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Abstract 

 
As adoption of smart-factory system in manufacturing 

becoming inevitable, autonomous monitoring system in the field of 

machining has become viral nowadays. Among various methods in 

autonomous monitoring, vision-based monitoring is the most 

sought-after. This system uses vision sensors integrated with 

detection models developed through deep learning. However, the 

disadvantage of being greatly affected by optical conditions, such as 

ambient lighting or reflective materials, critically affects the 

performance in terms of monitoring. Instead of vision sensors, 

LiDAR, which provides depth map by measuring light returning time 

using infrared radiation (IR) directly to the object, can be 

complementary method. The study presents a LiDAR ((Light 

Detection and Ranging)-based end mill state monitoring system, 

which renders strengths of both vision and LiDAR detecting. This 

system uses point cloud and IR intensity data acquired by the 

LiDAR while object detection algorithm developed based on deep 

learning is engaged during the detection stage. The point cloud data 

is used to detect and determine the length of the endmill while the 

IR intensity is used to detect the wear present on the endmill. 

Convolutional neural network based You Only Look Once (YOLO) 

algorithm is selected as an object detection algorithm for real-time 

monitoring. Also, the quality of point cloud has been improved using 

data prep-processing method. Finally, it is verified that end mill 

state has been monitored with high accuracy at the actual machining 

environment. 

 

Keyword : LiDAR, real-time monitoring, point cloud processing, 

CNN, computer vision, object segmentation 
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Chapter 1. Introduction 

1.1. Tool Monitoring in CNC machines 

With the arising and development in the field of the artificial 

intelligence-based vision techniques, machine monitoring in the 

field of smart factory system embedded manufacturing has been 

viral during recent years. [1] Machines that are transparent from 

the outside could be easily monitored using simple vision techniques, 

but some machines that are surrounded by thick housing such as 

CNC milling machine cannot be thoroughly monitored from the 

outside. Vague monitoring techniques using vibration or acoustic 

based sensors were introduced in the past, however thorough 

scrutinization was implausible. [2] To monitor the end mill situation, 

computer vision-dependent monitoring methods were proposed in 

the past, but the vision-based monitoring systems were not able to 

monitor during the ongoing operation due to its limits projected by 

its environmental dependency. [3,4] 

Vision monitoring has high accuracy and fast identification speed, 

but the limitations of cameras have been revealed. Because it only 

detects ambient light, it is greatly affected by external light 

condition. Therefore, when using machine vision-based monitoring 

system in real factories, expensive lighting systems such as 

backlight lighting or bar lighting should be built. [5] 

This study proposes new method to mitigate the limitations of 

existing vision-based monitoring systems by utilizing the LiDAR. 

The end mill inside the CNC machine, which showed high limitations 
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in detection in already proposed research, was designated as the 

observation target. Various point cloud processing techniques were 

used to improve the monitoring accuracy. Finally, several CNC 

machines’ operations were recorded in actual factory environment 

and the evaluation of the monitoring system was carried out. 
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Figure 1.1: Conventional end mill monitoring systems using vision-based 

sensors. [3, 4] 
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Table 1. 1 Comparing presented system with existing sensors 

 

※ Number of dots indicate the degree of strength for each 

monitoring method in each corresponding characteristic. [1,6,7] 

Each research selected as comparison is about monitoring system. 
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1.2. LiDAR and point cloud map 

LiDAR gathers the point cloud information of the target 

object by calculating the time difference induced by IR phase 

change calculation. The point cloud is the coordinate information 

projected using the distance between the sensor and the target. The 

LiDAR that was deployed in this study gathers the 3D map of the 

target and then transforms it into 2D data by QR decomposition. 

The figure 1.1 projects the example image obtained by the LiDAR. 
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Figure 1.2: Example of LiDAR point cloud visualization (2D (a) & 3D (b)), 

Red bounding box indicates the tool area 
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1.3. IR intensity application 

Apart from the distance measuring IR, various methods are 

available using IR. The IR intensity could be a versatile factor that 

could induce critical information. One of the most popular 

applications using the IR intensity factor is thermal imaging. [8] For 

this study, knowing that all matters emit IR energy varying on the 

surface profile whether it is material related or temperature related, 

the IR sensor could detect the intensity of the energy and 

distinguish the different features. Therefore, the surface profile of 

the working tool could be classified. Throughout the study, the IR 

intensity profile is to measure the degree of breakage in machining 

end mills. 
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Figure 1.3: Example of IR intensity map obtained by Azure Kinect 
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Chapter 2. System Modelling 

2.1. End mill monitoring system overview 

Figure 2.1 projects the overall schematic of tool monitoring 

system. The objective is to detect the tool by analyzing the point 

cloud and then classifying the tool condition using the infra-red 

(IR) intensity. The thorough step is the following. The first step is 

the data collection step. The Lidar monitors the inside of the CNC 

machine after its installation. After the collection, noise removal and 

point cloud accumulation were carried out to raw data. Each 

improves stability and quality of point cloud. Obtained point cloud 

data is converted into image format to use as input of YOLO. After 

sufficient training, overall algorithm performance evaluation is 

carried out. The final testing stage to evaluate the system was 

carried out in the actual machining environment that was not 

included in the training data set to avoid overfitting. 
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Figure 2.1 Schematic of proposed end mill monitoring system 
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2.2. Hardware setup 

The radius of the tool to be monitored was set from 6 mm to 18 

mm. Azure Kinect DK was selected as the operating LiDAR for this 

study by synthesizing various restrictions. [9] It has a resolution of 

1 mm, which was high enough to distinguish each spiral of end mill. 

The overall spec of the LiDAR is listed in the Table 2.1. Maximum 

operating fps was 30, and specified measuring distance was 0.25 m 

to 2.21 m, which is suitable for general CNC machine. 

As shown in figure 2.3, packaging was carried out to protect 

LiDAR from harsh environments such as chips and coolant 

engagement during milling operation inside the CNC machine. The 

installation was carried out by using neodymium magnet installed 

docking mount on the ferrous metal wall of the CNC machine. 
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Figure 2.2: CAD of LiDAR housing 

 

 

Figure 2.3: Azure Kinect DK with housing installed 
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Table 2.1 Azure Kinect specification 
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Figure 2.4: Attachment of packaged LIDAR into HSM-560A CNC  

 

Figure 2.5: Attachment of packaged LIDAR into CE6405E-5X CNC  
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2.3. End mill failure modelling 

The condition of cutting tools is of particular importance for an 

efficient milling process in any metal cutting process to achieve 

optimal performance. Tool failure is the major issue, and the reason 

tool condition monitoring system (TCMs) is needed. [10,11] Among 

many monitoring methods such as vibration monitoring, acoustic 

emission and temperature monitoring, this paper presents a TCMs 

based on IR intensity. 

Tool failure involves features such as abrasive tool wear, tool 

wear based on microfracture and tool breakage. This study focuses 

on tool breakage which LiDAR is predicted to be suitable to detect 

due to its proper 

For the experimental setup, a tool breakage modelling was 

carried out. Figure 2.5 shows a type of tool breakage categorized 

by type of tool tooth damage has been done on the tool. For this 

study to be a firmly controlled study, the breakage caused by both 

horizontal and vertical wear had to be manifested. Therefore, 

isosceles shape right corner on the tip of the endmill was removed 

according to the cross-sectional area. Figure 2.6 shows the CAD 

file and the prototype of the isosceles shaped area removal. The 

machining method of the removal was carried out using wire EDM. 

Throughout this study, the machined parameter for fracture would 

be mentioned as ‘fracture index’. 
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Figure 2.6: Typical examples of end mill tooth breakage: (a) tip breakage, 

(b) complete breakage of a single tooth, (c) two teeth breakage. [11] 
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Figure 2.7: Tool breakage simulation by wire Electrical discharge 

machining (EDM). Isosceles shaped part on the side cross-section of the 

tool being removed orthogonally according to the cross-sectional area.  

a) reference tool. b) 2 mm c) 4 mm d) 6 mm e) 8 mm f) 10 mm g) 12 mm 

isosceles shape removed. 
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2.4. YOLO setup 

 

Figure 2.7: YOLO v3 architecture. It uses backbone architecture  

(Darknet 53). [12] 

YOLO version 3 (darknet) was selected as an object detection 

algorithm. Other CNN based detection algorithm such as R-CNN 

(Region with Convolutional Neural Network), can only process 

seven frames per second. [13] YOLO can secure up to 45 fps, 

which seems proper to carry out a real time monitoring system for 

this study.  
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Chapter 3. Data Processing 

3.1. Confidence score 

To evaluate the monitoring system, confidence score was used 

as a performance measure. The meaning of confidence score is as 

follows. IOU stands for intersection over union.  

              (1)           

Successful detection could be stated if confidence score 

exceeds a certain threshold. Therefore, confidence score was used 

to evaluate the performance of the detection system. Throughout 

the study, confidence score is also used to evaluate the 

performance of noise removal and point cloud accumulation method.  
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3.2. Noise removal 

Even if all the conditions remain the same, the reflection of IR 

is not constant and might create an outlying point cloud data due to 

the uncertain characteristics of the LiDAR. So additional process to 

delete temporarily observed noise points is necessary. 

Points generated due to noise are characterized by the existing 

positions which are totally solitary and lack of continuity. If a point 

is stationed solitarily and not around the surroundings, the point is 

to be declared as a noise. Therefore, an algorithm development that 

recognizes and removes the points when a specific point's depth 

information has big difference with surrounding points had been 

carried out. Figure 3.1 shows the schematic of how the noise 

removal is performed. The threshold that measures the degree of 

solitude for the point’s position has been set using heuristic 

measures. Since data generation in all processes was performed in 

the form of a python based numpy array, almost real-time 

processing was possible and did not hinder other processes. 
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Figure 3.1: (a) Example of normal pixel and abnormal pixel. 

(b) Deleted areas through noise removal algorithm. 
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3.3. Point cloud accumulation 

The biggest weakness of data acquired through LiDAR is that 

the data is not stable and appears intermittently. This problem was 

more evident when measuring the moving and rotating objects. If 

the data from various continuous frames is combined, the 

intermittence and unstableness could be mitigated. For this case, an 

approach has been made to compile information from multiple 

frames to accumulate depth map of each frame. Unlike RGB 

information, depth maps exist as independent points that can be 

easily combined. Figure 3.2 shows the process of improving the 

quality of the depth map viewed as an actual viewer by 

accumulating the points of several frame. 
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Figure 3.2: Accumulated frame points near the tool. 

(a) Raw frame. (b) 5 frames accumulated. (c) 10 frames accumulated. 

(d) 15 frames accumulated. (e) 20 frames accumulated. 

 

 

Figure 3.3: Schematic of point cloud accumulation is carried out. 
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Figure 3.4 shows schematic of point cloud accumulation. Point 

cloud accumulation also does not significantly affect the real-time 

operation of the system because the operation is performed not in 

the form of image but in the form of numpy based array directly. 

Point cloud accumulation algorithm is specifically effective for 

moving or rotating CNC machines. Even in CNC machines that run 

with a goal of high cutting speed, the tool's moving speed is up to 

1m per second, and the target CNC machines travel up to 20cm 

over tenth of a second. This can mean that frames with different 

spindle position might be accumulated which would result in losing 

the original shape of the tool. However, this could be mitigated by 

adjusting the overlapping number and sampling rate of the LiDAR 

(maximum 30 frames per second). 
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Figure 3.4: Depth map result when point cloud accumulation was applied 

during CNC machining process. 

(a) Raw frame. (b) 5 frames accumulated. (c) 10 frames accumulated. 

(d) 15 frames accumulated. (e) 20 frames accumulated 
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3.4. IR intensity monitoring 

For the tool breakage monitoring during the machining process, 

the previous approaches using sensors that yield ultra-high 

sampling rates such as the highspeed camera were introduced. [14] 

However, the sensor itself could be considered redundant due to 

the high installation costs due to the high price of sensors. In this 

research IR monitoring device Azure Kinect is used to monitor the 

tool breakage using IR intensity map which projects the IR intensity 

profile through a grayscale contour with 16-bit resolution. 

Pricewise Azure Kinect is user friendly due to its price (1/10th of 

conventional highspeed camera). The IR map projects the 

geometrical and material based on the characteristics of the target 

object. Therefore, as shown in figure 3.5, when the tool is rotating 

in high speed, the IR intensity value is expected to differ on the 

area of tool breakage compared to the non-damaged reference end 

mill. 
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Figure 3.5: IR intensity sampling. a) Schematic of difference in IR intensity 

between normal and fractured regions. b) sampled IR index on certain 

pixel. 
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Chapter 4. Experiments and discussion 

4.1. Data gathering 

Data acquisition was carried out from 2 different CNC machine 

models (CE6405E-5X, HSM-560A). End mills with various 

diameters (Ф 6 – Ф 18) were observed for performance 

evaluation. Figure 4.1 shows the overall test bed setting. Each tool 

was recorded at 30 fps and each frame was stored in the form of 

a .mkv file. The rotation speed of the tool was fixed into two values. 

(1000 rpm, 3000 rpm) 

Both IR intensity map and the point cloud data were collected. 

The point cloud maps were inspected before running through noise 

removal process and point accumulation process to inspect the 

suitability for detection process. The points that were missing on 

each frame due to noise and features exerted during rotation, were 

compensated using two previously mentioned data processing 

methods. 
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Figure 4.1: End mill point cloud gathering experiment. 
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4.2. Training 

Ф 6, Ф 10, Ф 12 tool data from CE6405E-5X CNC machine 

and Ф 14, Ф 16, Ф 18 tool of HSM-560A CNC machine have 

been chosen for training set. Each case contains 20 different point 

cloud, and ratio of test set and validation set is 7:3. Epoch was 

4,000 times and figure 4.2 (c) shows loss value relative to the 

iteration number. The loss function was set to cross entropy loss 

function showing to project high decay. 

The training was carried out using graphic card model NVIDIA 

Quadro RTX 5000-max with Intel Xeon W-10886M using CUDA 

based processors enabling graphic card architecture to compute 

tensor format structures. The training progress took 10 hours to 

iterate 4000 epochs of feed forward processes and loss function 

update using gradient descending method. 
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Figure 4.2: (a) Ф 6 end mill validation. (b) Ф 10 end mill validation. (c) 

Training model loss reduction by iteration 
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4.3. Results 

4.3.1 Tool detection 

After the training process, weights file was collected to run the 

real time monitoring. The monitoring showed successful detection 

rate meaning that all the detection yielded a detected bounding box 

around the tool area and the confidence score. For all the stationary 

rotating end mills with diameter from Ф 6 to Ф 18 showed over 95% 

detection success rate with average confidence score of 0.95. 

Figure 4.3 shows the monitoring done on stationary Ф 18 rotating 

endmill. The confidence score of all the detected tools in each 

frame. However non-stationary moving end mill detection showed 

lower confidence score before applying the noise removal and point 

cloud accumulation. 
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Figure 4.3: Confidence score during the detection for Ф 18-rotating-tool  
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Figure 4.4 explains how point cloud accumulation works in a 

positive direction in monitoring.  During the real time monitoring 

stage, the 15 frames were accumulated during the process which 

showed increase in confidence score from 0.729 to 0.887 meaning 

over 15% increase in performance. During the machining process 

where tool was removed from the sensor field of view, the minor 

errors only occurred during 2 frames which could be considered 

trivial. 
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Figure 4.4: Confidence score change of HSM-560A-Ф 18-rotating-

stationary end mill. 

. 
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4.3.2 Tool condition monitoring using IR index 

When the end mill coordinates were extracted from the 

detection process, the grid search for IR intensity was carried out. 

As it is shown in the figure 4.5, the IR value of the fractured region 

showed periodic fluctuation. The fracture end mills with fracture 

index of 6 mm, 8 mm, 10 mm, and 12 mm showed distinguishable 

fluctuation which enabled the extract the threshold IR intensity 

value for the fracture criterion. However, the endmills with 2 mm 

and 4 mm showed no fluctuation in the values due to the lack of 

resolution of the LiDAR. 
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Figure 4.5: IR Intensity graph on frame based (sampling rate: 30 fps for 15 

seconds). 
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Figure 4.6: Real time monitoring of the system. a) IR intensity-based tool 

condition monitoring b) YOLO-based tool detection. 
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Chapter 5. Conclusion 

In this study, the object detection algorithm was applied to point 

cloud data and the IR intensity data which were acquired by LiDAR. 

The end mill in the CNC machine, which was difficult to be 

monitored by vision-based monitoring system, was observed. 

The preliminary step of detection and recognition was carried 

out using the YOLO v3 model imbedded with the point cloud data. 

After the point cloud data collection, each frame was labelled and 

ran through training process for the YOLO algorithm.  

YOLO parameters were imbedded on the sensor after the 

training, which allowed the end mill detection process. The 

coordinate of the endmill was extracted during the detection, then 

allowed the grid search for end mill condition monitoring  

The expected behavior of fractured region was projection in 

fluctuation in IR intensity values. For the test bed set up and 

hardware set up, the end mill fracture was simulated and prototyped 

by wire EDM process of the conventional Ф 12 end mills. As 

expected, the IR profile of the fractured area showed periodic 

fluctuation and was able to extract the fracture criteria that enabled 

the fracture detection of end mills with fracture indices of 6 mm, 8 

mm, 10 mm, and 12 mm. The end mill with 2 mm and 4 mm fracture 

indices were not able to be detected due to the low resolution of the 

LiDAR. It is expected to be detected using high resolution LiDAR 

with more IR channels. 
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Finally, the entire system has been applied to real industrial site. 

System monitored end mill with 30 fps of sampling rate and showed 

over 95 % success rate in detection and fracture detection for 450 

frames which is 15 seconds of machining time. 
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초록 

 제조 분야에서 스마트 팩토리 시스템의 도입으로 인해 가공 과정의 

무인 모니터링 시스템이 필연적으로 도입되고 있다. 무인 모니터링의 

다양한 방법 중 비전 기반 모니터링이 가장 많이 쓰이고 있다. 해당 

비전 기반 시스템의 경우 딥 러닝을 통해 개발된 감지 모델과 통합된 

비전 센서를 사용한다. 하지만 주변 조명이나 반사 물질과 같은 광학적 

조건에 크게 영향을 받는 단점은 모니터링 측면에서 성능에 치명적인 

영향을 미치기에 이를 보완하는 대안이 필요하다. 이 연구에서는 비전 

센서 대신 적외선(IR)을 물체에 직접 조사하여 빛의 왕복 시간을 

측정하여 깊이 정보를 측정하는 LiDAR를 이용하여 비전 센서의 한계를 

보완하는 시스템을 소개한다. 또한 비전과 LiDAR 감지의 장점을 모두 

제공하는 LiDAR 기반 엔드밀 상태 모니터링 시스템을 제시한다. 이 

시스템은 LiDAR에서 획득한 점 구름 정보 및 IR 강도 데이터를 

사용하며, 딥 러닝을 기반으로 개발된 객체 감지 알고리즘은 감지 

단계와 엔드밀의 길이를 감지하고 측정하는 데 사용되며 IR 강도는 

엔드밀에 존재하는 마모 혹은 파손 정보를 감지하는 데 사용된다. 

실시간 모니터링을 위한 객체 감지 알고리즘으로 YOLO(You Only 

Look Once) 알고리즘을 기반으로 하는 컨볼루션 신경망이 

선택되었으며 데이터 전처리를 통해 포인트 클라우드의 품질을 

향상시켰다. 마지막으로 실제 가공 환경에서 엔드밀 상태를 높은 

정확도로 모니터링하는 과정을 진행하였다. 

 

주요어 : LiDAR, real-time monitoring, point cloud processing, CNN, 

computer vision, object segmentation  
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