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Abstract

Developing human-level machines that can learn and extend rules is a long-standing

challenge for the artificial intelligence community. Even though current deep learn-

ing models have proven remarkable performances over a wide range of applications,

the models still struggle to apply learned rules to novel inputs that do not follow the

training distribution. Such a lack of deep models’ rule-based out-of-distribution gen-

eralization, i.e., systematic generalization, abilities limits many deep learning appli-

cations, especially about sequence generation tasks requiring logical reasoning, such

as semantic parsing, or suffering from data scarcity, such as low-resource machine

translation.

Therefore, this dissertation aims to measure and improve the systematic general-

ization abilities of deep learning sequence generation models. To measure the abili-

ties of deep models, we propose number sequence prediction problems. We estimate

deep learning models’ computational powers by testing the models on our problems

and comparing the models with Automata that can solve the problems. Then, to im-

prove the systematic generalization abilities of deep models, we propose three frame-

works. The first framework is devising a new input preprocessing module, called neural

sequence-to-grid module. The module can learn how to segment and align sequence

inputs into the grid inputs — more advantageous forms for learning and applying sym-

bolic rules. We empirically show that a deep learning model taking the grid inputs can

extend learned rules on symbolic reasoning tasks, including program code evaluations

or bAbI tasks. The second framework is to train neural networks with structurally

hinted examples. We make such examples by annotating the training targets with de-

limiter tokens representing the non-terminal nodes of the targets’ parsing trees. We

show the efficacy of our annotated targets, experimenting with instruction following

tasks requiring compositional reasoning, and achieving substantial performance gains.

i



The last framework is to reformulate sequence generation tasks into classification-

and-generation tasks using template retrieving and re-ranking with neural models. The

templates, high-level sketches of target sequences, relieve the model’s burdens of hard

structural modeling and let the model focus on easy template realization. Experimental

results show that our selected templates lead to substantial performance gains of deep

learning models on four different semantic parsing tasks.

keywords: Deep Learning, Sequence Generation, Out-of-distribution Generalization

student number: 2016-20873
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Chapter 1

INTRODUCTION

Developing a human-level machine that can learn and apply rules has been the ul-

timate goal of the artificial intelligence community. Among human intelligence, the

ability of rule-based out-of-distribution1 (OoD) generalization, also known as system-

atic generalization [2, 3], is particularly remarkable. Thanks to the ability, humans can

extend rules to the novel OoD test examples. For example, humans can extend addi-

tion rules; after learning addition rules from pairs of numbers up with small digits,

e.g., 802+93, humans can apply the rules to test pairs of numbers with much big-

ger digits, e.g., 131423+95410213. As another example, humans can translate a

novel utterance into its corresponding program in a compositional way; after under-

standing animal.species=frog ∧ animal.color=green, as a composi-

tion of a template, e.g., {COND1}∧{COND2}, and basic components, e.g., {COND1}:
animal.species=frog and {COND2}: animal.color=green, humans can

translate the novel test utterance, e.g., “A white frog”, consisting of rarely co-occurred

words into the corresponding program, e.g., animal.species=frog∧animal.
color=white. Note that although those test examples are OoD, they still follow

certain rules found in the training examples, as conceptualized in Figure 1.1.
1Examples are OoD if they follow a distribution distinct from training. In contrast, examples that

follow the training distribution are called in-distribution (ID).
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Figure 1.1: The concept of rule-based out-of-distribution generalization. Training data

and in-distribution (ID) test data follow the same distribution. Out-of-distribution

(OoD) test data do not follow the distribution. However, unlike OoD test data beyond

rules, a model can handle OoD test data under rules, i.e., systematic generalization, if

the model learns rules underlying the distribution.

Unfortunately, even the state-of-the-art deep learning models that have demon-

strated impressive performances over a wide range of applications still struggle to

achieve systematic generalization. Especially, this can be problematic in sequence

generation applications as they often require handling OoD sequences [4, 5, 6, 7, 8].

For example, Natural Language Interfaces to Databases (NLIDB) [4] demands logical

and algorithmic reasoning to predict the program queries from given natural language

questions having novel combinations of entities. Furthermore, low-resource machine

translation [5] also demands a systematic generalization ability to extend rules learned

from scarce training examples.

To explore the poor systematic generalization of deep learning sequence genera-

tion models, a number of studies have defined systematic generalization tasks in var-

ious senses [9, 10, 11] and released new benchmark datasets [1, 7, 12, 13]. These

2



datasets commonly provide test sets that are OoD but obey rules governing the train-

ing examples. Therefore, the failures of deep models on these test sets imply that the

models are unsuccessful in learning correct rules that can explain both the training

and test examples. Also, many deep learning studies for achieving systematic general-

ization have been carried out from various perspectives. From the model architecture

perspective, some researchers have developed new neural network modules that are ad-

vantageous for capturing inductive bias [14, 15]. From the data perspective, some other

researchers have leveraged more diverse training data via data augmentation methods

[9, 16, 17, 18] or pre-trained models [19] for relaxing OoD test set conditions. From

the task formulation perspective, other researchers have focused on finding advanta-

geous conditions, such as offering auxiliary information to models, and used them

to reformulate systematic generalization tasks easier [20, 21]. However, despite the

aforementioned studies, it still remains unclear how far current deep models can sys-

tematically generalize and how to lead the generalization with the deep models.

Therefore, this dissertation aims to measure and improve the rule-based out-of-

distribution generalization abilities of deep learning sequence generation models.

The first part of the dissertation is about evaluating the systematic generalization

abilities of current deep learning models. Inspired by number series tests to measure

human intelligence, we propose number sequence prediction tasks to assess neural

network models’ computational powers for solving algorithmic problems. We define

the complexity and difficulty of a number sequence prediction task with the structure

of the smallest automaton that can generate the sequence. We suggest two types of

number sequence prediction problems: the number-level and the digit-level problems.

The number-level problems offer sequences as two-dimensional grids of digits and the

digit-level problems provide a single-digit input per a time step. The complexity of a

number-level sequence prediction can be defined with the depth of an equivalent com-

binatorial logic, and the complexity of a digit-level sequence prediction can be defined

with an equivalent state automaton for the generation rule. Experiments with number-
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level sequences suggest that CNN models are capable of learning the compound op-

erations of sequence generation rules, but the depths of the compound operations are

limited. For the digit-level problems, simple GRU and LSTM models can solve some

problems with the complexity of finite state automata. Memory augmented models

such as Stack-RNN, Attention, and Neural Turing Machines can solve the reverse-

order task which has the complexity of a simple pushdown automaton. However, all of

the above cannot solve general Fibonacci, Arithmetic, or Geometric sequence gener-

ation problems that represent the complexity of queue automata or Turing machines.

The results show that our number sequence prediction problems effectively evaluate

machine learning models’ computational capabilities.

The remaining parts of the dissertation is to achieve deep learning models’ system-

atic generalization through our various methods: (1) devising a new input preprocess-

ing module, (2) training with structurally hinted examples, and (3) conditioning neural

networks with templates obtained from retrieving and re-ranking.

First, we propose a new input preprocessing module to attack symbolic reason-

ing tasks, such as learning arithmetic operations and computer program evaluations,

requiring rule-based generalization abilities. Specifically, our neural sequence-to-grid

(seq2grid) module does the preprocessing by automatically segmenting and aligning

an input sequence into a grid. Here, our module outputs the grid via a novel differ-

entiable mapping, so that any neural network structure taking a grid input, such as

ResNet or TextCNN, can be jointly trained with our module in an end-to-end fashion.

Extensive experiments show that neural networks having our module as an input pre-

processor achieve OoD generalization on various arithmetic and algorithmic problems

including number sequence prediction problems, algebraic word problems, and com-

puter program evaluation problems while other state-of-the-art sequence transduction

models cannot. Moreover, we verify that our module enhances TextCNN to solve the

bAbI QA tasks without external memory.

Second, to solve compositional generalization tasks requiring rule-based reason-
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ing, we propose a framework to use structurally hinted training examples that are ef-

fective for standard seq2seq neural networks. As humans can compositionally under-

stand a novel sentence by parsing it into known components like phrases and clauses,

many compositional reasoning tasks are suggested to assess machine learning mod-

els. Among these tasks, the SCAN tasks are challenging for the standard deep learn-

ing models, such as RNN sequence-to-sequence models and Transformers, that show

great success across many natural language processing tasks. Even though a long line

of deep learning research has developed memory augmented neural networks aimed at

the SCAN tasks, their generalities remain questionable for more complex and realistic

applications where the standard seq2seq models are dominating. Hence, one needs to

propose a method that helps the standard models to discover compositional rules. To

this end, we propose a data augmentation technique using paring trees. Our technique

annotates targets by inserting a new delimiter token in between them according to

their parsing trees. For the training stage, the technique needs prior knowledge about

the semantic or syntactic compositionality of the targets. On the other hand, for the test

stage, the technique uses no such knowledge. Experiments show that our technique en-

ables the standard models to achieve compositional generalization on the SCAN tasks.

Furthermore, we validate our technique on a synthetic task and confirm strong per-

formance gains of the standard models without using prior knowledge about semantic

compositionality. As one way to infuse parsing tree information into sequences, our

technique can be used for tasks with structured targets like program code generation

tasks.

Lastly, to achieve compositional generalization of a neural semantic parser, we

propose a new framework that offers selected templates to the parser via retrieving and

re-ranking. While humans understand languages with compositional reasoning, the

state-of-the-art neural networks struggle to grasp high-level representations, i.e., tem-

plates, and entities. It prevents the neural machines from handling instances with novel

combinations of observed words. To overcome this issue, considerable studies have
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been carried out to use a compositionally diverse utterance-program paired data, but

they still require expensive data augmentation. Thus, it is essential to design a method

to leverage cheap unpaired data that can be easily augmented. In this work, we propose

a new framework that retrieves and re-ranks program templates from an augmented

template pool. Specifically, we use a neural bi-encoder to retrieve candidate templates,

and a cross-encoder to select the most relevant templates. The templates make a neural

semantic parser easily predict the target programs. Empirically, our framework results

in a strong compositional generalization of neural networks on widely used semantic

parsing datasets such as ATIS, Advising, GeoQuery, and Scholar.

The remainder of the dissertation is organized as follows. Chapter 2 provides back-

ground about systematic generalization tasks with our definitions and examples and

overview related work in terms of benchmark datasets and previously proposed tech-

niques. Chapter 3 introduces our new task, called number sequence prediction, for

evaluating the computational powers of neural networks. Chapter 4 describes our novel

module that discovers latent alignments of input sequences, which in turn enables deep

models systematically generalize. Chapter 5 explains our parsing tree annotation tech-

nique that infuses structural hints into targets. Chapter 6 introduces our classification-

and-template-based approach to achieve a compositional generalization of a neural

semantic parser. In the last chapter, we summarize our findings and suggest future

research for achieving rule-based out-of-distribution generalization of deep learning

models.
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Chapter 2

Background

In this chapter, we first introduce the concept of rule-based out-of-distribution (OoD)

generalization, i.e., systematic generalization, with examples. Then, we overview ex-

isting benchmark datasets for testing systematic generalization. Finally, we introduce

three branches of previously proposed deep learning techniques.

2.1 Concept of Rule-based Out-of-distribution Generaliza-

tion

2.1.1 Definition

Systematic generalization of a machine is to learn and apply rules such that the ma-

chine handles OoD test examples. The definition of these rules or OoD examples can

vary depending on the tasks of interest [9, 10, 11]. Here, inspired by [9], we formalize

a systematic generalization task for the sequence generation.

In broader strokes, we will define OoD test examples by considering two distinct

distributions over one single sample space. Then, to guarantee that OoD examples

obey rules governing the training set, we will consider a set of rule-extractions, map-

pings from the sample space to rule spaces. Finally, we will formulate the systematic
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generalization in this setup.

More specifically, we first define the training and OoD test set. For a given sample

space S = X × Y where X and Y are the sets of input and target sequences, we

consider two distinct probabilities PID and POoD over S. Then, we sample a training set

Dtrain and test set Dtest from PID and POoD, respectively. By doing so, each test example

(x, y) ∈ Dtest is OoD since the example does not follow the training distribution PID.

Next, we make sure that two distributions PID and POoD have common underlying

rules. To this end, we consider rule-extractions r1, . . . , each of which is a measurable

function from S into another measurable space Ri, called a rule space. Then, for a

rule-extraction r (=r1, . . . ), we give the input-target conditional probability constraint

on pushforward measures r∗PID and r∗POoD as follows:

r∗PID(Y |X) = r∗POoD(Y ′|X ′)

where (X,Y ) and (X ′, Y ′) are input-target random variables from r∗PID and r∗POoD.

This guarantees that rules (=conditional probability) mapping from the input to the

target are unchanged even if the two distributions are different. Other than that, we

give no additional constraints about PID and POoD such as PID(X) = POoD(X ′).

Finally, we are ready to define a systematic generalization task as follows:

Definition) Systematic Generalization Task. We are given a sample space S = X×
Y where X and Y are sets of input and target sequences and measurable functions ri

(i = 1, 2, . . . ) mapping from S into a measurable space Ri. Given two distinct prob-

abilities PID and POoD over S such that r∗PID(Y |X) = r∗POoD(Y ′|X ′) for (X,Y ) ∼
r∗PID, (X ′, Y ′) ∼ r∗POoD, and r = r1, . . . , we sample the training set Dtrain and test

set Dtest from PID and POoD, respectively. The systematic generalization task is that

the machine predicts the target y′ for the test input x′ where (x′, y′) ∈ Dtest by using

training examples of Dtrain.

Note that we are dealing with systematic generalization tasks in a seq2seq setup

where both inputs and targets are sequences, so that the input and target spaces are
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Σ∗ = Σ ∪ Σ2 ∪ · · · where Σ is a set of symbols or tokens.

2.1.2 Examples

To elaborate the aforementioned definition, it would be instructive to see some con-

crete examples. Bearing in mind that the following examples make OoD scenarios by

assuming supports1 of ID and OoD distribution are disjoint, e.g., differing the lengths

of input or target sequences.

Copy Memory Task The copy memory task [22] is a test whether a machine can

recall a sequence after a long time gap. Specifically, the input sequence x is given as

x =

sequence to recall︷ ︸︸ ︷
d1d2 · · · d9d10

T -length blank︷ ︸︸ ︷
0 · · · 0 (2.1)

and the target sequence y is given as

y = d1 · · · d10

where d1, . . . dn ∼ Unif({1, . . . , 9}). The time gap of the training examples is short,

e.g., T = 100, whereas that of the test examples is long, e.g., T = 1000. This task can

be explained by our formulation. Indeed, we have the sample space S = Σ∗×Σ∗ where

Σ = {0, . . . , 9}. The two distinct distributions are PID = f
(100)
∗ Unif((Σ−{0})10) and

POoD = f
(1000)
∗ Unif((Σ−{0})10) where f (T ) : x̃ 7→ (x̃◦P, x̃) with the concatenation

◦ and the T -length zeros P (Note that x̃◦P is in the form Eq. 2.1). Clearly, PID 6= POoD

as they have disjoint suppports. However, for a rule-extraction r that deletes all zero

digits, we have r∗PID = r∗POoD; thus r∗PID(Y |X) = r∗POoD(Y ′|X ′) = 1 if X =

Y (X ′ = Y ′) otherwise 0.

Addition Task The addition of two decimal numbers can be a systematic general-

ization task if we increase the number of digits in the test examples. Specifically, input
1The support of the probability measure P is the closure of {x : P(x) > 0}.
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sequence is given as

1st term︷ ︸︸ ︷
d1d2 · · · dT1 +

2nd term︷ ︸︸ ︷
d′1d
′
2 · · · d′T2

where d1d2 · · · dT1 and d′1d
′
2 · · · d′T2

are valid decimal numbers (d1, d′1 6= 0) and the

target sequence is given as the result of the decimal addition of two terms. The training

examples are randomly sampled from short numbers, e.g., T1, T2 ≤ 6, while the test

examples are sampled from long numbers, e.g., (T1, T2) = (7, 10). Obviously, two

distributions PID and POoD have disjoint supports. To find the rule-extraction r, we first

define ai, the i-th digit addition under the number that is carried from the lower digit.

For example, a2 : (1236 + 79, 1315) 7→ ((3, 7, 1), (1, 1)). Here, the resulting input

(3, 7, 1) consists of 3 and 7 (=the 2nd digits of two terms) and the 1 (=the number

carried from the 1st digit addition: 6+9=15). The resulting target (1, 1) consists of

the first 1 (=the 2nd digit of the addition result) and the second 1 (=the number to

be carried for the 3rd digit addition). Then, we define r : (x, y) 7→ ∪i=1,...,ai(x, y).

Under this rule-extraction, r∗PID 6= r∗POoD (since the T1 6= T2 for test examples) but

we still have r∗PID(Y |X) = r∗POoD(Y ′|X ′). Note that each input component of the

point in r(x, y) entirely depends on x and so does for the target component and y;

thus, X, Y (or X ′, Y ′) are well-defined. In fact, you can think of r∗PID(Y |X) as the

addition table, whose column and row are the 1-digit numbers, with the numbers that

are carried and to be carried.

2.2 Benchmark Datasets

A large number of studies has released new benchmark datasets for testing systematic

generalization abilities of deep learning models. Especially, to construct new datasets,

it is important to define what rules are tested and how these rules are applied to syn-

thesize/define OoD test examples. In this point of view, we categorize existing datasets

by required rules and explain their definitions of OoD test examples.
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Symbolic Reasoning Tasks Symbolic reasoning, such as arithmetic or algorithmic

reasoning, requires discovering the underlying rules of a data distribution. Depend-

ing on tasks and underlying rules, various symbolic reasoning tasks have been for-

mulated as machine learning problems to examine the mathematical and systematic

(rule-based) reasoning abilities of deep learning models.

In the most simplest forms, problems of learning various elementary algorithmic

functions, such as copying/reversing/doubling of given sequences or recalling specific

terms or entire sequences after a certain period of time steps, have been suggested [22,

23, 24]. In these problems, to check whether a machine indeed learns the underlying

algorithmic rules, test sequences are given whose length is longer than observed during

the training stage. Moreover, additions of unprecedented long binary numbers [23, 25,

24] are suggested too.

Beyond understanding one algorithmic rule, machines have been validated whether

they can handle numbers in contexts given as natural languages or programming in-

structions. Algebraic word problems that requires to calculate the answer according

to given natural language instruction, e.g., school-level math problems, are proposed

[26, 27]. Tasks to evaluate program snippets according to program instructions like

for-loop or IF-branching are introduced too [6]. These datasets commonly consist

of examples with numbers so that OoD test examples are systematically defined by

increasing used digits in examples.

Compositional Generalization Tasks Humans can understand natural language char-

acterised by compositionality where constituents from lower levels are recursively

combined with a grammar [2, 3]. Compositional reasoning, also known as algebraic

capacity, is the key ability to generalize new structures with components observed dur-

ing training. However, researchers have criticized that neural networks do not have the

ability by testing them on datasets requiring various compositional rules.

Among these datasets, SCAN tasks [10], translations of command sequences into
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corresponding action sequences, are de facto standard benchmarks due to their simple

underlying rules and intuitive criteria for splitting training/test sets. For example, the

SCAN length task offers training examples whose actions (=targets)’ lengths≤ 24 and

then provides test examples whose actions lengths ≥ 24.

After that, a number of datasets has been released to further scrutinize what kinds

of novel compositions the deep models struggle to understand. Beyond the simple

human-designed training/test splitting criteria, a new automatic splitting method called

distribution-based compositional assessment (DBCA) is proposed and applied to con-

struct a new benchmark called CFQ [28]. DBCA defines atoms and compounds of ex-

amples, then measures the discrepancy in atoms’ (compounds’) distribution between

the training and test sets. Here, compositional generalization naturally arises for the

training and test sets if their distribution discrepancy in atoms is small whereas that in

compounds is large. In the COGS dataset [13], parsing trees of English sentences come

into play for splitting training and test sets. To test lexical or structural generalization,

test examples are formed according to different sampling strategy; Sampling on un-

seen entities or parse tree structures is done for the test examples. In PCFG datasets

[11], and these concepts were further summarized. In the context of semantic parsing,

guaranteeing non-overlapping program templates between training and test programs

[1] is also suggested too.

In Chapter 3, we propose number sequence prediction problems that require a

model to predict the successive terms of number sequences whose initial terms are

bigger than the ones in training examples. In particular, our problems provide further

insights about systematic generalization abilities of neural networks in the lens of Au-

tomata theory. As the smallest automaton that can solve the given number sequence

prediction problems is well-defined, we can directly compare computational powers

between the deep models and the automaton.
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2.3 Previous Approaches

In this section, we summarize various deep learning techniques for achieving compo-

sitional generalization into three branches: model-based, data-based, and task-based.

2.3.1 Model-based Approach

Designing new neural networks advantageous for capturing specific inductive bias can

be a solution. For example, to process image data, Convolutional Neural Network

(CNN) are specialized for grasping translation invariance. To capture the underlying

inductive bias for systematic generalization, researchers have proposed following ar-

chitectures.

Memory Augmented Neural Network Storing all input information into external

memory and querying over it is one way to tackle symbolic reasoning tasks. Such

neural networks, also known as memory augmented neural networks (MANN), vary

according to their memory structures and controllers. Here, the memory controller is a

neural network that reads an input symbol and its external memory, encodes the sym-

bol, and writes it on the memory. For example, the Neural Turing Machine (NTM)

[23], a de facto standard MANN, has differentiable external memory tapes that are

analogous to recording tapes of Turing machine. These tapes can be read and writ-

ten by controller networks such as perceptron networks or Long Short-Term Memory

(LSTM). The NTM successfully handles out-of-distribution inputs in small algorith-

mic tasks like copy task, but it notoriously demands huge amount of computations for

accessing the entire memory along time steps so that its scalability for more realis-

tic tasks is questionable. To overcome the limited scalabilty, studies about improving

NTM have been conducted [29, 30]. Also, different types of MANNs such as Stack-

augmented RNN [25] for recognizing context free grammar or Memory network [31]

for reasoning over synthetically generated story in natural language are introduced too.

In Chapter 4, our preprocessed grid input can be seen as another representation of a se-
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quential input rather than a memory used in MANNs; the RNN encoder of our module

does not read the grid and the symbol embedding is directly written to the grid rather

than passed through neural network layers.

Neuro-symbolic Approach Another approach for achieving systematic generaliza-

tion in symbolic reasoning problems is a neuro-symbolic approach that leverages a

neural network that is trained to combine or choose given pre-defined domain-specific

rules for solving task. To this end, memory-augmented neural networks (MANNs) and

reinforcement learning techniques are often used.

To do symbolic reasoning over natural language or programming codes, Neu-

ral Programmer Interpreter (NPI) [32] and its recursion variant [33] have been pro-

posed. To write compositional programs, these models generate sequential subpro-

grams. Also, [34] proposes a reinforcement learning-based approach with structured

parse-trees. Recently, Neural Symbolic Reader [35] trains models with weak super-

vision for generalization. In Chapter 4, our approach that uses automatic alignment

without domain-specific knowledge is distinct from neural-symbolic approaches in

that we require no pre-defined task-specific rule set for the alignment.

Especially, SCAN tasks have inspired many neuro-symbolic models as summa-

rized in [19]. For example, NeSS [14] is a MANN equipped with a neural stack ma-

chine controlled by manually-defined instruction semantics. Among its instructions,

CONCATM or CONCATS plays a crucial role to handle commands requiring repeti-

tions like “around” or “twice”. Also, LANE [15] is another MANN consisting of the

composer and the solver neural networks with memory. After the composer merges

repetitive adjacent commands and yields analytic expression, the solver translates and

records it on the memory. Note that the common bias behind both NeSS and LANE

architectures is to capture repeating patterns of actions according to commands, result-

ing in perfect accuracy on all splits of the SCAN tasks. In Chapter 5, we infuse this

bias by inserting delimiter tokens based on parsing trees rather than changing neural
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network backbones.

2.3.2 Data-based Approach

Some researchers have leveraged diverse training data for achieving systematic gen-

eralization of deep learning models. The intuition behind this is that adding diverse

training data makes out-of-distribution scenario be relaxed and become alike an in-

distribution one. This approach is promising because it can be applied to standard

models without changing their structures. We explain a few studies about this approach

while focusing on how additional data are secured, e.g., borrowing from other domain

data, synthesizing by handcrafted rules, or sampling from induced grammar.

Borrowing Data from Relevant Domain If there are data in other domain that

shares the similar underlying rules with the domain of interest, it would be clever to

use the data. For example, learning compositions in natural language could be helpful

to solve compositional generation tasks. One can easily achieve this by using pre-

trained transformers, i.e., T5 [36], that are widely used on a wide range of natural

language tasks, such as machine translation, question and answering tasks, and natural

language inference tasks [19]. This makes sense as pre-trained language models have

already acquired general knowledge about natural language syntax and compositions.

The idea of borrowing training data from relevant domains is also studied [37, 38].

However, all of these data-based approaches are not enough for training the standard

seq2seq models to generalize on the other splits of the SCAN tasks like the length-split

or the MCD-split. In Chapter 5, we present a data augmentation technique that works

on those uncharted tasks.

Data Synthesis by Handcrafted Rules To secure compositionally diverse exam-

ples, one can design handcrafted rules to combine components of existing data. For

example, to solve the jump-split SCAN task, GECA, a manual data augmentation

method, [17], synthesizes new training examples by mixing given training examples’
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components that have never been collocated. Also, [39] synthesizes more training ex-

amples about primitives usages within contexts by introducing hundreds of new prim-

itives.

Data Sampling by Induced Grammar Researchers have attempted to directly dis-

cover rules underneath data via grammar induction. After a grammar is induced, one

can readily sample new training examples from the induced grammar. [40, 41, 42] syn-

thesized new training examples using training data’ (quasi-) synchronous CFG induced

by symbolic scaffolds. Data synthesis using neural parsers [9, 16] has been studied

too. In Chapter 6, we use a rich enough template pool that requires data augmenta-

tions. Since we require unpaired templates which have a small variety than original

programs (=targets), one can easily incorporate any of the aforementioned methods to

our framework.

2.3.3 Task-based Approach

Given systematic generalization tasks, one can reformulate them under advantageous

conditions leveraging auxiliary information. Intuitively, the task reformulation enables

one to utilize this information that cannot be used in the original setup, leading to over-

all performance gains. Therefore, researchers have found available auxiliary informa-

tion and used them to reformulate tasks, possibly by giving auxiliary supervision or

entirely redefining the given inputs and targets.

Multi-task Learning with Auxiliary Targets Other than given input-target paired

training examples, some researchers have tried to use readily available auxiliary in-

formation that can help to teach compositions of examples. One way to do so is to

give supervision on input-target alignments. [8, 43] attain input-target alignment la-

bels using off-the-shelf parsers and use them to train input-target attention outputs

using cross-entropy loss. Also, [44] attaches an additional output head to a model and

makes it predict the auxiliary depths of target tokens.
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Reformulation of seq2seq Setup Other researchers have reformulated a given se-

quence transduction setup into another. [20] considers not only input-to-target map-

ping but also target-to-input mapping, i.e., back-translation, under the assumption that

monolingual corpora of inputs and targets exist. By doing so, neural networks are

successful at matching unpaired compositional novel input-target pairs. On the other

hand, [45] considers a rule space, a collection of atomic input-target mapping rules,

and then solves SCAN tasks by explicitly finding rules. Specifically, after defining

a rule space with moderate complexity, new synthetic input-target pairs are sampled

from the space. Then, a neural network trained to recover used rules from input-target

pairs takes the input-target pairs of the original task and outputs our desired rules of

the task. In Chapter 6, we reformulate the given a seq2seq task into a classification-

and-template-augmented-generation task. By doing so, we can leverage a cheap and

large template pool.
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Chapter 3

Evaluating Computational Powers of Neural Networks

with Number Sequence Prediction Problems

Well-defined machine learning tasks have been crucial for the researches. Major deep

learning breakthroughs in the field of computer vision such as AlexNet [46], VGGNet

[47] and ResNet [48] could not be possible without Imagenet dataset and challenges

[49]. In the field of reinforcement learning, open platforms like MuJoCo [50] and

Deepmind Lab [51] provide challenging environments for the studies. However, it is

hard to find machine learning task suite for algorithmic reasoning although reasoning

has always been a significant subject for many machine learning studies.

It is theoretically proven that carefully designed neural network models can simu-

late any Turing machine [52]. Hence, there have been studies applying neural network

models to solve algorithmic tasks such as learning context-sensitive languages [53],

solving graph questions [29], and composing low-level programs [54]. Also, there

have been attempts to train neural networks with simple numerical rules such as copy,

addition or multiplication [55, 56, 57, 58]. However, it has been unclear whether the

proposed models express computational powers equivalent to Turing machines in prac-

tice. To provide a method to test the computational powers of neural network models,

we propose a set of number sequence prediction problems designed to fit deep learning
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methods.

A number sequence prediction problem is a kind of intelligence test for machine

learning models inspired by number series tests, which are conventional methods to

evaluate non-verbal human intelligence [59]. A typical number series test gives a se-

quence of numbers with a certain rule and requires a person to infer the rule and fill

in the blanks. Similarly, a number sequence prediction problem requires a machine

learning model to predict the following numbers from a given sequence. The numbers

are represented as a sequence of digit symbols; hence the model has to learn discrete

transition rules between the symbols such as carry or borrow rules.

To be specific, we suggest two types of number sequence prediction problems: the

number-level problems and the digit-level problems. A number-level problem provides

a two-dimensional grid of digits as an input where each row represents a multi-digit

number. The target would be a grid of the same format filled with the following num-

bers. Solving a number-level problem is equivalent to constructing the combinatorial

logic for the transition rules. On the other hand, a digit-level task provides a single digit

as an input per each time step. A model needs to simulate a sequential state automaton

to predict the outputs. The type of the state machine required can vary from a finite

state machine to a Turing machine, depending on the generation rule of the sequence.

The number sequence prediction problems are good machine learning tasks for

several reasons. First, typical deep learning models can easily fit into the problems.

Generative models for 2D images can be directly applied to solve the number-level

problems, and recurrent language models can fit into the digit-level problems after

minimal modifications. Next, it is possible to define the complexity and difficulty of

the problem. Like Kolmogorov complexity [60], we can define the complexity of a

problem with the structure of the minimal automaton needs to be simulated. Finally, we

can generate an arbitrarily large number of examples, which is hard for many machine

learning tasks.

To empirically prove that the number sequence prediction problems can effectively
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evaluate the computational capabilities of machine learning models, we conduct exper-

iments with typical deep learning methods. We apply residual convolution neural net-

work (CNN) [48] models for the number-level problems, and recurrent neural network

(RNN) models with GRU [61] or LSTM [22] cells to the digit-level problems. We

also augment RNN models with stack [55], external memory [58] and attention [62]

which might help models solve more complex digit-level sequence prediction tasks.

One-dimensional CNN models can be applied to digit-level sequences, but it is not

equivalent to solving digit-level problems because for the CNN models the data needs

to be given at the same time in parallel, losing the sequential nature of the problems.

For each type of sequences, we measure the complexity of it by designing an automa-

ton equivalent to the generation rule. In the experiments of the number-level problems,

sequences are generated by various linear homogeneous recurrence relations. Since

the digit transition rules of the relations can be implemented with combinatorial logic,

we measure the complexity and the difficulty of a sequence from the width and the

depth of the logic. Experiments show that CNN models are capable of learning the

compound operations of number-level sequence generation rules but limited to cer-

tain complexity. Digit-level sequence prediction problems can be solved with state au-

tomata. Therefore, we define the complexity of a problem with the computing power

of the automaton and choose sequences with complexities of finite state automata,

pushdown automata, and linear bound Turing machines.

The contributions of this work are as follows:

• We propose a set of number sequence prediction problems for evaluating a ma-

chine learning model’s algorithmic computing power.

• We define methods to measure complexities and difficulties of the problems

based on the structure of automata to be simulated, which can predict the diffi-

culty of training.

• Number-level sequence prediction experiments show that CNN models can sim-
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ulate deep combinatorial logics up to certain depth.

• Digit-level sequence prediction tasks reveal that the computational powers of ex-

isting recurrent neural network models are limited to that of finite state automata

or pushdown automata.

Overall, the set of our problems can be a well-defined method to verify whether a

new machine learning architecture extends the computing power of previous models.

There are some possible directions to extend the computational capabilities of neu-

ral network models. The first way is to apply training methods other than the typical

methods we used in the experiments. For instance, reinforcement learning methods

can be applied to the algorithmic tasks [63]. Next, non-backpropagation methods such

as dynamic routing [64] might help neural network models learn more complex rules.

Our number sequence prediction tasks would provide a well-defined basis for those

possible future works.

3.1 Problem Definition

3.1.1 Number-level Sequence Prediction

Figure 3.1 illustrates a number-level sequence prediction problem. The model is given

with an input sequence A1 · · ·An which is formatted as a two-dimensional grid with

n rows. Each row corresponds to a term Ai which is a multi-digit number of l digits.

A digit cell is a one-hot vector where the number of channels is equal to the base b

of the digits. The target data An+1 · · ·An+s is a sequence of following numbers with

the length shift s with the same data layout. In the experiments, we use sequence data

of n = 8, l = 8 and s = 4. We denote this {0, 1}l×b binary one-hot row tensor

representation of a natural number A as 〈A〉.
We use various order-k homogeneous linear recurrence of the form An = c1An−1+

· · · + ckAn−k with constant integer coefficients c1, . . . , ck to generate number se-

quences starting from randomly selected initial terms A1, . . . , Ak. For instance, k =
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Figure 3.1: Input and target sequence examples of a number-level problem with the

Fibonacci sequence. The number-level sequence example is with length n = 4, shift

s = 2 and digit l = 4. A number in a cell is represented by an one-hot vector.

2, c1 = 1, c2 = 1 imply a general-Fibonacci sequence and k = 2, c1 = 2, c2 = −1

give an arithmetic progression. Likewise, a progression with arithmetic sequence as its

difference whose recurrence is An − An−1 = An−1 − An−2 + c can be re-written in

An = 3An−1 − 3An−2 + An−3. In the perspective of combinatorial logic, the gener-

ation rules of the sequences can be seen as k-ary operations of the binary tensors. For

example, the generation rule of arithmetic sequences can be represented with a binary

operation of (〈A〉, 〈B〉) 7→ 〈2A − B〉. Since all inputs and outputs of an operation

are binary, there exists a shortest disjunctive normal form (DNF) for the operation. We

first define a combinatorial width of an operation with its disjunctive normal form, i.e.

sum of minterms1.

Definition) I. f the smallest DNF of a function f : {0, 1}n → {0, 1}m has Θ(w)2

1A logical AND of literals in which each variable appears exactly once in true or complemented form

[65]
2w is a function of input and output dimensions
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Figure 3.2: Conceptual schema of a binary operation (left), a ternary operation (mid-

dle) and an equivalent composition of two binary operations (right). The formulas

represent combinatorial widths.

minterms, Θ(w) is called the combinatorial width of the function. If functions f1, . . . , fk

have corresponding widths of Θ(w1), . . . ,Θ(wk), the compound width of a compo-

sition f1 ◦ · · · ◦ fk is defined as Θ(w1 + · · ·+ wk).

The decimal digit addition, for example, requires at least Θ(102) products since

it has to memorize the consequences of all possible digit pair inputs. Therefore, the

combinatorial width of a linear binary operation is Θ(b2) where b is the base of the

digits. Note that the compound width of a function is not unique. Consider a logical

circuit for the ternary operation of (〈A〉, 〈B〉, 〈C〉) 7→ 〈2A − B + C〉. As seen in

Figure 3.2, the operation can be implemented with a single function of combinatorial

width Θ(b3), or a compound of two binary operations resulting in the compound width

of Θ(b2) in at the cost of a deeper data path. This depth of the path can define the

complexity of the operation.

Definition) T. he complexity of a function f : {0, 1}n → {0, 1}m is the minimum

number n of functions which make the compound width of f1 ◦ · · · ◦ fn = f the

smallest. Such smallest compound width is called the difficulty of the function.

For example, the length of a row l is the complexity of the carry rule since the
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carry digit of the most significant digit sequentially depends on all other digits. To

eliminate the dependence on the dimensions, we ignore the carry or borrow rule while

calculating a complexity. Since a logical product can be approximated with a neuron

with a nonlinear activation, the difficulty should correspond to the number of neurons

in the network. Also, since the complexity reflects the depth of a logical circuit, it

should correspond to the number of layers in the network. Note that it is possible

to compromise the width for the depth as seen in Figure 3.2. We expect deep neural

networks to learn narrow but deeper representations.

3.1.2 Digit-level Sequence Prediction

𝟗 𝟏𝟎 𝟏𝟏 𝟏𝟐

Digit-level Model

𝟓 𝟔 𝟕 𝟖𝟏 𝟐 𝟑 𝟒

Figure 3.3: Input and target sequence examples of a digit-level problem with the Fi-

bonacci sequence. The example is with n = 8 and s = 4. The order of the digits is

little-endian (least significant digits first).

Figure 3.3 illustrates a digit-level sequence prediction problem. The model is given

with sequential inputs of a1 . . . an, each of which is an integer number corresponds to

a character. With the base of b, the numbers 0 . . . b − 1 correspond to the digits. The

second last number b is a blank, and the last number b + 1 is a delimiter. After n

inputs, we give delimiters as inputs for s time steps. The target sequence consists of

n delimiters followed by an+1 . . . an+s. Because digit calculations must start from the
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smallest digit, we order the digits in the little-endian order which is the reverse of the

typical digit order. In the experiments, we use sequences of n = 12 and s = 12.

The sequential nature of the data makes it more difficult to solve the problems.

Since the model has to retain information from the previous inputs, solving the prob-

lem is equivalent to modeling a sequential state automaton of the generation rule. The

computing power of a state automaton falls into one of the four categories: finite state

machine, pushdown automaton, linear bounded automaton, and Turing machine. All

Turing machines are linearly bounded in the problems because the computation time is

linearly bounded to the length of the sequence. Therefore, three levels of state automata

are possible in the digit-level sequence prediction problems. We define the complexity

of a sequence by the smallest state automaton required.

Definition) T. he complexity of a number sequence prediction problem is the com-

plexity of a state automaton which can simulate the sequence generation rule with

the smallest number of states. The minimal grammar of the sequences is the formal

grammar can be recognized with the automaton.

To illustrate, we can think about the most straightforward sequence of number

counting. If the numbers have at most l digits of base b, the counter can be imple-

mented with Θ(lb) shift registers which can be translated to the same number of non-

deterministic finite state automaton. Hence, the complexity of counting numbers is the

complexity of finite state automata, and its minimal grammar is a regular grammar. In

the experiments, we use progressions with a fixed difference because they can be un-

derstood as generalized forms of number counting sequences. Arithmetic, geometric

and general-Fibonacci sequences can also be represented as digit-level sequences. The

most straightforward automata capable of generating them are queue automata, which

share the same computational powers with Turing machines. Since Turing machines

must be linearly bounded in the digit-level problems, the minimal grammars of both

arithmetic and general-Fibonacci sequences are context-sensitive grammars.
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Figure 3.4: Nondeterministic finite state automaton that can solve reverse-order task

with n = 2 and b = 2. Automata for fixed difference arithmetic sequence can be built

in similar manners.

Between regular and context-sensitive languages, there are context-free languages

which require pushdown automata. Palindromes are proper examples of context-free

languages which cannot be expressed by lesser languages. Therefore, we add the ex-

periment of a reverse-order task where the target sequence is the reverse of the input

sequence. The input data consists of n random digits followed by n delimiters, and

the target data is n delimiters followed by n digits, which is the reverse of the input

sequence. If n is limited, it is possible to solve the reverse-order task with a finite state

automaton as seen in Figure 3.4. Therefore, we train the models with n = 1 . . . 12 and

validate with n = 16 to force the complexity of the problem equivalent to a pushdown

automaton.

3.2 Methods

3.2.1 Number-level Sequence Prediction Model

To solve number-level sequence prediction problems, we use a WaveNet-based model,

as shown in Figure 3.5. Note that WaveNet model [66] is a generative model for se-

quential data. Since the data layout of number-level sequences is two-dimensional,

we use 3×3 convolution kernels with dilation on the second dimension of the kernels

where large receptive fields are necessary for the carry rules. Unlike WaveNet, we use

26



3 3, 128, 
dilation=

1 1, 64

1x1, 
128

ReLU

ReLU

3 3, 128, 
dilation=

1 1, 64

1x1, 
128

ReLU

ReLU

3×3, 128

Bottleneck
1×1, 64

ReLU

𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 0,2,4
×1 or 2 or 3

skip 
connections

3×3, 128

ReLU
1×1, 128

1×1, 10
1×1, 128

ReLU

ReLU

Figure 3.5: Schematic of number-level CNN models. The number of neurons in the

convolution layers can be one of 64, 128, 192. The residual blocks can be repeated

once, twice or thrice, making 12, 21 or 30-layer CNN model.

ReLU activation because we empirically observe that the gate activation slows down

the training speed but shows no improvement on the accuracy. The number of neurons

per convolution layer can be 64, 128 or 192, which can correspond to the difficulty

of a problem. Inspired by the bottleneck architectures of residual CNN [48], the first

layer of each residual block has half the number of neurons. By stacking more residual

blocks to the model, we can change the depth of the model. The base 12-layer model

has three residual blocks of dilation (0,2,4), and they can be repeated to make 21-layer

and 30-layer models. BatchNorm [67] and Dropout [68] methods are applied to all

residual blocks.

3.2.2 Digit-level Sequence Prediction Models

To attack digit-level seqquence prediction problems, we use simple character-level

RNN language models [69] with minimal modifications, as shown in the left side

of Figure 3.6. LSTM [22], GRU [61], Stack-RNN [55] and Neural Turing Machine
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(NTM) [58] are used for the recurrent modules in the middle. A Stack-RNN module

uses a number of stacks equal to the base b, and an NTM module uses 4 read and write

heads. A digit-level model with attention [62] follows the encoder-decoder architecture

on the right side of Figure 3.6. The first half of an input sequence and the second half

of a target sequence begun with the delimiter (〈Go〉 symbol) are fed into the encoder

and the decoder. We use both unidirectional and bidirectional LSTM modules for the

models with attention. We set the number of neurons in all hidden layers to 128.

Figure 3.6: Schematics of digit-level neural network models. A recurrent module in a

digit-level model can be either LSTM, GRU, Stack-RNN or Neural Turing Machine.

Unlike other digit-level models, an attention model must follow the encoder-decoder

structure which is illustrated on the right side.

3.3 Experimental Setup

3.3.1 Datasets

Number-level Sequence Prediction The objective of the experiments is to verify

that complexity and difficulty of a number-level problem correspond to the depth and

the parameter size of a CNN model. Total eight types of sequences are used in this part
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Figure 3.7: Validation error curves of the deep and wide models on the sequences

generated by a ternary relation (left), the mixture of the four types of binary relations

(middle) and the quaternary relation with different base digits (right). Y-axes are val-

idation error rates, and the X-axes are training example counts. The value following

the number of layers denotes the number of neurons in a convolution layer. The third

experiment uses a 30-layer model with 128 neurons per layer.

of the experiments. First four types of the sequences have recurrence relations in the

form of An = pAn−1 +qAn−2 where (p, q) ∈ {(1, 1), (2,−1), (3,−2), (1, 2)}. These

four sequences represent binary operations with the complexity of one. The fifth type

of sequences has a relation of An = An−1+An−3 which represents a binary operation

with the complexity of two because the model has to see through at least two layers

to catch the relation between An−1 and An−3 with 3 × 3 convolution kernels. The

sixth type of the sequences is a mixture of the first four types of the sequences. This

is equivalent to building a ternary combinatorial logic with four times more width.

For comparison, the seventh type of sequences is generated by a recurrence relation of

An = 2An−1 − An−2 + An−3 which can be a compound of two binary operations.

The last type sequence is a progression with a relation of An = 4An−1 − 6An−2 +

4An−3 −An−4 whose general term can be calculated with a fourth-order polynomial.

For the training data, the first k terms3 of the sequences are chosen from (0, 20000),

while they are chosen from (20000, 30000) in the validation dataset. We compare the

learning curve patterns over various model configurations.
3k is the order of a recurrence relation
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Digit-level Sequence Prediction The purpose of the digit-level sequence prediction

experiments is to find complexity limits of the models. The first type of the sequences

is a progression with a fixed difference, which can be understood as a variation of num-

ber counting sequences. We use the difference of 17 to observe the carry rules more

often. The first term of a training data is chosen from the range of (0, 9000), and that

of a validation data is chosen from (9000, 9900). In the second experiment, we use

arithmetic sequences or general-Fibonacci sequences. The first two terms are chosen

from the range of (0, 4000) during the training and (4000, 6000) for validations. Since

it is impractical to build finite state automata for all cases, the model must simulate

queue automata to solve the problems. The third experiment uses rounded geometric

sequences with the relation An+1 = b1.3Anc where the first terms are randomly cho-

sen from (0, 4000) during the training and (4000, 6000) for validations. The task also

requires a smaller queue automaton since it has to remember only one previous num-

ber at a time. The last experiment tests the models with the reverse-order task, which

has the complexity of a pushdown automaton. Since a reverse-order problem of fixed

length can be solved by a finite automaton, we train the models with n ∈ {1 . . . 12} and

validate the models with n = 16 to force the models to learn a pushdown automaton.

3.3.2 Training and Validation

We follow the end-to-end training fashion. Thus the models have to learn the logical

rules without any domain-specific prior knowledge. A batch of size 32 is randomly

generated for each iteration by choosing the initial numbers and applying the gener-

ation rules. The space of all possible training sequences should be large enough to

avoid overfitting. We evaluate the validation prediction error rate with a pre-defined

validation dataset after every 32 iterations. We define a prediction error rate as a ra-

tio of wrong predictions to the total predictions. The total predictions are counted as

l×s = 32 in number-level sequences and s = 12 in digit-level sequences. A prediction

is determined by the digit channel with the maximum output value. Both number-level
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and digit-level models are trained to minimize the cross-entropy loss function. The

validation dataset is also randomly generated from the space outside of the training

data space. For example, we choose the first two terms of number-level arithmetic se-

quences from the range of (0, 20000) for the training dataset, but we choose them from

the range of (20000, 30000) for the validation dataset.

3.4 Results and Discussion

3.4.1 Number-level Sequence Prediction
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Figure 3.8: The learning curves of the 12-layer number-level model with 64 neurons

on the five types of the basic sequences. (p, q) denotes the coefficients of binary op-

erations (A,B) 7→ pA + qB. (1, 0, 1) denotes the relation of An = An−1 + An−3.

Figure 3.8 and Figure 3.9 show the validation error curves and the error examples

of a CNN number-level model during the training on the five types of sequences gen-

erated by the binary operations. Although the numbers of possible sequences exceed

a hundred million, the model can achieve error rates near zero in less than a hundred
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Figure 3.9: The error examples from number-level model trained with general-

Fibonacci sequences. Shaded cells show the locations of the errors. The numbers are

shown in little-endian order.

thousand examples. Since the validation data comes from the outside of the training

data space, we can conclude that the model can learn the exact logic rules for the oper-

ations. The error examples show that it is hard to catch long-term carry rules, which is

expected because the carry rules have complexities equal to l = 8. Deploying deeper

models reduce the errors from those long-term carry rules, occasionally achieving a

zero prediction error. The fifth sequence of rule An−1 +An−3 shows a different learn-

ing curve pattern since 3× 3 convolution kernels force the model to simulate the logic

with the complexity of two. The results show that complexities of number-level se-

quence prediction problems can effectively predict the hardness of learning.

Figure 3.7 compares the learning curves of the models with various configurations

and sequence data. The models successfully learn the rules from both the mixed set

of primary sequences and the sequences generated by a ternary relation. However, the

patterns of the learning curves are different. With the mixed set of primary sequences,

the learning curves of the models show uniform convexity without a saddle point. Also,

32



Tasks
Reverse-order

Geometric Arithmetic Fibonacci
(training)

LSTM 28.4% (1.2%) 79.4% 77.1% 80.5%

GRU 51.9% (0.9%) 69.0% 77.1% 79.3%

Attention(unidirectional) 42.0% (8.8%) 62.8% 77.0% 69.3%

Attention(bidirectional) 0.0% (0.0%) 51.0% 72.9% 60.9%

Stack-RNN 0.0% (0.0%) 64.1% 63.8% 69.4%

NTM 0.0% (0.0%) 57.1% 65.7% 68.1%

Table 3.1: Test error rates of the digit-level sequence prediction experiment. Identical

training methods are applied to the models except the attention model. Parenthesized

numbers in the reverse-order task column are training error rates with n = 1 . . . 12.

there is no clear advantage of using deeper models. However, the learning curves with

the sequences of a compound rule have saddle points, where we suspect the models

find breakthroughs. Moreover, we can observe the advantages of using deeper mod-

els. Therefore, it can be concluded that deep learning models tend to learn complex

but less difficult combinatorial logic, rather than the equivalent shallow but wide rep-

resentations. Meanwhile, the last learning curves show that the CNN model finds it

hard to learn the logic with the complexities more than three. The quaternary operator

with base 5 has a smaller combinatorial width than a decimal ternary operator, but the

model cannot learn the rule of the former.

3.4.2 Digit-level Sequence Prediction

Figure 3.10 shows that GRU and LSTM based models are capable of simulating finite

state automata. Although the GRU model shows better performance than the LSTM

model, both are not able to solve the problems that require queue or pushdown au-

tomata as seen in Table 3.1. Training error rates of GRU and LSTM models on reverse-

order task converges around 0.01 suggesting that the models are capable of simulating
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Figure 3.10: Validation error curves of LSTM and GRU digit-level sequence prediction

models on the arithmetic sequences with fixed difference of 17.

Figure 3.11: Error examples from the digit-level LSTM model trained with general-

Fibonacci sequences. The numbers are shown in little-endian order. Shaded cells show

locations of the errors.
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finite state automata for generating palindromes with a limited length. The error ex-

amples from the general-Fibonacci sequence prediction task in Figure 3.11 show the

strategies of the models. The models remember relationships between the most signif-

icant digits, while relationships between the least significant digits are more critical

for the digit computations. We can conclude that the computational powers of typical

RNN models are limited to those of finite state automata if they are trained with typical

training methods. Encoder-decoder model with attention, Stack-RNN and NTM mod-

els are capable of solving reverse-order task, but they are no better than typical RNN

models in problems that require queue automata. The model with attention doesn’t

show significant differences if the model uses unidirectional LSTM. Using bidirec-

tional LSTM seems to be crucial for simulating pushdown automata in the models

with attention.
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Chapter 4

Learning Symbolic Rules with Neural Sequence-to-grid

Module

Symbolic reasoning tasks such as learning arithmetic operations or evaluating com-

puter programs offer solid standards for validating the logical inference abilities of

deep learning models. Among machine learning tasks, symbolic reasoning problems

are apt for testing mathematical, algorithmic, and systematic reasoning as they have

strict rules mapping a given input to a well-defined unique target. In particular, a

large body of works on deep learning has considered sequence transduction prob-

lems for symbolic reasoning. Some symbolic problems such as copying sequences

[70, 23, 71, 30, 6] and arithmetic addition [23, 25, 24, 72, 26, 73] can be solved af-

ter understanding simple rules regardless of the inputs. Others demand a deep learning

model to discover necessary rules and apply them depending on inputs given as natural

language words [74, 27, 75], complex mathematical equations [76], or programming

snippets [6].

Among them, symbolic reasoning problems can test whether a trained deep learn-

ing model can systematically extend rules to out-of-distribution (OOD) data that fol-

low a distinct distribution from the training data [7, 12, 26]. For instance, a model

for the addition problem whose training inputs are a pair of numbers up to five dig-

36



its, say 5872+13, can face an OOD input of a pair of two 6-digit numbers upon the

testing phase, e.g., 641436+135321. Human intelligence with algebraic mind can

naturally extend learned rules [77], yet it is non-trivial to equip deep learning models

for sequence transduction problems to handle OOD generalization.

However, it has been found that popular sequence transduction neural networks,

such as LSTM seq2seq model [78] and Transformer [79], rarely extend learned rules

in that they are inclined to mimic the training data distribution [70, 12]. There have

been significant initial efforts to improve a model’s abilities to extend learned rules.

However, their success has been dependent on the direct use of numerical values [80]

or has been limited to rudimentary logic such as copying sequences [70, 23, 71, 30,

6] and binary arithmetic [23, 25, 24]. Furthermore, OOD generalization on symbolic

problems for complex or context-dependent logic forms such as decimal arithmetic,

algebraic word problems, computer program evaluation problems has not been tackled.

Our objective is to fill this gap and design a module that helps neural networks to

achieve OOD generalization in these problems.

One observation from a previous study [81] is that typical sequence transduction

neural networks cannot process OOD instances of number sequence prediction prob-

lems, such as predicting a Fibonacci sequence. However, when an input sequence is

manually segmented and aligned into a grid of digits, a CNN can easily process OOD

instances. This means providing the aligned grid input enables to exploit inductive

bias by the convolution’s local and parallel computation. The grid, however, must be

handcrafted in the study, which is inapplicable for general sequence transduction tasks.

Overcoming this limitation requires a new input preprocessing module that automati-

cally aligns an input sequence into a grid without supervision for the alignment.

In this work, we propose a neural sequence-to-grid (seq2grid) module, an input

preprocessor that learns how to segment and align an input sequence into a grid. The

grid syntactically aligned by our module is then semantically decoded by a neural

network. In particular, our module produces a grid by a novel differentiable mapping
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called nested list operation inspired by Stack RNN [25]. This mapping enables a joint

training of our module and the neural network in an end-to-end fashion via a back-

propagation.

Experimental results show that ResNets with our seq2grid module achieve OOD

generalization on various arithmetic and algorithmic reasoning problems, such as num-

ber sequence prediction problems, algebraic word problems, and computer program

evaluation problems. These are nearly impossible for other contemporary sequence-

to-sequence models including LSTM seq2seq models and Transformer-based models.

Specifically, we find that the seq2grid can infuse an input context into a grid so that do-

ing arithmetic under linguistic instructions or selecting the true branch of if/else state-

ments in code snippets become possible. Further, we demonstrate that the seq2grid

module can enhance TextCNN to solve the bAbI QA tasks without the help of exter-

nal memory. From all the aforementioned problems, we verify the generality of the

seq2grid module in that it automatically preprocesses the sequential input into the grid

input in a data-driven way.

4.1 Motivation

To demonstrate the benefits of the sequence-to-grid preprocessing method for sym-

bolic reasoning tasks, we devise a toy decimal addition problem in two different se-

tups: sequential and grid-structured. Figure 4.1 illustrates how the problem is defined

in both setups and shows why alignment on a grid makes it easier. If the lengths of the

numbers increase, the temporal distances between corresponding digits, e.g., 2 and 3,

also increase in the sequential setup. However, the spatial distances between them re-

main constant in the grid-structured setup since they are manually aligned according to

their digits. Therefore, we can expect that the local and parallel nature of convolution

will extend the rule to longer inputs, while sequence transduction models will struggle

to handle the increased distances.
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To see this, we trained deep learning models1 using numbers up to five digits

and validate on six separate validation sets, each of which contains only k-digit (k =

3, . . . , 8) numbers. Hence, the validation results from the former three sets tested in-

distribution (ID) generalization, whereas the latter three tested OOD generalization.

While the input and the target in the sequential setup were sequentially fed to sequence

transduction models such as LSTM seq2seq model [78] and Transformer [79], those

in the grid-structured setup were fed to a ResNet-based CNN model [48]. As expected,

Figure 4.2 shows that extending the addition rule to OOD validation sets is easy in the

grid-structured setup, whereas it is extremely difficult in the sequential setup.

Therefore, providing aligned grid input for local and parallel computation can be

key to achieving OOD generalization. However, manual preprocessing that aligns an

input sequence into a grid is impossible for most symbolic problems. For instance, in

computer program evaluation problems, symbols within the code snippet can represent

not only integers but also programming instructions so that it is non-trivial to manually

align those symbols on the grid. Likewise, in the bAbI QA tasks, questions and stories

given as natural language have no ground-truth alignment which we can exploit for

preprocessing in advance. Accordingly, we need a data-driven preprocessing method

that automatically aligns an input symbol sequence into a grid for general symbolic

tasks. We implement it by designing a sequence-to-grid module executing novel nested

list operations.

4.2 Methods

In this section, we first describe a sequence-input grid-output architecture consisting of

a neural sequence-to-grid (seq2grid) module and a grid decoder. Then, we introduce

how the seq2grid module preprocesses a sequence input as a grid input. Finally, we

explain nested list operations that are executed by the seq2grid module.
1The models had the same configurations used in arithmetic and algorithmic problems (refer to ex-

periments) except for the CNN that was the grid decoder of the S2G-CNN.
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4.2.1 Sequence-input Grid-output Architecture

The key idea of the sequence-to-grid method is to decouple symbolic reasoning into

two steps: automatically aligning an input sequence into a grid, and doing semantic

computations over the grid. Hence, we propose the sequence-input grid-output archi-

tecture consisting of a seq2grid module and a grid decoder as shown in Figure 4.3. The

seq2grid module preprocesses a sequential input into a grid input. The grid decoder,

a neural network that can handle two-dimensional inputs, predicts the target from the

grid input. Practically, we choose the grid decoder like ResNet or TextCNN accord-

ing to problems. Note that our approach that separates the syntactic (=alignment) and

semantic processing is similar to the syntactic attention [82].

4.2.2 Neural Sequence-to-grid Module

The main challenge for implementing the seq2grid module is that the grid must be

formed via differentiable mappings to ensure an end-to-end training. To do so, we

design the seq2grid module with an RNN encoder that gives an action sequence for

differentiable nested list operations.

Formally, the seq2grid module works as follows. First, for an input sequence given

as symbol embeddings E(t) ∈ Rh where t = 1, . . . , T , the RNN encoder maps

(E(t), r(t−1)) into r(t) ∈ Rh. Then, a dense layer followed by a softmax layer com-

putes an action: r(t) 7→ a(t) ∈ R3. Next, starting from the zero-initialized grid G(0) ∈
(Rh)W×H , a series of nested list operations sequentially push the input symbol E(t)

into the previous grid G(t−1) in different extents under the action a(t). As a result, we

obtain the grid input G(T ) ∈ (Rh)W×H that will be fed through a grid decoder. Note

that all aforementioned mappings are differentiable including nested list operations

which we will explain below.
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4.2.3 Nested List Operations

To understand how the nested list operations work, we first regard the grid G ∈
(Rh)H×W as a nested list consisting of H lists of W slots, where each slot is a vec-

tor of dimension h. We denote the i-th list as Gi ∈ (Rh)W where G1 is the top list.

Likewise, the j-th slot vector in the i-th list is denoted as Gi,j ∈ Rh where Gi,1 is the

leftmost slot of the i-th list.

Now, we define a differetiable map that pushes the input symbol E(t) ∈ Rh into the

grid under the action a(t) ∈ R3. Here, each component of a(t) = (a
(t)
TLU , a

(t)
NLP , a

(t)
NOP )

is the probability of performing one of three nested list operations: top-list-update

(a(t)TLU ), new-list-push (a(t)NLP ), and no-op (a(t)NOP ). As shown in Figure 4.4, G(t−1)

with (E(t), a(t)) grows to G(t):

G(t) = a
(t)
TLUTLU

(t) + a
(t)
NLPNLP (t) + a

(t)
NOPG

(t−1),

where TLU (t) ∈ (Rh)H×W is defined as

TLU
(t)
1,1 = E(t),

TLU
(t)
1,j = G

(t−1)
1,j−1 for j > 1,

TLU
(t)
i = G

(t−1)
i for i > 1,

and NLP (t) ∈ (Rh)H×W is defined as

NLP
(t)
1 = (E(t), E∅, . . . , E∅),

NLP
(t)
i = G

(t−1)
i−1 for i > 1.

Here, E∅ := 0 ∈ Rh is the empty symbol ∅. Accordingly, the zero-initialized grid

G(0) = (E∅, . . . , E∅) grows to the final grid G(T ) as time goes. By doing so, we

“preprocess” the input sequence into the grid input in that each slot of G(T ) holds

nothing but a weighted sum of input symbols.
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4.3 Experimental Setup

Implementation Details We evaluated the seq2grid module on symbolic problems

whose targets are given as sequences or single labels. To this end, we built neural net-

work models, such as S2G-CNN and S2G-TextCNN, that followed the sequence-input

grid-output architecture by varying the grid decoder according to target modalities of

problems. Refer to each problem section for our grid decoder choices and their training

losses.

We compared our models with five baselines: Transformer [79], Universal Trans-

former (UT) [70] with dynamic halting2, a LSTM seq2seq model (LSTM) [78], a

LSTM seq2seq attention model with a bidirectional encoder (LSTM-Atten) [62] and

a Relational Memory Core seq2seq model (RMC) [83]. The Transformer and the UT

consisted of two layers with the hidden size 128 and four attention heads. The LSTM,

the LSTM-Atten, and the RMC had three layers with the hidden size 1024, 512, and

512 each.

We determined configurations of our models by hyperparameter sweeping for each

problem. Our implementations3 based on the open source library tensor2tensor4

contain detailed training schemes and hyperparameters of our models and the base-

lines. All models could fit in a single NVIDIA GTX 1080ti GPU.

4.3.1 Datasets

Arithmetic and Algorithmic Problems Arithmetic and algorithmic problems are

useful to test abilities to extend rules on longer inputs since the input contains digits.

We test our models on three different arithmetic and algorithmic inference problems.

Each problem consists of a training set and two test sets randomly sampled from distri-

butions controlled by difficulty parameters. Two test sets represent in-distribution data
2The UT can take different ponder time for each position.
3https://github.com/SegwangKim/neural-seq2grid-module
4https://github.com/tensorflow/tensor2tensor
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(ID) and OOD data (OOD). Difficulty parameters of the training set can be overlapped

with those of the ID test set, but instances of the two sets are strictly separated by their

hash codes. The training set of all problems contains 1M random examples and the two

test sets contain 10K examples each. We tokenize all inputs and targets by characters

and decimal digits. We score the output by sequence-level accuracy, i.e., whether the

output entirely matches the target sequence. For convenience, we denote 〈EOS〉 as $.

Number Sequence Prediction As the name suggests, the goal of the number se-

quence prediction problem [81] is to predict the next term of an integer sequence.

After randomly choosing three initial terms, we generate a sequence via the recursion

an = 2an−1 − an−2 + an−3 which progresses the sequence up to the nth term. The

input is the first n terms a0, . . . , an−1 and the target is the last term an. The difficulty

of the instance is parameterized by the maximum number of digits of the initial terms

a0, . . . , ak−1, i.e., length, and the total number of input integer terms n, i.e., #terms.

Those two difficulty parameters, length and #terms, vary (1-4, 4-6), (4, 4-6), and (6,

10-12) for the training set, the ID test set, and the OOD test set, respectively. The input

and the target of a training example are as follows.

Input: 7008 -205 4 7221$

Target: 14233$

Algebraic Word Problem To test the arithmetic abilities under linguistic instruc-

tions, we choose algebraic word problems, i.e., add-or-sub word, [26]. The difficulty of

the problems is controlled by entropy, the number of digits within a question. Here, we

make two differences from the original dataset. First, we only allow integers whereas

floating-point numbers can appear originally. Second, our entropy is the total number

of digits in the input, whereas the original entropy is the maximum number of digits

that input can have. Our entropy varies 16-20, 16-20, and 32-40 for the training set, the

ID test set, and the OOD test set, respectively. In the OOD test, we also impose every
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integer to be of length above 16 to guarantee that it is longer than any integers in the

training set. The input and the target of a training example are as follows.

Input: What is -784518 take away 7323?$

Target: -791841$

Computer Program Evaluation Predicting the execution results of programs re-

quires algorithmic reasoning such as doing arithmetic operations or following pro-

gramming instructions like variable assignments, branches, and loops. We use mixed

strategy [6] to generate the training data with nesting 2 and length 5. For the ID test

set and the OOD test set, nesting and length are set to be (2, 5) and (2, 7), respectively.

The input, a random Python snippet, and the target, the execution result, of a training

example are as follows.

Input: j=891

for x in range(11):j-=878

print((368 if 821<874 else j))$

Target: 368$

bAbI QA Tasks Given as natural language with a small vocabulary of around 170,

the bAbI QA tasks [75] test 20 types of simple reasoning abilities such as counting,

induction, deduction, and path-finding. A problem instance consists of a story, a ques-

tion, and the answer. Here, the story contains supporting sentences about the answer

and distractors that are irrelevant sentences to the answer. We formulate the bAbI QA

tasks [75] in a sequence classification setup such that an input is a concatenation of

〈CLS〉 token, a question, 〈SEP〉 token, and a story as shown in Figure 4.6. While pre-

vious work [70] uses sentence-level encodings, we use straightforward one-hot word-

level encodings. This setup yields the increase of the average input length from 13.6 to

78.9, which in turn requires to handle much longer dependencies. Hence, solving the
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bAbI tasks under word-level encodings is much harder than those under sentence-level

encodings. State-of-the-art models deal with longer dependencies via augmenting neu-

ral networks with external memory [84, 30]. However, we will show that the seq2grid

module can enhance a simple neural network like TextCNN to effectively solve the

word-level bAbI tasks, even in the absence of a complex and expensive memory struc-

ture.

4.3.2 Grid Decoders

CNN and ACNN Grid Decoders For solving arithmetic and algorithmic problems

with digits, it is desirable to choose a grid decoder that can do local and parallel com-

putation. Therefore, we implemented a CNN [48] consisting of three stacks of 3-layer

bottleneck building blocks of ResNet. Also, we implemented its attentional variant

ACNN [85]; every 3×3 convolution of the CNN was substituted with a stand-alone

self-attention convolution. We used 3×25-sized grids from the seq2grid module hav-

ing 3-layered GRU encoder of hidden size 128 for both decoders. As shown in Fig-

ure 4.5, we measured cross-entropy loss between the flipped-and-padded target and the

output from the logit layer. Here, the loss for empty symbol ∅ was included as we read

out logits backward in the inference stage. We jointly trained the seq2grid module and

the CNN (ACNN) by the ADAM optimizer [86] with a learning rate 1e−3.

TextCNN Grid Decoder We chose a grid decoder as a variant of TextCNN [87].

After the seq2grid module having 2-layered GRU encoders of hidden size 128 gave

the 4×8-sized grid input, our TextCNN predicted the label by applying k×k-CNNs

(k = 2, 3, 4), max-pooling, and dropout with the rate 0.4 as shown in the Figure ??.

We used the ADAM optimizer to jointly train the seq2grid module and the TextCNN

under a warm-up and decay learning rate scheme3.
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Table 4.1: Best sequence-level accuracy (out of 5 runs) on number sequence prediction

problems (sequence), algebraic word problems (Add-or-sub), and computer program

evaluation problems (Program)

Sequence Add-or-sub Program

ID OOD ID OOD ID OOD

Baselines

LSTM 0.21 0.00 0.99 0.00 0.25 0.07

LSTM-Atten 0.68 0.00 1.00 0.00 0.37 0.01

RMC 0.01 0.00 0.99 0.00 0.33 0.01

Transformer 0.97 0.00 0.97 0.00 0.37 0.00

UT 1.00 0.00 1.00 0.00 0.62 0.00

Ours

S2G-CNN 0.96 0.99 0.98 0.53 0.51 0.33

S2G-ACNN 0.90 0.92 0.96 0.55 0.44 0.35

4.4 Results and Discussion

4.4.1 Arithmetic and Algorithm Problems

Table 4.1 shows that our models, S2G-CNN and S2G-ACNN, can generalize on OOD

test sets. In particular, both grid decoders achieve similar OOD generalization, im-

plying that feeding the grid input via our seq2grid module can be beneficial to any

decoder that can do local and parallel computations. On the other hand, all baselines

catastrophically fail at the OOD test sets although they seemingly perform well on the

ID test set. This shows that extending rules to longer numbers via sequential processing

is extremely difficult.

As for the number sequence prediction problems, their OOD test results serve as

unit tests for the seq2grid module since it needs to align digit symbols on the grid

46



Table 4.2: Accuracy by instruction types of the best runs on the computer program

evaluation problems. For example, the S2G-CNN correctly answers 73% of all ID

snippets containing IF-ELSE instructions.

instruction ID OOD

LSTM-Atten

IF-ELSE 0.46 0.26

FOR 0.06 0.03

* 0.07 0.04

UT

IF-ELSE 0.81 0.01

FOR 0.38 0.00

* 0.52 0.00

S2G-CNN

IF-ELSE 0.73 0.57

FOR 0.20 0.09

* 0.25 0.14
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according to their scales. Indeed, Figure 4.7a shows that our module automatically

finds such alignments that resemble the tailored grid of digits as shown in Figure 4.1.

For the algebraic word problems, they require context-dependent arithmetic unlike

number sequence prediction problems using the fixed progression rules. In particular,

linguistic instructions like add or take away indicates how to add/subtract given

two numbers in a specific order. Since our grid decoders apply the fixed convolutional

filters over the grid, linguistic instructions must be reflected in the grid input before-

hand for doing context-dependent arithmetic. This shows that our seq2grid module can

infuse the instruction information into the grid input.

For the computer program evaluation problems, predicting the output of a code

snippet demands an understanding of algorithmic rules like branching mechanisms

or for-loop given as programming instructions IF-ELSE or FOR. Also, computing *

operations has non-linear time complexity, unlike addition or subtraction. Hence, we

further investigate accuracy on snippets by those instructions as shown in Table 4.2.

For the OOD snippets containing IF-ELSE instructions, our S2G-CNN achieves 57%

accuracy for them. Considering that they can contain other instructions besides branch-

ing one as shown in Figure 4.8, the accuracy is fairly high. For the non-linear opera-

tions, the S2G-ACNN shows little understanding compared with the UT on the ID test

set. However, the UT fails to extend rules of FOR and * instructions on the OOD test

set while the S2G-CNN does so on some examples as shown in Figure 4.8. These are

surprising in that both the seq2grid module and the ACNN grid decoder do linear time

computations in the input length.

4.4.2 bAbI QA Tasks

Our S2G-TextCNN outperforms sequential baseline models, such as the LSTM, the

Transformer encoder, and the UT encoder, as shown in Table ??. Note that we fed

word-level inputs that require doing reasoning over distant symbols, i.e., the average

length of inputs is 78.9, and we used the grid that has only 32 (= 4×8) slots. From
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these setups, we can conclude that our module can compress long inputs into grid in-

puts while selecting only necessary words along story arcs. Moreover, the compression

is effective in terms of the number of parameters. Indeed, the GRU encoder inside our

module is much smaller than the LSTM but enough to provide grid inputs to our grid

decoder for solving the bAbI tasks.

We highlight that our seq2grid module, not the TextCNN decoder, leads to the

superior performance of our model. Since the attempt to use the usual TextCNN alone

fails at almost all tasks, the dramatic performance gain by the aid of the seq2grid

module is somewhat surprising.

We further analyze errors by tasks to see the possibility and the limitation of our

sequence-to-grid method. The zero variance in the number of failed tasks (Table ??)

indicates that the S2G-TextCNN consistently fails on the same set of tasks, as listed

in Table 4.3. Those failed tasks including two-supporting-facts, positional reasoning,

and path-finding seem reasonably difficult for our models in that all of them require

more than one supporting sentence for the reasoning.
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5 8 2 2 +
1 3 .

5 8 2 2 + 1 3 .
Sequential Input

Grid Input

Target

5 8 3 5 .

Figure 4.1: The illustration of the toy decimal addition problem. Each symbol is stored

with its representation vector.

Figure 4.2: The validation accuracy results of the toy problem. Each column shows

results from the k-digit set, where the three rightmost sets are OOD.
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Sequence-to-grid Module

Sequential Input

w h a t _ i s _ 2 4 _ + _ 5 ?

5 +
4 2
t a h w

Grid Input

Grid Decoder

Output

Figure 4.3: The sequence-input grid-output architecture.
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Figure 4.4: The nested list G(t−1) grows to G(t) by the action a(t) =

(a
(t)
TLU , a

(t)
NLP , a

(t)
NOP ). TLU (t) and NLP (t) show outputs of top-list-update and new-

list-push operations.

bottleneck 
blocks

9 2 ∅
Flipped Sequential Target

Cross-entropy

logit layer

Preprocessed Grid Input

Figure 4.5: The grid decoder of S2G-CNN. Only the top list of the grid from bottleneck

blocks is passed to the logit layer. The raw target 29 is flipped and padded to 92∅.
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instruction ID OOD

LSTM-Atten
IF-ELSE 0.46 0.26

FOR 0.06 0.03
* 0.07 0.04

UT
IF-ELSE 0.81 0.01

FOR 0.38 0.00
* 0.52 0.00

S2G-ACNN
IF-ELSE 0.80 0.69

FOR 0.14 0.12
* 0.28 0.15

Table 2: Accuracy by instruction types of the best runs on the
computer program evaluation problems. Each test set is split
into three by the instructions used (for, multiply, if-else).

print((11*9223698))

print((12*(6707143 if 2025491>9853525 else
6816666)))

b=8582286
for x in range(20):b-=8256733
print(b)

d=(1017291 if 7117986>9036040 else 5725637)
for x in range(2):d-=6827279
print(d)

Figure 7: Some OOD code snippet examples correctly pre-
dicted by the best run of the S2G-ACNN. Note that FOR or
* instruction requiring non-linear time complexity.

ID test set. This shows that extending learned rules to longer
numbers is extremely difficult via sequential processing.

As for the number sequence prediction problems, their
OOD test results serve as unit tests for the seq2grid module
since it needs to align digit symbols on the grid according
to their scales. Indeed, Figure 6a shows that our module au-
tomatically finds such alignments which are similar to the
manually designed grid of digits as shown in Figure 1.

As for the algebraic word problems, they require context-
dependent arithmetic unlike the fixed progression rules in
number sequence prediction problems. In particular, linguis-
tic instructions like add or take away indicates how to
add/subtract given two numbers in a specific order. Since our
grid decoders apply the fixed convolutional filters over the
grid, linguistic instructions must be reflected in the grid in-
put beforehand for executing various arithmetic. This shows
that our seq2grid module can infuse the instruction informa-
tion to the grid input.

As for the computer program evaluation problems, pre-
dicting the output of a code snippet demands an understand-
ing of algorithmic rules like branching mechanisms or for-
loop given as programming instructions IF-ELSE or FOR.
Also, computing * operations has non-linear time complex-
ity, unlike addition or subtraction. Hence, we further inves-
tigate accuracy on snippets by those instructions as shown
in Table 2. For the OOD snippets containing IF-ELSE in-

Task 2. two-supporting-facts

〈CLS〉Where is the apple ? 〈SEP〉Mary journeyed to the gar-
den . Sandra got the football there . Mary picked up the apple
there . Mary dropped the apple .

Task 17. basic-deduction

〈CLS〉 What is gertrude afraid of ? 〈SEP〉 Wolves are afraid
of sheep . Gertrude is a wolf . Winona is a wolf . Sheep are
afraid of mice . Mice are afraid of cats . Cats are afraid of
sheep . Emily is a cat . Jessica is a wolf .

Task 19. path-finding

〈CLS〉 How do you go from the garden to the office ? 〈SEP〉
The kitchen is west of the office . The office is north of the
hallway . The garden is east of the bathroom . The garden is
south of the hallway . The bedroom is east of the hallway .

Figure 8: Input examples of the bAbI QA tasks.

structions, our S2G-ACNN achieves almost 70% accuracy,
implying that it does not randomly pick one branch between
two possible branches. For the non-linear operations, the
S2G-ACNN shows little understanding compared with the
UT on the ID test set. However, the UT fails to extend rules
of FOR and * instructions on the OOD test set while the
S2G-ACNN does so on some examples as shown in Fig-
ure 7. These are surprising in that both the seq2grid module
and the ACNN grid decoder do linear time computations in
the input length.

bAbI QA Tasks
Given as natural language with the small number of vocab-
ulary about 170, the bAbI QA tasks (Weston et al. 2015)
test 20 types of simple reasoning abilities such as counting,
induction, deduction, and path-finding. A problem instance
consists of a story, a question, and the answer. Here, the
story contains supporting sentences about the answer and
distractors which are irrelevant sentences to the answer. We
formulate the bAbI QA tasks (Weston et al. 2015) in se-
quence classification setup such that an input is a concate-
nation of 〈CLS〉 token, a question, 〈SEP〉 token, and a story
as shown in Figure 8. While previous work (Dehghani et al.
2018) uses sentence-wise encodings, we use straightforward
one-hot word encodings, yielding the increase of the aver-
age length of input sequences from 13.6 to 78.9. Solving the
bAbI tasks under word-level encodings instead of sentence-
level makes it much harder since it requires to handle much
longer dependencies. State-of-the-art models deal with this
issue via augmenting neural networks with external mem-
ory (Munkhdalai et al. 2019; Rae et al. 2016). However, we
show that the seq2grid module can enhance a simple neural
network like TextCNN to effectively solve the word-level
bAbI tasks, even in the absence of complex and expensive
external memory structures.

Figure 4.6: Input examples of the bAbI QA tasks.

53



Figure 4.7: Visualizations of preprocessed grid inputs of (a) number sequence predic-

tion problems and (b) computer program evaluation problems. The top and the bottom

row correspond to S2G-CNN and S2G-ACNN, respectively.
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print((11*7288719))

print(((6110039 if 7327755<3501784 else

1005398)*11))

b=6367476

for x in range(19):b-=9082877

print((3569363 if 7448172<9420320 else b))

e=(450693 if 4556818<2999168 else 3618338)

for x in range(10):e-=4489485

print(e)

Figure 4.8: Some OOD code snippets correctly answered by the best run of the S2G-

CNN. Note that snippets contain FOR or * instruction requiring non-linear time com-

plexity.
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Table 4.3: Task-wise errors on the bAbI QA 10k joint tasks for the best runs. #supps is

the average number of supporting sentences in the story.

Baselines Ours

Task #supps LSTM UT S2G-TextCNN

1: single-supporting-fact 1.0 0.0 0.0 0.0

2: two-supporting-facts 2.0 47.4 55.0 31.2

3: three-supporting-facts 3.0 45.9 67.9 31.5

4: two-arg-relations 1.0 0.1 0.0 0.0

5: three-arg-relations 1.0 0.8 5.5 1.0

6: yes-no-questions 1.0 0.5 0.1 0.0

7: counting 2.3 1.8 4.0 0.0

8: lists-sets 1.9 0.2 2.3 1.8

9: simple-negation 1.0 0.0 0.0 0.0

10: indefinite-knowledge 1.0 0.3 0.0 0.0

11: basic-coreference 2.0 0.0 0.1 0.0

12: conjunction 1.0 0.0 0.0 0.0

13: compound-coreference 2.0 0.0 0.0 0.0

14: time-reasoning 2.0 20.6 4.4 7.3

15: basic-deduction 2.0 34.8 18.5 0.0

16: basic-induction 3.0 52.1 53.6 51.7

17: positional-reasoning 2.0 41.1 41.0 31.4

18: size-reasoning 2.0 8.6 9.1 3.8

19: path-finding 2.0 90.9 79.1 35.1

20: agents-motivations 1.0 1.8 1.4 0.0

Mean error (%) 17.3 17.1 9.7

#Failed tasks 8 8 6
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Chapter 5

Achieving Compositional Generalization via Parsing Tree

Annotation

Humans can understand natural language by its compositionality [88, 89]. That is,

even if a human reads a sentence written as novel combinations of known phrases or

clauses, he or she can parse it into semantic or syntactic components.

To achieve artificial intelligence that possesses such ability, a large body of deep

learning research [90, 91, 92, 15, 93, 82, 39, 14] has been carried out using the SCAN

tasks [12], de facto standard compositional generalization problems. The SCAN dataset

consists of finitely many commands, e.g., “run twice” and “walk right and run”, and

their corresponding target actions, e.g., “RUN RUN” and “RTURN WALK RUN”. In

particular, the SCAN dataset is divided into the training and the test set depending

on specific compositionality of interest, and yields tasks like the jump-split task, the

length-split task, and the MCD-split tasks. For example, in the training stage, the jump-

split task shows commands like “run”, “run twice”, and “run after walk”. However, it

does not show “jump” with any context, such as “jump twice” or “jump twice after

walk”, except for “jump” itself. In the test stage, it asks those unobserved commands

with “jump”. As another example, the length-split task’s test set suggests commands

requiring longer actions than those that appear in the training set.
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These SCAN tasks turn out to be extremely difficult to standard seq2seq deep

learning models, such as RNN sequence-to-sequence (seq2seq) models [78, 62, 94]

and self-attention based models [79, 95, 36]. This seems contradictory to recent ad-

vances, which are up to par with the level of human intelligence, in numerous natural

language tasks including machine translation, natural language inference (NLI), and

question and answering (QA). Moreover, studies about theoretical analysis of RNNs

[96, 97] and self-attention [98, 99] have shown that their expressive powers are enough

to capture the hierarchical structure of the SCAN tasks’ language whose grammar al-

lows only finitely many words.

Fortunately, it has been found that the standard models can solve the jump-split

SCAN task with the help of pretraining [19] or data augmentation [17, 39]. This is

possible since many additional examples apart from the given training ones enable the

standard models to experience enough compositionality. However, none of these data-

based approaches succeeds to make the standard models to resolve the other types of

the SCAN tasks like the length-split or the MCD-splits1.

To tackle those types of the SCAN tasks, there have been attempts to design new

architectures largely deviated from the standard seq2seq architectures [14, 15]. These

new architectures commonly exploit external memory allowing merging or concate-

nation operations aimed at the SCAN tasks’ compositional rules such as “twice” or

“thrice”. However, such non-standard architectures with external memory for impos-

ing task-specific inductive bias are only applicable to the SCAN or the SCAN-like

tasks. Thus, they cannot be used to solve more complex and realistic applications

where the standard models perform well.

In this work, to achieve compositional generalization with the standard seq2seq

models, we suggest a novel data augmentation technique using parsing trees. The

technique annotates each original target sequence by inserting a new delimiter token

“<del>” in between the target for distinguishing its parsed components, as shown in
1The detailed description is deferred to Section 5.1
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look right twice and jump

<del> RTURN LOOK <del> RTURN LOOK <del> jump

RTURN LOOK RTURN LOOK JUMP

Input

Target

Parsing tree

Annotated Target

Figure 5.1: An example of applying our annotation technique. Delimiter tokens <del>

indicate the beginnings of the parsed components obtained from the parsing tree.

Figure 5.1. For the training stage, the annotated targets are used instead of the original

ones. Here, to obtain those parsed components, the technique uses prior knowledge

about the original targets’ semantic or syntactic compositionality. On the other hand,

in the test stage, the technique does not need any such knowledge.

Empirically, we show that our technique enables the standard seq2seq models to

achieve compositional generalization on the MCD-splits and the length-split of the

SCAN dataset. We further validate our technique on a synthetic task and confirm

the standard models’ strong performance gains even without using prior knowledge

about semantic compositionality. This shows our technique’s applicability on more

challenging compositional natural language tasks where syntactic parsing trees are

readily available, such as programming code generation tasks [7].

5.1 Preliminaries: the SCAN Tasks

In this section, we introduce the SCAN tasks by split methods.

The goal of the SCAN (Simplified version of the CommAI Navigation) tasks [12]
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Table 5.1: The ground-truth interpretation functions of the SCAN datasets. Here, dou-

ble brackets [[ · ]] denote the mappings from commands to actions (denoted by up-

percase strings). Symbols x and u denote variables which are limited to primitives

like “walk”, “look”, “run”, and “jump”. The linear order of movements denotes their

temporal sequence.

[[walk]] = WALK [[run]] = RUN

[[look]] = LOOK [[jump]] = JUMP

[[x twice]] = [[x]][[x]] [[x thrice]] = [[x]][[x]][[x]]

[[x1 and x2]] = [[x1]][[x2]] [[x1 after x2]] = [[x2]][[x1]]

[[turn right]] = RTURN [[turn left]] = LTURN

[[u right]] = RTURN [[u]] [[u left]] = LTURN [[u]]

[[turn opposite right]] = RTURN RTURN [[turn opposite left]] = LTURN LTURN

[[u opposite right]] = RTURN RTURN [[u]] [[u opposite left]] = LTURN LTURN [[u]]

[[turn around right]] = RTURN RTURN RTURN RTURN

[[turn around left]] = LTURN LTURN LTURN LTURN

[[u around right]] = LTURN [[u]] LTURN [[u]] LTURN [[u]] LTURN [[u]]

[[u around right]] = RTURN [[u]] RTURN [[u]] RTURN [[u]] RTURN [[u]]
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Figure 5.2: A grammar for commands

Figure 5.3: A grammar for actions

is to translate compositional navigation commands written in synthetic natural lan-

guage into a sequence of actions. The inputs are commands, a total of 20,910, formed

by a predefined grammar (Fig. 5.2) and the targets are actions that are the translation

results of commands by the semantic interpretation mapping (Fig. 5.1). Depending on

compositional generalization abilities to assess, split methods that divide all command-

action pairs into the training or the test set are determined. Accordingly, specific tasks

are defined as follows.

Random-split The training set is a random 80% subset of the total dataset and the

test set is the remaining subset. Thus, this task is not for assessing compositional gen-

eralization ability but is used to test the given models’ typical generalization abilities.

Unlike other splits, the standard seq2seq models generalize well on the test set.
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Jump-split The training set consists of all primitives, e.g., “jump”, “walk”, “run”,

and “look”, and their composed commands, e.g., “run twice”, “walk opposite left and

run twice”, except for composed commands of “jump”. The test set contains the re-

maining commands like “jump twice” and “jump after run”. Hence, to generalize on

the test set, compositional understanding of “jump” along with other commands is

necessary.

Length-split The training set has all 16,990 commands (81.3% of the total) requir-

ing actions, i.e., targets, of lengths less than 24 and the test set has all remaining com-

mands. Hence, the test set assesses the compositional generalization abilities about

actions’ lengths.

MCD-split As the composition of commands can be explained by their grammar

parsing trees, it is natural to consider a distribution over those trees’ subgraphs (com-

pounds). To define the compound distribution of the dataset, DBCA (distribution-based

compositionality assessment) method [7] captures the extent of how interesting a sub-

graph is within a parsing tree. Moreover, the method can serve as criteria to divide the

SCAN dataset into the training and the test set, yielding three compositional general-

ization tasks, such as MCD1, MCD2, and MCD3. Whereas the training and test set

of each task have similar distributions over nodes (atoms) of parsing trees, they have

distinct distributions over subgraphs (compounds).

5.2 Motivation

In the next section, we explain the motivation of our annotation technique by pointing

out that the SCAN dataset allows abundant many-to-one cases.

Many-to-one Cases Learning the compositions in the SCAN tasks can be regarded

as discovering which part of the commands, e.g., the second “run” in the “run after
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run” or the first “run” in the “run and run”, corresponds to which part of the actions,

e.g, the first “RUN” in the “RUN RUN”. Hence, it is natural to assume that the presence

of multiple commands corresponding to the same action sequence makes it harder to

learn the compositions, i.e. many-to-one. In fact, such cases are fairly common in

the SCAN dataset as its non-injective semantic interpretation function maps 20,910

commands to only 9,228 different actions. In the extreme case, the action sequence

“RTURN RTURN RTURN RTURN RTURN RTURN” is the target of 19 different

commands such as “turn around right and turn right twice”, “turn opposite right thrice”,

and “turn right twice and turn opposite right twice”.

5.3 Method

In the next section, we introduce our annotation technique using parsing trees to handle

them.

Parsing Tree Annotation Technique We hypothesize that such abundant many-to-

one cases confuse the standard seq2seq models to learn the compositionality. To reduce

many-to-one cases, we annotate targets by inserting new delimiter tokens in between

the actions according to the commands.

Specifically, our annotation technique can be described as follows. First, we induce

a grammar for the target language, possibly via human parser or grammar induction

heuristics [100] [101]. At this point, it is desirable to induce the grammar that can

capture the compositionality of the target language with the minimum number of re-

lations. Then, we obtain the parsing tree for each target sequence. In some cases, the

induced grammar may allow multiple parsing trees, i.e., the grammar is ambiguous. To

uniquely decide the parsing tree, we refer to the input sequence and the semantic inter-

pretation function. Finally, we choose a non-terminal variable where a new delimiter

token like “¡del¿” to be attached. We insert the token before every substring generated

from the variable. These annotated targets, instead of original ones, are used for the
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training. See Section 5.4.2, and Section 5.4.3 about specific implementations for the

SCAN dataset and our synthetic dataset, respectively.

5.4 Experimental Setup

In this section, we describe the implementation details of the standard seq2seq mod-

els. Then, we introduce experimental details, such as specific implementations of our

annotation technique, for the SCAN tasks and the multiplicative extension tasks.

5.4.1 Standard Seq2seq Models

We verified our technique with the standard seq2seq models: an LSTM seq2seq model

(LSTM), a GRU seq2seq model (GRU), [78], and those with Bahdanau attention [62]

(LSTM-Atten, GRU-Atten), a Transformer [79], and a T5 [36]. All the RNN seq2seq

models had one layer with the hidden size 50 and the dropout rate 0.5. The Transformer

and the T5 consisted of six layers with the hidden size 512 and eight attention heads.

We used the ADAM optimizer [86] with a learning rate 1e−3 to train the RNN seq2seq

models and the T5. As for the Transformer, we varied learning rates along the course

of the training [79]. All models could fit in a single NVIDIA GTX 1080ti GPU. Our

implementations2 except for the T5 based on the open source library tensor2tensor3

while we used hugging face trasnformers4 for the T5.

5.4.2 The SCAN Tasks

Annotation Implementation For the SCAN tasks, we used the ground-truth inter-

pretation function when (i) inducing grammar for the action language and (ii) obtaining

the unique parsing tree for each action sequence.
2https://github.com/segwangkim/annotation-of-targets-using-parsing-trees
3https://github.com/tensorflow/tensor2tensor
4https://github.com/huggingface/transformers
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Figure 5.4: Two possible parsing trees for “RTURN RTURN RTURN RTURN”. The

left and right tree are come from commands “turn opposite right twice” and “turn

around right”, respectively.

We annotated the examples as follows. First, we manually induced a grammar

for the action language, as shown in Fig. 5.3, to be similar to the given grammar

of the command language. Then, we obtained the unique parsing tree for each ac-

tion sequence according to its command’s parsing tree and the ground truth interpre-

tation function [[ · ]]. For example, the action sequence “RTURN RTURN RTURN

RTURN” from “turn opposite right twice” and “turn around right” corresponded to

the left and the right of Fig. 5.4, respectively. Finally, we inserted a new delimiter to-

ken “¡del¿” before every substring generated from the non-terminal variable V . For

the aforementioned example, the former action sequence was annotated as “<del>

RTURN RTURN <del> RTURN RTURN” while the later one was annotated as

“<del> RTURN RTURN RTURN RTURN”. This annotation process is summarized

as Alg. 1.

Tokenization for T5 Whereas we fed all sequences word-by-word for the RNN

seq2seq models and Transformer, we had no choice but to use the pretrained tok-

enizer coupled with the T5. Using the pretrained tokenizer could be problematic as

the tokenizer took the raw actions and segmented them into components that capture
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Algorithm 1 Annotation process for the SCAN dataset
Input: command sequence C.

def PTA(C): // stands for Parsing Tree Annotation

if “and” in C:

C1← the command before “and” within C

C2← the command after “and” within C

return PTA(C1) + PTA(C2)

if “after” in C:

C1← the command before “after” within C

C2← the command after “after” within C

return PTA(C2) + PTA(C1)

if “twice” in C:

C ← the command before “twice” within C

return PTA(C) + PTA(C)

if “thrice” in C:

C ← the command before “thrice” within C

return PTA(C) + PTA(C) + PTA(C)

return [“¡del¿”] + [[C]]

Output: annotated action sequence PTA(C).

no semantics. For example, “I TURN LEFT”5 was segmented into (“I”, “ ”, “TUR”,

“N”, “ ”, “LE”, “FT”). Thus, compositional rules or linguistic semantics learned from

the pretraining corpus became useless for the fine-tuning on the SCAN tasks. To

resolve this issue, we preprocessed actions with straightforward modifications, e.g.,

“I TURN LEFT” to “lturn”, before applying the tokenizer. By doing so, the pretrained

tokenizer segmented actions more reasonably, e.g., “lturn” was segmented into (“l”,

“turn”). We denoted a T5 with the above tokenization method as T5∗.
5The original SCAN datasets (https://github.com/brendenlake/SCAN.git) represents actions as snake

upper case with leading “I” such as “I TURN LEFT”, “I LOOK”, and “I JUMP” unlike Fig. 5.3.
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Table 5.2: The training and test datasets of the multiplicative extension tasks. The

number of possible alphabets is fixed as 7 (“a” to “g”).

n k min(di) max(di)

Training 7, 8, 9 3 0 7

Test

ID 7, 8, 9 3 0 7

OOD-Easy 12 3 1 7

OOD-Hard 18 3 1 7

5.4.3 Multiplicative Extension Tasks

Observe that we used prior knowledge about the ground-truth interpretation function

and the the input and the target sequences’ grammars for the SCAN tasks. To validate

our technique’s applicability under minimal prior knowledge, we further suggest a

simple synthetic task that requires neither the interpretation function nor parsing trees

of input sequences for applying our technique.

Task Definition The goal of multiplicative extension tasks is to translate a sequence

of alphabet-number alternating terms into alphabet sequences. The input is given as:

a1d1a2d2 · · · akdk

where ai is an alphabet sampled from an alphabet set Σ = {“a”, . . . , “g”} without

replacement and di is one-digit integer. The target under the ground-truth interpretation

function f is given as:

f(a1d1a2d2 · · · akdk) = a1 · · · a1︸ ︷︷ ︸
d1

· · · ak · · · ak︸ ︷︷ ︸
dk

Thus, this task tests multiplicative compositionality similar to that of the SCAN tasks,

i.e., “twice” and “thrice”. We define training and test sets according to the maximum

length of targets, n = d1 + · · · dk, as shown in Table 5.2.
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Note that this task shares no linguistic compositionality with natural language cor-

pus so that there is no advantages from pretraining. Hence, we omit to test T5 at this

task.

Annotation Implementation We used straightforward parsing trees that explain

the target sequences. For given target a1 · · · a1 · · · ak · · · ak where each ai repeats di

times, we inserted a new delimiter token s /∈ Σ, e.g., s = “¡del¿”, before the rep-

etitions of the same ai’s, yielding sa1 · · · a1sa2 · · · a2 · · · sak · · · ak. This is natural

as a grammar of the target language can be defined as S → V | V V | V V V · · · ,
V → T | TT | TTT | · · · where S is a start symbol, V is a non-terminal symbol,

and V ∈ Σ is a terminal symbol. Note that this annotation was independent of parsing

trees of inputs and the interpretation function f .

5.5 Results and Discussion

In this section, we empirically verify the effectiveness of our annotation technique in

various aspects. First, we point out that our technique can reduce many-to-one cases in

the SCAN tasks. Then, we present the efficacy on our technique to the compositional

generalization tasks. Finally, we discuss about our technique in the view of Automata

theory and the effect of a target tokenization method on the compositional generaliza-

tion of the standard models.

5.5.1 Effects of Parsing Tree Annotation on Datasets

First, we analyze how much our technique reduces many-to-one cases of the SCAN

dataset. To do so, let us formally describe the dataset as follows. Let LC be the set of

command sequences. Let LA and L†A be the sets of action sequences before and after

applying our annotation technique, respectively. Accordingly, we also define [[ · ]] :

LC → LA and [[ · ]]† : LC → L†A, i.e. PTA in Alg. 1, as corresponding ground-truth

interpretation functions.
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Figure 5.5: Histograms of many-to-one cases for [[·]] and [[·]]∗. Each n of x-axis is

the number of commands that are mapped to the same actions while its height is the

frequency of such n-to-one cases.

To count many-to-one cases, for each interpretation function f = [[ · ]] or [[ · ]]†, we

first partitioned the domain LC = ∪ki=1Ci by disjoint cells where each cell Ci is the set

of commands that are mapped to the identical actions, i.e., f(x) = f(y) ∀x, y ∈ Ci.

Then, according to the sizes of those cells, i.e., |Ci|, we counted the frequency and

visualized it as a histogram as shown in Fig. 5.5.

While the total areas of all histograms under functions f = [[ · ]] and [[ · ]]† are

identical as 20,910, the shapes of them are different. Note that the histogram for [[ · ]]
has a long tail whereas that for [[ · ]]† has a short tail, indicating that one-to-many cases

are significantly reduced by our annotation. From this result, we can conclude that our

technique helps the standard models discover the training examples’ compositionality

significantly easier.
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5.5.2 The SCAN and Multiplicative Extension Tasks

After applying our annotation technique, the SCAN length-split task is almost per-

fectly solved by the attentional RNN seq2seq models (GRU+Atten, LSTM+Atten)

and the T5 with the manual tokenization (T5∗) as shown in Table 5.3. Moreover, we

also obtain huge performance gains at the multiplicative extension tasks using the at-

tentional RNN seq2seq models as shown in Table 5.4. These imply that the models

have sufficient expressive powers to handle test commands requiring longer target se-

quences. In other words, the standard seq2seq models fail on the length generalization

tasks as they learn incorrect compositionality during the training stage.

Rather than the length generalization, our technique also induces huge perfor-

mance gains for the SCAN MCD-split tasks as shown in Table 5.3. One may argue

that the compound distribution discrepancy between the training and test set can be

changed as our technique inserts delimiter tokens for the actions. Thus, our compar-

ison between the results on the MCD-splits before and after applying our technique

seems unfair. However, our comparison is still valid since the way of measuring the

discrepancy only depends on parsing trees for commands, not actions.

Unfortunately, the Transformers still fail to generalize in all tasks regardless of

our annotation. In other words, our technique is effective only for self-attention based

models that have experienced sufficient linguistic compositionality from pretraining in

advance.

5.5.3 Discussion

Automata-theoretic View One might think that all aforementioned results are achieved

since the tasks become much easier after the ground-truth interpretation functions are

modified as shown in Alg. 1. However, in the view of automata theory, our technique

makes no difference in the level of difficulty. Indeed, both tasks before and after apply-

ing our annotation can be implemented by a Finite State Transducer (FST). To see this,

note that FST can implement a rational relation between two regular languages. The
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source language, e.g., LC , and the target language, e.g., LA or L†A, have finitely many

words, hence they are all regular languages. Moreover, the interpretation function, e.g.,

[[ · ]] or [[ · ]]† is a rational relation as the graph of the function is finite. Therefore, the

difficulties of both tasks cannot be distinguished.

Tokenization Effects The performance discrepancies between the T5 and the T5∗

for the SCAN length-split and MCD-split tasks with our annotation are notable. In

particular, as for the length-split, our annotation cannot induce any performance gain

at all when the actions are naively tokenized without considering their semantics (T5).

Note that we can think of inserting delimiter tokens to the target sentences in the

multiplicative extension tasks as another tokenization for the targets. This is because

tokenization is transforming a string into a sequence while considering adjacent char-

acters that co-occur frequently.

Henceforth, we can conclude that a tokenization method can significantly influ-

ence the compositionality that the standard models learn. To go further, at composi-

tional generalization task whose targets follow strict grammar, it is beneficial to use

tokenization based on the grammar. For example, code generation tasks have targets

that can be represented as abstract syntax trees (AST). Since our technique annotates

the target sequences with delimiters indicating specific non-terminal nodes of the tar-

gets’ parsing trees, trees’ compositionality can be infused into the sequences. Thus,

we expect that our technique can promote the standard seq2seq model to achieve com-

positional generalization on those tasks.
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Chapter 6

Achieving Compositional Generalization via Retrieving

and Reranking Templates

Human compositional reasoning ability makes them capable of semantic parsing, trans-

lating a natural language utterance into a semantically identical machine-executable

program. For example, human can understand a program, e.g., animal.species=f-

rog ∧ animal.color=green, as a composition of a template, e.g., {COND1}
∧ {COND2}, and basic components, e.g., {COND1}: animal.species=frog

and {COND2}: animal.color=green. Hence, human can compose a new pro-

gram, e.g., animal.species=frog ∧ animal.color=white, even if the in-

put utterance, e.g., “A white frog”, has rarely co-occurred words [2, 3].

Even though the current deep learning models have demonstrated their exceptional

performances on a wide range of natural language processing (NLP) tasks, they still

struggle to do compositional reasoning [10, 26, 28]. Without resolving this issue, deep

learning models cannot be used for real-world applications like Natural Language In-

terfaces to Databases (NLIDB) [4], low-resource machine translation [5], and higher-

level perceptual reasoning (e.g., counting, position comparison) about visual informa-

tion [102, 103].

To explore neural networks’ compositional reasoning, studies have released com-
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positionally challenging testbeds across diverse domains, including semantic pars-

ing [13, 8, 1]. Other studies have been conducted to improve neural networks’ com-

positional reasoning in various ways, such as developing specialized architectures

[104, 105] or harnessing pre-computed auxiliary information [43, 106, 44, 1, 107].

In particular, studies using compositionally diverse paired data [108, 17, 16, 41, 9]

recently have drawn attention, but they still require careful data augmentation. In con-

trast, unpaired data can be readily augmented; hence one needs to propose a method

to leverage this cheap data.

In this work, we propose a new framework that leverages the compositionally di-

verse unpaired template pool via retrieving and re-ranking approaches. Our framework

takes an utterance and selects its corresponding template from the pool even if the ut-

terance is compositionally novel. The selected template leads a neural semantic parser,

e.g., T5 [36], to achieve compositional generalization.

To select the template from the pool, we subsequently apply a bi-encoder and a

cross-encoder. As shown in Figure 6.1, our bi-encoder, e.g., Dense Passage Retriever

[109], retrieves a small number of candidate templates relevant to the input utterance

from the template pool. Then, our cross-encoder, e.g., BERT re-ranker [110], re-ranks

those candidates. Finally, we select the template of the highest re-ranking score.

Our framework has the following two advantages. First, we use a template pool

that relieves the burden of utterance-program paired data augmentation. The augmen-

tation methods demand to search over a combinatorially large sample space derived

by the grammar of utterance-program pairs [9, 16, 41]. Instead, we use a pool of pro-

gram templates that have relatively few grammar rules. Second, our framework uses

templates as additional inputs, resulting in performance gains. Indeed, templates that

are rough sketches of the target programs enable a semantic parser to easily generate

novel programs, because the parser only needs to fill in the missing entities [111, 112].

Still, obtaining correct templates via generation can be tricky, but we tackle this issue

with retrieving and re-ranking.

75



Experimental results show that our framework enables a neural network to achieve

strong compositional reasoning on four widely used semantic parsing datasets like

Advising, ATIS, GeoQuery, and Scholar. In particular, our bi-encoder successfully re-

trieves the ground-truth templates within 50 candidates, and our cross-encoder selects

the ground-truth templates among those candidates. On compositional test sets over

the four datasets, templates selected by our framework improve the average accuracy

by 12.6 points compared to T5 baselines. Ours is the first retrieval-based approach to

achieve compositional generalization.

6.1 Preliminaries

In this section, we formulate our task with an assumption and introduce datasets and

their abstraction. Then, we provide some background on retrieval and template-based

generation, which are the techniques used in this paper.

6.1.1 Task Formulation

Our goal is to map a natural language question (utterance) x into its corresponding

program yx. We have a training, validation, and test set (Dtrain, Ddev, and Dtest) whose

elements are utterance-program pairs (x, yx). We also have a manually-defined ab-

straction t : yx 7→ t(yx) that maps a program into its template. Typically, we require

that the programs that share a structural similarity collapse into one template, and the

number of templates is smaller than that of programs, i.e., |{t(y) |(x, y) ∈ D}| <
|{y |(x, y) ∈ D}|.

Sufficiently Large Template Pool We further assume that we have a template pool

that is compositionally diverse enough to contain all templates of the training, valida-

tion and test set, i.e., Ptemplate = {t(yx) | (x, yx) ∈ Dtrain ∪ Ddev ∪ Dtest}. This is a

plausible assumption because one can transform a cheap and large unpaired program
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corpus into the template pool via abstraction or apply one of numerous data augmen-

tation methods [40, 113, 17, 41, 9, 16, 18, 42].

6.1.2 Datasets

As a natural test-bed for compositional reasoning ability of neural semantic parsers,

we use the following human-annotated text-to-SQL datasets1 across four domains:

• Advising: User questions about US academic course information [8]

• ATIS: User questions for flight-booking task [114, 115]

• GeoQuery: User questions about US geography [116]

• Scholar: User questions about academic publications [117]

These datasets were initially arranged by [8] for testing compositional generaliza-

tion. Unlike previously released datasets, the datasets provided challenging new splits,

i.e., query-based splits, whose test sets consist of out-of-distribution (OoD) queries.

In the sequel, [1] further re-arranged each of these datasets to have a balanced ratio

of training/validation/test sets’ sizes for a better comparison between an iid split and

an OoD split (a.k.a. Program split). We test our framework on these newly balanced

datasets.

Template Abstraction Figure 6.2 shows a manually defined abstraction we used

for the datasets. This abstraction was suggested by [111] to define lossy intermediate

representations. The abstraction substitutes the instance-specific entities, such as table

names, alias-clauses, and clauses used in table-joining, with placeholders like table

or alias.
1https://github.com/inbaroren/improving-compgen-in-semparse
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Table 6.1: EM of test templates generated by T5 or top-ranked by DPR, Decomposable

Attention (DA), transformer encoder (TE), and BERT.

Advising ATIS GeoQuery Scholar Average

iid

T5 94.6 73.6 77.9 77.1 80.8

DPR 90.1 83.1 84.2 86.7 86.0

DA 86.8 68.4 76.8 85.7 79.4

TE 54.3 33.1 18.9 42.9 37.3

BERT 90.1 75.6 83.2 89.5 84.6

Prog.

T5 12.1 47.2 52.7 43.9 39.0

DPR 44.2 49.1 72.5 55.1 55.2

DA 5.1 33.0 31.9 55.1 31.3

TE 1.2 12.6 2.2 14.3 7.6

BERT 56.0 69.2 81.3 71.4 69.5

Data Statistics and Program Splits Data statistics can be found in Table ??. Note

that the program splits demand a parser to achieve compositional generalization. To

see this, let us compare the numbers of templates in the training sets and pools. On a

program split, the sum of numbers of templates in train/dev/test sets is nearly the size

of the template pool that is a union of these sets (See Section 6.1.1). From this, we can

see that those sets rarely share common templates, thus a parser needs to create test

programs whose templates were almost never observed during training. In contrast,

on an iid split, the size of the pool is only slightly bigger than the number of training

templates, implying that there is no need for compositional reasoning.

6.1.3 Retrieval and Template-based Generation

Retrieval Retrieval is an essential technique that enables one to combine the para-

metric reasoning ability of neural networks and non-parametric relevant contexts of a
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large corpus. Hence, text encoding research for retrieval has been carried out. There

have been traditional keyword-based sparse encodings, such as TF-IDF or BM25 [118].

Recently, dense encodings, e.g., DPR [109] or REALM [119], that embed passages

into a high-dimensional space by semantic distances have gained popularity. For exam-

ple, they have been applied for a wide range of NLP tasks including open-domain QA

[120, 121], knowledge-grounded dialogue [122], neural machine translation (NMT)

[123]. In particular, [124] suggested a semantic parsing framework that retrieves mul-

tiple relevant utterance-program examples and uses them as additional inputs. In this

work, we propose a neural semantic parsing framework for compositional generaliza-

tion by selecting only one corresponding template among retrieved candidates.

Template-based Semantic Parsing Templates are rough sketches of target program

structures, hence semantic parsing becomes easy when templates are provided. There-

fore, extensive semantic parsing studies, such as coarse-to-fine decoding [112], hier-

archical poset decoding [125], lossy intermediate representation [111], and abstract

programs [126], have exploited templates to bridge a large structural gap between the

input utterances and the target programs. Despite our framework that uses template-

augmented inputs shares similarities with those studies, ours is distinct in that tem-

plates are obtained via retrieving and re-ranking, rather than generation.

6.2 Methods

In this section, we explain our retrieving and re-ranking framework step-by-step along

with used models.

As shown in Figure 6.1, from the template pool, we want to choose the ground-

truth template, e.g., select table.lowest point · · · . The chosen template

and the input utterance are then fed to the generation model, e.g., T5 [36], for better

predicting the target program. To select the desired template, a bi-encoder, e.g., DPR

[109], retrieves candidates and a cross-encoder, e.g., BERT re-ranker [110], re-ranks
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them.

Formally speaking, to predict the target program yx from the input utterance x,

we proceed with the following three steps: (1) using a bi-encoder, we retrieve relevant

templates of x from the template pool Ptemplate, yielding a set of candidate templates

Px = {t1, . . . , tN} ⊂ Ptemplate (ideally, the ground-truth template t(yx) belongs to

Px); (2) using a cross-encoder, we re-rank candidate templates Px and select the top-

ranked template tx ∈ Px (ideally, tx = t(yx)); (3) using a generation model, we predict

the target program y from the template-augmented utterance input, i.e., x[sep]tx,

where [sep] is a separation token.

Advantages Our framework can secure the following two advantages. First, our us-

age of template-pool relieves the burden of utterance-program paired data augmen-

tations. Essentially, data augmentation methods require humans, neural networks, or

grammar induction algorithms to explore combinatorially large sample spaces derived

from the programs’ grammars. Hence, exploring smaller sample spaces derived from

templates’ simpler grammars is memory and computation effective to them. Second,

we generate new programs from the template-augmented utterance, thus resulting in

performance gains. Providing the target’s high-level structure along with the input ut-

terance has been proven effective for semantic parsers [112, 111]. Still, obtaining rel-

evant templates can be an issue, which we circumvent by performing a retrieval and a

re-ranking task. Template generation is possible as in [111], but our approach shows

empirically superior performances (See Section 6.4.2).

6.2.1 Bi-encoder for Retrieval

Given utterance x, we want to retrieve a set Px of N candidate templates t1, . . . , tN

from the template pool Ptemplate such that Px contains the gold template t(yx) and the

size of Px is much smaller than Ptemplate, i.e., |Px| � |Ptemplate|.
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Model We use DPR [109] which follows a BERT-based bi-encoder architecture:

Ex = BERTx(x), Et = BERTt(t)

where Ex (Et) is a contextualized high-dimensional embedding of the utterance x

(template t) produced by a BERT encoder [95]. As the similarity between two embed-

dings Ex and Et is measured by their inner product, solving a Maximum Inner Product

Search (MIPS) problem enables us to retrieve a set of N (N=50) candidate templates

Px.

Our choice of neural dense encodings is apt. Indeed, traditional sparse encodings

like BM25 or TF-IDF are not applicable to our case as utterances and templates are

unlikely to share common words.

Training We fine-tune our BERT-initialized bi-encoder for adapting to templates

that are not natural language sentences. We use the negative log likelihood of the pos-

itive template:

L(x, t+, t−1 , . . . , t
−
M ) =

− log
exp(Ex · Et+)

exp(Ex · Et+) +
∑M

m=1 exp(Ex · Et−m
)

where the positive template t+ is the ground-truth template t(yx) and M (M=5) neg-

ative templates t−1 , . . . , t
−
M are randomly selected from the template pool Ptemplate. By

doing so, the inner products between embeddings of corresponding pairs of utterances

and templates get bigger, whereas those of irrelevant pairs get smaller.

6.2.2 Cross-encoder for Re-ranking

We further re-rank candidate templates of Px in order to accurately select the most rele-

vant template tx (=t(yx), ideally) from Px. As the bi-encoder does not simultaneously

attend utterances and templates, we can expect improvements with a cross-encoder

that performs full self-attention over utterance-template pairs.
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Model We use a cross-encoder Ecross, such as a Decomposable Attention [127], a

transformer encoder [43], a BERT re-ranker [110] followed by a final linear classifier

and a softmax output layer. Cross encoders yield the similarity score sx,t ∈ [0, 1]

between the utterance x and the candidate template t.

Training We train a cross-encoder with the standard cross-entropy loss:

L(x, t) = −It=t(yx) log sx,t − (1− It=t(yx)) log sx,t

where Ia=b = 1 if a = b else 0.

As for the negative pairs to the utterance x, we use almost correct but not exactly

matched templates within Px, i.e., (x, t) where t ∈ Px and t 6= t(yx). This causes the

label imbalance situation; negative pairs are nearly N -times many. We simply resolve

this issue by duplicating the positive pairs as many as negative pairs.

In the inference stage, for each test utterance x, we apply the cross-encoder and

obtain similarity scores for all candidate pairs (x, t) where t ∈ Px. Then, we select the

template tx that attains the top score.

6.2.3 Template-augmented Generation

Finally, we predict the target program from a template-augmented utterance.

Model We fine-tune a T5 [36] to learn the mapping x[SEP]t(yx) 7→ yx for (x, yx) ∈
Dtrain. Applying RNN sequence-to-sequence (seq2seq) models is possible, but our pre-

liminary experiments showed that seq2seq models mostly under-performed the T5.

Thus, we opt out of seq2seq models for the generation.

Training The objective for the T5 fine-tuning is a conditional log-likelihood as fol-

lows:

L(x̃, yx) = −
∑
k

log p(y(k)x |x̃, y(1)x , . . . , y(k−1)x )
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where x̃ = x[SEP]t(yx) is an augmented input, y(k)x is the k-th token of yx.

In the inference stage, we apply the T5 model to test utterances x with the template

tx selected by the aforementioned retrieving and re-ranking.

Our template-augmented generation is the same as the second step of lossy in-

termediate representation (IR) with the direct prediction by [111]. Unlike previous

retrieval-based approaches that predict answers with all retrieved passages [128, 121,

120, 123, 124], we only use the most relevant passage (in our case, template) for the

generation. We do so since (1) there is a unique ground-truth template for the given

utterance and (2) previous studies [10, 28, 8] already have shown that neural networks

are weak at re-combining basic components in a novel way. Also, note that no gradi-

ent from the T5 model flows to the retrieving or re-ranking models; Each training is

performed independently.

6.3 Experimental Setup

In this section, we explain our experimental setups.

Our implementations2 based on the open source library transformers3. Every ex-

perimental run fit into a single NVIDIA RTX 2080ti GPU.

6.3.1 Bi-encoders

As for the bi-encoder, we used memory-efficient GC-DPR [129] with the default con-

figuration. We trained the bi-encoder for 40 epochs for each dataset and chose the

optimal epoch for the retrieval based on the validation performances.

6.3.2 Cross-encoders

As for the cross-encoders, we implemented and trained three different models. First,

we implemented a decomposable attention model [127] whose perceptrons have two
2TBD
3https://github.com/huggingface/transformers
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layers of the hidden size 200. We trained the model with the dropout rate of 0.1 and the

batch size of 64 using the Adagrad [130] optimizer with the learning rate of 0.025 for

32K steps. Second, we implemented a transformer encoder [43] which has two layers

of the hidden size 128, the intermediate size 2048, and 16 attention heads. The model

was trained by the Adam optimizer [86] with the learning rate 2e−5 for 20K steps.

The batch size was 32, and the accumulation step was 16. Third, we used a BERT

re-ranker [110]. Initialized by the configuration bert-base-uncased, the re-ranker was

fine-tuned by the Adam optimizer with the learning rate 2e−5 for 16K steps. The batch

size was set to 8. All models were saved at every quarter of the entire training step. For

inference, we chose the best among them according to validation performances.

6.3.3 Generation Models

As for the program generation model, we chose T5 [36]. Initialized with the config-

uration t5-base, the T5 was fine-tuned by the Adam optimizer with the learning rate

1e−4 for 3,200 steps. The batch size was 1, and the accumulation step was 64. We ran

five runs for each model, where each run took 2-6 hours depending on datasets. For

evaluation, the greedy decoding scheme was used.

6.4 Results and Discussion

We evaluate retrieving, re-ranking, and generation models based on exact match (EM),

that is, whether the predicted template (or program) and the target one are identical.

6.4.1 Retrieving

Our fine-tuned DPR succeeds in retrieving the corresponding templates to the input

utterances within 50 candidates (Top-50) on both iid and program splits, as shown

in Table 6.3. Especially, even on the ATIS dataset whose template pool is the largest

(Refer to Table ??), the Top-50 score is still solid. Not to mention that the DPR was
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Table 6.2: Examples of top-3 retrieved templates (t1, t2, t3) on program splits of test

sets. The template ti coincides with the ground-truth one is bold-faced.
Dataset: ADVISING

x number0 is worth how many credits ?

t1 select distinct table.total gpa from alias where table.student id = 1 ;

t2 select distinct table.total credit from alias where table.student id = 1 ;

t3 select count( distinct table.offering id ) from alias where table.department = "department0"

and table.number = number0 ;

Dataset: ATIS

x what are all of the flights into and out of city name0 ’s airport

t1 select distinct table.flight id from alias where table.city name = "city name0" ;

t2 select distinct table.city code from alias where table.city name = "city name0" ;

t3 select distinct table.flight id from alias where table.city name = "city name0" and

table.round trip cost is not null ;

Dataset: GEOQUERY

x what is the average population of the us by state

t1 select sum( table.population ) from alias ;

t2 select avg ( table.population ) from alias ;

t3 select table.population from alias where table.density = ( select max( table.density ) from

alias ) ;

Dataset: SCHOLAR

x conferences in year0

t1 select distinct table.venueid from alias where table.year = year0 ;

t2 select distinct table.paperid from alias where table.year = year0 ;

t3 select distinct count( table.paperid ) from alias where table.journalid = "venuename0" and

table.year = year0 ;

successful for the hundreds of thousands size pool of text passages, scaling up our

framework to the large template pool seems promising.

Table 6.2 shows some retrieved examples. Interestingly, we can observe that most

of the Top-2 templates only differ in one word. For example, t1 and t2 in Advising ex-

amples (first row) are the same except for table column names: table.total gpa

and table.total credit. These similarities indicate that our bi-encoder success-

fully captures semantic distances of templates in the dense space.

Unfortunately, it turns out that using the DPR is not good enough for selecting

the correct templates. Even though the DPR gives the first rank to the ground-truth

templates with high precision on the iid splits, the DPR misses almost half on the
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Table 6.3: Top-1 & Top-50 retrieval accuracy on test sets, measured as whether the

ground-truth template is in the top 1/50 retrieved templates.

Advising ATIS GeoQuery Scholar Average

iid
Top-1 90.1 83.1 84.2 86.7 86.0

Top-50 100.0 100.0 100.0 100.0 100.0

Prog.
Top-1 44.2 49.1 72.5 55.1 55.2

Top-50 99.5 99.5 100.0 100.0 99.8

program splits. This degradation calls for a more careful template re-scoring, which

we resolve with cross encoders.

6.4.2 Re-ranking

The BERT re-ranker is successful at raising gold templates’ ranks to the top, as shown

in Table 6.4. Unfortunately, neither the transformer encoder (TE) nor the decompos-

able attention model (DA) predicts better similarity scores than the DPR, possibly due

to their insufficient expressivity. Note that the model sizes of TE (5M) and DA (0.5M)

are far smaller than that of the BERT (110M).

By comparing the T5 and BERT performances, we can see that our framework

is more robust for predicting compositionally novel templates. We can explain this

performance gains from our task reformulation: solving two textual entailment classi-

fication tasks, i.e., scoring, instead of a hard generation task.

6.4.3 Program Prediction

Our framework leads the T5 models to achieve far better compositional generalization

on the program splits, as shown in Table 6.5. Especially, on the program splits, our

framework outperforms all other baselines and raises 12.6 accuracy points more on

average than the T5 baselines (second row). Here, the T5 predicts programs directly
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Table 6.4: EM of test templates generated by T5 or top-ranked by DPR, Decomposable

Attention (DA), transformer encoder (TE), and BERT.

Advising ATIS GeoQuery Scholar Average

iid

T5 94.6 73.6 77.9 77.1 80.8

DPR 90.1 83.1 84.2 86.7 86.0

DA 86.8 68.4 76.8 85.7 79.4

TE 54.3 33.1 18.9 42.9 37.3

BERT 90.1 75.6 83.2 89.5 84.6

Prog.

T5 12.1 47.2 52.7 43.9 39.0

DPR 44.2 49.1 72.5 55.1 55.2

DA 5.1 33.0 31.9 55.1 31.3

TE 1.2 12.6 2.2 14.3 7.6

BERT 56.0 69.2 81.3 71.4 69.5

from utterances. Not to mention that our framework does not degrade performances

on the iid splits.

It would be instructive to see the correlation between the predicted template and

program accuracy, as shown in Table 6.6. As expected, the more accurate templates

we feed, the more accurate programs the T5 models predict. Therefore, we conclude

that the well-selected templates by our framework improve accuracy in the program

prediction step.

6.4.4 Discussion

Different Aspects of Compositional Generalization The novel templates come

from the template pool rather than our generation models, and the generation is more

likely used to plug in the entities observed during training to the novel templates. This

leaves us with a somewhat unclear picture – can we truly say that the T5 models are
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able to compositionally generalize with new templates? While there isn’t yet a con-

sensus about what compositional generalization is and how it could be evaluated, [11]

suggested five distinct aspects of compositionality, where systematicity and productiv-

ity are the features that compositional generalization is mainly defined by [131, 2, 28].

While our result may not clearly fit into systematicity or productivity, it shows that

compositionality can also be understood in terms of substitutivity, which is substitut-

ing a part of an expression with a synonym.

Possibility and Limitation Feeding ground-truth templates with utterances enables

us to estimate our framework’s upper bound accuracy, i.e., when we have an ideal

ranker (third row in Table 6.5). On the program splits, generation with gold templates

raises the accuracy up to ×1.5 ∼ ×5 compared to the generation without templates,

but the improved accuracy is still far from perfect.

Even so, the template-based approach is a stepping stone for developing a parser

that can compositionally generalize. We think that a neural parser could learn how to

instantiate a novel template by observing examples of filling in placeholders locally

during training. However, a neural parser would struggle to learn how to re-combine

structural constituents as it requires global reasoning. Therefore, future studies should

focus on somewhat easy compositional template-instantiation then extend to the more

challenging generalization.

Potentials for Using Cross-Domain Data One interesting point about templates

is that one can define a program-to-template abstraction agnostic to domains. Note

that templates of tested four datasets share strong structural similarities, as shown in

Table 6.2. If we define more high-level abstraction for templates by anonymizing the

table’s column names such as total gpa or flight id, it would be feasible to

further leverage training or augmented data from other domains. This opens a new

possibility to apply our framework on achieving compositional generalization with

cross-domain data [37, 38].
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Table 6.6: The Pearson correlation coefficient between the template accuracy and the

program accuracy.

Advising ATIS GeoQuery Scholar Average

iid 1.00 1.00 0.99 1.00 1.00

program 0.95 0.99 1.00 0.99 0.98
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Chapter 7

Conclusion

7.1 Summary

In this dissertation, we explore deep learning models’ possibilities for achieving rule-

based out-of-distribution (OoD) generalization, i.e., systematic generalization, at se-

quence generation tasks. Whereas humans can handle OoD test examples that follow

a distribution distinct to training, even state-of-the-art deep learning models struggle

to do so. This can be problematic for applications requiring logical reasoning or huge

data collection cost. Thus, we attempt to answer the following questions: (1) in what

extent deep model can systematically generalize? (2) how to improve the systematic

generalization abilities of deep models?

To answer the former question, in chapter 2, we define a sequence generation task

requiring systematic generalization and summarize existing work about datasets and

evaluation methods. In chapter 3, we assess the systematic generalization abilities of

deep learning models with our proposed number sequence prediction problems. In

particular, our evaluation methods for measuring deep models’ computational powers

give further insights by providing equally powerful automata.

To answer the latter question, we propose three different methods. In chapter 4,

we propose a new model, called neural sequence-to-grid module. This module is ad-
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vantageous to capture the latent alignments inside the input sequence by automatically

segmenting the sequence into a grid, so that appending the module before CNN led

the systematic generalization for arithmetic and algorithmic tasks. In chapter 5, we

propose a new data augmentation method, called parsing tree annotation. Inserting

delimiter tokens in between input sequences can hint the parse structure of the in-

put, resulting in the improved systematic generalization of deep models of standard

architecture. In chapter 6, we propose to reformulate a semantic parsing task into clas-

sification and generation tasks. By doing so, we can leverage a compostionally rich

template pool, which in turn eases deep learning generation models’ burden to model

new target program structures for novel input utterances.

7.2 Suggestions for Future Research

In broader strokes, we explore three different approaches for improving the system-

atic generalization of deep models: model-based, data-based, and task-based. Each

approach has its unique pros and cons; therefore we will suggest future work for these

approaches, respectively.

Specialized Models for Systematic Generalization The pros of devising new spe-

cialized models include guaranteeing nearly perfect accuracy for target tasks [15, 14],

giving insights to which inductive bias is critical [92], and motivating other new mod-

els [58]. However, the downsides of this approach are evident: not only designing

new models is burdensome for researchers, but also the tasks these new models cover

are relatively limited. Therefore, future research must be focused on capturing more

general inductive bias that is not solely limited to target tasks or devising auxiliary

modules that can incorporate with standard architecture models.

Data Augmentation for Systematic Generalization The most significant upside of

data augmentation methods is that there is no need to deviate from the standard model
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architecture. However, it still leaves the following important question: how to secure

systematically diverse data? Borrowing from relevant datasets [19, 38] is cheap, but we

cannot expect dramatic improvements due to the misalignment between the original

data and the relevant data. On the other hand, applying grammar induction algorithms

to data enables to synthesize new data or even directly output underlying rules [41, 9].

Still, this method has some downsides, such as data the algorithm can be applied to is

limited or the algorithm can yield incorrectly induced grammar or synthesized exam-

ples. Therefore, if future research could address these minor downsides, it would be

the ultimate solution for achieving systematic generalization of deep learning models.

Task Reformulation for Systematic Generalization Another promising research

direction is redefining a given task in another form with favorable conditions. In fact,

in many cases, tasks are not solely given by training input-target pairs. We may have in-

complete data, such as unpaired corpora, or prior knowledge, such as domain-specific

languages or expert rules. This calls for a new formulation of given tasks so that the

newly formed task can leverage those extra resources most effectively [20, 45]. Since

this approach is limited to neither one specific data, one model, nor one task definition,

the approach opens big windows for many creative solutions.

95



Bibliography

[1] I. Oren et al., “Improving compositional generalization in semantic parsing,”

in Findings of the Association for Computational Linguistics: EMNLP 2020,

(Online), pp. 2482–2495, 2020.

[2] J. Fodor et al., “Connectionism and cognitive architecture: A critical analysis,”

Cognition, vol. 28, pp. 3–71, 1988.

[3] G. F. Marcus, The algebraic mind: Integrating connectionism and cognitive sci-

ence. MIT press, 2003.

[4] R. C. A. Iacob et al., “Neural approaches for natural language interfaces to

databases: A survey,” in Proceedings of the 28th International Conference on

Computational Linguistics, pp. 381–395, 2020.

[5] Y. Li et al., “On compositional generalization of neural machine translation,” in

ACL, (Online), pp. 4767–4780, 2021.

[6] W. Zaremba and I. Sutskever, “Learning to execute,” arXiv preprint

arXiv:1410.4615, 2014.

[7] D. Keysers, N. Schärli, N. Scales, H. Buisman, D. Furrer, S. Kashubin, N. Mom-

chev, D. Sinopalnikov, L. Stafiniak, T. Tihon, et al., “Measuring composi-

tional generalization: A comprehensive method on realistic data,” arXiv preprint

arXiv:1912.09713, 2019.

96



[8] C. Finegan-Dollak et al., “Improving text-to-SQL evaluation methodology,” in

ACL, pp. 351–360, 2018.

[9] L. Qiu et al., “Improving compositional generalization with latent structure and

data augmentation,” arXiv preprint arXiv:2112.07610, 2021.

[10] B. Lake et al., “Generalization without systematicity: On the compositional

skills of sequence-to-sequence recurrent networks,” in International Conference

on Machine Learning, pp. 2873–2882, 2018.

[11] D. Hupkes, V. Dankers, M. Mul, and E. Bruni, “Compositionality decomposed:

how do neural networks generalise?,” in Proceedings of the Twenty-Ninth In-

ternational Conference on International Joint Conferences on Artificial Intelli-

gence, pp. 5065–5069, 2021.

[12] B. M. Lake and M. Baroni, “Generalization without systematicity: On the com-

positional skills of sequence-to-sequence recurrent networks,” arXiv preprint

arXiv:1711.00350, 2017.

[13] N. Kim et al., “COGS: A compositional generalization challenge based on se-

mantic interpretation,” in EMNLP, (Online), pp. 9087–9105, 2020.

[14] X. Chen, C. Liang, A. W. Yu, D. Song, and D. Zhou, “Compositional general-

ization via neural-symbolic stack machines,” Advances in Neural Information

Processing Systems, vol. 33, 2020.

[15] Q. Liu, S. An, J.-G. Lou, B. Chen, Z. Lin, Y. Gao, B. Zhou, N. Zheng, and

D. Zhang, “Compositional generalization by learning analytical expressions,”

Advances in Neural Information Processing Systems, vol. 33, 2020.
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초록

규칙을 학습하고 확장할 수 있는 인간 수준의 기계를 개발하는 것은 인공지능

커뮤니티의오랜과제이다.현재의딥러닝모델은광범위한응용분야에서놀라운

성능을입증했지만,모델은여전히학습분포를따르지않는참신한예제에대해학

습된규칙을적용하는데어려움을겪고있다.이러한규칙기반분포외일반화,즉체

계적일반화를하지못하는딥러닝모델은응용이제한되는데,특히시멘틱파싱과

같은 논리적 추론이 필요하거나 저자원 기계 번역과 같은 데이터 부족에 시달리는

시퀀스처리작업에응용될수없다.

따라서 본 논문은 딥 러닝 텍스트 생성 모델의 체계적 일반화 능력을 측정하

고 개선하는 것을 목표로 한다. 논문의 첫 번째 부분은 현재 딥 러닝 모델의 체

계적 일반화 능력을 평가하는 것이다. 특히, 우리는 숫자 시퀀스 예측 문제를 설

계하고 동등하게 표현되는 오토마타를 이용해 모델의 계산 능력을 측정한다. 논

문의 나머지 부분은 딥 러닝 모델의 체계적 일반화를 달성하기 위한 다양한 프레

임워크를 제안한다. 첫 번째 프레임워크는 신경 시퀀스 투 그리드 모듈이라는 새

로운 입력 전처리 모듈을 고안하는 것이다. 모듈은 시퀀스 입력을 그리드 입력으

로 분할하고 정렬하는 방법을 배울 수 있다. 즉, 기호 규칙을 학습하고 적용하는

데 더 유리한 형태이다. 우리는 그리드 입력을 취하는 딥 러닝 모델이 프로그램

코드 평가 또는 bAbI 작업을 포함하여 상징적 추론 작업에 대해 학습된 규칙을

확장할 수 있음을 실험적으로 보여주었다. 두 번째 프레임워크는 구조적으로 암

시된 예시로 신경망을 훈련시키는 것이다. 우리는 타겟의 구문 분석 트리의 비말

단 노드를 나타내는 구분자 토큰으로 타겟에 주석을 단다. 우리는 구성 추론이 필
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요한 작업에 실험하여 상당한 성능 향상을 달성함으로써 타겟에 주석을 다는 방

법의 효과성을 보여주었다. 마지막 프레임워크는 선택된 템플릿을 신경 생성 모

델에 제공하는 것이다. 대상 시퀀스의 높은 수준의 스케치인 템플릿은 모델이 어

려운 구조 모델링을 해야하는 부담을 완화하고 모델이 쉬운 템플릿 실현에 집중

할 수 있도록 한다. 저렴하고 큰 템플릿 풀에서 신경 모델로 검색하여 순위를 다

시 매겨 템플릿을 선택한다. 실험 결과는 우리가 선택한 템플릿이 네 가지 다른

의미 시멘틱파싱에서 딥 러닝 모델의 성능을 크게 향상시킨다는 것을 보여준다.

주요어:딥러닝,시퀀스생성,분포외일반화

학번: 2016-20873
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