

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Neural Network
Design and Acceleration for

Resource-constrained Environments

한정된자원환경을위한인공신경망설계및가속

2022년 8월

서울대학교대학원

전기·정보공학부

최혁준

Neural Network
Design and Acceleration for

Resource-constrained Environments

지도교수 윤 성 로

이논문을공학박사학위논문으로제출함

2022년 8월

서울대학교대학원

전기·정보공학부

최혁준

최혁준의박사학위논문을인준함

2022년 8월

위 원 장 (인)

부위원장 (인)

위 원 (인)

위 원 (인)

위 원 (인)

Abstract

Deep learning methods have become very successful in various applications due

to the availability of exponentially growing data and powerful computing resources.

Due to remarkable performance, neural model has been applied to various edge de-

vices such as mobile and embedded system. These edge devices usually suffer from

constrained resources including computation and energy. To overcome this chal-

lenge, low-latency model design, model compression and acceleration are widely

researched on both hardware and software side. In this dissertation, we introduce

two methods with regard to low-latency model design on algorithm side. Designing

compact and low-latency model is important to reduce required resources. For this

reason, in aspect of algorithm, we introduced two model design methodology with

neural architecture search (NAS) to find compact model: cell-based NAS and graph

variational auto-encoder based NAS. Our cell-based NAS approach is based on Dif-

ferentiable ARchiTecture Search (DARTS) which is well-known differentiable NAS

method. Despite the popularity of DARTS, it has been reported that DARTS often

shows unrobustness and sub-optimality. Through extensive theoretical analysis and

empirical observations, we reveal that this issue occurs as a result of the existence

of unnormalized operations. Based on our finding, we propose a novel variance-

stationary differentiable architecture search (VS-DARTS). VS-DARTS makes the

architecture parameters a more reliable metric for deriving a desirable architecture

without increasing the search cost. In addition, we derive comparable architecture

using VS-DARTS with soft constrained latency objectives. Another approach to find

low-latency model is using graph generative models, which has been recently focused

because of their efficiency. We proposed novel graph variational auto-encoder (VAE)

which shows dramatically improvements on cell-based search space. After our graph

VAE extracted architectural information from the neural architecture, we conducted

novel multi-objective NAS using extracted information for hardware-constrained en-

vironments. We showed that the proposed multi-objective NAS can derive various

models close to Pareto optimal between latency and accuracy. Also, we evaluated

our proposed method on various hardware platforms. In summary, this dissertation

proposes two methods for improving performance of NAS, which can use compact

and low-latency neural model for computing resource-constrained environments. The

proposed methods were evaluated with various experimental studies.

keywords: Deep Learning, Deep Neural Network, Energy Efficiency, Neural

Architecture Search, Hardware-aware NAS

student number: 2015-21001

ii

Contents

Abstract i

List of Figures ix

List of Tables x

1 Introduction 1

2 Background 7

2.1 Neural Architecture Search . 7

2.1.1 Previous Works on Differentiable NAS 7

2.1.2 Preliminaries on DARTS 8

2.2 Graph Variational Auto-Encoder 10

2.2.1 Graph Representation Learning 10

2.2.2 Variational Auto-encoder for Graph 10

2.2.3 Neural Architecture Search (NAS) with Generative Models 11

2.2.4 Preliminaries on VAE for DAGs 12

3 Neural architecture search for resource-constrained environment 15

3.1 Introduction . 15

3.2 Issue of DARTS Architecture Parameter 17

3.3 Lack of Reliability of β . 18

3.4 Variance-stationary DARTS (VS-DARTS) 21

3.4.1 Node Normalization . 21

iv

3.4.2 Remedying Gradient Imbalance 22

3.4.3
√
β-Continuous Relaxation 23

3.5 Experimental Results . 28

3.5.1 Settings . 28

3.5.2 Results in DARTS Search Space 30

3.5.3 Results in RobustDARTS Search Space 33

3.5.4 Ablation Study . 34

3.6 Summary . 35

4 Platform-aware Neural Architecture Search with Graph Variational Auto

Encoder 37

4.1 Introduction . 37

4.2 Proposed Methods on Graph Variational Auto-Encoder 39

4.2.1 Fail Case Study . 39

4.2.2 Proposed Update Function 41

4.2.3 Observer Node . 43

4.3 Proposed Predictor-based Multi-objective NAS 43

4.3.1 Training Graph VAE (Step 1) 43

4.3.2 Search Process (Step 2) . 46

4.3.3 Return the set of the searched architectures (line 21-22) . . . 47

4.4 Experimental Results . 47

4.4.1 Settings . 47

4.4.2 VAE Performance Comparison 48

4.4.3 Pre-predictor . 50

4.4.4 Search Performance Comparison 50

4.5 Discussions . 51

4.5.1 Node Index Order in DAG VAE 51

4.5.2 Model size reduction while keep the reconstructive perfor-

mance . 51

4.5.3 Convergence Acceleration 52

4.6 Summary . 52

v

5 Conclusion 57

Bibliography 58

Abstract (In Korean) 72

vi

List of Figures

3.1 The magnitude of β vs. discretization accuracy (%) at convergence of

2 edges from a trained (a) DARTS-L2 supernet and (b) VS-DARTS

supernet. While optimized β of the VS-DARTS supernet faithfully

reflects the discretization accuracy of the corresponding operation,

i.e.operation strength, that of the DARTS-L2 supernet fails to do so. 18

3.2 Change in the variance of the each node output feature map during

the DARTS search process. 19

3.3 The magnitude of βzero of (a) DARTS-L2 and (b) VS-DARTS. The

bar graphs in Ni and Ri correspond to the incoming edges into the

i-th node of the normal cell and of the reduction cell, respectively. . 20

3.4 Overview of (a) DARTS and (b) VS-DARTS (proposed) which in-

cludes node normalization and
√
β-continuous relaxation, depicted

in red colors. 21

3.5 The change in the scale of gradient of 3x3 separable convolution op-

eration at last intermediate node (a) before and (b) after applying

node normalization. 22

3.6 The ratio of variance of the output of the mixed operation to that of

the input of the mixed operation in a randomly selected three edges. 24

3.7 Covariances between each pair of operations in the search process

using DARTS with node normalization. 25

vii

3.8 Normal(left) and reduction(right) cells derived by VS-DARTS on

CIFAR-10 and DARTS search space. Validation results are shown

in Table 4.1(best) and Table 4.2. 31

3.9 Two additional normal(left) and reduction(right) cells derived by VS-

DARTS on CIFAR-10 and DARTS search space. These architectures

are used for VS-DARTS results(avg) in Table 4.1. 31

4.1 Overview of the predictor-based multi-objective NAS with graph VAE. 40

4.2 The simplified architecture topologies and an example of a fail

case. We describe two types of simplified NAS architecture types.

Note that a node represent an operation, such as convolution or max-

pooling. (a) ENAS architecture type. In this type of architecture,

nodes are sequentially connected along a simple path, without a branch

or a cycle. (b) NAS-Bench-101 and 201 architecture type. (c) An ex-

ample of reconstruction error from type (b) architecture. Contrary to

(a), message propagation paths in (b) are more complicated and have

an acyclic loop or branches. We examined whether the architectures

of the (b) type are vulnerable to graph isomorphism tests. Both mes-

sages from vk1 and vk2 may not be distinguished because both nodes

have the same type and share the same neighbor. We represent these

pictures based on the early paper [52]. 42

4.3 Decoding strategy comparison between D-VAE and our proposed

method. Yellow node and dashed edges mean a node and edges cur-

rently being generated. Graph state hg is obtained from the hidden

state of the gray-colored node. (a-c) Decoding strategy of D-VAE [82].

(d-f) Our proposed decoding strategy. 44

4.4 Latent space comparison between auto-encoder with and without pre-

predictor. Left: D-VAE+ours without pre-predictor, right: D-VAE+ours

with pre-predictor. T-SNE [63] is used to reduce dimension and visu-

alize the latent spaces. 53

viii

4.5 The NAS-Bench-201 [19] search results of five different hardware

environments on accuracy vs. measured latency [20, 35]. Red star, or-

ange star, and blue circle represents Pareto-optimal models searched

with trained D-VAE+ours (w/. pre-predictor), D-VAE+ours (w/o pre-

predictor) and GCN-based predictor proposed by [20], respectively.

GCN-based accuracy predictor and GCN-based latency predictor pro-

posed by BRP-NAS were used. Note that the accuracy predictor is not

binary. The reason is that the binary predictor of BRP-NAS may not

be unsuitable for multi-objective search. The algorithms were tested

on the search method we proposed. Green line represent ground-

truth Pareto-frontier. DeskCPU: Desktop CPU Intel core-i7 7820x,

DeskGPU: Desktop GPU NVIDIA GTX 1080ti, EmbGPU: Embed-

ded GPU Jetson nano, Pixel3: Google smartphone Pixel3, Raspi4:

Raspberry Pi 4. 55

4.6 (a) Train loss convergence and (b) KL-divergence convergence speed

comparison between D-VAE and D-VAE+our proposed method de-

scribed in Section 5.2.2 and 5.2.3. Both (a) and (b) were performed

on ENAS macro search space. 56

ix

List of Tables

3.1 Comparison of architectures searched by various NAS algorithms on

CIFAR-10. Cost refers the search cost with GPU days. 30

3.2 Performance comparison of architectures on ImageNet (mobile setting). 32

3.3 Performance comparison (test error (%)) across three datasets and

four search spaces, which are constrained from the cell-based search

space [79]. †: evaluated ourselves while settings are the same as cited

paper. 33

3.4 Ablation studies on VS-DARTS. 34

3.5 Performance on DrNAS [11] w/ and w/o our VS-DARTS on CIFAR-10. 35

4.1 Comparison of VAE performances on ENAS [52] and NAS-Bench-

201 [19].We evaluated three types of generation performances, ac-

curacy, validity, and uniqueness. Our model showed the best perfor-

mances in accuracy and validity, in all datasets. Compared to our

baseline model D-VAE-EMB, our proposed method with additional

indices accomplished remarkable improvement in the graph recon-

struction task. The best results in each setting remarked as bold. . . 49

4.2 Comparison of search results on NAS-Bench-201 [19] and LatBench [20].

All of the results is obtained after 350 architectures evaluation. . . . 54

x

Chapter 1

Introduction

Deep neural networks have become very successful in various fields, namely, com-

puter vision [66], natural language processing (NLP) [50], and recommendation sys-

tem [83]. The success of deep learning is from two major reason: exponentially grow-

ing data and powerful computing resources.Because of its noticeable performance,

deep neural networks has been applied to edge devices including smartphones [36],

the Internet of Things (IoTs) [46], embedded systems for smart factory [7] or au-

tonomous driving [25].

While the Moore’s law is predicted to end on a single core, on System on a

Chips(SoCs) like Apple’s A series, performance is improving much faster than dou-

bling in 2 years [64]. So, as time goes by, it is expected that research interest will

gradually shift to edge devices such as mobiles and embedded systems using SoC

rather than high-performance GPU servers.

However, paradoxically, the factors that brought about the success of deep learn-

ing obstruct deploying to edge devices. In other words, as the model size increases,

deployment becomes increasingly difficult in computational and energy resource-

constraint environments such as mobile devices or embedded systems.

1

Therefore, it is natural that the research on low-latency model design and accel-

eration is conducted in various fields to overcome these challenges. To reduce model

size, a lot of researches are being studied in both the algorithm and hardware as-

pects. On the algorithm side, various techniques can be categorized into following

areas: compact model design [57, 4, 67], quantization [16], pruning [56, 43] and

tensor decomposition [48]. On the hardware side, many of acceleration techniques

are conducted on various environments [85]. Also, various types of neural network

accelerators, such as FPGA- and SoC-based accelerator, are actively developed to

efficiently handle machine learning workloads [12].

In this dissertation, we introduce two methods with regard to design low-latency

model on algorithm side. More specifically, we improved automating model design

methodology to find compact model which didn’t harm the performance in Chapter 3

and Chapter 4.

Neural architecture search (NAS) is automating neural architecture design, which

is the on-going step in automating machine learning (AutoML). Although deep neu-

ral networks (DNNs) have become the popular choice of machine learning model

for big data processing, it still requires an expert with experience in machine learn-

ing and domain knowledge to find a proper neural architecture for the target task.

This challenge in designing an appropriate neural architecture calls for automation of

the neural architecture search process, and consequently, Neural Architecture Search

(NAS) continues to attract a significant amount of attention from the machine learn-

ing society. However, the extensive search space and the high evaluation cost of early

NAS algorithms [54, 55, 87, 88] based on Evolutionary algorithm (EA) or Reinforce-

ment Learning (RL), required an enormous amount of computational resources, often

mounting up to hundreds and thousands of GPU hours. The introduction of the cell-

based micro search space [88, 40] and parameter sharing [53] brought upon an im-

2

pressive reduction in the search cost of NAS. The family of one-shot NAS algorithms,

all of which employ one or more of the techniques mentioned above, simultaneously

evaluates all candidate architectures by training a supernet. The development of one-

shot NAS algorithms greatly contributed to making NAS research more approach-

able. Among various one-shot NAS algorithms, DARTS [40], which is a gradient

descent optimization-based one-shot search algorithm, has become the most widely

benchmarked search algorithm because of its simple and intuitive methodological

approach. Despite the popularity of DARTS, it has been reported that DARTS often

searches for a sub-optimal candidate architecture, and that DARTS may fail miser-

ably depending on the search space design [79]. Most of the works that attempt at

amending the performance collapse of DARTS have placed the blame on the increase

in the number of skip-connections.

In Chapter 3, we reveal an undiscovered factor that makes the architecture param-

eters unreliable for the selection rule: unnormalized outputs of intermediate nodes in

the super-net. We provide extensive theoretical and empirical analyses to show how

unnormalized outputs prevent the architecture parameters from accurately represent-

ing operation strengths.

Chapter 3 is based on the following paper:

• Hyeokjun Choe, Byunggook Na, Jisoo Mok, Sungroh Yoon, "Variance-stationary

Differentiable NAS," in Proceedings of the British Machine Vision Conference

(BMVC), 2021.

The key contributions of Chapter 3 are as follows:

• We investigate the naive continuous relaxation, which leads to the unfair com-

petition in both intra- and inter-edge level, and is unveiling cause of that super-

net falling in sub-optima in DARTS.

3

• To solve the gap between continuous relaxation-based search and the conven-

tional architecture parameter magnitude-based architecture selection, we pro-

pose two methods: node normalization and variance-stationary continuous re-

laxation.

• We improve search performance and robust search of DARTS, specifically, the

average accuracy of searched architectures increases by +0.50% on CIFAR-10.

Although NAS continues to attract significant attention from the machine learn-

ing society. The representation of architectures has become essential for enhancing

NAS performance. Designing an appropriate neural architecture requires automation

of the neural architecture search process. To examine how neural architectural prop-

erties and their performances are interconnected, NAS researchers are treating neu-

ral architecture as a graph and utilizing graph neural networks-based (GNNs-based)

variational auto-encoders (VAEs) that represent graphs in continuous latent space to

analyze the properties of the graph [44, 6, 82, 42].

However, we observe that the conventional graph generative NAS methods do

not work appropriately on cell-based search spaces . Through theoretical analysis,

we found that in conventional methods, node generation is performed using only the

sub-graph information instead of the full graph information when encoding and de-

coding a graph with a branch structure. This issue is caused by the short expressive

power of GNNs. Based on our findings, we propose a method that uses the entire

graph information instead, thereby increasing the explosive power of graphs suitable

for directed acyclic graphs (DAGs). In addition, we propose a predictor-based multi-

objective NAS method that can derive several models on the Pareto frontier between

inference latency and model accuracy on various hardware platforms instead of cre-

ating a single model such as a conventional predictor-based NAS. Our experimental

4

results show that node index embedding improves the reconstruction accuracy of the

D-VAE-EMB [6] by 86.99% (13.01% to 100%) for NAS-Bench-201 [19]. Moreover,

we show that a multi-objective search using our proposed method can output results

very close to Pareto-optimal on various hardware platforms, thereby outperforming

conventional GCN- and graph VAE-based methods.

In Chapter 4, we propose hardware-aware neural architecture optimization with

graph VAE. In auto-encoder, we adapt our novel decoding strategy and observer

which can improve the expressive power of Graph Neural Networks (GNNs). After

train VAE, we searched out a set of architectures that is close to the Pareto-frontier

through novel predictor-based multi-objective NAS.

Chapter 4 is based on the following paper:

• Hyeokjun Choe, Jeonghee Jo, Byunggook Na, Sungroh Yoon, "Hardware-aware

Neural Architecture Search with Graph Variational Auto-Encoder," in prepa-

ration, 2022.

The Chapter 4 can be summarized as follows:

• We reveal that conventional DAG VAE usually fails to reconstruct on a cell-

based search space, a problem caused by insufficient graph expressive power

of DAG VAE.

• We propose a novel decode strategy for DAG VAE, a simple yet effective strat-

egy to increase the performance of the graph VAE on a cell-based search space

because our proposed method can remedy the shortage of graph expressive

power in DAG VAE.

• We propose a novel predictor-based multi-objective NAS with a graph VAE,

which can determine a set of architectures close to Pareto-optimal in various

hardware environments.

5

The dissertation is organized as follows: Chapter 2 provides background and pre-

vious studies. In Chapter 3, we propose novel cell-based neural architecture search

methods to improve the search performance and adapt searching hardware-aware

neural architecture. Chapter 4 suggests hardware-aware NAS method with graph VAE

using novel graph decoding strategy and scheme. Finally, in Chapter 5, we conclude

this dissertation.

6

Chapter 2

Background

To put our works in a proper context and also to facilitate further understanding, we

first provide a brief review of related work.

2.1 Neural Architecture Search

2.1.1 Previous Works on Differentiable NAS

Automation of the neural architecture search process has continuously attracted in-

terest, but wide search space and high evaluation cost require high computational

resources[87, 88, 39, 55]. After the cell-based search space[53] and parameter sharing[53]

are announced, one-shot neural architecture search (NAS) methods, which train su-

pernet to search and evaluate candidate architectures simultaneously, are widely researched[40,

70, 18]. One-shot NAS can be categorized by two groups: 1) differentiable architec-

ture search which train supernet with continuously relaxed seach space[40, 38, 72, 9,

13, 79, 10, 68] and 2) sampling-based methods which sample the candidate architec-

ture and stochastically update the supernet[18, 70, 86].

DARTS [40],which is the mile-stone research in the first category, has become the

7

most preferred baseline search algorithm because of its simple and intuitive method-

ological approach. Even though DARTS shows an impressive performance and com-

putational efficiency, it has been reported that DARTS lacks stablility [79, 10] and

often derives a sub-optimal architecture even in the search space where all possible

architectures are evaluated [19]. By restricting the search space of DARTS, Zela et

al. [79] empirically demonstrated the failure cases of DARTS. To make DARTS more

robust against such failure cases, Zela et al. introduces a regularization term to the

inner loop of the bi-level optimization. In the case of the study of Chen et al. [10], the

instability issue of DARTS is addressed through the learning of weight parameters

with respect to the perturbed architecture parameters.

Also, it has been empirically reported that the large number of skip connections

in the final architecture derivation step results in a significant performance drop [79,

13, 38]. Chu et al. [14] argues that the skip connection operation in fact is performing

two roles simultaneously: aiding the training of super-net and the candidate operation.

Chu et al. separates these two roles of the skip connection operation from each other.

However, they do not provide an additional analysis into the architecture selection

rule based on the magnitude of α.

2.1.2 Preliminaries on DARTS

Differentiable architecture search (DARTS)[40] aims to search for a cell, which is

repeatedly stacked to build the final architecture. In DARTS, two types of a cell are

searched: a normal cell and a reduction cell. While the normal cell maintains the

dimension of the input feature map, the reduction cell halves it and doubles the num-

ber of channels. These cells can be seen as a directed acyclic graph (DAG) with E

edges and N nodes, which are associated with operations and feature maps, respec-

tively. The intermediate nodes of a cell are computed by summing up all preceding

8

nodes: xj =
∑

i<j o
(i,j)(xi). The output of a cell is computed by concatenating all

intermediate nodes.

DARTS starts by constructing a super-net, in which each edge includes all candi-

date operations in the search space. To enable gradient-based optimization, DARTS

continuously relaxes the discrete choice of an operation by applying the Softmax

function over all candidate operations with the architecture parameters α:

ō(i,j)(x) =
∑
o∈O

exp(α(i,j)
o)∑

o′∈O exp(α(i,j)
o′)

o(x) =
∑
o∈O

β(i,j)
o o(x), (2.1)

where i and j indicate node indices. ō, the weighted summation of candidate oper-

ations, is referred to as a mixed operation. An example of a continuously relaxed

cell in DARTS is illustrated in Figure 3.4(a). By applying the continuous relaxation

scheme, the problem of architecture search can be equated with bi-level optimization

problem as follows:

min
α
Lval(w∗(α), α) s.t. w∗(α) = argminwLtrain(w,α). (2.2)

During the search process, architecture parameters α and operation weightsw are up-

dated alternatingly. After the search process, the operation associated with the maxi-

mum β is selected per edge. Afterwards, the final architecture is derived by selecting

top-2 edges per intermediate node by ranking the edges according to β of the selected

operation.

9

2.2 Graph Variational Auto-Encoder

2.2.1 Graph Representation Learning

In general, a graph G with n nodes is described as node or vertices sets {vi}1≤i≤n,

and edge sets {eij}1≤i,j≤n, if any two different i-th node vi and j-th node vj are

connected to each other. Recently, message passing (MP)-based operations for graphs

[24] have widely used for graph representation learning in various domain [65, 80,

81, 23]. The most common MP frameworks are composed of two functions: A and

U , which means the aggregation and update function, respectively. At aggregates

the localized message of each node representation xi in t-th timestep, and Ut updates

node representations of the next (t+1)-th timestep based on the aggregated messages.

More recent MP-based works showed that the discriminative power of subgraphs

is closely related to overall performances of an MP framework in various graphs

[71, 45, 49, 51].

In terms of an effective MP algorithms, a number of MP-based researches [69,

26, 1] have concerned that the discriminative or expressive power is the key factor

in various types of graph tasks. Some studies [71, 45, 41] pointed out that some

aggregation functions failed to distinguish a pair of two different sub-graphs, and

eventually it caused harmful effect on overall performances. Several recent works

[75, 21] suggested that differentiating nodes can be one of the solution.

2.2.2 Variational Auto-encoder for Graph

Several strategies were proposed for unsupervised learning on graphs. VGAE [31]

applied the variational auto-encoder (VAE) [30] to obtain meaningful latent features

on graphs. GraphVAE [59] also adopted VAE for small molecular graphs. Graph U-

Nets [22] and automatic graph encoder-decoder (AGMC) [78] are another examples

10

of encoder-decoder model on graphs. Although a fair number of graph types have no

intrinsic node orderings, it is not the case for some tasks including neural architec-

ture graphs. Gated graph sequence neural networks (GGS-NNs) is one of the early

works for producing graphs in sequences[37], graph convolutional recurrent network

(GCRN) [58] to predict sequential structures of graphs using recurrent neural network

(RNN).

2.2.3 Neural Architecture Search (NAS) with Generative Models

Many of researches are proposed to reduce evaluation time, because neural network

evaluation to obtain performances requires expensive computational costs [44, 53,

8, 74, 19]. One of the approach to accelerate neural architecture evaluation is using

performance predictor instead of training model from scratch. NAO [44] treats the

neural architectures as the discrete string sequences, and search improved architec-

ture using LSTM-based encoder, decoder and multi-layer perceptron (MLP)-based

performance predictor.

Several recent studies [82, 73, 20, 6, 73] formulated neural architecture search

(NAS) as a graph generation task. Zhang et al., [82], and Chatzianastasis et al., [6]

describes a neural architecture as a DAG, and use VAE to explore the latent space of

DAGs. Deviating from the simultaneous MP scheme suitable for undirected graphs,

Zhang et al. [82] proposed D-VAE which use an asynchronous MP scheme which

sequentially encode each node in computational order on directed acyclic graphs

(DAGs). Chatzianastasis et al., [6] proposed D-VAE-EMB which use the learnable

operation embeddings instead of fixed operator encoding to make smoother repre-

sentations of the architectures. But there is a limitation that these methods are not

evaluated on cell-based search space. SVGe [42] proposed a two-sided graph VAE

which improves the smoothness of latent representations and reconstruction perfor-

11

mances even on cell-based search space, but they did not provide sufficient explaina-

tion about the reason of D-VAE’s fail cases on cell-based search spaces [42].

2.2.4 Preliminaries on VAE for DAGs

Neural Architectures as Graphs

Let vertices mean operations while directed edges mean signal flows. Then, with the

set of nodes V and of edges E, the computational graph g of an architecture A can

described as gA = (V,E) [82, 6]. Usually, conventional DAG VAE methods con-

vert operation and connection to node and edge, respectively [82, 6]. The converting

method can be naturally applicable for ENAS dataset[53] and NAS-Bench-101[74].

On the other hand, in NAS-Bench-201[19], node and edge represent feature-map

and operation respectively. BRP-NAS [20], which is one of the graph-based NAS

research, swap the node and edge of the NAS-Bench-201 and we also followed.

Variational Auto-Encoder for DAGs

Previous NAS with DAG VAE studies proposed variational auto-encoder (VAE) for

DAG using asynchronous MP scheme, the details are as follows [82, 6]. Encoder

qπ(z|g), one of the VAE components, approximate true posterior pθ(z|g) which is

the probability distribution of latent representation z given graph g. In other words,

encoder map the graph g inG into latent space Z. Decoder pθ(G|Z), another compo-

nent of VAE, is a network for generating a graph g from given hidden representation

z. Loss L is defined as Eq. 2.3:

L(g, θ, π) = Ez[log pθ(g|z)]−DKL(qπ(z|g)||pθ(z)), (2.3)

12

where θ and π mean parameters each of ptheta and qπ while DKL denotes Kull-

back–Leibler divergence [34].

Encoder

As mentioned above, the encoder qπ(z|g) is a network that projects the input graph

g into the continuous probabilistic latent space Z. Latent representation z is derived

by encoder qπ(z|g) as Eq. 2.4 and Eq. 2.5:

z ∼ qπ(z|g) = N (0, 1)× σ2
g + µg, (2.4)

where N denotes normal distribution, µ and σ2 indicate mean and variance of the

latent distribution, respectively. µ and σ2 can be obtained by neural networks ψ1 and

ψ1 as Eq. 2.5:

µg, σ
2
g = ψ1(hg), ψ2(hg), (2.5)

where hg is the hidden state of the graph g.

Graph state hg is derived from the hidden state of the output node houtput. By

GNN with asynchronous MP scheme [82], the hidden states of node {h0, h1, h2, ..., hN}

are obtained by aggregation function A and update function U in topological order.

A derives hin
r which is the aggregation of incoming messages from its a set of prede-

cessor nodes followed by Eq. 2.6:

hin
r = A(hr, {hs : s→ r}), (2.6)

where hr and hs represent the hidden state of receiver node vr and the sender node

vs, respectively. As previous studies, we use a gated sum [82, 6].

13

Then, the receiver node’s hidden state hr is renewed by update function U :

hr = U(O(xr), hin
r), (2.7)

where xr is the operation type of vr.O(xr) is operation embedding function proposed

by Chatzianastasis et al., [6]. As in previous studies, we use GRU [15] as update

function U [82, 6].

Decoder

The decoder has the role that translates the latent representation z into graph g. The

DAG decoding strategy proposed by Zhang et al., [82] is as follows:

• Step 1. Determine the operation type xk of the node vk, which is to be gener-

ated, through MLP fadd_node(hg) where hg := hk−1.

• Step 2. Connect vk with previously generated node vprev ∈ {v0, v1, v2, ..., vk−1}

through fadd_edge and its input (xk, hprev) in node index order.

• Step 3. If a new edge is generated in step 2, update the hidden state hk of the

currently generated node vk.

• Step 4. Decoder stops when the number of nodes in graphs reach to the prede-

fined limit or the operation type ’END’ node is generated. Otherwise, go back

to step 1 for next node generation.

14

Chapter 3

Neural architecture search for

resource-constrained environment

3.1 Introduction

Neural architecture search (NAS) is drawing a considerable amount of attention from

the machine learning society as an attractive alternative to hand-crafting a neural ar-

chitecture [87, 88, 53, 40]. Among various NAS algorithms, DARTS [40], a gradient

descent optimization-based search algorithm, has become the most widely bench-

marked search algorithm due to its low computational cost and intuitive methodolog-

ical approach. Despite the popularity of DARTS, it has been reported that DARTS

often searches for a sub-optimal candidate architecture [38, 13, 79, 68].

Wang et al. [68] argue that the failure cases of DARTS occur because archi-

tecture parameters, on which the architecture selection rule of DARTS is based, do

not faithfully reflect the true operation strengths. Thus, Wang et al.propose a new

perturbation-based selection rule, which does not use architecture parameters. How-

ever, the perturbation-based selection requires progressive tuning, which results in

15

a significant increase in the search cost. If the search process can be fixed, so that

the architecture parameters function as a reliable metric without additional computa-

tional cost, it becomes a more desirable solution for aligning the search process and

the selection rule of DARTS.

In this work, we reveal an undiscovered factor that makes the architecture param-

eters unreliable for the selection rule: unnormalized outputs of intermediate nodes

in the super-net. We provide extensive theoretical and empirical analyses to show

how unnormalized outputs prevent the architecture parameters from accurately rep-

resenting operation strengths. To address the problem of unnormalized outputs, we

propose node normalization. Applying node normalization produces an undesirable

side-effect, named the gradient imbalance problem, which is resolved with layer-

wise adaptive control (LARC) [76]. We also introduce
√
β-continuous relaxation to

improve the training stability of the proposed method. Our method that encompasses

all of the amendments is named Variance-stationary DARTS (VS-DARTS); the dif-

ferences between DARTS and VS-DARTS are illustrated in Figure 3.4. VS-DARTS

focuses on making appropriate changes to DARTS, such that architecture parameters

can function as intended.

VS-DARTS improves the search performance of DARTS by 0.57%p and that of

DARTS +PT [68] by 0.18%p, achieving a competitive test accuracy on the CIFAR-10

dataset. Furthermore, the standard deviation of test errors is reduced in VS-DARTS,

which indicates the robustness of the search performance. When evaluated across

different datasets and search spaces, VS-DARTS once again consistently searches

for a successful neural architecture.

The key contributions of this chapter 3 are as follows:

• We investigate the naive continuous relaxation, which leads to the unfair com-

petition in both intra- and inter-edge level, and is unveiling cause of that super-

16

net falling in sub-optima in DARTS.

• To solve the gap between continuous relaxation-based search and the conven-

tional architecture parameter magnitude-based architecture selection, we pro-

pose two methods: node normalization and variance-stationary continuous re-

laxation.

• We improve search performance and robust search of DARTS, specifically, the

average accuracy of searched architectures increases by +0.50% on CIFAR-10.

3.2 Issue of DARTS Architecture Parameter

Previous works mainly attributed the DARTS failure to the optimization of super-net,

but the problem of the architecture selection process has largely been overlooked [68].

In this section, we discuss Wang et al. [68], which is the one of the first works to

address the problem of architecture parameters . Wang et al.demonstrate why the

magnitude of architecture parameters in the DARTS formulation is not suitable for

indicating the contribution of each operation to the super-net’s performance. Accord-

ing to Wang et al., when the problem of skip operation domination occurs in the

hastily optimized super-net, the architecture parameters are not aligned with the dis-

cretization accuracy, i.e.the accuracy of the trained super-net when a single operation

is selected for a randomly selected edge, while all other edges remain the same. Wang

et al.thus proposed a new selection rule that re-evaluates the super-net after remov-

ing a single operation per edge and selects the operation that yields the largest drop

in the super-net’s validation accuracy upon removal; this selection rule is coined the

perturbation-based selection rule (DARTS+PT) and does not directly utilize architec-

ture parameters. However, to successfully execute the proposed perturbation-based

selection rule, it requires the progressive tuning process that incurs a considerable

17

0

0.05

0.1

0.15

0.2

0.25
Magnitude of Discretization accuracy at convergence

87.5

88

88.5

89

89.5

90

o1 o2 o3 o4 o5 o6 o7 o1 o2 o3 o4 o5 o6 o7 o1 o2 o3 o4 o5 o6 o7 o1 o2 o3 o4 o5 o6 o7

o1: max_pool_3x3, o2: avg_pool_3x3, o3: skip_connect, o4: sep_conv_3x3, o5: sep_conv_5x5, o6: dil_conv_3x3, o7: dil_conv_5x5

(a) DARTS-L2 (b) VS-DARTS

Spearman: -0.14
Pearson: -0.44

Spearman: 0.32
Pearson: 0.24 Spearman: 0.61

Pearson: 0.60
Spearman: 0.57
Pearson: 0.40

Figure 3.1: The magnitude of β vs. discretization accuracy (%) at convergence of
2 edges from a trained (a) DARTS-L2 supernet and (b) VS-DARTS supernet. While
optimized β of the VS-DARTS supernet faithfully reflects the discretization accuracy
of the corresponding operation, i.e.operation strength, that of the DARTS-L2 supernet
fails to do so.

amount of additional computation cost.

3.3 Lack of Reliability of β

From here on, we refer to the inability of β to appropriately reflect the operation

strengths as unreliability of β. Eliminating the unreliability of β is crucial for im-

proving the accuracy of the selection rule based on the magnitude of β. If we can

improve the reliability of β, it becomes unnecessary to employ additional techniques,

such as progressive tuning [68], which causes a non-negligible increase in the search

cost, during the search process.

As mentioned in Section 3.2, if the input feature maps to each operation are close

to being optimal, βskip begins to grow larger than β of other operations. However, we

demonstrate that the previously-observed dominance of skip connection caused by

the optimized input feature maps is insufficient for explaining the unreliability of β.

We train a DARTS super-net with strong regularization (DARTS-L2) by increasing

the weight decay value from 3e-4 to 5e-3, such that the feature maps do not hastily

converge to optimal in the middle of the search process. Figure 3.1 shows the mag-

nitude of β and the operation strength in 2 randomly selected edges of the super-net,

18

0 10 20 30 40 50
Epoch

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

σ(
x)

node 0
node 1
node 2

node 3
node 4
node 5

Figure 3.2: Change in the variance of the each node output feature map during the
DARTS search process.

where the operation strength is represented with the discretization accuracy at conver-

gence [68]. As can be seen from Figure 3.1(a), even after increasing the regularization

effect, the magnitude of β and the operation strength in the DARTS-L2 super-net are

not aligned, indicating that the unreliability of β still remains.

We further analyze the computational flow in the DARTS super-net to reveal

another reason for unreliability of β problem. According to Eq.(1), the influence

of an operation on the ō can be estimated by βoo(x). Therefore, for β to be a trust-

worthy measure of the operation strength, the outputs from o(x) must be scaled to a

similar range of values. However, as an example, when the scale of o(x) is far smaller

than 1, o has a smaller influence over ō, even if βo is the highest among β of candidate

operations.

We observe that in DARTS, the scales of oskip(x) differs from those of the other

operations. We use the variance of outputs from o(x) to represent their scales, since

19

N0 N1 N2 N3 R0 R1 R2 R3N0 N1 N2 N3 R0 R1 R2 R3
(a) DARTS-L2 (b) VS-DARTS

0

0.1

0.2

0.3

0.4

Figure 3.3: The magnitude of βzero of (a) DARTS-L2 and (b) VS-DARTS. The bar
graphs inNi andRi correspond to the incoming edges into the i-th node of the normal
cell and of the reduction cell, respectively.

they have the mean of zero. Figure 3.2 shows the output feature map variance for each

node of a randomly selected cell during DARTS super-net training. We find that while

the outputs of other operations are normalized to (0, 1) due to their last normalization

layer, the output of the skip operation is not normalized. There exist two reasons why

the output of the skip operation cannot normalized in DARTS: 1) the input feature

map to the skip operation is the output of the previous node, which is unnormalized

as shown in Figure 3.2 and 2) the skip operation itself does not have the ability to

normalize it. If nodes remain unnormalized as in DARTS, to select an operation based

solely upon the magnitude of β becomes unreliable and thus results in a sub-optimal

architecture. Therefore, we proposed VS-DARTS, which is described in Section 3.4,

and VS-DARTS makes β more reliable as shown in Figure 3.1(b).

20

0
norm

1
norm

2
norm

0

1

2
(a) DARTS (b) VS-DARTS

β1 β1
β2 β2β3

β3

Figure 3.4: Overview of (a) DARTS and (b) VS-DARTS (proposed) which includes
node normalization and

√
β-continuous relaxation, depicted in red colors.

3.4 Variance-stationary DARTS (VS-DARTS)

3.4.1 Node Normalization

To remedy the problems caused by the unnormalized nodes, we propose a simple yet

effective method of normalizing the output of every intermediate node as follows:

x̂j =
xj − µxj,B

σxj,B

, where xj =
∑
i<j

ō(i,j)(xi), (3.1)

x̂j is the normalized output feature map of node Nj , and µxj,B and σ2
xj,B

are the

mean and the variance of xj within a single mini-batch, respectively. Applying the

proposed node normalization to DARTS prevents the input to the skip operation from

being unnormalized. Consequently, by scaling outputs of o(x) to a similar range,

node normalization contributes to amending the unreliability of β.

21

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

||g
|| 2 /

||w
|| 2

edge (0, 5) edge (1, 5) edge (2, 5) edge (3, 5) edge (4, 5)

Epoch
0 10 20 30 40 50

Epoch

0

0.005

0.01

0.015

0.02

0.025

2 /
||w

|| 2
||g

||

(a) (b)

Figure 3.5: The change in the scale of gradient of 3x3 separable convolution operation
at last intermediate node (a) before and (b) after applying node normalization.

Node normalization additionally addresses the problem of suppression by zero

operation. The zero operation was initially introduced to indicate the lack of con-

nection between two nodes [40]. Against the initial expectation, the zero operation

is in fact performing the role of scaling output feature maps in DARTS. As shown

in Figure 3.3(a), without node normalization, the average βzero of incoming edges

grows large to make the variances of each intermediate node similar. The large value

of βzero in turn suppresses β of other operations, which we call suppression by zero.

The unreliability of β exacerbated by this phenomenon. It can be clearly observed

from Figure 3.3(b) that applying node normalization effectively prevents βzero from

exploding. Under the architecture selection rule based on the magnitude of β, we

believe that node normalization is crucial for DARTS-based algorithms to function

properly.

3.4.2 Remedying Gradient Imbalance

While node normalization is effective at making β reliable, from the perspective of

super-net training, it has a minor side-effect: the gradient imbalance problem. In Fig-

ure 3.5(a) and (b), we visualize the gradients with respect to the weights of the 3x3

22

separable convolution operation before and after applying node normalization to em-

pirically support the occurrence of the gradient imbalance problem. In Figure 3.5(a),

the amount of gradient against weight of each edges are similar scale in early epochs,

while not in Figure 3.5(b). If a different amount of gradient signal is delivered to

each edge, operations in the edge with large gradient will likely converge faster than

others. Therefore, the scale of gradient should be similar in the early stage of search

for fair competition among different edges. The reason of the gradient imbalanced

problem is that node normalization change the scale of node output feature maps.

Node normalization scales the output feature maps using their sigma as in Eq.(3.1),

and scaling the feature maps also scales the gradient with respect to the corresponding

feature maps. For instance, as in Figure 3.2, when σ of the unnormalized feature map

is 1.6, the gradient is divided by 1.6 and becomes smaller; on the contrary, when σ

is 0.6, the gradient becomes larger. This results in the gradient becoming unbalanced

across incoming edges of a single intermediate node.

We deal with the gradient imbalance problem by applying the operation-wise

adaptive learning rate. This adaptive learning rate scheme is realized by Layer-wise

Adaptive Rate Control (LARC) [76]. Through LARC, the local learning rate for each

operation is computed by multiplying the global learning rate by ||w||/||g||, elim-

inating the above issue entirely. Therefore, LARC resolves the gradient imbalance

problem caused by node normalization, and applying node normalization and LARC

together is important for improving the reliability of β.

3.4.3
√

β-Continuous Relaxation

Aside from improving the reliability of β, we propose an additional method to im-

prove the search performance of DARTS:
√
β-continuous relaxation. Figure 3.6 shows

the change in σ(ō(x))/σ(x), where σ2(ō(x)) and σ2(x) denote the variance of the

23

DARTS DARTS-L2 VS-DARTS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50
Epoch

σ(
o(

x)
) /

 σ
(x

)
σ(

o(
x)

) /
 σ

(x
)

σ(
o(

x)
) /

 σ
(x

)

Figure 3.6: The ratio of variance of the output of the mixed operation to that of the
input of the mixed operation in a randomly selected three edges.

24

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

C
ov

ar
ia

nc
e

of
 o

pe
ra

tio
n

pa
irs

Epoch Epoch

Skip-AvgPool AvgPool-MaxPool Skip-MaxPool

Figure 3.7: Covariances between each pair of operations in the search process using
DARTS with node normalization.

output and input of the mixed operation respectively, as the search process proceeds.

We observe that the ratio starts with 0.4 and decreases monotonically in DARTS.

Through this observation, we want to answer the following questions: 1) why the

scale of the output feature map is smaller than that of the input and 2) why the ratio

of the output to the input varies in the mixed operation with the conventional DARTS

continuous relaxation.

To address the first question, let us denote the variance of a feature map generated

by the mixed operation as σ2(ō(x)) which is expressed as:

σ2(ō(x)) =
∑
o∈O

β2
oσ

2(o(x)) +
∑

i

∑
j ̸=i

βoiβojCov(oi(x), oj(x)), (3.2)

where Cov denotes the covariance between the feature maps generated by two differ-

ent operations within the mixed operation. We assume that every output feature map

of the operations is normalized. The ratio of the variance of the output to that of the

input of the mixed operation is 1 if and only if all of the covariances are equal to 1.

We empirically show that this condition is never satisfied by plotting the covariances

25

between each pair of operations in DARTS with node normalization in Figure 3.7.

The covariances between the unparametrized operations stay above 0.7 throughout

the search process, because the feature maps of unparametrized operations are highly

correlated. On the contrary, covariances between all operations and parametrized op-

erations remain close to zero as a result of the negligible correlation between them.

This observation provides an answer to the first question.

Based on Figure 3.7, we also find that the covariances between unparametrized

operations become stationary approximately after the first 10 epochs. Once the co-

variances between unparametrized operations become stabilized, the covariance term

in Eq.(3.2) can be treated as a constant C. Therefore, with the proposed node nor-

malization, σ2(ō(x)) can now be approximated as:

σ2(ō(x)) ≈
∑
o∈O

β2
oσ

2(o(x)) + C ≈
∑
o∈O

β2
o + C. (3.3)

During the search process, σ2(ō(x)) is bound to change because values of β no longer

follow the uniform distribution and start to vary. Consequently, in the mixed operation

with node normalization, although the variance of the input feature map σ2(x) is

equal to 1 because of node normalization, the variance of the output feature map

σ2(ō(x)) changes during the search process. This observation explains why the ratio

of the output to the input varies in the mixed operation, providing an answer to the

second question.

Batch normalization is a commonly adopted technique to make the ratio between

the input and the output stable, and it also keeps the input and the output at a similar

level. However, directly applying batch normalization causes the unreliability of β

because of re-scaling. Before Node Normalization is adapted to j-th node xj , the

26

feature map of node is as follows:

xj =
∑
i<j

ō(i,j)(x̂i) =
∑
i<j

∑
o∈O

β(i,j)
o o(x̂i). (3.4)

Simply introducing Batch Normalization to the above expression yields:

xj =
∑
i<j

BN(ō(i,j)(x̂i)) =
∑
i<j

ō(i,j)(x̂i)− µō(i,j)(x̂i)
σō(i,j)(x̂i)

=
∑
i<j

∑
o∈O

β
(i,j)
o o(x̂i)
σō(i,j)(x̂i)

, (3.5)

where BN means Batch Normalization and µō(i,j)(xi) is negligible because all op-

erations are normalized. According to Eq. (3.5), introducing batch normalization to

mixed operation rescales βo(x). Therefore, comparing the values of beta once again

leads to the lack of reliability of β problem because the variances of edges are almost

always different.

To aid training of the super-net by mimicking the effect of batch normalization,

we instead propose
√
β-continuous relaxation that substitutes β in the continuous re-

laxation with
√
β. Let us denote the mixed operation with

√
β-continuous relaxation

as õ(x). Then, Eq.(3.3) is modified as:

σ2(õ(x)) ≈
∑
o∈O

√
βo

2
σ2(o(x)) + C ≈

∑
o∈O

√
βo

2 + C =
∑
o∈O

βo + C = 1 + C.

(3.6)

Eq.(3.6) indicates that σ2(õ(x)) is maintained as a constant 1+C, while σ2(x) is 1. If

C is kept small, then
√
β-continuous relaxation can obtain the effect of batch normal-

ization while avoiding another cause of the unreliability of β problem. This property

is empirically supported by Figure 3.6. As shown in Figure 3.6, the ratio of the vari-

ance of the output of the mixed operation to that of the input of the mixed operation

is close to 1 after 10 epochs when using node normalization and
√
β-Continuous Re-

27

laxation, which implies C in Eq.(3.6) remains relatively unchanged after the early

stages in the search process. In DARTS, this ratio monotonically decreases, and in

DARTS-L2, this ratio is visibly quite volatile; but in VS-DARTS, we observe that the

variances of the input and the output feature stay close to 1, making the optimization

landscape smoother.

3.5 Experimental Results

3.5.1 Settings

All of our experiments are conducted using a single NVIDIA Tesla V100 GPU. For

the search process, following Zela et al. [79], we use a larger weight decay factor

than default DARTS [40] to account for the significant performance drop caused by

the increase in the number of skip connections. The remaining hyperparameters of

the search process are kept the same as those of default DARTS [40]. The searched

architecture is retrained for final evaluation, which is the standard practice in NAS.

We follow the experimental protocols of default DARTS [40] for the hyperparameters

of the retrain process.

Settings for Search (CIFAR-10): Our search algorithm is evaluated under the

cell-based micro search space [40], where the cell consists of two input nodes from

two previous cells and four intermediate nodes, and its output is a concatenation of the

intermediate nodes. For a fair comparison, following usual settings of DARTS [40],

the super-net consists of eight cells, i.e., six normal cells and two reduction cells,

and its first stem layer is based on 3x3 convolutional layer with 16 initial channels.

The search process is executed for 50 epochs. We use 64 as a batch size. Weights of

operations in the super-net are optimized by momentum SGD, with a momentum of

0.9, an initial learning rate of 0.1, and a L2 regularization (weight decay factor) of 5E-

28

3, where the learning rate is annealed down to zero according to a cosine schedule.

Following Zela et al. [79], we use a larger weight decay factor than default DARTS

to account for the serious performance drop due to the increase in the number of skip

connections. Architecture parameters α are optimized by the Adam [29]. We use a

fixed learning rate of 0.0003, a momentum of (0.5, 0.999), and a L2 regularization

factor of 1E-3.

Settings for Retraining (CIFAR-10): For the evaluation of the searched archi-

tectures, we follow DARTS settings [40] to train the final architectures on CIFAR-10,

split the dataset 50,000 and 10,000 for train and test set, respectively. The network

with 36 initial channels consists of 20 cells, i.e., 18 normal cells and two reduction

cells; each type of the cells share the cell architectures obtained in the search process.

In the evaluation, the network including an auxiliary loss is trained for 600 epochs.

We used 96 as a mini-batch size. The momentum SGD optimizer is used, with an

initial learning rate of 0.025 following cosine scheduled annealing, a momentum of

0.9, a L2 regularization factor of 3E-4, and a norm of gradient clipping at 5. With

aforementioned data augmentation techniques, cutout[17] is additionally used, and

drop-path with a rate of 0.2 is used for regularization.

Settings for Retraining (ImageNet): We evaluate two architectures on Ima-

geNet, where 1.28M training images and 5K test images are included: the best archi-

tecture searched from CIFAR-10 and the architecture directly searched on ImageNet

using proxy dataset proposed by Na et al. [47]. We follow PC-DARTS [72] settings,

while using four V100 GPUs for ImageNet training with batch size of 1536. The net-

work consists of 14 cells: 12 normal cells and two reduction cells. Before stacking

the cells, the network with 48 initial channels is equipped with stem layers which

are composed of three 3x3 convolution layers of stride 2 to reduce 224×224 input

images to 28×28. In the training process, the network is trained from scratch for 250

29

Table 3.1: Comparison of architectures searched by various NAS algorithms on
CIFAR-10. Cost refers the search cost with GPU days.

Method Params Test Err. Cost
(M) (%)

NASNet-A[88] 3.3 2.65 2000
ENAS[53] 4.6 2.89 0.5
AmoebaNet-B[55] 2.8 2.55 3150
PNAS[39] 4.6 3.41 225

DARTS1st[40] 3.3 3.00 1.5
DARTS2nd[40] 3.3 2.76 4.0
SNAS[70] 2.8 2.85± 0.30 1.5
GDAS[18] 3.4 2.93 0.2
P-DARTS[9] 3.4 2.50 0.2
PC-DARTS[72] 3.6 2.57 0.1
R-DARTS[79] - 2.95± 0.21 1.6
FairDARTS[13] 3.3± 0.5 2.54± 0.05 0.4
DARTS-[14] 3.5 2.59± 0.08 0.4
PR-DARTS[86] 3.4 2.32 0.17
DARTS+PT[68] 3.0 2.61± 0.08 0.8
DrNAS[11] 4.1 2.46± 0.03 0.6

VS-DARTS (avg) 3.4± 0.3 2.50± 0.05 0.4
VS-DARTS (best) 3.38 2.43 0.4

epochs, and the warm-up process is applied in the first 5 epochs. The momentum

SGD optimizer is used, with an initial learning rate of 0.5 which is decayed down

to zero linearly, a momentum of 0.9, a L2 regularization factor of 3E-5, and a norm

gradient clipping at 5. Label smoothing with a rate of 0.1 and an auxiliary loss are

used to enhance the training.

3.5.2 Results in DARTS Search Space

CIFAR-10

In Table 3.1, we compare the search performance of VS-DARTS on the CIFAR-10

dataset against that of various NAS Algorithms.

30

To validate the stability of the search performance, we repeat the search and re-

train processes three times with different seeds; hence, we report the average per-

formance of our searched architectures with its standard deviation. As shown in

Table 3.1, the performance of VS-DARTS architectures is comparable to the state-

of-the-art performance. Figure 3.8 shows the best derived architecture searched by

VS-DARTS on DARTS search space. and The other architectures are visualized in

Figure 3.9.

c_{j-2}

0

skip_connect
3

max_pool_3x3

c_{j-1}

sep_conv_3x3

1
sep_conv_3x3

2sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{j}

sep_conv_3x3 c_{j-2}

0
max_pool_3x3 2

max_pool_3x3
3

sep_conv_5x5

c_{j-1} max_pool_3x3 1

dil_conv_3x3

dil_conv_5x5

dil_conv_5x5

dil_conv_5x5

c_{j}

Figure 3.8: Normal(left) and reduction(right) cells derived by VS-DARTS on CIFAR-
10 and DARTS search space. Validation results are shown in Table 4.1(best) and
Table 4.2.

c_{j-2}

0

skip_connect

1

skip_connect

2

skip_connect

c_{j-1}

sep_conv_5x5

sep_conv_3x3

sep_conv_3x3

3
sep_conv_3x3

c_{j}

sep_conv_5x5

c_{j-2}

0

max_pool_3x3

1

max_pool_3x3

2

max_pool_3x3

3

max_pool_3x3

c_{j-1}

dil_conv_3x3

sep_conv_3x3

dil_conv_5x5

skip_connect

c_{j}

c_{j-2} 0
sep_conv_3x3

1
skip_connect

2skip_connect

3
skip_connect

c_{j-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

skip_connect

c_{j}

c_{j-2}

0

max_pool_3x3 1

max_pool_3x3

2
max_pool_3x3

c_{j-1}
dil_conv_3x3

max_pool_3x3
c_{j}

dil_conv_5x5

3
dil_conv_5x5

sep_conv_5x5

Figure 3.9: Two additional normal(left) and reduction(right) cells derived by VS-
DARTS on CIFAR-10 and DARTS search space. These architectures are used for
VS-DARTS results(avg) in Table 4.1.

31

Table 3.2: Performance comparison of architectures on ImageNet (mobile setting).

Method Search Params FLOPs Test Err. (%)
space (M) (M) Top1 Top5

MobileNet[28] - 4.2 569 29.4 10.5
ShuffleNet2×(v2)[84] - ∼5 524 25.1 -

NASNet-A[88] cell 5.3 564 26.0 8.4
PNAS[39] cell 5.1 588 25.8 8.1

DARTS2nd[40] cell 4.7 574 26.7 8.7
SNAS (mild)[70] cell 4.3 522 27.3 9.2
PC-DARTS (CIFAR-10)[72] cell 5.3 586 25.1 7.8
GDAS (CIFAR-10)[18] cell 5.3 581 26.0 8.5
P-DARTS (CIFAR-10)[9] cell 4.9 557 24.4 7.4
P-DARTS (CIFAR-100)[9] cell 5.1 577 24.7 7.5
FairDARTS-B (CIFAR-10)[13] cell 4.8 541 24.9 7.5
PR-DARTS (CIFAR-10)[86] cell 5.0 543 24.1 7.3
DARTS+PT (CIFAR-10)[68] cell 4.6 - 25.5 8.0

Once-For-All†[5] - 4.4 230 24.0 -
MnasNet-92†[62] stage-wise 4.4 388 25.2 -
ProxylessNAS†[4] layer-wise 7.1 581 24.9 7.5
BigNAS-L†[77] layer-wise 6.4 586 20.5 -
EfficientNet-B1[61] - 7.8 734 20.8 -

VS-DARTS (CIFAR-10) cell 5.3 589 24.8 7.5
VS-DARTS +Proxy†[47] cell 5.7 640 24.7 7.7
VS-DARTS +Proxy(HW-aware)† cell 5.3 587 24.6 7.5

† This mark means that the architecture is directly derived on ImageNet dataset. Otherwise, the
architecture is derived on CIFAR-10 or CIFAR-100 and transferred to ImageNet.

32

Table 3.3: Performance comparison (test error (%)) across three datasets and four
search spaces, which are constrained from the cell-based search space [79]. †: evalu-
ated ourselves while settings are the same as cited paper.

Benchmark DARTS R-DARTS(L2) DARTS-ES DARTS-ADA PR-DARTS† [86] DARTS+PT [68] VS-DARTS (ours)

C10

S1 3.84 2.78 3.01 3.10 3.26 3.50 2.58
S2 4.85 3.31 3.26 3.35 3.63 2.79 2.57
S3 3.34 2.51 2.74 2.59 3.99 2.49 2.52
S4 7.20 3.56 3.71 4.84 2.59 2.64 2.49

C100

S1 29.46 24.25 28.37 24.03 32.74 24.48 23.87
S2 26.05 22.24 23.25 23.52 32.52 23.16 21.49
S3 28.90 23.99 23.73 23.37 26.96 22.03 22.03
S4 28.85 21.94 21.26 23.20 20.80 20.80 20.69

SVHN

S1 4.58 4.79 2.72 2.53 3.33 2.62 2.37
S2 3.53 2.51 2.60 2.54 4.48 2.53 2.37
S3 3.41 2.48 2.50 2.50 2.75 2.42 2.37
S4 3.05 2.50 2.51 2.46 2.95 2.42 2.32

ImageNet

To evaluate the performance of the VS-DARTS architecture on ImageNet, we transfer

the architecture that yields the lowest test error on CIFAR-10 to ImageNet. As shown

in Table 3.2, the performance of the searched architecture achieves is comparable to

that of the state-of-the-art architecture. We highlight that VS-DARTS achieves 1.9%p

improvement from DARTS, the baseline for our method, and 0.7%p improvement

from DARTS+PT [68]. When directly searching an architecture on ImageNet using

proxy dataset [47], VS-DARTS yields a test error of 24.7%, which is comparable to

the recently searched architectures.

3.5.3 Results in RobustDARTS Search Space

We further evaluate the search performance of VS-DARTS on three dataset, namely

SVHN, CIFAR-10 and -100, and four search spaces denoted by S1∼S4 [79]. These

search spaces are designed to evaluate the robustness of the search algorithm against

changes in candidate operations. We followed the experimental protocols of Zela et

al. [79]. The evaluation process for the CIFAR-10 dataset is identical to the one de-

scribed in Section 3.5.2. For CIFAR-100 and SVHN datasets, we use the architecture

33

Table 3.4: Ablation studies on VS-DARTS.

NodeNorm LARC
√
β Test Acc.

✗ ✗ ✗ 97.09%
✓ ✗ ✗ 97.29%
✓ ✓ ✗ 97.40%
✓ ✓ ✓ 97.57%

that consists of eight cells, i.e., six normal cells and two reudction cells.

The search results are reported in Table 3.3. VS-DARTS clearly outperforms re-

cent DARTS variants, indicating that in VS-DARTS, the selection rule based on the

magnitude of β can function properly to derive the optimal architecture. In particular,

on S4, which includes the meaningless noise operation as a candidate operation, the

cells searched by VS-DARTS do not contain any noise operation at all, while those

of other NAS algorithms [14, 79] do contain some amount of noise operations.

3.5.4 Ablation Study

In this section, we provide a comprehensive ablation study of VS-DARTS to demon-

strate the contribution of each added component to the increase in search perfor-

mance. We also provide experimental results about orthogonality of our VS-DARTS.

The experimental settings are as same as Section 3.5.2. In Table 3.4, we report the

search performance in test accuracy after applying node normalization, LARC, and
√
β. Just by adding node normalization, the test accuracy is improved by 0.2%p

(97.09%→ 97.29%). However, because the problem of imbalanced gradient remains

unaddressed, the search performance only with adding node normalization has room

for improvement. Applying LARC and introducing
√
β each brings upon 0.31%p

(97.09% → 97.40%) and 0.48%p (97.09% → 97.57%) improvement in test accu-

racy. Our ablation results support that all of the applied techniques are crucial for

substantially improving the search performance.

34

Table 3.5: Performance on DrNAS [11] w/ and w/o our VS-DARTS on CIFAR-10.

Method Test Acc.

DrNAS 97.54%
VS-DrNAS 97.58%

Also, We show that VS-DARTS can be adapted to combine with prior DARTS

variants. Table 3.5 shows the performance of DrNAS [11] with and without our VS-

DARTS. Both experiments are executed on CIFAR-10 dataset with DARTS search

space. As shown in Table 3.5, DrNAS with our VS-DARTS surpasses original Dr-

NAS. According to the result, VS-DARTS can be adapted to prior DARTS variants

and help to finding the architecture which is more closer to optimal.

3.6 Summary

In this chapter, we revealed that unnormalized node in a continuously-relaxed cell

leads DARTS to yield a sub-optimal neural architecture because the architecture pa-

rameters do not accurately represent operation strengths. Node normalization was

proposed as a simple yet effective solution to address this issue. After applying node

normalization, we found that the gradient imbalance problem becomes prominent,

and thus, to remedy this problem, the local adaptive learning rate strategy was uti-

lized. Lastly, to further stabilize training of the super-net, we newly introduced
√
β-

continuous relaxation, which makes the scales of the input and the output feature

maps to be similar. We provided through theoretical analysis and empirical results

to support the effectiveness of each component. By combining all the components,

VS-DARTS successfully searched for a competitive architecture on CIFAR-10. This

work alerts that when constructing a search space, the influence of normalization or

35

lack there of must be carefully considered.

36

Chapter 4

Platform-aware Neural

Architecture Search with Graph

Variational Auto Encoder

4.1 Introduction

Hardware resources and dataset sizes are getting larger. In the last ten years, ad-

vancements in hardware and exponential data growth have facilitated remarkable

improvements in deep neural networks (DNNs) [2]. Thus, neural model compres-

sion and its acceleration have become essential issues in on-device deployment. Be-

cause large DNNs have exhibited excellent performances in various research fields,

deploying neural models to edge devices has become issue. However, designing a

compact model is vital to reduce the suffering of model deployment, enabling the

application of high-performance deep neural models in resource-constraint environ-

ments. Still, this trade-off makes it challenging to find a Pareto frontier between accu-

racy and computational cost. Owing to these difficulties, researchers are investigating

37

hardware-aware neural architecture search (hardware-aware NAS), which automati-

cally finds models with small FLOPs without compromising performance [4]. It is

crucial to investigate the relationship between models’ architectural properties and

performance metrics to find a model suitable for each hardware.

Neural architecture search (NAS) continues to attract significant attention from

the machine learning society. The representation of architectures has become essen-

tial for enhancing NAS performance. Designing an appropriate neural architecture

requires automation of the neural architecture search process. To examine how neural

architectural properties and their performances are interconnected, NAS researchers

are treating neural architecture as a graph and utilizing graph neural networks-based

(GNNs-based) variational auto-encoders (VAEs) that represent graphs in continuous

latent space to analyze the properties of the graph [44, 6, 82, 42].

However, we observe that the conventional graph generative NAS methods do

not work appropriately on cell-based search spaces . Through theoretical analysis,

we found that in conventional methods, node generation is performed using only

the sub-graph information instead of the full graph information when encoding and

decoding a graph with a branch structure. This issue is caused by the short expressive

power of GNNs.

In this chapter, we propose a method that uses the entire graph information in-

stead, thereby increasing the explosive power of graphs suitable for directed acyclic

graphs (DAGs). In addition, we propose a predictor-based multi-objective NAS method

that can derive several models on the Pareto frontier between inference latency and

model accuracy on various hardware platforms instead of creating a single model

such as a conventional predictor-based NAS. Our experimental results show that

node index embedding improves the reconstruction accuracy of the D-VAE-EMB [6]

by 86.99% (13.01% to 100%) for NAS-Bench-201 [19]. Moreover, we show that a

38

multi-objective search using our proposed method can output results very close to

Pareto-optimal on various hardware platforms, thereby outperforming conventional

GCN- and graph VAE-based methods. Summarily:

• We reveal that conventional DAG VAE usually fails to reconstruct on a cell-

based search space, a problem caused by insufficient graph expressive power

of DAG VAE.

• We propose a novel decode strategy for DAG VAE, a simple yet effective strat-

egy to increase the performance of the graph VAE on a cell-based search space

because our proposed method can remedy the shortage of graph expressive

power in DAG VAE.

• We propose a novel predictor-based multi-objective NAS with a graph VAE,

which can determine a set of architectures close to Pareto-optimal in various

hardware environments.

4.2 Proposed Methods on Graph Variational Auto-Encoder

4.2.1 Fail Case Study

We observed that the existing asynchronous MP-based graph VAE methods which

were originally evaluated on ENAS [53], showed limited reconstruction performances

on cell-based NAS Benchmarks [74, 19]. We found out that this performance discrep-

ancy occurred in the decoding stage. In decoding step 1, the current graph state hg

is usually same as the hidden representation of the previous node hk [82, 6]. This

type of method may cause a reconstruction failure on graphs with tree or loops. The

graph described in Fig. 4.2(b) is one example of the reconstruction failure case. In this

case, vk+1 has two predecessor nodes vk1 and vk2 with the identical node property

39

C
an

di
da

te
la

te
nt

 v
ec

to
rs

(u
nl

ab
el

ed
)

Ac
cu

ra
cy

pr
ed

ic
to

r
(fr

ee
ze

d)

La
te

nc
y

pr
ed

ic
to

r
(fr

ee
ze

d)

(c
) S

te
p

2-
2:

 P
er

fo
rm

an
ce

 p
re

di
ct

io
n

 a

nd
 s

el
ec

t c
an

di
da

te
s

La
be

le
d

la
te

nt
 v

ec
to

rs

Ac
cu

ra
cy

pr
ed

ic
to

r

La
te

nc
y

pr
ed

ic
to

r

+
La

be
ls

(a
cc

ur
ac

y,
la

te
nc

y)

En
co

de
r

De
co

de
r

La
te

nt
Sp

ac
e

In
pu

t
D

AG
R

ec
on

st
ru

ct
ed

D
AG

(a
) S

te
p1

: T
ra

in
in

g
VA

E
(b

) S
te

p
2-

1:
 T

ra
in

 p
re

di
ct

or
s

D
ec

od
er

(fr
ee

ze
d

Ev
al

ua
tio

n
an

d
la

be
lin

g

Ac
c:

 7
3%

La
t:

8m
s

(d
) S

te
p

2-
3:

 E
va

lu
at

io
n

an
d

La
be

lin
g

R
et

ur
n

se
t o

f
se

ar
ch

ed

ar
ch

ite
ct

ur
es

Ac
c:

 7
4%

La
t:

7m
s

 S
el

ec
te

d
la

te
nt

 v
ec

to
rs

(u
nl

ab
el

ed
)

+ + … +

Se
le

ct
ed

 b
y

Se
le

ct
ed

 b
y

Se
le

ct
ed

 b
y

Sc
or

e
fu

nc
tio

n:
(

−
×

)

Fi
gu

re
4.

1:
O

ve
rv

ie
w

of
th

e
pr

ed
ic

to
r-

ba
se

d
m

ul
ti-

ob
je

ct
iv

e
N

A
S

w
ith

gr
ap

h
VA

E
.

40

and sharing the predecessor vk−1. Then, decoder cannot distinguish Fig. 4.2(b) from

Fig. 4.2(c), which eventually leads to the reconstruction failure of the decoder. In

other words, any pair of two nodes with the same node type and sharing all predeces-

sors will have the same hidden representations is not distinguishable in the decoding

step.

This problem occurrence is rarely expected in ENAS dataset, which has sequen-

tial graph data. Because any two node cannot have the same node type and prede-

cessors in this type of graphs by design. It means that all nodes of a graph have

unique topological order in ENAS dataset. Accordingly, the MP strategy in the de-

coder should be more expressive to overcome the reconstruction failure.

4.2.2 Proposed Update Function

The update function U in Eq. 2.7 should be modified to differentiate between the hid-

den representations of any two nodes by adding additional information. Therefore,

we propose a simple yet effective solution: a node index as an additional input to

the update function because node indices are always uniquely defined by nodes re-

gardless of the given graph structure. The update function in the encoder should not

be modified. If a node index is also given to the update function in the encoder, then

the two isomorphic DAGs would have different latent representations with respect

to arbitrary node orderings. For this reason, we modified the update function in the

decoder only to receive the node index r in the graph described in Eq. 4.1.

hr = U(O(xr), hin
r , r), (4.1)

Previous studies have also used a node index for the MP. More specifically, they

concatenated the node index with the hidden states of the nodes [82, 6]. However,

41

𝒗𝒌𝒗𝒌−𝟏 𝒗𝒌+𝟏

𝒗𝒌−𝟏

𝒗𝒌𝟏

𝒗𝒌𝟐

𝒗𝒌+𝟏

𝒗𝒌𝒗𝒌−𝟏 𝒗𝒌+𝟏

(a)

(b)

(c)

Figure 4.2: The simplified architecture topologies and an example of a fail case.
We describe two types of simplified NAS architecture types. Note that a node repre-
sent an operation, such as convolution or max-pooling. (a) ENAS architecture type.
In this type of architecture, nodes are sequentially connected along a simple path,
without a branch or a cycle. (b) NAS-Bench-101 and 201 architecture type. (c) An
example of reconstruction error from type (b) architecture. Contrary to (a), message
propagation paths in (b) are more complicated and have an acyclic loop or branches.
We examined whether the architectures of the (b) type are vulnerable to graph iso-
morphism tests. Both messages from vk1 and vk2 may not be distinguished because
both nodes have the same type and share the same neighbor. We represent these pic-
tures based on the early paper [52].

42

their results showed slight improvement. In this study, we assumed that the node

index information in the encoder of the D-VAE and D-VAE-EMB is not useful for

graph reconstruction tasks. More specifically, our method uses a node index only in

the decoding step, and any two isomorphic DAGs can always be mapped to the same

latent space.

4.2.3 Observer Node

As mentioned in Section 2.2.4, in previous DAG VAE methods, the graph state hg is

usually the same as the hidden state of the last generated node, where the D-VAE typi-

cally generates nodes with the hidden state of an unconnected node. A node generated

from the hidden state of another node without dependencies may cause inefficiency.

However, our decoding strategy uses an observer node, which can always reflect all

graph properties.

4.3 Proposed Predictor-based Multi-objective NAS

In this section, we describe the detailed process of our multi-objective NAS with

graph VAE. Overview of the search process is presented at Fig. 4.1.

4.3.1 Training Graph VAE (Step 1)

In Step 1, D-VAE-TMB trains the graph reconstruction tasks. We train both auto-

encoder and predictors simultaneously, because we wanted to latent space of auto-

encoder be trained based on the accuracy and latency of predictors, as well as recon-

struction of decoders. In other words, we made latent spaces be trained for heteroge-

neous tasks. Our improved performances are showed in Section 4.4.2.

43

(a-c) D-VAE decoding strategy

Ob. Ob. Ob.

(d-f) Our proposed decoding strategy

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Decoding strategy comparison between D-VAE and our proposed method.
Yellow node and dashed edges mean a node and edges currently being generated.
Graph state hg is obtained from the hidden state of the gray-colored node. (a-c) De-
coding strategy of D-VAE [82]. (d-f) Our proposed decoding strategy.

44

Algorithm 1 Predictor-based Multi-objective NAS
Input: X(graph or latent vector), maximum iteration I , sampling number per itera-
tion K, initial sample number Ninit. Output: Searched architectures

1: Xtrain← RandomSample(X , Ninit)
2: Eval(Xtrain) % Measure the performances (acc. and lat.)
3: Xcandidate← X \Xtrain

4: i← 0
5: while i ≤ I do
6: Initialize and Train Predacc and Predlat with Xtrain

7: Scoresacc← Predacc(Xcandidate) / σ(ytrain)
8: Scoreslat← Predlat(Xcandidate) / σ(ltrain)
9: Xpick = {}

10: k = K/n
11: for β in [β1, ..., βn]
12: ScoreSum←−Scoresacc + β * Scoreslat

13: Sort x1, ...,xn by ScoreSum
14: Xnew ← Top-k x1, ...,xk from Xcandidate

15: Xpick ← Xpick ∪Xnew

16: Eval(Xpick)
17: Xtrain← Xtrain ∪Xpick

18: Xcandidate← Xcandidate \Xpick

19: i← i+ 1
20: end while
21: Xsearched← Xtrain

22: Return Xsearched

45

4.3.2 Search Process (Step 2)

For hardware-aware NAS using VAE, we conducted a predictor-based multi-objective

search as Algorithm 1. The search process is largely composed of three steps, and de-

tails are as follows.

Step 2-1: Training the accuracy and latency predictor (line 1-6)

After training graph VAE, initial train setXtrain is composed with randomly selected

graphs from X . The other graphs are set to the Xcandidate. Then, we encode with the

latent space using the frozen encoder and put it in the latent vector training setXtrain.

Then, each samples of the Xtrain is evaluated to label both accuracy and latency.

We trained both predictors with the same input Ztrain and two different labels of

accuracies and latencies for each predictor, respectively. Basically, the predictors are

regressors which take latent vectors as input. Inspired by the universal approximation

theorem[27], we build a multi-layer perceptron (MLP) model which have only one

hidden layer and a non-linearity for each predictor.

Step 2-2: Selection of the architectures for evaluation. (line 7-13)

Inspired by multi-objective Bayesian optimization techniques [60, 3], we do not aim

to search just a single architecture, but to find a Pareto-frontier in a given search space

and hardware environment. To do so, we calculate ScoreSum by adding the two

scores with list of β. (We use [0.01, 0.02, ..., 0.25] as the list of β.) The search cost of

searching Pareto-frontier is similar to the case of finding a single architecture at once.

This soft constraint method is more powerful than hard constraint when the number

of Xtrain is not sufficient at the early stage of search process, because predictors are

not well trained yet.

46

Step 2-3: Evaluate the picked architectures and add to the train set (line 14-18)

After selection of the next Xpick, we evaluate the architectures to get real accuracy

and latency, e.g. training each of architectures from scratch or request metrics on

benchmark dataset. After evaluation, we label the accuracy and the latency on Xpick,

then put them on Xtrain for next iteration. We initialize parameter of both accuracy

and latency predictor at the start of iteration.

4.3.3 Return the set of the searched architectures (line 21-22)

After the iteration terminated in line 5-20, a total of I × k architectures and their per-

formances are obtained. If we draw a Pareto-frontier for Xsearched, we can obtain an

architecture that satisfies several latency constraints as in the result of Section 4.4.4.

4.4 Experimental Results

4.4.1 Settings

To evaluate our proposed methods, we adapt proposed methods to D-VAE [82] with

operation embeddings [6] which shows state-of-the-art VAE performance on ENAS [53]

then compare with D-VAE [82], D-VAE-EMB [6], arch2vec [73] and SVGe [42].

ENAS macro search space [53] is an entire network design space. In this space,

8 nodes are sequentially connected. In other words, there is always directed edge be-

tween two adjacent indexed nodes vk−1 and vk. Also, the existence of skip connec-

tion between two non-adjacent indexed nodes is a component of ENAS macro search

space. Each node can be 6 types of operation except input and output nodes. Follow-

ing previous works[82, 6], 19,020 graphs are sampled from ENAS search space.

NAS-Bench-101 [74] is the first published benchmark for NAS research to alle-

viate burden of large computation. This search space is a kind of cell-based search

47

space which design only small module called cell and connect them together to form

a network. A cell consists of 7 or less nodes and 9 edges. The number of candidate

operations is three: {3×3max−pool, 1×1 convolution, 3×3 convolution}. Ac-

cordingly, NAS-Bench-101 consists of 423k unique architectures and their CIFAR-10

accuracy.

NAS-Bench-201 [19] is a kind of cell-based search space like NAS-Bench-101.

Dong et al.[19] denoted operations as edge properties and intermediate featuremap

as a node. For compatibility, we converted edges to nodes and nodes to edges. A cell

consists of 6 nodes and fixed connections. Candidate operations are {zero, skip −

connect, 1 × 1 convolution, 3 × 3 convolution., 3 × 3 avgpool}. NAS-Bench-

201 consists of 15,625 architectures and their accuracy for three image classification

dataset, namely CIFAR-10, CIFAR-100 [32], and tiny version of ImageNet (ImageNet-

16-120) [33].

4.4.2 VAE Performance Comparison

In this experiment, we compared the auto-encoder reconstruction performances of

the proposed method with those of others on three different NAS search spaces. For a

fair comparison, we used metrics following [82, 6]: (1) Accuracy to show proportion

of perfectly reconstructed DAGs on the test set. (2) Validity show the proportion

of valid DAGs, which generate graphs belonging to their entire search space (we

decoded ten randomly sampled 1,000 latent representations z to g followed by [82, 6].

In total, 10,000 graphs were generated. In other words, Ndecode was 10,000.), (3)

Uniqueness indicates to show the proportion of unique to valid DAGs. # of Unique

DAGs is the number of unique DAGs in the generated graphs, which can be derived

as V alidity/100× Uniqueness/100×Ndecode.

Our proposed node index embedding shows a powerful performance in the cell-

48

Table 4.1: Comparison of VAE performances on ENAS [52] and NAS-Bench-
201 [19].We evaluated three types of generation performances, accuracy, validity,
and uniqueness. Our model showed the best performances in accuracy and validity,
in all datasets. Compared to our baseline model D-VAE-EMB, our proposed method
with additional indices accomplished remarkable improvement in the graph recon-
struction task. The best results in each setting remarked as bold.

Dataset Method Accuracy Validity Uniqueness # Unique

ENAS

D-VAE [82] 99.96 100 37.26 3726
D-VAE-EMB [6] 99.99 100 39.15 3915
SVGe [42]‡ 99.63 100 39.03 3903
D-VAE+ours 100 100 26.82 2682

NB101

arch2vec† [73] 100 43.70 10.00 437
D-VAE [82]‡ 25.89 82.55 19.84 1638
D-VAE-EMB [6] 60.88 98.31 28.05 2756
SVGe [42]‡ 100 79.16 32.10 2541
D-VAE+ours 100 95.61 28.38 2713

NB201

arch2vec† [73] 100 95.93 7.33 703
D-VAE[82] 13.11 1.34 64.93 87
D-VAE-EMB [6] 13.01 1.18 61.86 73
SVGe [42]‡ 99.99 100 8.28 828
D-VAE+ours 100 100 11.28 1128
D-VAE+ours+pre-predictor 100 100 16.17 1617

† The inputs are 8x7 operation and 8x8 adjacency-edge matrix, the others’ inputs are directed acyclic
graphs (DAGs).
‡ We got the results from [42]. The other results are tested by ourselves with each of published code.

based search space including NAS-Bench-101 and NAS-Bench-201 as well as the

ENAS search space. The comparison results are presented in Table 4.1. In the NAS-

Bench-201 dataset, our proposed method showed impressive results in accuracy and

validity against the baseline model D-VAE-EMB [6]. For the ENAS dataset, the pro-

posed method shows the highest accuracy. The uniqueness drops slightly against the

baseline model D-VAE–EMB [6] but not significantly. In the case of the NAS-Bench-

101, only our algorithm shows high accuracy and validity. It can be inferred that

SVGe [42] performs well even though it is based on the D-VAE because the op-

eration smoothness of D-VAE is insufficient. However, its performance in D-VAE-

EMB [6], to which operation embedding is applied, is suboptimal. Therefore, op-

49

erational smoothness is not the root cause of the poor performance of D-VAE and

D-VAE-EMB in cell-based search spaces.

4.4.3 Pre-predictor

To analyze how the latent space changes according to the application of the predictor,

we visualized it using T-SNE. When a predictor is applied, there is an effect of map-

ping architectures with similar latency to a similar latent space. Since our purpose is

to perform NAS using an autoencoder, a pre-predictor is attached to the autoencoder

so that the performance of neural DAGs can be melted into the latent space.

As shown in Figure 4.4, there is tendency according to the latency in the latent

space compared to when the pre-predictor is not used.

4.4.4 Search Performance Comparison

Fig. 4.5 shows the multi-objective search results for LatBench [20], which is the la-

tency benchmark constructed on NAS-Bench-201 [19]. We present searched models

close to Pareto-optimal when the total number of searched architectures is 150, 350,

and 550. The performances of 200 architectures were randomly sampled and used

as the pre-predictors mentioned in Section 4.4.3). More specifically, we trained the

proposed VAE with 13862 unlabeled and 200 labeled architectures, while 1563 were

used for the test set. It can be seen that the Pareto-frontier of our D-VAE- TMB (w/.

predictor) is better than BRP-NAS [20] and close to the real Pareto-optimal except

for Pixel3. We used the GCN-based predictor proposed in BRP-NAS [34] for both

latency and accuracy prediction, unlike in previous studies, where we believe that the

binary search of BRP-NAS did not fit well with the multi-objective search.

Table 4.2 shows the search performance of BRP-NAS and our algorithm on the

three hardware platforms based on the latency constraint. For the desktop CPU and

50

GPU, 3, 5, 7ms, and for the embedded GPU, 14, 19, 25ms were set as the constraints,

respectively. In most cases, our proposed methods with pre-predictor shows better

performance than BRP-NAS. The performance of the proposed methods differs sig-

nificantly depending on whether the pre-predictor is used. The number of latency

examples used in the pre-predictor is not large at 200, and it also measures infer-

ence latency, considering that it does not take a long time to obtain. Compared to this

BRP-NAS, it can be said that it has a great strength.

4.5 Discussions

4.5.1 Node Index Order in DAG VAE

In contrast to previous reports, we found that the topological order of node indices

in the search space is critical to improving the reconstruction performance because

the hidden state of the last node is used as a graph state in our proposed method;

therefore, it is easier to generate nodes in the decoding step. We found that using

the observed node state can constantly improve the performance, regardless of the

node indexing strategy. Empirically, the depth-first-order strategy significantly out-

performs the breast-first-order search.

4.5.2 Model size reduction while keep the reconstructive performance

For a fair evaluation, we set a model complexity similar to that in other existing

works, such as D-VAE. Our proposed methods showed robust performance even

when the latent dimension was reduced to 128 from 501. Our model converged faster

than previous methods. In addition, it can reduce the sparsity of latent representation;

therefore, it will eventually help improve architecture search. An additional evalua-

tion of the relationship between model complexity and other datasets may need to be

51

conducted.

4.5.3 Convergence Acceleration

In addition, we compare the convergence speeds of the D-VAE and our proposed

method. As shown in Fig. 4.6, our proposed method has a much faster convergence

speed than D-VAE for the training loss and KL-divergence. Speculatively, our pro-

posed decoding strategy and observer node reduce the risk of generating an isomor-

phic graph and increase the learning rate. In D-VAE and its variants, the encoder

attempts to map the isomorphic graph to the same hidden space. In unsupervised and

semi-supervised learning, when graph g is an input, it is difficult to target all iso-

morphic graphs of graph g. The proposed method seems to make the learning speed

extremely fast by giving direction to any of the isomorphic graphs in the decoding

step.

4.6 Summary

In this chapter, we proposed platform-aware neural architecture optimization using

a variational graph auto-encoder with decoder which use node index. node index is

entered into the message-passing function to improve the primary VAE performance

in a non-sequential search space. Then, the continuous latent spaces of the candidate

neural architectures are well trained, and we attempt to search Pareto-optimal in each

hard-constrained latency.

52

Fi
gu

re
4.

4:
L

at
en

t
sp

ac
e

co
m

pa
ri

so
n

be
tw

ee
n

au
to

-e
nc

od
er

w
ith

an
d

w
ith

ou
t

pr
e-

pr
ed

ic
to

r.
L

ef
t:

D
-V

A
E

+o
ur

s
w

ith
ou

t
pr

e-
pr

ed
ic

to
r,

ri
gh

t:
D

-V
A

E
+o

ur
s

w
ith

pr
e-

pr
ed

ic
to

r.
T-

SN
E

[6
3]

is
us

ed
to

re
du

ce
di

m
en

si
on

an
d

vi
su

al
iz

e
th

e
la

te
nt

sp
ac

es
.

53

Table 4.2: Comparison of search results on NAS-Bench-201 [19] and LatBench [20].
All of the results is obtained after 350 architectures evaluation.

Hardware Const. Method Latency Accuracy

Desktop CPU

3ms
BRP-NAS[20] 1.4ms 63.89%
Ours(w/o pred.) 1.7ms 64.09%
Ours(w/. pred.) 2.7ms 67.55%

5ms
BRP-NAS[20] 4.1ms 70.79%
Ours(w/o pred.) 4.9ms 71.84%
Ours(w/. pred.) 4.6ms 72.02%

7ms
BRP-NAS[20] 6.4ms 72.98%
Ours(w/o pred.) 6.8ms 72.95%
Ours(w/. pred.) 6.1ms 73.09%

Desktop GPU

3ms
BRP-NAS[20] 1.8ms 64.81%
Ours(w/o pred.) 1.1ms 58.56%
Ours(w/. pred.) 2.5ms 67.55%

5ms
BRP-NAS[20] 4.6ms 72.02%
Ours(w/o pred.) 4.6ms 72.02%
Ours(w/. pred.) 4.6ms 72.02%

7ms
BRP-NAS[20] 6.4ms 72.98%
Ours(w/o pred.) 6.2ms 73.02%
Ours(w/. pred.) 6.1ms 73.09%

Embedded GPU

14ms
BRP-NAS[20] 13.3ms 70.24%
Ours(w/o pred.) 13.7ms 70.43%
Ours(w/. pred.) 13.4ms 70.69%

19ms
BRP-NAS[20] 17.9ms 71.72%
Ours(w/o pred.) 18.7ms 71.11%
Ours(w/. pred.) 18.2ms 71.56%

25ms
BRP-NAS[20] 24.7ms 72.64%
Ours(w/o pred.) 24.2ms 73.02%
Ours(w/. pred.) 23.6ms 73.09%

54

550 Arch350 Arch150 Arch

D
es

kt
op

C
PU

D
es

kt
op

G
PU

Em
be

dd
ed

G
PU

M
ob

ile
(P

ix
el

3)
R

as
pb

er
ry

Pi

 4

Fi
gu

re
4.

5:
T

he
N

A
S-

B
en

ch
-2

01
[1

9]
se

ar
ch

re
su

lts
of

fiv
e

di
ff

er
en

t
ha

rd
w

ar
e

en
vi

ro
nm

en
ts

on
ac

cu
ra

cy
vs

.
m

ea
su

re
d

la
te

nc
y

[2
0,

35
].

R
ed

st
ar

,o
ra

ng
e

st
ar

,a
nd

bl
ue

ci
rc

le
re

pr
es

en
ts

Pa
re

to
-o

pt
im

al
m

od
el

s
se

ar
ch

ed
w

ith
tr

ai
ne

d
D

-V
A

E
+o

ur
s

(w
/.

pr
e-

pr
ed

ic
to

r)
,D

-
VA

E
+o

ur
s

(w
/o

pr
e-

pr
ed

ic
to

r)
an

d
G

C
N

-b
as

ed
pr

ed
ic

to
rp

ro
po

se
d

by
[2

0]
,r

es
pe

ct
iv

el
y.

G
C

N
-b

as
ed

ac
cu

ra
cy

pr
ed

ic
to

ra
nd

G
C

N
-b

as
ed

la
te

nc
y

pr
ed

ic
to

rp
ro

po
se

d
by

B
R

P-
N

A
S

w
er

e
us

ed
.N

ot
e

th
at

th
e

ac
cu

ra
cy

pr
ed

ic
to

ri
s

no
tb

in
ar

y.
T

he
re

as
on

is
th

at
th

e
bi

na
ry

pr
ed

ic
to

r
of

B
R

P-
N

A
S

m
ay

no
tb

e
un

su
ita

bl
e

fo
rm

ul
ti-

ob
je

ct
iv

e
se

ar
ch

.T
he

al
go

ri
th

m
s

w
er

e
te

st
ed

on
th

e
se

ar
ch

m
et

ho
d

w
e

pr
op

os
ed

.G
re

en
lin

e
re

pr
es

en
t

gr
ou

nd
-t

ru
th

Pa
re

to
-f

ro
nt

ie
r.

D
es

kC
PU

:
D

es
kt

op
C

PU
In

te
l

co
re

-i
7

78
20

x,
D

es
kG

PU
:

D
es

kt
op

G
PU

N
V

ID
IA

G
T

X
10

80
ti,

E
m

bG
PU

:E
m

be
dd

ed
G

PU
Je

ts
on

na
no

,P
ix

el
3:

G
oo

gl
e

sm
ar

tp
ho

ne
Pi

xe
l3

,R
as

pi
4:

R
as

pb
er

ry
Pi

4.

55

0

5

10

15

20

0 50 100 150 200 250 300

Tr
ai

n
lo

ss

Epochs

D-VAE D-VAE+Ours(a)

0

2

4

6

8

0 50 100 150 200 250 300

ecnegrevi
D L

K

Epochs

D-VAE D-VAE+Ours(b)

Figure 4.6: (a) Train loss convergence and (b) KL-divergence convergence speed
comparison between D-VAE and D-VAE+our proposed method described in Sec-
tion 5.2.2 and 5.2.3. Both (a) and (b) were performed on ENAS macro search space.

56

Chapter 5

Conclusion

Low-latency neural model design has been more and more important issue to deploy-

ments. As large size deep neural model shows better performances in various research

field, it is hard to deploy neural model to edge devices. To use high performance deep

neural models in resource-constraint environments, design compact model and its ac-

celeration is absolutely necessary. In this regard, we have introduced two algorithm

side methods to design compact neural model in this dissertation, including neural ar-

chitecture search (NAS), and neural architecture optimization using graph variational

auto-encoder.

In Chapter 3, we revealed that unnormalized node in a continuously-relaxed cell

leads DARTS to yield a sub-optimal neural architecture because the architecture pa-

rameters do not accurately represent operation strengths. Node normalization was

proposed as a simple yet effective solution to address this issue. After applying node

normalization, we found that the gradient imbalance problem becomes prominent,

and thus, to remedy this problem, the local adaptive learning rate strategy was uti-

lized. Lastly, to further stabilize training of the super-net, we newly introduced
√
β-

continuous relaxation, which makes the scales of the input and the output feature

57

maps to be similar. We provided through theoretical analysis and empirical results

to support the effectiveness of each component. By combining all the components,

VS-DARTS successfully searched for a competitive architecture on CIFAR-10. Last

but not least, our VS-DARTS with soft constrained on MAC shows competitive per-

formance to cell-based NAS method on ImageNet mobile setting.

In Chapter 4, we proposed platform-aware neural architecture optimization using

a variational graph auto-encoder with decoder which use node index. node index is

entered into the message-passing function to improve the primary VAE performance

in a non-sequential search space. Then, the continuous latent spaces of the candidate

neural architectures are well trained, and we attempt to search Pareto-optimal in each

hard-constrained latency.

In this dissertation, we have covered comprehensive topics for compact neural

network design methodology to deploy resource-constraint environments, including

hardware-aware neural architecture search using differentiable NAS and graph VAE.

58

Bibliography

[1] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its

practical implications. arXiv preprint arXiv:2006.05205, 2020.

[2] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan,

Omran Al-Shamma, José Santamaría, Mohammed A Fadhel, Muthana Al-

Amidie, and Laith Farhan. Review of deep learning: Concepts, cnn architec-

tures, challenges, applications, future directions. Journal of big Data, 8(1):

1–74, 2021.

[3] Syrine Belakaria, Aryan Deshwal, and Janardhan Rao Doppa. Max-value

entropy search for multi-objective bayesian optimization. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems, volume 32. Curran

Associates, Inc., 2019.

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture

search on target task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[5] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-

all: Train one network and specialize it for efficient deployment. arXiv preprint

arXiv:1908.09791, 2019.

59

[6] Michail Chatzianastasis, George Dasoulas, Georgios Siolas, and Michalis Vazir-

giannis. Graph-based neural architecture search with operation embeddings. In

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 393–402, 2021.

[7] Baotong Chen, Jiafu Wan, Lei Shu, Peng Li, Mithun Mukherjee, and Boxing

Yin. Smart factory of industry 4.0: Key technologies, application case, and

challenges. Ieee Access, 6:6505–6519, 2017.

[8] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search

on imagenet in four gpu hours: A theoretically inspired perspective. In Interna-

tional Conference on Learning Representations, 2020.

[9] X. Chen, L. Xie, J. Wu, and Q. Tian. Progressive differentiable architec-

ture search: Bridging the depth gap between search and evaluation. In 2019

IEEE/CVF International Conference on Computer Vision (ICCV), pages 1294–

1303, 2019. doi: 10.1109/ICCV.2019.00138.

[10] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture

search via perturbation-based regularization. 2020.

[11] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui

Hsieh. Drnas: Dirichlet neural architecture search. In International Conference

on Learning Representations, 2020.

[12] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. A survey of

accelerator architectures for deep neural networks. Engineering, 6(3):264–274,

2020.

[13] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li. Fair DARTS: Elim-

inating Unfair Advantages in Differentiable Architecture Search. In 16th Eu-

60

ropoean Conference On Computer Vision, 2020. URL https://arxiv.

org/abs/1911.12126.pdf.

[14] Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun Lu, Xiaolin Wei, and Junchi

Yan. Darts-: Robustly stepping out of performance collapse without indicators.

2021.

[15] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555, 2014.

[16] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks: Training deep neural networks with weights

and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[17] Terrance DeVries and Graham W Taylor. Improved regularization of convolu-

tional neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[18] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four

gpu hours. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1761–1770, 2019.

[19] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of repro-

ducible neural architecture search. In International Conference on Learn-

ing Representations (ICLR), 2020. URL https://openreview.net/

forum?id=HJxyZkBKDr.

[20] Łukasz Dudziak, Thomas Chau, Mohamed S Abdelfattah, Royson Lee, Hyeji

Kim, and Nicholas D Lane. Brp-nas: Prediction-based nas using gcns. arXiv

preprint arXiv:2007.08668, 2020.

61

[21] Fernando Gama, Joan Bruna, and Alejandro Ribeiro. Stability properties of

graph neural networks. IEEE Transactions on Signal Processing, 68:5680–

5695, 2020.

[22] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on

machine learning, pages 2083–2092. PMLR, 2019.

[23] Floris Geerts, Filip Mazowiecki, and Guillermo Perez. Let’s agree to degree:

Comparing graph convolutional networks in the message-passing framework.

In International Conference on Machine Learning, pages 3640–3649. PMLR,

2021.

[24] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and

George E Dahl. Neural message passing for quantum chemistry. In Interna-

tional conference on machine learning, pages 1263–1272. PMLR, 2017.

[25] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A

survey of deep learning techniques for autonomous driving. Journal of Field

Robotics, 37(3):362–386, 2020.

[26] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. Lightgcn: Simplifying and powering graph convolution network for rec-

ommendation. In Proceedings of the 43rd International ACM SIGIR conference

on research and development in Information Retrieval, pages 639–648, 2020.

[27] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural networks, 2(5):359–366,

1989.

[28] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:

62

Efficient convolutional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. In ICLR (Poster), 2015.

[30] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[31] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv

preprint arXiv:1611.07308, 2016.

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural informa-

tion processing systems, pages 1097–1105, 2012.

[34] Solomon Kullback and Richard A Leibler. On information and sufficiency. The

annals of mathematical statistics, 22(1):79–86, 1951.

[35] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran

You, Qixuan Yu, Yue Wang, Cong Hao, and Yingyan Lin. Hw-nas-bench:

Hardware-aware neural architecture search benchmark. In International Con-

ference on Learning Representations, 2020.

[36] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand accelerat-

ing deep neural network inference via edge computing. IEEE Transactions on

Wireless Communications, 19(1):447–457, 2019.

63

[37] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph

sequence neural networks. arXiv preprint arXiv:1511.05493, 2015.

[38] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang,

Kechen Zhuang, and Zhenguo Li. Darts+: Improved differentiable architecture

search with early stopping. arXiv preprint arXiv:1909.06035, 2019.

[39] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia

Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive

neural architecture search. In Proceedings of the European conference on com-

puter vision (ECCV), pages 19–34, 2018.

[40] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable archi-

tecture search. In International Conference on Learning Representations, 2019.

[41] Andreas Loukas. How hard is to distinguish graphs with graph neural networks?

In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems, volume 33, pages 3465–

3476. Curran Associates, Inc., 2020.

[42] Jovita Lukasik, David Friede, Arber Zela, Frank Hutter, and Margret Keuper.

Smooth variational graph embeddings for efficient neural architecture search.

In 2021 International Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2021.

[43] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning

method for deep neural network compression. In Proceedings of the IEEE in-

ternational conference on computer vision, pages 5058–5066, 2017.

[44] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural archi-

64

tecture optimization. Advances in neural information processing systems, 31,

2018.

[45] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Prov-

ably powerful graph networks. arXiv preprint arXiv:1905.11136, 2019.

[46] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani. Deep

learning for iot big data and streaming analytics: A survey. IEEE Communica-

tions Surveys & Tutorials, 20(4):2923–2960, 2018.

[47] Byunggook Na, Jisoo Mok, Hyeokjun Choe, and Sungroh Yoon. Accelerating

neural architecture search via proxy data. In International Joint Conference on

Artificial Intelligence, 2021.

[48] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov.

Tensorizing neural networks. arXiv preprint arXiv:1509.06569, 2015.

[49] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose ex-

pressive power for node classification. arXiv preprint arXiv:1905.10947, 2019.

[50] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages

of deep learning for natural language processing. IEEE Transactions on Neural

Networks and Learning Systems, 32(2):604–624, 2020.

[51] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer.

Dropgnn: Random dropouts increase the expressiveness of graph neural net-

works. Advances in Neural Information Processing Systems, 34, 2021.

[52] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient

neural architecture search via parameters sharing. In International Conference

on Machine Learning, pages 4095–4104. PMLR, 2018.

65

[53] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient

neural architecture search via parameter sharing. In Proceedings of the 35th

International Conference on Machine Learning, pages 4095–4104, 2018.

[54] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-

matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution of image

classifiers. In International Conference on Machine Learning, pages 2902–

2911, 2017.

[55] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized

evolution for image classifier architecture search. In Proceedings of the aaai

conference on artificial intelligence, volume 33, pages 4780–4789, 2019.

[56] Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Net-

works, 4(5):740–747, 1993.

[57] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018.

[58] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.

Structured sequence modeling with graph convolutional recurrent networks. In

International Conference on Neural Information Processing, pages 362–373.

Springer, 2018.

[59] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of

small graphs using variational autoencoders. In International conference on

artificial neural networks, pages 412–422. Springer, 2018.

66

[60] Shinya Suzuki, Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, and

Masayuki Karasuyama. Multi-objective Bayesian optimization using pareto-

frontier entropy. In Hal Daumé III and Aarti Singh, editors, Proceedings

of the 37th International Conference on Machine Learning, volume 119

of Proceedings of Machine Learning Research, pages 9279–9288. PMLR,

13–18 Jul 2020. URL https://proceedings.mlr.press/v119/

suzuki20a.html.

[61] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-

volutional neural networks. In International Conference on Machine Learning,

pages 6105–6114. PMLR, 2019.

[62] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, An-

drew Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture

search for mobile. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 2820–2828, 2019.

[63] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(11), 2008.

[64] D Vellante. A new era of innovation: Moore’s law is not dead and ai is ready

to explode. SiliconANGLE URL: https://siliconangle. com/2021/04/10/newera-

innovation-moores-law-not-dead-ai-ready-explode, 2021.

[65] Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful

and equivariant graph neural networks with structural message-passing. arXiv

preprint arXiv:2006.15107, 2020.

[66] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Efty-

67

chios Protopapadakis. Deep learning for computer vision: A brief review. Com-

putational intelligence and neuroscience, 2018, 2018.

[67] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining

Xie, Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable

neural architecture search for spatial and channel dimensions. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

12965–12974, 2020.

[68] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui

Hsieh. Rethinking architecture selection in differentiable nas. In International

Conference on Learning Representations, 2021.

[69] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kil-

ian Weinberger. Simplifying graph convolutional networks. In International

conference on machine learning, pages 6861–6871. PMLR, 2019.

[70] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: Stochastic neural

architecture search. In International Conference on Learning Representations,

2019.

[71] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[72] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and

Hongkai Xiong. Pc-darts: Partial channel connections for memory-efficient ar-

chitecture search. In International Conference on Learning Representations,

2020.

[73] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. Does unsuper-

68

vised architecture representation learning help neural architecture search? arXiv

preprint arXiv:2006.06936, 2020.

[74] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and

Frank Hutter. Nas-bench-101: Towards reproducible neural architecture search.

In International Conference on Machine Learning, pages 7105–7114. PMLR,

2019.

[75] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural net-

works. In International Conference on Machine Learning, pages 7134–7143.

PMLR, 2019.

[76] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolu-

tional networks. arXiv preprint arXiv:1708.03888, 2017.

[77] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans,

Mingxing Tan, Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le.

Bignas: Scaling up neural architecture search with big single-stage models. In

European Conference on Computer Vision, pages 702–717. Springer, 2020.

[78] Sixing Yu, Arya Mazaheri, and Ali Jannesari. Auto graph encoder-decoder

for neural network pruning. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 6362–6372, 2021.

[79] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox,

and Frank Hutter. Understanding and robustifying differentiable architecture

search. In International Conference on Learning Representations, 2020.

[80] Fuyang Zhang, Nelson Nauata, and Yasutaka Furukawa. Conv-mpn: Convolu-

tional message passing neural network for structured outdoor architecture re-

69

construction. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2798–2807, 2020.

[81] Li Zhang, Dan Xu, Anurag Arnab, and Philip HS Torr. Dynamic graph message

passing networks. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 3726–3735, 2020.

[82] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen.

D-vae: A variational autoencoder for directed acyclic graphs. arXiv preprint

arXiv:1904.11088, 2019.

[83] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recom-

mender system: A survey and new perspectives. ACM Computing Surveys

(CSUR), 52(1):1–38, 2019.

[84] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An

extremely efficient convolutional neural network for mobile devices. In Pro-

ceedings of the IEEE conference on Computer Vision and Pattern Recognition,

pages 6848–6856, 2018.

[85] Ruizhe Zhao, Wayne Luk, Xinyu Niu, Huifeng Shi, and Haitao Wang. Hardware

acceleration for machine learning. In 2017 IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), pages 645–650. IEEE, 2017.

[86] Pan Zhou, Caiming Xiong, Richard Socher, and Steven Chu Hong Hoi.

Theory-inspired path-regularized differential network architecture search. In

H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-

vances in Neural Information Processing Systems, volume 33, pages 8296–

8307, 2020.

70

[87] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement

learning. In International Conference on Learning Representations, 2017.

[88] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning

transferable architectures for scalable image recognition. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 8697–

8710, 2018.

71

초록

딥러닝은빅데이터와강력한병렬프로세서가사용가능해지면서다양한분야

에서 성공적인 모습을 보여주고 있으며, 모바일과 임베디드 시스템 같은 엣지 디

바이스에도다양하게적용되고있다.그러나,엣지디바이스는일반적으로컴퓨팅

및전력자원이부족한환경이다.이를해결하기위해서,저-레이턴시모델디자인,

모델압축기법과뉴럴모델가속등이알고리즘과하드웨어양쪽측면에서활발하

게 연구되고 있다. 본 논문에서는 알고리즘 측면에서 저-레이턴시 모델 디자인을

위한 두 가지 새로운 방법론을 제시한다. 필요한 컴퓨팅 자원을 줄이기 위해서는

먼저컴팩트하고레이턴시가작은모델을디자인하는것이중요하므로,알고리즘

측면에서 우리는 두가지 신경구조탐색을 이용한 모델 디자인 방법론을 제시하였

다:셀기반신경구조탐색과그래프배리에이셔널오토인코더를이용한신경구조

탐색이다.본학위논문의셀기반신경구조탐색은널리알려진 differentiable NAS

방법론인 DARTS (Differentiable ARchiTecture Search)에 기반한다. DARTS는 여

러연구에서베이스라인방법론으로널리사용되고있음에도불구하고,종종학습

불안정성과최적화가부족하다는점이이미보고된바있으나그근본적인원인에

대해서는일부밝혀지지않았었다.우리는이론적분석과관찰을통해서그근본적

인문제가각 오퍼레이션의정규화되지않은출력에기인하는것을밝히고,이문

제점을 해결할 수 있는 방법론인 VS-DARTS (variance stationary DARTS)를 제안

하였다. VS-DARTS는구조변수(architectural parameter)의신뢰성을높여서탐색

비용을 늘이지 않고 성능을 높였다. 또한, 우리는 VS-DARTS에 레이턴시에 대한

연성제약(soft constraint)을적용함으로써기존셀기반방법론에비견되는성능의

구조를탐색하였다.또다른저레이턴시모델을찾는접근방법으로는그래프생성

모델(graph generative model)을 적용하였다. 우리는 새로운 그래프 배리에이셔널

72

오토인코더 (graph variational auto-encoder)방법론을제안하여셀기반탐색공간

에 대한 오토인코더 성능을 크게 향상시켰다. 이후, 제안한 배리에이셔널 오토인

코더를이용하여뉴럴구조의임베딩정보를추출하고,추출된구조임베딩정보를

새로이제안한다중목적탐색(multi-objective search)에이용하여레이턴시-정확도

에서파레토최적(Pareto optimal)에가까운구조들을찾을수있음을보였다.또한

제안한신경구조탐색방법론을다양한하드웨어플랫폼상에서검증하였다.요약

하면,본학위논문에서는보다컴팩트하고레이턴시가작은모델을찾는데사용할

수있는신경구조탐색방법론을두가지제안하였고,이를이용하여컴퓨팅자원이

부족한환경을위한인공신경망의자동설계방법에관하여기술하였으며,다양한

실험을통해서검증하였다.

주요어:딥러닝,인공신경망,에너지효율,신경구조탐색,하드웨어-어웨어나스

학번: 2015-21001

73

	1 Introduction
	2 Background
	2.1 Neural Architecture Search
	2.1.1 Previous Works on Differentiable NAS
	2.1.2 Preliminaries on DARTS

	2.2 Graph Variational Auto-Encoder
	2.2.1 Graph Representation Learning .
	2.2.2 Variational Auto-encoder for Graph.
	2.2.3 Neural Architecture Search (NAS) with Generative Models
	2.2.4 Preliminaries on VAE for DAGs

	3 Neural architecture search for resource-constrained environment
	3.1 Introduction
	3.2 Issue of DARTS Architecture Parameter
	3.3 Lack of Reliability of β
	3.4 Variance-stationary DARTS (VS-DARTS)
	3.4.1 Node Normalization
	3.4.2 Remedying Gradient Imbalance
	3.4.3 β-Continuous Relaxation

	3.5 Experimental Results
	3.5.1 Settings
	3.5.2 Results in DARTS Search Space
	3.5.3 Results in RobustDARTS Search Space
	3.5.4 Ablation Study

	3.6 Summary

	4 Platform-aware Neural Architecture Search with Graph Variational AutoEncoder
	4.1 Introduction
	4.2 Proposed Methods on Graph Variational Auto-Encoder
	4.2.1 Fail Case Study
	4.2.2 Proposed Update Function
	4.2.3 Observer Node

	4.3 Proposed Predictor-based Multi-objective NAS
	4.3.1 Training Graph VAE (Step 1)
	4.3.2 Search Process (Step 2)
	4.3.3 Return the set of the searched architectures (line 21-22)

	4.4 Experimental Results
	4.4.1 Settings
	4.4.2 VAE Performance Comparison
	4.4.3 Pre-predictor
	4.4.4 Search Performance Comparison

	4.5 Discussions
	4.5.1 Node Index Order in DAG VAE
	4.5.2 Model size reduction while keep the reconstructive performance
	4.5.3 Convergence Acceleration

	4.6 Summary

	5 Conclusion
	Bibliography
	Abstract (In Korean)

<startpage>13
1 Introduction 1
2 Background 7
 2.1 Neural Architecture Search 7
 2.1.1 Previous Works on Differentiable NAS 7
 2.1.2 Preliminaries on DARTS 8
 2.2 Graph Variational Auto-Encoder 10
 2.2.1 Graph Representation Learning . 10
 2.2.2 Variational Auto-encoder for Graph. 10
 2.2.3 Neural Architecture Search (NAS) with Generative Models 11
 2.2.4 Preliminaries on VAE for DAGs 12
3 Neural architecture search for resource-constrained environment 15
 3.1 Introduction 15
 3.2 Issue of DARTS Architecture Parameter 17
 3.3 Lack of Reliability of β 18
 3.4 Variance-stationary DARTS (VS-DARTS) 21
 3.4.1 Node Normalization 21
 3.4.2 Remedying Gradient Imbalance 22
 3.4.3 β-Continuous Relaxation 23
 3.5 Experimental Results 28
 3.5.1 Settings 28
 3.5.2 Results in DARTS Search Space 30
 3.5.3 Results in RobustDARTS Search Space 33
 3.5.4 Ablation Study 34
 3.6 Summary 35
4 Platform-aware Neural Architecture Search with Graph Variational AutoEncoder 37
 4.1 Introduction 37
 4.2 Proposed Methods on Graph Variational Auto-Encoder 39
 4.2.1 Fail Case Study 39
 4.2.2 Proposed Update Function 41
 4.2.3 Observer Node 43
 4.3 Proposed Predictor-based Multi-objective NAS 43
 4.3.1 Training Graph VAE (Step 1) 43
 4.3.2 Search Process (Step 2) 46
 4.3.3 Return the set of the searched architectures (line 21-22) 47
 4.4 Experimental Results 47
 4.4.1 Settings 47
 4.4.2 VAE Performance Comparison 48
 4.4.3 Pre-predictor 50
 4.4.4 Search Performance Comparison 50
 4.5 Discussions 51
 4.5.1 Node Index Order in DAG VAE 51
 4.5.2 Model size reduction while keep the reconstructive performance 51
 4.5.3 Convergence Acceleration 52
 4.6 Summary 52
5 Conclusion 57
Bibliography 58
Abstract (In Korean) 72
</body>

