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Abstract

As kernel fuzzer has been studied and becomes better for years, the number of

reported bugs from the fuzzer increased. Since kernel developers could not analyze

all of the bugs, the situation emphasizes the importance of bug reproduce which can

provide debug information. Unfortunately, the fuzzer often fails to reproduce bug, and

one of the most difficult bug type is concurrency bug. The concurrency bug requires

certain conditions between several threads, and non-deterministic thread interleavings

from kernel scheduling prevent reproducing. As a result, some concurrency bugs are

left unpatched after failures of reproduce.

In this thesis, we presents REPFUZZER which enables deterministic reproduce for

bugs found by fuzzer. It solves the problem with selective thread tracing and deter-

ministic scheduler. With selective thread tracing, REPFUZZER can focus on only in-

teresting thread in fuzzing context. Then REPFUZZER schedules the selected threads

with deterministic scheduler and produces deterministic thread interleavings. Using

REPFUZZER’s scheduling at both fuzzing and reproduce phase, the fuzzer can repro-

duce bugs found at fuzzing phase. As a result, REPFUZZER shows its effectiveness for

reproducing concurrency bugs with 15 real-world bugs, and some of the bugs require

enormous times to be reproduced with non-deterministic kernel scheduling.

keywords: concurrency bug, kernel, fuzzing

student number: 2020-27942
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Chapter 1

INTRODUCTION

Reproduce of found bugs by kernel fuzzers becomes important for analyzing and

patching the bugs. As the kernel fuzzing has been developed for years, more bugs have

been discovered and reported by fuzzers. But the number of reported bugs exceeds the

capability of developers’ manual efforts. So, reproducing bug, which can provide rich

information for analyzing bugs, becomes more important.

Therefore, kernel fuzzers normally consists with fuzzing phase and reproduce

phase [17]. In the fuzzing phase, a fuzzer generates an input program, i.e., the syscall

sequence, and executes it to explore kernel codes. When a bug occurs during the

fuzzing phase, the fuzzer extracts a crash report and a fuzzing log, i.e., list of exe-

cuted inputs. In the reproduce phase, the fuzzer tries to turn the fuzzing log into a

reproducer, which is minimized inputs that can trigger the bug.

With stable reproducer, developers can utilize debugger for dynamic analyzing.

Certain information, e.g., stack trace and memory state when crash occurs, can be of-

fered with crash report and sanitizers. However, more diverse information, e.g., full

trace of execution and memory states of any point, are offered by dynamic debug-

ging. As a result, the reproduce phase enables dynamic debugging and produces richer

information.

So, without the reproducing, the bug consumes much time to be patched or even
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can be classified as an invalid bug. Because of the kernel’s complexity, kernel bugs re-

quire enormous time to be analyzed without enough information. Furthermore, manual

effort of developers is not enough for analyzing the bugs. In SyzScope [1], the authors

said that the number of reporting bugs is much higher than patching the bugs. In the

circumstance, the importance of the reproducing stands out.

What is worse, without a reproducer produced by reproduce phase, concurrency

bugs can be impractical to be analyzed for two reasons. First, for many cases, the con-

currency bug itself does not make any troubles. The bug is detected after the buggy

state from the bug is used and makes harmful outcome, so the root cause of the bug is

hard to be found. Second, the number of threads in kernel compounds the difficulty of

analyzing concurrency bugs. In addition to syscall threads executed by a fuzzer, in ker-

nel system, background threads are running as non-syscall context for asynchronous

computation. The problem is these threads also hold the possibility to produce concur-

rency bugs [28]. Hence, search space for concurrency bug is excessive to be analyzed

manually.

As a result, some concurrency bugs are ignored after a failure of bug analysis. For

instance, the authors of RAProducer [21] reported CVE-2020-25656 [2] which was

already found by Syzkaller [17], i.e., one of the most popular on-the-fly kernel fuzzers.

But Syzkaller failed to make a reproducer for the bug and, therefore, developers failed

to analyze the bug. So, the bug was regarded as an invalid bug until the authors reported

the PoC(Proof-of-Concept) program to the developers.

But certain concurrency bugs are impractical to be reproduced because of non-

deterministic scheduling of kernel. Thread interleavings produced by kernel schedul-

ing is non-deterministic because of varying states. Since a kernel state when a thread is

executed varies every time, kernel schedules threads differently depending on the state.

Also, kernel is a layer which handles hardware directly, its thread scheduling is easily

affected by hardware states, e.g., hardware interrupts. By varying kernel and hardware

states, kernel scheduler produces different thread interleavings for same threads.
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For reproducing concurrency bugs, deterministic scheduling is required since some

bugs require uncommon thread interleavings to be triggered. Concurrency bugs can be

triggered by subset of all possible thread interleavings. Depending on concurrency

bug’s race window, the size of buggy thread interleavings can be shrunk. Furthermore,

certain concurrency bugs require combination of thread interleavings, and some com-

binations are impractical to be produced. Hence, even if a fuzzer finds bug with high

computation despite of the difficulty, the buggy thread interleavings are hardly repro-

duced. ExpRace [20] shows that, without any proposed method in the thesis, some

concurrency bugs cannot be exploited over 24 hours.

In this thesis, we propose REPFUZZER, fuzzing framework which can reproduce

found bugs easily. The key idea of REPFUZZER is to make deterministic scheduler in

the kernel and provide same scheduling with both fuzzing phase and reproduce phase.

First, REPFUZZER inserts scheduling points for kernel codes so that the executions

of kernel threads can be controlled. Second, REPFUZZER makes scheduling policy,

e.g., duration of executing thread and next thread to be executed. Lastly, using above

scheduling points and policy, REPFUZZER enforces serial execution for kernel threads.

However, some challenges derive from the contexts where REPFUZZER resides

in, i.e., kernel and fuzzing. First, in kernel context, scheduling background threads,

created to service asynchronous events, can cause huge performance overhead. Large

number of threads are created by kernel and they could trigger concurrency bugs by

sharing resources with other threads [28]. Second, as a fuzzer, REPFUZZER should be

possible to find all the bugs. If REPFUZZER schedules the threads with limited policy,

REPFUZZER could miss some concurrency bugs.

To solve the challenges, following features are added into design of REPFUZZER.

First, REPFUZZER schedules background threads selectively so that it can not only

reproduce concurrency bugs but also reduce the overhead. Fuzzers usually focuses

on bugs which are triggered by fuzzing inputs. So, REPFUZZER also focuses on the

threads which originates from fuzzing inputs, i.e., input syscalls. During execution of
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input syscalls, REPFUZZER traces kernel threads created from the input syscalls and

schedules within the threads.

Second, REPFUZZER schedules kernel threads based on scheduling token so that

it can test diverse schedulings. REPFUZZER makes scheduling policy depending on

given scheduling token and schedules the thread with it. Then a fuzzer can explore di-

verse schedulings by mutating scheduling token. Furthermore, REPFUZZER still gen-

erates deterministic scheduling by providing same scheduling token.

We implemented deterministic scheduler in Linux kernel and instrumented kernel

codes to call our scheduling process. We also implemented ioctl interface and modified

Syzkaller [17] to utilize our deterministic scheduler. We evaluated REPFUZZER with

15 real world concurrency bugs in Linux kernel system. REPFUZZER could reproduce

bugs faster than Syzkaller with all target bugs. Furthermore, with many bugs Syzkaller

could not reproduce over 24 hours, REPFUZZER reproduced within few seconds.

In summary, this work makes contributions as follow:

• We propose deterministic scheduling to reproduce concurrency bugs by provid-

ing same scheduling with same inputs, i.e., scheduling token and input syscalls.

• We propose selective thread tracing to reduce overheads from scheduling all the

threads in kernel space.

• We propose scheduling token which enables diverse scheduling but still deter-

ministic scheduling.

• We implemented REPFUZZER with Linux kernel and Syzkaller, and evaluated

reproducing of 15 real world concurrency bugs. Even with bugs kernel scheduler

could not reproduce, deterministic scheduler easily reproduced them.
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Chapter 2

BACKGROUND

2.1 Fuzzing

Fuzzing is practical testing technique to find bugs in software. In common, the fuzzing

processes as follows: (i) generating random input for target program; (ii) executing

the program with generated input; and (iii) checking the result of the program and

repeating processes. The base idea of fuzzing is simple, but many researches proposed

several techniques to improve fuzzing. One of the most general approach is coverage-

guided fuzzing. Coverage-guided fuzzing prioritizes the input exploring new coverage

so that it can explore diverse coverages and find more bugs.

Kernel fuzzing usually utilizes the syscalls as an fuzzing input [17]. The fuzzing

input targets to explore code space of target program. In kernel, the easiest way to

execute kernel code is calling syscall provided by the kernel. However, since some

components, e.g., scheduling, are not handled by the fuzzer, some bugs are failed to be

reproduced.
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2.2 Concurrency Bug

Concurrency bug occurs between multiple threads or sometimes single thread with

other context, e.g., signal handler or interrupt. Since the threads in concurrent program

share same resources, e.g., memory, the states of resources can be different by how the

threads use them. Unfortunately, certain states can be unintended by programmer and

cause harmful results, e.g., Denial-of-Service (DoS), Remote Code Execution (RCE)

and Local Privilege Escalation (LPE) [26, 28, 29, 30].

For concurrency bugs, thread interleaving determines whether the bugs to be trig-

gered or not [30, 31]. The states of shared resources are determined by the order of

sharing resources in several threads. Since the concurrency bugs are derived from the

resource states, the interleavings of threads’ executions decide the bug to be triggered.

But scheduling methods commonly used in systems do not guarantee the deterministic

replay of thread interleavings. As a result, concurrency bugs normally have challenges

to be reproduced.
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Chapter 3

DESIGN

3.1 Design

Kernel Execution
Syscall


Executor

Selective

Thread

Tracing

Deterministic

Scheduler

selected threads

Syscalls

Input

Scheduling

Token

Fuzzing

Reproduce

Bug

Fuzzing Log

Figure 3.1: Overall work flow of REPFUZZER.

In this section, we describe high-level design and key points of REPFUZZER. To

replay concurrency bugs, our system focuses on reproducing thread interleavings oc-

curred during fuzzing. The overall workflow of REPFUZZER is shown in Figure 3.1.

REPFUZZER provides a framework which selects kernel threads to be scheduled and

enforces deterministic scheduling for selected threads. With both fuzzing and repro-

duce phase, a fuzzer executes an input upon the framework, so that the thread inter-
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leaving of fuzzing phase can be replayed at reproduce phase.

Selective Thread Tracing. In the kernel, there are background threads running with

non-syscall context [28] and REPFUZZER also schedules these threads but in a selec-

tive way. In common cases, it is hard to choose which background threads to trace.

However, in fuzzing context, we only have interest on results from inputs, so we can

set policy to select which threads to schedule.

Deterministic Scheduler. The key component of REPFUZZER is deterministic sched-

uler. The deterministic scheduler interferes kernel threads and enforces customized

scheduling policy. So, with the deterministic scheduler, thread interleavings can be

easily replayed. Also, not to limit possible thread interleavings, REPFUZZER’s sched-

uler receives scheduling token as an input. Scheduling policy varies with the given

token but the same policy is produced under the same token.

Fuzzing Phase. Using the scheduler, a fuzzer can execute syscalls with deterministic

scheduling. The fuzzer generates an input which consists of syscalls and scheduling

tokens. The syscalls are usually used as an input in kernel fuzzing to explore kernel

codes and find bugs. The tokens are handed to the deterministic scheduler and used for

scheduling kernel threads. Both syscalls and tokens are delivered to syscall executor

and deterministic scheduler. With the given input, an execution result including thread

interleavings is produced.

Repro Phase. When a bug occurs during fuzzing, a reproducer receives a fuzzing

log and reproduces the bug. The log contains inputs which our fuzzer has executed,

including scheduling tokens. So, the reproducer parses a buggy input from the log and

executes the input. As the fuzzer does, syscalls are sended to a syscall executor and

tokens are sended to a deterministic scheduler. With the same syscalls and scheduling

tokens, the same execution result is produced and, as a result, the bug occurs again.

In following paragraphs, we describe key designs of above framework. Section

3.1.1 describes how REPFUZZER selects background threads to be scheduled. Next

Section 3.1.2 shows how deterministic scheduler is designed to reproduce thread in-

8
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Figure 3.2: Examples of operations with SETsched.

terleavings with the chosen threads.

3.1.1 Selective Thread Tracing

Challenge: Difficult to Trace All Threads. A bug can occur in background threads

[28] and REPFUZZER needs to control these threads. In kernel, there are many threads

that run in background, i.e., non-syscall context. Most of the background threads exist

to process works asynchronously, e.g., kthread, workqueue and rcu. So, other threads

invoke background threads by registering a job to be processed, e.g., start routine of

new thread or destructor for rcu. During processing jobs, background threads run con-

currently and share memory with other kernel threads. The challenge is scheduling all

of background threads brings huge overhead.

Tracing Threads Originating from Syscalls. To solve this challenge, REPFUZZER

schedules only selected threads. For common cases, it is hard to choose which threads

9



to select, since bug can exist in anywhere. However, fuzzer’s only interest is bugs

caused from its inputs. Fuzzer focuses to find input that can be driven to bug, so it

usually ignores bugs triggered by unknown events. In this regard, we can select threads

that originate from input, i.e., syscall thread.

To schedule threads selectively, REPFUZZER classifies threads into two types ac-

cording to the thread where they originate. If they originate from input syscall thread,

they are classified as Thrinterest, and the rest are referred as Thrnon-interest. At the

beginning, REPFUZZER holds input syscall threads as Thrinterest. Whenever a back-

ground thread is invoked, REPFUZZER checks whether the thread originates from input

syscall and selects all Thrinterest. With above classification, REPFUZZER can focus on

Thrinterest and reduce overhead of scheduling.

Rules with Background Thread Selection. Deciding whether a thread originates

from input cannot be simply processed by checking a parent thread with input syscall

threads. There can be a case that a background thread invokes other background thread,

e.g., registering new rcu callback in a workqueue thread. Therefore, Thrinterest can be

recursively derived from other Thrinterest.

For the reason, REPFUZZER traces Thrinterest and maintains SETsched which con-

sists of current Thrinterest. When a background thread is invoked, REPFUZZER checks

whether its parent thread belongs to SETsched, i.e., set of currently active Thrinterest.

Recursively, if the parent thread is derived from input syscall, the child is also derived

from input syscall. So, the new background thread is added into SETsched as a child.

Thus, SETsched can be understood as a directed graph composed with Thrinterest as a

node.

A directed graph SETsched is managed with following three operations. Figure 3.2

depicts how each operation is processed.

• Initialization: SETsched starts with threads executing input syscalls.

• Addition: When a thread in SETsched, i.e., Thrinterest, creates a new background
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thread, the thread is added to SETsched. The thread is added as a leaf node and

its outgoing edge points its parent thread.

• Deletion: When Thrinterest finishes its job and exits, Thrinterest is removed

from SETsched. Deletion is needed since REPFUZZER schedules the threads in

SETsched. The existence of finished thread affects REPFUZZER’s scheduling and,

therefore, SETsched contains only active Thrinterest.

Determinism of Thread Selection. Thread selection is deterministic from fuzzing in-

put for two reasons. First, background threads added to SETsched are deterministic from

input syscalls. With same input syscalls executed, same background threads are created

by input syscall threads. Also, from same background threads, same child background

threads are created. As a result, the components of SETsched are deterministic.

Second, additions and deletions of SETsched are deterministically place in schedul-

ing, as both are executed by Thrinterest. The creation of the background thread occurs

during execution of parent thread. Since parent thread of Thrinterest is also Thrinterest,

the addition of a thread into SETsched occurs in Thrinterest. Also, Thrinterest is re-

moved from SETsched when its execution is over, i.e., deletion of Thrinterest occurs

in Thrinterest. Hence, both operations are executed by Thrinterest and deterministically

scheduled by REPFUZZER. In conclusion, since both components and operations are

deterministic, SETsched is deterministic from input syscalls.

Handling Different Types of Background Thread. In kernel system, various kinds

of background threads are serviced. When a thread invokes a background thread, the

parent thread creates and sends a job which indicates a work to be processed, e.g.,

a routine executed by a new thread. According to the number of handled jobs, the

background threads can be categorized into two types. First type is BGsingle which

spawned by other threads with a single job, e.g., kthread. BGsingle processes a single

job and exits when the job is done. Therefore, once the thread is decided as either

Thrinterest or Thrnon-interest, it would not be changed. As a result, REPFUZZER can
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handle the thread without any difficulty.

Another type is BGmulti which executes as daemon thread and keeps receiving the

jobs to execute, e.g., workqueue and rcu. In BGmulti, a single thread can receive various

jobs from various threads, including both Thrinterest and Thrnon-interest. Therefore, the

thread cannot be decided between Thrinterest and Thrnon-interest, which makes a chal-

lenge in handling BGmulti. If the thread is treated as Thrnon-interest, REPFUZZER misses

executions originate from input syscall. It can produce a case that REPFUZZER fails to

replay a bug deterministically.

Meanwhile, if REPFUZZER handles the thread as Thrinterest, it occurs not only

extra overhead but also non-determinism to the scheduling. When a job is created by

Thrinterest whose execution is controlled by REPFUZZER, the creation places determin-

istically in scheduling. On the other hand, Thrnon-interest executes independently with

REPFUZZER’s scheduling and the creation of a job happens non-deterministically for

REPFUZZER. Therefore, the order of processing jobs can vary even with same schedul-

ing token.

As a solution, REPFUZZER considers BGmulti as a set of individual threads. Al-

though BGmulti handles multiple jobs, each job is processed sequentially. So, BGmulti

cannot be both Thrinterest and Thrnon-interest at same time. Hence, REPFUZZER can

divide processes of jobs and regard each one as an individual thread. Then each thread

can be classified by the job currently dealing with and only Thrinterest can be scheduled

by REPFUZZER.

3.1.2 Deterministic Scheduler

Challenge: Non-deterministic scheduling. The main contribution of REPFUZZER is

helping a fuzzer to reproduce concurrency bugs deterministically. The main reason

why concurrency bug is hard to be reproduced is that kernel’s scheduling is non-

deterministic. Even if same input syscalls are executed, thread interleavings from

scheduler differs every execution. As a result, when reproducing concurrency bugs, the
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fuzzer has to expect the buggy thread interleaving to be occurred again. Unfortunately,

some concurrency bugs require uncommon interleaving to be triggered. Therefore,

REPFUZZER resolves non-determinism of kernel thread scheduling by adopt deter-

ministic scheduler.

To enable deterministic scheduling, REPFUZZER applies two changes for kernel

threads. First, REPFUZZER inserts scheduling point into kernel codes so that kernel

threads can be controlled by our deterministic scheduler. Second, it enforces serial

execution for target kernel threads, i.e., threads in SETsched.

With the changes, the deterministic scheduler produces thread interleavings de-

terministic from a fuzzer’s input. When the fuzzer executes its input, i.e., scheduling

token and syscall, the deterministic scheduler receives the token and generates streams

used as a scheduling policy. During scheduling, whenever a scheduled thread meets

scheduling point, the scheduling policy decides whether to keep executing or wake

other thread.

Scheduling Point. REPFUZZER interferes and schedules threads in SETsched by in-

serting scheduling point into kernel codes. At the scheduling point, REPFUZZER checks

whether a current thread is in SETsched or not, so it can enable Thrnon-interest to ex-

ecute independently. Therefore, if the thread is not included in SETsched, it returns

immediately from the scheduling point. Meanwhile, for threads in SETsched, the de-

terministic scheduler can continue the current thread or hand over scheduling to other

thread. When the scheduler hands over the scheduling, a thread interleaving occurs at

scheduling point.

REPFUZZER inserts scheduling point at every memory instructions to minimize

overhead without missing concurrency bugs. As many scheduling points being in-

serted, the overhead of scheduling is increased since extra computation is executed

at scheduling point. Meanwhile, if REPFUZZER targets too small set of instructions,

some thread interleavings, including buggy interleavings, can be neglected. Therefore,

REPFUZZER inserts scheduling points at every memory instructions, so thread inter-
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leavings between all memory accesses can be tested. Memory access is important for

concurrency bug since it affects shared resource between threads. In this regard, stack

memory is not shared between threads, so REPFUZZER ignores stack memory access.

Serial Execution. For deterministic scheduling, REPFUZZER enforces serial execu-

tion for threads in SETsched using scheduling point. At the beginning, REPFUZZER

executes a single syscall thread in input syscall threads and makes other threads to

wait for REPFUZZER’s scheduling. Whenever a running thread in SETsched hands over

a scheduling, the thread waits for next scheduling rather than keeps executing. As a

result, threads in SETsched are executed as if they are running in a single thread. It

enables deterministic commits of thread interleaving under same scheduling policy.

In common systems, executing threads serially can be defect since it fails to uti-

lize the merit of multi-core system. However, from fuzzer’s perspective, performance

of single instance could not be important, if it uses less resources. The fuzzer can in-

crease the number of fuzzing instances within same resource limitation. Therefore,

what matter for the fuzzer is the performance with same resource utilization.

Token-based Scheduling Policy. The challenge in deterministic scheduling is that

it can limit possible thread interleavings that fuzzer can explore. For fuzzer, one of

the most important objective is exploring as many states to find bugs. However, if

deterministic scheduler restricts possible thread interleavings with same scheduling

policy, some concurrency bugs cannot be found. Although helping fuzzer to find more

bugs is not REPFUZZER’s goal, it shouldn’t disturb the fuzzer.

So, deterministic scheduler gets scheduling token as an input. It generates different

scheduling policies depending on given token. So, with same syscalls, a fuzzer can

explore diverse states of thread interleavings by differing the token. Meanwhile, the

token is part of fuzzing input, so REPFUZZER still generates same execution result

from same input, which is most important to offer deterministic reproduce of bug.

For generating scheduling policy depending on token, REPFUZZER uses stream

generator which generates number stream depending on given token. REPFUZZER
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Figure 3.3: Example of how kernel threads are scheduled with thread order.
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composes scheduling policy with execute counts and thread orders. The execute count

indicates how many scheduling points the thread should execute and the thread order

indicates the next thread to be scheduled. Thus, by generating streams of execute count

and thread order, REPFUZZER is able to make scheduling policy depending on the

token.

The execute count is assigned to the thread and determines its progress. When a

thread is scheduled by deterministic scheduler, the execute count is newly assigned to

the thread. During execution, if the thread meets scheduling point, the assigned count

is decreased one by one. At some point, the count becomes zero and the thread hands

over scheduling to other thread.

When a thread hands over scheduling to other thread, thread order is used to decide

target thread. As discussed at Section 3.1.1, the threads in SETsched keep changing as

execution continues. For example, in Figure 3.3, SETsched differs through 1© , 2© and

3© . SETsched is initialized at 1© with two syscall threads, i.e., S1 and S2, and new

background thread B1 is added at 2© . Finally, at 3© , B1 is removed from SETsched,

since it finishes its execution and exits. As SETsched changing, thread order is picked

using current SETsched and scheduling token.

During execution, deterministic scheduler schedules new thread in two cases: (i)

when current thread’s execute count becomes zero; and (ii) when current thread fin-

ishes its execution. In Figure 3.3, red squares indicate the point where the change of

current thread occurs and show both cases of thread change. All red squares, except

last one, show when thread’s execute count becomes zero. With the last case, thread

B1 exits, so new thread, i.e. S2, is picked and scheduled by deterministic scheduler.

To sum up, the work flow of deterministic scheduling is as follows: (i) when input

syscalls are called, the scheduler executes one syscall thread and assigns execute count

for the thread; (ii) whenever the thread meets scheduling point, it decrease its execute

count; (iii) if the execute count becomes zero or the thread exits, the scheduler picks

next thread in SETsched; (iv) the scheduler assigns new execute count for the thread; and
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(v) steps (ii) through (iv) are repeated until SETsched becomes empty, i.e., all threads

are finished.

Timeout Handling. During scheduling, currently scheduled thread can become non-

runnable state because of dependency for other threads in SETsched. For synchroniza-

tion or atomicity, threads often wait for certain conditions, e.g., callbacks or mutex.

If current thread waits for the condition which can be solved only by other thread in

SETsched, current thread cannot continue its execution. But dependencies are present

in everywhere in large kernel space. Furthermore, some are implemented manually by

programmer. As a result, it is impractical to handle all the cases.

To practically prevent halting, REPFUZZER invokes timeout handler when it do

not schedule other threads for a while. When timeout handler is called, REPFUZZER

first makes current thread’s execute count to zero, preventing parallel execution. Then

it picks next thread to be scheduled and continues its scheduling. The cause of timeout

is dependency between threads in SETsched and, since the threads are controlled by

deterministic scheduler, the timeout is also invoked deterministically.

Thread Interleavings and Scheduling Policy. Theoretically, all possible thread in-

terleavings between memory instructions can be made. In REPFUZZER, thread inter-

leaving is made by transfers between scheduling points of two threads. The scheduling

points where the transfer occurs are determined by values of execute count and thread

order. Since the values are not fixed, if scheduling token generates the required values,

all possible transfer between scheduling points can occur.

The distribution of execute count and thread order is important since it affects

the possibilities of thread interleavings. REPFUZZER picks both execute counts and

thread orders within uniform distribution. For thread orders, REPFUZZER picks the

thread uniformly in SETsched. For execute counts, REPFUZZER makes a range by pick-

ing maximum and minimum number and assigns the range for each threads. During

execution, execute count is picked from current thread’s assigned range.

REPFUZZER assigns the range of execute count differently for each thread, to even

17



the possibilities of thread interleavings. In REPFUZZER’s scheduling, the thread inter-

leaving is made between the progress of two threads when a transfer between threads

occurs. The progress of a thread means the sum of execute counts uniformly picked

from the range. If execute count is picked from same range for all threads, each thread’s

distribution of the sum, i.e., the progress of thread, will correlate with others. It means

the possibilities of certain interleavings are much higher than others. As a result, to

reduce correlation of the threads, REPFUZZER assigns different execute count range

for each thread.

3.2 Implementation

The implementation of REPFUZZER is composed with kernel level and user level

implementations. We implemented our scheduling framework, e.g., selective thread

tracing and deterministic scheduler, at kernel space. Since the design of REPFUZZER

requires little changes with fuzzer program, we implemented the fuzzer at user level.

Kernel Level. We implemented REPFUZZER based on Linux 5.15.0-rc4. We built our

scheduling framework based on KCSAN’s [18] implementation. KCSAN instruments

memory accesses by applying thread sanitizer [19] at compile time and overwriting

its functions, e.g., tsan read4. So, instead of building instrumentation framework

from the beginning, we implemented REPFUZZER modifying KCSAN. For selective

thread tracing, we implemented operations of SETsched, e.g., addition and deletion, and

inserted the operations into the points where background threads are handled.

We also implemented ioctl interface for a fuzzer to use our scheduling framework.

It provides following APIs: SCHED START; SCHED TRACE; SCHED UNTRACE; and

SCHED END. SCHED START is called at the beginning, sending scheduling token and

the number of syscalls to be called for our scheduler. SCHED TRACE is called right

before execution of syscall so that our scheduler can trace input syscall thread. After

the syscall execution finishes, SCHED UNTRACE informs the end of syscall. Finally,
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SCHED END notifies the end of scheduling and cleans up states of the scheduler.

User Level. For a kernel fuzzer, we implemented it based on Syzkaller [17], most

commonly used on-th-fly kernel fuzzer. For our design, we added scheduling token

as a fuzzing input so that it can be managed and used by the fuzzer. We modified

syscall executor of Syzkaller so that it can schedule syscalls to be executed concur-

rently. Lastly, we added calling ioctl provided by our scheduling framework.
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Chapter 4

EVALUATION

In this section, we evaluate REPFUZZER with three aspects. First, we show effec-

tiveness of REPFUZZER with the real world bugs (Section 4.1). Second, we estimate

capability of REPFUZZER’s scheduling policy compared to kernel scheduling (Section

4.2). Lastly, we measure performance overhead of REPFUZZER (Section 4.3).

Experimnet Setup. All the evaluations were performed on Intel(R) Xeon(R) Silver

4214R CPU @ 2.40GHz with 512 GB of RAM. As a host operating system, we used

Ubuntu 20.04.1 LTS with kernel version 5.4.0. For running guest kernel, Qemu 5.2.0

was used as hypervisor.

4.1 Effectiveness of Deterministic Scheduler

To evaluate effectiveness of REPFUZZER, we tested 15 concurrency bugs in Linux

kernel. We first searched patching commits for the target bugs. With the patch, we

built different versions of kernels so that each kernel contains each vulnerability. The

patch was applied on the kernel where we implemented REPFUZZER. Then we ran a

fuzzer to find inputs for the target bugs, since REPFUZZER requires scheduling token

for reproducing the bugs. With fuzzing, we enabled for subset of syscalls that can

trigger the bugs, since the evaluation is not about fuzzing ability.
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Table 4.1: Reproduce result for 15 concurrency bugs

Vulnerability
Reproduce Time

Deterministic Scheduling Kernel Scheduling

CVE-2020-25656 [2] X(< 4 sec) × (> 24 hours)

CVE-2019-6974 [3] X(< 27 sec) × (> 24 hours)

CVE-2019-1999 [4] X(< 12 sec) X(< 10 hours)

CVE-2017-2636 [5] X(< 2 sec) × (> 24 hours)

CVE-2017-15265 [6] X(< 1 sec) × (> 24 hours)

20f2e4c2 [7] X(< 1 sec) X(< 7 min)

32d3182c [8] X(< 8 sec) × (> 24 hours)

4842e98f [9] X(< 1 sec) × (> 24 hours)

4b848f20 [10] X(< 11 sec) X(< 20 sec)

6c605f83 [11] X(< 1 sec) × (> 24 hours)

6cd1ed50 [12] X(< 4 sec) X(< 24 sec)

7311d665 [13] X(< 1 sec) × (> 24 hours)

a6361f0c [14] X(< 2 sec) × (> 24 hours)

da1b9564 [15] X(< 9 sec) × (< 12 hours)

e20a2e9c [16] X(< 1 sec) × (> 24 hours)
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After the input was found, we executed the input repeatedly and measured the spent

time until the bug was reproduced. The input was executed on two circumstances: (i)

with REPFUZZER’s deterministic scheduling; and (ii) with kernel scheduling.

Table 4.1 shows the result of 15 concurrency bugs. For kernel scheduler, most of

the bugs require much time to be reproduced. In contrast, with deterministic schedul-

ing, the bugs were reproduced within few seconds. As a result, REPFUZZER effectively

helps bug reproduce once the bug is found by a fuzzer.

Especially, 10 bugs cannot be reproduced over 24 hours without our scheduler,

which can be regarded as non-reproducible bugs. Using REPFUZZER is gain for those

bugs, despite of overhead in fuzzing phase. REPFUZZER holds overhead by scheduling

the kernel threads at fuzzing phase and, meanwhile, it can reproduce bugs with min-

imal executions. If all concurrency bugs can be reproduced within several minutes,

the bugs are better to be fuzzed without REPFUZZER. However, many bugs are failed

to be reproduced over 24 hours and REPFUZZER is extremely helpful for those bugs.

Without reproduce, developers cannot be provided enough information to analyze the

bug. CVE-2020-25656 [2] is the example of the bug which was found by Syzkaller

[17] but failed to be patched since the bug cannot be reproduced.

Analysis of Non-reproducible Concurrency Bugs. While certain bugs were eas-

ily reproduced without deterministic scheduler, the others demanded much time or

even failed over 24 hours. We looked into those bugs and found the reason of non-

reproducibility. Concurrency bugs require certain buggy thread interleavings and, ac-

cording to required thread interleavings, we can group the bugs into two types. The

bugs require only single thread interleaving (type 1) or combination of some thread

interleavings (type 2), and non-reproducible concurrency bugs belong to the latter.

In type 2 bugs, the bugs become non-reproducible bugs with following conditions:

(i) short race window; and (ii) equal or larger number of inclusive instructions. CVE-

2020-25656 [2] (in Figure 4.1) is one of non-reproducible concurrency bugs. In the

figure, the numbers ( 1© ˜ 4© ) indicates the buggy execution order. So, 1© and 4©
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copy_to_user(..., from, ...);

char *from = func_table[i];

func_table[k] = ...;

kfree(funcbufptr);

1

2

3

4

ioctl(KDGKBSENT) ioctl(KDSKBSENT)

d1 d2

/*

 * alloc new pointers

 * copy original data

 * ...

 */

Thr1 Thr2

Figure 4.1: Figure of CVE-2020-25656 [2], example of non-reproducible concurrency

bugs.

consist the race window and instructions from 2© to 3© become inclusive instructions.

The length of race window, i.e., d1, is short and the length of inclusive instructions,

i.e., d2 is much larger than race window. With the case, the buggy execution order is

impractical to be produced by kernel scheduler. Hence, the bug is hardly reproduced

with the kernel scheduling.

4.2 Statistics of Deterministic Scheduler

To estimate REPFUZZER’s scheduling ability, we ran syscalls with different schedul-

ing token and collected thread interleaving. In Section 3.1.2, we emphasized the im-

portance of scheduling ability. Since REPFUZZER is designed in the fuzzing context,

REPFUZZER shouldn’t disturb the fuzzer for finding bugs. Hence, if REPFUZZER pro-

duce insufficient thread interleavings, some concurrency bugs cannot be found by the

fuzzer.

For testing program, we chose PoCs of 3 bugs evaluated in Table 4.1. With PoCs,

we ran each program for 10,000 times with both deterministic scheduling and kernel
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Figure 4.2: Accumulated number of unique thread interleavings over execution.
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Figure 4.3: Histogram of number of appearance during execution.

Table 4.2: Comparison of thread interleavings found by deterministic scheduler and

kernel scheduler

Vulnerability

Number of thread interleavings

Common
Unique in

Deterministic Scheduling

Unique in

Kernel Scheduling

CVE-2019-6974 [3] 2421 163 3

4b848f20 [10] 1977 64 20

CVE-2020-25656 [2] 580 3 0
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scheduling. For deterministic scheduler, we changed scheduling token every time so

that diverse thread interleavings can be produced. For collecting thread interleavings,

we modified instrumenting codes to record instruction pointer, thread id and access-

ing memory address. With the information, we extracted thread interleavings between

memory accesses for each execution. For scalability issue, we only collected thread

interleavings of memory instructions which access same memory.

Figure 4.2 shows statistics of the result thread interleavings. Graphs illustrate the

accumulated number of unique thread interleavings explored by each scheduler as ex-

ecution maintains. In all cases, deterministic scheduler explores more unique inter-

leavings than kernel scheduler. Also, deterministic scheduler covers most of the thread

interleavings explored kernel scheduler. In Table 4.2, deterministic scheduler covers

most of thread interleavings explored by kernel scheduler. Especially, with CVE-2020-

25656 [2], it covers all kernel scheduler’s interleavings.

Furthermore, deterministic scheduler explored diverse thread interleavings with

more even distributions than kernel scheduler. Figure 4.3 is a histogram of number of

appearance while PoCs were executed. With kernel scheduler, i.e., orange bars, last

bin shows high data. It means that many thread interleavings were appeared in most

execution, i.e., same interleavings were repeatedly explored. Meanwhile, deterministic

scheduler produced lower data in last bin of histograms.

4.3 Overhead of Deterministic Scheduler

Table 4.3: Execution numbers with each fuzzer for 4 hours

Syzkaller [17]
REPFUZZER

Syscall
Syscall

+ Background

Execution 357743 (× 1.00) 296475 (× 1.20) 61755 (× 5.78)

We checked overhead of deterministic scheduler with fuzzing throughput under
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same resource limitation. We ran Syzkaller [17] and REPFUZZER with 8 instances

of VMs with guest kernel where deterministic scheduling was implemented. Since

REPFUZZER serializes traced threads’ executions, it uses less CPU resource than ker-

nel scheduler. Thus, for fair comparison, we limited fuzzers to use only 4 cores using

cgroups.

Table 4.3 shows execution numbers with 4 hours of fuzzing. When REPFUZZER

scheduled syscall threads only, it showed × 1.2 of fuzzing throughput overhead. As we

limited CPU resource and maximized utilization of it, we could remove overhead from

serial execution. The overhead appeared in the table was from instrumented scheduling

codes, e.g., managing execute count and picking next thread.

When it comes to REPFUZZER’s selective thread tracing, the throughput was 5.78

times slower than Syzkaller. The overhead was mainly from dependency between

jobs in BGmulti. For BGmulti, REPFUZZER regards each job as individual thread. But

since jobs cannot run until completion of other jobs enqueued in same queue earlier,

the timeout handler of deterministic scheduler occurs every time non-runnable job is

scheduled.
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Chapter 5

DISCUSSION

Unstable Kernel Execution Coverage. In kernel system, certain branch executes

differently by system states and, as a result, execution coverage of kernel thread could

differ with each execution. Since the kernel services without refreshing its memory

states, the execution coverage could differ even if same syscall is called. Also, kernel

is a layer which directly communicates with hardwares. So, the execution coverage

can be affected by hardware states which is hard to be controlled.

The varying execution coverage can disturb REPFUZZER from reproducing con-

currency bugs. REPFUZZER produces deterministic scheduling policy and applies it to

incoming executions of target kernel threads. But if executions are changed, the result

thread interleavings produced by REPFUZZER’s policy can be affected. As a result, if

the buggy interleaving disappears because of different execution, the concurrency bug

could fail to be triggered.

However, we decided that the issue is not necessary to be handled. In evaluation,

REPFUZZER could reproduce the target bugs within few executions and required only

dozens of executions with most severe case. Since bugs can be reproduced without

severe problem, REPFUZZER do not have to hold extra overhead, handling unstable

kernel execution coverage, at run time.

Unhandled Kernel Components. Although REPFUZZER handles diverse non-syscall
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context executions, some kernel components are not handled by REPFUZZER. The

components handled by REPFUZZER are explicitly created in parent thread so that

REPFUZZER can determine whether it should trace. However, with some components,

they are invoked implicitly and cannot be decided whether to be traced. For instance, if

kernel thread uses hardware, hardware interrupt context will be called. But the context

cannot be decided to be traced, since the processes until interrupt is called occur in

external from the kernel. But, if REPFUZZER can be assisted from hypervisor, more

components can be handled by REPFUZZER.

28



Chapter 6

RELATED WORKS

6.1 Kernel Concurrency Bugs

Bug Testing. KRACE [28] is fuzzing framework which targets data race in file system.

KRACE introduces new metrics, referred as alias-coverage, to guide fuzzer to race

bugs. Also, it injects random delays in memory instructions to manage kernel thread

scheduling. Unfortunately, as the authors said, KRACE fails to reproduce found bugs

deterministically since it cannot handle all kernel components because of its overhead.

In contrast, REPFUZZER handles kernel threads with selective way to solve overhead

issues so that it can reproduce found bugs deterministically.

Razzer [29] and Snowboard [30] are kernel fuzzers targeting concurrency bugs.

Razzer applies static analysis to find possible racy instruction pairs and fuzzing in-

put syscalls that can trigger the pairs. Snowboard clusters instructions sharing mem-

ory region during runtime, and tests diverse thread interleavings with the informa-

tion. Razzer and Snowboard can reproduce found concurrency bugs easily, but both

works are highly restricted to concurrency bugs. Also, they commonly holds high

overhead from gathering information and testing thread interleavings under same input

syscalls. Such design makes it inefficient for finding other types of bugs. Meanwhile,

REPFUZZER does not require any restriction to a fuzzer, so it can support for general
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bugs.

SKI [26] and RAProducer [21] are frameworks stress testing given program with

different kernel thread interleavings. SKI pins each kernel thread to logical CPU in

hypervisor so that it can serialize and schedule the execution of the CPU, i.e., kernel

thread, with PCT algorithm [27]. Meanwhile, to reproduce data race from given pro-

gram, RAProducer gathers candidate race pairs from dynamic analysis of the program

and tests each pair with inserting breakpoint. The works can be used to reproduce con-

currency bugs from a fuzzer, but some problems exist. First, fuzzer’s crash log contains

syscalls irrelevant to found bugs. SKI and RAProducer is based on stress testing and

the required execution number increases by the size of crash logs. Second, the tools

cannot decide whether the bug can be reproduced with the tool. In kernel, the issues

other than concurrency can make unstable reproduce of bugs, e.g., external hardware

states. But the tools cannot know why the program finished without any crash and,

therefore, need to keep executing the program.

6.2 Reproducing Bugs

Record and Replay. For reproducing bugs, one of the most significant system is

record and replay [22, 24, 25]. Record and replay system records non-deterministic

events at runtime and, when a bug occurs, replays the bug with the recorded informa-

tion. Some previous works [23] tried to implement record and replay system covering

for whole system, including kernel. But because of its high overhead in both perfor-

mance and space, it is hard to be used in context of kernel fuzzing. Especially, a fuzzer

executes high throughput of syscalls, so the space overhead can be critical for the

fuzzer.

Among the record and replay systems, tsan11rec [22], which targets for user pro-

grams, shares similarity with REPFUZZER. For recording thread interleavings, it in-

struments atomic instructions in program and applies between two strategies. It can

30



simply records the order of instrumented instructions or schedules the program based

on seed number and replays with the number, which is similar to our approach. But

the design of tsan11rec cannot provide deterministic reproduce of data race, so it was

implemented upon race detector which makes huge overhead of both performance

and memory. Also, unlike REPFUZZER, tsan11rec’s scheduling policy is too simple

to explore diverse thread interleavings. Since tsan11rec is based on record and replay

system, exploring diverse thread interleavings is not tsan11rec’s concern. Meanwhile,

REPFUZZER is built for a fuzzer and should be design not to disturb the fuzzer, includ-

ing possible thread interleavings.
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Chapter 7

CONCLUSION

Concurrency bug is one of the most challenging bug types to be reproduced and some

concurrency bugs are failed to be reproduced after fuzzer finds them. This thesis pro-

posed REPFUZZER, a kernel fuzzing framework to enable successful reproduce of

concurrency bugs once they are found by the fuzzer. It applies deterministic schedul-

ing for kernel threads so that the buggy scheduling of fuzzing phase can be replayed

at reproduce phase. Also, with selective thread tracing and token based scheduling, it

can solve the challenges with the contexts of kernel and fuzzing. With the evaluation,

REPFUZZER shows its ability to reproduce the found bugs in fuzzing phase and to

provide stable environment to analyze the bugs.
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초록

커널퍼져들이최근몇년간발전해오면서퍼져에의해보고되는버그들의수가

늘어났다.커널개발자들이이런버그들을모두분석할수없기때문에이런상황은

디버깅정보를제공해줄수있는버그재현의중요성을더욱중요하게만든다.불행

히도,퍼져는종종버그재현에실패하는데재현이힘든버그중하나가바로동시성

버그다.동시성버그는여러스레드사이의특정한조건을만족할때발생하는데커

널 스케쥴링의 비결정적인 스레드 간섭은 동시성 버그의 재현을 막는다. 그 결과,

일부동시성버그들은버그의재현에실패한뒤고쳐지지않은채버려진다.

이논문에서는,퍼져에의해발견된버그를결정적으로재현할수있도록도와주

는 REPFUZZER를소개한다.이는선택적스레드추적과결정적스케쥴러를통해문

제를해결한다.선택적스레드추적을통해 REPFUZZER는퍼져에있어서흥미로운

스레드에만집중할수있도록한다.그리고 REPFUZZER는결정적스케쥴러를통해

선택된스레드를스케쥴해주며결정적인스레드간섭을만들어낸다.퍼징단계와

재현단계모두에서 REPFUZZER 를사용함으로써퍼져는찾아낸버그를재현해낼

수 있게 된다. 결과적으로 REPFUZZER 는 15개의 실제 동시성 버그를 재현하면서

효율성을 보여줬으며, 버그 중 일부는 비결정적인 커널 스케쥴링으로 재현해내기

위해엄청난시간을필요로했다.

주요어:동시성버그,커널,퍼징

학번: 2020-27942
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