model, as shown in Figure 2.1. The left and right motions 

of the wheels are determined by the distribution model in Section 3.5 

and 3.6. 

 

 

Figure 2.1 Schematic models of 4WISD vehicles 
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Based on Newton’s law, the lateral and yaw dynamics are derived 

as follows: 

 

𝑎௬ = 𝑣௬̇ − 𝑣௫𝛾 =
1

𝑚
(𝐹௬௙𝑐𝑜𝑠𝛿௙ + 𝐹௫௙𝑠𝑖𝑛𝛿௙ + 𝐹௬௥𝑐𝑜𝑠𝛿௥ + 𝐹௫௥𝑠𝑖𝑛𝛿௥) (2.1) 

𝛾̇ =
1

𝐼௭
൫𝑙௙𝐹௬௙𝑐𝑜𝑠𝛿௙ + 𝑙௙𝐹௫௙𝑠𝑖𝑛𝛿௙ − 𝑙௥𝐹௬௥𝑐𝑜𝑠𝛿௥ + 𝑙௥𝐹௫௥𝑠𝑖𝑛𝛿௥ + 𝑀௭௔൯ (2.2) 

 

𝑀௭௔  is additional yaw moment generated by the difference in 

driving force of each wheel. Assuming that the steering angle is small, 

it can be assumed as 𝑐𝑜𝑠𝛿 ≈ 1  and 𝑠𝑖𝑛𝛿 ≈ 0  by the small angle 

approximation. Hence, Equations (2.1) and (2.2) can be written as 

 

𝑎௬ = 𝑣௬̇ − 𝑣௫𝛾 =
1

𝑚
(𝐹௬௙ + 𝐹௬௥) (2.3) 

𝛾̇ =
1

𝐼௭
൫𝑙௙𝐹௬௙ − 𝑙௥𝐹௬௥ + 𝑀௭௔൯ (2.4) 

 

The slip angle is the difference between the steering angle of the 

tire and the traveling angle of the vehicle which can be defined as 

 

𝛼௙ =
௩೤ା௟೑ఊ

௩ೣ
− 𝛿௙, 𝛼௥ =

௩೤ି௟ೝఊ

௩ೣ
− 𝛿௥ (2.5) 

 

By assuming that the slip angle is small, the lateral force of tire 

has a linear relationship with respect to the tire slip angle. Using the 

linear tire model, the lateral force of tire can be expressed as 

 

𝐹௬௙ = 𝐶௙𝛼௙ 

𝐹௬௥ = 𝐶௥𝛼௥ 
(2.6) 
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By summarizing Equations (2.3) - (2.6), the equations of the 

dynamics can be rewritten as follows: 

 

𝑣௬̇ = ൬−
𝐶௙ + 𝐶௥

𝑣௫𝑚
൰ 𝑣௬ + ቆ−

𝐶௙𝑙௙ + 𝐶௥𝑙௥

𝑣௫𝑚
− 𝑣௫ቇ 𝛾 + ൬

𝐶௙

𝑚
൰ 𝛿௙ + ൬

𝐶௥

𝑚
൰ 𝛿௥ (2.7) 

𝛾̇ = ቆ
−𝐶௙𝑙௙ + 𝐶௥𝑙௥

𝑣௫𝐼௭

ቇ 𝑣௬ + ቆ
−𝐶௙𝑙௙

ଶ + 𝐶௥𝑙௥
ଶ

𝑣௫𝐼௭

ቇ 𝛾 + ቆ
𝑙௙𝐶௙

𝐼௭

ቇ 𝛿௙ − ൬
𝑙௥𝐶௥

𝐼௭

൰ 𝛿௥ +
𝑀௭௔

𝐼௭

 (2.8) 

 

2.2. Path tracking model 

 

Tracking a path means minimizing position and heading angle 

errors between the vehicle and the target path. For this purpose, the 

path tracking model has lateral position error 𝑒௬ and yaw angle error 

𝑒ట  and their derivative 𝑒௬̇, 𝑒ట̇  as states variables and has front 

steering angle 𝛿௙, rear steering angle 𝛿௥ and additional yaw moment 

𝑀௭௔ as input variables. The path tracking controller aims to regulate 

states. The Figure 2.2 illustrates the path tracking model of a 4WIS 

vehicle. 

 

Figure 2.2 Path tracking model of 4WIS vehicles 
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The yaw angle error and its derivative can be expressed as 

 

𝑒ట = 𝜓 − 𝜓ௗ (2.9) 

𝑒ట̇ = 𝜓̇ − 𝜓ௗ̇ = 𝛾 − 𝛾ௗ = 𝛾 − 𝑣௫𝜅 (2.10) 

 

The longitudinal velocity is assumed to be constant, and the 

second derivative of the yaw angle error is expressed as  

 

𝑒ట̈ = 𝛾̇ − 𝑣௫𝜅̇ (2.11) 

 

The derivative of the lateral position error e୷ and its second 

derivative can be derived as 

 

𝑒௬̇ = 𝑦̇ − 𝑦ௗ̇ = 𝑣௬ + 𝑣௫𝑒ట (2.12) 

𝑒௬̈ = 𝑣௬̇ + 𝑣௫𝑒ట̇ (2.13) 

 

Based on Equations (2.7), (2.8), (2.10), and (2.12), Equations 

(2.13) and (2.11) can be rewritten as 

 

𝑒௬̈ = ൬−
𝐶௙ + 𝐶௥

𝑣௫𝑚
൰ 𝑒௬̇ + ൬

𝐶௙ + 𝐶௥

𝑚
൰ 𝑒ట + ቆ−

𝐶௙𝑙௙ + 𝐶௥𝑙௥

𝑣௫𝑚
ቇ 𝑒ట̇ + ൬

𝐶௙

𝑚
൰ 𝛿௙

+ ൬
𝐶௥

𝑚
൰ 𝛿௥ + ቆ−

𝐶௙𝑙௙ + 𝐶௥𝑙௥

𝑚
− 𝑣௫

ଶቇ 𝜅 

(2.14) 

𝑒ట̈ = ቆ
−𝐶௙𝑙௙ + 𝐶௥𝑙௥

𝑣௫𝐼௭
ቇ 𝑒௬̇ + ቆ

𝐶௙𝑙௙ − 𝐶௥𝑙௥

𝐼௭
ቇ 𝑒ట + ቆ

−𝐶௙𝑙௙
ଶ + 𝐶௥𝑙௥

ଶ

𝑣௫𝐼௭
ቇ 𝑒ట̇

+ ቆ
𝑙௙𝐶௙

𝐼௭
ቇ 𝛿௙ − ൬

𝑙௥𝐶௥

𝐼௭
൰ 𝛿௥ + ൬

1

𝐼௭
൰ 𝑀௭௔

+ ቆ
−𝐶௙𝑙௙

ଶ + 𝐶௥𝑙௥
ଶ

𝐼௭
ቇ 𝜅 + (−𝑣௫)𝜅̇ 

(2.15) 
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Based on Equations (2.10), (2.12), (2.14), and (2.15), the path 

tracking model can be rewritten in the continuous time-invariant 

state space model as follows: 

 

𝑥(𝑡)̇ = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑤(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 
(2.16) 

 

where the state vector 𝑥 = [𝑒௬ 𝑒௬̇ 𝑒ట 𝑒ట̇]୘ , control input 

vector 𝑢 = [𝛿௙ 𝛿௥ 𝑀𝑧𝑎]୘ , disturbance vector 𝑤 = [𝜅 𝜅̇]୘ , and 

coefficient matrices are given by 

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
0 1 0 0

0 −
𝐶௙ + 𝐶௥

𝑣௫𝑚

𝐶௙ + 𝐶௥

𝑚
−

𝐶௙𝑙௙ + 𝐶௥𝑙௥

𝑣௫𝑚
0 0 0 1

0
−𝐶௙𝑙௙ + 𝐶௥𝑙௥

𝑣௫𝐼

𝐶௙𝑙௙ − 𝐶௥𝑙௥

𝐼௭

−𝐶௙𝑙௙
ଶ + 𝐶௥𝑙௥

ଶ

𝑣௫𝐼௭ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0
𝑘௙

𝑚

𝑘௥

𝑚
0

0 0 0
𝑙௙𝑘௙

𝐼௭
−

𝑙௥𝑘௥

𝐼௭

1

𝐼௭⎦
⎥
⎥
⎥
⎥
⎤

, 𝐶 = [𝐼]ସ×ସ, 𝐷 = [0]ସ×ଷ 

𝐸 =

⎣
⎢
⎢
⎢
⎢
⎡

0 0

−
𝐶௙𝑙௙ + 𝐶௥𝑙௥

𝑚
− 𝑣௫

ଶ 0

0 0
−𝐶௙𝑙௙

ଶ + 𝐶௥𝑙௥
ଶ

𝐼௭
−𝑣௫⎦

⎥
⎥
⎥
⎥
⎤

  

(2.17) 
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Chapter 3. Control 

This chapter describes the path tracking control method of 

4WISD vehicles. The overall control scheme is explained in Section 

3.1. Sections 3.2 and 3.3 illustrate path tracking control using MPC 

and the adaptive weight strategy applied to MPC. Sections 3.5 and 

3.6 show distribution models for four-wheel independent operating. 

3.1. Overall control scheme 

Figure 3.1 presents the proposed overall control scheme. States 

errors are obtained from the target path information, delivered to the 

path tracking controller. The front and rear steering angles and 

additional yaw moment are determined through the controller. 

 

 

Figure 3.1 Overall control scheme 
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The longitudinal velocity controller utilizes a velocity error to 

obtain the total longitudinal force using a proportional–integral–

derivative (PID) controller. The torque distribution model distributes 

the longitudinal force of each wheel to maintain the additional yaw 

moment and total longitudinal force using quadratic programming. 

The steering angle distribution model distributes each angle 

according to the Ackerman steering geometric relationship. The 

steering angle and drive torque to each wheel are transmitted to the 

CarSim vehicle model, and the measured states of the vehicle are 

added to the input feedback of the path tracking controller. The 

proposed adaptive weight strategy and path tracking controller 

operate online, exchanging predicted future states and modified 

weight values. Furthermore, the adaptive weight function is optimized 

through learning using evolution strategy. Chapter 4 discusses the 

details of the optimization method. 

 

3.2. Path tracking control 

 

In this study, a path tracking controller is designed using MPC. 

MPC is a control method using the receding horizon. MPC employs 

the first input obtained by solving a constrained optimal problem for 

a finite horizon length, and repeating this process while receding 

horizon. By solving the optimal problem with constraints every time 

step, the constraints can be considered in the control. Consequently, 

using MPC in this study, path tracking performance such as lateral 

position and heading angle errors can be guaranteed by state 

constraint conditions. In addition, the control inputs considering the 

limitations of the actuator can be obtained through the input 
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constraint condition. 

To design the model predictive controller, a continuous state 

space form in Equation (2.17) is converted into a discrete state space 

form using the zero-order hold method with sampling time ∆𝑡. The 

discrete state space equation is expressed as follows: 

 

𝑥௞ାଵ = 𝐴ௗ𝑥௞ + 𝐵ௗ𝑢௞ + 𝐸ௗ𝑤௞ 

𝑦௞ାଵ = 𝐶ௗ𝑥௞ + 𝐷ௗ𝑢௞ 
(3.1) 

 

The augmented state vector 𝜁௞ is defined with 𝑥௞ and 𝑢௞ିଵ, and 

new input vector is defined as ∆𝑢௞. Hence, the augmented discrete 

state space model can be expressed as 

 

𝜁௞ = ቂ
𝑥௞

𝑢௞ିଵ
ቃ (3.2) 

 

𝜁௞ାଵ = 𝐴ௗ
෪ 𝜁௞ + 𝐵ௗ

෪∆𝑢௞ + 𝐸ௗ
෪𝑤௞ 

𝑦௞ାଵ = 𝐶ௗ
෪𝜁௞ + 𝐷ௗ

෪ ∆𝑢௞ 

 

𝐴ௗ
෪ = ൤

𝐴ௗ   𝐵ௗ

0ଷ௫ସ 𝐼ଷ௫ଷ 
൨ , 𝐵ௗ

෪ = ൤
𝐵ௗ

𝐼ଷ௫ଷ
൨ , 𝐸ௗ

෪ = ൤
𝐸ௗ

0ଷ௫ଶ
൨ 

𝐶ௗ
෪ = [𝐶ௗ 0ଶ௫ଷ], 𝐷ௗ

෪ = [𝐷ௗ], 

(3.3) 

 

Using the augmented discrete state space equation, the steering 

angle rate and additional yaw moment rate are the input vectors 

and the steering angle and additional yaw moment are the state 

vectors. Accordingly, a feasible input range and a change rate of 

the actuators can be considered in the control.  

The optimal problem of MPC is defined as follows. As shown in 
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Equation (3.3), the curvature information of the path is regarded 

as disturbance. A nominal MPC problem is defined using a zero 

steady-state model excluding disturbance in Equation (3.4), and a 

nominal control input is obtained for horizon length using the 

nominal MPC model. 

 

𝜁௞ାଵ = 𝐴ௗ
෪ 𝜁௞ + 𝐵ௗ

෪∆𝑢௞ 

𝑦௞ାଵ = 𝐶ௗ
෪𝜁௞ + 𝐷ௗ

෪ ∆𝑢௞ 
(3.4) 

 

The net control input is obtained by adding the feedback term 

𝑘(𝑤௞) to nominal optimal input at each time for disturbance 

rejection.  

The net control input is expressed as follow: 

 

𝑢(𝑘) = 𝑢଴|௞
∗ + 𝑘(𝑤௞) (3.5) 

 

The performance index for model predictive controller is defined as 

 

𝐽௞(𝜁௞, ∆𝑈௞) = ෍ 𝜁௜|௞
் 𝑄௞𝜁௜|௞ +

ே೛

௜ୀଵ

෍ ∆𝑢௜|௞
் 𝑅௞∆𝑢௜|௞

ே೛ିଵ

௜ୀ଴

 (3.6) 

 

where 𝑄௞  and 𝑅௞  are diagonal matrices, 𝑄௞  is a positive 

semidefinite matrix and 𝑅௞ is a positive definite matrix. These weight 

matrices affect the performance index; hence, they are modified at 

each time step according to the adaptive weight strategy. 

The constraints are considered when solving the optimal control 

problem. For instance, the physical operating limits of the steering 

actuator and drive motor create constraints on the input. In addition, 
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constraints on state variables are selected to secure efficient path 

tracking performance. Moreover, the termination constraint condition 

is selected to guarantee the feasibility of the model predictive 

controller. 

The nominal optimization problem of MPC can be expressed as 

follows: 

 

min
∆௎ೖ

𝐽௞(𝜁௞, ∆𝑈௞) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

𝜁௜|௞ = 𝐴ௗ
෪ 𝜁௜ିଵ|௞ + 𝐵ௗ

෪∆𝑢௜ିଵ|௞ 

𝑒௬೘೔೙
≤ 𝑒௬೔|ೖ

≤ 𝑒௬೘ೌೣ
 

 𝑒̇ట೘೔೙
≤ 𝑒̇ట೔|ೖ

≤ 𝑒̇ట೘ೌೣ
 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑁௣ 

δ௠௜௡ ≤ 𝛿௙೔|ೖ
≤ δ௠௔௫ 

δ௠௜௡ ≤ 𝛿௥೔|ೖ
≤ δ௠௔௫ 

∆δ௠௜௡ ≤ ∆𝛿௙೔|ೖ
≤ ∆δ௠௔௫ 

∆δ௠௜௡ ≤ ∆𝛿௥೔|ೖ
≤ ∆δ௠௔௫ 

∆𝑀௭௔௠௜௡
≤ ∆𝑀௭௔೔|ೖ

≤ ∆𝑀௭௔௠௔௫
 

𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1,2, … , 𝑁௣ − 1 

𝑒௬௙೘೔೙
≤ 𝑒௬ಿ೛|ೖ

≤ 𝑒௬௙೘ೌೣ
 

 𝑒̇௬௙೘೔೙
≤ 𝑒̇௬ಿ೛|ೖ

≤ 𝑒̇௬௙೘ೌೣ
 

𝑒ట௙೘೔೙
≤ 𝑒టಿ೛|ೖ

≤ 𝑒ట௙೘ೌೣ
 

 𝑒̇ట௙೘೔೙
≤ 𝑒̇టಿ೛|ೖ

≤ 𝑒̇ట௙೘ೌೣ
 

(3.7) 

 

For each time 𝑘 , an optimal control input sequence ∆𝑈௞
∗ =

[∆𝑢଴|௞
∗ , ∆𝑢ଵ|௞

∗ , … , ∆𝑢ே೛ିଵ|௞
∗ ]  that satisfies the constraint conditions is 

obtained by a quadratic programming function on MATLAB. 
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At time 𝑘, the optimal control input 𝑢଴|௞
∗  to be applied to the 

vehicle is defined as follows: 

 

𝑢଴|௞
∗ = 𝑢(𝑘 − 1) + ∆𝑢଴|௞

∗  (3.8) 

 

The feedback term for disturbance rejection in Equation (3.5) is 

defined as follows: 

 

𝑘(𝑤௞) =  −𝐵ௗ
෪ ିଵ

𝐸ௗ
෪𝑤௞ (3.9) 

 

Net control input is expressed as follows. 

 

𝑢(𝑘) = 𝑢(𝑘 − 1) + ∆𝑢଴|௞
∗ − 𝐵ௗ

෪ ିଵ
𝐸ௗ
෪𝑤௞ (3.10) 

 

3.3. Adaptive weight strategy of model predictive control 

 

As shown in Equation (3.6), weight vectors Q and R affect 

performance index. Generally, large Q values quickly converge the 

state to zero and large R reduces the control input, causing the state 

to converge slowly to zero. However, there is no apparent method 

for choosing the exact values of these weight vectors. 

In the path tracking controller of 4WISD vehicles, each weight 

matrix has a critical function. For instance, each factor of R 

determines driving modes such as front or rear wheel steering and 

size of yaw moment control, and each factor of Q determines the 

priority of multi-object performance such as tracking performance, 

handling stability, and driving comfort. For this purpose, the adaptive 
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weight strategy is proposed. This method adjusts the weight matrix 

according to the driving condition. First, for the driving state index 

(SI), the adaptive weight is precisely expressed as various SIs are 

considered, but the increasing number of variables causes a curse of 

dimensionality problem, which increases the amount of computation 

exponentially. Therefore, it is good for the SI to have various 

physical meanings while represented by as few variables as possible. 

In this study, the future lateral position error is selected as the SI 

with one variable and can be expressed as 

 

𝑒௬ෞ(𝑡 + ∆𝑡) = 𝑒௬(𝑡) + 𝑒௬̇(𝑡)∆𝑡 = 𝑒௬(𝑡) + (𝑣௫(𝑡) + 𝑣௬(𝑡)𝑒ట(𝑡))∆𝑡 (3.11) 

 

As shown in Equation (3.11), the future lateral position error 

contains lateral position and yaw angle errors and lateral and 

longitudinal velocities. The future lateral position error is expected 

to be effective in determining the behavior of the vehicle because the 

changes in the four states are reflected. However, the above 

expression presupposes that the value of each state variable is 

maintained and ∆𝑡 should be sufficiently small. In this study, a novel 

method is proposed for accurate representation of future states for 

SI. Further, the lateral position error of the predictive states of MPC 

is selected as the SI. At time 𝑘, Q୩ and R୩ weight matrices can be 

expressed as follows. 

Q୩ = diag൫wଵ|୩, wଶ|୩, wଷ|୩, wସ|୩൯

R୩ = diag(wହ|୩, w଺|୩, w଻|୩)

where w୧|୩ = 𝑓௜ ቀ𝑒௬(ே೛|௞ିଵ)ቁ (𝑖 = 1,2, … ,7) 

(3.12) 
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As shown in Figure 3.2, The performance index 𝐽௞ is modified 

according to the SI every time step by obtaining the weight matrix at 

time 𝑘 based on the expected error of the weight matrix at time 𝑘 −

1. Since the modification is based on future position error, intuitively, 

increasing the Q matrix can compensate more actively if the vehicle's 

future position error increases even with optimal control, and 

decreasing R matrix can enhance ride comfort when the future states 

are considered stable enough. 

 

 

Figure 3.2 Updated performance index based on SI 

 

Secondly, the adaptive weight function 𝑓௜(𝑥) can be expressed in 

various forms, but it is assumed to be linear in this study. After 

several simulations, linear function is considered the appropriate 

form. Finally, adaptive weight function can be defined as follows 

 

𝑤௜|௞ = 𝑎௜(𝑆𝐼௞) + b௜ ,     (𝑖 = 1,2, … ,7) (3.13) 

 

In the optimization process of the coefficient 𝑎௜ , 𝑏௜, the SI has a 

limited range by state constraint; hence, it is easy to add constraint 
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to the algorithm that the weight matrix becomes positive definite. 

 

3.4. Longitudinal velocity control 

 

In the longitudinal velocity control, the required total longitudinal 

force is obtained using the difference between the target velocity and 

the current velocity of the vehicle, as shown in Equation (3.14). The 

total longitudinal force is used as a constraint to obtain the force of 

each wheel in the driving torque distribution model. 

 

𝐹௫೟೚೟ೌ೗
= 𝑘௉(𝑣௫ௗ − 𝑣௫) + 𝑘ூ න(𝑣௫ௗ − 𝑣௫) + 𝑘஽(𝑣௫ௗ̇ − 𝑣௫̇) (3.14) 

 

3.5. Steering angle distribution model 

 

The distribution of the steering angle is based on the Ackermann 

steering geometry. The center of the turning circle can be obtained 

from the front and rear wheel steering angles of the bicycle model. 

The steering angle of each wheel satisfying the Ackermann 

relationship can be derived as follows: 

 

𝛿௙௟ = atan ቌ
tan 𝛿௙

1 −
𝑡
𝐿

(tan 𝛿௙ − tan 𝛿௥)
ቍ , 𝛿௙௥ = atan ቌ

𝑡𝑎𝑛 𝛿௙

1 +
𝑡
𝐿

(tan 𝛿௙ − tan 𝛿௥)
ቍ 

𝛿௥௙ = atan ቌ
tan 𝛿௥

1 −
𝑡
𝐿

(tan 𝛿௙ − tan 𝛿௥)
ቍ , 𝛿௥௟ = atan ቌ

tan 𝛿௥

1 +
𝑡
𝐿

(tan 𝛿௙ − tan 𝛿௥)
ቍ 

(3.15) 
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3.6. Driving torque distribution model 

 

In this section, a method for distributing the driving force of each 

wheel to achieve the required moment and total longitudinal required 

force is described. The driving force of each wheel 𝐹௫௜ satisfies the 

following equation: 

 

𝐹௫௧௢௧௔௟
= 𝐹௫ଵ𝑐𝑜𝑠(𝛿ଵ) + 𝐹௫ଶ𝑐𝑜𝑠(𝛿ଶ) + 𝐹௫ଷ𝑐𝑜𝑠(𝛿ଷ) + 𝐹௫ସ𝑐𝑜𝑠(𝛿ସ) (3.16) 

𝑀௭௔ = 𝐹௫ଵ ቀ𝑙௙ sin(𝛿ଵ) − 𝑡𝑐𝑜𝑠(𝛿ଵ)ቁ + 𝐹௫ଶ ቀ𝑙௙ sin(𝛿ଶ) + 𝑡𝑐𝑜𝑠(𝛿ଶ)ቁ

+ 𝐹௫ଷ൫−𝑙௥ sin(𝛿ଷ) − 𝑡𝑐𝑜𝑠(𝛿ଷ)൯ + 𝐹௫ସ(−𝑙௥ sin(𝛿ସ)

+ 𝑡𝑐𝑜𝑠(𝛿ସ)) 

(3.17) 

 

The drive torque of each tire can be simplified as 

 

𝑇ௗ௜ = 𝐹௫௜𝑅௪ (3.18) 

 

The longitudinal force is distributed to include the margin of the 

friction cycle of each tire. The relationship between the lateral, 

longitudinal, and vertical forces of the tire according to the friction 

cycle is expressed as follows: 

 

𝐹௫௜
ଶ + 𝐹௬௜

ଶ ≤  (𝜇𝐹௭௜)ଶ (3.19) 

 

The optimal problem can be defined as a performance index with 

a quadratic form while satisfying the constraints 

  

𝑚𝑖𝑛.  𝑥்𝑄𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜.  𝐴𝑥 = 𝑏 
(3.20) 
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At this time, each matrix is as follows: 

 

𝑥 = [𝐹௫ଵ 𝐹௫ଶ 𝐹௫ଷ 𝐹௫ସ]் (3.21) 

𝑄 = 𝑑𝑖𝑎𝑔 ቆ
1

(𝜇𝐹௭ଵ)ଶ − 𝐹௬ଵ
ଶ ,

1

(𝜇𝐹௭ଶ)ଶ − 𝐹௬ଶ
ଶ ,

1

(𝜇𝐹௭ଷ)ଶ − 𝐹௬ଷ
ଶ ,

1

(𝜇𝐹௭ସ)ଶ − 𝐹௬ସ
ଶቇ (3.22) 

𝐴் =

⎣
⎢
⎢
⎡
𝑐𝑜𝑠𝛿ଵ

𝑐𝑜𝑠𝛿ଶ

𝑙௙ sin 𝛿ଵ − 𝑡𝑐𝑜𝑠𝛿ଵ

 𝑙௙ sin 𝛿ଶ + 𝑡𝑐𝑜𝑠𝛿ଶ

𝑐𝑜𝑠𝛿ଷ

𝑐𝑜𝑠𝛿ସ

−𝑙௥ sin 𝛿ଷ − 𝑡𝑐𝑜𝑠𝛿ଷ

−𝑙௥ sin 𝛿ସ + 𝑡𝑐𝑜𝑠𝛿ସ⎦
⎥
⎥
⎤

, 𝑏 = ൤
𝐹௫೟೚೟ೌ೗

𝑀௭௔
൨ (3.23) 

 

Using the Lagrange multiplier 𝜆, the Hamiltonian is defined as  

 

𝐻 = [𝑥்𝑄𝑥] + 𝜆[𝐴𝑥 − 𝐵] (3.24) 

 

The necessary conditions are as follows: 

 

𝜎𝐿

𝜎𝑥
= 𝑥்𝑄 + 𝜆𝐴 = 0 (3.25) 

𝜎𝐿

𝜎𝜆
= 𝐴𝑥 − 𝑏 = 0 (3.26) 

 

Based on Equation (3.25), Equation (3.26) is rewritten as follows: 

 

𝑥் = −𝜆𝐴𝑄ିଵ        𝑥 = −𝑄ିଵ𝐴்𝜆் (3.27) 

𝐴(−𝑄ିଵ𝐴்𝜆்) − 𝑏 = 0        𝜆் = (−𝐴𝑄ିଵ𝐴்)ିଵ𝑏 (3.28) 

 

In summary, the driving force of each wheel can be obtained as 

follows: 

 

𝑥 = 𝑄ିଵ𝐴்(𝐴𝑄ିଵ𝐴்)ିଵ𝑏 (3.29) 
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Chapter 4. Optimization of Adaptive Weight Function  

 

In this chapter, the optimization method using the evolutionary 

strategy is proposed. Considering the purpose of the autonomous 

vehicle, the overall performance should include various indices, i.e., 

not only path tracking performance such as position error and 

handling stability but also ride comfort. Moreover, an improvement of 

path tracking performance does not mean an improvement of ride 

comfort of the vehicle. 

To optimize the overall performance of the vehicle, this study 

aims to maximize the handling stability and ride comfort within a 

certain level of lateral position error. Since the path tracking 

performance is guaranteed under the state constraint of the MPC, the 

fitness function of the adaptive weight function optimization problem 

is defined to minimize lateral acceleration, lateral jerk and yaw rate 

error to achieve ride comfort and handling stability. 

The fitness function is defined as follows: 

 

𝐹 = 𝐹௘௥ + 𝐹௔௬ + 𝐹௝௬ = න ൣ𝑘ଵ|𝑒௥| + 𝑘ଶห𝑎௬ห + 𝑘ଷห𝑗௬ห൧
௧

଴

𝑑𝑡 (4.1) 

 

 

4.1. Evolution strategy 

 

An evolution strategy algorithm is applied to obtain the 

coefficient of adaptive weight function that minimizes the fitness 

function. The above fitness function is a multimodal function that 

includes a factor with nonlinear characteristics of a vehicle and a term 
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that expresses the factor in different forms. Therefore, it is difficult 

to predict the properties of the fitness function such as convexity, 

continuity, and ruggedness. In this study, the method using evolution 

strategy is selected for the black box optimization problem. The 

evolution strategy not only reliably find global solutions but also have 

the following advantages of computing time. The crossover step of 

the general genetic algorithm was omitted and the computation was 

reduced. Parallel computing is possible because the results of each 

search point are independent of calculating the fitness score. In this 

paper, the computing time can be reduced through parallel simulation. 

By applying methods such as elite evolution strategy and covariance 

matrix adaptation evolution strategy, the convergence rate increased. 

In general, optimization by exploration is not guaranteed to be 

stable as it explores unknown areas. However, in this study, the 

essential performances, such as tracking performance and handling 

stability, are guaranteed with MPC, and the ancillary performance, 

such as ride comfort, is optimized using the evolution strategy 

method. This approach enables optimization while maintaining safety 

during driving. 

 

4.2. Optimization algorithm based on evolution strategy 

 

In this study, general ES is modified according to the purpose of 

optimizing the weight matrix. Since the performance index is affected 

the relative size of the weights, the ratio is more important than the 

size of the value. Therefore, the method of multiplying the noise by 

the optimization process is applied. And the coefficients of adaptive 

weight function are constrained so that the weight vector are positive. 
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In addition, Elite ES method and adaptive variance is applied the 

proposed algorithm to increase the convergence rate. 

The algorithm is expressed as shown in Figure 4.1 

 

1: Initialize mean parameter (𝑚௡), parameters set (𝜃௡×(ఒିఓ)), Elite parameter set 

(𝐸௡×ఓ) 

2: Initialize variance (𝑉௡) 

3: repeat 

4: Sample noise matrix (𝑒௡×(ఒିఓ)~𝑁(1, 𝑉௡)) 

5:  if 𝑒௜∗௡ has negative then resample (𝑒௡×(ఒିఓ) > 0) 

6:  end if 

7: Create parameter set (𝜃௡×ఒ = 𝑚௡ ∗ 𝑒௡×(ఒିఓ) + 𝐸௡×ఓ) 

8: Evaluate fitness score (𝐹ఒ) by simulation 

9: Sort parameter set (𝜃௡×ఒ) in the order of descent 

10: Update Elite parameter set (𝐸௡×ఓ) 

11: Update variance (𝑉௡ = 𝑉𝑎𝑟(𝑒௡×ఓ)) 

12: Update mean parameter 𝑚௡
୩ାଵ = 𝑚௡

௞ ∗ (∑ 𝐹ఓ𝑒௡×ఓ
௦
௝ ) 

13: until 𝜃௞ାଵ − 𝜃௞ < 𝜖 

 Figure 4.1 Proposed evolution strategy algorithm 

 

To apply the above algorithm to an MPC using a constant weight, 

the value of parameter matrix corresponding to 𝑎௜ in Equation (3.13) 

is set to zero.  
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Chapter 5. Simulation 

 

In this chapter, the simulation conditions and results are 

described. The simulation results of the conventional models are 

confirmed to compare the performance of the adaptive weight MPC. 

The first model is a front-wheel steering and four-wheel drive 

vehicle, which uses a method of steering the front wheel and assisting 

yaw rate control through the driving force. The Stanley method is 

used as the steering method for path tracking. The second model is 

a four-wheel steering and four-wheel drive vehicle, which uses a 

method of applying a general MPC with a constant weight. The weight 

matrix is optimized using the evolutionary strategy algorithm as 

discussed in Chapter 4. The last model uses the method of applying 

the adaptive weight MPC. The coefficients of the adaptive functions 

were optimized using the evolutionary strategy algorithm. By 

comparing the above three cases, the results of path tracking control, 

adaptive weight characteristic, and optimization process by evolution 

strategy are explained. The simulation is conducted on a 

MATLAB/CarSim environment. 
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5.1. Simulation Condition  

 

To obtain test vehicle data, the specifications of the self-driving 

shuttle are considered. The self-driving shuttle is expected to be the 

first fully autonomous driving vehicle, and the application of various 

steering modes, such as lateral parking and 360 degree rotating, of 

four-wheel independent steering is also advantageous. The self-

driving shuttle repeats a driving given route with a similar speed. The 

characteristic of autonomous shuttles is appropriate for learning 

based on evolution strategy by repeatedly performing under similar 

conditions. The test environment is assumed as a double-lane 

change (DLC). The DLC conditions are suitable for evaluating the 

path tracking performance and lateral dynamics of a vehicle. The 

specifications of the vehicle are as shown in Table 5.1. 

Table 5.2 presents the parameters of the MPC controller. The 

sampling time is 0.05 s and the predictive and control horizons are 

set as 30. The state constraints are set as 𝑒௬೘ೌೣ
= 0.06 𝑚, 𝑒௬೘೔೙

=

−0.06 𝑚, 𝑒̇ట೘ೌೣ
= 0.1 𝑟𝑎𝑑, 𝑒̇ట೘೔೙

= −0.1 𝑟𝑎𝑑, δ௠௔௫ = 1.57 𝑟𝑎𝑑, δ௠௜௡ = −1.57 𝑟𝑎𝑑 . 

The control input constraint is set as ∆δ௠௔௫ = 0.052 𝑟𝑎𝑑, ∆δ௠௜௡ =

−0.052 𝑟𝑎𝑑, ∆𝑀௭௔௠௔௫
= 1000 Nm, ∆𝑀௭௔௠௜௡

= −1000 Nm. The terminal 

constraint is set as 𝑒௬௙೘ೌೣ
= 0.03 𝑚, 𝑒௬௙೘೔೙

= −0.03 m, 𝑒̇௬௙೘ೌೣ
= 0.01 𝑚/

𝑠, 𝑒̇௬௙೘೔೙
= 0.01 𝑚/𝑠, 𝑒ట௙೘ೌೣ

= 0.01 𝑟𝑎𝑑, 𝑒ట௙೘೔೙
= −0.01 rad, 𝑒̇ట௙೘ೌೣ

= 0.01 𝑟𝑎𝑑/

𝑠, 𝑒̇ట௙೘೔೙
= 0.01 𝑟𝑎𝑑/𝑠. 
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𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐒𝐲𝐦𝐛𝐨𝐥 𝐔𝐧𝐢𝐭 𝐕𝐚𝐥𝐮𝐞 

Mass of vehicle 𝑚 kg 3400 

Moment of inertia 𝐼௭ kgmଶ 4000 

Front wheel base 𝑙௙ m 1.6 

Rear wheel base 𝑙௥ m 2.0 

Wheel base 𝑙 m 3.6 

Track 𝐵 m 2.0 

Front rire cornerring stiffness 𝐶௙ N/rad 3000 

Rear tire cornerring stiffness 𝐶௥ N/rad 3000 

Target longitudinal velcoity 𝑣௫ௗ km/h 50 

Table 5.1. Data of a vehicle 

 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐒𝐲𝐦𝐛𝐨𝐥 𝐔𝐧𝐢𝐭 𝐕𝐚𝐥𝐮𝐞 

Sampling time ∆𝑡 sec 0.05 

Predictive horizon 𝑁௣ − 30 

Contorl horizon 𝑁௖ − 30 

Constraint of lateral postion error 𝑒௬௠௔௫
, 𝑒௬௠௜௡

 m ±0.06 

Constraintof yaw rate error 𝑒ట̇௠௔௫
, 𝑒ట̇௠௜௡

 rad/s ±0.10 

Constraint of steering angle 𝛿௠௔௫, 𝛿௠௜௡  rad ±1.57 

Constraint of steering angle rate ∆𝛿௠௔௫, ∆𝛿௠௜௡  rad ±0.052 

Constraint of additional yaw moment rate ∆𝑀௭௔௠௔௫
, ∆𝑀௭௔௠௜௡

 Nm ±1000 

Terminal constraint of lateral postion error 𝑒௬௙௠௔௫
, 𝑒௬௙௠௜௡

 m ±0.03 

Terminal constraint of yaw angle error 𝑒௬௙̇ ௠௔௫
𝑒௬௙̇ ௠௜௡

 m/s ±0.01 

Terminal constraint of lateral postion error 𝑒ట௙௠௔௫
, 𝑒ట௙௠௜௡

 rad ±0.01 

Terminal constraint of yaw angle error 𝑒ట௙̇ ௠௔௫
, 𝑒ట௙̇ ௠௜௡

 rad/s ±0.01 

Table 5.2. Parameters of model predictive control 

 

 

 



 

 

 

 

２７

5.2. Learning result of optimization progress  

 

The optimization process is conducted to check that the proposed 

method adequately finds the solution. Optimization using the 

evolutionary strategy was performed for two cases: constant weight 

method and adaptive weight method. The average and 95% 

confidence intervals of each step are displayed. The result is 

obtained by 15 repetitions under the same initial conditions for each 

case. Table 5.3 displays the coefficients of the initial weight function. 

 

𝐒𝐲𝐦𝐛𝐨𝐥 aଵ aଶ aଷ aସ aହ a଺ a଻ 

𝐕𝐚𝐥𝐮𝐞 0 0 0 0 0 0 0 

𝐒𝐲𝐦𝐛𝐨𝐥 𝑏ଵ 𝑏ଶ 𝑏ଷ 𝑏ସ 𝑏ହ 𝑏଺ 𝑏଻ 

𝐕𝐚𝐥𝐮𝐞 1 1 1 1 3 3 1e − 8 

Table 5.3 Coefficients of initial weight function 

 

The parameters of the evolutionary strategy are as Table 5.4. 

 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐒𝐲𝐦𝐛𝐨𝐥 𝐕𝐚𝐥𝐮𝐞 

Number of samples 𝜆 30 

Elitist 𝜇 5 

Initial variance 𝑉 1.0 

Step size 𝜎 1 

Coefficient of object function 𝑘௜  [5,3,2] 

Table 5.4 Coefficients of evolution strategy 

 

Figure 5.1 displays the optimization results. The fitness function 

converged within 20 generations. The value of the fitness function 

converged to 67.1 for the constant weight method and to 64.9 for the 
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adaptive weight method. Owing to the evolutionary strategy 

characteristic of random searching by a Gaussian distribution, the 

steps implied that the score is reversed in the optimization process, 

but the score of the adaptive weight method is lower than that of the 

constant weight method overall. In the case of a lateral position error, 

the final convergence values are 3.4 cm and 3.5 cm, respectively, 

which are similar. the convergence values were achieved within 6 cm, 

which was selected from the state constraint of the MPC. The yaw 

rate converges to 0.029 rad/s and 0.022 rad/s, respectively, and the 

adaptive weight method is more advantageous. In the case of lateral 

acceleration and jerk, the constant weight method converges to 0.568 

G and 2.897 G/s and the adaptive weight method converges to 0.552 

G and 2.701 G/s; hence, the adaptive weight method is ~0.016 G, 

~0.196 G/s better, respectively. The yaw rate, lateral acceleration 

and lateral jerk are included in the fitness function, and the adaptive 

weight method showed better results than the constant weight 

method. For optimizing ride comfort and handling stability while 

ensuring lateral position error, the adaptive weight method showed 

relatively more advantageous results. 

 

Model 
Constant weight 

method 

Adaptive weight 

method 

Max. Lateral positon Error (m) 0.034 0.035 

Max. Yaw rate error (rad/s) 0.029 0.022 

Max. Lateral acceleration (G) 0.568 0.552 

Max. Lateral jerk (G/s) 2.897 2.701  

Table 5.5 Average of convergence performance 
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(a) fitness function score 

 

(b) Maximum lateral position error 

 

(c) Maximum yaw rate error 



 

 

 

 

３０

 

(d) Maximum lateral acceleration 

 

(e) Maximum lateral jerk 

 

Figure 5.1 Result of optimization progress: (a) fitness score, 

(b) maximum lateral position error, (c) maximum yaw rate error, 

(d) maximum lateral acceleration, (e) maximum lateral jerk 
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Based on the simulation results, the optimal coefficient was 

selected as the minimum fitness score of each type as shown in Table 

5.7.  

 

𝐒𝐲𝐦𝐛𝐨𝐥 aଵ aଶ aଷ aସ aହ a଺ a଻ 

𝐕𝐚𝐥𝐮𝐞 0 0 0 0 0 0 0 

𝐒𝐲𝐦𝐛𝐨𝐥 𝑏ଵ 𝑏ଶ 𝑏ଷ 𝑏ସ 𝑏ହ 𝑏଺ 𝑏଻ 

𝐕𝐚𝐥𝐮𝐞 7.76 0.17 97.55 251.1 3 20.56 7.6𝑒 − 09 

Table 5.6 Optimization result of constant weight function 

 

𝐒𝐲𝐦𝐛𝐨𝐥 aଵ aଶ aଷ aସ aହ a଺ a଻ 

𝐕𝐚𝐥𝐮𝐞 2.86 −10.76 −109.9 2.49 0 2.97 4.0𝑒 − 08 

𝐒𝐲𝐦𝐛𝐨𝐥 𝑏ଵ 𝑏ଶ 𝑏ଷ 𝑏ସ 𝑏ହ 𝑏଺ 𝑏଻ 

𝐕𝐚𝐥𝐮𝐞 0.83 8.27 9.47 383.9 3 16.1 6.2𝑒 − 09 

Table 5.7 Optimization result of adaptive weight function 

 

The changes in adaptive weight of Table 5.7 are as follows. 

Figure 5.2 shows the changes in the adaptive weights according to 

the SI. Among the four state weights, e୷ , e୷̇ and eట are changed 

while eట̇ maintain high portion of weights independent of the SI. The 

weight of e୷ is increased as the expected position error increases, 

rapidly reducing the lateral position error. On the contrary, when the 

expected position error decreases, the weight of e୷̇  and eట  are 

increased. This policy reduces lateral acceleration and jerk due to 

rapid position changes while holding the position error and reducing 

heading angle error when SI is small, leading to improved ride 

comfort with minimizing yaw angle error. 

In the case of the input, the overall tendency of front wheel 
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steering rather than rear wheel steering can be confirmed. Since the 

influence of the rear wheel steering angle has a huge impact on the 

direction of the vehicle body, rear wheel steering operates with a low 

portion. When the SI increases, a strategy is observed to stabilize the 

vehicle quickly by increasing the amount of rear steering control. 

Yaw moment control is operated with a relatively large value when 

the SI is small. In summary, it was optimized to drive with front wheel 

steering and yaw moment control when the expected position error 

is small, and to actively use rear wheel steering when the expected 

position error increases. 

 

 

 

 

  (a) State weights               (b) Input weights 

 

Figure 5.2 Changes of adaptive weight by SI:  

(a) state weights, (b) input weights 
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5.3. Predictive states of adaptive weight function 

 

Figure 5.3 shows the simulation result of the SI used in the 

adaptive weight method. According to the sampling time and 

predictive horizon shown in Table 5.2, the future predictive state is 

1.5 s ahead of the actual state. In other word, the SI indicates the 

position error 1.5 s later when controlled by the performance index 

with a constant weight. The SI does not exceed 0.03 m by the 

terminal constraint. By modifying the performance index using the 

future position, the adaptive weight strategy improves the 

performance of model prediction control. 

 

 

 

Figure 5.3 Predictive states of lateral position error: 
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5.4. Comparison Result with Conventional Model 

 

The proposed method is compared with conventional models. 

Table 5.8 displays the simulation result. The maximum and root mean 

square (RMS) value of each performance factor are expressed by the 

model. The 4WIS optimal control with adaptive weight satisfies the 

criteria of lateral position error and shows the best performance in 

yaw rate error, lateral acceleration and lateral jerk. Compared to 

Models 1 and 2, the proposed method improved the maximum yaw 

rate error by 89% and 48%, and the RMS of lateral acceleration by 

4% and 1%, and the RMS of lateral jerk by 4% and 2%, respectively. 

 

Model 
Model 1 

(2WS+DYC) 

Model 2 

(4WS+Const.) 

Proposed 

(4WS+Adapt.) 

Lateral positon Error 

(m) 

Max 0.072 0.034 0.037 

RMS 0.021 0.009 0.012 

Yaw rate error 

(rad/s) 

Max 0.125 0.027 0.014 

RMS 0.027 0.006 0.003 

Lateral acceleration 

(G) 

Max 0.565 0.557 0.548 

RMS 0.190 0.183 0.182 

Lateral jerk  

(G/s) 

Max 2.55 3.04 2.57 

RMS 0.61 0.60 0.59 

Table 5.8 Path tracking result under double lane change 

 

Figures 5.4 and 5.5 show the simulation results, which can be 

analyzed in two aspects. In the state perspective, the difference 

between front-wheel steering method and four-wheel steering 

method was significant because the latter using MPC maintains a 

small level of lateral position error and yaw rate error. As four-
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wheel steering became possible, yaw rate error could be easily 

reduced, which improved path tracking performance such as lateral 

position error. The adaptive weight method further improves yaw 

rate error, lateral acceleration and lateral jerk by adjusting weight 

compared with the constant weight method. For yaw rate error, the 

adaptive weight method presents a smaller error on the whole than 

the constant weight method. For lateral acceleration, there was slight 

improvement in the maximum value of the entire section; however, 

there is an improvement in the section returning straight path from 

the curved path around 4 and 8 seconds in Figure 5.4 (d). For this 

section, the adaptive weight method improved performance by 11% 

and 3% compared to the conventional models, respectively. 

Consequently, it was confirmed that the overall performance was 

improved by controlling four-wheel steering through MPC and the 

adaptive weight method showed better handling stability and ride 

comfort while satisfying the path tracking criteria. 

 

 

 

(a) Lateral position 
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(b) Lateral position error 

 

 

(c) Yaw rate error 



 

 

 

 

３７

 

 (d) Lateral acceleration 

 

(e) Lateral jerk 

 

Figure 5.4 Result of path tracking: (a) lateral position,  

(b) lateral position error, (c) yaw rate error  

(d) lateral acceleration (e) lateral jerk 

 

Figure 5.5 shows the perspective of the control input. The 

control input is optimized to achieve performance while meeting the 

constraints. First of all, the four-wheel steering vehicle using MPC 

performs path tracking by small amount of yaw moment control than 

the front-wheel steering model because rear wheel steering is 



 

 

 

 

３８

additionally used to reduce the yaw rate. 

According to the optimization results mentioned in Section 5.2, 

the adaptive weight method uses the rear wheel steering more 

actively and reduces the amount of yaw moment control as the SI 

increases. In the figure 5.5 (b) and (c), it is observed that the 

adaptive weight method has the same rear wheel steering angle as 

the constant weight method up to about 2.7 seconds, but after that as 

the expected position error increases, the rear wheel steering 

increases and reduces the yaw moment control. Consequently, it is 

confirmed that the adaptive weight method has a larger rear wheel 

steering angle and a smaller maximum value of yaw moment control 

than the constant weight method at large SI. The changes in control 

inputs of optimization result can also be confirmed in the simulation. 

 

 

 

 

 

 

(a) Front steering angle  
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(b) Rear steering angle 

 

(c) Additional yaw moment 

 

Figure 5.5 Control input of path tracking: (a) front steering angle, 

(b) rear steering angle, (c) additional yaw moment 
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Chapter 6. Conclusion 

 

 

In this study, an optimal path tracking controller is designed for 

4WISD vehicles, and an adaptive weight method is proposed to 

change the weight matrix according to the driving conditions. The 

path tracking controller is designed using MPC. The predictive states 

of the MPC are used as parameters of the adaptive weight function. 

The adaptive weight method improves overall performance and 

changes the driving mode combination by changing the performance 

index of the optimal control. An optimization algorithm based on the 

evolutionary strategy is proposed to find the coefficient of adaptive 

weight function, which is optimized through learning using 

MATLAB/CarSim simulations. 

In a simulation result, the proposed method achieves 

improvements in path tracking performance, handling stability, and 

ride comfort compared with the conventional models. 

Through this study, the following conclusions are obtained: 

1) The path tracking control of the four-wheel steering vehicle is 

performed using MPC. Compared to the conventional front-

wheel steering vehicle, it was possible to improve the path 

tracking performance and ride comfort while satisfying the 

limitation of actuator and constraint of vehicle states. In 

particular, as control of four wheels became possible, the 

handling stability was significantly improved. 

2) The proposed adaptive weight method for changing the 

performance index according to the expected position error is 

effective in improving vehicle performance compared with the 
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constant weight method. The expected position error is 

delivered from model predictive controller and a reliable value 

is obtained without additional computation. 

3) The stability and performance of the controller changed 

significantly according to the weight matrix of the performance 

index of MPC, which proves the need of an appropriate weight 

matrix. In this study, the weight matrix is optimized using the 

evolution strategy, which is confirmed to be a valid method as 

it stably converges into a global solution. 
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Abstract 

 

적응식 가중 행렬 최적 제어에 기반한 사륜 독립 

조향 구동 차량의 경로 추종 제어 

 

 

본 논문에서는 사륜 독립 조향 구동 차량의 경로 추종 제어를 

위하여 최적 제어의 성능 함수에 적응식 가중 행렬을 적용한 모델 예측 

제어기를 설계하였다. 차량의 종합 성능을 올리기 위하여 주행 환경에 

따라 각 성능 우선 순위를 수정하고 주행 모드를 변경하는 전략을 

제안하였고, 이는 모델 예측 제어를 통해 예측된 미래 상태에 따라 최적 

제어의 성능 함수를 수정하는 방법을 통해 구현되었다. 이를 위해 사륜 

독립 조향 구동 차량의 동역학 모델 및 경로 추종 모델을 정의하였으며 

이는 모델 예측 제어의 참조 모델로 사용되었다. 모델 예측 제어를 

적용하여 경로 추종 제어기를 설계하였고 이 때 상태 구속 조건을 통해 

경로 추종 성능을 확보하고 입력 구속 조건을 조향 액츄에이터의 작동 

범위과 속도를 반영하였다. 제안된 적응식 가중 행렬 전략은 예상 주행 

상태에 따라 성능 함수의 계수를 수정하며 이 때 예상 주행 상태는 모델 

예측 제어를 통해 구해진 미래 상태 값을 사용하였다. 마지막으로 

적응식 가중 행렬 함수를 진화 전략을 통한 학습을 통해 최적화하였다. 

진화 전략의 적합도 함수는 승차감와 같이 경로 추종 제어기에서 고려할 

수 없는 차량 상태를 포함할 수 있다. 즉, 모델 예측 제어의 구속 

조건과 적응식 가중 행렬 함수 최적화를 이용하여, 횡방향 위치 오차를 

일정 기준 이내로 만족시키면서 핸들링 안정성과 승차감을 최대화하는 

방법으로 차량의 종합 성능 향상을 구현하였다. 학습과 시뮬레이션은 

CarSim/MATLAB 환경에서 수행되었으며 제안된 방법은 전륜 조향 
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모델과 고정 가중 행렬을 사용한 사륜 조향 모델과 비교하였다. 차량의 

종합 성능 개선을 확인하기 위하여 횡방향 위치 오차, 요레이트 오차, 

횡방향 가속도와 가가속도값에 대한 검증 결과를 제시하였다. 

 

 

주요어: 경로 추종 제어, 모델 예측 제어, 적응식 가중 행렬, 진화 전략, 

사륜 독립 조향 구동 
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