

저 시-비 리-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 적 할 수 없습니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

Master’s Thesis of Engineering

Accelerating Mobile Application Switch via
Adaptive Prepaging

적응형프리페이징을통한모바일어플리케이션전환가속

August 2022

Graduate School of Seoul National University
Computer Science and Engineering

Sam Son

Master’s Thesis of Engineering

Accelerating Mobile Application Switch via
Adaptive Prepaging

적응형프리페이징을통한모바일어플리케이션전환가속

August 2022

Graduate School of Seoul National University
Computer Science and Engineering

Sam Son

Accelerating Mobile Application Switch via
Adaptive Prepaging

Advisor Jae W. Lee

Submitting a master’s thesis of engineering

July 2022

Graduate School of Seoul National University
Computer Science and Engineering

Sam Son

Confirming the master’s thesis written by
Sam Son

July 2022

Chair Jae-Jin Lee (Seal)
Vice Chair Jae W. Lee (Seal)
Examiner Jin-Soo Kim (Seal)

Abstract

With mobile applications’ ever-increasing demands for memory capacity, along with

a steady increase in the number of applications running concurrently, memory capacity is

becoming a scarce resource on mobile devices. When the memory pressure is high, cur-

rent mobile OSes often kill application processes that have not been used recently to re-

claim memory space. This leads to a long delay when a user relaunches the killed appli-

cation, which degrades the user experience. Even if this mechanism is disabled to utilize

a compression-based in-memory swap mechanism, relaunching the application still incurs

a substantial latency penalty as it requires the decompression of compressed anonymous

pages and a stream of disk accesses to retrieve file-backed pages into memory. We identifies

conventional demand paging as the primary source of this inefficiency and proposes ASAP,

application switch via adaptive prepaging on mobile devices. ASAP performs prepaging by

combining i) high-precision switch footprint estimators for both file-backed and anonymous

pages, and ii) efficient implementation of the prepaging mechanism to minimize resource

waste for CPU cycles and disk bandwidth during an application switch. Our evaluation us-

ing eight real-world applications on Google Pixel 4 and Pixel 3a demonstrates that ASAP

can reduce the switch time by 22.2% and 28.3% on average, respectively (with a maximum

of 33.3% and 35.7%, respectively), over the vanilla Android 10. .

keywords:Mobile System, Prefetching, Memory Management, Operating System

student number: 2020-23014

i

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 Introduction 1

2 Background and Motivation 4

2.1 Android Application Memory Management 4

2.2 Launch Time and Switch Time . 5

2.3 Opportunities for Prepaging . 7

3 Design Overview 10

4 Switch Footprint Estimator 13

4.1 Switch Footprint Analysis . 13

4.2 Estimator for File-Backed Pages . 15

4.3 Estimator for Anonymous Pages . 17

5 Prepaging Manager 19

5.1 Prepaging Anonymous Pages . 19

5.2 Prepaging File-backed Pages . 20

6 Evaluation 23

6.1 Methodology . 23

ii

6.2 Application Switch Latency . 26

6.3 Estimator Efficiency . 27

6.4 Resource Utilization . 29

6.5 Efficiency of Core Scheduling . 30

6.6 Overhead . 31

7 Related Work 33

8 Conclusion 35

Bibliography 36

국문초록 41

iii

List of Tables

6.1 Device Specifications . 23

6.2 Applications and automated interactions to change contexts. 24

6.3 Chosen 3 application test sequences. 24

iv

List of Figures

2.1 Application switch latency across different scenarios 6

2.2 CPU and disk bandwidth utilization of a high-end device (Pixel 4) during

the switch time . 8

2.3 CPU and disk bandwidth utilization of a mid-end device (Pixel 3a) during

the switch time . 9

3.1 ASAP design overview. 11

4.1 Switch locality analysis for file-backed pages. 14

4.2 Switch locality analysis for anonymous pages. 14

4.3 Switch footprint of anonymous and file-backed pages across different ap-

plications. 15

4.4 Switch footprint estimator for file-backed pages. 15

4.5 Switch footprint estimator for anonymous pages. 17

5.1 Cumulative number of accessed pages CDF of files across the various ap-

plications during switch . 21

6.1 Normalized speedup of application switching latency on Pixel 4 26

6.2 Normalized speedup of application switching latency on Pixel 3a 27

6.3 Switch footprint estimator performance. 28

6.4 CPU utilization along with timeline . 29

6.5 Disk bandwidth utilization along with timeline 29

6.6 Switching latency changes depending on different core scheduling policy . 31

v

Chapter 1

Introduction

With the broad capabilities and flexibility of mobile computing, mobile applications con-

tinue to tout rich features to meet users’ diverse demands. This entails a continuous increase

in both codes and data footprint [5, 31]. This trend has resulted in a constant demand for

larger memory capacity on mobile devices to address memory pressure issues. However,

the cost of the device and the power/area budget often limit its size.

Modern mobile OSes support virtual memory with compression-based swap [4, 14] to

run multiple applications under limited memory size. The virtual memory system evicts

unused pages of processes from memory to provide an illusion of memory space larger than

the actual memory capacity, enabling multiple applications to run concurrently even under

high memory pressure. However, the benefits come with additional overhead, degrading

performance. Slow I/O accesses increase the latency of fetching non-resident file-backed

pages from storage. To fetch anonymous pages in the compressed swap space, they first

need to be decompressed by CPUs at a page fault. Allocating free pages also consumes

system resources. Fetching pages on-demand via demand paging may not efficiently utilize

available resources such as CPU cycles and I/O bandwidth.

Our empirical analysis shows that the application switch time can increase by a factor

of 4× (in the order of hundreds of milliseconds) when the system is experiencing memory

pressure, possibly when running many background applications. This slowdown is mainly

attributed to the long blocking time introduced by demand paging for both file-backed and

anonymous pages during the application switch rather than freeing allocated pages.

A recent study shows that today’s smartphone users often run more than 10 applica-

1

tions [25], and thus it is likely that the system is often operating under memory pressure

unless the phone has a large main memory capacity. It is also known that users switch

between applications more than 100 times per day [10]. We speculate that such frequent,

long-latency events can potentially affect smartphone user experience negatively. In this

thesis, we aim to reduce the latency of the application switch by minimizing the demand-

paging related slowdown. To achieve this goal, we propose ASAP, a mechanism for fast

application switch via adaptive prepaging. ASAP builds on the following key observations:

• Hardware resources (CPU and disk) for fetching non-resident pages are underutilized

during the application switch when the system is under memory pressure. For eight

popular Android applications, CPU utilization is measured only 34.2% during the

switch. Also, only 19.4% of the maximum disk bandwidth is used on average.

• File-backed pages and anonymous pages have different characteristics in their switch

footprint, a set of accessed pages during the application switch. In particular, the

switch footprint for file-backed pages is much more invariant—about 75% of all ac-

cessed file-backed pages are invariant across switches, while only 44% of anonymous

pages are invariant. This motivates us to use different prediction strategies for prepag-

ing them.

We capitalize on these empirical observations to develop an effective prepaging ap-

proach. The first observation suggests that it is promising to utilize available resources to

prepage pages likely to be accessed at the beginning of an application switch. The prepaging

is helpful to maximize the effective CPU and disk bandwidth utilization, which can trans-

late to performance gains (i.e., reduced switch time). The second observation suggests that

the target pages to fetch need to be adapted at runtime to capture the applications’ dynam-

ically changing page access patterns. This improves the prediction accuracy for the switch

footprint, hence making ASAP more effective.

At an application switch, ASAP wakes up multiple prepaging threads to start fetching

both file-backed pages and anonymous pages. These threads run in parallel with application

2

threads to overlap prepaging with application computation. To accurately predict switch

footprint pages, ASAP employs an adaptive prediction mechanism. Specifically, a single

predictor maintains two tables: a candidate table and a target table. The predictor promotes

or demotes pages between the two tables based on the runtime information of their access

patterns. The prepaging threads issue fetch requests only for the pages in the target table,

while pages having a smaller chance of being accessed are maintained in the candidate table.

We implemented ASAP in Android OS and evaluated it using a set of eight popular

mobile applications on Google Pixel 4 and Pixel 3a. The evaluation results show that ASAP

considerably reduces the application switch time under memory pressure. ASAP reduces the

switching time by 22.2% and 28.3% on average (33.3% and 35.7% at maximum) on Pixel 4

and Pixel 3a, respectively, over the vanilla Android 10. This improvement is attributed to an

average of 39.8% and 25.2% increase in CPU and disk bandwidth utilization, respectively,

as well as 79.3% and 68.4% prediction accuracy for file-backed and anonymous pages,

respectively.

In summary, our contribution are summrized as follows.

• We empirically analyze the performance bottleneck of the application switch to iden-

tify opportunities for prepaging as a solution to the problem.

• We propose ASAP, an adaptive prepaging technique to reduce the switch time, which

is a key user interaction on the mobile device. ASAP is application-agnostic without

requiring any change to application codes.

• We integrate ASAP into Android OS and evaluate its performance by using eight pop-

ular mobile applications on high-end and mid-end devices (Google Pixel 4 and Pixel

3a). The results demonstrate the effectiveness of ASAP for reducing the application

switch time by 22.2% and 28.3% on average, respectively, over the vanilla Android

10.

3

Chapter 2

Background and Motivation

2.1 Android Application Memory Management

Application Lifecycle and Memory Management. In Android OS, an application (specif-

ically the application activity) is either in the foreground (i.e., having focus) or in the back-

ground (e.g., not visible). In other words, the application that a user is actively using is

considered to be in the foreground, while the applications that have been launched but are

not currently being used are considered to be in the background. When the system has suf-

ficient DRAM, all application data are kept in memory. However, a user often utilizes many

different applications over time, and eventually, application data exceed the DRAM capac-

ity. In such a case, the Android firstly drops file-backed pages cached in the page cache. If

that does not secure enough free memory, the Android low memory killer daemon (lmkd)

identifies the least essential application (e.g., one in the background) and kills it so that the

memory space that it occupied is freed [22,26]. Note that this does not necessarily result in

the complete loss of the application state since Android applications often store a minimal

set of its states when the application is moved to the background. With this mechanism,

Android OS only stores a small set of essential application data in memory. For this reason,

when a user starts an application that was moved to the background a long time ago and

hence killed by lmkd, the application data is not resident in memory. Instead, the applica-

tion needs to recreate all of its activities from scratch utilizing the saved state information.

On the other hand, when a user starts an application that was moved to the background very

recently, it is much more likely that this application’s data still resides in memory, and the

application will be ready-to-use in a much shorter period. The time Android OS requires

4

for the former case is called launch time and the latter is called switch time (sometimes also

called hot launch time).

Compression-based Swap. An alternative approach to secure the free memory space is

the swapping, which moves cold anonymous pages to other medium. Current mobile sys-

tems employ compression-based swap, which compresses the least essential memory pages

and stores them in a separate memory region. Later, when the application accesses the com-

pressed pages, they are decompressed back to memory via demand paging. Compared to the

traditional disk-based swap mechanism, the compression-based in-memory swap is faster

since it can avoid long-latency disk accesses. This approach’s drawback is that i) com-

pressed memory pages still consume memory capacity, and ii) compression/decompression

spends CPU cycles. This mechanism is enabled by default in many commercial mobile

OSes such as Android OS and Apple iOS [4, 14]. However, in practice, Android OS by de-

fault does not actively utilize this mechanism since lmkd is often triggered first to reclaim

memory space before a swap happens [22, 25, 26, 35].

2.2 Launch Time and Switch Time

When a user relaunches an application after a while since its last usage, the latency to

reload may differ depending on the system’s memory pressure. For example, if the system’s

memory pressure is low (e.g., the system has not used much memory since the application’s

last launch), the application’s data will still reside in memory. Thus the application could

reload quite quickly (i.e., ideal switch time). On the other hand, if the system’s memory

pressure is high (e.g., the user utilized many different apps during the time window), the

application will be killed by lmkd. The relaunch is highly likely to require recreating the

application’s activities, incurring a much longer delay (i.e., launch time). Finally, if lmkd

is disabled, the compression-based swap mechanism will come into play. The application’s

anonymous pages will be stored in memory in a compressed form, and the file-backed pages

will be discarded. In this case, relaunching an application requires decompressing some of

5

0

400

800

1200

AB CC NY YT FB TW CH QR Geom

La
te

nc
y

(m
s)

Ideal Switch Time
Switch Time (file-backed pages in disk)
Switch Time (most pages not in memory)
Launch Time

Figure 2.1: Application switch latency across different scenarios. Ideal Switch Time rep-

resents a case where all of the applications’ anonymous and file-backed pages reside in

memory. Switch Time (file-backed pages in disk) represents a case where all of the applica-

tions’ anonymous pages are resident in memory, but almost all of file-backed pages do not

reside in memory. Switch Time (most pages not in memory) represents a case where most

of the applications’ anonymous pages are already swapped out, so they are compressed and

stored in the compressed memory pool based on the compression-based in-memory swap.

Finally, Launch Time indicates a case where an application needs to start from scratch. Re-

fer to Section 6.1 for the detailed methodology and table 6.2 for benchmark applications.

the application’s anonymous pages and reloading file-backed pages from the disk.

Figure 2.1 presents the application launch/switch time of eight real-world applications

(AB: Angry Bird, CC: Candy Crush Saga, NY: New York Times, YT: YouTube, FB: Face-

book, TW: Twitter, CH: Google Chrome, QR: Quora) on Google Pixel 4. The figure shows

that the switch time is lower than the launch time in all applications. This indicates that

reconstructing activities of an application from scratch requires more time than retrieving

the relevant anonymous pages and file-backed pages from memory and disks, respectively.

This implies that an aggressive setting of Android lmkd increases the time to relaunch the

application, which confirms the findings of the previous literature [19,21,22]. To avoid this

6

unnecessary delay in relaunching the application, it is better to lower the lmkd threshold (or

even disable it) so that the system can utilize compression-based swap more actively.

This figure also shows a significant gap between the ideal switch time and the switch

times under memory pressure. The gap between the ideal switch time and the switch time

(file-backed pages in disk) quantifies the overhead of retrieving file-backed pages from the

disk. The gap between the switch time (file-backed pages in disk) and the switch time (most

pages not in memory) indicates the overhead of decompressing anonymous pages from the

compressed memory pool. In fact, this overhead increases the application switch time by

a factor of 4× relative to the ideal switch time on average. Unfortunately, the real-world

switch time is often closer to the switch time (most pages not in memory) than the ideal

switch time when we consider recent trends: i) an increase in an application’s memory

capacity requirements [5] and ii) an increase in the number of apps that a user runs concur-

rently [25].

To the best of our knowledge, there are no concrete studies on the threshold of user

perception of the application switch. However, previous studies [8, 27] on related contexts

imply that the delay of hundreds of milliseconds in the application switch may degrade the

user experience. According to Card [8], users feel that a system is reacting instantaneously

only when the response time is shorter than 100 ms. Olenski [27] reports that a 100 ms delay

in web page loading can degrade the user experience, resulting in a 1% drop in a company’s

revenue. Thus, we are convinced that maintaining a lower switch time over a wide variety

of usage scenarios is critical for user experience.

2.3 Opportunities for Prepaging

Limitations of Demand-Paging. Figure 2.1 shows that the switch time under memory pres-

sure is substantially worse than the ideal switch time. We find that such a huge overhead

resulting from i) decompressing anonymous pages and ii) retrieving file-backed pages from

the disk is attributable to the inefficiencies of demand paging. Figure 2.2(a) shows the CPU

7

0
20
40
60
80

100

0 20 40 60 80 100

AB CC NY YT FB TW CH QR

0
20
40
60
80

100

0 20 40 60 80 100

AB CC NY YT FB TW CH QR

(a) CPU utilization

(b) Disk BW utilization

U
til

iz
at

io
n

(%
)

Normalized switching time (%)

U
til

iz
at

io
n

(%
)

Normalized switching time (%)

Figure 2.2: CPU and disk bandwidth utilization of a high-end device (Pixel 4) during the

switch time. CPU utilization is the average of eight cores

utilization and Figure 2.2(b) shows the disk bandwidth utilization of Google Pixel 4 dur-

ing switch time of eight applications under memory pressure. Overall, the CPU utilization

remains relatively low (i.e., less than 50%) for all applications except AB. Similarly, disk

bandwidth utilization is also much lower than the sustainable peak bandwidth most of the

time. As shown in Figure 2.3 for Google Pixel 3a, its disk bandwidth utilization is higher

than that of the high-end device (Pixel 4) because Pixel 3a uses a cheaper disk with rela-

tively low bandwidth. However, the empirical results show that the resources are not still

fully utilized in both cases.

Ideally, the CPU should have been fully utilized to decompress compressed memory

pages, and disk bandwidth should have been saturated to retrieve file-backed pages from

the disk. However, since the default demand paging mechanism initiates the decompression

of memory pages and I/O accesses only at a page fault and the page fault is handled in

8

(a) CPU utilization

(b) Disk BW utilization

U
til

iz
at

io
n

(%
)

Normalized switching time (%)

U
til

iz
at

io
n

(%
)

Normalized switching time (%)

0
20
40
60
80

100

0 20 40 60 80 100

AB CC NY YT FB TW CH QR

0
20
40
60
80

100

0 20 40 60 80 100

AB CC NY YT FB TW CH QR

Figure 2.3: CPU and disk bandwidth utilization of a mid-end device (Pixel 3a) during the

switch time. CPU utilization is the average of eight cores

a single thread, the system wastes available resources and spends more application switch

time than necessary.

Opportunities and Challenges of Prepaging. The key idea behind ASAP is that we can

significantly improve the switch time by letting prepaging threads aggressively decompress

memory pages and perform I/O accesses before the application codes demand them. By

doing so, ASAP can fully exploit the available system resources (i.e., CPU cycles and disk

bandwidth), making the switch time under memory pressure much closer to the ideal switch

time. There are two main challenges in this approach. First, the system should effectively

identify the switch footprint, a set of pages to be accessed during the switch. Second, the

prepaging threads should be efficiently implemented to fully exploit available resources

while minimizing their interference with application threads. The following sections de-

scribe how ASAP addresses these two challenges.

9

Chapter 3

Design Overview

The empirical observations in the previous section suggest that it is promising to design

an adaptive prepaging. We first set two key requirements to design a practical prepaging

mechanism:

1. The proposed design should be able to accurately predict a set of pages that are likely

to be accessed during an application’s switch time (i.e., switch footprint).

2. The proposed design should be able to maximize the efficiency of prepaging by

achieving high system resource utilization (i.e., CPU cycles and disk bandwidth)

without interfering with the execution of application threads.

ASAP satisfies these requirements with Switch Footprint Estimator (SFE) and Prepag-

ing Manager. We have integrated them into the application switching process in Linux

kernel. Thus, ASAP is application-agnostic without requiring any changes to application

codes.

Figure 3.1 illustrates the overall structure of ASAP with key components shaded in gray

and its interaction with other systems. SFE consists of two estimators: one for anonymous

pages and the other for file-backed pages. Based on the analysis on the switch footprint, SFE

for file-backed pages utilizes offline profiling results as well as a lightweight runtime module

to estimate the mostly invariant switch footprint of file-backed pages. On the other hand,

SFE for anonymous pages is designed to track a dynamic switch footprint of anonymous

pages by gradually promoting pages that are likely to be fetched again during the next

switch.

10

Page fault
handler

Swap
cache

Prepaging
Manager

Page
fault

Linux kernel

Page
cache

Data load
operation

I/O
operation

Android
framework

App sw
itching start / end

Read/write
system call

SFE for
anonymous

pages

SFE for
file-backed

pages

In-memory
comp. swap

Flash
storage

Android
apps

ASAP

Figure 3.1: ASAP design overview.

These estimators generate a set of target pages for prepaging, which are retrieved from

kernel’s page fault handler and read/write system calls at the beginning of an application

switch. It is possible that page information in the prepaging target table becomes obso-

lete due to inconsistent memory reuse patterns of applications (e.g., application update,

post-installation optimization with dexopt). Based on the hit/miss history of prepaging, the

information is updated over time to ensure high prediction accuracy.

Prepaging Manager is responsible for prepaging threads that are used to fetch target

pages from a prepaging target table. It monitors a timing signal that notifies the start and

the end of the application switch event from the Android framework. Prepaging Manager

promptly wakes up inactive prepaging threads for the switched application when it receives

a start signal for application switch, and then it initiates prepaging. Multiple prepaging

threads are created according to the number of available CPU cores and run in parallel with

application threads to fully utilize the available system resources such as CPU cycles and

11

disk bandwidth. Once they finish issuing fetch requests for all the pages from the prepaging

target table, the prepaging manager makes them sleep again until the next switch. Note

that ASAP does not speculate the order of application usage. Prepaging manager initiates

prepaging only when an application actually switches in.

12

Chapter 4

Switch Footprint Estimator

4.1 Switch Footprint Analysis

To effectively estimate the targets for prepaging, it is important to understand the charac-

teristics of the switch footprint: a set of pages that are accessed during the switch time. For

this purpose, we perform an experiment that exhaustively records all pages accessed across

10 switches for each application (experimental details are available in Section 6.1). For this

we cleared the access bit of all present PTE in the address space of each application just

before the switch and then checked them right after the switch is completed.

File-backed Pages. Figure 4.1 shows the switch footprint composition for file-backed

pages. The stacked bar shows how many times pages are accessed over the 10 different

switches. The switch footprint is largely invariant in this case. On average, about 75% of

pages are accessed 9 or 10 times and only 10% are accessed fewer than five times. This

highly invariant access pattern of the file-backed pages is due to the fact that a similar part

of codes and shared library files keep being loaded for the execution of an application.

Anonymous Pages. Figure 4.2 shows the switch footprint composition for anonymous

pages. The access pattern is not as invariant as file-backed pages. About 44% of the anony-

mous pages are accessed 9 or 10 times across 10 switches. The portion of the invariant

(i.e., always accessed) pages is much smaller as the set of accessed anonymous pages easily

changes when the application context changes. Anonymous pages that an Android applica-

tion uses are categorized as one of two different heaps: Java heap and C native heap. The

large variation in anonymous pages can be attributed to how these heap pages are managed

in Android applications. First, Android applications rely on concurrent copying garbage

13

0%
20%
40%
60%
80%

100%

AB CC NY YT FB TW CH QR Avg.
Application

1 - 2 3 - 4 5 - 6 7 - 8 9 - 10

Figure 4.1: Switch locality analysis for file-backed pages.

0%
20%
40%
60%
80%

100%

AB CC NY YT FB TW CH QR Avg.
Application

1 - 2 3 - 4 5 - 6 7 - 8 9 - 10

Figure 4.2: Switch locality analysis for anonymous pages.

collection [3] for the management of Java heap. This algorithm periodically identifies live

objects in the Java heap area, then copies them to an empty area for the compaction of the

live objects. The address of objects in the Java heap is changed over time in this process.

Second, pages in C native heap are managed by a pair of standard allocation (e.g. malloc,

realloc) and deallocation (e.g. free) functions. Some pages in the native heap are deal-

located when an application is switched out to background and reallocated when it is back.

This process also changes the address of the anonymous objects.

Implications. As the characteristics of the switch footprint for anonymous pages and file-

backed pages differ, so should their switch footprint estimators. Estimation for file-backed

pages can exploit the fact that file-backed pages are highly invariant to minimize the run-

time overhead. On the other hand, estimation for anonymous pages needs to rely more on the

runtime information so that it can correctly track dynamically changing switch footprints

across switch events. Still, the runtime overhead of tracking the switch footprint for anony-

mous pages is relatively low as the number of anonymous pages in the switch footprint is

much smaller than that of the file-backed pages, as shown in Figure 4.3. The rest of this

14

0
100
200
300
400
500

AB CC NY YT FB TW CH QR Geom.

To
ta

l S
iz

e
(M

B)

Application

Anonymous page File-backed page

Figure 4.3: Switch footprint of anonymous and file-backed pages across different applica-

tions.

inum extent

32 (2,7), …

Offline Profiling Runtime

Insertion
More than
T% (e.g 80%)
of the time

Inspection
Matching
entries

Insertion
Matching
inum &
extents

Offline Candidate TableOffline Candidate Table Prepaging Target TableFault Buffer

Eviction
No match
found

Eviction
Entries
without
mapping

inum extent

32 (1,4),…
file name extent

/foo.vdex (1,4),…

… … …… ……

(inum, (offset, len))
(32, (2, 7))

…

Figure 4.4: Switch footprint estimator for file-backed pages.

section discusses the SFE design for both file-backed pages (Section 4.2) and anonymous

pages (Section 4.3).

4.2 Estimator for File-Backed Pages

As shown in Figure 4.1, a major portion of file-backed pages accessed during the application

switch are invariant across switches regardless of the application context. To exploit this

characteristic, SFE for file-backed pages first performs offline profiling to identify the set of

potential candidates for prepaging, pages invariantly accessed across the different contexts,

and then later utilizes minimal runtime information to maintain a concise set of prepaging

15

targets, as shown in Figure 4.4.

Offline Profiling. The estimator performs offline profiling to obtain a set of prepaging can-

didates. For this purpose, we measure the file-backed pages that are accessed during ten

switch events for each app, as in Figure 4.1. Then, pages accessed more than eight times

(out of ten trials) are considered to be frequently accessed. The resulting set of pages is

stored as a file (Offline Candidate Table). Specifically, as shown in Figure 4.4, the profiled

result is stored as a map, where a filename is a key and a list of pairs (offset, len) is a value.

Each pair represents [offset, offset + len) pages within a file that are accessed during an

application switch (we call it an extent in the rest of this paper). Later, the profiled result is

reloaded at the launch time of this application.

Fault Logging. Fault logging happens at every switch event. Specifically, SFE logs the

inode and page indices of all faulted extents received from the kernel until the end of the

switch time. This is stored in a fault buffer, which is later utilized by the estimator after the

end of the switch time to update its prepaging targets.

Prepaging Target Management - Insertion. Once the switch finishes, a background thread

performs prepaging target management, exploiting the information from the offline profiling

and the fault logging. Prepaging Target Table stores information for extents that are to be

fetched by the prepaging threads. Ideally, we should insert only those extents that are likely

to be fetched in the near future. To identify such an extent, the estimator first inspects an

extent in the fault buffer and checks if the extent is also found in the Offline Candidate

Table. If so, the estimator inserts the corresponding entries into the Prepaging Target Table.

Prepaging Target Management - Extent Merging. The Prepaging Target Table may have

multiple extents on the same file. In such a case, if two extents are close to each other (e.g.,

the end of one extent is less than 16 pages apart from the start of the other extent), we

merge those two extents and create a larger extent that covers both. This is to avoid issuing

multiple fragmented I/O requests and instead issue a single, sequential large I/O request,

which is often handled much more efficiently.

Prepaging Target Management - Eviction. Eviction from a Prepaging Target Table hap-

16

VA ASID timout

0x1004ed8a 45 2

Insertion
Faulted pages

Promotion
Accessed
during switch
time

Online Candidate Table Prepaging Target TableFault Buffer

Eviction
Entries
triggering
timeout

VA ASID timout

0xd12a58c9 32 3

0x93df12ab 76 0…… ……

(VA, ASID)
(0xa2df44e2, 32)

…

Eviction
Entries
triggering
timeout

0x93df12ab 76 0

Insertion
If not in
either tables

… …

Figure 4.5: Switch footprint estimator for anonymous pages.

pens when the fetched page turns out to be not utilized during a switch time. Specifically,

the estimator checks the mapcount, a kernel counter that counts the number of page table

mapping to a physical page, of each fetched page after the switch, and removes the page

from the Prepaging Target Table if the mapcount is zero. When a page is part of an extent,

the extent is divided into two smaller extents.

4.3 Estimator for Anonymous Pages

As shown in Figure 4.2, the set of anonymous pages accessed during the application switch

changes much more frequently than files. Moreover, anonymous pages are allocated when-

ever the application is launched, and thus offline profiling is not helpful for identifying

prepaging candidates. To effectively track the switch footprint for anonymous pages, we

focus on run time analysis, unlike the case of file-backed pages (Section 4.2). Policies of

the estimator are depicted in Figure 4.5.

Fault Logging. During the application switch time, like the estimator for file-backed pages,

the Switch Footprint estimator for anonymous pages logs all anonymous page faults. Fault

information is logged at a fault buffer for later usage.

Access Logging. To track access information during switch time, this estimator clears the

access bit of every PTE represented by each page identifier in both the Prepaging Target

Table and the Online Candidate Table before every application switch time. Then, right

17

before the end of the switch time, the access bits of all pages in both tables are again checked

to identify a set of pages that are accessed during switch time.

Prepaging Target Management - Check & Insertion. After the application switch time,

this estimator first checks if each page in the fault buffer is not already present in the Online

Candidate Table nor the Prepaging Target Table. If there are pages that are not already

present in the tables, they are inserted into the Online Candidate Table.

Prepaging Target Management - Promotion. Also, the estimator checks if each page in

Online Candidate Table has been accessed during the switch time by inspecting the access

log. If a page has been accessed during the last switch time, the page in the Online Candidate

Table is then promoted to the Prepaging Target Table.

Prepaging Target Management - Eviction. Every page in both the Online Candidate Table

and the Prepaging Target Table has its own timeout counter, which is the number of switch

events a page can experience before getting evicted from a table. The timeout counter (e.g.,

5) of a page is decremented after every switch time. If a specific page is not accessed until

the timeout counter reaches zero, it is evicted from the table that it belongs to. But, whenever

a page is accessed, the timeout counter of an identifier is reset to the default timeout counter

value (e.g., 5).

18

Chapter 5

Prepaging Manager

Whenever an application switch event occurs, ASAP’s Prepaging Manager wakes up

prepaging threads that prefetch pages in the Prepaging Target Table, which eventually con-

structs corresponding PTEs. To maximize the prepaging throughput, we apply different

prepaging policies to anonymous pages and file-backed pages as follows.

5.1 Prepaging Anonymous Pages

Prepaging of anonymous pages requires decompressing swapped out pages in the com-

pressed in-memory swap space. Hence the task is CPU-intensive and should be carefully

scheduled not to incur the CPU contention between application threads and prepaging

threads. Although the default CPU utilization in switch time is low, as we reported in Sec-

tion 2.3, the application threads can demand more CPU resources when ASAP is applied as

the prepaging operations reduce page fault events, reducing application I/O time.

To this end, the prepaging manager maintains a set of threads for the prepaging of

anonymous pages. We pinned a thread on each core and assigned the lowest priority (i.e.,

SCHED IDLE [18]) to them, so they are scheduled only when there is no thread to sched-

ule. This allows the threads to opportunistically utilize the surplus CPU resources for the

prepaging of anonymous pages without incurring any CPU contention with the application

threads. The prepaging threads may not receive enough CPU time to decompress all the tar-

get pages if the application threads excessively use CPU, however that case is not observed

in any of the benchmark applications.

The distribution of prepaging work is done in a work sharing manner. Each thread re-

19

trieves a batch (16 pages) from the Prepaging Target Table, and then conducts the prepaging

operations for pages in the batch. Specifically, for each virtual page in the batch, each thread

checks whether the virtual page is present in the application process’s address space. If not

present, it issues a swap-in operation for the virtual page to the swap subsystem (i.e., the

swap cache). The swap-in operation eventually becomes the decompression operation in

the in-memory compressed swap device. After the target page is decompressed, the thread

finally makes the corresponding PTE point to the swapped-in page. Once the thread finishes

these operations for every page in the batch, it moves to the next batch.

5.2 Prepaging File-backed Pages

The prepaging manager maintains another set of threads for the prepaging of file-backed

pages. File-backed pages impose a higher miss penalty than anonymous pages due to long

disk I/O time, and the threads need to hold multiple file system-related locks to read pages

from disk. Therefore, we take a different prepaging policy for file-backed pages as follows.

First, we select a file as a unit of prepaging work distribution to avoid lock contentions

related to file operations. Each thread selects a file from the Prepaging Target Table and

takes on prefetching all the target pages in that file. This policy prevents the different threads

from holding per-file locks. For the prepaging operation, each thread issues asynchronous

page cache read operations for the corresponding extents in the Prepaging Target Table.

Note that the ASAP takes pages not only accessed through page faults but also accessed

via read/write system calls into account. Hence not all prefetched pages need to be mapped

in the process’s virtual address space. So prepaging threads only places the fetched file-

backed pages on the page cache but does not make their page table mapping. However, their

fault handling cost is light (i.e., minor faults in Linux).

Second, we dedicate at least one thread for the prepaging of large files. Figure 5.1 shows

the cumulative distribution of accessed pages of files in the switch footprint of the appli-

cations. The figure shows that about 90% of the total number of accessed pages is part of

20

0
20
40
60
80

100

0 20 40 60 80 100C
um

ul
at

iv
e

nu
m

be
r o

f
ac

ce
ss

ed
 p

ag
es

 (%
)

Ratio of number of files (%)

AB CC NY YT FB TW CH QR

Figure 5.1: Cumulative number of accessed pages CDF of files across the various appli-

cations during switch from one application to another one. Files are sorted by size. 100%

indicates the largest file.

the top 15% of large files. Thus we can expect that the prepaging threads spend most of

their time in the prepaging of pages in a small number of large files. If the large files are

assigned to a thread with the SCHED IDLE priority, pages in those files are not likely to be

prefetched on time. To avoid this problem, we designate one thread with SCHED NORMAL

priority and to be in charge of the large files. Considering the big-LITTLE heterogeneity of

the CPU cores in mobile systems, we assign that thread to run on a big core to maximize

the prefetching performance. We assign SCHED IDLE to the other threads. We have empir-

ically found that this configuration is effective in reducing the miss ratio as well as the CPU

contention with application threads.

Lastly, we carefully handle the fetch of file metadata for high throughput. If file metadata

(e.g., logical block addresses of data blocks) is not in memory, a prepaging thread cannot

perform any further file system operations, incurring additional delay in prefetching. Our

extent-based prefetching exacerbates this problem. A small I/O request for the metadata

of the extent ready to be fetched can fall far behind a large prefetching I/O requests for

a previous extent, thereby blocking the prefetching threads from requesting asynchronous

I/O requests even when CPU is idle. To avoid this problem, we let the prepaging threads

21

to reorder the I/O requests, reading all required metadata blocks first before initiating the

prefetching of data pages. The metadata block reads are done by accessing file pages with

a file system-specific stride in file offset, 512 pages in our case, because a direct block

contains LBAs of 512 data blocks in F2FS [23].

22

Chapter 6

Evaluation

In this section, we evaluate the effectiveness of ASAP. Section 6.1 describes the evaluation

methodology and workloads. Then, we evaluate the latency improvements of our proposal in

Section 6.2. Section 6.3 analyzes the accuracy of the switch footprint estimator. We evaluate

the efficacy of the prepaging manager by considering improvement of the effective disk

bandwidth and CPU utilization in the remaining sections.

6.1 Methodology

Switching Latency Measurement. To measure the application switching latency, we used

the am command in the Android debug bridge (adb) [2]. This command starts a selected

application and reports two types of switching latency. One is latency from a user’s touch to

the first rendering, and the other one is latency from a user’s touch to the full rendering [6].

The latter is reported only when the application developer implements the debug callback.

Table 6.1: Device Specifications

Device Google Pixel 4 Google Pixel 3a

CPU Octa-core Qualcomm Snapdragon 855 Octa-core Qualcomm Snapdragon 670

DRAM 6GB LPDDR4x (eff. 4GB) 4GB LPDDR4x

Storage 64GB UFS 2.1 64GB eMMC 5.1

OS Android 10.0.0 (r41) with Linux kernel 4.14 Android 10.0.0 (r41) with Linux kernel 4.9

zram 2GB (default) 2GB (default)

23

Table 6.2: Applications and automated interactions to change contexts.

Application Automated Usage Patterns

Angry Bird (AB) Play a stage

Candy Crush (CC) Play a stage

New York Times (NY) Browse and read articles

Youtube (YT) Watch videos

Facebook (FB) Browse and read posts

Twitter (TW) Browse and read posts

Chrome (CH) Browse keywords

Quora (QR) Browse questions and answers

Table 6.3: Chosen 3 application test sequences.

Sequence 1 YT-CH-CC-AB-NY-QR-FB-TW

Sequence 2 QR-NY-CH-CC-YT-TW-FB-AB

Sequence 3 AB-FB-QR-TW-CC-CH-YT-NY

The information is reported only by the YT application among eight benchmark applica-

tions. Thus, we use the time to the initial rendering as a metric. For the YT application,

we observe that the additional latency overhead of the full rendering is less than 5% of the

switch latency (10-20 ms). Users could also start to interact with applications in the middle

of the rendering [17]. The actual latency overhead is expected to be insignificant when the

performance benefits of ASAP are considered. This justifies our usage of the time to the

initial rendering as the metric for evaluation.

System Configuration. For our evaluation, we use Google Pixel 4 and Pixel 3a, which

represent high-end and mid-end smartphones, respectively. Table 6.1 describes their spec-

ifications. We implement ASAP in Android 10. When measuring the application switch

overhead under memory pressure, we consider two aspects for our experimental methodol-

ogy.

24

First, we favor the compression-based swap approach over the lmkd, which often acts

first to secure free memory and prevents the system from being under memory pressure.

Note that Android currently enables both features by default. We disable the lmkd for our

evaluation to solely analyze the performance impact on application switch under memory

pressure.

Second, users show different application usage patterns such as a spectrum of day-to-

day use applications and the use of multitasking features. These lead to different memory

usage patterns even among smartphone users who have the same devices.

In this work, thus, we focus on evaluating the memory pressure impact of the applica-

tion switch for a fixed set of a wide spectrum of top rated applications (refer to Table 6.2).

We enable memory ballooning by considering the entire footprint of the target applications

instead of enabling numerous applications to cause memory pressure for the target devices.

The effective memory size of both Pixel 4 and Pixel 3a is 4GB. Throughout our evalu-

ation, we refer to the switch time measured on this configuration as the baseline switch time.

Workloads and Automation of Tests. In order to reduce the run-to-run variation in the

experimental results, we carefully devise an automation program that closely mimics a set

of pre-determined user interactions with adb. For example, the Facebook (FB) usage pat-

tern contains scrolling down the main news feed, searching for user profiles, and watching

their timelines. Another example would be YouTube (YT), where our program searches and

watches different video clips. The details of the usage patterns are listed in Table 6.2.

After execution of a certain application, e.g., Candy Crush (CC), we switch to the next

application, e.g., TW, by following a pre-determined sequence of applications. As there are

8! available application sequences for eight applications, we chose three random sequences

to evaluate ASAP (Table 6.3). The start and end time of the application switching operation

are informed by the Android activity manager [1, 13]. We iterate the selected sequence

10 times and measure the application switch time. With this user interaction automation

program, we repetitively conduct the same evaluation process.

25

-10
0

10
20
30
40

AB CC NY YT FB TW CH QR Geom

Anon-only File-only ASAP

(894) (558) (291) (463) (373) (334) (485) (353) (441)
Baseline

latency (ms)

N
or

m
al

iz
ed

sp
ee

du
p

(%
)

Application
(1073) (655) (377) (568) (354) (359) (762) (368) (520)

Baseline
latency (ms)

N
or

m
al

iz
ed

sp
ee

du
p

(%
)

Application

-10
0

10
20
30
40

AB CC NY YT FB TW CH QR Geom

Anon-only File-only ASAP

(a) Pixel 4 (b) Pixel 3a

Figure 6.1: Normalized speedup of application switching latency on Pixel 4. Numbers in

parentheses indicate absolute switching latency of the baseline system in ms. Error bar

shows standard deviation over different sequences.

6.2 Application Switch Latency

Figure 6.1 and 6.2 present the speedup of ASAP over baseline switch time measured on

Pixel 4 and Pixel 3a, respectively, for 8 applications. We also evaluate the speedup by se-

lectively enabling prepaging for either anonymous pages or file-backed pages. Compared

to the baseline, ASAP shows an average of 22.2% and 28.3% performance improvement,

and a maximum of 33.3% (YT) and 35.7% (TW) on Pixel 4 and Pixel 3a, respectively.

We observe 6.8% and 14.6% performance improvement on each device on average when

ASAP performs prepaging only for anonymous pages (Anon-only). Among the eight appli-

cations, YT and TW show the most noticeable latency reduction on Pixel 4 and Pixel 3a,

respectively. With prepaging for file-backed page only (File-only), the latency is reduced by

18.3% and 14.4% on average. Here, YT and CH show a substantial latency reduction on

each device.

When both SFEs are enabled (ASAP), we observe additional performance benefits for

most cases as expected. However, in NY and QR on Pixel 4, integrating both SFEs does not

26

(1073) (655) (377) (568) (354) (359) (762) (368) (520)
Baseline

latency (ms)

N
or

m
al

iz
ed

sp
ee

du
p

(%
)

Application

-10
0

10
20
30
40

AB CC NY YT FB TW CH QR Geom

Anon-only File-only ASAP

Figure 6.2: Normalized speedup of application switching latency on Pixel 3a. Numbers

in parentheses indicate absolute switching latency of the baseline system in ms. Error bar

shows standard deviation over different sequences.

further reduce their switch latency.

6.3 Estimator Efficiency

Figure 6.3 presents the efficiency of the proposed switch footprint estimators for both

Anonymous SFE and File-backed SFE. Since we observe similar performance trends on

both devices, we will only present the results on Pixel 4 in the rest of this section. Precision

is defined as a fraction of correctly prepaged pages among entire prepaged pages. Recall

is defined as a fraction of correctly prepaged pages among all faulting pages during the

switch time when the baseline system is considered. Anonymous SFE shows an average of

68.4% precision and 60.4% recall. File-backed SFE shows an average of 79.3% precision

and 52.2% recall. The Switch Footprint Estimator for file-backed pages shows better preci-

sion relative to that of the Switch Footprint Estimator for anonymous pages. The difference

comes from the fact that the switch footprint of file-backed pages is more static, as described

in Figure 4.1.

The gap between precision and recall comes from the coverage of the prepaging tar-

27

0
20
40
60
80

100

AB CC NY YT FB TW CH QR Geom

H
it

ra
te

 (%
)

Application

Precision Recall

0
20
40
60
80

100

AB CC NY YT FB TW CH QR Geom

H
it

ra
te

 (%
)

Application

Precision Recall

(a) SFE for anonymous pages

(b) SFE for file-backed pages

Figure 6.3: Switch footprint estimator performance.

get tables. Note that both precision and recall have the same numerator value while the

denominator of recall can cover more pages that have not been fetched by the proposed

prepaging scheme. We see a larger gap between the precision and the recall of file-backed

page prepaging relative to the gap of anonymous page prepaging. This could result from

the limited coverage of the candidate pages that is based on the static profiling. The static

profiling approach may not capture the entire set of pages that are likely to cause faults at

runtime.

28

0
50

100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100

0
50

100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100

Normalized switching time (%)

C
PU

 u
til

iz
at

io
n

(%
)

Baseline ASAP
AB CC NY YT

FB TW CH QR

Figure 6.4: CPU utilization. X-axis is a timeline normalized to baseline’s switch time.

0
50

100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100

0
50

100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
0

50
100

0 20 40 60 80 100
Normalized switching time (%)

D
is

k
BW

 u
til

iz
at

io
n

(%
)

Baseline ASAP
AB CC NY YT

FB TW CH QR

Figure 6.5: Disk bandwidth utilization. X-axis is a timeline normalized to baseline’s switch

time.

6.4 Resource Utilization

To show the efficacy of ASAP on prepaging, we evaluated the changes in CPU and mem-

ory bandwidth utilization on Pixel 4. The bandwidth utilization is computed as the ratio of

achieved file read throughput to the maximum sequential throughput measured in fio [11].

As depicted in Figure 6.4, ASAP eagerly allocates threads for decompression, which in-

creases the CPU utilization to 1.18× on average over the total switch time, compared to the

baseline switch. We also notice the maximum of 1.35× utilization increase. The CPU has

been under utilized at the beginning of the application switch. In most cases, the anony-

mous prepaging threads have a large window of opportunity to fully exploit the available

CPU resources. Therefore, when ASAP is enabled, the CPU utilization improves at the

early stages of switching. Because the throughput of zram actually scales depending on the

29

number of CPU cores, the anonymous prepaging threads can prepage anonymous pages at

great speed. For most applications, prepaging threads finish at around the first 30% of nor-

malized switching time. After that, the CPU utilization follows the CPU utilization pattern

of the baseline. On the same page as the CPU, ASAP also improves the I/O bandwidth by

25.2% on average, as shown in Figure 6.5. In most cases, we observe a noticeable increase

in the I/O bandwidth at the early stages of switching and the maximum achieved bandwidth

is also higher than that of the baseline. ASAP does not induce significant improvement over

the baseline in the case of AB. This is because AB is a highly parallel application with

high I/O utilization. Therefore, the I/O bandwidth improvement from our asynchronous I/O

threads is limited. The empirical analysis substantiates that ASAP efficaciously exploits

the resources at the beginning of the switch to considerably reduce the application switch

latency.

6.5 Efficiency of Core Scheduling

To quantify the effect of core scheduling of the file prepaging threads (Section 5.2), we

compare our policy on Pixel 4 with four other static policies: big 1-core, big 4-core, LITTLE

1-core, and LITTLE 4-core. For example, in LITTLE 4-core, four file prepaging threads are

scheduled on the four LITTLE cores, and the threads are assigned the SCHED NORMAL

priority. And we enabled only file prepaging to reduce performance deviation. Figure 6.6

shows the delta of application switch latency (the latency of the four naive policies minus

the latency of our scheme). Each naive policy shows 1.06×, 1.05×, 1.02×, 1.04× times

slower than ours on average. Hence, our performance advantage comes from the fact that

our policy is versatile to different situations. For example, the big 4-core policy showed

14% and 13% better performance than our policy on YT and QR, however its performance

falls dramatically on AB since AB utilizes both CPU and disk bandwidth intensively, so

file prepaging threads contended a lot with AB’s application threads. On the other hand, the

LITTLE 4-core policy is better than ours in QR and AB, but it is vulnerable to applications

30

-20
-10

0
10
20
30
40
50

AB CC NY YT FB TW CH QR Geom

𝚫
la

te
nc

y
(%

)

Application

big 1-core big 4-core LITTLE 1-core LITTLE 4-core

Figure 6.6: Switching latency changes depending on different core scheduling policy com-

pared to ASAP’s core scheduling policies. Positive latency change means that the static

policy is worse than ASAP’s policy.

requiring heavy file I/O because of the slow prepaging speed.

6.6 Overhead

Anonymous SFE maintains an Online Candidate Table, Prepaging Target Table, and anony-

mous fault buffer. Their peak size for 8 applications is 1MB, 2.5MB, and 0.5MB, respec-

tively. The size of the Offline Candidate Table, Prepaging Target Table and file fault buffer

used by File-backed SFE is 1.5MB, 0.2MB, and 0.5MB, respectively, at their peak respec-

tively. On average ASAP uses about 800KB per application.

Access bit logging (clearing access bits at the beginning and inspecting them at the

end of the switch time) extends the switch time by up to 14ms. Also, prepaging target

management operations which opportunistically runs between the switch events takes 40ms

CPU time in the worst case.

Finally, mis-prediction events result in extra fetch overhead, which could increase the

31

energy consumption. On average, ASAP fetches an extra 10MB for anonymous pages and

file-backed pages, respectively. Also the peak throughput of decompression and the disk

bandwidth are 2GB/s and 600MB/s on Pixel 4, respectively. Therefore, each extra fetch

takes tens of milliseconds. When the peak power of UFS 2.1 [33] and TDP of Snapdragon

855 [32] are considered, these extra fetches require negligible overhead. Actually, we expect

ASAP to save the energy consumption of the entire device including other components

(e.g., display) because ASAP reduces the total switch latency. Thus, this marginal energy

overhead can be easily offset.

32

Chapter 7

Related Work

Efficient Memory Management in Mobile Systems. Modern mobile systems reclaim free

pages by killing the least essential applications (e.g., low memory killer in Android [26]).

The traditional low memory killer selects a victim process by considering the priority and

the number of pages of application only. SmartLMK [20] proposes to kill an application

to minimize the expected user-perceived application performance by carefully considering

application usage statistics and application launch times. However, killing an application

process is the most aggressive policy in memory reclamation [7], and whenever a killed

application is launched again, it takes a large amount of computation and I/O operations,

which can increase the user-perceived launch latency and the energy consumption of mobile

devices [22, 24]

To end this senseless killing, Marvin [22] swaps out predicted unlikely-to-be-used

pages to disks using ahead-of-time swap by modifying Android runtime (ART). Similarly,

SmartSwap [35] includes process-level early page swap based on the prediction result but

by addressing kernel codes. A2S [19] combines the low memory killer and the compressed

swap together by carefully selecting the victim pages for swap-out and the victim process to

kill. Acclaim [25] prioritizes pages of foreground processes over those of background pro-

cesses during swapping. Kwon et al. [21] propose to swap-out GPU buffers of background

processes to relieve memory pressure on mobile devices. Chae et al. [9] propose to extend

the swap space of mobile systems to the cloud.

Accelerating Application Launch. Numerous studies have been conducted to shorten the

application launch time, and most have tried to prefetch data effectively [13, 16, 28, 30, 34].

33

FAST [16] profiles I/O sequences during application launches and uses the profiled se-

quences for data prefetching. FALCON [34] adopts machine learning to predict the users’

application usage pattern. It predicts the next application a user is going to use and preloads

the contents of the predicted applications. Nagarajan et al. [28] uses collaborative filter-

ing to predict the impending applications while PREPP [30] uses prediction by the partial

matching technique. In contrast to them, ASAP does not speculate what application will

be executed. ASAP comes into play when an application actually switches in, avoiding un-

necessary prefetching. IORap [13] in Android 11 profiles the required I/O during several

cold-runs of an application and predicts which I/O will be required and does it in advance.

These works only focus on predicting applications or I/O patterns during application launch

events. However, our work predicts I/O patterns or memory access footprint during appli-

cation switch events.

Efficiently Utilizing Disk I/O Bandwidth. The disk I/O performance is important to the

user-perceived application performance. Accordingly, the efficient use of disk I/O is impor-

tant. SmartIO [29] discovers that read I/O operations are penalized by write I/O operations

and proposes to prioritize read I/O operations over write ones. Joo et al. [15] finds that

swap I/O patterns for page faults are not efficient due to their small and random I/O re-

quest patterns. To overcome these inefficiencies, they insert pads to build large sequential

I/O requests, which is more efficient in flash-based disks. FastTrack [12] prioritizes I/O re-

quests from foreground applications over those from background ones throughout the entire

I/O stack. These approaches are complementary to our work in terms of improving the I/O

efficiency during disk access.

34

Chapter 8

Conclusion

The goal of ASAP is to improve user experience on mobile devices, focusing on the applica-

tion switch, which is one of the most important user interactions. We proposed (ASAP), an

adaptive prepaging scheme that accurately retrieves pages ahead of time that are expected

to be accessed during application switch by fully exploiting the available system resources.

Our experimental results based on real-world Android OS applications show that ASAP can

reduce the application switch latency under memory pressure by 22.2% and 28.3% on rep-

resentative high-end and mid-end smartphones, respectively. While ASAP was evaluated in

the context of the application switch, we believe that it can easily be extended to reducing

application launch time as well.

35

Bibliography

[1] “Activity manager,” https://developer.android.com/reference/android/app/

ActivityManager.

[2] “Android Debug Bridge,” https://developer.android.com/studio/command-line/adb.

[3] “Debugging ART Garbage Collection ,” https://source.android.com/devices/tech/

dalvik/gc-debug.

[4] “Memory allocation among processes,” https://developer.android.com/topic/

performance/memory-management.

[5] “The Average Size of the U.S. App Store’s Top Games Has Grown 76% in Five Years

,” https://sensortower.com/blog/ios-game-size-growth-2020.

[6] “App Startup Time,” https://developer.android.com/topic/performance/vitals/launch-

time.

[7] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O ports to process

management. ” O’Reilly Media, Inc.”, 2005.

[8] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “The information visualizer,

an information workspace,” in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, ser. CHI ’91. New York, NY, USA:

Association for Computing Machinery, 1991, p. 181–186. [Online]. Available:

http://lps3.doi.org.libproxy.snu.ac.kr/10.1145/108844.108874

[9] D. Chae, J. Kim, Y. Kim, J. Kim, K. Chang, S. Suh, and H. Lee, “CloudSwap: A cloud-

assisted swap mechanism for mobile devices,” in 2016 16th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2016, pp. 462–472.

36

https://developer.android.com/reference/android/app/ActivityManager
https://developer.android.com/reference/android/app/ActivityManager
https://developer.android.com/studio/command-line/adb
 https://source.android.com/devices/tech/dalvik/gc-debug
 https://source.android.com/devices/tech/dalvik/gc-debug
https://developer.android.com/topic/performance/memory-management
https://developer.android.com/topic/performance/memory-management
 https://sensortower.com/blog/ios-game-size-growth-2020
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
http://lps3.doi.org.libproxy.snu.ac.kr/10.1145/108844.108874

[10] T. Deng, S. Kanthawala, J. Meng, W. Peng, A. Kononova, Q. Hao, Q. Zhang, and

P. David, “Measuring smartphone usage and task switching with log tracking and self-

reports,” Mobile Media & Communication, vol. 7, p. 205015791876149, 04 2018.

[11] “fio - flexible I/O tester rev.325,” https://fio.readthedocs.io/en/latest/fio doc.html.

[12] S. S. Hahn, S. Lee, I. Yee, D. Ryu, and J. Kim, “FastTrack: Foreground

app-aware I/O management for improving user experience of android smartphones,”

in 2018 USENIX Annual Technical Conference (USENIX ATC 18). Boston,

MA: USENIX Association, Jul. 2018, pp. 15–28. [Online]. Available: https:

//www.usenix.org/conference/atc18/presentation/hahn

[13] “Android I/O read ahead process,” https://medium.com/androiddevelopers/improving-

app-startup-with-i-o-prefetching-62fbdb9c9020.

[14] “iOS Memory Deep Dive,” https://developer.apple.com/videos/play/wwdc2018/416/.

[15] Y. Joo, D. Seo, D. Shin, and S. Lim, “Enlarging I/O size for faster loading of mobile

applications,” IEEE Embedded Systems Letters, vol. 12, no. 2, pp. 50–53, 2020.

[16] Y. Joo, J. Ryu, S. Park, and K. G. Shin, “Fast: Quick application launch on solid-state

drives,” in Proceedings of the 9th USENIX Conference on File and Stroage Technolo-

gies, ser. FAST’11. USA: USENIX Association, 2011, p. 19.

[17] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das, “Improving user

perceived page load times using gaze,” in 14th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 17). Boston, MA:

USENIX Association, Mar. 2017, pp. 545–559. [Online]. Available: https:

//www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton

[18] “CFS Scheduler,” https://www.kernel.org/doc/html/latest/scheduler/sched-design-

CFS.html#scheduling-policies.

37

https://fio.readthedocs.io/en/latest/fio_doc.html
https://www.usenix.org/conference/atc18/presentation/hahn
https://www.usenix.org/conference/atc18/presentation/hahn
https://medium.com/androiddevelopers/improving-app-startup-with-i-o-prefetching-62fbdb9c9020
https://medium.com/androiddevelopers/improving-app-startup-with-i-o-prefetching-62fbdb9c9020
https://developer.apple.com/videos/play/wwdc2018/416/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kelton
 https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html#scheduling-policies
 https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html#scheduling-policies

[19] S.-H. Kim, J. Jeong, and J.-S. Kim, “Application-aware swapping for mobile

systems,” ACM Trans. Embed. Comput. Syst., vol. 16, no. 5s, Sep. 2017. [Online].

Available: https://doi.org/10.1145/3126509

[20] S.-H. Kim, J. Jeong, J.-S. Kim, and S. Maeng, “SmartLMK: A memory reclamation

scheme for improving user-perceived app launch time,” ACM Trans. Embed. Comput.

Syst., vol. 15, no. 3, May 2016.

[21] S. Kwon, S. Kim, J. Kim, and J. Jeong, “Managing GPU buffers for caching more

apps in mobile systems,” in Proceedings of the 2015 International Conference on Em-

bedded Software (EMSOFT), 2015, pp. 207–216.

[22] N. Lebeck, A. Krishnamurthy, H. M. Levy, and I. Zhang, “End the senseless killing:

Improving memory management for mobile operating systems,” in 2020 USENIX

Annual Technical Conference (USENIX ATC 20). USENIX Association, Jul.

2020, pp. 873–887. [Online]. Available: https://www.usenix.org/conference/atc20/

presentation/lebeck

[23] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A new file system for flash storage,”

in 13th USENIX Conference on File and Storage Technologies (FAST 15). Santa

Clara, CA: USENIX Association, Feb. 2015, pp. 273–286. [Online]. Available:

https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee

[24] J. Lee, K. Lee, E. Jeong, J. Jo, and N. B. Shroff, “Context-aware application scheduling

in mobile systems: What will users do and not do next?” in Proceedings of the 2016

ACM International Joint Conference on Pervasive and Ubiquitous Computing, ser.

UbiComp ’16. New York, NY, USA: Association for Computing Machinery, 2016,

p. 1235–1246. [Online]. Available: https://doi.org/10.1145/2971648.2971680

[25] Y. Liang, J. Li, R. Ausavarungnirun, R. Pan, L. Shi, T.-W. Kuo, and C. J.

Xue, “Acclaim: Adaptive memory reclaim to improve user experience in

android systems,” in 2020 USENIX Annual Technical Conference (USENIX

38

https://doi.org/10.1145/3126509
https://www.usenix.org/conference/atc20/presentation/lebeck
https://www.usenix.org/conference/atc20/presentation/lebeck
https://www.usenix.org/conference/fast15/technical-sessions/presentation/lee
https://doi.org/10.1145/2971648.2971680

ATC 20). USENIX Association, Jul. 2020, pp. 897–910. [Online]. Available:

https://www.usenix.org/conference/atc20/presentation/liang-yu

[26] “Low Memory Killer Daemon,” https://source.android.com/devices/tech/perf/lmkd.

[27] “Why Brands Are Fighting Over Milliseconds,” https://www.forbes.com/

sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/?sh=

4f52e2f14ad3.

[28] N. Natarajan, D. Shin, and I. S. Dhillon, “Which app will you use next?

collaborative filtering with interactional context,” in Proceedings of the 7th ACM

Conference on Recommender Systems, ser. RecSys ’13. New York, NY, USA:

Association for Computing Machinery, 2013, p. 201–208. [Online]. Available:

https://doi.org/10.1145/2507157.2507186

[29] D. T. Nguyen, G. Zhou, G. Xing, X. Qi, Z. Hao, G. Peng, and Q. Yang, “Reducing

smartphone application delay through read/write isolation,” in Proceedings of the

13th Annual International Conference on Mobile Systems, Applications, and Services,

ser. MobiSys ’15. New York, NY, USA: Association for Computing Machinery,

2015, p. 287–300. [Online]. Available: https://doi.org/10.1145/2742647.2742661

[30] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin, “Practical prediction

and prefetch for faster access to applications on mobile phones,” in Proceedings of the

2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing,

ser. UbiComp ’13. New York, NY, USA: Association for Computing Machinery,

2013, p. 275–284. [Online]. Available: https://doi.org/10.1145/2493432.2493490

[31] V. J. Reddi, H. Yoon, and A. Knies, “Two billion devices and counting,” IEEE Micro,

vol. 38, no. 1, pp. 6–21, 2018.

[32] “Qualcomm Snapdragon 855,” https://www.notebookcheck.net/Qualcomm-

Snapdragon-855-SoC-Benchmarks-and-Specs.375436.0.html.

39

https://www.usenix.org/conference/atc20/presentation/liang-yu
https://source.android.com/devices/tech/perf/lmkd
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/?sh=4f52e2f14ad3
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/?sh=4f52e2f14ad3
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds/?sh=4f52e2f14ad3
https://doi.org/10.1145/2507157.2507186
https://doi.org/10.1145/2742647.2742661
https://doi.org/10.1145/2493432.2493490
 https://www.notebookcheck.net/Qualcomm-Snapdragon-855-SoC-Benchmarks-and-Specs.375436.0.html
 https://www.notebookcheck.net/Qualcomm-Snapdragon-855-SoC-Benchmarks-and-Specs.375436.0.html

[33] “High Performance Universal Flash Storage (UFS) Solutions,” https://www.samsung.

com/semiconductor/global.semi.static/White Paper Samsung UFS Card 1806.pdf.

[34] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app launching for mobile

devices using predictive user context,” in Proceedings of the 10th International

Conference on Mobile Systems, Applications, and Services, ser. MobiSys ’12. New

York, NY, USA: Association for Computing Machinery, 2012, p. 113–126. [Online].

Available: https://doi.org/10.1145/2307636.2307648

[35] X. Zhu, D. Liu, K. Zhong, Jinting Ren, and T. Li, “Smartswap: High-performance and

user experience friendly swapping in mobile systems,” in 2017 54th ACM/EDAC/IEEE

Design Automation Conference (DAC), 2017, pp. 1–6.

40

 https://www.samsung.com/semiconductor/global.semi.static/White_Paper_Samsung_UFS_Card_1806.pdf
 https://www.samsung.com/semiconductor/global.semi.static/White_Paper_Samsung_UFS_Card_1806.pdf
https://doi.org/10.1145/2307636.2307648

초록

모바일어플리케이션들의메모리사용량과,유저가동시에사용하는어플리케이션의수

는 해마다 늘어나고 있다. 이로 인해 모바일 시스템에서 메인 메모리 용량은 점점 부족

해지고있다.모바일시스템이메모리가부족한상황에처해있을때,기존모바일운영체

제들은최근에사용되지않은어플리케이션을종료시키는방식으로메모리를확보하고

있다.이러한방법은유저가해당어플리케이션을다시사용할때프로세스재실행을유

발하여 유저가 긴 지연시간을 경험하도록 한다. 이에 대한 대안으로 compression-based

swap이있지만,이방법도압축된페이지를압축해제하고디스크에서파일을읽는과정

에서 여전히 긴 지연시간을 유발한다. 본 연구에서는 전통적인 디맨드 페이징으로 인해

압축해제, 파일 읽기가 비효율적으로 이루어지는 것을 이 문제의 근본적인 원인으로 파

악하고,대안으로 ASAP (Application Switch via Adaptive Prepaging)을제안한다. ASAP

은 i)어플리케이션전환과정에서접근되는워킹셋을높은정확도로파악하는예측기와

ii)해당워킹셋을높은효율로프리페이징하며,어플리케이션과리소스(CPU사이클,디

스크대역폭)경쟁은최소화하는효율적인구현을결합하여어플리케이션전환과정을

가속하였다.우리는 ASAP을 Android 10에구현하여 Google Pixel 3a, 4에서테스트하였

다.테스트결과 ASAP이기존 Android 10대비전환속도지연시간을 Pixel 3a에서평균

28.3%최대 35.7%, Pixel 4에서평균 22.2%최대 33.3%줄일수있었다.

주요어:모바일시스템,프리페칭,메모리관리,운영체제

학번: 2020-23014

41

감사의글

코로나 바이러스와 함께 시작한 제 석사 생활 2년이 정신없이 지나가버렸습니다. 대면

행사가 금지되고, 새로운 업무 환경도 낯설었지만, 여러 아쉬움에도 불구하고 지난 2년

반동안재밌고행복하게잘지낼수있었던이유는그과정에서만난사람들덕분이아닐

까싶습니다.

이재욱 교수님께서는 학생을 항상 존중으로 대하시고, 혼자 결정하기 힘든 것이 생

기면 조언을 구하고 싶은 선생님이었습니다. 연구 방면으로 필요한 것이 있다면 물심양

면으로도와주셨고,학생이다양한연구경험에노출되고스스로생각할수있도록도와

주셨습니다. 교수님 덕에 누구보다도 배움에 집중한 2년을 보낼 수 있었습니다. 대학원

에 오기전 선배들에게 지독하게 들었던 소리는, 대학원에서 제일 중요한게 하나 있다면

지도교수라는 것이 었습니다. 2년이 지난 지금, 누군가 저에게 묻는다면 저희 교수님을

떠올리며저도똑같은말을전할것입니다.

교수님께서 제가 가야할 목표와 방향을 가르쳐 주셨다면, 지난 2년간 가장 많은 시

간을 보낸 것은 연구실 사람들이었습니다. 두 번째 스승님이신 함태준 박사님. 연구가

무엇인지도모르는저를리드하느라고생하신종현이형,영환이형.같이즐겁게연구한

윤호 형, 승렬이, 종성이 형. 항상 배우고 싶은 훈이 형, 성훈이, 연홍이, 성준이형. 그리

고 수성이, 현지, 예진 누나, 문경 누나, 마지막으로 항상 궂은 일을 맡아주시고 즐거운

분위기를만들어주신미림쌤.모두못다한감사의말을전합니다.

바쁘신 와중에 1년 가량 제 프로젝트를 위해 많은 시간을 내주신 윤홍일 박사님. 모

르는 부분을 탐색할 수 있도록 지도해주시고 디테일한 부분까지 가르쳐 주신 성균관대

정진규 교수님. 그리고 논문 심사위원을 맡아주신 이재진, 김진수 교수님들께도 감사드

립니다.

마지막으로언제나저를믿어주고도와주는가족과여자친구에게도감사의말을전

합니다.

다음 학위를 위해 몇 년간 한국을 떠나게 되서 당분간 감사한 분들을 못뵈고 지낼

것 같습니다. 모두 각자의 자리에서 순항하시고, 이후에도 잊지 않고 찾아뵐 수 있기를

42

기원합니다.

2022년 7월,

손샘올림

43

	1 Introduction
	2 Background and Motivation
	2.1 Android Application Memory Management
	2.2 Launch Time and Switch Time
	2.3 Opportunities for Prepaging
	3 Design Overview
	4 Switch Footprint Estimator
	4.1 Switch Footprint Analysis
	4.2 Estimator for File-Backed Pages
	4.3 Estimator for Anonymous Pages
	5 Prepaging Manager
	5.1 Prepaging Anonymous Pages
	5.2 Prepaging File-backed Pages
	6 Evaluation
	6.1 Methodology
	6.2 Application Switch Latency
	6.3 Estimator Efficiency
	6.4 Resource Utilization
	6.5 Efficiency of Core Scheduling
	6.6 Overhead
	7 Related Work
	8 Conclusion
	Bibliography
	국문 초록
	감사의 글

<startpage>10
1 Introduction 1
2 Background and Motivation 4
2.1 Android Application Memory Management 4
2.2 Launch Time and Switch Time 5
2.3 Opportunities for Prepaging 7
3 Design Overview 10
4 Switch Footprint Estimator 13
4.1 Switch Footprint Analysis 13
4.2 Estimator for File-Backed Pages 15
4.3 Estimator for Anonymous Pages 17
5 Prepaging Manager 19
5.1 Prepaging Anonymous Pages 19
5.2 Prepaging File-backed Pages 20
6 Evaluation 23
6.1 Methodology 23
6.2 Application Switch Latency 26
6.3 Estimator Efficiency 27
6.4 Resource Utilization 29
6.5 Efficiency of Core Scheduling 30
6.6 Overhead 31
7 Related Work 33
8 Conclusion 35
Bibliography 36
국문 초록 41
감사의 글 42
</body>

