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Abstract

In this dissertation, four contributions are given as i) the reduction from module-
short integer solution problem (MSIS) to ring-short integer solution problem (RSIS),
ii) the improved reduction from MSIS to RSIS, iii) the introduction to the variant of
RLWE (Re-RLWE) and the hardness of Re-RLWE, and iv) the variant of the compact
multi-key homomorphic encryption (ReCMK-HE) based on Re-RLWE.

First, we propose the reduction from MSIS to RSIS under some condition on RSIS.
To demonstrate this reduction, we derive two reductions. We first show that there is
a reduction from RSIS x

qk,mk
MSIS «

qF,mk

pr 10 RSIS, 5, 5. Second, we propose the reduction from
B, 0 RSISy ;;, g under some norm constraint of RSIS. Combining these
two results implies that RSIS for a specified modulus and the number of samples is
more difficult than MSIS under norm constraint of RSIS, which provides the range of
possible module rank for MSIS.

Second, we propose the improved reduction from MSIS to RSIS. To prove this re-
duction, we show that RSIS is more difficult than MSIS with the same modulus and
ring dimension under some constraint of RSIS. Also, we show that through the reduc-
tion from MSIS to RSIS with the same modulus, the rank of the module is extended as
much as the number of instances of RSIS from half of the number of instances of RSIS.
Next, we show that MSIS is more difficult than MSIS defined in the previous one. Also,
we propose that MSIS with the modulus prime ¢* is more difficult than MSIS with the
composite modulus ¢, such that c is divided by ¢. Through the three reductions, we
conclude that RSIS with the modulus ¢ is more difficult than MSIS with the composite
modulus c.

Third, we propose the variant of RLWE, denoted by Re-RLWE by reusing the error
x as a secret when generating the RLWE sample (a, b = a-s+x). That s, the Re-RLWE

sample is generated in the form (a,b = a-s+x, ¢ = a-x +¢). To define this problem,



we define the Re-RLWE distribution and prove the hardness of Re-RLWE.
Lastly, we propose the variant of the compact multi-key homomorphic encryption
ReCMK-HE based on Re-RLWE. This scheme has the modified multiplication keys

and the modified rotation keys with the reduced size of key compared to the original

CMK-HE.

keywords: Learning with errors (LWE), module-lerarning with errors (MLWE),
module-short integer solution problem (MSIS), multi-key homomorphic encryption
(MK-HE), ring-learning with errors (RLWE), ring-short integer solution problem
(RSIS), short integer solution problem (SIS)

student number: 2018-38217
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Chapter 1

INTRODUCTION

1.1 Background

Many cryptographic schemes are based on problems that are difficult to solve on
computers, including the Rivest-Shamir-Adleman (RSA) based on prime factor de-
composition and the elliptic curve cryptographic (ECC) scheme based on the dis-
crete logarithm problem (DLP). Since the prime factor decomposition problem and
DLP take a long time to solve on computers, cryptographic schemes based on these
problems have been considered secure. However, due to the quantum computer’s de-
velopment, it is known that many cryptographic schemes can be broken using quan-
tum algorithms operated on quantum computers [2]]. Therefore, candidates of cryp-
tographic schemes that are resistant to quantum computers have been actively re-
searched. The representative candidates are lattice-based cryptography, code-based
cryptography, multivariate polynomial-based cryptography, and isogeny-based cryp-
tography. Among them, the diverse forms of lattice-based cryptography such as public-
key cryptographic schemes, signature schemes, and key encapsulation mechanisms are
submitted to NIST post-quantum cryptography (PQC) standardization competition for
the advantages of small-sized key and efficiency as well as security [3].

Lattice-based cryptographic schemes are based on hard problems such as the short-



est independent vector problem (SIVP), which is known to reduce to short integer
solution (SIS) problem and learning with errors (LWE) problem. The SIS problem
introduced by Ajtai in 1996 [4] has been used to construct many lattice-based crypto-
graphic schemes. The SIS problem is defined as follows: Let Z and R denote the sets
of integers and real numbers, respectively. Let Z, denote the set of integers modulo
q. For any positive integers m, n, given positive real number 5 € R, and positive in-
teger ¢, the SIS problem is to find solution z € Z™ such that A - z = 0 mod ¢ and
0 < ||z < B for uniformly random matrix A € Zgy*™. A one-way function can be
constructed from the SIS problem [5], and then many cryptographic schemes can be
constructed from one-way function [6], [[7]], [8].

The LWE problem has two versions, that is, the search LWE and the decision LWE
problems. The search LWE problem is defined as follows: For given dimension n and
positive integer ¢ and the error distribution x on Z, the search LWE problem is to find
s for many given independent pairs (a, %(a, s) +e) fora € Zq chosen uniformly at
random and error e < . The decision LWE problem is to distinguish between many
arbitrarily independent pairs (a, %(a, s) + e) and the same number of samples (c, d),
¢ € Zq and d € Zg from the uniform distribution over Zg“.

Most public key cryptosystems and homomorphic encryption algorithms on a lat-
tice are constructed based on the LWE [§]], [9], [10]. However, cryptographic schemes
based on LWE or SIS are inefficient because the size of the key is too large. To over-
come this problem, we use the ring-LWE (RLWE) and the ring-SIS (RSIS), which are
defined over the ring, that is, the polynomial ring [11]. These problems are also as hard
as 1d-SIVP, where Id-SIVP is the SIVP problem defined on the ideal lattice with a ring
structure.

The module structure is an algebraic structure that generalizes ring structure. Then
the module lattice can be seen as a generalized structure of an arbitrary lattice and
ideal lattice. Therefore, LWE and SIS, both of which can also be defined on the module

lattice, are termed as the module-LWE (MLWE) problem and the module-SIS (MSIS)



problem, respectively. Similar to the ideal lattice, both problems are as difficult as the
Mod-SIVP [12].

Generally, MSIS is more difficult than RSIS in the polynomial ring. If there is an
algorithm A for solving MSIS, the instance of MSIS becomes the instance of RSIS
when the module rank is one. Then the algorithm .4 can be used to find the solution of
RSIS. This method can similarly be used to the reduction from RLWE to MLWE. Thus,
when a lattice-based cryptographic scheme is constructed, MLWE and MSIS having a
module structure are preferred as fundamental difficulties of the scheme because of the
reduced key-size and security reason.

However, the problem with the module structure is not always more difficult than
the problem with the ring structure. In Asiacrypt 2017, Albrecht and Deo showed
that there is a reduction from MLWE to R-LWE [[13]], by handling the error rate and
modulus in the M-LWE and R-LWE problems. Specifically, M-LWE with error rate
«, modulus ¢, and the rank of module d reduces to RLWE with error « - n2v/d and
modulus ¢%. Unlike the LWE problems, the SIS problems do not have an error rate;
instead, there is the upper bound 3 on the norm of the solution of RSIS and we can use
the upper bound while retaining the same parameters ¢* and m for the reduction from
M-SIS to R-SIS.

Also, the cloud computing service that provides on-demand resources for compu-
tation through a network is actively used, and AlaaS (Al as a Service), which provides
various Al-based functions to customers, is also attracting much attention. However,
when an outsourcing server processes customer information, privacy problems arise in
processing sensitive personal information. To overcome this problem, the cloud com-
puting service and AlaaS use a cryptographic scheme. In particular, homomorphic
encryption (HE), which enables computations on encrypted messages, has been de-
veloped over the past few years. HE is developed by Gentry [[14], but it is impractical.
Many HE schemes have been made practical with various improvements and optimiza-

tions [[15 16,17, 1819} 20]. And thus the cloud computing service and AlaaS use the



HE scheme to protect sensitive information [21, 22} 23]].

However, HE is not always an appropriate solution when many users are involved
in a server. In the conventional single-key HE for multiple users and a single server, the
public key generated by one user with the secret key should be shared between users,
and each uses encrypted private data using the shared public key. However, there is a
possibility that a dishonest user with a secret key corresponding to the shared public
key can access other users’ data. To solve this problem, the multi-key HE (MK-HE)
[24) 25]] allows each user to generate its own secret/public key pair, and a server per-
forms homomorphic operations using all users’ public keys. Therefore, when many
users simultaneously participate in the cloud computing service and AlaaS, MK-HE is
more appropriate than HE [26] 27]]

Even though there are research papers to implement practical MK-HE schemes
[24] 25]], we still have two problems to be solved. First, ciphertext expansion occurs
as homomorphic operation proceeds. This expansion is proportional to the number of
users. Second, MK-HE is possible only when all users’ public keys are possessed in
the server.

In [28]], the ciphertext size in MK-HE is significantly reduced. However, the com-
putation and memory costs are still higher than those of underlying single-key HE.
As a partial solution to overcome the ciphertext expansion and the large public key
size, there are variants of MK-HE schemes with the pre-defined number of users to
create a common public key. And thus, the ciphertext expansion is not depending on
the number of users, and the public key size possessed in the server can be reduced
[29} 130, 31} [1]. The MK-HE that achieves multi-key security and no ciphertext expan-
sion that depends on the number of users is called the compact MK-HE (CMK-HE).

To perform CMK-HE, each user should generate multiplication keys and rotation
keys. However, when the user’s computer resources are limited, it may be difficult
to generate a large amount of multiplication keys and rotation keys. Also, it can be

difficult for the server to hold a huge amount of multiplication keys and rotation keys



for each user.

1.2 Overview of Dissertation

This dissertation is organized as follows.

In Chapter[2] basic notations of ideals, modules, canonical embedding, and lattices
are presented as preliminaries for understanding the whole of this dissertation. Then,
the definitions of lattice problems, RLWE, RSIS, and MSIS are introduced. Also, we
present the CMK-HE schemes, which are CMK-CKKS and CMK-BFV.

In Chapter |3} we propose one of main contributions that there is a reduction from
MSIS to RSIS under some norm constraint of RSIS, This means that RSIS is more diffi-
cult than MSIS. To prove the statement, we derive two reductions, that is, the reduction

from RSIS i .k gk to RSIS ;,, 5 and the reduction from MSIS to RSIS k. ,,, 5 un-

gk m,p
der some condition on the upper bound 3 on the norm of the solution of RSIS « ,,, 5
for any £ > 1. Due to the condition of RSIS, we also include an analysis of the range
of the module rank defining the MSIS. Figure [3.4] summarizes the overview of the
contributions for Chapter 3]

In Chapter 4] we propose the improved reduction from MSIS to RSIS. To improve
the reduction, we propose a new method to find m distinct solutions for RSIS. Us-
ing the new method, we derive the reduction from MSIS, ., (; /mya—15a t0 RSISg 5.
Also, we propose the various reduction among the MSIS problems, which lead to the
reduction from MSISC’mk’q%(tm)k(d—l)Bkd to RSIS, ,,, 3 for the modulus c such that g~
divides ¢ for some k£ > 1. Figure f.5]summarizes the overview of the contributions for
Chapter [4]

In Chapter 5] we propose the variant of RLWE. This problem reuses the error used
in the RLWE. To define the variant of RLWE, we first define the variant of RLWE

distribution. Then, we define the variant of RLWE problem, and prove the hardness of

this problem.



In Chapter [6] we propose the variant of CMK-HE scheme based on the variant
of RLWE. This scheme has the modified multiplication keys and the rotation keys,
which are the reduced size of keys compared to the original scheme. Also, we show
the correctness, and security and compares them with previous work [1].

Finally, the conclusion is given in Chapter[7}



Chapter 2

PRELIMINARIES

2.1 Notation

2.1.1 1deal and Module

Let ®(X) be a monic irreducible polynomial of degree n and Q be the set of rational
numbers. We will use the 2n-th cyclotomic polynomial ®(X) = X" + 1 with n = 2"
for some positive integer r. Consider the cyclotomic field K = Q[X]/(®(X)) and
define R as the ring of integer polynomial modulo ®(X), that is, R = Z[X]/(®(X)).
Conveniently, we refer to R as the polynomial ring. A non-empty set I C R is termed
as an ideal of R if I is an additive subgroup of R and for all» € Randall z € I,
r-x € I. The quotient R/I is the set of equivalence classes r + I of R modulo I. Let
q be a positive integer and let R, = R/qR. In [11], it is shown that R, is isomorphic
to I /qI for a given ideal I of R using the Chinese remainder theorem. A subset M C
K% is an R-module if M is closed under addition and under scalar multiplication by
elements of R. The module M generalizes the ring and the vector space. It is known
that M /qM is isomorphic to szl [12]. Hereinafter, vectors are denoted in bold and if a
is a vector, then its ¢-th coordinate is denoted by a;. A matrix is denoted by uppercase

letter in bold.



2.1.2 Canonical Embedding and Norm

In [12]], the canonical embeddings are the n ring homomorphisms o : K — C for all
j =1,...,n,where Cis the set of the complex numbers. They are defined by o;(X) =
&7, where ¢ is the solution of X™ + 1 for any j € Z3,, with n = 2" for some positive
integer r, where Z.,, denotes the set of integer j module 2n such that ged(j, 2n) = 1.
We define the canonical embedding vector as the ring homomorphism o¢ : K — C"
as oo(x) = (0j(x)); ez, under component-wise addition and multiplication. The
trace Tr : K — Qis defined as Tr(z) = Zjez;n oj(xz).Forany z,y € K, Tr(z-y) =
Z]EZ;” oj(x)-0j(y) = (oc(x),ac(y)), where (-, ) is the Hermitian product on C".

For any a € K, we define the norm of a as

1/2
lall = lloc(a)ll = { > loj(a)?
JELY,
Also, for any a = (a1, . . .,a4) € K% we define the norm of a as

1/2

d 1/2 d
lall = (ZH%‘\F) = 1> loj(a)
i=1

=1 jEZ;n
2.1.3 SpaceH

Let J denote [—%, ] N Zj,,. We define the space H as the subspace of C" such that
H= {(xj)jGZ;n eC” : Vje J,xon—j = @}

Leth; = %(ej +egp—j) and hy,_; = %(ej — ey,—;) for j € J, where e; denotes
the standard basis vector. Then h;’s are the basis of H. For z € K, we define oy (z)

by o (x) = (zj)jey € R" such that oc(x) = 3, @5 - h;.



2.1.4 Gaussian Measure

For the center ¢ € R™ and real number s > 0, the Gaussian function is defined by
ps.c(x) = exp(—7|*:<¢||?) for all x € R™. We can obtain the Gaussian probability
distribution by using the normalization, that is, D ¢(x) = ps c(x)/s™. If the center c is
to be zero, we omit the subscript c. A sample from D, over R" is given by (D, )i=1
forr = (ry,...,r,)7 € (RT)", where R denotes the set of non-negative real num-
bers. For o > 0, we write V<, to denote the set of Gaussian distributions that satisfy

r; < a for all 7.

2.1.5 Lattices

An n-dimensional lattice is a discrete subgroup of R™, where R is the set of real
numbers. Specifically, for linearly independent vectors {by,...,b,,}, b; € R™, for

alle =1,...,m, the set

L=L(bi,....by,) = {inbi Da € Z}
i=1

is a lattice in R™ with the basis {by, ..., by, }. Also the dual lattice of £L* is defined as
L ={xespan(L) | Vv € L, (x,Vv) € Z}.

A lattice is an ideal lattice if it is isomorphic to some ideal I of R. Similarly, a lattice
is a module lattice if it is isomorphic to some R-module M [12].
The i-th successive minimum \;(L) is the smallest radius r such that £ con-

tains 7 linearly independent vectors of norm at most 7.



2.2 Lattice Problems

In this section, we introduce the lattice problems, learning with errors (LWE) and

short integer solution (SIS). First, we consider the shortest independent vector problem

(SIVP).

Definition 2.1 ([12]). SIVP is defined as follows: Given a lattice L of dimension n,
SIVP is to find the n linearly independent vectors v1, . .., vy, € L such that max;||v;|| <

v - A (L), where v > 1 is a function of dimension n.

This problem is known to be NP-hard for any approximation factor v > O(1)
[32]. SIVP can be extended to the polynomial ring R if the lattice £ is the ideal lattice,
denoted as Id-SIVP. Similarly, if the lattice is the module lattice, we can extend this
problem to the module, denoted as Mod-SIVP.

In [33]], it is proved that there is a reduction from SIVP to LWE and SIS. This
means that LWE and SIS are also NP-hard. And thus, many lattice based cryptographic
scheme is based on LWE and SIS. However, lattice cryptographic scheme based on
LWE and SIS is inefficient. To overcome the inefficiency, there are the ring variant of
LWE and SIS, called RLWE and RSIS. It is shown that RSIS and RLWE are as hard as
Id-SIVP defined on the ideal lattice [11]]. Also, there are the module variant of LWE
and SIS, called MLWE and MSIS. It is shown that MSIS and MLWE are as hard as
Mod-SIVP defined on the module lattice [12]]. In the next subsections, we introduce

RLWE, MLWE, RSIS, and MSIS.

2.2.1 Learning with Errors

First, we define the LWE problem. This problem was introduced by Regev in 2005
[34]]. To define the problem, we define the LWE distribution.

Definition 2.2 (LWE distribution). For given dimension n, positive integer q, § € ZZL,

and the error distribution 1) on 7, a sample from the L\WE distribution Az, over

10



Z" X ZLq is generated by choosing da <— Z; uniformly at random, choosing e < 1), and

outputting (@,b = (@, 5) + e mod q) € ZI.

Definition 2.3 (LWE problem). The average case decision version of the LWE prob-
lem, denoted L\WE, ,;, is to distinguish with non-negligible advantage between indepen-
dent samples from Az, and the same number of uniformly at random and independent

samples from Z;“H, where § < Zy is uniformly at random.
We can extend LWE to a matrix version.

Definition 2.4 (LWE problem, matrix version). For given n, m, q positive integers, and
the error distribution v on Z., the decisional LWE problem asks to distinguish between
distribution (A, §A + €) and the uniform distribution over ZZ“, where A « Z;*™,

and € <~ Y™, and §  Zy.

The following lemma means that it satisfy that reduces the LWE problem to one in

which secret itself it chosen from the error distribution .

Lemma 2.1. There is a deterministic polynomial transformation T that, for § < 7y

and error distribution 1), maps Az to Ag ., where T < ™.

Although many lattice-based cryptographic schemes are constructued based on
LWE, they are quite inefficient in terms of key size. To overcome this inefficiency, we
define the ring learning with errors (RLWE).

To define the RLWE problem, we define the RLWE distribution. For polynomial
ring R in cyclotomic field K, its dual is defined as RY = {z € K : Tr(zR) C Z}.
Let K = K ®g R and Tpv = Kg/ RY, where ® denotes the tensor product. Let
1 be a distribution on Tgv. Let ¥ be a family of distribution over K and D be a

distribution over R(\l/.

Definition 2.5 (RLWE distribution). For s € R;’, let Aé}? ” denote the distribution on

R, xTprv obtained by choosing a € R, from U(Ry) and e < 1), and returning (a, %(a-

11



s)+e), where U(Ry) denotes the uniform distribution over Ry. This distribution A(i)

q,8,%
is referred to as the RLWE distribution.

Definition 2.6 (RLWE problem, [12], [13]). The decision and search RIWE') (D)

problems are defined as follows: Let s € R(\I/ be uniformly random. RLWESL% Z; g(D) is

to distinguish between arbitrarily many independent m samples from Agl?w and the

same number of independent samples from the uniform distribution over Ry x Tgv,

(R) (D),

where 1) is an arbitrary distribution in ¥ and s < D. The search RLWE 0.0

denoted by S-RLWES?BZ g IS to find the secret s < D from many samples of A((II? " (D).

Similarly, we define the LWE problem on module M/ = R¢, which is the general-

ization of ring and vector space.

Definition 2.7 (MLWE distribution). For s € (R(\J/)d, we define Aglj\g)s , as the distri-

bution on (Ry)? x Trv obtained by choosing a vector a from distribution U((R,)?)

and e < 1, and returning (a, %(a, s) +e).

Definition 2.8 (MLWE problem, [12], [[13]]). The decision and search MLWE%}W (D)

problems are defined as follows: Let s € Rg be uniformly random. MLWE%\I,(D)
is to distinguish between many arbitrarily independent samples from Ag\;l)s » and the
same number of independent samples from the uniform distribution over (Rg)d X Tgv,

where 1 is an arbitrary distribution in V and s <— D. The search I\/ILWE%)\I,(D),

denoted by S-MLWE%V\I,(D), is to find the secret s < D® of many samples from
(M)
Ad%s’w(D).

Generally, the MLWE (S-MLWE) problem is known to be harder than the RLWE
(S-RLWE). However, under some condition, the RLWE problem is more difficult than
the MLWE problem [13] as follows.

Theorem 2.1 ([13]], Corollary 3). Let m be a positive integer and X be a distribution

12



over RV satisfying

Proey [lor(s)|| > Bi] < 1 and

1
Pr max > By <6
S“‘[ i o)l = 2]— ’

for some (B1,61) and (Ba, 02). For a« > 0 and any k > 1 that divides d > 1 and

"> <maX{\/ﬁa BB}

q

) -v/2In(2nd(1 + m(d + 3))) /T,

there exists a reduction from S-MLWEY™) (x?9) to S-MLWEF"") (U(RY)) for

m:q>\1l§a m’qk7l11§a/ q
(')? > a® + 2r?Bid.

Corollary 2.1 ([13]]). If we take k = d, then there exists an efficient reduction from

S-MLWEZ" (x%) to S-RLWEF (U(R)))) with controlled error rate c.

m,q,¥<q m,q, V2. /g

Definition [2.6] is a very interesting problem, but it is difficult to use the crypto-
graphic scheme. Now, we introduce the discretized version of RLWE. In particular, if
the error distribution 1) is supported on R, then the secret s can also be chosen from

1 without affecting the hardness of the problem [335].

Definition 2.9 (RLWE distribution). For a secret s € R, and a distribution 1 over
Ry, a sample from the RAWE distribution A, over Ry x Ry is generated by choosing
a < Ry uniformly at random, choosing e < 1, and outputting (a,b = a - s + e

mod ¢R).

Definition 2.10 (RLWE problem). The average-case decision version of the RLWE
problem, denoted RLIWE, y, is to distinguish with non-negligible advantage between
independent samples from A, , and the same number of uniformly random and inde-

pendent samples from R, X Ry, where s < Ry is uniformly random.

Hereafter, we refer to the discretized version of RLWE as RLWE for convenience.

13



2.2.2 Short Integer Solution Problem

We define the short integer solution problem, which is used in many lattice-based
cryptographic schemes such as signature schemes and identification schemes. This

problem, which was introduced by Ajtai [4]], is defined as follows:

Definition 2.11 ([4], [12]). The SIS problem is defined as follows: Given A € ZZXW
chosen from the uniform distribution, SIS is to find z = (21, . .., zm)’ € Z™ such that

A-z=0modqgand 0 < ||z|| < S.

In particular, to guarantee the non-trivial solution z € Z™ for the SIS problem, it
is clear that 3 is less than the modulus ¢. Indeed, if 5 > g and A € ngm, then we
take the solution z = (¢,0,...,0)7 € Z™ such that A - z = 0 mod q.

It is proved [33]] that there is a reduction from SIVP to the SIS problem. Thus, the
SIS problem is also NP-hard. The SIS problem is one of the most important problems
pertaining to lattices. Therefore, it is necessary to know the relationship among SIS
problems for various parameters. The following theorem shows the hardness of the
SIS problem in the integer ring, based on the modulus and the number of samples in a

previous work [36].

Theorem 2.2 ([|36]], Proposition 3.2). Let m,n be integers, q be a prime, and (3 be a
given real number such that ¢ > (-w(v/nlogn). Then for any positive integer k, there

is a deterministic reduction from SIS .k gk 10 SISq i g.

Theorem [2.2) means that the SIS problem with modulus g and m samples is more
difficult than the SIS problem with modulus ¢* and m* samples for any positive integer
k.

We recall the RSIS and MSIS. RSIS was introduced by Peikert and Rosen and is
defined on R. Since the instance of RSIS is polynomial, the key size of the crypto-
graphic scheme based on RSIS can be smaller than that of the cryptographic scheme

based on SIS [37]], [38].

14



Definition 2.12 (RSIS problem, [12], [37]). The problem RSIS, ,, 3 is defined as fol-
lows: Given ay,...,an, € Ry chosen independently from the uniform distribution,
the RSIS problem is to find z1,. .., %y € R such that ", a; - z; = 0 mod q and

0<|z| < B, wherez = (21,...,2m)" € R™.

The module structure is a generalized structure of ring. Thus, RSIS can be extended

to the module lattice, which is termed as the MSIS problem [12].

Definition 2.13 (MSIS problem, [12]]). The problem MSIS, ., 3 is defined as follows:
Given ay,...,a, € RZ chosen independently from the uniform distribution, MSIS is
to find z1,. .., zm € Rsuchthat ;" a; -z = 0mod q and 0 < ||z|| < j3, where

z=(z1,...,2m) € R™

MSIS is known to be more difficult than RSIS. Indeed, suppose that an algorithm
A exists for solving MSIS and let ay,...,a, € R, be independently uniform in-

() )

stances of RSIS. Also, we choose a5/, . .. ,aff € R, from uniform distribution over

R, forall j =1,...,m, where d is a module rank. Then a; = (a;, agj), - ,agj)) and
aj,...,a,, are instances of MSIS. Using the algorithm .4 for solving MSIS, we obtain

asolution z = (21, ..., zy,)7 such that

i (i
E az"zi:(E ai-zi,g Qo 'Zz','--,g a, 'Zi)
i=1 i=1 i=1 i=1

=0 modgq

with ||z]] < S. Since Y ;" a; - z; = 0 mod ¢ and ||z|| < /3, we find the solution of
the instance of RSIS.
2.3 Multi-Key Homomorphic Encryption

In this section, we fisrt define the multi-key homomorphic encryption (MK-HE). This
scheme is a cryptosystem which allows us to evaluate an arithmetic circuit on cipher-

texts, possibly encrypted under different keys. To define the MK-HE, we assume that
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each participating users has an index to its public and secret keys. A multi-key cipher-

text implicitly contains an ordered set 7" = {idy, . .., idj_1} of associated indices.

Definition 2.14 (Multi-Key Homomorphic Encryption). Let M be the message space
with arithmetic structure. MK-HE consists of five probabilistic polynomial time algo-

rithms (Setup, KeyGen, Enc, Dec, Eval).

* Setup: pp + MK-HE.Setup. Take the security parameter as an input and re-
turns the public parameterization. We assume that all other algorithms implicitly

take pp as an input.

* Key Generation: (sk, pk) < MK-HE.KeyGen. Output a pair of secret and
public keys.

* Encryption: ct < MK-HE.Enc(u; pk). Encrypt a plaintext o € M and out-

puts a ciphertext ct € {0, 1}*.

* Decryption: p <+ MK-HE.Dec(ct; {skiq}iger). Given a ciphertext ct with

the corresponding sequence of secret keys, outputs a plaintext p.

* Homomorphic evaluation:

ct « MK-HE.EVEﬂ(C7 (C_tl, R ,C_tg), {pkid}ideT)'

Given a circuit C, a tuple of multi-key ciphertexts (cty, ..., cty), and the corre-
sponding set of public keys {pk;q}iqeT, output a ciphertext ct. Its index set is
the union T = Ty U --- U T} of index sets T; of the input ciphertexts ct; for

1<j<t
The following is the security, correctness, and compactness of MK-HE.

* SemanticSecurity: For any two messages (i, ;11 € M, the distribution

MK-HE.Enc(u;; pk)
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for i = 0, 1 should be computationally indistinguishable, where pp <+ MK-HE.Setup(1*)
and (sk, pk) < MK-HE.KeyGen(pp).

* Compactness: MK-HE scheme is compact if the size of a ciphertext relevant

to k users is bounded by poly(\, k) for a fixed polynomial poly(-, -).

e Correctness : For1 < j </, let c_tj be a ciphertext with index set 7); such
that MK-HE.Dec(ct;, {skiq}idzer) = pj. Let C : MY — M be a circuit and
ct «+— MK-HE.Eval(C, (cty, ..., cty), {pkiq tidzer) for T =T1 U - - - U T}. Then,

MK-HE.Dec(ct, {skiq}iaer) = C(Cty, . .., cts) 2.1)

with an overwhelming probability.

Note that can be substituted by approximated equality similar to the CKKS
scheme for approximate arithmetic [17]].

Now, we introduce the multi-key CKKS (MK-CKKS)and the multi-key BFV (MK-BFV)
[24]]. The main difference from CKKS and BFV is as follows:

In CKKS and BFV, the homomorphic multiplication of RLWE ciphertexts consists
of two steps, tensor product and relinearization. Let sk = (s, 1) for the secret s € R.
For input ciphertexts ct; and cty, we first compute their tensor product ct = ct; ® cto

that satisfies
(ct, sk ® sk) = (cty, sk) - (cta, sk).

In sk ®sk, the nonlinear entry s exists. Thus, it requires to perform the relineariza-
tion technique which transforms the extended ciphertext to a canonical ciphertext en-
crypting the same message. To perform the relinearization, we publish a multiplication
key which is some kind of ciphertxt encrypting s under sk.

In MK-CKKS and MK-BFV, a ciphertext related to k different users is of the form

¢t = (co,...,cx) € RETL, which is decryptable by the concatenated secret sk =
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(s0y---,Sk—1,1). Thus, the decryption is computed by

k—1

p = {ct,sk) = Zci - 8; + ¢
i=0

Since MK-CKKS and MK-BFV follow the same pipeline for homomorphic operation
as in the single-key setting, the tensor product returns an extended ciphertext corre-
sponding sf ® sk. Hence, we need to generate a relinearization key which consists of
multiple ciphertexts encrypting the entries s; - s; of sf ® sk. It requires some additional
computations since the term s; - s; depends on two secret keys which are indepen-
dently generated by different users. First, the following operations are commonly used

in MK-CKKS and MK-BFV.

» MK-HE.Setup(1*): Given a security parameter ), set the RLWE dimension
n, ciphertext modulus ¢, key distribution , and error distribution ¢ over R.

Generate a random polynomial a < R,. Return the public parameter pp =

(nyq,x, %, a).

o MK-HE.UniEnc(y; s): For an input plaintext 1 € R, generate a ciphertext d =
(do,dy,d) € R} as follows:
(i) Sample r < x.
(ii) Sample dy < R, and ey < %, and setdg = —s-dy +e; +7 mod q.
(iii) Sample eo <— 9 andsetdo =17 -a+ ez + 4 mod q.
* MK-HE.KeyGen(pp): Each user ¢ samples the secret key s; <— x, an error e; <

1) and sets the public key as b; = —s;-a+¢e; mod ¢. Set the multiplication key
dl' = (d@o, di,la di,2) +— MK-H E.UniEnc(si; 57;).

* MK-HE.Relin(ct; {(bi, d;) }o<i<k—1): Given an extended ciphertext ct = (¢; ;)o<i, j<k €
R(gkﬂ)Q and k pairs of multiplication and public keys {(b;, d;) }o<i<k—1, gener-

ate a ciphertext ct’ € R’;H as described in Algorithm
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Figure 2.1: Overview of the multi-key homomorphic encryption.
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Algorithm 2.1 Relinearization for MK-HE

Input : ct = (¢; j)o<i j<k, {(bi»di = (dij0, di;1,di2)) bo<i<k—1
Output : ct’ € RI;H

1: C?C < Ckk

2:for0<:<k-1do

3 ¢ cki+cip mod g

4: end for

S:for0<i<k—-1do

6: ¢, ¢ cij-b; mod g

T (027 C;) — (sz C;) + C;,j ’ (di,Oa di,l) mod q
8: c;- — c;. +¢ij-dip mod g

9: end for

2.3.1 Multi-Key CKKS

The CKKS scheme [17] is a leveled HE with support for fixed-point arithmetic. As-
sume that ¢ = HiL:o q; for some prime ¢;, ¢y = Hf:o ¢i, and k is the number of
users. This scheme supports the rescaling algorithm to handle the magnitude of en-
crypted messages. MK-CKKS scheme [24] is defined as the following operations to-
gether with the algorithm defined in Section [2.3] Figure [2.1] is the overview of the
CMK-HE scheme:

* MK-CKKS.Enc(m; (a,b)): Let m € R be an input plaintext and sample v < ¥,
and eq, e; < 1. Return the ciphertext ct = (cp,c1) € Rg, where c) = v-a+ eg

mod gandc; =v-b+e; +m mod gq.

* MK-CKKS.Dec(ct; sg, .- ., Sk—1): Letct = (cg,...,cx) € R’;jl be a ciphertext
at level £ associated to k users and sg, . .., s;_1 be their secret keys. Set sk =

(50, .-, 8k_1,1) and return (ct,sk) mod g.

* MK-CKKS.Add(cty, ct2): Given two ciphertexts ct; € R’qul at level ¢, return

the ciphertext

ct' = ct; +ct; mod gp.
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* MK-CKKS.Mult(cty, cta; {(bi, di) }o<i<k—1): Given two ciphertexts ct; € ngjl

— —_ — 2 .
at level £, compute ct = ct; ® ctp € Rélzﬂ) and return the ciphertext

ct’ ¢ MK-HE Relin(ct; { (b;, di) Yo<i<k—1) € R

* MK-CKKS.Rescale(ct): Given the ciphertext ct = (co, ..., cx) € Rfj;’l at level
¢, compute ¢, = qu_l - ¢;] for 0 < i < k and return the ciphertext ct’ =

(Chy--vych) € R’;le.

2.3.2 Multi-Key BFV

The BFV scheme is a scale-invariant HE which supports exact computation on a dis-
crete space with a finite characteristic. Let ¢ denote as the plaintext modulus and
A = | 4] be a scaling factor of the BFV scheme. MK-BFV scheme [24] is defined

as following operations together with the algorithm defined in Subsection 2.3}

* MK-BFV.Enc(m; (a,b)): The standard BFV encryption takes a polynomial m €
R, as the input. Sample v < Y, and eg,e; < 1. Return the ciphertext ct =
(co,c1) € Rg,whereco =v-a+e modgandcy =v-b+e +A-m

mod q.

* MK-BFV.Dec(ct; sg, ..., sk—1): Let ct = (cg,...,ck) € RI(;‘H be a cipher-
text associated with k users and s, ..., s;_1 be their secret keys. Set sk =

(s0,...,5k_1,1) and return | (t/q) - (ct,sk)] mod t.

* MK-BFV.Add(cty, ct2): Given two ciphertexts ct; € R’;H, return the ciphertext

ct’' =ct; +ct; mod gq.

* MK-BFV.Mult(cty, cta; {(bs, di) fo<i<k—1): Given two ciphertexts ct; € R’;“,
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compute ct = [(t/q) - (ct1 ® cta)] € R((Ikﬂ)2 and return the ciphertext

ct’ «+ MK-HE.Relin(ct; {(b;, d;) bo<i<k—1) € RET.

2.4 Compact Multi-Key Homomorphic Encryption

In this section, we focus on the CMK-CKKS and CMK-BFV schemes [1]], which are
variants of MK-CKKS and MK-BFV schemes [24] with the pre-defined number of
users. Since CMK-CKKS and CMK-BFV are the variants of those in [24], we assume
that CMK-CKKS and CMK-BFV are the common reference string model. The follow-
ing operations are commonly used in CMK-CKKS and CMK-BFV. Figure is the

overview of the CMK-HE scheme.

» CMK-HE.Setup(1*): Given a security parameter ), set the RLWE dimension
n, ciphertext modulus ¢, key distribution y, and error distribution 1) over R.

Generate a random polynomial a < R,. Return the public parameter pp =

(nyq,x, ¥, a).

* CMK-HE.KeyGen(pp): Each user i samples the secret key s; < x and an error

x; < 1 and sets the public key (a, b;), where b; = —s; - a + x; mod gq.

¢ CMK-HE.ComPK(pky, ..., pki_1): Given all users’ public keys pk; = (a,b; =

—a - 5; + x;), output a common public key pk = (a, b), where

b= b; mod ¢

= —a-s+2x mod q.
« CMK-HE.MultKeyGen(pk = (a, b); s;): For each user i, generate the multipli-
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Figure 2.2: Overview of the compact multi-key homomorphic encryption.
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cation key mk; = (mk; o, mk; 1) as follows:

(i) Sample r; + x.
(ii) Sample e; < v and mk;p = a -r; + s; + ¢; mod g.

(iii) Sample €} <— ¢ and mk; 1 =b-r; + €, mod q.

* CMK-HE.ComMultKey(mky, . . ., mki_1): Compute and return a common mul-

tiplication key mk = Zf:_ol mk;.

« CMK-HE.RotKeyGen(pk = (a,b); 7¢(s;)): For each user i and t € Z3,;, gener-
ate the rotation key rk; = (rk; o, 7k; 1) as follows:
(i) Sample r; + x.
(ii) Sample e; <— ¢ and rk; 0 = a - r; +e; mod q.
(iii) Sample €} <— ¢ and rk; o =b-r; + 7(s;) + €; mod gq.

* CMK-HE.ComRotKey(rky,...,rkx_1): Compute and return a common rota-

tion key rk = Zf:_ol rk;, where

k—1 k—1
rk:(]:aoZri—i—Zei mod ¢
i )
=a-r—+e
k—1 k—1 k—1
rklzb-Zri+Zn(si)+Ze;— mod ¢

k—1
= b-r—i—Tt(ZSi> +¢€  mod q

7

=b-r+m7(s)+e modq.

2.4.1 Compact Multi-Key CKKS Scheme

As in Subsection , we assume that ¢ = Hf:o q; for some prime ¢;, gy = Hf:o Qi,
and k is the number of users. CMK-CKKS scheme [1]] is defined as the following
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operations together with the algorithm defined in Subsection 2.4

« CMK-CKKS.Enc(m; pk = (a,b)): Let m € R be an input plaintext. Sample
v < x and eg, e1 < 1 and return ct = (cp,c1) € Rg, where co = v - a + ey

mod gandc; =v-b+m+e; mod gq.

* CMK-CKKS.Add(ctp, ct1): Given two ciphertexts ct; € Rge at level /, return

the ciphertext ct’ = ctg + ct; mod g,.

¢ CMK-CKKS.Mult(ctg, ct1; mk): Given two ciphertexts cty and cty at level gp,

compute ct = cty ® cty € R;1 , and return the ciphertext
ct < CMK-CKKS.Relin(ct; mk) € R,

as described in Algorithm [2.2] where ® is a tensor product.

Algorithm 2.2 Relinearization for CMK-CKKS
Input : ct = (éo, 1, ég,ég)ﬂnk = (mko,mkl)
Output : ct € R?pz
1: ¢y < ¢1 + ¢ + ¢g - mky mod gy
2:¢1 <+ ¢34 ¢ -mky mod ¢

+ CMK-CKKS.Rescale(ct): Given a ciphertext ct = (co,¢1) € Rz,, compute ¢; =

lg; ' - ¢;] fori = 0,1 and return the ciphertext ct’ = (¢}, ¢}) € RZ .

For the decryption with multiple secret keys, each party partially decrypts the cipher-
text with errors. Then we merge partially decrypted results with ¢; to recover the mes-

sage.

* CMK-CKKS.PartDec(ct; s;) For each user 7, given a ciphertext ct = (¢, ¢1),

and a secret s;, sample an error e; <— ¥ and return p; = cg - $; + ¢; mod qp.

* CMK-CKKS.Merge(pug, - .., k—1;¢ct = (co,c1)): Compute and return p =

Zf:_ol pi +c1 mod gqo.

25



2.4.2 Compact Multi-Key BFV Scheme

As in Subsection|2.3.2} let ¢ denote as the plaintext modulus and A = | 4] be a scaling
factor of the BFV scheme. CMK-BFV scheme [1]] is defined as following operations

together with the algorithm defined in Subsection [2.4

« CMK-BFV.Enc(m;pk = (a,b)): Let m € R, be an input plaintext. Sample
v + x and eg, e; < 1 and return the ciphertext ct = (cg,c1) € Rg, where

co=v-a+e modgandci =v-b+A-m+e; mod gq.

* CMK-BFV.Add(cty, ct1): Given two ciphertexts ct; € Rfl, return the ciphertext

ct’ = ctg +ct; mod gq.

¢ CMK-BFV.Mult(ctg, ct;; mk): Given two ciphertexts cty and ct;, compute ct =

cto®@cty € R;‘ and return the ciphertext
ct + CMK-BFV.Relin(ct;mk) € R2

as described in Algorithm [2.3] where ® is a tensor product.

Algorithm 2.3 Relinearization for CMK-BFV

Input : ct= (éo, c1, 62,63)7777,]{3 = (mk‘o,mkl)
Output : ct € RZ

1: Compute &, = | £é;] mod ¢

2:¢9 < & + ¢+ ¢y - mky mod g

3:¢1 < & + & -mki mod ¢

* CMK-BFV.PartDec(ct; s;): For each user ¢ and given a ciphertext ct = (cg, ¢1)

and a secret s;, sample an error e; < ¢ and return p; = cg - s; + €; mod q.

* CMK-BFV.Merge(uo, ..., pr—1;ct = (co,c1)): Compute p = Zf;ol Wi + ¢

and return m = |(t/q) - u].
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Chapter 3

REDUCTION FROM MODULE-SIS TO RING-SIS UN-
DER STRUCTURED LATTICES

In this chapter, instead of handling the error rate in Corollary by controlling the
upper bound /3 on the norm of the solution of SIS, we propose the reduction from MSIS
with modulus ¢* and m* samples for any & > 1 to RSIS with modulus ¢ and m samples
by handling the upper bound 3 on the norm of the solution of RSIS. To demonstrate
this, we first prove that there is a reduction from RS'qu7mk7 gk to RSIS, m 3. Second,
we show the reduction from MSIS to RSIS under some condition of the upper bound
[ on the norm of the solution of RSIS.

These two reductions can be combined to obtain the reduction from MSIS to RSIS
under the constraints of ¢, m, 5, and k. This means that MSIS can be solved by obtain-
ing the solution of RSIS, ,,, 3. Thus, we have to consider the condition under which
RSIS, 1,5 can be solved. Since the upper bound /3 on the norm of the solution of RSIS
satisfies that 3 is less than the modulus ¢, we consider the polynomial z € R such that
the coefficients of z are in {0, 1,...,¢ — 1}, where ¢ is a prime. Then, it is clear that
ged(z, q) = 1. Further, for z € R™, it is also clear that gcd(z, ¢) = 1. Henceforth, we

assume that all RSIS,, ,,, g solutions z € R\ {0} satisfy ged(z, ¢) = 1.
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3.1 Reduction from Ring-SIS to Ring-SIS

We propose that solving RSIS, ,,, 5 is more difficult than solving RSIS « ,,,» g« for any
integer £ > 1, which corresponds to the polynomial ring R version of Theorem
First, we prove that the solution of RSIS, ,,, 3 should be guaranteed and thus we need

to extend the following lemma.

Lemma 3.1 ([39], Lemma 5.2 ). For any integer q, the instance A € ngm and 8 >
\/ﬁq"/m, the SIS, ., g admits a solution; i.e., there exists a vectorz = (z1,. . ., zm)T €

Z™\{0} such that A -z = 0 mod q and ||z|| < 5.

Lemmameans that to guarantee the solution of SIS, ,,, 3, the upper bound /3 of
the norm of the solution is at least /mgq"/™. we extend Lemma [3.1{to RSIS; 1,5 in
the polynomial ring as in the following lemma, the proof of which is similar to that of

Lemma

Lemma 3.2. For any integer q, the instances a, . . ., Gy € Ry, and > /n - mqt/™,
the RSIS, ,, g admits a solution; that is, there exists a vector z = (1, .. ,zm)T €

R™\{0} such that """, a; - zi = 0 mod q and ||z|| < B.

Proof. Consider all z = (zy, ..., Zm)T € R™ such that the coefficients of z; are in
the set {0,1,...,|¢"/™]}. Then, there are more than ¢" such vectors. Clearly, there
exist ¢" distinct polynomials in the polynomial ring R,. Thus, there exist two such
vectors z # z' € R™ such that Y " a; -z = Y "y a; - 2, mod q. It is clear that
S i (5 - ) = 0 mod g and ||z — 2| < v/i-mlg"™] < u-mgt™ < 8

because all coefficients are between — | ¢'/™ | and |¢'/™]. O

Now, we propose that for any integer k > 1, there is a reduction from RSIS k. ;% gr
to RSIS, ,, 5 as in the following theorem, the proof of which is similar to that of The-

orem

Theorem 3.1. Let m be a positive integer and q be a prime. Choose the upper bound

of the norm, 8 € R such that § > \/n-m - q% and q > [+/nw(logn). Assume that
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there exists an algorithm A, for solving the RSIS ,,, g problem. Then there exists an
algorithm Aj for solving the RSIS jk ,,,x gx for any integer k > 1, which corresponds

to the reduction from RSIS i .k gk 10 RSISy m s.

Proof. Assume that there exists an algorithm .4 for solving RSIS, ,, 3. For the given
instances a1, ag, . . ., @y € Rg f RSIS 4 1k g, which are chosen independently from
the uniform distribution U (R;), we can write a = (a1,...,a,,k) = (a1,...,a,,k-1),
where a; is the m-tuple vector for i = 1, ..., m* 1. Using algorithm A, we can find
a solution z; € R™ with ||z;|| < B suchthata;-z; = Omod ¢ foralli = 1,...,mF 1.
Since < ¢ and ¢ is a prime, gcd(z;,q) = 1. Thus, a;-2z; = ¢-a} and @) = a;-2;/q €
R
find a solutionz’ = (2f,...,2/ , )T € R™ " with [|z/|| < 8*! such thata’ -z’ = 0

)T € R™" . Then, we have

o1 forsome aj € R.Seta’ = (a},...,a ,_,)anduse the induction on k. Then we

mod ¢¥ 1. Letz = (2} - 21, .. 2 ket B
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mk—1

2 : I
. ZZ . aZ
1=1

=gq-a -7z =0mod ¢*

i
=4q

and ||z|| < ||2’|| - max;||z;|| < B*. Thus, we prove it. O

In the above proof, the solution of RSIS « ,,,x g is made by the solutions of RSIS ;, -

Since each solution z of RSIS, ;,, 5 has ged(z, q) = 1, the solution of RSIS k. .k g is

relatively prime to q.
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3.2 Reduction from Module-SIS to Ring-SIS

Now, we propose that there is a reduction from MSIS to RSIS with the same ¢* and m
under some condition on the upper bound 5 on the norm of the solution of RSIS. In
general, the MSIS problem is harder than the RSIS problem since the module structure
is equal to the ring structure if the rank of the module is one. However, RSIS can be
more difficult than MSIS under some condition on the upper bound 8 on the norm
of the solution of RSIS. To show the reduction from MSIS to RSIS, we need to find
as many distinct solutions as the number of instances for the same instances of RSIS.
However, finding distinct solutions for the same instances of RSIS is difficult because
details of the process of the algorithms for solving RSIS are not known. Therefore,
certain algorithms may arrive at the same solution for the same instances. To resolve

this problem, we use the following lemma, that is, there exist m distinct solutions.

Lemma 3.3. Let m be a positive integer. Let k > 1 be a positive integer and q be a
prime. Let (3 be a real number such that max(q,/n -m - qﬁ) < B. Assume that an
algorithm Aj exists for solving RSIS  ,,, 5 such that Ay outputs a solution z € R™
with gcd(z,q) = 1. Let ai, ..., am € Ry be instances of RSIS k. ,, 5. Then we can
find m solutions zU) = (Egj) 27(7‘1)) with ||z < B2 such that 31" a;- 2 -(j) =0

mod ¢* forall j =1,...,m

Proof. Let a = (ay,...,ay) be an instance of RSIS

¢Fm. B> where a; € qu for: =
1,...,m.Since ¢ is not equal to 0 in R x, we can write al) = (@1,...,q-aj,...,am)
for j = 1,...,m. Using algorithm As, it becomes possible to find the solution z() =
(9. m) with ||z()|| < 3 such that

(z =) (J))

forjzl,...,m.LetZ(j):(21,...,q-zj,...,zm) = (7",..
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1,...,m. Then z%) is a solution of the instance a with

12D = lI(z1,- - - 25 2m)
Z(Z%+--~q2~z2-—|- 4z )1/2
<q (4 )t
=q- 2|
< B2
From the property of Ao, each zZ(j ) is relatively prime to g. This means that the greatest
common divisor ofiz-(j) and ¢is 1if # jand ¢if i = j. Thus, allzZU), j = 1,...,m,

are distinct solutions for instance a. O

Theorem 3.2. Let m be a fixed positive integer. Let k > 1 be a positive integer and q

be a prime. Choose a module rank d € Z~ such that

max(q, Vi - m - gw) < 3/ qk/(m)@-D. (3.1)

Let a positive real number [3 be an upper bound on the norm of the solution of RSIS ik, 3

such that

max(q, Vi -m-qn) < B < *7/qk/(/m)@-1) 32)

Assume that an algorithm As exists for solving the RSIS . ,,, g problem such that As;
outputs a solution z € R™ with gcd(z,q) = 1. Then, an algorithm As exists for solv-
ing the MSIquvmﬂ/ problem with module rank d, where 3’ = m%(dfl)ﬁmd_l); that is,

there exists a reduction from MSIS i ,,, 5 t0 RSIS 1. ., 5 with 3 = m%(d_l)ﬁ(%*l).

Proof. Letay,...,a,, € R be instances of MSIS « which are chosen indepen-

q*,m,B3>

dently from the uniform distribution, where a; = (a1, ..., a;q) and a;; € Rk Then
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we can write the matrix

_ _ _ , _
ailr a1 . Gyl - a; —
/
ai2 a2 - Gm2 — ay; —
A= = e RIX™,
: : : : : : : q
!/
| @1d Q24 " OGmd ] |~ Az ]

Then each row a of A is considered as an instance of RSIS. Consider the last row a/,
of A. Then there are m distinct solutions Zg ) = (Et(ijf, ce Ec(ljgn)T with ||Z£lj ) | < B2
such that a; - Zgj ) = 0 mod q" by the Lemmafor 7 =1,...,m. Now, we construct

the m x m solution matrix

A-Z;=|: : | mod ¢*.

1/
a5 1

A*=A-Z, - Zy= o mod ¢.
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Finally, applying the algorithm Ay to a}, we find a solution z’ with ||z’|| < /8 such
that A* - z/ = 0 mod ¢*. Then, we have the solution z = Z; - - - Z - z’ for A. Then

A -z = 0 mod ¢* and

|zl = |Za- - Z2 - 2|
< (vm- 83" 8

< m%(d—l)ﬁ@d—l).

By modifying lb we have that the upper bound 3/ = m%(d_l)ﬁ (2d=1) on the norm

of the solution of MSIS x is less than ¢*. Thus, we found a non-trivial solution of

ak,m,p’
MSISk ,,, g and showed that there exists a reduction from MSIS jx ,, 5 t0 RSIS . ,,, 5.

O]

From Theorem it is easy to verify that there is a reduction from MSIS k . 5

(d—1) Bk (2d-1) To demonstrate the reduction from

to RSIS & .k gk, wWhere 3" = m3(
MSIS &

B.Iland 3.2] as follows.

 to RSIS, 1, 5, where 8 = m2(@=1) gk (2d — 1), we combine Theorems

Corollary 3.1. Let m be a fixed positive integer. Let k > 1 be a positive integer and q

be a prime. Choose a module rank d € N such that

Vim g < gk (Vim) @D, (33)

Let a positive real number (3 be an upper bound on the norm of the solution of RSIS, ,, 3

such that
Viemegn < B < gk /(Vim) @D (3.4)

Assume that an algorithm A exists for solving the RSIS, ,,, g3 problem. Then, an algo-

rithm A3 exists for solving the MSIS i ...« 5 problem with module rank d, where 3" =
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k
mi(d_l)ﬁk@d_l); that is, there exists a reduction from MSIqumkﬂ, to RSIS, , g with

g = mg(d—l)ﬁk@d—l).

Proof. From Theorem there exists the algorithm A; for solving RSIS k ,,,» gx such
that Az outputs a solution z with ged(z, ¢) = 1. Modifying (3.4), we have

k
(am - g ) < B* < ( q/<m><d—1>) .

In the inequality on the left, we have

In the inequality on the right, we have
k
o < (Yl vmen ) = Y (e,
Thus, we obtain the inequality

nomk - gE < BF < k) (Vi) -,

From Theorem , there exists the algorithm A3 for solving MSIS . x5 with B =
mg(dfl)ﬂk@d_l). Thus, there is a reduction from MSIS k. .k g/ t0 RSIS 1, 5 with B =
mg(d—l)ﬂk(Zd—l)‘ ]

3.3 Analysis of Reduction from MSIS to RSIS

In Theorem[3.2] the module rank d is determined by (3.1)), in which parameter n is the

dimension of the polynomial ring R and thus, n and m are fixed. Thus, d depends on
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the parameters prime ¢ and k, which is an exponent of ¢q. Modification of (3.1]) enables
us to find the range of possible module rank d. To obtain the modification of (3.1]), we
take the logarithm on both sides of (3.1)) and multiply (2d — 1) to obtain the following

equation:

(2d — 1) log((mn)'/?¢"/™) < (log ¢* — (d — 1) logm/?)
= 2d <log((mn)1/2qk/m)) — log((mn)'2¢*™) < log ¢* +logm!/? — dlogm'/?.
And this inequality summarized as follows for d:

log ¢* 4 logm!/? + log((mn)'/2¢*/™)
2log((mn)t/2qgk/m) + log m'/2

Finally, we obtain the inequality that is the range of possible module rank d as follows:

2k(m + 1) log g + 2mlogm + mlogn

d < (3.5

4klogq + 3mlogm + 2mlogn

Figures[3.T|and[3.2]shows the possible ranks of the module different for parameters
and log,(q). In the case of Figure the logarithm in modulus q of base 2 varies from
0 to 10000 with fixed n = 2'¢ and k£ = 2 and in the case of Figure the logarithm
in modulus ¢ of base 2 varies from 0 to 10000 with fixed n = 2'6 and k = 10. As m
and log,(q) increase, the possible module rank d is also increased.

To find the relation between prime ¢ and module rank d, we fix the parameter k.

Then we have

2k(m + 1) log g + 2mlogm + mlogn . m+1
4klog q 4+ 3mlogm + 2mlogn 2

as ¢ — 0o, and thus the range of d is

1
d<£
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for sufficiently large ¢. Similarly, to find the relation between the exponent & of ¢ and
module rank d, we fix the parameter g. Then, we have the same range of d as (3.5) for
sufficiently large k.

However, the module rank d is determined by (3.3) in Corollary 3.1} In (3.3), the
parameters n and m are fixed. Thus, the module rank d depends only on the parameter
q. Modification of enables us to find the range of possible module rank d, which

is given as

2(m + 1)log g + 2mlogm + mlogn

d< 3.7

4logq + 2mlogm + 2mlogn

The difference between (3.3) and (3.7) is that the latter does not depend on param-
eter k, which is responsible for the difference in the convergence speed of these two
inequalities.

The parameters in Figurd3.3| are equal to those in Figures [3.1] and [3.2] except for
parameter k. Comparing the figures, it can be seen that the convergence speed of
is slower than that of (3.5). However, the range of module rank d is the same as that in

(3-6) for sufficiently large g.
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Chapter 3

Thm 3.1
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Figure 3.4: Overview of the contributions for Chapter
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Chapter 4

IMPROVED REDUCTION FROM MODULE-SIS TO
RING-SIS

In this chapter, we propose a new method to find m distinct solutions for instances of
RSIS. In particular, the m distinct solutions are linearly independent over R,. Using m
distinct solutions, we obtain the solution for instances of MSIS. Similar to the previous
Chapter[3] there is a range of module rank that allows the reduction from MSIS to RSIS.
However, we show that the range of module rank is doubled compared to the previous

Chapther 3]

4.1 Improved Reduction from Module-SIS to Ring-SIS

We propose a new method of finding m distinct solutions of instances of RSIS. Find-
ing distinct solutions for the same instances of RSIS is difficult since details of the
algorithms’ process for solving RSIS are not known. For example, if the algorithm A
for solving RSIS is deterministic, then this algorithm outputs the same solution for
the same instance. To overcome this problem, we devise a method to add randomness

before using the algorithm for solving RSIS.

Lemma 4.1. Let m be a positive integer and let t be a positive integer. Choose a prime
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q such that
wra@%<%
Choose a real number [3 such that
Vinm-gn < B < %

Suppose that there exists an algorithm A for solving RSIS, , 5. Leta = (a1, ..., am) €

R be chosen independently from uniform distribution. Then there exist m linearly in-

dependent solutions z\9) = (Zgj) Cee 27(7{)) € R™ such that 37" a;-29) =0 mod ¢

with |Z9|| < t-Bforall j=1,... m.

Proof. (Step 1) Let rD) = (v +)y « U(R™) with ||rD|| < ¢ and let a® =
(ay -V (1)

ai -7y ,...,Qm Ty ). Then a(!) is uniform and we can consider a(!) as an instance
of RSIS, ,, . Using the algorithm A for solving RSIS, ,,, 3, we obtain a non-trivial

solution z(!) = (zil), ey z,(ﬁ)) such that ;" ai-rfl)-zi(l) =0 mod ¢ with ||z || <
(1)

5. Since al is uniform, there is a non-zero rgl)(if rl(l) is all zero in R, then a, ’ is not

uniform). Denote z(!) = (rgl) : z%l), e ,7“7(,1) : zf,i)) in R™. Then z(!) is a non-trivial

solution of (ay, ..., a,,) with ||z(1)|| < ¢ - 3 since z(!) is a non-trivial solution in R™

. 1
and there is a non-zero 7‘5 )

as TZ(I), Z,L(l)

(Step 2) Let @ = (' +@)) « U(R™) with [|r@| < ¢ and let a® = (a; -

7’9, Y, T n(,%)). Then a® is uniform and we can consider a'

in R. Since t - 3 is less than ¢, we consider r,gl), zz-(l) €R

€ Ryforalli=1,...,m.

2) as an instance of

RSIS, m 5. Through the above process, we obtain a non-trivial solution z(?) = (7“52) :

AP D2y e R owith |2 < ¢ - B. Also, we consider 7%, 2% € R as
r? 2@ e R, foralli=1,...,m.

Let z(!) be fixed. Since ||Z™|| < t - 8 < ¢, each coefficient of z(!) is in Z,. Thus,
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ged(z™M), g) = 1 because ¢ is a prime. Then we can define
Sy = spang, (2") = {k1 -2V | k1 € Ry}

and

and z?) = (252), 22— AL

m

Since 5 is determined by an element k; € R,, we obtain |S;| = ¢". However, z(?) is

determined by ’I“Z@) forall i = 1,..., m, whether z(?) belongs to S or not. Thus, we
obtain |71 | = ¢"™™. Then |S; N T1| < |S1| < |T1|. 1f 2?) is in S, then we repeat Step
2 until z") and z?) are linearly independent, which is possible from |S;| < |T1].

Now, assume that z(D, ... . zU~D ¢ R™ are linearly independent solutions of
(a1,...,an) such that |zZF)| <t-Bforallk =1,...,5 — 1.

(Step 3) Let @ = (+) . +U)y « U(R™) with |r@)|| < ¢ and let a¥) = (a; -

ng ), ey - r%)). Through the above process, we obtain a solution zU) = (ng ).
zgj), .. ,7’7(7{) . z(j)) such that ||z)|| < ¢ - . Also, we consider rgj),zz-(j) € R as
r? 29 € Ry foralli=1,...,m.Letz", ..., 20" be fixed and let
Sj-1 =spanp, (zW,...,z07Y)
={ky - zM 4.4 k1 - zU-1
| ki€ Ryfori=1,....5—1}
| 1]
= -
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and

Ty ={z@ = (#¥ . 29  p0) ... 0
[0 Q) U(R™),
(aj - rgj) g TD) o A,

and z) = (z%j), o 2D) — AL

Then |S;_1| = ¢~ since Sj_1 is determined by elements kq,...,kj—1 € R,.
()

However, z\/) is determined by r;”’ for all i = 1, ..., m whether ) belongs to S;_1
or not. Thus, we obtain |7;_1| = ¢"™. Then |S;_1 N T;_1| < |Sj—1| < |Tj-1].
If zU) is in S;—1, then we repeat Step 3 until zM .z . z20) are linearly inde-
pendent, which is also possible from |S;_1| < |T;_1]|. If we repeat this process m
times, then we can find m linearly independent solutions z(/) = (Z%j ) , 27(7{)) =

9

(r(j) -z%j), . .,r%) -zr(,j;)) such that 37" | a;-rY ozi(j) =0 mod ¢ with ||zV)] < t-f

(]

foralli =1,...,m. ]

The above solutions are not exact solutions of RSIS, ,, 3, but we can use these
solutions to find the solution of MSIS. Now, we prove the reduction from MSIS to
RSIS using Lemma The proof of the following theorem is the same as that of
Theorem However, the upper bound of the solution of RSIS is changed since we
use Lemma Also, the condition for § is changed as in the following theorem,

where the reduction from MSIS to RSIS is satisfied.

Theorem 4.1. Let m, t be positive integers and q be chosen as in Lemma Choose

a module rank d € Z~q such that

Jnom-gm < m 4.1)

Let a positive real number 3 be an upper bound on the norm of the solution of RSIS, ,, g
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such that
Vaq-t-/m
t-v/m
Assume that an algorithm A exists for solving RSIS, ,, g. Then there exists an algo-

rithm Ay for solving MSIS, ,, 3,, where 1 = (t/m)+1p,

Proof. Let ay,...,an, € R{ be instances of MSIS, ., 3, which are chosen indepen-
dently from the uniform distribution, where a; = (a1, ..., a;q)” and a;; € Ry. Then

we can write the matrix

_041 asr - aml_ _all_
A Gz Az o ama| al, ERZX’”,
(a1g aza -0 amd| @]
where a; = (@14, ..., am;). Then the i-th row ag of A is considered as an instance

of RSIS. Consider the last row &/, of A. Then there are m distinct solutions Zéj ) =

(Zc(lj%, e ,Zc(ljzl)T with ||Z((1j)|] < t- (3 such that a; - Z((jj) =0mod ¢’ forj=1,...,m

from Lemma4.1] Now, we construct the m x m solution matrix
7., — (1D 22 =(m)
Zd - Zd Zd e Zd

and || Zg|| < (¢t -+/m) - 3. Then, we have

A-Z;= : mod ¢,
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where a is an m-tuple vector. Applying the above method d — 1 times, we obtain the

solution matrix

A*:AZdZQZ . modq.

Finally, applying the algorithm A to aj, we find a solution z’ with ||z’|| < § such that
A*.z' = 0 mod q. Then, we have the solutionz = Z, - - - Zo -2’ for A. Then A-z = 0

mod ¢ and

2| = [|Zq - Z2 - 2|
< (t-vm-p)*" B
= (t-vm)" ' e

From 1} we have that the upper bound 51 = (¢ - /m)?~! - 3¢ on the norm of the

solution of MSIS, ,, g, is less than ¢ since

Thus, we find a non-trivial solution of MSIS, ,,, 3, and show that there exists a reduc-

tion from MSIS,, ,,, g, to RSIS, ,,, 3, where 1 = (ty/m)*1pe, O
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4.2 Analysis of Improved Reduction from Module-SIS to Ring-
SIS

Similar to Chapter [3] the possible range of module rank of MSIS that satisfies the
reduction from MSIS,, ,,, 3, to RSIS, ,,, 3 depends on in Theorem where 51 =
(ty/m)?139. Moreover, n and m are fixed since n and m are the dimension of the
polynomial ring R and the number of instances of RSIS, respectively. Also, given t,
the module rank d depends on the modulus ¢. In this dissertation, the new range of

module rank d of MSIS through (4.1) is derived as

2mlog g+ mlogm + 2mlogt

. 4.2
mlogn + 2mlogm + 2log g + 2mlogt (4.2)

Then, for sufficiently large ¢, we obtain the range of module rank as
d < m.

This result is twice as large as the range of module rank of the reduction from
MSIS to RSIS [40]. Figures and shows the possible module ranks with the
different parameters and log, ¢ for n = 216, ¢ = 10. In the case of Figure the bits
of modulus ¢ vary from 0 to 100. In the case of Figure the bits of modulus ¢ vary
from 0 to 10°. As log, g increases, the possible range of module rank d approaches the
number of instances m as in Figure .2} Also, as m increases, the possible range of
module rank d becomes even wider.

The possible range of module rank is doubled compared to that of the previous
result in (3.7). Also, the previous work considered the case that the modulus exponent
k is larger than one, but in this work, we propose the reduction for the case of £ = 1.
Figure and show the comparison of the possible ranges of module ranks of
Section and the proposed work for n = 216, ¢ = 10. In the case of Figure the

bits of modulus ¢ vary from 0 to 100. The range of module rank of the previous work
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is larger than that of the proposed work in the range 0 to 10, but, in the range 10 to 100,
the range of the proposed work is larger than that of previous work. Also, the previous
reduction is possible when the exponent k of the modulus of MSIS is larger than one,
but the proposed reduction is also possible when the exponent of k of that of MSIS is
equal to one. In the case of Figure the bits of modulus g vary from 0 to 105, and
it shows the convergence values of and (#.2)). Equation converges to half of
the number of instances of RSIS, which is the maximum module rank. However,
converges to the same number of instances of RSIS, which is the maximum module

rank.

4.3 Reduction Between Various Module-SIS Problems

In this section, we derive several reductions among the MSIS problems, which lead
to the reduction from MSISqu’qu(t,\/a)k(dfl)Bkd to RSIS, ,, 5 for the modulus ¢ such

that ¢* divides c.

4.3.1 Reduction Between Module-SIS Problems with Increased Modulus

First, we derive the reduction from MSIS k .,k gk to MSIS, , 5 as in the following

theorem, where its proof is the same as that of Theorem [3.1]

Theorem 4.2. Let m be a positive integer and q be a prime. Let d be a positive integer
such that d defines a rank of module defining MSIS ;;, 5 and MSIS k. . gk. Assume
that there exists an algorithm Ay for solving the MSIS,, ,,, 3 problem. Then there exists
an algorithm Aj for solving the MSIS i ..k g for any integer k > 1, which corre-

sponds to the reduction from MSIS i .k gk 10 MSIS; p, 5.

Proof. Assume that there exists an algorithm A; for solving MSIS,, ,,, 3. Assume that
ag,...,a,,k € ng are chosen independently from uniform distribution over Rg. We
can writt A = (aj,...,a,,x) = (ai,...,a,,k1), where a; is an m tuple vector.

Using the algorithm 47, we obtain the solution z; € R™ such that a; - z; = 0 mod ¢
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and ||z;]| < $. Since 8 < ¢ and ¢ is a prime, gcd(z;, q) = 1. Thus, a; - z; = ¢ - a]
and a; = a; - z;/q € ng,l for some a € R%. Set A’ = (al, ... ,a ;) and use the
induction on k. Then we find a solution z’ = (2{,...,2/ , ;)T € R™ ™" with ||Z/|| <

B* L suchthat A’-z' =0 mod ¢*~'. Letz = (2] 21,...,2) , 1 Z-1)" € R™.

Then, we have

=q-A"-2Z =0 mod ¢~

and ||z|| < ||2'||-max;||z]| < B*. Thus, MSIS, ;, g is more difficult than MSIS i .k g

O
Using Theorem .| we can obtain the following reduction.

Corollary 4.1. There exists the reduction from MSISk .k g, 10 MSISy 5, where

B = (t-v/m)¥=13% and By = BY as in Figure
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4.3.2 Reduction Between Module-SIS Problems with Changed Norm Bound

In order to derive the reduction from MSIS i« .« 5, to MSIS ., 5, in Figure we

use the reduction from MSIS k. .k g, t0 MSIS .,k 3., where

61 = (t ’ \/R)d_lﬁda
B = ft
= (0 Ve,

Bs = mg(d—l)ﬁk@d—l)’

and k£ > 1. To derive the reduction, we need to know the following remark.

Remark 4.1. Let m and q be positive integers. Let 3, 3’ € R such that
Vim-gn << B <q.

Assume that there exists an algorithm A for solving RSIS, ,,, 3. Then there exists an
algorithm A’ for solving RSIS, ,,, gr. Similarly, assume that there exists an algorithm
A for solving MSIS,, ,, 3. Then there exists an algorithm A’ for solving MSIS, ,,, 5

with the same module rank.

Thus, we derive the reduction from MSIS . .k 5, to MSIS B, as in the fol-

qk,m*k

lowing theorem.

Theorem 4.3. Let m be a positive integer. Let t be a positive integers and q a prime

such that

tS\/n-m-q%<g.

t

Choose a module rank d € Z~ such that

d
ot
v tym
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Let B be a positive real number such that
Vaq-t-/m
t-v/m

Then MSIS i .k 5, is harder than MSIS k. .k 5., where B2 = (t - /m)kd=1) gkd

B3 = mg(d_l)ﬁk@d_l), and k > 1.

Proof. Assume that there exists an algorithm Ay for solving MSIS x ..k ,, where
P2 = (t- \/M)’“(d‘l) /%4, Then we need to compare 3, and (33 as
B3 m%(dfl)ﬁk(Zd—l)
Bo  (t-/m)kd—1)gkd
k(d—1)
_(8
t
1\ k(d-1)
< Vn-m-qm
- t ?
which is larger than one if t < /n-m - qn%. Thus, we obtain
B3 = mg(d—l)ﬂk@d—l) > (t- \/m)k(d—l)ﬁkd — B
From Remark there exists an algorithm A3 for solving MSIS . ;. 5., where 33 =
mg(d—l)ﬁk@d—l)' O

From Theorems [4.1} #.3] and Corollary .1} we can derive the reduction from
MSIS jk kg, t0 RSISy 1 5, Where B3 = mg(d_l)ﬁk@d_l) fork > 1.

4.4 Reduction from Module-SIS with Composite Number as
Modulus to Ring-SIS

In this section, we observe the relationship between MSIS with modulus ¢* for prime

g and k > 1 and MSIS with modulus ¢ as a composite number. In particular, com-
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posite number c is divided by prime ¢*. The following theorem shows the relationship

between two problems.

Theorem 4.4. Let m, t, and q be chosen as in Theorem Let k > 1 be a positive
integer. Let ¢ be a composite integer such that ¢* divides c. Assume that there exists an

algorithm A for solving MSIS . ,..x 3,. Then there exists an algorithm B for solving
MSIS. i - where y = %82 and B = (t-/m)kd=Dgkd for | > 1.

Proof. Let ay,...,a,x € R be chosen independently from uniform distribution,
where a; = (a;1,...,a;) foralli =1,...,mF. Fori =1,..., mFandj = 1,...,d,
aj; = aﬁ?) + qkag) 4+ + qksagj-) for some integer s and thus we write a; = ago) +
qkagl) + -+ qksags). Thus, a; = ago) mod ¢*. From the algorithm A for solving
MSIS j kg, We can find the solution 21, ..., z,,» € R such that

mk

ago)-zl—i--"—kagz?@  Zppk :Zago) - z; = 0 mod ¢*

i=1

and ||z|| < B2, where z = (21, ..., 2,,x)" . This means that Z:’fl az(o) - 2z; = ¢* - a for

some «« € R. Thus, we have
mk mk
0
Zai-zi:Zag)-zi
i=1 i=1
mk mk:
+qua£1)-2¢+'-'+qkSZaZ(S)'Zi
i=1 i=1

mk mk
qu-a+qk2a£1)-Z¢+'-'+qk52a58)'zi
=1 =1

= 0 mod ¢*.
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k
Thus, > a; - 2 = q" - o/ for some o/ € R and we have

mk mb
Cc Cc
- E a; - 2; = E a; - (721)
q i=1 i=1 q
=C-«

= 0 mod c.

Since % is an integer, % z; isin R for all i = 1,...,m*. And we obtain ||z =
q q ’ q

where v = q% B

and By = (t - /m)* @1 gkd for k > 1. O

i l|lz|| < 732 Thus, —%z is a solution of the instance of MSIS,. ..,

Using Theorems[d.1} [.5] and Corollary[4.1} we obtain the reduction from MSIS, .,

to RSIS, ,, 3, when vy = q%(t - /m)k(d=1) gkd 45 in the following theorem.

Theorem 4.5. Let m, t, and q be chosen as in Theorem Let ¢ be a composite
integer such that c is divided by ¢* for some k > 1. Choose a module rank d € Z~g

such that

d
Ja-t-A/
1/nmqi<u
t-y/m

Let a positive real number (3 be an upper bound on the norm of the solution of RSIS ,, g

such that

i gk < p < YUt ym
t-vm

Assume that an algorithm A exists for solving RSIS, ,, 5. Then there exists an algo-

rithm BB for solving MSIS ., x ., where v = q%(t - /m)kd=1) ghd
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Chapter 5

HARDNESS OF VARIANT OF RING-LWE

In the proposed variant of RLWE, the error for generating an RLWE sample is reused
as a secret of the other RLWE sample. The variant of the RLWE sample is of the form
(a,a-s+x,a-x+ e), where 1 is the error distribution and a < Ry, s < Ry, and
x, e < 1p. We first define the variant of the RLWE problem (Re-RLWE) and prove the

hardness of this problem.

5.1 Definition of Variant of Ring-LWE

To define the variant of the RLWE problem, we first define the variant of RLWE distri-

bution, called Re-RLWE disitribution. This distribution is given as follows:

Definition 5.1 (Re-RLWE distribution). For a secret s € R, and a distribution 1) over
R, a sample from Re-RLWE distribution /71577/, over Ry x Ry X Ry is generated by
choosing a < R uniformly at random, choosing x,e < 1), and outputting (a, b, c),

where

b=a-s+x modqR

c=a-x+e modqR.
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Now, we define the variant of Re-RLWE problem, called Re-RLWE. Informally,
Re-RLWE distribution is indistinguishable to the uniform distribution over R, x R4 X

R,. The formal definition is given as follows:

Definition 5.2 (Re-RLWE problem). The average-case decision version of the Re-RLWE
problem denoted Re-RLWE, , is to distinguish with non-negligible advantage be-

tween the sample from /_15’77& and the uniformly at random from Ry X Ry X Ry.

5.2 Hardness of Variant of Ring-LWE

In this section, we demonstrate the hardness of Re-RLWE. To prove that, we will prove

that the Re-RLWE problem is harder than the RLWE problem as follows:

Theorem 5.1. Let q be a prime and 1) be an error distribution. Assume that there exists
an algorithm A in distinguishing the Re-RLWE,, ;, distribution from the uniform dis-
tribution. Then there exists an algorithm B in distinguishing the RLWE ,, distribution

from the uniform distribution.

Proof. Assume that A is a distinguisher of Re-RLWE, ,, with a non-negligible advan-
tage. Then we can construct a distinguisher B against Re-RLWE, , as follows. 13 gets

as inputs a € R, and b € R,. Then B proceeds as follows.
* If a has no inverse, abort 3 and output reject.
* u<+ Ry
scalt-bta-u
* Output A(a,c,b).

If the input of B is distributed according to the uniform distribution over R, x R, then

c is also uniformly at random. If the input of B is distributed according to the RLWE
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distribution A, , of the form (a,b) = (a,a - s + x), where s, z < 1), then we have

c=atb+a-u
=aYa-s+x)+a-u
=s+a - z4a-u

=s+a-(a? x+u).

Then a=2 - & + w is uniformly at random and independent of z as in [41]. Denote
s'=a2-z4+u Thenc=a-s +sand (a,c,b) = (a,a-s +s,a-s+ ), which has
the Re-RLWE, ,;, distribution. Thus, we conclude that 3 has the same advantage as A,

which contradicts the hardness of RLWE, . O
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Chapter 6

SAMPLING REDUCTION IN COMPACT MULTI-KEY
HOMOMORPHIC ENCRYPTION

In this section, we introduce the modified multiplication keys and rotation keys for
CMK-CKKS and CMK-BFV schemes using the Re-RLWE. In [[1]], to resolve the ex-
pansion of ciphertext, a common public is generated through the communication be-
tween users. In addition, by adding the multiplication keys and rotation keys generated
by users in the server, a common multiplication key and rotation key are generated to
lower the communication cost between users. Although many operations of the pro-
posed scheme is similar to those in [1]], the multiplication key and the rotation key
generation are different. This generation method reuses the error used to generate the
public key for the multiplication key. Also, to reduce the rotation key, we modify the
CMK-HE.Setup, that is, we consider a more common reference string. In this way, the
size of the multiplication key and the rotation key can be reduced compared to that in

[L]. The following operation is the modified setup.

» ReCMK-HE.Setup(1*): Given a security parameter ), set the RLWE dimension
n, ciphertext modulus ¢, key distribution y, and error distribution 1) over R.
Let w be a half of the number of Z},;, that is, w = |Z3,/|/2. Generate random

polynomials a,aq,as ..., ay-1,0, < R4 Return the public parameter pp =

:l ¥

—
|
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6.1 Variant of Compact Multi-Key CKKS Scheme

ReCMK-CKKS covers how to generate a modified multiplication key and a modified
rotation key and how to operate multiplication between ciphertexts and rotation in the

ciphertexts. The rest of the algorithm is the same as that in Section[2.4]

* ReCMK-CKKS.MultKeyGen(s;, x;): Set the modified multiplication key as
mk; =a-x; +e; +s; mod gq,

where e; < 1.

* ReCMK-CKKS.ComMultKey(mkq, ..., mkj_1): Given all users’ modified mul-
tiplication keys mk; = a - x; + e; + s;, the server generates a common modified

multiplication key

k—1
mk:ka:i:a':c+e+s mod gq.
i=0

* ReCMK-CKKS.Mult(cty, cty; (pk, mk)): Given two ciphertexts ctg and ct; at

level gy, compute ct = ctg ® cty € R;l , and return the ciphertext
ct < ReCMK-CKKS Relin(ct; (pk, mk)) € R,

as described in Algorithm [6.1]

* ReCMK-CKKS.RotKeyGen(s;, j; 7¢, (i), T, (si)): For each user i, fixed j €

{1,2,...,w}, and t1, ty € Z}, set the modified rotation key

(t1,t2)
rk; = (aj, kit ki)
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Algorithm 6.1 Relinearization of CKKS using the Re-RLWE

Input : ct = (éy,¢1,¢2,¢63), a common public key (a,b), a common modified
multiplication key mk

Output : ¢t = (¢, ¢1) € RZ,

1: fo < ab+mk

2: f1 — b?

3:¢p ¢+ ¢+ ¢y fo mod g

4:¢1 ¢34+ ¢ f1 mod gy

as

(1) @4, € < 1.
(i) Setrk;s, = —aj-s; +x; + 7, (s;) mod q.

(iii) Setrk;y, = —aj -z +e; + 7, (si) — 7, (si) - a; mod gq.

. ReCMK—CKKS.ComRotKey(rkétl’t2), . ,rk,(i’f)): Given all users’ modified
(t1,t2) _ (

rotation keys rk; aj,rkit ki, ), the server generates a common mod-

ified rotation key rk(1%2) = (a;, 7k, , rkt,) as

k—1

rky, = Z rkit, mod g
i=0
k—1

rkt, = Z rkit, mod g.
i=0

+ ReCMK-CKKS.Rot(ct; rk(*1:2) t) Given a ciphertext ct at level gy, compute

and return the ciphertext ct as described in Algorithm[6.2]

Remark 6.1. In the CKKS scheme, not only rescaling method but also the special
modulus technique is used to prevent the error from rapidly increasing. See [lI7]],[18],

and [24] for details.
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Algorithm 6.2 Rotation using the Re-RLWE

Input : ct = (cp,c1), a common rotation key rk®:2) = (aj;,rky,,rks,) and
t€Zsn
Output : ct = (¢g,¢1) € Rgz
1: Compute ct = (&, ¢1) = (1¢(co), 7¢(c1))
2:Ift =tq;
3: ¢p < ¢p-aj mod g

Cl1 <+ €1+ ¢ ’r‘ktl mod ¢.
else if t = to;

2

Co < Cp - aj mod q.

4:
5:
6:
T: G ¢+ ¢ (rkey, +aj - k) mod gy

6.2 Variant of Compact Multi-Key BFV Scheme

The variant of the CMK-BFV (ReCMK-BFV) scheme is almost similar to ReCMK-CKKS
defined in Section[6.1] However, there is only a slight difference in the algorithm of re-
linearization. In this section, we propose a variant of the multiplication of ReCMK-BFV

as follows.

* ReCMK-BFV.Mult(cty, ct1; (pk, mk)): Given two ciphertexts cty and cty, com-

pute ct = ctg ® cty € Rg , and return the ciphertext
ct + ReCMK-BFV.Relin(ct; (pk, mk)) € RZ,

as described in Algorithm[6.3]

Algorithm 6.3 Relinearization of BFV using the Re-RLWE

Input : ct = (é,¢1,¢2,¢3), a common public key (a,b), a common modified
multiplication key mk

Output : ct = (¢, ¢1) € Rgé

1: Compute &, = | %¢;] mod g

1: fo < ab+mk

2: f1 — b?

3:¢o &) + ¢+ ¢ - fo mod g

4:¢1 « 5+ ¢+ f1 mod g
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6.3 Correctness, Security, and Comparison

In this section, we show the correctness, security, and comparison of ReCMK-HE
schemes. Since ReCMK-CKKS and ReCMK-BFV are defined similarly, we only con-
sider ReCMK-CKKS. It is similar to the case of ReCMK-BFV.

6.3.1 Correctness

First, we show the correctness of multiplication in the proposed scheme. Let s =
Zi':ol si € Rqand sk = (s,1) € Rg be a secret key. Let ct = (cg, ;) and ct’ =
(¢, ¢}) be ciphertexts corresponding to the messages m and m’ with secret key sk,
respectively. For multiplication, let ct* = (¢, ¢;*) be multiplied by ct and ct’ from
Algorithm Note that ct ® ct’ = (coc), c1¢h, coc), c1c}). Since (ab + mk, b?) satis-

fies that

((ab + mk,b%), sk) = (ab+ mk) - s + b
—a-s-b+mk-s+ b
=(z—0b)-b+mk-s+b?
=z-(—a-s+z)+(a-z+e+s)-s

=22 te-s+ 32,
the ciphertext ct™ satisfies that

(ct*,sk)y =cj - s+cf
~ c1c) + (erch + cocy) s+ cocy - (fo- s+ f1)
= c1c) + (c1¢)y + coc)) - s+ coch - (s + 22 +e- 5)
= c1¢) + (c1¢h + cocy) - s+ cocly - s

=m-m mod q.
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Second, we show the correctness of rotation in the proposed scheme. For rota-

rott rott
(

tion, let t € Z%, and let ct™" = (™, ¢{°*) be the rotation of ct = (o, c1) from

Algorithm[6.2] Note that 74 (ct) = (7¢(co), 7¢(c1)) and

rki, +aj - rky = —aj - v+ e+ T,(8) — 14,(8) - a; +aj - (—aj - s+ x4+ T1,(5))

—a? -5+ e+ T,(s).
If t = t1, we have

(et sk) = 1, (co) - aj - s+ 74, (c1) + 71y (co) - Thyy

7, (c1) + 7, (co) - 7, (8) + 74, (o) - @

(

71, (co) - aj - s+ 1, (1) + 7y (o) - (—aj - s+ 2+ 71, (8))
(
Tt (

c1+eo-s)+ (o) x

If t = t9, we have

(ct™%2 sk) = 1, (co) - af - s+ 1, (c1) + T, (co) - (The, + aj - ki)

2
J
2
J

=71, (c0) - af - 5 + iy (c1) + T (o) - (—af s+ e+ 7y (5))

(

(

= 71, (c1) + Tey(c0) - Ty (5) + Tty (o) - €
Tiy(c1 4 co - 8) + Ty (o) - €

6.3.2 Security

In this subsection, we prove that the proposed scheme satisfies the indistinguishabil-
ity under chosen-plaintext attack (IND-CPA) security. we first show that the public
key with the modified multiplication key is computationally indistinguishable from a

uniform distribution over Rg. It is similar to the case of the rotation key.

Theorem 6.1. The distribution of public keys with the modified multiplication keys

is computationally indistinguishable to a uniform distribution over Rg under the as-
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sumption of Re-RLWE and circular security.

Proof. Let pp be the Re-RLWE, ,, parameter generated in ReCMK-HE.Setup, where

w = Zj . We define the distribution Dy = {a, b, mk} over R} as follows:
(i) a< Rgand s < x,x < Y,and b= —a-s+x mod ¢
(ii) e<—vYandmk=a-z+e+s mod gq.

Now, we consider the distribution D; over R, which is obtained from Dy by modify-

ing its definitions (i) and (ii) into
(i) a <+ Rgand b« R,
(i)’ mk < Ry.

From Theorem and the circular security, we obtain that Dy and D; are computa-

tionally indistinguishable. O

Now, we will show that the ReCMK-CKKS is IND-CPA secure under the Re-RLWE

assumption with parameter pp < ReCMK-HE.Setup.

Theorem 6.2. Let pp < ReCMK-HE.Setup be the Re-RLWE parameter generated in
the setup phase. Then the ReCMK-CKKS is IND-CPA secure under the RLWE and the

Re-RLWE assumptions with parameter pp.

Proof. Let A be an IND-CPA adversary for the ReCMK-CKKS. We consider a series
of hybrids, where Adv[A] denotes the success probability of A in hybrid H.

* Hybrid Hy: This is identical to the IND-CPA game, where the adversary gets
a distributed public key (a,b) generated by CMK-CKKS.ComPk and the mod-
ified multiplication key mk generated by ReCMK-CKKS.ComMultKey. Also,

the adversary gets encryption ctg and ct; of mg and m, respectively, computed
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using CMK-CKKS.Enc. Note that the public key with the modified multiplica-

tion key consists of
(a,b,mk) :==(a,—a-s+z,a-x+e+p-s),

where a <— Ry, s < X, and z,e < 1. Assume that there is a polynomial #(-)

such that

Advy,[A] := |Pr[A((a, b, mk),ctyg) = 1] — Pr[A((a, b, mk),cty) = 1]| > 1/t(\),
(6.1)

where ct; = CMK-CKKS.Enc(m;; pk = (a, b)) fori = 0, 1.

* Hybrid H;: The hybrid H; is identical to Hy except that b of the public key and

the modified evaluation key d are chosen to be uniformly at random from R,.

In H;, the public key and modified multiplication key are uniformly at random. Also,
mk is independent of (cg, ¢1) and (a, ¢p) and (b, ¢1 ) are computationally indistinguish-
able from the uniform distribution over Rg since they can be viewed as two RLWE

samples of secret v. Thus, we obtain that
Advy, [A] = negl(N). (6.2)
Now, we claim that
|Adv g, [A] — Adv, [A]] < negl(\). (6.3)

A ciphertext is generated by adding an encoded plaintext to a random encryption of
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zero. Hence we consider the random variables (a, b, d, ¢y, ¢1) over Rg defined by

a<+ Ry
b+ —a-s+2 modgqg

mk+a-r+e+s modagq,

where s < x, x,e < 1, and (cp,c1) = v- (a,b) + (eg, e1) for v <— y and eg, €1 < .
Now, we change the definition of (b, mk) as b < R, and mk < R,. Then it is
computationally indistinguishable by the Re-RLWE assumption with parameter pp.

This means that
|Adv i, [A] — Advy, [A]| < negl()).

By combining and (6.3)), we obtain

Advp, [A] < Advg, [A] + |Advy, [A] — Advy, [A]|

= negl(}),
which contradicts to (6.1). O

6.3.3 Comparison

In this subsection, the numerical results of the proposed scheme are compared to those
in [1]. In our implementation, every number is stored as an unsigned 64-bit integer.
Our implementation is performed on a computer with AMD Ryzen Threadripper PRO
3995WX CPU @ 2.70GHz processor on a multi-threaded mode. Also, the simula-
tion utilizes the open-source in [42] and [43]]. Table @ shows the parameters used
in CMK-CKKS and ReCMK-CKKS. In Table the multiplication time is slightly
increased by several milliseconds, but the multiplication key size is reduced by half.

The rotation time performed twice also increases slightly. However, two rotation key
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sizes created to perform two rotations can be reduced by about 3/4. Therefore, the
proposed scheme is more suitable for homomorphic encryption in limited memory
environments.

Table 6.1: Parameters for compact multi-key CKKS

ID | logN | logg | logg; | No.of g;’s
I 13 218 | 49-60 4

il 14 438 | 53-60 8

I 15 881 | 54-60 16

Table 6.2: Comparison of keys and operations for each parameter in [[1] and the pro-
posed one

D Mult. Mult. Two Rot. Two Rot.
key size (MB) | time (ms) || key size (MB) | time (ms)
I 1.18 46.19 2.36 77.41
[ II 4.46 86.94 8.92 144.86
111 17.3 170.18 34.6 296.55
I 0.59 49.28 1.77 82.04
The proposed II 2.23 88.39 6.68 155.55
111 8.65 178.21 25.95 316.58
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Chapter 7

CONCLUSION

In this dissertation, the various reduction from MSIS to RSIS under some norm con-
straint of RSIS, and the ReCMK-HE scheme based on Re-RLWE are studied.

First, we showed that the RSIS,; ;,, 5 problem is more difficult than the MSIS jx ,,, g/
problem, where 3/ = m%(d_l)ﬁk(zd*”. To show the reduction from MSIS x .k 5 to

RSIS, .3, we derived two reductions:

(i) the reduction from RSIS & .k gk 10 RSIS, 1, 5,

(ii) the reduction from MSIS  ,,, 5 t0 RSIS  ,,, 5.

To prove (i), we used the property that the solution of RSIS, ,,, 3 is relatively prime

to ¢. By finding m distinct solutions for RSIS we showed (ii). In (ii), we imposed

qk,m,B>
the upper bound 3 on the norm of the solution of RSIS ,,, 3. Combining the two
reductions, we showed that it is possible to reduce MSIS ;. g to RSISy ;;, . Since
[ was imposed, we obtained the range of possible ranks of module d, which depends
on the value of parameter q.

Second, we derived the reduction from MSIS 4 to RSIS; ., 5, where v =

c,mk,

q%(t\/m)k(d_l),é’kd and c is a composite integer that has a factor ¢* for some k > 1.

To show this reduction, we proposed the three reductions:
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(i) the reduction from MSIS, ,,, g, to RSIS, ,;, 3,
(ii) the reduction from MSIS ;. 5, t0 RSIS, 1, 5,

(iii) the reduction from MSIS x .k . t0 MSIS_ k5.,

where 81 = (ty/m)4=15%, By = B = (ty/m)*(d=1) gkd ¢ is a composite integer with
a factor ¢*, and v = P2 = q%(t\/ﬁ)k(dfl)ﬁkd.

To show (i), we devised the new method to find m distinct solutions of RSIS, ,, 3.
This new method is to add randomness to the algorithm for solving RSIS, ,, g. Thus,
we can devise an algorithm that gives m distinct solutions to the same instances of
RSIS. Compared to the previous work [40], this reduction is preserved the same mod-
ulus and ring dimension. Also, the possible range of module rank for reduction from
MSIS; m g to RSIS, ., 3 could be doubled compared to that of Section

To show (ii), we derived the method extending the reduction from RSIS jx ,,x gk tO
RSIS, m,3 shown in Theoremto the reduction from MSIS k x5, t0 MSIS, 1, 5,
where By = Bf = (ty/m)*4=D gk Also, we showed that MSISx .k 5,
difficult than MSISx ;. g, defined in Chapter where 53 = mg(d_l)ﬁk@d_l) for

is more

k > 1 using the fact that MSIS becomes more difficult when the upper bound of MSIS
is tighter. This means that RSIS is more difficult than MSIS, which is tighter than
the MSIS in Chapter [3| In Chapter [3| all reductions depend on the prime modulus gq.
However, in Chapter [ we proposed the reductions between the MSIS problems with
the different modulus. Combining three reductions, we obtained the reduction from

MSIS, i - t0 RSIS . m -

e;mk,

Third, we proposed a variant of RLWE by reusing error, called Re-RLWE, where
we can reduce the sizes of the multiplication key and the rotation keys. To define this
problem, we defined the Re-RLWE distribution As,w over R, x Ry x Ry, which is
generated by choosing a < R, uniformly at random, choosing x, e < 1, and output

(a,b,c),whereb =a-s+x mod qR,and c = a-x+e mod gR. Next, we defined

the Re-RLWE problem, which is to distinguish with non-negligible advantage between
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the sample from A s,»» and the uniformly at random from R, x R, x R,. And we proved
that the RE-RLWE problem is more difficult than the RLWE problem.

Lastly, we suggested the variant of CMK-HE, called ReCMK-HE, which has the
modified multiplication keys and the modified evaluation keys with a reduced key size.
Due to the modified multiplication key and the modified rotation key, the multiplica-
tion and rotation operation times increased slightly. However, the multiplication key
was reduced by about half, and the rotation keys were reduced to 3/4 compared to the

original scheme [1].
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