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Abstract

Analysis of Sensitivity Patterns for MT Response

Functions and its Application to Inversion

Janghwan Uhm
Department of Energy Systems Engineering
The Graduate School

Seoul National University

Magnetotelluric (MT) exploration measures the electric and magnetic fields
generated by natural sources over time at the surface. The measured electromagnetic
fields are converted into various MT response functions in the frequency domain,
which are used in inversion to image subsurface structures. Inversion results are
dependent on types of model parameters and input data. There have been studies on
characteristics of multi-parameters using the sensitivity matrix in geophysical
inversion. Also, there have been studies showing that different inversion results are
obtained according to different input M T response functions. However, those studies
did not examine which factors of the MT response functions cause different inversion
results.

In this thesis, sensitivity patterns are analyzed and applied to characterize major
MT response functions (impedance tensor, apparent resistivity, phase, tipper,

effective impedance, and phase tensor) in inversion. Because the sensitivity pattern



represents changes of data in space due to a small change in a model parameter, it
represents the features of MT response functions in the inverse procedure that
matches the modeling MT responses for the model parameter vector with the
observed data. This thesis describes both 3D sensitivity patterns and 2D sensitivity
patterns on the surface where MT data are acquired. Then, a total of 22 MT response
functions are classified into six groups. MT response functions with similar surface-
sensitivity patterns (i.e., playing a similar role in inversion) are classified into the
same group. MT response functions in the different groups can have complementary
roles in inversion.

In synthetic situations for 1D, 2D, and 3D interpretation of MT data, it is
investigated how observed data and inversion results for the MT response functions
differ according to their sensitivity patterns. Through these synthetic examples, it is
demonstrated that 1) the effective impedance is optimal when considering the
dimensionality error in 1D interpretation; 2) Transverse magnetic (TM) mode MT
response functions are recommended in general 2D interpretation, but the tipper is
superior for a receiver array that cannot use data recorded right above a target 2D
structure; and 3) 3D inversion results can be improved when the impedance tensor
is selectively used in a specific case where two anomalies exist vertically. The
examples are summarized in one table that recommends the input MT response
functions for inversion in the given exploration situations.

To investigate the feasibility of applying sensitivity patterns to inversion of MT
field data, four strategies of selecting MT response functions are considered for the
field data of the Utah Frontier Observatory for Research in Geothermal Energy

(FORGE). The case study represents that the MT response functions selected from
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the sensitivity patterns can enhance inversion results. Considering the MT field
situation where receivers are widely distributed along the y-axis of the target
structure, it can be inferred that the responses of the target structure may be mainly
contained in the y-component of the tipper whose sensitivity patterns are in the shape
of two petals in the y-axis direction. The model inverted by the data selection strategy
including the y-component of the tipper clearly represents the target body. Several
error analyses indicate that the y-component of the tipper makes a significant
contribution for imaging of the target structure.

This thesis provides a guideline for selecting the optimal MT response functions

in various MT inversions using the sensitivity patterns.

Keyword: Magnetotelluric, MT response function, Sensitivity pattern, Inversion,
Utah FORGE
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Chapter 1. Introduction

1.1. Background of the study

Magnetotellurics (MT), which is one of the passive geophysical
electromagnetic methods, was independently introduced by Japanese (Rikitake
1948), Russian (Tikhonov 1950), and French (Cagniard 1953) geophysicists. The
terminology ‘magnetotellurics’ consists of two parts, ‘magneto’ and ‘telluric’, which
imply the magnetic fields and electric currents in the earth, respectively (Cagniard
1953). As can be inferred from the two words, the MT exploration measures the
electromagnetic fields at the surface generated by natural sources to estimate the
earth’s electrical properties, such as electrical resistivity or its reciprocal, electric
conductivity.

The dependence of the MT method on the natural sources brings both the pros
and cons. Because the natural sources contain low-frequency components that are
difficult to artificially generate, the MT exploration has a great depth of penetration.
On the other hand, the weak natural electromagnetic fields make the MT survey more
susceptible to noise. The interaction of the solar wind (a plasma stream ejected from
the upper atmosphere of the sun) with the ionosphere and magnetosphere around the
earth generates low-frequency components of the measured electromagnetic fields
(< 10 Hz). High-frequency components of the measured data come from some
electromagnetic energy that is generated by the worldwide thunderstorm activities
and travels bounded between the surface and the ionosphere of the earth (Chave &
Jones 2012). The natural electromagnetic fields can be assumed as plane waves

because they travel far distances before reaching the surface of the earth. Due to the
1 A
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large resistivity differences between the air and the earth, most of the natural
electromagnetic sources are reflected at the surface, while a small amount of the
energy propagates into the earth. Since the velocity of electromagnetic waves in the
conductive earth is much smaller than in the almost dielectric air, the transmitted
electromagnetic waves propagate vertically into the earth satisfying Snell’s law
(Vozoft 1972; Vozoff 1991). The MT method is based on the two important
assumptions that the natural sources are plane-polarized electromagnetic waves, and
they impinge on the earth as near-vertical incidence.

The MT method goes through four procedures: data acquisition, data processing,
imaging, and interpretation. In the data acquisition stage, five components of the
electromagnetic fields are measured over time. Two horizontal components of the
electric fields (E, and Ey) and magnetic fields in all directions (H,, Hy , and
H, ) are acquired at the surface using electrodes connected with cables and
magnetometers (e.g., induction coils and/or fluxgate magnetometers), respectively.
Especially, the remote reference method, which simultaneously acquires additional
MT data at a station remote from the main measurement site, is used to remove local
electromagnetic noises (Gamble et al. 1979; Simpson & Bahr 2005). The data
obtained by the remote reference method are utilized in the next data processing
procedure. The measured electromagnetic fields can be processed in the time domain
for better quality.

In the data processing procedure, the measured and processed electromagnetic
fields in the time domain are converted to other MT response functions in the
frequency domain. The first step of the procedure is a Fourier transform of the

electromagnetic fields from the time to the frequency domains. Next, the data in the
2] '
2 | = K
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format of the electromagnetic fields are transformed into other MT response
functions in the frequency domain (in this step remote reference data, especially the
magnetic fields, can be used). Various MT response functions such as impedance
tensor, apparent resistivity, phase, and vertical magnetic transfer function (i.e., tipper)
were introduced (Tikhonov 1950; Cagniard 1953; Cantwell 1960; Vozoff 1991;
Chave & Jones 2012). Because it is difficult to know the exact information about the
natural sources for the MT exploration, the MT response functions are defined as the
ratio of the measured electromagnetic fields, so that they are not affected by the
amplitude of the natural sources. Furthermore, to analyze subsurface features such
as dimensionality, directionality, and galvanic distortion, derived MT response
functions (e.g., inhomogeneity parameter, skew, and phase tensor) and techniques
dealing with those response functions (e.g., polar diagram, induction arrow, and
groom-bailey distortion decomposition) have also been studied (Simpson & Bahr
2005; Berdichevsky & Dmitriev 2008; Berdichevsky & Dmitriev 2010; Chave &
Jones 2012). After the data processing, the noise-removing process in the frequency
domain may be applied using the apparent resistivity curves or Nyquist diagrams
(Egbert 1997; Yang et al. 2019; Uhm et al. 2021).

For imaging the subsurface electrical properties from the processed MT data, a
number of numerical forward modeling and inversion schemes have been developed.
The representative modeling schemes are the integral equation (IE) method
(Wannamaker et al. 1984; Newman & Hohmann 1988; Wannamaker 1991), the finite
difference method (FDM) (Pek & Verner 1997; Siripunvaraporn et al. 2005b), and
the finite element method (FEM) (Nam et al. 2007; Liu et al. 2008; Ren et al. 2013).
For the inversion scheme, Constable et al. (1987) introduced Occam’s inversion that

3 Ay
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yields simple and smooth models by considering the model roughness in an objective
function, and then many studies adopted their idea to image subsurface structures
from MT data (deGroot-Hedlin & Constable 1990; Ogawa & Uchida 1996; Key
2016). A number of inversion schemes related to model constraint, data weighting,
roughness matrix, etc., (Avdeeva 2008; Abubakar et al. 2009; Usui 2015; Key 2016)
were also proposed to increase the convergence and stability of the inversion process.
In addition, after some free MT inversion software packages, such as MARE2DEM
(Key 2016), ModEM (Kelbert et al. 2014), and WSINV3DMT (Siripunvaraporn et
al. 2005b), were released, imaging technology using inversion has been conveniently
and commonly applied.

Finally, in the interpretation procedure, subsurface structures are interpreted
from an inverted model according to the purposes of MT exploration. One of the
main purposes of MT exploration is to reveal geological structures; Wei et al. (2001)
represented the crust structures of the Tibetan plateau, Becken & Ritter (2012)
studied the San Andreas Fault zone, and Naif et al. (2013) imaged the lithosphere-
asthenosphere boundary (LAB) beneath the edge of the Cocos plate at the Middle
America trench offshore of Nicaragua. Also, MT method is applied for engineering
purposes, e.g., geothermal systems (Newman et al. 2008), mineral deposits
(Farquharson & Craven 2009), and hydrocarbons (Patro 2017). Moreover, some
projects for mapping the country’s geological structures using MT data have been
conducted such as ‘SinoProbe’ that is for deep surveys in China including MT
exploration (Dong et al. 2013), ‘US Array MT data’ acquired across the continental
USA (Megbel et al. 2014), and ‘Australian Lithospheric Architecture

Magnetotelluric Project (AusLAMP)’ (Kirkby et al. 2020).
1] O 1]
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1.2. Research objective

As mentioned in Chapter 1.1, there are many MT response functions, and
inversion is the main technique for imaging subsurface structures from MT data. The
important point is that the inversion result depends on both model parameters and
input data. In geophysical methods, for multi-parameter inversion retrieving
anisotropic properties, the sensitivity matrix (i.e., Jacobian matrix) has been
investigated to analyze the characteristics of each model parameter in the inverse
problem (Ramananjaona et al. 2011; Operto et al. 2013; Oh & Alkhalifah 2016). Also,
some studies showed that inversion results rely on which MT response function is
used for the inverse process: Siripunvaraporn et al. (2005a) represented that each
component of the impedance tensor yields different inversion results; Wang et al.
(2019) and Luo et al. (2020) showed that meaningful changes occur in inverted
models when the tipper data are included; Pedersen & Engels (2005) compared
inversion results using the effective impedance with those obtained by transverse
electric (TE) or transverse magnetic (TM) mode impedance; and Patro et al. (2013)
described 3D models imaged by the impedance and phase tensors. However, unlike
the studies on different model parameters, the studies on different types of MT data
do not examine how various MT response functions affect inversion results, but
simply compare the models inverted from the MT response functions with each other.

In this study, to investigate the main characteristics of various MT response
functions for inversion, sensitivity patterns based on the Jacobian matrix are
analyzed. Then, the MT response functions are classified into several groups. The

MT response functions in the same group possess similar sensitivity patterns, and



therefore produce similar inversion results. On the other hand, the MT response
functions in other groups whose sensitivity patterns are rarely overlapped spatially
with each other can play a complementary role in the inverse procedure. Furthermore,
synthetic examples and a case study show that the MT response functions selected
from the sensitivity patterns can improve inversion results. Consequentially, this
study provides a guideline on which MT response function is better to use for

inversion according to the situation of MT exploration using their sensitivity patterns.



1.3. Outline

In Chapter 2, the theories of 3D MT modeling, 3D MT inversion, and major
MT response functions (impedance tensor, apparent resistivity, phase, tipper,
effective impedance, and phase tensor) are described. In Chapter 3, the sensitivity
patterns for the major MT response functions are presented, and their features are
analyzed. The various MT response functions are divided into six groups according
to the features of the sensitivity patterns. In Chapter 4, synthetic examples for 1D,
2D, and 3D interpretation of MT data are provided to explain how observed data and
inversion results obtained in some specific structures differ according to the
characteristics of the sensitivity patterns. Chapter 5 shows a case study establishing
a strategy to select MT response functions in consideration of the sensitivity patterns

and field environment, and examining the difference in the inverted models.



Chapter 2. Theory

2.1. 3D MT modeling

For 3D MT modeling, Maxwell’s equations are solved by numerical simulation
for a given electrical conductivity (or electrical resistivity) model with boundary
conditions. Maxwell’s equations, the numerical simulation using the edge-based
finite element method, and the boundary conditions for MT method are described in

Chapters 2.1.1, 2.1.2, and 2.1.3, respectively.

2.1.1. Maxwell’s equations

Maxwell’s equations are a set of four fundamental equations that describe
behaviors of the electromagnetic fields. Maxwell’s equations are expressed in

general differential forms as (Ward & Hohmann 1987):

Vid=p, , (2-1)
V-b=0, (2-2)
ob
Vxe=-2 2.3
* ot &3)
od .
vxh=224j 2-4
X a J (2-4)

where d and b are the electric (C/m*) and magnetic (Wb/m?) flux density,



respectively; e and h are the electric (V/m) and magnetic (A/m) fields,
respectively; p, is the electric volume charge density (C/m®); and | is the electric
current density (A/m?). V- and Vx are the divergence and curl operators,
respectively. Equations (2-1) and (2-2) are Gauss’s law for electricity and
magnetism, respectively; equation (2-3) is Faraday’s law; and equation (2-4) is
Ampeére-Maxwell’s law.

Maxwell’s equations in the frequency domain with the time convention gt

(where @ 1is the angular frequency) can be written as:

V-D=p, , (2-5)
V-B=0 , (2-6)
VxE=-iowB , (2-7)
VxH=iwD+J , (2-8)

where D and B are the electric and magnetic flux density in the frequency
domain, respectively; E and H are the electric and magnetic fields in the
frequency domain, respectively; and J is the electric current density in the
frequency domain. In order to express Maxwell’s equations only with E and H,
the constitutive relations describing the macroscopic properties of the medium are

considered (Ward & Hohmann 1987), which are written below:



J=cE , (2-11)

where ¢, u , and o are the dielectric permittivity (F/m), the magnetic
permeability (H/m), and the electrical conductivity (S/m), respectively.

The third and fourth formulae (equations 2-7 and 2-8) depict the propagation of
the electric and magnetic fields. Introducing the constitutive relations (equations 2-

9 to 2-11), equations (2-7) and (2-8) can be rearranged as follows:

VxE=—-iouH , (2-12)

VxH=(iwe+0)E . (2-13)

Among the material properties of &, g ,and o inequations (2-12) and (2-13),
the effect of dielectric permittivity ( & ) is negligible because we < o in the
frequency range of MT exploration (about 10 ~ 105 Hz). This means that in the
periods of MT survey (about 10 ~ 10* s), the electric displacement current density
(0d/ot in equation 2-4) can be ignored, i.e., the quasi-static approximation can be
adopted in the MT method. Variations in the magnetic permeability ( £ ) of rocks can
be also neglected compared with variations in the conductivity (o ) of bulk rocks.
Therefore, p is assumed as a constant of the magnetic permeability at the free
space (4, = 47x107" H/m) (Chave & Jones 2012). Substituting equation (2-13)
into the curl of equation (2-12) leads to the governing equation of 3D MT modeling
consisting of only the electric fields (i.e., the vector Helmholtz equation of E ) with
the single variable of the electrical conductivity (& ), which can be expressed as

follows:
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VxVxE+iou,cE=0 . (2-14)

By using vector identity and assuming V-e=0 inside the earth, equation (2-14)

can be rewritten in the time domain as follows:

VxVxe:V(V-e)—Vze:—Vze:—yoa% , (2-15)

oe
Ve=uoc— , 2-16
Hy ot (2-16)

where V? is the vector Laplacian operator. Because equation (2-16) is in the form
of a diffusion equation, the electromagnetic waves generated from the MT sources
diffuse in the earth and dissipate exponentially.

A skin depth is defined as the depth at which the amplitude of the
electromagnetic fields decays to 1/e ~37% of the amplitude at the surface in a
homogeneous half-space medium (Chave & Jones 2012). In such a medium, there
are no vertical components of the electromagnetic fields (i.e, E,=0 and
H,=0), and only E, and H, (or E, and H,) are relevant that only vary
with depth (i.e., OE/0x=0, O0H/0x=0, OE/0y=0, and 0H/0y=0).

Considering these conditions, equation (2-14) can be written as follows:

2

aTEzX =iwu,cE, . (2-17)

Because there is no resistivity interface in the homogeneous half-space medium (i.c.,
there is no reflection), the elementary solution of equation (2-17) can be written as

b i 211
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follows:

E, = Aexp(—kz); k =\/iouo | (2-18)

k=\llog,oc =a+ia; a:,’w‘u—zoo- , (2-19)

- E, = Aexp(-az)exp(—iaz) . (2-20)

In equation (2-20), the term of exp(—az) represents the amplitude attenuation,
while the term of eXp(—iaZ) describes the harmonic motion. According to the

definition of the skin depth & (m), the following formula must be satisfied:

exp(—ad)

= -1) . -
X0 (0) exp(-1) (2-21)

If equation (2-21) is rearranged, the skin depth for MT survey is calculated as

follows:

1 2p P
=== ~503 f— , 222
a \/(271'f)(47r><107) f ( )

where f isthefrequency (Hz);and p is the electrical resistivity (2 m). The skin
depth is an important factor in MT method because it implies the penetration depth

of the electromagnetic waves.
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2.1.2. Edge-based finite element method

There are various ways to find numerical solutions of equation (2-14) derived
from Maxwell’s equations for a given 3D electrical conductivity model. Initially the
integral equation (IE) approach (Wannamaker et al. 1984; Newman & Hohmann
1988; Wannamaker 1991) was applied. The IE approach requires a small number of
unknowns, but is restricted to simple background models (Farquharson &
Miensopust 2011). As computational technology has advanced, the finite difference
method (FDM) or the finite element method (FEM) has been widely used for
complex 3D models. However, numerical solutions obtained by the FDM that
discretizes models with strong topography in stair-stepped grids may be incorrect in
narrow period bands (Miiller & Haak 2004). The FEM can be an appropriate method
to incorporate topography (Nam et al. 2007; Ren et al. 2013; Usui 2015) and is used
in this study.

The FEM is a practical technique for obtaining approximate solutions by
numerically solving the partial differential equations by subdividing an entire
domain into small and simple local elements. The solution of the governing equation
is approximated by a linear combination of shape functions defined within each
element. By assembling the governing equation for each local element into the entire
computational domain, a global matrix equation is constructed. By solving this
matrix equation, the approximate solution for the entire domain can be obtained. The
characteristics of the FEM vary depending on which shape function is used. Shape
functions of the edge-based FEM are vector basis that assigns degrees of freedom to

the edges of each element (Whitney 1957; Nédélec 1980). Therefore, the edge-based
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13 AT g



FEM approximates the electric fields at an arbitrary position within the local element

as follows:

E°=> E® , (2-23)

j
=1

ES :LjE'dl , (2-24)

where E° is the electric fields in the element; E? is a scalar coefficient defined
at the j-th edge; (I)? is the vector shape function associated with the j-th edge;

n is the number of edges of the element; and | ; represents the length of the /-

edge
th edge.
The vector shape function of the edge-based FEM has two important features.

The first feature is that V'(I)? =0 in the local element (Jin 2002). Because this

feature leads to the formula as below:

V-E°=) E V- @5 =0, (2-25)

i=1

the edge-based FEM makes the divergence-free condition of the electric field (i.e.,
V-E =0) satisfied in the earth. Another feature is that at any position on a surface
of the local element, the tangential components exist only in the shape functions
associated with the edges constituting the surface. In other words, even if the
tangential electric fields on the surface are calculated at two adjacent elements, they

are identically expressed as the linear combination of the shape functions and the

b i 211
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scalar coefficients related to the edges constituting the surface (Jin 2002). Therefore,
the edge-based FEM naturally satisfies one of the boundary conditions that the
tangential component of the electric fields must be continuous at the interface.
Because of these two features of the vector shape function, the edge-based FEM is
advantageous for avoiding the spurious solutions (Webb 1993; Jin 2002). In this
thesis, the edge-based FEM with the direct solver (Chung et al. 2014; Usui 2015) is
adopted to simulate the electric fields in the MT method.

To derive the variational formula of the FEM for the governing equation (2-14),
the Galerkin’s method (one of the weighted residual methods) is used, and its

residual (1) is defined as follows:

r=VxVxE+iou,cE . (2-26)

In this method, the shape functions are applied as a weighting, and the coefficients
for the shape functions are obtained to minimize the variational formula (the dot
product of the residual and the weighting) for the entire domain. Thus, the variational

formula for the Galerkin’s method is defined as follows:

Ne nedge

> raidv=o, (2-27)

e=1 i=1 ¢

where N, is the total number of elements; and €, is the volume of the each local
element. Substituting the residual (equation 2-26) into the integral term of the

variational formula (equation 2-27) yields
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Iger-(l)de: IQe(VXVXE)-(D?dV+ eria)uan-cpfdv . (228)

From the vector calculus identity, (V X a) ‘b=V- (a X b) +a- (V X b) where
a=VxE and b=®:, the first term on the right-hand side of equation (2-28) is

rearranged as follows:

J.QE(VXVXE)-(I)?dV :jﬂev-{(vXE)xmf}dv +J.QE(V><E)-(V><<I)§’)dV

(2-29)

If the divergence theorem is applied to the first term on the right-hand side of

equation (2-29), it can be written as follows:

L VA(VXE)x@idv =¢ n-{(VxE)x®jds . (2:30)

0Q,

;and N is a unit

where 0Q, is the surface surrounding the local element Q,;

normal vector pointing outward of €2, on the surface. When the local variational
formula of each element is assembled into the entire domain following equation
(2-27), values for the right-hand side of equation (2-30) are canceled out between
the elements sharing the same surface except for the values at the boundaries of the
computational domain. However, the remaining values do not need to be considered
when the Dirichlet boundary condition is applied to MT modeling. Considering

equations (2-29) and (2-30), equation (2-28) is rearranged as follows:
jge r-@dv = jge (VXE)-(Vx®;)dV +er iou,cE-®dV . (2-31)
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By substituting equation (2-23) into equation (2-31) and rearranging equation

(2-27), the equation containing the scalar coefficient ( EJ? ) can be written as follows:

Ne nedge nedge

> 2D {(K; +iomoM;)Es} =0 (2-32)

e=1| i=l j=1

where

Ki=[ (Vx®)-(Vx®;)dv , (2-33)

M; =] @ -@5dv . (2-34)

Ki? and M i? are the components of the elementary stiffness and mass matrices,
respectively. By assembling the elementary stiffness and mass matrices over the
entire domain using the global edge number, equation (2-32) can be expressed as

the following global matrix equation:

Ax=0 |, (2-35)

where A g [RNes*Nese (N is the total number of edges for the entire elements)

edge
is the coefficient matrix; and X e R"* is the unknown vector composed of the
scalar coefficients ( E, ) following the order of edges for the whole elements.
Because Ki=K; and M;=M7] in equations (2-33) and (2-34), the

coefficient matrix (A ) consisting of the elementary stiffness and mass matrices is

symmetric. An appropriate source vector for the right-hand side of equation (2-35)

" R
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is derived when the Dirichlet boundary condition is considered (will be described in
the next section).

In this study, tetrahedral or structured hexahedral elements are used to discretize
the entire 3D model, and their shape functions, curl of shape functions, elementary
stiffness matrix, and elementary mass matrix required for 3D MT modeling are

described in Appendix A.

2.1.3. Boundary conditions

The source term in the matrix equation (2-35) is generated by applying the
Dirichlet boundary condition to the boundaries of the 3D model. Generally, the
Cartesian coordinate system is applied and the entire 3D model is assumed as a
cuboid for 3D MT modeling. It is also assumed that the boundaries of the
computational domain are sufficiently far away from the domain of interest so that
the structures within the target area do not affect the electric fields at the boundaries.
At the boundaries of the 3D model, the tangential components of the electric field at

the interface should be continuous:

nxE=nxE, , (2-36)
where N is a normal unit vector pointing outward the boundary; OC is the
outermost boundary of the 3D model; and E,, is the electric fields at the boundary.
By dividing the boundaries of the coboid 3D model into top, bottom, and side

boundaries, equation (2-36) can be considered as follows:
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nxE=nxE,, atthe top boundary , (2-37)
nxE=nxE,, atthe bottom boundary , (2-38)
nxE=nxE,, at the side boundaries . (2-39)

For 3D MT modeling, the electromagnetic fields generated from perpendicularly
incident plane waves polarized in x- and y-directions are required. The boundary
conditions of equations (2-37) to (2-39) depend on the direction in which the source
is polarized.

For the E, source, also called xy-polarization (Nam et al. 2007),
Erp =(10,0) inequation (2-37) and Eg, =0 inequation (2-38) considering
the sufficiently deep bottom boundary (at least 3 times of the maximum skin depth).
In the two yz-planes whose strike direction is parallel to the x-axis among the side
boundaries for E,; inequation (2-39),the E, source is equivalent to TE mode,

and NxE,;, =0 because only E,, H , and H, components exist in the TE

X 2
mode (McNeill and Labson, 1991) and the direction of the normal vector (N) is the
x-axis. On the other hand, the two xz-planes have the strike along the y-axis, which

is perpendicular to the E, source (i.e., TM mode). In this TM mode, E,, E,,and

X

Hy components only exist (McNeill and Labson, 1991) and the direction of the
normal vector (N ) is the y-axis, therefore NxE,; #0 and E,; should be
calculated through 2D MT modeling with 2D elements extracted from the 3D

elements at the boundaries of the two xz-planes. Similar to 3D MT modeling, the

governing equation and the boundary conditions for 2D MT modeling are as follows:
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V,xV, xE,p +iou,cE,; =0 , (2-40)

NxE,, =NxE,,,, atthe 2D top boundary , (2-41)
NxE,, =nxE,q,, atthe 2D bottom boundary , (2-42)
nxE,, =nxE,, at the side boundaries , (2-43)

where V, is the transverse del operator. The transverse del operator at the xz-plane

is (0/ox,0/0y=0,0/0z) . Esorop = Erop =(1,0,0) and E,pp, =Eg, =0 in
equations (2-41) and (2-42), respectively. The direction of the vector (N ) at the side
of the xz-plane is the x-axis, and E,; includes only E, component for the E,
source, thus NxE;; =0 in equation (2-43). At the xz-plane side boundaries for
the E, source, E,, is obtained by solving a matrix equation based on equation
(2-40) with the Dirichlet boundary conditions (equations from 2-41 to 2-43) and it
is applied in equation (2-39).

Similarly, for the Ey source also called yx-polarization (Nam et al. 2007),
Erop =(0,1,0) in equation (2-37); Eg, =0 in equation (2-38); nxE,, =0
at the xz-plane side boundaries in equation (2-39); and E,; at the yz-plane side
boundaries in equation (2-39) is calculated through the 2D MT modeling.

The electric fields in equations (2-37) to (2-39) are projected along each edge
of the elements at the boundaries. Then, the Dirichlet boundary conditions are
applied to make the projected value be a solution of the unknown scalar coefficient

(E, in equation 2-35). When the Dirichlet boundary conditions are applied to

equation (2-35), both the coefficient matrix (A ) and the vector on the right-hand
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side are modified. As an example of equation (2-35), the 3 by 3 matrix equation

before applying the boundary condition can be expressed as follows:

A, A, A||E| |0
Ay A, Ag||E |=|0] . (2-44)
Ay A, AgllE 0

When the Dirichlet boundary condition (E, = E,) is applied, the matrix equation

(2-44) are transformed as follows:

1 0 O01E E,
0 Azz Azs Ez = _A21Es . (2-45)
0 A32 A33 Es _A31Es

As in equations (2-44) and (2-45), the modified matrix equation can be obtained
by incorporating the Dirichlet boundary conditions (equations 2-37 to 2-39) into

equation (2-35):

Ax=b , (2-46)

where AeR"™* ™ i the modified coefficient matrix; and be R"* s the
modified vector serving as a source term. In this study, because the modified
coefficient matrix (A) is a symmetric sparse matrix, the matrix equation (2-46) is
solved by PARDISO contained in Intel MKL, which is one of the sparse direct
solvers.

Finally, the electric and magnetic fields at the receivers are obtained through
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the scalar coefficients ( E, ) solved by equation (2-46) with equations (2-23) and

(2-12), which are expressed as follows:

nedge

E(r,)- Y E70 (1) | @)
i=1
) S v e

where r; and I, are the location of the receiver in the global coordinates and
corresponding local coordinates of the element, respectively; and €, is the element
that contains the location of the receiver. If the electromagnetic fields in the receivers
are defined as a vector ueR™ where N, is the number of data, it can be
represented by the following relation using the solution vector ( X ) in equation (2-46)

(Heo 2022):

u="~Px , (2-49)

where P e R™ ™ s the projection matrix based on equations (2-47) and (2-48).
Then, the electromagnetic fields at the receivers can be converted into various MT

response functions (discussed in detail in Chapter 2.3).
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2.2. 3D MT inversion

MT modeling is a technique for calculating MT responses from a given model
parameter vector, while MT inversion is a technique for creating a subsurface model
from given MT data. In other words, MT inversion is a process of finding such a
model parameter vector that its modeling results fit well with the observed data.
Therefore, the relationship between the model parameter vector, m e R™ where
n, is the number of model parameters, and the modelled data d(m) eR™ is

important. It is expressed by the following Jacobian matrix (J € R™*™) (Nocedal

& Wright 2006):

J(m)=——= . (2-50)

The model parameter vector and the modelled data are not in a linear relationship.
To solve the nonlinear inverse problem in an iterative manner, the Gauss-Newton
method, which is one of the Newton-type optimization methods assuming the
linearity based on the Taylor series, has been widely used (Constable et al. 1987;
Zhdanov 2002; Sasaki 2004). Especially, Occam’s inversion proposed by Constable
etal. (1987) yields smoothly inverted models by introducing the roughness of a given
model in an objective function. Many studies adopted Occam’s inversion scheme to
stabilize and improve the inverse process. In this study, the inversion algorithm based

on Occam’s inversion is also adopted.
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2.2.1. Occam’s inversion with the Gauss-Newton method

Inversion is an optimization problem finding a model that minimizes the
objective function (or the cost function) based on the difference between observed
data and modeling results. The objective function O(m)eR of Occam’s
inversion consists of the data misfit O, (m)eR and the model roughness

O, (m)eR as follows:

O(m)=0,(m)+10,(m) , (2-51)

where A € R is the Lagrange multiplier. If the data misfit and the model roughness

are defined using the />-norms, equation (2-51) can be rewritten as follows:

o(m)= {Zf:”wf (dy o 0, (m))HZ}+ﬂb||Rm||2 , (2-52)

where nf is the number of frequencies; W, € R™™ is a diagonal weighting
matrix for each frequency; d; , € R™ and d; (m) €R"™ are the observed and
modelled data for each frequency, respectively; and R € R™"™ is the roughness
matrix. For the Newton-type optimization method, the second-order Taylor
expansion of the objective function around m, € R™, which is a model parameter
vector at the k-th iteration (set an initial model parameter vector to m,), is

developed as follows:

O(m, +Am,)~O(m, )+g"'Am, +%Aka HAm, , (2-53)
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where Am, € R™ is the increments vector at the k-th iteration. ¢ € R™ and
HeR™"™ are the gradient vector and Hessian matrix of O(m), respectively.
Because the right-hand side of equation (2-53) is in the form of a convex function
for Am,, its minimum can be found with the condition that the partial derivative
is zero as follows:

o0(m, +Am,)
oAm,

=0 . (2-54)

Substituting m, + Am, into equation (2-52) yields:

O(m,+Am,)

. (2-55
:{ZHWf (dfvobs—df(mk+Amk))H2}+ﬂ,HR(mk+Amk)H2 (&55)

For the Gauss-Newton method, it is assumed that d, (mk) has a linear

relationship with m,  for small Am, , which is expressed by

d, (m,+Am,)~d, (m,)+J,Am, , (2-56)

and the difference between the observed and modelled data (e, € R™ ) is defined as

follows:

€ :df,obs_df(mk) . (2-57)

Using equations (2-56) and (2-57), equation (2-55) is rearranged as follows:
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o(m, +Am, )= {ZHWf (e,-J fAmk)H2}+/IHR(mk +Amk)H2 :

(2-58)

Substituting equation (2-58) into the condition (2-54), the formula is written as

follows:
—22[(Wf3f ) (W, (e, —JfAmk)}J+2/1RTR(mk +AM,)=0 .
nf
(2-59)

If equation (2-59) is rearranged with Am, , the normal equation is derived as

follows:

nf nf

HZ(WfJf ) WfJf}+ﬂRTR:|Amk =3 (W,3,) W,e, —2R'Rm,.

(2-60)

In equation (2-60), the Hessian matrix and negative gradient vector are expressed

by

H :Hz(waf)T WfJf}+/1RTR:| : (2-61)

nf

~9=Y(W,J,) We, ~AR"Rm, . (2-62)
nf

respectively. To be precise, double of the right-hand side of equations (2-61) and

(2-62) are the Hessian and negative gradient of O (m) , respectively, and the right-
1] €
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hand side of equation (2-61) is an approximated Hessian matrix of O (m) The
approximated Hessian for the Gauss-Newton method is caused by the assumption of
equation (2-56). The model parameter vector can be iteratively updated during the

inversion process through the normal equation.

2

B

Equations (2-52) to (2-60) describe the ‘jumping’ method that uses ||Rm

. 2
whereas the ‘creeping’ method uses ||RAm|| as the model roughness term.
O, (mk +Amk) , which is the objective function for m, + Am,, and the normal

equation of the creeping method are defined as follows:

o, (m, +Am,) ={ZHWf (dy, o —d; (M, +Amk))uz}+,1||RAmk”2 :

(2-63)

nf nf

HZ(WfJf)TWfJf}MRTR}Amk:Z(WfJf)Terf . (2-64)

2.2.2. Jacobian matrix

As can be seen from the normal equations (2-60) and (2-64), the Jacobian
matrix plays a key role in the inversion procedure. Furthermore, because
constructing the Jacobian matrix involves the time-consuming process of solving the
modified coefficient matrix equation (2-46) several times, it is important to calculate
the Jacobian matrix efficiently in inversion algorithms. In this section, the Jacobian

matrix (Jgy ¢ € R™*™ ) for the model parameter vector consisting of the electrical
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conductivity (6 € R™ ) and the electromagnetic fields at the receivers (u, in
equation 2-49) for each frequency is defined as:

3 _ ouy
EH,f aG .

(2-65)
There are three main methods of calculating the Jacobian matrix: the perturbation,
sensitivity-equation, and adjoint-equation approaches (McGillivray & Oldenburg
1990; McGillivray et al. 1994). In this study, the perturbation approach is used when
calculating sensitivity patterns, and the sensitivity-equation approach is used in the
inversion algorithm.
In the perturbation approach, the i-th row and the j-th column of the Jacobian
matrix in equation (2-65) is obtained through the following formula:
.. Ou. .(6) Au,. U (6+Ac;)-U; (o
Jen ¢ (1, 1) = a(0) By Uri(7+00,) 700, (0 . (2:66)

GO'J- AO'J- Aaj

where U, ; is the i-th component of U;; o is the j-th component of ¢; and
Ac; is the model parameter vector whose j-th component only has a non-zero value
Ac; . To obtain all the components of the Jacobian matrix through the perturbation
approach, U, (6+A6 j) from j=1 to j=n, (n,: the number of model
parameters) and U, (6) are required, therefore atotal of N, +1 times of modeling
for each frequency should be performed.

In the sensitivity-equation approach, the Jacobian matrix is constructed using

the matrices of equations (2-46) and (2-49), which are calculated during the
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modeling process. Substituting the relation of equation (2-49) into equation (2-65),

the Jacobian matrix is arranged as follows:

OX
Jent =P a—f . (2-67)
(g

Taking the partial derivative with respect to 6 in equation (2-46) yields

oA, . ox, b,
X +Af —=—— . (2-68)
0o 0o 0o

From equation (2-32), ﬁAf / 06 in equation (2-68) for the i-th element is defined
as follows:
oA

f _ ia)lqui—th element ) (2-69)
oo,

i
Mithelement o o NeieNesoe - hag non-zero values only in rows and columns of the global
edge numbers constituting the i-th element, and the values are the elementary mass
matrix (equation 2-34) of the corresponding local edge numbers. Because of the
Dirichlet boundary conditions, the components of 8Af / 0o corresponding to the
edges at the boundary of the model are zero, and the right-hand side of equation
(2-68) is 0. Therefore, the partial derivative of X, with respectto 6 is written

as follows:




The Jacobian matrix is represented by substituting equation (2-70) into equation

(2-67) as follows:

_ . oA
e =P (A)) 1(— fxf] . (2-71)
‘ oo

From equation (2-71), the transpose of the Jacobian matrix is defined as follows:

(e ) {—aif XfJT (B} ) @7

Because A, is symmetric, equation (2-72) is rearranged as follows:

T oA ' . - T
(Jenr) :(— 86f fo (Af)l(Pf) . (2-73)

In equation (2-73), since the number of columns of (Pf )T is Ny (i.e., the number
of data), a total of N, times of modeling for each frequency is required to construct
the Jacobian matrix by the sensitivity-equation approach. In inversion algorithms,
the sensitivity-equation approach is more efficient than the perturbation approach,

because N, is generally much smaller than n +1.

2.2.3. Techniques for inversion

In this section, some techniques to improve the efficiency, stability, and quality

of inversion are described. Blocky parameterization, model parameterization, data
o
]
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weighting method, roughness matrix, Lagrange multiplier, and line search technique
are explained in Chapters 2.2.3.1 to 2.2.3.6, respectively. Considering the normal
equation (equation 2-60 or 2-64), the blocky parameterization and model
parameterization are related to J - Am, ,and M, ; the data weighting method is
about W, ; the roughness matrix is related to constructing R ; the Lagrange
multiplier is related to setting A ; and the line search technique is for determining a

step length of Am, .

2.2.3.1. Blocky parameterization

Because MT exploration applies a diffusion equation with a relatively low
frequency, the spatial resolution of the inverted model is not high. Therefore, to
improve the computational efficiency and obtain stable inversion results, a blocky
parameterization technique (Shin et al. 1999) of merging several modeling elements
into an inversion block is used in MT inversion. The relationship between the model
parameter vectors composed of the electrical conductivity for the modeling elements

(Ooq € R ) and the inversion blocks (6, € R™e=* ) can be defined as follows:

6ot = MiGpe (2-74)

mo

Gpoex = M,6 (2-75)

mod
where M, € R"*™« and M, € R™*™ are the mapping matrices (N, and
Ny are the numbers of modeling elements and inversion blocks, respectively). In

this study, the modeling and inversion meshes are constructed with generally small
§ ¥
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and large elements, respectively, and the inversion blocks to be practically used for
inversion are constructed by merging modeling elements whose centers belong to
identical inversion elements. Therefore, if the i-th modeling element (1<1< N, ) is
included in the j-th inversion block ( 1<j<n,. ), M, (i,j)=1 and
M, (j, i)=V,

i-th modeling element /Vj-th inversion block

otherwise M, (i, j)=0 and
I\_/I2 ( J, i) =0. Fig. 2.1 shows a modeling mesh composed of triangular elements,
an inversion mesh composed of rectangular elements, and an example of making

inversion blocks with the modeling and inversion meshes.

(a) (b)

(©) (d)

)

Fig. 2.1. Example for blocky parameterization: (a) modeling mesh, (b) inversion

mesh, (c) inversion mesh superimposed on the modeling elements, and (d) inversion

blocks.
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Constructing inversion blocks based on this standard has the advantages that
the resolution of the surface topography in the modeling mesh can be preserved in
the inversion blocks and there is a high degree of freedom in setting the inversion

mesh. Furthermore, the Jacobian matrix for the inversion blocks (J,,, € R™ ™= )

blocl

can be easily calculated from the Jacobian matrix for the modeling elements

(Joq € R"™ ) with the mapping matrix in equation (2-74) as follows:

Jblock = ‘]mod '\7'1 : (2_76)

As a result of equation (2-76), the number of columns of the Jacobian matrix is
greatly reduced from the number of columns of J. ., (N,) to the number of
columns of J, ., (Nyoe )- In other words, the size of the matrix to be solved in the

normal equation greatly decreases.

2.2.3.2. Model parameterization

In this thesis, a model parameterization refers to a method of using a
parameterized variable instead of the electrical conductivity as a component of the
model parameter vector in the inverse process. The model parameterization allows
the model parameter vector to have an appropriate updating scale, and makes the
electrical conductivity to be bounded to the geophysical range. Therefore, the
inversion procedure can be stabilized and the prior information can be considered

through the model parameterization.
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The electrical conductivity of subsurface media has a large range about 10~ ~
10! S/m, and the subsurface model is usually represented by the electrical resistivity
(10"~ 10° Q m) on the logarithmic scale. Therefore, the electrical conductivity is

first parameterized as the electrical resistivity on the logarithmic scale as follows:

1
r =log, (p)=log, (;j =—log,, (o) . (2-77)

Through the conversion in equation (2-77), the electrical conductivity is updated on
the appropriate logarithmic scale.

An additional parameter is required to constrain the variable I within the
lower bound | and the upper bound U (ie., 10" <o <10™) in the process of
updating the model parameter vector. The variable I' can be parameterized to

m through the formula defined as follows (Kim & Kim 2008):

para

P n u—=r —0<mM <o

para

1 (r_|j I<r<u
m_==In| — |; , (2-78)

where N is a positive constant. The following formulae are used to convert M, .

to l and I to o:

r_I+uexp(n-mpara)

 Leexp(nmy,,) e

oc=10" . (2-80)
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The Jacobian matrix for the model parameter vector M, € R™*  which is

composed of M in the inversion blocks, is computed as follows:

para

ou, _ﬁufa_c or
om 06 Or om

para para

3, = (2-81)

where 6 € R™* and reR™* arethe model parameter vectors composed of I
and o in the inversion blocks, respectively. OU / 06 in the right-hand side of
equation (2-81) can be computed by equations (2-73) and (2-76). From equations

(2-77) to (2-80), the partial derivative of o with respect to I and the partial

derivative of I' with respectto M, can be calculated as follows:
oo
P In(10)-0 , (2-82)

or _ n(u_l)exp(n'mpara) (2-83)

OMpara {1+ exp(n-m,,, )}2

Key (2016) proposed the band pass filter transfer function to constrain I

between the two bounds (i.e., | and U), and the model parameterization from I
to M, is defined as follows:
1 expic(r—1);—1 l<r<u
Mera == 1IN p{ ( )} +1; , (2-84)
¢ |1-exp{c(r-u)} =00 <My <O

1+exp{c(| —mpara)}

1+exp{c(u—mpara)}
35 A - A

1
r==In +U , (2-85)
c



or 1- exp{c(l u)}

om. [1+ exp{—C(mpara [HEXP{ (Myere —u)}}

(2-86)

The positive constant C is used as 15/ (u—l) in his paper. This model

parameterization makes I' and parameterized M, have similar values between

| and U so that GI‘/ om scaling the Jacobian matrix (equation 2-81) is close

para

to 1, and the roughness values of I and M are considered similarly. Examples

para
for the two schemes of the model parameterization (equations 2-78 and 2-84) in Fig.

2.2 show the features for the model parameterization using the band pass filter

transfer function.
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(a)

(b)
10'
or 0
10 —
ampam /—_
10
-1 5
mpam
Model parameterization __ Model parameterization
(Kim & Kim 2008) (Key 2016)

Fig. 2.2. Examples for (a) model parameterization from I to M. and (b)

6!‘/ om when the lower bound (l) is -1 and the upper bound (U ) is 5. The red

para

lines are for equations (2-78) and (2-83) with n=1 (Kim & Kim 2008) and the

blue lines are for equations (2-84) and (2-86) with ¢=15/ (u — |) (Key 2016).
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2.2.3.3. Data weighting matrix

It is possible to adjust the influence of data according to the receivers and
frequencies on the inversion procedure by making the N, by N, diagonal data
weighting matrix for each frequency. Therefore, the components of the data
weighting matrix should be basically set according to the reliability of the data. The
data weighting matrix can also play a role in balancing the magnitude of the data for
stations and frequencies.

The standard deviation of the observed data, which can be obtained in the
process of converting data in the time to the frequency domains, is most commonly
used in the data weighting techniques (Constable et al. 1987; Sasaki 2004; Key 2016).
The i-th component of the data weighting matrix for each frequency, W, (i, i) , 18

defined as follows using the inverse of the standard deviation of the data:

W, (i,i):i; i=1l~n, , (2-87)

where S; ; is the standard deviation of the i-th data at the frequency. When the data
weighting matrix of equation (2-87) is applied, the weighted data misfit is calculated

as follows:

2
[Wie, | = Z(ef—} , (2-88)

i1\ St

where €; ; is the i-th data of €. The data weighting matrix of equation (2-87)

has the effect of increasing the influence of data with a small standard deviation (i.e.,
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high reliability) and decreasing the influence of data with a large standard deviation
(i-e., low reliability). Moreover, assuming that the noise included in the data follows
the Gaussian distribution, this method has an advantage that the normalized data
misfit should converge to 1 in the inverse problem. However, the weighting
technique using the standard deviation does not reflect the results of post-processing
for data in the frequency domain (Uhm et al. 2021). Also, this technique does not
fully consider the magnitude of data for each frequency.

The Jacobian matrix can be used to construct the data weighting matrix.
‘Jacobian weighting’ proposed by Abubakar et al. (2009) simply corrects the
magnitude of data for frequencies and types of MT response functions. Through the

Jacobian matrix of the initial model J the data weighting matrix is defined as

f _init »

follows:

1

W, = {diag (‘] f_initJf_initT )} . (2-89)

A weighting technique proposed by Avdeeva (2008) is a method for applying
an impedance tensor as an input MT response function to inversion. The weighting

matrix is defined as follows:

.. 2 .
W, (i,i)= ci=1~n, , 2-90
f (I I) \/tr(zobs, iT Zobs, i ) | ’ ( )

where Z is the observed impedance tensor at the receiver of the i-th data; and

obs, i

tl’(-) is the trace of the matrix. This weighting technique of equation (2-90)

balances the contributions to the magnitude of the data over receivers.
T 1]
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Through a weighting technique, it is possible to exclude some data of specific
receivers and frequencies from the inversion process. For example, if do not want to
use the data of the a-th station and the b-th frequency for inversion, the weighting

matrix can be set as follows:

W, (i,i)=% i=1~ny, j=1~nf
. o . (2-91)
W,_(i,i)=0; if i=aandj=b

=]

Another weighting technique proposed by Abubakar et al. (2009) is applied

after making W, by the methods mentioned above. For each frequency, the

norm

constant weighting factor (W, ) is defined as follows:

1
W, "o = . (2-92)
il

Then, W,™™-W, is used as the data weighting matrix. This method not only
balances the contribution of data over frequencies, but also corrects the differences
in the number of observed data used for inversion over frequencies.

Basically, it is good to use the weighting technique using the standard deviation
of equation (2-87). However, if bad data are excluded and the remaining data are
reliable after the frequency-domain post-processing for data, it is also a good strategy

to construct the data weighting matrix using equations (2-90) to (2-92) together.
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2.2.3.4. Roughness matrix

The roughness of the model is the contrary concept of the smoothness of the
model, and literally quantifies how roughly the model changes. In the inversion
process, the roughness of model parameter vector M € R™** composed of M

para

in the inversion blocks is expressed as follows:

0, (m)=|Rm|* , (2-93)

where R e R™=" ™ s the roughness matrix. The roughness varies depending on
the standard for making the roughness matrix and the norm to measure the value of
Rm . In this study, the roughness matrix R is set based on the second derivatives
and Rm is measured using the />-norm.

In MT inversion, adding the roughness of the model to the objective function
(equation 2-51) prevents the model roughness value from being too large, which
means applying a smoothness constraint that makes the inverted model parameter
vector change smoothly in the model domain. Moreover, the roughness term plays a
role in alleviating the non-uniqueness problem of inversion. The number of model
parameters is generally greater than the number of data, and some components of the
model parameter vector have little effect on the data (e.g., the components around
the boundary of the deep subsurface). Therefore, an (WfJf )T W,J, in the
Hessian matrix (equation 2-61) is a singular matrix, which does not have the inverse

matrix, and it leads to the non-uniqueness problem of inversion. The roughness

matrix contributes to mitigating the non-uniqueness problem and stabilizes the

b i 211
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inverse process, because the Hessian matrix becomes non-singular as AR'R is
T
addedto Y (W,J,) W,J, .
For the inversion blocks of the structured hexahedral elements, the spatial
change of the i-th inversion block (M, ) is defined as follows by the finite difference

equation of the second derivative:

m®+m" +m? +m- +mP° +m’ —6m,

o’m 5 L (2-94)

where miB , miF, m.R, m-, miD, and miU are the inversion blocks located at

back, front, right, left, down, and up side of the central i-th inversion block m;,

respectively. Therefore, the roughness of equation (2-93) is obtained by considering

equation (2-94) to all inversion blocks as follows:

Notock [ i B F R L D u_ 2
Om(m):||Rm||2:Z[mi +m" +m +mé +mP +m 6miJ (295)
i=1

The components of the roughness matrix in equation (2-95) are R; =—1 where

=1~ Ny ; Rij:]/6;je{jBij:jR:jL:jD,jU} where m?, m’, m,

m-, m®, and m’ are the j®, j°, j%, j", j°,and j" -th inversion

1 1
blocks; and the rest of the components are 0.

Similar to equation (2-94), for the inversion blocks of the unstructured

tetrahedral elements, 0°’m. and O, (m) are defined as follows (Usui 2015):

1 NEace
o'm ~—— > (m-m) , (2-96)
Face J=1



Mlock NFace ?
0, (m)=|Rm|’ = Z{Nil > (m—m, )} : (2-97)

i=1 Face j=1

where N!

Face 18 the total number of faces of the i-th inversion block. The roughness

matrix can also be constructed in the same way:.

2.2.3.5. Lagrange multiplier

As can be seen in equation (2-51), the Lagrange multiplier A determines a
trade-off between the terms of the data misfit Oy (M) and roughness O, (m). If
A 1is too large, the contribution of O (m) increases, and the observed data are
not properly considered in the inversion result. If A is too small, the contribution
of O, (M) decreases, and the inverse problem becomes unstable.

The L-curve is conventionally used to determine the Lagrange multiplier A
(Hansen 1992; Farquharson & Oldenburg 2004). To plot the L-curve, several
O, (m) and O, ( m) according to the Lagrange multiplier should be calculated
within the range p,;, <A <7, Where y.., and ., are the smallest and
biggest generalized singular values of the Hessian matrix, respectively. The graph
for the pairs (O, (m), 0, (m)) on the logarithmic-logarithmic scales has an L-
shape, which is called the L-curve, and A corresponding to the corner of the L-
curve is used. However, drawing the L-curve requires too much additional

computational cost. Fig. 2.3 shows an example of the L-curve and its corner.

1 O
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L-curve

Log-Scale

Corner of the L-curve

Data Misfit, O,(m)

Log-Scale
Model Roughness, 0, (m)

Fig. 2.3. Example of the L-curve and its corner.
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The ratio of the data misfit O, (m) and model roughness O, (m) can be
another criterion for determining the Lagrange multiplier (Van den Berg & Abubakar

2001; Kim et al. 2013), and A can be defined as follows:

; (2-98)

where 7 is a user-defined positive constant. Because in the objective function of
equation (2-51), Oy (m) and O, (M) mean the amount of the contribution of
data misfit and model roughness term, respectively, equation (2-98) is an intuitive
and simple criterion. Moreover, as inversion proceeds, the Lagrange multiplier
naturally decreases from the criterion, because O, (m) decreases and O, (m)
increases compared to the initial values. It leads to an increase in the influence of
O, (m) and a decrease in the influence of O (m) in the later iteration of
inversion.

Grayver et al. (2013) tried to set the Lagrange multiplier A considering the
relationship between an (WfJf )T W,J, and R'R in the Hessian matrix

(equation 2-61) (mentioned in Chapter 2.2.3.4), which is determined as follows:

S (w3 ) i,

A=y HRT RHp o (2-99)

where ¥ is a user-defined positive constant; and ) is the p-norm of the matrix.

In particular, , means the largest singular value of the matrix. The largest

singular values are similar to the maximum values of the diagonal components for

3 ) i g
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the two matrices, an (WfJf )T W,J, and R'R, because they are diagonally

dominant matrices. Therefore, using the two maximum diagonal values the Lagrange

multiplier can be set as follows:

max{diag (Zm (W,J, )T Wi J; )}

max{diag(RTR)}

A=y : (2-100)

where y 1is a user-defined positive constant. Equation (2-100) requires much
smaller computational cost than equation (2-99), and is similar to the regularization
method used in full-waveform inversion (FWI) of seismic data (Shin et al. 2001;
Shin & Min 2006).

In the inversion algorithm for field data of this study, A is determined as a
smaller value of Lagrange multiplier values in equations (2-98) and (2-100) when
y is 0.005. At this time, if the new A is less than 0.4 times of previous A, the
Lagrange multiplier is replaced with the value of 0.4 times of previous A .

The above techniques focus on setting the Lagrange multiplier to an optimal
scalar value. Yi et al. (2003) proposed the active constraint balancing (ACB) method
to define the Lagrange multiplier as a spatial variable vector at the location of
inversion blocks. To apply the ACB method, the model resolution matrix is
calculated, and the spread function (Menke 1984) values are obtained for the rows
of the matrix. Because the spread function implies the resolving power of the
inversion block, the Lagrange multiplier can be set by determining A to have a
linear relationship with the spread function on the logarithmic-logarithmic scales.

Through the ACB method, a small Lagrange multiplier is determined for an

1 O
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inversion block with strong resolving power near the receivers to increase the
contribution of the data misfit term, while a large Lagrange multiplier is set for an
inversion block with weak resolving power around the boundary of the deep
subsurface to increase the contribution of the model roughness term. Especially, for
3D MT inversion with a large model the ACB method helps to improve the inversion
results, but it incurs additional cost in calculating the model resolution matrix.

Uhm et al. (2018) presented the sensitivity-based constraint balancing (SCB)
method that requires little additional computational cost while maintaining the
advantage of the ACB method of defining the Lagrange multiplier as a spatial
variable vector. The SCB method uses the diagonal integrated sensitivity matrix (S)

(Kaputerko et al. 2007) defined as follows:

1
S = diag [Z(WfJf)T WfJf]2 : (2-101)

nf

By replacing the spread function of the ACB method with the inverse of S, the

Lagrange multiplier is determined as follows in the SCB method:

Ioglo (ﬂ,l ) = IOglO (ﬂ’min )
IoglO (ﬂ’max ) - Ioglo (ﬂmin )
Ioglo (Smin_l) - IOglO (Smax_:L

] {10g,0(S,)=108,0 (S *)}

(2-102)

where A, is the Lagrange multiplier of the i-th inversion block; A, and A,

are the minimum and maximum of the Lagrange multipliers defined by user,
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respectively; S,;, and S, are the minimum and maximum components of S;

min
and S, is the i-th component of S. Because S is obtained in the process of
calculating the Hessian matrix in equation (2-61), the SCB method does not need
additional computational cost. The SCB method can set a small Lagrange multiplier
for an inversion block with a large integrated sensitivity value near the receivers to
enhance the contribution of the data misfit term, and a large Lagrange multiplier for
an inversion block with a small integrated sensitivity value around the boundary of
the deep subsurface to strengthen the contribution of the model roughness term

similar to the ACB method. The SCB method is almost identical to the method of

applying weighting to the roughness matrix presented by Kordy et al. (2016).

2.2.3.6. Line search

The line search methods (Nocedal & Wright 2006) determine the optimal
positive scalar step length for a search direction. In the inverse problem, the model

parameter vector is updated as follows:

m,., =m, +a,Am, | (2-103)

where ¢« is the step length for Am, in equation (2-60) or (2-64).
The objective function for M, ,; can be defined as a function (¢ ) for the step

length o as follows:

¢(a)=0(m,,,)=0(m, +arm,) . (2-104)
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An exact line search finds an ideal step length ¢ which allows ¢(aideal) to

ideal >
have a global minimum value (Fig. 2.4). However, the exact line search method is
too expensive to identify the global minimum value in inversion. As a practical
technique, an inexact line search determines a step length that provides sufficient
decrease of the objective function with moderate cost. In this study, the inexact line
search technique goes through two stages. The first stage is to set an appropriate
stopping condition for the objective function, and the second stage is a backtracking
approach in which the step length is reduced from an initial value until the condition
of the first stage is satisfied.

For the first stage, the Armijo condition is used in this thesis, which is expressed

as follows:

¢(a)=0(mk+aAmk)£O(mk)+CaVO(mk)TAmk, (2-105)

where C is a small positive constant (generally ¢=10"*). The right-hand side of
equation (2-105) is a linear function with respect to « , which can be written as

follows:

I(¢)=cvO(m,)" Am,a+0(m,) . (2-106)

The slope of the linear function is negative as shown in the following equation:

cvo(m,)" Am, =—cvO(m, )" H*VO(m,)<0 . (2-107)
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The ranges of the step length that satisfy the Armijo condition of equation (2-105)
are shown in Fig. 2.4. The line search technique with only the Armijo condition
cannot ensure that the step length is always properly defined because a very small
step length that does not update the model parameter vector also satisfies this

stopping condition.

O(m,) $(a)=0(m, +aAm,)
NN
/(@)
a:’deai ZZ
) acceptable ] ‘acceptable'

Fig. 2.4. Example of the ideal step length and the acceptable ranges of the step length

for the Armijo condition.
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To prevent too small step lengths from being selected, the backtracking
approach is applied for the second stage. The initial step length () for the
backtracking approach is required and set to 1 for the Gauss-Newton method
(Nocedal & Wright 2006). If the initial step length (¢, =1) satisfies the Armijo
condition of equation (2-105), ¢, in equation (2-103) will be determined as
o, =1. Otherwise, the next step length ¢, should be defined between 0 and
o, =1.Toset a,, ¢(0{ ) is assumed as a quadratic function ¢, (a) satisfying
the three conditions: ¢,(0)=¢(0)=0(m,), ¢,(0)=¢ (0)=VO(m, )T Am,,

and ¢, () =¢(cy)=0O(m, +Am, ). Then, 9, (@) is expressed as follows:

2
Q,

¢, (a) =[¢(%)_¢I (0)a, _¢(O)ja2 +¢ (0)a+¢(0) . (2-108)

@, is defined by the minimizer of ¢q (05) in equation (2-108), and is expressed

as follows:

0<ag <a,=1.  (2-109)

If the Armijo condition of equation (2-105) is satisfied at «; , the line search will
be terminated. Otherwise, the next step length &, should be set between 0 and «; .
To determine «,, ¢ (a) is assumed as a cubic function @, (a) satisfying the
four conditions: ¢,(0)=¢(0)=0(m,), ¢.(0)=¢ (0)=VO(m, )T Am, ,
¢, () =#(a)=0(m,+Am, ) , and ¢, (en)=¢(en)=0(m, +Am,) .

Then, ¢, (Ot) is expressed as follows:
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¢, (a)=aa’ +ba’ +¢ (0)a +¢(0) (2-110)

where

b =a02a12(al—ao) -a,) o]

m 1 {aoz —alz}[¢(al)—¢(0)—¢'(0)al

Under the two conditions: ¢,(@,)=0 and 0<a, <@, the minimizer @, of

. (a) is expressed by

_ 2_ 1
b+./b 3a¢(0)_0_ o o

Until «, satisfies the Armijo stopping condition of equation (2-105), repeat the
process to determine ¢;,, (1<i<n-1) using ¢ () with the four conditions:
$.(0)=¢(0), ¢.(0)=¢(0), ¢ (a,)=0(,)=0(m +e_,Am,), and

¢, (o) =¢(a;)=O(m, +,Am, ). To prevent «;,, from being too small or too

close to «;, this backtracking approach needs an additional rule defined as follows:

a,,=05¢q,; if o, <o, <V,oy OF «

iy <V (2-112)
where V,, V,,and V, are the positive constants determined by user. In this study,
V,, V,,and V; are fixed as 0.9, 1.1, and 0.1, respectively (Abubakar et al. 2009).
In the inversion algorithm, the number of repetitions of the explained line search

technique is limited to a maximum of 5 times.

1 O
52 AT g



2.3. MT response functions

The electric and magnetic fields at the receivers calculated through 3D MT
modeling in Chapter 2.1 should be converted into other MT response functions that
are not affected by the amplitude of the source. Among the MT response functions,
impedance tensor, apparent resistivity, phase, tipper, effective impedance, and phase

tensor that are commonly used as input data for MT inversion are explained.

2.3.1. Impedance tensor

Tikhonov (1950) introduced a scalar impedance that represents the ratio of the
horizontal electric field to the orthogonal horizontal magnetic field in the frequency
domain (i.e., E, / H, or E, / H, ). Later, Cantwell (1960) extended the concept to
an impedance tensor. The impedance tensor is the most used type among the MT
response functions, and many different types of MT response functions are derived
from the impedance tensor. The frequency-domain impedance tensor is defined as

follows:
= S B ) .
EY B ) (Zn Z, \HY HJ )~

where E?, E;y, HY,and H ;y are the horizontal electric and magnetic fields

for the xy-polarization source, respectively; EY, EJ*, HY, and HJ* are the

horizontal electric and magnetic fields for the yx-polarization source, respectively;
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53 A =TH



and Z,, Z Z,,and Z  are the components of the impedance tensor. From

XX Xy ?

equation (2-113), the components of the impedance tensor can be written as follows:

XY Ly X yX g Xy
ZXX - Eiyﬂ );x _ Elxyxl:lyxy
x 'y x 'y
EMHI—ENHY
Y HYH—HHY

(2-114)
XY g YX yX g XY
_ E,/H) —E/H,
yX
HYHY —HH?
XY g YX yX g Xy
7 ESH —EJH,
y
HIHY —HYHY
Equation (2-113) can be expressed in matrix form as follows:
E,=ZH,, . (2-115)

where Z € C*? is the impedance tensor.

The impedance tensor is sometimes rotated according to the direction of the
axes. Fig. 2.5 shows the new X' - and Y’ -axes rotated by @ in the clockwise
direction from the original x- and y-axes. The rotation matrix for the coordinate
system R (19 ) is written as follows:

R(a)— cosg sind 2-116)
| =sing cosd)

Using the rotation matrix R (19) , equation (2-115) can be developed as follows:

5 4 - =-TH



. (2-117)

where Exy, ny, and Z are for the original x- and y-axes; and EXy (9) and
H, (9) are for the rotated X' - and Y'-axes in Fig. 2.5. From equation (2-117),

the rotated impedance tensor Z (9) for thenew X'-and Y'-axes is expressed as

follows:

Z(0)=R(0)ZR(-0) . (2-118)

\
EV

4

Y

Fig. 2.5. Rotation of axes from original x- and y-axes to new X'-and Y'-axes.
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The partial derivative of equation (2-115) with respect to o is expressed as

follows:

oE oH
_Xv:a_ZHXy+Z X
0o Oco oo

From equation (2-119), the partial derivative of Z

calculated as follows:

Xy

%: %—Z% H 1
oo oo

oo

(2-119)

with respect to o is

(2-120)

Equation (2-120) is used to calculate the Jacobian matrix for the impedance tensor.

2.3.2. Apparent resistivity and phase

The apparent resistivity o, and phase ¢ introduced by Cagniard (1953) are

also representative MT response functions. In particular, MT data for each receiver

are usually plotted by the apparent resistivity and phase. They are calculated from

the impedance components as follows:

1
Paij = a)_ﬂo‘zu

Z..
P = tan™ {Zi} ,
iR
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where the subscript ¢ij > represents an arbitrary combination of x and y; and the
subscripts ‘R > and ‘| > mean the real and imaginary parts of the complex number.
The apparent resistivity implies volumetrically averaged resistivity over the
penetration distance. For instance, in a uniform half space, the apparent resistivity
represents the electrical resistivity of the medium, and the phase has 45 degrees.
The partial derivatives of equations (2-121) and (2-122) with respect to o

are calculated as follows:

P, 2 0Z; 9Z;
60,1 _ o [zin a; +Z,, 5;} , (2-123)
0
% ___1 Zin % -Z Pin | | (2-124)
oo Zp'+Z,’\ " oo " do

Equations (2-123) and (2-124) are used to calculate the Jacobian matrices for the

apparent resistivity and phase.

2.3.3. Tipper

One of the MT response functions that correlates the vertical and horizontal
magnetic fields is called the tipper or the magnetic transfer function (Vozoff 1991).

The tipper for each frequency is defined as follows:
H) (T (R Y 2125
HXY ) T, ) (HY HY ) (129
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where H)¥ and H)" are the vertical magnetic fields for the xy-polarization and
yx-polarization sources, respectively. T, and T, are the x- and y-components of
the tipper vector, respectively. From equation (2-125), the components of the tipper

vector can be written as follows:

HYHY —HZHY

X XYY _ Y XY
HYHY —HYH’

- ooy (2-126)
T :_HZ H” -H,H;
y
HOH —HYHY
Equation (2-125) is represented in matrix form as follows:
T T
H,=TH,, , (2-127)

where T e C? is the tipper vector. In the 1D structure, both T, and T, are O

2\Y2
because H, =0. The size of the tipper, T| = (|Tx|2 +‘Ty‘ ) , 1s always less than
1 (Zonge & Hughes, 1991).

For the rotation of the tipper, equation (2-127) can be developed as follows:

H! (49): H! :TTHXy :TTR(—Q)R(Q)H :TTR(—H)HXy (6)

Xy

(2-128)

where H,, H, ,and T are for the original x- and y-axes in Fig. 2.5. H, (9)

Xy °
and H, (0) are for the rotated X' - and Y'-axes in Fig. 2.5. As can be seen in
equation (2-128), the transpose of the rotated tipper T' (9) for the new X' -and

y' -axes is written as follows:
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T (0)=T'R(-0) . (2-129)

The partial derivative of equation (2-127) with respect to o can be arranged

as follows:

T T 0H
or [aH WJH - (2-130)

z _TT
oo oo oo

Equation (2-130) is used to calculate the Jacobian matrix for the tipper.

2.3.4. Effective impedance

The original and rotated values for the rotational invariants of the impedance
tenser are the same (Berdichevsky & Dmitriev 2008). In other words, the rotational
invariants have the same value regardless of the orientation of the measured
electromagnetic fields. The complex 2 by 2 impedance tensor has eight independent
real values, and the maximum number of the real independent rotational invariants
for the impedance tensor is seven (Szarka & Menvielle 1997). The effective
impedance Z is a complex rotational invariant, and has been used for 2D MT

inversion (Pedersen & Engels 2005; Wang et al. 2020), which is defined as follows:

Zgs =ZoZy ~ZyZy (2-131)

The partial derivative of Z withrespectto o can be written as follows:
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OZ 1 (oz oL, 0L
0o 27

*x7 +7Z vz -7 Oy (2-132)
oo ¥ oo o0 * Moo ) )

Equation (2-132) is used to calculate the Jacobian matrix for the effective

impedance.

2.3.5. Phase tensor

The measured electric fields can be distorted by local near-surface
inhomogeneities, and this phenomenon is called the galvanic distortion. Caldwell et
al. (2004) proposed the phase tensor that is not distorted by the galvanic distortion.

The phase tensor @ € R*? is defined as follows:

®=77, , (2-133)

where Z, and Z, are matrices composed of the real and imaginary impedance

components (i.e., Z=2Z,+I1Z,). Equation (2-133) can be written as follows:

(q)xx CI)xyj _ 1 [ZnyZxxl _nyRZny ZnynyI _nyRZny }
O, D, ) det(Zo)\ ZanZpm ~ZyeZu ZowZy —ZyaZ

yxl YXR = xxl XXR xyl

(2-134)

where det(Z;) is the determinant of Z, (i.e., 2wl yr —Lyrl )

The partial derivative of ® with respectto o can be developed as follows:

—= —_— 2-135
oo "l oo oo ( )

o _21(82. _az_R(Dj |
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Equation (2-135) is used to compute the Jacobian matrix for the phase tensor.
The symbols of components of MT response functions used in this study are
described in Table 2.1. Components of a complex number are denoted by the

symbols separated by real and imaginary parts.

Table. 2.1. List of symbols of MT response functions used in this thesis.

Symbol Description

Zr Real part of xx-component of impedance tensor
Z. Imaginary part of xx-component of impedance tensor
nyR Real part of xy-component of impedance tensor
ny, Imaginary part of xy-component of impedance tensor
ZyxR Real part of yx-component of impedance tensor
Zyx| Imaginary part of yx-component of impedance tensor
Zny Real part of yy-component of impedance tensor
Zyy, Imaginary part of yy-component of impedance tensor
Pa, xy xy-component of apparent resistivity
Pa, yx-component of apparent resistivity

Py xy-component of phase

Dy yx-component of phase

T Real part of x-component of tipper

T, Imaginary part of x-component of tipper

TyR Real part of y-component of tipper

Ty| Imaginary part of y-component of tipper

Z in Real part of effective impedance

Z Imaginary part of effective impedance

D, xx-component of phase tensor

CDXy xy-component of phase tensor

D, yx-component of phase tensor

o, yy-component of phase tensor
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Chapter 3. Sensitivity patterns for MT response functions

Sensitivity patterns are defined by the variations of the MT responses due to the
perturbation of one element of the model parameter vector (i.e., one column of the
Jacobian matrix). In other words, the sensitivity patterns imply some locations where
the MT responses by an anomaly are strong. Thus, in this section, sensitivity patterns
are analyzed to investigate the features of MT response functions in inversion, and
they are divided into six groups according to their sensitivity patterns, so that MT
response functions with similar roles in inversion belong to the same group.

The sensitivity patterns for major MT response functions in Table 2.1
(impedance, apparent resistivity, phase, tipper, effective impedance, and phase tensor)
with the model parameter of the electrical conductivity are considered. Subsurface
MT response functions are calculated using the same formulae defined at the surface.
The sensitivity patterns are calculated in the homogeneous model with a resistivity
of 100 Qm (i.e, 102 S/m) at a frequency of 1 Hz through the perturbation
approach in equation (2-66) with two times of 3D MT modeling using structured
hexahedral elements. 3D sensitivity patterns are described in the 8 (-4~4) x 8 (-4~4)
x4 (0~4)km(i.e., 1.60 x 1.66 x 0.80 where O isthe skindepth in equation
2-22), and their values are computed at intervals of 100 m (i.e., 81 x 81 x 41 =
269,001 points). The perturbed element whose size is 100 x 100 x 100 m (i.e., /50
x 0/50 x &/50) is located at the center of the 3D space, i.e., (0, 0, 2 km) = (0, 0,
0.40). The change of the model parameter of electrical conductivity is 10" S/m
(i.e., 1/100 of the background value). 2D sensitivity patterns at z=0 km are also

plotted because the MT survey is conducted on the surface. They are briefly called
§ ¥
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‘surface-sensitivity patterns’ in this thesis.

When designing an MT survey, it is important to consider the ratio of the
horizontal distance between target and receiver to the target depth, which is called
the ‘survey ratio’ in this thesis. The positions where the survey ratio is 1 or 2 (£0.40
or 10.80) with the reference to the perturbed depth (i.e., 2 km = 0.4 ) are marked
by the black open squares in the both 3D sensitivity patterns and surface-sensitivity
patterns. The 3D sensitivity patterns are displayed by two isosurfaces corresponding
to 1-st (negative, red color) and 99-th (positive, blue color) percentiles of the total
distribution of the sensitivity values. Only the 3D sensitivity patterns of the phase
and the diagonal components of the phase tensor are depicted by 3-rd and 97-th
percentiles to represent slightly weaker patterns. For the significant surface-
sensitivity patterns, only values larger than 1/5 of the maximum absolute value are

shown. The sensitivity patterns are plotted using the Voxler of Golden Software Inc.

3.1. Sensitivity patterns for impedance tensor

Fig. 3.1 shows the sensitivity patterns of the real components of the impedance

tensor (i.e., Z Z Z and Z ;). In Figs. 3.1(a) and 3.1(b), the 3D

XxR > XyR ? yXR 2

sensitivity pattern and surface-sensitivity pattern of Z . are in the shape of four
diagonal petals and significant values of the surface-sensitivity pattern spread
beyond the boundary with the survey ratio of 1. Because the strong sensitivity
regions widely appear in all four quadrants, Z,, can play an important role in 3D

MT inversion. The 3D sensitivity pattern of ZXyR shown in Fig. 3.1(c) is composed

of two parts: The first part in red has a doughnut shape in the yz-plane, and the other

T 11
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in blue has a shape of two petals penetrating the first part along the x-axis. In Fig.
3.1(d), the surface-sensitivity pattern of Z, . has an elliptical shape with the major
axis along the y-axis. The elliptical shape at the surface comes from the doughnut-
shaped 3D sensitivity pattern that contains intensive sensitivities in the upward
direction from the perturbation point. The significant surface-sensitivity pattern is

distributed within the boundary with the survey ratio of 1. Because Z . has the

xyR
meaningful sensitivity pattern along the y-axis at the surface, it is well suited for
imaging 2D structures whose strike is along the y-axis. The 3D sensitivity pattern
and surface-sensitivity pattern of ZyxR in Figs. 3.1(e) and 3.1(f) have such a form
that can be acquired by rotating the sensitivity patterns for nyR by 90 degrees

around the z-axis, while their signs are reversed. Thus, Z . is suitable for inverting

YR
2D structures with their strike along the x-axis. Compared with Figs. 3.1(a) and
3.1(b), both the 3D sensitivity pattern and surface-sensitivity pattern of Zny in
Figs. 3.1(g) and 3.1(h) have similar forms to those of Z,,; with their signs reversed,
which means that they possess similar features in the inverse problem.

Fig. 3.2 represents the sensitivity patterns of the imaginary components of the
YA YA

impedance tensor (i.e., Z and Z,, ). Compared to the 3D

xxl 2 xyl 2 yxI 2

sensitivity patterns for the real components of the impedance tensor (Figs. 3.1a, 3.1c,
3.1e, and 3.1g), the 3D sensitivity patterns for the imaginary components (Figs. 3.2a,
3.2¢, 3.2e, and 3.2g) have similar aspects, but they are slightly drooping down. The
surface-sensitivity patterns of the imaginary components of the impedance tensor
(Figs. 3.2b, 3.2d, 3.2f, and 3.2h) are distributed over narrower ranges than those of
the real components. However, the overall sensitivity patterns of the real and

imaginary parts of each impedance component are similar.
3 )
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3.2. Sensitivity patterns for apparent resistivity and phase

In Fig. 3.3, the sensitivity patterns for the xy- and yx-components of the
apparent resistivity (i.e., p, ,, and p, ) and the xy- and yx-components of the
phase (ie., ¢, and @, ) are displayed. Because the 3D sensitivity pattern of
Pa  (Fig. 3.3a) resembles that of ny , the surface-sensitivity pattern of p,
(Fig. 3.3b) also has similar features to that of ny. Both the 3D sensitivity pattern
and surface-sensitivity pattern of p, ., (Figs. 3.3¢c and 3.3d) are analogous with
those of Zyx except for the signs.

The 3D sensitivity patterns of ¢, (Fig.3.3¢)and ¢, (Fig.3.3g)have strong
energy in five directions, which are like a butterfly shape. They are rotated by 90
degrees around the z-axis to each other. In the surface-sensitivity patterns of ¢,
(Fig. 3.3f) and ¢, (Fig. 3.3h), both the positive (blue) and negative (red) parts of
the 3D sensitivity patterns appear, but this thesis focuses on the dominant positive
parts. Although the 3D sensitivity pattern of ¢, is different from those of ny
and Pa > the xy-components for the MT response functions (i.e., ny s Pa x>
and @, ) commonly have the strong surface-sensitivity patterns along the y-axis.
The yx-components of the MT response functions (i.e., Z,, p, ,,and @, ) also

have in common that they show the intensive sensitivity patterns along the x-axis at

the surface.
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3.3. Sensitivity patterns for tipper

Fig. 3.4 shows the sensitivity patterns of the real and imaginary components of

the tipper (i.e., Tz, Ty, T

Xl >

yr» and Tyl ). The 3D sensitivity pattern of T, (Fig.
3.4a) is like two petals along the x-axis. In the surface-sensitivity pattern of T,
(Fig. 3.4b), the significant sensitivities are not only confined around the x-axis but
spread widely as the shape of the two petals is preserved. Similar to the relationship
between the sensitivity patterns for the real and imaginary components of the
impedance tensor, T,, has the slightly drooping 3D sensitivity pattern (Fig. 3.4c)
and the narrower surface-sensitivity pattern (Fig. 3.4d) than those of T, . Because
the real and imaginary x-components of the tipper (T,; and T, ) possess the
sensitivity patterns with similar characteristics, they will have similar functions in
inversion. The 3D sensitivity patterns and surface-sensitivity patterns of TyR and
T, (Figs.3.4¢,3.4f, 3.4g, and 3.4h) are obtained by rotating those of T,z and T,

90 degrees clockwise around the z-axis. Because the tipper contains the vertical
component of the magnetic fields (H,) that is not related to the impedance-based
MT response functions (i.e., impedance, apparent resistivity, and phase), the new
sensitivity patterns are observed in the tipper, and therefore the tipper can
complement the other MT response functions during the inverse process. The tipper
is suitable for both 3D and 2D MT inversion, because the surface-sensitivity patterns
have wide distribution along a specific direction. Furthermore, the tipper can play an
important role in a specific acquisition case, which will be described in more detail

in Chapter 4.2.
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3.4. Sensitivity patterns for effective impedance

The sensitivity patterns of the real and imaginary components for the effective
impedance (i.e., Z4; and Zg ) are described in Fig. 3.5. Their 3D sensitivity
patterns (Figs. 3.5a and 3.5¢) include energy concentrated along the z-axis. Therefore,
the corresponding surface-sensitivity patterns (Figs. 3.5b and 3.5d) appear as a circle
around the center. The effective impedance has the smallest survey ratio among all
the MT response functions considered in this thesis. These features make the

effective impedance suitable for 1D interpretation of MT data.

(a) (b)
X
- X *

Y

-3.61E-005 0 3.61E-005

() C)
X +
4

h 4

S|
-1.98E-005 0  1.98E-005

Fig. 3.5. Sensitivity patterns of the real and imaginary components of the effective
impedance: (a, b) Zy and (c, d) Z, . (a, ¢) and (b, d) are the 3D sensitivity

patterns and surface-sensitivity patterns, respectively.
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3.5. Sensitivity patterns for phase tensor

Fig. 3.6 shows the sensitivity patterns of the components for the phase tensor

(ie., @

XX

o > dDXy , d)yx, and d)yy ). The sensitivity patterns for @

and @
(Figs. 3.6a, 3.6b, 3.6g, and 3.6h) are similar to those of the yx- and xy-components
of the phase (i.e., ¢, and ¢, ), respectively. The 3D sensitivity patterns of (ny
and @ (Figs. 3.6¢c and 3.6¢) are in the shape of eight petals. Compared with the

xx- and yy-components of the impedance tensor (i.e., Z, and Z,), @, and

XX

®,, havedifferent 3D sensitivity patterns, but the surface-sensitivity patterns (Figs.

3.6d and 3.6f) are similar. Therefore, ®, and ®, can replace the yx-

XX

components of the MT response functions (i.e., Z and @, ) and the xy-

yX 2 Pha, yX

components of the MT response functions (i.e., ny s Pa o and Py ), respectively,

while ©, and ® can play a similar role to Z, and Zyy in MT inversion. If

X

the phase tensor, which is not affected by the galvanic distortion, is used as the input

data for inversion instead of the impedance tensor, then the available real numbers

z Z Z

XyR * xyl >

YA Z YA

are halved from eight (i.e., Z and Zny )

XXR » xxI 2 yXR ° yxI 2 VYR

to four (i.e., D, , (I)Xy, (Dyx, and (Dyy) for each receiver. However, subsurface
structures may be similarly interpreted, because the sensitivity patterns of the four

components of the phase tensor contain all information given by those of the eight

real numbers for the impedance tensor.
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3.6. Classification of MT response functions

In Table 3.1, the MT response functions covered in this study are classified into
six groups according to the characteristics of their surface-sensitivity patterns. In MT
inversion, MT response functions in the same group may provide similar results, and
MT response functions in different groups can play complementary roles with each
other because they may contain different information on the same subsurface
z Z YA

structures. Group 1 contains Z ®,,, and @ - whose

xxR xxl 2 yyl Xy °

YR 2
surface-sensitivity patterns are in the shape of four petals dominantly in diagonal
directions. nyR , nyl s Pay > @ and d)yy , which have strong surface-
sensitivity patterns along the x-axis, belong to Group 2. Z o, Z 1, 0, s Pps
and @, whose surface-sensitivity patterns are concentrated along the x-axis, are
included in Group 3. The x-components of the tipper (i.e., T,z and T, ) and y-
components of the tipper (i.e., TyR and TyI ) possess two petals-shaped surface-
sensitivity patterns dominant along the x- and y-axes, and they belong to Groups 4
and 5, respectively. Finally, Group 6 has the real and imaginary components of the

effective impedance (i.e., Zg, and Z, ) showing small circle-shaped surface-

sensitivity patterns.

1 ¢
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Table. 3.1. Classification of MT response functions according to the surface-

sensitivity patterns.

Classification

MT response functions

Group 1

VA Z YA

XXR 2 xxI > YYR
Diagonal 4 petals-shaped pattern Zyyl » Dy D,
Group 2 nyR , nyl s Pa g
. P o, ()
Linear pattern along the y-axis Xy yy
Group 3 ZyxR , Zyxl s Pa o
Linear pattern along the x-axis Py > Dy
Group 4
TxR ’ Txl
Linear 2 petals-shaped pattern along the x-axis
Group 5
TyR > Tyl
Linear 2 petals-shaped pattern along the y-axis
Group 6
ZeffR > Zefﬂ
Small circle-shaped pattern
:
75



3.7. Surface-sensitivity patterns for other frequencies

In Chapters 3.1 to 3.5, the sensitivity patterns of the different MT response
functions (i.e., impedance, apparent resistivity, phase, tipper, effective impedance,
and phase tensor) were examined. The sensitivity patterns were shown in the 100
Q m homogeneous cuboid space of (-4 or 4, -4 or 4, 0 or 4 km) nodes, i.e., (—0.80
or 0.80, —0.80 or 0.80, 0 or 0.80) nodes where O is the skin depth in
equation (2-22), to represent the survey ratio up to 2 when the perturbed depth was
2 km (i.e., 0.40) for data at 1 Hz. In this section, surface-sensitivity patterns for
higher and lower frequencies on different spatial scales considering the same range
normalized by the skin depth () in the 100 Q m homogeneous model are shown.
Fig. 3.7 shows the surface-sensitivity patterns of all the MT response functions for
the higher frequency at 100 Hz on the 1/10 scale than those for 1 Hz, which means
the surface consists of (-0.4 or 0.4, -0.4 or 0.4 km) nodes, i.e., the same (—0.80 or
0.80, —0.80 or 0.80)nodes, and the position of (0, 0, 0.2 km), i.¢., the same (0,
0, 0.40), is perturbed. In Fig. 3.8, the surface-sensitivity patterns of the same MT
response functions for the lower frequency at 0.01 Hz are illustrated on the
dimension of 80 x 80 km (i.e., the same 1.60 x 1.60 ) with the perturbation point
of (0, 0, 20 km) = (0, 0, 0.40), which is 10 times the previous dimension for the
same range expressed in o . The surface-sensitivity patterns for each MT response
function in Figs. 3.7 and 3.8 have the same shape as those in Figs. 1 to 6 regardless
of frequency, but their spread-distance changes in proportion to the skin depth at the

frequency.
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Fig. 3.7. Surface-sensitivity patterns of all the MT response functions in Table 2.1
for the perturbation point of (0, 0, 0.2 km) = (0, 0, 0.40) up to the survey ratio of
2 (i.e, £04 km and $0.80) at a frequency of 100 Hz in the 100 Q m

homogeneous model.
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Fig. 3.8. Surface-sensitivity patterns of all the MT response functions in Table 2.1
for the perturbation point of (0, 0, 20 km) = (0, 0, 0.4 ) up to the survey ratio of 2
(i.e, £ 40 km and 0.8 ) at a frequency of 0.01 Hz in the 100 Q m

homogeneous model.
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Chapter 4. Synthetic Examples

The sensitivity patterns for MT response functions analyzed and classified in
Chapter 3 can be used to make a strategy for inversion of real field data because
different inversion results are produced according to the characteristics of the
sensitivity patterns. Before applying to the inverse process of field data, in this
section, it is investigated how the sensitivity patterns are reflected in observed data
and inversion results for synthetic cases of 1D, 2D, and 3D interpretation of MT data,
from which the optimal MT response functions for each case are recommended. For
the synthetic examples, the modeling and inversion algorithms in Table 4.1 are
applied. Because the synthetic examples contain many inversion results of various
MT response functions, the inverted models are simply presented with normalized
root-mean-square (NRMS) error, which is normalized by the difference between
maximum and minimum values. The inverted models are displayed by the Voxler of

Golden Software Inc.
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Table. 4.1. Settings of 3D MT modeling and inversion for the synthetic examples.

3D MT modeling with edge-based FEM

Modeling mesh
(Chapter A.2)

Structured hexahedral elements

3D MT inversion

Objective function
(Chapter 2.2.1)

Jumping method in equation (2-52)

Jacobian calculation
(Chapter 2.2.2)

Sensitivity equation approach in equation (2-73)

Blocky parameterization
(Chapter 2.2.3.1)

Structured hexahedral inversion mesh

Model parameterization
(Chapter 2.2.3.2)

Equations (2-77) and (2-78)

Data weighting matrix
(Chapter 2.2.3.3)

N/A or equation (2-89)

Roughness matrix
(Chapter 2.2.3.4)

Equation (2-95)

Lagrange multiplier
(Chapter 2.2.3.5)

Equation (2-100)

Line search
(Chapter 2.2.3.6)

N/A
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4.1. Synthetic examples for 1D interpretation of MT data

When the sensitivity patterns of MT response functions are analyzed for 1D
interpretation of MT data, two points should be considered: The first is whether the
MT response functions respond to the 1D model, and the second is how strongly the
MT response functions are affected by the dimensionality error. The dimensionality
error occurs when the dimension considered by the inversion algorithm is lower than
the dimension of the true subsurface structures, e.g., 1D inversion of data acquired
over 2D or 3D structures and 2D inversion of data acquired over 3D structures
(Chave & Jones 2012).

Because 1D interpretation of MT data aims to describe vertical variations of
electrical properties assuming no lateral variations, appropriate MT response
functions for 1D inversion should have strong 3D sensitivity patterns along the z-
axis from the perturbation location (i.c., the surface-sensitivity patterns should be
concentrated around the center right above the perturbation position). According to
this criterion, Groups 1, 4, and 5 in Table 3.1 are not suitable for 1D inversion, while
Groups 2, 3, and 6 can be used for the interpretation of 1D structures.

Next, the dimensionality error for the MT response functions available for 1D
inversion (i.e., Groups 2, 3, and 6) is considered. Groups 2 and 3 have linear surface-
sensitivity patterns along the y- and x-axes, respectively, whereas Group 6 shows a
point-shaped surface-sensitivity pattern. These patterns imply that Groups 2 and 3
can be more affected by the dimensionality error than Group 6 is, when the
subsurface structures are not perfectly 1D.

Figure 4.1 shows a synthetic model for 1D interpretation of MT data composed
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of a background medium (100 QQm) and a conductive anomalous body (I Qm)
along the positive y-axis near the surface, which can cause the dimensionality error.
One receiver indicated by a red circle is located at the origin. In this case of the 1D
interpretation of MT data, it can be expected that the MT response functions with the
linear surface-sensitivity pattern along the y-axis (Group 2) are more distorted by the
dimensionality error than the MT response functions possessing the surface-
sensitivity pattern of the small circle (Group 6). To confirm this, the modeling results
of the real part of the effective impedance (Z, of Group 6) and the xy-component
of the apparent resistivity ( o, ,, of Group 2), which are representative MT response

functions used for 1D inversion, are compared.

(a)
(b) 5 0 5 Y (km)
-5 5 T D S E——
X (km) ]
5 5 100 Om
100 Om
Y(km)' H10m Z (km) H10m

Fig. 4.1. Synthetic model for 1D interpretation of MT data: (a) plan view and (b) yz
cross-section. Resistivity of the background medium and the hexahedral anomalous
body is 100 and 1 €2 m, respectively. Receiver position is represented by the red

circles.
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Fig. 4.2 shows observed modeling data of Z (blue circles) and p, ,, (red
triangles) for the anomalous-body-included model shown in Fig. 4.1 at frequencies
ranging from 0.01 to 100 Hz. In order to compare the dimensionality error, modeling
results in the homogeneous model without the anomaly (black squares) are also
presented. To clearly describe the influence of the dimensionality error, percent error
between the modeling results for the two models are computed. Fig. 4.2(a) represents
that there is little difference in two modeling results of Z g , while in Fig. 4.2(b),
Pay for the anomalous-body-included model is lower than that for the
homogeneous model due to the low resistivity anomalous body. Therefore, the
percent error of p, . is higher than that of Z s particularly over frequencies
lower than 10 Hz in Fig. 4.2(c). For the two MT response functions, the observed
modeling data and the characteristics of the surface-sensitivity patterns related to the
dimensionality error mentioned above are consistent. These results also indicate that
even under the same condition (model, frequency, receiver position, etc.)
interpretation may be different depending on the data type of MT response functions.
From both the sensitivity pattern analysis and the numerical example for 1D
interpretation of MT data, it can be concluded that the data type of effective

impedance (Z; ) can be a method of choice for 1D inversion of MT data.
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Fig. 4.2. Modeling results of (a) real effective impedance ( Z 4 ) and (b) xy-apparent
resistivity ( p, ,, ) for both the synthetic model shown in Fig. 4.1 and its background
homogeneous model. (c) shows percent error between the two modeling results for

ZeffR and pa,xy'
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4.2. Synthetic examples for 2D interpretation of MT data

To examine features of M T response functions for 2D interpretation of MT data,
the 3D modeling and inversion with the 2D survey geometry are performed as
Siripunvarapron et al. (2005a) did. The characteristics of the MT response functions
are investigated for an ideal case of interpreting a complete 2D structure with a
general receiver array (one line across a 2D structure). Furthermore, two specific
cases are considered: The first case is that receivers right above a target structure
cannot be used, and the second case is for an off-plane error. To compare modeling
and inversion results for the second specific case with those for the ideal case, two
models are assumed in Fig. 4.3: One (Fig. 4.3a) has only a square-shaped 2D
structure (1 €2 m) whose strike is the y-axis, and the other (Fig. 4.3b) has not only
the 2D structure but an off-plane anomalous body (1 €2 m). Their homogeneous
background medium is 100 €2 m. For the first specific case, two receiver arrays in
the general 2D model (Fig. 4.3a) are considered: One is the general receiver array
marked by the red lines in Figs. 4.3(a) and 4.3(b) that a total of 21 receivers are
uniformly located in the perpendicular direction to the strike at intervals of 0.5 km
covering from -5 to 5 km, and the other receiver array indicated by the blue lines in
Fig. 4.3(a) is that five receivers right above the target 2D structure covering from -3

to -1 km are excluded due to poor data-quality, inaccessible field conditions, etc.
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(a)
5 0 X (km) 5

Z (km) H10m Y (km) H10m

Fig. 4.3. Two synthetic models for 2D interpretation of MT data composed of the
background medium of 100 2m and 2D structure of 1 Qm (a) without and (b)
with an off-plane structure of 1 € m. The strike direction of the 2D structure is the
y-axis: (a) is a xz cross-section and (b) is a plan view. The red and blue lines indicate

the fully-covered and partially-missing cases of receiver arrays, respectively.
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For the ideal case of interpreting the complete 2D structure whose strike is along
the y-axis with the general receiver array in the direction perpendicular to the strike,
the MT response functions belonging to Groups 1 and 5 in Table 3.1 are zero in all
the receivers. Because their sensitivity patterns are symmetric about the x-axis and
the signs of both the symmetrical parts are reverse to each other. It means that
responses of the MT response functions due to the structure extended along the
positive y-axis are cancelled out with those due to the structure extended along the
negative y-axis. The remaining Groups 2, 3, 4, and 6 differently respond to the 2D
structure. To compare characteristics of the four groups, the modeling and inversion
results of p, . (Group 2), p, . (Group 3), Tg (Group 4), and Z, (Group
6), which are mainly used for 2D MT inversion, are analyzed based on their
sensitivity patterns.

In Fig. 4.4, the responses of p, .., 0, x> Tg.and Zg, atafrequency of 1
Hz for the general 2D model (Fig. 4.3a) (blue circles), the model with off-plane
structure (Fig. 4.3b) (red triangles), and their homogeneous background model
(black squares) are represented. For reference, the boundaries of the 2D structure and
off-plane anomalous body are indicated by the black and red dotted lines,
respectively.

First, the modeling results in the general 2D model (Fig. 4.3a) are compared
with those in the homogeneous background medium. In Fig. 4.4(a), the responses of
Pa, xy have low values only above the 2D structure (i.e., between the black dotted
lines) because the surface-sensitivity pattern is strong in the same direction as the
strike. In contrast, the modeling results of p, |, in Fig. 4.4(b) show low values over

a relatively wider range along the direction of receiver array because p, ., has the
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strong surface-sensitivity pattern in the direction perpendicular to the strike (i.e.,
parallel to the receiver array). In the modeling results of Z . represented in Fig.
4.4(d), the responses to the 2D structure are slightly wider than those of p, ,, , but
more consistent with the boundaries of the 2D structure than those of p, . These
three MT response functions show noticeable differences between the modeled data
for the homogeneous and general 2D models in the receivers above the 2D structure.
On the other hand, the model responses of T, in Fig. 4.4(c) appear large in the
receivers located apart from the 2D structure, because the surface-sensitivity pattern
has large values not near but at some distance apart from the right above the
perturbed point. Because of this feature of the surface-sensitivity pattern, T,; can
be effectively used in the first specific case that receivers right above the 2D structure
cannot be used.

Next, in Fig. 4.4, the off-plane error for each MT response function is examined
by comparing the modeling results in the model including the off-plane anomaly (Fig.
4.3b) and in the general 2D model (Fig. 4.3a). In Fig. 4.4(a), p, ,, is severely
affected by the off-plane structure within the boundaries of the off-plane structure
(i.e., between the red dotted lines), whereas p, ., Tz, and Z, are relatively
less affected in Figs. 4.4(b), 4.4(c), and 4.4(d), respectively. Because the surface-
sensitivity pattern of p, , is strong along the y-axis, the responses of p, , —are
most distorted by the off-plane structure existing away from the 2D plane along the

y-axis.
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Fig. 4.4. Modeling results of (a) xy-apparent resistivity ( o, ,, ), (b) yx-apparent

resistivity ( o, ,,), (¢) real part of x-component of tipper (T, ), and (d) real effective

impedance ( Z 4 ) at 1 Hz for the general 2D model (Fig. 4.3a) with the blue circles,

the model with off-plane structure (Fig. 4.3b) with the red triangles, and their

homogeneous background model with the black squares. The black and red dotted

lines represent boundaries of the 2D and off-plane structures in Fig. 4.3, respectively.
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To investigate whether the sensitivity patterns of the four MT response
functions (0, > Pa x> Tr,and Z ) are properly reflected in inverted models,
inversion is performed for the three cases mentioned above (Fig. 4.3), which are the
ideal case, the first specific case related to the receiver array, and the second specific
case for the off-plane error. The homogeneous model of 100 2 m is assumed as an
initial model, and a total of 9 frequencies sampled at a uniform interval on the
logarithmic scale ranging from 1 to 100 Hz are considered. Fig. 4.5 shows inversion
results of 0, ., P > Twr» and Zy with the boundaries of the 2D and off-
plane structures (Fig. 4.3) indicated by the white and red dotted lines, respectively.

In the inversion results obtained for the ideal case (i.e., for the general 2D model
with the full receiver array) represented in the second column of Fig.4.5, the inverted
model of p, ., (TM mode in this case) matches well with the boundaries of the 2D
structure, whereas low resistivity in the inversion result of p, /. (TE mode in this
case) extends beyond the 2D structure. Inversion result of T, retrieves the 2D
structure well, but the resistivity of the background medium is slightly higher than
the true value in the positive x-axis. The inverted model of Z_ 1is similar to that
of p, , ,but the low resistivity zone due to the 2D structure extends to the bottom
of the true model.

The inverted models of p, , , O, and Zg, for the specific case of
receiver array where some receivers are missing right above the 2D structure in the
first column of Fig. 4.5 are worse around the anomalous body than those for the full
receiver array in the second column of Fig. 4.5. However, the inversion result of T,q
obtained with the partially-missing receiver array describes the 2-D structure well,

which is comparable to that obtained with the fully-covered receiver array.
£
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Finally, the inversion results of Paxy> Payx T,r,and Z 4 obtained for the
model with an off-plane anomalous body (the third column of Fig. 4.5) are compared
with those obtained for the general 2D model (the second column of Fig. 4.5).
Footprints of the off-plane structure are severe in the inversion results of p, ., in
the zone between the red dotted lines in Fig. 4.5. However, the inversion results of
the other three MT response functions have smaller footprints. In particular,
remarkable differences in the inversion results of T,; are hardly observed.

In conclusion, the inversion results of the different MT response functions
(Pays Paye Tg.and Z)inFig. 4.5 agree well with their sensitivity patterns
and modeling results described above in some situations for 2D interpretation of MT
data. From these results, it can be concluded that MT response functions with a
strong surface-sensitivity pattern in a strike (i.e., TM mode MT response functions)
are optimal for the ideal 2D MT inversion imaging complete 2D structures with
sufficient data acquired in the direction transverse to the strike; it is helpful to use
the tipper when the data cannot be used around the target structure; and it is a good
strategy to use the tipper or effective impedance when uninterested anomalous

bodies such as off-plane structures exist.
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Fig. 4.5. Inversion results of the xy-apparent resistivity ( p, ,, ), yx-apparent
resistivity ( p, ,, ), real part of x-component of tipper (T,q ), and real effective
impedance ( Z g ) for the ideal case with the general 2D structure and receiver array
(second column), the specific case with missing receivers right above the 2D
structure (first column), and the specific case with the off-plane structure (third
column) shown in Fig. 4.3. The white and red dotted lines indicate the boundaries of

the 2D and off-plane structures in Fig. 4.3, respectively.
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4.3. Synthetic examples for 3D interpretation of MT data

Some MT response functions do not show meaningful responses to 1D or 2D
structures, while all the MT response functions dealt with in this thesis respond to
3D structures. Therefore, all the types of MT response functions can be considered
as input data for 3D MT inversion. In this section, all the components of the

impedance tensor (i.e., Z,, Z,,, Z,,and Z ) belonging to Groups 1,2, and 3

XX Xy °
in Table 3.1 are mainly covered because they are usually used for 3D MT inversion;

() d ,and

inversion results of the components of the phase tensor (i.e., @, wo Py

@, ) are discussed briefly; and the MT response functions belonging to Groups 4,
5, and 6 (i.e., tipper and effective impedance) are not considered because they were
already handled in Chapters 4.1 and 4.2 and their features are similar in 3D cases.
Before describing examples, features of the components of the impedance
tensor for 3D interpretation of MT data are demonstrated based on their sensitivity
patterns. In Figs. 2.1 and 2.2, the surface-sensitivity patterns of diagonal (Z,, and
Z,, ) and off-diagonal (Z,, and Z,)components do not overlap each other, which
means that they will play different and complementary roles in 3D MT inversion.
Thus, it would be commonly good to use all the components of the impedance tensor
for 3D MT inversion. However, the components may have an adverse effect on the
imaging of specific structures depending on their sensitivity patterns, as the diagonal
impedance components cannot image 2D structures mentioned in Chapter 4.2. There
is also a specific case that off-diagonal components may deteriorate inversion results.
Fig. 4.6 represents surface-sensitivity patterns only for the larger values than 4/5 of

the maximum absolute value of Z,; (Figs. 4.6a and 4.6c) and Z, o (Figs. 4.6b

03 2] ,



and 4.6d) at a frequency of 1 Hz when the perturbed position is (0, 0, 1 km) = (0, 0,
0.26) (Figs. 4.6a and 4.6b) and (0, 0, 3 km) = (0, 0, 0.65) (Figs. 4.6¢c and 4.6d).
In Figs. 4.6(a) and 4.6(c), the sensitivities of Z,; due to the two different
perturbation depths do not overlap each other, whereas the strongest responses of
nyR appear at the same central position in Figs. 4.6(b) and 4.6(d). Therefore, it is
difficult to distinguish the responses due to structures at different depths using the

off-diagonal components in a limited frequency range.

(@) (b)

(c) ’__q X(d) X
b '

Y Y

Fig. 4.6. Surface-sensitivity patterns of the values above 4/5 of the maximum
absolute value for (a,c) Z,,; and (b, d) nyR on the same scale in Figs. 3.1 to 3.6
when the perturbed position is at (a, b) (0, 0, 1 km) = (0, 0, 0.26) and (¢, d) (0, 0,

3km) = (0,0, 0.65).
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To further examine the aforementioned characteristics of the impedance
components, 3D MT inversion is performed for the synthetic model shown in Fig.
4.7. In the model, a cross-shaped anomalous body (1000 € m) composed of two
long structures along the x- and y-axes exists in the shallow depth, and a cube-shaped
anomalous body (I Q m) is located below the cross-shaped anomaly. A total of 81
receivers are located at a uniform interval of 1 km covering from -4 to 4 km in the
x- and y-axes. A total of 13 frequencies sampled at a uniform interval on the
logarithmic scale ranging from 0.1 to 100 Hz are considered. Inversion is conducted
for three frequency ranges: high frequencies (10~100 Hz), low frequencies
(0.1~1.778 Hz), and all frequencies (0.1~100 Hz). Inverted models are represented

with the boundaries of the true structures.

(a)

(b)

X (km) 4

mi10m 4 W10
Y (km) MW 1000 Qm Z(kkm) m 1oorcr)lom

Fig. 4.7. Synthetic model for 3D interpretation of MT data: (a) plan view and (b) xz
cross-section. Resistivity values of the background medium (sky-blue), the two long
anomalous bodies (blue), and the cube anomalous body (red) are 100, 1000, and 1

) m, respectively.
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Fig. 4.8 shows the inversion results of the components of the impedance tensor
for the high-frequency range (10~100 Hz). Because the high-frequency data include
information of only the shallow structures in Fig. 4.7, the inversion models are
constructed up to 1.5 km along the z-axis, and are displayed on the xy-plane crossing
at z=0.75 km, which corresponds to the central depth of the cross-shaped structure.
In Fig. 4.8(a), the inversion result of Z,, is a cross shape, but it extends beyond the
true boundaries. Fig. 4.8(b) shows that ny recovers the long structure well along
the y-axis, whereas do not properly reconstruct the true resistivity and boundaries of
the long structure along the x-axis. In contrast to ny , Zyx dominantly inverts the
long structure along the x-axis. The inverted model of Zyy has similar tendencies
to that of Z,, . The inversion results of the components of the impedance tensor are
in good agreement with the features of their sensitivity patterns described in Section
4.2.

Fig. 4.9 shows inversion results obtained with only the low frequencies
(0.1~1.778 Hz). Because the low-frequency data contain both the responses of the
shallow high-resistivity cross-shaped and lower conductive cube-shaped anomalous
bodies in Fig. 4.7, the inversion models are constructed up to 4 km along the z-axis.
In Fig. 4.9, the inversion results are represented at depths of 0.75 and 3 km where
the two structures exist. In Fig. 4.9, the diagonal components of the impedance tensor
(e, Z

w and Z ) similarly invert the lower structures well, while the off-

diagonal components of the impedance (i.e., Z,, and Z ) do notrecover both the

xy
structures. These inversion results are consistent with the features of the sensitivity

patterns for each impedance component shown in Fig. 4.6.
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In Fig. 4.10, the inversion results obtained using all, xx-, and xy-impedance

z

components (i.e., Z

all » XX 2

and Z, ) with all frequencies (0.1~100 Hz) are
presented. In addition, Fig. 4.10 shows inversion results obtained selectively using

the off-diagonal components (i.e., Z, and Zyx) for the high frequencies and the

Xy

diagonal components (i.e., Z, and Zyy ) for the low frequencies, which is
indicated by Z, . Inverted models of Z, and Z  are omitted in Fig. 4.10,
because the inversion results of Zyx are rotated versions of ny , and the inverted
model of Z  is similar to that of Z,,. The updated models with only Z,, and
ny have similar tendencies to those of the components shown in Figs. 4.8 and 4.9,
respectively. Although the model inverted with all impedance components allows to
infer the true subsurface structures to some extent, the adverse effects of both the
diagonal and off-diagonal components represented in Figs. 4.8 and 4.9 are also
observed. In other words, the diagonal components lead the high resistivity of the
upper structure to spread beyond the actual boundaries, and the underestimation of
the lower structure is attributed to the off-diagonal components. Compared with the

inverted model of Z,,, the updated model denoted by Z. shows that the

all >
deviation of the upper cross-shaped structure is suppressed, and the resistivity values
of the lower cube-shaped structure are closer to the true value.

Fig. 4.11 shows the inversion results obtained using all, yx-, and yy-components

of the phase tensor, which are represented by @ ® ,and @, respectively,

all » yx 2 yy °
with all frequencies. In Figs. 4.10 and 4.11, the inverted models of ®  and Z,,,
which belong to the same Group 1, similarly present that they recover the lower

conductive structure well, but the upper cross-shaped structure is inverted slightly

wider than the true model. The inversion results of (Dyy and ny belonging to the
205,
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same Group 2 are analogous in that the upper long anomalous body along the y-axis
is updated close to the true one, whereas the low resistivity of the lower cube-shaped
structure is not well retrieved. Because the sensitivity patterns of @~ and ny are
not exactly the same, there exist differences in the inverted models of the upper
anomaly extended along the x-axis. The updated models for ®,, and Z,, have
different values of the resistivity, but show similar structures.

In summary, the different sensitivity patterns in Figs. 2.1, 2.2, and 4.6 imply
that it is generally recommended to use all the impedance components together for
3D MT inversion, but Z,, and Zyy, which are suitable for imaging of vertically
placed structures, may have disadvantages in imaging of structures close to 2D, and
ny and Zyx , which are optimal for imaging of structures close to 2D in y- and x-
axes, respectively, may adversely affect inversion of vertically existing structures. In
Figs. 4.8 and 4.9, the pros and cons of the different sensitivity patterns for each
component are represented in the inversion results for the model of Fig. 4.7, and Fig.
4.10 shows the selective use of the components according to the frequencies in
consideration of their sensitivity patterns can improve the inversion results for the
3D model. Additionally, Figs. 4.10 and 4.11 demonstrate that the phase tensor can
yield similar subsurface structures even with the halved number of data compared to
the impedance tensor, because each component of the phase tensor has information
on the structures that each impedance component of the same group can give.

Finally, the synthetic examples of inversion for different MT exploration in

Chapter 4 are summarized in Table 4.2. Table 4.2 can be used as a guideline for the

selection of MT response functions in inversion based on their sensitivity patterns.
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logo(Resistivity) (Qm)

Y NRMS:139x 1072 Y NRMs: 282 x 1072 Y NRMS:574x 1072
Fig. 4.11. Inversion results with the whole range of frequencies (0.1~100 Hz) for the
model of Fig. 4.7: the cross-section at y=0 km (top) and the plan views at z=0.75 km

(middle) and 3 km (bottom). @ ®,,and @  mean the inversion results

all » yX 2
obtained using all, yx-, and yy-components of the phase tensor, respectively. The

white dotted rectangles represent the boundaries of 3D structures on the planes in

Fig. 4.7.
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Chapter 5. Case study: Utah FORGE field data

5.1. Utah FORGE site and MT field data

The Utah Frontier Observatory for Research in Geothermal Energy (FORGE)
is a field laboratory located about 30 km northeast of Milford, Utah. The production
area of the Roosevelt Hot Springs geothermal system is located about 5 km east of
the FORGE site. To explore the technical feasibility of characterizing, creating, and
maintaining enhanced geothermal system (EGS) reservoirs, the U.S. Department of
Energy (U.S. DOE) selected the Utah FORGE in 2018 (Moore et al. 2020;
Wannamaker et al. 2021). For these purposes, a variety of geological and geophysical
methods have been applied. As one of them, MT data were acquired around the Utah
FORGE and Roosevelt Hot Springs geothermal system sites to clarify resistivity
structures involving potential heat sources.

Wannamaker et al. (2020) performed 3D MT inversion using the newly
measured FORGE MT data along with the existing Subsurface Science, Technology
and Engineering Research, and Development (SubTER) and Cove Fort MT data
measured in other projects. Fig. 5.1 modified from Figure 16 of Wannamaker et al.
(2020) shows the cross-section of the 3D MT inversion model, and the white dotted
lines indicate a lower resistivity body (about 100 €2 m). They described that the
depth range of the lower resistivity body is appropriate for the possibly cooled
magma storage zone, and the lower resistivity body may represent the fracture zone
of residual hot fluids probably related to the Roosevelt Hot Springs. The black lines

in Fig. 5.1 are used later in comparison with inversion results in Chapter 5.3.
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log Resistivity (©2-m)
0 +1 2 +3

Elevation (km)
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Easting (km)

125 130 135 140 145 150 155 160
Easting (km)

Fig. 5.1. The cross-section of the 3D MT inversion model. A clockwise rotation of

20 degrees is required to align with true north. This figure is modified from Figure

16 of Wannamaker et al. (2020) by adding the white dotted lines and black lines.
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Among the three MT data sets used in Wannamaker et al. (2020), publicly
accessible FORGE  (https://gdr.openei.org/submissions/1255, Energy and
Geoscience Institute at the University of Utah. 2020. Utah FORGE: Phase 3
Magnetotelluric Data [data set]. Retrieved from https://dx.doi.org/10.15121/
1776598) and SubTER (https://gdr.openei.org/submissions/1331, Energy and
Geoscience Institute at the University of Utah. 2021. SubTER Final Magnetotelluric
Data: Mineral =~ Mountains,  Utah [data  set]. Retrieved  from
https://dx.doi.org/10.15121/1822377) MT data can be downloaded in the website for
the U.S. DOE Geothermal Data Repository (GDR). In Fig. 5.2, the MT survey area
including both the FORGE and SubTER data in the Utah is represented using the
Google Earth Pro. Fig. 5.3 shows the locations of the FORGE and SubTER MT data
with the MT survey area, origin, axes, and surface-range of the aforementioned lower
resistivity body in the cross-section of Fig. 5.1 (indicated by the white line) on a map
from the Google Earth Pro.

The total number of MT data is 181, and the majority of the data are
concentrated around the origin. The MT data are rotated according to the coordinates
in Fig. 5.3, and post-processing for data is performed in the frequency domain. The
total number of frequencies is 48, and the frequency range is from 0.0122 to 230.47
Hz. To comparably image the main structures of Fig. 5.1 using less MT data than the
data used by Wannamaker et al. (2020), it is necessary to optimally select input MT
response functions for inversion in consideration of the characteristics of the
sensitivity patterns and the surroundings of the MT survey. Because many receivers
are distributed three-dimensionally away from the white line in the negative y-axis
direction near the center in Fig. 5.3, it can be expected that the MT response function
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of T, whose surface-sensitivity patterns are wide and strong in the y-axis will make
a great contribution to the imaging of the target structure. In this thesis, inversion
results are compared according to the four strategies of selecting MT response

functions of ny and Zyx; Z Z. ., and Ty; ny, Z

Xy 2 yx 2

> and T,;and Z,,
ny , ZyX ,and Zyy , as input data types. They are denoted as (ny , Zyx ), (ny , ZyX ,

Ty),(ZXy, Zyx, T,),and (Z,, ny, Zyx, ZW), respectively.

t

GoggleFarth - -
N g s

E0e e Aty Conerices

Fig. 5.2. MT survey area for the FORGE and SubTER MT data in a Utah map from

the Google Earth Pro.
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Fig. 5.3. The survey area and locations of the FORGE and SubTER MT data on a
map from the Google Earth Pro. The origin is (38°30°12.96”N, 112°53°47.80”" W)
and the axes are rotated eastward by 20 degrees in reference to the North. The
surface-range of the target lower resistivity body in the cross-section of Fig. 5.1 is

indicated by the white line.
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5.2. Settings of 3D MT inversion for the field data

A modeling mesh of the Utah area is constructed by the tetrahedral elements
using the ‘Gmsh’ mesh generator (Geuzaine & Remacle 2009). The modeling mesh
should be finely divided near the locations of the receivers, and reflect the elevations
of the Utah area. In Fig. 5.4, the procedures for creating the modeling mesh are
briefly represented. The modeling mesh consists of a total of 901,557 tetrahedral
elements. Fig. 5.5(a) shows that the modeling mesh has a small mesh size near the
receivers. In Fig. 5.5(b), the modeling mesh considering the heights at the surface
correctly depicts the topography of Fig. 5.3.

An inversion mesh is composed of mixed elements: hexahedron, tetrahedron,
and prism. In Fig. 5.6, the region of interest inside the (-15~15 km) x (-20~20 km) x
(-4~20 km) box (indicated by red lines) is discretized into small 9, 720 (20 x 27 x
18) hexahedrons, whereas the remaining region is filled with large 2,136
tetrahedrons and 3,096 prisms for computational efficiency. The inversion mesh
consists of a total of 14,952 elements.

For 3D MT inversion of the field data, a homogeneous model of 100 2 m is

used as an initial model, and other settings are demonstrated in Table 5.1.

1 1 S 1]
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1) Receivers (Lat, Lon, 0) =2 (x, y, 0)
geo file 1: nodes for surface boundary (£300, £300, 0) and receivers

2) Gmsh, geo file 1 = msh file 1: surface mesh composed of small
triangular elements near the receivers

3) Msh file 1 nodes (x, y, 0) = (Lat, Lon, 0)
- GPS Visualizer (Schneider, 2019), (Lat, Lon, z) =2 (X, y, 2)
msh file 2: msh file 1 + consideration of elevations

4) Receivers (x, y, 0) = (x, y, z) interpolated by msh file 2

5) Gmsh, nodes for surface lines (£300, +300, z) and outer boundary
(2300, £300, -90 or 300) with receivers (x, y, z)
—> msh file 3: outer boundary mesh

6) Gmsh, msh file 2 + msh file 3 = msh file 4: 3D MT modeling mesh
with tetrahedral elements

Fig. 5.4. Simple workflow of constructing the modeling mesh for the field data.
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(2)
20

0 20
y (km)

Fig. 5.5. Modeling mesh at the surface of the survey area (a) with and (b) without

edges.
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Fig. 5.6. Inversion mesh composed of hexahedral, tetrahedral, and prism elements.

The red lines represent the region of interest in 3D MT inversion.
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Table. 5.1. Settings of 3D MT modeling and inversion for the field data.

3D MT modeling with edge-based FEM

Modeling mesh
(Chapter A.2)

Tetrahedral elements (Figs. 5.4 and 5.5)

3D MT inversion

Objective function
(Chapter 2.2.1)

Creeping method in equation (2-63)

Jacobian calculation
(Chapter 2.2.2)

Sensitivity equation approach in equation (2-73)

Blocky parameterization
(Chapter 2.2.3.1)

Hexahedral, tetrahedral, and prism inversion mesh
(Fig. 5.6)

Model parameterization
(Chapter 2.2.3.2)

Equations (2-77) and (2-84)

Data weighting matrix
(Chapter 2.2.3.3)

Equations (2-90), (2-91), and (2-92)

Roughness matrix
(Chapter 2.2.3.4)

Equation (2-97)

Lagrange multiplier
(Chapter 2.2.3.5)

Equations (2-98), (2-100), and (2-102)

Line search
(Chapter 2.2.3.6)

0)
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5.3. 3D MT inversion results for the field data

In this section, inversion results of the MT field data for the Utah FORGE site
obtained by the aforementioned strategies of selecting MT response functions as

input data types denoted by (Z,,, Z,,),(Z,,, Z,,, T,).(Z,, Z,, T,).,and(Z,,,

zZ,, Z

Xy . Zyy) are represented. Fig. 5.7 shows the updated models of the yz cross-

section at x=0 km obtained from the four strategies with the ParaView (Ahrens et al.
2005). In Fig. 5.7, the white dotted lines represent the boundaries of the target body
with lower resistivity (marked with the white dotted lines in Fig. 5.1), whereas the
black lines indicate the overlapping part with the cross-section of Wannamaker et al.
(2020) (marked with the black lines in Fig. 5.1). In Fig. 5.7(a), the strategy of ( ny ,
Zyx) images the low resistivity structure near the surface in the negative y-axis and
the underlying high resistivity structure similar to Fig. 5.1, but the inversion result
in the white dotted rectangle does not show low resistivity body. The inversion result
for the selection strategy of (Z,,, Z,,, T,) shown in Fig. 5.7(b) reconstructs the
subsurface structures including the target body comparable to those of Fig. 5.1.
Comparing the inversion results of Figs. 5.7(a) and 5.7(c) with each other, the T,
data are added, but the recovered structures for the strategy of (Z,,, Z,,, T,) are

not significantly different from those for the (Z Zyx) strategy. In Fig. 5.7(d), the

Xy)

model inverted by the strategy of (Z Z,,, Z,, Z,) shows the low resistivity

XX 2 yX 2

body near the target structure, but it exceeds the boundaries of the target structure in
the y-axis. Consequently, as expected in Chapter 5.1, the strategy of (Z,,, Z,,, T,)

yx b
containing Ty data visualizes the subsurface structures including the target body

most similar to the result of Wannamaker et al. (2020) inverted by more MT data.
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(a)

z (km)

(b)

z (km)

y (km)

— | — _
0 1 2 3 4 5
log, o (Resistivity) (Qm)
Fig. 5.7. Inversion results of the yz cross-section at x=0 km for the four strategies of
selecting MT response functions as input data types denoted by (a) (Z,,, Z,,), (b)
(Zy> Zy> T)), (©) (Z,,, Z,, Ty), and (d) (£, Z,,, Z,,, Z,). The white
dotted and black lines represent the boundaries of the lower resistivity target body
and overlapping part in the cross-section of Fig. 5.1, respectively.
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log1o(Resistivity) (Qm)
Fig. 5.7. (Continued)
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Fig. 5.8 shows the data misfits of the objective functions over the iteration
numbers in the inverse procedures for the four strategies of selecting MT response
functions. The total number of iterations for the strategy of ( ny , Zyx) is 5, whereas
that for the other strategies is 7. In the inverse problems of the four strategies, the
data misfits decrease and finally converge to the data misfits smaller than 1% of the
initial values. In other words, all four inversion processes are reasonable and

adequately reflect their observed data.

]()3 T T T T T T

/

Data Misfit
IW(dops — d(m))||?
=

| 00 * ' ' - ' '
0 | 2 3 4 5 6 7
Iteration Number

—O— (Zyy, Zyy) strategy —0— (Zyy, Zyy, Ty) strategy
—0— (Zyy, Zyyx, Tx) strategy (Zxxs Zxys Zyx, Zyy) strategy

Fig. 5.8. Data misfits over the iteration numbers in the inverse procedures for the
four strategies of selecting MT response functions as input data types denoted by

(ny5 Zyx)’(zxya Zyx’ Ty)’(zxy5 Zyx’ Tx)’and(z ny7 Zyxa Zyy)
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In Fig. 5.9, the ratios of root-mean-square (RMS) errors for the inverted models

of the (Z,,, Z,) and (Z,,, Z,, T,) strategies are presented according to the

Xy 2
receiver locations. Receiver positions with the ratio greater than 1 (indicated in blue)
mean that the RMS errors for the strategy of (Z,,, Z,,, T,) are smaller than those

for the strategy of (Z,,, Z,,), whereas the red points with a ratio less than 1 mean

Xy 2

that the RMS errors for the strategy of (Z Zyx) are smaller than those for the

Xy 2
strategy of (Z,,, Z,,, T,). Fig. 5.9(a) shows the ratios of RMS errors for the MT
response functions of Z, and Z, are close to 1 in most receivers (i.e., the RMS
errors for the MT response functions of ny and ZyX in the two inverted models
are similar). In Fig. 5.9(b), many receivers have a dark blue color on the map of the
ratios of RMS errors for the MT response function of T, , and it implies the
responses of T, for the inverted model of the (Z,,, Z,,, T, ) strategy are in better
agreement with the observed data.

Fig. 5.10 shows the observed data and MT responses obtained from the two

inverted models for the (Z, , Z,)and (Z,,, Z,, T,) strategies in the receiver

Xy b
located at (-0.76, 0.75, -1.68 km) away from the target structure (Fig. 5.3) in the
negative y-axis. For the MT response functions of 0, . P, > @4, and @,

(ie., Z, and Zyx ), both strategies result in the updated models with the MT

xy
modeling results close to the observed data. On the other hand, the inverted model
by the strategy of (Z,,, Z,,, T,) reproduces the responses of T, more similar to
the observed data than that for the strategy of (Z,,, Z,,). Like Fig. 5.10, the MT
responses in the receiver located at (1.69, 17.2, -2.24 km) away from the lower
resistivity body (Fig. 5.3) in the positive y-axis are represented in Fig. 5.11.
Compared to the results in Fig. 5.10, the responses of o, ., P, > Pry s an_(_lﬂ P g
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have similar tendencies, and the responses of Ty show more distinct differences
according to the two strategies in Fig. 5.11.

In summary, Fig. 5.7 demonstrates the strategy of selecting MT response
functions as input data types denoted by (Z,,, Z,, T,) restores the subsurface
structures including the main lower resistivity zone most comparable to the inverted
model in Fig. 5.1. Figs. 5.9, 5.10, and 5.11 show that the different inversion results
are attributed to the MT response function of Ty . These results are consistent with
the presumption based on the sensitivity patterns, which is described at the end of
Chapter 5.1. As in the case study explained in Chapter 5, inversion results in various
MT case studies will be improved because optimal MT response functions can be
selected by considering the sensitivity patterns and the environment of MT

exploration (distribution of receivers, location of main structures, frequencies, etc.).
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Fig. 5.9. Maps of the ratios of RMS errors between the models inverted by the
strategies of selecting MT response functions as input data types denoted by (ny ,
Z,)and (Z,, Z,, T,) for the MT response functions of (a) Z, and Z, and
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- Observed  -o= (Zyy, Zyx) strategy

=8~ (Zxy, Zyx, Ty) strategy

Fig. 5.10. MT responses of 0, ., P, s> Pyy>

®p> Tjr-and T, atthe receiver

located at (-0.76, 0.75, -1.68 km) obtained from the observed data (black circles) and

the inverted models for the strategies of selecting MT response functions as input

data types denoted by (Z,,, Z,,) (red circles) and (Z,,, Z,,, T,) (blue circles).
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Fig. 5.11. MT responses of 0, ., Pa > P> P> T-and T, atthereceiver
located at (1.69, 17.2, -2.24 km) obtained from the observed data (black circles) and
the inverted models for the strategies of selecting MT response functions as input

data types denoted by (Z,,, Z,,) (red circles) and (Z,,, Z,,, T,) (blue circles).
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Chapter 6. Conclusions

The 3D sensitivity patterns and surface-sensitivity patterns were investigated to

describe the characteristics of the 22 major MT response functions: 8 components of

the impedance tensor (Z,,q, Zyis Zyrs Zyys Lpgs Zyys Lygsand Z,,);2

components of the apparent resistivity ( p, ,, and p, ., ); 2 components of the

T

xl

phase (¢,, and @, ); 4 components of the tipper (T,z, T and T,); 2

yR?

components of the effective impedance (Z 4, and Z, ); and 4 components of the

phase tensor (D ®,,, ®,,and @ ) forinversion.

XX 2 Xy ? yXx
First, the various MT response functions were classified into 6 groups according
to their surface-sensitivity patterns so that MT response functions with similar roles

YA

in the inverse process belong to the same group. Group 1 contains Z

XXR ° xxI 2

Z Z ®,,, and @ that have the diagonal four petals-shaped surface-

WR 2 wyl > Xy ?

sensitivity patterns. Because their surface-sensitivity patterns are strong in all four
quadrants, the MT response functions of Group 1 are useful when receivers are
evenly installed on the surface to image 3D structures. Z, o, Z,/, 0, x> @y
and @  with the linear surface-sensitivity patterns along the y-axis belong to
Group 2, and the MT response functions of ZyxR , Zyxl s Pa > Py and D,
whose surface-sensitivity patterns are linear in the x-axis are classified into Group 3.
The intensive surface-sensitivity patterns along the y- and x-axes indicate that the
MT response functions of Groups 2 and 3 contribute significantly to inversion of
nearly 2D structures extending along the y- and x-axes, respectively. The x- and y-

components of the tipper possess the linear two petals-shaped surface-sensitivity

-l -.-
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patterns along the x- and y-axes, and belong to Groups 4 and 5, respectively. Because
the part with strong surface-sensitivity patterns of the tipper appears widely along
one axis, the tipper can be helpful for retrieving both 2D and 3D structures. The
surface-sensitivity patterns for the effective impedance (Group 6) appear as the small
circle. The characteristic of surface-sensitivity patterns, which appear strongly only
around the center, makes the effective impedance an advantage in interpretation of
1D strucutres.

Next, the synthetic examples for 1D, 2D, and 3D interpretation of MT data were
represented to show how the sensitivity patterns are reflected in observed data and
inversion results. The synthetic examples were summarized in one table that
recommends appropriate input MT response functions for inversion according to the
environment of MT exploration. The examples for 1D interpretation of MT data
showed that Groups 2, 3, and 6 can be applied for 1D inversion, and the effective
impedance is an optimal MT response function for the cases with an anomalous body
causing the dimensionality error. In the examples for 2D interpretation of MT data,
Groups 2, 3, 4, and 6 respond to 2D structures with the strike along the y-axis. If
geological structures are nearly 2D and the sufficient data can be obtained crossing
the main structure, the MT response functions having strong surface-sensitivity
patterns along the strike direction (i.e., TM mode) are recommended. The tipper is
of great help in the cases where data acquired right above the target structure cannot
be used. The tipper and effective impedance are good substitutes for the TM mode
MT response functions when the off-plane structures exist. In the examples for 3D
interpretation of MT data, all data types of MT response functions can be applied to

inversion, but the features of the components of the impedance tensor that are mainly
'3 e :
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used in 3D inversion were mostly described. It is generally helpful to use all the
impedance components together because they have different sensitivity patterns.
However, in imaging of some specific structures, selectively using the impedance
components can be a better strategy than using all the components, and such specific
structures can be guessed through the sensitivity patterns. As previously mentioned,
the responses to structures close to 2D are mainly contained in off-diagonal
components having strong sensitivity patterns in the same direction as the strike,
while responses to nearly 2D structures hardly appear in the diagonal components.
In the case of vertically existing structures, the responses to upper and lower
structures at limited frequencies are recorded separately in different receivers for the
diagonal components, whereas they are superposed on the same receiver for the off-
diagonal components. Corresponding to the features of the sensitivity pattern for
each component, the 3D models inverted by the diagonal impedance components
reflected the vertically existing structures well but did not properly represent the
structures close to 2D, whereas the inversion results of the off-diagonal impedance
components had opposite tendencies. The synthetic examples for 3D inversion also
showed that inversion results may be improved by selectively using the impedance
components according to frequencies in imaging of structures close to 2D or two
structures separated in the vertical direction. Additionally, it was demonstrated that
the phase tensor can yield similar subsurface structures to those of the impedance
tensor even with a smaller number of data.

Finally, the sensitivity patterns for MT response functions were applied to
inversion of real 3D MT field data. The field data were acquired near the Utah

FORGE and Roosevelt Hot Springs geothermal system sites. Most of the field data
1] O
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are located widely away from the target structure in the y-axis direction. Considering
this MT exploration situations, it could be inferred that many receivers contain the
responses to the target structure in the data type of MT response function of Ty
whose surface-sensitivity pattern is spread in the shape of two petals in the y-axis
direction. As expected, the model most compatible to the inversion result of
Wannamaker et al. (2020) imaged from more MT field data was inverted when Ty
is adopted with ny and Zyx. Furthermore, some error analyses for the inverted
models demonstrated that the MT response function of T, has a large contribution
to imaging the target body with low resistivity.

Consequently, the sensitivity patterns presented in this study give insight into
the characteristics of the MT response functions. The analyzed sensitivity patterns
of the MT response functions can be used in various MT studies such as post-
processing of data and survey design. In this thesis, the synthetic examples for
several specific situations and the field data example at the Utah FORGE site
describe approximate structures suitable for inversion according to the sensitivity
patterns of the MT response functions and show how to apply their sensitivity
patterns to MT inversion. Therefore, this thesis can be used as a guideline for
selecting optimal input data types of MT response functions in different case studies

for MT inversion.
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Appendix A. Tetrahedral and hexahedral elements

In this appendix, information on tetrahedral and hexahedral elements used for
3D MT modeling with the edge-based FEM is described. Because the tetrahedral or
hexahedral elements have various shapes and sizes, their basic elements are required
to explain in general. The coordinate system used in the basic element is called the
local coordinate system, whereas the global coordinate system is for the elements of
the entire 3D model. In Chapter A.1, the contents for the tetrahedral element: the
basic element; the transformation between local and global coordinates; the edge
shape function; the curl of edge shape function; the elementary stiffness matrix; and
the elementary mass matrix are represented. In Chapter A.2, the same contents for

the hexahedral element are described.

A.l. Tetrahedral elements

For the basic tetrahedral element in the FEM, the local coordinate system,
number of nodes, edge directions, and number of edges are shown in Fig. A.1. To
handle all tetrahedral elements in general, a volume coordinate system can be used
instead of considering a tetrahedron of a specific shape and size. For example, let
four nodes of a tetrahedron (nodes 1, 2, 3, and 4) and an arbitrary point P inside the
tetrahedron be (X, ¥1,Z) . (%,¥,,2,) » (X,¥5.23) . (X,,Y,,2,) , and
(X, Y, Z) in the global coordinate system, respectively. The volume coordinates of

the point P (4, 4,,4;,4,) are defined as follows:
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(point P, node 2, node 3, node 4)
node 1, node 2, node 3, node 4)

node 1, point P, node 3, node 4)
node 1, node 2, node 3, node 4

2

(A-1)

A =

node 1, node 2, node 3, point P
node 1, node 2, node 3, node 4

4

V
V(

_V(

V( )
V (node 1, node 2, point P, node 4)
V (node 1, node 2, node 3, node 4)
_V( )
V( )

where V (a, b,c, d) is a volume of the tetrahedron composed of four points, a,

b, ¢,and d.Fromequation (A-1), 4 +4,+A4+4, =1.

tetrahedron

Fig. A.1. Local coordinate system, number of nodes, edge directions, and number of

edges for the basic tetrahedral element in the FEM.
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The transformations between the global coordinates (X, Y, Z) and the local
coordinates (4,,4,,4;,4,) (i.e., the volume coordinates) of the arbitrary point P

are defined as follows (Jin 2002):

A’.I. Q b1 C, dl 1
A, _1]a b, ¢, d,|lx ’ (AD)
A 6Via, b, ¢, dy|y
A4 a, b, ¢, d,)\z
1 1 1 1 1 Zj
X|_ [ % % X X A, ’ (A3)
Y | Yr Y2 Y Y|
z 1, 1, 1, )\ 4
where
X X X, X X X, XX X XX X
a =y, VYs y4;b1:_y1 Ys Yas G =1 Yo y4;d1:_Y1 Y. Yi|s
z, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1,
1 1 1 1 1 1 1 1 1 1 1 1
G==¥2 Vs Yahib=(Yi Y5 ValiCo=—|¥i Y2 Vali p=|Vi Y2 Vifs
Z, 1, 1, 2, 1, 1, z, 1, 1, 2, 1, 1,
1 1 1 1 1 1 1 1 1 1 1 1
=X X X bi=—X X X[ CG=X X X[ dy=—lx X X
z, 7, 1, Z, 7, 1, z 7, 1, Z, 7, 1,
1 1 1 1 1 1 1 1 1 1 1 1
a=—1% X X4;b4—X1 X3 X5 G ==X X, X4;d4:X1 X, X5
Y. Y3 Y, Yi Y5 Wu Yio Y2 Y, Yi Y2 Y
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X, X, X
V=vo|umeoftetrahedron:lxl 2 73 T4
6lY: Y. Ys Yy

4, I, 13 Y,

For the tetrahedral elements, the edge shape functions and the curl of the edge

shape functions are defined as follows using the volume coordinates (Jin 2002):

@, :(/1 )Vﬂ’NZ(i) _ﬂ“NZ(i)V/lNl(i))li; i=1~6 , (A-4)

N1

VX(Di = 2||V/1Nl(|) xvj‘NZ(i); I=1~6 p (A_S)

where |, is the length of the i-th edge. N1(i) and N2(i) are the start and end
nodes of the i-th edge along its direction in Fig. A.1, respectively. For example,
Nl(l) =1 and N 2(1) =2 for the edge number 1.

For arbitrary tetrahedral elements, the elementary stiffness and mass matrices
have analytic solutions (Jin 2002). The components of the elementary stiffness
matrix for the tetrahedral element are defined as follows:

N
ij _(6V)4

[w-w];hj=1~6, (A-6)

where

Vi :(CNl(i)dNZ(i)_le(i)CNZ(i)' s Prziy ~Bragiydnzgiy: le(i)CNZ(i)_CNl(i)bNZ(i))’

The components of the elementary mass matrix for the tetrahedral element are

defined as follows: :
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where f; =bb, +cc; +dd; (i, j =1~ 4). Because the elementary mass matrix

is symmetric, My =M, where i, j=1~6.
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A.2. Hexahedral elements

For the basic hexahedral element in the FEM, the local coordinate system,
number of nodes, edge directions, and number of edges are shown in Fig. A.2. The
basic hexahedral element in this thesis is a regular hexahedron composed of eight
nodes, which are (—1 orl, —-lorl -lor 1) . In the local coordinate system, the
origin is the center of the basic hexahedral element and the local coordinates are

basedonthe &, 77,and £ axes.

5 (-1,-1,1) 8
©)

=1
@4 0 1@
9] 1§@®7 4
EONVE
7 @ 3 (1,1-1)
hexahedron

Fig. A.2. Local coordinate system, number of nodes, edge directions, and number of

edges for the basic hexahedral element in the FEM.
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Let the eight nodes of the structured hexahedral element used in this study be
(X1 orXx,, y, ory,, z, or 22) in the global coordinate system. The transformations
between the global coordinates (X, Y, Z) and the local coordinates (é‘ ¢ ) ofan

arbitrary point P inside the structured hexahedron are defined as follows:

77:2( y_ylj_l , (A-8)
Yo=Y
_ -1, _
(—Z[ZZ_ZJ 1
USIEE
y:(YZ—yl)(77+1)+yl . (A-9)

For the hexahedral elements, the edge shape functions and the curl of the edge

shape functions are defined as follows (Miyata 2006):

S
c1>i:'gi(1+gig)(1+77i77)(1+§i§)c53D S, |5 1=1~12 ,  (A-10)

&
(1+&8) (0 ~¢:6))
(L+mn)(Sol-&oL) | i=1~12 , (A-11)
(1+§i§)(§i5; _77i52)
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o o o x x
X X ox oc on o¢
where G, = 95 on 9 :(JSD‘l)T; Jop = Y ¥y 9 :
o oy oy o0& on o
o o 2 a a
oz 07 oz o8 on o¢
S =nd|; 8 =|¢&| and SL=|En|. &, my,and & arein Table A.l.

Table.A.1. &, n,,and &, for hexahedral element.

Edge No. & n ¢
1 0 -1 -1
2 0 1 -1
3 0 1 1
4 0 -1 1
5 -1 0 -1
6 1 0 -1
7 1 0 1
8 -1 0 1
9 1 1 0
10 1 -1 0
11 1 1 0
12 -1 1 0
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The elementary stiffness and mass matrices of the arbitrary hexahedral element
should be calculated with a numerical integration. For example, the components of
the elementary stiffness matrix in the local coordinate system are calculated as

follows:

K, j j j (Vx®,)-(Vx®,)[J,5]|dEdnds
(A-12)

—j j j (&m,&)dedndd; i, j=1~12
The Gauss-Legendre quadrature is a form of Gaussian quadrature to approximate a
definite integral of a function with a weighted sum of the function values at specified

points. The Gauss-Legendre quadrature is represented as follows:

Illf(x)dngwif(xi) : (A-13)

where n is the number of sample points; W, is the quadrature weight; and X; 1is
the quadrature point between -1 and 1. Using the Gauss-Legendre quadrature of

equation (A-13), the components of the elementary stiffness matrix of equation (A-

12) can be computed as follows:

K. = W, WW K (&, & )i 1 i =1~12 . (A-14)

ij m

In Table A.2, the points and weights for the Gauss-Legendre quadrature are described.
In the same way, the components of the elementary mass matrix of the hexahedral

element can also be calculated.

1 O
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Table. A.2. 1D Gauss-Legendre quadrature points and weights.

Order Points Weights

1 0 2
-0.57735026918962576 1

? 0.57735026918962576 1
-0.77459666924148338 0.88888888888888889

3 0 0.55555555555555556
-0.77459666924148338 0.88888888888888889
-0.86113631159405258 0.34785484513745386
-0.33998104358485626 0.65214515486254614

* 0.33998104358485626 0.65214515486254614
0.86113631159405258 0.34785484513745386
-0.90617984593866399 0.23692688505618909
-0.53846931010568309 0.47862867049936647

5 0 0.5688888888888889
0.53846931010568309 0.47862867049936647
0.90617984593866399 0.23692688505618909
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