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Abstract

Given the prevalence of mobile and IoT devices, continuous clustering against

streaming data has become an essential tool of increasing importance for data analyt-

ics. Among many clustering approaches, density-based clustering has garnered much

attention due to its unique advantage that it can detect clusters of an arbitrary shape

when noise exists. However, when the clusters need to be updated continuously along

with an evolving input dataset, a relatively high computational cost is required. Partic-

ularly, deleting data points from the clusters causes severe performance degradation.

In this dissertation, the performance limits of the incremental density-based clus-

tering over sliding windows are addressed. Ultimately, two algorithms, DISC and

DenForest, are proposed. The first algorithm DISC is an incremental density-based

clustering algorithm that efficiently produces the same clustering results as DBSCAN

over sliding windows. It focuses on redundancy issues that occur when updating clus-

ters. When multiple data points are inserted or deleted individually, surrounding data

points are explored and retrieved redundantly. DISC addresses these issues and im-

proves the performance by updating multiple points in a batch. It also presents several

optimization techniques. The second algorithm DenForest is an incremental density-

based clustering algorithm that primarily focuses on the deletion process. Unlike previ-

ous methods that manage clusters as a graph, DenForest manages clusters as a group of

spanning trees, which contributes to very efficient deletion performance. Moreover, it

provides a batch-optimized technique to improve the insertion performance. To prove

the effectiveness of the two algorithms, extensive evaluations were conducted, and it is

demonstrated that DISC and DenForest outperform the state-of-the-art density-based

clustering algorithms significantly.
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Chapter 1

Introduction

Clustering is one of the common methods of unsupervised learning, which discovers

the natural groupings in the unlabeled data. Since K-means [61] was proposed more

than a half century ago, clustering has been studied extensively (publishing thousands

of clustering algorithms in the literature [47]) and applied widely to many data analysis

tasks in various fields.

Among many clustering approaches, density-based clustering, pioneered by Es-

ter et al. [28] has its unique advantages. Unlike K-means (and another well-known

BIRCH algorithm [91]) that discovers spherical clusters, the density-based approach

can identify clusters of an arbitrary shape without requiring the pre-set number of la-

bels and can determine which cluster each non-noise data object belongs to. Due to its

unique advantages, the density-based clustering garnered much attention. Applications

that rely on density-based clustering include the detection of hot spots or segmented

regions [30, 89, 72], geo-social network analysis [6, 54], the classification of LiDAR

point clouds [21, 31], and mining events by clustering text messages [58].

The density-based clustering is, however, computationally intensive, and the exe-

cution of these analytic tasks for time-varying or streaming data involves significant

challenges for real-time clustering. Consider a traffic monitoring system that peri-

odically alerts the local public about congested regions. The congested regions (or

1
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Figure 1.1: Density-Based Clustering over Sliding Windows

density-based clusters) are determined based on the most recent ten-minute vehicu-

lar GPS data, which is updated every 30 seconds. The clusters will be reproduced

periodically over the sliding window of a 10-min duration that advances every 30s.

(See Figure 1.1 for illustration.) To perform this task in a timely manner, the density-

based clustering method would update the congested regions incrementally rather than

recomputing them from scratch every 30s. Such incremental clustering must update

the congested regions efficiently by including new data points (∆Din) as well as ex-

cluding the outdated ones (∆Dout) from the analysis. However, existing incremental

density-based clustering approaches require a high computational cost.

The density-based algorithms often manage clusters as a graph either physically or

logically. Representing clusters as a graph is a popular approach, since it enables an

algorithm to represent clusters having irregular shapes. However, it requires a costly

graph traversal to check whether the cluster is still connected after deleting a point.

That is, deleting even a single point can split an existing cluster, and it may require

exploring a number of surrounding objects to check the split of the cluster. This task

is essentially equivalent to the problem of dynamic graph connectivity [73], and it be-

2



comes the primary cause of the slow deletion by the incremental density-based cluster-

ing algorithms [82]. For example, the Incremental DBSCAN algorithm [27] requires

numerous spatial range searches to traverse a graph whenever a point is removed. One

approach called Extra-N [87] avoids the slow deletion problem by pre-computing clus-

ters in future windows, but it consumes memory too much and suffers from its own

slow insert operation when clusters need to be updated frequently.

Grid-based approximation methods have also been reported in the literature [34,

33]. The ρ-double-approximate DBSCAN algorithm [34] achieves poly-logarithmic

time complexity for deletion by adopting Holm et al. ’s data structure [44], which is

proposed for dynamic graph connectivity algorithms. However, this grid-based algo-

rithm requires a large number of approximate counting and nearest neighbor queries

to such an extent that its practical performance becomes worse than the aforemen-

tioned approaches. The performance degradation is even more aggravated when high-

resolution clusters are required [71, 84].

Given the relatively high cost of density-based clustering for streaming datasets,

many summarization-based approaches have been proposed to expedite the contin-

uous re-discovery of clusters for streaming data [13, 67, 41, 37, 16, 68, 74]. These

methods are good at discovering clusters quickly from the infinite data streams; they

consume less memory and generally show low latency. However, they cannot capture

the clusters accurately in real time and cannot achieve high clustering quality enough

to replace the exact approaches such as DBSCAN.

1.1 Overview of Dissertation

The goal of this dissertation is to address the limitation of density-based clustering so

that the clustering tasks for streaming data can be carried out in a timely manner with-

out compromising the quality of clustering results or consuming an excessive amount

of computational resources. Particularly, the performance degradation in the deletion

3



Figure 1.2: Dissertation Overview

is addressed squarely to accelerate the density-based clustering over sliding windows.

Achieving this goal is not an easy challenge to tackle, which has been confirmed re-

peatedly by the previous studies [27, 82, 34, 87].

Ultimately, two algorithms are presented in this dissertation. (See Figure 1.2.) The

first algorithmDISC is an efficient incremental clustering algorithm over sliding win-

dows that is capable of producing exactly the same clustering results as DBSCAN.

DISC efficiently inserts and deletes data points into/from clusters with COLLECT

and CLUSTER operations. The COLLECT operation gathers data points to be inserted

or deleted, and the CLUSTER operation partially updates the clusters according to the

collected points. DISC primarily focuses on redundancy issues in updating clusters.

When multiple points are inserted or deleted individually, surrounding data points are

explored redundantly and also retrieved from the spatial index redundantly. DISC ad-

dresses those issues by supporting batch updates equipped with several optimization

techniques. DISC defines minimal bonding cores to process multiple data points to-

gether. With Minimal bonding cores, the full scan of data points is prevented when the

clusters are updated, and the redundancy in exploration can be avoided. Moreover, the

4



insertion process is accelerated by a spatial index-based optimization called Epoch-

Based Probe, and the deletion process is further accelerated by a heuristic traversal

approach called Multi-Starter BFS.

The second clustering algorithm DenForest is an algorithm that addresses the

costly connectivity check problem in density-based clustering. DenForest produces

similar density-based clustering results to DBSCAN. It supports Insert and Delete

operations to efficiently update clusters. While the previous methods manage clusters

as a graph, DenForest manages clusters as a group of spanning trees called DenTrees.

By managing the DenTrees, DenForest does not require a costly graph traversal to

determine the connectedness of clusters. Therefore, it shows very efficient deletion

performance. For fast insertion, DenForest provides a batch-optimized technique that

exploits the locality of the data points.

To prove the practical effectiveness of the two algorithms, extensive experiments

were conducted using real datasets. With the extensive experiments, it is demonstrated

that the ideas of DISC and DenForest contribute to the performance improvement in

various settings and they outperform the state-of-the-art density-based clustering al-

gorithms significantly. In terms of clustering quality, DenForest produces a slightly

different clustering result from DBSCAN, while DISC produces the same cluster-

ing results as DBSCAN. With theoretical and experimental analysis, however, it is

confirmed that the clustering quality of DenForest is not overly compromised, and

DenForest and the DBSCAN algorithm are comparable with respect to the clustering

quality.

This dissertation is organized as follows. Chapter 2 presents the related works of

the dissertation. Extensive works are covered in this chapter starting from traditional

density-based clustering to non-density-based clustering. Chapter 3 presents the back-

ground of the traditional density-based clustering algorithms. It explains the DBSCAN

algorithm and the Incremental DBSCAN algorithm in detail. Also, this chapter intro-

duces the task of density-based clustering over sliding windows along with its chal-
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lenge. Chapter 4 explains the first algorithm DISC and Chapter 5 explains the second

algorithm DenForest. Chapter 6 provides the performance evaluations of the two algo-

rithms. Lastly, Chapter 7 and 8 present future work and conclusion of the dissertation,

respectively.
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Chapter 2

Related Works

In this chapter, various works related to this dissertation are covered. First, cluster-

ing (or cluster analysis) is introduced briefly in Section 2.1. Since clustering has been

studied extensively for decades, numerous clustering algorithms have been developed.

Among them, density-based clustering, one closely related to the dissertation, is ex-

plained in Sections 2.2-2.4. Those sections are organized according to the character-

istics of datasets that algorithms assume. Finally, clustering methods besides density-

based clustering are briefly introduced with the several major algorithms in Section 2.5.

2.1 Clustering

As the volume and variety of data increased, it became infeasible to manually ana-

lyze all those data due to the limited human resources and time. Therefore, there has

been a long history of automatically understanding and processing data, and numerous

methods have been studied and developed.

Clustering, one of the methods in the data analysis, is the task of grouping data

points into several groups so that the data points in the same group get to be more

similar to each other than points in other groups [42]. Since clustering finds patterns

or groups using the information in the data itself and does not require external in-
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formation, it is classified as unsupervised learning in pattern recognition. (Supervised

learning requires labels for each point to be classified.) For a long time, clustering

has been used in research and industrial fields with various purposes such as gaining

insight or detecting anomalies.

2.2 Density-Based Clustering for Static Datasets

One popular group of clustering algorithms is density-based clustering. Density-based

clustering algorithms define a cluster as a group of close data points in a dense region.

In this section, density-based clustering algorithms for static datasets are covered.

DBSCAN [28] is one of the popular density-based clustering algorithms. DB-

SCAN takes two parameters, density threshold (τ ) and distance threshold (ϵ), to de-

fine the density of the region. Then, DBSCAN constructs each cluster by connecting

data points in dense regions. (See Section 3.1 for detailed explanation.) DBSCAN

has unique advantages that it can detect clusters of irregular shapes when there exists

noise in the dataset. Due to its advantages, it has been widely used in various applica-

tions [30, 89, 72, 54, 21, 31, 58].

The Jarvis-Patrick algorithm [49] is an algorithm similar to DBSCAN in that it

considers neighboring points to construct the clusters. However, while DBSCAN uses

neighboring points to define the density of the space, Jarvis-Patrick uses neighboring

points to define the similarity for each pair of data points.

2.2.1 Extension of DBSCAN

Since DBSCAN uses the single density threshold value to define the dense region,

it is hard to detect meaningful clusters when clusters have different densities. The

OPTICS [5] algorithm was proposed to address this weakness. OPTICS produces a

reachability plot containing information about cluster structure. In the plot, points are

ordered based on their density and proximity. With this plot, users can select appro-
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priate clusters having different densities. Note that OPTICS does not directly produce

clustering results, but it provides structural information of the data points (i.e., reacha-

bility plot) and requires users’ intervention. Another work called HDBSCAN [12] was

proposed to address this problem. While OPTICS leaves users to select appropriate

clusters, HDBSCAN automatically detects the clusters without users’ intervention by

introducing a concept called cluster stability.

Unlike the above density-based clustering algorithms that assume spatial data points,

Sander et al. proposed GDBSCAN [70] which generalizes DBSCAN to the dataset

having spatial and non-spatial attributes. By generalizing density and reachability con-

cepts to consider the non-spatial attributes, it is applied to various application domains

such as astronomy or molecular biology.

It is also worth noting that several works based on sampling are proposed [59,

48, 51]. These works adopt sampling strategies to reduce the computational cost of

DBSCAN in large datasets.

2.2.2 Approximation of Density-Based Clustering

Recently, Gan et al. proposed an approximated DBSCAN called ρ-approximate DB-

SCAN [33]. By introducing an approximation factor to the distance threshold (ϵ), ρ-

approximate DBSCAN can produce approximate density-based clusters in amortized

O (N) time. ρ-approximate DBSCAN manages data points into grids and exploits ap-

proximate range counting queries [7] for efficiency. Although Schubert et al. [71]

confirmed that its practical performance was not as good as expected, ρ-approximate

DBSCAN affected various works of parallelization of DBSCAN. Gan et al. also pro-

posed approximate OPTICS [35] by formalizing a valley concept in OPTICS and in-

troducing an approximation factor into the concept.
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2.2.3 Parallelization of Density-Based Clustering

One of the earliest works for parallization of DBSCAN is PDBSCAN [86] which per-

forms DBSCAN over a distributed system based on master-slave architecture. It pro-

poses a grid partitioning technique for DBSCAN to be performed in parallel. By adopt-

ing the grid partitioning technique, MR-DBSCAN [43] is also proposed. Different

from PDBSCAN, its algorithm is based on a map-reduce framework, Hadoop, to re-

duce the bottleneck in the master node of the master-slave architecture. NG-DBSCAN

is one of the early works developed on the Spark framework as a scalable solution to

density-based clustering [60]. RP-DBSCAN is another parallel DBSCAN algorithm

based on the Spark framework that takes advantage of the random split strategy [77].

Wang et al. have proposed several exact and approximate DBSCAN algorithms based

on grid construction and solving the bichromatic closest pairs problem in parallel [84].

There also exists parallel work for OPTICS and HDBSCAN [85].

2.3 Incremental Density-Based Clustering

Since the DBSCAN algorithm was proposed more than two decades ago, much re-

search has been conducted to make the density-based clustering a viable option even

for time-evolving or streaming data. The first one to note is Incremental DBSCAN [27]

which updates existing clusters upon each individual data point being inserted into or

deleted from the database. By examining and updating only surrounding data points of

the inserted or deleted points, it does not re-process the whole data points from scratch.

However, it suffers serious performance degradation when a point is deleted from its

cluster.

The EXTRA-N algorithm is the one proposed to efficiently detect density-based

clusters over sliding windows. In addition to distance and density thresholds (which

are the parameters of DBSCAN), EXTRA-N takes another two parameters related to

sliding windows, window size |W | and stride size |S|. To avoid processing a large
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number of range searches required for dealing with deleted data points, it maintains
|W |
|S| number of future windows. Although Extra-N [87] avoids the slow deletion prob-

lem by pre-computing clusters in future windows, it consumes memory too much and

suffers from its own slow insert operation when clusters need to be updated frequently.

This will lead to serious performance degradation when the clusters within the sliding

window are updated frequently with a relatively small stride.

2.3.1 Approximated Density-Based Clustering for Dynamic Datasets

A dynamic version of ρ-approximate DBSCAN (called ρ-double-approximate DB-

SCAN) has also been reported in the literature [34]. Similar to the static version [33],

it introduces an approximation factor to the distance threshold (ϵ). However, while the

static version uses the approximation only to connect core points, the dynamic version

uses additional approximation to classify points. By approximately counting the num-

ber of neighbors or approximately finding the nearest point, it produces an approximate

result of DBSCAN. The ρ-double-approximate DBSCAN algorithm [34] achieves

poly-logarithmic time complexity for insertion and deletion by adopting Holm et al. ’s

data structure [44] for the dynamic graph connectivity algorithms. However, due to a

large constant number of approximate counting and nearest neighbor queries, its prac-

tical performance becomes worse than the previous approaches.

2.4 Density-Based Clustering for Data Streams

Many density-based clustering algorithms have been proposed to expedite the cluster-

ing for streaming data. Generally, these algorithms assume an infinite length of data

streams but a finite memory capacity.
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2.4.1 Micro-clusters

One important concept in clustering for data streams is micro-cluster which was pro-

posed in CluStream [1]. A micro-cluster is a temporal extension of the cluster feature

vector in BIRCH [91]. Due to an infinite length of data streams, clustering algorithms

cannot retain all the data points in memory. Instead, they manage statistical informa-

tion (i.e., micro-cluster) representing a group of close data points. Micro-clusters de-

cays over time to capture the recent information in the data streams. Therefore, recent

micro-clusters have more weight than old micro-clusters. By managing the micro-

clusters that are far fewer than the whole points, stream clustering algorithms can pro-

duce clusters quickly with less memory.

With the micro-clusters, CluStream runs in following two steps.

1. (Online) Summarization step. It generates and manages micro-clusters from

streaming data with decaying density.

2. (Offline) Clustering step. A modification of the k-means algorithm is applied

to the micro-clusters to construct the final clustering results.

CluStream has affected numerous works such that most clustering algorithms for

data streams run in the above two steps.

2.4.2 Density-Based Clustering in Damped Window Model

One fundamental work in density-based clustering for data streams is DenStream [13].

Similar to CluStream, it adopts the micro-cluster technique and assumes the damped

window model where the weight (importance) of the data points decays over time.

Different from CluStream, it applies a modification of DBSCAN algorithm in the clus-

tering step. Therefore, DenStream can detect clusters of irregular shapes.

DBSTREAM [41] is one popular work affected by DenStream. Different from

DenStream, it introduces a concept called shared density to improve the quality. In
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the clustering step, DenStream assigns the same cluster membership to two micro-

clusters if they are close enough. However, since each micro-cluster is the statistical

information of a group of close points, the micro-clusters’ proximity does not ensure

the proximity of the points in the micro-clusters. Therefore, DBSTREAM manages

additional information about shared density between micro-clusters. If the shared den-

sity between two micro-clusters is high enough, DBSTREAM assigns the same cluster

membership to them. With this concepts, it achieves higher quality [14].

EDMStream [37] is another method that uses micro-clusters. Different from the

above algorithms, it does not adopt the modification of DBSCAN to cluster the micro-

clusters. Instead, it adopts the density-peak algorithm and manages the clustering result

incrementally for efficiency. The density-peak algorithm [69] is an algorithm based on

the idea that cluster centers are surrounded by neighboring points in lower density and

that the centers are relatively distant from any points in a higher density.

Instead of using the micro-cluster concept, some works exploit grids. D-Stream [17],

one of them, manages grids instead of the micro-clusters. Data points are mapped into

the grids of which weight decays over time. To keep the distributional information of

the data points in each grid, D-Stream manages an information vector called attraction

for each grid. Then, D-Stream uses the attraction vectors in the clustering step.

2.4.3 Density-Based Clustering in Sliding Window Model

While the above works assume the damped window model, some works are assuming

the sliding window model. The Exponential Histogram of Cluster Feature (EHCF)

technique is widely used to construct a set of micro-clusters in the sliding window

model, which was proposed in SWClustering [93]. In the decaying model, very old

points and recent points can be grouped into one micro-cluster if they are close enough.

However, in the sliding window model, those close data points should not be managed

in the single micro-cluster since one micro-cluster cannot be split due to the lack of

information about data points to be deleted. To address this issue, EHCF provides
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temporal boundaries among micro-clusters that prevents old and new data points from

being grouped together. SDStream [68] is one work that adopts the EHCF technique

for density-based clustering over sliding windows. A recent work, StreamSW [74],

also adopts the EHCF technique, but it is based on the density-grids proposed in D-

Stream rather than micro-clusters.

The above algorithms for data streams (which will be called summarization-based

methods in this dissertation) are good at discovering clusters quickly from the infinite

data streams; they consume less memory and generally show low latency. However,

since they only maintain coarse-grained information (i.e., micro-clusters), they cannot

capture the clusters accurately in real time and cannot achieve high clustering quality

enough to replace the exact approaches such as DBSCAN.

2.5 Non-Density-Based Clustering

In this section, several clustering algorithms besides the density-based clustering algo-

rithms are introduced briefly.

2.5.1 Partitional Clustering and Hierarchical Clustering

Two distinct clustering categories are partitional clustering and hierarchical cluster-

ing [47]. Partitional clustering algorithms [61, 66, 53] partition data points into sepa-

rate groups without hierarchy. (All groups have the same level.) K-means [61] is one

of the famous example of partitional clustering algorithms. K-means partitions data

points into a fixed number of groups such that within-cluster variances are minimized.

Hierarchical clustering algorithms [75, 23, 38, 12, 91] recursively partition data

points into nested groups, and a set of groups can be represented with a dendrogram.

Single-linkage [75] and complete-linkage [23] clustering algorithms are popular ex-

amples. They construct the nested structure by grouping the closest pair of groups (or

clusters) in an agglomerative way. The difference between them is the way they define
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the distance between clusters. While the single-linkage algorithm uses the closest dis-

tance between two elements (one in each cluster) as the distance between clusters, the

complete-linkage algorithm uses the farthest distance between two elements. While

single-linkage or complete-linkage algorithms use all points in the clusters to com-

pute the distance between two clusters, BIRCH [91] or CURE [38] algorithms use

representative vectors to compute the distance between two clusters. BIRCH uses one

representative vector called cluster feature vector for each cluster, while CURE uses

multiple representative vectors well scattered for each cluster.

2.5.2 Distribution-Based Clustering

Distribution-based clustering algorithms are grouping points based on the assump-

tion that the data points are generated from a distributional model. Gaussian Mixture

Model (GMM) [29, 88] is one of the popular algorithms. GMM assumes that data

points are generated from the mixture of gaussian distributions. With the Expectation-

Maximization (EM) method [64], parameters of the gaussian distributions are adapted

to the data points.

2.5.3 High-Dimensional Data Clustering

In high-dimensional spaces, there exist various problems that do not occur in low-

dimensional spaces, which is called the curse of dimensionality. For example, the

distance concept gets less precise as the dimensionality increases. Specifically, the

distance to the closest data point becomes similar to the distance to the farthest data

point. In addition, the high-dimensional space is difficult to visualize, and since there

are many possible subspaces, the interpretability of the clustering result deteriorates.

In the clustering fields, there are some works to overcome those problems [3, 11,

2]. One popular algorithm is CLIQUE [3]. The CLIQUE algorithm automatically finds

the subspaces that allow better clustering. It is based on the idea that if points are

clustered in the k-dimensional space, they are also clustered in the (k-1)-dimensional
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projections of this space.

2.5.4 Spectral Clustering

Spectral clustering algorithms [40, 4, 65] detect clusters based on spectral graph the-

ory. Spectral clustering algorithms represent data points as a weighted graph (or an

adjacency matrix). Vertices are set to the data points and the weight of each edge is set

to the similarity between two vertices. Then, it finds clusters by partitioning the graph

with the cut size. This is done by computing the eigenvectors of the Laplacian matrix.

Based on the idea that eigenvectors have the structural information of the graph, they

find densely connected points (i.e., cluster) by examining each value in the eigenvec-

tors.

Various clustering algorithms are introduced in this chapter. However, note that there

is no one best clustering algorithm. Meaningful clusters found by one clustering algo-

rithm can become meaningless as their applications change. Some applications may

prefer to pass a parameter indicating the number of clusters. Another applications may

prefer to get the clusters having non-spherical shapes. Therefore, an appropriate clus-

tering algorithm is not determined solely by how it defines clusters but depends on

applications.

Among various clustering methods, density-based clustering is the one related to

this dissertation. Particularly, incremental algorithms and streaming algorithms are the

most related works, and they will be the competitors of the proposed algorithms in this

dissertation.
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Chapter 3

Background

This chapter provides readers with the background information of density-based clus-

tering method and the key characteristics of sliding window models commonly adopted

for streaming data processing. The algorithms proposed in this dissertation leverage

the sliding window model innovatively and overcome the critical weaknesses of the

existing density-based clustering algorithms.

3.1 DBSCAN

The density-based clustering was pioneered by Ester et al. more than two decades

ago [28]. In this seminal work, the density of a point is defined by the number of

neighbors that are within a given distance threshold denoted by a parameter ϵ. It is

the density that determines the status of a point as one of core, border, and noise. (See

Figure 3.1 for illustration.) Such classification of points is done by introducing another

parameter called MinPts. If a point has its density no less than MinPts, it is labeled as

core. If a point has its density less than MinPts but is within the distance threshold

ϵ from at least one other core point, it is labeled as border. Otherwise, the point is

labeled as noise. For example, in Figure 3.1, points X, Y, Z are a core point, a border

point and a noise, respectively, assuming the density threshold is four.

17



core border noisecluster

epsilon (ϵ)

directly density-reachable 

A

B

X
Y

Z

Figure 3.1: Density-based clustering

Ester et al. ’s DBSCAN algorithm defines a cluster as a set of core and border

points that are density-reachable from an arbitrary core point of the cluster. Let Nϵ(p)

denote a set of points within the threshold distance ϵ from p. A point q is said to be

directly density-reachable from p if q ∈ Nϵ(p) and p is a core.

Definition 1. A point p is directly density-reachable from a point q if q is a core

point and p ∈ Nϵ(q).

Note that q does not have to be a core point. The direct density-reachability is a

symmetric relation for core points, although it is not when a border point is involved.

In general, a point q is said to be density-reachable from p if there is a chain of directly

density-reachable cores from p to q.

Definition 2. A point p is density-reachable from a point q if there is a chain of points

p1, p2...., pn, p1 = p, pn = q such that pi is directly reachable from pi+1.

In Figure 3.1, border Y is directly density-reachable from core X , but not vice

versa. Cores A and B are density-reachable from each other, whereas cores A and X

are not. The density-reachability is a transitive but asymmetric relation.
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Based on the density-reachability relation of cores and borders, the DBSCAN algo-

rithm attempts to find density-based clusters. Specifically, for each core point p found

in the seeding phase, a singleton cluster, say C, containing p is created. Then, in the

growing phase, all the directly density-reachable points from any q ∈ C are added to C.

This process is repeated until C does not grow any more. Therefore, when it terminates,

the DBSCAN algorithm returns density-based clusters, each of which is a maximally

connected component of core points and border points.

Definition 3. A cluster C is a non-empty subset of points in dataset, D, satisfying two

conditions:

1. Maximality: ∀p, q ∈ D : if p ∈ C and q is density-reachable from p, then q ∈ C.

2. Connectivity: ∀p, q ∈ C : there exists a point o from which p and q are reach-

able.

3.1.1 Reformulation of Density-Based Clustering

Graph Representation

Data Points

Core

Border

Noise

Cluster

Figure 3.2: Graph Representation
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Given the way clusters are defined by DBSCAN, the density-based clustering

(DC) can be reformulated as the problem of finding the connected components in a

graph [50, 60]. In the graph representation, each vertex corresponds to a data point and

an edge is added to a pair of data points if they are within the ϵ-distance from each

other. (See Figure 3.2.) Each vertex is then labeled with one of core, border, or noise

as described above. Finally, a connected component of cores as well as the borders

adjacent to the connected component is identified as a cluster.

Note that the edges in the graph are not physically stored and managed, since it

would require massive memory space at most O(|V |2). Instead, range queries of a

spatial index are used for each vertex to retrieve the adjacent vertices, which plays the

role of the edges.

3.2 Incremental DBSCAN

The DBSCAN algorithm was invented for a static database. If an input database is

dynamic, the clustering result has to be adjusted whenever a new data point is inserted

to or an existing data point is deleted from the database. Ester et al. proposed an in-

cremental version of the DBSCAN algorithm based on the observation that changes in

the clustering result are limited to the neighborhood of an inserted point or a deleted

point [27]. Hereinafter it is referred to as IncDBSCAN in short.

In general, on the insertion or deletion of p, the points in Nϵ(p) or that are density-

reachable from those in Nϵ(p) may be affected by the update. For a point q ∈ Nϵ(p),

the core status of q can be altered by the insertion or deletion of p. The altered core

status of q can in turn affect the density reachability between the core points outside

Nϵ(p). Therefore, IncDBSCAN can limit the scope of examination to the core points

in Nϵ(x) for any point x that gains or loses its core status as a result of the update

(that is, the insertion or deletion of p). This scope of examination is referred to as the

seed objects for insertion or the seed objects for deletion depending on the type of an
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update. Formally, the set of seed objects are defined as follows.

• The set UpdSeedIns(p) of seed objects for p being inserted is {q ∈ Nϵ(x) |

q is a core ∧ x gains its core status by p}.

• The set UpdSeedDel(p) of seed objects for p being deleted is {q ∈ Nϵ(x) |

q is a core ∧ x loses its core status by p}.

The insertion of p may cause two or more clusters to merge due to the new density-

connections created by p. To be precise, new density-connections are created when a

point gains its core status by p.

Thus, a range search has to be performed for each of the points that gain the core

status to find out whether different clusters are now connected by the new core point.

A cluster merger may happen when UpdSeedIns(p) contains core points that belong

to two or more clusters.

Similarly, the deletion of p may cause a cluster to split into two or more clus-

ters due to the density-connections destroyed by p. A cluster split happens when

UpdSeedDel(p) contains two or more connected components. Thus, a breadth-first

search has to be performed against all the core points in UpdSeedDel(p) to determine

whether they still constitute a single cluster.

For the insertion and deletion of p alike, the scope of examination is limited to

the core points in UpdSeedIns(p) and UpdSeedDel(p), respectively. However, it is

critically important to note that the number of range searches required by a deletion is

likely to be much higher than that required by an insertion. This is because the breadth-

first search performed against UpdSeedDel(p) needs to access all the points in the set

and the cardinality of the set is usually much larger than the number of points that

would gain their core status by an insertion.
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3.3 Sliding Windows

The fundamental premise of computations over data streams is that the streaming data

cannot be stored and processed in its entirety by virtue of their sheer volume. One of

the popular models for streaming data analytics is the sliding window model, which

is typically characterized by two parameters known as window and stride [8, 32, 78,

22, 94]. The size of the window defines the range of streaming data to be analyzed,

and the stride defines the interval at which the result of the analysis is updated.

Definition 4 (Window). The window W is a set of the latest data points. The size

of the window, |W |, can be bounded by either the number of points in the window

(count-based window) or the duration of the window (time-based window).

Definition 5 (Stride). The stride S is defined by an interval at which the clustering

result is updated while the window slides. The size of the stride, |S|, is bounded by the

number of points or by a time duration depending on the type of the sliding window.

The data points in the same stride are processed together.

In this model, the one end of the window is assumed to be anchored to the current

time or the current data item. This model thus allows us to analyze and understand the

most recent data within the current window. Whenever the sliding window advances,

some of the existing older data objects (in the oldest stride) will leave the window

while newer data objects (in the new stride) will enter it. (See Figure 3.3.)

From the computational point of view, it is important to understand that a multitude

of data objects enter or leave the window at once when the window advances and

there is no particular order of processing among the data points in the same stride.

Furthermore, unlike a decaying data model [19] (or damped window model) where

the influence of each data object wanes over time, all the data objects in the current

window are assumed to carry the same influence or weight.

The sliding window model can be either time-based or count-based depending on

how the two parameters, window and stride, are interpreted. While the parameters
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Figure 3.3: Sliding Window Model

are measured in time duration under the former model, they are measured in the num-

ber of data objects under the latter. Suppose for example that the sliding window is

time-based and its stride is set to 30 seconds. (The window size can be any time du-

ration longer than 30 seconds.) Then, whenever the window slides by 30s, a group of

new points added to the window during the period are processed together. Similarly, a

group of old points removed from the window during the same period are processed

together. The clustering methods proposed in this dissertation is not subject to how

those parameters are measured and will work with either of the two model types.

3.3.1 Density-Based Clustering over Sliding Windows

The goal of this work is to find density-based clusters in streaming data under the

sliding window model. The sliding window model is widely used to capture the recent

state of streaming data, which cannot be stored in its entirety by virtue of the large and

ever-increasing volume [32, 22]. As is stated in Section 3.1.1, this task is equivalent to

the problem of finding the connected components of cores and their adjacent borders

continuously as the window advances.

There are six types of cluster evolution that can occur with a sliding window:

emergence, expansion, merge, dissipation, shrink and split, as depicted in Figure 3.4.

As new points are inserted into the window, some of the existing points may become

cores. Due to those new cores, a new connected component (CC in short) may emerge
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Figure 3.4: Cluster Evolution. Only the cores are shown in the figure. The point p

denotes a newly added core, and the point q denotes a vanishing core.

or an existing CC may expand. If any of those new cores connects separate CCs, then

they are merged into one. At the same time, old points may be deleted from the win-

dow, and some of the existing cores may become non-cores. Due to those vanishing

cores, existing CCs may shrink or dissipate. A vanishing core may also split a CC into

multiple CCs.

3.3.2 Slow Deletion Problem

The incremental management of clusters involves processing expiring (or vanishing)

cores. This becomes a major bottleneck in updating density-based clusters incremen-

tally and increases the latency significantly.

Problem 1 (Slow deletion). A cluster may be split by a vanishing core. To determine

whether the cluster is split or not, the remaining cores need to be traversed to check

the density-reachability from one another. This traversal would require a number of

range searches, which is the main cause of the degraded performance of incremental

density-based clustering.
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Example 1. Consider a core point q that expires to become a non-core (either border

or noise) point due to some other data points leaving the window. The vanishing core q

will trigger one of the three types of evolution, namely dissipation, shrink, and split, as

is shown in Figures 3.4(d)-(f). Let CC denote the connected component of q’s cluster.

Then a graph traversal such as Breadth-First Search (BFS) can be applied to check

the connectedness of CC \ {q}. In Figures 3.4(e) and 3.4(f), the density-reachability

between the two adjacent cores A and B need be checked when q vanishes. This will

require visiting all the points in the figure inevitably. In general, if a graph traversal is

initiated from one of the cores in Nϵ(q) and it can visit all the cores in Nϵ(q), then the

cluster shrinks but does not split.

This is equivalent to the dynamic connectivity problem, which has been studied

for decades [73, 44]. Due to the O(N2) memory cost, the edges between core points

are often maintained only logically. Thus, density-based clustering methods generally

rely on a spatial index to discover a pair of adjacent cores. Hence, the latency concern

is further aggravated due to the increasing cost of range searches, when the dimension-

ality of data points increases.
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Chapter 4

Avoiding Redundant Searches in Updating Clusters

The density-based clustering method presented in this chapter is called Density-based

Incremental Striding Cluster (DISC in short). It is capable of producing exactly the

same clustering results as existing algorithms such as Incremental DBSCAN much

more quickly and efficiently. The elaborate design of DISC, based on the novel ideas

for the minimal bonding cores of ex-cores and neo-cores, enables it to avoid a consid-

erable amount of redundant work by checking the density-connectedness only for the

minimal bonding cores. The MS-BFS strategy and the epoch-based R-tree index prob-

ing method are proposed to further reduce the cost of checking density-connectedness.

Through an extensive evaluation carried out under various configurations, it is

demonstrated that DISC is highly effective especially when clusters need to be up-

dated frequently with a small stride. In most practical settings, DISC outperformed

all the exact clustering methods in comparison. For detecting clusters of high reso-

lution, DISC outperformed significantly all the approximate clustering methods in

comparison in both speed and quality.
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Figure 4.1: Overview of DISC

4.1 The DISC Algorithm

First, an overview of the algorithm is provided, and then its two primary steps, COLLECT

and CLUSTER, are described.

4.1.1 Overview of DISC

DISC is no different from DBSCAN in that it assigns each individual data point to

one of the three categories, core, border, and noise. Besides, by the time clustering is

completed, a cluster id (or cid in short) will have been assigned to every data point

except for those in the noise category.

Let Nϵ(p) denote a set of data points within the threshold distance ϵ from p. The

cardinality of Nϵ(p), denoted by nϵ(p), is maintained up-to-date for each data point

p. Whenever the sliding window advances by a stride, new data points may enter the

window while some of the existing ones may leave it.DISC will then take the changes

in the data population within the sliding window into account and will bring the clus-

ters up to date by updating the nϵ(p) value and the category label, denoted by l(p), of

each point p in the current window. (Refer to Table 4.1 for more symbols adopted to

describe DISC in this chapter.)
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Symbol Description

ϵ distance threshold

τ density threshold

Wcurr points in the current window

Wprev points in the previous window

∆in points entering the window (Wcurr −Wprev)

∆out points exiting the window (Wprev −Wcurr)

Nϵ(p) points within ϵ distance from p

nϵ(p) cardinality of Nϵ(p)

l(p) category label of p

p −⇝ q q is retro-reachable from p

p +⇝ q q is nascent-reachable from p

M− minimal bonding cores for ex-cores

M+ minimal bonding cores for neo-cores

Table 4.1: Notations

Apparently, recomputing nϵ(p) and l(p) values for every point p in the current

window is the primary task forDISC to update clusters. This will be carried out in two

separate steps called COLLECT and CLUSTER, which are summarized in Figure 4.1.

The COLLECT step updates nϵ(p) for every point p in the current window, and

resets or initializes l(q) of every point q leaving or entering the sliding window. It then

identifies ex-cores and neo-cores among the points that remain in the current window,

and updates a spatial R-tree index accordingly for the changes. The notions of ex-cores

and neo-cores are the cornerstone of DISC and will be defined in Section 4.1.2.

The CLUSTER step finds the minimal bonding cores of each ex-core and each

neo-core, determines the types of cluster evolution by checking reachability, and fi-

nally recomputes the cluster labels for every point in the current window. The minimal
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bonding cores are the key idea that enables DISC to update clusters efficiently. They

will be defined in Section 4.1.3.

4.1.2 COLLECT

When a point p enters or exits the sliding window, it changes the number of ϵ-neighbors

for all the ϵ-neighbors of p. In other words, for any point q ∈ Nϵ(p) in the current

window, the nϵ(q) value needs to be updated. Let ∆out and ∆in denote the set of points

exiting the window and the set of points entering the window, respectively. Then, for

any point q ∈ Nϵ(p), nϵ(q) will decrease if p ∈ ∆out (Line 6 of Algorithm 1), and it

will increase if p ∈ ∆in (Line 12). At the end of the COLLECT step, every data point

in the current window will have an up-to-date nϵ value.

Algorithm 1: COLLECT (∆in, ∆out)

1 Cout ← ∅; // Cout : ex-cores in ∆out

2 foreach p ∈ ∆out do

3 if l(p) = core then Cout ← Cout ∪ {p}

4 else delete p from the R-tree index

5 foreach q ∈ Nϵ(p) do

6 if l(q) ̸= deleted then nϵ(q)--

7 l(p)← deleted, nϵ(p)← 0

8 foreach p ∈ ∆in do

9 Insert p into the R-tree index

10 l(p)← unclassified, nϵ(p)← 1

11 foreach q ∈ Nϵ(p) do

12 if l(q) ̸= deleted then nϵ(q)++, nϵ(p)++

13 Compute the sets {ex-cores} and {neo-cores}

14 return ({ex-cores}, {neo-cores}, Cout)
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Another major work to be done in this step is to identify a set of ex-cores and a set

of neo-cores defined below. Let Wcurr denote the set of points in the current window,

and let Wprev denote the set of points in the previous window.

Definition 6. (Ex-core) A data point p that was a core in the previous window is called

an ex-core if it already exited the current window (i.e., p ∈ ∆out) or it is still in the

current window but no longer a core (i.e., p ∈Wprev ∩Wcurr). ◁

Definition 7. (Neo-core) A data point that is a core in the current window is called a

neo-core if it just entered the current window (i.e., p ∈ ∆in) or it was not a core in the

previous window (i.e., p ∈Wprev ∩Wcurr). ◁

In the next CLUSTER step, these two mutually exclusive sets of ex-cores and

neo-cores will play a critical role in determining the types of cluster evolution such

as split and merger among others.

Note that the COLLECT algorithm uses an R-tree index to facilitate the retrieval

of ϵ-neighbors of a given point. Obviously, whenever the sliding window advances,

it has to maintain the R-tree index up to date by adding and removing entries as data

points enter and leave the window. However, the ex-cores in ∆out will not be removed

from the R-tree index until both the COLLECT and CLUSTER steps are completed.

This is because the CLUSTER step will have to access ex-cores in ∆out as well as

those in Wprev ∩Wcurr. For the reason, all the ex-cores that exited the window are

collected (Line 3 of Algorithm 1) and passed to the CLUSTER step in a set denoted by

Cout. Note that the set Cout is equivalent to {ex-cores} ∩∆out.

4.1.3 CLUSTER

The ex-cores and neo-cores defined in the previous section determine collectively

whether a cluster should be split and whether clusters should be merged. Besides, the
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Algorithm 2: CLUSTER (ex-cores, neo-cores, Cout)

// {ex-cores}, {neo-cores}, Cout from COLLECT

1 E ← {ex-cores}

2 while E ̸= ∅ do

3 ComputeR−(p) andM−(p) for p ∈ E

4 ncc← MS-BFS(M−(p))

// ncc: # of connected components in M−(p)

5 if ncc > 1 then a cluster splits

6 else a cluster shrinks or dissipates

7 E ← E −R−(p) // Avoid redundant work

8 Remove Cout from the R-tree index

9 N ← {neo-cores}

10 foreach p ∈ N do

11 ifM+(p) is disconnected then clusters merge

12 else a cluster grows or emerges

13 N ← N −R+(p) // Avoid redundant work

other types of cluster evolution such as emergence, dissipation, expansion, and shrink

can also be determined solely by the ex-cores and neo-cores.

The CLUSTER step presented in this section provides a sophisticated but highly

efficient procedure to expedite the processing of cluster evolution. The high-level de-

scription of the procedure is given in Algorithm 2. As can be seen in the pseudocode,

ex-cores are used to process splitting clusters while neo-cores are used to process merg-

ing clusters. Between these two main operations, splitting a cluster is computationally

much more intensive for updating clusters incrementally. Each of the sub-procedures

of the algorithm will be described in detail in this section.
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4.1.3.1 Splitting a Cluster

A cluster split involves a breakup of density-reachability between core points. When a

core point loses its status to become an ex-core, it may cut a density-reachable path be-

tween the cores in the same cluster, which in turn may contribute to a cluster split event.

Essentially, a cluster can only be split when ex-cores break up a density-reachable path

between two core points in the same cluster and there is no more path left between

them.

In fact, splitting a cluster can be expedited by consolidating all the ex-cores turned

up when the sliding window advances. A considerable amount of redundant work can

be avoided by checking the density connectedness only for the minimal bonding cores

(that will be defined below) and by minimizing the number of range searches required.

In an attempt to clearly specify the minimal set of cores to examine, the notions

of retro-reachability (Definition 8) and minimal bonding cores of an ex-core (Defini-

tion 9) were defined below. (See Figure 4.2 for illustration.)

Definition 8. For a pair of ex-cores p and q, p is directly retro-reachable to q if p

was directly density-reachable to q with respect to the previous window Wprev. More

generally, p is retro-reachable to q (denoted by p −⇝ q) if there is a chain of directly

retro-reachable ex-cores from p to q. ◁

Unlike density-reachability, the retro-reachability is transitive and symmetric be-

cause this relation is defined for ex-cores only. That is, p −⇝ q is equivalent to q −⇝ p.

For an ex-core p, let R−(p) denote a set of ex-cores that are retro-reachable from

p. Formally,

R−(p) = {q ∈Wprev | p −⇝ q}.

Note that p ∈ R−(p) and retro-reachability is reflexive.

Now the minimal bonding cores of an ex-core is defined, which will be used to

pose a necessary condition for the ex-core to trigger splitting a cluster. Note that not

every ex-core necessarily splits a cluster.
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Figure 4.2: Minimal bonding cores of an ex-core p

Definition 9. For an ex-core p, the setM−(p) of its minimal bonding cores is defined

to be

M−(p) = {q | (q is a core in both Wprev and Wcurr)

∧ (q ∈ Nϵ(r) for some r ∈ R−(p))}
◁

The second half of the condition, namely “q ∈ Nϵ(r) for some r ∈ R−(p)” re-

quires that q must be among the ϵ-neighbors of a certain ex-core that is retro-reachable

from p. It is this condition which the minimality ofM−(p) comes from. Among the

cores that are density-reachable to the ex-cores in R−(p), only those directly density-

reachable to some ex-core are included inM−(p).

For example, in Figure 4.3, border P1 and core P2 are about to exit the current

window. Exiting P1 turns its adjacent cores, B and K, to ex-cores. Exiting P2 also

turns its adjacent cores, D and F , as well as itself to ex-cores. The set of ex-cores that

are retro-reachable from B is R−(B) = {B,D,F,K, P2}, and the minimal bonding

cores of B isM−(B) = {A,C,E,G,H, J}.

Combined with the minimality ofM−(p), the following lemmas and theorem al-
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Figure 4.3: Cluster evolution by sliding window

low us to focus on the minimal set of core points when determining whether any cluster

would be split by an ex-core p or any of its retro-reachable ex-cores.

Lemma 1. For ex-cores p and q,M−(p) =M−(q) ifR−(p) = R−(q).

Proof. For ∀x ∈ M−(p), x was and is a core in Wprev and Wcurr such that

x ∈ Nϵ(r) for some r ∈ R−(p). If R−(p) = R−(q), then it holds that x ∈ M−(q).

Therefore, M−(p) ⊆ M−(q). It can be shown that M−(q) ⊆ M−(p) in the same

way. □

Lemma 2. An ex-core p does not split the cluster it belongs to ifM−(p) is density-

connected.

Proof. (By contradiction.) Suppose a cluster C containing p in the previous window

is being split to two non-empty separate clusters C1 and C2. Any point x ∈ C1 was

density-reachable to p in the previous window because both x and p were in C. So

there must exist x′ ∈ C1 that was on the density-reachable path and closest to p. This

implies that x′ is an ϵ-neighbor of p or one ofR−(p). Thus, by definition, x′ ∈M−(p).
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Similarly, there must exist y′ ∈ C2 such that y′ ∈ M−(p). SinceM−(p) is density-

connected, x′ and y′ are density-reachable from each other. This is a contraction to the

assumption that C1 and C2 are two separate clusters. □

Theorem 1. For an ex-core p, ifM−(p) is density-connected, none of the ex-cores in

R−(p) splits a cluster.

Proof. For any ex-core x ∈ R−(p),R−(x) = R−(p) because the retro-reachability

is symmetric and transitive. Then, it follows that M−(x) = M−(p) by Lemma 1.

Therefore, by Lemma 2, x does not split the cluster it belonged to in the previous

window. □

The implication of Theorem 1 is that examining any one of the ex-cores inR−(p)

will obviate the need for all the other ex-cores inR−(p) (Line 7 of Algorithm 2). This

will let us avoid redundant work and reduce the number of range searches significantly.

Now let us turn our attention to cluster evolution caused by ex-cores. For each

ex-core p, all ex-cores inR−(p) can be discovered by executing |R−(p)| range searches.

Since all the cores inM−(p) are ϵ-neighbors of an ex-core in R−(p), they will also

be discovered with no additional search. Once the set M−(p) of minimal bonding

cores is computed for each ex-core p, we are ready to determine the types of cluster

evolution caused by them. IfM−(p) is not density-connected (i.e., there is more than

one connected component), then the cluster from the previous window will be split

in the current window (Line 5 of Algorithm 2). If M−(p) is density-connected, the

cluster will be simply shrunk in size (Line 6). If M−(p) is empty, then the cluster

will be dissipated completely.

Checking the connectedness ofM−(p) can be done by a BFS traversal, which re-

quires executing a number of range searches against the R-tree index. WhenM−(p)

is large, this overhead may become significant and warrant careful coordination and

optimization. In order to do it efficiently, a variant of breadth-first search called Multi-

Starter BFS (invoked in Line 4 of Algorithm 2) and an Epoch-Based probing method
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for the R-tree index are proposed. The number of range searches to execute can be con-

siderably reduced by the former, and the individual range searches can be performed

more quickly by the latter. They will be described in detail in Section 4.2.

The following examples illustrate how DBSCAN and the proposedDISC method

deal with cluster evolution caused by ex-cores and compare these methods with respect

to the minimum number of range searches required by each method.

Example 2. Consider the evolving cluster shown in Figure 4.3. DBSCAN performs the

clustering procedure from scratch. Specifically, when each of P1 and P2 is excluded

from the window, a BFS traversal is performed for every point in the window. At least

19 range searches are required, and the number of range searches would be higher if

noise and border points were taken into account. ♢

Example 3. Consider again the same scenario given in Example 2. After the exclu-

sion of P1 and P2, there are five ex-cores, B,D,F,K, and P2, which turned up in

the current window. The CLUSTER algorithm of DISC finds R−(p) andM−(p) for

each p ∈ {B,D,F,K, P2} by executing five range searches. Then, a BFS traversal is

performed for each of the five minimal bonding core sets. Although more work appears

to be required with an increased number of BFS traversals, the opposite is true. This

is because all the five ex-cores are retro-reachable from one another, and hence

R−(B) = R−(D) = R−(F ) = R−(K) = R−(P2).

Thus, once M−(B) is processed and all the ex-cores in R−(B) are excluded from

further consideration (by Line 7 of Algorithm 2 that will make the set E empty in this

case), there will be no more ex-cores left to process the minimal bonding core sets

for. A BFS traversal will only be performed for M−(B) = {A,C,E,G,H, J} by

executing no more than six range searches. Therefore, the minimum number of range

searches is reduced further down to eleven. ♢
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4.1.3.2 Merging Clusters

After all ex-cores are processed, the CLUSTER algorithm starts examining neo-cores

to see whether existing clusters would have to be merged (Lines 9-13 of Algorithm 2).

Clusters are merged when cores from different clusters become density-reachable.

Since only a neo-core can contribute to creating a new density-reachable path, ex-

isting clusters can be merged only when an existing point gains the core status or a

new core enters the current window.

Much the similar way done for ex-cores, the nascent-reachability (Definition 10)

and the minimal bonding cores of a neo-core (Definition 11) are defined below.

Definition 10. For a pair of neo-cores p and q, p is directly nascent-reachable to q

if p is directly density-reachable to q with respect to the current window Wcurr. In

general, p is nascent-reachable to q (denoted by p +⇝ q) if there is a chain of directly

nascent-reachable neo-cores from p to q. ◁

For a neo-core p, let R+(p) denote a set of neo-cores that are nascent-reachable

from p. Formally,

R+(p) = {q ∈Wcurr | p +⇝ q}.

Like the retro-reachability, the nascent-reachability is reflexive, symmetric and transi-

tive. Therefore, p +⇝ q is equivalent to q +⇝ p, and p ∈ R+(p).

Definition 11. For a neo-core p, the setM+(p) of its minimal bonding cores is defined

to be

M+(p) = {q | (q is a core in both Wprev and Wcurr)

∧ (q ∈ Nϵ(r) for some r ∈ R+(p))}
◁

The minimal bonding cores of neo-cores defined above enable us to determine the

types of cluster evolution caused by them. For a neo-core p, ifM+(p) is empty, then a
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new cluster emerges, which consists solely of the neo-cores inR+(p). If all the cores

in M+(p) belong to one cluster, then all the neo-cores in R+(p) are added to that

cluster and let it grow in size (expansion). If the cores inM+(p) are spread over more

one cluster, say C1, . . . , Ck, then all the cores in C1, . . . , Ck are merged into a single

cluster together with the neo-cores inR+(p).

Despite all the similarities between M−(q) of an ex-core q and M+(p) of a

neo-core p, there is a striking difference between them. While the connectedness of

the cores in M−(q) must be checked for each ex-core q by executing a number of

range searches (Line 4 of Algorithm 2), it is not necessary to do that for the cores

in M+(p) of any neo-core p. We have only to find out whether M+(p) is empty

or how many clusters the cores in M+(p) are spread over (Line 11), which can be

done quickly just by examining the labels of the cores. Therefore, the cluster evolution

caused by neo-cores will be handled with much more ease than the cluster evolution

caused by ex-cores.

4.1.4 Horizontal Manner vs. Vertical Manner

The basic DISC algorithm is run in two steps, COLLECT and CLUSTER which

process ∆DOut and ∆DIn together (Horizontal manner). But it can be run in another

two steps, (1) processing ∆DOut first and (2) processing ∆DIn next (Vertical manner).

Therefore,DISC is not restricted to the sliding window model. Each operation can be

used independently when either batch deletion or batch insertion is required.

However, it is worth noting that the horizontal manner would be more advanta-

geous than the vertical manner in the sliding window model since it can prune a re-

dundant change and lower the computational overhead.

For example, when ∆DOut and ∆DIn are processed in serial order, the state (core,

border or noise) of each point changes as following cases. C denotes core, B denotes

border, and N denotes noise. The first arrow denotes the state change due to the

deletion, and the second arrow denotes the state change due to the insertion.
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1. B\N → B\N → C: When the border or noise points do not change their

states after the deletion of ∆DOut, but change to core points after the inser-

tion of ∆DIn, they are considered as newly created core points, so these points

should be processed.

2. C → B\N → B\N : Points which change in this scenario also affect the evo-

lution of the clusters. Therefore, they should be processed.

3. C → B\N → C: If DISC processes deletion and insertion separately with

the bulk deletion and bulk insertion, it unnecessarily processes this kind of data

points, because changing core property of each point affects the evolution of

the cluster. Therefore they have to be processed twice. However, by considering

deletion and insertion together with the horizontal manner, these data points can

be pruned, since their states do not change eventually. In an extreme situation,

we can expect to save lots of time when most of the points are belong to this

scenario. This is why we divide the overall process into the horizontal manner.

4.2 Checking Reachability

Whether a cluster is split by an ex-core is determined by the density-reachability

among the minimal bonding cores of the ex-core. For a given pair of cores, the density-

reachability can be checked by executing a series of range searches against the R-tree

index starting from either core. Only when the search encounters the other core be-

fore exhausting all reachable cores, the pair will be declared density-reachable. This

procedure is essentially a variant of breadth-first search (BFS) commonly used for

graph traversal. Considering the potentially high cost of reachability checks requiring

a number of range searches, Multi-Starter BFS and Epoch-Based probing strategy for

the R-tree index are proposed.

Note that range searches against the R-tree index could be avoided entirely if the

ϵ-neighbor relations between cores were materialized in a graph. Then the reachability
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checks could be done more quickly by traversing the materialized graph. However, it

is not chosen because the O(n2) cost of maintaining a materialized graph can be too

high with n being the number of cores in the graph.

4.2.1 Multi-Starter BFS

In order to check the density-connectedness ofM−(p) for an ex-core p efficiently, a

new search procedure called Multi-Starter Breadth-First Search (MS-BFS) has been

developed. This is an extension of the traditional breadth-first search.

Algorithm 3: MS-BFS (M−(p))

1 ncc← 0 // # of connected components

2 M ←M−(p)

3 Qs∈M ← EmptyQueue

4 foreach s ∈M do Qs.enque(s)

5 while |M | > 1 do

// Run BFSs for each s ∈M simultaneously

6 if Qs is empty then ncc++, M ←M − {s}

7 else

8 r ← Qs.deque

9 foreach core x ∈ Nϵ(r) unvisited by BFSs do

10 if x is visited by BFSt then

11 Qs ← Qs ∪Qt, M ←M − {t}

12 else Qs.enque(x)

13 return ncc

Imagine a (non-materialized) graph G(V,E) whose vertex set V consists of core

points and whose edge set E consists of pairs of cores that are ϵ-neighbors to each

other. The MS-BFS initiates a breadth-first search starting from each vertex inM−(p)
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of G simultaneously. When two searches meet at a certain vertex, they merge their

queues of vertices into one and restart as a single search with the merged queue

(Line 11 of Algorithm 3). If all those searches are combined into one, then the graph

G is connected, which indicates that all the cores in M−(p) are density-connected.

Otherwise, the graph G has more than one connected component and M−(p) is not

density-connected. Specifically, as shown in Line 6, if one of the queues becomes

empty before all the vertices in G are visited, that thread of the MS-BFS terminates

with its own connected component. In this case, the connected component does not

cover the entire set of vertices in G. Thus the graph G is not connected, and neither is

the setM−(p) of minimal bonding cores. That is, a cluster split happens. Even in the

case of split, MS-BFS does not explore the entire cluster. Instead, it terminates BFS

procedure when there lefts only one queue, which reduces the scope of exploration.

It should be noted that the MS-BFS presented in this chapter is completely different

from Then et al. ’s Multi-Source BFS [79]. The Multi-Source BFS executes multiple

independent BFS traversals over the same graph simultaneously and focuses on re-

ducing the memory accesses when every vertex is visited multiple times. On the other

hand, MS-BFS aims at reducing the scope of exploration by starting BFSs from multi-

ple starters concurrently thereby reducing the number of range searches made against

the R-tree index.

4.2.2 Epoch-Based Probing of R-tree Index

In the conventional BFS graph traversal, an array of Boolean flags is used to separate

visited vertices from unvisited ones. Such an array of Boolean flags, however, does

not help us reduce the cost of checking density-reachability because those flags will

be referenced only after the ϵ-neighbors of a certain core are identified by a complete

range search. Consequently, the cost of avoiding an already visited core (as much as

visiting an unvisited one) would remain as high as Ω(d), where d is the depth of the

R-tree index.
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An easy fix to this problem is to store the Boolean flags in the R-tree index itself

instead of a separate array. If an entry in a leaf node is marked as visited, then the

corresponding core will be ignored. If an entry in an internal node is marked as visited,

then all the cores indexed in the subtree rooted at the entry will be ignored altogether.

Unfortunately, however, this approach introduces another problem. Whenever another

density-reachability checking MS-BFS is initiated, all the Boolean flags of the R-tree

index must be reset beforehand, and this overhead may not be trivial.

Algorithm 4: Epoch_Based_Probe(range, node, tick)

1 foreach entry in node do

2 if range covers entry and entry.epoch < tick then

3 if node is a leaf then entry.epoch← tick

4 else Epoch_Based_Probe(range, entry, tick)

5 node.epoch← min(entries.epoch)

This concern is addressed by adopting an epoch-based method that stores epochs

of a visiting history rather than just Boolean visited-or-not flags in the R-tree index.

This method can be implemented efficiently with a monotonically increasing counter.

When a density-reachability checking MS-BFS begins anew, a tick value is assigned

from the counter so that each individual MS-BFS instance is given a distinct tick value.

An entry in a leaf node takes the current tick value as its epoch when the entry

(and its core) is visited (Line 3 of Algorithm 4). Thus, an epoch value smaller than

the current tick implies that the core referenced by the leaf entry has not been visited

by the current instance of MS-BFS. On the backtracking, the range search adjusts the

epoch of a parent entry such that it is always equal to the minimum of all epochs in

its child entries (Lines 5). Thus, the epoch of an internal entry smaller than the current

tick implies that there exists at least one child entry that has not been visited by the

current instance of MS-BFS. The checking procedure can ignore a core or a group of

42



cores altogether if an index entry encountered has an epoch equal to the current tick.

Note that even with this epoch-based method, the cost of finding unvisited ϵ-neighbors

will remain as Ω(d). Nonetheless, this method can reduce the cost of probing the R-

tree index quite considerably by pruning out any unnecessary portion of the index each

range search has to probe.

4.3 Updating Labels

The ultimate goal of DISC is to label each core or border point in the current window

correctly with the id of the cluster (or cid) it belongs to. Since the cluster membership

of points may change as the sliding window advances, the CLUSTER algorithm of

DISC handles it by updating the labels for ex-cores, neo-cores and any point which is

affected by ex-cores and neo-cores.

The labels of ex-cores may change to border or noise, and the labels of cores

affected by ex-cores may change to a different cid due to the splits caused by ex-cores.

These labels of ex-cores and cores are updated when a M− set is processed by the

MS-BFS procedure. Similarly, the labels of neo-cores and cores affected by them are

updated so that they have the same cid when aM+ set is processed. Besides, non-core

points near ex-cores and neo-cores can also change their labels. Labels of these points

are instantly updated if they are visited while minimal bonding cores are processed.

Otherwise, they will be updated later by examining labels of their ϵ-neighbors. Even-

tually, all the core and border points of the same connected component will share

the same cid, and this guarantees a set of clusters identical to what DBSCAN would

produce.
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The DISC algorithm covered in this chapter produces the same clustering results as

DBSCAN. By minimizing the computational burden with batch operations, DISC

achieves faster speed than existing approaches. Nonetheless, DISC has the same time

complexity as Incremental DBSCAN, and it still suffers from the slow deletion prob-

lem. In the following chapter, the problem will be addressed squarely, and a novel

approach will be proposed to address it.
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Chapter 5

Avoiding Graph Traversals in Updating Clusters

Deleting a point requires a costly graph traversal to check whether the cluster is still

connected after the deletion. DISC alleviates the performance degradation but does

not fundamentally address the problem. The density-based clustering method pre-

sented in this chapter is called DenForest. It produces similar (but not exactly the

same) density-based clusters to DBSCAN. It addresses the slow deletion squarely and

shows very efficient performance in the deletion process. The time and space complex-

ity of the previous algorithms as well as DenForest are summarized in Table 5.1. The

Incremental DBSCAN and ρ-double-approximate DBSCAN algorithms are referred

to as IncDBSCAN and ρ2-Approx, respectively.

As an incremental density-based clustering algorithm, DenForest is based on a

novel idea that allows us to manage clusters as a group of spanning trees of data points

rather than a graph. In general, it is far simpler to determine whether the removal

of a point splits a tree than a graph. However, a spanning tree being split does not

always imply the underlying graph is also split. Therefore, a new data structure called

DenTree is designed, which can tell accurately whether the underlying graph is being

split or not. The DenTrees of a graph can determine all by themselves whether the

removal of a point splits the graph (i.e., clusters). By managing clusters as DenTrees,

DenForest addresses the slow deletion problem and achieves fast incremental density-
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Table 5.1: Time and Space Complexity

Algorithm Deletion Insertion Space

IncDBSCAN [27] O(N(N1−1/d + k)) O(kN1−1/d + k2) O(N)

ExtraN [87] - O(N1−1/d+k( |W |
|S| )

2) O(N |W |
|S| )

ρ2-Approx [34] O(log2N) O(log2N) O(NlogN)

DISC O(N(N1−1/d + k)) O(kN1−1/d + k2) O(N)

DenForest O(logN) O(N1−1/d + klogN) O(N)

N is the number of points within a sliding window, k is the number of points retrieved by a range

search [9], and d is the dimensionality of data. |W| and |S| denote the size of a sliding window

and its stride, respectively.

based clustering.

DenForest takes O(logN) amortized time to delete a point, which is far faster than

the other algorithms in comparison. Its performance is less sensitive to the dimension-

ality of data since it does not require range searches. DenForest takes O(N1−1/d +

klogN) amortized time to insert a point. Although it is asymptotically slower than

ρ2-Approx, DenForest yields much higher performance in most practical settings.

It is demonstrated through extensive experiments conducted on various real-world

datasets that DenForest outperforms the currently available clustering algorithms con-

siderably. It is confirmed by measuring the clustering quality in widely used metrics

that the clustering quality of DenForest is not compromised, and DenForest and the

DBSCAN algorithm are in fact comparable with respect to the clustering quality.

5.1 The DenForest Algorithm

First, an overview of the algorithm is provided, and a few key ideas such as nostalgic cores

and DenTree are described in detail.
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Figure 5.1: Overview of DenForest

5.1.1 Overview of DenForest

Suppose data points are generated from sources such as sensing devices and are sent

over for processing continuously. Each data point is associated with a timestamp T

that indicates the event time or the ingestion time. The sliding window covers the most

recent data points in the stream at any moment in time.

For the data points in the current window, DenForest produces density-based clus-

ters by detecting the connected components of nostalgic cores (Section 5.1.2). The

nostalgic cores are similar to the cores defined by DBSCAN in that they are points

found in the dense region. But the nostalgic cores differ from DBSCAN’s cores in

the way they expire and become non-core points. Each density-based cluster of nos-

talgic cores can be managed as a tree structure called DenTree, which can expedite

the deletion process significantly (Section 5.1.3 and Theorem 2). When the window

slides, DenForest updates clusters by inserting and deleting points individually (Sec-

tions 5.2.1 and 5.2.2) or in a batch (Section 5.2.5). It is assumed that data points in the
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Table 5.2: Notation

Symbol Description

N the number of points in the current window

τ, ϵ the density and distance thresholds

CC a connected component of cores

d-core the core point defined by DBSCAN

T the timestamp of a point

Tc the core-expiration time of a point

Nϵ(p) the neighboring points within ϵ-distance from p

N ′
ϵ(p) the previously inserted points in Nϵ(p)

MST the maximum spanning tree of nostalgic cores

d the number of dimensions

k the number of points retrieved by a range query

M the number of nodes in the Link-Cut tree

SC a super nostalgic core

Bϵ a d-dimensional ball (or hypersphere) with radius ϵ

Dϵ the number of points in Bϵ

NCϵ(p) the nostalgic cores within ϵ-distance from a d-core point p

same stride are processed together, and data points in different strides are processed

strictly in the order of their timestamps. The overall clustering procedure by DenForest

is illustrated in Figure 5.1. The denotational symbols frequently used in the chapter are

summarized in Table 5.2.

5.1.1.1 Supported Types of the Sliding Window Model

DenForest supports both the count-based and the time-based sliding window models.

First, under the count-based sliding window model, the stride size is one or greater.
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If the stride size is one, then a point insertion and a point deletion are performed

alternately. If the stride size is greater than one, then a batch insertion and a batch

deletion are performed alternately. The arrival order of data points in the stream can

be used as the timestamp of an individual point. Second, under the time-based sliding

window model, the stride size is a fixed time duration, and a batch insertion and a

batch deletion are performed alternately and periodically. The only limitation is that

the window size must be a multiple of the stride size for the batch-optimized operations

to be applicable.

5.1.2 Nostalgic Core and Density-based Clusters

We come to realize that the slow deletion problem is caused intrinsically by the un-

predictability of a vanishing core’s expiration time. In this section, a novel approach

that can precisely predict the expiration time of a core when it enters the window is

presented.

Similarly to the DBSCAN algorithm, DenForest adopts two parameters, namely

density and distance thresholds (τ and ϵ) to discover density-reachable cores and adja-

cent borders. Unlike DBSCAN, however, DenForest relies on its own notion of a point

being a core called a nostalgic core rather than that of DBSCAN. (DBSCAN’s cores

are referred to as d-cores hereinafter to distinguish one from another.) DenForest can

determine exactly when a nostalgic core p will expire to become a non-core point,

immediately after p enters the sliding window. This is done by considering only the

current data points that entered the window earlier than p.

Definition 12 (Nostalgic core). A point p in the window W is a nostalgic core if the

number of ϵ-neighbors of p that entered W no later than p meets the density require-

ment. That is, p is a nostalgic core if |N ′
ϵ(p)| ≥ τ where N ′

ϵ(p) = {q ∈ W | q ∈

Nϵ(p)∧ q.T ≤ p.T}, and p.T and q.T denote the timestamps of p and q, respectively.

Whether a point p is a nostalgic core or not is determined at the insertion time

solely by the existing points in the current window, and the core status of p is not
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affected by the points inserted in the future. Furthermore, when a nostalgic core p

becomes a non-core point is also determined at the insertion time. (Refer to Lemma 3

below.) Note that DBSCAN’s cores or d-cores do not possess any of these properties.

While a point p stays in the window, DBSCAN allows p to gain or lose the core status

at any time by pre-existing and future points leaving or entering the window. Note also

that the set of nostalgic cores is always a subset of the set of d-cores.

Let p.Tc denote the core-expiration time of p or the time when a nostalgic core p

loses its core status to become a non-core point.

Lemma 3. p.Tc can be determined when p enters the window.

Proof. Consider a point p that is about to enter the window. Assume |N ′
ϵ(p)| ≥ τ

and p is determined as a nostalgic core. Let q denote a point in N ′
ϵ(p) such that its

timestamp q.T is the τ th largest (or youngest). Then, p loses its core status when q

leaves the window. Since q will leave the window at time q.T + |W |, p will become a

non-core point at that time. That is, p.Tc = q.T + |W |. Therefore, the core-expiration

time of p can be determined right at the moment when it enters the window.

Lemma 4. Once a point is not determined as a nostalgic core, then it can never become

a nostalgic core until it leaves the window.

Proof. For any point p in the window, |N ′
ϵ(p)| can only decrease as the window

slides. Therefore, if p is not a nostalgic core at the insertion time, it cannot become

a nostalgic core until it leaves the window.

Since DenForest defines its own nostalgic cores, the definitions of its border and

noise points as well as its density-based clusters need to be altered accordingly.

Definition 13 (Border and noise of DenForest). A point is a border if it is not a nostal-

gic core but within the ϵ-distance from any nostalgic core. Otherwise, it is considered

a noise point.
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Definition 14 (Density-based cluster of DenForest). In the graph representation (de-

scribed in Section 3.1.1), a density-based cluster is defined as a connected component

of nostalgic cores as well as the borders adjacent to the connected component.

Each density-based cluster is managed as a tree called DenTree introduced in Sec-

tion 5.1.3. It may appear that DenForest will produce density-based clusters of poor

quality because the nostalgic cores are defined without considering the data points be-

ing inserted in the future. It will be demonstrated later in this chapter that DenForest

can produce clusters of comparable quality much more efficiently. (See Sections 5.3

and 6.5.3.4 for the detailed evaluation.)

5.1.2.1 Cluster Membership of Border

Traditionally, the cluster membership of a border point is not decided deterministically.

If a border point is adjacent to two or more clusters, it can join any of the clusters. This

is the way DBSCAN decides the cluster membership of a border point. In contrast,

a deterministic heuristic is adopted. DenForest attaches a border point p to a nostal-

gic core with the largest Tc among those in Nϵ(p), which in turn decides the cluster

membership of p. This approach is not in conflict with the definition of clusters and

is in fact beneficial for performance, because deletion of the nostalgic core that p is

attached to always results in p becoming noise, hence avoiding further reclassification

effort.

5.1.3 DenTree

In order to process a point deletion efficiently, each cluster is maintained as a tree

structure called DenTree, which can be used as an accurate barometer of a cluster

split. A DenTree consists of a maximum spanning tree (MST in short) of a DenGraph

defined below and border points associated with it.

Definition 15 (DenGraph). A DenGraph G(V,E,W) is an undirected edge-weighted

graph where each vertex in V corresponds to a nostalgic core in the window, each
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edge in E corresponds to a pair of vertices within the ϵ-distance from each other, and

each weight inW is set to the smaller Tc of the two adjacent vertices, namely

∀ pq ∈ E, wpq = min{p.Tc, q.Tc}. (5.1)

A DenGraph may have one or moreMST s, each of which corresponds to a con-

nected component of the DenGraph. For a pair of nostalgic cores in the same con-

nected component, there may exist multiple paths between them. Thus, just a path

being split does not always make them disconnected in the graph. However, if the

path being split is the one on the MST of the connected component, then the two

nostalgic cores are no longer connected in the graph. This property of theMST s is

the key to addressing the slow deletion problem. Hereinafter, a maximum spanning

tree of a DenGraph is simply referred to as anMST for brevity.

Theorem 2. Consider two nostalgic cores p and q in an MST of a DenGraph. If

another nostalgic core x on the path of the MST between p and q becomes a non-

core point and is removed from the graph, then p and q are no longer connected not

only in theMST but also in the graph.

Proof. (By contradiction). Consider the moment when x is about to become a non-

core point and be removed from the graph. Suppose the path on the MST passing

through x is not the only path between p and q in the graph. Then there must be

another path between them, and these two paths form a cycle. Since x is the one that is

about to expire, all the points in the cycle have a core-expiration time greater than x’s.

Consider now a point y directly adjacent to x on the path of theMST . Then, the edge

xy must have the smallest weight among all the edges in the cycle, because wxy =

min{x.Tc, y.Tc} = x.Tc. This implies that the edge xy must not have been chosen for

theMST , and therefore contracts the assumption that xy is in theMST .

The implication of Theorem 2 is that when anMST is split by a vanishing nostal-

gic core, the underlying connected component (and its corresponding cluster) is also
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Figure 5.2: Example of DenTree

split. In general, a tree is split to non-empty subtrees when a node with two or more

adjacent nodes is removed. Hence, to determine whether a cluster will be split by a

vanishing nostalgic core p, it will be enough to check whether p is adjacent to two or

more nostalgic cores in theMST . Below DenTree that represents a cluster of nostal-

gic cores and border points is defined.

Definition 16 (DenTree). A DenTree is a tree composed of anMST and the border

points associated with theMST . If a border is adjacent to more than one nostalgic core,

it is attached to the one of those that has the largest core-expiration time Tc.

Example 4. Figure 5.2 illustrates how a density-based cluster is represented by a

DenTree, which consists of anMST of nostalgic cores and the border points associ-

ated with it. In the figure, the red points (A ∼ K) and the white points (L ∼ N ) denote

nostalgic cores and border points, respectively. An edge in the graph indicates that its

two adjacent vertices (nostalgic cores or borders) are within the ϵ-distance from each

other. Nostalgic cores are annotated with their core-expiration times. Unlike the tradi-

tional approaches, graph traversals are not required to determine whether a cluster is

split or not by a vanishing core. For example, at time t = 5, point A becomes a non-

core, and the cluster shrinks but is still connected because the DenTree is not split. On
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the other hand, at time t = 6, points B and I become non-cores, and the DenTree is

split by point I , and consequently, the cluster is also split by point I .

5.2 Operations of DenForest

This section presents the detailed procedures of DenForest’s Insert and Delete

operations. These procedures ensure that clusters produced by DenForest are always

valid with respect to Definition 14, while the window slides.

5.2.1 Insertion

The Insert operation is responsible for updating clusters when new data points are

added to the window. In particular, it ensures thatMST s are updated incrementally

and remain valid even when the underlying graph of nostalgic cores changes over time

by the sliding window. The overall procedure is composed of four steps as follows.

(Refer to Algorithm 5 and Figure 5.3 for details.)

STEP 1 (Point Classification) First, it determines whether a new point p is a

nostalgic core by counting the number of its ϵ-neighbors in the current window. If

the count is no less than the density threshold τ , then p is classified as a nostalgic core.

Otherwise, it is classified as a border or noise point.

STEP 2 (Determination of Tc) If p is classified as a nostalgic core, the core-

expiration time p.Tc is computed by its ϵ-neighbors (Line 4). This step involves sorting

the ϵ-neighbors in the order of their timestamps.

STEP 3 (Adding Links toMST s) If p is a nostalgic core, the maximum spanning

trees (MST s) are updated by adding p and new edges adjacent to it. The point p

is connected to each of the nostalgic cores within the ϵ-distance by an edge whose

weight is set by Equation (5.1). If a cycle is formed by adding a new edge, an edge

with the smallest weight is removed from the cycle by the Connect(p,n) function

(Line 6), which is described in Algorithm 6. Three types of cluster evolution can result
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Algorithm 5: Insert a point p and update the clusters

Insert (Point : p)

1 Insert p into the SpatialIndex

2 if |N ′
ϵ(p)| ≥ τ then

3 mst← 0 // The number of MST s connected to p

4 p.Tc ← Core-Expiration-Time(p)

5 foreach n ∈ N ′
ϵ(p) do

// The Connect function returns true if it

combines two disjoint MST s.

6 if n.Tc ≥ currentT ime and Connect(p, n) then

7 mst++

end

end

8 Determine the type of cluster evolution by the mst value

end

9 Process the noise/borders

by updating theMST s (Line 7 and Line 8):

1. A cluster emerges if there is noMST near p (mst = 0).

2. A cluster expands if p is connected to oneMST (mst = 1).

3. More than two clusters are merged when p is connected to multiple MST s

(mst ≥ 2).

STEP 4 (Updating Borders) If p is a nostalgic core, then an existing border point

(say x) within the ϵ-distance from p may be reconnected to p, if Tc of p is greater

than that of x’s adjacent nostalgic core. For p that is not a nostalgic core, if there

exists a nostalgic core in Nϵ(p), then p becomes a border point and p is connected to

a nostalgic core in Nϵ(p) with the largest Tc. Otherwise, p becomes a noise.

The following lemma proves the validity of the Insert operation.
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Figure 5.3: DenForest’s Insertion

Lemma 5. Insert(p) of Algorithm 5 updates DenTrees correctly.

Proof. The MST s of a DenGraph remain cycle-free and maximally spanning be-

cause an edge with the smallest weight is removed if a cycle is formed by p being

inserted [18]. Every border point, either a new or existing one, remains attached to a

nostalgic core with the largest Tc within the ϵ-distance. Therefore, the DenTrees are

updated correctly by Insert(p).
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Table 5.3: Link-Cut Tree Operations

APIs Description

Link(n,m) Link nodes n and m in different trees.

Cut(n,m) Cut a link between nodes n and m.

Connected(n,m) Check if a path exists between nodes n and m.

FindMinE(n,m)
Find the minimum weighted edge on the path

between nodes n and m (added for DenForest).

5.2.1.1 MST based on Link-Cut Tree

DenForest relies on a data structure called Link-Cut Tree [76] to efficiently detect and

break a cycle in the MST s. The Link-Cut tree represents a set of trees and is often

used to solve the dynamic connectivity problem for an acyclic graph. The trees in a

Link-Cut tree are divided into disjoint paths, and each path is represented by a Splay

tree. By managing a set of trees with a path-based structure, the Link-Cut tree can sup-

port its key operations in the amortized O(logM) time, where M is the total number

of nodes in the trees. See Table 5.3 for the list of supported operations as well as a new

one added for DenForest.

DenForest maintains its MST s in the Link-Cut tree and updates them when-

ever the underlying graph changes by a new point added to the window. For effi-

cient updates, a new function called FindMinE(n,m) is designed in addition to

the traditional operations of the Link-Cut tree. FindMinE(n,m) finds the minimum

weighted edge on the path between two nodes n and m in a tree. FindMinE(n,m)

also runs in the amortized O(logM) time.

Algorithm 6 presents the Connect algorithm that links two nostalgic cores p

and q in the Link-Cut tree. The weight of the edge pq is set by the smaller of the

core-expiration times of p and q (Line 1). If there already exists a path between them

(Line 2), adding pq would create a cycle. Thus, the algorithm finds an edge with the
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Algorithm 6: Connect two points in the Link-Cut tree

Connect (Point : p, Point : q)

1 wpq ← min{p.Tc, q.Tc}

2 if Connected(p,q) then

// If a cycle is formed, cut the minimum weighted

edge

3 rs← FindMinE(p, q)

4 if wrs ≤ wpq then

5 Cut(r, s) and Link(p, q)

end

6 return False // No merge

else

7 Link(p, q)

8 return True // Potential merge

end

smallest weight, say rs, on the path between p and q (Line 3). If the weight of rs

is smaller than the weight of pq, then rs is removed and replaced by pq (Lines 4-5).

Otherwise, pq is simply dropped without altering the Link-Cut tree (Line 6). If there is

no path between p and q, the two separateMST s they belong to are linked together

by adding pq (Line 7). The Connect algorithm returns a Boolean flag to indicate the

type of cluster evolution.

5.2.1.2 Time Complexity of Insert Operation

The runtime of the Insert algorithm is given by the formula below.

Ci + Cr + Pnc × (Cs + |N ′
ϵ|Cc) + Cp (5.2)

Ci is the cost of inserting a point into the spatial index, Cr is the cost of a range

search, Pnc is the probability of an inserted point being a nostalgic core, Cs is the cost
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of sorting N ′
ϵ to compute the core-expiration time, Cc is the cost of the Connect

operation, and Cp is the cost of processing a border.

Lemma 6. Insert runs in amortized O(N1−1/d + k logN) time.

Proof. Assume that the balanced k-d tree [9] is used as a spatial index. Then, Ci and

Cr are O(logN) and O(N1−1/d + k), respectively, where k is the number of points

retrieved by a range query. Cs and Cp are O(|N ′
ϵ|×log |N ′

ϵ|) and O(|N ′
ϵ|), respectively.

Cc is amortized O(logM) because all of its sub-algorithms take amortized O(logM)

time. Then, since M < N , the amortized time complexity of the Insert operation

is bounded by O(N1−1/d + k logN).

DenForest can work with many spatial indexes such as R-tree [39] and range

tree [10] as well. The balanced k-d tree is assumed in the proof for its well known

upperbound analysis.

5.2.2 Deletion

The Delete operation is responsible for updating clusters when existing data points

are removed from the sliding window. Theorem 2 enables it to quickly determine

whether a cluster will be split or not just by counting the links adjacent to each vanish-

ing nostalgic core in theMST . The Delete algorithm depicted in Algorithm 7 and

Figure 5.4 runs in two main steps.

STEP 1 (Finding Expiring Nostalgic Cores) When a point q is removed from the

window, some of the nostalgic cores may become non-cores. Unlike the traditional

density-based methods, those expiring nostalgic cores can be found without executing

any range search. Since the core-expiration time of a nostalgic core is determined at the

insertion time and remains intact, all the nostalgic cores in the current window can be

indexed in a supplementary data structure such as hashmapwith their core-expiration

times as keys. When q is removed from the window at time t, all the nostalgic cores
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Algorithm 7: Delete a point q and update the clusters

Delete (Point : q)

1 E(q) : a set of nostalgic cores expired by the deletion of q

2 foreach x ∈ E(q) do

3 L← a set of nostalgic cores linked to x

4 Determine the type of cluster evolution by the |L| value

5 foreach y ∈ L do Cut(x,y)

6 Reclassify x as either border or noise by the |L| value.

end

7 Delete q from the SpatialIndex

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑊𝑖𝑛𝑑𝑜𝑤
FuturePast

A point q to be deleted

q
𝑞. 𝑇𝑜𝑢𝑡

𝐾𝑒𝑦 𝑉𝑎𝑙𝑢𝑒

q

𝐻𝑎𝑠ℎ𝑚𝑎𝑝

1. Find expiring nostalgic cores 2. Cut links from 𝑴𝑺𝑻.

Split!

Shrink!

Nostalgic core Nostalgic core expired by q

Figure 5.4: DenForest’s Deletion
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becoming non-cores at time t can be found in O(|E(q)|) time from the supplementary

data structure (Line 1).

STEP 2 (Cutting Links fromMST s) All the expiring nostalgic cores are exam-

ined to determine whether anyMST is to be split. For each expiring nostalgic core

x, all the adjacent links are found (Line 3) and removed (Line 5). Then x is reclassi-

fied as follows (Line 6). If |L| ≥ 1, then x becomes a border point and is attached

to a nostalgic core in L with the largest Tc. If |L| = 0, then there is no nostalgic core

adjacent to it and x becomes a noise. Three types of cluster evolution can result from

each expiring nostalgic core x (Lines 4):

1. If |L| = 0, the cluster containing x dissipates.

2. If |L| = 1, the cluster containing x shrinks.

3. If |L| ≥ 2, the cluster containing x is split.

Theorem 2 guarantees that the clusters updated by the Delete operation are valid.

Note also that Algorithm 7 does not involve any range search. Consequently, the per-

formance of the Delete operation is less sensitive to the dimensionality of data

points, and is not overly affected by the distance threshold ϵ. This will be corrobo-

rated by the experimental evaluation in Section 6.5.3.2.

5.2.2.1 Time Complexity of Delete Operation

The asymptotic runtime of the Delete algorithm is given by the formula below.

O(|E| × |L| × logM + logN) (5.3)

|E| is the number of nostalgic cores expired by the deletion of a point, and |L| is the

degree (i.e., the number of adjacent links) of an expiring nostalgic core. The terms

logM and logN denote the cost of a Cut operation in the Link-Cut tree and the cost

of a deletion in the spatial index, respectively.
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The Delete operation can be compared with the update procedure of theMST s

in Insert, where the cost of the latter is Pnc×|N ′
ϵ|×logM , as shown in Equation 5.2.

The term, |E|, can be compared with the term, Pnc. If the overall clusters shrink or

dissipate as the window slides, the total number of nostalgic cores decreases. That is,

Pnc would be smaller than |E|. Conversely, Pnc would be bigger than |E| as the overall

clusters emerge or expand over time.

Another term, |L|, can be compared with N ′
ϵ. Specifically, |L| cannot be larger than

|N ′
ϵ|, since the number of links created is always smaller than the |N ′

ϵ|. However, the

number of expiring links, |L|, is close to |N ′
ϵ| when the clusters split a lot. Conversely,

|L| is close to zero when the clusters do not split often. Due to the |N ′
ϵ| and the hidden

constant factor in logM 1, the procedure of updating theMST in Insert is usually

slower than in Delete. Moreover, because of the additional terms (related to range

search and sorting) in Insert, the overall performance of Insert is far slower than

Delete, which is shown in the evaluation section.

In the following theorem, the runtime of the Delete algorithm is bounded by

determining the maximum number of nostalgic cores that can expire by a single point

being removed from the sliding window.

Theorem 3. The amortized runtime of the Delete algorithm is O(logN) where N

is the number of points in the sliding window.

Proof. Suppose a point p is about to be removed from the window and a nostalgic core

x is about to become a non-core by that. First, x must be in Nϵ(p). Otherwise, x would

not be affected by the deletion of p. Second, the number of points that exist at exactly

the same location as x must be no more than τ − 1. Otherwise, x would still be a

nostalgic core after the deletion. Third, if there are τ−1 points at the location of x, then

there must be no more point within the ϵ-distance from x. Otherwise, again, x would

still be a nostalgic core after the deletion. That is, if τ − 1 nostalgic cores at the same

location are about to expire, there must be no other point within the ϵ-distance. Hence,
1More LinkCut Tree’s APIs are invoked in Insert than Delete
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Figure 5.5: Insertion/Deletion Example

the number of those locations where groups of τ − 1 expiring nostalgic cores coexist

is bounded by a constant. In a 2-dimensional space, the maximum number of such

locations is six, which is known as a kissing number [20].2 In a d-dimensional space,

the kissing number is bounded by cd, where c is a small constant. Thus, the number

of nostalgic cores expired by the deletion of p is bounded by (τ − 1) × cd, which is

O(1). This implies that |E| is O(1) in Equation (5.3). Besides, in Equation (5.3), the

average of |L| is less than two (just like the average degree of a vertex in any tree or

acyclic graph), and M ≤ N because M is the number of nodes in the Link-Cut tree.

Therefore, the amortized runtime of the Delete algorithm is O(logN).

Lemma 7. DenForest consumes O(N) space.

Proof. The main data structures DenForest relies on are DenTrees, a spatial index and

a hashmap. DenTrees including the Link-Cut tree use O(N) space, and the spatial

index and the hashmap both use O(N) space.

2The kissing number is defined as the maximal number of non-overlapping unit spheres that can touch

a common sphere of the same size. For DenForest, the radius of the spheres is ϵ/2.
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5.2.3 Insertion/Deletion Examples

Here are some examples for the insertion and deletion. In Figure 5.5, DenTree is con-

structed from the density-based cluster (graph). Note that only the DenTree is phys-

ically maintained. The graph was not physically maintained. Red points indicate the

nostalgic cores in the window, and each edge indicates the ϵ-neighbor relationship

(i.e., two points are within the ϵ-distance). The numbers in parentheses indicate the

core-expiration time. Only a few border points are shown in the figure for clarity of

the presentation. Point O is about to be inserted.

Example 5. Insertion Example

1. Suppose that a point O is about to be inserted and is classified as a nostalgic

core with a core-expiration time of 18. It has three neighbors: E, H, and L.

2. Because point O is a nostalgic core, edges EO and HO are connected to the

MST. The weight of the edge EO is 12 (= min(12,18)), and the weight of the

edge HO is 13 (= min(13, 18)).

3. Because cycle E-F-H-O-E occurs, the edge with the smallest weight will be re-

moved. In this example, the two edges EF and EO have the smallest weight (=

12). Any one of the two edges is then removed from the MST to prevent the cycle.

4. Border L is then examined to be connected to the neighboring nostalgic core that

has the larger core-expiration time. Because the core-expiration time of point O

is larger than that of point H, the border point L is connected to O.

Example 6. Deletion Example

1. As time passes, the points are deleted from the window. Because of these deleted

points, some nostalgic core points become non-core points. DenForest retrieves
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these expiring nostalgic cores using a hashmap. The hashmap has the core-

expiration time as a key and the corresponding nostalgic cores as values.

2. First, nostalgic core A is retrieved at t=5 from the hashmap. (i.e., point A be-

comes a non-core because of the points deleted at t=5.) Then, point A is discon-

nected from MST. Because it is connected to only one nostalgic core, the cluster

does not split.

3. Subsequently, two points, B and I, are retrieved at t=6. The MST is not split

owing to point B, however the MST is split owing to point I. This is because

point I is connected to two nostalgic cores, that is, point I causes the cluster to

split.

4. Finally, points B and I become the borders. Point B is connected to point C.

Point I is connected to point H because point H has a larger Tc than point J.

5.2.4 Cluster Membership

DenForest does not store the cluster identification of an individual point. If it did,

then the cost of updating the cluster identifications would be non-trivial. Instead, upon

request, DenForest assigns a unique ID to the points belonging to each cluster by

traversing the corresponding DenTree. This procedure requires O(N) time, which is

no worse than any existing method.

5.2.5 Batch-Optimized Update

The Insert and Delete operations can be further optimized by exploiting the lo-

cality of the data points in the same stride. By consolidating nearby nostalgic cores

to fewer meta-objects called super nostalgic cores, DenForest can make the MST s

smaller and reduce the overhead of updating clusters.

Definition 17 (Super nostalgic core, SC). The super nostalgic core is a connected
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component of nostalgic cores in the same stride that become non-cores together when

the window slides by a single stride.

Definition 18 (ϵ-Neighbors of a super nostalgic core). Two super nostalgic cores sc1

and sc2 are said to be ϵ-neighbors if there are a pair of points p ∈ sc1 and q ∈ sc2

such that distance(p, q) ≤ ϵ.

E (27, 42)

D (28, 43)

B (26, 39)

C (28, 39)

A (26, 38) 

F (29, 36)

S6: 25~30S3: 10~15 S4: 15~20 S5: 20~25

0 5 10 15 20 25 30

Sliding Window (|W|=20s)

New SC

New nostalgic core

Existing SC

𝜖-𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 rel.

Stride (|S|=5s)

𝑠𝑐1
𝑠𝑐2

𝑠𝑐3

𝑠𝑐4

S1: 0~5 S2: 5~10

Figure 5.6: Example of Super Nostalgic Cores

In the following example of super nostalgic cores, it is assumed that the window

and the stride are 20 seconds long and 5 seconds long, respectively, and the sliding

window is currently anchored at time 25 covering a time interval (5,25]. This is il-

lustrated in Figure 5.6, where each point is annotated with the timestamp (T ) and the

core-expiration time (Tc). For example, point A(26, 38) will be ingested at time 26 and

will become a non-core at time 38. Non-cores are not shown in the figure.

Example 7. In Figure 5.6, the four stars (sc1 ∼ sc4) represent super nostalgic cores

in the current window. When the window advances by a stride, six new points (A ∼ F )

in the stride S6 are added to the window, and they all become nostalgic cores. Among

those six points, F is separate from the others by a nostalgic core not in stride S6,
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Figure 5.7: Batch-optimized Insert

and it alone forms a super nostalgic core {F}. The other points A ∼ E are in a

connected component of nostalgic cores in the same stride, but they form two separate

super nostalgic cores {A,B,C} and {D,E}. This is because points A, B, and C will

become non-cores at time 40, while points D and E will become non-cores at time 45.

The super nostalgic cores {A,B,C} and {D,E} are said to be ϵ-neighbors because

C and D are within the ϵ-distance from each other.

The batch-optimized Insert algorithm replaces a group of connected nostalgic

cores with a super nostalgic core so that DenForest can update clusters more efficiently

without compromising the clustering result. The detailed procedure is given below.

(See Figure 5.7 for illustration.)

STEP 1 (Finding SCs) When the window slides by a stride and new data points

are added, new nostalgic cores are found from the data points, and new super nostalgic

cores are formed from the nostalgic cores. The core-expiration time of a super nostal-

gic core is set to the time interval of a stride that covers all the core-expiration times of

its nostalgic cores. For example, Tc of the super nostalgic core {A,B,C} is set to the

time interval (35,40]. Besides, each nostalgic core maintains a pointer to the adjacent

nostalgic core with the largest Tc for the batch-optimized deletion. For example, point

C maintains a pointer to D, which has the largest Tc among Nϵ(C).

STEP 2 (UpdatingMST s with SCs) Each super nostalgic core is collapsed to a

single vertex in theMST s. A new edge is introduced to each pair of the ϵ-neighbors of
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super nostalgic cores, and the weight of the new edge is set to the smaller of their core-

expiration times. For example, the weight of the edge between two super nostalgic

cores {A,B,C} and {D,E} is set to the time interval (35, 40]. If a cycle is formed,

then an edge with the smallest weight is removed from the cycle. Borders are updated

the same way as the Insert algorithm.

The batch-optimized Delete algorithm works similarly. When the window slides

by a stride and old data points are removed, some of the super nostalgic cores may be-

come non-cores. For example, when the window slides from a time interval (15, 35] to

a time interval (20, 40], super nostalgic cores {A,B,C} and {F} become non-cores.

The expired super nostalgic cores are removed from theMST s. For each point p that

has become a non-core, the adjacent nostalgic core q with the largest Tc is examined,

which is found by following the pointer established in the batch insertion algorithm.

If q is still a nostalgic core, then p becomes a border point. Otherwise, it becomes a

noise.

5.3 Clustering Quality of DenForest

Two aspects should be considered in evaluating the effectiveness of a clustering method

for streaming data over the sliding window. The first is the capability to produce high-

quality clusters from the current window, and the second is the capability to sustain

the quality efficiently while the window moves forward. This section evaluates the first

aspect of DenForest. The second aspect of DenForest will be evaluated in Section 6.5.

5.3.1 Clustering Quality for Static Data

A variety of synthetically generated labeled datasets were used for the evaluation of

clustering quality. For each dataset, it was assumed that the entire set of data points

were contained in the current window from which density-based clusters were pro-

duced by DenForest as well as DBSCAN for comparison. DenForest produces clusters
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Table 5.4: Clustering quality on various datasets

Dataset

DenForest

vs. Label

DBSCAN

vs. Label

DenForest

vs. DBSCAN

ARI AMI NMI ARI AMI NMI ARI AMI NMI

Spiral [15] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

R15 [81] 0.98 0.98 0.98 0.99 0.99 0.99 0.98 0.98 0.98

Aggr. [36] 0.97 0.96 0.97 0.99 0.99 0.99 0.97 0.96 0.97

Comp. [90] 0.94 0.87 0.90 0.94 0.85 0.91 0.98 0.88 0.94

G2-2-30 [62] 0.95 0.88 0.90 0.96 0.93 0.93 0.96 0.92 0.94

G2-4-30 [62] 0.99 0.97 0.99 1.00 1.00 1.00 0.99 0.97 0.99

G2-8-30 [62] 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 0.99

Average 0.97 0.95 0.96 0.98 0.96 0.97 0.98 0.95 0.97

of nostalgic cores, while DBSCAN produces clusters of d-cores (i.e., cores in DB-

SCAN’s own definition). Although they define cores in their own ways, both DenForest

and DBSCAN define clusters the same way.

Three metrics called Adjusted Rand Index (ARI) [45], Adjusted Mutual Informa-

tion (AMI) [83], and Normalized Mutual Information (NMI) [56] were adopted to

measure the clustering quality quantitatively. These metrics have been used widely in

various studies to compute the similarity between two cluster memberships (or par-

titions) [52, 14]. The ARI values range from -1 to 1, with 1 indicating two identical

clustering results and -1 indicating no similarity between them. The AMI and NMI

are similar to ARI, but their values range from 0 to 1. For each clustering method, the

best achievable quality was attempted to be obtained by tuning the density (τ ) and the

distance (ϵ) thresholds. The clustering results of DenForest may vary depending on the

ingestion order of data points owing to the way nostalgic cores are defined. Thus, for

each metric, DenForest was ran one hundred times for each dataset each with a random

ingestion order and took the average.

Table 5.4 summaries the clustering quality of DenForest and DBSCAN tested on

seven labeled datasets, which are listed in the first column of the table. In the first and
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second groups of three columns are the quality measurements computed with respect

to the given labels (i.e., ground truth), which measure the ability of DenForest and

DBSCAN to produce accurate clustering results. In the third group of three columns

are the quality measurements computed with respect to the clustering results from

DBSCAN, which measures the ability of DenForest to produce the same clustering

results as those of DBSCAN. On average, DenForest achieved 0.97 (ARI), 0.95 (AMI),

and 0.96 (NMI) clustering quality with respect to the given true labels, and achieved

0.98 (ARI), 0.95 (AMI) and 0.97 (NMI) clustering quality with respect to the clustering

results from DBSCAN. This demonstrates that considering only the pre-existing data

points in the current window does not overly compromise the quality of clusters and

helps expedite the clustering process significantly, which will be shown in Section 6.5.

5.3.2 Discussion

The following observation explains this phenomenon: the nostalgic cores spatially

cover the clusters of the d-core. In the density-based clusters, it is assumed that each

core point represents a ball with a radius, ϵ, which covers the area within the ϵ-distance

from the point. In the dense area (clusters), many balls are piled densely within a small

region. The shape of the clusters can then be represented by using only a subset of

the points, indicating that the subset of points can spatially cover the other points of

the clusters. Thus, the nostalgic cores can be explained as a subset of d-cores, that are

positioned relatively on a front end (recent side) of the window, but spatially cover

the d-cores producing the indistinguishable clustering results. The d-cores may not be

spatially well covered with nostalgic cores for a sparse region. However, remember

that our task is finding the dense area (clusters).

5.3.3 Replaceability

The number of nostalgic cores within the distance threshold is critical to the quality

of clustering result. This section provides further analysis on the relationship among
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the density of a region, the number of nostalgic cores, and the clustering quality. First,

it will be shown that the number of nostalgic cores in a region is linearly correlated

with the density of the region (Section 5.3.3.1). Then, it will be shown that DenForest

and DBSCAN would produce similar clustering results if the region was dense enough

(Section 5.3.3.2).

5.3.3.1 Nostalgic Cores and Density

Imagine a set of points scattered in the space and time. The number of points in a space

V and a time-interval (t1, t2] can be calculated by the equation below with continuous

density assumed for simplicity. ∫ t2

t1

∫
V
D(x⃗, t)dV dt (5.4)

where D(x⃗, t) denotes the density function of space (x⃗) and time (t). Below a locally

stable subspace is defined whose number of nostalgic cores can be determined with

respect to the density of the subspace.

Definition 19 (Locally stable). A subspace is said to be locally stable if the following

equation is satisfied for any point p in the subspace.∫
Bϵ(p)

D(x⃗, t)dV = V ol(Bϵ) ·D(p, t)

Bϵ and Bϵ(p)denote a ball of radius ϵ and a ball of radius ϵ centered at p, respectively.

V ol(Bϵ) denotes the volume of Bϵ.

Lemma 8. In a locally stable subspace, the number of nostalgic cores in any Bϵ is

Dϵ − τ , where Dϵ denotes the number of points in Bϵ.

Proof. Let the time interval of the window be (t0, tW ]. By Equation (5.4), Dϵ is

equal to
∫ tW
t0

∫
Bϵ

D(x⃗, t)dV dt. For a position y⃗ in the locally stable space, define a

function T (y⃗) such that τ =
∫ T (y⃗)
t0

∫
Bϵ(y⃗)

D(x⃗, t)dV dt. T (y⃗) is a time threshold for

nostalgic core classification. Among those at the same location as y⃗, the points in-

serted after the T (y⃗) time are classified as nostalgic cores, while the points inserted
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before that time are not. The number of nostalgic cores in Bϵ can then be defined as∫
Bϵ

∫ tW
T (x⃗)D(x⃗, t)dtdV . Therefore, the lemma is proved as follows.

∫
Bϵ

∫ tW

T (x⃗)
D(x⃗, t)dtdV = Dϵ −

∫
Bϵ

∫ T (x⃗)

t0

D(x⃗, t)dtdV

=Dϵ −
∫
Bϵ

τ/V ol(Bϵ)dV (by the locally stable condition)

=Dϵ − τ.

This lemma indicates that in the region with a sufficiently high density (Dϵ ≫ τ ),

there will be many nostalgic cores in any Bϵ.

5.3.3.2 Nostalgic Cores and Quality

The d-cores of DBSCAN play two important roles : (1) spatially covering the clus-

tered region and (2) connecting the neighboring points. If nostalgic cores completely

replace d-cores playing these roles, DenForest and DBSCAN will produce an identical

result. This replaceability is correlated with the number of nostalgic cores in Bϵ.

For a d-core point p, let NCϵ(p) be a set of nostalgic cores in Bϵ(p). Recall that

nostalgic cores are a subset of d-cores.

Definition 20 (Completely replaceable). A d-core p is said to be completely replace-

able by NCϵ(p), if the following conditions are satisfied.

Bϵ(p) ⊆
⋃

q∈NCϵ(p)

Bϵ(q) (Coverage)

A DenGraph’s subgraph whose vertex

set is NCϵ(p) is connected.
(Connectivity)
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Theorem 4. For any d-core p, if it can be completely replaced by NCϵ(p), then both

DenForest and DBSCAN produce an identical clustering result.

Proof. The Coverage condition guarantees that the area covered by nostalgic cores

contains all the borders and d-cores of DBSCAN. The Connectivity condition guar-

antees that all the d-cores in a cluster of DBSCAN are included in a cluster of DenForest.

This theorem clearly states that the two conditions of Definition 20 are relevant

to clustering quality. Now, let us find out how they are correlated with the cardinality

of NCϵ(p). Figure 5.8 shows the coverage ratio of a point p and the probability of

the subgraph composed of NCϵ(p) being connected, with respect to the |NCϵ(p)| and

the dimensionality of space. The Monte Carlo method [63] was adopted, and NCϵ(p)

is populated uniformly around p. The coverage ratio is calculated by the following

equation.

Coverage Ratio =
V ol(Bϵ(p) ∩ (

⋃
q∈NCϵ(p)

Bϵ(q)))

V ol(Bϵ)

The general trend is that, as |NCϵ(p)| increases, both the coverage and the connec-

tivity increase. For example, in a 2D space, if Dϵ − τ ≥ 16, then the clustering result

of DenForest will be nearly identical to that of DBSCAN. This is because 16 or more

nostalgic cores around a d-core p can replace it completely.
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Figure 5.8: Coverage and Connectivity w.r.t. |NCϵ|
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In interior regions of a cluster where the density is sufficiently high (Dϵ ≫ τ ),

there would be many nostalgic cores within the ϵ-distance. Thus, the nostalgic cores

would replace d-cores well with the high coverage ratio and the high probability of

being connected. In boundary regions of a cluster where the density is not so high

(Dϵ ≈ τ ), there might not be enough points in NCϵ, and the nostalgic cores would not

replace d-cores so well. However, the boundary regions are fundamentally unstable,

and they seldom affect the quality of clustering result.

5.3.4 1D Example

Here is an example for the better understanding about the internals of the cluster in

DenForest. Consider that two clusters emerge in an one-dimensional space where

each point is randomly generated over time from a bi-modal distribution, {3N (0, 1)+

2N (6, 1.5)}/5. The window is filled with 5 K data points preserving the time order

with |stride|=1.
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Figure 5.9: Density-Based Clusters produced by DenForest and DBSCAN

DenForest and DBSCAN are then run to detect two clusters by setting ϵ=1 and

τ=500 using the data points in the window. Figure 5.9 presents the description of the

detected clusters. The y-axis denotes the density of each data point. For each point

in the window, DenForest calculates the density as the number of previously inserted

points within the ϵ-distance, while DBSCAN calculates the density including the num-
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ber of points inserted afterwards as well.

In Figure 5.9a, the data points of DenForest are distributed like a plane because a

group of data points in very close proximity tends to have widespread density values

according to their ingestion time. On the other hand, the data points of DBSCAN are

distributed like a line in Figure 5.9b, because a group of data points in very close prox-

imity shows similar densities. It can be noticed that the nostalgic cores cover the space

where the d-cores exist. Furthermore, a set of the d-cores not in the nostalgic cores

({d-cores }\{nostalgic cores }) is included into the clusters as borders in DenForest

(that are spatially covered by nostalgic cores). Therefore, DenForest and DBSCAN

produce the nearly identical cluster memberships.
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Chapter 6

Evaluation

This chapter analyzes the performance of DISC and DenForest by comparing them

with the existing incremental density-based clustering methods.

6.1 Real-World Datasets

In the experiments, the following five real-world datasets were used to evaluate the

proposed methods.

DTG is a dataset collected from digital tachograph devices attached to commercial

vehicles in a metropolitan city [25]. A record was generated from each vehicle every

10 seconds, and each record included the time, location, speed, and acceleration of the

vehicle. The 2D coordinates (plat, plon) were used in the experiments, where plat and

plon are the latitude and the longitude fields, respectively. The total number of records

is approximately 300 million.

GeoLife is a GPS trajectory dataset collected from 182 users over a period of

four years [92]. Each record includes the time and the location of each user. The 3D

normalized coordinates (plat, plon, palt/300, 000) were used in the experiments, where

palt is the altitude field. The total number of records is approximately 24.8 million.

COVID-19 consists of geo-tagged tweets about the novel coronavirus from March

76



to September 2020 [57]. Each record includes the time and location of a tweet around

the world. The 2D coordinates (plat, plon) were used to denote the spatial location.

The total number of records is 210 thousand.

IRIS is a dataset of earthquake events that occurred around the world from 1960

to 2019 [46]. The 4D normalized coordinates (plat, plon, pdep/10, pmag × 10) were

used in the experiments, where pdep and pmag are the depth and the magnitude fields,

respectively. The total number of records is approximately 1.8 million.

Household is a dataset of the electric energy consumption in a household over a

period of four years [26]. Each record includes seven fields related to the power and

voltage information. The 7D coordinates normalized by the variance of the fields were

used in the experiment. The total number of records is approximately 2 million.

6.2 Competing Methods

6.2.1 Exact Methods

The proposed methods in this dissertation are compared with two incremental meth-

ods that can produce exactly the same clustering result as that of DBSCAN : Incre-

mental DBSCAN, and Extra-N. Incremental DBSCAN (or IncDBSCAN in short) is

an incremental version of DBSCAN that supports insertion and deletion of an individ-

ual data point [27]. Its version optimized with MS-BFS was used in the experiment.

Extra-N [87] is another clustering method that supports incremental updates under the

sliding window model.

6.2.2 Non-Exact Methods

DISC and DenForest are compared with non-exact methods that produce the approx-

imate or summarized clustering results for DBSCAN : ρ-double-approximate DB-

SCAN, DBSTREAM, SDStream, and StreamSW. ρ-double-approximate DBSCAN [34]

produces an approximate clustering result by managing grids. DBSTREAM [41], SD-
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Stream [68], and StreamSW [74] are summarization-based methods that produce sum-

marized clustering results using statistical information. Besides, EDMSTREAM [37]

is also compared, which is a clustering algorithm for data streams based on the Density-

Peak algorithm [69].

6.3 Experimental Settings

All the experiments were conducted on a stand-alone machine with a Ryzen 7 1700

8-Core Processor, 64 GB RAM, and a 256 GB solid-state drive, running Ubuntu

18.04 LTS. Since each dataset was preloaded into the memory, the disk did not af-

fect the performance during the experiments. The elapsed times were measured using

the System.nanoTime function. Each of all the measurements presented in this

section is the average of five runs. Except for EDMSTREAM1, all the aforementioned

clustering methods as well as an in-memory version of the R-tree index were imple-

mented in Java with JDK 1.8.0-121.

Throughout the experimental evaluation, the count-based sliding window model

was adopted where its parameters, window size and stride, are measured in terms of

the number of data points rather than time duration. This model enables us to control

the amount of workload and calibrate the experimental settings with more ease. The

ingestion order of data points still follows strictly the time stamp of the data records.

6.4 Evaluation of DISC

In Sections 6.4.2 and 6.4.3, the performance characteristics of DISC are analyzed in

comparison with existing density-based clustering methods, DBSCAN [28], IncDB-

SCAN [27], and EXTRA-N [87]. In Section 6.4.4, DISC is compared with non-

exact methods : DBSTREAM [41], EDMSTREAM [37] and ρ-double-approximate

DBSCAN [34].
1The Java code is available in https://github.com/ShufengGong/EDMStream.
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Dataset density (τ ) distance (ϵ) |window|

DTG 372 0.002 2M (∼10 min)

GeoLife 7 0.01 200K (∼fortnight)

COV ID-19 5 1.2 15K (∼fortnight)

IRIS 9 2 200K (∼decade)

Table 6.1: Threshold values and window sizes

6.4.1 Parameters

Table 6.1 summarizes the threshold values and the default window sizes chosen for

each dataset. For the DTG dataset, the ground traffic monitoring example was adopted

to set the distance (ϵ) and density (τ ) thresholds. The distance threshold was set to be

small enough to distinguish roads in close proximity, and the density threshold was set

to the average number of points within the distance threshold. For the other datasets,

the parameter settings used by the previous work based on a K-distance graph [28, 71]

were adopted. The sliding window sizes were set to a fraction of each dataset, roughly

corresponding to a chosen time duration.

6.4.2 Baseline Evaluation

This section compares the overall performance of DISC with such exact clustering

methods as DBSCAN, IncDBSCAN, and EXTRA-N with respect to elapsed time.

Since DBSCAN is a clustering algorithm designed for a static database, it was used as

the baseline method rather than a target of direct comparison in the experiments, and

measured the performance of the other methods in relation to that of DBSCAN.

Figures 6.1 and 6.2 show the relative speedup ofDISC, IncDBSCAN and EXTRA-

N over DBSCAN for the four real-world datasets, with a varying size of stride and win-

dow, respectively. (As for the absolute performance measurements, the average elapsed

times taken by DBSCAN were 102s, 523s, 496ms, and 533s for the four datasets, re-
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Figure 6.1: Relative speedup over DBSCAN with a varying size of stride
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Figure 6.2: Relative speedup over DBSCAN with a varying size of window
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spectively, in Figure 6.1.) For each of the four clustering methods including DBSCAN,

the average elapsed time taken to update clusters was measured when the sliding win-

dow advanced by a single stride.

The execution time of DBSCAN remained unaffected by a varying ratio of stride

to window, because it recomputed clusters from scratch whenever the sliding win-

dow advanced. In contrast, the execution time of the other three methods was affected

significantly by the ratio. In particular, IncDBSCAN and DISC updated clusters in-

crementally focusing on the data points leaving and entering the sliding window. Con-

sequently, their execution time tended to decrease as the stride shrank smaller.

In the case of EXTRA-N, however, its speedup over DBSCAN started being sat-

urated earlier as the stride shrank smaller or the window grew larger. As is shown in

Figure 6.2, when the sliding window was large, EXTRA-N exceeded the memory ca-

pacity or was terminated forcefully after ten hour execution. This is because EXTRA-

N maintains as many sub-windows as the number of strides fitting in a single window

so that it can keep track of the local neighbors of individual data points. Thus, when

the ratio of stride to window was too high, it suffered from the steep increase of mem-

ory consumption, and the cost of maintaining too many sub-windows outweighed the

benefit from avoiding range searches.

When the stride was no larger than 10 percent of the sliding window, DISC was

the best performer among all the clustering methods compared including DBSCAN. In

Figure 6.1, for example, the speedup of DISC over the second-best performer ranged

from 27% (in IRIS with a 10% stride) to 318% (in GeoLife with a 0.1% stride). There

was no clear second-best performer in this range of stride sizes for the datasets.

The most noteworthy feature of DISC observed from this set of experiments was

that its benefit is amplified particularly when applied to finer-grained incremental clus-

tering with the sliding window advancing frequently in a small stride. On the other

hand, when the stride was as large as 25 percent of the sliding window, all the three in-

cremental methods performed poorly. Their execution times were comparable to that
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of DBSCAN at best or even worse than that. Given that an efficient method is de-

sired more for finer-grained incremental clustering, it clearly attests that DISC is an

effective tool for the task of clustering fast evolving streaming data.

6.4.3 Drilled-Down Evaluation

Having presented the baseline evaluation of DISC, further analyses to understand its

performance characteristics in more detail under various parameter settings and the ef-

fects of the proposed optimization techniques were provided. Unless stated otherwise,

the experiments were carried out under the same default settings as shown in Table 6.1.

6.4.3.1 Effects of Threshold Values

The density-based clustering is governed by two thresholds, density (τ ) and distance

(ϵ), as they determine which points are cores. Therefore, these parameters inherently

have a critical influence over not only the quality of clustering results but also the cost

of cluster discovery.
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Figure 6.3: Threshold effects : distance (ϵ) and density (τ )

Figures 6.3(a) and 6.3(b) show the elapsed times taken by the three incremental

clustering methods for the DTG dataset with a varying distance threshold (ϵ) and with

a varying density threshold (τ ), respectively. The stride size was fixed to 5% of the
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window size. The elapsed times of all three methods were elongated as the value of

ϵ increased or the value of τ decreased. This is because a longer distance threshold

allowed data points to have more ϵ-neighbors and a lower density threshold produced

a larger population of core points. However, the impact of τ on the elapsed time was

not as significant as anticipated. Note that the performance of DISC was much more

stable and efficient than the others over the entire spectrum of ϵ values and τ values

tested. The same trend was observed from the other datasets as well.

6.4.3.2 Insertions vs. Deletions

In an attempt to analyze separately the effect of insertions and deletions on the cluster-

ing performance, hypothetical scenarios was created where one stride advance of the

sliding window only accepted new data points to the window or only expelled exist-

ing points from the window. Figure 6.4 compares the elapsed times taken by DISC

and IncDBSCAN, when 5% of data points were inserted to or deleted from the cur-

rent window in each case of the four datasets. EXTRA-N was not included in this

experiment because its sub-window based approach does not distinguish insertions

from deletions. Though IncDBSCAN and DISC both spent more time on processing

DISC IncDBSCAN

 0

 10

 20

 30

 40

 50

 60

DTG GeoLife COVID-19 IRIS

E
la

p
se

d
 T

im
e(

s)

0
.0

7
5
s

0
.0

7
7
s

(a) Insertions

 0

 50

 100

 150

 200

 250

 300

DTG GeoLife COVID-19 IRIS

E
la

p
se

d
 T

im
e(

s)

0
.1

2
1
s

0
.3

4
3
s

(b) Deletions

Figure 6.4: Insertions vs. Deletions

the deletion-only workloads than the insertion-only workloads, DISC handled dele-
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tions much more gracefully. While IncDBSCAN was 314% slower on average for

the deletion-only workloads than the insertion-only workloads, DISC was just about

120% slower. Overall,DISC achieved speedups over IncDBSCAN for both insertions

and deletions across all the datasets. The factor of improvement was in the range of

1.03 (for insertions of DTG) and 4.30 (for deletions of GEO).

6.4.3.3 Range Searches

The number of range searches executed by IncDBSCAN and DISC was counted in

order to understand how much the clustering methods were affected by the costly

search operations. Unlike DBSCAN, as a static approach, that always invokes as many

range searches as the number of data points in the current sliding window, the number

of range searches required by IncDBSCAN andDISC is dependent on the stride sizes.
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Figure 6.5: Range searches executed

Figure 6.5(a) shows the number of range searches carried out by DISC and In-

cDBSCAN with the ratio of stride to window fixed to 5%. DISC invoked a smaller

number of range searches than IncDBSCAN across all the four datasets. Figure 6.5(b)

compares the two methods relatively in comparison with DBSCAN for the DTG dataset.

DISC was superior to IncDBSCAN as well as DBSCAN in the number of range

search invocations consistently across all the stride-to-window ratios tested. Figure 6.5(b)
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coupled with Figure 6.1(a) clearly indicates that the number of range searches has a

direct impact on the performance of DBSCAN, IncDBSCAN, and DISC.

6.4.3.4 MS-BFS and Epoch-Based Probing

The MS-BFS and epoch-based probing presented in Section 4.2 are optimization tech-

niques proposed for DISC so that the cost of checking the density-connectedness of

minimal bonding cores can be further reduced. These two techniques can be applied

independently of each other, and so can their effect be evaluated separately. Figure 6.6

shows the elapsed times taken by DISC for each dataset, when neither optimization

was applied, only the epoch-based probing was applied, only the MS-BFS was applied,

and both were applied. The elapsed times were measured with the stride size fixed to

5% of the window size.
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Each of the two optimization techniques achieved substantial reduction in the

elapsed times even when they are applied alone separately. Between the two, the MS-

BFS was slightly more effective than the epoch-based probing consistently over all the

datasets. Apparently, the best performance was attained when both the optimization

techniques were applied together, yielding more than an order of magnitude speedup

in the case of the IRIS dataset.
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6.4.4 Comparison with Summarization/Approximation-Based Methods

DBSTREAM [41] and EDMSTREAM [37] are the state of the art summarization-

based methods known for the low latency and high quality of clustering. The ρ-double-

approximate DBSCAN (or ρ2-DBSCAN in short) is another approximate clustering

method, which is the dynamic version of ρ-approximate DBSCAN [33, 34]. DISC

was compared with these three clustering methods to evaluate the trade-off between

the processing speed and the quality of clustering. Their capability of capturing the de-

tailed shape of clusters was focused on by adopting rather small values for the distance

threshold ϵ.

Two datasets, DTG and Maze, were used for this evaluation. For the real dataset

DTG, the clustering results from DBSCAN were used as the true labels. The synthetic

dataset Maze was created by placing 100 random seeds in the 2-dimensional space.

They spread out over time such that the trajectory of each seed was mapped to a single

cluster. When the window size increased, trajectories became longer and closer to one

another, and consequently the shape of clusters grew more complicated. Each point

in the Maze dataset was manually labeled so that each trajectory could be identified

clearly as a separate cluster.

To evaluate the quality of clustering results, the Adjusted Rand Index (ARI) [45]

was measured with a varying size of sliding window. The ARI measures how close the

clustering results from different methods are to the true labels, and the measurements

are in the range of −1 (lowest) to 1 (highest).

Figure 6.7 shows the quality measurements and the per-point update latency ob-

served in the Maze dataset. The stride was 5% of the window size. (Since no deletion

was supported by the summarization-based methods, only the insertion latency was

measured for DBSTREAM and EDMSTREAM.) DBSTREAM and EDMSTREAM

were evaluated with parameter settings that helped them achieve the best ARI. The

same thresholds, τ and ϵ, were used for both ρ2-DBSCAN andDISC. The approxima-

tion parameter (ρ) of ρ2-DBSCAN was set to 0.1 and 0.001 for low and high accuracy,
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Figure 6.7: Maze: ARI and Update Latency
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Figure 6.8: DTG: ARI and Update Latency

respectively.

The summarization-based methods, EDMSTREAM and DBSTREAM, were much

faster than the others but their clustering quality (measured in ARI) deteriorated very

quickly as the sliding window grew larger. To achieve high ARI for a large win-

dow, summarization-based methods need to connect micro-clusters correctly.2 EDM-

STREAM connected them well when it dealt with a small number of large micro-

clusters, but it did not do so well for a large number of small micro-clusters. DB-

STREAM achieved better ARI than EDMSTREAM by utilizing additional informa-

tion about the connectivity among micro-clusters, although that was not enough to

sustain its ARI level. Both ρ2-DBSCAN and DISC were able to detect accurate clus-

ters but ρ2-DBSCAN was up to five times slower than DISC.
2Micro-cluster is a summarized representation of a set of adjacent points.
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Similar trends were observed in the DTG dataset as shown in Figure 6.8 except for

DBSTREAM, which was considerably slower than DISC across all the window sizes

tested. This is because it has to manage a large number of micro-clusters to catch the

details of fine-grained clusters. Although ρ2-DBSCAN yielded high ARI comparable

with that of DISC, ρ2-DBSCAN was much slower than all the other methods. With

a larger approximation parameter (ρ), it ran faster but it was still slower than all the

other methods.
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Figure 6.9: Update Latency with varying ϵ

Figure 6.9 compares DISC and ρ2-DBSCAN with a varying distance threshold ϵ.

the cluster update latency when the stride was 5% of the window size was measured.

The overall trends were similar to those reported by Schubert et al. [71] about the

static version of ρ2-DBSCAN. For both datasets, DISC outperformed ρ2-DBSCAN

considerably with smaller ϵ values. DISC was outperformed by ρ2-DBSCAN only

when ϵ ≥ 3.2 for Maze and ϵ ≥ 0.512 for DTG. Beyond those crossover points, how-

ever, the clustering results were completely meaningless. Those distance thresholds

were simply too large and only one huge cluster was detected covering all or almost

all the data points in the window.

Figure 6.10 and 6.11 illustrates the clusters discovered by different methods. Since

ρ2-DBSCAN and DISC produced the same (or almost the same) clusters, the results
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(a) DISC (b) EDMSTREAM (c) DBSTREAM

Figure 6.10: Illustration of clusters found in Maze (|W |=480K)

(a) DISC (b) EDMSTREAM (c) DBSTREAM

Figure 6.11: Illustration of clusters found in DTG (|W |=2.56M)

from ρ2-DBSCAN is omitted in the figure . Figures 6.10 show clusters (in different col-

ors) found in Maze by DISC, EDMSTREAM, and DBSTREAM, respectively. Only

DISC detected a connected component as a separate cluster correctly. Figures 6.11

show clusters (marked in red color) found in DTG by the three methods. Only DISC

detected the same clusters that matched those found by DBSCAN.

The experiments above confirm that DISC can detect clusters of high resolu-

tion with relatively low cost. Although the summarization-based methods can pro-

cess streaming data at high speed, the quality of clustering results deteriorates signifi-

cantly when the sliding window becomes large. The experiments also demonstrate that
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ρ2-DBSCAN, the dynamic version of approximate DBSCAN, consumes an exceed-

ingly high amount of computing time to detect clusters of high resolution, which was

confirmed for its static version by the previous work [71]. ρ2-DBSCAN was outper-

formed by DISC significantly for any practically useful range of distance thresholds.

6.5 Evaluation of DenForest

In this section, the performance characteristics of DenForest are analyzed in compar-

ison with aforementioned competing methods as well as DISC. The baseline eval-

uation and the drilled-down evaluation for various parameters are presented in sec-

tions 6.5.2 and 6.5.3. The DenForest method without the batch-optimization (pre-

sented in Section 5.2.5) is denoted by DenForest-NO. For ρ-double-approximate DB-

SCAN, two approximation parameters were chosen in the experiments, ρ = 0.001 and

ρ = 0.1, for nearly accurate and less accurate clusters, respectively. The clustering re-

sults produced with these two parameters are denoted by Approx-High (ρ = 0.001)

and Approx-Low (ρ = 0.1).

6.5.1 Parameters

The density (τ ) and the distance (ϵ) thresholds of all the methods were set according to

the following scheme. For the DTG and GeoLife datasets, a traffic monitoring example

was adopted to set the thresholds. The distance threshold was set to 0.002 degrees

(or approximately 222 meters) so as to be small enough to distinguish two close but

separate roads. The density threshold was set to the average number of points within

the distance threshold to identify congested regions.

For the other datasets, a heuristic scheme was adopted based on the K-distance

graph used in the previous studies [28, 71]. The default settings of the density and

distance thresholds as well as the window size for each dataset are summarized in

Table 6.2.
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Table 6.2: Threshold values and window sizes

Dataset dim density (τ ) distance (ϵ) |window|

DTG 2D 372 0.002 2M (∼10 min)

GeoLife 3D 765 0.002 0.1M (∼ week)

IRIS 4D 8 2 0.2M (∼ decade)

Household 7D 14 0.3 0.5M (∼ year)

6.5.2 Baseline Evaluation

For the baseline performance evaluation, the update latency of each clustering method

under the sliding window model is presented in Figure 6.12. For each dataset, the time

taken to update clusters was measured when the window advanced by a single stride.

The stride size was set to 5% of the window size, whose default settings are given in

Table 6.2. The update latency is broken down to the insertion and deletion latency, and

each measurement is the average of five runs. Since Extra-N does not support insertion

and deletion operations separately, only a combined latency is shown in the figure.

DenForest and its non-optimized version (DenForest-NO) outperformed all the

other methods. DenForest was up to 3.5 times faster than the second-best performer

(DISC in the case of Household). IncDBSCAN yielded poor performance particularly

for the GeoLife dataset. The reason is the GeoLife dataset is highly skewed in certain

areas, which elongates the time taken for range searches significantly. DISC also relies

on range searches but it is less affected by the skewedness of the dataset. This is be-

cause it takes advantage of optimized range searches such as epoch-based probes that

reduce the redundant retrieval of data points.

Approx-Low and Approx-High showed poor performance for all the datasets. To

determine whether a point is a core or not, the approximate method invokes a num-

ber of approximate range counting queries. Not only is it a major bottleneck but also

it is aggravated as τ gets larger or as the number of dimensions increases. For the
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Figure 6.12: Update Latency (|Stride|/|Window|=5%)
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Figure 6.13: Speedup of Delete

Household dataset, it did not even terminate within the allotted time of ten hours.

For all the datasets, the deletion latency of DenForest was much lower than the

other methods. Except for the DTG dataset, the cost of deletion of DenForest was

almost negligible. Figure 6.13 shows the speedup ratio of the deletion operation by

DenForest when compared to the second-best performer in the log scale. The deletion

time taken for processing a single stride was measured with the stride size set to 5%

of the default window size. For the GeoLife dataset, the measurement of the third best

performer (DISC) was used because the second best performer (Extra-N) does not

support the insert and delete operations separately.

For a vanishing core, DenForest simply cuts the links incident to the vanishing

core inMST to update the connectedness of the cluster, while DISC (second best per-

former) and IncDBSCAN invoke consecutive range searches in a BFS way. This con-

tributes to the major performance improvement by DenForest over the other methods.

Furthermore, it is less affected by the dimensionality, since the deletion by DenForest

does not involve any range search. Consequently, the performance gap in the dele-

tion operations increased with the increase of dimensionality. For the 7-dimensional

Household dataset, DenForest achieved 56 times higher deletion speed than DISC.
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Figure 6.14: Varying size of window (|Stride|/|Window|=5%)

6.5.3 Drilled-Down Evaluation

Further analyses under various parameter settings are provided to understand the per-

formance characteristics of DenForest in detail.

6.5.3.1 Varying Size of Window/Stride

The window size and the stride size can vary depending on the applications. Thus, the

update latency was measured under various window sizes (Figure 6.14) and various

stride sizes (Figure 6.15). The density (τ ) and distance (ϵ) thresholds were set to the

values in Table 6.2. Both DenForest and DenForest-NO outperformed the other clus-

tering methods significantly with a wide margin for all the window sizes and for all the

stride sizes. For some of the datasets, Extra-N and Approx-Low/High did not terminate

within ten hours.

DenForest outperformed DenForest-NO (without batch optimization) across the
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Figure 6.15: Varying size of stride

entire spectrum of the window sizes and the stride sizes. The batch optimization of

DenForest effectively lowered the cost of updating clusters by keeping the MST s

smaller. On the other hand, the batch optimization incurs an additional overhead for

managing super nostalgic cores and their neighbors. The amount of improvement by

the batch optimization is also affected by the locality of data points in the same stride.

The higher locality results in the more improvement. Therefore, increasing the stride

size does not always contribute to performance gain by the batch optimization. On

average, the batch optimization improved the performance about 25%.

6.5.3.2 Effect of Density and Distance Thresholds

In this section, the DTG dataset was used to measure the effect of the density and dis-

tance thresholds on the performance. The insertion and deletion times taken to process

a single stride were measured for each clustering method. The window size was set to
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Figure 6.16: Varying ϵ for the DTG dataset
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Figure 6.17: Varying τ for the DTG dataset

two million points, and the stride size was set to 5% of the window size.

Figure 6.16 shows the insertion and deletion latency with a varying distance thresh-

old (ϵ). The density threshold was set to the default value in Table 6.2. The larger

ϵ value generally requires the more time for range searches. Thus, the insertion and

deletion latency increased as the ϵ threshold increased for all the clustering methods

except for deletion by DenForest and DenForest-NO. The reason is of course they do

not require any range search for deletion.

A similar experiment was conducted by varying the density threshold (τ ) with

the distance threshold fixed to the default value. Figure 6.17 shows that the density

threshold hardly affected the performance except for Approx-High and Approx-Low,
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which slowed down as the density threshold increased. Approx-High (τ=540) was

about 80% slower than Approx-High (τ=180), and Approx-Low (τ=540) was about

50% slower than Approx-Low (τ=180). The reason is that the approximate method

takes more time to determine whether a point is a core or not as the density threshold

increases. A similar trend was also observed in the previous study [84].

Figure 6.18: Memory usage for various datasets

Figure 6.19: Memory usage for various window sizes (DTG)
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6.5.3.3 Memory Usage

Memory usage for each method was measured for four real datasets. (See Figure 6.18.)

2M, 0.4M, 0.4M and 0.5M data points were used to fill the window for the DTG,

GeoLife, IRIS, and Household datasets, respectively. The stride size was set to 5% of

the window size for all datasets. Some methods did not terminate within the allotted

time of ten hours denoted by a x mark in the figure.

DenForest, DISC, and IncDBSCAN have the O(N) asymptotic space complex-

ity where N is the number of data points in the window. In practice, DenForest con-

sumed more memory space than DISC or IncDBSCAN. This is because it uses ad-

ditional memory forMST . DenForest consumed less memory than Approx-Low and

Approx-High. They manages grid cells to store data points and the Holm et al. ’s data

structure [44] for dynamic graph connectivity. The data structure requires at most

O(N logN) space. Extra-N also consumed more memory than DenForest, since it

manages multiple windows to avoid the deletion, which requires at most O(N |W |
|S| )

space where |W | and |S| denote the size of the window and its stride, respectively.

Figure 6.19 shows memory usage when the window size changes from 0.5M to

8M for the DTG dataset. The trend among methods, which is shown in the previous

figure, does not change as the window size increases. Approx-High/Low and Extra-N

exceeds the allotted time when the window size is 8M.

6.5.3.4 Clustering Quality over Sliding Windows

The clustering quality of DenForest was measured for each dataset. The true cluster

labels are not available for the datasets. So the clustering results from DBSCAN were

used as the ground truth. Three metrics ARI [45], AMI [83], and NMI [56] were used

to measure the quality.

Figures 6.20a to 6.20c show how the clustering quality changes over time while the

sliding window advances. The stride size was set to 5% of the window size. DenForest

achieved clustering quality measurements close to one (or 100%) for all the datasets
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Figure 6.20: Clustering quality over sliding windows

(a) Heatmap (b) DBSCAN (c) DenForest

Figure 6.21: Clusters found in DTG

and sustained its quality as the window slid. The average measurements of quality

were 0.96 (ARI), 0.91 (AMI) and 0.93 (NMI). DenForest and DenForest-NO produce

the same clustering results. Thus, their quality measurements are identical.

Figure 6.21 shows the heatmap and the examples of clusters detected by DBSCAN

and DenForest for a snapshot (or window) of the DTG dataset. DenForest produced the

result nearly identical to the result of DBSCAN, and DenForest detected dense areas

matching well the heatmap that visualized the congested regions.
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(a) DTG (τ = 372) (b) GeoLife (τ = 765)

(c) IRIS (τ = 8) (d) Household (τ = 14)

Figure 6.22: Quality under various distance thresholds

(a) DTG (ϵ = 0.002) (b) GeoLife (ϵ = 0.002)

(c) IRIS (ϵ = 2) (d) Household (ϵ = 0.3)

Figure 6.23: Quality under various density thresholds
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(a) Relaxed τ settings for DTG

(b) Relaxed τ settings for GeoLife (c) Relaxed ϵ settings for GeoLife

Figure 6.24: Relaxed parameter settings

6.5.3.5 Clustering Quality under Various Density and Distance Thresholds

Clustering quality of DenForest under various density and distance thresholds was

measured. Clustering results of DBSCAN were used as the ground truth. Figure 6.22

shows the clustering quality for various distance thresholds where the density threshold

for each dataset is set to the default value in Table 6.2. Figure 6.23 shows the clustering

quality for various density thresholds. Similarly, the distance threshold for each dataset

is set to the default value in Table 6.2.

For most settings of density and distance thresholds, DenForest showed high clus-

tering quality. For some settings such as DTG (ϵ=0.0055) and GeoLife (ϵ=0.0025) in

Figure 6.22 showed slightly low clustering quality. To achieve higher clustering qual-

ity, some heuristic ways are presented in the following section.
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6.5.3.6 Relaxed Parameter Settings

As explained in Section 5.3.3.1, the number of nostalgic cores are related to the cluster-

ing quality. By choosing slightly lower density thresholds and higher distance thresh-

olds than those chosen for DBSCAN, more data points become nostalgic cores, which

contributes to improving the clustering quality.

Figure 6.24 shows the relaxed parameter settings for the DTG and GeoLife datasets.

For example, in Figure 6.24a, the clustering result of DBSCAN when τ was set to

the default value (372) was used as the ground truth, and it was compared with the

clustering results of DenForest under various density thresholds. Similar experiments

were also conducted using the GeoLife dataset. (See Figure 6.24b and Figure 6.24c.)

As shown in Figures 6.24aand6.24b, DenForest achieved higher clustering quality

by choosing about a 10% lower density threshold than that of DBSCAN. Moreover,

DenForest achieved higher clustering quality by choosing about a 5% higher distance

threshold than that of DBSCAN. (See Figure 6.24c.)

6.5.4 Comparison with Summarization-Based Methods

DenForest was also compared with the summarization-based methods. DBSTREAM [41]

is chosen because it is shown to achieve high quality in the previous study [14]. EDM-

Stream [37] is a streaming version of the static density peak clustering algorithm [69].

SDStream [68] and StreamSW [74] are designed for the sliding window model based

on EHCF [93] and grids [80], respectively.

The unlabeled real DTG and the labeled synthetic Maze datasets used in Sec-

tion 6.4.4 were used in the evaluation, and three metrics (ARI, AMI, and NMI) were

applied to measure the quality with various window sizes. For the unlabeled DTG

dataset, the clusters produced by DBSCAN were used as the ground truth. The param-

eters for EDMStream, DBSTREAM, SDStream, and StreamSW were tuned so as to

achieve the highest quality for each window size. The update latency of one stride was

also measured when the stride size was set to 5% of the window size. Only the in-
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Figure 6.25: Quality of DTG clusters
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Figure 6.26: Quality of MAZE clusters

sertion latency was included in the measurements for EDMStream and DBSTREAM,

because they do not support a deletion operation.

The summarization-based methods assume an infinite length of data streams and

summarize a group of data points into a micro-cluster. Since they only maintain coarse-

grained information, quality of these methods decreased steeply as the window size

increased as is shown in Figures 6.25 and 6.26. Although SDStream and StreamSW

achieved relatively higher quality than other summarization methods for the DTG

dataset, their quality was still lower than that of DenForest. Moreover, they were far

slower than DenForest due to the high cost of maintaining a number of micro-clusters
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Figure 6.27: Latency with DTG and MAZE

(in Figure 6.27). Conversely, DenForest attained high quality based on all the data

points without approximation, and achieved the best performance among the methods

whose quality was higher than 0.9.
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Chapter 7

Future Work: Extension to Varying/Relative Densities

In this chapter, future work for density-based clustering over sliding windows as well

as expected challenges are discussed.
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Figure 7.1: Clusters of Varying Densities

As mentioned in Chapter 2, DBSCAN [28] has a weakness in that it is hard to de-

tect meaningful clusters of varying or relatively different densities. For example, there

exist three clusters C1, C2, and C3 in figure 7.1. If the density threshold of DBSACN

is set to τ2, C2 and C3 are detected as a single cluster. If the density threshold is set to

τ1, C1 is not detected. To address this problem for the static datasets, OPTICS [5] and

HDBSCAN [12] were proposed.

Similar to DBSCAN, DISC and DenForest suffer from the same problem. There-

fore, one important future work is to efficiently detect clusters having varying densities
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over sliding windows. To achieve this goal, two approaches are worthy to be consid-

ered. (See Figure 7.2 for illustration.)

Figure 7.2: Directions for Future Work

One approach is extending DISC or DenForest to detect those clusters. A naive

algorithm sketch is as follows. First, the DenForest or DISC algorithms are used

to compute multiple density-based clusters of various distance or density thresholds.

Those multiple density-based clusters will be the candidate clusters. Then, meaning-

ful clusters are found by examining those candidates. Two challenges are expected in

this approach. The first one is that the multiple density-based clusters should be com-

puted without an excessive amount of computational cost. The second one is that an

appropriate method is required to find the meaningful clusters.

Another approach is extending HDBSCAN or OPTICS to support efficient incre-

mental operations. Incremental OPTICS [55] was proposed to incrementally update

the result of OPTICS by supporting insert and delete operations. However, it suffers a

slow deletion problem similar to Incremental DBSCAN. Moreover, it requires user’s

intervention to select meaningful clusters. Recently, one work [24] that incrementally

detects the density-based cluster of varying densities has been proposed, but it only

supports insertion. Obviously, enabling deletion will be the major challenge in this

approach.
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Chapter 8

Conclusion

The task of density-based clustering over sliding windows becomes an essential tool of

increasing importance for data analytics given the prevalence of IoT devices. However,

it is hard to be performed in real time without compromising the clustering quality.

To address the limitation of density-based clustering squarely, this dissertation pro-

poses two algorithms DISC and DenForest. The first algorithm DISC efficiently de-

tects density-based clusters over sliding windows and produces the same clustering

results as DBSCAN. With COLLECT and CLUSTER operations, DISC can handle

multiple points together. These operations are based on three key concepts, minimal

bonding cores, epoch-based probe, and multi-starter BFS, which improve the perfor-

mance by avoiding redundancy issues when updating clusters.

The second clustering algorithm mainly addresses the connectivity check problem

in the deletion. DenForest introduces a novel concept called nostalgic cores, which

are positioned relatively on a recent side of the window but spatially cover the cores

of DBSCAN. Based on the nostalgic cores, DenForest manages each cluster with

DenTree which enables graph traversals to be avoided in the deletion. DenForest shows

the amortized logarithmic time complexity for the deletion, which is far more efficient

than previous approaches. Furthermore, the batch-optimized update operations reduce

the edge updating cost in DenTrees.
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With the extensive evaluations using various datasets, the effectiveness of those

ideas was proved, and it was confirmed that DISC and DenForest can perform the

clustering tasks for streaming data promptly without compromising the clustering

quality. Particularly, DenForest’s deletion cost was almost negligible in some datasets

and was less affected by the dimensionality.

This is a significant contribution given that the slow deletion problem has been a

notoriously difficult challenge for density-based clustering algorithms since DBSCAN

was introduced a quarter century ago. DISC and DenForest are expected to support

many data analytic tasks in the streaming environment by clustering time-varying data

efficiently at a low computational cost.
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초록

모바일 및 IoT 장치가 널리 보급됨에 따라 스트리밍 데이터상에서 지속적으로

클러스터링작업을수행하는것은데이터분석에서점점더중요해지는필수도구가

되었습니다. 많은 클러스터링 방법 중에서 밀도 기반 클러스터링은 노이즈가 존재

할 때 임의의 모양의 클러스터를 감지할 수 있다는 고유한 장점을 가지고 있으며

이에 따라 많은 관심을 받았습니다. 그러나 밀도 기반 클러스터링은 변화하는 입

력 데이터 셋에 따라 지속적으로 클러스터를 업데이트해야 하는 경우 비교적 높은

계산비용이필요합니다.특히,클러스터에서의데이터점들의삭제는심각한성능

저하를초래합니다.

본박사학위논문에서는슬라이딩윈도우상의밀도기반클러스터링의성능한

계를다루며궁극적으로두가지알고리즘을제안합니다.첫번째알고리즘인DISC

는슬라이딩윈도우상에서DBSCAN과동일한클러스터링결과를찾는점진적밀도

기반클러스터링알고리즘입니다.해당알고리즘은클러스터업데이트시에발생하

는중복문제들에초점을둡니다.밀도기반클러스터링에서는여러데이터점들을

개별적으로 삽입 혹은 삭제할 때 주변 점들을 불필요하게 중복적으로 탐색하고 회

수합니다. DISC 는 배치 업데이트로 이 문제를 해결하여 성능을 향상시키며 여러

최적화방법들을제안합니다.두번째알고리즘인 DenForest는삭제과정에초점을

둔 점진적 밀도 기반 클러스터링 알고리즘입니다. 클러스터를 그래프로 관리하는

이전 방법들과 달리 DenForest 는 클러스터를 신장 트리의 그룹으로 관리함으로

써 효율적인 삭제 성능에 기여합니다. 나아가 배치 최적화 기법을 통해 삽입 성능

향상에도 기여합니다. 두 알고리즘의 효율성을 입증하기 위해 광범위한 평가를 수

행하였으며 DISC 및 DenForest 는 최신의 밀도 기반 클러스터링 알고리즘들보다

뛰어난성능을보여주었습니다.
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