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ABSTRACT 

Hybrid Evolutionary Computation Algorithm 

Based on Gene Expression Programming and 

Particle Swarm Optimization for Prediction of 

Mechanical Rock Excavation Performance 

 

Shahabedin Hojjati 

Department of Energy Systems Engineering 

The Graduate School 

Seoul National University 

With the advances in mechanical excavation technology, increasing 

number of underground spaces are built using mechanical excavation 

rather than the conventional drilling and blasting method. 

In the field of mechanical rock excavation, there are a fair number 

of deterministic solutions for the relations between different variables. 

However, in many cases, establishing such a relation is extremely 

difficult. As a result, many researchers try to explain those relations using 

regression analysis. Due to the complex and non-linear nature of rock 

cutting phenomenon, it is not easy to reasonably determine the form of 

the non-linear functions that fit to the statistical data as it is required by 

the conventional non-linear function fitting techniques. As a result, a 

combination of Gene Expression Programming (GEP) and Particle 
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Swarm Optimization (PSO) was used for data analysis in this study in 

order to solve problems in the field of mechanical excavation. GEP and 

PSO are evolutionary computation techniques and the GEP-PSO 

algorithm is capable of automatically finding the form and constants of 

a non-linear function that fits on a data set. The algorithm was used in 

order to develop a performance prediction model for impact hammer, a 

prediction model for specific energy required by point attack picks, and 

models for prediction of cutting, normal, and side force acting on a point 

attack pick. In all cases, the results generated using the GEP-PSO 

algorithm produced significantly high prediction accuracy in comparison 

to those generated by multiple linear regression. When possible, 

comparisons were made between the results generated by the GEP-PSO 

algorithm and the prediction models developed by other researchers to 

show the advantages of the models developed over the course of the 

present study. In addition to high level of accuracy, the models developed 

using GEP-PSO algorithm could overcome shortcomings of the existing 

prediction models to a fair extent. The developed models are more 

advantageous as they provide more reliability/accuracy while requiring 

few easy-to-obtain input parameters, and/or they include the significant 

input parameters that have been neglected by the existing prediction 

models. 

 

Keywords: Artificial Intelligence, Prediction Model, Impact 

Hammer, Point Attack Pick, Specific Energy, Cutter Force 
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1. INTRODUCTION 

The increase in global population and urbanization rate has 

increased the use of underground spaces. Since 1950, the world 

population has tripled (Ritchie, 2019). Meanwhile, as Figure 1-1 shows, 

the share of the world population living in urban area has increased from 

29.61% in 1950 to 56.61% in 2021 and is predicted to increase to 68.36% 

in 2050. In addition to the increase in traditional need for roads, railways, 

metro, and utility tunnels, a growing number of urban life aspects are put 

underground in order to make the surface available for other purposes 

(Anagnostou and Ehrbar, 2013). Hong Kong, with a high population 

density of which a 100% is living in urban areas, may be a representative 

example of this trend (Wallace and Ng, 2016). Figure 1-2 shows 

population growth and tunnel development in Hong Kong. 

 

 

Figure 1-1: Share of the population living in urban areas and its projection 
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Figure 1-2: Population growth and tunnel development in Hong Kong 

(adapted from Pang (2015)) 

 

There are two main methods of excavation, namely, drilling and 

blasting and mechanical excavation. The latter is a younger method that 

has started to develop since 1950s. With the advances in mechanical 

excavation technology, increasing number of underground spaces are 

built using mechanical excavation rather than the conventional drilling 

and blasting (Bilgin et al., 2013). Figure 1-3 is generated using the results 

of a survey conducted on Scopus.com. The figure shows the share of 

mechanical excavation, compared to that of drilling and blasting, in the 

publications in “Tunnelling and Underground Space Technology”, 

“Rock Mechanics and Rock Engineering”, and “International Journal of 

Rock Mechanics and Mining Sciences” on the subject of “excavation" 

between the years 1996 and 2021.  

Ozdemir (1998, 1992, 1990) summarized the basic advantages of 

mechanical excavations over drilling and blasting as: 



 

3 

 

 

Figure 1-3: Number of publications in "Tunnelling and Underground Space 

Technology", “Rock Mechanics and Rock Engineering”, and “International 

Journal of Rock Mechanics and Mining Sciences” on the subjects of 

“Mechanical Excavation” and “Drilling and Blasting” 

 

• Safer and more environment-friendly operation (no explosive 

handling—forbidden in urban areas, no blast vibrations in urban 

areas, no noxious gases, no dust, better workmanship, lesser 

accidents) 

• Minimum ground disturbance (lesser overbreak, lesser scaling-

support-ventilation requirement, minimized support maintenance, 

superior ground control in jointed/broken rocks) 

• Uniform muck size (easy muck/excavated material haulage, no 

secondary breakage of large rock chunks, lower crushing and mineral 

processing costs) 
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• Selective mining/excavation capability (minimum ore 

dilution/minimum mixing with gang, increased ore recovery, 

separate excavation of rock layers in different strengths making 

excavation easier)  

• Continuous operation (not periodic, conducive to automation, 

excavation—loading—ground supporting simultaneously) 

• Higher production/excavation rates in favorable ground conditions 

(higher economical benefits/saving money, earlier mining of high-

grade ore, earlier job completion) 

It is very common in engineering to investigate the relation between 

two or more variables. In some cases, that relation is “deterministic”, 

which means that the target variable can be perfectly predicted based on 

the predictor variable(s). For instance, the relation between displacement 

of an object and its velocity is a form of deterministic relation. However, 

there are numerous instances, where the relation between variables is too 

complicated to be explained in a deterministic manner. The impact of a 

father’s height on his son’s height may be an example of that kind of 

dependence. In such cases, regression analysis is used to approach the 

problem in a non-deterministic way (Montgomery and Runger, 2018). 

In the field of mechanical rock excavation, there are a fair number 

of deterministic solutions for the relations between different variables. 

However, in many cases, as rock is a discontinuous, inhomogeneous, 

anisotropic, and non-elastic material, and due to the complex nature of 

the process of rock cutting, it is extremely difficult to establish such a 

deterministic relation. As a result, many researchers try to explain those 

relations using regression analysis. With some occasional exceptions, the 
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relations in nature are intrinsically non-linear (Nisbet et al., 2018; 

Zielesny, 2016). When dealing with curve fitting problems, three 

scenarios may occur (Zielesny, 2016): 

1. The structure of the mathematical equation that describes the curve 

(model function) is either theoretically, or empirically known, but the 

parameters of the equation are unknown. For instance, it is known 

that the curve may be described using an exponential function of the 

form f(x)=aex+b, and the parameters “a” and “b” are to be 

determined. 

2. The structure of the model function is unknown, but may be 

postulated. 

3. The structure of the model function is unknown and there is no 

reasonable way to make an educated guess about it. 

In the first two scenarios, the problem may be reduced to an 

optimization problem with the goal of finding the parameters in the 

model function structure such that the error of estimate is minimized. In 

case the model function is linear with one or more arguments, the 

optimization problem at hand may be solved analytically. Please note 

that, here, the linear model function does not necessarily show a linear 

relation between the argument (x) and the function value (y). It should 

only be linear in constants. For instance, f(x)=aex+b is a linear model 

function with one argument (x) while f(x)=axb+c is a non-linear model 

function with one argument (x). In the case of non-linear model 

functions, analytical solution is not applicable. In such cases, iterative 

optimization techniques have to be used (Zielesny, 2016). 
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In the third scenario, where the structure of the model function is 

completely unknown, machine learning techniques can be used 

(Zielesny, 2016).  

Machine learning is a subcategory of artificial intelligence that 

studies computer programs that are capable of improving their 

performance by learning from experience (Russell and Norvig, 2020). 

According to Mitchell (1997): 

“A computer program is said to learn from experience E 

with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured 

by P, improves with experience E.” 

For instance, a computer program that is designed to play Chess 

(task T) learns to increase its chance of winning (performance measure 

P) by checking the consequences of different moves in different chess 

board settings (experience E). 

Machine learning algorithms may be divided into three vast 

branches, namely supervised learning, unsupervised learning, and 

reinforcement learning. In supervised learning, the goal is to map the 

values of inputs to the values of outputs in the data. In other words, given 

a set of (x, y) data, the machine learns how to map x values to y values. 

In unsupervised learning, the goal is to learn how to detect patterns in a 

set of input data. This category of machine learning is most commonly 

used for clustering, i.e. recognition of different clusters in input data. A 

computer vision system that learns how to cluster similar input images 

into a category that may be called “dog”, “horse”, “chair”, etc. is an 

example of unsupervised machine learning. In reinforcement learning, 
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the machine learns by rewards and punishments. For instance, for a 

system designed to play chess, at the end of the game, the machine is told 

whether it has won or lost. The task of judging which step(s) during the 

game contributed more to the win/loss is left to the machine (Russell and 

Norvig, 2020). 

Based on the above explanations, it may be concluded that a 

supervised machine learning method should be used for regression when 

the structure of the model function is completely unknown. Artificial 

Neural Networks (ANN) and Symbolic Regression Methods (SRMs) are 

two branches of machine learning methods that are capable of 

performing that task (Diveev and Shmalko, 2021; Mitchell, 1997). 

However, it should be noted that an ANN is a mathematical architecture 

rather than an equation. In other words, it merely is a replacement for the 

unknown function that fits to a certain curve and does not reveal any 

information about the function or its properties (Diveev and Shmalko, 

2021). This characteristic of ANNs does not assist the process of 

understanding the mathematical relation between a parameter of interest 

and the parameters that govern it. In contrast to ANN, SRMs are methods 

of machine learning that are designed for generating mathematical 

equations and investigating the space of those equations with the 

objective of finding the function that fits best on the given data (Diveev 

and Shmalko, 2021).  

Genetic Programming (GP), Gene Expression Programming (GEP), 

Grammatical Evolution, Analytic Programming, and Parse Matrix 

Evolution are instances of SRMs (Diveev and Shmalko, 2021; Ferreira, 

2006). Among them, GEP was selected as a data analysis tool in this 
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study. In brief, GEP is an “evolutionary computation 

technique/evolutionary algorithm” that stochastically evolves a 

randomly generated population of “encoded individuals/computer 

programs/candidate solutions” through generations with the objective of 

improving their “fitness/prediction accuracy”. Chapter 4 explains the 

reasons behind making this choice in addition to a comprehensive 

explanation of GEP. 

The candidate solutions generated by GEP may contain numerical 

constants. The basic GEP algorithm can only adjust those constants 

randomly. In such a situation, use of a more supervised optimization 

algorithm may be helpful. Therefore, Particle Swarm Optimization 

(PSO) was used in order to further optimize the numerical constants in 

the solutions generated by GEP. In PSO, a swarm of “particles/potential 

solutions” conduct a guided search through the solutions space in order 

to find the optimum solutions/constants. More detailed explanations 

about PSO are provided in Chapter 4.  

The present study addressed three problems in the field of 

mechanical excavation with the aid of GEP and PSO algorithms: 

• Development of a performance prediction model for impact 

hammer 

• Development of a prediction model for specific energy required 

by point attack picks 

• Development of models for prediction of cutting, normal, and 

side force acting on a point attack pick 
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Chapter 2, “Literature Review”, provides a review of literature that 

led to identification of those problems as well as explanations about the 

knowledge gaps that were filled in by the present research. 

Chapter 3, “Statistical Data”, describes the statistical data that were 

used in order to tackle the selected problems. Chapter 5, “Results and 

Discussion” presents the results of data analysis and the relevant 

discussions. Finally, the conclusions of this study in relation to the 

selected problems are brought in Chapter 6, “Conclusions”.  
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2. LITERATURE REVIEW 

This chapter offers a review of literature that led to selection of the 

subjects studied during the course of this research in addition to 

explanations about the identified knowledge gaps that were filled in by 

the present work. 

2.1 Impact hammer performance prediction 

Mechanical excavation, and drilling and blasting, are the two main 

methods of excavation in the field of tunneling. In order to choose 

between these two excavation methods, their feasibility, installation 

problems, ability to handle adverse geological conditions, total cost, and 

advance rate should be considered by the decision maker (Terezopoulos, 

1987). Even when choosing between different mechanical excavators, it 

is important to know their respective advance rates. Thus, determining 

the advance rate of the excavator is an important factor from the starting 

point of a project (Terezopoulos, 1987). 

According to Copur et al. (2012), impact hammers may be used for 

excavation in highly fractured ground with a uniaxial compressive 

strength (UCS) of less than 100 MPa. When the ground is suitable for 

the use of impact hammers, when excavating short tunnels (i.e., cross-

cuts), metro stations, or in an urban area where the use of explosives is 

prohibited by regulations, the lower capital cost can make an impact 

hammer a more appropriate choice compared to a tunnel boring machine 

(TBM) and roadheader. Their operational flexibility is another advantage 

that makes impact hammers an indispensable part of the mining industry. 

Their flexibility allows the operator to either follow the pattern of 
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irregular ore bodies or take advantage of foliations and beddings in favor 

of faster excavation (Tuncdemir, 2008). 

2.1.1 Existing performance prediction models 

A few empirical models have previously been developed for 

predicting the instantaneous breaking rate (IBR) of an impact hammer. 

Bilgin et al. (1996) proposed a model (Eqs. 2.1 and 2.2) that statistically 

related the IBR of the impact hammer to its input power (P, Hp), UCS 

(MPa), and rock quality designation (RQD, %) in a moderately good 

relationship with an R2 value of 0.63:  

 

IBR=4.24×P×(RMCI)
(-0.567) (2.1) 

RMCI=UCS×(
RQD

100
)

(2/3)

 (2.2) 

 

where RMCI is the rock mass cuttability index in MPa. 

The relationship between the IBR of the impact hammer (m3/h) and 

the N-type Schmidt hammer rebound value (SHRV) (as determined using 

the method suggested by Poole and Farmer (1980)) was investigated by 

Bilgin et al. (2002). For RQD values of 25–49%, they found a strong 

correlation (Eq. 2.3). 

 

IBR=(-1.05×SHRV)+70.1, R2=0.83 (2.3) 
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Aksoy (2009) proposed a model for predicting the IBR based on the 

machine power (P), block punch index (BPI), and geological strength 

index (GSI). The model proposed by Aksoy (2009) is valid for RQD 

values of less than 20% (or GSI < 35). Kucuk et al.( 2011) used an 

adaptive neuro-fuzzy inference system (ANFIS) to establish a model for 

predicting the IBR of an impact hammer. They incorporated the BPI, GSI, 

and P in their model. The model is applicable to rocks with a GSI value 

of less than 35 (RQD < 20%). Aksoy et al. (2011) studied the relationship 

between the IBR and the P, GSI, and BPI. They suggested two new 

prediction models for excavations in slopes and tunnels and one for both. 

Iphar (2012) demonstrated the efficiency of an artificial neural network 

(ANN) and ANFIS for predicting the performance of impact hammers. 

He constructed his models based on the SHRV and RQD values derived 

from a database with twenty-one samples that were previously generated 

by Bilgin et al. (2002). After an intensive study on forty-four different 

projects, Aksoy et al. (2013) developed a new parameter called the rock 

structure index (RSI). They found a relationship between the RSI, output 

P, and IBR of an impact hammer, with a relatively strong R2 value of 

0.70. Tumac and Hojjati (2016) investigated the effects of the UCS, RQD, 

Brazilian tensile strength (BTS), density, SHRV, shore scleroscope 

hardness (SSH), and Cerchar abrasivity index on the performance of an 

impact hammer used to excavate a metro tunnel. They concluded that the 

UCS and RQD are the two most important rock properties and can be 

used to describe the performance of an impact hammer (Eq. 2.4): 

 

IBR=(0.763×RQD
T
)+(0.649×UCST)-6.183 (2.4) 
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where IBR is the instantaneous breaking rate of the hammer in m3/h, 

and UCST and RQDT are defined as follows: 

 

UCST=45.944×UCS
-0.279 (2.5) 

RQD
T
=69.322-(14.79× ln(RQD) ) (2.6) 

 

Eq. 2.4 is applicable for rocks with UCS values of 8.9–195.6 MPa 

and RQD values of 10–60%.  

For more details regarding the existing impact hammer performance 

prediction models, please refer to Tumac and Hojjati (2016). 

2.1.2 Performance prediction model 

The present study investigated the performance of impact hammers 

in two tunneling projects in Istanbul. A relatively large number of data 

points were collected and used to investigate the effects of the properties 

of the excavated rock and machine power on the performances of the 

impact hammers. Based on the previous studies, RQD, UCS, and SHRV 

were selected as the representative intact rock/rock mass properties as 

they have been more frequently reported to have an effect on IBR. For 

machine related parameters, only P was included as it is the only machine 

related parameter that has been used by previous researches. A hybrid 

evolutionary function fitting algorithm, which combined GEP and 

particle swarm optimization, was used to establish the statistical model. 

Finally, the performance of the model was numerically tested against a 

model developed using multiple linear regression (MLR) analysis and 
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those developed by Bilgin et al. (1996) (Eqs. 2.1 and 2.2), Bilgin et al. 

(2002) (Eq. 2.3), and Tumac and Hojjati (2016) (Eq. 2.24). In comparison 

to the existing impact hammer performance prediction models, the 

statistical model suggested in the present study, either is applicable to a 

wider range of rocks, was developed based on a significantly higher 

number of data points, requires a small number of more easily obtainable 

and more commonly used input parameters, or reaches a notably higher 

accuracy level. 

2.2 Specific energy prediction  

As mentioned in the previous section, determining the advance rate 

of mechanical excavators is an important factor in choosing the 

excavation method from the early phase of feasibility study (Copur et al., 

2017; Rostami, 2011; Yetkin et al., 2016). For many types of excavation 

systems, such as TBM, roadheader, impact hammer, chain saw, surface 

miner, etc., advance rate prediction models exist (Bilgin et al., 1996; 

Comakli, 2019; Copur et al., 2011; Entacher et al., 2014; Khademi 

Hamidi et al., 2010; Ozfirat et al., 2017; Rostami, 2011; Tumac and 

Hojjati, 2016). However, estimating advance rate based on specific 

energy (SE) is considered to be a more generic and popular approach as 

it is not limited to a certain type of mechanical excavation system 

(Acaroglu et al., 2008; Balci et al., 2004; Bilgin et al., 2006, 2005; 

Comakli et al., 2014; Copur et al., 2001; Rostami, 2011; Rostami et al., 

1994; Tiryaki and Dikmen, 2006; Tumac et al., 2007; Wang et al., 2018; 

Yilmaz et al., 2015). Eqs. 2.7, 2.8, and 2.9 show the formulation for this 

approach (Rostami, 2011). 
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In Eq. 2.7, ICR is the instantaneous cutting rate (m3/h), P is the 

output power of the machine (kWh/hour), η is the machine’s efficiency 

(in percent), and SE is the specific energy (kWh/m3) (Pomeroy, 1963; 

Roxborough, 1973). 

 

ICR=
P×η

SE
 (2.7) 

 

By dividing the ICR, calculated using Eq.2.7, by cross sectional area 

of excavation (A in m2), the rate of penetration (ROP) may be estimated: 

 

ROP=
ICR

A
 (2.8) 

 

Finally, the daily advance rate (DAR) is determined using the 

following equation: 

 

DAR=ROP×MUT×Ns×H (2.9) 

 

where MUT is Machine Utilization Time and is defined as the net 

excavation time excluding the delays due to muck removal, support 

installation, etc., Ns is the number of shifts per day, and H is the number 

of working hours per shift. 



 

16 

 

2.2.1 Parameters with a significant impact on specific energy 

As it was clarified, assessment of SE for different types of rock along 

the alignment of an excavation work is of crucial importance for 

estimating the advance rate of the excavation system. Full-scale linear 

rock cutting (FSLC) experiment is the most effective and widely used 

method for determining SE (Abu Bakar et al., 2014; Abu Bakar and 

Gertsch, 2013; Balci et al., 2004; Balci, 2009; Balci and Bilgin, 2007; 

Bilgin et al., 2005, 2006, 2013; Chang et al., 2006; Cho et al., 2013; 

Copur et al., 2001, 2003; Copur, 2010; Copur et al., 2011, 2016, 2017; 

Dogruoz et al., 2016; Dogruoz and Bolukbasi, 2014; Gertsch et al., 2007; 

Ma et al., 2015; Pan et al., 2018; Xue et al., 2018). According to Bilgin 

et al. (2006), at FSLC experiment, the drag (or cutting), normal, and side 

forces acting on an unscaled cutter (disk cutter, point attack pick, etc.) 

are recorded while a linear cut, with a fixed depth of penetration, is being 

made on a large block of rock cemented in a stiff frame. At the end of 

each cut, the volume of the rock excavated by the cutter is carefully 

measured. Then, depending on the desired experiment plan, the same 

cutting process will be repeated using different values for spacing 

between the adjacent cuts and/or different values of depth of cut in order 

to find the optimum ratio of cut spacing to depth of cut at which the SE 

is minimized (Bilgin et al., 2013). For each individual pair of “depth of 

cut and cut spacing” values, the SE is determined using the following 

equation (Pomeroy, 1963; Roxborough, 1973): 

 

SE=
FC

Q
 (2.10) 
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where FC is the cutting force (kN), Q is the yield which is defined 

as the volume of rock cut in unit length of cutting (m3/km), and SE is the 

specific energy (MJ/m3).  

As the size of the cutter is the same as that of a real one, the results 

of this increasingly popular test bear minimum amount of uncertainty 

and can potentially cover anomalous aspects of rock behavior that are 

rather inexplicable by its physical and mechanical properties (Bilgin et 

al., 2013). The outcomes of the FSLC may be used to either predict the 

performance of the mechanical excavators or enhance it through 

choosing the optimum ratio of cut spacing to depth of cut (s/d) for an 

excavation work (Bilgin et al., 2013). The relation between the SE and 

s/d is commonly presented in form of the well-known graph shown in 

Figure 2-1. According to Bilgin et al. (2013), either of a too tight or a too 

wide cut spacing results in an inefficient rock cutting. With a constant 

depth of cut (d), smaller values of spacing (s) result in higher SE as the 

fragmentation process shifts from chipping towards 

grinding/overcrushing (Figure 2-1-A). While the ratio of s to d increases, 

the required SE for fragmentation decreases to an optimum point, where 

tool wear is also optimum (Figure 2-1-B). For s/d values larger than the 

optimum value, the required SE increases again due to insufficient chip 

formation (Figure 2-1-C). The significant effect of cut spacing, depth of 

cut, and s/d on SE required by point attack picks is experimentally 

verified by Copur et al. (2001), Copur et al. (2003), Yao et al. (2011), 

Copur et al. (2017), Jeong (2017), Wang et al. (2017), and Park et al. 

(2018). 

In addition to cut spacing and depth of cut, rock properties and some 
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Figure 2-1: Effect of cut spacing (s), depth of cut (d), and their ratio (s/d) on 

specific energy and cutting efficiency (adapted from Bilgin et al. (2014)). 

 

other geometrical features of the cutting system also affect SE. Copur et 

al. (2001) studied applicability of mechanical miners to production in 

Turkish mines. They used SE, determined by conducting a set of FSLC 

tests on eleven different rock types using point attack picks, to predict 

production rate (Eq.2.7). As a conclusion of their study, Copur et al. 

(2001) showed that optimum SE may be expressed as a function of UCS 

and BTS. Balci et al. (2004) investigated the relationship between rock 

properties and optimum SE. They used a collection of 23 different rock 
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types to determine the optimum SE values adopting the same approach 

as Copur et al. (2001). Balci et al. (2004) reported a moderately strong 

statistical relationship between the optimum SE and each of UCS, BTS, 

static and dynamic elasticity moduli, SHRV, and product of UCS and BTS. 

This conclusion, except for the relation between SE and product of UCS 

and BTS, was verified by another study conducted by Bilgin et al. (2006). 

Tumac et al. (2007) reported a relationship between SE and SSH. Yilmaz 

et al. (2015) found a statistical relation between a parameter called hybrid 

dynamic hardness, which is a function of rock surface hardness, and SE 

values published by Tumac et al. (2007) and Tumac (2014). Wang et al. 

(2018) investigated the effect of different factors on SE and reconfirmed 

the significant effect of UCS and BTS on SE. The research conducted by 

Park et al. (2018) also showed the effect of UCS on SE. 

Reportedly, in addition to rock properties, cut spacing, and depth of 

cut, there are certain cutter related parameters that have an effect on SE. 

For point attack picks for instance, attack angle (θattack), skew angle 

(θskew), and tip angle (θtip) may have a considerable effect on SE. See 

Figure 2-2 for the definition of those angles. 

Jeong (2017), Jeong et al. (2020), and Park et al. (2018) investigated 

the effect of attack and θskew on SE required by point attack picks using a 

relatively large set of lab-scale linear cutting tests. They concluded that 

changes in those angles can lead to significant changes in SE. Figure 2-3 

shows representative cases from those studies. 

Roepke and Voltz (1983) conducted a series of cutting tests on coal 

using point attack picks with 60° and 90° tip angles. As Figure 2-3 shows, 

for all values of depth of cut that they used during their tests, the cutter 
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with 60° tip angle consumed significantly less energy compared to the 

one with 90° tip angle. 

The main disadvantage of FSLC experiment is that collecting the 

samples used in this test is usually time consuming, costly, and 

sometimes, impossible (Balci et al., 2004; Cho et al., 2013; Copur et al., 

2017; Dursun and Kemal, 2016; Entacher et al., 2014; Kang et al., 2016; 

Yasar et al., 2015; N. Gunes Yilmaz et al., 2015). In addition, the full- 

scale linear cutting machine is an equipment that is usually not easily 

accessible (Balci et al., 2004; Wang et al., 2018; Yasar et al., 2015). In 

order to deal with this disadvantage, many researchers have suggested 

statistical prediction models that relate optimum SE values determined 

using relieved full-scale cutting test and different cutter types (i.e. point 

attack picks, disk, chisel, etc.) to properties of rock, excavation system, 

 

 

Figure 2-2: Definitions for Tip angle (θtip), Attack angle (θattack), Skew angle 

(θskew), Depth of Cut (d), and Cut Spacing (s) (Jeong, 2017)) 
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(a) 

 

(b) 

 

(c) 

Figure 2-3: The relationship between specific energy and attack angle, skew 

angle, and tip angle according to the data published by Park et al. (2018) 

(plots (a) and (b)) and Roepke and Voltz (1983) (plot (c)) 
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or the outputs of other rock cutting tests such as small-scale linear cutting. 

Considering the models developed for point attack picks, usually due to 

the limited number of FSLC tests, those models fail to include all of the 

cutting parameters that significantly contribute to the value of SE (θtip, 

θattack, θskew, penetration depth, cutter spacing, and cut spacing to depth 

of cut ratio) (Balci et al., 2004; Bilgin et al., 2006; Copur et al., 2001, 

2003, 2017; Tumac et al., 2007; Wang et al., 2018; N. Gunes Yilmaz et 

al., 2015). Although a small number of input parameters is regarded as 

an advantage for a prediction model, in this case, it limits the 

applicability of those models for roughly determining optimized cutting 

parameters at early stages of a project when FSLC test is not reasonably 

economic to be conducted yet. In addition, in the later stages of the 

project, a model that effectively describes the relation between SE and 

cutting parameters may be very useful for decreasing the number of the 

FSLC experiments that are required to find the optimum SE value.  

2.2.2 Specific energy prediction model 

The second objective of this study is to statistically predict SE 

required by point attack picks in relieved cutting mode such that it 

includes representative rock properties, i.e. UCS or BTS, in addition to 

the cutting parameters that have a significant effect on SE, i.e. 

penetration depth (d) and cut spacing (s), ratio of cut spacing to depth of 

cut (s/d), θtip, θattack, θskew. See Figure 2-1and Figure 2-2 for definitions of 

the cutting parameters. 

2.3 Forces acting on a point attack pick 

Point attack picks are widely used in rock excavation machines such 

as roadheaders, shearers, trenchers, surface miners, or continuous miners. 
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As Figure 2-4 shows, there are three orthogonal forces acting on a pick 

while it is cutting. Cutting force is the force acting opposite to the 

direction of cutting action, normal force is the force acting in the 

direction of the normal to the cutting surface, and side force is the force 

acting in a direction normal to cutting and normal force. Those forces are 

of interest for designers as they can be used to assess the required torque 

and thrust for the machine as well as the stability of the cutters and 

vibration of the drum (Park et al., 2018). Full-scale linear cutting (FSLC) 

test is the most dependable method for estimating the forces acting on 

cutters (point attack, disk, etc.) and the SE required by them. However, 

as mentioned in the previous section, the FSLC machine is not so 

common around the world. Even when the test equipment is available, 

obtaining the large samples required by FSLC test is a difficult task 

(Balci et al., 2004; Cho et al., 2013; Dursun and Kemal, 2016; Entacher 

et al., 2014; Kang et al., 2016; Yasar et al., 2015; Yilmaz et al., 2015). 

Therefore, it appeals to the designers to have some tools for estimating 

those forces at least in the preliminary stages of a project. 

2.3.1 Existing force prediction models 

The most famous theoretical models for estimation of maximum 

cutting force acting on point attack picks in unrelieved cutting mode are 

those suggested by Evans (1984) (Eq. 2.11), Göktan (1990) (Eq. 2.12), 

and Roxborough and Liu (1995) (Eq. 2.13) (Bilgin et al., 2013). However, 

as those models are developed for unrelieved cutting mode, they usually 

fail to reasonably predict forces acting on cutters in relieved mode 

(Bilgin, 1977; Bilgin et al., 2006). 
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Figure 2-4: Orthogonal forces acting on a conical pick 

 

FCP=
16πd

2
σt
2

cos2 (
θtip
2

) σc

 (2.11) 

FCP=
4πσtd

2
sin

2
(
θtip

2
⁄ +θfriction)

cos (
θtip

2
⁄ +θfriction)

 (2.12) 

FCP=
16πσcd

2
σt
2

[2σt+ (σc cos (
θtip

2
⁄ )) (

1+ tan(θfriction)

tan(θfriction 2⁄ )
)]

2
 

(2.13) 

 

where FCP is the peak cutting force, d is the depth of penetration, σt 

is the tensile strength of rock, σc is the uniaxial compressive strength of 

rock, θtip is the cutter’s tip angle, and θfriction is the friction angle between 

cutter and rock.  
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To address that issue, researchers tried to develop empirical/semi-

empirical models that can predict cutting or normal force in relieved 

cutting mode (Bilgin et al., 2006; Goktan and Gunes, 2005; Tiryaki et al., 

2010; Wang et al., 2017a; Yasar, 2020).  

Based on the results of 14 FSLC tests conducted by Tuncdemir 

(2002) and Kel (2003), Goktan and Gunes (2005) developed a semi-

empirical model for prediction of peak cutting force (Eq. 2.14). 

According to their conclusion, mean cutting force may be predicted by 

dividing the predicted peak cutting force to three (Eq. 2.15).  

 

FCP=

12πσtd
2
sin

2 [1 2⁄ (
θtip

2
⁄ +θattack)+θfriction]

cos [1 2⁄ (
θtip

2
⁄ +θattack)+θfriction]

, R2=0.83 (2.14) 

FCM=

4πσtd
2
sin

2 [1 2⁄ (
θtip

2
⁄ +θattack)+θfriction]

cos [1 2⁄ (
θtip

2
⁄ +θattack)+θfriction]

, R2=0.97 (2.15) 

 

where FCP is the peak cutting force in kN, FCM is the mean cutting 

force in kN, σt is the Brazilian tensile strength in MPa, d is the depth of 

cut in mm, θtip is the cutter’s tip angle in degree, θattack is the attack angle 

of the pick in degree, and θfriction is the friction angle between cutter and 

rock in degree (is set equal to 10° by Goktan and Gunes (2005)). 

Bilgin et al. (2006) suggested a group of equations for prediction of 

mean cutting and mean normal force using simple regression. Among 

their suggested equations, those that use UCS, BTS, and SHRV as 

predictors, are more accurate in terms of R2 (Eq. 2.16 - Eq. 2.21).  



 

26 

 

FCM d⁄ =2.347σc
0.785, R2=0.808 (2.16) 

FCM d⁄ =16.794σt
0.721, R2=0.754 (2.17) 

FCM d⁄ =3.292e0.058SH, R2=0.716 (2.18) 

FNM d⁄ =0.752σc
1.051, R2=0.817 (2.19) 

FNM d⁄ =10.687σt
0.947, R2=0.735 (2.20) 

FNM d⁄ =1.141e0.079SHRV, R2=0.744 (2.21) 

 

where FCM is the mean cutting force in kgf, FNM is the mean normal 

force in kgf, d is the depth of cut in mm, σc is the uniaxial compressive 

strength in MPa, σt is the Brazilian tensile strength in MPa, and SHRV is 

N-24 type Schmidt hammer rebound value (average of the top 10 out of 

20 values, which are the results of impacts separated by at least one 

plunger diameter). 

Tiryaki et al. (2010) used the 26 data points generated by Balci and 

Bilgin (2007) in order to develop models for prediction of mean cutting 

force. They analyzed the data using MLR, multiple non-linear regression 

(MNLR), regression trees, and ANN. Eq. 2.22 and Eq. 2.23 show the MLR 

and MNLR model developed by Tiryaki et al. (2010), respectively.  

 

FCM=-19.3+0.36d+0.04σc+0.03Edyn , R
2=0.89 (2.22) 

FCM=0.01d
1.08
σc

0.32Edyn
0.29SHRV

0.52
 , R2=0.95 (2.23) 
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where FCM is in kN, d is the depth of cut in mm, σc is the uniaxial 

compressive strength in MPa, Edyn is the dynamic elasticity modulus in 

GPa, and SHRV is the hardness determined using N24 Schmidt hammer. 

Wang et al. (2017) proposed empirical models for prediction of 

cutting force in relieved cutting mode (Eq. 2.28 – Eq. 2.29) and normal 

force in unrelieved and relieved cutting mode (Eq. 2.26 – Eq. 2.27 and 

Eq. 2.30 – Eq. 2.31) based on empirical models developed for prediction 

of cutting force in unrelieved cutting mode (Eq. 2.24 – Eq. 2.25). 

 

FCPU=

(1.0999σc+15.7017σt)sin
2 ((

θtip
2

⁄ +θattack) 2⁄ + θfriction 3⁄ )

cos ((
θtip

2
⁄ +θattack) 2⁄ + θfriction 3⁄ )

d
2
+4562, R2=0.82 (2.24) 

FCMU=

(0.3955σc+5.6468σt)sin
2 ((

θtip
2

⁄ +θattack) 2⁄ + θfriction 3⁄ )

cos ((
θtip

2
⁄ +θattack) 2⁄ + θfriction 3⁄ )

d
2
+1581, R2=0.85 (2.25) 

FNPU= {
0.336FCPUσc

0.234, R2=0.67

0.56FCPUe
0.234σt , R2=0.70

 (2.26) 

FNMU= {
0.313FCMUσc

0.285, R2=0.67

0.585FCMUe
0.092σt , R2=0.71

 (2.27) 

FCPR=0.779FCPU, R
2=0.73 (2.28) 

FCMR=0.779FCMU, R
2=0.70 (2.29) 

FNPR= {
0.316FCPRσc

0.224, R2=0.69

0.524FCPRe
0.069σt, R2=0.65

 (2.30) 

FNMR={
0.311FCMRσc

0.268, R2=0.70

0.561FCMRe
0.085σt , R2=0.71

 (2.31) 

 

where FCPU is the peak cutting force in unrelieved cutting mode in 

kN, FCMU is the mean cutting force in unrelieved cutting mode in kN, 
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FNPU is the peak normal force in unrelieved cutting mode in kN, FNMU is 

the mean normal force in unrelieved cutting mode in kN, FCPR is the peak 

cutting force in relieved cutting mode in kN, FCMR is the mean cutting 

force in relieved cutting mode in kN, FNPR is the peak normal force in 

relieved cutting mode in kN, FNMR is the mean normal force in relieved 

cutting mode in kN, σc is the uniaxial compressive strength in MPa, σt is 

the Brazilian tensile strength in MPa, θtip is the cutter’s tip angle in 

degree, θattack is the attack angle of the pick in degree, and θfriction is the 

friction angle between cutter and rock in degree. 

Yasar (2020) proposed a model for prediction of cutting force in 

relieved cutting mode (Eq. 2.32). He concluded that the cutting force in 

relieved cutting mode is equal to the calculated cutting force for 

unrelieved cutting mode multiplied by 0.72. He also suggested that the 

maximum cutting force in each cutting mode is equal to 2.45 times the 

mean cutting force in the same cutting mode. 

 

FC=kkrεdσc

sin
1
2

(
π
2
-α)

1- sin
1
2

(
π
2
-α)
e-0.054β (2.32) 

k=1 for mean cutting force and k=2.45 for maximum cutting force 

kr=1 for unrelieved cutting and kr=0.72 for relieved cutting 

ε=6.36 for σc σt⁄ <10 and ε=7.24 for σc σt⁄ >10 

α=
π

2
-(θattack+

θtip

2
)=rake angle and β=back clearance angle=θattack-

θtip

2
 

 

 

where FC is cutting force in N, σc is the uniaxial compressive 

strength in MPa, σt is the Brazilian tensile strength in MPa, θtip is the 
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cutter’s tip angle in degree, and θattack is the attack angle of the pick in 

degree.  

2.3.2 Parameters with a significant impact on forces 

According to the previously published prediction models, UCS, BTS, 

depth of penetration, cutter’s tip angle, attack angle of the cutter, and 

friction angle between cutter and rock may have a significant effect on 

normal and cutting force acting on a conical pick in relieved cutting 

mode. However, none of them reflects the effect of cut spacing (s).  

Park et al. (2018) showed that “s” has a significant effect on peak 

cutting force, mean cutting force, peak normal force, and mean normal 

force. Effect of “s” on mean and peak side force was previously shown 

by Jeong (2017) (Figure 2-5). In addition to “s”, the models previously 

developed by other researchers do not consider the effect of θskew on 

cutting and normal force. The significant effect of θskew on cutting, 

normal, and side force were previously shown by Park et al. (2018) and 

Jeong et al. (2020). 

 

 

Figure 2-5: Representative cases showing effect of cut spacing on mean and 

peak side force according to Jeong (2017) 
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It should be added that, to the extent of authors’ knowledge, there 

are currently no prediction models for either peak or mean side force 

acting on a point attack pick. 

2.3.3 Forces prediction models 

As the third objective of this study, an effort was made in order to 

find empirical prediction models for average and maximum values of 

forces (cutting, normal, and side) acting on a point attack pick such that 

they can accommodate representative rock properties such as UCS or 

BTS as well as all of the previously mentioned important machine-related 

parameters, i.e., d, s, θtip, θattack, and θskew. 
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3. STATISTICAL DATA 

In order to solve the problems identified during the survey of 

literature, statistical data were collected. The following sections provide 

a description of the data used to tackle each of the problems defined in 

the previous chapter. 

3.1 Impact hammer performance 

The database used in this study was a combination of the data 

collected during the construction of two metro tunnels in Istanbul, 

namely Levent-Hisarustu tunnel and Uskudar-Cekmekoy tunnel. 

3.1.1 Levent-Hisarustu tunnel 

Located in European side of Istanbul, the 3,104 m long underground 

mini-metro tunnel connects Levent station in Yenikapi-Haciosman 

metro line to Hisarustu in Asiyan neighborhood. The studied area is 

located in Trakya Formation of the Carboniferous age. Fine- to coarse-

grained strongly fractured mudstone, laminated and fractured siltstone, 

shale, sandstone, and conglomerate are the constituents of the Trakya 

formation. In addition, presence of diabase and andesite dykes was 

evident through driving the tunnel. According to Bilgin et al. (2002), 

RQD values of the formation vary between 0% to 75%. According to 

Tuncdemir (2008), in Trakya Formation, uniaxial compressive strength 

(UCS), elasticity modulus, dry specific gravity, and porosity range from 

22.1 to 59.2 MPa, 6.63 GPa to 18.5 GPa, 2.49 to 2.75 g/cm3, and 2.9 to 

34.71% in turn.  

The single tracked tunnel has a 34.72 m2 cross section and was 

excavated in two sequences based on New Austrian Tunneling Method 
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(NATM). The upper bench, with cross sectional area of 27.3 m2, was 

excavated 25-30 m ahead of the 7.42 m2 lower bench. To excavate the 

tunnel, a JCB excavator matched with an MTB 120 hydraulic hammer 

was used. Table 3-1 shows the technical features of the hydraulic 

hammer. 

Sixty zones of site investigations were defined along the tunnel 

alignment. RQD was chosen to be the representative of the rock mass 

properties. RQD values were carefully recorded for the defined zones as 

the excavation was progressing. As suggested by Ulusay and Hudson 

(2007), volumetric joint count (Jv) was used for determination of RQD. 

 

Table 3-1: The technical features of the hydraulic hammer used to construct 

Levent-Hisarustu metro line. 

Specifications Values 

Operating weight (kg) 1200 

Impact energy (J) 1880 

Operating pressure (bar) 135 

Maximum pressure for safety (bar) 175 – 185 

Oil flow (l/min) 70 – 130 

Back pressure (bar) 10 

Hammer diameter (mm) 110 

Accumulator pressure (bar) 40 

Blow frequency (bpm) 400/700 

Machine’s input power (Hp) 30 
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In addition, for each individual zone, machine performance was 

recorded. Sandstone with UCS values varying from 68.6 to 145 MPa and 

RQD of 40% to 60% was the dominant rock (60%) encountered along 

the tunnel alignment. Siltstone with UCS of 45.8 to 123.3 MPa and RQD 

values of 38%-44% occurred in 20% of the tunnel alignment. The 

remaining 20% was equally divided between diabase (158.7 MPa≤ UCS 

≤ 195.6 MPa, 45% ≤ RQD ≤ 60%) and mudstone and shale (8.9 MPa≤ 

UCS ≤ 40.1 MPa, 10% ≤ RQD ≤ 40%). 

From each investigation zone, rock samples were collected and 

values of UCS, Schmidt hammer rebound values (SHRV) were 

determined. The SHRV values were determined using an L-type hammer 

and the method suggested by Fowell and McFeat-Smith (1976). UCS 

values were measured using ISRM suggested standards (Ulusay and 

Hudson, 2007). Table 3-4 shows the descriptive statistics of the collected 

data. 

3.1.2 Uskudar-Cekmekoy tunnel 

The 50.286 km long Uskudar-Cekmekoy tunnel is located on the 

Asian side of Istanbul and stretches between the Uskudar and Cekmekoy 

districts. A 13.366 km section of the tunnel with a cross-sectional area of 

75.6 m2 (59.79 m2 upper bench and 15.81 m2 lower bench) was built 

using the NATM. Table 3-2 lists the average properties of the rock faced 

along the alignment of the tunnel. 

A Rammer BR 2577 hydraulic hammer mounted on a CAT 323 DL2 

carrier was used to excavate the tunnel (Figure 3-1). Table 3-3 lists the 

general specifications of the system used for the excavation. 
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Table 3-2: General characteristics of major rock types excavated along 

Uskudar-Cekmekoy metro tunnel 

Geological 

Formation 

Rock Type and its 

Percentage along 

the Tunnel 

Alignment 

Unit 

Weight 

(kN/m3) 

Poisson’s 

Ratio 

Internal 

Friction 

Angle 

(Degree) 

Cohesion 

(MPa) 

Maximum 

Uniaxial 

Compressive 

Strength (MPa) 

Elasticity 

Modulus 

(GPa) 

Kartal Shale, 29.9% 26.2 0.28 43.1 18.6 33.02 7.4 

Kurtkoy 

Sandstone and 

Conglomerate, 

29.7% 

26.9 0.29 43.1 19.5 53.33 10.31 

Aydos 
Quartzite-

Andesite, 1.6% 
26.1 0.28 54.2 - 73.03 12.64 

Dolayoba Limestone, 17.5% 27 0.3 49.4 10.6 42.96 15.82 

 

 

Figure 3-1: System used to excavate Uskudar-Cekmekoy tunnel 
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Table 3-3: Technical features of excavation system used in construction of 

Uskudar-Cekmekoy tunnel 

Specifications Values 

Operating weight (kg) 1600 

Impact energy (J) 2500 

Operating pressure (bar) 155 

Maximum pressure for safety (bar) 175 

Oil flow (l/min) 120–130 

Back pressure (bar) 12 

Hammer diameter (mm) 122 

Oil temperature (°C) -20 to +80 

Accumulator pressure (bar) 40 

Maximum blow frequency (bpm) 540–770 

Machine’s input power (kW) 48 

 

The portion of the Uskudar-Cekmekoy tunnel that was excavated 

using a hydraulic hammer was divided into 25 sections. The performance 

of the machine for the upper bench excavation, was carefully recorded 

for each section, and the RQD, SHRV, and UCS value associated with the 

section were measured. UCS tests were conducted according to ISRM 

standards (Ulusay and Hudson, 2007). The SHRV values were 

determined using an L-type hammer and the method suggested by Fowell 

and McFeat-Smith (1976). The RQD values were determined based on 

the discontinuity spacing according to the method suggested by Brown 

(1981). After combining the collected data with the data from the Levent-

Hisarustu tunneling project, a database consisting of 85 points was  
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Table 3-4: Descriptive statistics of data used in this study for development of 

a performance prediction model for impact hammer 

 Measurements/Records 

Number 

of 

Records 

Minimum Maximum Mean 
Std. 

Deviation 

Levent-

Hisarustu 
Metro 

Tunnel 

UCS 60 8.90 195.60 69.04 44.46 

RQD 60 10.00 60.00 39.07 9.89 

SHRV 60 11 68 45.77 11.93 

P 60 22.38 22.38 22.38 0.00 

IBR 60 8.20 35.00 15.73 5.35 

Uskudar-

Cekmekoy 

Metro 

Tunnel 

UCS 25 12.30 74.00 54.70 14.91 

RQD 25 25.00 65.00 41.74 10.83 

SHRV 25 37 68 54.08 9.28 

P 25 48.00 48.00 48.00 0.00 

IBR 25 7.97 29.90 16.89 5.96 

Overall 

UCS 85 8.90 195.60 64.37 38.85 

RQD 85 10.00 65.00 39.46 10.29 

SHRV 85 11 68 48.21 11.79 

P 85 22.38 48.00 29.91 11.74 

IBR 85 7.97 35 16.28 5.72 

UCS: Uniaxial Compressive Strength (MPa); RQD: Rock Quality Designation; SHRV: Schmidt 

Hammer Rebound Value; P: Input Power of the Hydraulic Hammer (kW); IBR: Instantaneous Breaking 

Rate (m3/h) 

 

established. The data was used to find the relation between IBR, UCS, 

SHRV, RQD, and machine power. Table 3-4 lists the descriptive statistics 

of the established database. It should be mentioned that the IBR values 

were calculated based on the net breaking time only. In other words, the 
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IBR in Table 3-4 indicates the amount of rock broken by the machine (m3) 

in 1 hour of machine utilization time, regardless of the time spent for 

support installation, muck removal, etc. 

3.2 Specific energy required by point attack picks 

Many researchers have shared the results of their experimental 

studies on specific energy (SE) required by point attack picks in relieved 

mode (see Figure 2-1 for the definition of relieved cutting mode) (Balci 

et al., 2004; Copur et al., 2003; Jeong, 2017; Park et al., 2018; Wang et 

al., 2018). However, in order to merge the data from different sources, 

their compatibility should be checked. According to Copur et al. (2017), 

the results of the full-scale experiment may be significantly affected by 

merely a small difference in factors such as cutting parameters, cutter 

geometry, cutting pattern, rock surface condition, lateral confinement, or 

moisture conditions. Therefore, after a detailed investigation on the test 

procedures used to generate each source of information, the data 

published by Jeong (2017) and Park et al. (2018) were selected to form 

the database used in the present study (Table 3-5). 

Jeong (2017) and Park et al. (2018) conducted their tests using 

point attack picks and the same cutting pattern (single spiral) on dry 

samples with the same size, no lateral confinement, and with 

conditioned surface. Figure 3-2 shows schematic drawings of the 

cutting tools used by Jeong (2017) and Park et al. (2018).  

Both Jeong (2017) and Park et al. (2018) used lab-scale linear 

cutting machine (LSLCM). Essentially, LSLCM is a scaled down 

version of the well-known full-scale linear cutting machine (FSLCM). 
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Figure 3-2: Conical picks used by Park et al. (2018) (schematic drawing ( a )) 

and Jeong (2017) (schematic drawing ( b )) 

 

Table 3-5: Descriptive statistics for the data used in this study for 

development of a prediction model for specific energy required by point 

attack picks 

Measurements 
Number of 

Records 
Minimum Maximum Mean 

Std. 

Deviation 

SE 186 12.42 106.80 38.60 17.61 

UCS* 186 21.00 64.00 45.13 18.40 

BTS* 186 1.80 4.70 3.76 1.25 

d 186 4.00 11.00 6.33 2.15 

s 186 4.00 44.00 18.55 8.02 

s/d 186 1.00 7.00 2.97 1.01 

θtip 186 70.00 75.00 72.50 2.51 

θattack 186 45.00 60.00 47.42 5.31 

θskew 186 -20.0 20.00 0.00 7.95 

SE: Specific Energy (MJ/m3); UCS: Uniaxial Compressive Strength (MPa); BTS: Brazilian 

Tensile Strength (MPa); d: Depth of Cut (mm); s: Cut Spacing (mm); θtip: Tip Angle 

(Degree); θattack: Attack Angle (Degree); θskew: Skew Angle (Degree) 
* The tests were conducted based on ISRM standard testing methods (Ulusay and Hudson, 

2007). 
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However, LSLCM is capable of applying the same range of force 

magnitude on a conical pick as FSLCM does (Kang et al., 2016). For 

more detailed information on LSLCM, please refer to Kang et al. (2016). 

The specimens used by Jeong (2017) were made of Linyi sandstone 

(73 out of 102 tests) and concrete. The Linyi sandstone is originated from 

Shandong province in China. It is a homogeneous and fine grained rock 

with clastic structure and negligible anisotropy (Jeong, 2017; Yang and 

Jing, 2011). Table 3-6 shows the mechanical properties of the Linyi 

sandstone used by Jeong (2017) and cement mortar samples used by Park 

et al. (2018). 

The established database was used to find the relation between SE 

and uniaxial compressive strength (UCS), Brazilian tensile strength 

(BTS), depth of cut (d), cut spacing (s), ratio of cut spacing to depth of 

cut (s/d), cutter tip angle (θtip), attack angle (θattack), and skew angle 

(θskew). BTS values for the data published by Park et al. (2018) were 

measured during the course of the present study using the same samples 

used by Park et al. (2018) (Table 3-7).  

It should be added that Copur et al. (2003), Balci et al. (2004), Bilgin 

et al. (2006), Tumac et al. (2007), and Wang et al. (2018) have also 

generously shared the results of their full-scale linear cutting tests in 

relieved cutting mode. Since, according to Copur et al. (2017), surface 

conditioning can have a very important role in determination of SE using 

linear cutting test, those results could not be merged with the database 

used in this study as the data published in those sources are comprised of 

the tests conducted on unconditioned rock surface (H. Copur and X. 

Wang, by personal communication, 2019). The data published by Copur 
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et al. (2003), Balci et al. (2004), and Wang et al. (2018) was investigated 

by Hojjati et al. (2018). However, as the investigated data included only 

one value for each of θtip, θattack, and θskew, the study conducted by 

 

Table 3-6: Mechanical properties of Linyi sandstone and Cement Mortar 

Samples (Jeong, 2017; Park et al., 2018) 

Properties 

Jeong (2017) Park et al. (2018) 

Linyi 

Sandstone 
Concrete 

Cement 

Mortar 

Sample I 

Cement 

Mortar 

Sample II 

Cement 

Mortar 

Sample III 

Density 

(g/cm3) 
2.4 2.3 1.9 2.04 2.1 

Porosity (%) 8.2 - - - - 

UCS (MPa) 64 21 21 41 57 

BTS (MPa) 4.7 2.1 1.84 4.31 4.72 

Young’s 

Modulus 

(GPa) 

10.2 21.9 - - - 

Poisson’s 

Ratio 
0.2 0.17 - - - 

Schmidt 

Hammer 

Rebound 

Hardness* 

57.3 - - - - 

Shore 

Hardness* 
43.5 - - - - 

P-Wave 

Velocity (m/s) 
2317 - - - - 

S-Wave 

Velocity (m/s) 
1531 - - - - 

UCS: Uniaxial Compressive Strength; BTS: Brazilian Tensile Strength. 

*Schmidt hammer rebound and Shore hardness values were obtained by averaging the 

upper 10 values from 20 tests performed 
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Table 3-7: BTS values for the samples used by Park et al. (2018) 

Sample UCS (MPa) BTS (MPa) 

Low Strength 21.00 1.84 

Moderate Strength 41.00 4.31 

Medium Strength 57.00 4.72 

UCS: Uniaxial Compressive Strength; BTS: Brazilian Tensile Strength 

 

Hojjati et al. (2018) could not reflect the effect of variations of those 

angles on SE. The significant effect of θtip, θattack, and θskew on SE was 

previously shown in Figure 2-3. 

3.3 Forces applied on point attack picks 

The results of the same linear rock cutting tests, described in the 

previous section and conducted by Park et al. (2018) and Jeong (2017), 

were merged to establish the database. Overall, there are 195 sets of 

results. In each test, mean and peak values of cutting and normal force 

were reported. The mean and peak values of side force have been 

reported for 144 tests. Table 3-8 shows the descriptive statistics of the 

compiled database. 

The established database was used in order to develop prediction 

models for average and maximum values of orthogonal forces acting on 

a point attack pick, defined by Figure 2-4, such that they can 

accommodate representative rock properties such as UCS or BTS as well 

as all of the machine-related parameters (i.e., d, s, θtip, θattack, and θskew) 

that have an impact on those forces. 
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Table 3-8: Descriptive statistics of the data used in this study for development 

of models for prediction of cutting, normal, and side force acting on a point 

attack pick 

  
Number of 

Records 
Minimum Maximum Mean 

Std. 

Deviation 

UCS (MPa) 195 21.00 64.00 46.00 18.40 

BTS (MPa) 195 1.84 4.72 3.80 1.24 

d (mm) 195 4.00 11.00 6.31 2.11 

s (mm) 195 4.00 44.00 18.44 8.01 

s/d 195 1.00 7.00 2.96 1.02 

θtip (Degree) 195 70.00 75.00 72.38 2.50 

θattack (Degree) 195 35.00 60.00 46.85 5.80 

θskew (Degree) 195 -20.00 20.00 0.00 7.77 

Mean Side Force (kN) 144 0.12 6.58 1.23 1.03 

Mean Cutting Force 

(kN) 
195 0.45 18.38 4.35 3.67 

Mean Normal Force 

(kN) 
195 0.45 12.96 3.73 2.72 

Peak Side Force (kN) 144 0.37 16.49 3.38 3.12 

Peak Cutting Force 

(kN) 
195 1.27 45.26 11.40 9.52 

Peak Normal Force 

(kN) 
195 0.58 27.90 8.87 7.55 

UCS: Uniaxial Compressive Strength; BTS: Brazilian Tensile Strength; d: depth of 

penetration; s: cut spacing; θtip: Tip Angle; θattack: Attack Angle; θskew: Skew Angle 
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4. DATA ANALYSIS METHOD 

As it was explained in Chapter 1, a supervised machine learning 

method had to be selected for analysis of statistical data. Artificial Neural 

Networks (ANN) and Symbolic Regression Methods (SRMs) are the two 

branches of machine learning methods that are capable of performing 

that task (Diveev and Shmalko, 2021; Mitchell, 1997). However, the fact 

that ANN does not reveal any information about the function or its 

properties made it a less desirable choice in comparison to SRMs (Diveev 

and Shmalko, 2021). In contrast to ANN, SRMs are machine learning 

techniques that are designed for generating mathematical functions and 

investigating the space of those equations with the objective of finding 

the function that fits best on the given data (Diveev and Shmalko, 2021). 

Genetic Programming (GP), Gene Expression Programming (GEP), 

Grammatical Evolution, Analytic Programming, and Parse Matrix 

Evolution are instances of SRMs (Diveev and Shmalko, 2021; Ferreira, 

2006). Customarily, symbolic regression models stem from GP and 

inherit its features to different extents. GP was originally created by 

Cramer (1985) and evolved by John R. Koza (1992). In brief, GP is an 

“evolutionary computation technique/evolutionary algorithm” that 

stochastically evolves a randomly generated population of “encoded 

individuals/computer programs/candidate solutions” through 

generations with the objective of improving their “fitness/prediction 

accuracy”. Figure 4-1 shows the basic flow chart of GP. 

As GP is an inherently random process, its results may not be 

guaranteed to be always fruitful. On the other hand, the very same 

attribute helps GP to avoid quagmires during its quest in the space of 
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candidate solutions. As a result, like the evolution process in nature, it 

has successfully generated fresh and amazing solutions to numerous 

problems in real world (Poli et al., 2008).  

 

 

Figure 4-1: Basic flow chart of Genetic Programming (GP) (adapted from 

Poli et al. (2008)) 

 

In essence, other SR methods have been developed with the 

objective of dealing with shortcomings of GP. In the case of GEP, as it 

is not prone to generating syntactically incorrect genes, it benefits from 

more types of genetic operators compared to GP (see section 4.1.1, 

“Genetic Operators”). Thus, the “encoded individuals/computer 

programs/candidate solutions” generated by GEP can evolve in a more 

efficient way (Ferreira, 2006). Based on the mentioned grounds, GEP 

was selected for data analysis in this study. Section 4.1 provides a more 

comprehensive explanation of GEP.  

The candidate solutions generated by GEP may contain numerical 

constants. The basic GEP algorithm can only adjust those constants 

randomly. In such a situation, use of an optimization algorithm may be 

helpful. Therefore, Particle Swarm Optimization (PSO) was used in 
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order to further optimize the numerical constants in the solutions 

generated by GEP. PSO is categorized as an evolutionary computation 

technique and is inspired by movements of swarms such as a flock of 

birds or a school of fish that are in search of food or getting away from a 

threat, etc. (Jones, 2007; J Kennedy and Eberhart, 1995). In this 

algorithm, a swarm of “particles/potential solutions” searches space of 

solutions in a guided manner. Section 4.2. provides a more detailed 

explanation of PSO.  

4.1 Gene Expression Programming (GEP) 

GEP is a “Individual/computer program/chromosomes” generating 

“evolutionary algorithm/evolutionary computation technique” that can 

generate a population of chromosomes/individuals which are interpreted 

to mathematical equations and are visually expressed as tree structures. 

Chromosomes/Individuals have the ability to evolve through generations 

such that the best fitness for each generation is at least as good as that of 

the previous generation. For a function fitting problem, the “fitness” can 

be defined as one, or a weighted combination of, mean squared error 

(MSE), root mean squared error (RMSE), correlation coefficient (R), 

determination coefficient (R2), etc.  

Each chromosome is consisted of a number of genes that are 

connected to each other by linking functions, which can be any 

mathematical operator such as addition, division, etc. Each gene has a 

head and a tail part. While the head can be constructed by a combination 

of members of functions set and terminals set, the tail part can only be 

consisted of terminals set subdivisions. The tail part, accompanied by the 

terminals in the head itself, feeds the functions in the head. Functions 
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and terminals sets are sets of mathematical operators, such as + or ×, and 

matrices of numerical values, respectively. The functions set may be 

chosen like the following: 

 

Functions Set= {+, ×, -, ÷, Power, ln, Exp, Sin, Cos, Tan} 

 

where “ln(x)” is the natural logarithm of the variable “x” and “Power” 

and “Exp” are defined as follows: 

 

Power (x)=AxB, A and B are real numbers (4.1) 

Exp(x)=CeDx, C and D are real numbers (4.2) 

 

The terminals set may be chosen like the following: 

 

Terminals Set= {a, b, c, d, e, Random Numbers} 

 

where a, b, c, d, and e are N × 1 matrices containing the values 

recorded/measured for parameters a, b, c, d, and e, respectively. Random 

Numbers is also an N × 1 matrix the elements of which are a repeated 

numerical value. Although GEP is theoretically capable of generating 

some random integers in the genes’ outputs (please refer to Figure 4-3, 

Gene 1’s output), Random Numbers may be added to the terminals set in 

order to provide the algorithm with more freedom for creating 
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models/genes with a wide range of numerical constants including integer 

and non-integer numbers. 

The number of the units that form the tail part is determined based 

on the number of the units in the head, which is defined by the user. 

Figure 4-2 shows a chromosome with two genes. Figure 4-3 shows the 

expression tree for the chromosome’s first gene, and its mathematical 

expression. In the expression tree, each circle is called a node. 

Similar to what happens in the nature, each generation, except the 

first one, is created by the children of the individuals of the previous 

generation. The individuals forming the first generation are generated 

randomly. Within each generation, the individuals are given the 

opportunity of reproduction by means of genetic operators and with a 

chance proportional to their fitness.  

4.1.1 Genetic Operators 

The evolution procedure is carried out by means of genetic 

operator(s), which can be one, or a combination of, mutation, inversion, 

different types of transposition, and different types of recombination. 

 

 

Figure 4-2: A schematic view of a chromosome with two genes 

+ × ÷ a a a a × ÷ a a a a a

Gene 1 Gene 2

Head Tail Head Tail

“a” is a set of numerical values 

Functions Set={+,×, -, ÷}

Terminals Set={a}

Head Length= Arbitrarily Defined; Head length is 3 for this example.

n ax= number of arguments of the function with the most arguments; n ax
is 2 for this example.

Tail Length= (Head Length×(n ax 1))+1; Tail length is ((3×(2-1))+1=4 for 
this example

Chromosome
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Figure 4-3: Expression trees and mathematical expressions of the genes 

shown in Figure 4-2; “a” is a numerical value. 

 

Evolution continues for a certain number of generations or until the 

desired fitness is reached (Ferreira, 2006). 

4.1.1.1 Mutation 

Depending on the mutation rate defined by the user, mutations are 

free to happen at any randomly selected unit across a gene. The resulting 

gene’s head can be consisted of functions and/or terminals while its tail 

is exclusively made of terminals, otherwise structurally incorrect 

chromosomes may be produced (Figure 4-4). Although it can take any 

value between zero to one, the mutation rate is usually set such that 

mutation happens for two units in each chromosome. It should be noted 
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that mutation occurs within all of the individuals in the new generation 

(Ferreira, 2006). 

 

 

Figure 4-4: An example for mutation in a gene 

 

4.1.1.2 Inversion 

Through the inversion process, a randomly selected sequence from 

head of a randomly selected gene is inverted. It should be noticed that 

the start and end points of the sequence are randomly selected within 

gene’s head Inversion is restricted to only the head part of the genes. 

Figure 4-5 shows an example of inversion operation in a gene. 

 

 

Figure 4-5: An example of inversion operation in a gene 
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This restriction helps the structural form of the chromosome to be 

maintained. In other words, by limiting inversion to the head, there will 

be no risk of having a function at the tail of a gene. Across each 

generation, the number of the chromosomes that undergo inversion 

depends on the arbitrarily defined inversion rate (Ferreira, 2006). 

4.1.1.3 Transposition and Insertion Elements 

Transposition operator, in simple words, randomly selects a piece of 

a gene and relocates it to a randomly selected place across the same 

chromosome. Three different types of transposable elements are defined 

in GEP algorithm, namely “Insertion Sequence (IS) elements”, “Root 

Insertion Sequence (RIS) elements”, and “Transposable Genes”. The 

number of times that each of the different types of transposition are 

repeated in each iteration depends on the different types of transposition 

rates defined by the user (Ferreira, 2006). 

Insertion Sequence (IS) elements 

The first type is “IS elements”. This type of transposition involves 

randomly selecting the start and ending positions (both positions can be 

either in head or tail of the gene) of a piece of a randomly selected gene 

and inserting that piece into the head of the same gene (except the first 

unit of the head or the root). Figure 4-6 shows an example for 

transposition of insertion sequence elements.  

Root Insertion Sequence (RIS) elements 

The second type, “RIS elements”, is the same as the first with two 

differences. The selected piece of gene in RIS elements type, unlike in IS 
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elements, has to begin with a function and is inserted to the root of the 

same gene (Figure 4-7).  

 

 

Figure 4-6: An example for transposition of insertion sequence elements. 

Please note that the part highlighted in light grey is the selected insertion 

sequence and the part highlighted in dark grey is removed at the end of the 

head. 

 

 

Figure 4-7: An example for transposition of root insertion sequence elements. 

Please note that the part highlighted in light grey is the selected sequence and 

the part highlighted in dark grey is removed at the end of the head. 

 

Transposable Genes 

The third type, gene transposition, works in a larger scale than the 

other types. Gene transposition randomly selects a gene in a randomly 
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selected chromosome and inserts it to the place of the first gene in that 

chromosome. Obviously, this operator makes a difference only for non-

commutative linking functions. Figure 4-8 shows the effect of this 

operator on a chromosome with two genes and “subtraction” as the 

linking function. 

 

 

Figure 4-8: An example for gene transposition in a 2-gene chromosome with 

“subtraction” as the linking function. 

 

4.1.1.4 Recombination 

One-point, two-point, and gene recombination are the three different 

types of recombination that GEP algorithm uses as genetic operators. All 

of them involve randomly selecting two different chromosomes that are 

supposed to exchange some portions with each other. The number of 

times that each of the different types of recombination are repeated in 

each iteration depends on the different types of recombination rates 

defined by the user (Ferreira, 2006). 
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One-Point Recombination 

One-point recombination is carried out by randomly selecting a 

position and exchanging the parts of two randomly selected 

chromosomes that start at that randomly selected position and end at the 

end of the selected chromosomes. In this operation, two chromosomes 

give birth to two children that usually are significantly different from 

each other and their parents. Figure 4-9 shows an example of one-point 

recombination. 

 

 

Figure 4-9: An example of one-point recombination. The parts highlighted in 

grey are exchanged between chromosomes. 

 

Two-Point Recombination 

In two-point recombination, two positions are randomly selected 

along two randomly selected chromosomes and the portions limited to 

those two points are exchanged (Figure 4-10). Usually, two-point 

recombination causes more dramatic changes in chromosomes than one-

point recombination.  
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Gene Recombination 

In gene recombination, whole randomly selected genes are 

exchanged between the two randomly selected chromosomes. The traded 

genes do not change their places in the chromosome. Figure 4-11 shows 

an example of gene recombination. 

 

 

Figure 4-10: An example of two-point recombination. The parts highlighted in 

grey are exchanged between chromosomes. 

 

 

Figure 4-11: An example of gene recombination. The genes highlighted in 

grey are exchanged between chromosomes. 
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4.1.2 The Basic Flowchart of GEP algorithm 

Figure 4-12 shows the basic flowchart for the basic GEP algorithm. 

  

 

Figure 4-12: The standard flowchart of GEP algorithm (Ferreira, 2006) 

Create Chromosomes of the Initial Population

Express Chromosomes

Execute Each Chromosome

Evaluate Fitness

Best of Generation?

Selection According to Fitness

Replication

Mutation

Inversion

Transposition (three types)

Recombination (three types)

New Generation

Terminate

Iterate

Yes

No

Termination Criteria is Satisfied?

(The Minimum MSE for the Population is 

equal to or Less than the Desired MSE? 
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4.2 Particle Swarm Optimization (PSO) 

The presence of parameters such as A, B, C, D (Eqs. 4.1 and 4.2) and 

random numbers in genes creates an opportunity for application of an 

optimization method, which will lead to a more efficient evolution 

process for GEP. To take that opportunity, Particle Swarm Optimization 

(PSO) method was applied wherever those parameters appeared in a 

chromosome that had already reached an acceptable level of fitness using 

only GEP. 

PSO is categorized as an evolutionary computation technique and is 

inspired by movements of swarms such as a flock of birds or a school of 

fish that are in search of food or getting away from a threat, etc. (Jones, 

2007; J Kennedy and Eberhart, 1995). In this algorithm, a swarm of 

“particles/potential solutions” is randomly distributed over a search 

space with number of dimensions equal to the number of optimizable 

parameters, e.g. A-B plane in Figure 4-13 as the search space if the 

chromosome contains only one “Power” function (Eq. 4.1). Each 

member of the swarm is regarded as a candidate solution for the 

optimization problem at hand.  

Then, an iteration process starts. Through the process, the particles 

move over the search space with velocities defined for each of them 

according to their fitness. The search space is explored until the 

satisfactory solution is found or the maximum number of iterations is 

reached. Depending on the user’s preference, “fitness” can be defined as 

one, or a weighted combination of, MSE, RMSE, R, R2, etc. associated 

with each swarm member. The velocity of each particle is updated with 

reference to its velocity in the previous iteration, the position of the best  
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Figure 4-13: Random distribution of particles or candidate solutions (P1-P10) 

over A-B plane 

 

particle in the population (the bird closest to the source of food or the 

particle with the highest fitness), and the particle’s best position 

corresponding to its best fitness through iterations (the closest each bird 

has ever been to the source of food through its search for the food or the 

highest fitness the particle has ever experienced). In other words, in each 

iteration, a particle steers towards a direction that makes it closer to the 

best that it has ever experienced and the best particle across all iterations, 

which may be called the globally best particle. For particle P(x,y) on the 

x-y surface, the updated velocity is defined by Eq. 4.3: 
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Vupdated=(Inertia×V)+(rand ()×LRPI×[P(xParticle’s best,yParticle’s best)-P(x,y)])+ 

(rand ()×LRSI× [P (xGlobally Best Particle,yGlobally Best Particle) -P(x,y)]) 

(4.3) 

 

where Vupdated is the updated particle’s velocity for the current 

iteration, V is the particle’s velocity in the previous iteration, Inertia is a 

user-defined quantity that adjusts the extent of V’s impact on Vupdated and 

is usually set to a number in the interval [0.9,1.2], rand() is a random 

number in the interval [0,1], LRPI is the Learning Rate for the Personal 

Impact and a quantitative parameter with a recommended value of 

2, LRSI is the Learning Rate for Social Impact and is also a quantitative 

parameter with recommended value of 2 (James Kennedy and Eberhart, 

1995; Shi and Eberhart, 1998). When the updated velocity for a particle 

is defined, its location in the search space will be updated according to 

the following equation: 

 

Pupdated=P+Vupdated (4.4) 

 

where Pupdated is the updated position of the particle based on its 

previous position (P) and its updated velocity (Vupdated). 

The flowchart for PSO is presented in Figure 4-14. 

4.3 GEP-PSO algorithm 

In the current research, a customized combination of the GEP and 

PSO algorithms was used to solve problems in the field of mechanical  
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Figure 4-14: Standard flowchart for Particle Swarm Optimization (PSO) 

algorithm 

 

excavation. The evolution of the GEP continued until it found at least 

one equation or chromosome with an acceptable MSE value, which was 

arbitrarily defined to be smaller than or equal to the MSE value 

associated with the equations generated by Multiple Linear Regression. 

At this stage, the values for A, B, C, and D (Eqs. 4.1 and 4.2), and 

“random numbers” were selected randomly for each iteration. When an 

acceptable MSE was reached, the chromosome(s) producing the 

acceptable results were subjected to PSO optimization to check whether 

the MSE could be further improved (Eqs 4.1 and 4.2). 
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Compared to the GEP algorithm, the GEP–PSO algorithm was 

presumably more efficient. The GEP–PSO had higher efficiency because 

instead of randomly selecting the values of A, B, C, D, along with random 

numbers in each iteration, to see how fit they were, the algorithm 

searched for their optimum values in a more supervised manner using the 

PSO algorithm. In other words, the structural evolution of the solution 

was carried out by the GEP, and PSO was used to assist in the numerical 

evolution of A, B, C, D, and the random numbers. 

If the final goal was reached after the PSO, the algorithm stopped; 

otherwise, it started again by creating a new initial population for the 

GEP. Finally, when the algorithm stopped, PSO was used again to 

determine whether the output of the genes could be multiplied by certain 

coefficients to make the MSE even smaller. Figure 4-15 shows the 

flowchart for the GEP-PSO algorithm. 

It should be added that there is a slight difference between the basic 

GEP algorithm and the GEP algorithm used in this study. In this 

research, unlike the basic GEP algorithm, in which all the genes are 

connected to each other by the same function, the GEP-PSO algorithm 

investigates all the different combinations of the genes and linking 

functions and selects the best rather than merely adding or multiplying 

the genes outputs to calculate the final chromosome output (see Figure 

4-3). 

The performance of the GEP-PSO algorithm was compared against 

that of GEP using a simple function fitting problem. Both algorithms 

were used to find a function that accurately fits over 25 (x,y) points 

generated using the following function.  
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Figure 4-15: Flowchart for hybrid GEP–PSO algorithm used in this study 

 

y=
x2

2.2
+3.33x+1.56 , where x is randomly selected from the range [-10,10] 

 

The process was repeated for 100 times and for each time the best 

fitness value achieved by each algorithm and their associated 

computation time was recorded. Figure 4-16 shows the pseudocode of 

the algorithm used to draw a comparison between performance of GEP 

and GEP-PSO. 

It should be mentioned that for the parts common between GEP and 

GEP-PSO, same settings have been used for both. In addition, the GEP-

PSO algorithm was forced to reach at least the same level of accuracy as 

GEP did in each of the 100 times that the code was run (refer to the for- 
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Figure 4-16: Pseudocode of the algorithm used in order to compare 

performance of GEP and GEP-PSO 

 

loop in Figure 4-16). The fitness metric used to compare the accuracy of 

GEP and GEP-PSO is defined as: 

 

Fitness=∑ Selection Range-|y
i
-ŷ
i
|

n

i=1

 

 

Where “Selection Range” is an arbitrarily defined constant number 

(chosen as 100 here), yi is the i
th y value generated by the function 

y=
x2

2.2
+3.33x+1.56, ŷ

i
 is the ith predicted value, and n is the number of the 

(x,y) points. As n was set equal to 25, perfect fitness would be Selection 

range × number of fitness cases=100×25=2500. 

Table 4-1 shows the results of the performance comparison. As the 

table shows, on average, GEP-PSO needed almost one third of the time 

required by GEP in order to solutions that are more accurate than the 

solutions generated by GEP. 

Finally, it should be mentioned that, during the course of the present 

study, the fully automated GEP-PSO algorithm with dynamic linking 
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functions that takes advantage of all of the genetic variation sources such 

as mutation, inversion, one-point recombination, two-point 

recombination, gene recombination, and three types of transposition 

(insertion sequence elements, root insertion sequence elements, 

transposable genes) was used for the first time in order to develop 

prediction models for impact hammer performance, specific energy 

required by point attack picks, and forces acting on point attack picks. 

 

Table 4-1: Results of the comparison between performance of GEP and that 

of GEP-PSO 

Algorithm Average Run Time (s) Average Fitness 

GEP 35.96 2460.49 

GEP-PSO 11.75 2470.65 
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5. RESULTS AND DISCUSSION 

In this chapter, results of the studies on the problems identified 

during the review of literature, in addition to their respective conclusions 

are provided. 

The proposed GEP–PSO algorithm proved to be capable of finding 

reliable solutions for function-fitting problems, especially for those 

involving a large amount of data. Using this algorithm, precise models 

may be developed without making any prior judgment about their form. 

This advantage makes the GEP–PSO algorithm more attractive than 

function fitting methods such as multiple non-linear regression or other 

optimization techniques such as ant/bee colony optimization. In addition, 

the GEP-PSO algorithm has an advantage over artificial neural networks 

because it generates a mathematical equation rather than a network 

structure. The proposed GEP–PSO algorithm only showed one drawback 

in comparison to MLR. That is, as in all of the other iterative function 

fitting methods, the time required by GEP–PSO to find a good fit was 

not predetermined. However, this disadvantage may be outweighed by 

the high accuracy of GEP–PSO compared to that of MLR. As a result, 

this method of function fitting proved to be a very useful tool for 

engineering applications. 

In statistical analysis, there is a strong warning against extrapolation 

beyond the range of the collected data (Montgomery and Runger, 2018). 

Therefore, the models suggested in this study should be used only within 

the range of their input variables, which may be found in Table 3-4, Table 

3-5, and Table 3-8. 
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5.1 The suggested impact hammer performance prediction model 

A stepwise multiple linear regression (MLR) analysis was conducted 

using SPSS (2017) to see if a linear equation could be used to 

satisfactorily describe the relationship between the IBR, as the dependent 

variable, and the rock properties and machine power, as independent 

variables (Table 3-4). The results revealed that the conventional MLR 

method was not capable of predicting the performance with a good fit 

(Eqs. 5.1 and 5.2): 

 

IBR=(-0.035×UCS)-(0.282×RQD)-(0.171×SHRV)+(0.121×P)+34.356,  

R2=0.73, MSE=8.6 
(5.1) 

MSE=
∑ (y

i
-ŷ
i
)
2n

i=1

n
 (5.2) 

 

where UCS is the uniaxial compressive strength in MPa, RQD is the 

rock quality designation in percent, SHRV is the Schmidt hammer 

rebound value, P is the input power of the machine in kW, yi is the i
th 

measured value, ŷ
i
 is the ith predicted value, and n is the number of cases. 

The GEP–PSO algorithm, developed in Matlab (2017), generated 

the following equations (Eqs. 5.6 to 5.7), which explain the variation in 

IBR in m3/h based on variations in the UCS in MPa, rock quality 

designation (RQD) as a percentage, SHRV, and input P of the hydraulic 

hammer in kW. Table 5-1 shows the settings used in the GEP-PSO code. 

 



 

66 

 

Gene 1=
-606.84

UCS×RQD
 (5.3) 

Gene 2 = 
UCS

75.04
-(0.1×SHRV) (5.4) 

Gene 3=1.5×[(P-UCS+1.5)]1/3 (5.5) 

Gene 4=
87.93

RQD
0.36

 (5.6) 

IBR=Gene1+Gene2+Gene3+Gene4 (5.7) 

 

Only 80% of the collected data (68 points out of 85) was randomly 

selected to be used to train the GEP–PSO algorithm. The remaining 20% 

was reserved as test data to assess the ability of the GEP–PSO model. 

Table 5-2 lists the results of a comparison between the model generated 

using GEP–PSO algorithm (Eqs.5.3–5.7) and the model developed using 

MLR (Eq. 5.1). The R2 values and mean squared error associated with 

each model show that the GEP–PSO model had a significantly higher 

accuracy (Table 5-2). 

In order to learn more about the behavior of the suggested GEP–

PSO function, three-dimensional surfaces were generated, each showing 

the changes in the IBR with respect to two out of the four input 

parameters (Figure 5-1–Figure 5-6). The data tips in Figure 5-1–Figure 

5-6 show extremum values. In each case, two of the input parameters 

were held equal to their mean values, while the other two changed along 

their respective ranges (Table 3-4). In general, Figure 5-1–Figure 5-6 

confirm that the IBR decreased as the rock became stronger. However, a 

closer look at Figure 5-1–Figure 5-3 reveals that within a range of small  
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Table 5-1: Settings used in GEP–PSO code for development of a performance 

prediction model for impact hammer 

Gene Expression Programming (GEP) 

Particle Swarm 

Optimization (PSO) 

Population 

Size (Number 
of 

Chromosomes) 

1000 

Insertion 

Sequence 
Transposition 

Rate 

0.1 
Number of 
Particles 

350 

Number of 

Genes Per 

Chromosome 

4 

Root Insertion 

Sequence 
Transposition 

Rate 

0.1 Inertia 0.2 

Head Length 5 

Gene 

Transposition 

Rate 

0.1 

Learning 

Rate for 
Personal 

Influence 

2 

Tail Length 6 

One-point 

Recombination 

Rate 

0.4 

Learning 

Rate for 
Social 

Influence 

2 

Functions Set 

{+, ×, -, 

÷, 2nd Root, 3rd 

Root, Power 
(Eq. 4.1), Exp 

(Eq. 4.2), Sin, 

Cos, Tan} 

Two-point 

Recombination 

Rate 

0.2 

Maximum 

Number of 
Unsuccessful 

Iterations 

40 

Terminals Set 

{UCS, 

RQD, SHRV, P, 
Random 

Number} 

Gene 

Recombination 

Rate 

0.1 

Selection 

Range for A 

and C (Eqs. 
4.1 and 4.2) 

and Random 

Numbers 

[-1000,1000] 

unctions Set 

used for 

Dynamic 
Linking 

Function 

Selection 

{+, ×, -, 
÷} 

Fitness 
Function 

Eq. 
5.2 

Selection 

Range for B 
and D (Eqs. 

4.1 and 4.2) 

[-10,10] 

Mutation Rate 0.2 

Ratio of the 

Training Data 
to the Whole 

Data 

0.8 

Selection 

Range for 
Random 

Numbers 

[-15000,15000] 

Inversion Rate 0.1 

Ratio of the 

Test Data to 
the Whole 

Data 

0.2 
Fitness 
Function 

Eq. 5.2 

UCS: Uniaxial Compressive Strength (MPa); RQD: Rock Quality Designation (%); SHRV: 

Schmidt Hammer Rebound Value; P: Machines’ Input Power (kW) 
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Table 5-2: Comparison of models developed using MLR and GEP–PSO 

algorithm for predicting performance of impact hammer 

Statistical Model R2 
Mean Squared 

Error (Eq. 5.2) 

MLR (Eq. 5.1) Whole Data 73.36% 8.62 

GEP-PSO (Eqs.5.3 

and 5.7) 

Training Data 83.8% 5.48 

Test Data 83.88% 5.4 

Whole Data 83.17% 5.46 

 

UCS values, the IBR is higher for greater UCS values. This was probably 

because rock somehow behaves similar to soil before it reaches a certain 

level of compressive strength. For a strength range smaller than a certain 

value, the excavation process is more like digging than breaking. 

Figure 5-1–Figure 5-3 also show that there was a critical 

compressive strength value beyond which the IBR suddenly dropped. 

The critical value was dependent on the value of machine power and may 

be found using Eq. 5.8.  

 

∂IBR

∂P
=

1

2(P-UCS+1.5)
2
3

=-∞ or 2(P-UCS+1.5)
2

3 = 0 (5.8) 

 

Figure 5-3 shows how for higher levels of machine power, the 

critical compressive strength value became greater. Therefore, it may be 

inferred that machines with higher input power can maintain a high level 

of IBR for a wider range of UCS values. This finding is of crucial  
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Figure 5-1: Changes of Predicted Instantaneous Breaking Rate (IBR) with 

respect to Uniaxial Compressive Strength (UCS) and Rock Quality 

Designation (RQD) while Power and Schmidt Hammer Rebound Values are 

held constant  

 

 

Figure 5-2: Changes of Predicted Instantaneous Breaking Rate (IBR) with 

respect to Uniaxial Compressive Strength (UCS) and Schmidt Hammer 

Rebound Values (SHRV) while Power and Rock Quality Designation (RQD) 

are held constant 
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Figure 5-3: Changes of Predicted Instantaneous Breaking Rate (IBR) with 

respect to Uniaxial Compressive Strength (UCS) and Power while Schmidt 

Hammer Rebound Values (SHRV) and Rock Quality Designation (RQD) are 

held constant 

 

 

Figure 5-4: Changes of Predicted Instantaneous Breaking Rate (IBR) with 

respect to Rock Quality Designation (RQD) and Schmidt Hammer Rebound 

Values (SHRV) while Uniaxial Compressive Strength (UCS) and Power are 

held constant 
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Figure 5-5: Changes of Predicted Instantaneous Breaking Rate (IBR) with 

respect to Rock Quality Designation (RQD) and Power while Uniaxial 

Compressive Strength (UCS) and Schmidt Hammer Rebound Values (SHRV) 

are held constant 

 

 

Figure 5-6: Changes of Predicted Instantaneous Breaking Rate (IBR) with 

respect to Schmidt Hammer Rebound Values (SHRV) and Power while 

Uniaxial Compressive Strength (UCS) and Rock Quality Designation (RQD) 

are held constant 
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importance for certain cases. For instance, for a hypothetical tunnel with 

randomly selected UCS values falling within the range of 22.9–47.9 MPa 

and RQD and SHRV values randomly selected from their respective 

ranges, as listed in Table 3-4 (10–65% and 11–68, respectively), the 

average breaking rate associated with a 48 kW machine was almost 1.4 

times that of a 22.38 kW machine (Table 5-3). 

To further assess the quality of the proposed GEP–PSO model, the 

performances of the previously published prediction models were 

compared to that of the model suggested in this study. There were three 

previously developed models for which the required input parameters 

were available. The models were proposed by Bilgin et al. (1996) (Eqs. 

2.1 and 2.2), Bilgin et al. (2002) (Eq. 2.3), and Tumac and Hojjati (2016) 

(Eqs. 2.4–2.6). The application ranges for the model proposed by Bilgin 

et al. (1996) are 18% < RQD < 85% and 42 MPa < UCS < 125 MPa. The 

model proposed by Bilgin et al. (2002) is applicable for 41 < SHRV < 61 

and 25% < RQD < 49%. Finally, the model suggested by Tumac and 

Hojjati (2016) is applicable for 10% < RQD < 60% and 8.9 MPa < UCS 

< 195.6 MPa. Points in the database that fell within the application 

ranges of each of the previously suggested models were used to compare 

it to the proposed GEP–PSO model. The results are presented in Table 

5-4. As Table 5-4 shows, the proposed GEP–PSO model performed far 

better than the other prediction models under consideration. 

As a result of the quantitative comparisons made between the 

proposed GEP–PSO model, the MLR model, and some of the previously 

published performance prediction models for impact hammers, it is safe 

to say that the GEP–PSO model may be used as a substantially more 
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Table 5-3: Performances of impact hammers with different power levels over 

same hypothetical tunnel 

UCS (MPa) RQD (%) SHRV 

IBR (m3/h) 

P=22.38 kW P=48 kW 

27.93 32.26 49.63 17.52 

A
v

erag
e IB

R
=

 1
7

.2
8

 m
3/h

 

24.09 

A
v

erag
e IB

R
=

 2
4

 m
3/h

 

41.4 60.54 60.22 10.46 17.37 

31.39 32.43 34.72 18.54 25.42 

28 34.75 16.51 20.21 26.78 

29.68 33.44 31.58 18.79 25.54 

37.8 45.71 38.98 14.86 21.87 

44.22 62.65 63.28 9.77 16.48 

38.19 57.55 15.14 15.52 22.53 

27.4 10.47 38.06 29.92 36.41 

37.64 55.35 29.44 14.4 21.42 

42.76 13.75 35.09 26.26 33.09 

26.09 41.54 57.01 15.12 21.37 

32.59 26.83 59.43 17.62 24.55 

28.67 52.1 16.44 16.99 23.65 

45.14 54.75 53.34 11.68 18.28 

32.43 42.28 67.45 13.02 19.95 

46.87 12.06 43.36 26.83 33.17 

32.05 41.35 19.59 18.01 24.93 

25.93 55.36 55.32 13.21 19.42 

42.51 41.6 23.46 16.88 23.72 

UCS: Uniaxial Compressive Strength; RQD: Rock Quality Designation; SHRV: Schmidt Hammer 

Rebound Values; P: Input Power; IBR: Instantaneous Breaking Rate 
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Table 5-4: Comparison between proposed GEP–PSO model and previously 

published performance prediction models for impact hammers 

 No. of Points R2 
Mean Squared 

Error (Eq. 5.2) 

Bilgin et al. (1996) (Eqs. 

2.1-2.2) 
53 

0.18 191.99 

GEP-PSO Model 0.71 6.5 

Bilgin et al. (2002) 

(Eq.2.3) 
62 

0.33 42.94 

GEP-PSO Model 0.64 15.56 

Tumac and Hojjati 

(2016) (Eqs. 2.4-2.6) 
84 

0.38 84.5 

GEP-PSO Model 0.83 5.5 

 

accurate performance estimation tool in the early phases of tunneling 

projects.  

According to Copur et al. (2012), impact hammers may be used to 

excavate highly fractured rock with UCS values of less than 100 MPa. 

Therefore, according to Figure 5-7, it may be inferred that the suggested 

GEP–PSO model, which was developed using a database comprising 

UCS values of 8.9–195.6 MPa and RQD values of 10–65%, properly 

covers a wide range of applications for impact hammers. It should be 

noted that the proposed model is limited to machines with an input power 

of 22.38–48 kW. 

A broader comparison to the existing performance prediction 

models revealed that the proposed model could be considered more 

advantageous because it either covers a wider range of applications, is 

more reliable because it was developed based on a well-distributed and  
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Figure 5-7: Distribution of the Uniaxial Compressive Strength (UCS) and 

Rock Quality Designation (RQD) values faced during excavation of Uskudar-

Cekmekoy and Levent-Hisarustu tunnels 

 

large number of data points, requires only a small number of easily 

obtainable input parameters, or can reach a significantly higher accuracy 

level. Finally, it should be added that, like any other statistical model, the 

model suggested in this study should be used only within the range of 

the data over which it has been fitted (Table 3-4). 

5.2 The model suggested for prediction of specific energy required 

by point attack picks 

In order to check whether a linear function fitting technique can 

sufficiently describe the data presented in Table 3-5, a stepwise MLR 

analysis was conducted using SPSS (2017). The results are presented in 

the following:  

 

SE=(0.464×UCS)-(5.313×d)-(5.032×
s

d
)-(3.305×θtip)-(0.499×𝜃𝑎𝑡𝑡𝑎𝑐𝑘)-(0.237×θskew) (5.9) 
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where SE is the specific energy (MJ/m3), UCS is the uniaxial 

compressive strength of rock (MPa), “d” is the depth of cut (mm), “s” is 

the cut spacing (mm), θtip is the tip angle (degree), θattack is the attack 

angle (degree), θskew is the skew angle (degree), R2 is the coefficient of 

determination, MSE is the mean squared error calculated using Eq. 5.2. 

Considering the low value of R2 and the high value for MSE in 

comparison to the mean value of SE presented in Table 3-5, those results 

showed that SE may not be adequately expressed using a simple linear 

function. Therefore, more sophisticated methods of non-linear function 

fitting can be considered in order to find a function that can better 

describe the relation between SE and the input parameters collected in 

the database (UCS, BTS, d, s, s/d, θtip, θattack, and θskew).  

Using the settings shown in  

Table 5-5, GEP-PSO algorithm, written in Matlab (2017), generated 

the following equations (Eqs. 5.10 -5.14). They describe the change in 

SE in MJ/m3 based on changes of Brazilian Tensile Strength (BTS) in 

MPa, depth of cut (d) in mm, cut spacing (s) in mm, ratio of cut spacing 

to depth of cut (s/d), and tip angle (θtip), attack angle (θattack), and skew 

angle (θskew) in degree. 80% of the data was used for training and the 

remaining 20% were used to test the performance of the model. It should 

be noted that the trigonometric functions in Eqs. 5.10-5.14, treat their 

arguments as radians. For instance, sin (90) = 0.89 and sin (180) = -0.80. 

 

Gene 1= ln[
(
exp(0.66×BTS)

θattack

)
5.15

+0.08

0.06
] 

(5.10) 
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Gene 2=((
2.56

s
)

2

+ tan-1(92.18-θskew-θtip) )

1.48

 (5.11) 

Gene 3=27.13×sin (
cot ( cos (θtip)) + [0.35×exp(1.72×cos(

s
d
)) ]

1.37
) (5.12) 

Gene 4=
0.86

cos-1 (sin (d
0.49

-2.71) )
 (5.13) 

SE=
Gene 1×Gene 2×Gene 3

Gene 4
 (5.14) 

 

Table 5-6 shows the comparison between the model above and the 

model developed using MLR (Eq. 5.9). The average percentage error in 

Table 5-6 is calculated using the following equation: 

 

Average Percentage Error =
|ŷ
i
-y
i
|

y
i

×100 (5.15) 

 

where ŷ
i
 and yi are the value predicted by the GEP-PSO model for 

the i’th record and the target value for the i’th record, respectively. 

The average error of the estimate is calculated using the following 

equation: 

 

Average Error of Estimate=
∑ (ŷ

i
-y
i
)186

i=1

186
=0.19 MJ/ 3 (5.16) 
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Table 5-5: Settings used in GEP–PSO code for development of a prediction 

model for specific energy required by point attack picks 

Gene Expression Programming (GEP) 
Particle Swarm Optimization 

(PSO) 

Population 

Size (Number 

of 

Chromosomes) 

3000 Inversion Rate 0.1 
Number of 

Particles 
350 

Number of 

Genes Per 

Chromosome 

4 

Insertion 

Sequence 

Transposition 

Rate 

0.1 Inertia 0.2 

Head Length 6 

Root Insertion 
Sequence 

Transposition 

Rate 

0.1 

Learning Rate 

for Personal 

Influence 

2 

Tail Length 7 

Gene 

Transposition 

Rate 

0.1 

Learning Rate 

for Social 

Influence 

2 

Function Set 

{+, ×, -, ÷, 

Power (Eq. 4.1), 

ln, Exp (Eq. 

4.2), Sin, Cos, 

Tan} 

One-point 

Recombination 

Rate 

0.4 

Maximum 

Number of 

Iterations 

40 

Terminal Set 

{UCS, BTS, d, s, 

s/d, θtip, θattack, 

θskew, Random 

Numbers} 

Two-point 
Recombination 

Rate 
0.2 

Selection 
Range for A 

and C (Eqs. 

4.1 and 4.2) 
and Random 

Numbers 

[-1000,1000] 

Function Set 
used for 

Dynamic 

Linking 
Function 

Selection 

{+, ×, -, ÷} 

Gene 
Recombination 

Rate 
0.1 

Selection 

Range for B 

and D (Eqs. 

4.1 and 4.2) 

[-10,10] 

Mutation Rate 0.2 
Fitness 

Function 
Eq. 5.2 

Fitness 

Function 
Eq. 5.2 

UCS: Uniaxial Compressive Strength (MPa); BTS: Brazilian Tensile Strength (MPa); d: Depth of Cut 
(mm); s: Cut Spacing (mm); θtip: Tip Angle (degree); θattack: Attack Angle (degree); θskew: Skew Angle 

(degree) 



 

79 

 

Table 5-6: Comparison of models developed using MLR and GEP–PSO 

algorithm for predicting specific energy required by point attack picks 

Statistical Model R2 
Mean Squared 

Error (Eq. 5.2) 

Average 

Percentage Error 

(Eq. 5.15) 

MLR (Eq. 5.9) 
Whole 

Data 
53.52% 143.42 25.19% 

GEP-PSO (Eqs. 

5.10-5.14) 

Training 

Data 
80.99% 58.76 16.49% 

Test Data 82.30% 56.49 12.86% 

Whole 

Data 
81.17% 58.29 15.75% 

 

where ŷ
i
 and yi are the value predicted by the GEP-PSO model for 

the i’th record and the target value for the i’th record, respectively and 

186 is the number of data points. 

As Eq. 5.16 shows, an average error of estimate equal to 0.19 across 

all of the 186 data points confirms the good distribution of the errors 

above and below 1:1 line in addition to the fact that the model tends to 

predict slightly higher, or conservative, SE values compared to the 

recorded/target values.  

In order to demonstrate the physical implications of the suggested 

model, the following graphs are provided (Figure 5-8-Figure 5-13). 

Across each cluster only one of the parameters changes while the rest are 

held constant. The graphs use clusters of representative cases to show the 

effect of each input parameter on the predictions made by the model as 

well as the real test results. Figure 5-10, only shows the predicted values 
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as there were no cluster of tests results with the same other settings (BTS, 

d, s, θattack, θskew) and different tip angle values in the database. 

In the past, researchers have endeavored to find models for 

predicting SE required by point attack picks (Table 5-7). However, the 

suggested prediction models are rather limited in terms of having a 

reasonably high accuracy, including the relevant input parameters, or the 

number of data used for statistical analysis. Among the models in Table 

5-7, those suggested by Wang et al. (2018) use the highest number of 

data for statistical analysis (43 points). The prediction models suggested 

by Wang et al. (2018) for optimum SE are based on a model developed 

for prediction of SE in unrelieved cutting mode, which was fitted over 

49 data points (Figure 2-1). The values of R2 and average percentage 

error for the most accurate of those models are 79.1% and 32.72%, 

respectively. The models suggested by Wang et al. (2018) are the only 

prediction models for optimum SE that demonstrate the effect of a cutting 

parameter (d) in addition to the effect of rock properties (UCS or/and 

BTS). However, compared to the models suggested by Wang et al. 

(2018), the model suggested in this study is more beneficial as it can 

predict the value of SE by considering different settings of cutting 

conditions (i.e., depth of cut and cut spacing) and cutter related angles 

(θtip, θattack and θskew) that have a significant effect on SE (Figure 2-1 and 

Figure 2-3) (Roepke and Voltz, 1983; Park et al., 2018). 

According to Copur et al. (2017), for hard rocks with UCS greater 

than 100 MPa, the cuts made using point attack picks and single, double, 

or triple spirals as cutting pattern require different values of optimum SE  
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Figure 5-8: Representative cases showing the effect of cut spacing on specific 

energy 

 

 

Figure 5-9: Representative cases showing the effect of depth of cut on specific 

energy 
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Figure 5-10: Representative cases showing the effect of tip angle on specific 

energy 

 

 

Figure 5-11: Representative cases showing the effect of attack angle on 

specific energy 
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Figure 5-12: Representative cases showing the effect of skew angle on 

specific energy 

 

 

Figure 5-13: Representative cases showing the effect of Brazilian tensile 

strength on specific energy 
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Table 5-7:Existing prediction models for Specific Energy required by point 

attack picks 

Statistical Models 

Number 

of Data 

Points 

R2* 

(%) 

Mean 

Squared 

Error 

(MSE) 

Average 

Percentage 

Error** 

(%) 

Copur et al. (2001): SEopt=(0.027×UCS×BTS)+0.675 10 86.85 0.66 8.38 

Copur et al. (2003): SEopt=0.728×FI
-4.312 11 67.04 5.03 20.44 

Balci et al. 

(2004): 

d=5 

mm 

SEopt=0.37×UCS
0.86

 13 86.85 3.44 21.01 

SEopt=3.36×BTS
0.72

 13 99.22 42.89 106.79 

SEopt=3.55×Esta
0.71 13 51.92 16.71 32.73 

SEopt=1.48×Edyn
0.59 13 60.01 10.39 31.01 

SEopt=0.77×e
0.05SHRV 12 1.17 32.66 97.01 

SEopt=1.16×(UCS×BTS)
0.4

 13 88.83 2.96 19.28 

d=9 

mm 

SEopt=0.41×UCS
0.67

 23 75.21 3.66 26.13 

SEopt=2.19×BTS
0.62

 23 68.87 5.50 30.00 

SEopt=2.68×Esta
0.40 17 58.98 7.12 34.91 

SEopt=1.15×Edyn
0.50 19 46.51 8.67 35.99 

SEopt=0.46×e
0.06SHRV 16 78.72 4.50 30.00 

SEopt=0.92×(UCS×BTS)
0.34

 23 75.15 4.19 24.27 

Bilgin et al. (2006): 

SEopt=(0.083×UCS)+1.424 22 75.99 3.61 31.00 

SEopt=(1.259×BTS)+0.142 22 74.3 3.87 32.52 

SEopt=2.424×Esta
0.414 18 55.82 7.68 37.67 

SEopt=0.984×Edyn
0.542 19 47.51 8.90 37.37 

SEopt=0.3912×e
0.058SHRV 16 78.63 5.04 35.51 

Tumac et al. (2007) 

SEopt=(0.2316×SH1)-2.0066 16 78.20 3.92 43.89 

SEopt=(0.1705×SH2)-3.9468 16 43.94 10.08 69.4 

SEopt=243.01×K
-0.9171 16 70.53 5.72 35.82 

Yilmaz et al. (2015) SEopt=(0.2662×HDH)+0.1975 16 82.39 3.17 32.58 
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Table 5-7:(Continued) Existing prediction models for Specific Energy 

required by point attack picks 

Statistical Models 

Number 

of Data 

Points 

R2* 

(%) 

Mean 

Squared 

Error 

(MSE) 

Average 

Percentage 

Error** 

(%) 

Copur et al. (2017) 

SEopt-single=4.97×BTS
0.71

 5 93 NA*** NA*** 

SEopt-double=4.87×BTS
0.68

 5 98 NA*** NA*** 

SEopt-single=0.339×Edyn
0.97 5 98 NA*** NA*** 

SEopt-double=0.461×Edyn
0.875 5 93 NA*** NA*** 

Wang et al. (2018) 

SEunrel=1.448×UCS
0.876

×d
-0.817

 49 76.1 68.95 37.63 

SEunrel=12.044×BTS
1.037

×d
-0.844

 49 85.54 56.11 30.81 

SEunrel=([(0.3746×UCS)+(6.005×BTS)]×d-0.76)-0.335 49 82.54 60.23 33.62 

SEopt=0.672×1.448×UCS
0.876

×d
-0.817

 43 75.19 5.19 32.23 

SEopt=0.672×12.044×BTS
1.037

×d
-0.844

 43 77.8 4.25 34.13 

SEopt=0.672×[([(0.3746×UCS)+(6.005×BTS)]×d-0.76)-0.335] 43 79.1 4.09 32.72 

SEopt: Required specific energy under optimum ratio of cut spacing to depth of cut for a conical cutter with tip angle, attack angle, and 

skew angle equal to 80, 55, and 0 degree in kWh/m3 when the cuts are made using a single spiral pattern (relieved cutting mode); SEunrel: 

Required specific energy for a conical cutter with tip angle, attack angle, and skew angle equal to 80, 55, and 0 degree in kWh/m3 

(unrelieved cutting mode); SEopt-single: Optimum specific energy required for conical cutter in MJ/m3 when the cut spacing is 25 mm, the 

cuts are made using a single spiral pattern, and tip angle, attack angle, and skew angle are 90, 45, and 0 degree, respectively; SEopt-double: 

Optimum specific energy required for conical cutter in MJ/m3 when the cut spacing is 25 mm, the cuts are made using a double spiral 

pattern, and tip angle, attack angle, and skew angle are 90, 45, and 0 degree, respectively; UCS: Uniaxial Compressive Strength (MPa); 

BTS: Brazilian Tensile Strength (MPa); FI: Force Index; d: Depth of Cut (mm); Esta: Static Modulus of Elasticity (GPa); Edyn: Dynamic 

Modulus of Elasticity (GPa); SHRV: Schmidt Hammer Rebound Value; SH1 and SH2: Shore Hardness 1 and 2; K: Deformation 

Coefficient (%); HDH: Hybrid Dynamic Hardness; 

* R2 is the square of correlation coefficient between predicted and target values. 

** Average percentage error is calculated using Eq.5.15. 

*** The MSE, R2, and Average Percentage Error for the models suggested by Copur et al. (2017) could not be calculated as they did not 

publish the values of target SE for their study. 

The calculations for MSE, R2, and Average Percentage Error are performed by the present authors using the data published by the 

researchers who developed the statistical models. There might be very small errors as the data published by those researchers may be the 

rounded version (fewer decimals) of the data they used in their calculations. 

 

(Figure 5-14). Thus, as the excavation systems with point attack picks 

usually use double or more spiral cutting patterns, the results of full-scale 

rock cutting tests conducted using single spiral pattern on hard rock are 

not suitable to be used for design of cutter heads without appropriate 

calibration (Copur et al., 2017). For soft and medium strength rocks with 

maximum compressive strength of 100 MPa, however, such a problem  
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Figure 5-14: Definition of single, double, and triple spiral cutting patterns 

(adapted from Copur et al. (2017)) 

 

was not reported by Copur et al. (2017). Thus, the predictions made by 

Eqs. 5.10-5.14, which are the result of fitting a function on tests 

conducted using a single spiral pattern on rocks with maximum UCS of 

64 MPa, may be safely used for predicting the performance of the 

machines using point attack picks. 

According to the provided explanations, the GEP-PSO model may 

be suggested as a significantly more accurate prediction model for SE 

required by point attack picks in relieved cutting mode. The other 

advantage of the GEP-PSO model compared to the MLR model 

developed in this study, as well as the models in Table 5-7, is that it 

includes all of the important and adjustable cutting parameters. This 
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advantage makes the model particularly helpful in the design stage of the 

projects for comparing the advance rate associated with every 

combination of the available settings for cutting parameters and different 

types of rock. In addition, as the GEP-PSO model is capable of 

generating an estimate of SE for different settings of cutting parameters 

(d, s, θtip, θattack, and θskew) and for each type of rock, it may be used to 

reach a more optimized design of full-scale rock cutting experiments 

with fewer number of tests required to find the minimum SE. 

Given the high capability of the GEP-PSO method used for function 

fitting in this study, it was intended to establish a database as large as 

possible by adding the data published by the other researchers to the 

database used in this study. Doing so could extend the range of 

application and improve the reliability of the resulting prediction model. 

However, it could not be done because of compatibility issues. While the 

data used in this study is the result of linear cutting tests conducted on a 

conditioned surface of rock, the rest of the data available in the literature 

is generated using tests conducted on a flat rock surface. Such a 

difference can drastically alter the results of the rock cutting tests. Thus, 

because of that critical difference in the process of testing, the merging 

was impossible. This situation can clearly demonstrate the need for a 

widely accepted standard procedure for conducting full-scale linear 

cutting tests in the future. Such a standard method of testing for the full-

scale rock cutting test, will enable the researchers to combine the data 

from different sources and analyze them using the new and advanced 

methods of data analysis in order to find more accurate and reliable 

explanations for the rules that govern the process of rock cutting. 
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Finally, it should be added that, like any other statistical model, the 

model suggested in this study should be used only within the range of 

the data over which it has been fitted (Table 3-5). According to Copur et 

al. (2012), point attack picks may be used for excavation of rocks with 

UCS up to 100-120 MPa. In this regard, the SE prediction model covers 

around 40% of the range of application for point attack picks. While the 

application range for the suggested model is limited to d between 4-11 

mm and s between 4-44 mm, the widest previously reported range for d 

and s is 3-12 mm and 9-45 mm, respectively. The values of θtip, θattack, 

and θskew reported in previous studies on relieved cutting mode are fixed 

at 80°, 55°, and 0°, respectively (Balci et al., 2004; Bilgin et al., 2006; 

Copur et al., 2003; Tumac et al., 2007). With regard to θattack, and θskew 

the application range for the current study covers the widest range 

reported up to date. According to Bilgin et al. (2013), θtip ranges from 60° 

to 90° with the range 75°-80° being the most commonly used range. The 

model suggested in this study may be applied for θtip values between 70°-

75°. 

5.3 The suggested models for prediction of forces acting on a point 

attack pick 

A preliminary linear regression analysis was conducted on the 

established database in order to see if the relation between the forces and 

independent variables can be satisfactorily described in a linear form 

(Table 3-8). The analysis was conducted using stepwise MLR option in 

SPSS (2017): 
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FCM=(0.125×UCS)-(0.924×BTS)+(0.172×s)- (0.557×
s

d
) -(0.331×θ

tip
)-

(0.21×θ
attack

)+34.379 
(5.17) 

FCP=(0.101×UCS)+(0.53×s)-(1.69×
s

d
) -(1.521×θ

tip
)-(0.417×θ

attack
)+131.575 (5.18) 

FNM=(0.116×UCS)-(0.839×BTS)+(0.482×d)+(0.094×s)-(0.103×θ
attack

)-(0.035×θ
skew

)+1.6 (5.19) 

FNP=(0.207×UCS)-(1.354×BTS)+(0.489×s)+(0.561×d)-(1.335×
s

d
) -(0.625×θ

tip
)-

(0.198×θ
attack

)-(0.089×θ
skew

)+51.507 
(5.20) 

FSM=(0.04×s)-(0.11×θ
tip

)+8.308 (5.21) 

FSP=(0.107×s)-(0.333×θ
tip

)+24.974 (5.22) 

 

where FCM, FCP, FNM, FNP, FSM, FSP, R2, and MSE are mean cutting 

force (kN), peak cutting force (kN), mean normal force (kN), peak normal 

force (kN), mean side force (kN), peak side force (kN), coefficient of 

determination and mean squared error, respectively. MSE is defined in 

Eq. 5.2. 

Among the developed linear prediction models, Eq. 5.17-5.20 

provide a relatively good level of accuracy. However, except for Eq. 5.20, 

at least one of the parameters that are important for determination of 

cutter forces is left out of each equation. As it was explained in Chapter 

2, the developed prediction models are expected to include at least one 

of the rock related properties, i.e., UCS or BTS, as well as the important 

machine related parameters, i.e., s, d, θtip, θattack, and θskew. In addition, 

under certain circumstances, Eq. 5.17-5.20 are prone to predict negative 

values of forces within their application range. For each equation, range 

of application is defined as the minimum and maximum values of its 

respective input parameters (Table 3-8). For instance, according to Eq. 
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5.17-5.20, when UCS=21 MPa, BTS=1.84 MPa, p=4 mm, s=4 mm, θtip 

=75°, θattack =55°, and θskew=-15°, FCM, FCP, FNM, and FNP will be -0.94 

MPa, -2.88 MPa, -0.34 MPa, and -0.20 MPa, respectively. As a result, 

it was decided to try a nonlinear function fitting technique in order to see 

if those shortcomings can be addressed. 

The analysis conducted using the GEP-PSO code, set as shown in 

Table 5-8, yielded the following equations: 

 

FCM=0.25 [exp(

s
d
-θattack+UCS

2.59
)]

0.32

+
ds

0.27
- cot-1(θskew)

4.14
+0.5(BTS-UCS-θtip+89.23)

0.2
,  

R2=0.90, MSE=1.31 

(5.23) 

FCP=
(BTS+ s d⁄ )×0.25BTS

528.74+2θskew
+
1

4
[
UCS+ s d⁄

θattack-8.43
]

5

+
d√s

θtip-67.23
,  

R2=0.90, MSE=9.52 

(5.24) 

FNM=
d

2.11
+0.52 [(

UCS+d

1.94
+s-θskew

1
3-θattack-5.57)×θtip]

1/5

+1.48,  

R2=0.85, MSE=1.07 

(5.25) 

FNP=
(θskew-UCS)×(θattack-66.53)

190.92
+ [

s
d
+d-θtip+67.9

2√2
]

2

,  

R2=0.91, MSE=4.78 

(5.26) 

FSM=0.25s
76.22-θtip
13.4 +73.43(θattack-d)

θskew-31.12
12.18 +0.32UCS

-
−θskew-9.55

17.44 ,  

R2=0.80, MSE=0.21 

(5.27) 

FSP=
1

4
[
BTS-θattack+θskew

2

4(θattack-2BTS)
+
-1.03θtip/3

2
]

3

+ [
1

2
× (
s

d
)
1/3

]+
d

4
,  

R2=0.86, MSE=1.32 

(5.28) 

 

As Figure 5-15 and Figure 5-16 show, in comparison to Eq. 5.17- 



 

91 

 

Table 5-8: Settings used in GEP–PSO code for development prediction 

models for cutting, normal, and side force acting on a point attack pick 

Gene Expression Programming (GEP) Particle Swarm Optimization (PSO) 

Population 

Size (Number 

of 

Chromosomes) 

3000 Inversion Rate 0.1 
Number of 

Particles 
350 

Number of 

Genes Per 

Chromosome 

4 

Insertion 

Sequence 

Transposition 

Rate 

0.1 Inertia 0.2 

Head Length 6 

Root Insertion 
Sequence 

Transposition 

Rate 

0.1 

Learning Rate 

for Personal 

Influence 

2 

Tail Length 7 

Gene 

Transposition 

Rate 

0.1 

Learning Rate 

for Social 

Influence 

2 

Function Set 

{+, ×, -, ÷, 

Power (Eq. 

4.1), ln, Exp 

(Eq. 4.2), Sin, 

Cos, Tan} 

One-point 

Recombination 

Rate 

0.4 

Maximum 

Number of 

Iterations 

40 

Terminal Set 

{UCS, BTS, d, 

s, s/d, θtip, 
θattack, θskew, 

Random 

Numbers} 

Two-point 
Recombination 

Rate 
0.2 

Selection 
Range for A 

and C (Eqs. 4.1 

and 4.2) and 
Random 

Numbers 

[-1000,1000] 

Function Set 
used for 

Dynamic 

Linking 
Function 

Selection 

{+, ×, -, ÷} 

Gene 
Recombination 

Rate 
0.1 

Selection 

Range for B 

and D (Eqs. 

4.1 and 4.2) 

[-10,10] 

Mutation Rate 0.2 
Fitness 

Function 
Eq. 5.2 

Fitness 

Function 
Eq. 5.2 

UCS: Uniaxial Compressive Strength (MPa); BTS: Brazilian Tensile Strength (MPa); d: Depth of Cut 
(mm); s: Cut Spacing (mm); θtip: Tip Angle (degree); θattack: Attack Angle (degree); θskew: Skew Angle 

(degree) 
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5.22, Eq. 5.23-5.28 provide higher values of R2 and lower values of MSE. 

For mean and peak values of cutting and side force, equations developed 

using the GEP-PSO algorithm achieve significantly higher accuracy in 

terms of R2 and MSE values. Table 5-9 shows the accuracy of the 

developed models over training and test data. It should be added that only 

80% of the available data was used to generate GEP-PSO models. The 

remaining 20% was reserved and used for validation.  

In order to demonstrate the physical implications of the suggested  

 

 

Figure 5-15: R2 values associated with the equations developed using MLR 

and GEP-PSO for prediction of cutting, normal, and side force acting on a 

point attack pick 
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Figure 5-16: Mean squared error values associated with the equations 

developed using MLR and GEP-PSO for prediction of cutting, normal, and 

side force acting on a point attack pick 

 

model, 38 graphs are provided in Appendix A. The graphs use clusters 

of representative cases to show the effect of each input parameter on the 

predictions made by the model as well as the real rest results. Across 

each cluster only one of the parameters changes while the rest are held 

constant. Based on the generated graphs, the equations developed for 

prediction of peak cutting force and peak and mean side force (Eq. 2.24, 

Eq. 5.27 and Eq. 5.28) show negligible sensitivity to some of their 

respective input parameters across the clusters of data that were available 

to generate them (Figure A-12, Figure A-28, Figure A-30, Figure A-36, 
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Figure A-38 in Appendix A). As a result, although those equations may 

be considered significant improvements over the linear equations (Eq. 

2.18, Eq. 5.21 and Eq. 5.22), their limitations should be considered when 

one chooses to use them. 

For mean and peak values of normal force, although equations 

developed using GEP-PSO algorithm are associated with higher values 

of R2 and lower values of MSE, the difference is not so great. Moreover, 

Eq. 5.23-5.26 take account of both of the important rock and machine 

properties, whereas the linear equations fail in doing so. For instance, 

please note the fact that Eq. 5.17 and 5.18 are not sensitive to changes in 

rock strength (UCS or BTS), d, θattack, and θskew. It should be added that, 

Eq. 5.23-5.28 were all checked to make sure that, unlike Eq. 5.17-5.20, 

they are not prone to producing unrealistic negative values for tool forces 

within their range of application. 

It should be added that, like any other statistical model, the model 

suggested in this study should be used only within the range of the data 

over which it has been fitted (Table 3-8). According to Copur et al. 

(2012), point attack picks may be used for excavation of rocks with UCS 

up to 100-120 MPa. In this regard, the suggested prediction models cover 

around 40% of the range of application for point attack picks. While the 

application range for the suggested model is limited to d between 4-11 

mm and s between 4-44 mm, the widest previously reported range for d 

and s is 3-12 mm and 9-45 mm, respectively. The values of θtip, θattack, 

and θskew reported in previous studies on relieved cutting mode are fixed 

at 80°, 55°, and 0°, respectively (Balci et al., 2004; Bilgin et al., 2006; 

Copur et al., 2003; Tumac et al., 2007). With regard to θattack, and θskew  
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Table 5-9: Comparison of models developed using MLR and GEP–PSO 

algorithm for predicting forces acting on a point attack pick 

Statistical Model R2 
Mean Squared 

Error (Eq. 5.2) 

Mean Cutting Force (FCM) 

MLR (Eq. 5.17) Whole Data 70.44% 3.96 

GEP-PSO (Eq. 5.23) 

Training Data 90.00% 1.33 

Test Data 91.07% 1.25 

Whole Data 90.21% 1.31 

Peak Cutting Force (FCP) 

MLR (Eq. 5.17) Whole Data 75.22% 22.36 

GEP-PSO (Eq. 5.23) 

Training Data 89.54% 9.57 

Test Data 90.57% 9.35 

Whole Data 89.64% 9.52 

Mean Normal Force (FNM) 

MLR (Eq. 5.19) Whole Data 81.98% 1.33 

GEP-PSO (Eq. 5.25) 

Training Data 85.86% 1.09 

Test Data 85.02% 1.02 

Whole Data 85.44% 1.07 

Peak Normal Force (FNP) 

MLR (Eq. 5.19) Whole Data 90.43% 5 

GEP-PSO (Eq. 5.25) 

Training Data 91.32% 4.77 

Test Data 88.63% 4.80 

Whole Data 90.86% 4.78 

Mean Side Force (FSM) 

MLR (Eq. 5.17) Whole Data 21.14% 0.84 

GEP-PSO (Eq. 5.28) 

Training Data 80.58 0.21 

Test Data 79.86% 0.20 

Whole Data 80.31% 0.21 

Peak Side Force (FSP) 

MLR (Eq. 5.22) Whole Data 18.67% 7.85 

GEP-PSO (Eq. 5.28) 

Training Data 86.57% 1.33 

Test Data 85.05% 1.26 

Whole Data 86.34% 1.32 
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the application range for the current study covers the widest range 

reported up to date. According to Bilgin et al. (2013), θtip ranges from 60° 

to 90° with the range 75°-80° being the most commonly used range. The 

models suggested in this study may be applied for θtip values between 

70°-75°.  
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6. CONCLUSIONS 

Each of the following sections provide the conclusions associated 

with one of the objectives that were pursued over the course of this study.  

 

6.1 Performance prediction model for impact hammer 

A relatively large database with 85 points that each contained 

records of machine power, Uniaxial Compressive Strength (UCS), Rock 

Quality Designation, Schmidt Hammer Rebound Values, and 

Instantaneous Breaking Rate (IBR) was established. The data were 

collected during the construction of two tunneling projects in Istanbul. 

Based on Gene Expression Programming (GEP) and Particle Swarm 

Optimization (PSO), a hybrid evolutionary algorithm was generated to 

analyze the data. The result yielded an accurate performance prediction 

model for an impact hammer. The accuracy of the new model was 

compared to that generated by Multiple Linear Regression (MLR) 

analysis as well as some of the models that were already available in the 

literature. The results showed that the suggested model was more reliable 

and accurate, with a broader range of application, while it required only 

four easy-to-obtain input parameters. Compared to the MLR model, the 

values of R2 and MSE were improved by around 10% and 35%, 

respectively. 

The behavior of the proposed model was examined under different 

conditions. The results showed that for any value of machine power, 

there was a critical UCS value beyond which the performance of the 

machine dramatically decreased. The critical value of UCS could be 
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calculated using the proposed GEP–PSO model. In addition, the model 

showed that the performance of the machine decreased for very low 

values of UCS. It was speculated that for those UCS values, the 

excavation process is more comparable to digging than breaking. 

The proposed GEP–PSO algorithm proved to be capable of finding 

reliable solutions for function-fitting problems, especially for those 

involving a large amount of data. Using this algorithm, precise models 

may be developed without making any prior judgment about their form. 

This advantage makes the GEP–PSO algorithm more attractive than 

function fitting methods such as multiple non-linear regression or other 

optimization techniques such as ant/bee colony optimization. In addition, 

the GEP-PSO algorithm has an advantage over artificial neural networks 

because it generates a mathematical equation rather than a network 

structure. The proposed GEP–PSO algorithm only showed one drawback 

in comparison to MLR. That is, as in all of the other iterative function 

fitting methods, the time required by GEP–PSO to find a good fit was 

not predetermined. However, this disadvantage may be outweighed by 

the high accuracy of GEP–PSO compared to that of MLR. As a result, 

this method of function fitting may be a very useful tool for engineering 

applications.  

It is recommended that researchers who are interested in working on 

the subject of this paper should collect databases that include a larger 

number of different values for machine power and rock properties, which 

are properly distributed over a wide range. Given the high capabilities of 

the new data analysis techniques for handling large amounts of 
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information, analyzing such databases using these methods may lead to 

a better understanding of excavation using an impact hammer. 

6.2 Prediction model for specific energy required by point attack 

picks 

Review of the literature on the prediction models for specific energy 

(SE) required by point attack picks showed that there are various 

statistically developed equations that can predict the optimum SE within 

certain limits. However, those models did not include variations of some 

significantly important parameters that have an effect on SE; mostly 

because of a limited number of statistical data, which itself is a result of 

the fact that conducting full-scale linear rock cutting (FSLC) test is not 

an easy task. It should be added that it is impossible to collect that 

information from real excavation projects over the diverse items and 

range of variables. 

In order to overcome the limitations of the previous studies, a 

database of 186 points containing the results of lab-scale linear cutting 

test was established. First, the statistical analysis was conducted using 

MLR to see if a simple linear function can describe the relation between 

SE and the other parameters in the database. The results of MLR analysis 

did not yield reasonably accurate results (Eq. 5.9). Thus, the GEP-PSO 

algorithm was used for non-linear function fitting.  

The statistical analysis using the GEP-PSO algorithm yielded a 

considerably more accurate prediction model than the one generated by 

MLR (Eqs. 5.10-5.14). The prediction model developed using the GEP-

PSO algorithm also included all of the significantly important cutting 

parameters (cut spacing (s), depth of cut (d), s/d, tip angle (θtip), attack 
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angle (θattack), and skew angle (θskew)) as well as a representative property 

of rock (Brazilian Tensile Strength (BTS)).  

The equations developed by GEP-PSO algorithm (Eqs. 5.10-5.14) 

are suggested to be used as a prediction model for the SE required by 

point attack picks in relieved cutting mode within the limits of the 

database used in this study (Table 3-5). The model may be very useful in 

the early stages of a project as it can be used to predict the advance rate 

of the mechanical miners with point attack picks or to reduce the number 

of full-scale linear cutting tests required to determine the optimum SE. 

Finally, although the database used for analysis in this study may be 

considered to be large, it could be improved if more variations of rock 

properties and cutting parameters were included. 

6.3 Models for prediction of cutting, normal, and side force acting 

on a point attack pick 

The aim of this part of the present research was to suggest models 

that can predict cutting and normal force acting on a point attack pick in 

relieved cutting mode. The suggested models were supposed to be 

accurate, generate only non-negative values for forces over their range 

of application, and be sensitive to rock properties, i.e. UCS or BTS, in 

addition to s, d, θtip, θattack, and θskew. Using the suggested models, the 

torque and the trust required by the machine for excavation of different 

rock types using different s, p, θtip, θattack, and θskew settings may be 

determined.  

Although the presented non-linear models proved to be more useful 

compared to the other available prediction models, there is still room for 

improvement. According to some of the previously developed prediction 
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models for cutting and normal force, friction between rock and cutter can 

be an important factor in determination of those forces. However, due to 

the understandably reluctant approach of cutter producers to providing 

cutter tip material and its specifications, friction coefficient between 

cutter and rock could not be determined during the course of the present 

study. On the positive side, however, excluding such a hard-to-determine 

parameter from the models contributes to their ease of use. Finally, the 

data used in order to develop the present prediction models includes two 

different values for θtip. Combining the data used in the present research 

with more data points that are, preferably, results of tests that cover a 

broader variety of θtip values can significantly increase the reliability of 

the outcomes of the future research on empirical force prediction models. 
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초 록 

 

암반 기계 굴착 기술의 발전으로 기존의 발파 공법이 아닌 기계 

굴착을 사용하여 지하 공간을 건설하는 사례가 증가하고 있다. 

기계식 암석 굴착 분야에는 다양한 변수 간의 관계에 대한 상당한 

수의 결정론적 해법이 있지만, 많은 경우 변수 간의 결정적 관계를 

설정하는 것은 극히 어렵다. 그 결과 많은 연구자들이 회귀 분석을 

사용하여 이러한 관계를 설명하려고 한다. 암석 파쇄 현상의 

복잡하고 비선형적인 특성으로 인해 기존의 함수 피팅 기법에서 

요구하는 통계 데이터에 부합하는 비선형 함수의 형태를 합리적으로 

결정하기가 쉽지 않다. 따라서 본 연구에서는 기계 굴착 분야의 

문제점을 해결하기 위해 유전자 발현 프로그래밍(GEP)과 입자 군집 

최적화 (PSO)의 조합을 데이터 분석에 사용하였다. GEP 및 PSO는 

진화적 계산 기술이며 GEP-PSO 알고리즘을 통해 데이터 세트에 

맞는 비선형 함수의 형식과 상수를 자동으로 찾을 수 있다. 본 

연구에서는 임팩트 해머에 대한 성능 예측 모델, 픽커터에 필요한 

비에너지 예측 모델, 픽커터에 작용하는 절삭력, 수직력, 횡방향력 

예측 모델을 개발하기 위해 알고리즘을 사용하였다. 모든 경우에 

GEP-PSO 알고리즘을 사용하여 생성된 결과는 다중 선형 회귀에 

의해 생성된 결과와 비교하여 상당히 높은 예측 정확도를 생성함을 

확인하였다. 가능한 경우 GEP-PSO 알고리즘에 의해 생성된 결과와 

다른 연구자가 개발한 예측 모델을 비교하여 현재 연구 과정에서 

개발된 모델의 장점을 보여 줄 것으로 보인다. 높은 수준의 정확도 

외에도 GEP-PSO 알고리즘을 사용하여 개발된 모델은 기존 예측 
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모델의 단점을 상당 부분 극복할 수 있다. 개발된 모델은 얻기 쉬운 

입력 매개변수를 거의 요구하지 않으면서 더 많은 신뢰성 및 

정확도를 제공하거나 기존 예측 모델에서 무시되었던 중요한 입력 

매개변수를 포함하므로 더 유리하다고 볼 수 있다.  

 

주요어: 인공지능, 예측모델, 임팩트 해머, 픽커터, 비에너지, 

커터작용력 

학번: 2017-34695 
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APPENDIX A 

In order to demonstrate the physical implications of the suggested 

model for prediction of the forces acting on a point attack pick, the 

following graphs are provided. The graphs use clusters of representative 

cases to show the effect of each input parameter on the predictions made 

by the model as well as the real rest results. Across each cluster only one 

of the parameters changes while the rest are held constant. Figure A-3, 

Figure A-10, Figure A-17, Figure A-23, Figure A-29, and Figure A-35 

only show the predicted values as there were no cluster of test results 

with the same other settings (UCS, BTS, d, s, θattack, θskew) and different 

tip angle values in the database. 

 

 

Figure A-1: Representative cases showing the effect of cut spacing on mean 

cutting force 
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Figure A-2: Representative cases showing the effect of depth of cut on mean 

cutting force 

 

 

Figure A-3: Representative cases showing the effect of tip angle on mean 

cutting force 
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Figure A-4: Representative cases showing the effect of attack angle on mean 

cutting force 

 

 

Figure A-5: Representative cases showing the effect of skew angle on mean 

cutting force 
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Figure A-6: Representative cases showing the effect of uniaxial compressive 

strength on mean cutting force 

 

 

Figure A-7: Representative cases showing the effect of Brazilian tensile 

strength on mean cutting force 
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Figure A-8: Representative cases showing the effect of cut spacing on peak 

cutting force 

 

 

Figure A-9: Representative cases showing the effect of depth of cut on peak 

cutting force 
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Figure A-10: Representative cases showing the effect of tip angle on peak 

cutting force 

 

 

Figure A-11: Representative cases showing the effect of attack angle on peak 

cutting force 
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Figure A-12: Representative cases showing the effect of skew angle on peak 

cutting force 

 

 

Figure A-13: Representative cases showing the effect of uniaxial compressive 

strength on peak cutting force 
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Figure A-14: Representative cases showing the effect of Brazilian tensile 

strength on peak cutting force 

 

 

Figure A-15: Representative cases showing the effect of cut spacing on mean 

normal force 
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Figure A-16: Representative cases showing the effect of depth of cut on mean 

normal force 

 

 

Figure A-17: Representative cases showing the effect of tip angle on mean 

normal force 
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Figure A-18: Representative cases showing the effect of attack angle on mean 

normal force 

 

 

Figure A-19: Representative cases showing the effect of skew angle on mean 

normal force 
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Figure A-20: Representative cases showing the effect of uniaxial compressive 

strength on mean normal force 

 

 

Figure A-21: Representative cases showing the effect of cut spacing on peak 

normal force 
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Figure A-22: Representative cases showing the effect of depth of cut on peak 

normal force 

 

 

Figure A-23: Representative cases showing the effect of tip angle on peak 

normal force 
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Figure A-24: Representative cases showing the effect of attack angle on peak 

normal force 

 

 

Figure A-25: Representative cases showing the effect of skew angle on peak 

normal force 
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Figure A-26: Representative cases showing the effect of uniaxial compressive 

strength on peak normal force 

 

 

Figure A-27: Representative cases showing the effect of cut spacing on mean 

side force 
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Figure A-28: Representative cases showing the effect of depth of cut on mean 

side force 

 

 

Figure A-29: Representative cases showing the effect of tip angle on mean 

side force 
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Figure A-30: Representative cases showing the effect of attack angle on mean 

side force 

 

 

Figure A-31: Representative cases showing the effect of skew angle on mean 

side force 
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Figure A-32: Representative cases showing the effect of uniaxial compressive 

strength on mean side force 

 

 

Figure A-33: Representative cases showing the effect of cut spacing on peak 

side force 
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Figure A-34: Representative cases showing the effect of depth of cut on peak 

side force 

 

 

Figure A-35: Representative cases showing the effect of tip angle on peak side 

force 
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Figure A-36: Representative cases showing the effect of attack angle on peak 

side force 

 

 

Figure A-37: Representative cases showing the effect of skew angle on peak 

side force 
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Figure A-38: Representative cases showing the effect of Brazilian tensile 

strength on peak side force 
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