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Abstract

As adoption of smart—factory system in manufacturing
becoming inevitable, autonomous monitoring system in the field of
machining has become viral nowadays. Among various methods in
autonomous monitoring, vision—based monitoring i1s the most
sought—after. This system uses vision sensors integrated with
detection models developed through deep learning. However, the
disadvantage of being greatly affected by optical conditions, such as
ambient lighting or reflective materials, critically affects the
performance in terms of monitoring. Instead of vision sensors,
LiDAR, which provides depth map by measuring light returning time
using infrared radiation (IR) directly to the object, can be
complementary method. The study presents a LiDAR ((Light
Detection and Ranging) —based end mill state monitoring system,
which renders strengths of both vision and LiDAR detecting. This
system uses point cloud and IR intensity data acquired by the
LiDAR while object detection algorithm developed based on deep
learning is engaged during the detection stage. The point cloud data
i1s used to detect and determine the length of the endmill while the
IR intensity is used to detect the wear present on the endmill.
Convolutional neural network based You Only Look Once (YOLO)
algorithm is selected as an object detection algorithm for real—time
monitoring. Also, the quality of point cloud has been improved using
data prep—processing method. Finally, it is verified that end mill
state has been monitored with high accuracy at the actual machining

environment.

Keyword : LiDAR, real—time monitoring, point cloud processing,
CNN, computer vision, object segmentation
Student Number : 2020-22094
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Chapter 1. Introduction

1.1. Tool Monitoring in CNC machines

With the arising and development in the field of the artificial
intelligence—based vision techniques, machine monitoring in the
field of smart factory system embedded manufacturing has been
viral during recent years. [1] Machines that are transparent from
the outside could be easily monitored using simple vision techniques,
but some machines that are surrounded by thick housing such as
CNC milling machine cannot be thoroughly monitored from the
outside. Vague monitoring techniques using vibration or acoustic
based sensors were introduced in the past, however thorough
scrutinization was implausible. [2] To monitor the end mill situation,
computer vision—dependent monitoring methods were proposed in
the past, but the vision—based monitoring systems were not able to
monitor during the ongoing operation due to its limits projected by
its environmental dependency. [3,4]

Vision monitoring has high accuracy and fast identification speed,
but the limitations of cameras have been revealed. Because it only
detects ambient light, it is greatly affected by external light
condition. Therefore, when using machine vision—based monitoring
system in real factories, expensive lighting systems such as
backlight lighting or bar lighting should be built. [5]

This study proposes new method to mitigate the limitations of
existing vision—based monitoring systems by utilizing the LiDAR.

The end mill inside the CNC machine, which showed high limitations
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in detection in already proposed research, was designated as the
observation target. Various point cloud processing techniques were
used to improve the monitoring accuracy. Finally, several CNC
machines’ operations were recorded in actual factory environment

and the evaluation of the monitoring system was carried out.
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Figure 1.1: Conventional end mill monitoring systems using vision—based

sensors. [3, 4]



Table 1. 1 Comparing presented system with existing sensors

High speed camera

LiDAR

Camera-vision Laser scanner vision (This research)
Resolution OO0 00O OO0 @]@)
Real-time 0]0]0)] @) 0]0)] Q00
Cost efficiency OO0 00O O @]@)
.Environ_ment O O O O O O O O
mdependency
Dynamic object
detectability O O o0 e
¥ Number of dots indicate the degree of strength for each
monitoring method in each corresponding characteristic. [1,6,7]
Each research selected as comparison is about monitoring system.
§ -'%'__ T




1.2. LiDAR and point cloud map

LiDAR gathers the point cloud information of the target
object by calculating the time difference induced by IR phase
change calculation. The point cloud is the coordinate information
projected using the distance between the sensor and the target. The
LiDAR that was deployed in this study gathers the 3D map of the
target and then transforms it into 2D data by QR decomposition.

The figure 1.1 projects the example image obtained by the LiDAR.



b

Figure 1.2: Example of LiDAR point cloud visualization (2D (a) & 3D (b)),

Red bounding box indicates the tool area

gl
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1.3. IR intensity application

Apart from the distance measuring IR, various methods are
available using IR. The IR intensity could be a versatile factor that
could induce critical information. One of the most popular
applications using the IR intensity factor is thermal imaging. [8] For
this study, knowing that all matters emit IR energy varying on the
surface profile whether it is material related or temperature related,
the IR sensor could detect the intensity of the energy and
distinguish the different features. Therefore, the surface profile of
the working tool could be classified. Throughout the study, the IR
intensity profile is to measure the degree of breakage in machining

end mills.



Figure 1.3: Example of IR intensity map obtained by Azure Kinect



Chapter 2. System Modelling

2.1. End mill monitoring system overview

Figure 2.1 projects the overall schematic of tool monitoring
system. The objective is to detect the tool by analyzing the point
cloud and then classifying the tool condition using the infra—red
(IR) intensity. The thorough step is the following. The first step is
the data collection step. The Lidar monitors the inside of the CNC
machine after its installation. After the collection, noise removal and
point cloud accumulation were carried out to raw data. Each
improves stability and quality of point cloud. Obtained point cloud
data is converted into image format to use as input of YOLO. After
sufficient training, overall algorithm performance evaluation is
carried out. The final testing stage to evaluate the system was
carried out in the actual machining environment that was not

included in the training data set to avoid overfitting.



(—[ Data Collection ]—\ (—[ Data Pre-processing ]—\
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Figure 2.1 Schematic of proposed end mill monitoring system
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2.2. Hardware setup

The radius of the tool to be monitored was set from 6 mm to 18
mm. Azure Kinect DK was selected as the operating LiDAR for this
study by synthesizing various restrictions. [9] It has a resolution of
1 mm, which was high enough to distinguish each spiral of end mill.
The overall spec of the LiDAR is listed in the Table 2.1. Maximum
operating fps was 30, and specified measuring distance was 0.25 m
to 2.21 m, which is suitable for general CNC machine.

As shown in figure 2.3, packaging was carried out to protect
LiDAR from harsh environments such as chips and coolant
engagement during milling operation inside the CNC machine. The
installation was carried out by using neodymium magnet installed

docking mount on the ferrous metal wall of the CNC machine.

11 -":rxi "";i' 1_-“



Figure 2.2: CAD of LiDAR housing

Figure 2.3: Azure Kinect DK with housing installed
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Table 2.1 Azure Kinect specification

Specification

Name

Size

Weight

Color camera resolution
Depth camera resolution
Field of view (depth image)
Specified measuring distance

Operating fps (frames per second)

Value

Azure Kinect DK
103 x 39 x 126 mm
440 g

3840 x 2160

1024 x 1024
120°x 120 °
025-221Tm
5,15, 30

13



Figure 2.5: Attachment of packaged LIDAR into CE6405E—5X CNC
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2.3. End mill failure modelling

The condition of cutting tools is of particular importance for an
efficient milling process in any metal cutting process to achieve
optimal performance. Tool failure is the major issue, and the reason
tool condition monitoring system (TCMs) is needed. [10,11] Among
many monitoring methods such as vibration monitoring, acoustic
emission and temperature monitoring, this paper presents a TCMs
based on IR intensity.

Tool failure involves features such as abrasive tool wear, tool
wear based on microfracture and tool breakage. This study focuses
on tool breakage which LiDAR is predicted to be suitable to detect
due to its proper

For the experimental setup, a tool breakage modelling was
carried out. Figure 2.5 shows a type of tool breakage categorized
by type of tool tooth damage has been done on the tool. For this
study to be a firmly controlled study, the breakage caused by both
horizontal and vertical wear had to be manifested. Therefore,
isosceles shape right corner on the tip of the endmill was removed
according to the cross—sectional area. Figure 2.6 shows the CAD
file and the prototype of the isosceles shaped area removal. The
machining method of the removal was carried out using wire EDM.
Throughout this study, the machined parameter for fracture would

be mentioned as ‘fracture index’

15 .__:Ix_s _'q.;:-' ok



Figure 2.6: Typical examples of end mill tooth breakage: (a) tip breakage,

(b) complete breakage of a single tooth, (c) two teeth breakage. [11]

,
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Figure 2.7: Tool breakage simulation by wire Electrical discharge

machining (EDM). Isosceles shaped part on the side cross—section of the
tool being removed orthogonally according to the cross—sectional area.
a) reference tool. b) 2mmc) 4mmd) 6mme) Smmf) 10mmg) 12 mm

1sosceles shape removed.
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2.4. YOLO setup

Convolutional 1x1 Up Sampling Convolutional Set Conv2d 1x1 Concatenate Residual

[ medictone | [ Pedcawo | [ Predictibree |
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Figure 2.7: YOLO v3 architecture. It uses backbone architecture

=8
4

(Darknet 53). [12]

YOLO version 3 (darknet) was selected as an object detection
algorithm. Other CNN based detection algorithm such as R—CNN
(Region with Convolutional Neural Network), can only process
seven frames per second. [13] YOLO can secure up to 45 fps,
which seems proper to carry out a real time monitoring system for

this study.
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Chapter 3. Data Processing

3.1. Confidence score

To evaluate the monitoring system, confidence score was used
as a performance measure. The meaning of confidence score is as

follows. IOU stands for intersection over union.

Confidence score = Pr(Object) * ]OU;";;;M‘ (1)

Successful detection could be stated if confidence score
exceeds a certain threshold. Therefore, confidence score was used
to evaluate the performance of the detection system. Throughout
the study, confidence score 1is also used to evaluate the

performance of noise removal and point cloud accumulation method.
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3.2. Noise removal

Even if all the conditions remain the same, the reflection of IR
1s not constant and might create an outlying point cloud data due to
the uncertain characteristics of the LiDAR. So additional process to
delete temporarily observed noise points is necessary.

Points generated due to noise are characterized by the existing
positions which are totally solitary and lack of continuity. If a point
i1s stationed solitarily and not around the surroundings, the point is
to be declared as a noise. Therefore, an algorithm development that
recognizes and removes the points when a specific point's depth
information has big difference with surrounding points had been
carried out. Figure 3.1 shows the schematic of how the noise
removal is performed. The threshold that measures the degree of
solitude for the point’ s position has been set using heuristic
measures. Since data generation in all processes was performed in
the form of a python based numpy array, almost real—time

processing was possible and did not hinder other processes.

20 MET
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deleted noise
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Figure 3.1: (a) Example of normal pixel and abnormal pixel.

(b) Deleted areas through noise removal algorithm.
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3.3. Point cloud accumulation

The biggest weakness of data acquired through LiDAR is that
the data is not stable and appears intermittently. This problem was
more evident when measuring the moving and rotating objects. If
the data from various continuous frames is combined, the
intermittence and unstableness could be mitigated. For this case, an
approach has been made to compile information from multiple
frames to accumulate depth map of each frame. Unlike RGB
information, depth maps exist as independent points that can be
easily combined. Figure 3.2 shows the process of improving the
quality of the depth map viewed as an actual viewer by

accumulating the points of several frame.
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Figure 3.2: Accumulated frame points near the tool.

(a) Raw frame. (b) 5 frames accumulated. (c¢) 10 frames accumulated.

(d) 15 frames accumulated. (e) 20 frames accumulated.

191 0 200 0 | O 191 0|0
21 (20| 0 19120 | 18 |m==) | 19 | 20 | 18
17 | 16 | 15 0 (17 ]16 17 | 16 | 15

o

Two different frames’ depth data Accumulated depth data

Figure 3.3: Schematic of point cloud accumulation is carried out.
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Figure 3.4 shows schematic of point cloud accumulation. Point
cloud accumulation also does not significantly affect the real—time
operation of the system because the operation is performed not in
the form of image but in the form of numpy based array directly.
Point cloud accumulation algorithm 1is specifically effective for
moving or rotating CNC machines. Even in CNC machines that run
with a goal of high cutting speed, the tool's moving speed is up to
1m per second, and the target CNC machines travel up to 20cm
over tenth of a second. This can mean that frames with different
spindle position might be accumulated which would result in losing
the original shape of the tool. However, this could be mitigated by
adjusting the overlapping number and sampling rate of the LiDAR

(maximum 30 frames per second).

24 J’—-! b= ‘_]l



Figure 3.4: Depth map result when point cloud accumulation was applied
during CNC machining process.
(a) Raw frame. (b) 5 frames accumulated. (c) 10 frames accumulated.

(d) 15 frames accumulated. (e) 20 frames accumulated

25 2 M E g



3.4. IR intensity monitoring

For the tool breakage monitoring during the machining process,
the previous approaches using sensors that yield ultra—high
sampling rates such as the highspeed camera were introduced. [14]
However, the sensor itself could be considered redundant due to
the high installation costs due to the high price of sensors. In this
research IR monitoring device Azure Kinect is used to monitor the
tool breakage using IR intensity map which projects the IR intensity
profile through a grayscale contour with 16—bit resolution.
Pricewise Azure Kinect is user friendly due to its price (1/10th of
conventional highspeed camera). The IR map projects the
geometrical and material based on the characteristics of the target
object. Therefore, as shown in figure 3.5, when the tool is rotating
in high speed, the IR intensity value is expected to differ on the
area of tool breakage compared to the non—damaged reference end

mill.
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IR Index:1258

Figure 3.5: IR intensity sampling. a) Schematic of difference in IR intensity

between normal and fractured regions. b) sampled IR index on certain

pixel.
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Chapter 4. Experiments and discussion

4.1. Data gathering

Data acquisition was carried out from 2 different CNC machine
models (CE6405E—-5X, HSM-560A). End mills with various
diameters (® 6 - @ 18) were observed for performance
evaluation. Figure 4.1 shows the overall test bed setting. Each tool
was recorded at 30 fps and each frame was stored in the form of
a .mkv file. The rotation speed of the tool was fixed into two values.
(1000 rpm, 3000 rpm)

Both IR intensity map and the point cloud data were collected.
The point cloud maps were inspected before running through noise
removal process and point accumulation process to inspect the
suitability for detection process. The points that were missing on
each frame due to noise and features exerted during rotation, were
compensated using two previously mentioned data processing

methods.
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500mm

| endmill diameter: 6/10/12/14/16/18 © |

Figure 4.1: End mill point cloud gathering experiment.
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4.2. Training

¢ 6, & 10, & 12 tool data from CE6405E—-5X CNC machine
and & 14, & 16, & 18 tool of HSM—560A CNC machine have
been chosen for training set. Each case contains 20 different point
cloud, and ratio of test set and validation set is 7:3. Epoch was
4,000 times and figure 4.2 (c¢c) shows loss value relative to the
iteration number. The loss function was set to cross entropy loss
function showing to project high decay.

The training was carried out using graphic card model NVIDIA
Quadro RTX 5000—max with Intel Xeon W—10886M using CUDA
based processors enabling graphic card architecture to compute
tensor format structures. The training progress took 10 hours to
iterate 4000 epochs of feed forward processes and loss function

update using gradient descending method.
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Figure 4.2: (a) ® 6 end mill validation. (b) ® 10 end mill validation. (c)

Training model loss reduction by iteration
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4.3. Results

4.3.1 Tool detection

After the training process, weights file was collected to run the
real time monitoring. The monitoring showed successful detection
rate meaning that all the detection yielded a detected bounding box
around the tool area and the confidence score. For all the stationary
rotating end mills with diameter from ® 6 to ® 18 showed over 95%
detection success rate with average confidence score of 0.95.
Figure 4.3 shows the monitoring done on stationary ® 18 rotating
endmill. The confidence score of all the detected tools in each
frame. However non—stationary moving end mill detection showed
lower confidence score before applying the noise removal and point

cloud accumulation.
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Figure 4.3: Confidence score during the detection for ® 18—rotating—tool
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Figure 4.4 explains how point cloud accumulation works in a
positive direction in monitoring. During the real time monitoring
stage, the 15 frames were accumulated during the process which
showed increase in confidence score from 0.729 to 0.887 meaning
over 15% increase in performance. During the machining process
where tool was removed from the sensor field of view, the minor
errors only occurred during 2 frames which could be considered

trivial.
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Confidence score with out Point cloud accumulation: 0.729
Confidence score with Point cloud accumulation: 0.887
0.158 improvement in confidence score

1\

Confidence Score

0 200 400 600 800 1000 1200 1400 1600
Number of Frames
=—Raw Data ===Qverlapp Data (15 frames)

Figure 4.4: Confidence score change of HSM—560A—® 18—rotating—

stationary end mill.
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4.3.2 Tool condition monitoring using IR index

When the end mill coordinates were extracted from the
detection process, the grid search for IR intensity was carried out.
As it is shown in the figure 4.5, the IR value of the fractured region
showed periodic fluctuation. The fracture end mills with fracture
index of 6 mm, 8 mm, 10 mm, and 12 mm showed distinguishable
fluctuation which enabled the extract the threshold IR intensity
value for the fracture criterion. However, the endmills with 2 mm
and 4 mm showed no fluctuation in the values due to the lack of

resolution of the LiDAR.
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Figure 4.5: IR Intensity graph on frame based (sampling rate: 30 fps for 15

seconds).
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Tool Failure detected

Figure 4.6: Real time monitoring of the system. a) IR intensity —based tool

condition monitoring b) YOLO—based tool detection.
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Chapter 5. Conclusion

In this study, the object detection algorithm was applied to point
cloud data and the IR intensity data which were acquired by LiDAR.
The end mill in the CNC machine, which was difficult to be
monitored by vision—based monitoring system, was observed.

The preliminary step of detection and recognition was carried
out using the YOLO v3 model imbedded with the point cloud data.
After the point cloud data collection, each frame was labelled and
ran through training process for the YOLO algorithm.

YOLO parameters were imbedded on the sensor after the
training, which allowed the end mill detection process. The
coordinate of the endmill was extracted during the detection, then
allowed the grid search for end mill condition monitoring

The expected behavior of fractured region was projection in
fluctuation in IR intensity values. For the test bed set up and
hardware set up, the end mill fracture was simulated and prototyped
by wire EDM process of the conventional @ 12 end mills. As
expected, the IR profile of the fractured area showed periodic
fluctuation and was able to extract the fracture criteria that enabled
the fracture detection of end mills with fracture indices of 6 mm, 8
mm, 10 mm, and 12 mm. The end mill with 2 mm and 4 mm fracture
indices were not able to be detected due to the low resolution of the
LiDAR. It is expected to be detected using high resolution LiDAR

with more IR channels.
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Finally, the entire system has been applied to real industrial site.
System monitored end mill with 30 fps of sampling rate and showed
over 95 % success rate in detection and fracture detection for 450

frames which is 15 seconds of machining time.

40 . _;ﬂ k.= 1_'_|'| &

1

I

1L



Reference

[1] D. Zuehlke, “Smartfactory—from vision to reality in factory

technologies,” IFAC Proceedings Volumes 41, 14101-14108 (2008).

[2] J. Kim, H. Lee, S. Jeong, and S.—H. Ahn, “Sound—based remote
real—time multidevice operational monitoring system using a
convolutional neural network (cnn),” Journal of Manufacturing
Systems 58, 431-441 (2021).

[3] S. Klancnik, M. Ficko, J. Balic, and I. Pahole, “Computer vision—
based approach to end mill tool monitoring,” International Journal of
Simulation Modelling 14, 571-583 (2015).

[4] S. Yoshimitsu, D. Iwashita, K. Shimana, Y. Kobaru, and S.
Yamashita, “Monitoring of cutting state in end—milling based on
measurement of tool behavior using ccd image,” International
Journal of Automation Technology 13, 133-140 (2019).

[5] N. Cong Hoan, N. Van Hoa, V. Thanh Luan, and Y. M. Jang,
“Design and implementation of a monitoring system using optical
camera communication for a smart factory,” Applied Sciences 9,
5103 (2019).

[6] J. Sivanandan, E. Liscio, and P. Eng. "Assessing structured light
3D scanning using Artec Eva for injury documentation during
autopsy." J Assoc Crime Scene Reconstr 21, 5—14 (2017).

[7] SE. Reutebuch, HE. Andersen, and Robert J. McGaughey. "Light
detection and ranging (LIDAR): an emerging tool for multiple

resource inventory." Journal of forestry 103.6, 286—292 (2005).

41 "-:l:" | ""I-.|- 1_-“ ¥ L2



[8] X. Chen and L. Hao. "Application analysis of infrared thermal
imaging technology in intelligent manufacturing field." Journal of
Physics: Conference Series. Vol. 1693. No. 1. IOP Publishing
(2020).

[9] S. Berezvai, D. Bachrathy, and G. Stepan. "High—speed camera
measurements in the mechanical analysis of machining." Procedia
CIRP 77, 155—158 (2018).

[10] D.E.D Snr. "Sensor signals for tool—wear monitoring in metal
cutting operations—a review of methods." International Journal of
Machine Tools and Manufacture 40.8, 1073—1098 (2000).

[11] I. Yesilyurt. “End mill breakage detection using mean
frequency analysis of scalogram.” International Journal of Machine
Tools & Manufacture 46, 450-458 (2006).

[12] J. Redmon and A. Farhadi. "Yolov3: An incremental
improvement." arXiv preprint arXiv:1804.02767 (2018).

[13] Y.H. Lee and Y. Kim, “Comparison of cnn and yolo for object
detection,” Journal of the semiconductor & display technology 19,

85-92 (2020).
[14] M. Tolgyessy, M. Dekan, L. Chovanec, and P. Hubinsky,

“Evaluation of the azure kinect and its comparison to kinect vl and

kinect v2,” Sensors 21, 413 (2021).

42 A “._, ‘_]l



M
N

A e

i

AEe] AAFe] EQlo® <ls

=

Am

Az okellA

ol

bR 9 zgol

AR 8

A=

il

]

H

ojy

S EA9

24 (IR)
| ARE =A 35}

A
&l

2kl

A=

EEEREE

LIDARE ©] &3

-
R

A" AAFE o]
dlo]E

B REYEE

/\01—

= LIDAR 7|vt <=4

S

Al

=
=

2 IR A%

AR

N

ol
Nm

=
il

o

A

ZIRke = JidE A

Ehch=s

=

s,

A

A,

Z YOLO(You Only

tl

she

A

N E=gcl

o)
=

T

BL
.
fife)

o
<
oy
%0

ﬂl
)

—_
fite)

o

JXIO

F29] : LiDAR, real—time monitoring, point cloud processing, CNN,

computer vision, object segmentation

: 2020-22094

Ll

[eig
=1

43



	1. Introduction .
	1.1 Tool monitoring in CNC machines 
	1.2 LiDAR and point cloud map.
	1.3 IR intensity application

	2. System modelling 
	2.1 End mill monitoring system overview
	2.2 Hardware setup .
	2.3 End mill failure monitoring
	2.4 YOLO setup

	3. Data processing .
	3.1 Confidence score.
	3.2 Noise removal
	3.3 Point cloud accumulation.
	3.4 IR intensity monitoring

	4. Experiments and results .
	4.1 Data gathering
	4.2 Training
	4.3 Results .

	5. Conclusion .
	Reference 
	Abstract (In Korean) 


<startpage>10
1. Introduction . 1
 1.1 Tool monitoring in CNC machines  1
 1.2 LiDAR and point cloud map. 5
 1.3 IR intensity application 7
2. System modelling  9
 2.1 End mill monitoring system overview 9
 2.2 Hardware setup . 11
 2.3 End mill failure monitoring 15
 2.4 YOLO setup 18
3. Data processing . 19
 3.1 Confidence score. 19
 3.2 Noise removal 20
 3.3 Point cloud accumulation. 22
 3.4 IR intensity monitoring 26
4. Experiments and results . 28
 4.1 Data gathering 28
 4.2 Training 30
 4.3 Results . 32
5. Conclusion . 39
Reference  41
Abstract (In Korean)  43
</body>

