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Abstract 

 
The in-depth design and implementation of a newly developed 

integrated suite of codes, TRIASSIC (tokamak reactor integrated 

automated suite for simulation and computation), are reported. The 

suite comprises existing plasma simulation codes, including equi-

librium solvers, 1.5D and 2D plasma transport solvers, neoclassical 

and anomalous transport models, current drive and heating (cooling) 

models, and 2D grid generators. The components in TRIASSIC 

could be fully modularized, by adopting a generic data structure as 

its internal data. Due to a unique interfacing method that does not 

depend on the generic data itself, legacy codes that are no longer 

maintained by the original author were easily interfaced. The 

graphical user interface and the parallel computing of the frame-

work and its components are also addressed. The verification of 

TRIASSIC in terms of equilibrium, transport, and heating is also 

shown. Following the data model and definition of the data structure, 

a declarative programming method was adopted in the core part of 

the framework. The method was used to keep the internal data 

consistency of the data by enforcing the reciprocal relations be-

tween the data nodes, contributing to extra flexibility and explic-

itness of the simulations. TRIASSIC was applied on various devices 

including KSTAR, VEST, and KDEMO, owing to its flexibility in 

composing a workflow. TRIASSIC was validated against KSTAR 

plasmas in terms of interpretive and predictive modelings. The 

prediction and validation on the VEST device using TRIASSIC are 

also shown. For the applications to the upcoming KDEMO device, 

the machine design parameters were optimized, targeting an eco-

nomical fusion demonstration reactor. 
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Integrated Simulation 
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Chapter 1. Introduction 

 

1.1. Background 

 
1.1.1. Fusion Reactor and Modeling 

 
Nuclear fusion is considered as an attractive energy resource in 

view of sustainability, carbon neutrality, and the absence of high-

level radioactive waste [1]. Realizing nuclear fusion on earth re-

quires a container to hold high-temperature plasmas, and the to-

kamak is considered as the most promising magnetic confinement 

device concept to stably contain such plasmas for a long duration. 

In a tokamak, there exists a strong magnetic field applied along the 

toroidal direction. Owing to the Lorentz force, the toroidal magnetic 

could constrain the motion of charged particles and plasmas along 

the toroidal direction. The separation of negative and positive 

charges due to vertical ∇𝐵 drift motion and the resulting outward 

𝐸 × 𝐵 drift motion could be prevented by applying an additional 

magnetic field along the poloidal direction (See Fig. 1.6.1 in [2]); 

the resulting magnetic field structure in a tokamak plasma is helical. 

 

The helical magnetic field in a tokamak plasma gives rise to a 

complex geometry called flux surface. The flux surface is the lay-

ered surface where the helical magnetic field lays. The structure 

of the flux surface can be calculated by the balance between the 

electromagnetic force and the plasma pressure force. The imbal-

ance of these forces could lead to a substantial size of instability, 

which is called MHD (Magneto-Hydro-Dynamic) instability. The 

instability can make plasma unstable and could induce substantial 

heat and particle loss in a short period toward the inner machine 

wall or even disrupts the plasma. It must be avoided or at least 
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mitigated for the machine’s safety and stable operation, by pre-

dicting the onset of the macroscopic instability beforehand. 

 

Due to constrained motion along the helical field line, ideally, the 

plasmas do not move across the magnetic field. However, consid-

ering the collision process between the charged particles, the 

plasma can be transported across the field lines and the flux sur-

faces. This collisional transport is often called neoclassical 

transport. On the other hand, unstable modes in a plasma due to the 

wave-particle interaction could lead to an occurrence of a small-

scale instability called micro-instability, which could eventually 

lead to a turbulent cross-field transport during the nonlinear phase 

of the instability. The origin of the micro-instability is the relax-

ation of the free energy comes from the inhomogeneity of the plas-

mas (e.g., the pressure gradients or the temperature gradients), 

which is inevitable in the tokamak plasmas where the plasmas near 

the machine wall should be relatively cooler while the core plasma 

is hotter. Calculating how much heat and particles are lost through 

the transport across the field line and understanding which process 

dominates the transport is crucial for understanding the behavior 

of the plasma and predicting the performance of the plasmas. 

 

Plasmas in tokamak showed lower performance than what was 

expected by the (neo-)classical theory. It was believed that there 

exists additional “anomalous” transport all over the plasma re-

gion, and substantial efforts were conducted to explain the origin 

of the transport. Empirically, however, it was found that the anom-

alous transport is quenched to form a transport barrier near the 

plasma boundary when sufficient heating is applied. The plasma is 

then said to be operating in the H-mode (H for high), contrary to 

the L-mode (L for low). The steep pressure gradient formed by 

the transport barrier is called a pedestal. The pedestal is essential 

for increasing the plasma performance and eventually getting 
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higher fusion electricity gain by increasing the fusion reaction 

cross-section. The H-mode operation is chosen as the baseline 

scenario for the upcoming international thermonuclear experi-

mental reactor (ITER). Calculating the enhanced performance due 

to H-mode operation, by predicting the pedestal structure, is nec-

essary for estimating figure of merits of the plasmas for the design 

of the upcoming reactor. 

 

Plasmas should be heated up to at least 10 keV to get a non-

negligible fusion reaction cross-section. Hence, there exist nu-

merous kinds of actuators with different heating mechanisms. The 

heating mechanisms can be categorized into two parts, one is in-

jecting the high-energy particles and the other is wave heating. 

When the plasma is sufficiently hot and dense, the charged particle 

products from a nuclear fusion reaction (e.g., the alpha particle for 

the D-T fusion reaction) would again heat the plasma so that the 

plasma can self-sustain its high temperature. Here, the fusion gain 

(Q) is the most important figure of merit regarding nuclear fusion 

heating and the self-sustainment of plasma. The fusion gain is de-

fined by the ratio between the fusion-generated charged particle 

heating and the auxiliary heating. In view of modeling and active 

operation control, it is important to accurately determine the net 

heating and fueling applied to the plasmas by the actuators and the 

fusion products. 

 

Among the actuators, the neutral beam injection (NBI) injects 

fast neutrals inside the plasmas and the ion cyclotron radio fre-

quency wave (ICRF) accelerates thermal ion to become a non-

thermal ion. Moreover, the alpha particle from the D-T fusion re-

action should be treated as a non-thermal ion as it carries a huge 

amount of energy (3.5 MeV) released from the reaction and thus 

its velocity is much faster than the thermal plasmas. These fast-

ions can drive a new set of electromagnetic instabilities that can 
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induce additional transport to itself. Sophisticated modeling of the 

fast-ion-induced instabilities is crucial, as the instability can make 

alpha particle rapidly lost before it sufficiently transfers their en-

ergy to the background plasmas, while the alpha particle heating 

should be the dominant heating mechanism in the burning plasmas. 

Moreover, the fast-ions also can directly affect the onset/evolution 

of micro-instabilities originated by thermal plasmas. The fast-ions 

should be properly modeled and the role of fast-ions in turbulent 

transport of the background plasmas should be understood. 

 

Other than the plasma heating, there also exists actuators for 

the particle fueling and the intentional disturbance that limits the 

plasma performance for stable operation. One of the latter, the 

resonant magnetic perturbation (RMP) applies a weak resonant 

magnetic field by the external coils. The RMP can suppress the 

edge localized modes (ELMs), which is the periodic minor disrup-

tion of the pedestal structure that occurs during the H-mode op-

eration. While the ELMs and the energy released by the instability 

in a present medium-sized tokamak is not significant enough to 

damage the plasma-facing components (PFCs) such as divertor, it 

can severely damage the PFCs in the large devices such as ITER 

and DEMO. The ELMs must be suppressed in such devices by cal-

culating the optimized RMP configuration for a given plasma oper-

ation condition, or another operation mode or scenario that does 

not damage the wall should be predicted and suggested beforehand. 

 

Often, the plasma is operated under a diverted configuration 

(opposite to a limited configuration). Then, the core plasma is sur-

rounded by the outermost magnetic field line called separatrix. The 

separatrix connects two diverting points, inner and outer striking 

points. Beyond the plasma boundary, the flux surface cannot be 

defined as the magnetic field line does not form a closed loop. Here, 
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the parallel transport along the field line matters, as it would even-

tually meet the PFCs when following a field line. Therefore, the 

transport process exterior to the plasma boundary is usually 

treated to be two-dimensional, whereas it is treated to be one-

dimensional inside the boundary. The exterior region of interest is 

called the scrape-off layer (SOL). In SOL, as the low-temperature 

plasmas interact with the PFCs, so-called plasma-wall interaction 

(PWI) such as recycling and sputtering occurs. Recycled neutrals 

and sputtered neutrals/impurities can again affect the heat and 

particle balance in the SOL region, and even at the core region in-

side the plasma boundary. It is noteworthy that there exists a max-

imum heat load limit for the divertor material and its cooling system. 

Therefore, it is crucial to predict how much heat will be loaded to 

the divertor through modeling, especially near the two striking 

points. 

 

A high radiation loss is expected in such a hot and dense burning 

plasma. Electrons bounded in an ion get excited due to the colli-

sional process with an unbounded electron, and the radiation is 

emitted during the spontaneous decay of this excited state. Even in 

the plasmas with fully stripped ions, radiations are emitted due to 

the recombination process and the acceleration/cyclotron motion of 

the electrons. Calculating radiative loss from the plasma is im-

portant, as the plasma (electrons, predominantly) can be cooled by 

the radiative loss and the loss is significant under a reactor condi-

tion - hot and dense, high-Z divertor material. It is also important 

to accurately determine the radiative loss in the SOL region, as the 

heat loss through radiation could reduce the heat load directly ex-

erted on the striking points. The situation where the heat load on 

the striking points is minimized due to a high radiative loss in the 

SOL region is called detachment. The condition which enables safe 

operation by minimizing the heat load to the divertor without the 

loss of plasma performance should be found through modeling. 
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As was briefly introduced and shown in Figure 1, there exist 

plenty of different topics inside the tokamak plasma. Notably, these 

topics are being stems from the tokamak plasmas, separated by 

differentiating (1) time scales of governing equations/phenomena, 

(2) region of interest, and (3) terms (mechanisms) in a governing 

equation. Models and codes were developed to understand tokamak 

plasmas in such simplified situations. However, each phenomenon 

interacts with others to form a substantial level of complexity and 

nonlinearity. None of the single plasma analysis codes can fully 

describe the tokamak operation. Hence, the combination of dedi-

cated models for each phenomenon is required to aid modelers in 

considering the complex interactions between different phenomena 

inside the plasma. Thus, the integrated modeling approach is an 

appropriate way to investigate these complex nonlinear phenomena 

self-consistently, helping us understand the physics behind them. 

Ultimately, a well-validated integrated modeling tool can be uti-

lized to predict and further optimize future tokamak devices such 

as ITER of DEMO to significantly contribute to the realization of 

the magnetic confinement fusion reactor. 
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Figure 1. Multiple topics (physics phenomena, actuators, and mod-

eling) that are inherent in tokamak plasmas (See chapters in [2]). 

 
1.1.2. Interpretive Analysis and Predictive Modeling 

 
The interpretive and predictive analyses are the type of analysis 

that utilizes a set of modeling codes/tools. The interpretive analysis 

targets to interpret the detailed mechanisms or physics behind the 

observations, such as measurement or phenomenon. For instance, 

in Figure 2 (left), the interpretation of beam absorption and neutron 

emission is shown. The plasma stored energy in this experiment 

was measured by the plasma equilibrium reconstruction by meas-

uring the magnetic field from the external magnetic field coils. 

There is no way to directly measure the contribution of fast-ion 

energy among the total stored energy. However, the contribution 

of fast-ion can be calculated by the neutral beam modeling code. 

Here, the measured stored energy was compared with its modeling 
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counterpart calculated by summing every contribution of plasma 

species. On the other hand, in the lower panel, the measured neu-

tron emission rate was compared with the calculated neutron 

emission rate from the neutral beam code. It is noteworthy that 

there exist three different sources of neutron generation mecha-

nism (beam-target, beam-beam and thermonuclear) and the in-

terpretive analysis shows that the neutrons generated from the 

beam-target fusion reaction dominate the others, while it is hard 

to be inferred only from the measurements. Also, from the con-

sensus between the experimental measurements and the modeling 

results in terms of energy and neutron emission rate, it can be 

concluded that the beam modeling is reliable. 

 

The interpretive analysis becomes more useful and richer when 

several more codes were integrated. Figure 2 (right) shows the 

interpretation of ion heat transport. The purple shaded line indi-

cates the experimental heat flux. The experimental heat flux can 

be calculated by solving the ion heat transport equation, after 

knowing how much net ion heating (and cooling) is deposited and 

how the ion energy (ion density and temperature) evolves in time. 

The black region and the red line indicate the neoclassical heat flux 

and turbulent heat flux, respectively. Overall, the analysis includes 

equilibrium solver, transport solver, heating models, and neoclas-

sical and turbulent transport models (gyrokinetic code, GTS [3]). 

From the analysis, a plausible conclusion can be made: The exper-

imental ion heat transport can be explained by the neoclassical and 

turbulent heat transport model, and the turbulent transport domi-

nates on the outer part of the plasma, while the neoclassical 

transport dominates on the inner part. If one of the models is absent, 

the conclusion could not be made; the integration of codes in in-

terpretive analysis can aid a deep and comprehensive understand-

ing of tokamak plasmas. 
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Figure 2. Interpretation of the origin of fusion neutron generation 

(left) and interpretation of heat transport and its mechanism (right). 

Figures were reproduced from [4, 5], respectively. 

 

Predictive modeling, distinct from interpretive analysis, focuses 

on predicting thermal plasma quantities such as density, tempera-

ture, and rotation. Thus, the predictive modeling includes a 

transport solver that solves the transport equation time-de-

pendently or the solver that gives a stationary-state transport so-

lution. The examples of predictive modeling are shown in Figure 3 

(two on the upper). The time-dependent prediction of electron and 

ion temperature with GLF23 [6] and TGLF [7, 8] model in DIII-D 

tokamak are shown on the left, and the stationary-state prediction 

solution of density, electron and ion temperatures, angular rotation 

frequency by QuaLiKiz [9] and TGLF model in the JET tokamak 

are shown on the right. Note that, although the modeling is repre-

sented by the name of the turbulent transport model owing to its 

importance, predictive modeling should consist of a fully integrated 

set of models. 

 

The predictive modeling applied to the present device is mean-

ingful as the models, especially the transport models, can be vali-

dated by the modeling. For instance, it can be said that the turbulent 

transport models are validated on the given discharges of the DIII-

D and the JET cases shown in Figure 3. Moreover, if the validation 
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is conducted for a multi-discharge or even a multi-device, in prin-

ciple the integrated suite can be exploited to predict upcoming de-

vices such as ITER or DEMO. However, it is noteworthy that, alt-

hough the models are validated on the present device, it is not sure 

whether the models would work properly when applied to future 

devices. For example, the empirical models or the neural network 

models, without a proper theoretical understanding or proper in-

put/output data normalizations, would fail when extrapolated. To 

avoid the issue, theory-based models should be utilized. Even the 

theory has a validity regime and might break down when applied to 

large-size, burning plasmas. Hence, the results should be carefully 

reviewed when extrapolated. Also, the models should be tested on 

a broad range of parameters by applying to multiple devices from 

small devices to large devices. 

 

In Figure 3 (lower), the prediction of ITER 12.5 MA hybrid op-

eration and the prediction of temperature profile are shown for the 

initial phase and the main burn phase, while the density profiles are 

prescribed. Predictive modeling can give an estimation of future 

devices, such as estimated temperature, fusion power, neutron 

generation, and non-inductive current drive fraction. By the re-

sults, the device design or the operation scenario can be optimized 

to reach the target parameters, while reducing the construction 

cost and risk. Further, the predictive modeling tool can be utilized 

to generate a digital twin for the upcoming reactor, which will sig-

nificantly improve the understanding of the reactor construction 

and its operation. For this, the code suite should be able to consider 

numerous kinds of phenomena not only for the plasma but also for 

the machine itself. Many codes/models should be integrated and 

their calculation and coupling should be extensively validated. 
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Figure 3. Time-dependent prediction of DIII-D plasmas (upper 

left), prediction of stationary phase in JET plasmas (upper right), 

and prediction of ITER 12.5 MA hybrid discharge (lower). Figures 

were reproduced from [4, 10, 11], respectively. 

 
1.1.3. Modular Approach 

 
Code integration is essential for integrated modeling. In order 

to integrate the codes, two ways of code integration methods – 

non-modular and modular approaches – are possible as illustrated 

in Figure 4. The non-modular approach couples the codes directly 

with each other. Examples shown in Figure 4 shows that code A, 



 

 

 

 

２２ 

B, and C are mutually coupled, or one of the codes, A, is coupled to 

the rest of the codes, B and C in the non-modular approach. On the 

other hand, the codes are not coupled to each other in the modular 

approach. Instead, codes are coupled to the centralized framework, 

as shown on the right of Figure 4. 

 

The former has big merit compared to the latter when imple-

menting an implicit method or a synergetic effect. This is because 

several iterations between the code are required when implement-

ing an implicit method or to see the synergetic effect. Also, owing 

to the direct coupling between the code, it can be faster than the 

modular approach. However, adding a new code requires many in-

terfaces between the codes. For instance, if code D is newly 

adopted and needs to be used within the code group shown at the 

left of the non-modular approach in Figure 4, it requires at most 

three more code interfaces, to be coupled with every code in the 

suite.  

 

The problem can be avoided if the case is the same as the sit-

uation at the right of the non-modular approach in Figure 4, where 

code A acts like a centralized framework. In this case, code D can 

be interfaced only with code A, without the direct link between 

codes B or C and satisfying the modularity requirement [12]. 

However, in this case, as codes are not fully separated, the coupled 

codes can only be executed through the central code, A. In other 

words, it is inevitable to use code A, even when only code B is 

required. Moreover, the functionality of code A becomes ambigu-

ous, as code A should handle the execution of other codes and 

should properly hold data given by other code components, B, C, 

and D. Legacy transport frameworks such as TRANSP [13], 

JETTO [14], and ASTRA [15] correspond to this case. Although 

the codes adopt the modular approach for the models other than 

the transport solver, the transport solver or interpreter cannot be 
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separated when composing a workflow. Also, it is almost impossi-

ble to switch the transport solver to another. 

 

The modular approach requires a centralized framework. The 

codes and modules interact with the centralized framework as 

shown in Figure 4. Such interaction requires proper data storage 

used in the framework; the data storage will be explained in the 

next section. In this approach, unlike the previous approach, there 

is no overlap between the codes and thus replacing a code compo-

nent with another is much easier. For example, if code D should be 

interfaced, it would only be interfaced with the framework. More-

over, if code D does the same calculation as code C but with a dif-

ferent model/method, code D can fully replace the role of code C. 

Also, if a generic data dictionary or data model is defined in the 

framework, the framework can utilize the full functionality of each 

code by taking a full set of useful information from the code. This 

is not the case for the non-modular approach, as each code has a 

limited variable definition that fits its usage. 

 

Note that there is no absolute advantage between the two ap-

proaches. The non-modular approach is rigid but has an advantage 

on the computation performance. On the other hand, the modular 

approach merits its versatility by enabling code component re-

placement and full functionality utilization. However, considering 

the current progress of the integrated simulation research, still, the 

physics codes and models need to be verified with each other and 

validated against the experiments. There is no complete set of 

modeling codes that are fully validated. Thus, the interchangeabil-

ity of the modular approach is considered as the biggest merit, and 

the approach will be considered as the better approach in this re-

search. 
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Figure 4. The schematic view and comparison of the non-modular 

approach and the modular approach. 

 
1.1.4. The Standard Data Structure 

 
In Figure 5, although the center of the framework in the example 

is not the framework itself but the core transport solver, the 

frameworks are sufficiently modularized as discussed in the pre-

vious section. In such frameworks, it can be noticed that the sim-

ulations are conducted by transferring the tokamak and plasma data 

between the transport solver and the other components. The 

transport solver is positioned at the center of the framework and 

the data transferred from/to the other components is represented 

as arrows. The data would exist in the internal variable space of 

the transport solvers during the simulation and be written as a file 

at the end of the simulation. The output format is called 

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 and 𝑃𝑙𝑎𝑠𝑚𝑎𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠, respectively as shown in the 

figure. 

 

The verification between the codes and the framework requires 

cumbersome tasks. For example, when the two frameworks are 

being verified against each other, as the output format differs be-

tween the simulation frameworks as was discussed in the previous 

paragraph, it requires an additional conversion to a unified format 

for direct comparison. Also, even though the frameworks have the 
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same analysis target, as each framework has a different imple-

mentation structure and an input format, it is hard to make simu-

lation settings identical. An example of a benchmark between the 

transport solvers for the ITER particle transport and a significant 

amount of effort can be found in the previous study [16]. It casts 

a need for the definition of the standard data model used in the 

simulation framework. 

 

 

Figure 5. The schematic view of the CRONOS suite of codes [17] 

(left) and the JINTRAC (JETTO) system of codes [18] (right). 

Figures were reproduced from the references. 

 

Figure 6 shows the merits of using a standard data model in 

simulations and experiments. As aforementioned, the standard data 

model can aid the verification of frameworks and codes. The same 

structure of input will greatly help running identical settings of 

simulation and the same structure of output will ease comparing the 

simulation results. When the experimental data is provided in the 

standard data format, two additional advantages other than the 

verification are gained. First, the validation of the framework or the 

code gets easier as the simulation results can be directly compared 

with the experimental data. Second, a detailed analysis of plasma 

or discharge becomes convenient as the experimental data can di-

rectly be used in the framework or the code, without the compli-

cated and error-prone task of making input files. 
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Figure 6. The merits of using standard data in simulations and ex-

periments. 

 

As the first design of a standard data model, the consistent 

physical object (CPO) [12] was developed. It was then improved 

in the ITER Integrated Modeling & Analysis Suite (IMAS) [19] 

with a formal definition of a standard data structure, so-called the 

interface data structure (IDS), which can be used to exchange data 

within an integrated simulation framework. The IDS is the format 

in which future ITER experiments and modeling results are pro-

vided. IDS is widely adopted when developing new integrated sim-

ulation frameworks [20–23]. 

 

The IDS is generic; it ought to contain device information of any 

tokamak, widely known diagnostic and actuator information, and 

plasma data from simulation and analysis. Figure 7 shows a part of 

the documentation of 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS, where in total there exists 

around 70 separate IDSs in the full IMAS data model. The docu-

mentation is well-organized, by showing the description, data type, 

and coordinates of a given data node. The structure is visualized in 

Figure 8. It can be noticed that the structure is hierarchical, which 

eases researchers to understand the data structure. The 

𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS can hold 1D profiles of core plasma quantity and 

some global (0D) quantities such as plasma current and loop volt-

age in time. In 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠_1𝑑 array of structure (AoS), there exists 
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placeholders allotted for the information of species like electron 

and generic ion. The species can hold density and temperature, as 

in general, the temperature is not identical for two different ion 

species. A more detailed design of IDS can be found in the previous 

study [19]. 

 

 

Figure 7. A part of the documentation of 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS. The IDS 

is well-documented with a description, data type, and coordinate. 
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Figure 8. A part of the structure of 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS. The IDS is 

generic and hierarchical. 

 
1.1.5. The Internal Data Consistency in a Generic Data 

 
Some data nodes in an IDS can be expressed by other data 

nodes, due to their definitions or constraints. For example, in Fig-

ure 8, the 𝑧𝑒𝑓𝑓 in 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠_1𝑑 can be expressed by the combina-

tion of the electron density, ion densities, and ion charge (𝑧_𝑖𝑜𝑛_1𝑑, 

not shown in the figure) following the definition of the data nodes. 

Also, the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 (total density of a specie) can be expressed by 

the summation of 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑡ℎ𝑒𝑟𝑚𝑎𝑙 and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑓𝑎𝑠𝑡 for every spe-

cie. The relations are reciprocal; not only the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 but also the 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑡ℎ𝑒𝑟𝑚𝑎𝑙 and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑓𝑎𝑠𝑡 can be calculated when the other 
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two are given. Moreover, when considering the quasi-neutrality 

constraint which is the basic property of the plasma, the electron 

density, ion densities, and ion charges can form a reciprocal rela-

tion. 

 

It is noteworthy that the relations are not limited to the 

𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS. The relations exist within other IDSs, such as 

𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 , 𝑐𝑜𝑟𝑒_𝑠𝑜𝑢𝑟𝑐𝑒𝑠 , 𝑐𝑜𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 , and even between the 

IDSs. For instance, one of the 𝑠𝑜𝑢𝑟𝑐𝑒  or 𝑚𝑜𝑑𝑒𝑙  AoS in 

𝑐𝑜𝑟𝑒_𝑠𝑜𝑢𝑟𝑐𝑒𝑠 or 𝑐𝑜𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 IDS should contain the total heating 

and current drive source or the total transport amount. In other 

words, data nodes in a 𝑠𝑜𝑢𝑟𝑐𝑒 or a 𝑚𝑜𝑑𝑒𝑙 AoS are related. More-

over, the electric conductivity, which is usually calculated by the 

neoclassical transport model, is natural to be stored in the 

𝑐𝑜𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 IDS. However, the 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS also has the 

node named 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 for the interpretation of parallel 

electric field and current density. The two quantities should be 

consistent considering different grids in the two IDSs. Also, the 

non-inductive current drive sources calculated by the current 

drive source models should be properly considered to calculate 

𝑗_𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 and 𝑗_𝑛𝑜𝑛_𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 in 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS. 

 

It is obvious that erroneous simulation results would appear if 

the consistency in the centralized data is not kept. The situation 

gets even worse when the user cannot notice the erroneous sim-

ulation result. Moreover, it is hard for a simulation code developer 

to pinpoint the origin of the error and to debug the code when the 

error originates from broken consistency. Therefore, keeping the 

internal data consistency is crucial. 

 
1.1.6. Integration of Physics Codes into IDS 
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The previous research [23] categorizes the physics code inte-

gration into three tiers, as shown in Figure 9. The tier 1 approach 

fully embraces the adoption of the IDS. The IDS participates not 

only in the I/O (input/output) routine but also in the physics routine. 

The data stored in the IDS is directly used and written by the 

physics routine. The tier 2 approach has a difference in communi-

cation between the IDS and the physics routine. In this approach, 

the IDS is only accessed by the I/O routine. It should be noted that 

as the I/O routine contains the IDS in the tiers 1 and 2 approaches, 

the IDS libraries that can be imported in the given code language 

are required. 

 

In the tier 3 approach, on the other hand, the IDS is fully sepa-

rated from the physics code. Note that the medium of the coupling, 

which can be one of file I/O or routine I/O, does not differentiate 

the tiers. As is demonstrated by the colors of the data node in an 

IDS in Figure 9, the consistency of the data is not guaranteed in the 

tier 3 approach, whereas the consistency is kept by the I/O routines 

in tiers 1 and 2. This also indicates that, when an original physics 

code is given, the I/O routine of the physics code should be signif-

icantly modified to fill in the data nodes in an IDS with proper values 

and keep the consistency between the data nodes. On the other 

hand, the tier 3 approach preserves the original code itself without 

or with minimal modification of the I/O routine. 

 

The tier 3 approach is preferable to the other approaches when 

interfacing legacy codes that are no longer supported by the code 

developer. After knowing some distinctive output data from the 

legacy physics code, the code can be interfaced easily by updating 

a few IDS nodes that correspond to the outputs. However, as was 

previously noted, it requires some further calculations to keep the 

data consistency. 
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Tier 2 approach is usually taken by the EU-IM codes, such as 

ETS [21] and H&CD workflow [24]. The physics code and their 

modified I/O routine that embraces the IDS is called an IMAS actor. 

For the tier 3 approach, the OMFIT [23] is the most appropriate 

example. The output of the physics code is originally stored by the 

inherent format and then converted to the IDS format through the 

Python library called OMAS [25]. 

 

 

Figure 9. Three levels of integration of physics codes into IDS [23]. 

The physics codes belonging to tiers 1 and 2 contain IDS in their 

I/O routines. On the other hand, the tier 3 physics codes are sepa-

rated from the IDS. In terms of data consistency, while tiers 1 and 2 

guarantee data consistency in an IDS as shown in green and red 

circles, the tier 3 approach does not guarantee data consistency 

within an IDS. 

 

1.2. Overview of the Research 

 
The research is associated with the development of a new in-

tegrated simulation framework, TRIASSIC [26]. TRIASSIC was 

designed to perform various interpretive and predictive analyses. 

A full modular approach was adopted for interfacing the code com-

ponents in the framework; thus, the replacement is convenient for 
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every code component even for the transport solver. Full modu-

larization was enabled by adopting the interface data structure as a 

main data storage for the simulation framework. It also gave merits 

by standardizing code inputs and outputs, making validation and 

verification much easier. The framework chooses the tier 3 ap-

proach to interfacing the codes and so the internal data consistency 

of the generic data structure was kept by the framework. 

 

The research is composed as follows. In chapter 2, a detailed 

design, comparison with other frameworks/workflows, and code 

description will be shown. The verification of TRIASSIC with 

standalone code execution will also be shown. In chapter 3, the 

possible problems in the framework related to data consistency will 

be raised and the solutions implemented in TRIASSIC will be ad-

dressed. In chapter 4, the application of TRIASSIC on various de-

vices – KSTAR, VEST, and KDEMO – will be addressed in the 

aspects of various workflows viable in various devices. Finally, in 

chapter 5, the summary and conclusion will be drawn, and future 

works will be suggested. 
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Chapter 2. Development of Integrated Suite of 

Codes 

 

2.1. Development of TRIASSIC 

 
2.1.1. Design Requirements 

 
Full modularization was considered as an essential feature for a 

new integrated simulation framework, as was discussed in section 

1.1.3. It is noteworthy that full modularization implies the separa-

tion of code and minimization of each code functionality. In other 

words, the functionality of a code component should be minimized 

for full modularization. For instance, if a coupled set of a transport 

solver and a transport model is integrated into a framework, the 

codes are not fully modularized; they should be separated and in-

terfaced independently for full modularization. This way, the entire 

useful output from each code can fully be utilized. 

 

The minimization of functionality reduces code duplication and 

possible errors from the problem. One of the main examples of 

minimization can be the separation of the pedestal model and the 

ELM model, as the pedestal structure seemingly ought to be de-

termined by a unified pedestal/ELM model. While the pedestal 

width and height are predicted by the pedestal model, the ELM 

model determines the plasma transport at the pedestal region. The 

pedestal structure can be determined by various models [27–29], 

and the transport phenomena at the pedestal region can be mim-

icked by various methods such as the direct or delayed assignment 

of a given pedestal shape, continuous ELMs [30], and transient 

ELMs [18, 31]. The choice of the pedestal model and ELM model 
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should be independent, hence the two models should be separated. 

Other codes that require minimization – equilibrium and transport, 

transport solver and transport model, 2D grid and 2D plasma 

transport, and plasma heat exchange and transport solver – are all 

separated in TRIASSIC. 

 

As was previously noted, the use of the standard interface is a 

necessary condition for the fully modularized simulation framework. 

It also gives plenty of merits on experimental validation and veri-

fications. Moreover, a generic, machine-independent data struc-

ture of IDS made the framework applicable to any tokamak device. 

The use of the standard interface (IDS) was considered as one of 

the most important requirements. 

 

The simulation framework should be user-friendly; a user 

should be able to compose a workflow and understand the code 

easily. For user-friendliness, the graphical user interface (GUI) 

can be utilized to organize a workflow. The GUI should help un-

derstand the input parameters for the simulation workflow and code 

components. The data fed into the simulation should be easily 

treated, even for the arrays of 1D time-varying scalar, 2D time-

varying profile, and 3D time-varying contour data. The GUI should 

also help deal with the multi-dimensional data by copy-paste and 

by checking the data fed into the application by visualization. The 

functionality that loads data from a well-known file format such as 

G-EQDSK (file format for storing the tokamak plasma magnetic 

equilibrium data) should exist to help make simulation input. The 

data should be able to be saved by the input file in a human-read-

able form. Finally, the simulation code should be in a form that is 

easy to read. The use of high-level language can substantially en-

hance the readability of the code. 

 

A good performance of the simulation is also a crucial virtue of 
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the integrated simulation framework. The plasma analysis codes 

should be interfaced directly rather than a file-based coupling, on 

exchanging the data with the internal data storage. The file-based 

coupling can cause significant file I/O (input/output) resulting in a 

high computation load on the simulation server. Moreover, the 

framework should provide parallel computing of the code compo-

nents. Code components which have native support of the MPI 

(message passing interface) should be able to be implemented in a 

parallel way, and the other way of parallelization should be imple-

mented for the codes without the native MPI support.  

 

The code suite should have minimal dependency on the system. 

The compiling system of the code suite should not depend on the 

compiler vendor, and the simulation should be able to be conducted 

even when the simulation workflow is composed of codes with dif-

ferent compiler vendors, as the simulation workflow is managed by 

a high-level language interpreter such as Python. Also, the simu-

lation should not depend on the other program other than the main 

executor. Finally, the input and the output of the simulation should 

be straightforward. The simulation should not require any extra 

input file other than the designated, nor give extra output other than 

the designated data structure, except for the special case. 

 
2.1.2. Overview of TRIASSIC 

 
The TRIASSIC is an acronym for Tokamak Reactor Integrated 

Analysis System for SImulation and Computation. TRIASSIC is a 

Python framework containing a group of interfaces for existing 

plasma analysis codes. It targets comprehensive interpretive/pre-

dictive tokamak simulations. 
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TRIASSIC comprises four components: The simulation (work-

flow) manager, IDS from ITER-IMAS, GUI, and physics code 

components, as shown in Figure 10. Here, the IDS was adopted as 

the internal data storage of the simulation framework. On the sim-

ulation initialization, an IDS can be generated via using the data in 

user-provided input files, or the simulation can start without gen-

erating an IDS when a reference IDS is given. The functionality of 

generating a new IDS is required to support using individual post-

processed data and using old data that are already stored in another 

format. 

 

The code components that are interfaced in the framework will 

be briefly explained with references in section 2.2.1. The GUI was 

developed to aid in generating the input files. The GUI can also 

fetch useful plasma equilibrium data from external formats such as 

G-EQDSK files and can get up to 2D (spatiotemporal) information 

from copy-paste. A more detailed explanation of GUI will be ad-

dressed in section 2.2.3. Finally, the role of the framework itself 

and a more detailed description of the internal re-calculation rou-

tine of the core of the framework will be addressed in the following 

paragraph and chapter 3. 
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Figure 10. The schematic view of TRIASSIC integrated simulation 

framework. TRIASSIC incorporates the interface data structure as 

its data storage, GUI which eases the input generation, and the 

plasma analysis code components. 

 

Figure 11 shows the input files used in TRIASSIC and the over-

all simulation flow. The simulation can be started if and only if the 

three input files are prepared: 𝑑𝑎𝑡𝑎, 𝑡𝑎𝑠𝑘, and 𝑠𝑖𝑚. Those are the 

Fortran namelist formatted human-readable plain text files. The 

reason for adopting the ASCII type Fortran namelist format as an 

input file format is to ease writing and putting various data types, 

ranging from characters or strings to the 2D spatiotemporal float-

ing-point data. This namelist formatted data can easily be con-

verted to a Python dictionary by an external module. The input files 

can be generated either manually or by the graphical user interface.  

 

The 𝑑𝑎𝑡𝑎 file consists of the shot and run information that de-

termines where to save the IDS datafile and the specific identifi-

cation of the reference IDS from where to start the simulation. It 

can also contain some of the frequently used plasma and actuator 

quantities such as densities, diffusivities, and NBI power/energy 
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and let the simulator fill the time-varying data into the IDS as pre-

scribed. Although this is not a standard way of using IMAS/IDS in 

the integrated modeling approach, in this way, a user can freely put 

the simulation data without the need for existing IDS data. This 

non-standard approach differentiates the TRIASSIC from other 

modeling frameworks and made modeling much easier when eval-

uating a new actuator design or predicting a device that does not 

exist yet. 

 

The 𝑡𝑎𝑠𝑘 file contains general options for the simulation and 

code-specific options for each component. The former includes the 

generic information for the overall simulation flow, such as the 

number of default radial computation grids, plasma ion species 

configuration, or from which ion species the radial electric field 

would be calculated. The task-specific option specifies the exact 

functionality of a component, such as a switch that determines 

whether to solve the heat transport equation or to follow the ex-

perimental data. These options must be well-defined and should 

have clear objectives. 

 

Lastly, the 𝑠𝑖𝑚 file contains invocation settings for all the com-

ponents specified in the 𝑡𝑎𝑠𝑘 file. Any kind of simulation whose 

component call is periodic in time can be designed by the sim file. 

The invocation of each component is determined by choosing the 

start time, end time, invocation interval, and which interface to be 

called. Additionally, there is a rank system to determine the order 

of execution when there are two or more components at the same 

invocation time. It explicitly specifies which one has the higher pri-

ority of invocation. 

 

Based on the 𝑑𝑎𝑡𝑎 file, TRIASSIC determines where to find the 

input data among the existing reference IDS datafile and the input 

file. If a reference IDS is given, TRIASSIC reads the data from IDS 
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by the 𝑔𝑒𝑡_𝑠𝑙𝑖𝑐𝑒 operation. After that, TRIASSIC sets a plan for the 

simulation based on the simulation time configuration written in the 

𝑡𝑎𝑠𝑘 file and the invocation setting written in the 𝑠𝑖𝑚 file. During 

the time advancing, TRIASSIC invokes the Python interface by 

giving the tokamak or plasma data contained in IDS with some 

task-specific simulation options. The Python interface then trans-

lates the standard data format to a driver-specific format of the 

code. After the code calculation, the result is again translated to a 

standard data format and used to update the IDS data.  

 

Updating the IDS data requires a further re-calculation, such as 

re-calculating the total pressure, or the radial electric field fol-

lowed by an update on the electron temperature or the poloidal ro-

tation. The internal data consistency of the simulation is kept by 

re-calculating the IDS data based on the general simulation options 

after every component call. The details of this internal data con-

sistency will be addressed in the following chapter. For every data 

save interval, the simulation data is stored as an IDS datafile by the 

𝑝𝑢𝑡_𝑠𝑙𝑖𝑐𝑒 operation. 
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Figure 11. The overall simulation flow of TRIASSIC. The simulation 

can be controlled by three input files – 𝑑𝑎𝑡𝑎, 𝑡𝑎𝑠𝑘, and 𝑠𝑖𝑚. TRIAS-

SIC orchestrates the execution of each component with time ad-

vance, while the component interfaces communicate with IDS for its 

input and output data. 

 
2.1.3. Comparison of Integrated Simulation Codes 
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Figure 12 shows the comparison of TRIASSIC and other frame-

works such as IPS (integrated plasma simulator) [32], ASTRA 

[15], JETTO [14], and TRANSP [33] or workflows such as ETS 

(European transport simulator) [21], H&CD workflow [24], and 

STEP [23]. While the workflow has a specific purpose for the sim-

ulation, the framework should be able to compose various work-

flows to investigate a variety of phenomena in tokamak plasmas. 

Therefore, while ETS, H&CD workflow, and STEP target to inves-

tigate plasma transport, heating & current drive, and steady-state 

transport solution, respectively, the frameworks are versatile. 

Note that the transport codes such as ASTRA, JETTO, and 

TRANSP are deeply related to plasma transport, so they do not 

satisfy the full modularization addressed in section 1.1.3. In other 

words, those frameworks cannot conduct other (heating & current 

drive or neutral modeling, etc.) simulations solely without con-

ducting the transport steps. 

 

Note that the OMFIT (one modeling framework for integrated 

tasks) [22], which is one of the most famous integrated simulation 

codes, was not included in the comparison as the simulation through 

OMFIT accompanies other frameworks or workflows such as IPS, 

TRANSP, or STEP. In other words, OMFIT is exploited to execute 

the simulations by using other codes. It is impossible to compare 

the normal simulation frameworks with the modeling framework of 

simulation frameworks. 

 

Considering the overall features and comparisons shown in Fig-

ure 12, it can be noticed that TRIASSIC is somewhat very similar 

to the IPS. They both are written in a high-level language, Python, 

adopt full modularization, and can conduct time-dependent simu-

lations. The main differences between those two are the usage of 

IDS and the coupling of models. While the TRIASSIC natively uses 

IDS as an endpoint that the Python actors directly communicate, 
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the common data storage for the IPS is the 𝑃𝑙𝑎𝑠𝑚𝑎 𝑆𝑡𝑎𝑡𝑒 [34]. The 

𝑃𝑙𝑎𝑠𝑚𝑎 𝑆𝑡𝑎𝑡𝑒 is also a generic data structure and has undergone a 

long period of maintenance, however, the structure is mono-

blocked so that it is not hierarchical and does not have the capa-

bility of having multiple occurrences for the same data node [12]. 

It is noteworthy that although the actors in IPS do not directly 

communicate with IDS, IPS partially supports IDS as the 

𝑃𝑙𝑎𝑠𝑚𝑎 𝑆𝑡𝑎𝑡𝑒 can be converted to IDS through the OMFIT. 

 

For the coupling of models, while both inevitably utilize dynamic 

coupling of the codes due to the use of high-level language for the 

simulation, TRIASSIC uses tight coupling whereas the IPS basically 

uses file-based coupling. The importance of tight coupling for per-

formance was already stressed in section 2.1.1 and a detailed ex-

planation of this coupling will be addressed in the following section. 

 

It can also be said that TRIASSIC is similar to the EU-IM (Eu-

ropean framework for Integrated Modeling) workflows such as 

ETS and H&CD workflow when the type and purpose of the simu-

lation codes are neglected. The main difference is the simulation 

engine. While TRIASSIC and H&CD workflow is being executed 

through the Python interpreter, ETS runs through the Kepler en-

gine. Recently, there is a move to switch the Kepler-based work-

flows into Python workflows in ITER-IMAS, aiming for easy pro-

gramming and high portability to extensively adapt to many anal-

ysis codes worldwide. The H&CD workflow is a result of this move 

when compared to the ETS workflow. The design of TRIASSIC can 

indeed be an appropriate goal that a fully modular simulation 

framework should take. 
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Figure 12. The comparison of TRIASSIC and other integrated sim-

ulation frameworks and workflows. The green color indicates that 

the feature is similar to TRIASSIC, while the orange color indicates 

that the feature is contrary to TRIASSIC. 

 

2.2. Components in the Framework 

 
2.2.1. Physics Codes Interfaced with the Framework 

 
The codes that are interfaced are shown in Figure 10. TRIAS-

SIC incorporates the CHEASE [35] code for solving the Grad-

Shafranov equation inside the plasma boundary when the boundary 

was given (fixed-boundary equilibrium). CHEASE code provides 

the calculation of various magnetic equilibrium metrics such as the 

profiles of flux surface averaged quantities (quantities that are 

once distributed on a 2D plane are averaged on a flux surface to 

become a 1D profile) that are useful in solving so-called 1.5D 

transport equations [36]. Meanwhile, the FREEGS [37] code was 

adopted to solve free-boundary equilibrium by considering the 

external coil currents such as poloidal field (PF) currents or in-
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versely to estimate PF currents and resulting magnetic field struc-

tures inside or outside the plasma boundary based on the pre-

scribed plasma boundary. 

 

For the transport solver, the ASTRA [15] code was adopted for 

solving 1.5D flux surface averaged transport equations and the C2 

[38] code was adopted for solving the entire 2D transport equa-

tions from the plasma core to the plasma-facing components. It 

should be noted that although the ASTRA code itself is an inte-

grated suite of codes as already discussed in section 2.1.3 and is 

widely being used and upgraded as an integrated modeling frame-

work [39], only the transport solver part of the ASTRA was 

adopted to satisfy the full modularization condition discussed in 

section 1.1.3. Hence, in this research, the ASTRA usually refers 

only to the transport solver part of the entire code.  

 

For the anomalous transport models, theory-based models such 

as TGLF [8], GLF23 [6], and MMM7 [40, 41] were adopted. To 

overcome the so-called transport shortfall problem [42] under 

high 𝑞95 condition in gyro-fluid models such as TGLF and GLF23, 

an additional transport model called 𝑛𝑜𝑛 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 was 

also adopted referring to the previous researches [43, 44]. TRI-

ASSIC also incorporates the experimental scaling-based Bohm-

gyroBohm [45, 46] model and the neural-network accelerated 

models such as TGLF-NN [29] or QuaLiKiz-NN [47, 48]. For the 

neoclassical transport models related to collisional transport with 

spontaneous flows and bootstrap currents, NCLASS [49] and NEO 

[50] codes were adopted. For a more sophisticated bootstrap cur-

rent modeling, various bootstrap current models [51–53] were also 

coupled in the framework. 

 

NUBEAM [54] and TORAY [55] codes were employed for the 

neutral beam injection (NBI) and the high-frequency wave H&CD 
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calculations, respectively. Note that the NUBEAM is also capable 

of calculating the collisional radial transport and slowing down of 

the fusion product and its resulting heating exerted on the thermal 

plasmas. Simple formulas for calculating the fusion alpha-particle 

heating [56, 57], the radiative cooling of hydrogen neutrals, and 

the fractional abundance and the radiative cooling of the impurities 

[58] are also available. Moreover, the atomic reaction cross-sec-

tions from 𝑎𝑑𝑓11 data in ADAS (Atomic Data and Analysis Struc-

ture) [59, 60] are also utilized in the framework. The ADAS da-

tabase can be used to precisely calculate the fractional abundance 

of the impurities and the radiative cooling of the impurities, under 

the steady-state assumption of the collisional-radiative model. 

For the remaining radiative losses, the Bremsstrahlung radiation 

loss is calculated by the fitting formula from the NRL formulary [61] 

and the synchrotron radiation loss with consideration on radiation 

transport is calculated by the formula [62] and additionally refer-

ring to its adaptation on the CRONOS suite of codes [17]. 

 

The steady-state neutral distribution in the core plasmas can 

be calculated by two codes, FRANTIC [63] and GTNEUT [64, 65]. 

The codes calculate the neutral population of the main ion species 

by taking the charge exchange and the ionization reactions of neu-

trals into account. While the FRANTIC code is 1D as it calculates 

on the cylindrical coordinate considering the effective volume of 

the flux surfaces, the GTNEUT code is 2D and runs on an exter-

nally provided 2D mesh. GTNEUT code can be utilized to calculate 

both inside and outside of the plasma boundary while the FRANTIC 

code only considers inside the plasma boundary as it is 1D. Given 

the neutral density inside or outside the plasma, reaction cross 

sections, and plasma densities, particle source rates and ionization 

cooling rate can be derived. 

 

The calculation of neutral distribution and 2D plasma transport 
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in the SOL region or even inside the plasma boundary requires a 

2D mesh. Mesh generators are separated from the neutral code or 

the 2D transport code and interfaced as a separate model in the 

framework. TRIASSIC incorporates the VEGA [66] mesh model to 

generate a high-quality, field-aligned quadrilateral mesh and 

TRIANGLE [67] code to generate Delaunay triangular mesh, both 

inside or outside the plasma boundary separatrix. Modeling of PFCs 

is important for investigating PWI. The triangular mesh generator 

is required to fully consider the complex structure of PFCs, while 

properly capturing the fast transport process along the magnetic 

field line through field-aligned mesh.  

 

For the study of the pedestal and to consider enhanced perfor-

mances of H-mode plasmas, TRIASSIC contains a neural network 

accelerated model, EPED1NN [23, 29], which predicts the pedestal 

width and height. The formation and collapse of the pedestal re-

quire an additional model that manages the plasma transport on the 

pedestal region; the transport models to achieve the desired ped-

estal width and height in a brute (plasma densities or temperatures 

are directly adjusted by the model instantaneously or gradually) 

method or by plausible modeling that mimics ELMs or so-called 

continuous ELMs [68] by adjusting the particle or heat diffusivities. 

The occurrence of the H-mode can be judged by the loss power 

scaling laws from the reference [69]. 

 

Furthermore, TRIASSIC incorporates a linear toroidal Alfvén 

eigenmode (TAE) model [70], which finds the linear stability of 

TAEs. It also contains simple formulas of Ohmic (Joule) heating 

and collisional heat exchange between electron and ion based on 

the NRL formulary. 

 
2.2.2. Physics Code Interfacings 
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Most of the physics codes are written in low-level languages 

such as Fortran, C, and C++ for performance. Note that, unlike 

common sense in the programming language, in this research, the 

word 𝑙𝑜𝑤 − 𝑙𝑒𝑣𝑒𝑙  indicates a low level of user-friendliness and 

machine dependency in compiler language so the low-level lan-

guage includes Fortran, C, and C++. Here, the high-level language 

only refers to Python. Direct interfacing of low-level physics 

codes and their usage in the high-level language required an ad-

ditional wrapper. 

 

Figure 13 shows the interfacing procedure of the tier 2 physics 

code. The tiers in code integration and their difference were ad-

dressed in 1.1.6 and Figure 9. When a legacy physics code is given, 

at first the driver routine is added to the code to make the code a 

tier 3 physics code. After that, the IDS is imported into the I/O 

routine to make code use the IDS inherent in the I/O. Finally, as the 

output from the physics routine (represented as a black circle) 

does not satisfy the consistency between the data nodes, the I/O 

routine should update other nodes (represented as red, blue, green, 

and purple circles) in the IDS to make the data consistent. The 

original physics code should be significantly modified. Moreover, 

due to these modifications, interfacing with a tier 2 physics code 

requires a significant effort. Especially, a developer should have an 

understanding of both physics code and the structure of the IDS. 
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Figure 13. The development procedure of legacy physics code to-

ward the tier 2 physics code. 

 

To overcome the hardship of code interfacing, TRIASSIC takes 

the tier 3 approach to interface the legacy physics codes with the 

framework. Figure 14 shows a detailed view of low-level legacy 

physics code coupling in TRIASSIC. When an original code is given, 

only a driver routine is made to utilize the code in the framework 

in a proper way. The F2PY [71] or the SWIG [72] was used to 

create a wrapper for the low-level language code, to utilize the 

routine written in a low-level language in the Python framework. 

Then, the original code, driver routine, and wrapper were compiled 

and linked together to form a shared (dynamic) library that can 

directly be imported into the framework. 

 

During the simulation runtime, as was briefly mentioned in sec-

tion 2.1.2 and shown in Figure 11, when the simulator invokes the 

Python interface, the interface gets the plasma/tokamak data from 

the IDS. The Python interface then converts the standard data into 

a suitable form for code execution with a simple calculation. Re-

ferring to the pre-compiled library, the driver routine was called 

by transferring code inputs to the subroutine or the function. The 

calculation result of the physics code is then returned to the Python 

interface, and the interface again converts the simulation result into 
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the standard form to put data in the IDS. 

 

 

Figure 14. A detailed view of the tier 3 code interfacing in TRIAS-

SIC. The original code is compiled by F2PY or SWIG with an addi-

tional driver routine to form a shared (dynamic) library. The library 

communicates with the IDS through the Python interface. 

 

There are some notable features that the interfacing method has. 

First, there are no or only minor modifications to the original phys-

ics code, due to the tier 3 approach. Only the driver routine should 

be added to the original physics code or even there are cases where 

the driver routine is already well-defined and does not require an 

additional one. Second, the interfacing of physics codes is dynamic. 

the whole set of physics codes does not have to be completely 

prepared for a simulation and the libraries are imported during the 

simulation runtime. In other words, when there is a minor modifi-

cation of a driver routine, there is no need to re-compile the entire 

code to make a new executable. It only requires re-compile the 

library that has the modifications on the original code or the driver 

routine. This indeed can be significant merit when the size of the 

code suite becomes considerable. The two merits of the interfacing 

method could significantly reduce the time spent on development. 
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Third, the interfacing of the original code is direct; the Python 

interface directly calls the driver routine through the wrapper. 

Moreover, the simulation does not need to spawn additional calcu-

lation jobs. The method is much more efficient, safer, and less er-

ror-prone than transferring the data between the programs 

through the network protocol or the file I/O. 

 

Finally, the framework does not depend on external programs 

or machines. If a unified version of Python and its consistent de-

pendency of low-level memory support of arrays is given, any 

compiler vendor supported by the dependency can be utilized to 

create the dynamic library. Moreover, it is possible to compose and 

execute a single workflow with different compiler vendors. It is 

also noteworthy that the framework does not depend on the ex-

ternal program except for the framework interpreter (Python) it-

self, for the execution of the simulation. 

 

The code interfacing can be compared with the other frame-

works as shown in Figure 15 and Figure 16. Figure 15 shows the 

file-based coupling of a physics code. In this case, the Python in-

terface communicates with the original code by the file I/O. It can 

burden a high load on the machine due to high file I/O when a large 

amount of data is frequently exchanged. Also, as a new process is 

spawned by launching the executable in the Python interface, it is 

error-prone and unsafe in terms of managing the job processes. 

On the other hand, according to the tier of code integration intro-

duced in 1.1.6, the case shares the tier 3 approach with TRIASSIC. 

Due to the approach, there are advantages in that there are minor 

or no original code modifications, due to the absence of the addi-

tional I/O routine. It enables the use of legacy codes that are not 

supported by the original developer, and ultimately efficient de-

velopment and interface of various analysis codes. 



 

 

 

 

５１ 

 

Figure 16 shows the coupling of the physics code through the 

external program, Kepler. In this case, the workflow is launched 

through the external program; it can be a disadvantage as it re-

quires an additional program and an adaptation on it other than the 

well-known scientific analysis tool such as Python. The case cor-

responds to the tier 2 approach. The original physics code gets 

significantly modified by adopting the IDS in the I/O routine or even 

in the physics routine and is compiled with the FC2K to generate 

the Kepler actor. It is noteworthy that the communication of the 

IDS data is somewhat different between the approach and TRIAS-

SIC. While the Python interface in TRIASSIC merely gets and puts 

some data nodes from and to the IDS, the Kepler actor gets and 

returns a whole set of IDSs. Precisely, TRIASSIC does the modi-

fication via an in-place method while the Kepler approach does not. 

The in-place modification is more efficient as it does not have to 

create a new IDS object when implemented. However, the con-

sistency in the IDSs can be broken and further modifications are 

required to keep the consistency. The details of the problems in 

internal data consistency followed by the interfacing method and 

the role of the TRIASSIC framework will be further addressed in 

the next chapter. 

 



 

 

 

 

５２ 

 

Figure 15. The tier 3, file-based code interfacing of the Python 

framework. 

 

 

Figure 16. The tier 2 code interfacing which depends on the exter-

nal program, Kepler. 

 
2.2.3. Graphical User Interface 
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As was addressed in section 2.1.2, three input files are required 

for the simulation. The GUI was developed to help generate these 

input files, as it is hard to produce entire files from the scratch due 

to a certain data structure that the three input files have. The GUI 

should guide generating input files via a user-friendly environment 

and could be used to validate the schema of the files. Especially, 

for the 𝑑𝑎𝑡𝑎 file, where most of the contents therein are unneces-

sary when an input IDS is given, the GUI should ease making the 

input file by letting the user know which shape and type a toka-

mak/plasma data has. 

 

The most frequently used inputs in a variety of plasma simula-

tions are the plasma current, toroidal magnetic field, plasma density, 

and temperature profiles. Naturally, those data are distributed in 

time; hence, the data are usually 1D in time or 2D in time and space. 

On the other hand, it is frequent that a modeler has the plasma data 

by comma-separated values (CSV) or a spreadsheet format. The 

data in such formats could be easily imported to the GUI through 

interactive interfaces, such as copy-paste. Besides, well-known 

file formats in the field of fusion plasmas such as G-EQDSK should 

be able to be imported through the GUI. A user should be able to 

choose which data to be fetched from such well-known file formats. 

 

Apart from the schema of the data, it is also important to check 

the sanity of the multi-dimensional data. Most of the sanity checks 

will be conducted by the simulation user. The checking, however, 

is inefficient when looking at the data shown in the text format. 

Therefore, the GUI should provide the functionality to visualize the 

spatiotemporal data in an appropriate form. 

 

It is noteworthy that, despite the user-friendliness of the GUI, 
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a text-type environment is often useful. Specifically, the text-

type environment is useful when running a set of simulations by 

varying the value of a parameter (e.g., the parameter scan). Also, 

storing the simulation data by converting the input data into the 

input files is necessary for recording the simulation history. 

Therefore, the simulation was enforced to be executed only by the 

input files, not by the GUI as shown in Figure 17. Nonetheless, the 

user-friendly environment and the text-type environment should 

be easily convertible in both directions. An example of a TRIASSIC 

GUI is shown in Figure 18. 

 

 

Figure 17. Schematic view of three input files (𝑑𝑎𝑡𝑎, 𝑡𝑎𝑠𝑘, and 𝑠𝑖𝑚 

shown in Figure 11 are shown as red, green, and black lines, re-

spectively) and the role of the graphical user interface in TRIAS-

SIC. 
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Figure 18. The 𝑑𝑎𝑡𝑎 tab of TRIASSIC GUI. A user can manipulate 

simulation input data for the three parts – 𝑑𝑎𝑡𝑎, 𝑡𝑎𝑠𝑘, and 𝑠𝑖𝑚 – as 

represented in the GUI. 

 
2.2.4. Jobs Scheduler and MPI 

 
The simulation tasks are executed by the job scheduler such as 

Sun Grid Engine or SLURM through a shell script. Based on the 

load balancing through the job scheduler, the simulation of physics 

components in TRIASSIC was accelerated by adopting the message 

passing interface (MPI). Though being an integrated simulation 

framework where there are frequent that some code components 

can only be run on a single processor while the other component 

should be run in parallel for a feasible simulation, TRIASSIC does 

not support spawning new processors. Job processors are re-

served at the initial phase of the simulation and all of them proceed 

together until the end of the simulation. There are two types of MPI 

implementation in TRIASSIC. 

 

When the original code natively supports the MPI, basically all 

the processors join the main calculation routine through the Python 
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interface. The original code then properly distributes the given 

processors. In this case, the MPI scalability depends on the scala-

bility of the legacy code. The NUBEAM (Monte-Carlo neutral par-

ticle simulation) and C2 (2D transport with multiple separate zones) 

correspond to this case. 

 

On the other hand, there is a case when the code requires many 

independent calculations. The local transport models such as TGLF, 

GLF23, NCLASS, and NEO correspond to this case. The plasma 

transport is evaluated independently on a local flux surface position. 

During the simulation, the Python interface distributes the calcu-

lation on a worker pool by different flux surface positions. Figure 

19 shows the MPI scalability of the TGLF code, calculated on 100 

different radial grids. With the increase of the number of proces-

sors, the speedup was increased quite well. The speedup efficiency 

was about 80% when the number of processors was equal to half 

of the number of radial grids.  

 

 

Figure 19. The MPI scalability of the TGLF calculation of 100 radial 

grids.  
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2.3. Verifications 

 
2.3.1. The Coordinate Conventions 

 
The coordinate conventions (COCOS) [73] define a set of num-

bers to define the coordinates of various tokamaks and modeling 

codes. The COCOS number 11 was chosen in the ITER, where 11 

denotes the counter-clockwise (CCW) direction is positive (from 

the top-view) both for the plasma current and the toroidal mag-

netic field while using the 𝑊𝑏 units of the poloidal magnetic flux. 

Sticking to a consistent coordinate notation is essential, as in in-

tegrated modeling, various codes are coupled together and it is 

highly possible to make a mistake when considering actuators 

whose toroidal injection angle is important such as NBI or EC or 

when modeling the plasma rotation in the simulation. Therefore, the 

test simulations were conducted by flipping the signs of the plasma 

current and toroidal magnetic field inputs to check whether the 

COCOS 11 is fully kept in TRIASSIC.  

 

Figure 20 shows the results of the test simulations. On the upper 

panels, the standard case – CCW plasma current with CCW toroidal 

magnetic field – is shown. It shows the positive toroidal field func-

tion 𝑓, safety factor 𝑞, and parallel current density. Due to the ra-

dially increasing poloidal magnetic flux 𝜓, the pressure gradient is 

negative. The signs of the equilibrium variables under positive 

plasma current and magnetic field are correct based on the COCOS 

paper. The comparison of the standard case with the CCW plasma 

current with the CW toroidal magnetic field case shows that only 

the toroidal magnetic field function 𝑓 and the safety factor 𝑞 dif-

fers. The results coincide with the convention, as only the 𝑓 and 𝑞 
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depends on the sign of the toroidal magnetic field. 

 

On the other hand, the comparison of the standard case with the 

CW plasma current and CCW toroidal magnetic field case shows 

that every equilibrium variable except for 𝑓 and pressure flips sign, 

due to the radially decreasing poloidal magnetic flux. The safety 

factor also flips the sign as the poloidal direction of the magnetic 

pitch angle is reversed. Although it is not shown, the coordinate 

convention and the sanity of the equilibrium variables were verified 

not only when the plasma current and the toroidal magnetic field 

are inputs, but also when the 𝑝′ (pressure gradient) and the 𝑓𝑓′ 

are inputs for the equilibrium calculation. 
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Figure 20. The comparisons of plasma equilibrium profiles (toroidal 

field function 𝑓, equilibrium pressure, poloidal flux 𝑝𝑠𝑖, safety fac-

tor, 𝑓𝑓′, 𝑝′, 𝜕𝜓/𝜕𝜌, and parallel current from upper-left to lower-

right). The upper figure compares the standard CCW 𝐼𝑃, CCW 𝐵𝑇 

case with CCW 𝐼𝑃, CW 𝐵𝑇 case, while the lower figure compares 

the standard case with CW 𝐼𝑃, CCW 𝐵𝑇 case. 

 
2.3.2. Coupling of Equilibrium-Transport 
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It is essential to check whether the coupling of the codes in the 

integrated suite is valid or not. Especially, the coupling of equilib-

rium and transport is one of the most important code couplings in 

the integrated simulation. Here, the TRIASSIC current diffusion 

simulation with ASTRA and CHEASE components was compared 

with the standalone ASTRA-SPIDER [74] simulation. Although it 

is not shown in the current section, it was also checked that the 

particle and heat transport work well in TRIASSIC. However, here 

the focus is on solving the current diffusion equation (CDE) be-

cause the form of the equation is much more complicated than that 

of the particle or heat transport equation. Moreover, the additional 

terms related to the volume expansion, or the magnetic field vari-

ation can be significant in CDE rather than in the other transport 

equations. 

 

Figure 21 shows the test simulation of current diffusion from 

both ASTRA-SPIDER and TRIASSIC. It was checked whether the 

toroidal electric field, which initially increases radially towards the 

edge, eventually gets flattened or not due to the current diffusion. 

The result shows that the toroidal electric field gets flattened in a 

current diffusion time-scale until the difference between the mag-

netic axis and the edge gets numerically negligible. The simulation 

proves that the transport equation and the coupling are correctly 

implemented in the TRIASSIC suite of codes. 
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Figure 21. The flattening of the toroidal electric field of current 

diffusion simulations. ASTRA and TRIASSIC both prove that the 

current diffusion simulation is valid as they show that the electric 

field can be flattened until it becomes sufficiently small. 

 

In the following test simulation, the plasma current, toroidal 

magnetic field, and minor radius were simultaneously varied in time 

to verify the suite under such a highly complicated situation. The 

initial values of the KSTAR range are 600 𝑘𝐴, 2.7 𝑇, and 0.5 𝑚, re-

spectively, and all of them were varied by a factor of 1.5, as shown 

in Figure 22 (a), (b), and (c). The initial parallel current density 

profile was set to a constant value, and the parallel electric con-

ductivity was set to a parabolic shape with its center value of 

1 × 106 𝑂ℎ𝑚−1𝑚−1. Non-inductive current drives such as bootstrap 

current or externally driven currents were neglected. The time 

step of both simulations was intentionally set to a considerable 

value of 2 𝑚𝑠 to exaggerate the discrepancy between them, which 

would appear if the coupling were not adequately done. 
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The comparison of the resulting current density, safety factor, 

and toroidal electric field from both simulations are shown in Figure 

22 (d), (e), and (f), at three normalized square roots of the toroidal 

flux coordinate positions, 𝜌 =  0.0, 0.5, 0.95. The current density and 

safety factor from TRIASSIC perfectly follows its counterpart cal-

culated from the standalone ASTRA. However, though it is not 

shown, the comparison of the safety factor at the near boundary 

(𝜌 > 0.95) showed a slight discrepancy, with its value from TRI-

ASSIC a bit smaller. This discrepancy originated from the inherent 

difference between the two equilibrium codes while dealing with 

the magnetic equilibrium at the near-boundary region and will not 

be further discussed in this verification. The toroidal electric field, 

which shows a very transient time evolution and many peaks due 

to sudden rise/drop of the plasma current or the plasma size, also 

showed a good agreement between the two codes. 

 

 

Figure 22. The comparison of current diffusion simulation between 

the ASTRA transport code and TRIASSIC. The graphs on the left 

show the prescribed evolution of the plasma current (a), toroidal 

magnetic field (b), and plasma minor radius (c). The graphs on the 

right show the resulting time evolution of the current density (d), 

safety factor (e), and toroidal electric field (f) at three positions 

from both ASTRA (marked as blue color) and TRIASSIC (marked 
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as red color). Each solid, dashed, and dash-dotted line represents 

𝜌 =  0.0, 0.5, 0.95, respectively, where 𝜌 is the normalized square 

root of the toroidal flux. 

 
2.3.3. Neoclassical Transport and Bootstrap Current 

 
Verifying the coupling of neoclassical transport is crucial for 

accurate predictive simulation and interpretation. Moreover, the 

bootstrap current which results from the neoclassical theory is a 

key parameter for plasma performance. Here, the NCLASS code in 

TRIASSIC was verified against the NCLASS implementation from 

the ASTRA framework. 

 

The comparison of TRIASSIC-NCLASS and ASTRA-NCLASS 

in terms of the neoclassical transport coefficients, conductivity, and 

the bootstrap current is shown in Figure 23. The diffusion coeffi-

cients, convection velocities, electric conductivity, and bootstrap 

currents showed a good agreement between the two code imple-

mentations. 
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Figure 23. The comparisons (red for TRIASSIC and blue for AS-

TRA) of neoclassical transport coefficients – particle, electron en-

ergy, and ion energy diffusion coefficients (upper) and convection 

velocities (lower). The comparisons of the electric conductivity 

(upper right) and the bootstrap current (lower right) are also 

shown. 

 

Figure 24 shows the comparison of the bootstrap currents cal-

culated by four different models. The bootstrap currents were cal-

culated under the KSTAR-like simulation condition similar to the 

condition used in the previous section. Though it is not shown, the 

bootstrap currents calculated by other models showed negligible 

differences under the standard KSTAR-like case. 
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Figure 24. Comparison of four different bootstrap current models 

interfaced in TRIASSIC. 

 
2.3.4. Heating and Current Drive 

 
The verification of the NUBEAM component in TRIASSIC was 

conducted by comparing the H&CD calculation results with differ-

ent NUBEAM implementations. The target discharge was KSTAR 

discharge #18602, where a total of 3.8 𝑀𝑊 of beam power with an 

average energy of 80 𝑘𝑒𝑉 from three beam sources were injected. 

In Figure 25, the power deposition, and the current drive from three 

different NUBEAM implementations are compared. The NUBEAM 

standalone stands for the standalone implementation using the 

KSTAR EFIT [75] equilibrium with kinetic profiles, and TRANSP-

NUBEAM stands for the TRANSP implementation of the NUBEAM 

module. The H&CD profiles shown in Figure 25 (a) and (b) showed 

a good agreement between three different implementations, while 

there was a slight discrepancy inside 𝜌 = 0.2  due to statistical 

noise. The integrated H&CD profiles shown in Figure 25 (c) and 

(d) showed ≅ 2.9 𝑀𝑊 of the total deposited heating power and ≅



 

 

 

 

６６ 

0.14 𝑀𝐴 of the total current drive for three cases, though the mag-

netic equilibrium in TRIASSIC was calculated by the CHEASE 

component while the EFIT magnetic equilibrium was used for the 

others. The discrepancies between the total deposited power and 

the total driven current between TRIASSIC and two other cases 

were within 4%. 

 

 

Figure 25. The comparison of neutral beam power deposition profile 

(a), the beam current drive profile (b), integrated power deposition 

(c), and integrated current drive (d) from TRIASSIC (solid line), 

NUBEAM standalone (dashed line), and TRANSP-NUBEAM (dot-

ted line). 

 

The coupling of the TORAY component in TRIASSIC was also 

compared with the standalone TORAY implementation in KSTAR. 

The calculation was done for KSTAR discharge #26381, where 
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550 𝑘𝑊 of EC heating was injected into a normal direction. The to-

roidal injection angle was scanned to verify a wide range of calcu-

lations from counter-injection to co-injection relative to the 

plasma current and toroidal magnetic field direction, though a too-

large toroidal steering angle is not viable in KSTAR. In Figure 26, 

the toroidal injection angle scan and the driven current are shown. 

The driven current calculated by the TORAY coupled with TRIAS-

SIC showed good agreement with that of the standalone implemen-

tation. 

 

 

Figure 26. The comparison of the amount of EC waves current drive 

between TRIASSIC (black solid line) and standalone TORAY (red 

dashed line) with different injection angles. 
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Chapter 3. Improvements in Keeping the In-

ternal Data Consistency 

 

3.1. Background 

 
The essence of the generic data structure of IDS is the physics 

data model. The data model defines the definitions of the data nodes 

and the expressions to link the data nodes. These definitions and 

expressions are provided as guidelines; hence it is hard to guar-

antee that they are satisfied. In addition, there exist some con-

straints such as quasi-neutrality that modelers would like to con-

strain. Under the circumstances, when a code component modifies 

only a part of IDS, which is the case in TRIASSIC, inconsistency of 

definitions/constraints in the internal data is expected. The incon-

sistency in data could lead to an unexpected simulation result. Thus, 

keeping the data consistency is critical. 

 

As TRIASSIC takes the tier 3 approach to interface a physics 

code, the code interfaces were designed to update only the unique 

output data calculated by the code. Frequently, it is natural for a 

component to update only a few data nodes rather than updating a 

whole data node in an IDS, which latter is the case for the tiers 1 

and 2 approaches. For instance, when the bootstrap current model 

is used, the model is expected to calculate the bootstrap current 

density profile by taking the plasma density and temperature pro-

files. As there are no useful outputs other than the bootstrap cur-

rent density data that the model can calculate, it is natural that the 

code only updates the 𝑗_𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝 node in the 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS 

shown in Figure 27. Another example can be the situation when a 

thermal electron density at 𝑡 + Δ𝑡 is predicted by the transport 

solver component, by using the thermal electron density data at a 
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current time step, 𝑡. The useful outputs from the transport solver 

component will be the thermal electron density at 𝑡 + 𝛥𝑡 and the 

transport-related values such as the electron flux and effective 

particle diffusivity. In this case, there is no need for a component 

to modify data other than the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑡ℎ𝑒𝑟𝑚𝑎𝑙 from the electrons in 

𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS. 

 

 

Figure 27. A part of the data nodes in the 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 and 

𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 IDS. The 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS contains the one-dimen-

sional information of the core plasmas, and the 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 IDS has 

the one-dimensional flux averaged metrics from two-dimensional 

magnetic equilibrium as a part. The top-level IDS, a structure, and 

an AoS are shown as a black circle, a blue square, and a rounded 

red square, respectively, and the data node is shown as black plain 

text. The 𝑖𝑜𝑛 structure has almost the same as that of the 

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠, except for the information of atomic number and charge. 

 

Although there are cases where updating an entire data node in 

IDS is more appropriate, frequently, a component does not need to 

update all the items in an IDS. However, internal data consistency 

is expected to be lost in this case. For the second example of the 

above paragraph, when the value of 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is updated by 
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the transport solver, the relation between 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑡ℎ𝑒𝑟𝑚𝑎𝑙 , 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑓𝑎𝑠𝑡, and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 in electrons can be no longer satisfied. 

One of 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 or 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑓𝑎𝑠𝑡 needs a further update to match the 

definitions for the internal data consistency. Additionally, when the 

former is updated, by following the quasi-neutrality constraint of 

the plasma, an appropriate modification of ion densities should be 

made while 𝑧𝑒𝑓𝑓 is assumed to be constant. The change of ion 

densities should eventually lead to a modification of ion pressures. 

The overall procedure is depicted in Figure 28. It casts a need for 

subsequent updates when a code component updates a data node. 

 

 

Figure 28. An example of the update procedure of the 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 

IDS when the 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑡ℎ𝑒𝑟𝑚𝑎𝑙 node in the 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 structure was 

updated. The plasma was assumed to be composed of electrons and 

two ion species, where the ions have a constant charge. The elec-

trons, main ion, and impurity ions are marked as blue, red, and 

green colors, respectively. The dotted line indicates that two linked 

nodes have a simple mathematical relationship to calculate the other 

node connected by an arrow. 

 

It is noteworthy that this consistency problem can occur when 

a generic data structure is composed of data nodes that can be de-

scribed by other nodes. Namely, when the data nodes are mutually 

related and can form a reciprocal relation by the definitions or the 

constraints. For example, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 can be expressed as the sum of 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑡ℎ𝑒𝑟𝑚𝑎𝑙 and 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑓𝑎𝑠𝑡. Nonetheless, three of them are 
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all useful quantities that deserve allotting a node. Moreover, the 

problem occurs when the generic data structure communicates with 

the codes that are originally incompatible with the data structure. 

In other words, the problem occurs in the tier 3 approach to code 

interfacing, where the data structure in a framework is more ge-

neric than the data covered by the physics code. 

 

3.2. Possible Implementations of a Component 

 
Three possible implementations of a component in a framework 

are possible from the perspectives of internal data consistency. 

First, the component manages to keep the internal data consistent. 

In this case, the data consistency can be kept when a component 

manages the consistency of the given IDS. This approach does not 

rely on the framework for keeping the data consistent. It is essen-

tially the same as the usage proposed by the original paper [12, 19] 

of the generic data structure and the tiers 1 and 2 approaches. In 

this case, there is no problem related to internal data consistency 

in a framework, as the duty of consistency is burdened on a code 

component. However, as the method expects a component to do 

every procedure to keep the data consistency, the functionality of 

a physics code becomes too broad and ambiguous. Also, the pro-

cess that keeps the data consistent would be the same for different 

codes with the same kind of output. In other words, the duplication 

of code is expected. 

 

The second corresponds to the case where the framework pro-

vides special component(s) which explicitly conduct additional 

calculations to keep the internal data consistency. For this second 

case, the framework provides special component(s) which explic-
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itly conduct additional calculations to keep the internal data con-

sistency. In this case, distinct from the previous approach, the 

subject in charge of data consistency is not a component but the 

framework. To make it work, several explicit components that can 

be applied after a physics component execution should exist within 

the framework. For instance, a special component handles all the 

required calculations for data consistency when the electron den-

sity is renewed. Again, the code duplication problem between the 

special components would emerge unless the component is divided 

into a set of indivisible components that do the same calculation as 

above when in combination. If so, however, when designing a 

workflow, the framework demands a user to manage all the cum-

bersome settings by placing the required post-run components. 

There exists a tradeoff between code duplication avoidance and 

user-friendliness. Nevertheless, the approach can be an appropri-

ate alternative to the previous one, as the functionality of the code 

is maintained to be specific.  

 

The EU-IM workflows such as ETS adopt both first and second 

approaches. While the actors in ETS keep the consistency within 

an IDS, the non-physics actors [76] keep the consistency between 

the IDSs or even between heating/current drive sources and 

transport models. The use of special components such as non-

physics actors, however, made it difficult on composing a new 

workflow from the scratch. Hence, the EU-IM workflows are al-

ready well-defined for a specific analysis target and mostly the 

simulations are conducted by configuring input parameters but not 

by varying physics components and their execution by plug-and-

play of the models. The details will be further discussed in this 

chapter. 

 

Lastly, the framework can conduct automated implicit subse-
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quent updates after the component execution. The approach is al-

most the same as the previous one, but the main difference comes 

from the transparency of the procedure that brings the data con-

sistency. When a component updates the data, the framework will 

do the rest of the calculations beneath the surface, satisfying the 

data consistency. There is no need for a user to take care of the 

post-run components in designing a workflow in this approach. In 

contrast to the second approach, however, it is hard to notice what 

constraint/definition the framework imposes due to implicitness. 

 

Further in this approach, the drawbacks could be alleviated by 

adopting the declarative programming concept in the framework, 

compared with the typical imperative programming style. Declaring 

the relations that should be satisfied could make it easy to check 

which definitions or constraints are applied in the simulation and 

thus how the data node can be calculated in the framework. Also, 

declarative programming was far more flexible for various use 

cases than the imperative programming style, which requires a 

case-by-case study on various use cases. A detailed explanation 

of the flexibility of this approach will be addressed in the following 

sections. 

 

3.3. A Method Adopted in the Framework 

 
3.3.1. Prerequisites and Relation Definitions 

 
For being a flexible and user-friendly framework, the last 

method introduced in the previous section was adopted in the TRI-

ASSIC framework. First, imperative programming was adopted to 

achieve consistency. However, the maintenance was difficult as 

adding many physics components and using the components for 
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various purposes. To overcome the maintenance issue, TRIASSIC 

was upgraded to use declarative programming to achieve internal 

data consistency. A detailed comparison of previous and current 

methods will be addressed in the following section. 

 

Table 1 shows a part of the relations (definitions and constraints) 

used in the framework. The input and output variables ordered by 

the constancy for each relation are summarized in Table 1. One can 

think of a situation where the electron density was modified by a 

physics component, while there exist two ion species – the main 

and the impurity ion – in the plasma. Focusing on the relation 1 and 

2, which are the quasi-neutrality constraint and the definition of 

effective charge 𝑍𝑒𝑓𝑓, respectively, there can be a case where the 

framework should determine two ion densities while 𝑍𝑒𝑓𝑓 is fixed. 

On the other hand, when the relation 3 came in to constrain the 

impurity density as a certain fraction of the electron density, the 

framework should determine both the main ion density and 𝑍𝑒𝑓𝑓. 

The use case can become even more diverse when more than two 

ions are considered in the simulation. Given the situation, satisfying 

the relations via imperative programming would require examining 

all the use cases and dealing with the corresponding case one by 

one. The method is inefficient and prone to unexpected errors 

when a new use case is introduced. 

 

 Relation 

Output varia-

ble(s) (by order 

of constancy) 

Input varia-

ble(s) 

1 𝑛𝑒 = ∑𝑛𝑖, 𝑗𝑍𝑖, 𝑗

𝑘

𝑗=1

 𝑛𝑖, 1..𝑘, 𝑛𝑒 𝑍𝑖, 1..𝑘 

2 𝑛𝑒𝑍𝑒𝑓𝑓 = ∑𝑛𝑖, 𝑗𝑍𝑖, 𝑗
2

𝑘

𝑗=1

 𝑛𝑒, 𝑍𝑒𝑓𝑓, 𝑛𝑖, 1..𝑘 𝑍𝑖, 1..𝑘 

3 𝑛𝑞 = 𝑓𝑝𝑞𝑛𝑝 𝑛𝑝, 𝑛𝑞  

4 𝑛𝑠 = 𝑛𝑠, 𝑡ℎ + 𝑛𝑠, 𝑓 𝑛𝑠, 𝑓, 𝑛𝑠, 𝑛𝑠, 𝑡ℎ  
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5 𝑃𝑠, 𝑡ℎ = 𝑛𝑠, 𝑡ℎ𝑇𝑠 𝑃𝑠, 𝑡ℎ 𝑛𝑠, 𝑡ℎ, 𝑇𝑠 

6 𝑃𝑠 = 𝑃𝑠, 𝑡ℎ + 𝑓∥𝑃𝑠, 𝑓∥ + (1 − 𝑓∥)𝑃𝑠, 𝑓⊥ 𝑃𝑠, 𝑡ℎ, 𝑃𝑠 𝑃𝑠, 𝑓∥, 𝑃𝑠, 𝑓⊥ 

7 𝑗∥ = 𝑗∥,𝑜ℎ + 𝑗∥,𝑛𝑖 𝑗∥,𝑛𝑖, 𝑗∥, 𝑗∥,𝑜ℎ  

8 𝑗∥,𝑜ℎ = 𝜎𝐸∥ 𝑗∥,𝑜ℎ, 𝐸∥ 𝜎 

9 

𝑗𝑡𝑜𝑟

=
𝐵0

𝐹⟨𝑅−1⟩
𝑗||

+
1

2𝜋𝜇0⟨𝑅
−1⟩𝐹2

⟨|
∇𝜌

𝑅
|
2

⟩ |
𝜕𝜓

𝜕𝜌
|
2

𝐹
𝜕𝐹

𝜕𝜓
 

𝑗𝑡𝑜𝑟 

𝑗∥, 𝐵0, 𝐹, 

⟨𝑅−1⟩, 

⟨|
∇𝜌

𝑅
|
2
⟩, 

𝜕𝜓

𝜕𝜌
, 

𝐹
𝜕𝐹

𝜕𝜓
 

Table 1. Examples of definitions and constraints that are being used 

in the framework. The corresponding IDS data node of the symbols 

is shown in Figure 27. The indices 𝑒, 𝑖, and 𝑠 indicate the electron, 

ion, and generic species. The 𝑘 is the total number of ion species in 

the plasma. The bracket notation 〈𝑎〉 indicates a flux-surface av-

erage of quantity, 𝑎. The 𝑝, 𝑞, 𝑓𝑝𝑞, and 𝑓∥ are the user inputs that 

are provided by the simulation user. 

 

For the sake of flexibility and the explicitness of reciprocal re-

lations, the declarative programming approach, opposite to the im-

perative programming approach, was adopted. In this approach, 

setting aside the method to keep consistency, only the definition 

(declaration) of a set of relations is required. In defining the rela-

tions, clarifying extra information about the node relations is es-

sential for a computer code to conduct the updates automatically. 

 

The first thing to clarify is whether the variables composing the 

reciprocal relation are input or output. Strictly speaking, the vari-

ables that are rarely considered as an outcome of a given relation 

are classified as input variables, and the rest becomes output. For 

example, in relation 4 in Table 1, all three variables (fast, total, and 

thermal density) are the output variables. On the other hand, in 

relation 5 (relation between the thermal density, temperature, and 

thermal pressure), the thermal pressure is the only one that can be 

calculated as an output, whereas the rest are categorized as input. 

In this case, the rest can only act as input because it is rare to use 
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thermal pressure data to calculate thermal density or temperature. 

The same can also be applied to relations 1 and 2; the ion charges 

are usually not considered as outputs calculated from those rela-

tions. 

 

The reason for categorizing the input and output of a relation is 

to measure the priority of the relations. The notion of priority 

comes in to establish the calculation order of the relations. For ex-

ample, suppose an NBI simulation is conducted. As the NBI simu-

lation calculates the fast-ion density and its pressure (fast-ion 

pressure), the component should have updated 𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑓𝑎𝑠𝑡 , 

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑓𝑎𝑠𝑡_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 , and 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑓𝑎𝑠𝑡_𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟  for the 

main ion in Figure 28. Then, it is natural to calculate 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦_𝑡ℎ𝑒𝑟𝑚𝑎𝑙, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑡ℎ𝑒𝑟𝑚𝑎𝑙, and 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 in order by rela-

tion 4, 5, and 6, respectively. On the other hand, satisfying the re-

lations in a reversed order, i.e., in order by relation 6, 5, and 4, 

would give an unexpected result. Therefore, the priority of the re-

lations should be explicitly defined. For letting the framework know 

which relation has higher priority, it is measured how many other 

relations can be affected by the outputs from a given relation. 

Higher the number of affected relations, the higher priority the re-

lation has. Although the method used to measure the priority is not 

strictly validated from a point of view of the graph theory and can-

not guarantee that it would always work as intended, it has worked 

quite well under various kinds of simulations and workflows. The 

method used to measure the priority of the relations will be theo-

retically validated and amended through further developments. 

 

It is noteworthy that it is usual to assume some of the variables 

as fixed when satisfying a relation between three or more nodes 

and thus only a part of the variables from the relation are updated. 

Hence, it should be defined from which order the variables will be 

fixed. Specifically, it is necessary to arrange the output variables 
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by order of constancy. Again, in relation 4 in Table 1, for instance, 

when a transport solver renews the thermal ion density while the 

change of the total and fast-ion density is unspecified, it is natural 

to change the total ion density while letting the fast-ion density be 

fixed. Also, it is natural to have fast-ion density fixed when con-

ducting an interpretive analysis on the ion density evolution, as the 

fast-ion density would have been calculated from another compo-

nent or given manually. When an NBI simulation updates the fast-

ion density, it is natural to have total ion density unchanged unless 

otherwise specified, as most of the fast-ions would have originated 

from the charge-exchange reaction of beam neutrals with thermal 

ions. Overall, the fast density is the most invariant, while the ther-

mal density is the least invariant. The same procedure can be ap-

plied to other relations. 

 

Note that the priority only affects the default move of the data 

and hence if the data is determined by the component, it does not 

affect the update procedure. In the same example of the above par-

agraph, if the NBI code also considers the total deposition of the 

thermal ions due to the slowing-down of the fast ions during the 

calculation interval and ultimately gives both the thermal and fast 

ion densities, both densities are primary outputs from the compo-

nent and the priority does not affect the calculation procedure of 

relation 4 in Table 1. 

 

The relations should be defined in a form that accommodates 

the user input. In Table 1, some relations that require user inputs 

are listed. Relation 3 requires 𝑝  and 𝑞  to specify two species 

which are related, and 𝑓𝑝𝑞 to specify the density ratio between the 

two species. Relation 6 relates the total, the thermal, and the par-

allel/perpendicular fast pressure. The free parameter 𝑓∥ deter-

mines the relative contribution of the fast particle parallel pressure 

to the isotropic total pressure, where it is usually taken to be a half 
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[77]. Also, it can be found that some of the relations can be applied 

to a generic specie and so the number of occurrences is greater 

than 1. It should be able to apply those relations for a different 

species in the same way. Hence, the relation definition should be 

general enough for reusability. 

 

Finally, the relations are not only limited to within an IDS but 

also between the IDSs. Usually, the same definition is used but the 

grids where the data is defined are different between the IDSs. It 

can be found in relation 8, which is the relation between the Ohmic 

current, parallel electric field, and electric conductivity. Although 

not shown, the 𝑐𝑜𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 IDS, which contains the 1D transport 

quantities of the core plasmas, also has a dedicated node for the 

electric conductivity. The electric conductivity stored in the 

𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS should be consistent with the data stored in the 

𝑐𝑜𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 IDS. As the different radial grid is used for each IDS 

in general, interpolation of 1D profiles between the different IDSs 

is required and the data should be consistent for a valid simulation. 

The situation is much clear for relation 9, which is the definition of 

toroidal current density. Here, a couple of equilibrium metrics 

(flux-surface averaged geometric values) are required. However, 

as the radial coordinate used in the 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 IDS is different 

from the 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 IDS in general, interpolation is necessary to 

exchange data between the different IDSs. 

 

In total, 41 relations are defined and will further be added to 

cover a wider range of data consistency. Most of the relations are 

limited to a few IDSs, mainly on 𝑐𝑜𝑟𝑒_𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠 , 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 , 

𝑐𝑜𝑟𝑒_𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 , and 𝑐𝑜𝑟𝑒_𝑠𝑜𝑢𝑟𝑐𝑒𝑠 . Two relation definitions are 

shown as a code snippet in Appendix A. 

 
3.3.2. Adding Relations in the Framework 
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After several prerequisites are clarified, the relations can be 

added to the framework to determine the update process automat-

ically. Calculating the output node value using the other nodes’ 

values requires a function, not a relation. Therefore, converting the 

relation into a set of functions is needed. In expression, the relation 

4 in Table 1, 𝑛𝑠 = 𝑛𝑠,𝑡ℎ + 𝑛𝑠,𝑓 should be converted into three func-

tions, 𝑛𝑠 = 𝑓(𝑛𝑠,𝑡ℎ, 𝑛𝑠,𝑓) = 𝑛𝑠,𝑡ℎ + 𝑛𝑠,𝑓 , 𝑛𝑠,𝑡ℎ = 𝑓(𝑛𝑠, 𝑛𝑠,𝑓) = 𝑛𝑠 − 𝑛𝑠,𝑓 , 

and 𝑛𝑠,𝑓 = 𝑓(𝑛𝑠, 𝑛𝑠,𝑡ℎ) = 𝑛𝑠 − 𝑛𝑠,𝑡ℎ, as there are three output variables 

available in the relation. For converting a relation into a set of 

functions, the symbol corresponding to a variable is allotted for 

every node while adding a relation in the framework. The symbolic 

manipulation to generate a set of functions from the relations was 

done by the Python library, SymPy [78], and further accelerated 

by SymEngine [79]. The functions are generated only for the 

nodes that are the output for a relation. The categorization of input 

and output nodes helped increase the performance in this stage. 

 

It can be noticed that there exists a case where more than two 

nodes should be determined at a time. In other words, relations can 

form a simultaneous equation, and thus the variables should be 

substituted to solve the equation for a given variable. The case was 

already seen, where ion densities should be determined through 

relations 1 and 2 in TABLE 1, while the electron density and 𝑍𝑒𝑓𝑓 

was fixed. In this case, one of the ion densities should be eliminated 

by using two equations so to determine the other. The elimination 

of one of the shared variables could be done by symbolic manipu-

lation in SymPy. However, doing such symbolic manipulation is 

time-consuming. Thus, in the framework, it was chosen whether 

the variables in the relations can be substituted (eliminated) or not. 

From the approach, the framework could satisfy the relations under 

the circumstances where the simultaneous equations exist, with a 
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reasonable performance. 

 

The flowchart for adding a relation during the simulation initial-

ization is shown in Figure 29. Depending on the user input, the 

framework prepares a set of relations to add. When a relation is 

given, the framework first judges whether the relation is substi-

tutable or not. If it does not, the relation is used to generate func-

tions that can be utilized to calculate output nodes, and then adding 

a relation is finished. If the relation is substitutable, the framework 

finds existing substitutable relations that can compose a simulta-

neous equation. The elimination of shared variables in a simulta-

neous equation gives new relations. The new relations are then 

used to generate functions, as before. 

 

 

Figure 29. The flowchart for adding relations during the simulation 

initialization. 

 
3.3.3. Applying Relations 
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Once the relations are added, the simulation with the physics 

component can be started. Figure 30 shows the flowchart of the 

consistency loop, which keeps the internal data consistency after a 

component call. Following the procedure, after a component is 

called, the framework detects the nodes updated by the component. 

Detecting the updated nodes was implemented by adopting the data 

descriptor in Python. Briefly, the framework dynamically converts 

the data nodes into the data descriptors by defining the __𝑠𝑒𝑡__ 

method for the attribute. As a result, the __𝑠𝑒𝑡__ method is invoked 

on setting the attribute value in a code interface; the method then 

lets the framework know that the attribute value was updated. 

Checking the updates is technical and somewhat out of the scope 

of this thesis, so it will not be further discussed in this thesis. The 

main point is that the component does not have to let the framework 

know about the list of updated nodes, as other approaches do. 

 

Given the updated nodes, the framework checks whether the 

update scenario exists or not. The update scenario is the sequence 

of the function applications done during the overall update process. 

For the first execution of the component, the update scenario would 

not exist. Then, as a next step, the framework checks whether an 

unsatisfied relation with only one undetermined node exists. If 

there is no such relation, the framework fixes the most invariant 

node in the relation with the highest priority until such relation is 

found. Fixing the most invariant node in the relation with the high-

est priority would eventually lead to the emergence of the relation 

that has only one undetermined node. Then, the undetermined node 

can be calculated by the relation. After iterating the procedure until 

all relations are satisfied while recording all the function calls, the 

update scenario is generated and saved. 

 

There will be a limited number of components in a simulation or 

a workflow, and a component will update the same nodes at every 
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call. So, from the second call of the component, the saved update 

scenario can be utilized to update the data nodes for consistency. 

Saving the update scenario could reduce the time spent on checking 

whether a relation is satisfied in a nested for-loops. 

 

 

Figure 30. The flowchart for applying relations after a component 

call. 

 

Although not shown in Figure 30 for simplicity, if not all rela-

tions are satisfied while all the nodes are fixed, it raises an error. 

In other words, the data consistency is checked even if the data 

nodes in an IDS are fully updated by a component. The framework 

can be used to check whether a component keeps the internal data 

consistency of the nodes, as there can exist human mistakes in 

calculating data nodes in a component. 
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3.4. Performance and Flexibility of the Framework 

 
3.4.1. Performance Enhancement 

 
The performance of the simulation was greatly improved from 

the previous imperative approach. Figure 31 shows the elapsed 

time for the consistency loop on the calculation step of various 

simulations. The calculation speed of the previous imperative ap-

proach was about 100 steps/s. While the approach does not con-

sume time during initialization and the speed is maintained for the 

entire range of the calculation steps, it takes about 13 s to initialize 

(add relations) the simulations for the improved approach. Note 

that the time required for the initialization varies by the complexity 

of the simulation such as the number of ion species, number of 

heating/current drive sources, and number of transport models. 

 

The calculation speed of the full (an unrealistic component that 

intentionally updates various kinds of data nodes) component is 80 

steps/s, and it is even slower than the previous approach. This is 

because TRIASSIC was upgraded to cover more data than those 

covered in the previous version. Anyhow, it is reasonable that the 

improved approach shows a similar performance to the previous 

approach when all the calculations defined by the node relations 

were intentionally turned on. On the other hand, the calculation 

speed was significantly accelerated to 2000 steps/s for the null (an 

unrealistic component that does nothing to suppress the update 

procedure after the code execution) component. For the normal 

simulation components shown as a green shaded region in Figure 

31, the calculation speed was faster than 350 steps/s which is ac-

celerated at least 3.5 times from the previous approach. The sim-

ulation was indeed accelerated by removing unnecessary calcula-

tions for consistency. 
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Figure 31. The comparison of performances of imperative method 

(black) and improved methods. The 𝑓𝑢𝑙𝑙 indicates the code compo-

nent intentionally updates various data nodes in various IDSs, and 

the 𝑛𝑢𝑙𝑙 indicates the code component updates nothing. Perfor-

mances of normal code components are shown as a green shaded 

region. 

 

It is noteworthy that the consistency loop can consume consid-

erable time relative to the total elapsed time for the simulation. 

Figure 32 shows the proportion of the elapsed time for the con-

sistency loop relative to the total elapsed time. It can be found that 

as the complexity of the model and the calculation step decreases, 

the consistency loop can take significant time consumption. An ex-

ample of time-dependent predictive simulation in the improved 

TRIASSIC showed that 3% of the total elapsed time was consumed 

for the consistency loop. Considering the improved performance, 
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the consistency loop would have taken up at least 10% of the total 

elapsed time or even higher before the improvement. 

 

 

Figure 32. The proportion of the elapsed time for the consistency 

loop for three different physics codes (heating source, transport 

solver, and transport model) and various calculation steps. The time 

spent on the consistency loop becomes significant as the calculation 

step decreases and the model calculation gets faster. An example 

time-dependent predictive simulation case is marked as a green 

marker. 

 
3.4.2. Flexibility and Maintenance of the Framework 

 
So far, in the various integrated transport modeling codes, the 

segregation between the electron solver and the ion solver in a 

simulation was somewhat strict [16]. This is because the situation 
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depicted in section 3.1 and Figure 23 is complex and it requires 

cumbersome use-case studies to flexibly enforce the quasi-neu-

trality constraint while solving the particle transport. In the elec-

tron solver, the impurity ions were usually assumed to be propor-

tional to the electron density while letting the quasi-neutrality 

condition determine the main ion density. On the other hand, the 

electron density was set to satisfy the quasi-neutrality constraint 

in the ion solver by summing the ion charge densities. Due to the 

quasi-neutrality constraints, it was difficult to conduct a transport 

modeling by selecting some species to be predicted among the 

electron and the ions. The declarative method implemented in TRI-

ASSIC could generalize the quasi-neutrality constraint and enable 

the mixing of electron and ion species to be solved. 

 

The strength of this work can be emphasized in predicting the 

burning plasmas of a future reactor such as ITER or DEMO. In such 

burning plasmas, it is expected that there exists a lot of non-neg-

ligible ion compositions, other than the deuterium (D) and tritium 

(T) fuel. For example, hydrogen and helium (both helium-3 and 

helium-4) can be generated by the D-D and D-T fusion reactions. 

Moreover, in such large devices, seeding impurities such as nitro-

gen or argon would be essential to reduce the heat flux on the di-

vertor target [80]. There can also exist sputtered wall/divertor 

materials such as tungsten or beryllium. By considering the whole 

ion in the framework, for example, when the research focuses on 

the tungsten and helium-ash accumulation in the core plasmas, one 

can solve the transport of the electron, helium, and tungsten while 

assuming the seed impurity density proportional to the electron 

density and letting the amount of D and T to cover the remaining 

charge for the quasi-neutrality condition. 

 

Figure 33 shows the calculation of plasma flows and the radial 

electric field in the framework. When the plasma densities and the 
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temperature is provided by the experimental measurements, the 

diamagnetic flows of the main ion and the impurity ion can be cal-

culated. Also, the poloidal flow of the ion species can be calculated 

by the neoclassical model. Frequently, the toroidal flow velocity of 

the impurity ion specie is provided by the charge exchange spec-

troscopy (CES) measurements. In such a case, by gathering the 

diamagnetic, poloidal, and toroidal flow information of the impurity 

ion specie, the radial electric field can be calculated by using the 

radial ion force balance equation. The calculated radial electric field 

is then used to calculate electrostatic potential and the 𝐸 × 𝐵 

shearing rate. Assessing the 𝐸 × 𝐵 shearing rate is important as it 

is well-known that it significantly affects turbulent transport. The 

radial electric field can eventually be used to calculate the toroidal 

flow velocity of the main ion again by the radial ion force balance 

equation. 

 

Note that the ion force balance equation is used twice; while the 

toroidal rotation was used to calculate the radial electric field for 

the impurity ion specie, the toroidal rotation was the resultant for 

the main ion species. As seen in the example, the plasma flows of 

multiple ion species and the radial electric field can form a complex 

relationship, and depending on which specie’s toroidal flow is 

provided, the calculation order of the data node can vary. The sit-

uation gets even more complex when the second impurity specie 

such as oxygen is considered and the toroidal rotation of the given 

specie is measured. The declarative programming approach of 

TRIASSIC flexibly copes with complex situations without cumber-

some checks of which data of which specie is provided. 

 



 

 

 

 

８８ 

 

Figure 33. The calculation procedure of the flows of impurity and 

main ion, and the radial electric field. 

 

As was discussed in section 2.2.2, the unique code interfacing 

requires the framework to do the rest of the calculations for inter-

nal data consistency. While in EU-IM workflows the IDS should be 

added to the I/O routine of each physics code and the consistency 

is kept by the physics code itself, the physics code in TRIASSIC 

does not contain the IDS in them and so the framework should do 

the rest of the calculations for data consistency. The comparison 

is depicted in Figure 34. The last approach addressed in section 

3.2 enabled unique code interfacing in TRIASSIC. Moreover, the 

choice of declarative programming concept in the relation definition 

helped the framework cope with any kind of situation and made it 

easy to interface a new code with the framework, as the con-

sistency is automatically satisfied after the code execution. In other 

words, the flexibility gained from the declarative programming ap-

proach simplified the code interfacing task and so the extensibility 

was enhanced, and the code maintenance became easier. 
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Figure 34. The comparison of the EU-IM workflows and TRIAS-

SIC. The components in EU-IM workflows should be significantly 

modified to contain IDS in their I/O routine and to keep consistency 

within the IDS. On the other hand, the components in TRIASSIC do 

not consider consistency as the framework manages to keep the 

consistency between the data nodes. 

 

Figure 35 shows the comparison of legacy frameworks, tiers 1, 

2, and 3 frameworks, and TRIASSIC in terms of the level of IDS 

utilization and the simplicity of the legacy code interfacing. Com-

pared with the legacy frameworks and the tier 3 approaches such 

as OMFIT and IPS, TRIASSIC uses the IDS as native data for a 

framework. Although the data structure adopted in the tier 3 

frameworks are also well-defined and generic, using the standard 

and generic data, TRIASSIC is more extensible in terms of the new 

models. For the frameworks that fully adopt the IDS, as aforemen-

tioned, TRIASSIC was improved from the tiers 1 and 2 approaches 

by simplifying the interfacing procedure. It takes less effort for 

interfacing with a physics code that already exists. 

 

Lastly, it is noteworthy that the improvement manages to keep 

consistency not only within the IDS but also between the IDSs. 

Unlike other workflows that require additional non-physics actors 
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to transfer data between the IDSs, the data nodes between the IDSs 

are automatically kept consistent in TRIASSIC. Compared to the 

other workflows which demand significant tasks as the physics 

components and non-physics components should be properly 

placed therein, a workflow can be easily composed in TRIASSIC 

only by arranging the code components in an appropriate order. 

While the former workflow-oriented approach is proper when the 

analysis target is limited to some cases, it is nearly impossible for 

a user to compose a new workflow in a short term for a new type 

of analysis. TRIASSIC gains huge merit in terms of the flexibility 

of the simulation type. Various workflows could be made by the 

improvements; the applications will be shown in the following 

chapter. 

 

 

Figure 35. The comparison of TRIASSIC and other frameworks in 

terms of the level of IDS utilization and the simplicity of interfacing 

with a legacy code. TRIASSIC uses IDS as native data for a frame-

work, while less effort for the interfacing is required when com-

pared with the tiers 1 and 2 approaches. 
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Chapter 4. Applications to Various Devices 

 

4.1. Applications to KSTAR 

 
4.1.1. Kinetic equilibrium workflow and its validation 

 
The schematic view of the kinetic equilibrium workflow is 

shown in Figure 36. The workflow is composed of the equilibrium 

solver, neutral beam injection code, neoclassical model, and the 

current diffusion solver. In the workflow, the current diffusion is 

solved while updating the plasma equilibrium, neoclassical 

transport (bootstrap current), and beam absorption (NB current 

drive), while the plasma density and temperatures are provided by 

the measurements. The iteration of four components gives the 

safety factor profile and total stored energy at a stationary state. 

Here, the validation is focused on the total stored energy, and 

hence mostly the validation is about the test of the neutral beam 

model as the fast ion energy assessed by the model significantly 

affects the total stored energy calculation. 

 

In the simulations, the total stored energy (𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡) calculated 

by summing all the thermal plasma energy and the fast-ion energy 

was compared with the energy calculated by the EFIT code (𝑊𝑀𝐻𝐷). 

The EFIT code assumes the total pressure as a simple formula with 

some adjustable coefficients and finds an optimal solution that min-

imizes an error based on magnetic measurements such as magnetic 

pick-up coils and flux loops (magnetic-EFIT). The EFIT code is 

a standard way of calculating the internal structure and some global 

quantities of the plasma, and it has long been used as a reference 

equilibrium reconstruction code for obtaining plasma energy, 𝛽 , 
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and plasma shaping in KSTAR [81]. In this analysis, it was as-

sumed that the total stored energy calculated from the EFIT code 

based on the magnetic measurements well represents the total 

stored energy so that the additional information from Motional 

Stark Effect measurements (MSE-EFIT) is not needed. 

 

The thermal part of the total energy was calculated using the 

measured electron density and temperature from the Thomson 

scattering (TS) diagnostic and the ion temperature from the charge 

exchange spectroscopy (CES) diagnostic. It was assumed in the 

workflow that all the ions have the same temperature due to fre-

quent collisions between them, and the effective charge 𝑍𝑒𝑓𝑓  is 

equal to 1.9 based on previous research [82, 83]. It is noteworthy 

that the validation of the neutral beam model is essential, particu-

larly for predictive simulations, as the time evolution of plasma 

largely depends on the particle and H&CD sources. The validation 

of kinetic equilibrium workflow can be the first step of the valida-

tion of whether the fast ion orbiting and their slowing down are 

properly addressed or not. 
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Figure 36. The kinetic equilibrium workflow in TRIASSIC. The 

workflow is composed of the magnetic equilibrium code (CHEASE), 

neutral beam injection code (NUBEAM), neoclassical model 

(NCLASS), and current diffusion solver (ASTRA). 

 

The comparison of 𝑊𝑀𝐻𝐷 and 𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 is shown in Figure 37. 

Figure 37 (a) shows that the interpretively calculated energy 

𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 well lies on the 𝑦 =  𝑥 line versus 𝑊𝑀𝐻𝐷 on the x-axis. 

Figure 37 (b) indicates that the value of 𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡/𝑊𝑀𝐻𝐷 does not 

deviate much from 1.0, as its average and standard deviation are 

1.06 and 0.12, respectively. On the high tail of the histogram, there 

were high 𝛽𝑃 discharges whose 𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 was somewhat overes-

timated from its 𝑊𝑀𝐻𝐷 values. The 𝛽𝑃 values in those discharges 

were the highest (> 2.2) among the database, while the average 

value of 𝛽𝑃  was 1.5 in the database. Those high 𝛽𝑃  discharges 

showed the TAE activity due to an absence of EC wave H&CD [84]. 
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The overestimation of 𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 in the simulation might have oc-

curred from neglecting anomalous fast-ion transport, which has 

risen from the TAE activities. The deviation of 𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 was not 

significant when the TAEs were successfully stabilized by the EC 

heating/current drive to suppress them. A preliminary application 

of the linear TAE model [70] with an arbitrary saturation rule on 

these discharges showed that this overestimation could be relaxed 

to some extent. 

 

The remaining high tail part on 𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡 𝑊𝑀𝐻𝐷⁄ > 1.2 was from 

the Argon impurity injection experiment, shown in a black circle in 

Figure 37 (a). In this experiment, the injected impurity would have 

diluted the hydrogenic ions and raised 𝑍𝑒𝑓𝑓 under the same elec-

tron density level. However, as 𝑍𝑒𝑓𝑓 was fixed to be 1.9 in this 

modeling, this low 𝑍𝑒𝑓𝑓 assumption might have caused an overes-

timation of the total ion population and the resulting thermal energy. 

The overestimation of the stored energy was not observed before 

the impurity injection in the same discharge. An additional simula-

tion with an increased 𝑍𝑒𝑓𝑓 setting to 3.1 showed that the overes-

timation could be relaxed to a normal range, which casts the need 

for further validations with impurity measurements as future work. 

Note that robust measurements of 𝑍𝑒𝑓𝑓  are not available yet in 

KSTAR.  

 

On the other hand, there were no cases with a large discrepancy 

on the low tail of the histogram. The previous study [85] reported 

that resonant magnetic perturbation (RMP) could induce fast-ion 

loss in KSTAR, but no significant energy deficit due to the RMP is 

found in this comparison. We note that the database used in this 

study does not include the discharge with a strong core field pen-

etration. As the fast-ion loss induced by the RMP mainly occurs in 

the core regime where fast-ions are abundant, this may explain 

why such an RMP-induced fast-ion loss effect was not observed. 
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Excluding the significantly deviated discharges in which the cause 

of the deviation is clear, the modeling could more accurately find 

the total energy. In such a case, the average, and the standard de-

viation of 𝑊𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡/𝑊𝑀𝐻𝐷 were 1.04 and 0.09, respectively. 

 

 

Figure 37. The comparison of the plasma energy calculated by the 

equilibrium reconstruction code and that calculated by the interpre-

tive simulation. The 𝑦 =  𝑥 line is shown as a black solid line, with 

two dashed gray lines representing a 20% deviation where two 

kinds of discharges (high 𝛽𝑃 TAE and impurity injection) with sig-

nificant deviations marked in circles. (b) The histogram of the in-

terpretively calculated energy divided by the energy calculated by 

the equilibrium reconstruction, where the average and the standard 

deviation of the value are shown. 

 
4.1.2. Stationary-state predictive modeling workflow 

 
The stationary-state predictive modeling workflow contains the 

kinetic equilibrium workflow and more models such as heat-

ing/cooling models, a neutral model, and an anomalous transport 

model were added, as shown in Figure 38. In this workflow, the 

transport solver solves not only the poloidal field but also the 

plasma density and energy. The prediction of plasma quantities was 
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solved for a sufficiently long time (stationary-state) when com-

pared with the current diffusion or the energy confinement time. 

The other components, such as neoclassical and anomalous 

transport, NBI, ECH, other heating/cooling, and neutrals, were re-

calculated to reflect the change of the plasma quantities so the 

simulation is self-consistent. The outcome of the simulation is 

mainly the plasma density and temperature, as the quantities are 

deeply related to the plasma performance. To check the validity of 

the simulation workflow, the predictive modeling results were 

compared with the experimental measurements of plasma energy, 

density, and temperature. 

 

In the simulations, the ion densities were set to be proportional 

to the electron density with 𝑍𝑒𝑓𝑓 = 1.9 as before, which is the same 

as assuming 3% of the carbon density relative to the electron den-

sity. For all the particle and heat transport channels, the quantities 

were fixed at the boundary position, 𝜌 =  0.8. Other quantities such 

as plasma current, vacuum magnetic field, and plasma shape were 

fixed during the predictive simulation. The original saturation rule 

(SAT0) [86] was used in the TGLF model, and the transport 

shortfall, which frequently occurs in the high 𝛽𝑃 plasmas [87], was 

observed for the high 𝛽𝑃 plasmas. We note that the high 𝛽𝑃 plas-

mas were excluded in this predictive modeling due to this transport 

shortfall issue. The predictive simulation was conducted for a suf-

ficiently long time of 0.4 𝑠, which is larger than the typical energy 

confinement time for H-mode plasmas in KSTAR (≅ 0.1 𝑠), to find 

a stationary condition for a given plasma/actuator condition. The 

predicted stationary plasma was then compared with the experi-

ments. 
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Figure 38. The stationary-state predictive modeling workflow. The 

heating/cooling models (TORAY, Ohmic heating, etc.), thermal neu-

tral model (FRANTIC), and anomalous transport model (TGLF) 

were added from the kinetic equilibrium workflow shown in Figure 

36. 

 

The predictive simulation showed a significant underestimation 

of the density level when the cold neutral from the wall recycling 

was not considered. Such underestimation is depicted in Figure 39 

(a). In this figure, the line-averaged electron density from the 

prediction is shown as gray circles, which are much smaller than 

the experimental values. The lack of particle source from the wall 

neutral ionization can be the reason for this discrepancy. Accord-

ingly, the effect of wall recycling was considered by assuming a 

constant influx of cold neutrals, and the neutral influx value was 

scanned to find the best match with the measured density level. 

The neutral influx value determined by the scan was 6 ×

1020 𝑚−2𝑠−1 . The prediction of energy level was also increased 

when the cold neutral from the wall was considered, as shown in 
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Figure 39 (b). 

 

 

Figure 39. The comparison of the experimentally measured line-

averaged electron density with the predicted one (a) and the com-

parison of 𝑊𝑀𝐻𝐷 with predicted total energy (𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡) (b). The 𝑦 =

 𝑥 line is shown as a black solid line, with two dashed gray lines 

representing a 20% deviation. In both figures, the prediction result 

with and without the neutral gas puffing is shown as red squares 

and gray circles, respectively. 

 

The validation result of the predictive modeling is evaluated in 

Figure 40 and Figure 41. The average value of the relative amount 

of predicted line-averaged electron density (𝑛𝑒𝑙,𝑃𝑟𝑒𝑑𝑖𝑐𝑡/𝑛𝑒𝑙,𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡) 

was 0.99 by scanning the amount of the neutral influx. Simultane-

ously, by increasing the neutral gas puffing rate, the average value 

of the relative amount of predicted energy (𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡/𝑊𝑀𝐻𝐷) was in-

creased to 0.97. The agreement of 𝑊𝑃𝑟𝑒𝑑𝑖𝑐𝑡  and 𝑊𝑀𝐻𝐷  indicates 

that the predictive modeling under a constant neutral gas puffing is 

a reasonable way to predict both density and energy consistently. 

Also, it should be noted that the standard deviation of the density 

and the energy prediction was 0.14 and 0.12, respectively, which 

indicates that the density and the energy can be predicted with high 

confidence.  

 

The simulation was also validated by comparing the predicted 
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plasma temperatures with diagnostic measurements, as shown in 

Figure 41 (a). The volume-averaged electron and ion temperature 

from predictive modeling showed a good agreement with their 

counterpart from experimental measurements. The distribution of 

the ratio between the predicted and measured temperature for both 

electron and ion are shown in Figure 41 (b) and (c), respectively.  

 

The ion temperature prediction was accurate with its average 

value of 1.02 ; however, the electron temperature prediction 

showed an underestimation with its average value of 0.92. It was 

observed that the electron temperature profile from predictive 

modeling tends to have a downward-convex shape, whereas the 

shape is upward-convex for the experimental fit, as shown in the 

electron temperature profiles in Figure 42 (a). This difference in 

electron temperature profile shape at 𝑅𝑚𝑎𝑗𝑜𝑟 ≅ 2.0 𝑚 − 2.15 𝑚 was 

the main cause of the overall underestimation. It is hard to deter-

mine the exact shape of the electron temperature profile from TS 

measurements, and for further validation of electron temperature 

prediction, it requires a firm experimental fit with additional tem-

perature diagnostics such as the electron cyclotron emission 

measurement. 

 

A few cases showed non-negligible discrepancies against the 

experimental measurements. In the low-density range of Figure 

39 (a), the density was highly overestimated. The reason for this 

overestimation might be due to a too high neutral gas puffing rate, 

as the experiment was conducted under the low prefill gas condi-

tion to operate with a low-density condition. Although constant 

neutral gas puff modeling can be a good approach to predicting 

thermal plasmas, indeed, it might need a shot-by-shot adjustment 

of puffing rates based on the neutral pressure measurements. As 

an alternative approach, determining the amount of wall-neutral 

influx by assuming a constant recycling rate [88] is also possible. 
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The approach will be tested in future work to dissolve the limita-

tions of the current approach and improve the predictive modeling 

capability.  

 

The high-Z impurity injection experiment, which was already 

discussed in the validation of the interpretive simulation above, was 

a case with a high energy estimation in Figure 39 (b) and Figure 

40 (b). The case with significant underestimation of the ion tem-

perature shown in Figure 41 (c) was the internal transport barrier 

(ITB) discharge. The formation of ITB was not seen in the pre-

dictive simulation, and it might be due to the absence of delicate 

modeling of the current profile, as the onset of ITB could be related 

to the safety factor profile in KSTAR [89]. For the remaining cases 

with a significant deviation of the ion temperature prediction in 

Figure 41 (c), the two-Gaussian fitting [90] was used to calculate 

the ion temperature from the CES measurement instead of using 

the usual beam modulation technique since the beam modulation 

was not performed in those discharges. A significant prediction er-

ror would have appeared due to this difference in the ion temper-

ature calculation method. Other cases with a significant deviation 

were in the normal operating range. A significant error might be 

due to a wrong experimental fitting, especially for the electron 

temperature or the non-stationarity, and will not be further dis-

cussed in detail. It is noteworthy that the differences in predicta-

bility between L-mode and H-mode plasmas were not found, and 

the models used in the simulations have their own shortcomings 

anyway. 
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Figure 40. The histogram of the predicted electron density divided 

by the experimental electron density (a) and the histogram of the 

predicted energy divided by 𝑊𝑀𝐻𝐷(b) for the neutral gas puffing 

predictive simulations. The average values for simulations with and 

without the gas puffing are marked as a black and gray dashed line. 

 

 

Figure 41. (a) The comparisons of interpretively calculated vol-

ume-averaged temperature (〈𝑇𝑒 𝑖⁄ 〉𝑉,𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡) with the predicted one 

(〈𝑇𝑒 𝑖⁄ 〉𝑉,𝑝𝑟𝑒𝑑𝑖𝑐𝑡), where the electron and the ion are shown as blue 

circles and red squares, respectively. The 𝑦 =  𝑥 line is shown as a 

black solid line, with two gray dashed lines representing a 20% de-

viation. The ratio between the predictive and the interpretive vol-

ume-averaged temperature is shown for both electron (b) and ion 

(c). The average values are marked as a black dashed line. 

 

The electron density, electron temperature, and ion tempera-

ture profiles from a well-reproduced prediction case and the worst 

prediction case are shown in Figure 42. In the well-reproduced 

case, the electron density was very flat in the core region without 

the cold neutrals, but the peaking was recovered if the wall-neutral 
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ionization source was considered. On the other hand, the electron 

and ion temperatures were slightly decreased due to neutrals. The 

deviations from the experimental level of density, electron tem-

perature, and ion temperature were +2%, −6%, and +5%, respec-

tively. The worst prediction case corresponds to the ITB discharge. 

The steep gradients in both temperature profiles were not repro-

duced, and the underestimation of ion temperature is prominent. In 

this case, the deviations of density, electron temperature, and ion 

temperature were −16%, +19%, and −33%, respectively. 

 

 

Figure 42. The profiles of the electron density (left), electron tem-

perature (middle), and ion temperature (right) from the well-re-

produced case (a) and the worst prediction case (b). The density 

and temperatures from experimental measurements are shown as 

black error bars, and its experimental fit is shown as a black dashed 

line. The predictive simulation results with and without neutral gas 

puffing are shown as red solid and blue dotted lines, respectively. 

 

4.2. Application to VEST 
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4.2.1. Time-dependent predictive modeling workflow 

 
The TRIASSIC suite of codes was applied to the VEST [91] 

device by composing a time-dependent predictive modeling work-

flow, as shown in Figure 43. For the simulation through the work-

flow, the plasma boundary information was prepared by the equi-

librium analysis code [92, 93]. Also, the simulation was set to fol-

low the plasma current measured by the Rogowski coil. As the 

workflow has the same target (predictive simulation) with the 

workflow introduced in the previous section, the two workflows 

share many common grounds. However, different from the station-

ary-state workflow, as the simulation targets to address the time-

dependent behavior of the plasmas, basically the time interval for 

the models is much shorter than the workflow adopted in the 

KSTAR modeling. 

 

For the validity of the predictive simulation in the ST device, 

models were deliberately selected and adopted in the workflow. 

The TGLF model is known to be valid in the ST device due to the 

improvements from its predecessor, the GLF23 model, in terms of 

the geometry and the treatment of trapped particles. Also, as the 

low-temperature plasma is expected at least at the near-edge re-

gion of the plasmas, there are high chances of finding impurities 

that are not fully stripped. Hence, the radiative energy loss from 

the line emission should be accurately considered. For the calcu-

lation of steady-state line emission, ionization, and ionization 

cooling, the reaction rates from the ADAS collisional-radiative 

model were adopted. Lastly, to reproduce the rapid increase in the 

electron density observed by the Thomson scattering diagnostics, 

the FRANTIC module was used to simulate the pre-fill gas in ex-

periments. The data provided by the experiment and the workflow 

are shown in Figure 43. 
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Figure 43. The time-dependent predictive transport simulation 

workflow. The reconstructed plasma boundary and the measured 

plasma current are used as input for the predictive simulation. 

 

The predictive simulation was set to follow the experimental 

values that are provided while solving the particle transport, heat 

transport, and current diffusion equations. For the boundary con-

dition of the particle and heat transport, it was assumed that the 

particle and heat fluxes are proportional to the boundary density 

and energy density. The coefficients were adjusted until reasona-

ble values of density and temperature are found, based on the triple 

Langmuir probe measurements outside the plasma boundary. The 

overall simulation setting was quite similar to the previous predic-

tive modeling approach on VEST [94]. 

 

The predictive simulation was conducted several times by var-

ying the amount of the gas influx. Figure 44 shows the predicted 

electron density and temperatures by the simulation, for three dif-

ferent gas influx conditions. The electron density and the temper-

atures increase in time even during the ramp-down phase after the 

current max timing at 0.314 𝑠. The tendency is supported by the TS 

measurements. It can be noticed that the pulse duration of VEST is 
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not long enough for plasma to reach the stationary state and indeed 

composing a workflow with sufficiently short time intervals for the 

time-dependent prediction is essential for the comparison with 

measurements. 

 

 

Figure 44. The electron density (upper two rows) and temperature 

(lower two rows) profiles predicted by three simulations of low 

(red), medium (blue), and high (green) gas influx. The Thomson 

scattering measurements are shown as black markers and lines. 

 

As was intended, by increasing the amount of pre-fill gas, 

higher electron density and lower electron temperature was pre-

dicted. The predictive modeling could reproduce the overall elec-

tron density evolution during the whole simulation time, especially 

for the medium gas influx case. Also, the electron temperature 

evolution after the current-max timing (0.314 s) showed good 

agreement with the experimental measurements, and the hollow-
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ness of the electron temperature profile was found both in the sim-

ulations and experiment. However, although the evolution of the 

electron density is well captured in the medium gas influx simula-

tion, the simulation workflow could not reproduce a super-low 

electron temperature at the early phase (0.312 s – 0.314 s), even 

for the highest gas influx simulation. The poor prediction of the 

electron temperature at the early phase slowly recovers to the tol-

erable range after the current-max timing. 

 

The predictive modeling workflow should be further validated 

by dedicated experiments with more measurements. Especially, 

the ion temperature predicted by the simulation should be com-

pared with the ion temperature measured by ion Doppler spectros-

copy [95, 96]. Also, the electron density measured by interferom-

etry should further be adopted to cross-check with the Thomson 

scattering measurement or to be compared with the prediction re-

sults. On the other hand, the validity of the modeling workflow 

should be assessed in terms of the steady-state neutral redistri-

bution and steady-state collisional radiative model assumption. 

The modeling workflow will be improved in the future and will be 

validated with dedicated experiments for valid predictive simula-

tions. 

 

4.3. Application to KDEMO 

 
4.3.1. Predictive simulation workflow for optimization 

 
The optimization of design parameters is essential for the con-

struction of a new reactor. The performance of the plasma that may 

appear in the designed reactor should be predicted and further op-

timized to reduce the risk of the research. For the optimization of 
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design parameters, 9 design parameters, 𝑅0, 𝑎0, 𝛿, 𝜅, 𝑃𝑁𝐵, 𝑅𝑡𝑎𝑛/𝑅0, 

𝐸𝑁𝐵 , 𝐼𝑃 , and 𝐵𝑇  were selected and two modeling parameters, 

𝑓𝐺𝑊,𝑝𝑒𝑑  and 𝑛𝑒0/𝑛𝑒,𝑝𝑒𝑑  were selected as shown in Table 2. The 

modeling parameters were required because determining the 

Greenwald density fraction and the density peaking is difficult as 

theoretical understandings of them are not complete and the pre-

dicted values of them are controversial in the future reactor. Hence, 

the parameters were also considered as design parameters to as-

sess the effects of the parameters by the scan. The minimum and 

maximum values of the design and modeling parameters were cho-

sen by referring to the previous research [97] and KDEMO con-

ceptual study report. 

 

 

Table 2. Selected design and modeling parameters for the optimi-

zation and their minimum, maximum, and reference [97] values for 

the simulations. 

 

Figure 45 shows the modeling workflow from the random se-

lection of parameter values to the storage of the simulation outputs. 

From the minimum and maximum range of given parameters, the 

simulation input values were chosen and were fed into the simula-

tion with the proper initial condition. The simulation was conducted 

by the TRIASSIC predictive simulation workflow and the results 
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were systematically stored in an IDS format. 

 

As the modeling workflow should be able to deal with the ex-

treme case of larger, hotter, and denser conditions compared to the 

previous predictive modeling studies, several models should be 

noted. For the modeling of the pedestal, the model from the ped-

estal scaling law by Sugihara was adopted. From the pedestal 

height calculated from the model, the pedestal temperature is de-

termined by using the prescribed density (by 𝑓𝐺𝑊,𝑝𝑒𝑑). The density 

and temperatures at the pedestal region were renewed by the 

(brute) pedestal transport model which slowly modifies the plasma 

quantities manually. The radiative losses are significant in such hot 

and dense conditions, and so the Bremsstrahlung and synchrotron 

radiations were additionally considered. Also, the thermonuclear 

and beam-driven fusion reactions were considered by the 

NUBEAM component. 

 

 

Figure 45. The predictive simulation workflow for the KDEMO de-

sign and modeling parameters optimization study. 11 parameters 



 

 

 

 

１０９ 

were randomly chosen and fed into the workflow with proper initial 

conditions. The simulations were executed through the job sched-

uling functionality of TRIASSIC and systematically stored in an IDS 

format. 

 

By using the predictive simulation workflow, about 400 simula-

tions were conducted with randomly chosen parameters to con-

struct a set of statistical models. The input parameters for the sta-

tistical models were 11 design and modeling parameters, and the 

target parameters were the performance targets such as non-in-

ductive current drive fraction (𝑓𝑁𝐼) and fusion gain (𝑄𝐹𝑈𝑆). An ex-

ample of the prediction of the statistical models and the simulation 

data is shown as gray dashed lines and black dots, respectively in 

Figure 46. The minimum and maximum values predicted by the 

statistical models, which represent the confidence of the statistical 

model prediction, are shown as the blue shaded regions. The opti-

mal design and modeling parameter value and its corresponding 

performance values which were found by manually modifying the 

input parameters are shown as red circles. 

 

The prediction of performances based on the parameters from 

the previous research showed lower performances than the pre-

vious research. The reason was due to the lower pedestal height 

predicted by the workflow. However, the pedestal height predicted 

by the scaling law was indeed realistic and hence the approach was 

regarded as a conservative approach to the performance predic-

tions.  

 

To overcome the lack of fusion gain without the increase of the 

plasma current, it was essential to increase the density peaking 

factor. The density peaking factor is expected to be significant [98] 

due to the low collisionality of the burning plasmas. The increase 

of the density peaking factor hindered the neutral beam current 
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drive, and the amount of non-inductive current drive fraction was 

insufficient for the steady-state operation. For the current drive 

fraction, the minor radius and its relative values against the major 

radius (aspect ratio) were the key parameters. The increase of 

minor radius (decrease of aspect ratio) significantly helped in-

crease the bootstrap current drive, and hence it was able to achieve 

the target parameters at a smaller machine size and a slightly 

higher toroidal magnetic field. The prediction from the statistical 

model is shown in terms of the minor radius, 𝑎0, in Figure 46. It 

can be seen that the increase of minor radius has a tradeoff as it 

enhances the non-inductive current drive while diminishing the 

fusion gain. In conclusion, the design parameters were determined 

by 𝑅0 = 6.2 𝑚, 𝑎0 = 2.3 𝑚, 𝐵𝑇 = 8.0 𝑇, 𝐼𝑃 = 15.5 𝑀𝐴 but with a higher 

peaking factor of 𝑛𝑒0 𝑛𝑒,𝑝𝑒𝑑⁄ = 1.5. The other parameters were only 

slightly modified. 

 

 

Figure 46. The optimization result of the KDEMO design and mod-

eling parameters. The statistical model, optimal point, and predic-

tive simulation results that are near to the optimal point are shown 
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for the optimization targets, 𝑓𝑁𝐼 and 𝑄𝐹𝑈𝑆 as function of the minor 

radius, 𝑎0. The minimum and maximum values predicted by the 

statistical model are represented as the blue-shaded regions. 

 

The target constraint used in this study was 𝑓𝑁𝐼 > 1.0  and 

𝑄𝐹𝑈𝑆 > 20. The modification of input parameters was done manually 

to achieve both targets while decreasing the machine size and es-

timated cost of facilities such as reducing plasma current and to-

roidal magnetic field. In the future, when the cost and risk can be 

provided by the additional model as a function of input parameters, 

a more sophisticated optimization result would be drawn by the 

quantitative analysis. Also, when the amount of the non-inductive 

current drive is significant, the simulation often crashed due to low 

current density near the magnetic axis. This leads to the lack of 

highly non-inductive prediction results, as can be seen in Figure 

46. It can be also checked that the prediction from the statistical 

model is not confident enough for the high 𝑓𝑁𝐼 region. In the future, 

the workflow and the equilibrium model therein should be revised 

to stably predict the plasma equilibrium even when the current near 

the magnetic axis is scarce. 

  



 

 

 

 

１１２ 

Chapter 5. Summary and Conclusion 

 

5.1. Summary and Conclusion 

 
The integrated modeling approach was required for a compre-

hensive understanding of the experiments and to predict upcoming 

reactors for efficient research & development. For constructing an 

integrated modeling framework, the modular approach was supe-

rior to the non-modular approach due to its interchangeability. In 

adopting the modular approach to the framework, generic data was 

required to communicate with the various physics models. The IDS, 

which is generic, hierarchical, and standard, was a good candidate 

for the central data storage of the framework. Due to the generic 

structure, the data nodes in the IDS could be represented by other 

nodes through definitions and constraints. Also, it was introduced 

that there are three tiers of code integration with the IDS; the 

physics code kept data consistency for the tiers 1 and 2 approaches, 

while it was not for the tier 3 approach. 

 

In chapter 2, the development of the TRIASSIC framework, 

which is the first Python-based tokamak simulation framework 

that fully embraces the IDS, was introduced. TRIASSIC was com-

pared with other pre-developed frameworks. In the comparison 

with the IPS framework, TRIASSIC was distinguishable that the 

IDS is adopted as a native data structure of the framework. On the 

other hand, when compared with the EU-IM workflows which 

physic actors therein contain the IDS in their I/O routine, TRIASSIC 

took the approach of tier 3 code integration. By the approach, the 

original codes were only slightly modified to be interfaced with the 

framework. The codes were compiled together with the driver 

routine and the wrapper generated by F2PY or SWIG, to produce a 
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library that can be utilized in the high-level language framework. 

This unique code interfacing method adopted in TRIASSIC made it 

easy on utilizing the legacy physics codes in the framework.  

 

Owing to the simplification of the code interfacing tasks, many 

physics codes and models could be adopted in the framework in a 

short period of development. The physics codes and models that 

are available in the framework were introduced. Also, the graphical 

user interface which enhanced usability by facilitating input file 

generation and the parallel computation of message passing inter-

face through the job scheduling system which improved the per-

formance of the simulations were addressed. Lastly, the verifica-

tions of TRIASSIC code interfaces and their couplings were shown. 

 

The problems related to the internal data consistency in TRI-

ASSIC and the solution were introduced in chapter 3. In terms of 

data consistency, three possible implementations of a component 

and the role of the framework were addressed. EU-IM workflows 

took both first and second approaches, where the physics actors 

keep the consistency within an IDS by themselves (owing to tiers 

1 and 2 integrations) and also by placing the non-physics actors 

that keep the consistency between the IDSs in the workflows. The 

third approach, in which the framework conducts the implicit sub-

sequent updates after the component execution, was adopted in 

TRIASSIC. The drawback of the approach, the implicitness of the 

procedure that makes it difficult to notice which constraint/defini-

tion the framework imposes, was overcome by the declarative pro-

gramming approach. Moreover, compared to the typical imperative 

approach, the framework could cope with various situations en-

countered by adopting various kinds of models without cumber-

some use-case studies.  

 

The input and output nodes, constancy of the nodes, and user 
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inputs were defined for every relation found in some IDSs, to en-

able a computer code to automatically find a way to update data 

nodes consistently. Then, the procedure was divided into two parts 

– adding and applying relations. Relations were added (registered) 

to the framework during the simulation initialization, and the actual 

node values were calculated during the simulation by applying the 

relations. Algorithms for both situations were addressed. With the 

improvement of the consistency loop, simulations were accelerated 

from the previous imperative approach. Also, the simulation could 

flexibly cope with unusual modeling settings, especially in terms of 

particle transport and plasma flow modeling, that are traditionally 

impossible for other frameworks. 

 

By keeping the consistency automatically by the framework, 

unique code interfacing was possible. Moreover, the maintenance 

was enhanced as the integration of a new code does not demand a 

physics code developer to deal with every data node in IDSs. In 

terms of IDS utilization and the simplicity of the code integration, 

TRIASSIC was superior to the IPS and OMFIT frameworks or EU-

IM workflows. Furthermore, the consistency between the IDSs en-

abled modelers easily compose a workflow only by arranging the 

code components. 

 

In chapter 4, TRIASSIC was utilized to compose various work-

flows for applications to various devices. The kinetic equilibrium 

workflow was composed and validated by comparing the calculated 

and measured plasma energies in KSTAR. By the stationary-state 

predictive modeling workflow, the density and temperatures of the 

KSTAR plasmas at a stationary state could be predicted. The 

workflow was validated in terms of plasma energy, electron density, 

and temperature predictions. For the application to VEST, a time-

dependent predictive modeling workflow was composed, for valid 
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simulations under a short pulse duration. The comparison of pre-

dictions with the experiment, however, showed non-negligible 

discrepancies and cast the need for future work. The validity of the 

models introduced in the workflow was discussed, and future work 

was planned. The application to KDEMO was done by multiple sim-

ulations of randomly chosen 11 machine designs and modeling pa-

rameters. Owing to the job scheduling and systematic data storage, 

a predictive simulation database could be made and the data was 

used to train a statistical model for the design optimization. 
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Appendix 

 

A. Code Snippet of the Relation Definition 

 
Figure 47 shows two examples of relation definitions as a code 

snippet. Both relations require a reference array as the first argu-

ment to initialize the input/output arrays to the same shape as the 

grid size. Getting a quasi-neutrality constraint requires the number 

of ions modeled in the simulation and the 𝑝𝑟𝑜𝑓𝑖𝑙𝑒𝑠_1𝑑 object to lo-

cate the data nodes corresponding to the electron and ion densities 

with ion charges. Each term in the relation is then abstracted to a 

class instance named Node. The class 𝑄𝑢𝑎𝑠𝑖𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑡𝑦  inherits 

𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, which requires the definition of the functions 𝑙ℎ𝑠 

(left-hand side) and 𝑟ℎ𝑠 (right-hand side) to find the satisfaction 

condition of the relation and to generate functions from the relation. 

Inside the 𝑄𝑢𝑎𝑠𝑖𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑡𝑦 relation, the 𝑒𝑛𝑎𝑏𝑙𝑒_𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛 flag in-

dicates that the relation is substitutable, while it does not in default. 

The Python decorator, 𝑛𝑜𝑑𝑒𝑠 designates the input nodes and the 

output nodes in the order of constancy. The decorator was required 

for the reusability under a different number of ions. 

 

The 𝑇ℎ𝑒𝑟𝑚𝑎𝑙𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒  relation, on the other hand, inherits 

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, which only requires a definition of the function to calculate 

the only output value, 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒_𝑡ℎ𝑒𝑟𝑚𝑎𝑙. It is noteworthy that the 

𝑇ℎ𝑒𝑟𝑚𝑎𝑙𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 relation is generally defined and can be applied to 

any generic species. 
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Figure 47. A code snippet that describes two relation definitions – 

the quasi-neutrality constraint (relation 1 in Table 1) and the defi-

nition of thermal pressure (relation 5 in Table 1). 
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Abstract in Korean 

  
본 연구에서는 TRIASSIC (tokamak reactor integrated auto-

mated suite for simulation and computation) 코드의 자세한 

디자인과 실행 결과에 대해 소개합니다. 이 시뮬레이션 코드는 기존에 

존재하던 플라즈마 평형, 1.5차원 및 2차원 플라즈마 수송, 신고전 및 

난류 수송 모델, 전류 구동 및 가열 (냉각) 모델, 그리고 2차원 격자 

생성기 등의 코드를 구성하여 만들어졌습니다. 프레임워크 내 데이터 

구조로써 일반 데이터 구조를 채택함으로써 TRIASSIC의 코드 

구성요소들은 완전한 모듈화 방식으로 결합될 수 있었습니다. 일반 

데이터 구조에 의존하지 않는 독특한 코드 결합 방식으로 인해, 더 

이상 유지보수되지 않는 레거시 코드들 또한 쉽게 결합될 수 

있었습니다. 본 코드의 그래피컬 유저 인터페이스, 프레임워크와 코드 

구성 요소들의 병렬 컴퓨팅에 관한 내용도 다뤄집니다. 평형, 수송, 

그리고 가열 측면에서의 TRIASSIC 시뮬레이션의 검증 내용도 

소개됩니다. 시뮬레이션 프레임워크 내 일반 데이터 구조의 데이터 

모델과 데이터 정의를 만족시키기 위해, 데이터를 관리하는 

프레임워크의 중심부에는 선언적 프로그래밍이 도입되었습니다. 

선언적 프로그래밍을 통해 일반 데이터의 데이터 노드 간 관계식을 

만족시킴으로써 데이터 간 내부 일관성을 확보하고, 코드의 유연성과 

명시성을 추가적으로 확보할 수 있었습니다. TRIASSIC은 해석적, 

예측적 모델링 측면에서 KSTAR 플라즈마를 대상으로 

검증되었습니다. VEST 장치를 대상으로 한 예측 및 이에 대한 검증 

내용 또한 서술됩니다. 경제적인 핵융합 실증로 건설을 목표로 

KDEMO 장치에 대한 적용 및 장치 설계 최적화 연구도 소개됩니다.  

 
주제어: 토카막, 플라즈마, 핵융합, 통합 모델링, 통합 시뮬레이션 

학번: 2016-21305 
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