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Abstract

In this dissertation, four contributions are given as i) the reduction from module-

short integer solution problem (MSIS) to ring-short integer solution problem (RSIS),

ii) the improved reduction from MSIS to RSIS, iii) the introduction to the variant of

RLWE (Re-RLWE) and the hardness of Re-RLWE, and iv) the variant of the compact

multi-key homomorphic encryption (ReCMK-HE) based on Re-RLWE.

First, we propose the reduction from MSIS to RSIS under some condition on RSIS.

To demonstrate this reduction, we derive two reductions. We first show that there is

a reduction from RSISqk,mk,βk to RSISq,m,β . Second, we propose the reduction from

MSISqk,mk,β1 to RSISq,m,β under some norm constraint of RSIS. Combining these

two results implies that RSIS for a specified modulus and the number of samples is

more difficult than MSIS under norm constraint of RSIS, which provides the range of

possible module rank for MSIS.

Second, we propose the improved reduction from MSIS to RSIS. To prove this re-

duction, we show that RSIS is more difficult than MSIS with the same modulus and

ring dimension under some constraint of RSIS. Also, we show that through the reduc-

tion from MSIS to RSIS with the same modulus, the rank of the module is extended as

much as the number of instances of RSIS from half of the number of instances of RSIS.

Next, we show that MSIS is more difficult than MSIS defined in the previous one. Also,

we propose that MSIS with the modulus prime qk is more difficult than MSIS with the

composite modulus c, such that c is divided by q. Through the three reductions, we

conclude that RSIS with the modulus q is more difficult than MSIS with the composite

modulus c.

Third, we propose the variant of RLWE, denoted by Re-RLWE by reusing the error

x as a secret when generating the RLWE sample (a, b = a·s+x). That is, the Re-RLWE

sample is generated in the form (a, b = a ·s+x, c = a ·x+e). To define this problem,
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we define the Re-RLWE distribution and prove the hardness of Re-RLWE.

Lastly, we propose the variant of the compact multi-key homomorphic encryption

ReCMK-HE based on Re-RLWE. This scheme has the modified multiplication keys

and the modified rotation keys with the reduced size of key compared to the original

CMK-HE.

keywords: Learning with errors (LWE), module-lerarning with errors (MLWE),

module-short integer solution problem (MSIS), multi-key homomorphic encryption

(MK-HE), ring-learning with errors (RLWE), ring-short integer solution problem

(RSIS), short integer solution problem (SIS)

student number: 2018-38217
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Chapter 1

INTRODUCTION

1.1 Background

Many cryptographic schemes are based on problems that are difficult to solve on

computers, including the Rivest-Shamir-Adleman (RSA) based on prime factor de-

composition and the elliptic curve cryptographic (ECC) scheme based on the dis-

crete logarithm problem (DLP). Since the prime factor decomposition problem and

DLP take a long time to solve on computers, cryptographic schemes based on these

problems have been considered secure. However, due to the quantum computer’s de-

velopment, it is known that many cryptographic schemes can be broken using quan-

tum algorithms operated on quantum computers [2]. Therefore, candidates of cryp-

tographic schemes that are resistant to quantum computers have been actively re-

searched. The representative candidates are lattice-based cryptography, code-based

cryptography, multivariate polynomial-based cryptography, and isogeny-based cryp-

tography. Among them, the diverse forms of lattice-based cryptography such as public-

key cryptographic schemes, signature schemes, and key encapsulation mechanisms are

submitted to NIST post-quantum cryptography (PQC) standardization competition for

the advantages of small-sized key and efficiency as well as security [3].

Lattice-based cryptographic schemes are based on hard problems such as the short-
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est independent vector problem (SIVP), which is known to reduce to short integer

solution (SIS) problem and learning with errors (LWE) problem. The SIS problem

introduced by Ajtai in 1996 [4] has been used to construct many lattice-based crypto-

graphic schemes. The SIS problem is defined as follows: Let Z and R denote the sets

of integers and real numbers, respectively. Let Zq denote the set of integers modulo

q. For any positive integers m,n, given positive real number β ∈ R, and positive in-

teger q, the SIS problem is to find solution z ∈ Zm such that A · z = 0 mod q and

0 < ∥z∥ ≤ β for uniformly random matrix A ∈ Zn×mq . A one-way function can be

constructed from the SIS problem [5], and then many cryptographic schemes can be

constructed from one-way function [6], [7], [8].

The LWE problem has two versions, that is, the search LWE and the decision LWE

problems. The search LWE problem is defined as follows: For given dimension n and

positive integer q and the error distribution χ on Z, the search LWE problem is to find

s for many given independent pairs (a, 1q ⟨a, s⟩ + e) for a ∈ Znq chosen uniformly at

random and error e ← χ. The decision LWE problem is to distinguish between many

arbitrarily independent pairs (a, 1q ⟨a, s⟩ + e) and the same number of samples (c, d),

c ∈ Znq and d ∈ Zq from the uniform distribution over Zn+1
q .

Most public key cryptosystems and homomorphic encryption algorithms on a lat-

tice are constructed based on the LWE [8], [9], [10]. However, cryptographic schemes

based on LWE or SIS are inefficient because the size of the key is too large. To over-

come this problem, we use the ring-LWE (RLWE) and the ring-SIS (RSIS), which are

defined over the ring, that is, the polynomial ring [11]. These problems are also as hard

as Id-SIVP, where Id-SIVP is the SIVP problem defined on the ideal lattice with a ring

structure.

The module structure is an algebraic structure that generalizes ring structure. Then

the module lattice can be seen as a generalized structure of an arbitrary lattice and

ideal lattice. Therefore, LWE and SIS, both of which can also be defined on the module

lattice, are termed as the module-LWE (MLWE) problem and the module-SIS (MSIS)
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problem, respectively. Similar to the ideal lattice, both problems are as difficult as the

Mod-SIVP [12].

Generally, MSIS is more difficult than RSIS in the polynomial ring. If there is an

algorithm A for solving MSIS, the instance of MSIS becomes the instance of RSIS

when the module rank is one. Then the algorithmA can be used to find the solution of

RSIS. This method can similarly be used to the reduction from RLWE to MLWE. Thus,

when a lattice-based cryptographic scheme is constructed, MLWE and MSIS having a

module structure are preferred as fundamental difficulties of the scheme because of the

reduced key-size and security reason.

However, the problem with the module structure is not always more difficult than

the problem with the ring structure. In Asiacrypt 2017, Albrecht and Deo showed

that there is a reduction from MLWE to R-LWE [13], by handling the error rate and

modulus in the M-LWE and R-LWE problems. Specifically, M-LWE with error rate

α, modulus q, and the rank of module d reduces to RLWE with error α · n2
√
d and

modulus qd. Unlike the LWE problems, the SIS problems do not have an error rate;

instead, there is the upper bound β on the norm of the solution of RSIS and we can use

the upper bound while retaining the same parameters qk and m for the reduction from

M-SIS to R-SIS.

Also, the cloud computing service that provides on-demand resources for compu-

tation through a network is actively used, and AIaaS (AI as a Service), which provides

various AI-based functions to customers, is also attracting much attention. However,

when an outsourcing server processes customer information, privacy problems arise in

processing sensitive personal information. To overcome this problem, the cloud com-

puting service and AIaaS use a cryptographic scheme. In particular, homomorphic

encryption (HE), which enables computations on encrypted messages, has been de-

veloped over the past few years. HE is developed by Gentry [14], but it is impractical.

Many HE schemes have been made practical with various improvements and optimiza-

tions [15, 16, 17, 18, 19, 20]. And thus the cloud computing service and AIaaS use the

3



HE scheme to protect sensitive information [21, 22, 23].

However, HE is not always an appropriate solution when many users are involved

in a server. In the conventional single-key HE for multiple users and a single server, the

public key generated by one user with the secret key should be shared between users,

and each uses encrypted private data using the shared public key. However, there is a

possibility that a dishonest user with a secret key corresponding to the shared public

key can access other users’ data. To solve this problem, the multi-key HE (MK-HE)

[24, 25] allows each user to generate its own secret/public key pair, and a server per-

forms homomorphic operations using all users’ public keys. Therefore, when many

users simultaneously participate in the cloud computing service and AIaaS, MK-HE is

more appropriate than HE [26, 27]

Even though there are research papers to implement practical MK-HE schemes

[24, 25], we still have two problems to be solved. First, ciphertext expansion occurs

as homomorphic operation proceeds. This expansion is proportional to the number of

users. Second, MK-HE is possible only when all users’ public keys are possessed in

the server.

In [28], the ciphertext size in MK-HE is significantly reduced. However, the com-

putation and memory costs are still higher than those of underlying single-key HE.

As a partial solution to overcome the ciphertext expansion and the large public key

size, there are variants of MK-HE schemes with the pre-defined number of users to

create a common public key. And thus, the ciphertext expansion is not depending on

the number of users, and the public key size possessed in the server can be reduced

[29, 30, 31, 1]. The MK-HE that achieves multi-key security and no ciphertext expan-

sion that depends on the number of users is called the compact MK-HE (CMK-HE).

To perform CMK-HE, each user should generate multiplication keys and rotation

keys. However, when the user’s computer resources are limited, it may be difficult

to generate a large amount of multiplication keys and rotation keys. Also, it can be

difficult for the server to hold a huge amount of multiplication keys and rotation keys
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for each user.

1.2 Overview of Dissertation

This dissertation is organized as follows.

In Chapter 2, basic notations of ideals, modules, canonical embedding, and lattices

are presented as preliminaries for understanding the whole of this dissertation. Then,

the definitions of lattice problems, RLWE, RSIS, and MSIS are introduced. Also, we

present the CMK-HE schemes, which are CMK-CKKS and CMK-BFV.

In Chapter 3, we propose one of main contributions that there is a reduction from

MSIS to RSIS under some norm constraint of RSIS, This means that RSIS is more diffi-

cult than MSIS. To prove the statement, we derive two reductions, that is, the reduction

from RSISqk,mk,βk to RSISq,m,β and the reduction from MSISqk,m,β1 to RSISqk,m,β un-

der some condition on the upper bound β on the norm of the solution of RSISqk,m,β

for any k > 1. Due to the condition of RSIS, we also include an analysis of the range

of the module rank defining the MSIS. Figure 3.4 summarizes the overview of the

contributions for Chapter 3.

In Chapter 4, we propose the improved reduction from MSIS to RSIS. To improve

the reduction, we propose a new method to find m distinct solutions for RSIS. Us-

ing the new method, we derive the reduction from MSISq,m,(t
√
m)d−1βd to RSISq,m,β .

Also, we propose the various reduction among the MSIS problems, which lead to the

reduction from MSISc,mk, c

qk
(t
√
m)k(d−1)βkd to RSISq,m,β for the modulus c such that qk

divides c for some k ≥ 1. Figure 4.5 summarizes the overview of the contributions for

Chapter 4.

In Chapter 5, we propose the variant of RLWE. This problem reuses the error used

in the RLWE. To define the variant of RLWE, we first define the variant of RLWE

distribution. Then, we define the variant of RLWE problem, and prove the hardness of

this problem.
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In Chapter 6, we propose the variant of CMK-HE scheme based on the variant

of RLWE. This scheme has the modified multiplication keys and the rotation keys,

which are the reduced size of keys compared to the original scheme. Also, we show

the correctness, and security and compares them with previous work [1].

Finally, the conclusion is given in Chapter 7.
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Chapter 2

PRELIMINARIES

2.1 Notation

2.1.1 Ideal and Module

Let Φ(X) be a monic irreducible polynomial of degree n and Q be the set of rational

numbers. We will use the 2n-th cyclotomic polynomial Φ(X) = Xn + 1 with n = 2r

for some positive integer r. Consider the cyclotomic field K = Q[X]/⟨Φ(X)⟩ and

define R as the ring of integer polynomial modulo Φ(X), that is, R = Z[X]/⟨Φ(X)⟩.

Conveniently, we refer to R as the polynomial ring. A non-empty set I ⊆ R is termed

as an ideal of R if I is an additive subgroup of R and for all r ∈ R and all x ∈ I ,

r · x ∈ I . The quotient R/I is the set of equivalence classes r+ I of R modulo I . Let

q be a positive integer and let Rq = R/qR. In [11], it is shown that Rq is isomorphic

to I/qI for a given ideal I of R using the Chinese remainder theorem. A subset M ⊆

Kd is an R-module if M is closed under addition and under scalar multiplication by

elements of R. The module M generalizes the ring and the vector space. It is known

that M/qM is isomorphic to Rdq [12]. Hereinafter, vectors are denoted in bold and if a

is a vector, then its i-th coordinate is denoted by ai. A matrix is denoted by uppercase

letter in bold.

7



2.1.2 Canonical Embedding and Norm

In [12], the canonical embeddings are the n ring homomorphisms σj : K → C for all

j = 1, . . . , n, where C is the set of the complex numbers. They are defined by σj(X) =

ξj , where ξ is the solution of Xn + 1 for any j ∈ Z×2n with n = 2r for some positive

integer r, where Z×2n denotes the set of integer j module 2n such that gcd(j, 2n) = 1.

We define the canonical embedding vector as the ring homomorphism σC : K → Cn

as σC(x) = (σj(x))j∈Z×
2n

under component-wise addition and multiplication. The

trace Tr : K → Q is defined as Tr(x) =
∑

j∈Z×
2n
σj(x). For any x, y ∈ K, Tr(x ·y) =∑

j∈Z×
2n
σj(x) · σj(y) = ⟨σC(x), σC(y)⟩, where ⟨·, ·⟩ is the Hermitian product on Cn.

For any a ∈ K, we define the norm of a as

∥a∥ = ∥σC(a)∥ =

 ∑
j∈Z×

2n

|σj(a)|2
1/2

.

Also, for any a = (a1, . . . , ad) ∈ Kd, we define the norm of a as

∥a∥ =

(
d∑
i=1

∥ai∥2
)1/2

=

 d∑
i=1

∑
j∈Z×

2n

|σj(ai)|2
1/2

.

2.1.3 Space H

Let J denote [−n
2 ,

n
2 ] ∩ Z×2n. We define the space H as the subspace of Cn such that

H = {(xj)j∈Z×
2n
∈ Cn : ∀j ∈ J, x2n−j = xj}.

Let hj = 1√
2
(ej + e2n−j) and h2n−j =

i√
2
(ej − e2n−j) for j ∈ J, where ej denotes

the standard basis vector. Then hj’s are the basis of H . For x ∈ K, we define σH(x)

by σH(x) = (xj)j∈J ∈ Rn such that σC(x) =
∑

j xj · hj .

8



2.1.4 Gaussian Measure

For the center c ∈ Rn and real number s > 0, the Gaussian function is defined by

ρs,c(x) = exp(−π∥x−cs ∥
2) for all x ∈ Rn. We can obtain the Gaussian probability

distribution by using the normalization, that is,Ds,c(x) = ρs,c(x)/s
n. If the center c is

to be zero, we omit the subscript c. A sample fromDr over Rn is given by (Dri)i=1,...,n

for r = (r1, . . . , rn)
T ∈ (R+)n, where R+ denotes the set of non-negative real num-

bers. For α > 0, we write Ψ≤α to denote the set of Gaussian distributions that satisfy

ri ≤ α for all i.

2.1.5 Lattices

An n-dimensional lattice is a discrete subgroup of Rm, where R is the set of real

numbers. Specifically, for linearly independent vectors {b1, . . . ,bm}, bi ∈ Rm, for

all i = 1, . . . ,m, the set

L = L(b1, . . . ,bm) =

{
n∑
i=1

xibi : xi ∈ Z

}

is a lattice in Rm with the basis {b1, . . . ,bm}. Also the dual lattice of L∗ is defined as

L∗ = {x ∈ span(L) | ∀v ∈ L, ⟨x,v⟩ ∈ Z}.

A lattice is an ideal lattice if it is isomorphic to some ideal I of R. Similarly, a lattice

is a module lattice if it is isomorphic to some R-module M [12].

The i-th successive minimum λi(L) is the smallest radius r such that L con-

tains i linearly independent vectors of norm at most r.
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2.2 Lattice Problems

In this section, we introduce the lattice problems, learning with errors (LWE) and

short integer solution (SIS). First, we consider the shortest independent vector problem

(SIVP).

Definition 2.1 ([12]). SIVP is defined as follows: Given a lattice L of dimension n,

SIVP is to find the n linearly independent vectors v1, . . . ,vn ∈ L such that maxi∥vi∥ ≤

γ · λn(L), where γ ≥ 1 is a function of dimension n.

This problem is known to be NP-hard for any approximation factor γ ≥ O(1)

[32]. SIVP can be extended to the polynomial ring R if the lattice L is the ideal lattice,

denoted as Id-SIVP. Similarly, if the lattice is the module lattice, we can extend this

problem to the module, denoted as Mod-SIVP.

In [33], it is proved that there is a reduction from SIVP to LWE and SIS. This

means that LWE and SIS are also NP-hard. And thus, many lattice based cryptographic

scheme is based on LWE and SIS. However, lattice cryptographic scheme based on

LWE and SIS is inefficient. To overcome the inefficiency, there are the ring variant of

LWE and SIS, called RLWE and RSIS. It is shown that RSIS and RLWE are as hard as

Id-SIVP defined on the ideal lattice [11]. Also, there are the module variant of LWE

and SIS, called MLWE and MSIS. It is shown that MSIS and MLWE are as hard as

Mod-SIVP defined on the module lattice [12]. In the next subsections, we introduce

RLWE, MLWE, RSIS, and MSIS.

2.2.1 Learning with Errors

First, we define the LWE problem. This problem was introduced by Regev in 2005

[34]. To define the problem, we define the LWE distribution.

Definition 2.2 (LWE distribution). For given dimension n, positive integer q, s⃗ ∈ Znq ,

and the error distribution ψ on Z, a sample from the LWE distribution As⃗,ψ over

10



Zn×Zq is generated by choosing a⃗← Znq uniformly at random, choosing e← ψ, and

outputting (⃗a, b = ⟨⃗a, s⃗⟩+ e mod q) ∈ Zn+1
q .

Definition 2.3 (LWE problem). The average case decision version of the LWE prob-

lem, denoted LWEq,ψ is to distinguish with non-negligible advantage between indepen-

dent samples fromAs⃗,ψ and the same number of uniformly at random and independent

samples from Zn+1
q , where s⃗← Znq is uniformly at random.

We can extend LWE to a matrix version.

Definition 2.4 (LWE problem, matrix version). For given n,m, q positive integers, and

the error distribution ψ on Z, the decisional LWE problem asks to distinguish between

distribution (A, s⃗A+ e⃗) and the uniform distribution over Zn+1
q , where A← Zn×mq ,

and e⃗← ψm, and s⃗← Znq .

The following lemma means that it satisfy that reduces the LWE problem to one in

which secret itself it chosen from the error distribution ψ.

Lemma 2.1. There is a deterministic polynomial transformation T that, for s⃗ ← Znq
and error distribution ψ, maps As⃗,ψ to Ax⃗,ψ, where x⃗← ψn.

Although many lattice-based cryptographic schemes are constructued based on

LWE, they are quite inefficient in terms of key size. To overcome this inefficiency, we

define the ring learning with errors (RLWE).

To define the RLWE problem, we define the RLWE distribution. For polynomial

ring R in cyclotomic field K, its dual is defined as R∨ = {x ∈ K : Tr(xR) ⊆ Z}.

Let KR = K ⊗Q R and TR∨ = KR/R
∨, where ⊗ denotes the tensor product. Let

ψ be a distribution on TR∨ . Let Ψ be a family of distribution over KR and D be a

distribution over R∨q .

Definition 2.5 (RLWE distribution). For s ∈ R∨q , let A(R)
q,s,ψ denote the distribution on

Rq×TR∨ obtained by choosing a ∈ Rq fromU(Rq) and e← ψ, and returning (a, 1q (a·
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s)+e), whereU(Rq) denotes the uniform distribution overRq. This distributionA(R)
q,s,ψ

is referred to as the RLWE distribution.

Definition 2.6 (RLWE problem, [12], [13]). The decision and search RLWE
(R)
m,q,Ψ(D)

problems are defined as follows: Let s ∈ R∨q be uniformly random. RLWE
(R)
m,q,Ψ(D) is

to distinguish between arbitrarily many independent m samples from A
(R)
q,s,ψ and the

same number of independent samples from the uniform distribution over Rq × TR∨ ,

where ψ is an arbitrary distribution in Ψ and s ← D. The search RLWE
(R)
m,q,Ψ(D),

denoted by S-RLWE
(R)
m,q,Ψ, is to find the secret s← D from many samples ofA(R)

q,s,ψ(D).

Similarly, we define the LWE problem on module M = Rd, which is the general-

ization of ring and vector space.

Definition 2.7 (MLWE distribution). For s ∈ (R∨q )
d, we define A(M)

d,q,s,ψ as the distri-

bution on (Rq)
d × TR∨ obtained by choosing a vector a from distribution U((Rq)

d)

and e← ψ, and returning (a, 1q ⟨a, s⟩+ e).

Definition 2.8 (MLWE problem, [12], [13]). The decision and search MLWE
(M)
m,q,Ψ(D)

problems are defined as follows: Let s ∈ R∨q be uniformly random. MLWE
(M)
m,q,Ψ(D)

is to distinguish between many arbitrarily independent samples from A
(M)
d,q,s,ψ and the

same number of independent samples from the uniform distribution over (R∨q )
d×TR∨ ,

where ψ is an arbitrary distribution in Ψ and s ← D. The search MLWE
(M)
m,q,Ψ(D),

denoted by S-MLWE
(M)
m,q,Ψ(D), is to find the secret s ← Dd of many samples from

A
(M)
d,q,s,ψ(D).

Generally, the MLWE (S-MLWE) problem is known to be harder than the RLWE

(S-RLWE). However, under some condition, the RLWE problem is more difficult than

the MLWE problem [13] as follows.

Theorem 2.1 ([13], Corollary 3). Let m be a positive integer and χ be a distribution

12



over R∨ satisfying

Prs←χ [∥σH(s)∥ > B1] ≤ δ1 and

Prs←χ

[
max
j

1

|σj(s)|
≥ B2

]
≤ δ2

for some (B1, δ1) and (B2, δ2). For α > 0 and any k > 1 that divides d > 1 and

r ≥
(
max{

√
n,B1B2}
q

)
·
√

2 ln(2nd(1 +m(d+ 3)))/π,

there exists a reduction from S-MLWE
(Rd)
m,q,Ψ≤α

(χd) to S-MLWE
(Rd/k)

m,qk,Ψ≤α′
(U(R∨q )) for

(α′)2 ≥ α2 + 2r2B2
1d.

Corollary 2.1 ([13]). If we take k = d, then there exists an efficient reduction from

S-MLWER
d

m,q,Ψ≤α
(χd) to S-RLWERm,q,Ψ≤α·n2·

√
d
(U(R∨q )) with controlled error rate α.

Definition 2.6 is a very interesting problem, but it is difficult to use the crypto-

graphic scheme. Now, we introduce the discretized version of RLWE. In particular, if

the error distribution ψ is supported on Rq, then the secret s can also be chosen from

ψ without affecting the hardness of the problem [35].

Definition 2.9 (RLWE distribution). For a secret s ∈ Rq and a distribution ψ over

Rq, a sample from the RLWE distribution As,ψ over Rq×Rq is generated by choosing

a ← Rq uniformly at random, choosing e ← ψ, and outputting (a, b = a · s + e

mod qR).

Definition 2.10 (RLWE problem). The average-case decision version of the RLWE

problem, denoted RLWEq,ψ, is to distinguish with non-negligible advantage between

independent samples from Aq,ψ and the same number of uniformly random and inde-

pendent samples from Rq ×Rq, where s← Rq is uniformly random.

Hereafter, we refer to the discretized version of RLWE as RLWE for convenience.
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2.2.2 Short Integer Solution Problem

We define the short integer solution problem, which is used in many lattice-based

cryptographic schemes such as signature schemes and identification schemes. This

problem, which was introduced by Ajtai [4], is defined as follows:

Definition 2.11 ([4], [12]). The SIS problem is defined as follows: Given A ∈ Zn×mq

chosen from the uniform distribution, SIS is to find z = (z1, . . . , zm)
T ∈ Zm such that

A · z = 0 mod q and 0 < ∥z∥ ≤ β.

In particular, to guarantee the non-trivial solution z ∈ Zm for the SIS problem, it

is clear that β is less than the modulus q. Indeed, if β ≥ q and A ∈ Zn×mq , then we

take the solution z = (q, 0, . . . , 0)T ∈ Zm such that A · z = 0 mod q.

It is proved [33] that there is a reduction from SIVP to the SIS problem. Thus, the

SIS problem is also NP-hard. The SIS problem is one of the most important problems

pertaining to lattices. Therefore, it is necessary to know the relationship among SIS

problems for various parameters. The following theorem shows the hardness of the

SIS problem in the integer ring, based on the modulus and the number of samples in a

previous work [36].

Theorem 2.2 ([36], Proposition 3.2). Let m,n be integers, q be a prime, and β be a

given real number such that q ≥ β ·ω(
√
n log n). Then for any positive integer k, there

is a deterministic reduction from SISqk,mk,βk to SISq,m,β .

Theorem 2.2 means that the SIS problem with modulus q and m samples is more

difficult than the SIS problem with modulus qk andmk samples for any positive integer

k.

We recall the RSIS and MSIS. RSIS was introduced by Peikert and Rosen and is

defined on R. Since the instance of RSIS is polynomial, the key size of the crypto-

graphic scheme based on RSIS can be smaller than that of the cryptographic scheme

based on SIS [37], [38].
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Definition 2.12 (RSIS problem, [12], [37]). The problem RSISq,m,β is defined as fol-

lows: Given a1, . . . , am ∈ Rq chosen independently from the uniform distribution,

the RSIS problem is to find z1, . . . , zm ∈ R such that
∑m

i=1 ai · zi = 0 mod q and

0 < ∥z∥ ≤ β, where z = (z1, . . . , zm)
T ∈ Rm.

The module structure is a generalized structure of ring. Thus, RSIS can be extended

to the module lattice, which is termed as the MSIS problem [12].

Definition 2.13 (MSIS problem, [12]). The problem MSISq,m,β is defined as follows:

Given a1, . . . ,am ∈ Rdq chosen independently from the uniform distribution, MSIS is

to find z1, . . . , zm ∈ R such that
∑m

i=1 ai · zi = 0 mod q and 0 < ∥z∥ ≤ β, where

z = (z1, . . . , zm)
T ∈ Rm.

MSIS is known to be more difficult than RSIS. Indeed, suppose that an algorithm

A exists for solving MSIS and let a1, . . . , am ∈ Rq be independently uniform in-

stances of RSIS. Also, we choose a(j)2 , . . . , a
(j)
d ∈ Rq from uniform distribution over

Rq for all j = 1, . . . ,m, where d is a module rank. Then aj = (aj , a
(j)
2 , . . . , a

(j)
d ) and

a1, . . . ,am are instances of MSIS. Using the algorithmA for solving MSIS, we obtain

a solution z = (z1, . . . , zm)
T such that

m∑
i=1

ai · zi = (

m∑
i=1

ai · zi,
m∑
i=1

a
(i)
2 · zi, . . . ,

m∑
i=1

a
(i)
d · zi)

= 0 mod q

with ∥z∥ ≤ β. Since
∑m

i=1 ai · zi = 0 mod q and ∥z∥ ≤ β, we find the solution of

the instance of RSIS.

2.3 Multi-Key Homomorphic Encryption

In this section, we fisrt define the multi-key homomorphic encryption (MK-HE). This

scheme is a cryptosystem which allows us to evaluate an arithmetic circuit on cipher-

texts, possibly encrypted under different keys. To define the MK-HE, we assume that
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each participating users has an index to its public and secret keys. A multi-key cipher-

text implicitly contains an ordered set T = {id0, . . . , idk−1} of associated indices.

Definition 2.14 (Multi-Key Homomorphic Encryption). LetM be the message space

with arithmetic structure. MK-HE consists of five probabilistic polynomial time algo-

rithms (Setup,KeyGen,Enc,Dec,Eval).

• Setup: pp ← MK-HE.Setup. Take the security parameter as an input and re-

turns the public parameterization. We assume that all other algorithms implicitly

take pp as an input.

• Key Generation: (sk, pk) ← MK-HE.KeyGen. Output a pair of secret and

public keys.

• Encryption: ct ← MK-HE.Enc(µ; pk). Encrypt a plaintext µ ∈ M and out-

puts a ciphertext ct ∈ {0, 1}∗.

• Decryption: µ ← MK-HE.Dec(c̄t; {skid}id∈T ). Given a ciphertext c̄t with

the corresponding sequence of secret keys, outputs a plaintext µ.

• Homomorphic evaluation:

c̄t← MK-HE.Eval(C, (c̄t1, . . . , c̄tℓ), {pkid}id∈T ).

Given a circuit C, a tuple of multi-key ciphertexts (c̄t1, . . . , c̄tℓ), and the corre-

sponding set of public keys {pkid}id∈T , output a ciphertext c̄t. Its index set is

the union T = T1 ∪ · · · ∪ Tℓ of index sets Tj of the input ciphertexts c̄tj for

1 ≤ j ≤ ℓ.

The following is the security, correctness, and compactness of MK-HE.

• SemanticSecurity: For any two messages µ0, µ1 ∈M, the distribution

MK-HE.Enc(µi; pk)

16



for i = 0, 1 should be computationally indistinguishable, where pp← MK-HE.Setup(1λ)

and (sk, pk)← MK-HE.KeyGen(pp).

• Compactness: MK-HE scheme is compact if the size of a ciphertext relevant

to k users is bounded by poly(λ, k) for a fixed polynomial poly(·, ·).

• Correctness : For 1 ≤ j ≤ ℓ, let c̄tj be a ciphertext with index set Tj such

that MK-HE.Dec(c̄tj , {skid}id∈T ) = µj . Let C : Mℓ → M be a circuit and

c̄t← MK-HE.Eval(C, (c̄t1, . . . , c̄tℓ), {pkid}id∈T ) for T = T1 ∪ · · · ∪ Tℓ. Then,

MK-HE.Dec(c̄t, {skid}id∈T ) = C(c̄t1, . . . , c̄tℓ) (2.1)

with an overwhelming probability.

Note that (2.1) can be substituted by approximated equality similar to the CKKS

scheme for approximate arithmetic [17].

Now, we introduce the multi-key CKKS (MK-CKKS)and the multi-key BFV (MK-BFV)

[24]. The main difference from CKKS and BFV is as follows:

In CKKS and BFV, the homomorphic multiplication of RLWE ciphertexts consists

of two steps, tensor product and relinearization. Let sk = (s, 1) for the secret s ∈ R.

For input ciphertexts ct1 and ct2, we first compute their tensor product ct = ct1 ⊗ ct2

that satisfies

⟨ct, sk⊗ sk⟩ = ⟨ct1, sk⟩ · ⟨ct2, sk⟩.

In sk⊗sk, the nonlinear entry s2 exists. Thus, it requires to perform the relineariza-

tion technique which transforms the extended ciphertext to a canonical ciphertext en-

crypting the same message. To perform the relinearization, we publish a multiplication

key which is some kind of ciphertxt encrypting s2 under sk.

In MK-CKKS and MK-BFV, a ciphertext related to k different users is of the form

c̄t = (c0, . . . , ck) ∈ Rk+1
q , which is decryptable by the concatenated secret s̄k =
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(s0, . . . , sk−1, 1). Thus, the decryption is computed by

µ = ⟨c̄t, s̄k⟩ =
k−1∑
i=0

ci · si + ck.

Since MK-CKKS and MK-BFV follow the same pipeline for homomorphic operation

as in the single-key setting, the tensor product returns an extended ciphertext corre-

sponding s̄f ⊗ s̄k. Hence, we need to generate a relinearization key which consists of

multiple ciphertexts encrypting the entries si ·sj of s̄f⊗ s̄k. It requires some additional

computations since the term si · sj depends on two secret keys which are indepen-

dently generated by different users. First, the following operations are commonly used

in MK-CKKS and MK-BFV.

• MK-HE.Setup(1λ): Given a security parameter λ, set the RLWE dimension

n, ciphertext modulus q, key distribution χ, and error distribution ψ over R.

Generate a random polynomial a ← Rq. Return the public parameter pp =

(n, q, χ, ψ, a).

• MK-HE.UniEnc(µ; s): For an input plaintext µ ∈ R, generate a ciphertext d =

(d0, d1, d2) ∈ R3
q as follows:

(i) Sample r ← χ.

(ii) Sample d1 ← Rq and e1 ← ψ, and set d0 = −s · d1 + e1 + r mod q.

(iii) Sample e2 ← ψ and set d2 = r · a+ e2 + µ mod q.

• MK-HE.KeyGen(pp): Each user i samples the secret key si ← χ, an error ei ←

ψ and sets the public key as bi = −si ·a+ei mod q. Set the multiplication key

di = (di,0, di,1, di,2)← MK-HE.UniEnc(si; si).

• MK-HE.Relin(c̄t; {(bi,di)}0≤i≤k−1): Given an extended ciphertext c̄t = (ci,j)0≤i,j≤k ∈

R
(k+1)2

q and k pairs of multiplication and public keys {(bi,di)}0≤i≤k−1, gener-

ate a ciphertext c̄t′ ∈ Rk+1
q as described in Algorithm 2.1
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Figure 2.1: Overview of the multi-key homomorphic encryption.
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Algorithm 2.1 Relinearization for MK-HE

Input : c̄t = (ci,j)0≤i,j≤k, {(bi,di = (di,0, di,1, di,2))}0≤i≤k−1
Output : c̄t′ ∈ Rk+1

q

1: c′k ← ck,k
2: for 0 ≤ i ≤ k − 1 do
3: c′i ← ck,i + ci,k mod q
4: end for
5: for 0 ≤ i ≤ k − 1 do
6: c′i,j ← ci,j · bj mod q
7: (c′k, c

′
i)← (c′k, c

′
i) + c′i,j · (di,0, di,1) mod q

8: c′j ← c′j + ci,j · di,2 mod q
9: end for

2.3.1 Multi-Key CKKS

The CKKS scheme [17] is a leveled HE with support for fixed-point arithmetic. As-

sume that q =
∏L
i=0 qi for some prime qi, qℓ =

∏ℓ
i=0 qi, and k is the number of

users. This scheme supports the rescaling algorithm to handle the magnitude of en-

crypted messages. MK-CKKS scheme [24] is defined as the following operations to-

gether with the algorithm defined in Section 2.3. Figure 2.1 is the overview of the

CMK-HE scheme:

• MK-CKKS.Enc(m; (a, b)): Let m ∈ R be an input plaintext and sample v ← χ,

and e0, e1 ← ψ. Return the ciphertext ct = (c0, c1) ∈ R2
q , where c0 = v · a+ e0

mod q and c1 = v · b+ e1 +m mod q.

• MK-CKKS.Dec(c̄t; s0, . . . , sk−1): Let c̄t = (c0, . . . , ck) ∈ Rk+1
qℓ

be a ciphertext

at level ℓ associated to k users and s0, . . . , sk−1 be their secret keys. Set s̄k =

(s0, . . . , sk−1, 1) and return ⟨c̄t, s̄k⟩ mod qℓ.

• MK-CKKS.Add(c̄t1, c̄t2): Given two ciphertexts c̄ti ∈ Rk+1
qℓ

at level ℓ, return

the ciphertext

c̄t′ = c̄t1 + c̄t1 mod qℓ.
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• MK-CKKS.Mult(c̄t1, c̄t2; {(bi,di)}0≤i≤k−1): Given two ciphertexts c̄ti ∈ Rk+1
qℓ

at level ℓ, compute c̄t = c̄t1 ⊗ c̄t2 ∈ R(k+1)2

qℓ and return the ciphertext

c̄t′ ← MK-HE.Relin(c̄t; {(bi,di)}0≤i≤k−1) ∈ Rk+1
qℓ

.

• MK-CKKS.Rescale(c̄t): Given the ciphertext c̄t = (c0, . . . , ck) ∈ Rk+1
qℓ

at level

ℓ, compute c′i = ⌊q−1ℓ · ci⌉ for 0 ≤ i ≤ k and return the ciphertext c̄t′ =

(c′0, . . . , c
′
0) ∈ Rk+1

qℓ−1
.

2.3.2 Multi-Key BFV

The BFV scheme is a scale-invariant HE which supports exact computation on a dis-

crete space with a finite characteristic. Let t denote as the plaintext modulus and

∆ = ⌊ qt ⌉ be a scaling factor of the BFV scheme. MK-BFV scheme [24] is defined

as following operations together with the algorithm defined in Subsection 2.3:

• MK-BFV.Enc(m; (a, b)): The standard BFV encryption takes a polynomialm ∈

Rt as the input. Sample v ← χ, and e0, e1 ← ψ. Return the ciphertext ct =

(c0, c1) ∈ R2
q , where c0 = v · a + e0 mod q and c1 = v · b + e1 + ∆ · m

mod q.

• MK-BFV.Dec(c̄t; s0, . . . , sk−1): Let c̄t = (c0, . . . , ck) ∈ Rk+1
q be a cipher-

text associated with k users and s0, . . . , sk−1 be their secret keys. Set s̄k =

(s0, . . . , sk−1, 1) and return ⌊(t/q) · ⟨c̄t, s̄k⟩⌉ mod t.

• MK-BFV.Add(c̄t1, c̄t2): Given two ciphertexts c̄ti ∈ Rk+1
q , return the ciphertext

c̄t′ = c̄t1 + c̄t1 mod q.

• MK-BFV.Mult(c̄t1, c̄t2; {(bi,di)}0≤i≤k−1): Given two ciphertexts c̄ti ∈ Rk+1
q ,
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compute c̄t = ⌊(t/q) · (c̄t1 ⊗ c̄t2)⌉ ∈ R(k+1)2

q and return the ciphertext

c̄t′ ← MK-HE.Relin(c̄t; {(bi,di)}0≤i≤k−1) ∈ Rk+1
q .

2.4 Compact Multi-Key Homomorphic Encryption

In this section, we focus on the CMK-CKKS and CMK-BFV schemes [1], which are

variants of MK-CKKS and MK-BFV schemes [24] with the pre-defined number of

users. Since CMK-CKKS and CMK-BFV are the variants of those in [24], we assume

that CMK-CKKS and CMK-BFV are the common reference string model. The follow-

ing operations are commonly used in CMK-CKKS and CMK-BFV. Figure 2.2 is the

overview of the CMK-HE scheme.

• CMK-HE.Setup(1λ): Given a security parameter λ, set the RLWE dimension

n, ciphertext modulus q, key distribution χ, and error distribution ψ over R.

Generate a random polynomial a ← Rq. Return the public parameter pp =

(n, q, χ, ψ, a).

• CMK-HE.KeyGen(pp): Each user i samples the secret key si ← χ and an error

xi ← ψ and sets the public key (a, bi), where bi = −si · a+ xi mod q.

• CMK-HE.ComPK(pk0, . . . , pkk−1): Given all users’ public keys pki = (a, bi =

−a · si + xi), output a common public key p̂k = (a, b), where

b =
k−1∑
i=0

bi mod q

= −a ·
k−1∑
i=0

si +

k−1∑
i=0

xi mod q

:= −a · s+ x mod q.

• CMK-HE.MultKeyGen(p̂k = (a, b); si): For each user i, generate the multipli-
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Figure 2.2: Overview of the compact multi-key homomorphic encryption.
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cation key mki = (mki,0,mki,1) as follows:

(i) Sample ri ← χ.

(ii) Sample ei ← ψ and mki,0 = a · ri + si + ei mod q.

(iii) Sample e′i ← ψ and mki,1 = b · ri + e′i mod q.

• CMK-HE.ComMultKey(mk0, . . . ,mkk−1): Compute and return a common mul-

tiplication key mk =
∑k−1

i=0 mki.

• CMK-HE.RotKeyGen(p̂k = (a, b); τt(si)): For each user i and t ∈ Z∗2N , gener-

ate the rotation key rki = (rki,0, rki,1) as follows:

(i) Sample ri ← χ.

(ii) Sample ei ← ψ and rki,0 = a · ri + ei mod q.

(iii) Sample e′i ← ψ and rki,0 = b · ri + τt(si) + e′i mod q.

• CMK-HE.ComRotKey(rk0, . . . , rkk−1): Compute and return a common rota-

tion key rk =
∑k−1

i=0 rki, where

rk0 = a ·
k−1∑
i

ri +

k−1∑
i

ei mod q

:= a · r + e

rk1 = b ·
k−1∑
i

ri +
k−1∑
i

τt(si) +
k−1∑
i

e′i mod q

= b · r + τt(
k−1∑
i

si) + e′ mod q

:= b · r + τt(s) + e′ mod q.

2.4.1 Compact Multi-Key CKKS Scheme

As in Subsection 2.3.1, we assume that q =
∏L
i=0 qi for some prime qi, qℓ =

∏ℓ
i=0 qi,

and k is the number of users. CMK-CKKS scheme [1] is defined as the following
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operations together with the algorithm defined in Subsection 2.4.

• CMK-CKKS.Enc(m; p̂k = (a, b)): Let m ∈ R be an input plaintext. Sample

v ← χ and e0, e1 ← ψ and return ct = (c0, c1) ∈ R2
q , where c0 = v · a + e0

mod q and c1 = v · b+m+ e1 mod q.

• CMK-CKKS.Add(ct0, ct1): Given two ciphertexts cti ∈ R2
qℓ

at level ℓ, return

the ciphertext ct′ = ct0 + ct1 mod qℓ.

• CMK-CKKS.Mult(ct0, ct1;mk): Given two ciphertexts ct0 and ct1 at level qℓ,

compute ĉt = ct0 ⊗ ct1 ∈ R4
qℓ

and return the ciphertext

c̄t← CMK-CKKS.Relin(ĉt;mk) ∈ R2
qℓ

as described in Algorithm 2.2, where ⊗ is a tensor product.

Algorithm 2.2 Relinearization for CMK-CKKS

Input : ĉt = (ĉ0, ĉ1, ĉ2, ĉ3),mk = (mk0,mk1)
Output : c̄t ∈ R2

qℓ
1: c̄0 ← ĉ1 + ĉ2 + ĉ0 ·mk0 mod qℓ
2: c̄1 ← ĉ3 + ĉ0 ·mk1 mod qℓ

• CMK-CKKS.Rescale(c̄t): Given a ciphertext c̄t = (c0, c1) ∈ R2
qℓ

, compute c′i =

⌊q−1ℓ · ci⌉ for i = 0, 1 and return the ciphertext c̄t′ = (c′0, c
′
1) ∈ R2

qℓ−1
.

For the decryption with multiple secret keys, each party partially decrypts the cipher-

text with errors. Then we merge partially decrypted results with c1 to recover the mes-

sage.

• CMK-CKKS.PartDec(ct; si) For each user i, given a ciphertext ct = (c0, c1),

and a secret si, sample an error ei ← ψ and return µi = c0 · si + ei mod q0.

• CMK-CKKS.Merge(µ0, . . . , µk−1; ct = (c0, c1)): Compute and return µ =∑k−1
i=0 µi + c1 mod q0.
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2.4.2 Compact Multi-Key BFV Scheme

As in Subsection 2.3.2, let t denote as the plaintext modulus and ∆ = ⌊ qt ⌉ be a scaling

factor of the BFV scheme. CMK-BFV scheme [1] is defined as following operations

together with the algorithm defined in Subsection 2.4:

• CMK-BFV.Enc(m; p̂k = (a, b)): Let m ∈ Rt be an input plaintext. Sample

v ← χ and e0, e1 ← ψ and return the ciphertext ct = (c0, c1) ∈ R2
q , where

c0 = v · a+ e0 mod q and c1 = v · b+∆ ·m+ e1 mod q.

• CMK-BFV.Add(ct0, ct1): Given two ciphertexts cti ∈ R2
q , return the ciphertext

ct′ = ct0 + ct1 mod q.

• CMK-BFV.Mult(ct0, ct1;mk): Given two ciphertexts ct0 and ct1, compute ĉt =

ct0 ⊗ ct1 ∈ R4
q and return the ciphertext

c̄t← CMK-BFV.Relin(ĉt;mk) ∈ R2
q

as described in Algorithm 2.3, where ⊗ is a tensor product.

Algorithm 2.3 Relinearization for CMK-BFV

Input : ĉt = (ĉ0, ĉ1, ĉ2, ĉ3),mk = (mk0,mk1)
Output : c̄t ∈ R2

q

1: Compute ĉ′i = ⌊ 1∆ ĉi⌉ mod q
2: c̄0 ← ĉ′1 + ĉ′2 + ĉ′0 ·mk0 mod q
3: c̄1 ← ĉ′3 + ĉ′0 ·mk1 mod q

• CMK-BFV.PartDec(ct; si): For each user i and given a ciphertext ct = (c0, c1)

and a secret si, sample an error ei ← ψ and return µi = c0 · si + ei mod q.

• CMK-BFV.Merge(µ0, . . . , µk−1; ct = (c0, c1)): Compute µ =
∑k−1

i=0 µi + c1

and return m = ⌊(t/q) · µ⌉.
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Chapter 3

REDUCTION FROM MODULE-SIS TO RING-SIS UN-

DER STRUCTURED LATTICES

In this chapter, instead of handling the error rate in Corollary 2.1, by controlling the

upper bound β on the norm of the solution of SIS, we propose the reduction from MSIS

with modulus qk andmk samples for any k > 1 to RSIS with modulus q andm samples

by handling the upper bound β on the norm of the solution of RSIS. To demonstrate

this, we first prove that there is a reduction from RSISqk,mk,βk to RSISq,m,β . Second,

we show the reduction from MSIS to RSIS under some condition of the upper bound

β on the norm of the solution of RSIS.

These two reductions can be combined to obtain the reduction from MSIS to RSIS

under the constraints of q,m, β, and k. This means that MSIS can be solved by obtain-

ing the solution of RSISq,m,β . Thus, we have to consider the condition under which

RSISq,m,β can be solved. Since the upper bound β on the norm of the solution of RSIS

satisfies that β is less than the modulus q, we consider the polynomial z ∈ R such that

the coefficients of z are in {0, 1, . . . , q − 1}, where q is a prime. Then, it is clear that

gcd(z, q) = 1. Further, for z ∈ Rm, it is also clear that gcd(z, q) = 1. Henceforth, we

assume that all RSISq,m,β solutions z ∈ Rm\{0} satisfy gcd(z, q) = 1.
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3.1 Reduction from Ring-SIS to Ring-SIS

We propose that solving RSISq,m,β is more difficult than solving RSISqk,mk,βk for any

integer k > 1, which corresponds to the polynomial ring R version of Theorem 2.2.

First, we prove that the solution of RSISq,m,β should be guaranteed and thus we need

to extend the following lemma.

Lemma 3.1 ([39], Lemma 5.2 ). For any integer q, the instance A ∈ Zn×mq and β ≥
√
mqn/m, the SISq,m,β admits a solution; i.e., there exists a vector z = (z1, . . . , zm)

T ∈

Zm\{0} such that A · z = 0 mod q and ∥z∥ ≤ β.

Lemma 3.1 means that to guarantee the solution of SISq,m,β , the upper bound β of

the norm of the solution is at least
√
mqn/m. we extend Lemma 3.1 to RSISq,m,β in

the polynomial ring as in the following lemma, the proof of which is similar to that of

Lemma 3.1.

Lemma 3.2. For any integer q, the instances a1, . . . , am ∈ Rq, and β ≥
√
n ·mq1/m,

the RSISq,m,β admits a solution; that is, there exists a vector z = (z1, . . . , zm)
T ∈

Rm\{0} such that
∑m

i=1 ai · zi = 0 mod q and ∥z∥ ≤ β.

Proof. Consider all z = (z1, . . . , zm)
T ∈ Rm such that the coefficients of zi are in

the set {0, 1, . . . , ⌊q1/m⌋}. Then, there are more than qn such vectors. Clearly, there

exist qn distinct polynomials in the polynomial ring Rq. Thus, there exist two such

vectors z ̸= z′ ∈ Rm such that
∑m

i=1 ai · zi =
∑m

i=1 ai · z′i mod q. It is clear that∑m
i=1 ai · (zi − z′i) = 0 mod q and ∥z − z′∥ ≤

√
n ·m⌊q1/m⌋ ≤

√
n ·mq1/m ≤ β

because all coefficients are between −⌊q1/m⌋ and ⌊q1/m⌋.

Now, we propose that for any integer k > 1, there is a reduction from RSISqk,mk,βk

to RSISq,m,β as in the following theorem, the proof of which is similar to that of The-

orem 2.2.

Theorem 3.1. Let m be a positive integer and q be a prime. Choose the upper bound

of the norm, β ∈ R such that β ≥
√
n ·m · q

1
m and q ≥ β

√
nω(logn). Assume that
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there exists an algorithm A1 for solving the RSISq,m,β problem. Then there exists an

algorithm A2 for solving the RSISqk,mk,βk for any integer k > 1, which corresponds

to the reduction from RSISqk,mk,βk to RSISq,m,β .

Proof. Assume that there exists an algorithm A1 for solving RSISq,m,β . For the given

instances a1, a2, . . . , amk ∈ Rq of RSISqk,mk,βk , which are chosen independently from

the uniform distribution U(R1), we can write a = (a1, . . . , amk) = (a1, . . . ,amk−1),

where ai is the m-tuple vector for i = 1, . . . ,mk−1. Using algorithm A1, we can find

a solution zi ∈ Rm with ∥zi∥ ≤ β such that ai ·zi = 0 mod q for all i = 1, . . . ,mk−1.

Since β < q and q is a prime, gcd(zi, q) = 1. Thus, ai ·zi = q ·a′i and a′i = ai ·zi/q ∈

Rqk−1 for some a′i ∈ R. Set a′ = (a′1, . . . , a
′
mk−1) and use the induction on k. Then we

find a solution z′ = (z′1, . . . , z
′
mk−1)

T ∈ Rmk−1
with ∥z′∥ ≤ βk−1 such that a′ ·z′ = 0

mod qk−1. Let z = (z′1 · z1, . . . , z′mk−1 · zmk−1)T ∈ Rmk
. Then, we have

a · z =
mk−1∑
i=1

z′i · ai · zi

=

mk−1∑
i=1

z′i · q · a′i

= q ·
mk−1∑
i=1

z′i · a′i

= q · a′ · z′ = 0 mod qk

and ∥z∥ ≤ ∥z′∥ ·maxi∥zi∥ ≤ βk. Thus, we prove it.

In the above proof, the solution of RSISqk,mk,βk is made by the solutions of RSISq,m,β .

Since each solution z of RSISq,m,β has gcd(z, q) = 1, the solution of RSISqk,mk,βk is

relatively prime to q.
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3.2 Reduction from Module-SIS to Ring-SIS

Now, we propose that there is a reduction from MSIS to RSIS with the same qk and m

under some condition on the upper bound β on the norm of the solution of RSIS. In

general, the MSIS problem is harder than the RSIS problem since the module structure

is equal to the ring structure if the rank of the module is one. However, RSIS can be

more difficult than MSIS under some condition on the upper bound β on the norm

of the solution of RSIS. To show the reduction from MSIS to RSIS, we need to find

as many distinct solutions as the number of instances for the same instances of RSIS.

However, finding distinct solutions for the same instances of RSIS is difficult because

details of the process of the algorithms for solving RSIS are not known. Therefore,

certain algorithms may arrive at the same solution for the same instances. To resolve

this problem, we use the following lemma, that is, there exist m distinct solutions.

Lemma 3.3. Let m be a positive integer. Let k > 1 be a positive integer and q be a

prime. Let β be a real number such that max(q,
√
n ·m · q

k
m ) ≤ β. Assume that an

algorithm A2 exists for solving RSISqk,m,β such that A2 outputs a solution z ∈ Rm

with gcd(z, q) = 1. Let a1, . . . , am ∈ Rqk be instances of RSISqk,m,β . Then we can

findm solutions z̄(j) = (z̄
(j)
1 , . . . , z̄

(j)
m )T with ∥z̄(j)∥ ≤ β2 such that

∑m
i=1 ai · z̄

(j)
i = 0

mod qk for all j = 1, . . . ,m.

Proof. Let a = (a1, . . . , am) be an instance of RSISqk,m,β , where ai ∈ Rqk for i =

1, . . . ,m. Since q is not equal to 0 inRqk , we can write a(j) = (a1, . . . , q ·aj , . . . , am)

for j = 1, . . . ,m. Using algorithm A2, it becomes possible to find the solution z(j) =

(z
(j)
1 , . . . , z

(j)
m )T with ∥z(j)∥ ≤ β such that

a1 · z1 + · · ·+ q · aj · zj + · · ·+ am · zm = 0 mod qk

for j = 1, . . . ,m. Let z̄(j) = (z1, . . . , q · zj , . . . , zm)T = (z̄
(j)
1 , . . . , z̄

(j)
m )T for j =
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1, . . . ,m. Then z̄(j) is a solution of the instance a with

∥z̄(j)∥ = ∥(z1, . . . , q · zj , . . . , zm)∥

= (z21 + · · · q2 · z2j + · · ·+ z2m)
1/2

≤ q · (z21 + · · ·+ z2m)
1/2

= q · ∥z∥

≤ β2.

From the property ofA2, each z(j)i is relatively prime to q. This means that the greatest

common divisor of z̄(j)i and q is 1 if i ̸= j and q if i = j. Thus, all z̄(j), j = 1, . . . ,m,

are distinct solutions for instance a.

Theorem 3.2. Let m be a fixed positive integer. Let k > 1 be a positive integer and q

be a prime. Choose a module rank d ∈ Z>0 such that

max(q,
√
n ·m · q

k
m ) < 2d−1

√
qk/(
√
m)(d−1). (3.1)

Let a positive real number β be an upper bound on the norm of the solution of RSISqk,m,β

such that

max(q,
√
n ·m · q

k
m ) ≤ β < 2d−1

√
qk/(
√
m)(d−1). (3.2)

Assume that an algorithm A2 exists for solving the RSISqk,m,β problem such that A2

outputs a solution z ∈ Rm with gcd(z, q) = 1. Then, an algorithm A3 exists for solv-

ing the MSISqk,m,β′ problem with module rank d, where β′ = m
1
2
(d−1)β(2d−1); that is,

there exists a reduction from MSISqk,m,β′ to RSISqk,m,β with β′ = m
1
2
(d−1)β(2d−1).

Proof. Let a1, . . . ,am ∈ Rdqk be instances of MSISqk,m,β , which are chosen indepen-

dently from the uniform distribution, where ai = (ai1, . . . , aid) and aij ∈ Rqk . Then
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we can write the matrix

A =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

...
...

a1d a2d · · · amd

 =


− a′1 −

− a′2 −
...

...
...

− a′d −

 ∈ R
d×m
qk

.

Then each row a′i of A is considered as an instance of RSIS. Consider the last row a′d

of A. Then there are m distinct solutions z̄(j)d = (z̄
(j)
d,1, . . . , z̄

(j)
d,m)

T with ∥z̄(j)d ∥ ≤ β2

such that a′d · z̄
(j)
d = 0 mod qk by the Lemma 3.3 for j = 1, . . . ,m. Now, we construct

the m×m solution matrix

Z̄d =


| | · · · |

z̄
(1)
d z̄

(2)
d · · · z̄

(m)
d

| | · · · |


and ∥Z̄d∥ ≤ β2

√
m. Then, we have

A · Z̄d =



− a′′1 −

− a′′2 −
...

...
...

− a′′d−1 −

− 0 −


mod qk.

Applying the above method d− 1 times, we obtain the solution matrix

A∗ = A · Z̄d · · · Z̄2 =


− a∗1 −

− 0 −
...

...
...

− 0 −

 mod qk.
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Finally, applying the algorithm A2 to a∗1, we find a solution z′ with ∥z′∥ ≤ β such

that A∗ · z′ = 0 mod qk. Then, we have the solution z = Z̄d · · · Z̄2 · z′ for A. Then

A · z = 0 mod qk and

∥z∥ = ∥Z̄d · · · Z̄2 · z′∥

≤
(√
m · β2

)d−1 · β
≤ m

1
2
(d−1)β(2d−1).

By modifying (3.2), we have that the upper bound β′ = m
1
2
(d−1)β(2d−1) on the norm

of the solution of MSISqk,m,β′ is less than qk. Thus, we found a non-trivial solution of

MSISqk,m,β′ and showed that there exists a reduction from MSISqk,m,β′ to RSISqk,m,β .

From Theorem 3.2, it is easy to verify that there is a reduction from MSISqk,mk,β′

to RSISqk,mk,βk , where β′ = m
k
2
(d−1)βk(2d−1). To demonstrate the reduction from

MSISqk,mk,β′ to RSISq,m,β , where β′ = m
k
2
(d−1)βk(2d − 1), we combine Theorems

3.1 and 3.2 as follows.

Corollary 3.1. Let m be a fixed positive integer. Let k > 1 be a positive integer and q

be a prime. Choose a module rank d ∈ N such that

√
n ·m · q

1
m < 2d−1

√
qk/(
√
m)(d−1). (3.3)

Let a positive real number β be an upper bound on the norm of the solution of RSISq,m,β

such that

√
n ·m · q

1
m ≤ β < 2d−1

√
qk/(
√
m)(d−1). (3.4)

Assume that an algorithmA1 exists for solving the RSISq,m,β problem. Then, an algo-

rithm A3 exists for solving the MSISqk,mk,β′ problem with module rank d, where β′ =
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m
k
2
(d−1)βk(2d−1); that is, there exists a reduction from MSISqk,mk,β′ to RSISq,m,β with

β′ = m
k
2
(d−1)βk(2d−1).

Proof. From Theorem 3.1, there exists the algorithmA2 for solving RSISqk,mk,βk such

that A2 outputs a solution z with gcd(z, q) = 1. Modifying (3.4), we have

(
√
n ·m · q

1
m )k ≤ βk <

(
2d−1

√
q/(
√
m)(d−1)

)k
.

In the inequality on the left, we have

βk ≥ (
√
n ·m · q

1
m )k

≥
√
n ·mk · q

k
m

≥
√
n ·mk · q

k

mk .

In the inequality on the right, we have

βk <

(
2d−1

√
q/(
√
m)(d−1)

)k
=

2d−1

√
qk/(
√
mk)(d−1).

Thus, we obtain the inequality

√
n ·mk · q

k

mk ≤ βk < 2d−1

√
qk/(
√
mk)(d−1).

From Theorem 3.2, there exists the algorithm A3 for solving MSISqk,mk,β′ with β′ =

m
k
2
(d−1)βk(2d−1). Thus, there is a reduction from MSISqk,mkβ′ to RSISq,m,β with β′ =

m
k
2
(d−1)βk(2d−1).

3.3 Analysis of Reduction from MSIS to RSIS

In Theorem 3.2, the module rank d is determined by (3.1), in which parameter n is the

dimension of the polynomial ring R and thus, n and m are fixed. Thus, d depends on
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the parameters prime q and k, which is an exponent of q. Modification of (3.1) enables

us to find the range of possible module rank d. To obtain the modification of (3.1), we

take the logarithm on both sides of (3.1) and multiply (2d− 1) to obtain the following

equation:

(2d− 1) log((mn)1/2qk/m) < (log qk − (d− 1) logm1/2)

=⇒ 2d
(
log((mn)1/2qk/m)

)
− log((mn)1/2qk/m) < log qk + logm1/2 − d logm1/2.

And this inequality summarized as follows for d:

d <
log qk + logm1/2 + log((mn)1/2qk/m)

2 log((mn)1/2qk/m) + logm1/2
.

Finally, we obtain the inequality that is the range of possible module rank d as follows:

d <
2k(m+ 1) log q + 2m logm+m log n

4k log q + 3m logm+ 2m log n
. (3.5)

Figures 3.1 and 3.2 shows the possible ranks of the module different for parameters

and log2(q). In the case of Figure 3.1, the logarithm in modulus q of base 2 varies from

0 to 10000 with fixed n = 216 and k = 2 and in the case of Figure 3.2, the logarithm

in modulus q of base 2 varies from 0 to 10000 with fixed n = 216 and k = 10. As m

and log2(q) increase, the possible module rank d is also increased.

To find the relation between prime q and module rank d, we fix the parameter k.

Then we have

2k(m+ 1) log q + 2m logm+m log n

4k log q + 3m logm+ 2m log n
→ m+ 1

2

as q →∞, and thus the range of d is

d <
m+ 1

2
(3.6)
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for sufficiently large q. Similarly, to find the relation between the exponent k of q and

module rank d, we fix the parameter q. Then, we have the same range of d as (3.5) for

sufficiently large k.

However, the module rank d is determined by (3.3) in Corollary 3.1. In (3.3), the

parameters n and m are fixed. Thus, the module rank d depends only on the parameter

q. Modification of (3.3) enables us to find the range of possible module rank d, which

is given as

d <
2(m+ 1) log q + 2m logm+m log n

4 log q + 2m logm+ 2m log n
. (3.7)

The difference between (3.5) and (3.7) is that the latter does not depend on param-

eter k, which is responsible for the difference in the convergence speed of these two

inequalities.

The parameters in Figure3.3 are equal to those in Figures 3.1 and 3.2 except for

parameter k. Comparing the figures, it can be seen that the convergence speed of (3.7)

is slower than that of (3.5). However, the range of module rank d is the same as that in

(3.6) for sufficiently large q.

36



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

50

100

150

200

250

300

m = 100

m = 200

m = 500

m = 1000

Figure 3.1: Rank of the module when n = 216 and exponent k = 10.
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Figure 3.2: Rank of the module when n = 216 and exponent k = 10.
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Figure 3.3: Rank of the module when n = 216 for (3.7).
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Figure 3.4: Overview of the contributions for Chapter 3
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Chapter 4

IMPROVED REDUCTION FROM MODULE-SIS TO

RING-SIS

In this chapter, we propose a new method to find m distinct solutions for instances of

RSIS. In particular, them distinct solutions are linearly independent overRq. Usingm

distinct solutions, we obtain the solution for instances of MSIS. Similar to the previous

Chapter 3, there is a range of module rank that allows the reduction from MSIS to RSIS.

However, we show that the range of module rank is doubled compared to the previous

Chapther 3.

4.1 Improved Reduction from Module-SIS to Ring-SIS

We propose a new method of finding m distinct solutions of instances of RSIS. Find-

ing distinct solutions for the same instances of RSIS is difficult since details of the

algorithms’ process for solving RSIS are not known. For example, if the algorithm A

for solving RSIS is deterministic, then this algorithm outputs the same solution for

the same instance. To overcome this problem, we devise a method to add randomness

before using the algorithm for solving RSIS.

Lemma 4.1. Letm be a positive integer and let t be a positive integer. Choose a prime
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q such that

√
n ·m · q

1
m <

q

t
.

Choose a real number β such that

√
n ·m · q

1
m ≤ β < q

t
.

Suppose that there exists an algorithmA for solving RSISq,m,β . Let a = (a1, . . . , am) ∈

Rmq be chosen independently from uniform distribution. Then there existm linearly in-

dependent solutions z̄(j) = (z̄
(j)
1 , . . . , z̄

(j)
m ) ∈ Rm such that

∑m
i=1 ai · z̄(j) = 0 mod q

with ∥z̄(j)∥ ≤ t · β for all j = 1, . . . ,m.

Proof. (Step 1) Let r(1) = (r
(1)
1 , . . . , r

(1)
m ) ← U(Rm) with ∥r(1)∥ ≤ t and let a(1) =

(a1 · r(1)1 , . . . , am · r(1)m ). Then a(1) is uniform and we can consider a(1) as an instance

of RSISq,m,β . Using the algorithm A for solving RSISq,m,β , we obtain a non-trivial

solution z(1) = (z
(1)
1 , . . . , z

(1)
m ) such that

∑m
i=1 ai·r

(1)
i ·z

(1)
i = 0 mod q with ∥z(1)∥ ≤

β. Since a(1) is uniform, there is a non-zero r(1)i (if r(1)i is all zero in R, then a(1)i is not

uniform). Denote z̄(1) = (r
(1)
1 · z

(1)
1 , . . . , r

(1)
m · z(1)m ) in Rm. Then z̄(1) is a non-trivial

solution of (a1, . . . , am) with ∥z̄(1)∥ ≤ t · β since z(1) is a non-trivial solution in Rm

and there is a non-zero r(1)i in R. Since t · β is less than q, we consider r(1)i , z
(1)
i ∈ R

as r(1)i , z
(1)
i ∈ Rq for all i = 1, . . . ,m.

(Step 2) Let r(2) = (r
(2)
1 , . . . , r

(2)
m ) ← U(Rm) with ∥r(2)∥ ≤ t and let a(2) = (a1 ·

r
(2)
1 , . . . , am · r(2)m ). Then a(2) is uniform and we can consider a(2) as an instance of

RSISq,m,β . Through the above process, we obtain a non-trivial solution z̄(2) = (r
(2)
1 ·

z
(2)
1 , . . . , r

(2)
m · z(2)m ) ∈ Rm with ∥z̄(2)∥ ≤ t · β. Also, we consider r(2)i , z

(2)
i ∈ R as

r
(2)
i , z

(2)
i ∈ Rq for all i = 1, . . . ,m.

Let z̄(1) be fixed. Since ∥z̄(1)∥ ≤ t · β < q, each coefficient of z̄(1) is in Zq. Thus,
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gcd(z̄(1), q) = 1 because q is a prime. Then we can define

S1 = spanRq
(z̄(1)) = {k1 · z̄(1) | k1 ∈ Rq}

and

T1 = {z̄(2) = (r
(2)
1 · z

(2)
1 , . . . , r(2)m · z(2)m )

| (r(2)1 , . . . , r(2)m )← U(Rm),

(a1 · r(2)1 , . . . , am · r(2)m )→ A,

and z(2) = (z
(2)
1 , . . . , z(2)m )← A}.

Since S1 is determined by an element k1 ∈ Rq, we obtain |S1| = qn. However, z̄(2) is

determined by r(2)i for all i = 1, . . . ,m, whether z̄(2) belongs to S1 or not. Thus, we

obtain |T1| = qnm. Then |S1 ∩ T1| ≤ |S1| ≪ |T1|. If z̄(2) is in S1, then we repeat Step

2 until z̄(1) and z̄(2) are linearly independent, which is possible from |S1| ≪ |T1|.

Now, assume that z̄(1), . . . , z̄(j−1) ∈ Rm are linearly independent solutions of

(a1, . . . , am) such that ∥z̄(k)∥ ≤ t · β for all k = 1, . . . , j − 1.

(Step 3) Let r(j) = (r
(j)
1 , . . . , r

(j)
m ) ← U(Rm) with ∥r(j)∥ ≤ t and let a(j) = (a1 ·

r
(j)
1 , . . . , am · r(j)m ). Through the above process, we obtain a solution z̄(j) = (r

(j)
1 ·

z
(j)
1 , . . . , r

(j)
m · z(j)m ) such that ∥z̄(j)∥ ≤ t · β. Also, we consider r(j)i , z

(j)
i ∈ R as

r
(j)
i , z

(j)
i ∈ Rq for all i = 1, . . . ,m. Let z̄(1), . . . , z̄(j−1) be fixed and let

Sj−1 =spanRq
(z̄(1), . . . , z̄(j−1))

={k1 · z̄(1) + · · ·+ kj−1 · z̄(j−1)

| ki ∈ Rq for i = 1, . . . , j − 1}
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and

Tj−1 ={z̄(j) = (r
(j)
1 · z

(j)
1 , . . . , r(j)m · · · z(j)m )

| (r(j)1 , . . . , r(j)m )← U(Rm),

(a1 · r(j)1 , . . . , am · r(j)m )→ A,

and z(j) = (z
(j)
1 , . . . , z(j)m )← A}.

Then |Sj−1| = qn(j−1) since Sj−1 is determined by elements k1, . . . , kj−1 ∈ Rq.

However, z̄(j) is determined by r(j)i for all i = 1, . . . ,m whether z̄(j) belongs to Sj−1

or not. Thus, we obtain |Tj−1| = qnm. Then |Sj−1 ∩ Tj−1| ≤ |Sj−1| ≪ |Tj−1|.

If z̄(j) is in Sj−1, then we repeat Step 3 until z̄(1), z̄(2), . . . , z̄(j) are linearly inde-

pendent, which is also possible from |Sj−1| ≪ |Tj−1|. If we repeat this process m

times, then we can find m linearly independent solutions z̄(j) = (z̄
(j)
1 , . . . , z̄

(j)
m ) =

(r
(j)
1 ·z

(j)
1 , . . . , r

(j)
m ·z(j)m ) such that

∑m
i=1 ai ·r

(j)
i ·z

(j)
i = 0 mod q with ∥z̄(j)∥ ≤ t ·β

for all i = 1, . . . ,m.

The above solutions are not exact solutions of RSISq,m,β , but we can use these

solutions to find the solution of MSIS. Now, we prove the reduction from MSIS to

RSIS using Lemma 4.1. The proof of the following theorem is the same as that of

Theorem 3.2. However, the upper bound of the solution of RSIS is changed since we

use Lemma 4.1. Also, the condition for β is changed as in the following theorem,

where the reduction from MSIS to RSIS is satisfied.

Theorem 4.1. Let m, t be positive integers and q be chosen as in Lemma 4.1. Choose

a module rank d ∈ Z>0 such that

√
n ·m · q

1
m <

d
√
q · t ·

√
m

t ·
√
m

. (4.1)

Let a positive real number β be an upper bound on the norm of the solution of RSISq,m,β
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such that

√
n ·m · q

1
m ≤ β <

d
√
q · t ·

√
m

t ·
√
m

.

Assume that an algorithm A exists for solving RSISq,m,β . Then there exists an algo-

rithm A1 for solving MSISq,m,β1 , where β1 = (t
√
m)d−1βd.

Proof. Let a1, . . . ,am ∈ Rdq be instances of MSISq,m,β , which are chosen indepen-

dently from the uniform distribution, where ai = (ai1, . . . , aid)
T and aij ∈ Rq. Then

we can write the matrix

A =


a11 a21 · · · am1

a12 a22 · · · am2

...
...

. . .
...

a1d a2d · · · amd

 =


a′1

a′2
...

a′d

 ∈ R
d×m
q ,

where a′i = (a1i, . . . , ami). Then the i-th row a′i of A is considered as an instance

of RSIS. Consider the last row a′d of A. Then there are m distinct solutions z̄
(j)
d =

(z̄
(j)
d,1, . . . , z̄

(j)
d,m)

T with ∥z̄(j)d ∥ ≤ t · β such that a′d · z̄
(j)
d = 0 mod qk for j = 1, . . . ,m

from Lemma 4.1. Now, we construct the m×m solution matrix

Z̄d =
[
z̄
(1)
d z̄

(2)
d · · · z̄

(m)
d

]
and ∥Z̄d∥ ≤ (t ·

√
m) · β. Then, we have

A · Z̄d =



a′′1

a′′2
...

a′′d−1

0


mod q,
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where a′′i is an m-tuple vector. Applying the above method d− 1 times, we obtain the

solution matrix

A∗ = A · Z̄d · · · Z̄2 =


a∗1

0
...

0

 mod q.

Finally, applying the algorithm A to a∗1, we find a solution z′ with ∥z′∥ ≤ β such that

A∗ ·z′ = 0 mod q. Then, we have the solution z = Z̄d · · · Z̄2 ·z′ for A. Then A ·z = 0

mod q and

∥z∥ = ∥Z̄d · · · Z̄2 · z′∥

≤
(
t ·
√
m · β

)d−1 · β
=
(
t ·
√
m
)d−1

βd.

From (4.1), we have that the upper bound β1 = (t ·
√
m)d−1 · βd on the norm of the

solution of MSISq,m,β1 is less than q since

(
t ·
√
m
)d−1

βd <
(
t ·
√
m
)d−1( d

√
q · t ·

√
m

t ·
√
m

)d
= q.

Thus, we find a non-trivial solution of MSISq,m,β1 and show that there exists a reduc-

tion from MSISq,m,β1 to RSISq,m,β , where β1 = (t
√
m)d−1βd.
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4.2 Analysis of Improved Reduction from Module-SIS to Ring-

SIS

Similar to Chapter 3, the possible range of module rank of MSIS that satisfies the

reduction from MSISq,m,β1 to RSISq,m,β depends on (4.1) in Theorem 4.1, where β1 =

(t
√
m)d−1βd. Moreover, n and m are fixed since n and m are the dimension of the

polynomial ring R and the number of instances of RSIS, respectively. Also, given t,

the module rank d depends on the modulus q. In this dissertation, the new range of

module rank d of MSIS through (4.1) is derived as

d <
2m log q +m logm+ 2m log t

m log n+ 2m logm+ 2 log q + 2m log t
. (4.2)

Then, for sufficiently large q, we obtain the range of module rank as

d < m.

This result is twice as large as the range of module rank of the reduction from

MSIS to RSIS [40]. Figures 4.1 and 4.2 shows the possible module ranks with the

different parameters and log2 q for n = 216, t = 10. In the case of Figure 4.1, the bits

of modulus q vary from 0 to 100. In the case of Figure 4.2, the bits of modulus q vary

from 0 to 105. As log2 q increases, the possible range of module rank d approaches the

number of instances m as in Figure 4.2. Also, as m increases, the possible range of

module rank d becomes even wider.

The possible range of module rank is doubled compared to that of the previous

result in (3.7). Also, the previous work considered the case that the modulus exponent

k is larger than one, but in this work, we propose the reduction for the case of k = 1.

Figure 4.3 and 4.4 show the comparison of the possible ranges of module ranks of

Section 3.3 and the proposed work for n = 216, t = 10. In the case of Figure 4.3, the

bits of modulus q vary from 0 to 100. The range of module rank of the previous work
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Figure 4.1: Module rank for small number bits of modulus.
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Figure 4.2: Convergence of module rank.
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Figure 4.3: For small log2 q, comparison of the possible ranges of module ranks for
Section 3.3 and the proposed works when n = 216.
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Figure 4.4: For large log2 q, comparison of the possible ranges of module ranks for
Section 3.3 and the proposed works when n = 216.
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is larger than that of the proposed work in the range 0 to 10, but, in the range 10 to 100,

the range of the proposed work is larger than that of previous work. Also, the previous

reduction is possible when the exponent k of the modulus of MSIS is larger than one,

but the proposed reduction is also possible when the exponent of k of that of MSIS is

equal to one. In the case of Figure 4.4, the bits of modulus q vary from 0 to 105, and

it shows the convergence values of (3.7) and (4.2). Equation (3.7) converges to half of

the number of instances of RSIS, which is the maximum module rank. However, (4.2)

converges to the same number of instances of RSIS, which is the maximum module

rank.

4.3 Reduction Between Various Module-SIS Problems

In this section, we derive several reductions among the MSIS problems, which lead

to the reduction from MSISc,mk, c

qk
(t·
√
m)k(d−1)βkd to RSISq,m,β for the modulus c such

that qk divides c.

4.3.1 Reduction Between Module-SIS Problems with Increased Modulus

First, we derive the reduction from MSISqk,mk,βk to MSISq,m,β as in the following

theorem, where its proof is the same as that of Theorem 3.1.

Theorem 4.2. Let m be a positive integer and q be a prime. Let d be a positive integer

such that d defines a rank of module defining MSISq,m,β and MSISqk,mk,βk . Assume

that there exists an algorithmA1 for solving the MSISq,m,β problem. Then there exists

an algorithm A2 for solving the MSISqk,mk,βk for any integer k ≥ 1, which corre-

sponds to the reduction from MSISqk,mk,βk to MSISq,m,β .

Proof. Assume that there exists an algorithm A1 for solving MSISq,m,β . Assume that

a1, . . . ,amk ∈ Rdqk are chosen independently from uniform distribution over Rdq . We

can write A = (a1, . . . ,amk) = (ā1, . . . , āmk−1), where āi is an m tuple vector.

Using the algorithm A1, we obtain the solution zi ∈ Rm such that āi · zi = 0 mod q
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and ∥zi∥ ≤ β. Since β < q and q is a prime, gcd(zi, q) = 1. Thus, āi · zi = q · a′i
and a′i = āi · zi/q ∈ Rdqk−1 for some a′i ∈ Rd. Set A′ = (a′1, . . . ,a

′
mk−1) and use the

induction on k. Then we find a solution z′ = (z′1, . . . , z
′
mk−1)

T ∈ Rmk−1
with ∥z′∥ ≤

βk−1 such that A′ · z′ = 0 mod qk−1. Let z = (z′1 · z1, . . . , z′mk−1 · zmk−1)T ∈ Rmk
.

Then, we have

A · z =
mk−1∑
i=1

z′i · āi · zi

=

mk−1∑
i=1

z′i · q · a′i

= q ·
mk−1∑
i=1

z′i · a′i

= q ·A′ · z′ = 0 mod qk

and ∥z∥ ≤ ∥z′∥·maxi∥zi∥ ≤ βk. Thus, MSISq,m,β is more difficult than MSISqk,mk,βk .

Using Theorem 4.1, we can obtain the following reduction.

Corollary 4.1. There exists the reduction from MSISqk,mk,β2 to MSISq,m,β1 , where

β1 = (t ·
√
m)d−1βd and β2 = βk1 as in Figure 4.5.
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4.3.2 Reduction Between Module-SIS Problems with Changed Norm Bound

In order to derive the reduction from MSISqk,mk,β3 to MSISq,m,β1 in Figure 4.5, we

use the reduction from MSISqk,mk,β3 to MSISqk,mk,β2 , where

β1 = (t ·
√
m)d−1βd,

β2 = βk1

= (t ·
√
m)k(d−1)βkd,

β3 = m
k
2
(d−1)βk(2d−1),

and k ≥ 1 . To derive the reduction, we need to know the following remark.

Remark 4.1. Let m and q be positive integers. Let β, β′ ∈ R such that

√
n ·m · q

1
m ≤ β ≤ β′ < q.

Assume that there exists an algorithm A for solving RSISq,m,β . Then there exists an

algorithm A′ for solving RSISq,m,β′ . Similarly, assume that there exists an algorithm

A for solving MSISq,m,β . Then there exists an algorithm A′ for solving MSISq,m,β′

with the same module rank.

Thus, we derive the reduction from MSISqk,mk,β3 to MSISqk,mk,β2 as in the fol-

lowing theorem.

Theorem 4.3. Let m be a positive integer. Let t be a positive integers and q a prime

such that

t ≤
√
n ·m · q

1
m <

q

t
.

Choose a module rank d ∈ Z>0 such that

√
n ·m · q

1
m <

d
√
q · t ·

√
m

t ·
√
m

.
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Let β be a positive real number such that

√
n ·m · q

1
m ≤ β <

d
√
q · t ·

√
m

t ·
√
m

.

Then MSISqk,mk,β2 is harder than MSISqk,mk,β3 , where β2 = (t ·
√
m)k(d−1)βkd,

β3 = m
k
2
(d−1)βk(2d−1), and k ≥ 1.

Proof. Assume that there exists an algorithm A2 for solving MSISqk,mk,β2 , where

β2 = (t ·
√
m)

k(d−1)
βkd. Then we need to compare β2 and β3 as

β3
β2

=
m

k
2
(d−1)βk(2d−1)

(t ·
√
m)k(d−1)βkd

=

(
β

t

)k(d−1)
≥

(√
n ·m · q

1
m

t

)k(d−1)
,

which is larger than one if t ≤
√
n ·m · q

1
m . Thus, we obtain

β3 = m
k
2
(d−1)βk(2d−1) ≥ (t ·

√
m)k(d−1)βkd = β2.

From Remark 4.1, there exists an algorithmA3 for solving MSISqk,mk,β3 , where β3 =

m
k
2
(d−1)βk(2d−1).

From Theorems 4.1, 4.3, and Corollary 4.1, we can derive the reduction from

MSISqk,mk,β3 to RSISq,m,β , where β3 = m
k
2
(d−1)βk(2d−1) for k ≥ 1.

4.4 Reduction from Module-SIS with Composite Number as

Modulus to Ring-SIS

In this section, we observe the relationship between MSIS with modulus qk for prime

q and k ≥ 1 and MSIS with modulus c as a composite number. In particular, com-
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posite number c is divided by prime qk. The following theorem shows the relationship

between two problems.

Theorem 4.4. Let m, t, and q be chosen as in Theorem 4.3. Let k ≥ 1 be a positive

integer. Let c be a composite integer such that qk divides c. Assume that there exists an

algorithm A for solving MSISqk,mk,β2 . Then there exists an algorithm B for solving

MSISc,mk,γ , where γ = c
qk
β2 and β2 = (t ·

√
m)k(d−1)βkd for k ≥ 1.

Proof. Let a1, . . . ,amk ∈ Rdc be chosen independently from uniform distribution,

where ai = (ai1, . . . , aid) for all i = 1, . . . ,mk. For i = 1, . . . ,mk and j = 1, . . . , d,

aij = a
(0)
ij + qka

(1)
ij + · · ·+ qksa

(s)
ij for some integer s and thus we write ai = a

(0)
i +

qka
(1)
i + · · · + qksa

(s)
i . Thus, ai ≡ a

(0)
i mod qk. From the algorithm A for solving

MSISqk,mk,β2 , we can find the solution z1, . . . , zmk ∈ R such that

a
(0)
1 · z1 + · · ·+ a

(0)

mk · zmk =

mk∑
i=1

a
(0)
i · zi = 0 mod qk

and ∥z∥ ≤ β2, where z = (z1, . . . , zmk)T . This means that
∑mk

i=1 a
(0)
i · zi = qk · α for

some α ∈ R. Thus, we have

mk∑
i=1

ai · zi =
mk∑
i=1

a
(0)
i · zi

+ qk
mk∑
i=1

a
(1)
i · zi + · · ·+ qks

mk∑
i=1

a
(s)
i · zi

= qk · α+ qk
mk∑
i=1

a
(1)
i · zi + · · ·+ qks

mk∑
i=1

a
(s)
i · zi

= 0 mod qk.
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Thus,
∑mk

i=1 ai · zi = qk · α′ for some α′ ∈ R and we have

c

qk

mk∑
i=1

ai · zi =
mk∑
i=1

ai · (
c

qk
zi)

= c · α′

= 0 mod c.

Since c
qk

is an integer, c
qk
zi is in R for all i = 1, . . . ,mk. And we obtain ∥ c

qk
z∥ =

c
qk
∥z∥ ≤ c

qk
β2. Thus, c

qk
z is a solution of the instance of MSISc,mk,γ , where γ = c

qk
β2

and β2 = (t ·
√
m)k(d−1)βkd for k ≥ 1.

Using Theorems 4.1, 4.5, and Corollary 4.1, we obtain the reduction from MSISc,mk,γ

to RSISq,m,β , when γ = c
qk
(t ·
√
m)k(d−1)βkd as in the following theorem.

Theorem 4.5. Let m, t, and q be chosen as in Theorem 4.4. Let c be a composite

integer such that c is divided by qk for some k ≥ 1. Choose a module rank d ∈ Z>0

such that

√
n ·m · q

1
m <

d
√
q · t ·

√
m

t ·
√
m

.

Let a positive real number β be an upper bound on the norm of the solution of RSISq,m,β

such that

√
n ·m · q

1
m ≤ β <

d
√
q · t ·

√
m

t ·
√
m

.

Assume that an algorithm A exists for solving RSISq,m,β . Then there exists an algo-

rithm B for solving MSISc,mk,γ , where γ = c
qk
(t ·
√
m)k(d−1)βkd.
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Figure 4.5: Overview of the contributions for Chapter 4.
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Chapter 5

HARDNESS OF VARIANT OF RING-LWE

In the proposed variant of RLWE, the error for generating an RLWE sample is reused

as a secret of the other RLWE sample. The variant of the RLWE sample is of the form

(a, a · s + x, a · x + e), where ψ is the error distribution and a ← Rq, s ← Rq, and

x, e← ψ. We first define the variant of the RLWE problem (Re-RLWE) and prove the

hardness of this problem.

5.1 Definition of Variant of Ring-LWE

To define the variant of the RLWE problem, we first define the variant of RLWE distri-

bution, called Re-RLWE disitribution. This distribution is given as follows:

Definition 5.1 (Re-RLWE distribution). For a secret s ∈ Rq and a distribution ψ over

Rq, a sample from Re-RLWE distribution Ās,ψ over Rq × Rq × Rq is generated by

choosing a ← Rq uniformly at random, choosing x, e ← ψ, and outputting (a, b, c),

where

b = a · s+ x mod qR

c = a · x+ e mod qR.
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Now, we define the variant of Re-RLWE problem, called Re-RLWE. Informally,

Re-RLWE distribution is indistinguishable to the uniform distribution over Rq ×Rq ×

Rq. The formal definition is given as follows:

Definition 5.2 (Re-RLWE problem). The average-case decision version of the Re-RLWE

problem denoted Re-RLWEq,ψ, is to distinguish with non-negligible advantage be-

tween the sample from Ās,ψ and the uniformly at random from Rq ×Rq ×Rq.

5.2 Hardness of Variant of Ring-LWE

In this section, we demonstrate the hardness of Re-RLWE. To prove that, we will prove

that the Re-RLWE problem is harder than the RLWE problem as follows:

Theorem 5.1. Let q be a prime and ψ be an error distribution. Assume that there exists

an algorithm A in distinguishing the Re-RLWEq,ψ distribution from the uniform dis-

tribution. Then there exists an algorithm B in distinguishing the RLWEq,ψ distribution

from the uniform distribution.

Proof. Assume that A is a distinguisher of Re-RLWEq,ψ with a non-negligible advan-

tage. Then we can construct a distinguisher B against Re-RLWEq,ψ as follows. B gets

as inputs a ∈ Rq and b ∈ Rq. Then B proceeds as follows.

• If a has no inverse, abort B and output reject.

• u← Rq

• c← a−1 · b+ a · u

• Output A(a, c, b).

If the input of B is distributed according to the uniform distribution overRq×Rq, then

c is also uniformly at random. If the input of B is distributed according to the RLWE
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distribution As,ψ of the form (a, b) = (a, a · s+ x), where s, x← ψ, then we have

c = a−1 · b+ a · u

= a−1(a · s+ x) + a · u

= s+ a−1 · x+ a · u

= s+ a · (a−2 · x+ u).

Then a−2 · x + u is uniformly at random and independent of x as in [41]. Denote

s′ = a−2 · x+ u. Then c = a · s′+ s and (a, c, b) = (a, a · s′+ s, a · s+ x), which has

the Re-RLWEq,ψ distribution. Thus, we conclude that B has the same advantage as A,

which contradicts the hardness of RLWEq,ψ.
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Chapter 6

SAMPLING REDUCTION IN COMPACT MULTI-KEY

HOMOMORPHIC ENCRYPTION

In this section, we introduce the modified multiplication keys and rotation keys for

CMK-CKKS and CMK-BFV schemes using the Re-RLWE. In [1], to resolve the ex-

pansion of ciphertext, a common public is generated through the communication be-

tween users. In addition, by adding the multiplication keys and rotation keys generated

by users in the server, a common multiplication key and rotation key are generated to

lower the communication cost between users. Although many operations of the pro-

posed scheme is similar to those in [1], the multiplication key and the rotation key

generation are different. This generation method reuses the error used to generate the

public key for the multiplication key. Also, to reduce the rotation key, we modify the

CMK-HE.Setup, that is, we consider a more common reference string. In this way, the

size of the multiplication key and the rotation key can be reduced compared to that in

[1]. The following operation is the modified setup.

• ReCMK-HE.Setup(1λ): Given a security parameter λ, set the RLWE dimension

n, ciphertext modulus q, key distribution χ, and error distribution ψ over R.

Let w be a half of the number of Z∗2N , that is, w = |Z∗2N |/2. Generate random

polynomials a, a1, a2 . . . , aw−1, aw ← Rq. Return the public parameter pp =
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(n, q, χ, ψ, a, a1, a2, . . . , aw−1, aw).

6.1 Variant of Compact Multi-Key CKKS Scheme

ReCMK-CKKS covers how to generate a modified multiplication key and a modified

rotation key and how to operate multiplication between ciphertexts and rotation in the

ciphertexts. The rest of the algorithm is the same as that in Section 2.4.

• ReCMK-CKKS.MultKeyGen(si, xi): Set the modified multiplication key as

mki = a · xi + ei + si mod q,

where ei ← ψ.

• ReCMK-CKKS.ComMultKey(mk0, . . . ,mkk−1): Given all users’ modified mul-

tiplication keys mki = a · xi+ ei+ si, the server generates a common modified

multiplication key

mk =
k−1∑
i=0

mki = a · x+ e+ s mod q.

• ReCMK-CKKS.Mult(ct0, ct1; (pk,mk)): Given two ciphertexts ct0 and ct1 at

level qℓ, compute ĉt = ct0 ⊗ ct1 ∈ R4
qℓ

and return the ciphertext

c̄t← ReCMK-CKKS.Relin(ĉt; (pk,mk)) ∈ R2
qℓ

as described in Algorithm 6.1.

• ReCMK-CKKS.RotKeyGen(si, j; τt1(si), τt2(si)): For each user i, fixed j ∈

{1, 2, . . . , w}, and t1, t2 ∈ Z∗2N , set the modified rotation key

rk
(t1,t2)
i = (aj , rki,t1 , rki,t2)
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Algorithm 6.1 Relinearization of CKKS using the Re-RLWE

Input : ĉt = (ĉ0, ĉ1, ĉ2, ĉ3), a common public key (a, b), a common modified
multiplication key mk
Output : c̄t = (c̄0, c̄1) ∈ R2

qℓ
1: f0 ← ab+mk
2: f1 ← b2

3: c̄0 ← ĉ1 + ĉ2 + ĉ0 · f0 mod qℓ
4: c̄1 ← ĉ3 + ĉ0 · f1 mod qℓ

as

(i) xi, ei ← ψ.

(ii) Set rki,t1 = −aj · si + xi + τt1(si) mod q.

(iii) Set rki,t2 = −aj · xi + ei + τt2(si)− τt1(si) · aj mod q.

• ReCMK-CKKS.ComRotKey(rk
(t1,t2)
0 , . . . , rk

(t1,t2)
k−1 ): Given all users’ modified

rotation keys rk(t1,t2)i = (aj , rki,t1 , rki,t2), the server generates a common mod-

ified rotation key rk(t1,t2) = (aj , rkt1 , rkt2) as

rkt1 =

k−1∑
i=0

rki,t1 mod q

rkt2 =

k−1∑
i=0

rki,t2 mod q.

• ReCMK-CKKS.Rot(ct; rk(t1,t2), t) Given a ciphertext ct at level qℓ, compute

and return the ciphertext c̄t as described in Algorithm 6.2.

Remark 6.1. In the CKKS scheme, not only rescaling method but also the special

modulus technique is used to prevent the error from rapidly increasing. See [17],[18],

and [24] for details.
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Algorithm 6.2 Rotation using the Re-RLWE

Input : ct = (c0, c1), a common rotation key rk(t1,t2) = (aj , rkt1 , rkt2) and
t ∈ Z∗2N
Output : c̄t = (c̄0, c̄1) ∈ R2

qℓ
1: Compute ĉt = (ĉ0, ĉ1) = (τt(c0), τt(c1))
2: If t = t1;
3: c̄0 ← ĉ0 · aj mod qℓ.
4: c̄1 ← ĉ1 + ĉ0 · rkt1 mod qℓ.
5: else if t = t2;
6: c̄0 ← ĉ0 · a2j mod qℓ.
7: c̄1 ← ĉ1 + ĉ0 · (rkt2 + aj · rkt1) mod qℓ.

6.2 Variant of Compact Multi-Key BFV Scheme

The variant of the CMK-BFV (ReCMK-BFV) scheme is almost similar to ReCMK-CKKS

defined in Section 6.1. However, there is only a slight difference in the algorithm of re-

linearization. In this section, we propose a variant of the multiplication of ReCMK-BFV

as follows.

• ReCMK-BFV.Mult(ct0, ct1; (pk,mk)): Given two ciphertexts ct0 and ct1, com-

pute ĉt = ct0 ⊗ ct1 ∈ R4
qℓ

and return the ciphertext

c̄t← ReCMK-BFV.Relin(ĉt; (pk,mk)) ∈ R2
qℓ

as described in Algorithm 6.3.

Algorithm 6.3 Relinearization of BFV using the Re-RLWE

Input : ĉt = (ĉ0, ĉ1, ĉ2, ĉ3), a common public key (a, b), a common modified
multiplication key mk
Output : c̄t = (c̄0, c̄1) ∈ R2

qℓ

1: Compute ĉ′i = ⌊ 1∆ ĉi⌉ mod q
1: f0 ← ab+mk
2: f1 ← b2

3: c̄0 ← ĉ′1 + ĉ′2 + ĉ′0 · f0 mod q
4: c̄1 ← ĉ′3 + ĉ′0 · f1 mod q
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6.3 Correctness, Security, and Comparison

In this section, we show the correctness, security, and comparison of ReCMK-HE

schemes. Since ReCMK-CKKS and ReCMK-BFV are defined similarly, we only con-

sider ReCMK-CKKS. It is similar to the case of ReCMK-BFV.

6.3.1 Correctness

First, we show the correctness of multiplication in the proposed scheme. Let s =∑k−1
i=0 si ∈ Rq and sk = (s, 1) ∈ R2

q be a secret key. Let c̄t = (c0, c1) and c̄t′ =

(c′0, c
′
1) be ciphertexts corresponding to the messages m and m′ with secret key sk,

respectively. For multiplication, let c̄t× = (c×0 , c
×
1 ) be multiplied by c̄t and c̄t′ from

Algorithm 6.1. Note that c̄t⊗ c̄t′ = (c0c
′
0, c1c

′
0, c0c

′
1, c1c

′
1). Since (ab+mk, b2) satis-

fies that

⟨(ab+mk, b2), sk⟩ = (ab+mk) · s+ b2

= a · s · b+mk · s+ b2

= (x− b) · b+mk · s+ b2

= x · (−a · s+ x) + (a · x+ e+ s) · s

= x2 + e · s+ s2,

the ciphertext c̄t× satisfies that

⟨c̄t×, sk⟩ = c×0 · s+ c×1

≈ c1c′1 + (c1c
′
0 + c0c

′
1) · s+ c0c

′
0 · (f0 · s+ f1)

= c1c
′
1 + (c1c

′
0 + c0c

′
1) · s+ c0c

′
0 · (s2 + x2 + e · s)

= c1c
′
1 + (c1c

′
0 + c0c

′
1) · s+ c0c

′
0 · s2

= m ·m′ mod q.
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Second, we show the correctness of rotation in the proposed scheme. For rota-

tion, let t ∈ Z∗2N and let c̄trott = (crott0 , crott1 ) be the rotation of c̄t = (c0, c1) from

Algorithm 6.2. Note that τt(ct) = (τt(c0), τt(c1)) and

rkt2 + aj · rkt1 = −aj · x+ e+ τt2(s)− τt1(s) · aj + aj · (−aj · s+ x+ τt1(s))

= −a2j · s+ e+ τt2(s).

If t = t1, we have

⟨c̄trott1 , sk⟩ = τt1(c0) · aj · s+ τt1(c1) + τt1(c0) · rkt1

= τt1(c0) · aj · s+ τt1(c1) + τt1(c0) · (−aj · s+ x+ τt1(s))

= τt1(c1) + τt1(c0) · τt1(s) + τt1(c0) · x

= τt1(c1 + c0 · s) + τt1(c0) · x.

If t = t2, we have

⟨c̄trott2 , sk⟩ = τt2(c0) · a2j · s+ τt2(c1) + τt2(c0) · (rkt2 + aj · rkt1)

= τt2(c0) · a2j · s+ τt2(c1) + τt2(c0) · (−a2j · s+ e+ τt2(s))

= τt2(c1) + τt2(c0) · τt2(s) + τt2(c0) · e.

= τt2(c1 + c0 · s) + τt2(c0) · e.

6.3.2 Security

In this subsection, we prove that the proposed scheme satisfies the indistinguishabil-

ity under chosen-plaintext attack (IND-CPA) security. we first show that the public

key with the modified multiplication key is computationally indistinguishable from a

uniform distribution over R3
q . It is similar to the case of the rotation key.

Theorem 6.1. The distribution of public keys with the modified multiplication keys

is computationally indistinguishable to a uniform distribution over R3
q under the as-

67



sumption of Re-RLWE and circular security.

Proof. Let pp be the Re-RLWEq,ψ parameter generated in ReCMK-HE.Setup, where

w = Z∗2N . We define the distribution D0 = {a, b,mk} over R3
q as follows:

(i) a← Rq and s← χ, x← ψ, and b = −a · s+ x mod q

(ii) e← ψ and mk = a · x+ e+ s mod q.

Now, we consider the distribution D1 over R3
q , which is obtained from D0 by modify-

ing its definitions (i) and (ii) into

(i)’ a← Rq and b← Rq

(ii)’ mk ← Rq.

From Theorem 5.1 and the circular security, we obtain that D0 and D1 are computa-

tionally indistinguishable.

Now, we will show that the ReCMK-CKKS is IND-CPA secure under the Re-RLWE

assumption with parameter pp← ReCMK-HE.Setup.

Theorem 6.2. Let pp← ReCMK-HE.Setup be the Re-RLWE parameter generated in

the setup phase. Then the ReCMK-CKKS is IND-CPA secure under the RLWE and the

Re-RLWE assumptions with parameter pp.

Proof. Let A be an IND-CPA adversary for the ReCMK-CKKS. We consider a series

of hybrids, where AdvH [A] denotes the success probability of A in hybrid H .

• Hybrid H0: This is identical to the IND-CPA game, where the adversary gets

a distributed public key (a, b) generated by CMK-CKKS.ComPk and the mod-

ified multiplication key mk generated by ReCMK-CKKS.ComMultKey. Also,

the adversary gets encryption ct0 and ct1 of m0 and m1, respectively, computed
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using CMK-CKKS.Enc. Note that the public key with the modified multiplica-

tion key consists of

(a, b,mk) := (a,−a · s+ x, a · x+ e+ p · s),

where a ← Rq, s ← χ, and x, e ← ψ. Assume that there is a polynomial t(·)

such that

AdvH0 [A] := |Pr[A((a, b,mk), ct0) = 1]− Pr[A((a, b,mk), ct1) = 1]| > 1/t(λ),

(6.1)

where cti = CMK-CKKS.Enc(mi; p̂k = (a, b)) for i = 0, 1.

• Hybrid H1: The hybrid H1 is identical to H0 except that b of the public key and

the modified evaluation key d are chosen to be uniformly at random from Rq.

In H1, the public key and modified multiplication key are uniformly at random. Also,

mk is independent of (c0, c1) and (a, c0) and (b, c1) are computationally indistinguish-

able from the uniform distribution over R2
q since they can be viewed as two RLWE

samples of secret v. Thus, we obtain that

AdvH1 [A] = negl(λ). (6.2)

Now, we claim that

|AdvH0 [A]− AdvH1 [A]| ≤ negl(λ). (6.3)

A ciphertext is generated by adding an encoded plaintext to a random encryption of

69



zero. Hence we consider the random variables (a, b, d, c0, c1) over R5
q defined by

a← Rq

b← −a · s+ x mod q

mk ← a · x+ e+ s mod q,

where s← χ, x, e← ψ, and (c0, c1) = v · (a, b)+ (e0, e1) for v ← χ and e0, e1 ← ψ.

Now, we change the definition of (b,mk) as b ← Rq and mk ← Rq. Then it is

computationally indistinguishable by the Re-RLWE assumption with parameter pp.

This means that

|AdvH0 [A]− AdvH1 [A]| ≤ negl(λ).

By combining (6.2) and (6.3), we obtain

AdvH0 [A] ≤ AdvH1 [A] + |AdvH0 [A]− AdvH1 [A]|

= negl(λ),

which contradicts to (6.1).

6.3.3 Comparison

In this subsection, the numerical results of the proposed scheme are compared to those

in [1]. In our implementation, every number is stored as an unsigned 64-bit integer.

Our implementation is performed on a computer with AMD Ryzen Threadripper PRO

3995WX CPU @ 2.70GHz processor on a multi-threaded mode. Also, the simula-

tion utilizes the open-source in [42] and [43]. Table 6.1 shows the parameters used

in CMK-CKKS and ReCMK-CKKS. In Table 6.2, the multiplication time is slightly

increased by several milliseconds, but the multiplication key size is reduced by half.

The rotation time performed twice also increases slightly. However, two rotation key
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sizes created to perform two rotations can be reduced by about 3/4. Therefore, the

proposed scheme is more suitable for homomorphic encryption in limited memory

environments.

Table 6.1: Parameters for compact multi-key CKKS

ID logN log q log qi No. of qi’s
I 13 218 49–60 4
II 14 438 53–60 8
III 15 881 54–60 16

Table 6.2: Comparison of keys and operations for each parameter in [1] and the pro-
posed one

ID
Mult. Mult. Two Rot. Two Rot.

key size (MB) time (ms) key size (MB) time (ms)

[1]
I 1.18 46.19 2.36 77.41
II 4.46 86.94 8.92 144.86
III 17.3 170.18 34.6 296.55

The proposed

I 0.59 49.28 1.77 82.04
II 2.23 88.39 6.68 155.55
III 8.65 178.21 25.95 316.58
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Chapter 7

CONCLUSION

In this dissertation, the various reduction from MSIS to RSIS under some norm con-

straint of RSIS, and the ReCMK-HE scheme based on Re-RLWE are studied.

First, we showed that the RSISq,m,β problem is more difficult than the MSISqk,mk,β′

problem, where β′ = m
k
2
(d−1)βk(2d−1). To show the reduction from MSISqk,mk,β′ to

RSISq,m,β , we derived two reductions:

(i) the reduction from RSISqk,mk,βk to RSISq,m,β ,

(ii) the reduction from MSISqk,m,β′ to RSISqk,m,β .

To prove (i), we used the property that the solution of RSISq,m,β is relatively prime

to q. By findingm distinct solutions for RSISqk,m,β , we showed (ii). In (ii), we imposed

the upper bound β on the norm of the solution of RSISqk,m,β . Combining the two

reductions, we showed that it is possible to reduce MSISqk,mk,β′ to RSISq,m,β . Since

β was imposed, we obtained the range of possible ranks of module d, which depends

on the value of parameter q.

Second, we derived the reduction from MSISc,mk,γ to RSISq,m,β , where γ =

c
qk
(t
√
m)k(d−1)βkd and c is a composite integer that has a factor qk for some k ≥ 1.

To show this reduction, we proposed the three reductions:
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(i) the reduction from MSISq,m,β1 to RSISq,m,β ,

(ii) the reduction from MSISqk,mk,β2 to RSISq,m,β ,

(iii) the reduction from MSISqk,mk,γ to MSISc,mk,β2 ,

where β1 = (t
√
m)d−1βd, β2 = βk1 = (t

√
m)k(d−1)βkd, c is a composite integer with

a factor qk, and γ = c
qk
β2 =

c
qk
(t
√
m)k(d−1)βkd.

To show (i), we devised the new method to find m distinct solutions of RSISq,m,β .

This new method is to add randomness to the algorithm for solving RSISq,m,β . Thus,

we can devise an algorithm that gives m distinct solutions to the same instances of

RSIS. Compared to the previous work [40], this reduction is preserved the same mod-

ulus and ring dimension. Also, the possible range of module rank for reduction from

MSISq,m,β to RSISq,m,β could be doubled compared to that of Section 3.3.

To show (ii), we derived the method extending the reduction from RSISqk,mk,βk to

RSISq,m,β shown in Theorem 3.1 to the reduction from MSISqk,mk,β2 to MSISq,m,β1 ,

where β2 = βk1 = (t
√
m)k(d−1)βkd. Also, we showed that MSISqk,mk,β2 is more

difficult than MSISqk,mk,β3 defined in Chapter 3, where β3 = m
k
2
(d−1)βk(2d−1) for

k ≥ 1 using the fact that MSIS becomes more difficult when the upper bound of MSIS

is tighter. This means that RSIS is more difficult than MSIS, which is tighter than

the MSIS in Chapter 3. In Chapter 3, all reductions depend on the prime modulus q.

However, in Chapter 4, we proposed the reductions between the MSIS problems with

the different modulus. Combining three reductions, we obtained the reduction from

MSISc,mk,γ to RSISq,m,β .

Third, we proposed a variant of RLWE by reusing error, called Re-RLWE, where

we can reduce the sizes of the multiplication key and the rotation keys. To define this

problem, we defined the Re-RLWE distribution Ās,ψ over Rq × Rq × Rq, which is

generated by choosing a ← Rq uniformly at random, choosing x, e ← ψ, and output

(a, b, c), where b = a · s+ x mod qR, and c = a · x+ e mod qR. Next, we defined

the Re-RLWE problem, which is to distinguish with non-negligible advantage between
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the sample from Ās,ψ and the uniformly at random fromRq×Rq×Rq. And we proved

that the RE-RLWE problem is more difficult than the RLWE problem.

Lastly, we suggested the variant of CMK-HE, called ReCMK-HE, which has the

modified multiplication keys and the modified evaluation keys with a reduced key size.

Due to the modified multiplication key and the modified rotation key, the multiplica-

tion and rotation operation times increased slightly. However, the multiplication key

was reduced by about half, and the rotation keys were reduced to 3/4 compared to the

original scheme [1].

74



Bibliography

[1] J. Park, Homomorphic encryption for multiple users with less communications,

IEEE Access 9 (2021) 135915–135926.

[2] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer, SIAM review 41 (2) (1999) 303–332.

[3] G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.-K.

Liu, C. Miller, D. Moody, R. Peralta, et al., Status report on the first round of

the NIST post-quantum cryptography standardization process, US Department

of Commerce, National Institute of Standards and Technology, 2019.

[4] M. Ajtai, Generating hard instances of lattice problems, in: Proceedings of the

28th annual ACM symposium on Theory of computing, 1996, pp. 99–108.

[5] P. Bert, P.-A. Fouque, A. Roux-Langlois, M. Sabt, Practical implementation of

ring-SIS/LWE based signature and IBE, in: International Conference on Post-

Quantum Cryptography, Springer, 2018, pp. 271–291.

[6] L. Ducas, A. Durmus, T. Lepoint, V. Lyubashevsky, Lattice signatures and bi-

modal Gaussians, in: Annual Cryptology Conference, Springer, 2013, pp. 40–56.

[7] V. Lyubashevsky, Lattice signatures without trapdoors, in: Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Springer, 2012, pp. 738–755.

75



[8] D. Micciancio, O. Regev, Lattice-based cryptography, in: Post-quantum Cryp-

tography, Springer, 2009, pp. 147–191.

[9] I. Chillotti, N. Gama, M. Georgieva, M. Izabachene, Faster fully homomorphic

encryption: Bootstrapping in less than 0.1 seconds, in: International Confer-

ence on the Theory and Application of Cryptology and Iinformation Security,

Springer, 2016, pp. 3–33.

[10] C. Peikert, Public-key cryptosystems from the worst-case shortest vector prob-

lem, in: Proceedings of the 41th Annual ACM Symposium on Theory of Com-

puting, 2009, pp. 333–342.

[11] V. Lyubashevsky, C. Peikert, O. Regev, On ideal lattices and learning with errors

over rings, in: Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Springer, 2010, pp. 1–23.
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[31] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, D. Wichs,

Multiparty computation with low communication, computation and interaction

via threshold fhe, in: Annual International Conference on the Theory and Appli-

cations of Cryptographic Techniques, Springer, 2012, pp. 483–501.
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초록

이학위논문에서는 i)모듈-짧은정수해문제 (MSIS)에서환-짧은정수해문제

(RSIS) 로의 환원방법, ii) 모듈-짧은 정수해 문제 (MSIS)에서 환-짧은 정수해 문

제 (RSIS)로의 향상된 환원방법, iii) 변형된 RLWE의 도입과 그 어려움, iv) 변형된

RLWE를기반으로한변형된 compact-다중키동형암호 (CMK-HE)에대한방법들

이연구되었다.

첫 번째로 RSIS의 특정 조건 하에서 MSIS에서 RSIS로의 환원을 제안한다. 이

환원을 보이기 위해, 두가지의 환원 방법을 보인다. 먼저 RSISqk,mk,βk 문제에서

RSISq,m,β로의 환원을 보인다. 그리고 RSIS의 특정 조건 하에서 MSISqk,mk,β′ 문제

에서 RSISqk,mk,βk문제로의 환원을 보인다. 두 결과를 통해 RSIS 문제가 MSIS의

문제보다특정조건하에서더욱어렵다고할수있고,환원된MSIS가가능한 Rank

의범위를제공한다.

두 번째로, 기본의 MSIS 문제에서 RSIS로의 환원보다 더욱 향상된 방법을 제

시한다. RSIS문제와같은 modulus와같은환-차원을가지는MSIS문제보다 RSIS의

문제가더어려움을제안한다.이방법을통해기존의 MSIS가가능한 Rank의범위

를 2배가량 증가시킬 수 있다. 그리고 첫 번째 방법에서 사용된 MSIS보다 두 번째

방법에서 사용된 MSIS가 더욱 어려움을 보였다. 또한, 소수 modulus를 갖는 MSIS

이합성수 modulus를갖는MSIS보다더어렵다는것을제안한다.이방법들을통해

소수 modulus를 갖는 RSIS가 합성수 modulus를 갖는 MSIS보다 더 어렵다고 말할

수있다.

세 번째로, RLWE 샘플에서 사용된 에러를 재사용한 새로운 문제인 Re-RLWE

를 제안한다. 이 문제를 정의하기 위해 Re-RLWE분포를 정의하고, 그 어려움을 증
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명한다.

마지막으로, Re-RLWE기반의변형된 compact다중키동형암호를제안한다.이

암호시스템은변형된곱셈키와변형된회전키들을가지며,기존의 compact다중키

동형암호와비교하여키의크기가감소함을보일수있다.

주요어: Learning with errors, 모듈-lerarning with errors, 모듈-짧은 정수해 문제,

다중키동형암호,환-learning with errors,환-짧은정수해문제,짧은정수해문제

학번: 2018-38214
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