

저 시 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 목적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

공학석사학위논문

A Static Analyzer for Detecting Tensor Shape
Errors in Deep Neural Network Training Code

심층신경망학습코드의텐서형상에러를찾아내는
정적분석기

2022 년 8 월

서울대학교대학원

컴퓨터공학부

주호영

A Static Analyzer for Detecting Tensor Shape Errors in Deep
Neural Network Training Code

심층신경망학습코드의텐서형상에러를찾아내는
정적분석기

지도교수허충길

이논문을공학석사학위논문으로제출함

2022 년 8 월

서울대학교대학원

컴퓨터공학부

주호영

주호영의공학석사학위논문을인준함

2022 년 8 월

위 원 장 문병로 (인)
부위원장 허충길 (인)
위 원 이광근 (인)

Abstract

This thesis presents an automatic static analyzer PyTea that detects tensor-shape

errors in PyTorch code. The tensor-shape error is critical in the deep neural net

code; much of the training cost and intermediate results are to be lost once a tensor

shape mismatch occurs in the midst of the training phase. Given the input PyTorch

source, PyTea statically traces every possible execution path, collects tensor shape

constraints required by the tensor operation sequence of the path, and decides if the

constraints are unsatisfiable (hence a shape error can occur). PyTea’s scalability

and precision hinges on the characteristics of real-world PyTorch applications: the

number of execution paths after PyTea’s conservative pruning rarely explodes and

loops are simple enough to be circumscribed by symbolic abstraction. PyTea is

tested against the projects in the official PyTorch repository and some tensor-error

code questioned in the StackOverflow. PyTea successfully detects tensor shape

errors in these codes, each within a few seconds.

Keywords: Static analysis, deep learning, tensor shape error, SMT solver, Python,

PyTorch

Student Number: 2020-29856

1

Contents

Abstract 1

Chapter 1 Introduction 8

1.1 Our Goal . 8

1.2 Structure of PyTorch Programs . 8

1.3 Tensor Shape Errors . 9

Chapter 2 Overview of PyTea Analyzer 15

2.1 Assumptions . 16

2.2 Handling path explosions . 17

2.3 Handling Loops . 17

Chapter 3 Analysis Steps 19

3.1 PyTea IR . 19

3.2 Constraint generation . 20

3.2.1 Constraint generation rules for PyTea IR 22

3.2.2 Constraint types . 22

3.2.3 Handling path explosion . 25

3.3 Constraint check . 26

2

3.3.1 Online constraint check . 26

3.3.2 Offline Constraint check . 26

Chapter 4 Evaluation 28

4.1 Results . 31

4.1.1 PyTea for PyTorch Examples 31

4.1.2 PyTea for StackOverflow questions 32

4.2 Discovered Errors in PyTorch Applications 33

4.2.1 Detecting insufficient data preprocessing 34

4.2.2 Handling path explosion . 34

4.2.3 Handling both regular and residual batch sizes in the training

loop . 35

4.3 Limitation of PyTea . 36

Chapter 5 Related Works and Conclusion 38

Chapter AAppendix 41

A.1 Supported Python syntax . 41

A.2 Evaluation details . 43

A.2.1 Specification of injected shape error 43

A.2.2 Analysis result of complete PyTorch project 44

A.2.3 Complete command-line arguments 45

A.2.4 Code modification points . 45

A.2.5 Experiment comparison criteria 46

A.3 Complete definitions of PyTea IR syntax and semantics 47

A.3.1 Syntax . 47

A.3.2 Constraint . 48

A.3.3 Domain . 49

3

초록 56

Acknowledgements 57

4

List of Figures

Figure 1.1 Typical structure of neural network training code in PyTorch. 9

Figure 1.2 Basic PyTorch training code. 10

Figure 1.3 Constraint generation example. 11

Figure 1.4 Path explosion example. 12

Figure 1.5 Various type of tensor shape errors. 14

Figure 2.1 Overall architecture of PyTea. 16

Figure 3.1 Abstract syntax of PyTea IR.1 19

Figure 3.2 Abstract syntax of constraints. 20

Figure 3.3 A tensor that has shape (2, 3, 4). The rank of this tensor is

3, and each dimension has size 2, 3, and 4. 21

Figure 4.1 Test result of PyTea command-line tool. 29

Figure 4.2 Example code of StackOverflow question. (Case 2) 33

Figure 4.3 Insufficient preprocssing of image file. 34

Figure 4.4 Path explosion in Stochastic ResNet block. 35

Figure 4.5 Shape inference which requires the exact values of a tensor. . 36

Figure 5.1 Basic tensor operations that Pythia [1] fail to analyze correctly. 39

5

Figure A.1 Class and instance __mro__. 49

6

List of Tables

Table 4.1 Analysis result of pytorch/examples code repository. The lines

of library APIs encapsulated with the analyzer were counted

separately. ◦: Analysis succeeded and found injected errors,

△: Analysis succeeded but requires a modification of the main

code (e.g., provide explicit input tensor),×: Failed to analyze. 30

Table 4.2 Analysis result of the StackOverflow questions. The numbers

in parenthesis denote the URL id of each question. 32

Table A.1 The list of complete command-line arguments 45

7

Chapter 1

Introduction

1.1 Our Goal

Tensor shape mismatch is a critical bug in deep neural network machine learning

applications. Training a neural network is an expensive process that intends to ter-

minate only when it finishes processing a huge amount of data through a sequence

of tensor operations. In the middle of this time-consuming training process, if the

shape of an input datum failed to fit with a tensor operation, the whole process

abruptly stops wasting the entire training cost spent thus far, losing the trained, if

any, intermediate result.

Our goal is to automatically predict at compile-time such run-time tensor-shape

mismatch errors in PyTorch neural network training code.

1.2 Structure of PyTorch Programs

Contemporary machine learning frameworks such as PyTorch [2],TensorFlow [3],

and Keras [4] use Python APIs to build neural networks. Training a neural net-

8

16
162

16
16

Linear (X * 120)

Linear (120 * 120)

Linear (120 * 120)

Linear (120 * Z)

(* Y times)

Define Network Structure

Linear (16 * 120)

Linear (120 * 120)

Linear (120 * 120)

Linear (120 * 10)

X = 16, Y = 3, Z = 10

Linear (120 * 120)

Initialize Model
with Initialization parameters

Dataset

Preprocess Dataset Main Loop

16 16 16 ρ

batch_size = 16
M

Result

16

Epoch 1

Hyperparameters

M
Epoch 1

Dataset
Epoch 10

Epoch 2

Figure 1.1: Typical structure of neural network training code in PyTorch.

work with such frameworks is mostly patterned after a standard procedure which

is illustrated in Figure 1.1. Typical PyTorch neural network training code can be

divided into four stages. Figure 1.2 shows a code example, a simplified image clas-

sification code taken from the official PyTorch MNIST classification example [5].

We first define the series of neural network layers and make them into a single

neural network module. To correctly assemble the layers, the returned tensor of

the former layer must satisfy the input requirements of the next layer. We will see

those requirements from the next section. The network is instantiated with some

initialization parameters called hyperparameter, e.g., the number of hidden layers.

Next, the input dataset is preprocessed and adjusted to the requirements of the

network. Every dataset is cut into smaller same-sized chunks (called minibatches)

from this stage. Finally, the main loop starts, and the minibatches are sequentially

fed to the network. One epoch means a single loop that an entire dataset is passed

to the network, and the number of epochs (datasets) usually differs depending on

the purpose and structure of the neural network. Including the number of epochs,

the numbers of iterations in the training code are determined to be constants in

most cases, except the main training loop which depends on the size of a dataset.

1.3 Tensor Shape Errors

Figure 1.5 presents the typical type of tensor shape errors, which are slight

9

1 ## 1. DEFINE NETWORK STRUCTURE
2 class Net(nn.Module):
3 def __init__(self, out_classes):
4 super(Net, self).__init__()
5 self.layers = nn.Sequential(
6 nn.Linear(28 ∗ 28, 120),
7 nn.ReLU(),
8 nn.Linear(120, out_classes)
9)

10

11 def forward(self, x):
12 x = x.reshape(x.shape[0] , −1)
13 x = self.layers(x)
14 return x
15
16 ## 2. INITIALIZE MODEL
17 model = Net(out_classes=10)
18
19 ## 3. PREPROCESS DATASET
20 data = dataset.MNIST(’./data’, train=True,
21 transform=[ToTensor()])
22 loader = DataLoader(data, batch_size=16)
23
24 ## 4. RUN MAIN LOOP
25 for epoch in range(10):
26 for batch, label in loader:
27 # model(batch) == model.forward(batch)
28 output = model(batch)
29 loss = F.nll_loss(output, label)
30 loss.backward()

Figure 1.2: Basic PyTorch training code.

modifications of Figure 1.2. From the first example, the second Linear layer (line

8), which multiplies the input with 80×10-matrix, requires a specific shape of a

tensor as an input. The first layer (line 6), however, returns a wrong-shaped tensor,

and the overall pipeline will malfunction. This kind of error is called tensor shape

mismatch error, simply, shape error.

Shape error is rather hard to manually find, only to be detected by running

the program with an actual input. Indeed, the most notorious error for machine

learning engineers is the error that can only be occurred after an immense amount

10

mat1 = torch.rand(3, 5)
mat2 = torch.rand(5, 7)

mat3 = torch.mm(mat1, mat2)

mat1.rank == 2
mat2.rank == 2
mat1.shape[1] == mat2.shape[0]

Constraint

cond = random.randint(0, 1)

if cond == 1:
 result = 2 * mat1
else:
 result = mat1

return result

PyTorch Code PyTea

0 <= X <= 1

Constraint

X != 1

array = []

for i in range(3):
 array.append(i)

array := []

array.append(2)

return Tensor[3 X 5]

Conservative
Path Pruning

loader = DataLoader(
 dataset,
 batch_size=16)

for x in loader:
 y = network(x)

loader := DataLoader with
 Tensor[X x 32]

x := Tensor[16 x 32]
y := network(x)

x := Tensor[(X % 16) x 32]
y := network(x)

Loop Unrolling for
Constant-bound Loops

Unknown-length
Data Loop

array.append(1)

array.append(0)

X == 1

result :=
 Tensor[3 X 5]

result :=
 Tensor[3 X 5]

Figure 1.3: Constraint generation example.

of machine-hours.

Figure 1.5(b) shows another example. Its declaration of training data loader

(line 14) hides a shape error. DataLoader class slices the dataset sequentially by

batch_size and passes it to the model. If the total length of the dataset is not

divisible by batch_size, however, the size of the residual minibatch will be the

non-zero remainder of the total length. See line 16: because the third parameter

drop_last is missing, the model assumes a consistent batch size (lines 10 and 6)

hence the program will crash from the residual minibatch, losing the whole training

hours. The recent massive networks like GPT-3 [6] require more than hundreds of

11

1 class RandBlock(nn.Module):
2 def __init__(self):
3 super(RandBlock, self).__init__()
4 self.layer = nn.Linear(32, 32)
5

6 def forward(self, x):
7 rand_num = random.randint(0, 1)
8
9 if rand_num == 1:

10 result = self.layer(x)
11 else:
12 result = x
13
14 return result
15

16 model = nn.Sequential(
17 [RandBlock() for _ in range(24)])

Figure 1.4: Path explosion example.

machine-hours to train. This type of error must be noticed before its run.

Figure 1.5(c) illustrates another shape error that can be arisen from a dataset,

not a structure of the model. It does not take input from the pre-defined MNIST

dataset but reads an image from a file. If the read image is RGB, which has

3×H×W dimensions, it will not fit into the reshape method that requires a tensor

of 28×28-elements. That means we have to convert it to a monochrome image

before feeding it to the network. Even though it had been successfully tested with

monochrome images, there can be a user who tests it with an RGB image, crashing

the execution of the code.

Though several works [7, 1, 8, 9, 10] have reported tools to detect the shape

mismatch errors of machine learning libraries, especially for TensorFlow [3], none

of them have presented any static analysis tool that statically detects the shape

errors for realistic Python ML applications. Real-world machine learning appli-

cations heavily utilize third-party libraries, external datasets, and configuration

parameters, and handle their controls with subtle branch conditions and loops, but

12

the existing tools still lack in supporting some of these elements and thus they

fail to analyze even a simple ML application. To ensure that the shape error will

not happen for any input data, we should statically infer a precise yet conserva-

tive range of each tensor shape and track its transformations through all possible

execution paths.

13

1 class Net(nn.Module):
2 def __init__(self):
3 super(Net, self).__init__()
4 self.layers = nn.Sequential(
5 ## ’B’ represents batch size
6 ## [B x 784] ∗ [784 x 120] −> [B x 120]
7 nn.Linear(28 ∗ 28, 120),
8 ## [B x 120] −> [B x 120]
9 nn.ReLU(),

10 ## [B x 120] ∗ [80 x 10] −> ERROR!
11 nn.Linear(80, 10))

(a) Error on the network structure.

1 class Net(nn.Module):
2 def __init__(self, batch_size):
3 self.batch_size = batch_size
4 # ...
5 def forward(self, x):
6 x = x.reshape(self.batch_size, −1)
7 # ...
8
9 ## some models may require exact batch size

10 model = Net(batch_size=64)
11
12 ## POTENTIAL_ERROR 1:
13 ## argument ’drop_last=True’ is essential
14 loader = DataLoader(data, batch_size=64)
15 # loader = DataLoader(data, batch_size=64,
16 # drop_last=True)
17

18 for epoch in range(10):
19 for batch, label in loader:
20 out = model(batch)
21 ## ERROR ON THE LAST MINIBATCH
22 ## last batch size: 32 (!= 64)

(b) Error on the last minibatch.

1 ## POTENTIAL ERROR 2: channel size can be 3
2 img = PIL.Image.open(’./image.png’).resize([28, 28])
3 # img = img.convert(’L’)
4
5 ## ERROR WHEN THE IMAGE IS RGB.
6 tensor = to_tensor(img).reshape(28 ∗ 28)
7 out = model(tensor)

(c) Insufficient data preprocessing.

Figure 1.5: Various type of tensor shape errors.

14

Chapter 2

Overview of PyTea Analyzer

To find out shape errors before runtime, we present a static analyzer PyTea (Py-

Torch Tensor Error Analyzer). PyTea statically scans PyTorch applications and

detects possible shape errors. PyTea analyzes full training and evaluation paths of

the Python/PyTorch applications with additional data processing and mixed usage

of other libraries (e.g., Torchvision [11], NumPy [12])

Figure 2.1 illustrates the overall architecture of PyTea analyzer. It first trans-

lates the original Python codes into a kernel language, PyTea Internal Representa-

tion (PyTea IR). Then, it tracks every possible execution path of the translated IR

and collects the constraints regarding tensor shapes that dictate the conditions for

the code to run without a shape error. The collected constraint sets are given to

Satisfiability Modulo Theories (SMT) solver Z3 [13] to judge that those constraints

are satisfiable for every possible input shape. Following the result of the solver,

PyTea concludes which path contains a shape error or not. If the constraint-solving

by Z3 takes too much time, PyTea stops and tells ”don’t know”.

15

Valid

Invalid (with debug info)

Unsolvable
Instantiation

Info

Python w/
PyTorch

PyTea Analyzer
…

lstm(x,(…
linear(fx[…
conv(y,…)
 …

PyTea IR Paths &
Constraints

Input

0 <= x <= 3

1 <= x <= 5

-1 <= x <= 2

Z3
SMT Solver

Constraint
Check

Figure 2.1: Overall architecture of PyTea.

2.1 Assumptions

Given the typical structure of PyTorch neural network training code (Section 1.2),

we assume for the PyTea’s input the followings about the PyTorch deep neural

network training code:

A1 Other than the training or evaluation dataset, every input value required to

execute the code is injected by command-line arguments.

A2 There is no infinite loop and recursion. We assume that every loop bound

except for the datasets will be fixed to a constant.

A3 The unknown loop bound for the datasets is only for the size of each dataset

in an epoch, and every iteration is either with a fixed-sized minibatch of the

dataset or with a smaller, residual minibatch.

A4 We assume that string-manipulation expressions have no effect on tensor

shapes.

These assumptions are based on our observations that most PyTorch networks

and codes can be statically determined to fixed structures once we give precise

command-line arguments. Real-world PyTorch applications mostly construct their

structures by command-line arguments or external configuration files like JSON

files. Therefore, PyTea chooses to analyze programs only with exact command-line

arguments.

16

For a few networks that are not resolved to a single fixed structure, we consider

all possible structures. The number of the possible structures is to be controlled

by our path-pruning technique, and sometimes, for an inevitable case, by timeout.

2.2 Handling path explosions

The number of possible paths is exponential to the number of branches in sequence.

For some complex neural networks, such path explosion is possible. For exam-

ple, Neural Architecture Search [14] or Networks with Stochastic Depth [15] have

branches inside the network themselves. Figure 1.4 shows a representative path

explosion case that utilizes a runtime random variable. We can notice that the

feed-forward function (forward(self, x)) has two execution paths in its body.

The final structure of the network is made with 24 same blocks (line 17), which

makes 16M paths.

We handle this exponential cost blow-up by means of conservative path-pruning

and simple-minded timeouts. If we can find that the result of the binding scope

of that feed-forward function is pure (i.e., do not change any global value), and

its bounded value is indeed equal for every path and not related with the branch

conditions, we then safely ignore other paths except for one. If a path explosion

arises even if using this method, we then use a timeout. See Section 3.2.3 for more

details.

2.3 Handling Loops

For the loops in typical PyTorch neural network programs, as we discussed in

Section 1.2 and accordingly assumed in Section 2.1, we do not need the full power

of static analysis [16]. PyTea unrolls constant-bound loops (Assumption A2 in

Section 2.1) and analyzes their straight-line code version.

17

For the unknown-bound loops for datasets, PyTea analyzes the loop body for

just two cases with the aforementioned assumption A3. One is for the loop with

a fixed-sized regular minibatch of an epoch. The other is for the loop with the

residual minibatch. For example, see code in Figure 1.3. For the third code box

of Figure 1.3, we can unroll the loop expression to 3 same expressions. If we do

not know the length of the dataset, such as the fourth code box of Figure 1.3,

we use assumption A3 and consider only two cases for the two different sizes of

minibatches.

18

Chapter 3

Analysis Steps

3.1 PyTea IR

Expression
E → n ∈ Z | T | F | x (variable)

| let x E E
| ifE E E
| E bop E
| tensor-expr

bop → numeric-op | compare-op
numeric-op → + | - | * | · · ·
compare-op → < | = | · · ·
tensor-expr → mmE E

| reshapeE E E
| readImage | · · ·

Figure 3.1: Abstract syntax of PyTea IR.1

As the first step of the analysis, the input Python code is translated into the
1For the explanatory purpose, we did not include function calls and definitions. See for detailed

definitions of PyTea IR. Currently, we implemented 34 basic tensor expressions, and every other

PyTorch API has been constructed with the basic expressions. The basic expressions are as

19

kernel language, PyTea IR. See Figure 3.1. PyTorch APIs are translated into

tensor expressions that only define shape transformations, which PyTea IR focuses

on.

The second step of the analysis is to scan the PyTea IR code and generate

constraints.

3.2 Constraint generation

Constraint
c → c ∧ c

| c ∨ c

| ¬ c

| eb
| e = e

| en < en
| ∀αn ∈ [en, en].c

Value Expr
e → es| en| eb

Shape Expr
es → (en, · · · ,en)

| αs

| es[en:en]
| es@ es

Number Expr
en → n (const number)

| αn (unknown number)
| en bop en (binary operator)
| rank (es) (rank of shape)
| es[en] (en-th dim of shape es)
|

∏
es (num of elements

in shape es)
bop → + | - | * | · · ·
Boolean Expr
eb → True | False

| αb (unknown boolean)
| eb ∧ eb (conjunction)
| eb ∨ eb (disjuction)
| ¬ eb (negation)
| e = e (equality)
| en < en (less than)

Figure 3.2: Abstract syntax of constraints.

following: Torch.__init__, Torch.__getitem__, isSameShape, scalar, identity, broadcast,

matmul, mm, bmm, item, repeat, expand, expand_as, transpose, reduce, topk, view, conv2d,

conv_transpose2d, pool2d, batchnorm2d, cross_entropy, cat, stack, unsqueeze, squeeze, diag,

flatten, narrow, pixel_shuffle, layer_norm, pad, adaptive, interpolate.

20

1 0 1 0
1 1
0 0

03

2

4

1
1
1

Figure 3.3: A tensor that has shape (2, 3, 4). The rank of this tensor is 3, and each

dimension has size 2, 3, and 4.

Constraints are the conditions required by a PyTorch application so that it can

be executed without any tensor shape error. For example, two operands of a matrix

multiplication operation must share the same dimension. For each tensor operation

(mm, reshape, readImage, etc. of Figure 3.1), the shape of the input tensor must

obey the requirement of the corresponding operation.

Figure 3.2 shows the abstract syntax of the constraints. Value expression repre-

sents the value of PyTea IR expressions, which can be used inside shape constraints.

When PyTea analyzes a PyTea IR, it traces tensor shapes and primitive values of

Python and constructs symbolic value expressions. Shape expression represents the

shape of tensors, which is basically a tuple of integers (en, . . . , en). Figure 3.3 shows

an example of a tensor with a shape (2, 3, 4). Each integer is a dimension size. We

call the number of dimensions as a rank of a shape. We can slice (es[en:en]) a

shape expression or concatenate (es@ es) two shape expressions. For example, sup-

pose a PyTea IR variable t has shape (2,3,4). Expression t[0], which means

the first sub-tensor of t along the first axis, can be represented inside constraints

as (2,3,4)[1:rank(t)], or simply (3,4). In case of expression t’s shape is un-

known(αs), the shape of a sub-tensor t[0] will be represented as αs[1:rank(αs)].

21

3.2.1 Constraint generation rules for PyTea IR

To capture Python semantics and PyTorch shape transformations, PyTea follows

the static semantics (σ ⊢ E : e, C) of PyTea IR. Judgment (σ ⊢ E : e, C) means

that the PyTea IR expression E is statically approximated by a symbolic value

expression e under environment σ in case the constraint set C (⊆ Constraint) is

satisfied. The environment σ (∈ Var fin→ Value Expr) is a finite table that maps

variables to symbolic value expressions.

σ ⊢ E1 : e,C1 σ ∪ {x → e} ⊢ E2 : e
′,C2

σ ⊢ let x E1 E2 : e′,C1 ∪ C2

The introduction of constraints happens for branch expressions or PyTorch

APIs (See Section 3.2.2). The other expressions will collect constraints from their

subexpressions. For example, for an add expression (E1+E2), see:

σ ⊢ E1 : en,C1 σ ⊢ E2 : e′n,C2

σ ⊢ E1+E2 : en+ e′n,C1 ∪ C2

The result value is symbolically (en+ e′n) where en and e′n are symbolic results of

E1 and E2 respectively. The result constraint set will be a union of the result

constraint sets of E1 and E2.

Every symbolic variable originates from external input, e.g., random function

or a dataset. Every expression in the constraints is constructed by these variables

and constant values.

3.2.2 Constraint types

In order to help the constraint resolution engine Z3 come up with a sensible counter-

example that violates the derived constraints, we classify the constraints into two

exclusive classes: soft and hard constraints. For Z3 to generate counter-examples,

soft constraints can be violated, while hard constraints should not. Thus hard

22

constraints are, for example, those from branch conditions or about the value range

of the input. See Figure 1.3 again. Python built-in random.randint function

generates an unknown random variable within a given range [0, 1]. We mark

that bound constraint as a hard constraint. On the other hand, torch.mm API

demands that two input tensors have to be rank-2 (x, y) tensor and the second

dimension (y-coordinate) of the first tensor have to be equal to the first dimension

(x-coordinate) of the second tensor. This condition can be violated under the shape

of the inputs, hence we mark it as a soft constraint.

Hard constraint generation Hard constraints are those for inputs and branch

conditions. Input conditions restrict the initial ranges of each input. Branch con-

ditions split each path into two.

Consider the following rule.

c1 = (1 ≤ αn ≤ 4) (new αn)
c2 = (0 < α′

n) (new α′
n)

c3 = (0 < α′′
n) (new α′′

n)
es = (αn,α′

n,α′′
n)

σ ⊢ readImage : es, {c1, c2, c3}

The readImage API is an image fetching API that creates a new 3-rank tensor

which represents color channels, height, and width. The range of color channels is

from 1 to 4, i.e., monochrome to RGBA, hence the constraint c1 in the above rule.

The symbolic value is a tensor of shape (αn, α
′
n, α

′′
n).

As another case, consider the following rule.

σ ⊢ E1 : e1, C1 σ ⊢ E2 : e2, C2

c = (e1 ≤ αn ≤ e2) (new αn)

σ ⊢ randIntE1 E2 : αn,C1 ∪ C2 ∪ {c}

The randInt API generates a new random variable which is bound to given two

numbers. This expression is used from the Python API random.randint.

23

For branching case, see below:

σ ⊢ E1 : eb, C1 σ ⊢ E2 : e, C2

σ ⊢ ifE1 E2 E3 : e,C1 ∪ C2 ∪ {eb}

σ ⊢ E1 : eb, C1 σ ⊢ E3 : e, C3

σ ⊢ ifE1 E2 E3 : e,C1 ∪ C3 ∪ {¬eb}

The if expression creates two paths depending on the branch condition eb. If the

branch condition can be evaluated to a constant boolean, we can safely drop one

branch.

Soft constraint generation Soft constraints are the conditions with which Py-

Torch APIs must comply for them to run without a shape error. For instance,

two operands of a matrix multiplication have to share the same middle dimen-

sion, and the reshape operation requires that the number of elements of the input

tensor must be matched with the number of elements of the target shape. Each

PyTorch API holds unique requirements of input conditions, and PyTea collects

these requirements as soft constraints.

Following three rules, for example, PyTea collects such constraints from three

representative APIs (mm, reshape and

transpose):
σ ⊢ E1 : es,C1 σ ⊢ E2 : e

′
s,C2

rank(es) = rank(e′s) = 2
e′′s = (es[0], e′s[1]) c = (es[1] = e′s[0])

σ ⊢ mm E1 E2 : e′′s ,C1 ∪ C2 ∪ {c}

The mm API calculates a matrix multiplication of two 2-rank matrices. The second

dimension of the first matrix must be equal to the first dimension of the second

matrix following the basic rules of linear algebra.

The reshape API redefines the shape of a tensor. Reshaping a tensor does not

change or drop the value of a tensor, so the target shape must have the exactly

24

same number of values as the original shape (
∏

es =
∏

e′s):

σ ⊢ E1 : es,C1 σ ⊢ E2 : en,C2

σ ⊢ E3 : e
′
n,C3 e′s = (en,e′n)

c = (0 < en) ∧ (0 < e′n) ∧ (
∏

es =
∏

e′s)

σ ⊢ reshape E1 E2 E3 : e′s,C1 ∪ C2 ∪ C3 ∪ {c}

The transpose API swaps two dimensions of the tensor E1 along the E2-axis

and E3-axis. Unlike the normal 2-rank matrix transposition, transpose slices a

tensor with (E2,E3)-plane and transposes each matrix on each cross-section:

σ ⊢ E1 : es,C1 σ ⊢ E2 : en,C2 σ ⊢ E3 : e
′
n,C3

e1 = es[0:en] @ (es[e′n]) e2 = es[en + 1:e′n] @ (es[en])
e′s = e1 @ e2 @ es[e′n + 1:rank(es)]

c = (0 ≤ en < e′n < rank(es))
σ ⊢ transpose E1 E2 E3 : e′s,C1 ∪ C2 ∪ C3 ∪ {c}

From this rule, we only consider the shape of the result, not the movement of the

value inside the tensor.

3.2.3 Handling path explosion

Splitting execution paths whenever the analyzer encounters a branch can make the

analysis cost grow exponentially. We can ignore some of them using the online

constraint check, but we cannot for branches that use run-time input values.

However, we can still avoid path split if both paths behave identically in terms

of tensor shape. The conservative conditions are as follows:

1. Constraints collected from each path are not dependent on the branch con-

dition, and

2. Each path has no global side-effect, and

3. Two paths’ result symbolic values are the same.

25

PyTea checks the above conditions locally, within the boundary of the let

expression containing each branch. When PyTea cannot statically decide on any

of the three conditions, it safely assumes the conditions do not hold.

Most branches in PyTorch neural network blocks satisfy the above conditions.

Typically, network blocks should result in a tensor with a fixed shape that matches

with a requirement of the next block or the training target tensor. Those blocks’

feed-forward path will be translated into nested let blocks with branches that

return the same-shaped tensor.

3.3 Constraint check

3.3.1 Online constraint check

To reduce the number of constraints and paths, our analyzer eagerly simplifies the

symbolic expressions and constraints with primitive arithmetics and comparisons.

By our eager, online constraint check, the ranges of each symbol can sometimes

be known and be used to judge the subsequent constraints. If a branch condition

can be simplified into constant true or false, we can trace only a single branch

without splitting the path. If a constraint can be simplified to constant false, we

can immediately report that the path is unsafe.

3.3.2 Offline Constraint check

PyTea feeds the collected constraints of each path to Z3. Algorithm 1 describes

how we classify the Z3’s result. The final result of PyTea analyzer can be divided

into four cases:

• Valid: Soft constraints are always satisfied under the hard constraints. It

guarantees that shape error will not occur from this path.

26

Algorithm 1: Offline Constraint Check with SMT Solver
Input: H,S - logical conjunctions of hard, and soft constraint sets

Output: valid, invalid, dontknow, or unreachable

Function analyze(H,S):

if checkSat(H) = unsat then
return unreachable

else if S = ∅ then
return valid

v = checkSat(¬(H → S))

if v = unsat then
return valid

else if v = sat then
return invalid

else return dontknow

• Invalid: A possible shape error is detected. There is a counterexample that

makes soft constraints false under the hard constraints. We also report the

generation position of the first broken constraint.

• Don’t know: Z3 failed to decide whether constraints are satisfiable or not.

• Unreachable: There is a conflict between hard constraints in this path. In

other words, it is impossible to reach this path under the given conditions.

This can happen if a path had passed two contradicted branches.

If every path results in either unreachable or valid path, we can conclude that

the input program has no tensor shape error.

27

Chapter 4

Evaluation

Our experiments show PyTea’s practical performance for real-world applications.

To see the practicality of PyTea, we have collected several complete PyTorch ap-

plications and shape-related PyTorch bugs. First, we analyzed the official PyTorch

example projects from GitHub repository pytorch/examples[5]. This repository

consists 11 complete PyTorch applications about major machine learning tasks

from Generative Adversarial Network (GAN) [17] to Natural Language Processing.

We also collected some PyTorch shape mismatch errors from StackOverflow and

ran PyTea to statically detect them with PyTea. Finally, we conducted case analy-

ses of several fully-functional, hand-made PyTorch applications such as Stochastic

ResNet [15].

Experiment Settings PyTea analyzer is written in mainly TypeScript [18],

and communicates with Python scripts to run Z3. We also used Pyright [19] to

parse and track Python syntax. The experiments were conducted on R7 5800X

CPU, node.js 16.0.0 with TypeScript 4.2.4, and Python 3.8.8 with Z3Py 4.8.10.0.

28

Figure 4.1: Test result of PyTea command-line tool.

We fixed the epoch size to 1 from the command-line arguments, but used default

values for the other settings. We measured the total elapsed time from the cold

boot to the termination of PyTea. The full options and codes are written in the

appendix and the external repository. 1

PyTea command-line tool Figure 4.1 shows an example snapshot of the anal-

ysis result of the PyTea command-line tool. It has analyzed one of the PyTorch

example projects and prints the result of each phase of PyTea. It first prints out

the online constraint check results and categorizes each path into three cases, po-

tential success, potential unreachable, and immediate fail. The last one indicates

that the online checker has found a constraint that can be false from that path.

The potential unreachable path is the path which the online checker has found a

false constraint, but there are certain unresolved branch conditions. That path

will be checked at the next phase, and PyTea will examine whether the path has

conflicted constraints only within the hard constraint set, which means that the

path is unreachable from the beginning.

From the second step, PyTea delivers the collected constraint set of each path
1Link: https://sf.snu.ac.kr/pytea/

29

https://sf.snu.ac.kr/publications/pytea.zip

Table 4.1: Analysis result of pytorch/examples code repository. The lines of li-

brary APIs encapsulated with the analyzer were counted separately. ◦: Analysis

succeeded and found injected errors, △: Analysis succeeded but requires a modifi-

cation of the main code (e.g., provide explicit input tensor),×: Failed to analyze.

Network LOC (main + lib) PyTea [10] Total time (s)

dcgan 3714 (214 + 3500) ◦ × 1.75

fast_neural_style 4394 (338 + 4056) ◦ × 2.40

imagenet 3820 (320 + 3500) ◦ × 2.40

mnist 3607 (116 + 3491) ◦ × 1.59

mnist_hogwild 3620 (129 + 3491) ◦ △ 1.94

reinforcement_learning 180 (180 + -) × × -

super_resolution 3886 (193 + 3693) △ △ 1.57

snli 223 (223 + -) × × -

time_sequence_prediction 3333 (88 + 3245) △ × 1.88

vae 3593 (102 + 3491) ◦ △ 1.70

word_language_model 3278 (361 + 2912) △ × 1.81

to Z3 solver and runs the offline constraint checks. The offline check will report

the first conflicted constraint and its position of creation, i.e., the exact tensor

expression or PyTorch API that causes an error. If the solver does not found any

conflicted constraint, PyTea concludes that all the paths are valid, hence no tensor

shape error is possible.

30

4.1 Results

4.1.1 PyTea for PyTorch Examples

For the experiment, we pass each project twice to the analyzer. For the first pass,

PyTea analyzed the main code unmodified, and we check that PyTea does not

inform false positives. Then, we injected artificial shape errors, which we subtract

one from the first dimension of the target tensor, right before the neural network’s

loss calculation.

This simple method is decided on purpose. From this experiment, we focused

on the speed of PyTea which shows the practicallity in order to be integrated to

the code editor such as VSCode. This configuration can check the analysis time of

the main network, and also confirm that PyTea tracks the tensor operations from

the main network thoroughly, and we check PyTea does not report false negative

results.

We have compared PyTea against another PyTorch analyzer of Hattori et

al. [10]. Table 4.1 shows the overall results. Among the 11 projects, PyTea suc-

cessfully analyzed 6 projects without any modification of the original source code.

For three projects with a complex data preprocessing stage, PyTea needs a bypass

(i.e., code modification) of that stage to infer the shapes of input tensors. PyTea

has also succeeded in finding these injected errors. As these results show, PyTea is

quick and effective enough to be integrated into code editors. Meanwhile, Hattori

et al.’s analyzer failed for almost all benchmarks. Furthermore, since their semi-

static approach requires an explicit shape of the input tensor, we needed to feed

them an exact network model and input tensors to compare its performance with

PyTea.

Although we have aimed to analyze the codes without any modification, two

projects are heavily dependent on third-party data managing libraries like OpenAI-Gym

31

Table 4.2: Analysis result of the StackOverflow questions. The numbers in paren-

thesis denote the URL id of each question.

Question PyTea [10]

Case 1 (66995380) ◦ ×

Case 2 (60121107) ◦ ×

Case 3 (55124407) ◦ ×

Case 4 (62157890) ◦ ×

Case 5 (59108988) ◦ ×

Case 6 (57534072) ◦ ×

[20]. Because, at the moment, we are focusing on the analysis of PyTorch-centered

applications, we decided not to support those libraries for now. Supporting more

libraries is straightforward and is our future work.

4.1.2 PyTea for StackOverflow questions

To show that PyTea can identify yet another set of real-world shape mismatches,

we collected some PyTorch shape errors from StackOverflow questions. Recent

TensorFlow analyzers [1, 8] used a TensorFlow error dataset collected by Zhang

et al. [21], but we manually gathered PyTorch shape mismatch cases rather than

using their dataset, because of the fundamental difference of the structures between

TensorFlow and PyTorch. We also considered porting the TensorFlow error dataset

into PyTorch codes, but we concluded that the ported codes are fairly old and

artificial and do not reflect the standard method to build a PyTorch application.

Table 4.2 gives the analysis results of the 6 questions that we have collected.

PyTea could detect every shape mismatch case from those questions. Following the

analysis result, we could find the exact error positions and fix the shape mismatch

32

https://stackoverflow.com/q/66995380
https://stackoverflow.com/q/60121107
https://stackoverflow.com/q/55124407
https://stackoverflow.com/q/62157890
https://stackoverflow.com/q/59108988
https://stackoverflow.com/q/57534072

1 class LSTM(nn.Module):
2 def __init__(self, ...):
3 # 7 lines...
4 def forward(self, tokens):
5 # 5 lines ...
6 return out_scores
7

8 model = LSTM(embedding_matrix=np.zeros((1181, 100)))
9 loss_function = nn.NLLLoss()

10 optimizer = optim.Adam(model.parameters())
11
12 ## CUSTOM INPUT
13 input = torch.ones(256, 4, dtype=torch.long)
14 target = torch.ones(256, 4, dtype=torch.long)
15 output = model(input)
16
17 ## ORIGINAL
18 # output: [256 x 4 x 1181], target: [256 x 4]
19 # SHAPE MISMATCH: [256 x 1181] != [256 x 4]
20 loss = loss_function(output, target)
21
22 ## FIXED
23 # output: [1024 x 1181], target: [1024]
24 loss = loss_function(output.reshape(256∗4, 1181), target.reshape(256∗4))

Figure 4.2: Example code of StackOverflow question. (Case 2)

cases. For example, the main code (Figure 4.2) of Case 2 does not satisfy the shape

conditions for the inputs of NLLLoss (line 9). The NLLLoss module requires that the

shape of the first input tensor without the second dimension is equal to the shape

of the second input tensor. PyTea found out that NLLLoss could generate a shape

error from our experiment. We then fixed the code according to the StackOverflow

answer, and PyTea checked that every path became valid.

4.2 Discovered Errors in PyTorch Applications

We applied PyTea to several realistic PyTorch applications which contain potential

shape errors or path explosion. PyTea-found shape errors include the typical type

of shape errors that we introduced at Section 1.3. The complete projects and

33

1 def load_image(filename, size=None, scale=None):
2 # POTENTIAL ERROR: channel size can be 1.
3 img = Image.open(filename)
4 # img = Image.open(filename).convert(’RGB’)
5 # ...
6 return img

Figure 4.3: Insufficient preprocssing of image file.

experiment scripts from this section are in the external repository.

4.2.1 Detecting insufficient data preprocessing

We found a potential error at the data preprocessing stage from fast_neural_style

application of pytorch/examples repository. As shown in Figure 4.3, Image.open

does not guarantee the loaded image has channel 3, i.e., RGB image. Therefore,

any training or inference stage with a monochrome image will fail if we miss the

channel converting method like line 4. This error was remained from the initial

version and was fixed by the latest commit (a3f28a2) of the preprocessing script.

4.2.2 Handling path explosion

For a neural network model which contains a runtime path-explosion, PyTea

analyzed it without a timeout. The stochastic-resnet example uses several deep

learning techniques, mainly stochastic depth training [15]. See Figure 4.4. From

this application, the building block of the network contains runtime branches (line

9) that can cause a path explosion. PyTea’s path handling algorithm can success-

fully prune those branches and finishes without timeout. (Caveat: the overall data

handling is somewhat hard to follow; we did not automatically reduce the repeat

count of the main training loop. We explicitly reduced the length of the dataset

(CIFAR-10) with a configuration file (pyteaconfig.json), and without modifying

the code itself.)

34

https://github.com/pytorch/examples/commit/a3f28a26851867b314f4471ec6ca1c2c048217f1

1 def forward(self, x):
2 residual = x
3
4 if self.training:
5 # sample random float value
6 sample = self.m.sample().item()
7
8 ### PATH EXPLOSION
9 if sample > 0:

10 out = self.conv1(x)
11 out = self.bn1(out)
12 out = self.relu1(out)
13 out = self.conv2(out)
14 out = self.bn2(out)
15
16 if self.downsample is not None:
17 residual = self.downsample(x)
18 out = out + residual
19 else:
20 if self.downsample is not None:
21 residual = self.downsample(x)
22 out = residual
23 # ...
24

25 out = self.relu2(out)
26 return out

Figure 4.4: Path explosion in Stochastic ResNet block.

4.2.3 Handling both regular and residual batch sizes in the train-
ing loop

PyTea considers a residual minibatch in the training loop which leads to a shape

error, as we discussed in Section 2. We simplified the SimCLR [22, 23] application

to a single PyTorch-only script. From line 4 of Figure 4.5, the main network class

NTXentLoss takes an exact batch size to initialize itself. So if we omit drop_last

parameter that removes the last batch at line 32, the last residual minibatch will

lead to a crash if the total data size cannot be divided into the batch size. PyTea

finds that the inequality between two batch sizes from line 14 of Figure 4.5 generates

a shape error.

35

1 class NTXentLoss(torch.nn.Module):
2 def __init__(self, batch_size, temperature):
3 super(NTXentLoss, self).__init__()
4 self.batch_size = batch_size
5 # ...
6 def forward(self, zis, zjs):
7 batch = self.batch_size
8 ## ...
9 ## zis: [B x N] , sim: [2B x 2B]

10 ## CONSTRAINT: −sim.shape[0] <= b <= sim.shape[0]
11 l_pos = torch.diag(sim, b)
12 # ...
13 diag = torch.eye(2 ∗ b)
14 l1 = torch.diag(torch.ones(b), −b)
15 l2 = torch.diag(torch.ones(b), b)
16 mask = diag + l1 + l2
17 mask = (1 − mask).type(torch.bool)
18 # ’mask’ tensor has (4b^2 − 4b) True values.
19 negatives = sim[mask].view(2 ∗ b, −1)
20 # shape of ’negatives ’: (2b, 2b − 2)
21 # ...
22 # ...
23 train_loader = DataLoader(train_dataset, batch_size=256,
24 # drop_last=True, # ERROR
25)
26 losses = train(net, train_loader)

Figure 4.5: Shape inference which requires the exact values of a tensor.

4.3 Limitation of PyTea

The main focus of PyTea is the detection of shape errors, so it does not perform

general value analysis such as tracking the value of the tensor or array index out-

of-bound exception.

If a shape of a tensor is dependent on the value of the other tensor, PyTea can

miss a shape error. For instance, the view method at line 18 of Figure 4.5 requires

that the element count of an input tensor is divisible by 2b. Tensor masking by

a boolean tensor (similarity_matrix[mask]) returns a 1-D tensor whose length

is equal to the number of True of the masking tensor. Although lines 10 to 14

guarantee that the masking tensor has 4b2 − 4b True, we do not know the view

36

API will succeed since we do not track the exact value of a tensor.

37

Chapter 5

Related Works and Conclusion

We have developed an automatic static analyzer PyTea that detects tensor-shape

mismatch errors in PyTorch’s deep neural network code. Our experiments have

shown that PyTea’s performance is practical in reality.

Related Works There is only one work [10] of statically detecting shape mis-

match of PyTorch applications. Hattori et al. [10] presented a semi-static anal-

ysis of PyTorch applications that requires explicit tensor inputs. Because of the

path-insensitive and semi-static approach, their tool is premature to fully statically

analyze real-world applications. As shown in Table 4.1, the performance of their

tool is impractical.

For TensorFlow applications, the latest static analyzer is Pythia [1], follow-

ing the same group’s previous work Ariadne [7]. Pythia is dependent on the

Doop framework[24, 25] for Java pointer analysis and the Datalog language. Since

Pythia’s target is not Python, their coverage of Python and TensorFlow is still

insufficient to handle real-world applications. For example, Pythia cannot analyze

38

1 import tensorflow as tf
2

3 target = tf.ones((4, 5))
4 one, four = 1, 1
5 if one == 1:
6 four = 4
7

8 with tf.Session() as sess:
9 t0 = tf.ones((3, 4)) # [3 x 4] ∗ [4 x 5]

10 p0 = tf.matmul(t0, target) # Pass: Correct
11 t1 = tf.ones((3, 5)) # [3 x 5] ∗ [4 x 5]
12 p1 = tf.matmul(t1, target) # Error: Correct
13 t2 = tf.ones((3, 5 % 2)) # [3 x 2] ∗ [4 x 5]
14 p2 = tf.matmul(t2, target) # Pass: False Negative
15 t3 = tf.ones((3, 5))[0] # [5] ∗ [4 x 5]
16 p3 = tf.matmul(t3, target) # Pass: False Negative
17 t4 = tf.ones((3, 5))[0:1] # [1 x 5] ∗ [4 x 5]
18 p4 = tf.matmul(t4, target) # Pass: False Negative
19 t5 = tf.ones((3, four)) # [3 x 4] ∗ [4 x 5]
20 p5 = tf.matmul(t5, target) # Error: False Positive

Figure 5.1: Basic tensor operations that Pythia [1] fail to analyze correctly.

integer modular operation and tensor indexing and slicing, as shown in Figure 5.1.

ShapeFlow [8] is a tester, a dynamic analyzer with fake TensorFlow libraries that

only track shape transformations. Their dynamic approach achieved better perfor-

mance and coverage than Ariadne and Pythia, but it requires a reduced dummy

dataset to run their tool. It cannot detect a possibility of shape mismatch caused

by an untested input dataset.

There are several works to solve the shape mismatch problems[7, 1, 8, 9, 10],

but they all have fundamental limitations to analyze PyTorch machine learning

applications, such as the lack of support for handling external data, branches, and

loops. Also, most of them work on TensorFlow applications.

PyTorch constructs its graph dynamically which external input value controls

the branches and shape of the graph. Any static PyTorch code analyzer has to

handle those dynamic semantics. TensorFlow [3] is notoriously hard to debug as it

39

constructs the networks statically; their development team had decided to change

its basis to dynamic construction like PyTorch framework in TF version 2.0. The

migration to 2.0 means it will outdate the previous TensorFlow analyzers, and we

expect that our work can be adapted to TF 2.0.

Static analyses for Python programs have also been reported [26, 9]. Notably,

Cruz-Camacho’s thesis[9] contains the shape analysis of NumPy[12] array opera-

tors. However, their coverage of Python syntax is restricted that custom function

and class declaration are not supported. PyExZ3[27] is a value analyzer for Python

language that implemented dynamic symbolic executor with Z3 backend. To port

it for a shape mismatch problem needs a sizeable overhaul.

40

Appendix A

Appendix

A.1 Supported Python syntax

PyTea’s Python parsing stage is dependent on the Pyright type checker. From the

Python syntax supported by Pyright, we can analyze these statements or experi-

ments below:

• Assignment, Member access, Indexing

• Unary/Binary operation, operator overloading

• if ...: ... elif ...: ... else: ...

• for ... in ...: ...

• break, continue, return, pass

• Function/Closure definition

• Function call

• Variadic, keyword arguments (*args, **kwargs)

• Class (single-inheritance)

• __getitem__, __init__, __call__

41

• global, nonlocal

• lambda, ternary operator (... if ... else ...)

• Tuple, List, Dictionary initialization
• List comprehension, List/Dictionary unpacking, List slicing
• Import local script

The statements below are unsupported by PyTea. These statements will be

ignored.

• Augmented assignment
• async, await
• for ...: ... else: ...

• Custom __getattr__, __setattr__, __setitem__
• Class (multiple-inheritance)
• Decorator, @staticmethod, @classmethod
• Generator (yield)
• Formatted string (e.g., f"{...}")
• Keyword/Positional-only parameters (e.g., def f(x, /, y, *, z))

• Set, Frozen set
• Type annotation
• Import 3rd-party (pip) library
• Side-effects (File I/O, Networking, …)

The statements below can be parsed or analyzed, but we do not guarantee their

analysis are correct. We will describe their behavior in PyTea.

• while: PyTea assumes that every loop is finite. The maximum iteration

counts will be bound to 300.
• Iterator protocol (__iter__, __next__): Support of iterator protocol is still

premature. Because of the finite loop assumption, an iterator instance should

have constant length too. (i.e., iterator should implement __len__)

42

• raise: Exception handling is not supported. If an exception is raised, the

analyzer will be terminated with an error.
• try: A except ...: ... else: ... finally: B: This will be translated

to A; B

• with A: B: This will be translated to A; B

• assert ...: If assert condition is definitely false, PyTea will report an error

without handling exception.
• del ...: Only removing variable is supported.

For the Python builtin and 3rd-party libraries, See bin/dist/pylib directory.

A.2 Evaluation details

From the Section 4, we measured the mean analysis time of each project in pytorch/

examples repository. Analysis time means the total execution time of bin/pytea.py.

Each project is analyzed 5 times first for warmup. Then, we measured the mean

running time of 30 repeated analyses.

The actual analysis time (i.e., online checker and Z3 execution time) will be

shorter than the experiment results because the total execution time includes the

interpreting time of 1.2MB JavaScript codes, importing time Z3 runtime, and trans-

lation time of PyTorch implementation of PyTea.

Use -l=2 options (e.g., python bin/pytea.py -l=2 path/to/script.py) for

more detailed time measurement. It will show its execution times step by step.

We expect that subsequent optimizations like caching translated PyTorch IR will

reduce most of the execution time.

A.2.1 Specification of injected shape error

We modified the shape of the target tensor from the loss functions. From the

projects in pytorch/examples, every training loop ends with loss calculation using

43

loss modules or functions like torch.nn.NLLLoss. Those functions require two in-

puts, target value and predicted value made by neural networks. We subtracted one

from the first dimension of the target tensor using the expression like target[1:].

This simple method is decided on purpose. From this experiment, we focused

on the speed of PyTea which shows the practicallity in order to be integrated to the

code editor such as VSCode. Also, there are not much common feature between the

diverse projects. To check the overall speed of PyTea, we choose to inject the shape

error right after the feed-forward path of the main network. This configuration can

check the analysis time of the main network.

We can check that PyTea really traced every function and method inside the

main network. We have implemented precise warning messages which notifies to

user if PyTea met an unimplemented API. PyTea reports no errors and few unim-

portant warnings if we do not inject shape error, and only reports an error if we

inject an error. The user also can check PyTea’s tracing by fixing the class defini-

tion of the network model.

A.2.2 Analysis result of complete PyTorch project

We included three complete PyTorch projects: SimCLR, stochastic-resnet, and

transformer. The last project is not introduced from the experiment results.

The transformer project is simplified version of huggingface/transformer reposi-

tory [28] which is the collection of several Natural Language Processing methods

and networks such as BERT model [29]. We injected a shape error at line 181 of

modeling_bert.py. PyTea can successfully find that error. To see the complete

analysis results of PyTorch projects, run test_all.sh.

44

Table A.1: The list of complete command-line arguments

Network Command-line arguments

dcgan --cuda --dataset=cifar10

--niter=1 --manualSeed=1

fast_neural_style train --epochs=1 --cuda=1

--dataset=./ --save-model-dir=./

imagenet --data=./data --gpu=1 --epochs=1

mnist --epochs=1

mnist_hogwild --data=./data --epochs=1

super_resolution --cuda --upscale_factor=2 --nEpochs=1

time_sequence_prediction --steps=1

vae --epochs=1 --seed=1

word_language_model --epochs=1 --cuda

A.2.3 Complete command-line arguments

Basically, we use default command line arguments except for epoch count and

GPU usage. However, we have to give an explicit value to some arguments in

which required=True is set. Some projects are given explicit seeds, but it does

not affect the main evaluation. Table A.1 shows the full command-line arguments

used from the evaluation. See pyteaconfig.json in each project.

A.2.4 Code modification points

As we mentioned in the Section 4, some codes need bypasses of the complex data

processing stage. From the pytorch/examples projects, we commented out some

lines that perform external text file manipulation. Those points are marked with

a comment # <FIXED LINE FOR EXPERIMENT>.

45

StackOverflow users usually upload their codes as a code snippet which cannot

be solely executed. Therefore, we added some basic training or network initializa-

tion codes to be able to analyzed by PyTea.

A.2.5 Experiment comparison criteria

We have compared with the PyTorch analyzer of Hattori et al. [10]. Since their

semi-static approach needs an explicit network and input tensor, we followed their

testing code [30] and made each testing model at experiment/elichika. Two

StackOverflow questions’ (UT-1 and UT-3) bugs are not from a model configuration

(inconsistent batch size and misuse of API, respectively).We did not test them on

Hattori et al.

We tested their tool with test_elichika.py. If the analysis of a network shows

a warning which failed to infer the type of some module or returns symbolic value

or dimension None, we mark those tests as failed.

46

A.3 Complete definitions of PyTea IR syntax and se-
mantics

A.3.1 Syntax
E ∈ expr → n ∈ Z | r ∈ Float |

s ∈ String | True | False | None (constants)
| Object (new object)
| Tuple(expr+) (tuple)
| Call(expr, expr∗) (function call)
| LibCall(id, expr∗) (library function call)
| BinOp(binary-op, expr, expr) (binary operation)
| UnaryOp(unary-op, expr) (unary operation)
| left-val (assignable)

El ∈ left-val → Name(id) (name node)
| Attribute(expr, id) (attribute)
| Subscript(expr, expr) (subscript)

S ∈ stmt → Pass (skip)
| Expr(expr) (evaluation)
| Seq(stmt, stmt) (sequence)
| Assign(left-val, expr) (assignment)
| If(expr, stmt, stmt) (conditional)
| ForIn(id, expr, stmt) (bounded loop)
| Return(expr) | Continue | Break (control flow)
| Let(id, (expr | Undef), stmt) (variable def)
| FunDef(id, id∗, stmt, stmt) (function def)

binary-op → numeric-op | compare-op |
bool-op | list-op

numeric-op → + | - | * | ** | / | // | %
compare-op → <| <= | == | !=

bool-op → and | or | is | is not
list-op → in | not in

unary-op → not | -

LibCall expression is used to implement some complex Python syntax (e.g.,

keyword argument) and tensor-expr from the main paper. Also, some complicated

behaviors are implemented with a single LibCall for optimization purposes. Every

other syntax is essentially the same as the corresponding one of Python.

47

A.3.2 Constraint
Constraint c → c ∧ c

| c ∨ c
| ¬ c
| eb
| e = e
| en < en
| ∀αn ∈ [en, en].c (c is true forall αn)
| broadcastable (es, es)

Value Expr e → es| en| eb| estr
Shape Expr es → (en,...,en) (ranked shape)

| αs (unknown shape)
| es[en:en] (shape slicing)
| es@ es (shape concat)
| setdim (es, en, en) (set enth dim of

shape es to en)
| broadcast (es, es) (broadcast shapes)

Number Expr en → n ∈ Int + Float
| αn (unknown number)
| uop en
| en bop en
| max (e+n) | min (e+n)
| rank (es) (rank of shape es)
| es[en] (enth dim of shape es)
|

∏
es (numel of shape es)

Boolean Expr eb → True | False
| αb (unknown boolean)
| eb ∧ eb
| eb ∨ eb
| ¬ eb
| e = e
| en < en

String Expr estr → s ∈ String
| αstr (unknown string)
| estr[en:en] (string slicing)
| estr@ estr (string concat)

Binary Operation bop → + | - | * | / | // | %
Unary Operation uop → neg | floor | ceil | abs

broadcastable and broadcast follows the numpy broadcasting rule. You can

see the broadcasting rule from https://numpy.org/doc/stable/user/basics.

broadcasting.html.

48

https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html

A.3.3 Domain

σ ∈ Env = Id fin→ Addr
H ∈ Heap = Addr fin→ Value
v ∈ Value = Value Expr + Addr + Object

+Func + { None, NotImpl, Undef }
o ∈ Object = (Id + Int + String) fin→ Value
f ∈ Func = Id × Id∗ × Stmt × Env
κ ∈ Cont = { run, cnt, brk }
l ∈ Addr (address space)
i, x ∈ Id (identifier)
C ∈ 2Constraint (constraint set)

"length", ""(empty string), . . . ∈ String

__len__,__add__,__getitem__, . . . ∈ Id

From the following semantics, the domain type of Object can be distinguished

by its font. Domain String is used for dictionary and __getitem__ method (e.g.,

obj["key"]). Id is used for object attribute and __getattr__ method (e.g., obj.key).

Int is used for list and __getitem__ method (e.g., obj[0]).

Every Python object such as class, list, tuple, dictionary will be translated to

Object. For optimization purpose, the actual implementations of Object and Func

have some additional information such as function default parameter.

1 class A: # A.__mro__ = (A, object)
2 pass
3 class B(A): # B.__mro__ = (B, A)
4 pass
5 b = B() # b.__mro__ = (B, A)
6

Figure A.1: Class and instance __mro__.

There are two reserved attributes for each Object value. $length indicates the

length of object if it is a lengthed value like list. __mro__ indicates the Method

Resolution Order (MRO) of Python. PyTea assigns a two-element tuple to attribute

__mro__ of each object. The first element is its class if the object is instance,

49

or itself if the object is a class. The next object is the first element’s parent class.

Unlike the original Python, PyTea does not support multiple inheritance, that

means the set of __mro__ forms the edges of class inheritance tree.

50

Bibliography

[1] S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis,

“Static Analysis of Shape in TensorFlow Programs,” in 34th European Confer-

ence on Object-Oriented Programming, ECOOP 2020, (Dagstuhl, Germany),

pp. 15:1–15:29, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-

Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala, “Pytorch: An imperative style, high-performance deep learning

library,” in Advances in Neural Information Processing Systems 32, pp. 8024–

8035, Curran Associates, Inc., 2019.

[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,

F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and

X. Zheng, “ TensorFlow: Large-Scale Machine Learning on Heterogeneous

51

Systems.” https://www.tensorflow.org/, 2015. Software available from tensor-

flow.org.

[4] F. Chollet et al., “Keras.” https://keras.io, 2015.

[5] “pytorch/examples.” https://github.com/pytorch/examples, 2017.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-

Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,

C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,

J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei,

“Language Models are Few-Shot Learners.” https://arxiv.org/abs/2005.14165,

2020. arXiv:2005.14165.

[7] J. Dolby, A. Shinnar, A. Allain, and J. Reinen, “Ariadne: Analysis for Machine

Learning Programs,” in Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages, MAPL 2018,

(Philadelphia, PA, USA),p. 1–10, Association for Computing Machinery, 2018.

[8] S. Verma and Z. Su, “ShapeFlow: Dynamic shape interpreter for TensorFlow.”

https://arxiv.org/abs/2011.13452, 2020. arXiv:2011.13452.

[9] E. Cruz-Camacho, “Static Analysis of Python Programs using Abstract Inter-

pretation: An Application to Tensor Shape Analysis,” Master’s thesis, Uni-

versidad Nacional de Colombia - Sede Bogotá, 2019.

[10] M. Hattori, S. Sawada, S. Hamaji, M. Sakai, and S. Shimizu, “Semi-Static

Type, Shape, and Symbolic Shape Inference for Dynamic Computation

Graphs,” in Proceedings of the 4th ACM SIGPLAN International Workshop

52

https://keras.io

on Machine Learning and Programming Languages, MAPL 2020, (London,

UK), p. 1119, Association for Computing Machinery, 2020.

[11] “Torchvision.” https://github.com/pytorch/vision, 2016.

[12] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virta-

nen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,

M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del

Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,

W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array program-

ming with NumPy,” Nature, vol. 585, pp. 357–362, Sept. 2020.

[13] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Proceedings of

the Theory and Practice of Software, 14th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems, TACAS’08/

ETAPS’08, (Budapest, Hungary), p. 337–340, Springer-Verlag, 2008.

[14] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learn-

ing,” in 5th International Conference on Learning Representations, (Toulon,

France),OpenReview.net, 2017.

[15] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks

with stochastic depth,” in 14th European Conference on Computer Vision,

(Amsterdam, Netherlands), pp. 646–661, Springer, 2016.

[16] X. Rival and K. Yi, Introduction to Static Analysis: An Abstract Interpretation

Perspective. Cambridge, MA, USA: The MIT Press, 2020.

[17] A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learn-

ing with Deep Convolutional Generative Adversarial Networks,” in 4th Inter-

53

national Conference on Learning Representations, (San Juan, Puerto Rico),

2016.

[18] “Typescript.” https://www.typescriptlang.org/, 2012.

[19] “Pyright.” https://github.com/microsoft/pyright, 2018.

[20] “OpenAI Gym.” https://github.com/openai/gym, 2016.

[21] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An Empiri-

cal Study on TensorFlow Program Bugs,” in Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis, IS-

STA 2018, (Amsterdam, Netherlands), p. 129–140, Association for Computing

Machinery, 2018.

[22] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple framework

for contrastive learning of visual representations,”CoRR, vol. abs/2002.05709,

2020.

[23] “sthalles/ SimCLR.” https:// github.com/ sthalles/ SimCLR/ tree/

e8a690ae4f4359528cfba6f270a9226e3733b7fa, 2020.

[24] M. Bravenboer and Y. Smaragdakis, “Strictly declarative specification of so-

phisticated points-to analyses,” SIGPLAN Not., vol. 44, p. 243–262, Oct. 2009.

[25] N. Grech and Y. Smaragdakis, “P/taint: Unified points-to and taint anal-

ysis,” in 2017 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2017, (Van-

couver, BC, Canada), pp. 28–35, Association for Computing Machinery, Oct.

2017.

[26] A. Fromherz, A. Ouadjaout, and A. Miné, “Static Value Analysis of Python

Programs by Abstract Interpretation,” in 10th International Symposium

54

NASA Formal Methods, NFM 2018, (Newport News, VA, USA), pp. 185–202,

Springer, Apr. 2018.

[27] T. Ball and J. Daniel, “Deconstructing Dynamic Symbolic Execution,” in The

2014 Marktober Summer School on Deop, no. MSR-TR-2015-95, IOS Press,

January 2015.

[28] “huggingface/transformers.” https://github.com/huggingface/transformers.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of

deep bidirectional transformers for language understanding,” in Proceedings

of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), (Minneapolis, Minnesota), pp. 4171–4186, Association for

Computational Linguistics, June 2019.

[30] “pfnet-research/ chainer-compiler.” https://github.com/pfnet-research/

chainer-compiler/tree/master/tests/elichika_typing/pytorch. On-

line: accessed 1 May 2020.

55

https://github.com/pfnet-research/chainer-compiler/tree/master/tests/elichika_typing/pytorch
https://github.com/pfnet-research/chainer-compiler/tree/master/tests/elichika_typing/pytorch

초록

본논문은 PyTorch 코드에서텐서형상오류를검출하는자동정적분석기 PyTea를

소개한다. 텐서형상오류는한번일어나면많은학습시간과중간결과를잃어버릴

수있기에심층신경망학습에있어매우중요한부분을차지한다. PyTea는 PyTorch

코드를받아모든가능한실행경로를정적으로분석하고, 각경로마다텐서연산이

오류없이수행될수있는텐서형상의조건을모은뒤,그조건들을전부만족시킬수

있는지없는지를판단하여텐서형상오류가있는지를감지한다. PyTea의확장성과

정확성은 PyTea의심볼릭축약및경로단순화후남은경로갯수가많지않으며,

반복문의실행횟수도충분히작다는실제 PyTorch 프로그램의특성에기반한다.

PyTea는공식 PyTorch 코드저장소와 StackOverflow의텐서오류코드를기반으로

테스트되었으며,이러한실험에서모두수초이내로텐서형상오류를검출하였다.

주요어: 정적분석,심층학습,텐서형상오류, SMT 솔버,파이선,파이토치

학번: 2020-29856

56

Acknowledgements

I truly appreciate the guidance of my advisor Chung-Kil Hur, and the professor

Kwangkeun Yi. They have assisted me to navigate the vast space of the theories

of programming languages and static analysis.

Also, I’d like to thank all the members in Software Foundations Lab and ROPAS

Lab, especially the colleagues who have supported this hard works – Sehoon Kim,

Woosung Song, Kyuyeon Park, and DongKwon Lee. This dissertation cannot be

realized without their great efforts.

This work was partially supported by Korea Institute for Information & Com-

munications Technology Promotion (No.2021-0-00059),NAVER CLOVA (No. 0536-

20200005). This work was also supported by BK21 FOUR Intelligence Comput-

ing(Dept. of Computer Science and Engineering, SNU) funded by National Re-

search Foundation of Korea(NRF) (4199990214639).

57

	Abstract
	Chapter 1 Introduction
	1.1 Our Goal
	1.2 Structure of PyTorch Programs
	1.3 Tensor Shape Errors

	Chapter 2 Overview of PyTea Analyzer
	2.1 Assumptions
	2.2 Handling path explosions
	2.3 Handling Loops

	Chapter 3 Analysis Steps
	3.1 PyTea IR
	3.2 Constraint generation
	3.2.1 Constraint generation rules for PyTea IR
	3.2.2 Constraint types
	3.2.3 Handling path explosion

	3.3 Constraint check
	3.3.1 Online constraint check
	3.3.2 Offline constraint check

	Chapter 4 Evaluation
	4.1 Results
	4.1.1 PyTea for PyTorch Examples
	4.1.2 PyTea for StackOverflow questions

	4.2 Discovered Errors in PyTorch Applications
	4.2.1 Detecting insuﬀicient data preprocessing
	4.2.2 Handling path explosion
	4.2.3 Handling both regular and residual batch sizes in the training loop

	4.3 Limitation of PyTea

	Chapter 5 Related Works and Conclusion
	Chapter A Appendix
	A.1 Supported Python syntax
	A.2 Evaluation details
	A.2.1 Specification of injected shape error
	A.2.2 Analysis result of complete PyTorch project
	A.2.3 Complete command-line arguments
	A.2.4 Code modification points
	A.2.5 Experiment comparison criteria

	A.3 Complete definitions of PyTea IR syntax and semantics
	A.3.1 Syntax
	A.3.2 Constraint
	A.3.3 Domain

	초록
	Acknowledgements

<startpage>4
Abstract 1
Chapter 1 Introduction 8
 1.1 Our Goal 8
 1.2 Structure of PyTorch Programs 8
 1.3 Tensor Shape Errors 9
Chapter 2 Overview of PyTea Analyzer 15
 2.1 Assumptions 16
 2.2 Handling path explosions 17
 2.3 Handling Loops 17
Chapter 3 Analysis Steps 19
 3.1 PyTea IR 19
 3.2 Constraint generation 20
 3.2.1 Constraint generation rules for PyTea IR 22
 3.2.2 Constraint types 22
 3.2.3 Handling path explosion 25
 3.3 Constraint check 26
 3.3.1 Online constraint check 26
 3.3.2 Offline constraint check 26
Chapter 4 Evaluation 28
 4.1 Results 31
 4.1.1 PyTea for PyTorch Examples 31
 4.1.2 PyTea for StackOverflow questions 32
 4.2 Discovered Errors in PyTorch Applications 33
 4.2.1 Detecting insuﬀicient data preprocessing 34
 4.2.2 Handling path explosion 34
 4.2.3 Handling both regular and residual batch sizes in the training loop 35
 4.3 Limitation of PyTea 36
Chapter 5 Related Works and Conclusion 38
Chapter A Appendix 41
 A.1 Supported Python syntax 41
 A.2 Evaluation details 43
 A.2.1 Specification of injected shape error 43
 A.2.2 Analysis result of complete PyTorch project 44
 A.2.3 Complete command-line arguments 45
 A.2.4 Code modification points 45
 A.2.5 Experiment comparison criteria 46
 A.3 Complete definitions of PyTea IR syntax and semantics 47
 A.3.1 Syntax 47
 A.3.2 Constraint 48
 A.3.3 Domain 49
초록 56
Acknowledgements 57
</body>

