

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Unsupervised Representation Learning
for Homogeneous, Heterogeneous,

and Tree-like Graphs

동종,이종,그리고나무형태의그래프를위한
비지도표현학습

BY

Jiwoong Park

AUGUST 2022

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Unsupervised Representation Learning
for Homogeneous, Heterogeneous,

and Tree-like Graphs

동종,이종,그리고나무형태의그래프를위한
비지도표현학습

BY

Jiwoong Park

AUGUST 2022

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Unsupervised Representation Learning
for Homogeneous, Heterogeneous,

and Tree-like Graphs

동종,이종,그리고나무형태의그래프를위한
비지도표현학습

지도교수최진영

이논문을공학박사학위논문으로제출함

2022년 8월

서울대학교대학원

전기정보공학부

박지웅

박지웅의공학박사학위논문을인준함

2022년 8월

위 원 장: 조 남 익

부위원장: 최 진 영

위 원: 오 성 회

위 원: 곽 노 준

위 원: 최 종 원

Abstract

The goal of unsupervised graph representation learning is extracting useful node-

wise or graph-wise vector representation that is aware of the intrinsic structures of the

graph and its attributes. These days, designing methodology of unsupervised graph rep-

resentation learning based on graph neural networks has growing attention due to their

powerful representation ability. Many methods are focused on a homogeneous graph

that is a network with a single type of node and a single type of edge. However, as many

types of relationships exist in this world, graphs can also be classified into various types

by structural and semantic properties. For this reason, to learn useful representations

from graphs, the unsupervised learning framework must consider the characteristics

of the input graph. In this dissertation, we focus on designing unsupervised learning

models using graph neural networks for three graph structures that are widely available:

homogeneous graphs, tree-like graphs, and heterogeneous graphs.

First, we propose a symmetric graph convolutional autoencoder which produces a

low-dimensional latent representation from a homogeneous graph. In contrast to the

existing graph autoencoders with asymmetric decoder parts, the proposed autoencoder

has a newly designed decoder which builds a completely symmetric autoencoder form.

For the reconstruction of node features, the decoder is designed based on Laplacian

sharpening as the counterpart of Laplacian smoothing of the encoder, which allows

utilizing the graph structure in the whole processes of the proposed autoencoder ar-

chitecture. In order to prevent the numerical instability of the network caused by the

Laplacian sharpening introduction, we further propose a new numerically stable form of

the Laplacian sharpening by incorporating the signed graphs. The experimental results

of clustering, link prediction and visualization tasks on homogeneous graphs strongly

support that the proposed model is stable and outperforms various state-of-the-art

algorithms.

i

Second, we analyze how unsupervised tasks can benefit from learned representa-

tions in hyperbolic space. To explore how well the hierarchical structure of unlabeled

data can be represented in hyperbolic spaces, we design a novel hyperbolic message

passing autoencoder whose overall auto-encoding is performed in hyperbolic space.

The proposed model conducts auto-encoding the networks via fully utilizing hyperbolic

geometry in message passing. Through extensive quantitative and qualitative analyses,

we validate the properties and benefits of the unsupervised hyperbolic representations

of tree-like graphs.

Third, we propose the novel concept of metanode for message passing to learn

both heterogeneous and homogeneous relationships between any two nodes without

meta-paths and meta-graphs. Unlike conventional methods, metanodes do not require

a predetermined step to manipulate the given relations between different types to

enrich relational information. Going one step further, we propose a metanode-based

message passing layer and a contrastive learning model using the proposed layer. In

our experiments, we show the competitive performance of the proposed metanode-

based message passing method on node clustering and node classification tasks, when

compared to state-of-the-art methods for message passing networks for heterogeneous

graphs.

keywords: Unsupervised Graph Representation Learning, Graph Neural Networks,

Autoencoder, Contrastive Learning

student number: 2018-35712

ii

Contents

Abstract i

Contents iii

List of Tables vii

List of Figures ix

1 Introduction 1

2 Representation Learning on Graph-Structured Data 4

2.1 Basic Introduction . 4

2.1.1 Notations . 5

2.2 Traditional Approaches . 5

2.2.1 Graph Statistics . 5

2.2.2 Neighborhood Overlap . 7

2.2.3 Graph Kernel . 9

2.2.4 Spectral Approaches . 10

2.3 Node Embeddings I: Factorization and Random Walks 15

2.3.1 Factorization-based Methods 15

2.3.2 Random Walk-based Methods 16

2.4 Node Embeddings II: Graph Neural Networks 17

2.4.1 Overview of Framework . 17

iii

2.4.2 Representative Models . 18

2.5 Learning in Unsupervised Environments 21

2.5.1 Predictive Coding . 21

2.5.2 Contrastive Coding . 22

2.6 Applications . 24

2.6.1 Classifications . 24

2.6.2 Link Prediction . 26

3 Autoencoder Architecture for Homogeneous Graphs 27

3.1 Overview . 27

3.2 Preliminaries . 30

3.2.1 Spectral Convolution on Graphs 30

3.2.2 Laplacian Smoothing . 32

3.3 Methodology . 33

3.3.1 Laplacian Sharpening . 33

3.3.2 Numerically Stable Laplacian Sharpening 34

3.3.3 Subspace Clustering Cost for Image Clustering 37

3.3.4 Training . 39

3.4 Experiments . 40

3.4.1 Datasets . 40

3.4.2 Experimental Settings . 42

3.4.3 Comparing Methods . 42

3.4.4 Node Clustering . 43

3.4.5 Image Clustering . 45

3.4.6 Ablation Studies . 46

3.4.7 Link Prediction . 47

3.4.8 Visualization . 47

3.5 Summary . 49

iv

4 Autoencoder Architecture for Tree-like Graphs 50

4.1 Overview . 50

4.2 Preliminaries . 52

4.2.1 Hyperbolic Embeddings . 52

4.2.2 Hyperbolic Geometry . 53

4.3 Methodology . 55

4.3.1 Geometry-Aware Message Passing 56

4.3.2 Nonlinear Activation . 57

4.3.3 Loss Function . 58

4.4 Experiments . 58

4.4.1 Datasets . 59

4.4.2 Compared Methods. 61

4.4.3 Experimental Details. 62

4.4.4 Node Clustering and Link Prediction 64

4.4.5 Image Clustering . 66

4.4.6 Structure-Aware Unsupervised Embeddings 68

4.4.7 Hyperbolic Distance to Filter Training Samples 71

4.4.8 Ablation Studies . 74

4.5 Further Discussions . 75

4.5.1 Connection to Contrastive Learning 75

4.5.2 Failure Cases of Hyperbolic Embedding Spaces 75

4.6 Summary . 77

5 Contrastive Learning for Heterogeneous Graphs 78

5.1 Overview . 78

5.2 Preliminaries . 82

5.2.1 Meta-path . 82

5.2.2 Representation Learning on Heterogeneous Graphs 82

5.2.3 Contrastive methods for Heterogeneous Graphs 83

v

5.3 Methodology . 84

5.3.1 Definitions . 84

5.3.2 Metanode-based Message Passing Layer 86

5.3.3 Contrastive Learning Framework 88

5.4 Experiments . 89

5.4.1 Experimental Details . 90

5.4.2 Node Classification . 94

5.4.3 Node Clustering . 96

5.4.4 Visualization . 96

5.4.5 Effectiveness of Metanodes 97

5.5 Summary . 99

6 Conclusions 101

Abstract (In Korean) 127

vi

List of Tables

3.1 Effectiveness of various decoders . 36

3.2 Summary of datasets . 40

3.3 Experimental results of node clustering 44

3.4 Experiment results on Pubmed dataset 44

3.5 Experimental results of image clustering 46

3.6 Effects of stable decoder and subspace clustering cost 47

3.7 Experimental results of link prediction on Citeseer 48

4.1 Dataset statistics. 59

4.2 Link prediction performances. 64

4.3 Node clustering performances. 65

4.4 Link prediction task compared with P-VAE. 65

4.5 Image clustering performances. 67

4.6 Ablation studies on link prediction task: The baseline model is GAE

which conducts graph convolution in Euclidean space, does not use an

attention mechanism and reconstructs only the graph structure A. . . . 76

5.1 Predefined meta-paths of real-world datasets. In this table, it can be

noticed that most of R are inter-type relations and P target on intra-type

relations by setting the same type of nodes at both ends of P 82

5.2 Statistics of datasets. 90

vii

5.3 Summary of node classification results (%± σ). 91

5.4 Summary of node clustering results (%). 95

5.5 Effectiveness of metanode via extended HeCo model on node classifi-

cation task (%). 98

viii

List of Figures

3.1 Architectures of existing graph convolutional autoencoders and pro-

posed one. A, X , H and W denote the affinity matrix (structure of

graph), node attributes, latent representations and the learnable weight

of network respectively. 28

3.2 Sample images of three image datasets 41

3.3 The two-dimensional visualizations of raw features of each node and

the latent representations of compared methods and GALA for Cora,

Citeseer and YALE are presented. The same color indicates the same

cluster. 48

4.1 The overall architecture of HGCAE in a two-layer autoencoder (i.e. the

encoder and decoder have two layers each) whose hyperbolic space

is hyperboloid. This figure describes three things: 1) how the node of

the graph (red dot) conducts message passing (Eq. (4.12) and (4.15))

with its neighbors (yellow dot), 2) the process of embedding the output

of encoder in hyperboloid latent space (blue-purple space), and 3)

reconstruction of Euclidean node attributes at the end of the decoder. 56

4.2 Class hierarchy of ImageNet-Dogs1. 60

ix

4.3 2-dimensional embeddings in Euclidean, Poincaré ball, and hyperboloid

latent space on Cora dataset. Same color indicates same class. On

hyperbolic latent spaces, most of the nodes are located on the boundary

and well-clustered with the nodes in the same class. 66

4.4 Class hierarchy of ImageNet-10 and ImageNet-BNCR2. 66

4.5 2-dimensional embeddings of CAE, GAE, HAE, and HGCAE-P on

ImageNet-10 and ImageNet-BNCR. Hyperbolic representations belong-

ing to the same root are close to each other near the boundary of the

space. 69

4.6 Clustering accuracy (%) according to the hierarchy of classes on

ImageNet-10 and ImageNet-BNCR. 70

4.7 Histogram and images according to the hyperbolic distance from the

origin (HDO) on ImageNet-10 and ImageNet-BNCR. The feature of

images inside red (blue) color box have high (low) HDO, so are located

near the boundary (origin) of hyperbolic space. 72

4.8 Top-1 classification error (%) on ImageNet-10 and ImageNet-BNCR. 73

5.1 (a) An example of heterogeneous movie networks. There exists four

types of nodes: movie, actor, director, and producer. (b) Example of two

meta-paths (i.e., movie-director-movie and actor-movie-actor) which

are compositions of different types of nodes. (c) A meta-graph which is

a composition of multiple meta-paths. (d) The proposed metanode: each

metanode aggregates messages of all nodes of each type and returns the

aggregated message to each node when passing messages to the next

layer. 79

x

5.2 (a) The concept of metanode scheme. Each metanode (checkerboard

pattern) is connected to all nodes in the node set of each type using

extended edge sets (colored dash line). (b) The proposed metanode-

based message passing layer (MN-MPL) takes three components as in

Eq. (5.1), indicated by red, blue, and green boxes. (c) The metanode

aggregates node messages of same type and returns the aggregated

message to every nodes of same type. 85

5.3 Overview of the contrastive model. C,D,E, and s denote a corruption

function for generating negative samples, a discriminator function, an

encoder network which is composed of our MN-MPL, and a global

summary vector, respectively. We referred to the graphical description

of [1]. 89

5.4 The two-dimensional projections of learned representations of n2vec,

HeCo, and our methods (MN) for DBLP, ACM, and AMiner are illus-

trated. Silhouette score of each projected representations are provided

below each subfigure. Same color of nodes share same class label. . . 97

xi

Chapter 1

Introduction

A fundamental problem of machine learning is learning useful representations from

high-dimensional data. There are many (semi-) supervised representation learning

methods that achieve good performances for downstream tasks [2–5] on several data

domains such as images and graphs. In recent years, with the success of deep learning,

various large-scale real-world datasets have been collated [2, 6–8]. However, the larger

these datasets and the closer they are to the real world, the expense and effort required

to label the data increases proportionally. Also, supervised representation learning

might suffer deteriorated performances due to the lacked generalization capability from

limited training data and noisy labels. Thus, unsupervised representation learning is an

increasingly viable approach to extract useful representation from real-world datasets.

Among the various data domain, unsupervised representation learning of graph-

structured data is one of the most important machine learning subjects. This is because,

a graph representing objects and their relationships exists everywhere in our world.

Social relations between people, hierarchy in an organization, links between web pages,

bonds between atoms in a molecule, and purchase records between user and item are

some of the representative examples. Thus, we can perceive our world via understanding

the properties of graphs and extracting knowledge from them.

Recently, Graph Neural Networks (GNNs) [3, 9–11] are de facto models for unsu-

1

pervised graph representation learning. Since GNNs were first proposed, the majority of

efforts in this field have been aimed at learning representations for homogeneous graphs

with a single type of object and a single type of relation. However, graph-structured

datasets in real-world applications are not limited to a single type of nodes and edges

and do not share the same structure. For example, relations between a hierarchy of

organizations and web pages have a hierarchical structure and can be represented as

trees, and there are different types of bonds between atoms or molecules, such as ionic

bonds and covalent bonds. Thus, to extract accurate and useful representation from

graphs, designing graph representation learning architectures which take into account

the characteristics of each graph structure is important.

During Ph.D., my current research interest is to answer the following question:

In an unsupervised environment, how to extract useful knowledge from relationships

between objects? In my work, I aim to achieve this by understanding the unique

characteristics of graphs in various domains and using it as an inductive bias. Since

there are various types of relationships in this world, the graph of each domain has its

own unique characteristics. My work focuses on three representative graph structures

among various kinds of graphs: homogeneous graph, tree-like graph, and heterogeneous

graph. I try to answer the following questions: i) how to extract a latent representation

of a node in the homogeneous graph?; ii) how to learn accurate representations from

tree-like graphs?; iii) how to learn the intricate structure from different types of nodes

and relations in heterogeneous graphs effectively and efficiently? Below I briefly

describe my approaches to answer the above questions by designing domain-specific

unsupervised graph representation learning frameworks.

Homogeneous graph. A homogeneous graph indicates there exists a single type of

node and a single type of edge (relation) in graphs. A citation network whose nodes

are papers and edges representing citation between papers is a typical example of

homogeneous graphs. Many previous works tried to learn a low-dimensional latent

representation of nodes using autoencoder framework. However, due to the partially

2

trainable frameworks, they have a limited learning capability. To tackle this issue, we

introduced a novel decoder layer to design a fully trainable autoencoder framework

from understanding how the encoder of previous models works on the homogeneous

graph. This work is included in Chapter. 3.

Tree-like graph. Among the many types of relationships, hierarchical relationships are

one of the most common types in our world. For example, we can find hierarchies in

the organizational structure of corporations and governments or in biological classifi-

cations between species. It is well known that graph underlying hierarchical relations

between nodes show a tree-like structure. Existing methods usually extract a latent

node representation of tree-like graph in Euclidean space as many machine learning

methods did. However, due to the nature of the tree that the number of leaf nodes grows

exponentially with the depth of the tree, recent analysis reveals that Euclidean space is

not an appropriate space to learn tree-like graphs. Thus, we introduced a novel autoen-

coder framework operating in hyperbolic spaces that can be considered as a continuous

version of the discrete tree to effectively learn representations of tree-like graphs. Also,

we designed a self-attention mechanism that adopts the hyperbolic distance between

node features. This work is included in Chapter. 4.

Heterogeneous graph. A heterogeneous graph is a network with multiple types of nodes

and edges. For example, a citation network might have multiple types of nodes (papers,

authors, institutions, and subjects of papers) and multiple types of edges (writing and be

affiliated with). Most existing methods rely on the pre-defined composition of different

types of nodes in advance of training a model to learn intricate structures from multiple

types of nodes and edges. However, it is hard to know whether the compositions given

in advance is conducive to effective learning. Most of heterogeneous graphs are given

only sparse relationships between different node types. Motivated by this property, we

proposed the concept of a virtual node that does not require any preprocessing step and

can help to effectively learn the relation of diverse relations in heterogeneous graphs.

This work is included in Chapter. 5.

3

Chapter 2

Representation Learning on Graph-Structured Data

2.1 Basic Introduction

A graph that can model the objects and interaction between them as nodes and edges

respectively can be found everywhere in our world. Social interaction between people,

citation relation between papers, recommendation system, chemical bonds between

atoms, and biological classification between species are some of the representative

examples. Therefore, understanding and extracting patterns from interaction between

nodes in graphs is one of the long standing machine learning research fields. In the real

world, since there exist tons of different types of interactions (relations), graphs can be

classified into numerous types by structural and semantic properties. For instance, a

network may have a single type of node and a single type of edge (e.g. homogeneous

graph), or multiple types of nodes and edges (e.g. heterogeneous graph). In some cases,

the network can have a tree structure if there exist hierarchical relations between nodes.

By building powerful models that can analyze relations between objects and under-

stand the properties, we can get insights from real-world complex networks. For a very

long time, attempts to learn graphs based on a mathematical basis have been actively

made, and recently, it has become possible to extract useful information about the

structure of graphs in various areas with the power of neural networks. In this chapter,

4

we provide basic notations on graphs, traditional methodology such as graph statistic

and spectral approaches, Graph Neural Networks (GNNs) model, and architectures of

unsupervised learning model for graphs.

2.1.1 Notations

A graph can be represented as G = (V, E , A), where V is a node set and E is an edge set.

An adjacency matrix A ∈ R|V|×|V| encodes information of pairwise relations between

nodes. A degree matrix D ∈ R|V|×|V| is a diagonal matrix whose diagonal element

Dii =
∑

j Aij refers to the degree value of each node.

If the graph is undirected, since (u, v), (v, u) ∈ E for u, v ∈ V , the adjacency

matrix A is symmetric, while the graph is directed, the corresponding A is asymmetric.

If the graph is weighted, the edge can have a continuous weights. In this case, the

adjacency matrix is no longer binary matrix and can take any real-values.

2.2 Traditional Approaches

There exist numerous methods to understand and analyze the graphs. In this section,

we will briefly review some early attempts among them such as graph statistics, neigh-

borhood overlap, graph kernel, spectral approaches, and random walks on graphs. We

will assume that the given graph is undirected for simplicity.

2.2.1 Graph Statistics

To extract features from graphs, the most straightforward way is utilizing statistics on

graphs. The distribution of degree values about the connection of nodes or the frequency

of small specific structures such as triangles helps to understand the characteristics of

the network.

5

Node Centrality

Node centrality measures the importance of the node in the graph. There are various

definitions of centrality depending on which criterion is used to measure the impor-

tance. Among them, we will explain betweenness centrality, closeness centrality, and

eigenvector centrality.

i) Betweenness centrality [12] measures the importance of node using shortest path. If

a node u appears many times on the shortest path between other nodes, than that node

have a large centrality score c(u) as follows:

c(u) =
∑

s ̸=u̸=t

number of shortest paths between s and t containing u
number of shortest paths between s and t

. (2.1)

ii) Closeness centrality [13] measures the importance of nodes using shortest path

distance. If the shortest path distance between node u and all other node are small, then

that node have a large centrality:

c(u) =
1∑

u̸=v shortest path distance between u and v
. (2.2)

iii) Eigenvector centrality [14] measures the node importance by considering the impor-

tance of neighbors. Eigenvector centrality c(u) defines the centrality as the sum of the

centrality of the neighbor nodes:

c(u) =
1

λ

∑
v∈NG(u)

c(v), (2.3)

where λ is a normalizing constant. The equation (2.3) can be reformulated as λc = Ac,

where c is the centrality vector and A is the adjacency matrix. It can be observed that c

is the eigenvector of the adjacency matrix. The eigenvector corresponding to the largest

eigenvalue of the adjacency matrix is used for the centrality vector.

6

Clustering Coefficient

Clustering coefficient measures the how much the node of the graph are well connected

together. The definition of local clustering coefficient [15] is:

c(u) =
number of edges among neighbor nodes(

du
2

) ∈ [0, 1], (2.4)

where du is the degree value of node u. If the neighbor nodes in NG(u) are well

connected with each other, then c(u) have a large value.

2.2.2 Neighborhood Overlap

Although many methods are focusing on the prediction of node-wise or graph-wise

properties, prediction of relation such as link prediction is also very important task of

graph representation learning fields. When predicting the relation between two nodes, it

is essential to consider how close they are. How many neighbors two nodes share with

each other (neighborhood overlap) provides very important information to know the

relationship between them. We will introduce local neighborhood overlap: Common

neighbors, Jaccard’s coefficient, and Adamic-Adar index, and global neighborhood

overlap: Katz index. From now on, we define Sij as the value about the relation between

two nodes vi, vj ∈ V .

Common Neighbors

Common neighbors measures the relation between two nodes as the number of shared

neighbors as follows:

Sij = |NG(i) ∩NG(j)|. (2.5)

Common neighbors is one of the simplest methods and cannot measure the relation

between two nodes if they are located far apart.

7

Jaccard’s Coefficient

Jaccard’s coefficient normalizes the closeness of neighbors of two target nodes into unit

interval [0, 1]:

Sij =
|NG(i) ∩NG(j)|
|NG(i) ∪NG(j)|

. (2.6)

If the neighbor sets of two nodes NG(i),NG(j) are identical, then Sij = 1.

Adamic-Adar Index

Unlike common neighbors and Jaccard’s coefficient, Adamic-Adar index [16] consider

second order relations:

Sij =
∑

m∈NG(i)∩NG(j)

1

log |NG(m)|
. (2.7)

Although two target nodes share many neighbors, if the neighbor m ∈ NG(i) ∩NG(j)

has a high degree value, then Sij can have a small value. The intuition of Adamic-Adar

index is that the common neighbors with large neighbors are less significant when

considering the relation between two target nodes.

Katz Index

The limitation of local neighborhood overlap such as common neighbors, Jaccard’s

coefficient, and Adamic-Adar index is that if two nodes vi, vj do not share any neighbors,

then Sij is always 0. However, although the two nodes do not have local neighbor,

they can locate in the same community or be connected later. Global neighborhood

overlap overcomes this issue by considering the overall structure of the graph. Katz

index [17] measures the relation between two nodes by counting the number of walks

of any number:

Sij =

∞∑
k=1

βkAk
ij , (2.8)

where A is the adjacency matrix and β(0 < β < 1) is a discount factor. Since Ak
ij is

equal to the number of walks of length k between vi and vj , Katz index can consider

8

all walks between two nodes by the power of adjacency matrix. It can be noticed that

Katz index assigns more weights βk to the walks of short lengths.

2.2.3 Graph Kernel

Suppose that we want to classify multiple graphs. Then, it is essential to measure the

structural similarity between the graphs. The well-known method to measure the similar-

ity between the graphs is graph kernel method. The kernel methods measure the similar-

ity between two graphs G1,G2 via kernel function K(·, ·) that is equal to an inner product

in Reproducing Kernel Hilbert Space (RKHS) H: K(G1,G2) = ⟨ϕ(G1), ϕ(G2)⟩H, where

ϕ(G) is a feature representation of the graph.

Graphlet Kernel

Graphlets [18] are small, induced, and non-isomorphic subgraph structures. The key

idea of graphlet kernel [19] is using bag-of-graphlet representation of the graph. By

counting the occurrence of different graphlets, we can define graphlet count vector

fgraphlet ∈ Rnk , where nk is the number of graphlets and i-th component of fgraphlet

indicates the frequency of occurrence of i-th graphlet. After computing the graphlet

count vectors of two graphs fgraphlet(G1), fgraphlet(G2), we normalize each feature vector.

Then, we can define the kernel function of graphlet kernel as Kgraphlet(G1,G2) =

fgraphlet(G1)
T fgraphlet(G2). If two graphs share similar frequency of graphlet occurrence,

then the result of kernel function is a high value. The limitation of graphlet kernel is

that counting graphlets requires high computational burden, since counting the size of

k graphlets for a graph G takes |V|k.

Weisfeiler-Lehman Kernel

Weisfeiler-Lehman (WL) kernel [20] is more efficient feature descriptor compared to

graphlet kernel. The key idea of WL kernel is utilizing neighbor structure of each node

by iteratively aggregating labels of neighbors. After deriving node-level features, WL

9

kernel computes a graph-level feature by aggregating node-level features. To achieve

this, WL kernel applies WL algorithm (color refinements) [21]:

1. Assign an initial color c0(v) to each node v ∈ V . For most of graphs, we can

simply assign the initial color following the degree value dv.

2. Iteratively refine node label as ci+1(v) = HASH
({
ci(v), {ci(u)}u∈NG(v)

})
,

where HASH maps different inputs to different labels.

3. Repeat Step 2 K times and derive the final node label cK(v). Then cK(v) sum-

marizes the structure of K-hop ego networks of each node v.

After finishing color refinement, we define a color count vector of the graph fWL(G) by

counting the occurrence of colors. Then WL kernel computes the similarity between

two graphs as KWL(G1,G2) = fWL(G1)
T fWL(G2). Since the time complexity of WL

kernel is linear in the number of edges |E|, WL kernel is computationally efficient for

sparse graphs.

2.2.4 Spectral Approaches

Spectral graph theory [22] focuses the behavior of spectrum of matrix that represents

graph structure. From the graph spectrum, we can deduce the properties and structures

of the graph. At first, we explain graph Laplacian, the most important graph matrix.

Graph Laplacian

Suppose that the graph G is undirected and its adjacency matrix and degree matrix

are A and D, respectively. An essential operator in spectral graph theory is the graph

Laplacian L, whose definition is L = D − A, and L = UΛUT where the graph

Laplacian can be diagonalized by the Fourier basis U = [u1, . . . , u|V|] ∈ R|V|×|V| and

Λ = diag([λ1, . . . , λ|V|)] ∈ R|V|×|V| where {ui}|V|i=1 are the eigenvectors and {λi}|V|i=1

are the non-negative eigenvalues of graph Laplacian (0 = λ1 ≤ . . . ≤ λ|V|). There

10

exist two normalized version of L: symmetric graph Laplacian Lsym and random walk

graph Laplacian Lrw are defined by Lsym = In−D− 1
2AD− 1

2 and Lrw = In−D−1A

respectively, where In ∈ Rn×n denotes an identity matrix. Now, we provide some

important properties of L:

1. L is symmetric and positive semi-definite.

2. xTLx = 1
2

∑
u∈V

∑
v∈V Auv(x[u]− x[v])2 ≥ 0 for all x ∈ R|V|.

3. The smallest eigenvalue λ1 is 0 and its corresponding eigenvector u1 is the one

vector 1.

4. The multiplicity of eigenvalue 0 is equal to the number of connected components

in the graph.

5. The eigenvalues of graph Laplacian are the union of the spectra of each connected

component.

Graph Cut

Suppose we want to find partitions A1,A2, ...,Ak(A1 ∪ · · · ∪ Ak = V) of the graph

such that maximizing the number of edges of intra-community and minimizing the

number of edges of inter-community. To find the optimal partition, we define graph cut

that minimizes:

cut(A1, ...,Ak) =
1

2

k∑
i=1

W (Ai, Āi), (2.9)

where Āi is the complement of Ai and W (Ai, Āi) =
∑

i∈Ai,j∈Āi
Aij . However,

directly minimizing (2.9) might generate implausible partitions since the cut value does

not consider relative sizes between partitions.

To solve the problem of graph cut, RatioCut [23] and normalized cut (NCut) [24]

consider the size of the partition as the number of nodes in partition and degree value,

11

respectively. The definition of ratio cut and normalized cut are described as below:

RatioCut(A1, ...,Ak) =
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
, (2.10)

NCut(A1, ...,Ak) =
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)
, (2.11)

where |Ai| is the number of nodes in the partition Ai and vol(Ai) =
∑

u∈Ai
du is the

summation of degree value of nodes in partition Ai.

Now we explain the relation between RatioCut, NCut and the spectrum of graph

Laplacian. For simplicity we use the case of k = 2, where A and Ā(A ∪ Ā = V). At

first, we approximate RatioCut(A, Ā) using graph Laplacian:

min
A⊂V

RatioCut(A, Ā). (2.12)

We rewrite the problem more convenient way by defining the vector f ∈ R|V| as

follows:

f [u] =


√

|Ā|
|A| , if u ∈ A,

−
√

|A|
|Ā| , if u ∈ Ā.

(2.13)

Now, we can represent (2.12) as the equation of graph Laplacian L:

fTLf =
1

2

∑
u,v∈V

Auv(x[u]− x[v])2 (2.14)

=
∑

u∈A,v∈Ā

Auv

(|A|
|Ā|

+
|Ā|
|A|

)2
(2.15)

= cut(A, Ā)
(|A|
|Ā|

+
|Ā|
|A|

+ 2
)

(2.16)

= cut(A, Ā)
(|A|+ |Ā|

|Ā|
+

|A|+ |Ā|
|A|

)
(2.17)

= |V|RatioCut(A, Ā). (2.18)

Since the vector f of (2.13) is orthogonal to the one vector 1 (f ⊥ 1) and ∥f∥2 = |V|,

12

we can rewrite (2.12) as follows:

min
A⊂V

fTLf

s.t. f ⊥ 1

∥f∥2 = |V|.
(2.19)

However, since (2.19) is NP-hard problem due to the discrete nature, we have to relax

the problem as follows:

min
f∈R|V|

fTLf

s.t. f ⊥ 1

∥f∥2 = |V|.
(2.20)

By Rayleigh-Ritz theorem [25], the solution of (2.20) is the eigenvector of the second

smallest eigenvalue ofL: u2. After obtaining u2, we can derive the partition by following

the sign of the elements: 
i ∈ A, if u2[i] ≥ 0,

i ∈ Ā, if u2[i] < 0.

(2.21)

Now, we approximate NCut(A, Ā) using graph Laplacian:

min
A⊂V

NCut(A, Ā). (2.22)

The process of approximating NCut is similar to the case of the RatioCut. At first, we

define the vector f ∈ R|V| as follows:

f [u] =


√

vol(Ā)
vol(A) , if u ∈ A,

−
√

vol(A)
vol(Ā)

, if u ∈ Ā.
(2.23)

13

Then, we can rewrite (2.22):

min
A⊂V

fTLf

s.t. Df ⊥ 1

fTDf = vol(V).
(2.24)

Then, we relax the above problem:

min
f∈R|V|

fTLf

s.t. Df ⊥ 1

fTDf = vol(V).
(2.25)

We once again transform the problem after substituting f :

min
g∈R|V|

gTD−1/2LD−1/2g

s.t. g ⊥ D1/21

∥g∥2 = vol(V),
(2.26)

where g = D1/2f . By Rayleigh-Ritz theorem, the solution of (2.26) is the eigenvector of

the second smallest eigenvalue of symmetric graph Laplacian Lsym = D−1/2LD−1/2.

Spectral Clustering

The goal of spectral clustering [26] is partitioning the nodes of the graph intoK clusters.

The processes of spectral clustering are as follows:

1. Compute the symmetric graph Laplacian Lsym.

2. Obtain the eigenvectors U = [u1, ..., uK] ∈ R|V|×K of the smallestK eigenvalue

of Lsym.

14

3. Normalize the row of U to become a unit vector.

4. Conduct K-means clustering on each row of U , and obtain K clusters.

For a more detailed explanation of graph cut and spectral clustering, refer [27].

2.3 Node Embeddings I: Factorization and Random Walks

In this section, we describe the shallow node embedding methods based on matrix

factorization and random walks on graphs.

2.3.1 Factorization-based Methods

Matrix factorization methods aim to obtain node embeddings by decomposing the graph

matrix such as the adjacency matrix or graph Laplacian.

i) Laplacian Eigenmap [28] minimizes the following loss function to get the k - dimen-

sional node embedding H ∈ R|V|×k:

min
H∈R|V|×k

tr(HTLH)

s.t. HTDH = I. (2.27)

The solution of the above problem is the eigenvectors of the k smallest eigenvalues

of graph Laplacian. If the two nodes are connected by edges with large weight, then

they will have similar embeddings, since (2.27) can be reformulated as tr(HTLH) =∑
i,j ∥hi − hj∥2Aij , where hi ∈ Rk is the node embedding of i-th node (i-th row of

H).

ii) Graph factorization [29] decomposed the adjacency matrix to obtain node embed-

dings H:

min
H∈R|V|×k

∥HHT −A∥22.
(2.28)

15

Since the above problem can be seen as measure the distance between the adjacency

matrix and the inner product between node embeddings, graph factorization targets

first-order similarity.

iii) GraRep [30] aims to learn node embeddings that aware higher-order similarity by

decomposing the power of the adjacency matrix Ap:

min
H∈R|V|×k

∥HHT −Ap∥22.
(2.29)

2.3.2 Random Walk-based Methods

Unlike graph factorization and GraRep, random walk methods obtain node embeddings

in a stochastic way. If two nodes are occur frequently in each other’s short random

walks, then they will share similar embeddings.

i) DeepWalk [31] aims to obtain node embeddings that aware random walks. At first,

DeepWalk conducts short random walks starting from each node in the graphs and

collects the multiset Nrw(u) whose elements are visited nodes during random walks

starting from node u. Then DeepWalk optimizes the node embeddings of node u, hu,

by maximizing the following loss function L:

L = −
∑
u∈V

∑
v∈Nrw(u)

log(P (v|hu)), (2.30)

where P (v|hu) = exp(hT
uhv)∑|V|

l=1 exp(h
T
uhl)

. P (v|hu) is the probability that node u and v are

co-occur on the random walks. However, optimizing the loss function (2.30) is compu-

tationally inefficient, since summing over every node in the graph is required. To solve

this issue, DeepWalk introduced hierarchical softmax.

ii) When conducting random walks, node2vec [32] applies two types of random walks

based on breadth first search (BFS) and depth first search (DFS). By adjusting hy-

perparmeters to balance between BFS and DFS, the node embeddings of node2vec

can aware both of local structure and global structure of the graph. Also, node2vec

16

approximates the loss function of DeepWalk (2.30) by introducing negative sampling

strategy as follows:

log(
exp(hTuhv)∑|V|
l=1 exp(h

T
uhl)

) ≈ log(σ(hTuhv))−
m∑
i=1

log(σ(hTuhni)), ni ∼ PV , (2.31)

where σ is the sigmoid function and PV denotes random distribution over nodes in

the graph. By sampling m random negative samples, node2vec can avoid the case of

normalizing against all nodes in the graph.

2.4 Node Embeddings II: Graph Neural Networks

In this section, we explain Graph Neural Networks, the powerful deep node embedding

method.

2.4.1 Overview of Framework

About 15 years ago, the concepts of Graph Neural Networks (GNNs) were first proposed

[33, 34]. The main purpose of GNNs is learning vector representation of a node hi or a

graph hG by leveraging both graph structure and node features. The majority of modern

GNNs adopts the architecture of Message Passing Neural Networks (MPNNs) [9]

where each node update their messages (node features or representation) by exchanging

messages with its immediate neighbor nodes NG iteratively as described in Eq. (2.32).

hl+1
i = COMBINE

(
hli,AGGREGATE

(
hlj |j ∈ NG(i)

))
, (2.32)

where hli is the representation of node vi at l-th layer. We set h0i = xi, where xi is the

feature of vi. There are two major functions in the architecture of MPNNs: COMBINE

and AGGREGATE. AGGREGATE is a function for aggregating messages from the

neighbor nodes. COMBINE is a function for updating the node representation by

taking its own representation from the previous layer and the aggregated messages

from neighbors as inputs. Depending on which of the AGGREGATE and COMBINE

17

functions are used, we can classify GNNs models. In a case of obtaining a vector

representation of a graph for graph classification, the READOUT function which

aggregates the representations of every node in the graphs at the final layer is applied:

hG = READOUT({hLi |i ∈ V}). (2.33)

Many methods apply some simple permutation invariant functions as READOUT such

as sum pooling or max pooling [35, 36].

2.4.2 Representative Models

Now, we explain three most well-known GNNs models: Graph Convolutional Networks,

Graph Attention Networks, GraphSAGE, Jumping Knowledge Networks, and Graph

Isomorphism Networks.

Graph Convolutional Networks

Graph Convolutional Networks (GCN) [37] integrates AGGREGATE and COMBINE

functions by applying element-wise mean pooling on the representations of itself and

neighbor nodes as follows:

hl+1
i = ReLU

(
W · MEAN

{
hlj |j ∈ NG(i) ∪ {i}

})
, (2.34)

where W denotes a trainable weight matrix. When aggregating messages, GCN layer

assigns an equal (degree-normalized) weight to every messages of neighbors including

itself. GCN was applied to semi-supervised node classification task and showed superior

performances on citation networks.

Graph Attention Networks

Graph Attention Networks (GAT) [38] has an integrated step of AGGREGATE and

COMBINE functions similar to GCN [37]. The main difference from GCN is that,

18

unlike isotropic aggregation in GCN, GAT assigns importance to each neighboring

node and performs anisotropic aggregation as follows:

hl+1
i = ReLU

(
W ·

∑
j∈NG(i)∪{i}

αl
ijh

l
j

)
, (2.35)

αl
ij =

exp(LeakyReLU(aT [W · hli|W · hlj])∑
k∈NG(i)∪{i} exp(LeakyReLU(aT [W · hli|W · hlk])

), (2.36)

where αl
ij denotes an attention score at l-th layer representing the importance of node

vj to node vi, and a is a weight vector. There also exists a multi-head version of GAT to

stabilize the learning process. Due to the attention score, GAT is more interpretable than

other GNNs models, and shows superior performances on transductive and inductive

node classification tasks.

GraphSAGE

Graph Sample and Aggregate (GraphSAGE) [39] applies mean pooling, max pooling,

or LSTM function as AGGREGATE function and concatenation as COMBINE function.

The below is GraphSAGE in a case of max pooling aggregator:

hl+1
i = ReLU

(
W ·

[
hli|MAX{ReLU(W · hlj)|j ∈ NG(i)}

])
. (2.37)

For learning on large graphs, each layer of GraphSAGE does not aggregate messages

from every neighbor nodes and only aggregate messages of sampled neighbors for each

node. Due to the sampling strategy, GraphSAGE shows the improved scalability and

runtime.

Jumping Knowledge Networks

Each node of the graph has its own local structure. For instance, some nodes who

are connected to many neighbors are hubs, while some nodes are isolated nodes or

have a few neighbors. So, when we apply the same number of message passing layers

to every nodes in the graph, some nodes might lose their own meaning due to the

19

mixing of too much messages from neighbors. On the other hands, some nodes can

suffer limited information aggregation due to the extremely sparse local structures. To

circumvent this issue, when computing the final representation of each node hi before

classifier, Jumping Knowledge Networks (JK-Nets) [40] aggregates every intermediate

representations h0i , h
1
i , ..., h

L
i to let the model adapts the effective range of neighbor of

each node as follows:

hi = fJK(h
0
i , h

1
i , · · · , hLi), (2.38)

where fJK denotes the aggregation function for intermediate representations such as

concatenation, max-pooling, or LSTM-attention. By making the model to consider

adaptive neighbor size for each node, JK-Nets showed the improved transductive and

inductive node classification performances.

Graph Isomorphism Networks

One of the goal of graph learning model is mapping two nodes to the same location in

the representation space, if they have an identical node feature and same local structures.

Thus, to learn the same representation for the same subgraph structure, AGGREGATE

function should be injective. However, max aggregation of GraphSAGE and mean

aggregation of GCN are not injective, which may limit their expressive power. To

make the model injective, Graph Isomorphism Networks (GIN) [41] proposed sum

aggregation as follows:

hl+1
i = MLPl

(
(1 + ϵl)hli +

∑
j∈NG(i)

hlj

)
, (2.39)

where MLP is multi-layer perceptrons and ϵ is for discriminating the representation of

itself from the those of neighbors. Since sum aggregator is injective, GIN can be more

powerful model compared to GCN or GraphSAGE. GIN shows the improved graph

classification performances on social networks and biochemical molecules compared

to graph kernel [20] and diffusion-based graph convolution method [42]. For more

comprehensive explanation about graph neural networks, refer to [43].

20

2.5 Learning in Unsupervised Environments

Unsupervised representation learning on graph-structured data is long-lasting important

problem in machine learning fields. The earliest attempts were focused on dimen-

sionality reduction that tries to learn low-dimensional representation of graphs. Some

representative works are Multi-Dimensional Scaling [44], Isometric Mapping [45], and

Laplacian Eigenmaps [28]. Then, methods of matrix factorization on graph shift opera-

tor [29,30,46] and random-walk on graphs [31,32,47,48] were proposed. Recently, due

to its representation power and the surge of research on unsupervised (self-supervised)

learning, GNNs are de facto models for unsupervised graph representation learning.

There exist numerous deep graph unsupervised learning models based on GNNs and

they can be classified into two categories: predictive coding and contrastive coding. In

the below, we explain some predictive and contrastive coding methods utilizing GNNs

architectures.

2.5.1 Predictive Coding

The predictive learning methods on graph-structured data aim to train the encoder

f using the input data as supervisory signals. The representative predictive learning

architecture is autoencoder [49] that is composed of the encoder f that maps the input

to the low-dimensional latent space and the decoder g that maps the representation of

latent space to the reconstruction of the input (supervisory signal from input data). The

graph autoencoder models can be classified according to which part of the input data

is used as a supervisory signal (or reconstruction target): 1) feature reconstruction, 2)

structure reconstruction.

Autoencoders

i) Feature reconstruction: Marginalized Graph AutoEncoder (MGAE) [50] reconstructs

the node attributes from the corrupted node attributes. After randomly corrupting node

21

attributes, MGAE takes that as an input of stacked encoder based on GCN [3].

ii) Structure reconstruction: Variational Graph AutoEncoder (VGAE) [51] is the earliest

attempts to apply graph neural networks as an encoder of autoencoder frameworks. After

obtaining latent representation from encoders composed of GCN [3] layer, VGAE re-

construct the graph structure (adjacency matrix) using the inner-product decoder. VGAE

achieves improved link prediction performances compared to random-walk model. Ad-

versarially Regularized Variational Graph Autoencoder (ARVGA) [52] adds adversarial

regularization to VGAE model [51]. By regularizing the latent space, ARVGA makes

the latent representations follow a prior distribution and achieves robust representation.

Semi-Implicit Graph Variational AutoEncoder (SIG-VAE) [53] applies semi-implicit

hierarchical variational distribution to VGAE model [51] along with Bernoulli-Poisson

link decoder.

2.5.2 Contrastive Coding

The contrastive learning on graph-structured data has been greatly influenced by the

advancements in self-supervised learning in image and language domains. After gen-

erating two views from single graph, the goal of contrastive learning is maximizing

agreements between similar semantic information (positive samples), while minimizing

agreements between non-similar semantic information (negative samples) [54]. We

briefly introduce graph augmentation for generating multiple views of graphs, and some

representative works.

Graph Augmentation

Due to the irregular nature of graphs, it is extremely difficult to directly apply image

augmentation data to the graph domain. The early attempts of graph augmentation is

heuristics such as node dropping, edge perturbation, attribute masking, and subgraph

sampling [54, 55]. By randomly perturbing graph structures such as dropping a fraction

of nodes and their connected edges (this can be considered as cutout [56] on visual

22

domain), adding or removing a fraction of edges, and sampling subgraphs by graph

diffusion on seed nodes, contrastive learning aims to learn encoder f robust on structure

perturbation. There also exist attempts to perturb node attributes by randomly masking

elements to zero or node attributes shuffling [1].

Representative Models

i) Deep Graph Infomax (DGI) [1]: DGI is the first attempt that introduces contrastive

learning to GNNs. At first, DGI generates a negative view of graph G̃ by randomly

shuffling node feature matrix. To learn the representation of each node, DGI applies

GCN [37] or GraphSAGE [39] as the encoder network f . The architecture of DGI

shares the same encoder network for both the original graph and the corrupted graph

to learn the representation of each node. hi and h̃i on node vi ∈ V denote the outputs

of the encoder network for the original graph and the corrupted graph, respectively.

DGI extracts global summary vector s of the original graph by applying mean pooling

s = σ(1
|V|

∑|V|
i=1 hi), where σ denotes the logistic sigmoid function. Then, DGI utilizes

a contrastive objective with binary cross entropy loss function between positive samples

(hi, s) and negative samples (h̃i, s) as below:

L =
1

2|V|
(|V|∑
i=1

EG [logD(hi, s)] +

|V|∑
i=1

EG̃ [log(1−D(h̃i, s))]
)
, (2.40)

where D(hi, s) = σ(hTi W s) denotes the discriminator function which is a bilinear

network (W is a learnable matrix). Maximizing the objective function L is equal to

maximize the mutual information between the representation from the original graph

hi and the global summary vector s from the original graph. By conducting a local-

global contrastive framework, DGI can learn the node representation that considers

not only the local neighbor of each node but also the overall graph structure. On node

classification tasks, DGI shows competitive performances compared to semi-supervised

learning models.

ii) MVGRL [57] generates two views that consider the local structure of each graph

23

and the global structure of the graph, respectively. For generating local view, MVGRL

randomly dropped a fraction of edges of the original graph. For global view, MVGRL

derives diffusion matrix S by conducting graph diffusion [58] such as personalized

pagerank or heat kernel. The framework of MVGRL shares the same encoder network

for both the local view and the global view to learn both locality-aware and global-aware

node representations. Thus, MVGRL also contrast between local view and global view

like DGI [1], Both on node classification and graph classification tasks, MVGRL showed

superior performances compared to existing unsupervised graph learning methods and

graph kernel methods.

iii) GraphCL [55] contrasts two graph-wise representations. They proposes four graph

augmentation methods: node dropping, edge perturbation, attribute masking, and sub-

graph sampling. After adopting the framework of SimCLR [59], one of the represen-

tative contrastive learning model on visual domain, they introduces graph contrastive

learning framework. By applying the proposed augmentation methods on two graph

domains, biochemical molecules and social networks, they empirically shows the role

of graph augmentation on each domain. On semi-supervised learning, unsupervised

representation learning, adversarial robustness, and transfer learning, they showed the

validity of graph contrastive learning for GNNs pre-training.

2.6 Applications

After learning the node representation, machine learning models for graphs are validated

through applications such as classification or relation prediction.

2.6.1 Classifications

Node Classification

The goal of node classification is predict the label of each node. Under semi-supervised

conditions, nodes of the graph are split into training set, validation set, and test set.

24

In training stage, the model is trained by the node labels of training set. The best

model is chosen by measuring the accuracy or loss value of validation set, and the

chosen model predicts the label of the test node set that was not seen during training

stage. Given a graph G = (V, E), |C|-class node classification task aims to learn GNNs

classifier f : v → {1, 2, ..., |C|} that assigns labels to nodes v ∈ V in the graph. This

work has been actively researched for a long time, and there exist many attempts to

learn accurate node representations of high homophily [3, 60, 61] graphs that have

a high probability that the two connected nodes share the same ground truth label.

Recently, some approaches were proposed to accurately classify the node of high

heterophily [62, 63] graphs that have a high probability that the edge is connect the two

nodes with different labels.

Subgraph Classification

Given subgraphs S = {S1, ..., Sn}, |C|-class subgraph classification task aims the

GNNs model to learn a function f : S → {1, 2, ..., |C|} that assigns labels to subgraphs

within a graph G. This task has not been studied more actively than the node-wise or

graph-wise tasks, and a representative work tries to classify protein subgraphs in a

human protein-protein interaction network [64].

Graph Classification

Graph classification is conducted on the vector representation of the graph after aggregat-

ing representation of every nodes of each graph. Given a set of graphs G = {G1, ...,Gn},

|C|-class graph classification task aims to learn a function that maps each graph to its cor-

responding labels: f : G → {1, 2, ..., |C|}. Numerous graph pooling models [35,65,66]

and GNNs with improved representation power [41, 67, 68] achieves superior perfor-

mances on classifying social networks and biochemical molecules.

25

2.6.2 Link Prediction

Link prediction task is for predicting the relations between nodes. The probability of

the edge between two nodes is measured using two node representations. The edges

of the graph is split into training set, validation set, and test set. The model is trained

using the edges of training set. The best model is chosen by measuring the prediction

accuracy or loss value of validation edge set, and the chosen model predict the relation

probability of the test edge set that was not seen during training stage. Given a graph

G = (V, E), link prediction task aims to learn a mapping function that computes the

probability of edge existence f : (vi, vj) → eij , where eij indicates the edge probability

score of a node pair (vi, vj). By leveraging the representation power of GNNs, recent

attempts [51, 69, 70] show superior performances on link prediction tasks compared to

heuristics such as common neighbors, Adamic-Adar index [16], or Katz index [17].

26

Chapter 3

Autoencoder Architecture for Homogeneous Graphs

3.1 Overview

A graph, which consists of a set of nodes and edges, is a powerful tool to seek the

geometric structure of data. There are various applications using graphs in the machine

learning and data mining fields such as node clustering [26], dimensionality reduc-

tion [28], social network analysis [71], chemical property prediction of a molecular

graph [10], and image segmentation [24]. However, conventional methods for analyzing

a graph have several problems such as low computational efficiency due to eigende-

composition or singular value decomposition, or only showing a shallow relationship

between nodes.

In recent years, an emerging field called geometric deep learning [11], generalizes

deep neural network models to non-Euclidean domains such as meshes, manifolds,

and graphs [3, 72, 73]. Among them, finding deep latent representations of geometrical

structures of graphs using an autoencoder framework is getting growing attention.

The first attempt is VGAE [51] which consists of a Graph Convolutional Network

(GCN) [3] encoder and a matrix outer-product decoder as shown in Figure 3.1 (a). As

a variant of VGAE, ARVGA [52] has been proposed by incorporating an adversarial

approach to VGAE. However, VGAE and ARVGA were designed to reconstruct the

27

𝑊1 𝑊2
𝜎(𝐻𝐻𝑇)  መ𝐴

𝑋

Encoder Decoder

𝐻

𝐴

(a) VGAE [51]

𝑋

 ෠𝑋𝑊

Single-layer Autoencoder

𝐻 = ҧ𝐴𝑋𝑊.

𝐴

(b) MGAE [50]

Encoder Decoder

𝑋
 ෠𝑋

𝐻


𝑊1 𝑊2 𝑊3 𝑊4

𝐴

(c) Proposed autoencoder

Figure 3.1: Architectures of existing graph convolutional autoencoders and proposed

one. A, X , H and W denote the affinity matrix (structure of graph), node attributes,

latent representations and the learnable weight of network respectively.

affinity matrix A instead of node feature matrix X . Hence, the decoder part cannot

be learnable, therefore, the graphical feature cannot be used at all in the decoder part.

These facts can degrade the capability of graph learning. Following that, MGAE [50]

has been proposed, which uses stacked single layer graph autoencoder with linear

activation function and marginalization process as shown in Figure 3.1 (b). However,

28

since the MGAE reconstructs the feature matrix of nodes without hidden layers, it

cannot manipulate the dimension of the latent representation and performs a linear

mapping. This is a distinct limitation in finding a latent representation that clearly

reveals the structure of the graph.

To overcome the limitation of the existing graph convolutional autoencoders, in this

chapter, we propose a novel graph convolutional autoencoder framework which has

symmetric autoencoder architecture and uses both graph and node attributes in both

the encoding and decoding processes as illustrated in Figure 3.1 (c). Our design of the

decoder part is motivated from the analysis in a recent paper [74], that the encoder

of VGAE [51] can be interpreted as a special form of Laplacian smoothing [75] that

computes the new representation of each node as a weighted local average of neighbors

and itself. This interpretation has inspired us to design a decoder to perform Laplacian

sharpening, which is a counterpart of Laplacian smoothing. To realize a decoder to

do Laplacian sharpening, we express Laplacian sharpening in the form of Chebyshev

polynomial and newly reformulate it in a numerically stable form by utilizing a signed

graph [76].

In computer vision fields, there is a popular assumption that, even though image

datasets are high-dimensional in their ambient spaces, they usually reside in multiple

low-dimensional subspaces [77]. Thus, especially for image clustering tasks, we apply

the concept of subspace clustering, which has such an assumption about the input data

in its own definition, to our graph convolutional autoencoder framework. Specifically,

to find a latent representation and a latent affinity matrix simultaneously, we merge

a subspace clustering cost function into the reconstruction cost of the autoencoder.

Contrary to the conventional subspace clustering cost function [78,79], we could derive

a computationally efficient cost function.

The main contributions of this work are summarized as follows:

• We propose the first completely symmetric graph convolutional autoencoder which

utilizes both the structure of the graph and node attributes through the whole encoding-

29

decoding process.

• We derive a new numerically stable form of decoder preventing the numerical insta-

bility of the neural network.

• We design a computationally efficient subspace clustering cost to find both latent

representation and a latent affinity matrix simultaneously for image clustering tasks.

In experiments, the validity of the proposed components is shown by doing ablation

experiments on our architecture and cost function. Also, the superior performance of

the proposed method is validated by comparing it with the state-of-the-art methods and

visualizing the graph clustered by our framework.

3.2 Preliminaries

3.2.1 Spectral Convolution on Graphs

A spectral convolution on a graph [80] is the multiplication of an input signal x ∈ Rn

with a spectral filter gθ = diag(θ) parameterized by the vector of Fourier coefficients

θ ∈ Rn as follows:

gθ ∗ x = UgθU
Tx, (3.1)

where U is the matrix of eigenvectors of the symmetric graph Laplacian Lsym =

UΛUT . UTx is the graph Fourier transform of the input x, and gθ is a function of

the eigenvalues of Lsym, i.e., gθ(Λ), where Λ is the diagonal matrix of eigenvalues of

Lsym. However, this operation is inappropriate for large-scale graphs since it requires

an eigendecomposition to obtain the eigenvalues and eigenvectors of Lsym. To avoid

computationally expensive operations, the spectral filter gθ(Λ) was approximated by

Kth order Chebyshev polynomials in previous works [81]. By doing so, the spectral

convolution on the graph can be approximated as

gθ ∗ x ≈ U
K∑
k=0

θ′kTk(Λ̃)U
Tx =

K∑
k=0

θ′kTk(L̃sym)x, (3.2)

30

where Tk(·) and θ′ denote the Chebyshev polynomials and a vector of the Chebyshev

coefficients respectively. Λ̃ is 2
λmax

Λ−In, λmax denotes the largest eigenvalue of Lsym

and L̃sym is U Λ̃UT = 2
λmax

Lsym − In. The approximated model above is used as a

building block of a convolution on graphs in [82].

In the GCN [3], the Chebyshev approximation model was simplified by setting

K = 1, λmax ≈ 2 and θ = θ′0 = −θ′1. This makes the spectral convolution simplified

as follows:

gθ ∗ x ≈ θ(In +D− 1
2AD− 1

2)x. (3.3)

However, repeated application of In +D− 1
2AD− 1

2 can cause numerical instabilities in

neural networks since the spectral radius of In +D− 1
2AD− 1

2 is 2, and the Chebyshev

polynomials form an orthonormal basis when its spectral radius is 1. To circumvent this

issue, the GCN uses renormalization trick:

In +D− 1
2AD− 1

2 → D̃− 1
2 ÃD̃− 1

2 , (3.4)

where Ã = A+In and D̃ii =
∑

j Ãij . Since adding self-loop on nodes to an affinity ma-

trix cannot affect the spectral radius of the corresponding graph Laplacian matrix [83],

this renormalization trick can provide a numerically stable form of In +D− 1
2AD− 1

2

while maintaining the meaning of each elements as follows:

(In +D− 1
2AD− 1

2)ij =


1 i = j

Aij/
√
DiiDjj i ̸= j

(3.5)

(D̃− 1
2 ÃD̃− 1

2)ij =


1/(Dii + 1) i = j

Aij/
√
(Dii + 1)(Djj + 1) i ̸= j.

(3.6)

Finally, the forward-path of the GCN can be expressed by

H(m+1) = ξ(D̃− 1
2 ÃD̃− 1

2H(m)Θ(m)), (3.7)

whereH(m) is the activation matrix in themth layer andH(0) is the input nodes’ feature

matrix X . ξ(·) is a nonlinear activation function like ReLU(·) = max(0, ·), and Θ(m) is

31

a trainable weight matrix. The GCN presents a computationally efficient convolutional

process (given the assumption that Ã is sparse) and achieves an improved accuracy

over the state-of-the-art methods in semi-supervised node classification task by using

features of nodes and geometric structure of graph simultaneously.

3.2.2 Laplacian Smoothing

Li et al. [74] demystify GCN [3] and show that GCN is a special form of Laplacian

smoothing [75]. Laplacian smoothing is a process that calculates a new representation

of the input as a weighted local average of its neighbors and itself. When we add a

self-loop on the nodes, the affinity matrix becomes Ã = A+ In and the degree matrix

becomes D̃ = D + In. Then, the Laplacian smoothing equation is given as follows:

x
(m+1)
i = (1− γ)x

(m)
i + γ

∑
j

Ãij

D̃ii

x
(m)
j , (3.8)

where x(m+1)
i is the new representation of x(m)

i , and γ (0 < γ ≤ 1) is a regularization

parameter which controls the importance between itself and its neighbors. We can

rewrite the above equation in a matrix form as follows:

X(m+1) = (1− γ)X(m) + γD̃−1ÃX(m)

= X(m) − γ(In − D̃−1Ã)X(m) (3.9)

= X(m) − γL̃rwX
(m).

If we set γ = 1 and replace L̃rw with L̃sym, then Eq. (3.9) is changed into X(m+1) =

D̃− 1
2 ÃD̃− 1

2X(m) and this equation is the same as the renormalized version of spectral

convolution in Eq. (3.7). From the above interpretation, Li et al. explain that the superior

performance of GCN in semi-supervised node classification task is due to Laplacian

smoothing which makes the features of nodes in the same clusters become similar.

32

3.3 Methodology

In this section, we propose a novel graph convolutional autoencoder framework, named

as GALA (Graph convolutional Autoencoder using LAplacian smoothing and sharp-

ening). In GALA, there are M layers in total, from the first to M
2 th layers for the

encoder and from the
(
M
2 + 1

)
th to M th layers for the decoder where M is an even

number. The encoder part of GALA is designed to perform the computationally efficient

spectral convolution on the graph with a numerically stable form of Laplacian smooth-

ing in the Eq. (3.7) [3]. Along with this, its decoder part is designed to be a special

form of Laplacian sharpening [75], unlike the existing VGAE-related algorithms. By

this decoder part, GALA reconstructs the feature matrix of nodes directly, instead of

yielding an affinity matrix as in the existing VGAE-related algorithms whose decoder

parts are incomplete. Furthermore, to enhance the performance of image clustering, we

devise a computationally efficient subspace clustering cost term which is added to the

reconstruction cost of GALA.

3.3.1 Laplacian Sharpening

Because the encoder performs Laplacian smoothing that makes the latent representation

of each node similar to those of its neighboring nodes, we design the decoder part to

perform Laplacian sharpening as the counterpart of Laplacian smoothing. Laplacian

sharpening is a process that makes the reconstructed feature of each node farther away

from the centroid of its neighbors, which accelerates the reconstruction along with the

reconstruction cost and is governed by

x
(m+1)
i = (1 + γ)x

(m)
i − γ

∑
j

Aij

Dii
x
(m)
j , (3.10)

where x(m+1)
i is the new representation of x(m)

i , and γ is the regularization parameter

which controls the importance between itself and its neighbors. The matrix form of Eq.

33

(3.10) is given by

X(m+1) = (1 + γ)X(m) − γD−1AX(m)

= X(m) + γ(In −D−1A)X(m) (3.11)

= X(m) + γLrwX
(m).

Analogous to the encoder, we set γ = 1 and replace Lrw with Lsym. Similar to Eq.

(3.3), we can express Laplacian sharpening in the form of Chebyshev polynomial and

simplify it with K = 1, λmax ≈ 2, and θ = 1
2θ

′
0 = θ′1. Then, a decoder layer can be

expressed by

H(m+1) = ξ((2In −D− 1
2AD− 1

2)H(m)Θ(m)), (3.12)

where H(m) is the matrix of the activation in the mth layer, 2In − D− 1
2AD− 1

2 is

a special form of Laplacian sharpening, ξ(·) is the nonlinear activation function like

ReLU(·) = max(0, ·), and Θ(m) is a trainable weight matrix. However, since the spectral

radius of 2In−D− 1
2AD− 1

2 is 3, repeated application of this operator can be numerically

instable. Hence, as GCN finds a numerically stable form of Chebyshev polynomials,

we have to find a numerically stable form of Laplacian sharpening while maintaining

its meaning.

3.3.2 Numerically Stable Laplacian Sharpening

To find a new representation of Laplacian sharpening whose spectral radius is 1, we use

a signed graph [76]. A signed graph is denoted by Γ = (V, E , Â) which is induced from

the unsigned graph G = (V, E , A), where each element in Â has the same absolute

value with A, but its sign is changed into minus or keeps plus. The degree matrix of

the signed graph Γ is denoted by D̂ which is obtained from Â. In the signed graph, a

problem occurs when calculating the degree matrix D̂ by the conventional way that may

cancel the mixed signed weights in summation and so fails to yield the degree value

representing the connectivity of a node to its neighbors. Thus, by following the practice

for signed graphs, we calculate the degree of each node by D̂ii =
∑

j |Âij | that has

34

the same value (degree of connectivity) as in the unsigned graph. By using Â and D̂,

we can construct an unnormalized graph Laplacian L̂ = D̂ − Â and symmetric graph

Laplacian L̂sym = In − D̂− 1
2 ÂD̂− 1

2 of the signed graph. From Theorem 1 of [76], the

range of the eigenvalue of L̂sym is [0, 2], thus the spectral radius of D̂− 1
2 ÂD̂− 1

2 is 1 for

any choice of Â. Using this result, instead of Eq. (3.12), we use a numerically stable

form of Laplacian sharpening with spectral radius of 1, given by

H(m+1) = ξ(D̂− 1
2 ÂD̂− 1

2H(m)Θ(m)). (3.13)

The remaining issue is to choose Â induced from A so that D̂− 1
2 ÂD̂− 1

2 maintains the

meaning of each element of 2In −D− 1
2AD− 1

2 in Eq. (3.12). To achieve this, we map

all weights of the unsigned A to negative weights and adding a self-loop with a weight

value 2 to each node, that is, Â = 2In −A and D̂ = 2In +D. Then, each element of

D̂− 1
2 ÂD̂− 1

2 is obtained by

(D̂− 1
2 ÂD̂− 1

2)ij =


2/(Dii + 2) i = j

−Aij/
√
(Dii + 2)(Djj + 2) i ̸= j,

(3.14)

which has the same meaning with the original one given by

(2In −D− 1
2AD− 1

2)ij =


2 i = j

−Aij/
√
DiiDjj i ̸= j.

(3.15)

From Eqs. (3.13), (3.14) and (3.15), the numerically stable decoder layer of GALA

is given as

H(m+1) = ξ(D̂− 1
2 ÂD̂− 1

2H(m)Θ(m)), (m = M
2 , ...,M − 1), (3.16)

where Â = 2In −A and D̂ = 2In +D. The encoder part of GALA is constructed by

using Eq. (3.7) as in GCN [3] as

H(m+1) = ξ(D̃− 1
2 ÃD̃− 1

2H(m)Θ(m)), (m = 0, ..., M2 − 1), (3.17)

whereH(0) = X is the feature matrix of the input nodes, Ã = In+A and D̃ = In+D.

The complexity of propagation functions, Eqs. (3.16) and (3.17), are both O(mpc),

35

Table 3.1: Effectiveness of various decoders

Cora Citeseer

ACC NMI ARI ACC NMI ARI

Eq. (3.7) 0.5628 0.4074 0.3289 0.5296 0.2588 0.2437

Eq. (3.12) 0.5999 0.4274 0.3775 0.5915 0.3177 0.3126

Eq. (3.16) 0.7459 0.5767 0.5315 0.6932 0.4411 0.4460

where m is the cardinality of edges in the graph, p is the feature dimension of the

previous layer, and c is the feature dimension of the current layer.

Since the complexity is linear in the number of edges in the graph, the proposed

algorithm is computationally efficient (given the assumption that A is sparse). Also,

from Eq. (3.17), since GALA decodes the latent representation using both the graph

structure and node features, the enhanced decoder of GALA can help to find more

distinct latent representation.

In Table 3.1, we show the reason why the Laplacian smoothing is not appropriate

to the decoder and the necessity of numerically stable Laplacian sharpening by node

clustering experiments (the higher values imply the more correct results). Laplacian

smoothing decoder (Eq. 3.7) shows the lowest performances, since Laplacian smoothing

which makes the representation of each node similar to those of its neighboring nodes

conflicts with the purpose of reconstruction cost. A numerically instable form of Lapla-

cian sharpening decoder (Eq. 3.12) shows higher performance compared to smoothing

decoder because the role of Laplacian sharpening coincide with reconstructing the node

feature. The performance of proposed numerically stable Laplacian sharpening decoder

(Eq. 3.16) significantly higher than others, since it solves instability issue of neural

network while maintaining the meaning of original Laplacian sharpening.

The basic cost function of GALA is given by

min
X̄

1

2
∥X − X̄∥2F , (3.18)

36

where X̄ is the reconstructed feature matrix of nodes, the column of X̄ corresponds

to the output of the decoder for an input feature of a node, and ∥ · ∥F denotes the

Frobenius norm.

3.3.3 Subspace Clustering Cost for Image Clustering

It is a well-known assumption that image datasets are often drawn from multiple low-

dimensional subspaces, although their data dimensions are high. Accordingly, subspace

clustering, which has such an assumption about the input data in its own definition, has

shown prominent clustering performance on various image datasets. Hence, we add an

element of subspace clustering to the proposed method in the case of image clustering

tasks. Among the various subspace clustering models, we add Least Squares Regression

(LSR) [84] model for computational efficiency. Then the cost function for training of

GALA becomes

min
X̄,H,AH

1

2
∥X − X̄∥2F +

λ

2
∥H −HAH∥2F +

µ

2
∥AH∥2F , (3.19)

where H ∈ Rk×n denotes the latent representations (i.e., the output of the encoder),

AH ∈ Rn×n denotes the affinity matrix which is a new latent variable for subspace

clustering, and λ, µ are the regularization parameters. The second term of Eq. (3.19)

aims at the self-expressive model of subspace clustering and the third term of Eq. (3.19)

is for regularizing AH . If we only consider minimizing AH , the problem becomes:

min
AH

λ

2
∥H −HAH∥2F +

µ

2
∥AH∥2F . (3.20)

We can easily obtain the analytic solution A∗
H = (HTH + µ

λIn)
−1HTH by the fact

that LSR model is quadratic on the variable AH . By substituting A∗
H derived from Eq.

(3.20) to Eq. (3.19), the cost function becomes

min
X̄,H

1

2
∥X − X̄∥2F +

λ

2
∥H −H(HTH +

µ

λ
In)

−1HTH∥
2

F
+
µ

2
∥(HTH +

µ

λ
In)

−1HTH∥
2

F
.

(3.21)

37

However, minimizing the above problem is computationally expensive since it re-

quires the inverse of n by n matrix and lots of matrix multiplications, and we need a

computationally-efficient form.

The singular value decomposition (SVD) of H can simplify the tangled cost func-

tion. Let svd(H) = UΣV T , whereU ∈ Rk×k (UUT = UTU = Ik) is a unitary matrix

composed of the left singular vectors of H , V ∈ Rn×n (V V T = V TV = In) is those

of the right singular vectors of H , and Σ ∈ Rk×n is a diagonal matrix whose diagonal

elements are non-zero singular values {σi}ki=1 ofH . Then the second term of Eq. (3.21),

∥H −H(HTH + µ
λIn)

−1HTH∥2
F

can be simplified as ∥µ(µIk + λHHT)−1H∥2F
from that

H −H(HTH +
µ

λ
In)

−1HTH = U(Σ− Σ(ΣTΣ+
µ

λ
In)

−1ΣTΣ)V T

= Uµ(µIk + λΣΣT)−1ΣV T

= µ(µIk + λHHT)−1H,

(3.22)

where the diagonal elements of the diagonal matrices at right hand sides of the first and

the second equal signs are identical to {µσi/(µ+ λσ2i)}ki=1.

Also, the third term of Eq. (3.21), ∥(HTH + µ
λIn)

−1HTH∥2
F

can be simplified as

∥λHT (µIk + λHHT)−1H∥2F from that

(HTH +
µ

λ
In)

−1HTH = V (ΣTΣ+
µ

λ
In)

−1ΣTΣV T

= V ΣTλ(µIk + λΣΣT)−1ΣV T

= λHT (µIk + λHHT)−1H,

(3.23)

where the diagonal elements of the diagonal matrices at right hand side of the first and

the second equal sign are identical to {λσ2i /(µ+λσ2i)}ki=1 and 0 for from the (k+1)-th

to n-th diagonal elements. From the above calculation, Eq. (3.21) is transformed into

min
X̄,H

1

2
∥X − X̄∥2F +

λ

2
∥µ(µIk + λHHT)−1H∥2F +

µ

2
∥λHT (µIk + λHHT)−1H∥2F .

(3.24)

We can attain a more simplified version of Eq. (3.24) by merging the second term

and the third term by using SVD and the final computationally-efficient subspace

38

clustering cost function is as follows:

min
X̄,H

1

2
∥X − X̄∥2F +

µλ

2
tr((µIk + λHHT)−1HHT). (3.25)

Furthermore, the affinity matrix is given by A∗
H = (H∗TH∗ + µ

λIn)
−1H∗TH∗

which requires an n× n matrix inversion. Its computationally-efficient version using a

k × k matrix inversion is given by A∗
H = λH∗T (µIk + λH∗H∗T)−1H∗.

min
X̄,H

1

2
∥X − X̄∥2F +

µλ

2
tr((µIk + λHHT)−1HHT), (3.26)

where tr(·) denotes the trace of the matrix. The above problem can be solved by k × k

matrix inversion instead of n × n matrix inversion. Since the dimension of latent

representation (k) is much smaller than the number of nodes (n), this simplification can

reduce the computational burden significantly from O(n3) to O(k3).

3.3.4 Training

We train GALA to minimize Eq. (3.18) by using the ADAM algorithm [85]. We train

GALA deterministically by using the full batch in each training epoch and stop when

the cost is converged, so the number of epochs of each dataset varies. Note here that

using the full batch during training is a common approach in neural networks based on

spectral convolution on graph. Specifically, we set the learning rate to 1.0× 10−4 for

training and train GALA in an unsupervised way without any cluster labels. When the

subspace clustering cost is added to reconstruction cost for image clustering tasks, we

use pre-training and fine-tuning strategies similar to the ones in [78] to train GALA.

First, in the pre-training stage, the training method is the same as that of minimizing Eq.

(3.18). After pre-training, we fine-tune GALA to minimize Eq. (3.26) using ADAM. As

in the pre-training, we train GALA deterministically by using full batch in each training

epoch, and we set the number of epochs of the fine-tuning stage as 50 for all dataset.

We set the learning rate to 1.0× 10−6 for fine-tuning.

After the training process are over, we construct k-nearest neighborhood graph

using attained latent representations H∗. Then we perform spectral clustering [26]

39

and get the clustering performance. In the case of image clustering, after all training

processes are over, we construct the optimal affinity matrix A∗
H noted in the previous

subsection by using the attained latent representation matrix H∗ from GALA. Then we

perform spectral clustering [26] on the affinity matrix and get the optimal clustering

with respect to our cost function.

3.4 Experiments

3.4.1 Datasets

Table 3.2: Summary of datasets

Nodes Dimension Classes # Edges

Cora [8] 2708 1433 7 5429

Citeseer [8] 3312 3703 6 4732

Wiki [86] 2405 4973 17 17981

Pubmed [8] 19717 500 3 44338

COIL20 [87] 1440 1024 20 −

YALE [88] 5850 1200 10 −

MNIST [89] 10000 784 10 −

We have used four network datasets (Cora, Citeseer, Wiki, and Pubmed) and three

image datasets (COIL20, YALE, and MNIST) for clustering tasks. Every network

dataset has a feature matrix X and an affinity matrix A, and every image dataset has a

feature matrix X only. The details of each dataset are as follows:

Cora [8] is a citation network between scientific publications which consists of 2,708

nodes where their feature dimension is 1,433 and there are 5,429 edges between nodes.

The number of the clusters is 7.

Citeseer [8] is also a citation network between scientific publications, which has 3,312

nodes with 3,703 feature dimensions, and 4,732 edges between nodes. The number of

the clusters of Citeseer is 6.

40

(a) YALE (b) COIL20 (c) MNIST

Figure 3.2: Sample images of three image datasets

Wiki [86] is a network dataset whose number of nodes is 2,405, the dimension of the

features is 4,973, and there are 17,981 edges between nodes. The number of the clusters

of Wiki is 17. We observed that several papers [50], [86] have written the number of

the clusters of Wiki as 19. Although nodes are labeled up to 19, the actual cardinality

of the labels is 17.

Pubmed [8] is a citation network which consists of 19,717 nodes where their feature

dimension is 500 and there are 44,338 edges between nodes. The number of the clusters

is 3.

COIL20 [87] is the Columbia Object Image Library dataset. There are 1,440 images for

20 objects and each object contains 72 images since the pose changes every 5 degrees

(360° = 72× 5°). The size of each image is 32 × 32, so the feature dimension is 1024.

The number of the clusters of COIL20 is 20.

YALE [88] is a face dataset which contains 5,850 face images with 9 poses and 65

illumination variations. Original images were cropped to 30 × 40 pixels, so the feature

dimension of each face image is 1200. The number of the clusters is 10.

MNIST [89] is a handwritten digit dataset. There are 60,000 training samples and

10,000 test samples and among them, we use 10,000 test samples for image clustering.

The size of each digit image is 28 × 28, so the feature dimension is 784. The number

of the clusters of MNIST is 10.

The sample images of each image dataset are described in Figure 3.2.

41

3.4.2 Experimental Settings

To measure the performance of node clustering task, we use three metrics: accuracy

(ACC), normalized mutual information (NMI), and adjusted rand index (ARI) as in [50].

We report the mean values of the three metrics for each algorithm after executing 50

times, and the higher values imply the more correct results. For link prediction task,

we partitioned the dataset following the work of GAE [51], and reported mean scores

and standard errors of Area Under Curve (AUC) and Average Precision (AP) with 10

random initializations.

We conduct our algorithm on a GPU environment (a Nvidia GTX 1080Ti GPU)

in TensorFlow [90]. For the Cora dataset, we set the encoder’s number of layers to

two (1600, 400 neurons). For the Citeseer dataset, we set the number of layers of the

encoder to two (2000, 500 neurons). For the Wiki dataset, we set the encoder’s number

of layers to one (500 neurons). For the Pubmed dataset, we set the encoder’s number

of layers to two (600, 100 neurons). For the COIL20 dataset, we set λ = 9.0, µ = 1.0,

and the number of layers of the encoder to three (1100, 800, 500 neurons). For the

YALE dataset, we set λ = 3.0 × 10, µ = 1.0, and the encoder’s number of layers to

three (1300, 800, 500 neurons). For the MNIST dataset, we set λ = 5.0× 10, µ = 1.0,

and the number of layers of the encoder to three (800, 700, 500 neurons). The encoder

and decoder have symmetrical structures for all datasets. We set the parameters of the

compared methods following the instructions of their papers. Among the parameter sets

noted in each paper, we reported the best results [50, 52]. For the image datasets, we

construct k-nearest neighborhood graphs using each dataset’s feature matrix. We set k

as 9, 9, and 20 for COIL20, YALE, and MNIST respectively. Also, we normalize the

feature of each image on unit interval for all image datasets.

3.4.3 Comparing Methods

We compare the performance of 15 algorithms. Compared algorithms can be categorized

into four groups as described below:

42

• i) Using features only. ‘Kmeans’ [91] is the K-means clustering based on only the

features of the data, which is the baseline clustering algorithm in our experiment.

• ii) Using network structures only. ‘Spectral’ [26] is a spectral clustering algorithm

using eigendecomposition on graph Laplacian. ‘Big-Clam’ [92] is a large-scale com-

munity detection algorithm utilizing a variant of nonnegative matrix factorization.

‘DeepWalk’ [31] learns the latent social representation of nodes using local informa-

tion through a neural network. ‘GraEnc’ [93] is a graph-encoding neural network

derived from the relation between autoencoder and spectral clustering. ‘DNGR’ [94]

generates a low-dimensional representation of each node by using a graph structure

and a stacked denoised autoencoder.

• iii) Using both. ‘Circles’ [95] is an algorithm which discovers social circles through a

node clustering algorithm. ‘RTM’ [96] presents a relational topic model of documents

and links between the documents. ‘RMSC’ [97] is a robust multi-view spectral

clustering algorithm which can handle noises in the data and recover transition matrix

through low-rank and sparse decomposition. ‘TADW’ [86] interprets DeepWalk from

the view of matrix factorization and incorporates text features of nodes.

• iv) Using both with spectral convolution on graphs. ‘GAE’ [51] is the first attempt

to graft the spectral convolution on graphs onto autoencoder framework. ‘VGAE’ [51]

is the variational variant of GAE. ‘MGAE’ [50] is an autoencoder which combines

the marginalization process with spectral convolution on graphs. ‘ARGA’ [52] learns

the latent representation by adding an adversarial model to a non-probabilistic variant

of VGAE. ‘ARVGA’ [52] is an algorithm which adds an adversarial model to VGAE.

3.4.4 Node Clustering

The experimental results of node clustering are presented in Table 3.3. It can be

observed that for every dataset, the methods which use features and network structures

43

Table 3.3: Experimental results of node clustering

Cora Citeseer Wiki

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Kmeans [91] 0.4922 0.3210 0.2296 0.5401 0.3054 0.2786 0.4172 0.4402 0.1507

Spectral [26] 0.3672 0.1267 0.0311 0.2389 0.0557 0.0100 0.2204 0.1817 0.0146

Big-Clam [92] 0.2718 0.0073 0.0011 0.2500 0.0357 0.0071 0.1563 0.0900 0.0070

DeepWalk [31] 0.4840 0.3270 0.2427 0.3365 0.0878 0.0922 0.3846 0.3238 0.1703

GraEnc [93] 0.3249 0.1093 0.0055 0.2252 0.0330 0.0100 0.2067 0.1207 0.0049

DNGR [94] 0.4191 0.3184 0.1422 0.3259 0.1802 0.0429 0.3758 0.3585 0.1797

Circles [95] 0.6067 0.4042 0.3620 0.5716 0.3007 0.2930 0.4241 0.4180 0.2420

RTM [96] 0.4396 0.2301 0.1691 0.4509 0.2393 0.2026 0.4364 0.4495 0.1384

RMSC [97] 0.4066 0.2551 0.0895 0.2950 0.1387 0.0488 0.3976 0.4150 0.1116

TADW [86] 0.5603 0.4411 0.3320 0.4548 0.2914 0.2281 0.3096 0.2713 0.0454

VGAE [51] 0.5020 0.3292 0.2547 0.4670 0.2605 0.2056 0.4509 0.4676 0.2634

MGAE [50] 0.6844 0.5111 0.4447 0.6607 0.4122 0.4137 0.5146 0.4852 0.3490

ARGA [52] 0.6400 0.4490 0.3520 0.5730 0.3500 0.3410 0.3805 0.3445 0.1122

ARVGA [52] 0.6380 0.4500 0.3740 0.5440 0.2610 0.2450 0.3867 0.3388 0.1069

GALA 0.7459 0.5767 0.5315 0.6932 0.4411 0.4460 0.5447 0.5036 0.3888

Table 3.4: Experiment results on Pubmed dataset

ACC NMI ARI

Kmeans [91] 0.5952 0.3152 0.2817

Spectral [26] 0.5282 0.0971 0.0620

GAE [51] 0.6861 0.2957 0.3046

VGAE [51] 0.6887 0.3108 0.3018

MGAE [50] 0.5932 0.2822 0.2483

ARGA [52] 0.6807 0.2757 0.2910

ARVGA [52] 0.5130 0.1169 0.0777

GALA 0.6939 0.3273 0.3214

44

simultaneously show better performance than the methods which use only one of them.

Furthermore, among the methods which use both features and network structures,

algorithms with neural network models which exploit spectral convolution on graphs

present outstanding performance since they can learn deeper relationships between

nodes than the methods which do not use spectral convolution on graphs. In every

experiments, GALA shows superior performance to other methods. Especially, for

the Cora dataset, GALA outperforms VGAE, which is the first graph convolution

autoencoder framework, by about 24.39%, 24.75% and 27.68%, and MGAE, which is

the state-of-the-art graph convolutional autoencoder algorithm, by about 6.15%, 6.56%

and 8.68% on ACC, NMI and ARI, respectively. The better performance of GALA

comes from the better decoder design based on the numerically stable form of Laplacian

sharpening both and full utilizing of graph structure and node attributes in the whole

autoencoder framework.

Furthermore, we conduct another node clustering experiment on a large network

dataset (Pubmed), and the results are reported in Table 3.4. We can observe that

GALA outperforms every baselines and state-of-the-art graph convolution algorithms.

Although Kmeans clustering, a baseline algorithm, shows higher performance over

several graph convolution algorithms on NMI and ARI, the proposed method presents

better performances.

3.4.5 Image Clustering

The experimental results of image clustering are presented in Table 3.5. We report both

GALA’s performance of reconstruction cost only case and the subspace clustering cost

added case (GALA+SCC). It can be seen that GALA outperforms several baselines and

the state-of-the-art graph convolution algorithms for most of the cases. Also, for every

case, the proposed subspace clustering cost term contributes to improve the performance

of the image clustering. On the YALE dataset, notably, we can observe that the proposed

subspace clustering cost term significantly enhances the image clustering performance

45

Table 3.5: Experimental results of image clustering

COIL20 YALE MNIST

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Kmeans [91] 0.6118 0.7541 0.5545 0.7450 0.8715 0.7394 0.5628 0.5450 0.4213

Spectral [26] 0.6806 0.8324 0.6190 0.5793 0.7202 0.4600 0.6496 0.7204 0.5836

GAE [51] 0.6632 0.7420 0.5514 0.8520 0.8851 0.8122 0.7043 0.6535 0.5534

VGAE [51] 0.6847 0.7465 0.5627 0.9157 0.9358 0.8873 0.7163 0.7149 0.6154

MGAE [50] 0.6507 0.7889 0.6004 0.8203 0.8550 0.7636 0.5807 0.5820 0.4362

ARGA [52] 0.7271 0.7895 0.6183 0.9309 0.9394 0.8961 0.6672 0.6759 0.5552

ARVGA [52] 0.7222 0.7917 0.6240 0.8727 0.8803 0.7944 0.6328 0.6123 0.4909

GALA 0.8000 0.8771 0.7550 0.8530 0.9486 0.8647 0.7384 0.7506 0.6469

GALA+SCC 0.8229 0.8851 0.7579 0.9933 0.9860 0.9854 0.7426 0.7565 0.6675

and achieves nearly perfect accuracy.

3.4.6 Ablation Studies

We validate the effectiveness of the proposed stable decoder and the subspace clustering

cost by image clustering experiments on the three image datasets (COIL20, YALE and

MNIST). There are four configurations as shown in Table 3.6. We would like to note

that the reconstruction cost only (Eq. 3.18) is a subset of subspace clustering cost (Eq.

3.26), thus the last configuration is the full proposed method. Reported numbers are

mean values after executing 50 times. It can be clearly noticed that the numerically

stable form of Laplacian sharpening and subspace clustering cost are helpful to find

the latent representations which reflect the graph structures certainly and using both

components can boost the performance of clustering. In addition, it can be seen that

the stable decoder with the reconstruction cost only outperforms the state-of-the-art

algorithms in most cases because GALA can utilize the graph structure in the whole

processes of the autoencoder architecture.

46

Table 3.6: Effects of stable decoder and subspace clustering cost

COIL20 YALE MNIST

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Unstable decoder and

reconstruction cost

(Eq. 3.12, Eq. 3.18)

0.5961 0.7986 0.5492 0.7205 0.9028 0.7530 0.6589 0.7397 0.5983

Unstable decoder and

sub. clustering cost

(Eq. 3.12, Eq. 3.26)

0.7104 0.8074 0.6429 0.7810 0.8710 0.7130 0.6734 0.7211 0.6028

Stable decoder and

reconstruction cost

(Eq. 3.16, Eq. 3.18)

0.8000 0.8771 0.7550 0.8530 0.9486 0.8646 0.7384 0.7506 0.6469

Stable decoder and

sub. clustering cost

(Eq. 3.16, Eq. 3.26)

0.8229 0.8851 0.7579 0.9933 0.9860 0.9854 0.7426 0.7565 0.6675

3.4.7 Link Prediction

We provide some results on link prediction task on Citeseer dataset. For link prediction

task, we minimized the below cost function that added link prediction cost of GAE [51]

to the reconstruction cost, where H is the latent representation, Â = sigmoid(HHT) is

the reconstructed affinity matrix and γ is the regularization parameter.

min
X̄,H

1

2
∥X − X̄∥2F + γEH [log p(Â|H)]. (3.27)

The results are shown in Table 3.7, and our model outperforms the compared

methods in terms of the link prediction task as well as the node clustering task.

3.4.8 Visualization

One of the key ideas of the proposed autoencoder is that the encoder makes the feature

of each node becomes similar with its neighbors, and the decoder makes the features

of each node distinguishable with its neighbors using the geometrical structure of the

graphs. To validate the proposed model, we visualize the distribution of learned latent

47

Table 3.7: Experimental results of link prediction on Citeseer

AUC AP

GAE [51] 89.5 ± 0.04 89.9 ± 0.05

VGAE [51] 90.8 ± 0.02 92.0 ± 0.02

ARGA [52] 91.9 ± 0.003 93.0 ± 0.003

ARVGA [52] 92.4 ± 0.003 93.0 ± 0.003

GALA 94.4 ± 0.009 94.8 ± 0.010

10 5 0 5 10

10

5

0

5

10

(a) Cora(raw)
100 75 50 25 0 25 50 75 100

100

75

50

25

0

25

50

75

100

(b) Cora(GALA)
40 20 0 20 40

40

20

0

20

40

(c) Citeseer(raw)
60 40 20 0 20 40 60

60

40

20

0

20

40

60

(d) Citeseer(GALA)

(e) YALE(raw) (f) YALE(VGAE) (g) YALE(MGAE) (h) YALE(ARGA) (i) YALE(GALA)

Figure 3.3: The two-dimensional visualizations of raw features of each node and the

latent representations of compared methods and GALA for Cora, Citeseer and YALE

are presented. The same color indicates the same cluster.

representations and the input features of each node in two-dimensional space using

t-SNE [98] as shown in Figure 3.3. From the visualization, we can see that GALA is

well-clustering the data according to their corresponding labels even though GALA

performs in an unsupervised manner. Also, we can see through the red dotted line

in embedding results of the latent representation on YALE that GALA embeds the

representation of nodes better than the compared methods by minimizing inter-cluster

affinity and maximizing intra-cluster affinity.

48

3.5 Summary

In this chapter, we proposed a novel autoencoder framework which can extract low-

dimensional latent representations from a homogeneous graph. We designed a symmet-

ric graph convolutional autoencoder architecture where the encoder performs Laplacian

smoothing while the decoder performs Laplacian sharpening. Also, to prevent nu-

merical instabilities, we designed a new representation of Laplacian sharpening with

spectral radius one by incorporating the concept of the signed graph. To enhance the

performance of image clustering tasks, we added a subspace clustering cost term to the

reconstruction cost of the autoencoder. Experimental results on the network and image

datasets demonstrated the validity of the proposed framework and had shown superior

performance over various graph-based clustering algorithms.

49

Chapter 4

Autoencoder Architecture for Tree-like Graphs

4.1 Overview

Recently, many works [99–105] utilize hyperbolic geometry [106] to learn represen-

tations by understanding the underlying nature of the data domains. It is well known

that complex networks contain latent hierarchies between large groups and the divided

subgroups of nodes and can be approximated as trees that grow exponentially with their

depth [106]. Based on this fact, previous works which involve graphs [99–101,107–109]

showed the effectiveness of learning representation using hyperbolic spaces (a con-

tinuous version of trees) where distances increase exponentially when moving away

from the origin. More recently, few works [103, 104, 110] have been conducted which

learn more powerful representations via conducting message passing (graph convolu-

tion) [3, 9, 61] in hyperbolic spaces.

In addition, it has been successfully shown that grafting hyperbolic geometry onto

computer vision tasks is promising [105]. They observed a high degree of hyperbolic-

ity [111] in the activations of image datasets obtained from pre-trained convolutional

networks. Also, it has been shown that the hyperbolic distance between learned em-

beddings and the origin of the Poincaré ball could be considered as a measurement of

the model’s confidence. Using these analyses, [105] added a single layer of hyperbolic

50

neural networks [101] to deep convolutional networks and showed the benefits of hyper-

bolic embeddings on few-shot learning and person re-identification. Another work [112]

also demonstrated the suitability of hyperbolic embeddings on zero-shot learning. How-

ever, most of the existing hyperbolic representation learning works [103–105, 110, 112]

mainly focus on a supervised setting, and the effect of hyperbolic geometry on unsuper-

vised representation learning has not been explored deeply so far [109, 113, 114].

In this chapter, we explore the benefits of hyperbolic geometry to carry out unsu-

pervised representation learning upon various data domains. Our motivation is to learn

high-quality node embeddings of the graphs that are hierarchical and tree-like without

supervision via considering the geometry of the embedding space. To do so, we present a

novel hyperbolic graph convolutional autoencoder (HGCAE) by combining hyperbolic

geometry and message passing [9]. Every layer of HGCAE performs message passing

in the hyperbolic space and its corresponding tangent space where curvature values

can be trained. This is primarily in contrast to the Poincaré variational autoencoder

(P-VAE) [113] whose latent space is the Poincaré ball and conducts message passing in

Euclidean space. The HGCAE conducts auto-encoding the graphs from diverse data do-

mains, such as images or social networks, in the hyperbolic space such as the Poincaré

ball and hyperboloid. To fully utilize hyperbolic geometry for representation learning,

we adopt a geometry-aware attention mechanism [102] when conducting message

passing. Through extensive experiments and analyses using the learned representation

in the hyperbolic latent spaces, we present the following observations on hierarchically

structured data:

• The proposed autoencoder, which combines message passing based on geometry-

aware attention and hyperbolic spaces, can learn useful representations for down-

stream tasks. On various networks, the proposed method achieves state-of-the-art

results on node clustering and link prediction tasks.

• Image clustering tasks can benefit from embeddings in hyperbolic latent spaces. We

achieve comparable results to state-of-the-art image clustering results by learning

51

representations from the activations of neural networks.

• Hyperbolic embeddings of images, the results of unsupervised learning, can recognize

the underlying data structures such as a class hierarchy without any supervision of

ground-truth class hierarchy.

• We show that the sample’s hyperbolic distance from the origin in hyperbolic space can

be utilized as a criterion to choose samples, therefore improving the generalization

ability of a model for a given dataset.

4.2 Preliminaries

4.2.1 Hyperbolic Embeddings

Hyperbolic embedding of images. Khrulkov et al. [105] validated hyperbolic embed-

dings of images via measuring the degree of hyperbolicity of image datasets. Many

datasets such as CIFAR10/100 [6], CUB [7] and MiniImageNet [115] showed high

degrees of hyperbolicity. In particular, the ImageNet dataset [116] is organized by

following the hierarchical structure of WordNet [117]. These observations suggest that

hyperbolic geometry can be beneficial in analyzing image manifolds by capturing not

only semantic similarities but also hierarchical relationships between images. Further-

more, Khrulkov et al. [105] empirically showed that the distance between the origin

and the image embeddings in the Poincaré ball can be regarded as the measure of the

model’s confidence. They observed that the samples which are easily classified are

located near the boundary, while those more ambiguous samples lie near the origin of

the hyperbolic space. Recent works of hyperbolic image embeddings [105, 112] add

one or two layers of hyperbolic layers [101] after Euclidean convolutional networks.

Graph auto-encoding via hyperbolic geometry. Some recent works [113, 114, 118]

attempted to auto-encode graphs in hyperbolic space. Their models attempted to learn

latent representations in the hyperbolic space via grafting hyperbolic geometry onto

52

a variational autoencoder model [119]. [113, 114] encoded the node representation

via message passing [3] in Euclidean space, then the encoded representation was

projected onto the hyperbolic space. Similar to these concurrent models, our autoencoder

framework learns latent node representations of the graph in hyperbolic latent spaces.

Differing from these models, our work considers hyperbolic geometry throughout the

auto-encoding process. Each encoder and decoder layer of the proposed model conducts

message passing by utilizing geometry-aware attention in the hyperbolic space and its

tangent space.

4.2.2 Hyperbolic Geometry

A real, smooth manifold M is a set of points x, that is locally similar to linear space.

At each point x ∈ M, the tangent space at x, TxM, is a real vector space whose

dimensionality is same as M. A Riemannian manifold is defined as a tuple (M, g)

that is possessing metric tensor gx : TxM× TxM → R on the tangent space TxM

at each point x ∈ M [120]. The metric tensor provides geometric notions such as

geodesic, angle and volume. There exist mapping between the manifold and the tangent

space: exponential map and logarithmic map. The exponential map expx : TxM → M

projects the vector on the tangent space TxM back to the manifold M, while the

logarithmic map logx : M → TxM is the inverse mapping of the exponential map as

logx(expx(v)) = v.

The hyperbolic space is a Riemannian manifold with constant negative sectional

curvature equipped with hyperbolic geometry. This paper deals with two hyperbolic

spaces; ‘Poincaré ball’ and ‘hyperboloid’. The Poincaré ball P is highly effective for

visualizing and analyzing the hyperbolic latent space. Meanwhile, the hyperboloid H

can provide stable optimization since, unlike distance function of Poincaré ball, there

is no division in the distance function [100].

Poincaré ball. The n-dimensional Poincaré ball with constant negative curvature

53

K(K < 0) (Pn
K , g

PK
x) is defined:

Pn
K = {x ∈ Rn : ∥x∥2 < −1/K}, (4.1)

where ∥ · ∥ denotes Euclidean norm. The metric tensor is gPK
x = (λKx)2gEx , where

λKx = 2
1+K∥x∥2 is the conformal factor and gEx = diag([1, 1, . . . 1]) denotes Euclidean

metric tensor. The origin of Pn
K is o = (0, . . . , 0) ∈ Rn. The distance between two

points x, y ∈ Pn
K is defined as

dPn
K
(x, y) =

1√
−K

arcosh

(
1− 2K∥x− y∥2

(1 +K∥x∥2)(1 +K∥y∥2)

)
. (4.2)

For points x ∈ Pn
K , tangent vector v ∈ TxPn

K , and y ̸= 0, the exponential map

expx : TxPn
K → Pn

K and the logarithmic map logx : Pn
K → TxPn

K are defined as:

expKx (v) = x⊕K

(
tanh(

√
−KλKx ∥v∥

2
)

v√
−K∥v∥

)
, (4.3)

logKx (y) =
2√

−KλKx
arctanh

(√
−K∥u∥

) u

∥u∥
, (4.4)

where u = −x⊕K y and ⊕K denotes Möbius addition [121] for x, y ∈ Pn
K as

x⊕K y =
(1− 2K⟨x, y⟩ −K∥y∥2)x+ (1 +K∥x∥2)y

1− 2K⟨x, y⟩+K2∥x∥2∥y∥2
. (4.5)

Hyperboloid. The hyperbolic space is a Riemannian manifold with constant negative

sectional curvature equipped with hyperbolic geometry, and the hyperboloid model

is one of the multiple equivalent hyperbolic models. For x, y ∈ Rn+1, the Lorentz

inner product ⟨·, ·⟩L is defined as ⟨x, y⟩L = −x0y0 +
∑n

i=1 xiyi. The n-dimensional

hyperboloid with constant negative curvature K(K < 0) is defined as (Hn
K , g

HK
x):

Hn
K = {x ∈ Rn+1 : ⟨x, x⟩L = 1/K, x0 > 0}. (4.6)

The metric tensor is gHK
x = diag([−1, 1, . . . 1]), and the origin of the hyperboloid

model is o = (1/
√

|K|, 0, . . . , 0) ∈ Rn+1. The distance between two points x, y ∈

Hn
K is defined as

dHn
K
(x, y) =

1√
−K

arcosh(K⟨x, y⟩L). (4.7)

54

For points x ∈ Hn
K , tangent vector v ∈ TxHn

K , and y ̸= 0, expx : TxHn
K → Hn

K and

logx : Hn
K → TxHn

K are defined as

expKx (v) = cosh(s)x+ sinh(s)
v

s
, (4.8)

logKx (y) =
arcosh(K⟨x, y⟩L)√
K2⟨x, y⟩2L − 1

(y −K⟨x, y⟩Lx), (4.9)

where s =
√
−K∥v∥L and ∥x∥L =

√
⟨x, x⟩L.

Mapping between two models. Two hyperbolic models, Poincaré ball and hyperboloid,

are equivalent and transformations between two models retain many geometric proper-

ties including isometry. There exist diffeomorphisms pH→P and pP→H between the two

models, Poincaré ball Pn
K and hyperboloid Hn

K [103, 110], as follows:

pH→P(x0, x1, . . . , xn) =
(x1, . . . , xn)√
|K|x0 + 1

, (4.10)

pP→H(x1, . . . , xn) =
(1√

|K|
(1−K∥x∥2), 2x1, . . . , 2xn)

1 +K∥x∥2
. (4.11)

4.3 Methodology

HGCAE is designed to fully utilize hyperbolic geometry in the auto-encoding process

along with leveraging the power of graph convolutions via a geometry-aware attention

mechanism. Each layer conducts message passing in hyperbolic space whose curvature

value is trainable. Before conducting message passing, we need to map the given input

data points, xEuc, defined in Euclidean space to the hyperbolic manifold. We map the

Euclidean feature into hyperbolic manifold via h1i = expK1
o (xEuc

i), where K1 and h1i

denote a trainable curvature value and the i-th node’s representation of the first layer

respectively. When the hyperbolic space is hyperboloid model, we use (0, xEuc) ∈

Rn+1 as an input of an exponential map as [103] did. The overall architecture of

HGCAE is presented in Fig. 4.1.

55

Figure 4.1: The overall architecture of HGCAE in a two-layer autoencoder (i.e. the

encoder and decoder have two layers each) whose hyperbolic space is hyperboloid.

This figure describes three things: 1) how the node of the graph (red dot) conducts

message passing (Eq. (4.12) and (4.15)) with its neighbors (yellow dot), 2) the process

of embedding the output of encoder in hyperboloid latent space (blue-purple space),

and 3) reconstruction of Euclidean node attributes at the end of the decoder.

4.3.1 Geometry-Aware Message Passing

Linear transformation. Message passing in the HGCAE consists of two steps: the

linear transformation of a message and aggregating messages from neighbors. The i-th

node’s message passing result at the l-th layer zli is as follows:

zli = expKl
o

 ∑
j∈N (i)

αl
ij

(
W l logKl

o (hlj) + bl
) , (4.12)

where W l, bl, N (i), and αl
ij denote a weight matrix, a bias term, the set of direct

neighbors of node i including itself, and the relative importance (attention score) of the

neighbor node j to the node i at the l-th layer respectively. Based on [101], we map the

points in the hyperbolic manifold to the tangent space via the logarithmic map since

the linear transformation cannot be performed directly in hyperbolic spaces. Then, the

messages are linearly transformed on the tangent space of the origin in which inherits

many properties of the ambient Euclidean space.

Aggregation. After performing linear transformation, we aggregate messages from

neighbors via an attention mechanism. The majority of message passing algorithms that

56

use attention mechanisms learn the relative importance of each node’s neighbors based

on node feature not only in Euclidean space [61] but also in hyperbolic space [103].

However, only considering node features for learning their relative importance does

not take into account the geometry of the space, and this might result in an imprecise

attention score. To make full use of the Riemannian metric of the hyperbolic manifolds,

we adopt a geometry-aware attention mechanism [102] by utilizing the distance between

linearly transformed node features on the hyperbolic space. Let yli =W l logKl
o (hli)+b

l,

then the attention score at the l-th layer in Eq. (4.12) is:

αl
ij =

exp(−βld2MKl
(yli, y

l
j)− γl)∑

p∈N (i) exp(−βld2MKl
(yli, y

l
p)− γl)

, (4.13)

where dMKl
(·, ·), βl, and γl denote the distance on the hyperbolic space with curvature

value Kl, and trainable parameters of the l-th layer respectively. After every step of

message passing, we map the representation on the tangent space to the hyperbolic

manifold via the exponential map.

4.3.2 Nonlinear Activation

The nonlinear activations, σ, such as ReLU can be directly applied to the points in

the Poincaré ball, in contrast to the points on the hyperboloid [110]. Thus, when the

hyperboloid model is used, we map the points to the Poincaré ball using Eq. (4.10) first.

Next, we apply the nonlinear activation in the Poincaré ball and then return the result to

the hyperboloid using the Eq. (4.11).

Since the curvature value of each layer in HGCAE is trainable, each layer can have

different curvature values from other layers. Thus, a step for locating the result of the

nonlinear activation in the hyperbolic space having a curvature value of the next layer

is required. First, we map the results of the nonlinear activation to the tangent space

of the current layer, ToMKl
, using logarithmic map, logKl

o . Next, the points in the

tangent space are mapped to the next layer’s hyperbolic space via an exponential map

of the next layer expKl+1
o . The equations for performing such nonlinear activation and

mapping to the hyperbolic space of the next layer in the cases of Poincaré ball and

57

hyperboloid are as follows respectively:

hl+1
i = exp

Kl+1
o

(
logKl

o
(
σ(zli)

))
, (4.14)

hl+1
i = exp

Kl+1
o

(
logKl

o
(
pP→H(σ(pH→P(z

l
i)))

))
. (4.15)

4.3.3 Loss Function

Our HGCAE reconstructs both the affinity matrix (graph structure) A and the Euclidean

node attributes XEuc at the end of the encoder and the decoder, respectively. To

reconstruct the Euclidean node attributes X̂Euc, the aggregated representations in

the hyperbolic space of the decoder’s last layer are mapped to the tangent space of

the origin ToM. Then, the loss of representations LREC−X is defined as the mean

square error between XEuc and X̂Euc: 1
N ∥XEuc − X̂Euc∥2. For reconstructing the

structure of the graph, the hyperbolic distance between the latent representations (the

output of the encoder) of two nodes is utilized. To calculate the probability score of an

edge which links between two nodes, we adopt the Fermi-Dirac distribution [99, 106],

Âij = [e
(d2MK

(hi,hj)−r)/t
+ 1]−1, where hi, Â, r, and t denote the latent representation

of node i, the reconstructed affinity matrix, and hyperparameters respectively. The

loss function for the affinity matrix is defined by the cross entropy loss with negative

sampling: LREC−A = Eq(H|X,A)[log p(Â|H)], where q(H|X,A) =
∏N

i=1 q(hi|X,A).

The overall loss function of HGCAE is

L = LREC−A + λLREC−X , (4.16)

where λ is a regularization parameter. λ serves to control the relative importance

between the attributes and structure.

4.4 Experiments

This section explores the effectiveness of unsupervised hyperbolic embeddings on

various data domains via quantitative and qualitative analyses. We use 9 real-world

58

Table 4.1: Dataset statistics.

Dataset Node Edge Attribute Class

Phylogenetic [122, 123] 344 343 - -

CS PhDs [124] 1,025 1,043 - -

Diseases [125, 126] 516 1,188 - -

Cora [8] 2,708 5,429 1,433 7

Citeseer [8] 3,312 4,552 3,703 6

Wiki [86] 2,405 17,981 4,973 17

Pubmed [8] 19,717 44,338 500 3

BlogCatalog [127] 5,196 171,743 8,189 6

Amazon Photo [128] 7,650 119,081 745 8

ImageNet-10 [129] 13,000 - 27,648 10

ImageNet-Dogs [129] 19,500 - 27,648 15

ImageNet-BNCR 11,700 - 27,648 9

complex network datasets and 3 image datasets. For node clustering and link prediction

tasks on the 9 network datasets, we evaluate HGCAE-P and HGCAE-H, which denote

HGCAE models whose latent spaces are Poincaré ball and hyperboloid, respectively.

For the tasks of image clustering and visual data analysis, we use HGCAE-P because

Poincaré ball is a powerful tool for visualizing and analyzing properties of hyperbolic

visual embeddings. The statistics of the datasets are summarized in Table 4.1.

4.4.1 Datasets

Network Datasets. Phylogenetic tree [122, 123] models the generic heritage. CS

PhDs [124] represents the relationship between Ph.D. candidates and their advisors

in computer science fields. Diseases [125, 126] is a biological network expressing the

relationship between diseases. Cora [8], Citeseer [8], Pubmed [8], and Wiki [86] are

citation networks whose nodes are scientific papers or web pages and edges represent

citation relationships between any two papers or links between any two web pages.

59

Dog

Hunting dog

Maltese
dog

Blenheim
spaniel

Norwegian
elkhound Basset Giant

schnauzer
Brittany
spaniel Clumber Welsh springer

spaniel
Golden
retriever ChowPug Doberman Shetland

sheepdogKelpie Groenendael

Toy spaniel

Toy dog

English toy
spaniel

Hound Terrier Sporting dog

Schnauzer Spaniel Retriever

Springer
Spaniel

Working dog

Shepherd dogWatch dog

Spitz Pinscher

Belgian
sheepdog

Organism

Animal

Chordate

Vertebrate

Mammal

Placental

Carnivore

Canine

Figure 4.2: Class hierarchy of ImageNet-Dogs1.

BlogCatalog [127] models a social network among bloggers in the online community.

Attribute and label of a node represent the description of each blog and the interest of a

blogger, respectively. Amazon Photo [128] is a part of Amazon co-purchase networks

whose nodes are goods and edges represent purchase correlations between any two

goods. A node attribute indicates the bag-of-words for goods’ reviews and its label

denotes a product category.

Image Datasets. ImageNet-10 [129] and ImageNet-Dogs [129] are subsets of the

ImageNet dataset [2]. ImageNet-10 consists of 13, 000 images from 10 randomly

selected subjects. ImageNet-Dogs are 19, 500 images from 15 randomly selected dog

breeds. The class hierarchy of ImageNet-Dogs is illustrated in Fig. 4.2. We have

constructed a new dataset, ImageNet-BNCR, via randomly choosing 3 leaf classes per

root. We chose three roots, Artifacts, Natural objects, and Animal. Thus, there exist 9

leaf classes, and each leaf class contains 1, 300 images in ImageNet-BNCR dataset. For

every dataset used for the image clustering task, we used only the training set without

the validation set, and images were resized to 96× 96× 3.
1http://image-net.org/index

60

http://image-net.org/index

4.4.2 Compared Methods.

Node Clustering and Link Prediction. We compared HGCAE with seven state-of-

the-art unsupervised message passing models which mainly conduct in Euclidean

space. GAE [51], VGAE [51], ARGA [52], and ARVGA [52] are graph autoencoders

that reconstruct only the affinity matrix using a non-parametric decoder which is not

learnable. MGAE [50] is a stacked one-layer graph autoencoder that reconstructs only

the node attributes via a linear activation function. GALA [130] is a graph autoencoder

that reconstructs only the node attributes through learnable parametric encoder and

decoder. DBGAN [131] is a distribution-induced bidirectional generative adversarial

network that estimates the structure-aware prior distribution of the representations.

GAE [51], VGAE [51], ARGA [52], ARVGA [52], and GALA [130] are constrained to

have two-layer autoencoder models, since they report that two-layer structures show the

best performances. In the case of MGAE [50] which is a stacked one-layer autoencoder

model, we have stacked the layer up to three and reported the best performances. For

DBGAN [131], we followed the number of layers in the literature. For every compared

method, we followed the hyperparameters in the literature.

Image Clustering. Extensive baselines and state-of-the-art image clustering methods

were compared. Several traditional methods including k-means clustering (Kmeans)

[91], spectral clustering (SC) [132], agglomerative clustering (AC) [133], and nonnega-

tive matrix factorization (NMF) [134] were also compared. For the representation-based

clustering methods, AE [135], CAE [136], SAE [137], DAE [138], DCGAN [139],

DeCNN [140], SWWAE [141], and VAE [119] were adopted. Besides, the state-of-the-

art image clustering methods including JULE [142], DEC [143], DAC [129], DDC [144],

DCCM [145], and PICA [146] were employed. For every compared method, we fol-

lowed the experimental details in the literature.

61

4.4.3 Experimental Details.

For every experiment and analysis, HGCAE has two encoder layers and two decoder

layers. The dimension of each layer for HGCAE was set to one of {23, 24, ..., 211}. We

optimized HGCAE using Adam [147] with learning rate 0.01. As reported in [103],

we observe that Euclidean optimization [147] is much more stable than Riemannian

optimization [148]. Because of exponential and logarithmic maps, the parameters of our

model can be optimized using Euclidean optimization. We experimented with HGCAE

for two cases, fixing the curvature of all layers or learning the curvature of each layer,

then we reported the best performances. In the case of fixing the curvature of all layers,

the curvature K was set to one of {−0.1,−0.5,−1,−2}. The regularization parameter

λ of Eq. (4.16) was set to one of {10−6, 10−5, ..., 103}. The initial values of trainable

parameters β and γ in Eq. (4.13) were set to 0. We searched the best hyperparameters

which suited well to each dataset by random search. For visual datasets, we construct

the mutual k nearest neighbors graph, A, as follows:

Aij =


1 if xi ∈ NNk(xj) ∧ xj ∈ NNk(xi)

0 otherwise,
(4.17)

where xi and NNk(xi) denote the feature and k Euclidean nearest neighbor set of the i-

th image respectively. We set k = 20 and k = 10 for ImageNet-10 and ImageNet-Dogs,

respectively.

Details of Node Clustering and Link Prediction. For the link prediction task, we

divided the edges into training edges, validation edges, and test edges as 85%, 5%,

and 10%, then we used validation edges for the model convergence. During training

for the link prediction task, we only reconstructed training edges in LREC−A =

Eq(H|X,A)[log p(Â|H)]. For the node clustering task, every edge is reconstructed by the

output of the encoder during training. The performance of node clustering was obtained

by running k-means clustering [91] on the latent representations (output of the encoder)

in the tangent space of the last layer of the encoder.

62

Details of Image Clustering. The performance of HGCAE on the image clustering task

was obtained by running k-means clustering [91] on the latent representations (output

of the encoder) in the tangent space of the last layer of the encoder.

Details of Convolutional Autoencoder. We extracted 1000-dimensional features by

training a convolutional autoencoder (CAE) [136] on the ImageNet-10 [129] and

ImageNet-BNCR datasets on the experiment of Section 4.4.6. We used the encoder

part and decoder part as VGG-16 network [149] and five deconvolution layers [140]

respectively. We optimized CAE using Adam [147] with learning rate 0.0001 and

obtained the feature after 100 epochs.

Details of Image Classification. We obtained the latent representation of ImageNet-

10 [129] and ImageNet-BNCR by training CAE on the experiments of Section 4.4.7.

For the image classification task, we trained the VGG-11 [149] classifier. We trained the

classifier using stochastic gradient descent [150] and used the learning rate scheduler as

in [151]. When adding further samples in every training epoch, high, middle, and low

HDO samples were chosen by n% of the original data closest to the boundary, n% of

the original data closest to the median of distance histogram, and n% of the original data

closest to the origin, respectively. We set n for ImageNet-10 and ImageNet-BNCR to

30 and 50 respectively. The learning rates of ImageNet-10 and ImageNet-BCNR were

set to 0.01 and 0.0005 respectively. When training BaselineFL, we tried {0.5, 1.0, 2.0}

for γ in focal loss [152] and reported the best performances. There has been recent

research on manipulating the gradient updates based on the prediction difficulty, anchor

loss (AL) [153], and we have tried to report the classification performance of AL as

well as FL. However, due to the several NaN issues of official AL implementation2, we

could not report the performance of AL.

63

Table 4.2: Link prediction performances.

Cora Citeseer Wiki Pubmed BlogCatalog Amazon Photo

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

GAE [51] 0.910 0.920 0.895 0.899 0.930 0.948 0.964 0.965 0.840 0.841 0.956 0.948

VGAE [51] 0.914 0.926 0.908 0.920 0.936 0.950 0.944 0.947 0.844 0.846 0.971 0.966

ARGA [52] 0.924 0.932 0.919 0.930 0.934 0.947 0.968 0.971 0.857 0.850 0.961 0.954

ARVGA [52] 0.924 0.926 0.924 0.930 0.947 0.948 0.965 0.968 0.837 0.828 0.927 0.909

GALA [130] 0.929 0.937 0.944 0.948 0.936 0.931 0.915 0.897 0.774 0.765 0.918 0.910

DBGAN [131] 0.945 0.951 0.945 0.958 - - 0.968 0.973 - - - -

HGCAE-P 0.948 0.947 0.960 0.963 0.955 0.962 0.962 0.960 0.896 0.886 0.982 0.976

HGCAE-H 0.956 0.955 0.967 0.970 0.952 0.958 0.962 0.960 0.857 0.850 0.972 0.966

4.4.4 Node Clustering and Link Prediction

Comparison to embeddings in Euclidean latent space. We evaluated the usefulness of

hyperbolic representations by the performances of downstream tasks on citation [8, 86],

social [127], and co-purchase [128] networks. We compared against the state-of-the-

art unsupervised message passing models [50–52, 130, 131] which mainly conduct in

Euclidean space. Similar to evaluation metrics used in [130], we used area under curve

(AUC) and average precision (AP) to evaluate the performance of the link prediction task

while using accuracy (ACC) and normalized mutual information (NMI) for evaluating

the node clustering task.

The results of link prediction and node clustering are presented in Tables 4.2 and

4.3 respectively. From the results, we can see that our HGCAE, with the representations

of hyperbolic latent spaces, outperforms the existing methods, which use Euclidean

latent spaces. Our superior results over their Euclidean counterparts support the fact that

unsupervised learning with message passing benefit from the geometry of hyperbolic

spaces.

Comparison to embeddings of hyperbolic graph autoencoder. To validate the ar-

chitecture of HGCAE, we compared its performance with the Poincaré variational
2https://github.com/slryou41/AnchorLoss

64

https://github.com/slryou41/AnchorLoss

Table 4.3: Node clustering performances.

Cora Citeseer Wiki Pubmed BlogCatalog Amazon Photo

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Kmeans [91] 0.492 0.321 0.540 0.305 0.417 0.440 0.595 0.315 0.180 0.007 0.267 0.122

GAE [51] 0.532 0.434 0.505 0.246 0.460 0.468 0.686 0.295 0.284 0.112 0.390 0.337

VGAE [51] 0.595 0.446 0.467 0.260 0.450 0.467 0.688 0.310 0.269 0.097 0.418 0.376

MGAE [50] 0.684 0.511 0.660 0.412 0.514 0.485 0.593 0.282 0.423 0.202 0.594 0.475

ARGA [52] 0.640 0.449 0.573 0.350 0.458 0.437 0.680 0.275 0.464 0.270 0.577 0.499

ARVGA [52] 0.638 0.450 0.544 0.261 0.386 0.338 0.513 0.116 0.450 0.250 0.455 0.395

GALA [130] 0.745 0.576 0.693 0.441 0.544 0.503 0.693 0.327 0.400 0.251 0.512 0.485

DBGAN [131] 0.748 0.560 0.670 0.407 - - 0.694 0.324 - - - -

HGCAE-P 0.746 0.572 0.693 0.422 0.459 0.467 0.748 0.377 0.550 0.325 0.781 0.696

HGCAE-H 0.767 0.599 0.715 0.453 0.530 0.435 0.711 0.347 0.741 0.578 0.817 0.722

Table 4.4: Link prediction task compared with P-VAE.

Phylogenetic CS PhDs Diseases

AUC AP AUC AP AUC AP

VGAE [51] 0.542 0.540 0.565 0.564 0.898 0.918

P-VAE [113] 0.590 0.555 0.598 0.567 0.923 0.936

HGCAE-P 0.688 0.712 0.673 0.640 0.926 0.914

autoencoder (P-VAE) [113], whose latent space is the Poincaré ball and conducts its

message passing in Euclidean space. Three networks, phylogenetic tree [122, 123],

Ph.D. advisor-student relationships [124], and disease relationships [125, 126], were

used for evaluating performance on link prediction. The latent space of both P-VAE

and HGCAE-P is a 5-dimensional Poincaré ball. We report the results in Table 4.4. The

proposed HGCAE-P outperforms P-VAE for most cases of the datasets since HGCAE-P

considers hyperbolic geometry in the whole auto-encoding processes.

Visualization of citation network. We explored the latent representations of GAE

[51] and our models on the Cora dataset [8] by constraining the latent space as a

2-dimensional hyperbolic or Euclidean space. The result is given in Fig. 4.3. On the

65

GAE HGCAE-P HGCAE-H

Figure 4.3: 2-dimensional embeddings in Euclidean, Poincaré ball, and hyperboloid

latent space on Cora dataset. Same color indicates same class. On hyperbolic latent

spaces, most of the nodes are located on the boundary and well-clustered with the nodes

in the same class.

results of HGCAE, most of the nodes are located on the boundary of hyperbolic spaces

and well-clustered with the nodes in the same class.

4.4.5 Image Clustering

Artifact

Plant part

AirshipAirlinerContainer
ship

Sports
car

Trailer
truck

Soccer
ball Orange Maltese

dog
Snow

leopard
King

penguin

Conveyance

Instrumentality

Vehicle

Equipment

Edible fruit

Citrus

Natural object Animal

Plant organ

Reproductive
structure

Fruit

Game
equipment

Ball

Craft Wheeled
vehicle

Aircraft Self-propelled
vehicle

Motor
vehicle

Heavier-
than-air

craft

Airplane TruckCar

Vessel

Ship

Cargo-
ship

Chordate

Vertebrate

Mammal Bird

Placental
Aquatic bird

Carnivore

Canine Feline

Toy dog Big cat

Sea bird

Sphenisciform
seabird

Penguin

Dog

Lighter-
than-air

craft

(a) ImageNet-10

Artifact

Plant part

DogsledAmbulance School
bus

Granny
Smith

Bald
eagleFlamingo Lionfish

Conveyance

Instrumentality

Vehicle Public
transport

Edible fruit

Citrus

Natural object Animal

Plant organ

Reproductive
structure

Fruit
Wheeled
vehicle

Self-propelled
vehicle

Motor
vehicle

Car

Chordate

Vertebrate

Bird

Aquatic
bird

Wading
bird

Spiny-finned
fish

Eagle

JackfruitLemon

Sled

Bus

Apple

Eating
apple

Bird of
prey

Fish

Bony fish

Teleost fish

Scorpaenoid

Scorpaenid

Aquatic
vertebrate

(b) ImageNet-BNCR

Figure 4.4: Class hierarchy of ImageNet-10 and ImageNet-BNCR3.

In this experiment, we illustrate that image clustering can benefit from hyperbolic

geometry. The training sets of ImageNet-10 and ImageNet-Dogs [129], which are
3http://image-net.org/index

66

http://image-net.org/index

Table 4.5: Image clustering performances.

ImageNet-10 ImageNet-Dogs

ACC NMI ARI ACC NMI ARI

Kmeans [91] 0.241 0.119 0.057 0.105 0.055 0.020

SC [132] 0.274 0.151 0.076 0.111 0.038 0.013

AC [133] 0.242 0.138 0.067 0.139 0.037 0.021

NMF [134] 0.230 0.132 0.065 0.118 0.044 0.016

AE [135] 0.317 0.210 0.152 0.185 0.104 0.073

CAE [136] 0.253 0.134 0.068 0.134 0.059 0.022

SAE [137] 0.325 0.212 0.174 0.183 0.112 0.072

DAE [138] 0.304 0.206 0.138 0.190 0.104 0.078

DCGAN [139] 0.346 0.225 0.157 0.174 0.121 0.078

DeCNN [140] 0.313 0.186 0.142 0.175 0.098 0.073

SWWAE [141] 0.323 0.176 0.160 0.158 0.093 0.076

VAE [119] 0.334 0.193 0.168 0.179 0.107 0.079

JULE [142] 0.300 0.175 0.138 0.138 0.054 0.028

DEC [143] 0.381 0.282 0.203 0.195 0.122 0.079

DAC [129] 0.527 0.394 0.302 0.275 0.219 0.111

DDC [144] 0.577 0.433 0.345 - - -

DCCM [145] 0.710 0.608 0.555 0.383 0.321 0.182

PICA† [146] 0.850 0.782 0.733 0.324 0.336 0.179

PICA‡ [146] 0.828 0.763 0.692 0.352 0.353 0.201

PICA‡ [146]+HAE 0.821 0.759 0.686 0.338 0.347 0.200

PICA‡ [146]+GAE [51] 0.854 0.792 0.737 0.344 0.350 0.199

PICA‡ [146]+HGCAE-P 0.855 0.790 0.741 0.387 0.360 0.226

† Numbers from literature.
‡ Numbers from our experiments on the official pre-trained networks4.

subsets of ImageNet [2], are used for evaluation. In the manner of the researches

[101,102,105] which impose hyperbolic geometry on the activations of neural networks,

we used the activations of PICA [146], one of the most recent models developed for

deep image clustering. After obtaining activations from the pre-trained networks of

PICA, we built the graph by mutual k nearest neighbors between activations. Then, both

67

the activations and the graph were used as inputs of HGCAE-P. Extensive baselines

and state-of-the-art image clustering methods [91, 119, 129, 132–146] were compared.

Furthermore, we also trained two autoencoder models, GAE [51], and hyperbolic

autoencoder (HAE) whose layers are hyperbolic feed-forward layers [101]. The image

clustering results are reported in Table 4.5. The metrics, ACC, NMI and Adjusted Rand

Index (ARI), were used for evaluation. The results demonstrate that applying hyperbolic

geometry along with using additional information of the approximated image manifold

via nearest neighbor graphs can achieve better results than the Euclidean counterparts.

We can also observe that HAE, the autoencoder which naively applies hyperbolic

geometry, does not work well, while our model performs better via the message passing

fully utilizing hyperbolic geometry.

4.4.6 Structure-Aware Unsupervised Embeddings

In this experiment, we observe the unsupervised hyperbolic image embeddings’ ability

to recognize the latent structure of visual datasets that have hierarchical structures.

ImageNet [2] is constructed following the hierarchy of WordNet [117], therefore, its

classes of ImageNet-10 [129] also have hierarchical structures. However, it is difficult to

explore the effectiveness of hyperbolic embeddings since the classes of ImageNet-10 are

biased to a certain root. Thus, we have constructed a new dataset, ImageNet-BNCR, that

has a Balanced Number of Classes across Roots. For ImageNet-BNCR, we have chosen

three roots, Artifact, Natural objects, and Animal, which have a large number of leaf

classes. Each root contains balanced child nodes of {Ambulance, Dogsled, School bus},

{Lemon, Jackfruit, Granny Smith}, and {Flamingo, Bald eagle, Lionfish}, respectively.

On the leaf classes of ImageNet-10, {Container ship, Airliner, Airship, Sports car,

Trailer truck, Soccer ball}, {Orange}, and {Maltese dog, Snow leopard, King penguin}

are the child nodes of the roots Artifact, Natural objects, and Animal, respectively. The

class hierarchies of ImageNet-10 and ImageNet-BNCR are shown in Fig. 4.4.

We extracted 1000-dimensional features by training a convolutional autoencoder

68

(a) ImageNet-10

(b) ImageNet-BNCR

CAE GAE

HAE HGCAE-P

Granny Smith
Lemon
Jackfruit

Ambulance
School bus
Dogsled

Bald eagle
Lionfish
Flamingo

Container ship
Airliner
Airship
Sports car
Trailer truck
Soccer ball

Orange

Snow leopard
Maltese dog
King penguin

CAE GAE

HAE HGCAE-P

Figure 4.5: 2-dimensional embeddings of CAE, GAE, HAE, and HGCAE-P on

ImageNet-10 and ImageNet-BNCR. Hyperbolic representations belonging to the same

root are close to each other near the boundary of the space.

(CAE) [136] on the ImageNet-10 and ImageNet-BNCR datasets. Then, after building

the graph using mutual k nearest neighbors between extracted features, we trained

three autoencoder models (HGCAE-P, GAE [51], and HAE) whose latent space is

69

(a) ImageNet-10

15

20.5

26

31.5

37

42.5

48

53.5

59

64.5

70

I II III

GAE
HAE
HGCAE-P

(b) ImageNet-BNCR

20

26

32

38

44

50

56

62

68

74

80

I II III

GAE
HAE
HGCAE-P

I. Artifact, Natural object, Animal

II. Craft, Wheeled vehicle,
 Equipment, Citrus, Mammal, Bird

III. 10 leaf classes

I. Artifact, Natural object, Animal

II. Vehicle, Public transport, Edible
 fruit, Bird, Aquatic vertebrate

III. 9 leaf classes

Figure 4.6: Clustering accuracy (%) according to the hierarchy of classes on ImageNet-

10 and ImageNet-BNCR.

2-dimensional without the ground truth hierarchy structure of labels. The embedding

results of the 1000-dimensional CAE features via UMAP [154] and three autoencoders

are presented in Fig. 4.5. We can observe that the embeddings of HGCAE-P are better

clustered than others, according to the classes of each root in Fig. 4.4. On the ImageNet-

10, in the same root Artifact, the embeddings of descendants of Craft and Wheeled

vehicle are clustered respectively. The embeddings of the ImageNet-BNCR are clustered

more distinctly according to the root of class hierarchy than with ImageNet-10. On

the other hand, the embeddings of the root Natural objects, {Lemon, Jackfruit, Granny

Smith}, are located closer to each other since the geodesic distance between each leaf

label is small. Our distinction from HAE implies that the additional information on

image manifolds approximated by nearest neighbor graphs is helpful. In contrast to

70

the representations of CAE and GAE, we can see that the hyperbolic representations

belonging to the same root are located near the boundary of the space. In addition, to

quantitatively validate the ability to recognize the latent hierarchical structure of the

data without direct learning of label hierarchy, we cluster 2-dimensional embeddings

of the three auto-encoders with three ground truth label settings according to the

class hierarchy in Fig. 4.4: I. Root nodes, II. Internal nodes, and III. Leaf nodes. The

quantitative results (clustering accuracy) on ImageNet-10 and ImageNet-BNCR are

reported in Fig. 4.6. HGCAE-P outperforms GAE and HAE in every label hierarchy

settings. This might be because the leaf classes whose parent is the same are closely

embedded with each other. This analysis empirically demonstrates that unsupervised

hyperbolic image embeddings can recognize the latent structure of the visual data that

has a hierarchical structure.

4.4.7 Hyperbolic Distance to Filter Training Samples

In this experiment, we show that hyperbolic distance can help to choose training samples

beneficial to the generalization ability of neural networks. To this end, we obtained

the latent embeddings of ImageNet-10 [129] and ImageNet-BNCR via HGCAE-P

model. Then, the hyperbolic distance (Eq. (4.2)) of each embedding from the origin

was computed. Fig. 4.7 shows some samples near the boundary or near the origin in

the histogram of the hyperbolic distance from embeddings to the origin. We can see

that the samples near the boundary can be easily classified, whereas those near the

origin are harder to classify. In general, the easy samples are not influential to learn

an exact decision boundary. On the other hand, the hard samples make the decision

boundary over-fitted, i.e., they work like noises located at the soft margin region near

the decision boundary [155]. This illustration intuitively shows that the Hyperbolic

Distance from the Origin (HDO) of a sample could give a clue which samples are

influential or beneficial to learn the decision boundary crucial for the generalization

ability of a classifier.

71

Container ship

King penguin Sports carSnow leopard

Airship King penguin

Trailer truck Trailer truck

Maltese dog Maltese dog Maltese dog Orange Orange

Orange Sports car Sports car Airliner Soccer ball

AirshipContainer ship

(a) ImageNet-10

(b) ImageNet-BNCR

Granny Smith

School bus Dogsled

Granny Smith

Dogsled

Granny Smith Granny Smith

Ambulance Ambulance

Flamingo Flamingo Granny Smith Granny Smith Granny Smith

Jackfruit Bald eagle Lemon Lemon Dogsled
D

is
ta

nc
e

fr
om

 o
rig

in
0

0.
5

1
1.

5
2

0
50

0

10
00

15
00

D
is

ta
nc

e
fr

om
 o

rig
in

0
0.

5
1

1.
5

2
0

40
0

80
0

12
00

2.
5

School bus

Figure 4.7: Histogram and images according to the hyperbolic distance from the origin

(HDO) on ImageNet-10 and ImageNet-BNCR. The feature of images inside red (blue)

color box have high (low) HDO, so are located near the boundary (origin) of hyperbolic

space.

72

I. Baseline.
II. BaselineFL.

IV. Baseline + High HDO data.
V. Baseline + Low HDO data.
VI. Baseline + Middle HDO data.III. Baseline + Random data.

I
II

III
IV
V

VI

10 10.25 10.5 10.75 11 11.25 11.5 11.75 12 12.25 12.5

10.14
10.92
10.94
10.96

12.02
11.18

(a) ImageNet-10

I
II

III
IV
V

VI

8 8.15 8.3 8.45 8.6 8.75 8.9 9.05 9.2 9.35 9.5

8.155
8.977

8.533
8.911

9.111
8.977

(b) ImageNet-BNCR

Figure 4.8: Top-1 classification error (%) on ImageNet-10 and ImageNet-BNCR.

To verify this intuition, we conducted an experiment on the image classification

task. On ImageNet-10 and ImageNet-BNCR, we trained the VGG-11 [149] classifier

by adding further samples near the boundary/median of the distance histogram/origin

to the original dataset in every training epoch and evaluated the network via each

class’ validation set in ImageNet [2]. We compared our results with six settings: I.

Baseline: original data with cross-entropy loss, II. BaselineFL: original data with focal

loss (FL) [152]5, III. Baseline + Random data adding, IV. Baseline + High HDO data

adding, V. Baseline + Low HDO data adding, and VI. Baseline + Middle HDO data

adding.

The image classification results are given in Fig. 4.8. As expected, the case V of

adding low HDO data in the histogram show similar performances with the baseline.

The case IV of adding high HDO data contributes the performance improvements, but

the case VI of adding middle HDO data demonstrates the best performance among the
5The focal loss tries to focus gradient updates on the samples that the classifier hard to classify.

73

compared settings. This result empirically verifies that the middle HDO samples are

beneficial to learn a reasonable decision boundary which increases the generalization

ability of a neural network. Since the supporting samples marginally apart from the

decision boundary are crucial for the generalization performance [155], the HDO related

with the generalization performance can be interpreted as a measure proportional to

the distance of a sample from the decision boundary for a given classification task. In

conclusion, we can utilize HDO as a criterion to choose samples for improving the

generalization ability of a model for a given dataset.

4.4.8 Ablation Studies

Through link prediction experiments, we validated the effectiveness of two components:

learning in the hyperbolic spaces and reconstructing both the graph structure and the

node attributes. The experiment was conducted on two citation networks, Cora [8] and

Citeseer [8], then the results for link prediction task are presented in Table 4.6. The

baseline model is GAE [51], which conducts graph convolution in Euclidean space,

does not use an attention mechanism, and reconstructs only the affinity matrix A. In

Ablation I, reconstructing both the node attribute XEuc and the graph structure A (Eq.

(4.16)) are added to the baseline settings. In Ablation II, operating in hyperbolic space

with fixed curvature K is added to Ablation I. In Ablation III, operating in hyperbolic

space with fixed curvature K and the geometry-aware attention mechanism (Eq. (4.13))

are added to baseline settings. The results between Ablation I and Ablation II show that

the message passing in the hyperbolic space is more effective than that in Euclidean

space. Also, the performance gap between Ablation III and Proposed I shows that

it is helpful to learn a representation that reflects both the structure of the network

and the attributes of each node in hyperbolic space. This component is also valid in

Euclidean space, as shown in the gap between Baseline and Ablation I. As shown

in the gap between Proposed I and II, the fixed K and the trainable K show similar

performance to each other for some datasets, but training K gives an efficient training

74

scheme without multiple learning for searching the best K.

4.5 Further Discussions

4.5.1 Connection to Contrastive Learning

The hyperbolic geometry can be extended to contrastive learning [59]. A recent study

[156] has uncovered the link between contrastive learning and deep metric learning.

In this respect, it is becoming more significant to find the informative (hard) negative

samples, embeddings that are difficult to distinguish from anchors, beyond uniform

sampling [157]. Our work empirically showed that Hyperbolic Distance from the Origin

(HDO) is an effective criterion for selecting samples without supervision for better

generalization. The concept of HDO could be extended to informative negative sampling.

Since the embeddings hard to discriminate is equal to those that are hard to classify

by the model, the samples near the origin of hyperbolic space can be the impactful

negative samples to increase the ability of the unsupervised contrastive learning.

4.5.2 Failure Cases of Hyperbolic Embedding Spaces

The inductive bias of hyperbolic representation learning is assuming that there exist

hierarchical relationships in the dataset. Thus if the structure of the graph modeling the

relation between data points is close to a tree, the hyperbolic space, a continuous version

of a tree, is a suitable latent space. However, not all datasets’ latent structures have the

topological properties of the tree. For instance, datasets obtained from omnidirectional

sensors of drones and autonomous cars are indeed more suitable to latent hyperspherical

manifold rather than the hyperbolic manifold [158].

75

Ta
bl

e
4.

6:
A

bl
at

io
n

st
ud

ie
s

on
lin

k
pr

ed
ic

tio
n

ta
sk

:T
he

ba
se

lin
e

m
od

el
is

G
A

E
w

hi
ch

co
nd

uc
ts

gr
ap

h
co

nv
ol

ut
io

n
in

Eu
cl

id
ea

n
sp

ac
e,

do
es

no
tu

se
an

at
te

nt
io

n
m

ec
ha

ni
sm

an
d

re
co

ns
tr

uc
ts

on
ly

th
e

gr
ap

h
st

ru
ct

ur
e
A

.

R
ec

on
st

ru
ct

G
eo

m
et

ry
in

hy
pe

rb
ol

ic
sp

ac
e

in
hy

pe
rb

ol
ic

sp
ac

es
C

or
a

C
ite

se
er

bo
th

A
an

d
X

aw
ar

e
at

te
nt

io
n

fix
in

g
K

le
ar

ni
ng

K
A

U
C

A
P

A
U

C
A

P

B
as

el
in

e:
G

A
E

[5
1]

×
×

×
×

91
.0

92
.0

89
.5

89
.9

A
bl

at
io

n
I

√
×

×
×

92
.7

92
.1

94
.0

94
.8

A
bl

at
io

n
II

√
×

√
×

94
.6

94
.4

95
.9

96
.3

A
bl

at
io

n
II

I
×

√
√

×
94

.5
94

.8
96

.1
96

.4

Pr
op

os
ed

I:
H

G
C

A
E

√
√

√
×

95
.4

95
.5

96
.7

97
.0

Pr
op

os
ed

II
:H

G
C

A
E

√
√

×
√

95
.6

95
.5

96
.5

96
.8

5
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
R
a
y
m
o
n
d
-
s
c
i
/
P
I
C
A

76

https://github.com/Raymond-sci/PICA

4.6 Summary

In this chapter, we explored the properties of unsupervised hyperbolic representations.

We derived the representations from geometry-aware message passing autoencoders

whose whole operations were conducted in hyperbolic spaces. Then, we conducted

extensive experiments and analyses on the low-dimensional latent representations

in hyperbolic spaces. The experimental results support the conclusion that taking

advantage of hyperbolic geometry can improve the performances of unsupervised

tasks; node clustering, link prediction, and image clustering. We observed that the

proposed method could yield unsupervised hyperbolic image embeddings reflecting

the latent structure of the visual datasets that have a hierarchical structure. Lastly, we

demonstrated that the hyperbolic distance from origin for a sample could be utilized to

determine the additional data crucial for a classifier’s generalisation ability.

77

Chapter 5

Contrastive Learning for Heterogeneous Graphs

5.1 Overview

In recent years, Graph Neural Networks (GNNs) [3, 39, 40, 60, 61] have become the

de facto standard for representation learning on graph-structured data. Among the

differing architectures for GNNs, Message Passing Neural Networks (MPNNs) [9, 67]

in which nodes exchange messages (i.e., representations) along edges, are some of

the most well-known and effective mechanisms. Since GNNs were first proposed,

the majority of efforts in this field have been aimed at learning representations for

homogeneous graphs with a single type of nodes and a single type of edges (i.e.,

relationships). However, graph-structured datasets in real-world applications are not

limited to a single type of nodes and edges. For instance, in the movie network of Figure

5.1 (a), there exist multiple types of nodes (movies, actors, directors, and producers)

and multiple types of edges (acting, filming, and producing). This kind of graph that

has multiple types of nodes and edges is called heterogeneous information network or

heterogeneous graph [159, 160]. To capture complex relations in heterogeneous graphs,

the representation learning model must consider the distinct nature of multiple types of

nodes and edges. Thus simply plugging heterogeneous graphs into conventional MPNNs

devoted to homogeneous graphs is inadequate because the MPNNs cannot distinguish

78

Movie Actor Director Producer

(a) (b)

(c)

(d)

Metanode

Figure 5.1: (a) An example of heterogeneous movie networks. There exists four types

of nodes: movie, actor, director, and producer. (b) Example of two meta-paths (i.e.,

movie-director-movie and actor-movie-actor) which are compositions of different types

of nodes. (c) A meta-graph which is a composition of multiple meta-paths. (d) The

proposed metanode: each metanode aggregates messages of all nodes of each type and

returns the aggregated message to each node when passing messages to the next layer.

multiple node and edge types. To deal with this problem, recently, Heterogeneous Graph

Neural Networks (HGNNs) [161–168] have been proposed to extract useful knowledge

from heterogeneous graphs by leveraging the power of GNNs.

Most of HGNNs are focusing on semi-supervised conditions to learn the represen-

tation of nodes by utilizing the ground-truth label of each node. However, real-world

datasets are mostly unlabeled and the process of gathering ground truth labels is often

79

an expensive and time-intensive task. Thus, unsupervised representation learning on

heterogeneous graphs has become one of the major challenges in graph-structured

data learning, as it can pave the way to make use of large amounts of unlabeled data.

Especially, when there does not exist any given supervisory signal, it is highly important

to contemplate the unique characteristics of heterogeneous graphs. As an example in

Figure 5.1, most of the heterogeneous graphs are k-partite graphs whose nodes can be

divided into k independent sets. Due to the nature of k-partite graphs, all that is given

are sparse inter-type relations (i.e., edges between different types of nodes). However,

using only these inter-type relations is not enough to extract useful knowledge from

the intricate relations in the data. To resolve this problem, most HGNNs rely on addi-

tional predefined relational information, whether their conditions are semi-supervised

or unsupervised. The most commonly used methods are meta-path [169] and meta-

graph [170, 171], each of which are a composition of different types of nodes and

multiple meta-paths as shown in Figure 5.1 (b) and (c). As we will show later, nearly

all meta-paths implicitly derive intra-type relations (i.e., relations between same type of

nodes) by manipulating given inter-type relations.

However, there exist three major problems of using predefined methods such as

meta-paths for unsupervised heterogeneous graph learning. Firstly, there exist certain

limitations on inducing intra-type relations from predefined inter-type relations. When

the given inter-type relations are sparse or noisy, induced intra-type relations can also

be affected. Secondly, the appropriate composition of nodes and edges (designing

meta-paths and meta-graphs) for representation learning requires significant domain-

specific knowledge. Thus, it is extremely hard to know which combinations of nodes

and edges is suitable for learning useful representations in unsupervised environments.

Lastly, although there exist attempts to learn appropriate meta-paths beyond given

ones [165], several multiplications of the adjacency matrix are required. Due to the high

computational cost of multiple matrix multiplications, their method is limited to very

small datasets [172]. Also, it cannot be applied to unlabeled data. This is because their

80

method requires ground truth labels of nodes.

To circumvent the above limitations of current methods, we propose a novel concept

of metanode to construct a simple and powerful MPNN for learning heterogeneous

graphs. Metanodes are virtual nodes that exist as many as the number of node types

in the heterogeneous graph. Each metanode is connected to all nodes in each type as

illustrated in Figure 5.1 (d). By introducing metanodes, message passing is no longer

limited to sparse inter-type relations, and every node can directly perform message

passing with other nodes of the same type via metanodes. To do so, we can enrich the

information on the relationship by adding explicit intra-type relations to the given inter-

type relations. There are three advantages of using metanode-based message passing

compared to conventional methods. Firstly, since metanodes can model intra-type

relations explicitly, we no longer need to reason intra-type relations indirectly. Thus,

we do not require any predefined tools such as meta-paths or meta-graphs. Secondly,

since each node can exchange messages with all nodes of the same type in a single

step via metanodes, it is possible to learn distant but informative nodes through only a

few message passing layers. Lastly, since the calculation of metanode representation is

simple, new relationships can be established with a very small amount of computation.

After introducing the concept of metanode, we propose a metanode-based message

passing layer to learn both intra- and inter-type relations effectively. Then we propose a

contrastive model for heterogeneous graph learning where the encoder consists of our

metanode-based message passing layers.

Through nodewise downstream tasks on four real world heterogeneous graph

datasets, we validate the proposed metanode-based message passing neural networks.

We confirm that our metanode-based model learns rich relational information and shows

competitive performance compared to existing state-of-the-arts relying on meta-paths.

81

Table 5.1: Predefined meta-paths of real-world datasets. In this table, it can be noticed

that most of R are inter-type relations and P target on intra-type relations by setting

the same type of nodes at both ends of P .

Dataset A R P

DBLP A, P, T, C A-P, P-T, P-C APA, APCPA, APTPA

IMDB M, D, A M-D, M-A MDM, MAM

ACM P, A, S P-A, P-S PAP, PSP

AMiner P, A, R P-A, P-R PAP, PRP

Freebase M, D, A, P M-D, M-A, M-P MAM, MDM, MPM

Last.FM U, A, T U-U, U-A, A-T UU, UAU, UATAU, AUA, AUUA, ATA

Yelp U, B, Co, Ci, Ca U-U, U-B, U-Co, B-Ci, B-Ca UBU, UCoU, UBCiBU, UBCaBU, BUB, BCiB, BCaB, BUCoUB

Douban U, M, G, L, D, A, T U-U, U-G, U-M, U-L, M-D, M-T, M-A MUM, MTM, MDM, MAM, UMU, UMAMU, UMDMU, UMTMU

5.2 Preliminaries

5.2.1 Meta-path

A meta-path [169] P is defined as a path that has a form ofA1
R1−→ A2

R2−→ · · · Rl−→ Al+1

(abbreviated as A1A2 · · ·Al+1) which describes relation between A1 and Al+1 ∈ A

with a composition of relations R1, R2, . . . , Rl ∈ R, where A and R denote sets of

node types and edge types of heterogeneous graphs, respectively. Each meta-path can

describe a semantic relation between nodes at both ends of the meta-path. For instance,

in Figure 5.1 (b), the meta-path of movie-director-movie can describe the relationship

between two movies by which director filmed them. Nearly all meta-paths of real-world

datasets [159, 163, 166, 173] are implicitly composed for intra-type relations by setting

the same type of nodes at both ends of P using given inter-type relations R as shown

in the Table 5.1.

5.2.2 Representation Learning on Heterogeneous Graphs

Throughout several years, there exist some efforts to learn representations of het-

erogeneous graphs from random-walk based methods [174–177] to GNNs meth-

ods [161–163, 165, 168, 173, 178–181]. Nowadays, HGNNs leveraging the power of

82

GNNs show remarkable learning ability of intricate relations of multiple types of nodes

and edges both of semi-supervised and unsupervised conditions. For instance, in semi-

supervised learning, HAN [162] proposed attention-based MPNNs using meta-paths

to take into account each semantic meaning of meta-paths. Further, MAGNN [173]

considered all the nodes constituting each meta-path to respect intermediate semantic in-

formation. GTN [165] is an advanced method to learn new relations (meta-paths) in het-

erogeneous graphs by multiple multiplications of the adjacency matrix. DiffMG [181]

also tries to learn task-specific meta-graphs using neural architecture search method. In

unsupervised learning, HetGNN [162] learns a fixed size of correlated neighbors using

random walk with restart. NSHE [179] samples sub-graphs and learns via multi-task

learning to preserve relations in heterogeneous graphs. Whether the target condition of

models is semi-supervised or unsupervised, it can be noticed that many heterogeneous

graph learning model relies on predefined meta-paths or meta-graphs. However, depend-

ing on meta-paths is undesirable since the results of meta-paths based message passing

cannot directly learn the relationships between same type of nodes. Also, it is difficult

to know whether meta-paths given in advance is conducive to effective learning.

5.2.3 Contrastive methods for Heterogeneous Graphs

Unsupervised learning on graph-structured data is one of the fundamental problems of

machine learning. Early attempts using GNNs [51, 52, 130, 182] were focused on an

auto-encoder framework with random-walk based loss function [32]. However, learned

representations of these previous models are limited since their models overemphasize

proximity or locality information of graph. To overcome this problem, contrastive learn-

ing, one of the self-supervised learning methods, are attracting attention. Starting from

a pioneering work [1], various contrastive models [55, 57, 63, 183] have been proposed

in the field of homogeneous graph learning. Along with the above works, there are

some efforts to learn representations of heterogeneous graphs via contrastive methods.

HDMI [184] utilizes higher-order mutual information via considering relations of raw

83

features of nodes, learned representations and global summary vectors. HDGI [167]

is a contrastive model whose encoder is meta-path based neighborhood aggregation

MPNNs and contrasts between an original graph and a corrupted graph. HeCo [166] is

another contrastive model that contrasts local representation result of direct neighbor-

hood aggregation and higher-order representation that of meta-path based neighborhood

aggregation. Current state-of-the-arts contrastive methods commonly use meta-paths to

learned representations. However, they can suffer the limitations of using meta-paths

as we mentioned in the above paragraph. Thus, how to effectively learn unsupervised

representations of heterogeneous graphs without any predefined information is one of

the major tasks to be solved.

5.3 Methodology

In this section, we present metanode concept, metanode-based message passing layer

(MN-MPL), and a contrastive model for heterogeneous graph with encoder adopting

the MN-MPL. The graphical descriptions of the metanode, MN-MPL, and contrastive

model are illustrated in Figures 5.2 and 5.3.

5.3.1 Definitions

Definition 5.3.1.1. Heterogeneous graph. A graph G = (V, E ,A,R, ϕ, ψ) is a het-

erogeneous network with multiple types of nodes and edges, where V and E denote

the node set and edge set, respectively. Each node v ∈ V and edge e ∈ E are as-

sociated with node type mapping function ϕ(v) : V → A and edge type mapping

function ψ(e) : E → R, where A and R denote sets of node types and edge types with

|A| + |R| > 2, respectively. Vj denotes the node set having j-th node type, that is,⋃|A|
j=1 Vj = V .

Definition 5.3.1.2. Metanode. Metanodes {vj}|A|
j=1 are additional nodes that exist as

many as the number of node types in the heterogeneous graph. Each metanode vj is

84

(a
)

(c
)

(b
)

O
w

n
re

pr
es

en
ta

tio
n 

fro
m

 th
e

pr
ev

io
us

 la
ye

r:

Ag
gr

eg
at

ed
 m

es
sa

ge
s

fro
m

  
di

re
ct

 h
et

er
og

en
eo

us
 n

ei
gh

bo
rs

:

Ag
gr

eg
at

ed
 m

es
sa

ge
s

of
 n

od
es

  
w

ith
 s

am
e

ty
pe

 v
ia

 m
et

an
od

e:

h(l+
1)

i
=C

OM
(h(l) i

,h(l) ϕ(v
i),R ∑ t=1

h(l) i,t
)

M
et
an

od
e

M
et
an

od
e

M
et
an

od
e M
et
an

od
e

∑

h(l) i
:

h(l) ϕ(v
i)

h(l) i,1 h(l) i,R⋯

Th
e

m
et

an
od

es
 c

an
 b

e
re

ga
rd

ed
 a

s
ad

di
tio

na
l n

od
es

 th
at

 a
re

 b
id

ire
ct

io
na

lly

co
nn

ec
te

d
to

 a
ll

no
de

s
of

 th
e

sa
m

e
ty

pe
.

Fi
gu

re
5.

2:
(a

)T
he

co
nc

ep
to

fm
et

an
od

e
sc

he
m

e.
E

ac
h

m
et

an
od

e
(c

he
ck

er
bo

ar
d

pa
tte

rn
)i

s
co

nn
ec

te
d

to
al

ln
od

es
in

th
e

no
de

se
to

f

ea
ch

ty
pe

us
in

g
ex

te
nd

ed
ed

ge
se

ts
(c

ol
or

ed
da

sh
lin

e)
.(

b)
T

he
pr

op
os

ed
m

et
an

od
e-

ba
se

d
m

es
sa

ge
pa

ss
in

g
la

ye
r(

M
N

-M
PL

)t
ak

es

th
re

e
co

m
po

ne
nt

s
as

in
E

q.
(5

.1
),

in
di

ca
te

d
by

re
d,

bl
ue

,a
nd

gr
ee

n
bo

xe
s.

(c
)T

he
m

et
an

od
e

ag
gr

eg
at

es
no

de
m

es
sa

ge
s

of
sa

m
e

ty
pe

an
d

re
tu

rn
s

th
e

ag
gr

eg
at

ed
m

es
sa

ge
to

ev
er

y
no

de
s

of
sa

m
e

ty
pe

.

85

connected to all nodes in Vj via added edges that connect each metanode and the nodes

in each node type. The added edges enable message passing between each metanode

vj and all nodes in Vj .

We illustrate an example of a heterogeneous graph introducing metanodes in Figure

5.2 (a). Introducing a concept of metanode enables explicit modelling of intra-type

relations that is hard to infer due to the k-partite structural characteristic of heteroge-

neous graphs. Compared to conventional methods of using meta-paths or meta-graphs

that infer intra-type relations from given inter-type relations indirectly, metanodes can

directly establish intra-type relations. Also, unlike meta-paths or meta-graphs that are

predefined before learning, metanodes do not require any prior domain knowledge or

predefined steps.

5.3.2 Metanode-based Message Passing Layer

We now propose a novel message passing layer using metanodes. The proposed layer

takes three components as input: the representation of the previous layer, the metanode

representation, and aggregated messages from direct heterogeneous neighbors as shown

in Figure 5.2 (b). For a node vi ∈ V who has R different types of immediate neighbors,

the metanode-based message passing layer (MN-MPL) is defined by

h
(l+1)
i = COM

(
h
(l)
i , h

(l)
ϕ(vi)

,
R∑
t=1

h
(l)
i,t

)
, (5.1)

where h(l)i , h
(l)
ϕ(vi)

, and h(l)i,t denote the representation of i-th node at l-th layer, the

metanode representation of type of i-th node ϕ(vi), and the aggregated representation

from t type neighbors of vi, respectively. For the combination function COM, we

apply concatenation COM(x1, . . . , xk) = ∥kj=1xj or summation COM(x1, . . . , xk) =∑k
j=1 xj . COM includes a nonlinear MLP after concatenation or summation. The

metanode representation h(l)ϕ(vi) is defined by sum pooling:
∑

j∈Vϕ(vi)
h
(l)
j , mean pool-

ing: 1
|Vϕ(vi)

|
∑

j∈Vϕ(vi)
h
(l)
j , or max pooling: max{h(l)j }j∈Vϕ(vi)

, where max denotes

86

element-wise max function. To aggregate messages from R types of direct heteroge-

neous neighbors of vi, we aggregate messages of each different type of direct neighbors

separately first {h(l)i,1, . . . , h
(l)
i,R}, then take a summation to make a single vector repre-

sentation:
∑R

t=1 h
(l)
i,t .

The proposed MN-MPL has three major advantages over conventional message

passing on heterogeneous graphs. Firstly, each node can exchange messages with

nodes of the same type by taking the aggregated messages through metanodes as an

input during the proposed message passing process as shown in Figure 5.2 (c). Thus,

the proposed message passing scheme makes full use of both inter-type relations via

direct heterogeneous neighbors and intra-type relations via metanode representations.

Compared to conventional message passing schemes that infer intra-type relations

indirectly using predefined meta-paths or meta-graphs, the proposed layer does not

require any indirect infer or pre-processing steps before learning. Secondly, through

metanode, each node can easily exchange messages with distant nodes without as many

layers as the length of meta-path. To learn distant but informative nodes, conventional

methods require meta-paths or message passing layers with a length equal to the shortest

path distance between two nodes. On the other hand, since each metanode connects all

nodes of each type, nodes within each type can consider the others as one-hop neighbors.

Thus, distant but informative nodes can be learned with only a small number of MN-

MPLs. Lastly, the cost of message passing between intra-type nodes are extremely low.

As explained in the paragraph above, the computation of metanode representations is a

simple sum, mean or max pooling of the node representations, and requires absolutely

no burdensome computational process. Thus, the computation cost of establishing

unseen relations of heterogeneous graphs using metanodes is extremely low compared

to existing methods such as [165] requiring several adjacency matrix multiplications

that attempts an efficient variant [185] very recently.

87

5.3.3 Contrastive Learning Framework

In this subsection, we explain a framework of contrastive learning using MN-MPL.

We apply MN-MPL to the contrastive framework of Deep Graph Infomax [1]. At

first, because each node type has attributes of different dimensions, we project each

different attribute into a common latent space whose dimension is d using one layer

transformation network:

h
(0)
i = ζ(Wϕ(vi)xi + bϕ(vi)), (5.2)

where xi ∈ Rdϕ(vi) ,Wϕ(vi) ∈ Rd×dϕ(vi) , bϕ(vi) ∈ Rd, and ζ denote the node attribute

of vi, a transformation matrix, a bias vector for type ϕ(vi), and the nonlinear activation,

respectively. For constrastive learning, we apply a corruption function C to generate a

negative graph G̃ = C(G). We select the corruption function C as type-wise random

permutation of node feature matrix H(0) ∈ RN×d, where N denotes the number of

nodes in the graph. By applying C, each node is given the features of other nodes of

the same type.

To learn the representation of each node, we apply MN-MPLs as the encoder

network. We share the same encoder network for both the original graph and the

corrupted graph to learn the representation of each node. hi and h̃i on node vi ∈ V

denote the outputs of the encoder network for the original graph and the corrupted graph,

respectively. We extract global summary vector s of the original graph by applying

mean pooling s = σ(1
|V|

∑|V|
i=1 hi), where σ denotes the logistic sigmoid function.

Then, we utilize a contrastive objective with binary cross entropy loss function between

positive examples (hi, s) and negative samples (h̃i, s) as below:

L =
1

2|V|
(|V|∑
i=1

EG[logD(hi, s)] +

|V|∑
i=1

EG̃[log(1−D(h̃i, s))]
)
, (5.3)

where D(hi, s) = σ(hTi W s) denotes the discriminator function which is a bilinear

network (W is a learnable matrix). Maximizing the objective function L is equal to

maximize the mutual information between the representation from the original graph

88

xi
E

E

C s

D

D

+

−

G

G̃

hi

x̃i h̃i

Figure 5.3: Overview of the contrastive model. C,D,E, and s denote a corruption

function for generating negative samples, a discriminator function, an encoder network

which is composed of our MN-MPL, and a global summary vector, respectively. We

referred to the graphical description of [1].

hi and the global summary vector s from the original graph. The graphical overview of

the contrastive learning framework is illustrated at Figure 5.3.

5.4 Experiments

To verify the validity of the proposed metanode-based message passing scheme, we

applied our method to node clustering and node classification tasks on the target node

type of each dataset. Further, we analyzed the quality of learned representation of nodes

and the effectiveness of proposed method via visualization and additional analysis.

89

Table 5.2: Statistics of datasets.

Dataset A R P

DBLP

Author (A): 4,057

Paper (P): 14,328

Term (T): 7,723

Conference (C): 20

A-P: 19,645

P-T: 85,810

P-C: 14,328

APA

APTPA

APCPA

ACM

Paper (P): 4,019

Author (A): 7,167

Subject (S): 60

P-A: 13,407

P-S: 4,019

PAP

PSP

AMiner

Paper (P): 6,564

Author (A): 13,329

Reference (R): 35,890

P-A: 18,007

P-R: 58,831

PAP

PRP

Freebase

Movie (M): 3,492

Director (D): 2,502

Actor (A): 33,401

Producer (P): 4,459

M-D: 3,762

M-A: 65,341

M-P: 6,414

MDM

MAM

MPM

5.4.1 Experimental Details

Datasets.

We validated our proposed contrastive learning model based on our MN-MPL using

four real-world heterogeneous graph datasets. The statistics of datasets are presented

in Table 5.2.

• DBLP1 [173] is a subset of bibliography website of computer science fields. There

exist four types of nodes: 4,057 authors, 14,328 papers, 7,723 terms, and 20 confer-
1https://github.com/cynricfu/MAGNN

90

https://github.com/cynricfu/MAGNN

Table 5.3: Summary of node classification results (%± σ).

Datasets Metric Split n2vec SAGE GAE mp2vec HERec HetGNN HAN DGI DMGI HeCo MN (ours)

DBLP

Ma-F1

20 48.75±1.0 71.97±8.4 90.90±0.1 88.98±0.2 89.57±0.4 89.51±1.1 89.31±0.9 87.93±2.4 89.94±0.4 91.28±0.2 92.60±0.3

40 55.94±1.0 73.69±8.4 89.60±0.3 88.68±0.2 89.73±0.4 88.61±0.8 88.87±1.0 88.62±0.6 89.25±0.4 90.34±0.3 92.78±0.5

60 58.15±0.7 73.86±8.1 90.08±0.2 90.25±0.1 90.18±0.3 89.56±0.5 89.20±0.8 89.19±0.9 89.46±0.6 90.64±0.3 92.70±0.2

Mi-F1

20 48.92±1.0 71.44±8.7 91.55±0.1 89.67±0.1 90.24±0.4 90.11±1.0 90.16±0.9 88.72±2.6 90.78±0.3 91.97±0.2 93.00±0.3

40 56.06±1.1 73.61±8.6 90.00±0.3 89.14±0.2 90.15±0.4 89.03±0.7 89.47±0.9 89.22±0.5 89.92±0.4 90.76±0.3 93.14±0.5

60 58.58±0.8 74.05±8.3 90.95±0.2 91.17±0.1 91.01±0.3 90.43±0.6 90.34±0.8 90.35±0.8 90.66±0.5 91.59±0.2 93.42±0.2

AUC

20 74.84±0.7 90.59±4.3 98.15±0.1 97.69±0.0 98.21±0.2 97.96±0.4 98.07±0.6 96.99±1.4 97.75±0.3 98.32±0.1 99.05±0.1

40 78.54±0.6 91.42±4.0 97.85±0.1 97.08±0.0 97.93±0.1 97.70±0.3 97.48±0.6 97.12±0.4 97.23±0.2 98.06±0.1 98.59±0.1

60 81.74±0.4 91.73±3.8 98.37±0.1 98.00±0.0 98.49±0.1 97.97±0.2 97.96±0.5 97.76±0.5 97.72±0.4 98.59±0.1 99.20±0.0

ACM

Ma-F1

20 71.96±1.1 47.13±4.7 62.72±3.1 51.91±0.9 55.13±1.5 72.11±0.9 85.66±2.1 79.27±3.8 87.86±0.2 88.56±0.8 89.46±0.5

40 73.76±0.8 55.96±6.8 61.61±3.2 62.41±0.6 61.21±0.8 72.02±0.4 87.47±1.1 80.23±3.3 86.23±0.8 87.61±0.5 89.19±0.4

60 74.03±0.8 56.59±5.7 61.67±2.9 61.13±0.4 64.35±0.8 74.33±0.6 88.41±1.1 80.03±3.3 87.97±0.4 89.04±0.5 89.67±0.3

Mi-F1

20 70.27±1.4 49.72±5.5 68.02±1.9 53.13±0.9 57.47±1.5 71.89±1.1 85.11±2.2 79.63±3.5 87.60±0.8 88.13±0.8 89.09±0.5

40 73.14±1.0 60.98±3.5 66.38±1.9 64.43±0.6 62.62±0.9 74.46±0.8 87.21±1.2 80.41±3.0 86.02±0.9 87.45±0.5 88.86±0.4

60 72.86±1.0 60.72±4.3 65.71±2.2 62.72±0.3 65.15±0.9 76.08±0.7 88.10±1.2 80.15±3.2 87.82±0.5 88.71±0.5 89.43±0.4

AUC

20 86.31±0.8 65.88±3.7 79.50±2.4 71.66±0.7 75.44±1.3 84.36±1.0 93.47±1.5 91.47±2.3 96.72±0.3 96.49±0.3 96.77±0.2

40 86.75±0.6 71.06±5.2 79.14±2.5 80.48±0.4 79.84±0.5 85.01±0.6 94.84±0.9 91.52±2.3 96.35±0.3 96.40±0.4 96.99±0.1

60 88.11±0.6 70.45±6.2 77.90±2.8 79.33±0.4 81.64±0.7 87.64±0.7 94.68±1.4 91.41±1.9 96.79±0.2 96.55±0.3 97.61±0.0

AMiner

Ma-F1

20 60.77±1.5 42.46±2.5 60.22±2.0 54.78±0.5 58.32±1.1 50.06±0.9 56.07±3.2 51.61±3.2 59.50±2.1 71.38±1.1 73.45±0.5

40 67.64±1.1 45.77±1.5 65.66±1.5 64.77±0.5 64.50±0.7 58.97±0.9 63.85±1.5 54.72±2.6 61.92±2.1 73.75±0.5 75.52±0.6

60 68.55±0.1 44.91±2.0 63.74±1.6 60.65±0.3 65.53±0.7 57.34±1.4 62.02±1.2 55.45±2.4 61.15±2.5 75.80±1.8 75.09±0.5

Mi-F1

20 66.01±2.0 49.68±3.1 65.78±2.9 60.82±0.4 63.64±1.1 61.49±2.5 68.86±4.6 62.39±3.9 63.93±3.3 78.81±1.3 80.53±0.6

40 73.05±1.3 52.10±2.2 71.34±1.8 69.66±0.6 71.57±0.7 68.47±2.2 76.89±1.6 63.87±2.9 63.60±2.5 80.53±0.7 82.26±0.5

60 73.55±1.1 51.36±2.2 67.70±1.9 63.92±0.5 69.76±0.8 65.61±2.2 74.73±1.4 63.10±3.0 62.51±2.6 82.46±1.4 82.02±0.3

AUC

20 86.18±0.9 70.86±2.5 85.39±1.0 81.22±0.3 83.35±0.5 77.96±1.4 78.92±2.3 75.89±2.2 85.34±0.9 90.82±0.6 93.29±0.3

40 90.57±0.5 74.44±1.3 88.29±1.0 88.82±0.2 88.70±0.4 83.14±1.6 80.72±2.1 77.86±2.1 88.02±1.3 92.11±0.6 94.85±0.2

60 90.71±0.5 74.16±1.3 86.92±0.8 85.57±0.2 87.74±0.5 84.77±0.9 80.39±1.5 77.21±1.4 86.20±1.7 92.40±0.7 94.06±0.2

Freebase

Ma-F1

20 55.60±1.3 45.14±4.5 53.81±0.6 53.96±0.7 55.78±0.5 52.72±1.0 53.16±2.8 54.90±0.7 55.79±0.9 59.23±0.7 58.92±0.7

40 57.58±1.2 44.88±4.1 52.44±2.3 57.80±1.1 59.28±0.6 48.57±0.5 59.63±2.3 53.40±1.4 49.88±1.9 61.19±0.6 62.73±0.7

60 55.54±1.2 45.16±3.1 50.65±0.4 55.94±0.7 56.50±0.4 52.37±0.8 56.77±1.7 53.81±1.1 52.10±0.7 60.13±1.3 60.10±0.8

Mi-F1

20 58.75±1.3 54.83±3.0 55.20±0.7 56.23±0.8 57.92±0.5 56.85±0.9 57.24±3.2 58.16±0.9 58.26±0.9 61.72±0.6 61.48±0.1

40 60.59±1.2 57.08±3.2 56.05±2.0 61.01±1.3 62.71±0.7 53.96±1.1 63.74±2.7 57.82±0.8 54.28±1.6 64.03±0.7 65.86±0.6

60 58.44±1.2 55.92±3.2 53.85±0.4 58.74±0.8 58.57±0.5 56.84±0.7 61.06±2.0 57.96±0.7 56.69±1.2 63.61±1.6 63.63±0.1

AUC

20 73.20±1.1 67.63±5.0 73.03±0.7 71.78±0.7 73.89±0.4 70.84±0.7 73.26±2.1 72.80±0.6 73.19±1.2 76.22±0.8 76.66±0.8

40 75.25±1.0 66.42±4.7 74.05±0.9 75.51±0.8 76.08±0.4 69.48±0.2 77.74±1.2 72.97±1.1 70.77±1.6 78.44±0.5 79.61±0.7

60 74.20±1.4 66.78±3.5 71.75±0.4 74.78±0.4 74.89±0.4 71.01±0.5 75.69±1.5 73.32±0.9 73.17±1.4 78.04±0.4 78.43±0.8

ences. The target node type is ‘author’ and has four ground truth labels: Database,

Data mining, Artificial Intelligence, and Information Retrieval.

• ACM2 [179] is a heterogeneous graph of papers that are published at KDD, SIGMOD,

SIGCOMM, MobiCOMM, and VLDB. There exist three types of nodes: 4,019 papers,

7,167 authors, and 60 subjects. The target node type is ‘paper’ and has three ground

truth labels: Database, Wireless Communication, and Data Mining.
2https://github.com/Andy-Border/NSHE

91

https://github.com/Andy-Border/NSHE

• AMiner3 [186] is a citation heterogeneous information network. There exist three

types of nodes: 6,564 papers, 13,329 authors, and 35,890 references. The target node

type is ‘paper’ and has three ground truth labels.

• Freebase4 [187] is a movie heterogeneous information network. There exist four

types of nodes: 3,492 movies, 2,502 directors, 33,401 actors, and 4,459 producers.

The target node type is ‘movie’ and three ground truth labels: Action, Comedy, and

Drama.

Baselines.

We compared our method with graph representation learning methods in three cate-

gories: unsupervised homogeneous models, unsupervised heterogeneous models, and

semi-supervised heterogeneous model.

• Unsupervised homogeneous models: node2vec (n2vec) [32] is a random-walk based

model which learns representation solely depending on structure of homogeneous

graphs. GraphSAGE (SAGE) [39] is a homogeneous MPNN that enforces nearby

nodes having similar representations by random-walk based objective function. GAE

[51] is a graph auto-encoder model whose encoder network is a graph convolutional

network [3] and decoder network is an inner-product module. This model is optimized

by random-walk based link prediction objective function. DGI [1] is a contrastive

learning model on homogeneous graphs, in which positive examples from the original

graph contrast with negative examples from the corrupted graph by optimization

process using Eq. (5.3).

• Unsupervised heterogeneous models: Metapath2vec (mp2vec) [174] learns rep-

resentation of nodes in heterogeneous graphs by random-walk on meta-paths and

heterogeneous skip-gram model [188]. This paper and the below papers that use the
3https://tinyurl.com/2p9x557w
4https://github.com/dingdanhao110/Conch

92

https://tinyurl.com/2p9x557w
https://github.com/dingdanhao110/Conch

meta-paths below use the meta-paths in Table 5.2. HERec [178] is a graph represen-

tation model using the random-walk based on meta-paths and DeepWalk [31]. This

model is optimized by the specific recommendation task. HetGNN [162] is a hetero-

geneous MPNN that samples the fixed size of heterogeneous neighbor nodes using

random walk with restart. This model utilizes bi-directional LSTM module [189] to

aggregate the sampled neighbors and is optimized by random-walk objective func-

tion. DMGI [190] is a heterogeneous contrastive learning method by introducing

consensus regularization framework. Similar to DGI [1], in DMGI, positive examples

from the original graph contrast with negative examples from the corrupted graph.

HeCo [166] is state-of-the-art in unsupervised representation learning methods for

heterogeneous graphs. In this method, the representation from network-schema-based

encoder contrasts with that of meta-path-based encoder. The method also contains

several techniques such as view masking mechanism and positive sample selection

strategy.

• Semi-supervised heterogeneous model: HAN [163] proposes a meta-path-based

attention mechanism for heterogeneous graphs, which uses two-step attention mecha-

nisms: meta-path-based neighbor node-level attention and semantic-level attention to

learn the importance of each meta-path.

Experimental settings.

For comparison methods based on random-walk, we followed the settings of [166].

Specifically, for metapath2vec, HERec, and HetGNN, the number of walks per node,

the walk length, and the window size were set to 40, 100, and 5, respectively. For

GraphSAGE, GAE, DGI, metapath2vec, and HERec, the performances of all meta-path

instances were measured and the best performance was reported. For parameter settings

other than those mentioned above, we followed the original setting of each paper.

In the experimental setup of our method, we did not use any meta-paths or meta-

graphs. We applied Xavier uniform distribution for the parameter initialization [191] and

93

used ADAM [147] for optimization. When conducting transformation of initial node

features, Eq. (5.2), we applied batch normalization [192] before nonlinear activation.

For COM in Eq. (5.1), we used summation for DBLP and ACM, and used concatenation

for AMiner and Freebase. For the direct heterogeneous neighbor aggregation of our

MN-MPL, we assigned GraphSAGE [39] modules as many numbers as the edge types in

the dataset to compute h(l)i,1, . . . , h
(l)
i,R. There do not exist features for ‘author’, ‘subject’

node types in ACM and every node type in AMiner and Freebase. In these cases, some

methods assign one-hot vectors as a unique node identifier for those types that do not

have features. However, this one-hot vector strategy does not suitable for contrastive

learning methods that generate negative samples by random permutation of features,

including ours. This is because a one-hot vector of negative samples can still serve

as a unique node identifier after random permutations and cannot produce a useful

supervising signal for contrastive learning. Thus, we used node2vec [32] to extract the

structural feature of each node that does not have features. The feature extraction is

done after removing all information about the types of nodes and edges by transforming

from a heterogeneous graph to a homogeneous graph. Unlike some methods that apply

message passing to the nodes of target node type only, we apply our MN-MPL to nodes

of every type in the dataset.

5.4.2 Node Classification

We conducted node classification to see how useful the learned representation of the

metanode-based contrastive learning is. For each dataset, we selected 20, 40, 60 nodes

per class for training set, 1, 000 nodes for validation set, and 1, 000 nodes for test set.

We trained and tested a single layer of logistic regression classifier, and used Macro-F1,

Micro-F1, and AUC for evaluation metrics. The average value and standard deviation

after executing each model 10 times are reported in Table 5.3.

The results demonstrate that our methods can achieve outstanding results compared

to the existing homogeneous models and heterogeneous models. Especially, in most

94

Table 5.4: Summary of node clustering results (%).

DBLP ACM AMiner Freebase

NMI ARI NMI ARI NMI ARI NMI ARI

n2vec 21.48 14.70 41.71 34.77 32.04 14.36 16.43 17.27

SAGE 51.50 36.40 29.20 27.72 15.74 10.10 9.05 10.49

GAE 72.59 77.31 27.42 24.49 28.58 20.90 19.03 14.10

mp2vec 73.55 77.70 48.43 34.65 30.80 25.26 16.47 17.32

HERec 70.21 73.99 47.54 35.67 27.82 20.16 19.76 19.36

HetGNN 69.79 75.34 41.53 34.81 21.46 26.60 12.25 15.01

DGI 59.23 61.85 51.73 41.16 22.06 15.93 18.34 11.29

DMGI 70.06 75.46 51.66 46.64 19.24 20.09 16.98 16.91

HeCo 74.51 80.17 56.87 56.94 32.26 28.64 20.38 20.98

MN (ours) 77.19 82.25 59.23 60.31 35.32 30.60 19.05 18.87

cases, the proposed method (MN), that does not rely on any predefined composition

(meta-paths or meta-graphs) of hetrogeneous nodes, shows competitive results com-

pared to state-of-the-arts (mp2vec, DMGI, HeCo, etc.) in unsupervised heterogeneous

models. Also, it can be seen that our method shows outstanding performances com-

pared to even with a semi-supervised model (HAN). We have also observed that, for

AMiner and Freebase datasets where the feature of the target node type is not given,

homogeneous models can achieve similar performances with heterogeneous models.

Specifically, n2vec and GAE show classification performances close to those of several

heterogeneous models such as mp2vec, HERec, HetGNN. We conjecture that the reason

for this result is that the node feature plays an important role in distinguishing different

types of nodes of heterogeneous graphs.

95

5.4.3 Node Clustering

We conducted node clustering by applying k-means clustering algorithm to the learned

representation of each model. The clustering performance is measured by Normalized

Mutual Information (NMI) and Adjusted Rand Index (ARI). Table 5.4 reports the

average value after executing each model 10 times to consider random initialization of

k-means clustering algorithm.

For most cases, the proposed method shows outstanding performances compared to

state-of-the-art models. The results of DMGI, HeCo, and our method demonstrate that

the contrastive learning framework is effective to learn representations of heterogeneous

graphs in unsupervised environments. We observed that clustering performance of every

model shows poor performance on Freebase compared to other datasets, DBLP, ACM,

and AMiner. Similar to [173]’s analysis on IMDB movie dataset, we guess the cause

of this result comes from the noisy labels of the movie genres. Every movie can has

multiple genres, but for classification task, only one genre was selected as a label among

them. As an evidence for this conjecture, we found that different movie genre labels,

Action, Adventure, and Crime, were used in another paper [193] for the same Freebase

dataset we used that labelled Action, Comedy, and Drama.

5.4.4 Visualization

For qualitative analysis of the proposed method, we visualize the learned representation

of target node type of each dataset. By using t-SNE [194], we obtained 2-dimensional

projections of learned representations. The visualization results are shown in Figure

5.4. To measure the quality of projected representations of each model, we calculated a

silhouette score [195]. Our method can distinguish node classes better than comparison

methods. The projected representations of n2vec overlaps a lot among other classes due

to the limited learning ability of n2vec. The projected representations of HeCo show

discriminability among classes. However, in some cases, nodes of the same class are

not grouped, resulting in a lower silhouette score compared to our method.

96

(a) DBLP

n2vec: 0.1944

(b) DBLP

HeCo: 0.520

(c) DBLP

MN: 0.6351

(d) ACM

n2vec: 0.2035

(e) ACM

HeCo: 0.4436

(f) ACM

MN: 0.4743

(g) AMiner

n2vec: 0.0037

(h) AMiner

HeCo: 0.1681

(i) AMiner

MN: 0.1692

Figure 5.4: The two-dimensional projections of learned representations of n2vec, HeCo,

and our methods (MN) for DBLP, ACM, and AMiner are illustrated. Silhouette score of

each projected representations are provided below each subfigure. Same color of nodes

share same class label.

5.4.5 Effectiveness of Metanodes

We conducted further experiment to validate the effectiveness of the proposed metanode.

We designed an extended model of HeCo [166], one of the state-of-the-art contrastive

learning model, via introducing metanode. In the framework of HeCo, there are two

encoders, network schema encoder and meta-path encoder, for contrastive learning.

97

Table 5.5: Effectiveness of metanode via extended HeCo model on node classification

task (%).

Datasets Metric Split HeCo HeCo+MN

DBLP

Ma-F1

20 91.28 91.41

40 90.34 90.83

60 90.64 91.15

Mi-F1

20 91.97 92.04

40 90.76 91.20

60 91.59 91.77

AUC

20 98.32 98.17

40 98.06 98.12

60 98.59 98.39

ACM

Ma-F1

20 88.56 90.06

40 87.61 88.95

60 89.04 89.27

Mi-F1

20 88.13 89.79

40 87.45 88.83

60 88.71 88.95

AUC

20 96.49 97.40

40 96.40 96.97

60 96.55 96.59

AMiner

Ma-F1

20 71.38 71.74

40 73.75 73.14

60 75.80 76.68

Mi-F1

20 78.81 78.99

40 80.53 81.22

60 82.46 83.11

AUC

20 90.82 90.35

40 92.11 92.44

60 92.40 92.90

We introduced metanode representation on meta-path encoder of HeCo by adding

metanode representation to the representations of each node after aggregating messages

from meta-path neighbors and before calculating semantic level attention (between

Eq. (6) and Eq. (7) of HeCo paper). We applied mean pooling to compute metanode

representation and measured the node classification performance on DBLP, ACM, and

98

AMiner under the same experimental environments. The node classification results of

HeCo+MN, the metanode-based extended model, and HeCo are presented in Table

5.5. For most cases, we can see that introducing metanode to HeCo that relies on meta-

paths can improve the classification performances. In contrast to HeCo+MN, in the

original meta-path encoder of HeCo, each node can only aggregate its local meta-path

neighbors of same type. By introducing metanodes, representation of HeCo+MN can

learn both global structures of the same type such as distributions from mean pooling,

and local neighbors of the same type. The improved performance of HeCo+MN in

Table 5.5 confirms that existing heterogeneous graph learning models can benefit from

the introduction of metanodes.

5.5 Summary

To diversify relations for comprehensive learning of heterogeneous graphs, we proposed

a simple and powerful concept of metanode from understanding of unique structural

characteristics of heterogeneous graphs. Each metanode enables each node to easily

exchange messages with any nodes having same type with itself. By introducing metan-

odes, each node can take into account information both of heterogeneous neighbors

and its corresponding node type. In addition, we proposed a metanode-based message

passing layer (MN-MPL) and a contrastive learning framework using MN-MPL. The

proposed method is free from problems depending on predefined additional tools such

as meta-paths or meta-graphs. The proposed method was validated qualitatively and

quantitatively by conducting node classification and node clustering tasks on real-world

heterogeneous graphs. We observed competitive performances across various tasks

compared to state-of-the-arts that are elaborately designed to use meta-paths. Our results

illustrate that meta-paths or meta-graphs are not essential to unsupervised learning of

heterogeneous graphs.

In the future, we will investigate more about message passing using metanodes.

99

Through metanode-based message passing, messages can be received from nodes of the

same type, but not all of the same type have the same importance. Thus, by introducing

attention modules such as transformer [196], our model can enable more effective

message exchange through computation of importance among nodes of same type.

100

Chapter 6

Conclusions

In this dissertation, we proposed unsupervised graph learning models using graph

neural networks for three representative graph structures: homogeneous graphs, tree-

like graphs, and heterogeneous graphs. First, we have proposed a novel autoencoder

framework which can extract low-dimensional latent representations from a homoge-

neous graph. We designed a symmetric graph convolutional autoencoder architecture

where the encoder performs Laplacian smoothing while the decoder performs Laplacian

sharpening, the opposite of smoothing operation. Also, to prevent numerical instabil-

ities, we designed a new representation of Laplacian sharpening with spectral radius

1 by incorporating the concept of the signed graph. Second, we have explored the

properties of unsupervised hyperbolic representations. We derived the representations

from geometry-aware message passing autoencoders whose whole operations were

conducted in hyperbolic spaces. We introduced a self-attention mechanism using the

distance between node representations in hyperbolic space when conducting message

passing to consider information of hierarchical relations containing in hyperbolic ge-

ometry. Third, we have proposed a simple and powerful concept of metanode from

understanding of unique structural characteristics of heterogeneous graphs to diver-

sify relations for comprehensive learning of heterogeneous graphs. Each metanode

enables each node to easily exchange messages with any nodes having same type with

101

itself. By introducing metanodes, each node can take into account information both of

heterogeneous neighbors and its corresponding node type. In addition, we proposed

a metanode-based message passing layer and a contrastive learning framework. The

proposed method is free from problems depending on predefined additional tools such

as meta-paths or meta-graphs. We conducted extensive experiments and analyses on

the low-dimensional node representations obtained from the proposed unsupervised

graph representation learning methods. The proposed methods were validated on sev-

eral graph-related downstream tasks such as node clustering, node classification, and

link prediction, and showed improved performances due to the model architecture that

considers the properties of each graph structure.

102

Bibliography

[1] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua

Bengio, and R Devon Hjelm. Deep graph infomax. In International Conference

on Learning Representations, 2019.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in Neural Information

Processing Systems, pages 1097–1105, 2012.

[3] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representa-

tions, 2017.

[4] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-

works for semantic segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3431–3440, 2015.

[5] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph con-

volutional networks for skeleton-based action recognition. arXiv preprint

arXiv:1801.07455, 2018.

[6] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. 2009.

[7] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Be-

longie. The caltech-ucsd birds-200-2011 dataset. 2011.

103

[8] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,

and Tina Eliassi-Rad. Collective classification in network data. AI Magazine,

29(3):93, 2008.

[9] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. Neural message passing for quantum chemistry. In International Confer-

ence on Machine Learning, pages 1263–1272, 2017.

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional net-

works on graphs for learning molecular fingerprints. In Advances in Neural

Information Processing Systems, pages 2224–2232, 2015.

[11] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre

Vandergheynst. Geometric deep learning: going beyond euclidean data. IEEE

Signal Processing Magazine, 34(4):18–42, 2017.

[12] Linton C Freeman. A set of measures of centrality based on betweenness.

Sociometry, pages 35–41, 1977.

[13] Alex Bavelas. Communication patterns in task-oriented groups. The journal of

the acoustical society of America, 22(6):725–730, 1950.

[14] Mark EJ Newman. The mathematics of networks. The new palgrave encyclope-

dia of economics, 2(2008):1–12, 2008.

[15] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-

world’networks. nature, 393(6684):440–442, 1998.

[16] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social

networks, 25(3):211–230, 2003.

[17] Leo Katz. A new status index derived from sociometric analysis. Psychometrika,

18(1):39–43, 1953.

104

[18] Nataša Pržulj. Biological network comparison using graphlet degree distribution.

Bioinformatics, 23(2):e177–e183, 2007.

[19] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and

Karsten Borgwardt. Efficient graphlet kernels for large graph comparison. In

Artificial intelligence and statistics, pages 488–495. PMLR, 2009.

[20] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine

Learning Research, 12(9), 2011.

[21] AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and

an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya,

2(9):12–16, 1968.

[22] Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92.

American Mathematical Soc., 1997.

[23] Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning

and clustering. IEEE transactions on computer-aided design of integrated circuits

and systems, 11(9):1074–1085, 1992.

[24] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905,

2000.

[25] Helmut Lutkepohl. Handbook of matrices. Computational statistics and Data

analysis, 2(25):243, 1997.

[26] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Advances in Neural Information Processing Systems, pages

849–856, 2002.

105

[27] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[28] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques

for embedding and clustering. Advances in neural information processing

systems, 14, 2001.

[29] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,

and Alexander J Smola. Distributed large-scale natural graph factorization. In

Proceedings of the 22nd international conference on World Wide Web, pages

37–48, 2013.

[30] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph represen-

tations with global structural information. In Proceedings of the 24th ACM

international on conference on information and knowledge management, pages

891–900, 2015.

[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of

social representations. In Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data mining, pages 701–710. ACM,

2014.

[32] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, pages 855–864, 2016.

[33] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for

learning in graph domains. In Proceedings. 2005 IEEE international joint

conference on neural networks, volume 2, pages 729–734, 2005.

[34] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. The graph neural network model. IEEE transactions on

neural networks, 20(1):61–80, 2008.

106

[35] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and

Jure Leskovec. Hierarchical graph representation learning with differentiable

pooling. In Advances in Neural Information Processing Systems, pages 4800–

4810, 2018.

[36] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-

end deep learning architecture for graph classification. In Thirty-second AAAI

conference on artificial intelligence, 2018.

[37] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[38] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In International Conference

on Learning Representations, 2018.

[39] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning

on large graphs. In Advances in Neural Information Processing Systems, pages

1024–1034, 2017.

[40] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with

jumping knowledge networks. arXiv preprint arXiv:1806.03536, 2018.

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? In International Conference on Learning Representa-

tions, 2018.

[42] James Atwood and Don Towsley. Diffusion-convolutional neural networks.

Advances in neural information processing systems, 29, 2016.

107

[43] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,

and S Yu Philip. A comprehensive survey on graph neural networks. IEEE

transactions on neural networks and learning systems, 32(1):4–24, 2020.

[44] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a

nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[45] Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric

framework for nonlinear dimensionality reduction. science, 290(5500):2319–

2323, 2000.

[46] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric

transitivity preserving graph embedding. In Proceedings of the 22nd ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 1105–1114, 2016.

[47] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

Line: Large-scale information network embedding. In Proceedings of the 24th

international conference on world wide web, pages 1067–1077, 2015.

[48] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical

representation learning for networks. In Proceedings of the AAAI conference on

artificial intelligence, volume 32, 2018.

[49] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of

data with neural networks. science, 313(5786):504–507, 2006.

[50] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae:

Marginalized graph autoencoder for graph clustering. In Proceedings of the

2017 ACM on Conference on Information and Knowledge Management, pages

889–898. ACM, 2017.

108

[51] Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS

Workshop on Bayesian Deep Learning, 2016.

[52] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.

Adversarially regularized graph autoencoder for graph embedding. In IJCAI,

pages 2609–2615, 2018.

[53] Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield,

Mingyuan Zhou, and Xiaoning Qian. Semi-implicit graph variational auto-

encoders. Advances in neural information processing systems, 32, 2019.

[54] Yixin Liu, Shirui Pan, Ming Jin, Chuan Zhou, Feng Xia, and Philip S Yu. Graph

self-supervised learning: A survey. arXiv preprint arXiv:2103.00111, 2021.

[55] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. Graph contrastive learning with augmentations. Advances in Neural

Information Processing Systems, 33:5812–5823, 2020.

[56] Terrance DeVries and Graham W Taylor. Improved regularization of convolu-

tional neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[57] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view represen-

tation learning on graphs. arXiv preprint arXiv:2006.05582, 2020.

[58] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion

improves graph learning. In Proceedings of the 33rd International Conference

on Neural Information Processing Systems, pages 13366–13378, 2019.

[59] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-

ple framework for contrastive learning of visual representations. In International

Conference on Machine Learning, pages 1597–1607, 2020.

109

[60] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kil-

ian Weinberger. Simplifying graph convolutional networks. In International

Conference on Machine Learning, pages 6861–6871, 2019.

[61] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph Attention Networks. International Conference

on Learning Representations, 2018.

[62] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and

Danai Koutra. Beyond homophily in graph neural networks: Current limitations

and effective designs. Advances in Neural Information Processing Systems,

33:7793–7804, 2020.

[63] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph

contrastive learning with adaptive augmentation. In Proceedings of the Web

Conference 2021, pages 2069–2080, 2021.

[64] Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. Subgraph

neural networks. Advances in Neural Information Processing Systems, 33:8017–

8029, 2020.

[65] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In

International Conference on Machine Learning, pages 3734–3743. PMLR, 2019.

[66] Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph

representations with graph multiset pooling. In International Conference on

Learning Representations, 2021.

[67] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:

Higher-order graph neural networks. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 4602–4609, 2019.

110

[68] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go

sparse: Towards scalable higher-order graph embeddings. Advances in Neural

Information Processing Systems, 33:21824–21840, 2020.

[69] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.

Advances in neural information processing systems, 31, 2018.

[70] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick:

A theory of using graph neural networks for multi-node representation learning.

Advances in Neural Information Processing Systems, 34, 2021.

[71] David Lazer, Alex Sandy Pentland, Lada Adamic, Sinan Aral, Albert Laszlo

Barabasi, Devon Brewer, Nicholas Christakis, Noshir Contractor, James Fowler,

Myron Gutmann, et al. Life in the network: the coming age of computational

social science. Science (New York, NY), 323(5915):721, 2009.

[72] Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix

completion with recurrent multi-graph neural networks. In Advances in Neural

Information Processing Systems, pages 3697–3707, 2017.

[73] Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. De-

formable shape completion with graph convolutional autoencoders. arXiv

preprint arXiv:1712.00268, 2017.

[74] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolu-

tional networks for semi-supervised learning. In Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

[75] Gabriel Taubin. A signal processing approach to fair surface design. In Pro-

ceedings of the 22nd Annual Conference on Computer graphics and Interactive

techniques, pages 351–358. ACM, 1995.

111

[76] Hong Hai Li and Jiong Sheng Li. Note on the normalized laplacian eigenvalues

of signed graphs. Australas. J. Combin, 44:153–162, 2009.

[77] René Vidal. Subspace clustering. IEEE Signal Processing Magazine, 28(2):52–

68, 2011.

[78] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep

subspace clustering networks. In Advances in Neural Information Processing

Systems, pages 24–33, 2017.

[79] Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial subspace cluster-

ing. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1596–1604, 2018.

[80] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. The emerging field of signal processing on graphs: Extending

high-dimensional data analysis to networks and other irregular domains. IEEE

Signal Processing Magazine, 30(3):83–98, 2013.

[81] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on

graphs via spectral graph theory. Applied and Computational Harmonic Analysis,

30(2):129–150, 2011.

[82] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in

Neural Information Processing Systems, pages 3844–3852, 2016.

[83] Rostislav I Grigorchuk and Andrzej Zuk. On the asymptotic spectrum of random

walks on infinite families of graphs. Random Walks and Discrete Potential

Theory (Cortona, 1997), Sympos. Math, 39:188–204, 1999.

[84] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and

Shuicheng Yan. Robust and efficient subspace segmentation via least squares re-

112

gression. In European conference on computer vision, pages 347–360. Springer,

2012.

[85] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[86] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang.

Network representation learning with rich text information. In IJCAI, pages

2111–2117, 2015.

[87] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object image

library (coil-20). 1996.

[88] Athinodoros S Georghiades, Peter N Belhumeur, and David J Kriegman. From

few to many: Illumination cone models for face recognition under variable light-

ing and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,

(6):643–660, 2001.

[89] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/, 1998.

[90] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: a system for large-scale machine learning. In OSDI, volume 16,

pages 265–283, 2016.

[91] Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Informa-

tion Theory, 28(2):129–137, 1982.

[92] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale:

a nonnegative matrix factorization approach. In Proceedings of the sixth ACM

International Conference on Web Search and Data Mining, pages 587–596.

ACM, 2013.

113

[93] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep

representations for graph clustering. In AAAI, pages 1293–1299, 2014.

[94] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning

graph representations. In AAAI, pages 1145–1152, 2016.

[95] Jure Leskovec and Julian J Mcauley. Learning to discover social circles in

ego networks. In Advances in Neural Information Processing Systems, pages

539–547, 2012.

[96] Jonathan Chang and David Blei. Relational topic models for document networks.

In Artificial Intelligence and Statistics, pages 81–88, 2009.

[97] Rongkai Xia, Yan Pan, Lei Du, and Jian Yin. Robust multi-view spectral clus-

tering via low-rank and sparse decomposition. In AAAI, pages 2149–2155,

2014.

[98] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(Nov):2579–2605, 2008.

[99] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierar-

chical representations. In Advances in Neural Information Processing Systems,

pages 6338–6347, 2017.

[100] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the

lorentz model of hyperbolic geometry. In International Conference on Machine

Learning, pages 3779–3788, 2018.

[101] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural

networks. In Advances in Neural Information Processing Systems, pages 5345–

5355, 2018.

[102] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pas-

canu, Karl Moritz Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam

114

Santoro, and Nando de Freitas. Hyperbolic attention networks. In International

Conference on Learning Representations, 2019.

[103] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph

convolutional neural networks. In Advances in Neural Information Processing

Systems, pages 4869–4880, 2019.

[104] Gregor Bachmann, Gary Bécigneul, and Octavian-Eugen Ganea. Constant

curvature graph convolutional networks. arXiv preprint arXiv:1911.05076,

2019.

[105] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets,

and Victor Lempitsky. Hyperbolic image embeddings. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

6418–6428, 2020.

[106] Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and

Marián Boguná. Hyperbolic geometry of complex networks. Physical Review E,

82(3):036106, 2010.

[107] Guillaume Bouchard, Sameer Singh, and Theo Trouillon. On approximate rea-

soning capabilities of low-rank vector spaces. In 2015 AAAI Spring Symposium

Series, 2015.

[108] Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Reducing the rank in

relational factorization models by including observable patterns. In Advances in

Neural Information Processing Systems, pages 1179–1187, 2014.

[109] Yoshihiro Nagano, Shoichiro Yamaguchi, Yasuhiro Fujita, and Masanori Koyama.

A wrapped normal distribution on hyperbolic space for gradient-based learning.

In International Conference on Machine Learning, pages 4693–4702, 2019.

115

[110] Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks.

In Advances in Neural Information Processing Systems, pages 8228–8239, 2019.

[111] Hervé Fournier, Anas Ismail, and Antoine Vigneron. Computing the gromov

hyperbolicity of a discrete metric space. Information Processing Letters, 115(6-

8):576–579, 2015.

[112] Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah Ngo, Tat-Seng Chua,

and Yu-Gang Jiang. Hyperbolic visual embedding learning for zero-shot recog-

nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 9273–9281, 2020.

[113] Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, and Yee

Whye Teh. Continuous hierarchical representations with poincaré variational

auto-encoders. In Advances in Neural Information Processing Systems, 2019.

[114] Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Adversarial autoencoders

with constant-curvature latent manifolds. Applied Soft Computing, 81:105511,

2019.

[115] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning.

2016.

[116] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

Imagenet large scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[117] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

[118] Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature

variational autoencoders. In International Conference on Learning Representa-

tions, 2019.

116

[119] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[120] Peter Petersen, S Axler, and KA Ribet. Riemannian geometry, volume 171.

Springer, 2006.

[121] Abraham Albert Ungar. A gyrovector space approach to hyperbolic geometry.

Synthesis Lectures on Mathematics and Statistics, 1(1):1–194, 2008.

[122] Wolfgang Karl Hofbauer, Laura Lowe Forrest, Peter M Hollingsworth, and

Michelle L Hart. Preliminary insights from dna barcoding into the diversity of

mosses colonising modern building surfaces. Bryophyte Diversity and Evolution,

38(1):1–22, 2016.

[123] MJ Sanderson, MJ Donoghue, W Piel, and T Eriksson. Treebase: a prototype

database of phylogenetic analyses and an interactive tool for browsing the phy-

logeny of life. American Journal of Botany, 81(6):183, 1994.

[124] Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory social

network analysis with Pajek: Revised and expanded edition for updated software,

volume 46. Cambridge University Press, 2018.

[125] Kwang-Il Goh, Michael E Cusick, David Valle, Barton Childs, Marc Vidal,

and Albert-László Barabási. The human disease network. Proceedings of the

National Academy of Sciences, 104(21):8685–8690, 2007.

[126] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with

interactive graph analytics and visualization. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, 2015.

[127] Lei Tang and Huan Liu. Relational learning via latent social dimensions. In

Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data mining, pages 817–826. ACM, 2009.

117

[128] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

Image-based recommendations on styles and substitutes. In Proceedings of the

38th International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 43–52. ACM, 2015.

[129] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong

Pan. Deep adaptive image clustering. In Proceedings of the IEEE International

Conference on Computer Vision, pages 5879–5887, 2017.

[130] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young

Choi. Symmetric graph convolutional autoencoder for unsupervised graph repre-

sentation learning. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 6519–6528, 2019.

[131] Shuai Zheng, Zhenfeng Zhu, Xingxing Zhang, Zhizhe Liu, Jian Cheng, and

Yao Zhao. Distribution-induced bidirectional generative adversarial network for

graph representation learning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 7224–7233, 2020.

[132] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In Ad-

vances in Neural Information Processing Systems, pages 1601–1608, 2005.

[133] K Chidananda Gowda and G Krishna. Agglomerative clustering using the

concept of mutual nearest neighbourhood. Pattern Recognition, 10(2):105–112,

1978.

[134] Deng Cai, Xiaofei He, Xuanhui Wang, Hujun Bao, and Jiawei Han. Locality

preserving nonnegative matrix factorization. In IJCAI, volume 9, pages 1010–

1015, 2009.

[135] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy

layer-wise training of deep networks. In Advances in Neural Information Pro-

cessing Systems, pages 153–160, 2007.

118

[136] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked

convolutional auto-encoders for hierarchical feature extraction. In International

Conference on Artificial Neural Networks, pages 52–59. Springer, 2011.

[137] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19,

2011.

[138] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine

Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion. Journal of

Machine Learning Research, 11(12), 2010.

[139] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[140] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvo-

lutional networks. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2528–2535. IEEE, 2010.

[141] Junbo Zhao, Michael Mathieu, Ross Goroshin, and Yann Lecun. Stacked what-

where auto-encoders. arXiv preprint arXiv:1506.02351, 2015.

[142] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of

deep representations and image clusters. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5147–5156, 2016.

[143] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for

clustering analysis. In International Conference on Machine Learning, pages

478–487, 2016.

119

[144] Jianlong Chang, Yiwen Guo, Lingfeng Wang, Gaofeng Meng, Shiming Xiang,

and Chunhong Pan. Deep discriminative clustering analysis. arXiv preprint

arXiv:1905.01681, 2019.

[145] Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li, Zhouchen Lin, and

Hongbin Zha. Deep comprehensive correlation mining for image clustering. In

Proceedings of the IEEE International Conference on Computer Vision, pages

8150–8159, 2019.

[146] Jiabo Huang, Shaogang Gong, and Xiatian Zhu. Deep semantic clustering by

partition confidence maximisation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 8849–8858, 2020.

[147] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In International Conference on Learning Representations (ICLR), 2015.

[148] Gary Becigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization

methods. In International Conference on Learning Representations, 2019.

[149] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[150] Léon Bottou. Online learning and stochastic approximations. On-line learning

in neural networks, 17(9):142, 1998.

[151] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe,

and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classi-

fiers with localizable features. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 6023–6032, 2019.

[152] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Fo-

cal loss for dense object detection. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2980–2988, 2017.

120

[153] Serim Ryou, Seong-Gyun Jeong, and Pietro Perona. Anchor loss: Modulating

loss scale based on prediction difficulty. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 5992–6001, 2019.

[154] Leland McInnes, John Healy, and James Melville. Umap: Uniform mani-

fold approximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[155] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn-

ing, 20(3):273–297, 1995.

[156] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and

Mario Lucic. On mutual information maximization for representation learning.

In International Conference on Learning Representations, 2019.

[157] Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka.

Contrastive learning with hard negative samples. In International Conference on

Learning Representations, 2021.

[158] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns.

In International Conference on Learning Representations, 2018.

[159] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S Yu. A

survey on heterogeneous graph embedding: methods, techniques, applications

and sources. arXiv preprint arXiv:2011.14867, 2020.

[160] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Heteroge-

neous network representation learning: A unified framework with survey and

benchmark. IEEE Transactions on Knowledge and Data Engineering, 2020.

[161] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg,

Ivan Titov, and Max Welling. Modeling relational data with graph convolutional

121

networks. In European Semantic Web Conference, pages 593–607. Springer,

2018.

[162] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V

Chawla. Heterogeneous graph neural network. In Proceedings of the 25th ACM

SIGKDD Conference on Knowledge Discovery & Data Mining, pages 793–803,

2019.

[163] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S

Yu. Heterogeneous graph attention network. In Proceedings of The Web Confer-

ence 2019, pages 2022–2032, 2019.

[164] Kyung-Min Kim, Donghyun Kwak, Hanock Kwak, Young-Jin Park, Sangkwon

Sim, Jae-Han Cho, Minkyu Kim, Jihun Kwon, Nako Sung, and Jung-Woo Ha.

Tripartite heterogeneous graph propagation for large-scale social recommenda-

tion. arXiv preprint arXiv:1908.02569, 2019.

[165] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J

Kim. Graph transformer networks. Advances in Neural Information Processing

Systems, 32:11983–11993, 2019.

[166] Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. Self-supervised heterogeneous

graph neural network with co-contrastive learning. In Proceedings of the 27th

ACM SIGKDD Conference on Knowledge Discovery & Data Mining 2021, page

1726–1736, 2021.

[167] Yuxiang Ren, Bo Liu, Chao Huang, Peng Dai, Liefeng Bo, and Jiawei Zhang.

Hdgi: An unsupervised graph neural network for representation learning in

heterogeneous graph. In AAAI Workshop, 2020.

[168] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph

transformer. In Proceedings of The Web Conference 2020, pages 2704–2710,

2020.

122

[169] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Pathsim:

Meta path-based top-k similarity search in heterogeneous information networks.

Proceedings of the VLDB Endowment, 4(11):992–1003, 2011.

[170] Yuan Fang, Wenqing Lin, Vincent W Zheng, Min Wu, Kevin Chen-Chuan Chang,

and Xiao-Li Li. Semantic proximity search on graphs with metagraph-based

learning. In 2016 IEEE 32nd International Conference on Data Engineering,

pages 277–288. IEEE, 2016.

[171] Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos Mamoulis,

and Xiang Li. Meta structure: Computing relevance in large heterogeneous

information networks. In Proceedings of the 22nd ACM SIGKDD Conference

on Knowledge Discovery & Data Mining, pages 1595–1604, 2016.

[172] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming

He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. Are we really

making much progress? revisiting, benchmarking and refining heterogeneous

graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining, page 1150–1160, 2021.

[173] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggre-

gated graph neural network for heterogeneous graph embedding. In Proceedings

of The Web Conference 2020, pages 2331–2341, 2020.

[174] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable

representation learning for heterogeneous networks. In Proceedings of the 23rd

ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages

135–144, 2017.

[175] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in

heterogeneous information networks for representation learning. In Proceedings

123

of the 2017 ACM on Conference on Information and Knowledge Management,

pages 1797–1806, 2017.

[176] Jisu Jeong, Jeong-Min Yun, Hongi Keam, Young-Jin Park, Zimin Park, and

Junki Cho. div2vec: Diversity-emphasized node embedding. arXiv preprint

arXiv:2009.09588, 2020.

[177] Yu He, Yangqiu Song, Jianxin Li, Cheng Ji, Jian Peng, and Hao Peng. Hetes-

paceywalk: A heterogeneous spacey random walk for heterogeneous information

network embedding. In Proceedings of the 28th ACM International Conference

on Information and Knowledge Management, pages 639–648, 2019.

[178] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and S Yu Philip. Heterogeneous

information network embedding for recommendation. IEEE Transactions on

Knowledge and Data Engineering, 31(2):357–370, 2018.

[179] Jianan Zhao, Xiao Wang, Chuan Shi, Zekuan Liu, and Yanfang Ye. Network

schema preserved heterogeneous information network embedding. In Proceed-

ings of the 29th International Joint Conference on Artificial Intelligence, 2020.

[180] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang

Ye. Heterogeneous graph structure learning for graph neural networks. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol.35, pages

4697–4705, 2021.

[181] Yuhui Ding, Quanming Yao, Huan Zhao, and Tong Zhang. Diffmg: Differentiable

meta graph search for heterogeneous graph neural networks. In Proceedings of

the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,

page 279–288, 2021.

[182] Jiwoong Park, Junho Cho, Hyung Jin Chang, and Jin Young Choi. Unsuper-

vised hyperbolic representation learning via message passing auto-encoders.

124

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5516–5526, 2021.

[183] Fan-Yun Sun, Jordan Hoffman, Vikas Verma, and Jian Tang. Infograph: Un-

supervised and semi-supervised graph-level representation learning via mutual

information maximization. In International Conference on Learning Representa-

tions, 2019.

[184] Baoyu Jing, Chanyoung Park, and Hanghang Tong. Hdmi: High-order deep

multiplex infomax. In Proceedings of the Web Conference 2021, pages 2414–

2424, 2021.

[185] Seongjun Yun, Minbyul Jeong, Sungdong Yoo, Seunghun Lee, Sean S Yi, Rae-

hyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer networks:

Learning meta-path graphs to improve gnns. arXiv preprint arXiv:2106.06218,

2021.

[186] Binbin Hu, Yuan Fang, and Chuan Shi. Adversarial learning on heterogeneous

information networks. In Proceedings of the 25th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, pages 120–129, 2019.

[187] Xiang Li, Danhao Ding, Ben Kao, Yizhou Sun, and Nikos Mamoulis. Leveraging

meta-path contexts for classification in heterogeneous information networks. In

2021 IEEE 37th International Conference on Data Engineering, pages 912–923.

IEEE, 2021.

[188] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositionality. In

Advances in Neural Information Processing Systems, pages 3111–3119, 2013.

[189] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, 1997.

125

[190] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. Unsupervised

attributed multiplex network embedding. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 34, pages 5371–5378, 2020.

[191] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth International Con-

ference on Artificial Intelligence and Statistics, pages 249–256. JMLR Workshop

and Conference Proceedings, 2010.

[192] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International Conference

on Machine Learning, pages 448–456, 2015.

[193] Xiang Li, Ben Kao, Yudian Zheng, and Zhipeng Huang. On transductive classifi-

cation in heterogeneous information networks. In Proceedings of the 25th ACM

International on Conference on Information and Knowledge Management, pages

811–820, 2016.

[194] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(11), 2008.

[195] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of Computational and Applied Mathematics, 20:53–

65, 1987.

[196] Devin Kreuzer, Dominique Beaini, William L Hamilton, Vincent Létourneau,

and Prudencio Tossou. Rethinking graph transformers with spectral attention.

arXiv preprint arXiv:2106.03893, 2021.

126

초록

그래프데이터에대한비지도표현학습의목적은그래프의구조와노드의속성

을 잘 반영하는 유용한 노드 단위 혹은 그래프 단위의 벡터 형태 표현을 학습하는

것이다.최근,그래프데이터에대해강력한표현학습능력을갖춘그래프신경망을

활용한 비지도 그래프 표현 학습 모델의 설계가 주목을 받고 있다. 많은 방법들은

한종류의엣지와한종류의노드가존재하는동종그래프에대한학습에집중을한

다. 하지만 이 세상에 수많은 종류의 관계가 존재하기 때문에, 그래프 또한 구조적,

의미론적속성을통해다양한종류로분류할수있다.그래서,그래프로부터유용한

표현을학습하기위해서는비지도학습프레임워크는입력그래프의특징을제대로

고려해야만 한다. 본 학위논문에서 우리는 널리 접할 수 있는 세가지 그래프 구조

인 동종 그래프, 트리 형태의 그래프, 그리고 이종 그래프에 대한 그래프 신경망을

활용하는비지도학습모델들을제안한다.

처음으로,우리는동종그래프의노드에대하여저차원표현을학습하는그래프

컨볼루션오토인코더모델을제안한다.기존의그래프오토인코더는구조의전체가

학습이불가능해서제한적인표현학습능력을가질수있는반면에,제안하는오토

인코더는 노드의 피쳐를 복원하며,구조의 전체가 학습이 가능하다. 노드의 피쳐를

복원하기위해서,우리는인코더부분의역할이이웃한노드끼리유사한표현을가

지게하는라플라시안스무딩이라는것에주목하여디코더부분에서는이웃노드의

표현과 멀어지게 하는 라플라시안 샤프닝을 하도록 설계하였다. 또한 라플라시안

샤프닝을그대로적용하면불안정성을유발할수있기때문에,엣지의가중치값에

음의값을줄수있는부호형그래프를활용하여안정적인라플라시안샤프닝의형

태를제안하였다.동종그래프에대한노드클러스터링과링크예측실험을통하여

127

제안하는방법이안정적으로우수한성능을보임을확인하였다.

둘째로,우리는트리의형태를가지는계층적인관계를가지고있는그래프의노

드표현을정확하게학습하기위하여쌍곡선공간에서동작하는오토인코더모델을

제안한다. 유클리디언 공간은 트리를 사상하기에 부적절하다는 최근의 분석을 통

하여, 쌍곡선 공간에서 그래프 신경망의 레이어를 활용하여 노드의 저차원 표현을

학습하게 된다. 이 때, 그래프 신경망이 쌍곡선 기하학에서 계층 정보를 담고 있는

거리의값을활용하여노드의이웃사이의중요도를활용하도록설계하였다.우리는

논문인용관계네트워크,계통도,이미지사이의네트워크등에대해제안한모델을

적용하여노드클러스터링과링크예측실험을하였으며,트리의형태를가지는그

래프에 대해서 제안한 모델이 유클리디언 공간에서 수행하는 모델에 비해 향상된

성능을보였다는것을확인하였다.

마지막으로, 우리는 여러 종류의 노드와 엣지를 가지는 이종그래프에 대한 대

조학습모델을제안한다.우리는기존의방법들이학습하기이전에충분한도메인

지식을사용하여설계한메타패스나메타그래프에의존한다는단점과많은이종그

래프의엣지가다른노드종류사이의관계에집중하고있다는점을주목하였다.이

를통해우리는사전과정이필요없으며다른종류사이의관계에더하여같은종류

사이의관계도동시에효율적으로학습하게하는메타노드라는개념을제안하였다.

또한 메타노드를 기반으로하는 그래프 신경망과 대조 학습 모델을 제안하였다. 우

리는제안한모델을메타패스를사용하는이종그래프학습모델과노드클러스터링

등의 실험 성능으로 비교해보았을 때, 비등하거나 높은 성능을 보였음을 확인하였

다.

주요어:비지도그래프표현학습,그래프신경망,오토인코더,대조학습

학번: 2018-35712

128

	1 Introduction
	2 Representation Learning on Graph-Structured Data
	2.1 Basic Introduction
	2.1.1 Notations

	2.2 Traditional Approaches
	2.2.1 Graph Statistic
	2.2.2 Neighborhood Overlap
	2.2.3 Graph Kernel
	2.2.4 Spectral Approaches

	2.3 Node Embeddings I: Factorization and Random Walks
	2.3.1 Factorization-based Methods
	2.3.2 Random Walk-based Methods

	2.4 Node Embeddings II: Graph Neural Networks
	2.4.1 Overview of Framework
	2.4.2 Representative Models

	2.5 Learning in Unsupervised Environments
	2.5.1 Predictive Coding
	2.5.2 Contrastive Coding

	2.6 Applications
	2.6.1 Classifications
	2.6.2 Link Prediction

	3 Autoencoder Architecture for Homogeneous Graphs
	3.1 Overview
	3.2 Preliminaries
	3.2.1 Spectral Convolution on Graphs
	3.2.2 Laplacian Smoothing

	3.3 Methodology
	3.3.1 Laplacian Sharpening
	3.3.2 Numerically Stable Laplacian Sharpening
	3.3.3 Subspace Clustering Cost for Image Clustering
	3.3.4 Training

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Experimental Settings
	3.4.3 Comparing Methods
	3.4.4 Node Clustering
	3.4.5 Image Clustering
	3.4.6 Ablation Studies
	3.4.7 Link Prediction
	3.4.8 Visualization

	3.5 Summary

	4 Autoencoder Architecture for Tree-like Graphs
	4.1 Overview
	4.2 Preliminaries
	4.2.1 Hyperbolic Embeddings
	4.2.2 Hyperbolic Geometry

	4.3 Methodology
	4.3.1 Geometry-Aware Message Passing
	4.3.2 Nonlinear Activation
	4.3.3 Loss Function

	4.4 Experiments
	4.4.1 Datasets
	4.4.2 Compared Methods
	4.4.3 Experimental Details
	4.4.4 Node Clustering and Link Prediction
	4.4.5 Image Clustering
	4.4.6 Structure-Aware Unsupervised Embeddings
	4.4.7 Hyperbolic Distance to Filter Training Samples
	4.4.8 Ablation Studies

	4.5 Further Discussions
	4.5.1 Connection to Contrastive Learning
	4.5.2 Failure Cases of Hyperbolic Embedding Spaces

	4.6 Summary

	5 Contrastive Learning for Heterogeneous Graphs
	5.1 Overview
	5.2 Preliminaries
	5.2.1 Meta-path
	5.2.2 Representation Learning on Heterogeneous Graphs
	5.2.3 Contrastive methods for Heterogeneous Graphs

	5.3 Methodology
	5.3.1 Definitions
	5.3.2 Metanode-based Message Passing Layer
	5.3.3 Contrastive Learning Framework

	5.4 Experiments
	5.4.1 Experimental Details
	5.4.2 Node Classification
	5.4.3 Node Clustering
	5.4.4 Visualization
	5.4.5 Effectiveness of Metanodes

	5.5 Summary

	6 Conclusions

<startpage>16
1 Introduction 1
2 Representation Learning on Graph-Structured Data 4
 2.1 Basic Introduction 4
 2.1.1 Notations 5
 2.2 Traditional Approaches 5
 2.2.1 Graph Statistic 5
 2.2.2 Neighborhood Overlap 7
 2.2.3 Graph Kernel 9
 2.2.4 Spectral Approaches 10
 2.3 Node Embeddings I: Factorization and Random Walks 15
 2.3.1 Factorization-based Methods 15
 2.3.2 Random Walk-based Methods 16
 2.4 Node Embeddings II: Graph Neural Networks 17
 2.4.1 Overview of Framework 17
 2.4.2 Representative Models 18
 2.5 Learning in Unsupervised Environments 21
 2.5.1 Predictive Coding 21
 2.5.2 Contrastive Coding 22
 2.6 Applications 24
 2.6.1 Classifications 24
 2.6.2 Link Prediction 26
3 Autoencoder Architecture for Homogeneous Graphs 27
 3.1 Overview 27
 3.2 Preliminaries 30
 3.2.1 Spectral Convolution on Graphs 30
 3.2.2 Laplacian Smoothing 32
 3.3 Methodology 33
 3.3.1 Laplacian Sharpening 33
 3.3.2 Numerically Stable Laplacian Sharpening 34
 3.3.3 Subspace Clustering Cost for Image Clustering 37
 3.3.4 Training 39
 3.4 Experiments 40
 3.4.1 Datasets 40
 3.4.2 Experimental Settings 42
 3.4.3 Comparing Methods 42
 3.4.4 Node Clustering 43
 3.4.5 Image Clustering 45
 3.4.6 Ablation Studies 46
 3.4.7 Link Prediction 47
 3.4.8 Visualization 47
 3.5 Summary 49
4 Autoencoder Architecture for Tree-like Graphs 50
 4.1 Overview 50
 4.2 Preliminaries 52
 4.2.1 Hyperbolic Embeddings 52
 4.2.2 Hyperbolic Geometry 53
 4.3 Methodology 55
 4.3.1 Geometry-Aware Message Passing 56
 4.3.2 Nonlinear Activation 57
 4.3.3 Loss Function 58
 4.4 Experiments 58
 4.4.1 Datasets 59
 4.4.2 Compared Methods 61
 4.4.3 Experimental Details 62
 4.4.4 Node Clustering and Link Prediction 64
 4.4.5 Image Clustering 66
 4.4.6 Structure-Aware Unsupervised Embeddings 68
 4.4.7 Hyperbolic Distance to Filter Training Samples 71
 4.4.8 Ablation Studies 74
 4.5 Further Discussions 75
 4.5.1 Connection to Contrastive Learning 75
 4.5.2 Failure Cases of Hyperbolic Embedding Spaces 75
 4.6 Summary 77
5 Contrastive Learning for Heterogeneous Graphs 78
 5.1 Overview 78
 5.2 Preliminaries 82
 5.2.1 Meta-path 82
 5.2.2 Representation Learning on Heterogeneous Graphs 82
 5.2.3 Contrastive methods for Heterogeneous Graphs 83
 5.3 Methodology 84
 5.3.1 Definitions 84
 5.3.2 Metanode-based Message Passing Layer 86
 5.3.3 Contrastive Learning Framework 88
 5.4 Experiments 89
 5.4.1 Experimental Details 90
 5.4.2 Node Classification 94
 5.4.3 Node Clustering 96
 5.4.4 Visualization 96
 5.4.5 Effectiveness of Metanodes 97
 5.5 Summary 99
6 Conclusions 101
</body>

