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Abstract

Path Tracking Control of Four Wheel
Independent  Steering and  Driving

Autonomous Vehicle Based on Adaptive
Weight Optimal Control

Kyungtack Lee
School of Mechanical Engineering

The Graduate School
Seoul National University

An optimal controller applying an adaptive weight strategy is
designed for path tracking control of a four—wheel independent
steering and driving (4WISD) vehicle. This system changes the
driving mode and modifies the priority of states according to the
driving situation to improve the overall performance of the vehicle. It
1s implemented by modifying the performance index of an optimal
control according to the predicted states using model predictive
control (MPC). To do this, a dynamic model and a path tracking model
of a 4WISD vehicle are determined and used as reference models for
MPC. The path tracking controller is designed using MPC, and
tracking performance is secured through state constraint conditions.
The proposed adaptive weight strategy modifies the coefficients of
the performance index depending on the expected driving conditions.
In this study, the future state values of the MPC are used as the

expected driving conditions. Lastly, the adaptive weight function is



optimized through learning using an evolutionary strategy. The
fitness function of the evolutionary strategy includes the conditions
of a vehicle that are not considered by the path tracking model such
as ride comfort. Handling stability and ride comfort are optimized
while maintaining the lateral position error within criteria, using the
constraints of MPC and optimization of adaptive weight function.
Learning and simulation were conducted in a MATLAB/CarSim
environment. The proposed method is compared with conventional
models, and the verification results for lateral position error, yaw rate
error, lateral acceleration and lateral jerk are presented to confirm

the improvement of the overall performance of the vehicle.

Keyword: path tracking control, model predictive control, adaptive
welght matrix, evolution strategy, four—wheel independent steering

and driving
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Chapter 1. Introduction

1.1. Study background

In recent years, the paradigm of automobiles has changed rapidly
to autonomous driving and electrification. Autonomous driving can
prevent accidents caused by human drivers by tracking the desired
path with guaranteed performance. Meanwhile, an electric vehicle
using an electric motor as a driving source not only positively affects
the environment by reducing harmful emissions but also has a fast
control response. These characteristics facilitate more accurate

control and improved stability and performance of an autonomous

vehicle compared to conventional internal combustion engine vehicles.

With these advantages, autonomous driving and electrification are
already becoming a large trend in the automobile industry.
Furthermore, not only the driving system but also the chassis
system is being electrified. Vehicle chassis systems such as brakes,
steering, and suspensions are developed into by —wire modules with
no mechanical connection. Each of these modules is integrated into
one modular system called the e—corner module (ECM). Accordingly,
a new electric vehicle platform is expected. The structure of future
electric vehicles is expected to be integrated with ECM on a
skateboard platform including batteries. This structure is not only
suitable for autonomous vehicles but also increases the design
freedom and cabin compatibility. In terms of control, this structure

has the characteristics of four wheels operating independently.



The vehicles with four—wheel independent steering and driving
(4WISD) have more control inputs than conventional vehicles. In
addition, path tracking control affects not only tracking performance
but also the overall performance of the vehicle, such as handling
stability and ride comfort. In summary, the path tracking control
problem of 4WISD vehicles is a form of multimodal function problem,
which needs to deal with many control inputs. Therefore, optimal
control 1s widely used for path tracking control of 4WISD vehicles.

In previous studies, the path tracking performance is compared
with active front steering (AFS), direct yaw control(DYC), and 4WIS
using linear quadratic regulator (LQR)[Mashadill]. The method
using LQR and feedforward control is applied to obtain steering
angles under high speed trajectory tracking condition [Liul8]. The
front and rear steering angles are obtained using sliding mode control
for path tracking [Lei22]. In consideration of desired yaw rate and
desired side slip angle, not only path tracking but also handling
stability was studied. The rear wheel steering angle is obtained using
nonlinear model predictive control (MPC) and the steering angles and
additional yaw moment are obtained using robust control and optimal
control to improve performance of path tracking and handling stability
[Yu2l, Hangl7]. A parameter varying model with longitudinal
velocity integrated into the path follow controller was controlled
using LQR [Hang?21].

In summary, the 4WISD vehicle is controlled by various methods
for various object such as path tracking, handling stability, and
longitudinal velocity control. However, the above studies only
specified appropriate values of the weight matrix of performance

index but did not express the derivation process and optimality. In
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addition, the previous studies have not considered factors that cannot
be expressed in path tracking models, such as the ride comfort.
This paper focused on the fact that the weight matrix of the
performance index determines the priority of the vehicle
performance and the various driving modes of the 4WISD vehicle. By
changing the ratio of the state weight matrix, it is possible to
determine whether the position error or the handling stability is
prioritized. Modifying the input weighting matrix can also determine
whether to use front or rear wheel steering actively, or how much

torque vectoring is performed.

1.2. Purpose of the research

A new method has been proposed to tailor the driving mode and
performance index of an optimal controller to the driving conditions,
which increases the overall performance of vehicle. The method is
realized by modifying the weight matrix of the optimal control
performance index according to the future states predicted by the
MPC.

To do this, the followings process has been conducted. First, a
dynamic model and a path tracking model were determined as the
reference model of the MPC. Second, the path tracking controller was
designed using MPC. By applying state constraints to MPC, it is
possible to secure path tracking performance that satisfies the
criteria such as lateral position and heading angle errors. Third, the
adaptive weight method is integrated to MPC. The future position
error through the controller is selected as the driving situation index.

The method changes the weight of the performance index depending
3



on the predicted states in online. Finally, adaptive weight function is
optimized through learning using evolutionary strategies. The
optimization method based on exploration was utilized to optimize
performance index with nonlinear characteristics such as ride
comfort and handling stability.

The simulation was conducted on a MATLAB/CarSim
environment. The conventional vehicle with front wheel steering and
direct yaw moment control, a 4WISD vehicle using constant weights,
and a 4WISD vehicle using proposed adaptive weights were
compared. The proposed method is verified on double lane change
condition, and the simulation results show improvement in path

tracking, handling stability, and driving comfort.



Chapter 2. Modeling for path tracking control

This chapter discusses the model of 4WISD vehicles for path
tracking control. The relationship between the inputs of the vehicle
and the states of path tracking is expressed as the state space

equation.

2.1. Lateral vehicle dynamics model

To lessen the complexity of control, the lateral dynamics model
of a vehicle in which four wheels operate independently is simplified
as a bicycle model, as shown in Figure 2.1. The left and right motions
of the wheels are determined by the distribution model in Section 3.5

and 3.6.

e

Figure 2.1 Schematic models of 4WISD vehicles



Based on Newton’s law, the lateral and yaw dynamics are derived

as follows:

) 1 . .
ay =V, — vy = E(Fyfcos@c + Fyrsinéy + Fpcos8y + Fsing,)  (2.1)

1
y = A (lnyfCOS(Sf + s Fypsinés — 1. Fycos6y + 1 Fepsiné, + Mza) (2.2)
z

M,, 1s additional yaw moment generated by the difference in
driving force of each wheel. Assuming that the steering angle is small,
it can be assumed as cosé 1 and sind =0 by the small angle

approximation. Hence, Equations (2.1) and (2.2) can be written as

. 1
Ay =Vy = Vx¥ = — (Fyr + Ey) (2.3)

1
V=1 (eFyp — LEyr + Myg) (2.4)
VA

The slip angle is the difference between the steering angle of the

tire and the traveling angle of the vehicle which can be defined as

vy+ley vy—ly
afz%_6f) ar=y7—5r (2.5)
By assuming that the slip angle 1s small, the lateral force of tire
has a linear relationship with respect to the tire slip angle. Using the

linear tire model, the lateral force of tire can be expressed as

F,r = Cra
f = Crar
g (2.6)
B, = Cea,
6



By summarizing Equations (2.3) — (2.6), the equations of the

dynamics can be rewritten as follows:

. GG Cely + Gl (Cf) (Cr)
vy—( e )vy+< o v |y + - Of + - o 2.7
—Cele + C, 1 —Crl2 4+ C,12 l-C L.C, M,

y=< flCl ”)vy+< ffl >y+<flf>6f—(1 )6T+ 2 (28)

2.2. Path tracking model

Tracking a path means minimizing position and heading angle
errors between the vehicle and the target path. For this purpose, the
path tracking model has lateral position error e, and yaw angle error
ey and their derivative e), ey as states variables and has front
steering angle &, rear steering angle §, and additional yaw moment
M,, as input variables. The path tracking controller aims to regulate
states. The Figure 2.2 illustrates the path tracking model of a 4WIS

vehicle.

Y Desired Patlh

A 4

X

Figure 2.2 Path tracking model of 4WIS vehicles
7



The yaw angle error and its derivative can be expressed as

ey =Y -y (2.9)
€y =P —Pag=y—Vg=V—Vxk (2.10)

The longitudinal velocity is assumed to be constant, and the

second derivative of the yaw angle error is expressed as
€ =T — VK 2.11)

The derivative of the lateral position error e, and its second

derivative can be derived as

€y =Y —Ya =0y +Uyey (2.12)
€y = Uy + Uyey, (2.13)

Based on Equations (2.7), (2.8), (2.10), and (2.12), Equations
(2.13) and (2.11) can be rewritten as

Cr+C Cs+C Cele + C1 C
.o f r\ . f r ff rir . f
ey—(— vym )ey+( m >e¢+<— vym >e¢+<g>6f

C Cele + C,l (@14
+
m m
—Cele + C,1 Cele — C,l —Cfl2 + C,.1?
.o i rir\ . i rir fif riry .
ey = <—Vx I >ey + <—Iz )ew + <—Vx I )ew
lC L.C 1
+ (L 5f—(2)5r+(—)1v1m (2.15)
I, I, I,
—Crl? + C,1?
+ <—f ! L r) K+ (—v)K
I,
8



Based on Equations (2.10), (2.12), (2.14), and (2.15), the path
tracking model can be rewritten in the continuous time—invariant

state space model as follows:

x(t) = Ax(t) + Bu(t) + Ew(t)
y(t) = Cx(t) + Du(t)

(2.16)

where the state vector x=1[e, €, ey ey]T, control input

vector u=[6 & M,]T, disturbance vector w=[xk k]T, and
coefficient matrices are given by
0 1 0 0 .
0 _Cf + Gy Cf + G, _Cflf +Crlr
- Uxm m v,m
A4=10 0 0 1
0 _Cflf + Cely Cflf - Cly —Cfl]g + C,1?
i v, 1 I, v, l,
[ 0 0 0‘|
|k kol
B - 7)1 761 0 lyC = [I14x4, D = [0]4x3 (2.17)
|#@ _Lrky 1|
l I, I, IzJ
0 0 1
_GhrGl .
_ m
E = 0 0
—Crlf + G,
—v,
I,
9



Chapter 3. Control

This chapter describes the path tracking control method of
4WISD vehicles. The overall control scheme is explained in Section
3.1. Sections 3.2 and 3.3 illustrate path tracking control using MPC
and the adaptive weight strategy applied to MPC. Sections 3.5 and

3.6 show distribution models for four—wheel independent operating.

3.1. Overall control scheme

Figure 3.1 presents the proposed overall control scheme. States
errors are obtained from the target path information, delivered to the
path tracking controller. The front and rear steering angles and

additional yaw moment are determined through the controller.

Adaptive weight method . | Learning weight function
fi(®) based on evolution strategy Drivin
Weight, = f.(Cv) |1 ‘ 1 Tt
Ge= i ny 7= [ Tralerl + kalay | + sl [ at
0
7Y
QR I, i
1
1
Path tracking controller i
o s s s s s s === 6fl' 6fr :
1 Model predictive control . 5.8
Y, l/} 1 i S '6r N rirCrr
wW¥a il T L AU : i Steering angle
| Srs1 = Al + BebUy ! distribution model
Desired | My, Np=t |
5 [ = 4WISD
trajectory ! Min.] :Z{]Q{i + Z AUTRAU; ! Vehicle
1 =1 =1 1
M,q Tru Tpr
v o E Torque distribution | Tri, Trr
xd Longitudinal Xtotal model
i velocity controller
T Vehicle States
Figure 3.1 Overall control scheme
10
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The longitudinal velocity controller utilizes a velocity error to
obtain the total longitudinal force using a proportional-integral—
derivative (PID) controller. The torque distribution model distributes
the longitudinal force of each wheel to maintain the additional yaw
moment and total longitudinal force using quadratic programming.
The steering angle distribution model distributes each angle
according to the Ackerman steering geometric relationship. The
steering angle and drive torque to each wheel are transmitted to the
CarSim vehicle model, and the measured states of the vehicle are
added to the input feedback of the path tracking controller. The
proposed adaptive weight strategy and path tracking controller
operate online, exchanging predicted future states and modified
weight values. Furthermore, the adaptive weight function is optimized
through learning using evolution strategy. Chapter 4 discusses the

details of the optimization method.

3.2. Path tracking control

In this study, a path tracking controller is designed using MPC.
MPC is a control method using the receding horizon. MPC employs
the first input obtained by solving a constrained optimal problem for
a finite horizon length, and repeating this process while receding
horizon. By solving the optimal problem with constraints every time
step, the constraints can be considered in the control. Consequently,
using MPC in this study, path tracking performance such as lateral
position and heading angle errors can be guaranteed by state
constraint conditions. In addition, the control inputs considering the

limitations of the actuator can be obtained through the input
11



constraint condition.

To design the model predictive controller, a continuous state
space form in Equation (2.17) is converted into a discrete state space
form using the zero—order hold method with sampling time At. The

discrete state space equation is expressed as follows:

Xky+1 = Adxk + Bduk + Ede (3 1)

Yier1 = CaXg + Dguy

The augmented state vector {; is defined with x;, and u,_,, and
new input vector is defined as Au,. Hence, the augmented discrete

state space model can be expressed as

S =[] (3.2)
{kv1 = AaQ + Bahuy + Eqwy
Yi+1 = Cali + Dgluy,
(3.3)

) By = , Eq =
03x4 13x3 13x3 03x2
EZ = [Cd 02x3]; 5:1 = [Dd]:

|

Using the augmented discrete state space equation, the steering
angle rate and additional yaw moment rate are the input vectors
and the steering angle and additional yaw moment are the state
vectors. Accordingly, a feasible input range and a change rate of
the actuators can be considered in the control.

The optimal problem of MPC is defined as follows. As shown in

12



Equation (3.3), the curvature information of the path is regarded
as disturbance. A nominal MPC problem is defined using a zero
steady —state model excluding disturbance in Equation (3.4), and a
nominal control input is obtained for horizon length using the

nominal MPC model.

Ck+1 = %E(k + BZiAuk (3.4)
Yies1 = Cqlx + DgAuy,
The net control input is obtained by adding the feedback term
k(wy) to nominal optimal input at each time for disturbance
rejection.

The net control input is expressed as follow:
u(k) = u;“,lk + k(wy) (3.5)

The performance index for model predictive controller is defined as

Np Np—1

Jx (i, AUy) = z $ilie Queipke + z D) Ry Dy (3.6)
i=1 i=0

where Q, and R, are diagonal matrices, Q, is a positive
semidefinite matrix and R, is a positive definite matrix. These weight
matrices affect the performance index; hence, they are modified at
each time step according to the adaptive weight strategy.

The constraints are considered when solving the optimal control
problem. For instance, the physical operating limits of the steering

actuator and drive motor create constraints on the input. In addition,
13



constraints on state variables are selected to secure efficient path
tracking performance. Moreover, the termination constraint condition
1s selected to guarantee the feasibility of the model predictive
controller.

The nominal optimization problem of MPC can be expressed as

follows:

Tglgilfk(fk:AUk) (3.7)
subject to
Gipe = Aqlizajie + Babuj_q)

€min = €y = €ymay

éll)min S éll’iuc = éll’max
where i =1,2,...,N,

Smin < Oy < Smax

Smin < Oryy < Smax

Adpin < Agfuk < Adpax

A8pmin < A8y, < ASpax
A1\/12‘1min = A1\/12‘1i|k s A1\/12‘1max

where i =0,1,2,..,N, — 1
€y fmin = epruc S €y frax
éJ/f min = épr|k = éyfmax
€Y fmin = CPnpikc S €Pfmax

éwfmin S éwNp|k = élpfmax

For each time k, an optimal control input sequence AUy =

[Awg g, AU g ...,Au}“vp_llk] that satisfies the constraint conditions is
obtained by a quadratic programming function on MATLAB.

14



At time k, the optimal control input ug, to be applied to the

vehicle is defined as follows:
Ug i = ulk — 1) + Augy (3.8)

The feedback term for disturbance rejection in Equation (3.5) is

defined as follows:

k(wi) = —Bq Eqwg (3.9)

Net control input is expressed as follows.
u(k) =ulk — 1) + dugy, — By Eqwy (3.10)
3.3. Adaptive weight strategy of model predictive control

As shown in Equation (3.6), weight vectors Q and R affect
performance index. Generally, large Q values quickly converge the
state to zero and large R reduces the control input, causing the state
to converge slowly to zero. However, there is no apparent method
for choosing the exact values of these weight vectors.

In the path tracking controller of 4WISD vehicles, each weight
matrix has a critical function. For instance, each factor of R
determines driving modes such as front or rear wheel steering and
size of yaw moment control, and each factor of Q determines the
priority of multi—object performance such as tracking performance,

handling stability, and driving comfort. For this purpose, the adaptive

15



weight strategy is proposed. This method adjusts the weight matrix
according to the driving condition. First, for the driving state index
(SD), the adaptive weight is precisely expressed as various Sls are
considered, but the increasing number of variables causes a curse of
dimensionality problem, which increases the amount of computation
exponentially. Therefore, it is good for the SI to have wvarious
physical meanings while represented by as few variables as possible.
In this study, the future lateral position error is selected as the SI

with one variable and can be expressed as
ey (t+ At) = ey (t) + €, (DAL = ey, (1) + (v (D) + vy (t)ey (0)AL (3.11)

As shown in Equation (3.11), the future lateral position error
contains lateral position and yaw angle errors and lateral and
longitudinal velocities. The future lateral position error is expected
to be effective in determining the behavior of the vehicle because the
changes 1in the four states are reflected. However, the above
expression presupposes that the value of each state variable is
maintained and At should be sufficiently small. In this study, a novel
method is proposed for accurate representation of future states for
SI. Further, the lateral position error of the predictive states of MPC
is selected as the SI. At time k, Q¢ and Ry weight matrices can be

expressed as follows.

Q= diag(w1|k, W2k W3k W4|k)

Rk = diag(w5|k, We |k W7|k) (312)

where Wi|k = fi (ey(Np|k_1)) (l = 1,2, ,7)

16



As shown in Figure 3.2, The performance index J, is modified
according to the SI every time step by obtaining the weight matrix at
time k based on the expected error of the weight matrix at time k —
1. Since the modification is based on future position error, intuitively,
increasing the Q matrix can compensate more actively if the vehicle's
future position error increases even with optimal control, and
decreasing R matrix can enhance ride comfort when the future states

are considered stable enough.

PAST FUTURE
predicted ey wWith J;

......... ey(Np|t—1)

measured states

i * predicted eyjr_q) With J,_4

L >
| | | | | | | 1 |
t—1 ¢ t+1 t—1+N, t+N,

Figure 3.2 Updated performance index based on SI

Secondly, the adaptive weight function f;(x) can be expressed in
various forms, but it is assumed to be linear in this study. After
several simulations, linear function is considered the appropriate

form. Finally, adaptive weight function can be defined as follows
Wi|k = ai(SIk) + bi' (l =1,2, ,7) (313)
In the optimization process of the coefficient a;, b;, the SI has a

limited range by state constraint; hence, it is easy to add constraint

17



to the algorithm that the weight matrix becomes positive definite.

3.4. Longitudinal velocity control

In the longitudinal velocity control, the required total longitudinal
force is obtained using the difference between the target velocity and
the current velocity of the vehicle, as shown in Equation (3.14). The
total longitudinal force is used as a constraint to obtain the force of

each wheel in the driving torque distribution model.

Fo. = kp(vea —ve) + ki f (Waa — v2) + kp (Vsa — V) (3.14)

3.5. Steering angle distribution model

The distribution of the steering angle is based on the Ackermann
steering geometry. The center of the turning circle can be obtained
from the front and rear wheel steering angles of the bicycle model.
The steering angle of each wheel satisfying the Ackermann

relationship can be derived as follows:

tan &¢ tan &¢
8p = atan F , 85 = atan F
1- I (tan &7 — tan §,.) 1+ I (tan &y — tan §,.)
(3.15)
tan 6, tan ¢,
8,f = atan ,0,; = atan

1- % (tan 6y — tan §,.) 1+ % (tan 65 — tan §,.)

138



3.6. Driving torque distribution model

In this section, a method for distributing the driving force of each
wheel to achieve the required moment and total longitudinal required
force is described. The driving force of each wheel F,; satisfies the
following equation:

E, Fy1c05(81) + Fypc05(83) + Fyzc05(83) + Fyycos(8,4) (3.16)

total —
My, = Fyq (lf sin(§;) — tcos(dl)) + Fyp (lf sin(5,) + tcos(&z))

+ Fy3(—1, sin(83) — tcos(83)) + Fea(—1, sin(8,) (3.17)
+ tcos(6,))

The drive torque of each tire can be simplified as

Tai = FxiRw (3.18)

The longitudinal force is distributed to include the margin of the
friction cycle of each tire. The relationship between the lateral,
longitudinal, and vertical forces of the tire according to the friction

cycle 1s expressed as follows:
in2 +Fyi2 < (.qui)Z (3.19)

The optimal problem can be defined as a performance index with

a quadratic form while satisfying the constraints

min. xT Qx
(3.20)
subjectto. Ax =b

19



At this time, each matrix is as follows:

x=[Fy Fx Fx Fx4]T (3.21)
! ! ) (3.22)
(”le)z - Fylz ’ (#Fzz)z - Fyzz ’ (#Fz3)2 - Fy32 ’ (”lel-)z - Fy42 -
cosd;  lpsind; — tcosé;
cosd, If si.n &, + tcosd, ’ b= Fxtoml] (3.23)
cosd3; —L.sind; — tcosds Mzq
cosé, —Ll.sindy + tcosd,

Q= diag(

AT =

Using the Lagrange multiplier A, the Hamiltonian is defined as

H = [xTQx] + A[Ax — B] (3.24)

The necessary conditions are as follows:

L
o xTQ+24=0 (3.25)
ox
L
& e Ax—b=0 (3.26)
oA

Based on Equation (3.25), Equation (3.26) is rewritten as follows:

xT = 14071 x=—Q LATAT (3.27)
A(QTATATY —b=0 AT =(-4Q7'A)'h (3.28)

In summary, the driving force of each wheel can be obtained as

follows:

x =Q tAT(AQ1AT)"1p (3.29)

20



Chapter 4. Optimization of Adaptive Weight Function

In this chapter, the optimization method using the evolutionary
strategy is proposed. Considering the purpose of the autonomous
vehicle, the overall performance should include various indices, 1.e.,
not only path tracking performance such as position error and
handling stability but also ride comfort. Moreover, an improvement of
path tracking performance does not mean an improvement of ride
comfort of the vehicle.

To optimize the overall performance of the vehicle, this study
alms to maximize the handling stability and ride comfort within a
certain level of lateral position error. Since the path tracking
performance is guaranteed under the state constraint of the MPC, the
fitness function of the adaptive weight function optimization problem
is defined to minimize lateral acceleration, lateral jerk and yaw rate
error to achieve ride comfort and handling stability.

The fitness function is defined as follows:

t
F=F,+Fy+F, =f [kiler] + ka|ay| + ksljy|] dt (4.1)
0

4.1. Evolution strategy

An evolution strategy algorithm 1is applied to obtain the
coefficient of adaptive weight function that minimizes the fitness
function. The above fitness function is a multimodal function that
includes a factor with nonlinear characteristics of a vehicle and a term
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that expresses the factor in different forms. Therefore, it is difficult
to predict the properties of the fitness function such as convexity,
continuity, and ruggedness. In this study, the method using evolution
strategy 1s selected for the black box optimization problem. The
evolution strategy not only reliably find global solutions but also have
the following advantages of computing time. The crossover step of
the general genetic algorithm was omitted and the computation was
reduced. Parallel computing is possible because the results of each
search point are independent of calculating the fitness score. In this
paper, the computing time can be reduced through parallel simulation.
By applying methods such as elite evolution strategy and covariance
matrix adaptation evolution strategy, the convergence rate increased.

In general, optimization by exploration is not guaranteed to be
stable as it explores unknown areas. However, in this study, the
essential performances, such as tracking performance and handling
stability, are guaranteed with MPC, and the ancillary performance,
such as ride comfort, is optimized using the evolution strategy
method. This approach enables optimization while maintaining safety

during driving.

4.2. Optimization algorithm based on evolution strategy

In this study, general ES is modified according to the purpose of
optimizing the weight matrix. Since the performance index is affected
the relative size of the weights, the ratio is more important than the
size of the value. Therefore, the method of multiplying the noise by

the optimization process is applied. And the coefficients of adaptive

weilght function are constrained so that the weight vector are positive.

22



In addition, Elite ES method and adaptive variance is applied the
proposed algorithm to increase the convergence rate.

The algorithm is expressed as shown in Figure 4.1

1: Initialize mean parameter (m,, ), parameters set (6,x(1—y)), Elite parameter set

(Enxp)
: Initialize variance (1)
: repeat

: Sample noise matrix (e,x 1) ~N(1,3))

2
3
4
5. if e;.n, has negative then resample (e, 1—y) > 0)
6: endif

7: Create parameter set (Opxq = My * €nx(A—p) + Enxy)
8: Evaluate fitness score (F;) by simulation

9

: Sort parameter set (8,,) in the order of descent
10: Update Elite parameter set (Eyx )
11: Update variance (V;, = Var(epx,))
12: Update mean parameter m<+t! = mk « (Z; Fienxy)

13: until 9k+1 - Gk <E€

Figure 4.1 Proposed evolution strategy algorithm

To apply the above algorithm to an MPC using a constant weight,
the value of parameter matrix corresponding to q; in Equation (3.13)

1S set to zero.
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Chapter S. Simulation

In this chapter, the simulation conditions and results are
described. The simulation results of the conventional models are
confirmed to compare the performance of the adaptive weight MPC.
The first model is a front—wheel steering and four—wheel drive
vehicle, which uses a method of steering the front wheel and assisting
yaw rate control through the driving force. The Stanley method is
used as the steering method for path tracking. The second model is
a four—wheel steering and four—wheel drive vehicle, which uses a
method of applying a general MPC with a constant weight. The weight
matrix is optimized using the evolutionary strategy algorithm as
discussed in Chapter 4. The last model uses the method of applying
the adaptive weight MPC. The coefficients of the adaptive functions
were optimized using the evolutionary strategy algorithm. By
comparing the above three cases, the results of path tracking control,
adaptive weight characteristic, and optimization process by evolution
strategy are explained. The simulation 1s conducted on a

MATLAB/CarSim environment.
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5.1. Simulation Condition

To obtain test vehicle data, the specifications of the self—driving
shuttle are considered. The self—driving shuttle is expected to be the
first fully autonomous driving vehicle, and the application of various
steering modes, such as lateral parking and 360 degree rotating, of
four—wheel independent steering is also advantageous. The self—
driving shuttle repeats a driving given route with a similar speed. The
characteristic of autonomous shuttles is appropriate for learning
based on evolution strategy by repeatedly performing under similar
conditions. The test environment is assumed as a double—lane
change (DLC). The DLC conditions are suitable for evaluating the
path tracking performance and lateral dynamics of a vehicle. The
specifications of the vehicle are as shown in Table 5.1.

Table 5.2 presents the parameters of the MPC controller. The
sampling time is 0.05 s and the predictive and control horizons are
set as 30. The state constraints are set as e, =006 me, =
—0.06 m,éy, .. =01 radé, . =-0.1 rad, 8y =157 rad,bpiy, = —1.57 rad .
The control input constraint is set as A8, = 0.052 rad,AS,,;,, =
= —1000 Nm. The terminal

—0.052 rad,AM,,___ =1000 Nm,AM,

Amax Amin
constraint 1s set as ey, ~=0.03 me, =-003mé, =001m/
S, éyfmm = 0.01 m/s, €Y fmax = 0.01 rad, €Y min = —0.01 rad, e’wmax = 0.01 rad/

S, éwfmin = 0.01 rad/s.
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Parameters Symbol Unit Value
Mass of vehicle m kg 3400
Moment of inertia 1, kgm? 4000
Front wheel base ly m 1.6
Rear wheel base L, m 2.0
Wheel base l m 3.6
Track B m 2.0
Front rire cornerring stiffness Cr N/rad 3000
Rear tire cornerring stiffness C, N/rad 3000
Target longitudinal velcoity Vyd km/h 50
Table 5.1. Data of a vehicle
Parameters Symbol Unit | Value
Sampling time At sec 0.05
Predictive horizon Ny - 30
Contorl horizon N, - 30
Constraint of lateral postion error €y max’ & min m +0.06
Constraintof yaw rate error Y max’ S min rad/s | £0.10
Constraint of steering angle Smax Omin rad +1.57
Constraint of steering angle rate Db DOmin rad | £0.052
Constraint of additional yaw moment rate | AM,,,, .., AM,,,.. | Nm | £1000
Terminal constraint of lateral postion error €yf max’ € min m +0.03
Terminal constraint of yaw angle error €Y f rmax®F min m/s +0.01
Terminal constraint of lateral postion error €Y f o’ COF min rad +0.01
Terminal constraint of yaw angle error €Y ax’ COF min rad/s | £0.01

Table 5.2. Parameters of model predictive control
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5.2. Learning result of optimization progress

The optimization process is conducted to check that the proposed
method adequately finds the solution. Optimization using the
evolutionary strategy was performed for two cases: constant weight
method and adaptive weight method. The average and 95%
confidence intervals of each step are displayed. The result is
obtained by 15 repetitions under the same initial conditions for each

case. Table 5.3 displays the coefficients of the initial weight function.

Symbol a, a, as a, ag ag ay
Value 0 0 0 0 0 0 0
Symbol b, b, b b, bs b b,
Value 1 1 1 1 3 3 le—38

Table 5.3 Coefficients of initial weight function

The parameters of the evolutionary strategy are as Table 5.4.

Parameters Symbol Value
Number of samples A 30
Elitist u 5
Initial variance % 1.0
Step size o 1
Coefficient of object function k; [5,3,2]

Table 5.4 Coefficients of evolution strategy

Figure 5.1 displays the optimization results. The fitness function
converged within 20 generations. The value of the fitness function

converged to 67.1 for the constant weight method and to 64.9 for the
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adaptive weight method. Owing to the evolutionary strategy
characteristic of random searching by a Gaussian distribution, the
steps implied that the score is reversed in the optimization process,
but the score of the adaptive weight method is lower than that of the
constant weight method overall. In the case of a lateral position error,
the final convergence values are 3.4 cm and 3.5 cm, respectively,
which are similar. the convergence values were achieved within 6 cm,
which was selected from the state constraint of the MPC. The yaw
rate converges to 0.029 rad/s and 0.022 rad/s, respectively, and the
adaptive weight method is more advantageous. In the case of lateral
acceleration and jerk, the constant weight method converges to 0.568
G and 2.897 G/s and the adaptive weight method converges to 0.552
G and 2.701 G/s; hence, the adaptive weight method is ~0.016 G,
~0.196 G/s better, respectively. The yaw rate, lateral acceleration
and lateral jerk are included in the fitness function, and the adaptive
weight method showed better results than the constant weight
method. For optimizing ride comfort and handling stability while
ensuring lateral position error, the adaptive weight method showed

relatively more advantageous results.

Constant weight Adaptive weight
Model
method method
Mazx. Lateral positon Error (m) 0.034 0.035
Max. Yaw rate error (rad/s) 0.029 0.022
Max. Lateral acceleration (G) 0.568 0.552
Max. Lateral jerk (G/s) 2.897 2.701

Table 5.5 Average of convergence performance
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Figure 5.1 Result of optimization progress: (a) fitness score,
(b) maximum lateral position error, (c) maximum yaw rate error,

(d) maximum lateral acceleration, (e) maximum lateral jerk
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Based on the simulation results, the optimal coefficient was

selected as the minimum fithess score of each type as shown in Table

5.7.
Symbol a, as ay ag ag ay
Value 0 0 0 0 0 0
Symbol b, b, b, be be b,
Value 0.17 97.55 2511 3 20.56 7.6e — 09
Table 5.6 Optimization result of constant weight function
Symbol a, as ay ag ag a,
Value —-10.76 —109.9 2.49 0 2.97 4.0e — 08
Symbol b, b, b, bs be b,
Value 8.27 9.47 383.9 3 16.1 6.2¢ — 09

Table 5.7 Optimization result of adaptive weight function

The changes in adaptive weight of Table 5.7 are as follows.

Figure 5.2 shows the changes in the adaptive weights according to

the SI. Among the four state weights, ey, €, and ey are changed

while ey maintain high portion of weights independent of the SI. The

weight of e, is increased as the expected position error increases,

rapidly reducing the lateral position error. On the contrary, when the

expected position error decreases, the weight of €, and ey are

increased. This policy reduces lateral acceleration and jerk due to

rapid position changes while holding the position error and reducing

heading angle error when SI is small, leading to improved ride

comfort with minimizing yaw angle error.

In the case of the input, the overall tendency of front wheel
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steering rather than rear wheel steering can be confirmed. Since the

influence of the rear wheel steering angle has a huge impact on the

direction of the vehicle body, rear wheel steering operates with a low

portion. When the Sl increases, a strategy is observed to stabilize the

vehicle quickly by increasing the amount of rear steering control.

Yaw moment control is operated with a relatively large value when

the SI is small. In summary, it was optimized to drive with front wheel

steering and yaw moment control when the expected position error

1s small, and to actively use rear wheel steering when the expected

position error increases.
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1 : : -
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Figure 5.2 Changes of adaptive weight by SI:

(a) state weights, (b) input weights
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5.3. Predictive states of adaptive weight function

Figure 5.3 shows the simulation result of the SI used in the
adaptive weight method. According to the sampling time and
predictive horizon shown in Table 5.2, the future predictive state is
1.5 s ahead of the actual state. In other word, the SI indicates the
position error 1.5 s later when controlled by the performance index
with a constant weight. The SI does not exceed 0.03 m by the
terminal constraint. By modifying the performance index using the
future position, the adaptive weight strategy improves the

performance of model prediction control.

—Predictive States
=—==Actual States

0.03

Lateral position error [m]
o

time (sec)

Figure 5.3 Predictive states of lateral position error:
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5.4. Comparison Result with Conventional Model

The proposed method is compared with conventional models.
Table 5.8 displays the simulation result. The maximum and root mean
square (RMS) value of each performance factor are expressed by the
model. The 4WIS optimal control with adaptive weight satisfies the
criteria of lateral position error and shows the best performance in
yaw rate error, lateral acceleration and lateral jerk. Compared to
Models 1 and 2, the proposed method improved the maximum yaw
rate error by 89% and 48%, and the RMS of lateral acceleration by
4% and 1%, and the RMS of lateral jerk by 4% and 2%, respectively.

Model Model 1 Model 2 Proposed

(2WS+DYC) (4WS+Const.) | (4WS+Adapt.)
Lateral positon Error Max 0.072 0.034 0.037
(m) RMS 0.021 0.009 0.012
Yaw rate error Max 0.125 0.027 0.014
(rad/s) RMS 0.027 0.006 0.003
Lateral acceleration Max 0.565 0.557 0.548
(®) RMS 0.190 0.183 0.182
Lateral jerk Max 2.55 3.04 2.57
(G/s) RMS 0.61 0.60 0.59

Table 5.8 Path tracking result under double lane change

Figures 5.4 and 5.5 show the simulation results, which can be
analyzed in two aspects. In the state perspective, the difference
between front—wheel steering method and four—wheel steering
method was significant because the latter using MPC maintains a

small level of lateral position error and yaw rate error. As four—

34



wheel steering became possible, yaw rate error could be easily
reduced, which improved path tracking performance such as lateral
position error. The adaptive weight method further improves yaw
rate error, lateral acceleration and lateral jerk by adjusting weight
compared with the constant weight method. For yaw rate error, the
adaptive weight method presents a smaller error on the whole than
the constant weight method. For lateral acceleration, there was slight
improvement in the maximum value of the entire section; however,
there is an improvement in the section returning straight path from
the curved path around 4 and 8 seconds in Figure 5.4 (d). For this
section, the adaptive weight method improved performance by 11%
and 3% compared to the conventional models, respectively.
Consequently, it was confirmed that the overall performance was
improved by controlling four—wheel steering through MPC and the
adaptive weight method showed better handling stability and ride

comfort while satisfying the path tracking criteria.

Desired Path

—-=4WS Constant Weight
—4WS Adaptive Weight

Lateral Position [m]

-0.5 I I | I | I |
0

time (sec)

(a) Lateral position
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Figure 5.4 Result of path tracking: (a) lateral position,
(b) lateral position error, (c) yaw rate error
(d) lateral acceleration (e) lateral jerk
Figure 5.5 shows the perspective of the control input. The

control input is optimized to achieve performance while meeting the

constraints. First of all, the four—wheel steering vehicle using

MPC

performs path tracking by small amount of yaw moment control than

the front—wheel steering model because rear wheel steering is
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additionally used to reduce the yaw rate.

According to the optimization results mentioned in Section 5.2,
the adaptive weight method uses the rear wheel steering more
actively and reduces the amount of yaw moment control as the SI
increases. In the figure 5.5 (b) and (c), it is observed that the
adaptive weight method has the same rear wheel steering angle as
the constant weight method up to about 2.7 seconds, but after that as
the expected position error increases, the rear wheel steering
increases and reduces the yaw moment control. Consequently, it is
confirmed that the adaptive weight method has a larger rear wheel
steering angle and a smaller maximum value of yaw moment control
than the constant weight method at large SI. The changes in control

inputs of optimization result can also be confirmed in the simulation.

10

....... 2WS+DYC
—--=4WS Constant Weight
—4WS Adaptive Weight

(¢)]

Front Steering angle (deg)
9] o

12

N
o
o

N

N -
w

-
(6)]

(o]

~

(o]

(o]

N

o

N

N

time(sec)

(a) Front steering angle

338



Moment [Nm]

....... 2WS+DYC
— --—4WS Constant Weight
22" —4WS Adaptive Weight
Z
o 4L
(@]
C
(]
20
3
a1
2
x-2r
-3 1 1 L I L | I 1 I 1 ]
0 1 2 3 4 5 6 7 8 9 10 11 12
time(sec)
(b) Rear steering angle
6000 -
....... 2WS+DYC
L 2 —--=4WS Constant Weight
4000 E : Y —4WS Adaptive Weight
2000 E A
0
-2000
-4000 -
-6000 -
-8000 1 | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10 11 12

time (sec)

(c) Additional yaw moment
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Chapter 6. Conclusion

In this study, an optimal path tracking controller is designed for
4WISD vehicles, and an adaptive weight method is proposed to
change the weight matrix according to the driving conditions. The
path tracking controller is designed using MPC. The predictive states
of the MPC are used as parameters of the adaptive weight function.
The adaptive weight method improves overall performance and
changes the driving mode combination by changing the performance
index of the optimal control. An optimization algorithm based on the
evolutionary strategy is proposed to find the coefficient of adaptive
weight function, which 1s optimized through Ilearning using
MATLAB/CarSim simulations.

In a simulation result, the proposed method achieves
improvements in path tracking performance, handling stability, and
ride comfort compared with the conventional models.

Through this study, the following conclusions are obtained:

1) The path tracking control of the four—wheel steering vehicle is
performed using MPC. Compared to the conventional front—
wheel steering vehicle, it was possible to improve the path
tracking performance and ride comfort while satisfying the
limitation of actuator and constraint of vehicle states. In
particular, as control of four wheels became possible, the
handling stability was significantly improved.

2) The proposed adaptive weight method for changing the
performance index according to the expected position error is

effective in improving vehicle performance compared with the
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3)

constant weight method. The expected position error 1is
delivered from model predictive controller and a reliable value
is obtained without additional computation.

The stability and performance of the controller changed
significantly according to the weight matrix of the performance
index of MPC, which proves the need of an appropriate weight
matrix. In this study, the weight matrix is optimized using the
evolution strategy, which is confirmed to be a valid method as

it stably converges into a global solution.
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