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Abstract 

 

 
Analysis of Sensitivity Patterns for MT Response 

Functions and its Application to Inversion 

 
Janghwan Uhm 

Department of Energy Systems Engineering 

The Graduate School 

Seoul National University 

 

Magnetotelluric (MT) exploration measures the electric and magnetic fields 

generated by natural sources over time at the surface. The measured electromagnetic 

fields are converted into various MT response functions in the frequency domain, 

which are used in inversion to image subsurface structures. Inversion results are 

dependent on types of model parameters and input data. There have been studies on 

characteristics of multi-parameters using the sensitivity matrix in geophysical 

inversion. Also, there have been studies showing that different inversion results are 

obtained according to different input MT response functions. However, those studies 

did not examine which factors of the MT response functions cause different inversion 

results. 

In this thesis, sensitivity patterns are analyzed and applied to characterize major 

MT response functions (impedance tensor, apparent resistivity, phase, tipper, 

effective impedance, and phase tensor) in inversion. Because the sensitivity pattern 
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represents changes of data in space due to a small change in a model parameter, it 

represents the features of MT response functions in the inverse procedure that 

matches the modeling MT responses for the model parameter vector with the 

observed data. This thesis describes both 3D sensitivity patterns and 2D sensitivity 

patterns on the surface where MT data are acquired. Then, a total of 22 MT response 

functions are classified into six groups. MT response functions with similar surface-

sensitivity patterns (i.e., playing a similar role in inversion) are classified into the 

same group. MT response functions in the different groups can have complementary 

roles in inversion. 

In synthetic situations for 1D, 2D, and 3D interpretation of MT data, it is 

investigated how observed data and inversion results for the MT response functions 

differ according to their sensitivity patterns. Through these synthetic examples, it is 

demonstrated that 1) the effective impedance is optimal when considering the 

dimensionality error in 1D interpretation; 2) Transverse magnetic (TM) mode MT 

response functions are recommended in general 2D interpretation, but the tipper is 

superior for a receiver array that cannot use data recorded right above a target 2D 

structure; and 3) 3D inversion results can be improved when the impedance tensor 

is selectively used in a specific case where two anomalies exist vertically. The 

examples are summarized in one table that recommends the input MT response 

functions for inversion in the given exploration situations. 

To investigate the feasibility of applying sensitivity patterns to inversion of MT 

field data, four strategies of selecting MT response functions are considered for the 

field data of the Utah Frontier Observatory for Research in Geothermal Energy 

(FORGE). The case study represents that the MT response functions selected from 
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the sensitivity patterns can enhance inversion results. Considering the MT field 

situation where receivers are widely distributed along the y-axis of the target 

structure, it can be inferred that the responses of the target structure may be mainly 

contained in the y-component of the tipper whose sensitivity patterns are in the shape 

of two petals in the y-axis direction. The model inverted by the data selection strategy 

including the y-component of the tipper clearly represents the target body. Several 

error analyses indicate that the y-component of the tipper makes a significant 

contribution for imaging of the target structure. 

This thesis provides a guideline for selecting the optimal MT response functions 

in various MT inversions using the sensitivity patterns. 

 

 

Keyword: Magnetotelluric, MT response function, Sensitivity pattern, Inversion, 

Utah FORGE 
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Chapter 1. Introduction 
 

 

1.1. Background of the study 
 

Magnetotellurics (MT), which is one of the passive geophysical 

electromagnetic methods, was independently introduced by Japanese (Rikitake 

1948), Russian (Tikhonov 1950), and French (Cagniard 1953) geophysicists. The 

terminology ‘magnetotellurics’ consists of two parts, ‘magneto’ and ‘telluric’, which 

imply the magnetic fields and electric currents in the earth, respectively (Cagniard 

1953). As can be inferred from the two words, the MT exploration measures the 

electromagnetic fields at the surface generated by natural sources to estimate the 

earth’s electrical properties, such as electrical resistivity or its reciprocal, electric 

conductivity. 

The dependence of the MT method on the natural sources brings both the pros 

and cons. Because the natural sources contain low-frequency components that are 

difficult to artificially generate, the MT exploration has a great depth of penetration. 

On the other hand, the weak natural electromagnetic fields make the MT survey more 

susceptible to noise. The interaction of the solar wind (a plasma stream ejected from 

the upper atmosphere of the sun) with the ionosphere and magnetosphere around the 

earth generates low-frequency components of the measured electromagnetic fields 

(< 10 Hz). High-frequency components of the measured data come from some 

electromagnetic energy that is generated by the worldwide thunderstorm activities 

and travels bounded between the surface and the ionosphere of the earth (Chave & 

Jones 2012). The natural electromagnetic fields can be assumed as plane waves 

because they travel far distances before reaching the surface of the earth. Due to the 
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large resistivity differences between the air and the earth, most of the natural 

electromagnetic sources are reflected at the surface, while a small amount of the 

energy propagates into the earth. Since the velocity of electromagnetic waves in the 

conductive earth is much smaller than in the almost dielectric air, the transmitted 

electromagnetic waves propagate vertically into the earth satisfying Snell’s law 

(Vozoff 1972; Vozoff 1991). The MT method is based on the two important 

assumptions that the natural sources are plane-polarized electromagnetic waves, and 

they impinge on the earth as near-vertical incidence. 

The MT method goes through four procedures: data acquisition, data processing, 

imaging, and interpretation. In the data acquisition stage, five components of the 

electromagnetic fields are measured over time. Two horizontal components of the 

electric fields ( xE  and 
yE ) and magnetic fields in all directions ( xH , 

yH , and 

zH  ) are acquired at the surface using electrodes connected with cables and 

magnetometers (e.g., induction coils and/or fluxgate magnetometers), respectively. 

Especially, the remote reference method, which simultaneously acquires additional 

MT data at a station remote from the main measurement site, is used to remove local 

electromagnetic noises (Gamble et al. 1979; Simpson & Bahr 2005). The data 

obtained by the remote reference method are utilized in the next data processing 

procedure. The measured electromagnetic fields can be processed in the time domain 

for better quality. 

In the data processing procedure, the measured and processed electromagnetic 

fields in the time domain are converted to other MT response functions in the 

frequency domain. The first step of the procedure is a Fourier transform of the 

electromagnetic fields from the time to the frequency domains. Next, the data in the 
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format of the electromagnetic fields are transformed into other MT response 

functions in the frequency domain (in this step remote reference data, especially the 

magnetic fields, can be used). Various MT response functions such as impedance 

tensor, apparent resistivity, phase, and vertical magnetic transfer function (i.e., tipper) 

were introduced (Tikhonov 1950; Cagniard 1953; Cantwell 1960; Vozoff 1991; 

Chave & Jones 2012). Because it is difficult to know the exact information about the 

natural sources for the MT exploration, the MT response functions are defined as the 

ratio of the measured electromagnetic fields, so that they are not affected by the 

amplitude of the natural sources. Furthermore, to analyze subsurface features such 

as dimensionality, directionality, and galvanic distortion, derived MT response 

functions (e.g., inhomogeneity parameter, skew, and phase tensor) and techniques 

dealing with those response functions (e.g., polar diagram, induction arrow, and 

groom-bailey distortion decomposition) have also been studied (Simpson & Bahr 

2005; Berdichevsky & Dmitriev 2008; Berdichevsky & Dmitriev 2010; Chave & 

Jones 2012). After the data processing, the noise-removing process in the frequency 

domain may be applied using the apparent resistivity curves or Nyquist diagrams 

(Egbert 1997; Yang et al. 2019; Uhm et al. 2021). 

For imaging the subsurface electrical properties from the processed MT data, a 

number of numerical forward modeling and inversion schemes have been developed. 

The representative modeling schemes are the integral equation (IE) method 

(Wannamaker et al. 1984; Newman & Hohmann 1988; Wannamaker 1991), the finite 

difference method (FDM) (Pek & Verner 1997; Siripunvaraporn et al. 2005b), and 

the finite element method (FEM) (Nam et al. 2007; Liu et al. 2008; Ren et al. 2013). 

For the inversion scheme, Constable et al. (1987) introduced Occam’s inversion that 
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yields simple and smooth models by considering the model roughness in an objective 

function, and then many studies adopted their idea to image subsurface structures 

from MT data (deGroot-Hedlin & Constable 1990; Ogawa & Uchida 1996; Key 

2016). A number of inversion schemes related to model constraint, data weighting, 

roughness matrix, etc., (Avdeeva 2008; Abubakar et al. 2009; Usui 2015; Key 2016) 

were also proposed to increase the convergence and stability of the inversion process. 

In addition, after some free MT inversion software packages, such as MARE2DEM 

(Key 2016), ModEM (Kelbert et al. 2014), and WSINV3DMT (Siripunvaraporn et 

al. 2005b), were released, imaging technology using inversion has been conveniently 

and commonly applied. 

Finally, in the interpretation procedure, subsurface structures are interpreted 

from an inverted model according to the purposes of MT exploration. One of the 

main purposes of MT exploration is to reveal geological structures; Wei et al. (2001) 

represented the crust structures of the Tibetan plateau, Becken & Ritter (2012) 

studied the San Andreas Fault zone, and Naif et al. (2013) imaged the lithosphere-

asthenosphere boundary (LAB) beneath the edge of the Cocos plate at the Middle 

America trench offshore of Nicaragua. Also, MT method is applied for engineering 

purposes, e.g., geothermal systems (Newman et al. 2008), mineral deposits 

(Farquharson & Craven 2009), and hydrocarbons (Patro 2017). Moreover, some 

projects for mapping the country’s geological structures using MT data have been 

conducted such as ‘SinoProbe’ that is for deep surveys in China including MT 

exploration (Dong et al. 2013), ‘US Array MT data’ acquired across the continental 

USA (Meqbel et al. 2014), and ‘Australian Lithospheric Architecture 

Magnetotelluric Project (AusLAMP)’ (Kirkby et al. 2020). 
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1.2. Research objective 
 

As mentioned in Chapter 1.1, there are many MT response functions, and 

inversion is the main technique for imaging subsurface structures from MT data. The 

important point is that the inversion result depends on both model parameters and 

input data. In geophysical methods, for multi-parameter inversion retrieving 

anisotropic properties, the sensitivity matrix (i.e., Jacobian matrix) has been 

investigated to analyze the characteristics of each model parameter in the inverse 

problem (Ramananjaona et al. 2011; Operto et al. 2013; Oh & Alkhalifah 2016). Also, 

some studies showed that inversion results rely on which MT response function is 

used for the inverse process: Siripunvaraporn et al. (2005a) represented that each 

component of the impedance tensor yields different inversion results; Wang et al. 

(2019) and Luo et al. (2020) showed that meaningful changes occur in inverted 

models when the tipper data are included; Pedersen & Engels (2005) compared 

inversion results using the effective impedance with those obtained by transverse 

electric (TE) or transverse magnetic (TM) mode impedance; and Patro et al. (2013) 

described 3D models imaged by the impedance and phase tensors. However, unlike 

the studies on different model parameters, the studies on different types of MT data 

do not examine how various MT response functions affect inversion results, but 

simply compare the models inverted from the MT response functions with each other. 

In this study, to investigate the main characteristics of various MT response 

functions for inversion, sensitivity patterns based on the Jacobian matrix are 

analyzed. Then, the MT response functions are classified into several groups. The 

MT response functions in the same group possess similar sensitivity patterns, and 
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therefore produce similar inversion results. On the other hand, the MT response 

functions in other groups whose sensitivity patterns are rarely overlapped spatially 

with each other can play a complementary role in the inverse procedure. Furthermore, 

synthetic examples and a case study show that the MT response functions selected 

from the sensitivity patterns can improve inversion results. Consequentially, this 

study provides a guideline on which MT response function is better to use for 

inversion according to the situation of MT exploration using their sensitivity patterns. 
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1.3. Outline 
 

In Chapter 2, the theories of 3D MT modeling, 3D MT inversion, and major 

MT response functions (impedance tensor, apparent resistivity, phase, tipper, 

effective impedance, and phase tensor) are described. In Chapter 3, the sensitivity 

patterns for the major MT response functions are presented, and their features are 

analyzed. The various MT response functions are divided into six groups according 

to the features of the sensitivity patterns. In Chapter 4, synthetic examples for 1D, 

2D, and 3D interpretation of MT data are provided to explain how observed data and 

inversion results obtained in some specific structures differ according to the 

characteristics of the sensitivity patterns. Chapter 5 shows a case study establishing 

a strategy to select MT response functions in consideration of the sensitivity patterns 

and field environment, and examining the difference in the inverted models. 
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Chapter 2. Theory 
 

 

2.1. 3D MT modeling 
 

For 3D MT modeling, Maxwell’s equations are solved by numerical simulation 

for a given electrical conductivity (or electrical resistivity) model with boundary 

conditions. Maxwell’s equations, the numerical simulation using the edge-based 

finite element method, and the boundary conditions for MT method are described in 

Chapters 2.1.1, 2.1.2, and 2.1.3, respectively. 

 

 

2.1.1. Maxwell’s equations 
 

Maxwell’s equations are a set of four fundamental equations that describe 

behaviors of the electromagnetic fields. Maxwell’s equations are expressed in 

general differential forms as (Ward & Hohmann 1987): 

 

   vd  , (2-1) 

 

 0 b  , (2-2) 

 

 


  
t

b
e  , (2-3) 

 

 


  
t

d
h j  , (2-4) 

 

where d   and b   are the electric (C/m2) and magnetic (Wb/m2) flux density, 
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respectively; e   and h   are the electric (V/m) and magnetic (A/m) fields, 

respectively; v  is the electric volume charge density (C/m3); and j  is the electric 

current density (A/m2).    and    are the divergence and curl operators, 

respectively. Equations (2-1) and (2-2) are Gauss’s law for electricity and 

magnetism, respectively; equation (2-3) is Faraday’s law; and equation (2-4) is 

Ampère-Maxwell’s law. 

Maxwell’s equations in the frequency domain with the time convention 
i te  

(where   is the angular frequency) can be written as: 

 

   vD  , (2-5) 

 

 0 B  , (2-6) 

 

 i  E B  , (2-7) 

 

 i  H D J  , (2-8) 

 

where D   and B   are the electric and magnetic flux density in the frequency 

domain, respectively; E   and H   are the electric and magnetic fields in the 

frequency domain, respectively; and J   is the electric current density in the 

frequency domain. In order to express Maxwell’s equations only with E  and H , 

the constitutive relations describing the macroscopic properties of the medium are 

considered (Ward & Hohmann 1987), which are written below: 

 

 D E  , (2-9) 

 

 B H  , (2-10) 
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 J E  , (2-11) 

 

where   ,   , and    are the dielectric permittivity (F/m), the magnetic 

permeability (H/m), and the electrical conductivity (S/m), respectively. 

The third and fourth formulae (equations 2-7 and 2-8) depict the propagation of 

the electric and magnetic fields. Introducing the constitutive relations (equations 2-

9 to 2-11), equations (2-7) and (2-8) can be rearranged as follows: 

 

 i  E H  , (2-12) 

 

     iH E  . (2-13) 

 

Among the material properties of  ,  , and   in equations (2-12) and (2-13), 

the effect of dielectric permittivity (   ) is negligible because     in the 

frequency range of MT exploration (about 10-4 ~ 105 Hz). This means that in the 

periods of MT survey (about 10-5 ~ 104 s), the electric displacement current density 

( td  in equation 2-4) can be ignored, i.e., the quasi-static approximation can be 

adopted in the MT method. Variations in the magnetic permeability (  ) of rocks can 

be also neglected compared with variations in the conductivity ( ) of bulk rocks. 

Therefore,    is assumed as a constant of the magnetic permeability at the free 

space (
7

0 4 10     H/m) (Chave & Jones 2012). Substituting equation (2-13) 

into the curl of equation (2-12) leads to the governing equation of 3D MT modeling 

consisting of only the electric fields (i.e., the vector Helmholtz equation of E ) with 

the single variable of the electrical conductivity ( ), which can be expressed as 

follows: 
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 0 0   iE E  . (2-14) 

 

By using vector identity and assuming 0 e  inside the earth, equation (2-14) 

can be rewritten in the time domain as follows: 

 

   2 2

0 


       
t

e
e e e e  , (2-15) 

 

 
2

0 


 
t

e
e  , (2-16) 

 

where 
2  is the vector Laplacian operator. Because equation (2-16) is in the form 

of a diffusion equation, the electromagnetic waves generated from the MT sources 

diffuse in the earth and dissipate exponentially. 

A skin depth is defined as the depth at which the amplitude of the 

electromagnetic fields decays to 1 37%e   of the amplitude at the surface in a 

homogeneous half-space medium (Chave & Jones 2012). In such a medium, there 

are no vertical components of the electromagnetic fields (i.e., 0zE   and 

0zH  ), and only xE   and yH   (or yE   and xH  ) are relevant that only vary 

with depth (i.e., 0  xΕ  , 0  xΗ  , 0  yΕ  , and 0  yΗ  ). 

Considering these conditions, equation (2-14) can be written as follows: 

 

 
2

02
 






x
x

E
i E

z
 . (2-17) 

 

Because there is no resistivity interface in the homogeneous half-space medium (i.e., 

there is no reflection), the elementary solution of equation (2-17) can be written as 
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follows: 

 

   0exp ;    xE A kz k i  , (2-18) 

 

 0
0 ;  

2

 
       k i i  , (2-19) 

 

    exp exp    xE A z i z  . (2-20) 

 

In equation (2-20), the term of  exp  z  represents the amplitude attenuation, 

while the term of  exp i z   describes the harmonic motion. According to the 

definition of the skin depth   (m), the following formula must be satisfied: 

 

 
 

 
 

exp
exp 1

exp 0


   . (2-21) 

 

If equation (2-21) is rearranged, the skin depth for MT survey is calculated as 

follows: 

 

 
  7

1 2
503

2 4 10

 


   
  

 ff
 , (2-22) 

 

where f  is the frequency (Hz); and   is the electrical resistivity ( m). The skin 

depth is an important factor in MT method because it implies the penetration depth 

of the electromagnetic waves. 
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2.1.2. Edge-based finite element method 
 

There are various ways to find numerical solutions of equation (2-14) derived 

from Maxwell’s equations for a given 3D electrical conductivity model. Initially the 

integral equation (IE) approach (Wannamaker et al. 1984; Newman & Hohmann 

1988; Wannamaker 1991) was applied. The IE approach requires a small number of 

unknowns, but is restricted to simple background models (Farquharson & 

Miensopust 2011). As computational technology has advanced, the finite difference 

method (FDM) or the finite element method (FEM) has been widely used for 

complex 3D models. However, numerical solutions obtained by the FDM that 

discretizes models with strong topography in stair-stepped grids may be incorrect in 

narrow period bands (Müller & Haak 2004). The FEM can be an appropriate method 

to incorporate topography (Nam et al. 2007; Ren et al. 2013; Usui 2015) and is used 

in this study. 

The FEM is a practical technique for obtaining approximate solutions by 

numerically solving the partial differential equations by subdividing an entire 

domain into small and simple local elements. The solution of the governing equation 

is approximated by a linear combination of shape functions defined within each 

element. By assembling the governing equation for each local element into the entire 

computational domain, a global matrix equation is constructed. By solving this 

matrix equation, the approximate solution for the entire domain can be obtained. The 

characteristics of the FEM vary depending on which shape function is used. Shape 

functions of the edge-based FEM are vector basis that assigns degrees of freedom to 

the edges of each element (Whitney 1957; Nédélec 1980). Therefore, the edge-based 
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FEM approximates the electric fields at an arbitrary position within the local element 

as follows: 

 

 
1

edgen

e e e

j j

j

E


E Φ  , (2-23) 

 

 d
j

e

j
l

E   E l  , (2-24) 

 

where 
e

E  is the electric fields in the element; 
e

jE  is a scalar coefficient defined 

at the j-th edge; 
e

jΦ   is the vector shape function associated with the j-th edge; 

edgen  is the number of edges of the element; and 
jl  represents the length of the j-

th edge. 

The vector shape function of the edge-based FEM has two important features. 

The first feature is that 0 e

jΦ  in the local element (Jin 2002). Because this 

feature leads to the formula as below: 

 

 
1

 0


   
edgen

e e e

j j

j

EE Φ  , (2-25) 

 

the edge-based FEM makes the divergence-free condition of the electric field (i.e., 

0 E ) satisfied in the earth. Another feature is that at any position on a surface 

of the local element, the tangential components exist only in the shape functions 

associated with the edges constituting the surface. In other words, even if the 

tangential electric fields on the surface are calculated at two adjacent elements, they 

are identically expressed as the linear combination of the shape functions and the 
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scalar coefficients related to the edges constituting the surface (Jin 2002). Therefore, 

the edge-based FEM naturally satisfies one of the boundary conditions that the 

tangential component of the electric fields must be continuous at the interface. 

Because of these two features of the vector shape function, the edge-based FEM is 

advantageous for avoiding the spurious solutions (Webb 1993; Jin 2002). In this 

thesis, the edge-based FEM with the direct solver (Chung et al. 2014; Usui 2015) is 

adopted to simulate the electric fields in the MT method. 

To derive the variational formula of the FEM for the governing equation (2-14), 

the Galerkin’s method (one of the weighted residual methods) is used, and its 

residual ( r ) is defined as follows: 

 

 0    ir E E  . (2-26) 

 

In this method, the shape functions are applied as a weighting, and the coefficients 

for the shape functions are obtained to minimize the variational formula (the dot 

product of the residual and the weighting) for the entire domain. Thus, the variational 

formula for the Galerkin’s method is defined as follows: 

 

 
1 1

0


 

 
edgee

e

nN
e

i

e i

dVr Φ  , (2-27) 

 

where eN  is the total number of elements; and e  is the volume of the each local 

element. Substituting the residual (equation 2-26) into the integral term of the 

variational formula (equation 2-27) yields 
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   0 
  

       
e e e

e e e

i i idV dV i dVr Φ E Φ E Φ  . (2-28) 

 

From the vector calculus identity,             a b a b a b   where 

a E  and  e

ib Φ , the first term on the right-hand side of equation (2-28) is 

rearranged as follows: 

 

 

        
e e e

e e e

i i idV dV dV
  

           E Φ E Φ E Φ  . 

(2-29) 

 

If the divergence theorem is applied to the first term on the right-hand side of 

equation (2-29), it can be written as follows: 

 

      
e e

e e

i idV dS
 
       E Φ n E Φ  , (2-30) 

 

where e   is the surface surrounding the local element e  ; and n   is a unit 

normal vector pointing outward of  e  on the surface. When the local variational 

formula of each element is assembled into the entire domain following equation 

(2-27), values for the right-hand side of equation (2-30) are canceled out between 

the elements sharing the same surface except for the values at the boundaries of the 

computational domain. However, the remaining values do not need to be considered 

when the Dirichlet boundary condition is applied to MT modeling. Considering 

equations (2-29) and (2-30), equation (2-28) is rearranged as follows: 

 

     0 
  

        
e e e

e e e

i i idV dV i dVr Φ E Φ E Φ  . (2-31) 
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By substituting equation (2-23) into equation (2-31) and rearranging equation 

(2-27), the equation containing the scalar coefficient (
e

jE ) can be written as follows: 

 

   0

1 1 1

0 
  

 
  

 
 

edge edgee
n nN

e e e

ij ij j

e i j

K i M E  , (2-32) 

 

where 

 

    
e

e e e

ij i jK dV


    Φ Φ  , (2-33) 

 

 
e

e e e

ij i jM dV


  Φ Φ  . (2-34) 

 

e

ijK  and 
e

ijM  are the components of the elementary stiffness and mass matrices, 

respectively. By assembling the elementary stiffness and mass matrices over the 

entire domain using the global edge number, equation (2-32) can be expressed as 

the following global matrix equation: 

 

 Ax 0  , (2-35) 

 

where


 edge edgeN N
A  (

edgeN  is the total number of edges for the entire elements) 

is the coefficient matrix; and  edgeN
x  is the unknown vector composed of the 

scalar coefficients ( eE  ) following the order of edges for the whole elements. 

Because e e

ij jiK K   and e e

ij jiM M   in equations (2-33) and (2-34), the 

coefficient matrix ( A ) consisting of the elementary stiffness and mass matrices is 

symmetric. An appropriate source vector for the right-hand side of equation (2-35) 
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is derived when the Dirichlet boundary condition is considered (will be described in 

the next section). 

In this study, tetrahedral or structured hexahedral elements are used to discretize 

the entire 3D model, and their shape functions, curl of shape functions, elementary 

stiffness matrix, and elementary mass matrix required for 3D MT modeling are 

described in Appendix A. 

 

 

2.1.3. Boundary conditions 
 

The source term in the matrix equation (2-35) is generated by applying the 

Dirichlet boundary condition to the boundaries of the 3D model. Generally, the 

Cartesian coordinate system is applied and the entire 3D model is assumed as a 

cuboid for 3D MT modeling. It is also assumed that the boundaries of the 

computational domain are sufficiently far away from the domain of interest so that 

the structures within the target area do not affect the electric fields at the boundaries. 

At the boundaries of the 3D model, the tangential components of the electric field at 

the interface should be continuous: 

 

   n E n E  , (2-36) 

 

where n   is a normal unit vector pointing outward the boundary;    is the 

outermost boundary of the 3D model; and E  is the electric fields at the boundary. 

By dividing the boundaries of the coboid 3D model into top, bottom, and side 

boundaries, equation (2-36) can be considered as follows: 
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  at the top boundaryTop  n E n E  , (2-37) 

 

  at the bottom boundaryBot  n E n E  , (2-38) 

 

 2  at the side boundaries   Dn E n E  . (2-39) 

 

For 3D MT modeling, the electromagnetic fields generated from perpendicularly 

incident plane waves polarized in x- and y-directions are required. The boundary 

conditions of equations (2-37) to (2-39) depend on the direction in which the source 

is polarized. 

For the xE   source, also called xy-polarization (Nam et al. 2007), 

 1,0,0Top E  in equation (2-37) and BotE 0  in equation (2-38) considering 

the sufficiently deep bottom boundary (at least 3 times of the maximum skin depth). 

In the two yz-planes whose strike direction is parallel to the x-axis among the side 

boundaries for 2DE  in equation (2-39), the xE  source is equivalent to TE mode, 

and 2 Dn E 0   because only xE  , 
yH  , and zH   components exist in the TE 

mode (McNeill and Labson, 1991) and the direction of the normal vector ( n ) is the 

x-axis. On the other hand, the two xz-planes have the strike along the y-axis, which 

is perpendicular to the xE  source (i.e., TM mode). In this TM mode, xE , zE , and 

yH  components only exist (McNeill and Labson, 1991) and the direction of the 

normal vector ( n  ) is the y-axis, therefore 2 Dn E 0   and 2DE   should be 

calculated through 2D MT modeling with 2D elements extracted from the 3D 

elements at the boundaries of the two xz-planes. Similar to 3D MT modeling, the 

governing equation and the boundary conditions for 2D MT modeling are as follows: 
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 2 0 2 0     t t D DiE E  , (2-40) 

 

 
2 2  at the 2D top boundary  D DTopn E n E  , (2-41) 

 

 2 2  at the 2D bottom boundary  D DBotn E n E  , (2-42) 

 

 2 1  at the side boundaries  D Dn E n E  , (2-43) 

 

where t  is the transverse del operator. The transverse del operator at the xz-plane 

is  , 0,      x y z  .  2 1,0,0 DTop TopE E   and 2  DBot BotE E 0   in 

equations (2-41) and (2-42), respectively. The direction of the vector (n ) at the side 

of the xz-plane is the x-axis, and 1DE  includes only xE  component for the xE  

source, thus 1 Dn E 0  in equation (2-43). At the xz-plane side boundaries for 

the xE  source, 2DE  is obtained by solving a matrix equation based on equation 

(2-40) with the Dirichlet boundary conditions (equations from 2-41 to 2-43) and it 

is applied in equation (2-39). 

Similarly, for the 
yE   source also called yx-polarization (Nam et al. 2007), 

 0,1,0TopE   in equation (2-37); BotE 0   in equation (2-38); 2 Dn E 0  

at the xz-plane side boundaries in equation (2-39); and 2DE  at the yz-plane side 

boundaries in equation (2-39) is calculated through the 2D MT modeling. 

The electric fields in equations (2-37) to (2-39) are projected along each edge 

of the elements at the boundaries. Then, the Dirichlet boundary conditions are 

applied to make the projected value be a solution of the unknown scalar coefficient 

( eE   in equation 2-35). When the Dirichlet boundary conditions are applied to 

equation (2-35), both the coefficient matrix ( A ) and the vector on the right-hand 
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side are modified. As an example of equation (2-35), the 3 by 3 matrix equation 

before applying the boundary condition can be expressed as follows: 

 

 

11 12 13 1

21 22 23 2

31 32 33 3

0

0

0

     
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A A A E

A A A E

A A A E

 . (2-44) 

 

When the Dirichlet boundary condition ( 1  sE E ) is applied, the matrix equation 

(2-44) are transformed as follows: 

 

 

1

22 23 2 21

32 33 3 31

1 0 0

0

0

     
     

 
     
          

s

s

s

E E

A A E A E

A A E A E

 . (2-45) 

 

As in equations (2-44) and (2-45), the modified matrix equation can be obtained 

by incorporating the Dirichlet boundary conditions (equations 2-37 to 2-39) into 

equation (2-35): 

 

 Ax b  , (2-46) 

 

where 


 edge edgeN N
A   is the modified coefficient matrix; and  edgeN

b   is the 

modified vector serving as a source term. In this study, because the modified 

coefficient matrix ( A ) is a symmetric sparse matrix, the matrix equation (2-46) is 

solved by PARDISO contained in Intel MKL, which is one of the sparse direct 

solvers. 

Finally, the electric and magnetic fields at the receivers are obtained through 
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the scalar coefficients ( eE ) solved by equation (2-46) with equations (2-23) and 

(2-12), which are expressed as follows: 

 

    
1

edge

r r

n

e e

g i i l

i

E


E r Φ r  , (2-47) 

 

     
10

1

 

  
edge

r r

n

e e

g i i l

i

E
i

H r Φ r  , (2-48) 

 

where 
gr   and lr   are the location of the receiver in the global coordinates and 

corresponding local coordinates of the element, respectively; and re  is the element 

that contains the location of the receiver. If the electromagnetic fields in the receivers 

are defined as a vector  dn
u   where dn   is the number of data, it can be 

represented by the following relation using the solution vector ( x ) in equation (2-46) 

(Heo 2022): 

 

 u Px  , (2-49) 

 

where 


 d edgen N
P  is the projection matrix based on equations (2-47) and (2-48). 

Then, the electromagnetic fields at the receivers can be converted into various MT 

response functions (discussed in detail in Chapter 2.3). 
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2.2. 3D MT inversion 
 

MT modeling is a technique for calculating MT responses from a given model 

parameter vector, while MT inversion is a technique for creating a subsurface model 

from given MT data. In other words, MT inversion is a process of finding such a 

model parameter vector that its modeling results fit well with the observed data. 

Therefore, the relationship between the model parameter vector, mn
m  where 

mn   is the number of model parameters, and the modelled data   dn
d m   is 

important. It is expressed by the following Jacobian matrix (


 d mn n
J ) (Nocedal 

& Wright 2006): 

 

  
 




d m
J m

m
 . (2-50) 

 

The model parameter vector and the modelled data are not in a linear relationship. 

To solve the nonlinear inverse problem in an iterative manner, the Gauss-Newton 

method, which is one of the Newton-type optimization methods assuming the 

linearity based on the Taylor series, has been widely used (Constable et al. 1987; 

Zhdanov 2002; Sasaki 2004). Especially, Occam’s inversion proposed by Constable 

et al. (1987) yields smoothly inverted models by introducing the roughness of a given 

model in an objective function. Many studies adopted Occam’s inversion scheme to 

stabilize and improve the inverse process. In this study, the inversion algorithm based 

on Occam’s inversion is also adopted. 
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2.2.1. Occam’s inversion with the Gauss-Newton method 
 

Inversion is an optimization problem finding a model that minimizes the 

objective function (or the cost function) based on the difference between observed 

data and modeling results. The objective function  O m   of Occam’s 

inversion consists of the data misfit  dO m   and the model roughness 

 mO m  as follows: 

 

       d mO O Om m m  , (2-51) 

 

where   is the Lagrange multiplier. If the data misfit and the model roughness 

are defined using the l2-norms, equation (2-51) can be rewritten as follows: 

 

     
2 2

, 
 

   
 
 f f obs f

nf

O m W d d m Rm  , (2-52) 

 

where nf   is the number of frequencies; 


 d dn n

fW   is a diagonal weighting 

matrix for each frequency; ,  dn

f obsd  and   dn

fd m  are the observed and 

modelled data for each frequency, respectively; and m mn n
R  is the roughness 

matrix. For the Newton-type optimization method, the second-order Taylor 

expansion of the objective function around  mn

km , which is a model parameter 

vector at the k-th iteration (set an initial model parameter vector to 1m  ), is 

developed as follows: 

 

    
1

2
      T T

k k k k k kO Om m m g m m H m  , (2-53) 
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where   mn

km   is the increments vector at the k-th iteration. mn
g   and 


 m mn n

H   are the gradient vector and Hessian matrix of  O m  , respectively. 

Because the right-hand side of equation (2-53) is in the form of a convex function 

for  km , its minimum can be found with the condition that the partial derivative 

is zero as follows: 

 

 
 

0
 




k k

k

O m m

m
 . (2-54) 

 

Substituting  k km m  into equation (2-52) yields: 

 

 

 

    
2 2

, 

 

 
     
 


k k

f f obs f k k k k

nf

O m m

W d d m m R m m
 . (2-55) 

 

For the Gauss-Newton method, it is assumed that  f kd m   has a linear 

relationship with km  for small  km , which is expressed by 

 

        f k k f k f kd m m d m J m  , (2-56) 

 

and the difference between the observed and modelled data (  dn

fe ) is defined as 

follows: 

 

  ,  f f obs f ke d d m  . (2-57) 

 

Using equations (2-56) and (2-57), equation (2-55) is rearranged as follows: 
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      
2 2


 

      
 
k k f f f k k k

nf

O m m W e J m R m m  . 

(2-58) 

 

Substituting equation (2-58) into the condition (2-54), the formula is written as 

follows: 

 

       2 2 0       
  

T
T

f f f f f k k k

nf

W J W e J m R R m m  . 

(2-59) 

 

If equation (2-59) is rearranged with  km  , the normal equation is derived as 

follows: 

 

    
  
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 

T T
T T

f f f f k f f f f k

nf nf
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(2-60) 

 

In equation (2-60), the Hessian matrix and negative gradient vector are expressed 

by 

 

   
  

   
   


T
T

f f f f

nf

H W J W J R R  , (2-61) 

 

     
T

T

f f f f k

nf

g W J W e R Rm  , (2-62) 

 

respectively. To be precise, double of the right-hand side of equations (2-61) and 

(2-62) are the Hessian and negative gradient of  O m , respectively, and the right-
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hand side of equation (2-61) is an approximated Hessian matrix of  O m . The 

approximated Hessian for the Gauss-Newton method is caused by the assumption of 

equation (2-56). The model parameter vector can be iteratively updated during the 

inversion process through the normal equation. 

Equations (2-52) to (2-60) describe the ‘jumping’ method that uses 
2

Rm , 

whereas the ‘creeping’ method uses 
2

R m   as the model roughness term. 

 c k kO m m , which is the objective function for  k km m , and the normal 

equation of the creeping method are defined as follows: 

 

     
2 2

, 
 

      
 
c k k f f obs f k k k

nf

O m m W d d m m R m  , 

(2-63) 

 

    
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2.2.2. Jacobian matrix 
 

As can be seen from the normal equations (2-60) and (2-64), the Jacobian 

matrix plays a key role in the inversion procedure. Furthermore, because 

constructing the Jacobian matrix involves the time-consuming process of solving the 

modified coefficient matrix equation (2-46) several times, it is important to calculate 

the Jacobian matrix efficiently in inversion algorithms. In this section, the Jacobian 

matrix ( , 


 d mn n

fEHJ ) for the model parameter vector consisting of the electrical 
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conductivity (  mn
σ  ) and the electromagnetic fields at the receivers (

fu   in 

equation 2-49) for each frequency is defined as: 

 

 , 





f

fEH

u
J

σ
 . (2-65) 

 

There are three main methods of calculating the Jacobian matrix: the perturbation, 

sensitivity-equation, and adjoint-equation approaches (McGillivray & Oldenburg 

1990; McGillivray et al. 1994). In this study, the perturbation approach is used when 

calculating sensitivity patterns, and the sensitivity-equation approach is used in the 

inversion algorithm. 

In the perturbation approach, the i-th row and the j-th column of the Jacobian 

matrix in equation (2-65) is obtained through the following formula: 

 

  
     , , , , 

, ,  
  

   
  

  

f i j f if i f i

f

j j j

u uu u
J i j

EH

σ σ σσ
 , (2-66) 

 

where 
, f iu   is the i-th component of 

fu  ;  j
  is the j-th component of σ  ; and

 jσ  is the model parameter vector whose j-th component only has a non-zero value 

 j
. To obtain all the components of the Jacobian matrix through the perturbation 

approach,   f ju σ σ   from 1j   to  mj n   ( mn  : the number of model 

parameters) and  fu σ  are required, therefore a total of 1mn  times of modeling 

for each frequency should be performed. 

In the sensitivity-equation approach, the Jacobian matrix is constructed using 

the matrices of equations (2-46) and (2-49), which are calculated during the 
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modeling process. Substituting the relation of equation (2-49) into equation (2-65), 

the Jacobian matrix is arranged as follows: 

 

 , 






f

f fEH

x
J P

σ
 . (2-67) 

 

Taking the partial derivative with respect to σ  in equation (2-46) yields 

 

 
  

 
  

f f f

f f

A x b
x A

σ σ σ
 . (2-68) 

 

From equation (2-32),  fA σ  in equation (2-68) for the i-th element is defined 

as follows: 

 

 
-th element

0



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

f i

i

i
A

M  . (2-69) 

 

-th element 
 edge edgeN Ni

M  has non-zero values only in rows and columns of the global 

edge numbers constituting the i-th element, and the values are the elementary mass 

matrix (equation 2-34) of the corresponding local edge numbers. Because of the 

Dirichlet boundary conditions, the components of  fA σ  corresponding to the 

edges at the boundary of the model are zero, and the right-hand side of equation 

(2-68) is 0 . Therefore, the partial derivative of fx  with respect to σ  is written 

as follows: 

 

  
1   

  
   

f f

f f

x A
A x

σ σ
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The Jacobian matrix is represented by substituting equation (2-70) into equation 

(2-67) as follows: 

 

  
1

, 

  
  
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f

f f f fEH
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From equation (2-71), the transpose of the Jacobian matrix is defined as follows: 

 

       
1
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Because fA  is symmetric, equation (2-72) is rearranged as follows: 

 

      
1
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 
  
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T

T Tf

f f f fEH

A
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In equation (2-73), since the number of columns of  
T

fP  is dn  (i.e., the number 

of data), a total of dn  times of modeling for each frequency is required to construct 

the Jacobian matrix by the sensitivity-equation approach. In inversion algorithms, 

the sensitivity-equation approach is more efficient than the perturbation approach, 

because dn  is generally much smaller than 1mn . 

 

 

2.2.3. Techniques for inversion 
 

In this section, some techniques to improve the efficiency, stability, and quality 

of inversion are described. Blocky parameterization, model parameterization, data 
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weighting method, roughness matrix, Lagrange multiplier, and line search technique 

are explained in Chapters 2.2.3.1 to 2.2.3.6, respectively. Considering the normal 

equation (equation 2-60 or 2-64), the blocky parameterization and model 

parameterization are related to fJ ,  km , and km ; the data weighting method is 

about fW  ; the roughness matrix is related to constructing R  ; the Lagrange 

multiplier is related to setting  ; and the line search technique is for determining a 

step length of  km . 

 

 

2.2.3.1. Blocky parameterization 
 

Because MT exploration applies a diffusion equation with a relatively low 

frequency, the spatial resolution of the inverted model is not high. Therefore, to 

improve the computational efficiency and obtain stable inversion results, a blocky 

parameterization technique (Shin et al. 1999) of merging several modeling elements 

into an inversion block is used in MT inversion. The relationship between the model 

parameter vectors composed of the electrical conductivity for the modeling elements 

(  eN

modσ ) and the inversion blocks (  blockn

blockσ ) can be defined as follows: 

 

 1mod blockσ M σ  , (2-74) 

 

 
2block modσ M σ  , (2-75) 

 

where 
1


 e blockN n

M   and 
2


 block en N

M   are the mapping matrices ( eN   and 

blockn  are the numbers of modeling elements and inversion blocks, respectively). In 

this study, the modeling and inversion meshes are constructed with generally small 
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and large elements, respectively, and the inversion blocks to be practically used for 

inversion are constructed by merging modeling elements whose centers belong to 

identical inversion elements. Therefore, if the i-th modeling element (1  ei N ) is 

included in the j-th inversion block ( 1  blockj n  ),  1 ,  1i jM   and 

 2 -th modeling element -th inversion block,   i jj i V VM  , otherwise  1 ,  0i jM   and 

 2 ,  0j iM . Fig. 2.1 shows a modeling mesh composed of triangular elements, 

an inversion mesh composed of rectangular elements, and an example of making 

inversion blocks with the modeling and inversion meshes.  

 

 

 

    

    

Fig. 2.1. Example for blocky parameterization: (a) modeling mesh, (b) inversion 

mesh, (c) inversion mesh superimposed on the modeling elements, and (d) inversion 

blocks. 
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Constructing inversion blocks based on this standard has the advantages that 

the resolution of the surface topography in the modeling mesh can be preserved in 

the inversion blocks and there is a high degree of freedom in setting the inversion 

mesh. Furthermore, the Jacobian matrix for the inversion blocks (


 d blockn n

blockJ ) 

can be easily calculated from the Jacobian matrix for the modeling elements 

(


 d en N

modJ ) with the mapping matrix in equation (2-74) as follows: 

 

 1block modJ J M  . (2-76) 

 

As a result of equation (2-76), the number of columns of the Jacobian matrix is 

greatly reduced from the number of columns of modJ   ( eN  ) to the number of 

columns of blockJ  ( blockn ). In other words, the size of the matrix to be solved in the 

normal equation greatly decreases. 

 

 

2.2.3.2. Model parameterization 
 

In this thesis, a model parameterization refers to a method of using a 

parameterized variable instead of the electrical conductivity as a component of the 

model parameter vector in the inverse process. The model parameterization allows 

the model parameter vector to have an appropriate updating scale, and makes the 

electrical conductivity to be bounded to the geophysical range. Therefore, the 

inversion procedure can be stabilized and the prior information can be considered 

through the model parameterization. 
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The electrical conductivity of subsurface media has a large range about 10-5 ~ 

101 S/m, and the subsurface model is usually represented by the electrical resistivity 

(10-1 ~ 105 m) on the logarithmic scale. Therefore, the electrical conductivity is 

first parameterized as the electrical resistivity on the logarithmic scale as follows: 

 

    10 10 10

1
log log log 



 
    

 
r  . (2-77) 

 

Through the conversion in equation (2-77), the electrical conductivity is updated on 

the appropriate logarithmic scale. 

An additional parameter is required to constrain the variable r   within the 

lower bound l  and the upper bound u  (i.e., 10 10  u l
) in the process of 

updating the model parameter vector. The variable r   can be parameterized to 

param  through the formula defined as follows (Kim & Kim 2008): 

 

 
1

ln ;   
  

       
para

para

l r ur l
m

mn u r
 , (2-78) 

 

where n  is a positive constant. The following formulae are used to convert param  

to r  and r  to  : 
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 10  r
 . (2-80) 

 



 

 ３５ 

The Jacobian matrix for the model parameter vector  blockn

param  , which is 

composed of param  in the inversion blocks, is computed as follows: 

 

 
   

 
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f f

f

para para

u u σ r
J

m σ r m
 , (2-81) 

 

where  blockn
σ  and  blockn

r  are the model parameter vectors composed of r  

and   in the inversion blocks, respectively.  fu σ  in the right-hand side of 

equation (2-81) can be computed by equations (2-73) and (2-76). From equations 

(2-77) to (2-80), the partial derivative of    with respect to r   and the partial 

derivative of r  with respect to param  can be calculated as follows: 

 

  ln 10
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 , (2-82) 
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 . (2-83) 

 

Key (2016) proposed the band pass filter transfer function to constrain r  

between the two bounds (i.e., l  and u ), and the model parameterization from r  

to param  is defined as follows: 
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  

     
1 exp

1 exp 1 exp

 


        
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para para para
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m c m l c m u
 . (2-86) 

 

The positive constant c   is used as  15 / u l   in his paper. This model 

parameterization makes r  and parameterized param  have similar values between 

l  and u  so that   parar m  scaling the Jacobian matrix (equation 2-81) is close 

to 1, and the roughness values of r  and param  are considered similarly. Examples 

for the two schemes of the model parameterization (equations 2-78 and 2-84) in Fig. 

2.2 show the features for the model parameterization using the band pass filter 

transfer function. 
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Fig. 2.2. Examples for (a) model parameterization from r   to param   and (b)

  parar m  when the lower bound ( l ) is -1 and the upper bound (u ) is 5. The red 

lines are for equations (2-78) and (2-83) with 1n  (Kim & Kim 2008) and the 

blue lines are for equations (2-84) and (2-86) with  15 / c u l  (Key 2016). 
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2.2.3.3. Data weighting matrix 
 

It is possible to adjust the influence of data according to the receivers and 

frequencies on the inversion procedure by making the dn   by dn   diagonal data 

weighting matrix for each frequency. Therefore, the components of the data 

weighting matrix should be basically set according to the reliability of the data. The 

data weighting matrix can also play a role in balancing the magnitude of the data for 

stations and frequencies. 

The standard deviation of the observed data, which can be obtained in the 

process of converting data in the time to the frequency domains, is most commonly 

used in the data weighting techniques (Constable et al. 1987; Sasaki 2004; Key 2016). 

The i-th component of the data weighting matrix for each frequency,  ,fW i i , is 

defined as follows using the inverse of the standard deviation of the data:  

 

  
, 

1
, ;  1 ~ f d

f i

W i i i n
s

 , (2-87) 

 

where , f is  is the standard deviation of the i-th data at the frequency. When the data 

weighting matrix of equation (2-87) is applied, the weighted data misfit is calculated 

as follows: 
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where , f ie  is the i-th data of fe . The data weighting matrix of equation (2-87) 

has the effect of increasing the influence of data with a small standard deviation (i.e., 
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high reliability) and decreasing the influence of data with a large standard deviation 

(i.e., low reliability). Moreover, assuming that the noise included in the data follows 

the Gaussian distribution, this method has an advantage that the normalized data 

misfit should converge to 1 in the inverse problem. However, the weighting 

technique using the standard deviation does not reflect the results of post-processing 

for data in the frequency domain (Uhm et al. 2021). Also, this technique does not 

fully consider the magnitude of data for each frequency. 

The Jacobian matrix can be used to construct the data weighting matrix. 

‘Jacobian weighting’ proposed by Abubakar et al. (2009) simply corrects the 

magnitude of data for frequencies and types of MT response functions. Through the 

Jacobian matrix of the initial model _f initJ , the data weighting matrix is defined as 

follows: 

 

   
1

2
_ _



 T

f f init f initdiagW J J  . (2-89) 

 

A weighting technique proposed by Avdeeva (2008) is a method for applying 

an impedance tensor as an input MT response function to inversion. The weighting 

matrix is defined as follows: 

 

  
 , , 

2
, ;  1 ~ f dT

obs i obs i

W i i i n
tr Z Z

 , (2-90) 

 

where , obs iZ  is the observed impedance tensor at the receiver of the i-th data; and 

 tr   is the trace of the matrix. This weighting technique of equation (2-90) 

balances the contributions to the magnitude of the data over receivers. 
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Through a weighting technique, it is possible to exclude some data of specific 

receivers and frequencies from the inversion process. For example, if do not want to 

use the data of the a-th station and the b-th frequency for inversion, the weighting 

matrix can be set as follows: 
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 . (2-91) 

 

Another weighting technique proposed by Abubakar et al. (2009) is applied 

after making fW   by the methods mentioned above. For each frequency, the 

constant weighting factor (
norm

fW ) is defined as follows: 

 

 
2

1norm

f

f

W 
W d

 . (2-92) 

 

Then, norm

f fW W   is used as the data weighting matrix. This method not only 

balances the contribution of data over frequencies, but also corrects the differences 

in the number of observed data used for inversion over frequencies. 

Basically, it is good to use the weighting technique using the standard deviation 

of equation (2-87). However, if bad data are excluded and the remaining data are 

reliable after the frequency-domain post-processing for data, it is also a good strategy 

to construct the data weighting matrix using equations (2-90) to (2-92) together.  
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2.2.3.4. Roughness matrix 
 

The roughness of the model is the contrary concept of the smoothness of the 

model, and literally quantifies how roughly the model changes. In the inversion 

process, the roughness of model parameter vector  blockn
m  composed of param  

in the inversion blocks is expressed as follows: 

 

  
2

mO m Rm  , (2-93) 

 

where 


 block blockn n
R  is the roughness matrix. The roughness varies depending on 

the standard for making the roughness matrix and the norm to measure the value of 

Rm . In this study, the roughness matrix R  is set based on the second derivatives 

and Rm  is measured using the l2-norm. 

In MT inversion, adding the roughness of the model to the objective function 

(equation 2-51) prevents the model roughness value from being too large, which 

means applying a smoothness constraint that makes the inverted model parameter 

vector change smoothly in the model domain. Moreover, the roughness term plays a 

role in alleviating the non-uniqueness problem of inversion. The number of model 

parameters is generally greater than the number of data, and some components of the 

model parameter vector have little effect on the data (e.g., the components around 

the boundary of the deep subsurface). Therefore,  
T

f f f fnf
W J W J   in the 

Hessian matrix (equation 2-61) is a singular matrix, which does not have the inverse 

matrix, and it leads to the non-uniqueness problem of inversion. The roughness 

matrix contributes to mitigating the non-uniqueness problem and stabilizes the 
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inverse process, because the Hessian matrix becomes non-singular as  T
R R   is 

added to  
T

f f f fnf
W J W J . 

For the inversion blocks of the structured hexahedral elements, the spatial 

change of the i-th inversion block ( im ) is defined as follows by the finite difference 

equation of the second derivative: 
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where 
B

im , 
F

im , 
R

im , 
L

im , 
D

im ,  and 
U

im  are the inversion blocks located at 

back, front, right, left, down, and up side of the central i-th inversion block im , 

respectively. Therefore, the roughness of equation (2-93) is obtained by considering 

equation (2-94) to all inversion blocks as follows: 
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The components of the roughness matrix in equation (2-95) are 1 iiR  where 

1 ~ blocki n  ;  1 6;  , , , , ,  B F R L D U

ijR j j j j j j j   where 
B

im  , 
F

im  , 
R

im  , 

L

im  , 
D

im  ,  and 
U

im   are the 
Bj  , 

Fj  , 
Rj  , 

Lj  , 
Dj  , and 

Uj  -th inversion 

blocks; and the rest of the components are 0 . 

Similar to equation (2-94), for the inversion blocks of the unstructured 

tetrahedral elements, 
2 im  and  mO m  are defined as follows (Usui 2015): 
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where 
i

FaceN  is the total number of faces of the i-th inversion block. The roughness 

matrix can also be constructed in the same way. 

 

 

2.2.3.5. Lagrange multiplier 
 

As can be seen in equation (2-51), the Lagrange multiplier   determines a 

trade-off between the terms of the data misfit  dO m  and roughness  mO m . If 

  is too large, the contribution of  mO m  increases, and the observed data are 

not properly considered in the inversion result. If   is too small, the contribution 

of  mO m  decreases, and the inverse problem becomes unstable. 

The L-curve is conventionally used to determine the Lagrange multiplier   

(Hansen 1992; Farquharson & Oldenburg 2004). To plot the L-curve, several 

 dO m  and  mO m  according to the Lagrange multiplier should be calculated 

within the range min max      where min   and max   are the smallest and 

biggest generalized singular values of the Hessian matrix, respectively. The graph 

for the pairs (  mO m ,  dO m ) on the logarithmic-logarithmic scales has an L-

shape, which is called the L-curve, and   corresponding to the corner of the L-

curve is used. However, drawing the L-curve requires too much additional 

computational cost. Fig. 2.3 shows an example of the L-curve and its corner. 
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Fig. 2.3. Example of the L-curve and its corner. 
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The ratio of the data misfit  dO m  and model roughness  mO m  can be 

another criterion for determining the Lagrange multiplier (Van den Berg & Abubakar 

2001; Kim et al. 2013), and   can be defined as follows:  
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 
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m

O
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m
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 , (2-98) 

 

where   is a user-defined positive constant. Because in the objective function of 

equation (2-51),  dO m  and  mO m  mean the amount of the contribution of 

data misfit and model roughness term, respectively, equation (2-98) is an intuitive 

and simple criterion. Moreover, as inversion proceeds, the Lagrange multiplier 

naturally decreases from the criterion, because  dO m   decreases and  mO m  

increases compared to the initial values. It leads to an increase in the influence of 

 dO m   and a decrease in the influence of  mO m   in the later iteration of 

inversion. 

Grayver et al. (2013) tried to set the Lagrange multiplier   considering the 

relationship between  
T

f f f fnf
W J W J   and 

T
R R   in the Hessian matrix 

(equation 2-61) (mentioned in Chapter 2.2.3.4), which is determined as follows: 

 

 

 
 


T

f f f fnf
p

T

p

W J W J
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where   is a user-defined positive constant; and 
p
 is the p-norm of the matrix. 

In particular, 
2
  means the largest singular value of the matrix. The largest 

singular values are similar to the maximum values of the diagonal components for 
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the two matrices,  
T

f f f fnf
W J W J  and 

T
R R , because they are diagonally 

dominant matrices. Therefore, using the two maximum diagonal values the Lagrange 

multiplier can be set as follows: 
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 , (2-100) 

 

where    is a user-defined positive constant. Equation (2-100) requires much 

smaller computational cost than equation (2-99), and is similar to the regularization 

method used in full-waveform inversion (FWI) of seismic data (Shin et al. 2001; 

Shin & Min 2006). 

In the inversion algorithm for field data of this study,   is determined as a 

smaller value of Lagrange multiplier values in equations (2-98) and (2-100) when 

  is 0.005. At this time, if the new   is less than 0.4 times of previous  , the 

Lagrange multiplier is replaced with the value of 0.4 times of previous  . 

The above techniques focus on setting the Lagrange multiplier to an optimal 

scalar value. Yi et al. (2003) proposed the active constraint balancing (ACB) method 

to define the Lagrange multiplier as a spatial variable vector at the location of 

inversion blocks. To apply the ACB method, the model resolution matrix is 

calculated, and the spread function (Menke 1984) values are obtained for the rows 

of the matrix. Because the spread function implies the resolving power of the 

inversion block, the Lagrange multiplier can be set by determining   to have a 

linear relationship with the spread function on the logarithmic-logarithmic scales. 

Through the ACB method, a small Lagrange multiplier is determined for an 
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inversion block with strong resolving power near the receivers to increase the 

contribution of the data misfit term, while a large Lagrange multiplier is set for an 

inversion block with weak resolving power around the boundary of the deep 

subsurface to increase the contribution of the model roughness term. Especially, for 

3D MT inversion with a large model the ACB method helps to improve the inversion 

results, but it incurs additional cost in calculating the model resolution matrix. 

Uhm et al. (2018) presented the sensitivity-based constraint balancing (SCB) 

method that requires little additional computational cost while maintaining the 

advantage of the ACB method of defining the Lagrange multiplier as a spatial 

variable vector. The SCB method uses the diagonal integrated sensitivity matrix (S ) 

(Kaputerko et al. 2007) defined as follows: 
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By replacing the spread function of the ACB method with the inverse of S , the 

Lagrange multiplier is determined as follows in the SCB method: 
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(2-102) 

 

where i  is the Lagrange multiplier of the i-th inversion block; min  and max  

are the minimum and maximum of the Lagrange multipliers defined by user, 
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respectively; minS  and maxS  are the minimum and maximum components of S ; 

and iS   is the i-th component of S  . Because S   is obtained in the process of 

calculating the Hessian matrix in equation (2-61), the SCB method does not need 

additional computational cost. The SCB method can set a small Lagrange multiplier 

for an inversion block with a large integrated sensitivity value near the receivers to 

enhance the contribution of the data misfit term, and a large Lagrange multiplier for 

an inversion block with a small integrated sensitivity value around the boundary of 

the deep subsurface to strengthen the contribution of the model roughness term 

similar to the ACB method. The SCB method is almost identical to the method of 

applying weighting to the roughness matrix presented by Kordy et al. (2016). 

 

 

2.2.3.6. Line search 
 

The line search methods (Nocedal & Wright 2006) determine the optimal 

positive scalar step length for a search direction. In the inverse problem, the model 

parameter vector is updated as follows: 

 

 1    k k k km m m  , (2-103) 

 

where  k  is the step length for  km  in equation (2-60) or (2-64). 

The objective function for 1km  can be defined as a function ( ) for the step 

length   as follows: 

 

      1     k k kO Om m m  . (2-104) 

 



 

 ４９ 

An exact line search finds an ideal step length  ideal , which allows   ideal  to 

have a global minimum value (Fig. 2.4). However, the exact line search method is 

too expensive to identify the global minimum value in inversion. As a practical 

technique, an inexact line search determines a step length that provides sufficient 

decrease of the objective function with moderate cost. In this study, the inexact line 

search technique goes through two stages. The first stage is to set an appropriate 

stopping condition for the objective function, and the second stage is a backtracking 

approach in which the step length is reduced from an initial value until the condition 

of the first stage is satisfied. 

For the first stage, the Armijo condition is used in this thesis, which is expressed 

as follows: 

 

                 
T

k k k k kO O c Om m m m m  , (2-105) 

 

where c  is a small positive constant (generally 
410c  ). The right-hand side of 

equation (2-105) is a linear function with respect to  , which can be written as 

follows: 

 

          
T

k k kl c O Om m m  . (2-106) 

 

The slope of the linear function is negative as shown in the following equation: 

 

      1 0      
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The ranges of the step length that satisfy the Armijo condition of equation (2-105) 

are shown in Fig. 2.4. The line search technique with only the Armijo condition 

cannot ensure that the step length is always properly defined because a very small 

step length that does not update the model parameter vector also satisfies this 

stopping condition. 

 

 

 

 

 

 

 

Fig. 2.4. Example of the ideal step length and the acceptable ranges of the step length 

for the Armijo condition. 
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To prevent too small step lengths from being selected, the backtracking 

approach is applied for the second stage. The initial step length ( 0  ) for the 

backtracking approach is required and set to 1 for the Gauss-Newton method 

(Nocedal & Wright 2006). If the initial step length ( 0 1   ) satisfies the Armijo 

condition of equation (2-105),  k   in equation (2-103) will be determined as 

0 1   . Otherwise, the next step length 1   should be defined between 0 and 

0 1  . To set 1 ,     is assumed as a quadratic function   q  satisfying 

the three conditions:      0 0  q kO m ,      ' '0 0   
T

q k kO m m , 

and      0 0      q k kO m m . Then,   q  is expressed as follows: 
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1  is defined by the minimizer of   q  in equation (2-108), and is expressed 

as follows: 
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If the Armijo condition of equation (2-105) is satisfied at 1 , the line search will 

be terminated. Otherwise, the next step length 2  should be set between 0 and 1 . 

To determine 2  ,      is assumed as a cubic function   c   satisfying the 

four conditions:      0 0  c kO m  ,      ' '0 0   
T

c k kO m m  , 

     0 0      c k kO m m  , and      1 1 1       c k kO m m  . 

Then,   c  is expressed as follows: 
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   3 2 '(0) (0)         c a b  , (2-110) 

 

where 
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Under the two conditions:  '

2 0  c   and 2 10     , the minimizer 2   of 

  c  is expressed by 
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Until n  satisfies the Armijo stopping condition of equation (2-105), repeat the 

process to determine 1 i  (1 1  i n ) using   c  with the four conditions: 

   0 0 c  ,    ' '0 0 c  ,      1 1 1         c i i k i kO m m  , and 

            c i i k i kO m m . To prevent 1 i  from being too small or too 

close to  i , this backtracking approach needs an additional rule defined as follows: 

 

 1 1 1 2 1 30.5 ;  if     or              i i i i i i iv v v  , (2-112) 

 

where 1v , 2v , and 3v  are the positive constants determined by user. In this study, 

1v , 2v , and 3v  are fixed as 0.9, 1.1, and 0.1, respectively (Abubakar et al. 2009). 

In the inversion algorithm, the number of repetitions of the explained line search 

technique is limited to a maximum of 5 times. 
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2.3. MT response functions 
 

The electric and magnetic fields at the receivers calculated through 3D MT 

modeling in Chapter 2.1 should be converted into other MT response functions that 

are not affected by the amplitude of the source. Among the MT response functions, 

impedance tensor, apparent resistivity, phase, tipper, effective impedance, and phase 

tensor that are commonly used as input data for MT inversion are explained. 

 

 

2.3.1. Impedance tensor 
 

Tikhonov (1950) introduced a scalar impedance that represents the ratio of the  

horizontal electric field to the orthogonal horizontal magnetic field in the frequency 

domain (i.e., 
x yE H  or 

y xE H ). Later, Cantwell (1960) extended the concept to 

an impedance tensor. The impedance tensor is the most used type among the MT 

response functions, and many different types of MT response functions are derived 

from the impedance tensor. The frequency-domain impedance tensor is defined as 

follows: 
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where 
xy

xE , 
xy

yE , 
xy

xH , and 
xy

yH  are the horizontal electric and magnetic fields 

for the xy-polarization source, respectively; 
yx

xE , 
yx

yE , 
yx

xH , and 
yx

yH  are the 

horizontal electric and magnetic fields for the yx-polarization source, respectively; 
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and xxZ , 
xyZ , 

yxZ , and 
yyZ  are the components of the impedance tensor. From 

equation (2-113), the components of the impedance tensor can be written as follows: 

 

 







 









 



xy yx yx xy

x y x y

xx xy yx yx xy

x y x y

xy yx yx xy

x x x x
xy xy yx yx xy

x y x y

xy yx yx xy

y y y y

yx xy yx yx xy

x y x y

xy yx yx xy

y x y x

yy xy yx yx xy

x y x y

E H E H
Z

H H H H

E H E H
Z

H H H H

E H E H
Z

H H H H

E H E H
Z

H H H H

 . (2-114) 

 

Equation (2-113) can be expressed in matrix form as follows: 

 

 xy xyE ZH  , (2-115) 

 

where 
2 2Z  is the impedance tensor. 

The impedance tensor is sometimes rotated according to the direction of the 

axes. Fig. 2.5 shows the new x  - and y  -axes rotated by    in the clockwise 

direction from the original x- and y-axes. The rotation matrix for the coordinate 

system  R  is written as follows: 

 

  
cos sin

sin cos

 


 

 
  

 
R  . (2-116) 

 

Using the rotation matrix  R , equation (2-115) can be developed as follows: 
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     

           

  

     

 

   

xy xy xy

xy xy

E R E R ZH

R ZR R H R ZR H
 , (2-117) 

 

where 
xyE  , 

xyH  , and Z   are for the original x- and y-axes; and  xyE   and 

 xyH  are for the rotated x - and y -axes in Fig. 2.5. From equation (2-117), 

the rotated impedance tensor  Z  for the new x - and y -axes is expressed as 

follows: 

 

         Z R ZR  . (2-118) 

 

 

 

 

 

 

Fig. 2.5. Rotation of axes from original x- and y-axes to new x - and y -axes. 
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The partial derivative of equation (2-115) with respect to   is expressed as 

follows: 

 

 
  

 
 

  

xy xy

xy

E HZ
H Z  . (2-119) 

 

From equation (2-119), the partial derivative of Z   with respect to    is 

calculated as follows: 

 

 
1

  


  

  
   

xy xy

xy

E HZ
Z H  . (2-120) 

 

Equation (2-120) is used to calculate the Jacobian matrix for the impedance tensor. 

 

 

2.3.2. Apparent resistivity and phase 
 

The apparent resistivity a  and phase   introduced by Cagniard (1953) are 

also representative MT response functions. In particular, MT data for each receiver 

are usually plotted by the apparent resistivity and phase. They are calculated from 

the impedance components as follows: 

 

 
2

, 

0

1



a ij ijZ  , (2-121) 

 

 
1tan 
  

  
  

ijI

ij

ijR

Z

Z
 , (2-122) 
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where the subscript ‘ ij  ’ represents an arbitrary combination of x and y; and the 

subscripts ‘ R ’ and ‘ I ’ mean the real and imaginary parts of the complex number. 

The apparent resistivity implies volumetrically averaged resistivity over the 

penetration distance. For instance, in a uniform half space, the apparent resistivity 

represents the electrical resistivity of the medium, and the phase has 45 degrees. 

The partial derivatives of equations (2-121) and (2-122) with respect to   

are calculated as follows: 

 

 
, 

0

2

   

   
  

   

a ij ijR ijI

ijR ijI

Z Z
Z Z  , (2-123) 

 

 
2 2

1

  

   
  

    

ij ijI ijR

ijR ijI

ijR ijI

Z Z
Z Z

Z Z
 . (2-124) 

 

Equations (2-123) and (2-124) are used to calculate the Jacobian matrices for the 

apparent resistivity and phase. 

 

 

2.3.3. Tipper 
 

One of the MT response functions that correlates the vertical and horizontal 

magnetic fields is called the tipper or the magnetic transfer function (Vozoff 1991). 

The tipper for each frequency is defined as follows: 

 

 
   

      
     

TT xy yxxy
x x xz

xy yxyx
y y yz

T H HH

T H HH
 , (2-125) 
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where 
xy

zH  and 
yx

zH  are the vertical magnetic fields for the xy-polarization and 

yx-polarization sources, respectively. xT  and 
yT  are the x- and y-components of 

the tipper vector, respectively. From equation (2-125), the components of the tipper 

vector can be written as follows: 

 

 







 



xy yx yx xy

z y z y

x xy yx yx xy

x y x y

xy yx yx xy

z x z x
y xy yx yx xy

x y x y

H H H H
T

H H H H

H H H H
T

H H H H

 . (2-126) 

 

Equation (2-125) is represented in matrix form as follows: 

 

 T T

z xyH T H  , (2-127) 

 

where 
2T  is the tipper vector. In the 1D structure, both xT  and 

yT  are 0  

because zH 0 . The size of the tipper,  
1 2

22
 x yT TT , is always less than 

1 (Zonge & Hughes, 1991). 

For the rotation of the tipper, equation (2-127) can be developed as follows: 

 

                   T T T T T

z z xy xy xyH H T H T R R H T R H  , 

(2-128) 

 

where zH , 
xyH , and T  are for the original x- and y-axes in Fig. 2.5.  zH  

and  xyH  are for the rotated x - and y -axes in Fig. 2.5. As can be seen in 

equation (2-128), the transpose of the rotated tipper  T
T  for the new x - and 

y -axes is written as follows: 
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      T T
T T R  . (2-129) 

 

The partial derivative of equation (2-127) with respect to   can be arranged 

as follows: 

 

 
1

  


 

  
   

TT
xyTz

xy

HHT
T H  . (2-130) 

 

Equation (2-130) is used to calculate the Jacobian matrix for the tipper. 

 

 

2.3.4. Effective impedance 
 

The original and rotated values for the rotational invariants of the impedance 

tenser are the same (Berdichevsky & Dmitriev 2008). In other words, the rotational 

invariants have the same value regardless of the orientation of the measured 

electromagnetic fields. The complex 2 by 2 impedance tensor has eight independent 

real values, and the maximum number of the real independent rotational invariants 

for the impedance tensor is seven (Szarka & Menvielle 1997). The effective 

impedance 
effZ  is a complex rotational invariant, and has been used for 2D MT 

inversion (Pedersen & Engels 2005; Wang et al. 2020), which is defined as follows: 

 

  eff xx yy xy yxZ Z Z Z Z  . (2-131) 

 

The partial derivative of 
effZ  with respect to   can be written as follows: 
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    
    

     

eff yy xy yxxx
yy xx yx xy

eff

Z Z Z ZZ
Z Z Z Z

Z
 . (2-132) 

 

Equation (2-132) is used to calculate the Jacobian matrix for the effective 

impedance. 

 

 

2.3.5. Phase tensor 
 

The measured electric fields can be distorted by local near-surface 

inhomogeneities, and this phenomenon is called the galvanic distortion. Caldwell et 

al. (2004) proposed the phase tensor that is not distorted by the galvanic distortion. 

The phase tensor 
2 2Φ  is defined as follows: 

 

 
1 R IΦ Z Z  , (2-133) 

 

where RZ  and IZ  are matrices composed of the real and imaginary impedance 

components (i.e.,  R IiZ Z Z ). Equation (2-133) can be written as follows: 

 

 
 
1

det

      
   

      

xx xy yyR xxI xyR yxI yyR xyI xyR yyI

yx yy xxR yxI yxR xxI xxR yyI yxR xyIR

Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z ZZ
 , 

(2-134) 

 

where  det RZ  is the determinant of RZ  (i.e., xxR yyR xyR yxRZ Z Z Z ). 

The partial derivative of Φ  with respect to   can be developed as follows: 

 

 
1

  

    
  

   

I R
R

Z ZΦ
Z Φ  . (2-135) 
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Equation (2-135) is used to compute the Jacobian matrix for the phase tensor. 

The symbols of components of MT response functions used in this study are 

described in Table 2.1. Components of a complex number are denoted by the 

symbols separated by real and imaginary parts. 

 

Table. 2.1. List of symbols of MT response functions used in this thesis. 

Symbol Description 

xxRZ  Real part of xx-component of impedance tensor 

xxIZ  Imaginary part of xx-component of impedance tensor 

xyRZ  Real part of xy-component of impedance tensor 

xyIZ  Imaginary part of xy-component of impedance tensor 

yxRZ  Real part of yx-component of impedance tensor 

yxIZ  Imaginary part of yx-component of impedance tensor 

yyRZ  Real part of yy-component of impedance tensor 

yyIZ  Imaginary part of yy-component of impedance tensor 

, a xy
 xy-component of apparent resistivity 

, a yx
 yx-component of apparent resistivity 

xy
 xy-component of phase 

yx
 yx-component of phase 

xRT  Real part of x-component of tipper 

xIT  Imaginary part of x-component of tipper 

yRT  Real part of y-component of tipper 

yIT  Imaginary part of y-component of tipper 

effRZ  Real part of effective impedance 

effIZ  Imaginary part of effective impedance 

 xx  xx-component of phase tensor 

xy
 xy-component of phase tensor 

 yx
 yx-component of phase tensor 

 yy
 yy-component of phase tensor 
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Chapter 3. Sensitivity patterns for MT response functions 
 

 

Sensitivity patterns are defined by the variations of the MT responses due to the 

perturbation of one element of the model parameter vector (i.e., one column of the 

Jacobian matrix). In other words, the sensitivity patterns imply some locations where 

the MT responses by an anomaly are strong. Thus, in this section, sensitivity patterns 

are analyzed to investigate the features of MT response functions in inversion, and 

they are divided into six groups according to their sensitivity patterns, so that MT 

response functions with similar roles in inversion belong to the same group. 

The sensitivity patterns for major MT response functions in Table 2.1 

(impedance, apparent resistivity, phase, tipper, effective impedance, and phase tensor) 

with the model parameter of the electrical conductivity are considered. Subsurface 

MT response functions are calculated using the same formulae defined at the surface. 

The sensitivity patterns are calculated in the homogeneous model with a resistivity 

of 100   m (i.e., 
210
  / mS  ) at a frequency of 1 Hz through the perturbation 

approach in equation (2-66) with two times of 3D MT modeling using structured 

hexahedral elements. 3D sensitivity patterns are described in the 8 (-4~4) x 8 (-4~4) 

x 4 (0~4) km (i.e., 1.6  x 1.6  x 0.8  where   is the skin depth in equation 

2-22), and their values are computed at intervals of 100 m (i.e., 81 x 81 x 41 = 

269,001 points). The perturbed element whose size is 100 x 100 x 100 m (i.e., 50  

x 50  x 50 ) is located at the center of the 3D space, i.e., (0, 0, 2 km) = (0, 0, 

0.4 ). The change of the model parameter of electrical conductivity is 
410
 / mS  

(i.e., 1/100 of the background value). 2D sensitivity patterns at z=0 km are also 

plotted because the MT survey is conducted on the surface. They are briefly called 
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‘surface-sensitivity patterns’ in this thesis. 

When designing an MT survey, it is important to consider the ratio of the 

horizontal distance between target and receiver to the target depth, which is called 

the ‘survey ratio’ in this thesis. The positions where the survey ratio is 1 or 2 ( 0.4  

or 0.8 ) with the reference to the perturbed depth (i.e., 2 km = 0.4 ) are marked 

by the black open squares in the both 3D sensitivity patterns and surface-sensitivity 

patterns. The 3D sensitivity patterns are displayed by two isosurfaces corresponding 

to 1-st (negative, red color) and 99-th (positive, blue color) percentiles of the total 

distribution of the sensitivity values. Only the 3D sensitivity patterns of the phase 

and the diagonal components of the phase tensor are depicted by 3-rd and 97-th 

percentiles to represent slightly weaker patterns. For the significant surface-

sensitivity patterns, only values larger than 1/5 of the maximum absolute value are 

shown. The sensitivity patterns are plotted using the Voxler of Golden Software Inc. 

 

 

3.1. Sensitivity patterns for impedance tensor 
 

Fig. 3.1 shows the sensitivity patterns of the real components of the impedance 

tensor (i.e., xxRZ  , 
xyRZ  , 

yxRZ  , and 
yyRZ  ). In Figs. 3.1(a) and 3.1(b), the 3D 

sensitivity pattern and surface-sensitivity pattern of xxRZ  are in the shape of four 

diagonal petals and significant values of the surface-sensitivity pattern spread 

beyond the boundary with the survey ratio of 1. Because the strong sensitivity 

regions widely appear in all four quadrants, xxRZ  can play an important role in 3D 

MT inversion. The 3D sensitivity pattern of 
xyRZ  shown in Fig. 3.1(c) is composed 

of two parts: The first part in red has a doughnut shape in the yz-plane, and the other 
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in blue has a shape of two petals penetrating the first part along the x-axis. In Fig. 

3.1(d), the surface-sensitivity pattern of 
xyRZ  has an elliptical shape with the major 

axis along the y-axis. The elliptical shape at the surface comes from the doughnut-

shaped 3D sensitivity pattern that contains intensive sensitivities in the upward 

direction from the perturbation point. The significant surface-sensitivity pattern is 

distributed within the boundary with the survey ratio of 1. Because 
xyRZ  has the 

meaningful sensitivity pattern along the y-axis at the surface, it is well suited for 

imaging 2D structures whose strike is along the y-axis. The 3D sensitivity pattern 

and surface-sensitivity pattern of 
yxRZ  in Figs. 3.1(e) and 3.1(f) have such a form 

that can be acquired by rotating the sensitivity patterns for 
xyRZ   by 90 degrees 

around the z-axis, while their signs are reversed. Thus, 
yxRZ  is suitable for inverting 

2D structures with their strike along the x-axis. Compared with Figs. 3.1(a) and 

3.1(b), both the 3D sensitivity pattern and surface-sensitivity pattern of 
yyRZ   in 

Figs. 3.1(g) and 3.1(h) have similar forms to those of xxRZ  with their signs reversed, 

which means that they possess similar features in the inverse problem. 

Fig. 3.2 represents the sensitivity patterns of the imaginary components of the 

impedance tensor (i.e., xxIZ  , 
xyIZ  , 

yxIZ  , and 
yyIZ  ). Compared to the 3D 

sensitivity patterns for the real components of the impedance tensor (Figs. 3.1a, 3.1c, 

3.1e, and 3.1g), the 3D sensitivity patterns for the imaginary components (Figs. 3.2a, 

3.2c, 3.2e, and 3.2g) have similar aspects, but they are slightly drooping down. The 

surface-sensitivity patterns of the imaginary components of the impedance tensor 

(Figs. 3.2b, 3.2d, 3.2f, and 3.2h) are distributed over narrower ranges than those of 

the real components. However, the overall sensitivity patterns of the real and 

imaginary parts of each impedance component are similar. 
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3.2. Sensitivity patterns for apparent resistivity and phase 
 

In Fig. 3.3, the sensitivity patterns for the xy- and yx-components of the 

apparent resistivity (i.e., 
, a xy

 and 
, a yx

) and the xy- and yx-components of the 

phase (i.e., xy
  and yx

 ) are displayed. Because the 3D sensitivity pattern of 

, a xy
 (Fig. 3.3a) resembles that of 

xyZ , the surface-sensitivity pattern of 
, a xy

 

(Fig. 3.3b) also has similar features to that of 
xyZ . Both the 3D sensitivity pattern 

and surface-sensitivity pattern of 
, a yx

 (Figs. 3.3c and 3.3d) are analogous with 

those of 
yxZ  except for the signs. 

The 3D sensitivity patterns of xy
 (Fig. 3.3e) and yx

 (Fig. 3.3g) have strong 

energy in five directions, which are like a butterfly shape. They are rotated by 90 

degrees around the z-axis to each other. In the surface-sensitivity patterns of xy
 

(Fig. 3.3f) and yx
 (Fig. 3.3h), both the positive (blue) and negative (red) parts of 

the 3D sensitivity patterns appear, but this thesis focuses on the dominant positive 

parts. Although the 3D sensitivity pattern of xy
  is different from those of 

xyZ  

and 
, a xy

 , the xy-components for the MT response functions (i.e., 
xyZ  , 

, a xy
 , 

and xy
) commonly have the strong surface-sensitivity patterns along the y-axis. 

The yx-components of the MT response functions (i.e., 
yxZ , 

, a yx
, and yx

) also 

have in common that they show the intensive sensitivity patterns along the x-axis at 

the surface. 

  



 

 ６８ 

 

F
ig

. 
3
.3

. 
S

en
si

ti
v
it

y
 p

at
te

rn
s 

o
f 

th
e 

x
y

- 
an

d
 y

x
-c

o
m

p
o
n
en

ts
 o

f 
th

e 
ap

p
ar

en
t 

re
si

st
iv

it
y
 a

n
d
 p

h
as

e:
 (

a,
 b

) 
, 

(c
, 

d
) 

, 
(e

, 
f)

 
, 

an
d
 (

g
, 

h
) 

. 
(a

, 
c,

 e
, 
g
) 

an
d

 (
b

, 
d

, 
f,

 h
) 

ar
e 

th
e 

3
D

 s
en

si
ti

v
it

y
 p

at
te

rn
s 

an
d
 s

u
rf

ac
e
-s

en
si

ti
v
it

y
 p

at
te

rn
s,

 r
es

p
ec

ti
v
el

y.
 



 

 ６９ 

3.3. Sensitivity patterns for tipper 
 

Fig. 3.4 shows the sensitivity patterns of the real and imaginary components of 

the tipper (i.e., xRT , xIT , 
yRT , and 

yIT ). The 3D sensitivity pattern of xRT  (Fig. 

3.4a) is like two petals along the x-axis. In the surface-sensitivity pattern of xRT  

(Fig. 3.4b), the significant sensitivities are not only confined around the x-axis but 

spread widely as the shape of the two petals is preserved. Similar to the relationship 

between the sensitivity patterns for the real and imaginary components of the 

impedance tensor, xIT  has the slightly drooping 3D sensitivity pattern (Fig. 3.4c) 

and the narrower surface-sensitivity pattern (Fig. 3.4d) than those of xRT . Because 

the real and imaginary x-components of the tipper ( xRT   and xIT  ) possess the 

sensitivity patterns with similar characteristics, they will have similar functions in 

inversion. The 3D sensitivity patterns and surface-sensitivity patterns of 
yRT  and 

yIT  (Figs. 3.4 e, 3.4f, 3.4g, and 3.4h) are obtained by rotating those of xRT  and xIT  

90 degrees clockwise around the z-axis. Because the tipper contains the vertical 

component of the magnetic fields ( zH ) that is not related to the impedance-based 

MT response functions (i.e., impedance, apparent resistivity, and phase), the new 

sensitivity patterns are observed in the tipper, and therefore the tipper can 

complement the other MT response functions during the inverse process. The tipper 

is suitable for both 3D and 2D MT inversion, because the surface-sensitivity patterns 

have wide distribution along a specific direction. Furthermore, the tipper can play an 

important role in a specific acquisition case, which will be described in more detail 

in Chapter 4.2. 
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3.4. Sensitivity patterns for effective impedance 
 

The sensitivity patterns of the real and imaginary components for the effective 

impedance (i.e., 
effRZ   and 

effIZ  ) are described in Fig. 3.5. Their 3D sensitivity 

patterns (Figs. 3.5a and 3.5c) include energy concentrated along the z-axis. Therefore, 

the corresponding surface-sensitivity patterns (Figs. 3.5b and 3.5d) appear as a circle 

around the center. The effective impedance has the smallest survey ratio among all 

the MT response functions considered in this thesis. These features make the 

effective impedance suitable for 1D interpretation of MT data. 

 

 

 

Fig. 3.5. Sensitivity patterns of the real and imaginary components of the effective 

impedance: (a, b) 
effRZ   and (c, d) 

effIZ  . (a, c) and (b, d) are the 3D sensitivity 

patterns and surface-sensitivity patterns, respectively. 
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3.5. Sensitivity patterns for phase tensor 
 

Fig. 3.6 shows the sensitivity patterns of the components for the phase tensor 

(i.e.,  xx  , xy
 ,  yx

 , and  yy
 ). The sensitivity patterns for  xx   and  yy

 

(Figs. 3.6a, 3.6b, 3.6g, and 3.6h) are similar to those of the yx- and xy-components 

of the phase (i.e., yx
 and xy

), respectively. The 3D sensitivity patterns of xy
 

and  yx
 (Figs. 3.6c and 3.6e) are in the shape of eight petals. Compared with the 

xx- and yy-components of the impedance tensor (i.e., xxZ   and 
yyZ  ), xy

  and 

 yx
 have different 3D sensitivity patterns, but the surface-sensitivity patterns (Figs. 

3.6d and 3.6f) are similar. Therefore,  xx   and  yy
  can replace the yx-

components of the MT response functions (i.e., 
yxZ , 

, a yx
, and yx

) and the xy-

components of the MT response functions (i.e., 
xyZ , 

, a xy
, and xy

), respectively, 

while xy
 and  yx

 can play a similar role to xxZ  and 
yyZ  in MT inversion. If 

the phase tensor, which is not affected by the galvanic distortion, is used as the input 

data for inversion instead of the impedance tensor, then the available real numbers 

are halved from eight (i.e., xxRZ , xxIZ , 
xyRZ , 

xyIZ , 
yxRZ , 

yxIZ , 
yyRZ , and 

yyIZ ) 

to four (i.e.,  xx , xy
,  yx

, and  yy
) for each receiver. However, subsurface 

structures may be similarly interpreted, because the sensitivity patterns of the four 

components of the phase tensor contain all information given by those of the eight 

real numbers for the impedance tensor. 
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3.6. Classification of MT response functions 
 

In Table 3.1, the MT response functions covered in this study are classified into 

six groups according to the characteristics of their surface-sensitivity patterns. In MT 

inversion, MT response functions in the same group may provide similar results, and 

MT response functions in different groups can play complementary roles with each 

other because they may contain different information on the same subsurface 

structures. Group 1 contains xxRZ  , xxIZ  , 
yyRZ  , 

yyIZ  , xy
 , and  yx

  whose 

surface-sensitivity patterns are in the shape of four petals dominantly in diagonal 

directions. 
xyRZ  , 

xyIZ  , 
, a xy

 , xy
 , and  yy

 , which have strong surface-

sensitivity patterns along the x-axis, belong to Group 2. 
yxRZ , 

yxIZ , 
, a yx

, yx
, 

and  xx  whose surface-sensitivity patterns are concentrated along the x-axis, are 

included in Group 3. The x-components of the tipper (i.e., xRT  and xIT ) and y-

components of the tipper (i.e., 
yRT   and 

yIT  ) possess two petals-shaped surface-

sensitivity patterns dominant along the x- and y-axes, and they belong to Groups 4 

and 5, respectively. Finally, Group 6 has the real and imaginary components of the 

effective impedance (i.e., 
effRZ   and 

effIZ  ) showing small circle-shaped surface-

sensitivity patterns. 
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Table. 3.1. Classification of MT response functions according to the surface-

sensitivity patterns. 

Classification MT response functions 

Group 1 
xxRZ , xxIZ , 

yyRZ , 

yyIZ , xy
,  yx

 Diagonal 4 petals-shaped pattern 

Group 2 
xyRZ , 

xyIZ , 
, a xy

, 

xy
,  yy

 Linear pattern along the y-axis 

Group 3 
yxRZ , 

yxIZ , 
, a yx

, 

yx
,  xx  Linear pattern along the x-axis 

Group 4 

xRT , xIT  

Linear 2 petals-shaped pattern along the x-axis 

Group 5 

yRT , 
yIT  

Linear 2 petals-shaped pattern along the y-axis 

Group 6 

effRZ , 
effIZ  

Small circle-shaped pattern 
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3.7. Surface-sensitivity patterns for other frequencies 
 

In Chapters 3.1 to 3.5, the sensitivity patterns of the different MT response 

functions (i.e., impedance, apparent resistivity, phase, tipper, effective impedance, 

and phase tensor) were examined. The sensitivity patterns were shown in the 100 

m homogeneous cuboid space of (-4 or 4, -4 or 4, 0 or 4 km) nodes, i.e., ( 0.8  

or 0.8  , 0.8   or 0.8  , 0 or 0.8  ) nodes where    is the skin depth in 

equation (2-22), to represent the survey ratio up to 2 when the perturbed depth was 

2 km (i.e., 0.4 ) for data at 1 Hz. In this section, surface-sensitivity patterns for 

higher and lower frequencies on different spatial scales considering the same range 

normalized by the skin depth ( ) in the 100  m homogeneous model are shown. 

Fig. 3.7 shows the surface-sensitivity patterns of all the MT response functions for 

the higher frequency at 100 Hz on the 1/10 scale than those for 1 Hz, which means 

the surface consists of (-0.4 or 0.4, -0.4 or 0.4 km) nodes, i.e., the same ( 0.8  or 

0.8 , 0.8  or 0.8 ) nodes, and the position of (0, 0, 0.2 km), i.e., the same (0, 

0, 0.4 ), is perturbed. In Fig. 3.8, the surface-sensitivity patterns of the same MT 

response functions for the lower frequency at 0.01 Hz are illustrated on the 

dimension of 80 x 80 km (i.e., the same 1.6  x 1.6 ) with the perturbation point 

of (0, 0, 20 km) = (0, 0, 0.4 ), which is 10 times the previous dimension for the 

same range expressed in  . The surface-sensitivity patterns for each MT response 

function in Figs. 3.7 and 3.8 have the same shape as those in Figs. 1 to 6 regardless 

of frequency, but their spread-distance changes in proportion to the skin depth at the 

frequency. 
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Fig. 3.7. Surface-sensitivity patterns of all the MT response functions in Table 2.1 

for the perturbation point of (0, 0, 0.2 km) = (0, 0, 0.4 ) up to the survey ratio of 

2 (i.e.,   0.4 km and 0.8  ) at a frequency of 100 Hz in the 100   m 

homogeneous model. 
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Fig. 3.8. Surface-sensitivity patterns of all the MT response functions in Table 2.1 

for the perturbation point of (0, 0, 20 km) = (0, 0, 0.4 ) up to the survey ratio of 2 

(i.e.,   40 km and 0.8  ) at a frequency of 0.01 Hz in the 100   m 

homogeneous model. 
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Chapter 4. Synthetic Examples 
 

 

The sensitivity patterns for MT response functions analyzed and classified in 

Chapter 3 can be used to make a strategy for inversion of real field data because 

different inversion results are produced according to the characteristics of the 

sensitivity patterns. Before applying to the inverse process of field data, in this 

section, it is investigated how the sensitivity patterns are reflected in observed data 

and inversion results for synthetic cases of 1D, 2D, and 3D interpretation of MT data, 

from which the optimal MT response functions for each case are recommended. For 

the synthetic examples, the modeling and inversion algorithms in Table 4.1 are 

applied. Because the synthetic examples contain many inversion results of various 

MT response functions, the inverted models are simply presented with normalized 

root-mean-square (NRMS) error, which is normalized by the difference between 

maximum and minimum values. The inverted models are displayed by the Voxler of 

Golden Software Inc. 
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Table. 4.1. Settings of 3D MT modeling and inversion for the synthetic examples. 

3D MT modeling with edge-based FEM 

Modeling mesh 

(Chapter A.2) 
Structured hexahedral elements 

3D MT inversion 

Objective function 

(Chapter 2.2.1) 
Jumping method in equation (2-52) 

Jacobian calculation 

(Chapter 2.2.2) 
Sensitivity equation approach in equation (2-73) 

Blocky parameterization 

(Chapter 2.2.3.1) 
Structured hexahedral inversion mesh 

Model parameterization 

(Chapter 2.2.3.2) 
Equations (2-77) and (2-78) 

Data weighting matrix 

(Chapter 2.2.3.3) 
N/A or equation (2-89) 

Roughness matrix 

(Chapter 2.2.3.4) 
Equation (2-95) 

Lagrange multiplier 

(Chapter 2.2.3.5) 
Equation (2-100) 

Line search 

(Chapter 2.2.3.6) 
N/A 
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4.1. Synthetic examples for 1D interpretation of MT data 
 

When the sensitivity patterns of MT response functions are analyzed for 1D 

interpretation of MT data, two points should be considered: The first is whether the 

MT response functions respond to the 1D model, and the second is how strongly the 

MT response functions are affected by the dimensionality error. The dimensionality 

error occurs when the dimension considered by the inversion algorithm is lower than 

the dimension of the true subsurface structures, e.g., 1D inversion of data acquired 

over 2D or 3D structures and 2D inversion of data acquired over 3D structures 

(Chave & Jones 2012). 

Because 1D interpretation of MT data aims to describe vertical variations of 

electrical properties assuming no lateral variations, appropriate MT response 

functions for 1D inversion should have strong 3D sensitivity patterns along the z-

axis from the perturbation location (i.e., the surface-sensitivity patterns should be 

concentrated around the center right above the perturbation position). According to 

this criterion, Groups 1, 4, and 5 in Table 3.1 are not suitable for 1D inversion, while 

Groups 2, 3, and 6 can be used for the interpretation of 1D structures. 

Next, the dimensionality error for the MT response functions available for 1D 

inversion (i.e., Groups 2, 3, and 6) is considered. Groups 2 and 3 have linear surface-

sensitivity patterns along the y- and x-axes, respectively, whereas Group 6 shows a 

point-shaped surface-sensitivity pattern. These patterns imply that Groups 2 and 3 

can be more affected by the dimensionality error than Group 6 is, when the 

subsurface structures are not perfectly 1D. 

Figure 4.1 shows a synthetic model for 1D interpretation of MT data composed 
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of a background medium (100 m) and a conductive anomalous body (1  m) 

along the positive y-axis near the surface, which can cause the dimensionality error. 

One receiver indicated by a red circle is located at the origin. In this case of the 1D 

interpretation of MT data, it can be expected that the MT response functions with the 

linear surface-sensitivity pattern along the y-axis (Group 2) are more distorted by the 

dimensionality error than the MT response functions possessing the surface-

sensitivity pattern of the small circle (Group 6). To confirm this, the modeling results 

of the real part of the effective impedance (
effRZ  of Group 6) and the xy-component 

of the apparent resistivity (
, a xy

 of Group 2), which are representative MT response 

functions used for 1D inversion, are compared. 

 

 

 

 

Fig. 4.1. Synthetic model for 1D interpretation of MT data: (a) plan view and (b) yz 

cross-section. Resistivity of the background medium and the hexahedral anomalous 

body is 100 and 1  m, respectively. Receiver position is represented by the red 

circles. 
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Fig. 4.2 shows observed modeling data of 
effRZ  (blue circles) and 

, a xy
 (red 

triangles) for the anomalous-body-included model shown in Fig. 4.1 at frequencies 

ranging from 0.01 to 100 Hz. In order to compare the dimensionality error, modeling 

results in the homogeneous model without the anomaly (black squares) are also 

presented. To clearly describe the influence of the dimensionality error, percent error 

between the modeling results for the two models are computed. Fig. 4.2(a) represents 

that there is little difference in two modeling results of 
effRZ , while in Fig. 4.2(b), 

, a xy
  for the anomalous-body-included model is lower than that for the 

homogeneous model due to the low resistivity anomalous body. Therefore, the 

percent error of 
, a xy

  is higher than that of 
effRZ   particularly over frequencies 

lower than 10 Hz in Fig. 4.2(c). For the two MT response functions, the observed 

modeling data and the characteristics of the surface-sensitivity patterns related to the 

dimensionality error mentioned above are consistent. These results also indicate that 

even under the same condition (model, frequency, receiver position, etc.) 

interpretation may be different depending on the data type of MT response functions. 

From both the sensitivity pattern analysis and the numerical example for 1D 

interpretation of MT data, it can be concluded that the data type of effective 

impedance (
effZ ) can be a method of choice for 1D inversion of MT data. 
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Fig. 4.2. Modeling results of (a) real effective impedance (
effRZ ) and (b) xy-apparent 

resistivity (
, a xy

) for both the synthetic model shown in Fig. 4.1 and its background 

homogeneous model. (c) shows percent error between the two modeling results for 

effRZ  and 
, a xy

. 
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4.2. Synthetic examples for 2D interpretation of MT data 
 

To examine features of MT response functions for 2D interpretation of MT data, 

the 3D modeling and inversion with the 2D survey geometry are performed as 

Siripunvarapron et al. (2005a) did. The characteristics of the MT response functions 

are investigated for an ideal case of interpreting a complete 2D structure with a 

general receiver array (one line across a 2D structure). Furthermore, two specific 

cases are considered: The first case is that receivers right above a target structure 

cannot be used, and the second case is for an off-plane error. To compare modeling 

and inversion results for the second specific case with those for the ideal case, two 

models are assumed in Fig. 4.3: One (Fig. 4.3a) has only a square-shaped 2D 

structure (1 m) whose strike is the y-axis, and the other (Fig. 4.3b) has not only 

the 2D structure but an off-plane anomalous body (1   m). Their homogeneous 

background medium is 100  m. For the first specific case, two receiver arrays in 

the general 2D model (Fig. 4.3a) are considered: One is the general receiver array 

marked by the red lines in Figs. 4.3(a) and 4.3(b) that a total of 21 receivers are 

uniformly located in the perpendicular direction to the strike at intervals of 0.5 km 

covering from -5 to 5 km, and the other receiver array indicated by the blue lines in 

Fig. 4.3(a) is that five receivers right above the target 2D structure covering from -3 

to -1 km are excluded due to poor data-quality, inaccessible field conditions, etc. 
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Fig. 4.3. Two synthetic models for 2D interpretation of MT data composed of the 

background medium of 100  m and 2D structure of 1  m (a) without and (b) 

with an off-plane structure of 1 m. The strike direction of the 2D structure is the 

y-axis: (a) is a xz cross-section and (b) is a plan view. The red and blue lines indicate 

the fully-covered and partially-missing cases of receiver arrays, respectively. 
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For the ideal case of interpreting the complete 2D structure whose strike is along 

the y-axis with the general receiver array in the direction perpendicular to the strike, 

the MT response functions belonging to Groups 1 and 5 in Table 3.1 are zero in all 

the receivers. Because their sensitivity patterns are symmetric about the x-axis and 

the signs of both the symmetrical parts are reverse to each other. It means that 

responses of the MT response functions due to the structure extended along the 

positive y-axis are cancelled out with those due to the structure extended along the 

negative y-axis. The remaining Groups 2, 3, 4, and 6 differently respond to the 2D 

structure. To compare characteristics of the four groups, the modeling and inversion 

results of 
, a xy

 (Group 2), 
, a yx

 (Group 3), xRT  (Group 4), and 
effRZ  (Group 

6), which are mainly used for 2D MT inversion, are analyzed based on their 

sensitivity patterns. 

In Fig. 4.4, the responses of 
, a xy

, 
, a yx

, xRT , and 
effRZ  at a frequency of 1 

Hz for the general 2D model (Fig. 4.3a) (blue circles), the model with off-plane 

structure (Fig. 4.3b) (red triangles), and their homogeneous background model 

(black squares) are represented. For reference, the boundaries of the 2D structure and 

off-plane anomalous body are indicated by the black and red dotted lines, 

respectively. 

First, the modeling results in the general 2D model (Fig. 4.3a) are compared 

with those in the homogeneous background medium. In Fig. 4.4(a), the responses of 

, a xy
 have low values only above the 2D structure (i.e., between the black dotted 

lines) because the surface-sensitivity pattern is strong in the same direction as the 

strike. In contrast, the modeling results of 
, a yx

 in Fig. 4.4(b) show low values over 

a relatively wider range along the direction of receiver array because 
, a yx

 has the 



 

 ８８ 

strong surface-sensitivity pattern in the direction perpendicular to the strike (i.e., 

parallel to the receiver array). In the modeling results of 
effRZ  represented in Fig. 

4.4(d), the responses to the 2D structure are slightly wider than those of 
, a xy

, but 

more consistent with the boundaries of the 2D structure than those of 
, a yx

. These 

three MT response functions show noticeable differences between the modeled data 

for the homogeneous and general 2D models in the receivers above the 2D structure. 

On the other hand, the model responses of xRT  in Fig. 4.4(c) appear large in the 

receivers located apart from the 2D structure, because the surface-sensitivity pattern 

has large values not near but at some distance apart from the right above the 

perturbed point. Because of this feature of the surface-sensitivity pattern, xRT  can 

be effectively used in the first specific case that receivers right above the 2D structure 

cannot be used. 

Next, in Fig. 4.4, the off-plane error for each MT response function is examined 

by comparing the modeling results in the model including the off-plane anomaly (Fig. 

4.3b) and in the general 2D model (Fig. 4.3a). In Fig. 4.4(a), 
, a xy

  is severely 

affected by the off-plane structure within the boundaries of the off-plane structure 

(i.e., between the red dotted lines), whereas 
, a yx

, xRT , and 
effRZ  are relatively 

less affected in Figs. 4.4(b), 4.4(c), and 4.4(d), respectively. Because the surface-

sensitivity pattern of 
, a xy

 is strong along the y-axis, the responses of 
, a xy

 are 

most distorted by the off-plane structure existing away from the 2D plane along the 

y-axis. 
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Fig. 4.4. Modeling results of (a) xy-apparent resistivity (
, a xy

 ), (b) yx-apparent 

resistivity (
, a yx

), (c) real part of x-component of tipper ( xRT ), and (d) real effective 

impedance (
effRZ ) at 1 Hz for the general 2D model (Fig. 4.3a) with the blue circles, 

the model with off-plane structure (Fig. 4.3b) with the red triangles, and their 

homogeneous background model with the black squares. The black and red dotted 

lines represent boundaries of the 2D and off-plane structures in Fig. 4.3, respectively. 
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To investigate whether the sensitivity patterns of the four MT response 

functions (
, a xy

, 
, a yx

, xRT , and 
effRZ ) are properly reflected in inverted models, 

inversion is performed for the three cases mentioned above (Fig. 4.3), which are the 

ideal case, the first specific case related to the receiver array, and the second specific 

case for the off-plane error. The homogeneous model of 100  m is assumed as an 

initial model, and a total of 9 frequencies sampled at a uniform interval on the 

logarithmic scale ranging from 1 to 100 Hz are considered. Fig. 4.5 shows inversion 

results of 
, a xy

 , 
, a yx

 , xRT  , and 
effRZ   with the boundaries of the 2D and off-

plane structures (Fig. 4.3) indicated by the white and red dotted lines, respectively. 

In the inversion results obtained for the ideal case (i.e., for the general 2D model 

with the full receiver array) represented in the second column of Fig.4.5, the inverted 

model of 
, a xy

 (TM mode in this case) matches well with the boundaries of the 2D 

structure, whereas low resistivity in the inversion result of 
, a yx

 (TE mode in this 

case) extends beyond the 2D structure. Inversion result of xRT   retrieves the 2D 

structure well, but the resistivity of the background medium is slightly higher than 

the true value in the positive x-axis. The inverted model of 
effRZ  is similar to that 

of 
, a xy

, but the low resistivity zone due to the 2D structure extends to the bottom 

of the true model. 

The inverted models of 
, a xy

 , 
, a yx

 , and 
effRZ   for the specific case of 

receiver array where some receivers are missing right above the 2D structure in the 

first column of Fig. 4.5 are worse around the anomalous body than those for the full 

receiver array in the second column of Fig. 4.5. However, the inversion result of xRT  

obtained with the partially-missing receiver array describes the 2-D structure well, 

which is comparable to that obtained with the fully-covered receiver array. 
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Finally, the inversion results of 
, a xy

, 
, a yx

, xRT , and 
effRZ  obtained for the 

model with an off-plane anomalous body (the third column of Fig. 4.5) are compared 

with those obtained for the general 2D model (the second column of Fig. 4.5). 

Footprints of the off-plane structure are severe in the inversion results of 
, a xy

 in 

the zone between the red dotted lines in Fig. 4.5. However, the inversion results of 

the other three MT response functions have smaller footprints. In particular, 

remarkable differences in the inversion results of xRT  are hardly observed. 

In conclusion, the inversion results of the different MT response functions 

(
, a xy

, 
, a yx

, xRT , and 
effRZ ) in Fig. 4.5 agree well with their sensitivity patterns 

and modeling results described above in some situations for 2D interpretation of MT 

data. From these results, it can be concluded that MT response functions with a 

strong surface-sensitivity pattern in a strike (i.e., TM mode MT response functions) 

are optimal for the ideal 2D MT inversion imaging complete 2D structures with 

sufficient data acquired in the direction transverse to the strike; it is helpful to use 

the tipper when the data cannot be used around the target structure; and it is a good 

strategy to use the tipper or effective impedance when uninterested anomalous 

bodies such as off-plane structures exist. 
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Fig. 4.5. Inversion results of the xy-apparent resistivity (
, a xy

 ), yx-apparent 

resistivity (
, a yx

 ), real part of x-component of tipper ( xRT  ), and real effective 

impedance (
effRZ ) for the ideal case with the general 2D structure and receiver array 

(second column), the specific case with missing receivers right above the 2D 

structure (first column), and the specific case with the off-plane structure (third 

column) shown in Fig. 4.3. The white and red dotted lines indicate the boundaries of 

the 2D and off-plane structures in Fig. 4.3, respectively. 

  



 

 ９３ 

4.3. Synthetic examples for 3D interpretation of MT data 
 

Some MT response functions do not show meaningful responses to 1D or 2D 

structures, while all the MT response functions dealt with in this thesis respond to 

3D structures. Therefore, all the types of MT response functions can be considered 

as input data for 3D MT inversion. In this section, all the components of the 

impedance tensor (i.e., xxZ , 
xyZ , 

yxZ , and 
yyZ ) belonging to Groups 1, 2, and 3 

in Table 3.1 are mainly covered because they are usually used for 3D MT inversion; 

inversion results of the components of the phase tensor (i.e.,  xx , xy
,  yx

, and 

 yy
) are discussed briefly; and the MT response functions belonging to Groups 4, 

5, and 6 (i.e., tipper and effective impedance) are not considered because they were 

already handled in Chapters 4.1 and 4.2 and their features are similar in 3D cases. 

Before describing examples, features of the components of the impedance 

tensor for 3D interpretation of MT data are demonstrated based on their sensitivity 

patterns. In Figs. 2.1 and 2.2, the surface-sensitivity patterns of diagonal ( xxZ  and 

yyZ ) and off-diagonal (
xyZ  and 

yxZ ) components do not overlap each other, which 

means that they will play different and complementary roles in 3D MT inversion. 

Thus, it would be commonly good to use all the components of the impedance tensor 

for 3D MT inversion. However, the components may have an adverse effect on the 

imaging of specific structures depending on their sensitivity patterns, as the diagonal 

impedance components cannot image 2D structures mentioned in Chapter 4.2. There 

is also a specific case that off-diagonal components may deteriorate inversion results. 

Fig. 4.6 represents surface-sensitivity patterns only for the larger values than 4/5 of 

the maximum absolute value of xxRZ  (Figs. 4.6a and 4.6c) and 
xyRZ  (Figs. 4.6b 
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and 4.6d) at a frequency of 1 Hz when the perturbed position is (0, 0, 1 km) = (0, 0, 

0.2 ) (Figs. 4.6a and 4.6b) and (0, 0, 3 km) = (0, 0, 0.6 ) (Figs. 4.6c and 4.6d). 

In Figs. 4.6(a) and 4.6(c), the sensitivities of xxRZ   due to the two different 

perturbation depths do not overlap each other, whereas the strongest responses of 

xyRZ  appear at the same central position in Figs. 4.6(b) and 4.6(d). Therefore, it is 

difficult to distinguish the responses due to structures at different depths using the 

off-diagonal components in a limited frequency range. 

 

 

 

 

Fig. 4.6. Surface-sensitivity patterns of the values above 4/5 of the maximum 

absolute value for (a, c) xxRZ  and (b, d) 
xyRZ  on the same scale in Figs. 3.1 to 3.6 

when the perturbed position is at (a, b) (0, 0, 1 km) = (0, 0, 0.2 ) and (c, d) (0, 0, 

3 km) = (0, 0, 0.6 ). 
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To further examine the aforementioned characteristics of the impedance 

components, 3D MT inversion is performed for the synthetic model shown in Fig. 

4.7. In the model, a cross-shaped anomalous body (1000  m) composed of two 

long structures along the x- and y-axes exists in the shallow depth, and a cube-shaped 

anomalous body (1 m) is located below the cross-shaped anomaly. A total of 81 

receivers are located at a uniform interval of 1 km covering from -4 to 4 km in the 

x- and y-axes. A total of 13 frequencies sampled at a uniform interval on the 

logarithmic scale ranging from 0.1 to 100 Hz are considered. Inversion is conducted 

for three frequency ranges: high frequencies (10~100 Hz), low frequencies 

(0.1~1.778 Hz), and all frequencies (0.1~100 Hz). Inverted models are represented 

with the boundaries of the true structures. 

 

 

Fig. 4.7. Synthetic model for 3D interpretation of MT data: (a) plan view and (b) xz 

cross-section. Resistivity values of the background medium (sky-blue), the two long 

anomalous bodies (blue), and the cube anomalous body (red) are 100, 1000, and 1 

m, respectively. 
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Fig. 4.8 shows the inversion results of the components of the impedance tensor 

for the high-frequency range (10~100 Hz). Because the high-frequency data include 

information of only the shallow structures in Fig. 4.7, the inversion models are 

constructed up to 1.5 km along the z-axis, and are displayed on the xy-plane crossing 

at z=0.75 km, which corresponds to the central depth of the cross-shaped structure.  

In Fig. 4.8(a), the inversion result of xxZ  is a cross shape, but it extends beyond the 

true boundaries. Fig. 4.8(b) shows that 
xyZ  recovers the long structure well along 

the y-axis, whereas do not properly reconstruct the true resistivity and boundaries of 

the long structure along the x-axis. In contrast to 
xyZ , 

yxZ  dominantly inverts the 

long structure along the x-axis. The inverted model of 
yyZ  has similar tendencies 

to that of xxZ . The inversion results of the components of the impedance tensor are 

in good agreement with the features of their sensitivity patterns described in Section 

4.2. 

Fig. 4.9 shows inversion results obtained with only the low frequencies 

(0.1~1.778 Hz). Because the low-frequency data contain both the responses of the 

shallow high-resistivity cross-shaped and lower conductive cube-shaped anomalous 

bodies in Fig. 4.7, the inversion models are constructed up to 4 km along the z-axis. 

In Fig. 4.9, the inversion results are represented at depths of 0.75 and 3 km where 

the two structures exist. In Fig. 4.9, the diagonal components of the impedance tensor 

(i.e., xxZ   and 
yyZ  ) similarly invert the lower structures well, while the off-

diagonal components of the impedance (i.e., 
xyZ  and 

yxZ ) do not recover both the 

structures. These inversion results are consistent with the features of the sensitivity 

patterns for each impedance component shown in Fig. 4.6. 
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In Fig. 4.10, the inversion results obtained using all, xx-, and xy-impedance 

components (i.e., allZ  , xxZ  , and 
xyZ  ) with all frequencies (0.1~100 Hz) are 

presented. In addition, Fig. 4.10 shows inversion results obtained selectively using 

the off-diagonal components (i.e., 
xyZ  and 

yxZ ) for the high frequencies and the 

diagonal components (i.e., xxZ   and 
yyZ  ) for the low frequencies, which is 

indicated by selZ  . Inverted models of 
yxZ   and 

yyZ   are omitted in Fig. 4.10, 

because the inversion results of 
yxZ  are rotated versions of 

xyZ , and the inverted 

model of 
yyZ  is similar to that of xxZ . The updated models with only xxZ  and 

xyZ  have similar tendencies to those of the components shown in Figs. 4.8 and 4.9, 

respectively. Although the model inverted with all impedance components allows to 

infer the true subsurface structures to some extent, the adverse effects of both the 

diagonal and off-diagonal components represented in Figs. 4.8 and 4.9 are also 

observed. In other words, the diagonal components lead the high resistivity of the 

upper structure to spread beyond the actual boundaries, and the underestimation of 

the lower structure is attributed to the off-diagonal components. Compared with the 

inverted model of allZ  , the updated model denoted by selZ   shows that the 

deviation of the upper cross-shaped structure is suppressed, and the resistivity values 

of the lower cube-shaped structure are closer to the true value. 

Fig. 4.11 shows the inversion results obtained using all, yx-, and yy-components 

of the phase tensor, which are represented by  all ,  yx
, and  yy

, respectively, 

with all frequencies. In Figs. 4.10 and 4.11, the inverted models of  yx
 and xxZ , 

which belong to the same Group 1, similarly present that they recover the lower 

conductive structure well, but the upper cross-shaped structure is inverted slightly 

wider than the true model. The inversion results of  yy
 and 

xyZ  belonging to the 



 

 １００ 

same Group 2 are analogous in that the upper long anomalous body along the y-axis 

is updated close to the true one, whereas the low resistivity of the lower cube-shaped 

structure is not well retrieved. Because the sensitivity patterns of  yy
 and 

xyZ  are 

not exactly the same, there exist differences in the inverted models of the upper 

anomaly extended along the x-axis. The updated models for  all  and allZ  have 

different values of the resistivity, but show similar structures. 

In summary, the different sensitivity patterns in Figs. 2.1, 2.2, and 4.6 imply 

that it is generally recommended to use all the impedance components together for 

3D MT inversion, but xxZ  and 
yyZ , which are suitable for imaging of vertically 

placed structures, may have disadvantages in imaging of structures close to 2D, and 

xyZ  and 
yxZ , which are optimal for imaging of structures close to 2D in y- and x-

axes, respectively, may adversely affect inversion of vertically existing structures. In 

Figs. 4.8 and 4.9, the pros and cons of the different sensitivity patterns for each 

component are represented in the inversion results for the model of Fig. 4.7, and Fig. 

4.10 shows the selective use of the components according to the frequencies in 

consideration of their sensitivity patterns can improve the inversion results for the 

3D model. Additionally, Figs. 4.10 and 4.11 demonstrate that the phase tensor can 

yield similar subsurface structures even with the halved number of data compared to 

the impedance tensor, because each component of the phase tensor has information 

on the structures that each impedance component of the same group can give. 

Finally, the synthetic examples of inversion for different MT exploration in 

Chapter 4 are summarized in Table 4.2. Table 4.2 can be used as a guideline for the 

selection of MT response functions in inversion based on their sensitivity patterns. 
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Fig. 4.11. Inversion results with the whole range of frequencies (0.1~100 Hz) for the 

model of Fig. 4.7: the cross-section at y=0 km (top) and the plan views at z=0.75 km 

(middle) and 3 km (bottom).  all  ,  yx
 , and  yy

  mean the inversion results 

obtained using all, yx-, and yy-components of the phase tensor, respectively. The 

white dotted rectangles represent the boundaries of 3D structures on the planes in 

Fig. 4.7. 

 

 

 

 



 

 １０３ 

 

T
a
b

le
. 
4
.2

. 
R

ec
o

m
m

en
d

at
io

n
 o

f 
in

p
u
t 

M
T

 r
es

p
o
n
se

 f
u
n
ct

io
n
s 

in
 i

n
v
er

si
o
n
 f

o
r 

se
v
er

al
 M

T
 e

x
p
lo

ra
ti

o
n

 c
as

es
. 



 

 １０４ 

Chapter 5. Case study: Utah FORGE field data 
 

 

5.1. Utah FORGE site and MT field data 
 

The Utah Frontier Observatory for Research in Geothermal Energy (FORGE) 

is a field laboratory located about 30 km northeast of Milford, Utah. The production 

area of the Roosevelt Hot Springs geothermal system is located about 5 km east of 

the FORGE site. To explore the technical feasibility of characterizing, creating, and 

maintaining enhanced geothermal system (EGS) reservoirs, the U.S. Department of 

Energy (U.S. DOE) selected the Utah FORGE in 2018 (Moore et al. 2020; 

Wannamaker et al. 2021). For these purposes, a variety of geological and geophysical 

methods have been applied. As one of them, MT data were acquired around the Utah 

FORGE and Roosevelt Hot Springs geothermal system sites to clarify resistivity 

structures involving potential heat sources. 

Wannamaker et al. (2020) performed 3D MT inversion using the newly 

measured FORGE MT data along with the existing Subsurface Science, Technology 

and Engineering Research, and Development (SubTER) and Cove Fort MT data 

measured in other projects. Fig. 5.1 modified from Figure 16 of Wannamaker et al. 

(2020) shows the cross-section of the 3D MT inversion model, and the white dotted 

lines indicate a lower resistivity body (about 100  m). They described that the 

depth range of the lower resistivity body is appropriate for the possibly cooled 

magma storage zone, and the lower resistivity body may represent the fracture zone 

of residual hot fluids probably related to the Roosevelt Hot Springs. The black lines 

in Fig. 5.1 are used later in comparison with inversion results in Chapter 5.3. 
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Fig. 5.1. The cross-section of the 3D MT inversion model. A clockwise rotation of 

20 degrees is required to align with true north. This figure is modified from Figure 

16 of Wannamaker et al. (2020) by adding the white dotted lines and black lines. 
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Among the three MT data sets used in Wannamaker et al. (2020), publicly 

accessible FORGE (https://gdr.openei.org/submissions/1255, Energy and 

Geoscience Institute at the University of Utah. 2020. Utah FORGE: Phase 3 

Magnetotelluric Data [data set]. Retrieved from https://dx.doi.org/10.15121/ 

1776598) and SubTER (https://gdr.openei.org/submissions/1331, Energy and 

Geoscience Institute at the University of Utah. 2021. SubTER Final Magnetotelluric 

Data: Mineral Mountains, Utah [data set]. Retrieved from 

https://dx.doi.org/10.15121/1822377) MT data can be downloaded in the website for 

the U.S. DOE Geothermal Data Repository (GDR). In Fig. 5.2, the MT survey area 

including both the FORGE and SubTER data in the Utah is represented using the 

Google Earth Pro. Fig. 5.3 shows the locations of the FORGE and SubTER MT data 

with the MT survey area, origin, axes, and surface-range of the aforementioned lower 

resistivity body in the cross-section of Fig. 5.1 (indicated by the white line) on a map 

from the Google Earth Pro. 

The total number of MT data is 181, and the majority of the data are 

concentrated around the origin. The MT data are rotated according to the coordinates 

in Fig. 5.3, and post-processing for data is performed in the frequency domain. The 

total number of frequencies is 48, and the frequency range is from 0.0122 to 230.47 

Hz. To comparably image the main structures of Fig. 5.1 using less MT data than the 

data used by Wannamaker et al. (2020), it is necessary to optimally select input MT 

response functions for inversion in consideration of the characteristics of the 

sensitivity patterns and the surroundings of the MT survey. Because many receivers 

are distributed three-dimensionally away from the white line in the negative y-axis 

direction near the center in Fig. 5.3, it can be expected that the MT response function 
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of 
yT  whose surface-sensitivity patterns are wide and strong in the y-axis will make 

a great contribution to the imaging of the target structure. In this thesis, inversion 

results are compared according to the four strategies of selecting MT response 

functions of 
xyZ   and 

yxZ  ; 
xyZ  , 

yxZ  , and 
yT  ; 

xyZ  , 
yxZ  , and xT  ; and xxZ  , 

xyZ , 
yxZ , and 

yyZ , as input data types. They are denoted as (
xyZ , 

yxZ ), (
xyZ , 

yxZ , 

yT ), (
xyZ , 

yxZ , xT ), and ( xxZ , 
xyZ , 

yxZ , 
yyZ ), respectively. 

 

 

 

Fig. 5.2. MT survey area for the FORGE and SubTER MT data in a Utah map from 

the Google Earth Pro. 
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Fig. 5.3. The survey area and locations of the FORGE and SubTER MT data on a 

map from the Google Earth Pro. The origin is (38°30’12.96’’N, 112°53’47.80’’W) 

and the axes are rotated eastward by 20 degrees in reference to the North. The 

surface-range of the target lower resistivity body in the cross-section of Fig. 5.1 is 

indicated by the white line. 
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5.2. Settings of 3D MT inversion for the field data 
 

A modeling mesh of the Utah area is constructed by the tetrahedral elements 

using the ‘Gmsh’ mesh generator (Geuzaine & Remacle 2009). The modeling mesh 

should be finely divided near the locations of the receivers, and reflect the elevations 

of the Utah area. In Fig. 5.4, the procedures for creating the modeling mesh are 

briefly represented. The modeling mesh consists of a total of 901,557 tetrahedral 

elements. Fig. 5.5(a) shows that the modeling mesh has a small mesh size near the 

receivers. In Fig. 5.5(b), the modeling mesh considering the heights at the surface 

correctly depicts the topography of Fig. 5.3. 

An inversion mesh is composed of mixed elements: hexahedron, tetrahedron, 

and prism. In Fig. 5.6, the region of interest inside the (-15~15 km) x (-20~20 km) x 

(-4~20 km) box (indicated by red lines) is discretized into small 9, 720 (20 x 27 x 

18) hexahedrons, whereas the remaining region is filled with large 2,136 

tetrahedrons and 3,096 prisms for computational efficiency. The inversion mesh 

consists of a total of 14,952 elements. 

For 3D MT inversion of the field data, a homogeneous model of 100  m is 

used as an initial model, and other settings are demonstrated in Table 5.1. 
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Fig. 5.4. Simple workflow of constructing the modeling mesh for the field data. 
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Fig. 5.5. Modeling mesh at the surface of the survey area (a) with and (b) without 

edges. 
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Fig. 5.6. Inversion mesh composed of hexahedral, tetrahedral, and prism elements. 

The red lines represent the region of interest in 3D MT inversion. 
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Table. 5.1. Settings of 3D MT modeling and inversion for the field data. 

3D MT modeling with edge-based FEM 

Modeling mesh 

(Chapter A.2) 
Tetrahedral elements (Figs. 5.4 and 5.5) 

3D MT inversion 

Objective function 

(Chapter 2.2.1) 
Creeping method in equation (2-63) 

Jacobian calculation 

(Chapter 2.2.2) 
Sensitivity equation approach in equation (2-73) 

Blocky parameterization 

(Chapter 2.2.3.1) 

Hexahedral, tetrahedral, and prism inversion mesh 

(Fig. 5.6) 

Model parameterization 

(Chapter 2.2.3.2) 
Equations (2-77) and (2-84) 

Data weighting matrix 

(Chapter 2.2.3.3) 
Equations (2-90), (2-91), and (2-92) 

Roughness matrix 

(Chapter 2.2.3.4) 
Equation (2-97) 

Lagrange multiplier 

(Chapter 2.2.3.5) 
Equations (2-98), (2-100), and (2-102) 

Line search 

(Chapter 2.2.3.6) 
O 
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5.3. 3D MT inversion results for the field data 
 

In this section, inversion results of the MT field data for the Utah FORGE site 

obtained by the aforementioned strategies of selecting MT response functions as 

input data types denoted by (
xyZ , 

yxZ ), (
xyZ , 

yxZ , 
yT ), (

xyZ , 
yxZ , xT ), and ( xxZ , 

xyZ , 
yxZ , 

yyZ ) are represented. Fig. 5.7 shows the updated models of the yz cross-

section at x=0 km obtained from the four strategies with the ParaView (Ahrens et al. 

2005). In Fig. 5.7, the white dotted lines represent the boundaries of the target body 

with lower resistivity (marked with the white dotted lines in Fig. 5.1), whereas the 

black lines indicate the overlapping part with the cross-section of Wannamaker et al. 

(2020) (marked with the black lines in Fig. 5.1). In Fig. 5.7(a), the strategy of (
xyZ , 

yxZ ) images the low resistivity structure near the surface in the negative y-axis and 

the underlying high resistivity structure similar to Fig. 5.1, but the inversion result 

in the white dotted rectangle does not show low resistivity body. The inversion result 

for the selection strategy of (
xyZ , 

yxZ , 
yT ) shown in Fig. 5.7(b) reconstructs the 

subsurface structures including the target body comparable to those of Fig. 5.1. 

Comparing the inversion results of Figs. 5.7(a) and 5.7(c) with each other, the xT  

data are added, but the recovered structures for the strategy of (
xyZ , 

yxZ , xT ) are 

not significantly different from those for the (
xyZ , 

yxZ ) strategy. In Fig. 5.7(d), the 

model inverted by the strategy of ( xxZ , 
xyZ , 

yxZ , 
yyZ ) shows the low resistivity 

body near the target structure, but it exceeds the boundaries of the target structure in 

the y-axis. Consequently, as expected in Chapter 5.1, the strategy of (
xyZ , 

yxZ , 
yT ) 

containing 
yT  data visualizes the subsurface structures including the target body 

most similar to the result of Wannamaker et al. (2020) inverted by more MT data. 
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Fig. 5.7. Inversion results of the yz cross-section at x=0 km for the four strategies of 

selecting MT response functions as input data types denoted by (a) (
xyZ , 

yxZ ), (b) 

(
xyZ  , 

yxZ  , 
yT  ), (c) (

xyZ  , 
yxZ  , xT  ), and (d) ( xxZ  , 

xyZ  , 
yxZ  , 

yyZ  ). The white 

dotted and black lines represent the boundaries of the lower resistivity target body 

and overlapping part in the cross-section of Fig. 5.1, respectively.  
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Fig. 5.7. (Continued) 
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Fig. 5.8 shows the data misfits of the objective functions over the iteration 

numbers in the inverse procedures for the four strategies of selecting MT response 

functions. The total number of iterations for the strategy of (
xyZ , 

yxZ ) is 5, whereas 

that for the other strategies is 7. In the inverse problems of the four strategies, the 

data misfits decrease and finally converge to the data misfits smaller than 1% of the 

initial values. In other words, all four inversion processes are reasonable and 

adequately reflect their observed data. 

 

 

Fig. 5.8. Data misfits over the iteration numbers in the inverse procedures for the 

four strategies of selecting MT response functions as input data types denoted by 

(
xyZ , 

yxZ ), (
xyZ , 

yxZ , 
yT ), (

xyZ , 
yxZ , xT ), and ( xxZ , 

xyZ , 
yxZ , 

yyZ ). 
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In Fig. 5.9, the ratios of root-mean-square (RMS) errors for the inverted models 

of the (
xyZ  , 

yxZ  ) and (
xyZ  , 

yxZ  , 
yT  ) strategies are presented according to the 

receiver locations. Receiver positions with the ratio greater than 1 (indicated in blue) 

mean that the RMS errors for the strategy of (
xyZ , 

yxZ , 
yT ) are smaller than those 

for the strategy of (
xyZ , 

yxZ ), whereas the red points with a ratio less than 1 mean 

that the RMS errors for the strategy of (
xyZ , 

yxZ ) are smaller than those for the 

strategy of (
xyZ , 

yxZ , 
yT ). Fig. 5.9(a) shows the ratios of RMS errors for the MT 

response functions of 
xyZ  and 

yxZ  are close to 1 in most receivers (i.e., the RMS 

errors for the MT response functions of 
xyZ  and 

yxZ  in the two inverted models 

are similar). In Fig. 5.9(b), many receivers have a dark blue color on the map of the 

ratios of RMS errors for the MT response function of 
yT  , and it implies the 

responses of 
yT  for the inverted model of the (

xyZ , 
yxZ , 

yT ) strategy are in better 

agreement with the observed data. 

Fig. 5.10 shows the observed data and MT responses obtained from the two 

inverted models for the (
xyZ , 

yxZ ) and (
xyZ , 

yxZ , 
yT ) strategies in the receiver 

located at (-0.76, 0.75, -1.68 km) away from the target structure (Fig. 5.3) in the 

negative y-axis. For the MT response functions of 
, a xy

 , 
, a yx

 , xy
 , and yx

 

(i.e., 
xyZ   and 

yxZ  ), both strategies result in the updated models with the MT 

modeling results close to the observed data. On the other hand, the inverted model 

by the strategy of (
xyZ , 

yxZ , 
yT ) reproduces the responses of 

yT  more similar to 

the observed data than that for the strategy of (
xyZ , 

yxZ ). Like Fig. 5.10, the MT 

responses in the receiver located at (1.69, 17.2, -2.24 km) away from the lower 

resistivity body (Fig. 5.3) in the positive y-axis are represented in Fig. 5.11. 

Compared to the results in Fig. 5.10, the responses of 
, a xy

, 
, a yx

, xy
, and yx
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have similar tendencies, and the responses of 
yT  show more distinct differences 

according to the two strategies in Fig. 5.11. 

In summary, Fig. 5.7 demonstrates the strategy of selecting MT response 

functions as input data types denoted by (
xyZ  , 

yxZ  , 
yT  ) restores the subsurface 

structures including the main lower resistivity zone most comparable to the inverted 

model in Fig. 5.1. Figs. 5.9, 5.10, and 5.11 show that the different inversion results 

are attributed to the MT response function of 
yT . These results are consistent with 

the presumption based on the sensitivity patterns, which is described at the end of 

Chapter 5.1. As in the case study explained in Chapter 5, inversion results in various 

MT case studies will be improved because optimal MT response functions can be 

selected by considering the sensitivity patterns and the environment of MT 

exploration (distribution of receivers, location of main structures, frequencies, etc.). 
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Fig. 5.9. Maps of the ratios of RMS errors between the models inverted by the 

strategies of selecting MT response functions as input data types denoted by (
xyZ , 

yxZ ) and (
xyZ , 

yxZ , 
yT ) for the MT response functions of (a) 

xyZ  and 
yxZ  and 

(b) 
yT . 
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Fig. 5.10. MT responses of 
, a xy

, 
, a yx

, xy
, yx

, 
yRT , and 

yIT  at the receiver 

located at (-0.76, 0.75, -1.68 km) obtained from the observed data (black circles) and 

the inverted models for the strategies of selecting MT response functions as input 

data types denoted by (
xyZ , 

yxZ ) (red circles) and (
xyZ , 

yxZ , 
yT ) (blue circles). 
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Fig. 5.11. MT responses of 
, a xy

, 
, a yx

, xy
, yx

, 
yRT , and 

yIT  at the receiver 

located at (1.69, 17.2, -2.24 km) obtained from the observed data (black circles) and 

the inverted models for the strategies of selecting MT response functions as input 

data types denoted by (
xyZ , 

yxZ ) (red circles) and (
xyZ , 

yxZ , 
yT ) (blue circles). 
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Chapter 6. Conclusions 
 

 

The 3D sensitivity patterns and surface-sensitivity patterns were investigated to 

describe the characteristics of the 22 major MT response functions: 8 components of 

the impedance tensor ( xxRZ  , xxIZ  , 
xyRZ  , 

xyIZ  , 
yxRZ  , 

yxIZ  , 
yyRZ  , and 

yyIZ  ); 2 

components of the apparent resistivity (
, a xy

  and 
, a yx

 ); 2 components of the 

phase (xy
  and yx

 ); 4 components of the tipper ( xRT  , xIT  , 
yRT  , and 

yIT  ); 2 

components of the effective impedance (
effRZ  and 

effIZ ); and 4 components of the 

phase tensor ( xx , xy
,  yx

, and  yy
) for inversion. 

First, the various MT response functions were classified into 6 groups according 

to their surface-sensitivity patterns so that MT response functions with similar roles 

in the inverse process belong to the same group. Group 1 contains xxRZ  , xxIZ  , 

yyRZ  , 
yyIZ  , xy

 , and  yx
  that have the diagonal four petals-shaped surface-

sensitivity patterns. Because their surface-sensitivity patterns are strong in all four 

quadrants, the MT response functions of Group 1 are useful when receivers are 

evenly installed on the surface to image 3D structures. 
xyRZ  , 

xyIZ  , 
, a xy

 , xy
 , 

and  yy
  with the linear surface-sensitivity patterns along the y-axis belong to 

Group 2, and the MT response functions of 
yxRZ  , 

yxIZ  , 
, a yx

 , yx
 , and  xx  

whose surface-sensitivity patterns are linear in the x-axis are classified into Group 3. 

The intensive surface-sensitivity patterns along the y- and x-axes indicate that the 

MT response functions of Groups 2 and 3 contribute significantly to inversion of 

nearly 2D structures extending along the y- and x-axes, respectively. The x- and y-

components of the tipper possess the linear two petals-shaped surface-sensitivity 
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patterns along the x- and y-axes, and belong to Groups 4 and 5, respectively. Because 

the part with strong surface-sensitivity patterns of the tipper appears widely along 

one axis, the tipper can be helpful for retrieving both 2D and 3D structures. The 

surface-sensitivity patterns for the effective impedance (Group 6) appear as the small 

circle. The characteristic of surface-sensitivity patterns, which appear strongly only 

around the center, makes the effective impedance an advantage in interpretation of 

1D strucutres. 

Next, the synthetic examples for 1D, 2D, and 3D interpretation of MT data were 

represented to show how the sensitivity patterns are reflected in observed data and 

inversion results. The synthetic examples were summarized in one table that 

recommends appropriate input MT response functions for inversion according to the 

environment of MT exploration. The examples for 1D interpretation of MT data 

showed that Groups 2, 3, and 6 can be applied for 1D inversion, and the effective 

impedance is an optimal MT response function for the cases with an anomalous body 

causing the dimensionality error. In the examples for 2D interpretation of MT data, 

Groups 2, 3, 4, and 6 respond to 2D structures with the strike along the y-axis. If 

geological structures are nearly 2D and the sufficient data can be obtained crossing 

the main structure, the MT response functions having strong surface-sensitivity 

patterns along the strike direction (i.e., TM mode) are recommended. The tipper is 

of great help in the cases where data acquired right above the target structure cannot 

be used. The tipper and effective impedance are good substitutes for the TM mode 

MT response functions when the off-plane structures exist. In the examples for 3D 

interpretation of MT data, all data types of MT response functions can be applied to 

inversion, but the features of the components of the impedance tensor that are mainly 
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used in 3D inversion were mostly described. It is generally helpful to use all the 

impedance components together because they have different sensitivity patterns. 

However, in imaging of some specific structures, selectively using the impedance 

components can be a better strategy than using all the components, and such specific 

structures can be guessed through the sensitivity patterns. As previously mentioned, 

the responses to structures close to 2D are mainly contained in off-diagonal 

components having strong sensitivity patterns in the same direction as the strike, 

while responses to nearly 2D structures hardly appear in the diagonal components. 

In the case of vertically existing structures, the responses to upper and lower 

structures at limited frequencies are recorded separately in different receivers for the 

diagonal components, whereas they are superposed on the same receiver for the off-

diagonal components. Corresponding to the features of the sensitivity pattern for 

each component, the 3D models inverted by the diagonal impedance components 

reflected the vertically existing structures well but did not properly represent the 

structures close to 2D, whereas the inversion results of the off-diagonal impedance 

components had opposite tendencies. The synthetic examples for 3D inversion also 

showed that inversion results may be improved by selectively using the impedance 

components according to frequencies in imaging of structures close to 2D or two 

structures separated in the vertical direction. Additionally, it was demonstrated that 

the phase tensor can yield similar subsurface structures to those of the impedance 

tensor even with a smaller number of data. 

Finally, the sensitivity patterns for MT response functions were applied to 

inversion of real 3D MT field data. The field data were acquired near the Utah 

FORGE and Roosevelt Hot Springs geothermal system sites. Most of the field data 
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are located widely away from the target structure in the y-axis direction. Considering 

this MT exploration situations, it could be inferred that many receivers contain the 

responses to the target structure in the data type of MT response function of 
yT  

whose surface-sensitivity pattern is spread in the shape of two petals in the y-axis 

direction. As expected, the model most compatible to the inversion result of 

Wannamaker et al. (2020) imaged from more MT field data was inverted when 
yT  

is adopted with 
xyZ  and 

yxZ . Furthermore, some error analyses for the inverted 

models demonstrated that the MT response function of 
yT  has a large contribution 

to imaging the target body with low resistivity. 

Consequently, the sensitivity patterns presented in this study give insight into 

the characteristics of the MT response functions. The analyzed sensitivity patterns 

of the MT response functions can be used in various MT studies such as post-

processing of data and survey design. In this thesis, the synthetic examples for 

several specific situations and the field data example at the Utah FORGE site 

describe approximate structures suitable for inversion according to the sensitivity 

patterns of the MT response functions and show how to apply their sensitivity 

patterns to MT inversion. Therefore, this thesis can be used as a guideline for 

selecting optimal input data types of MT response functions in different case studies 

for MT inversion. 
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Appendix A. Tetrahedral and hexahedral elements 

 

 

In this appendix, information on tetrahedral and hexahedral elements used for 

3D MT modeling with the edge-based FEM is described. Because the tetrahedral or 

hexahedral elements have various shapes and sizes, their basic elements are required 

to explain in general. The coordinate system used in the basic element is called the 

local coordinate system, whereas the global coordinate system is for the elements of 

the entire 3D model. In Chapter A.1, the contents for the tetrahedral element: the 

basic element; the transformation between local and global coordinates; the edge 

shape function; the curl of edge shape function; the elementary stiffness matrix; and 

the elementary mass matrix are represented. In Chapter A.2, the same contents for 

the hexahedral element are described. 

 

 

A.1. Tetrahedral elements 
 

For the basic tetrahedral element in the FEM, the local coordinate system, 

number of nodes, edge directions, and number of edges are shown in Fig. A.1. To 

handle all tetrahedral elements in general, a volume coordinate system can be used 

instead of considering a tetrahedron of a specific shape and size. For example, let 

four nodes of a tetrahedron (nodes 1, 2, 3, and 4) and an arbitrary point P inside the 

tetrahedron be  1 1 1, ,x y z  ,  2 2 2, ,x y z  ,  3 3 3, ,x y z  ,  4 4 4, ,x y z  , and 

 , ,x y z  in the global coordinate system, respectively. The volume coordinates of 

the point P  1 2 3 4, , ,     are defined as follows: 
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













V

V

V

V

V

V

 

 

node 1, node 2, node 3, point P

node 1, node 2, node 3, node 4


V

V

 ,       (A-1) 

 

where  , , ,V a b c d  is a volume of the tetrahedron composed of four points, a , 

b , c , and d . From equation (A-1), 1 2 3 4 1       . 

 

 

 

 

Fig. A.1. Local coordinate system, number of nodes, edge directions, and number of 

edges for the basic tetrahedral element in the FEM. 
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The transformations between the global coordinates  , ,x y z   and the local 

coordinates  1 2 3 4, , ,     (i.e., the volume coordinates) of the arbitrary point P 

are defined as follows (Jin 2002): 

 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

1

1

6









    
    
    
    
    

    

a b c d

a b c d x

a b c d yV

a b c d z

 ,           (A-2) 

 

1

1 2 3 4 2

1 2 3 4 3

1 2 3 4 4

1 1 1 11 







   
   
    
   
   

    

x x x xx

y y y yy

z z z zz

 ,            (A-3) 

 

where 

2 3 4 1 3 4 1 2 4 1 2 3

1 2 3 4 1 1 3 4 1 1 2 4 1 1 2 3

2 3 4 1 3 4 1 2 4 1 2 3

;  ;  ;  ;     

x x x x x x x x x x x x

a y y y b y y y c y y y d y y y

z z z z z z z z z z z z

 

2 2 3 4 2 1 3 4 2 1 2 4 2 1 2 3

2 3 4 1 3 4 1 2 4 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

;  ;  ;  ;     a y y y b y y y c y y y d y y y

z z z z z z z z z z z z

 

3 2 3 4 3 1 3 4 3 1 2 4 3 1 2 3

2 3 4 1 3 4 1 2 4 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

;  ;  ;  ;     a x x x b x x x c x x x d x x x

z z z z z z z z z z z z

 

4 2 3 4 4 1 3 4 4 1 2 4 4 1 2 3

2 3 4 1 3 4 1 2 4 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

;  ;  ;  ;     a x x x b x x x c x x x d x x x

y y y y y y y y y y y y
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1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 1

1
 volume of tetrahedron = 

6

x x x x
V

y y y y

z z z y

  . 

 

For the tetrahedral elements, the edge shape functions and the curl of the edge 

shape functions are defined as follows using the volume coordinates (Jin 2002): 

 

        1 2 2 1
;  1~ 6       i iN i N i N i N i

l iΦ  ,       (A-4) 

 

   1 2
2 ;  1 ~ 6     i i N i N i
l iΦ  ,         (A-5) 

 

where il  is the length of the i-th edge.  1N i  and  2N i  are the start and end 

nodes of the i-th edge along its direction in Fig. A.1, respectively. For example, 

 1 1 1N  and  2 1 2N  for the edge number 1. 

For arbitrary tetrahedral elements, the elementary stiffness and mass matrices 

have analytic solutions (Jin 2002). The components of the elementary stiffness 

matrix for the tetrahedral element are defined as follows: 

 

 
4

4
;  , 1 ~ 6

6
    

i j

ij i j

l l V
K i j

V
v v  ,            (A-6) 

 

where

                        1 2 1 2 1 2 1 2 1 2 1 2
,  ,     i N i N i N i N i N i N i N i N i N i N i N i N i

c d d c d b b d b c c bv . 

 

The components of the elementary mass matrix for the tetrahedral element are 

defined as follows: 
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where  ( ,  1~ 4)   ij i j i j i jf bb c c d d i j . Because the elementary mass matrix 

is symmetric, ij jiM M  where ,  1~ 6i j . 
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A.2. Hexahedral elements 
 

For the basic hexahedral element in the FEM, the local coordinate system, 

number of nodes, edge directions, and number of edges are shown in Fig. A.2. The 

basic hexahedral element in this thesis is a regular hexahedron composed of eight 

nodes, which are  1 or 1,  1 or 1,  1 or 1   . In the local coordinate system, the 

origin is the center of the basic hexahedral element and the local coordinates are 

based on the  ,  , and   axes.  

 

 

 

 

Fig. A.2. Local coordinate system, number of nodes, edge directions, and number of 

edges for the basic hexahedral element in the FEM. 
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Let the eight nodes of the structured hexahedral element used in this study be 

 1 2 1 2 1 2 or ,   or ,   or x x y y z z  in the global coordinate system. The transformations 

between the global coordinates  , ,x y z  and the local coordinates  , ,    of an 

arbitrary point P inside the structured hexahedron are defined as follows: 
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For the hexahedral elements, the edge shape functions and the curl of the edge 

shape functions are defined as follows (Miyata 2006): 
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where  1

3 3
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i i .  i , i , and  i  are in Table A.1. 

 

 

 

Table. A.1.  i , i , and  i  for hexahedral element. 

Edge No.  i  i   i  

1 0 -1 -1 

2 0 1 -1 

3 0 1 1 

4 0 -1 1 

5 -1 0 -1 

6 1 0 -1 

7 1 0 1 

8 -1 0 1 

9 -1 -1 0 

10 1 -1 0 

11 1 1 0 

12 -1 1 0 
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The elementary stiffness and mass matrices of the arbitrary hexahedral element 

should be calculated with a numerical integration. For example, the components of 

the elementary stiffness matrix in the local coordinate system are calculated as 

follows: 

 

   

 

1 1 1

3
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1 1 1
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 
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ij i j DK d d d

k d d d i j

Φ Φ J
 .      (A-12) 

 

The Gauss-Legendre quadrature is a form of Gaussian quadrature to approximate a 

definite integral of a function with a weighted sum of the function values at specified 

points. The Gauss-Legendre quadrature is represented as follows: 
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1

1
1


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
n

i i

i

f x dx w f x  ,               (A-13) 

 

where n  is the number of sample points; iw  is the quadrature weight; and ix  is 

the quadrature point between -1 and 1. Using the Gauss-Legendre quadrature of 

equation (A-13), the components of the elementary stiffness matrix of equation (A-

12) can be computed as follows: 

 

 
3 2 1

1 1 1

, , ;  , 1 ~ 12  
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 
n n n

ij m l k k l m

m l k

K w w w k i j  .     (A-14) 

 

In Table A.2, the points and weights for the Gauss-Legendre quadrature are described. 

In the same way, the components of the elementary mass matrix of the hexahedral 

element can also be calculated. 
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Table. A.2. 1D Gauss-Legendre quadrature points and weights. 

Order Points Weights 

1 0 2 

2 
-0.57735026918962576 1 

0.57735026918962576 1 

3 

-0.77459666924148338 0.88888888888888889 

0 0.55555555555555556 

-0.77459666924148338 0.88888888888888889 

4 

-0.86113631159405258 0.34785484513745386 

-0.33998104358485626 0.65214515486254614 

0.33998104358485626 0.65214515486254614 

0.86113631159405258 0.34785484513745386 

5 

-0.90617984593866399 0.23692688505618909 

-0.53846931010568309 0.47862867049936647 

0 0.5688888888888889 

0.53846931010568309 0.47862867049936647 

0.90617984593866399 0.23692688505618909 
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초 록 

 

 

MT 반응함수들의 민감도 패턴 분석 및 역산에의 적용 

 

엄 장 환 

에너지시스템공학부 

서울대학교 대학원 

 

자기지전류(Magnetotelluric; MT) 탐사를 통해 자연 송신원에 의해 

발생하는 전자기장을 시간에 따라 지표에서 측정하고, 이를 주파수 

영역의 다양한 MT 반응함수로 변환시켜 지하구조를 영상화하는 역산 

등에 활용한다. 역산 기술은 모델 변수 및 입력자료 형태에 따라 그 

결과가 달라지고, 민감도 행렬을 활용해 지구물리탐사 역산에서 여러 

모델 변수의 특성을 분석하는 연구가 진행되었다. 또한, MT 탐사 

분야에서는 MT 반응함수에 따라 다른 역산 결과를 제시하는 연구들이 

진행되었다. 하지만, MT 반응함수들의 어떤 특성이 역산 결과의 차이를 

야기하는지에 대한 연구는 부족하다. 

이 논문에서는 주요한 MT 반응함수들(임피던스 텐서, 겉보기 비저항, 

위상, 티퍼, 유효 임피던스, phase 텐서)의 민감도 패턴을 분석하고, 그 

민감도 패턴의 특징에 따라 역산 결과가 어떻게 달라지는지 확인한다. 

민감도 패턴은 특정 위치의 모델 변수의 작은 변화에 자료가 변하는 

정도를 공간에 나타낸 것으로, 모델 변수 벡터의 모델링 자료를 
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관측자료와 맞추는 역산 과정에서 MT 반응함수 형태별 특성을 나타내는 

지표가 된다. 이 논문에서는 MT 반응함수 형태별 3차원 민감도 패턴과 

MT 탐사가 이루어지는 지표에서의 2차원 민감도 패턴을 모두 제시한다. 

그리고, 총 22개의 MT 반응함수 형태들은 6개의 그룹으로 분류하는데, 

지표에서의 민감도 패턴이 비슷한, 즉 역산에서 비슷한 역할을 하는 MT 

반응함수들끼리 같은 그룹으로 분류된다. 서로 다른 그룹에 포함되는 

MT 반응함수들끼리는 역산에서 상호보완적인 역할을 할 수 있다. 

민감도 패턴의 특징이 역산에 미치는 영향을 알아보고자 MT 자료의 

1차원, 2차원, 3차원 해석 상황을 가정해 MT 반응함수별 관측자료와 

역산 결과를 수치 예시로 제시한다. 이를 통해 MT 자료의 1차원 해석 

상황에서 dimensionality 오차를 고려했을 때, 유효 임피던스가 최적의 

MT 반응함수 형태임을 확인한다. 일반적인 MT 자료의 2차원 해석 

상황에서는 transverse magnetic (TM) 모드의 MT 반응함수 형태들을 

활용하는 것이 추천되지만, 목표 구조 위의 수신기를 사용하지 못하는 

경우 티퍼가 더 적합하다. 두 이상체가 수직적으로 존재하는 특정 

구조를 영상화 할 때는 임피던스 텐서의 성분들을 선택적으로 활용해 

개선된 3차원 MT 역산 결과를 얻을 수 있다. 수치 예시들은 하나의 

표로 정리되어, MT 탐사 상황에 따라 역산의 입력자료로 적합한 MT 

반응함수 형태들을 추천한다. 

민감도 패턴의 MT 현장자료 역산 적용성을 알아보기 위해, Utah 

Frontier Observatory for Research in Geothermal Energy (FORGE) 

근처에서 획득된 현장자료에 다른 MT 반응함수들의 조합을 입력자료 

형태로 활용하는 4가지 역산 전략을 고려한다. 이 사례 연구는 민감도 

패턴으로부터 선정된 MT 반응함수들을 입력자료 형태로 활용해 역산 
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결과를 개선시킬 수 있다는 사실을 보여준다. 현장자료가 목표 

구조로부터 y축 방향으로 떨어진 곳에 넓게 분포하는 상황을 고려하면, 

y축 방향으로 두 개의 꽃잎 모양 민감도 패턴을 갖는 티퍼의 y성분에 

그 구조의 반응이 주로 포함되어 있을 것이라 추론할 수 있다. 실제로, 

4가지 전략 중 티퍼의 y성분을 포함하는 자료선택 전략으로부터 역산된 

지하 모델은 목표 구조를 뚜렷하게 나타낸다. 이후 오차 분석을 통해 

티퍼의 y성분이 목표 지하구조를 더 정확히 영상화하는데 크게 

기여하고 있다는 사실을 확인할 수 있다. 

이 논문은 MT 탐사의 환경과 MT 반응함수들의 민감도 패턴에 따라 

역산의 최적 입력자료 형태를 선택하는 데 큰 도움이 될 것이다. 

 

 

주요어: 자기지전류(Magnetotelluric; MT), MT 반응함수, 민감도 패턴, 

역산, Utah FORGE 
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