

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Hierarchical Density-Based Clustering
for Data Stream over Sliding Window

슬라이딩	윈도우를	통한	데이터	스트림에	대한	
계층적	밀도	기반	클러스터링		

BY

Enkhbat Undraa

August 2022

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

 i

Hierarchical Density-Based Clustering for Data

Stream over Sliding Window

슬라이딩 윈도우를 통한 데이터 스트림에 대한 계층적

밀도 기반 클러스터링

지도교수 문봉기

이 논문을 공학석사 학위논문으로 제출함

2022 년 04 일

서울대학교 대학원

컴퓨터 공학부

Enkhbat Undraa

Enkhbat Undraa 의 석사 학위논문을 인주함

2022 년 06 월

위 원 장 이상구 (인)

부위원장 문봉기 (인)

위 원 강유 (인)

 ii

Abstract

Hierarchical Density-based Clustering for Data Stream

over Sliding Window

ENKHBAT UNDRAA

Department of Computer Science & Engineering

College of Engineering

Seoul National University

Data stream has become a hot topic of interest in recent years as its applications

are increasing drastically. In addition, data streams are being continuously generated

as a result of excessive usage of electronic devices and network. Thus, data streams

have these unique characteristics differing to the static data such as speedy data point

generation and possibly get to an unbounded size over time.

Due to the distinctive nature of data stream as mentioned above, requirements for

the data stream clustering algorithms are becoming more and more complex. The basic

requirements for clustering algorithms for static data are being able to extract

arbitrary shape and numbers of clusters within the data. In addition, it is crucial for

stream clustering algorithms to process incoming data fast and efficiently due to the

time and space limitation. Although existing density-based stream clustering

algorithms successfully find clusters of arbitrary shape and numbers within incoming

stream, it has two user parameters density (ε) and minimum points per cluster(minPts)

that has to be tuned carefully to obtain the desired clustering outcome.

In this paper, we propose a stream clustering algorithm called StreamHD, which

is based on a hierarchical density-based clustering algorithm that can detect clusters

 iii

of arbitrary shapes within the data stream. The proposed algorithm independently

detects density thresholds of the clusters without much user intervention. In addition,

StreamHD requires only two user parameters, window size and minPts which

determines the number of neighboring points of the given point to consider when

calculating core density and also determines the minimum cluster size. It can be said

that StreamHD has the least user intervention among the stream clustering algorithms.

Furthermore, experiment results on real and synthetic datasets have shown that our

proposed algorithm performs the best among the comparison algorithms in terms of

window processing time and cluster quality.

Keyword: Data Stream, Hierarchical Clustering, Density-based, Sliding window
Student Number: 2020-20623

 iv

Table of Contents

Abstract.. ii
List of figures .. v
List of tables .. v
Chapter 1. Introduction .. １
Chapter 2. Background ... ４

2.1. Data stream ... ４
2.2. Data stream processing window models ４
2.3. Data stream clustering .. ６
2.4. Data stream approximation structures ８
2.5. HDBSCAN algorithm ... １０

Chapter 3. Related Works .. １１
Chapter 4. Proposed Method ... １４

4.1. StreamHD Algorithm ... １４
Chapter 5. Experiments and Results ２０

5.1. Experiment Environment .. ２０
5.2. Datasets ... ２０
5.3. Evaluation Method ... ２２
5.4. Results ... ２２

Chapter 6. Conclusion .. ２９
Bibliography .. ３０
초록 .. ３３
Acknowledgement .. ３４

 v

List of figures

Figure 1. Damped window model .. ５
Figure 2. Sliding window model .. ６
Figure 3. Online-offline-phase framework for stream clustering ７
Figure 4. Micro cluster structure and types of micro clusters ８
Figure 5. Grid structure and type of grid cells .. ９
Figure 6. StreamHD algorithm overview .. １４
Figure 7. StreamHD Algorithm ... １５
Figure 8. StreamHD offline-phase overview ... １６
Figure 9. 2D synthetic data .. ２１
Figure 10. 2D synthetic data with HDBSCAN label ２１
Figure 11. Static clustering datasets. ... ２２
Figure 12. ARI with MAZE dataset over varying window size ２３
Figure 13. ARI with DTG dataset over varying window size ２４
Figure 14. Latency with DTG dataset over varying window size ２５
Figure 15. Latency with MAZE dataset over varying window size ２５
Figure 16. Clustering result of StreamHD on 2D synthetic data ２６
Figure 17. Clustering result of DBStream on 2D synthetic data ２６
Figure 18.Clustering result of StreamSW on 2D synthetic data ２７

List of tables

Table 1. Clustering quality on various static datasets ２７

 １

Chapter 1. Introduction

The aim of clustering algorithms is to exploit the underlying

distribution of the data and partition the dataset into groups based on

the given criterion (e.g., similarity, distance, density etc). The

requirements for static data clustering algorithms include cluster

discovery of arbitrary shape, an ability to deal with noisy data, minimal

requirement for prior knowledge of the domain and density distribution.

When the data satisfies 3V characteristics of big data, it

becomes almost impossible for the data to be processed as static data;

thus, big data is considered as a data stream. Data streams have

characteristics that differs from static data such as speedy data arrival

and infinite length [1]. When clustering data stream or big data, stream

clustering algorithms face a strict time and space limitation problems

due to the incoming data stream that is fast-arriving and potentially

unbounded in size [2].

There are several approaches that were proposed to solve the

stream clustering problems. One of them is incremental clustering

method [3], which has shown to be effective in data warehousing

applications, but it cannot perform well with a limited memory and also

faces computation overhead problem with insertion and deletion

operations. Therefore, most of the existing stream clustering

algorithms adopt online-offline-phase clustering model [4] to solve

the temporal and spatial limitations of data stream. It considers infinite

length of data stream and limited memory. In the online phase,

summarization of the data stream is continuously performed and the

summarized data is maintained in order to keep traces of the changing

distribution of the data. Upon request from the user, the offline phase

performs a static clustering algorithm on the summarized data to

deliver the final clustering result at the time of the request.

Many existing stream clustering algorithms considered

evolving nature of the data stream that even the older data points has

an influence on the final clustering results; thus, adopts damped model

the data points gradually fade and eventually results in cluster expiry.

 ２

Models adopting the damped window model relies heavily on the

incoming order of the data stream and newly entered data points

considered to have more weight than the older ones. Although there

are several applications that advantages from this model, there are

still other applications such as real-time traffic congestion reporting

system that gains benefit from the clustering of unbiased data in a

certain time frame. By adapting sliding window model for the stream

data processing, only the recent data points in given time frame would

be considered.

Some of the recent online-offline phase stream clustering

algorithms adopted density-based clustering algorithm such as

DBSCAN [5] as the offline-phase clustering algorithm. Although

DBSCAN-based streaming algorithms were able to successfully detect

arbitrary shaped data clusters within tolerable elapsed time, they still

lack when it comes to the number of user parameters that needs

careful tuning for better clustering results. When there are plenty of

user parameters, it significantly increases user intervention to the

algorithm and therefore, without careful parameter tuning, user may

not be able to get the desired clustering quality from the algorithm. In

other words, the more user parameter there are, the more difficult it

will become to tune the parameters; thus, might result in decreased

cluster quality.

With all the above drawbacks and limitations in mind, we propose

a stream clustering algorithm called StreamHD which is based on a

hierarchical density-based clustering algorithm HDBSCAN that can

discover cluster from data stream with fewer user parameter.

HDBSCAN was modified to be used as a clustering algorithm in the

offline phase for micro cluster. With adopting sliding window

processing model, this algorithm focuses on the recent data within

given interval and considers all the data points with same weight while

adapting to concept drifts. In online-phase of StreamHD, micro cluster

structure keeps the statistical information of the data stream. Micro

cluster radius threshold is auto-tuned based on the incoming data

stream which makes the algorithm more sensitive to concept drift. In

addition, StreamHD has very little user intervention by having only one

 ３

user parameter outside of window size which is minPts, that

determines the number of neighbor points to consider when calculating

core distance of a point and also the minimum cluster size. StreamHD

was then experimented in comparison to two stream clustering

algorithms called DBStream and StreamSW, both of which adopted

online-offline-phase clustering framework and showed great

performance in previous studies [6]. With extensive experiments, our

proposed algorithm, StreamHD has shown to produce good quality

clusters with low latency.

The main contributions of this study are as follows:

• We propose a stream clustering algorithm StreamHD that shows

the best cluster quality compared to the DBStream and

StreamSW algorithms in all the input data stream with any

density distribution.

• Our proposed algorithm StreamHD has only two user

parameters which significantly decreases user intervention to

the algorithm.

• In addition, StreamHD shows the shortest processing time per

window in comparison to the DBStream and StreamSW

algorithms which implies that it has shown the best performance.

• Micro-clusters of StreamHD are also well adapted to the

concept drift that its radius threshold is calculated at the

beginning of each window.

 ４

Chapter 2. Background

2.1. Data stream

Big data applications have been on the rise in recent years due

to the fact that a large amount of data such as sensor data, network

flow data is being generated at high-speed owing to the booming

internet usage and technology advances in both hardware and software.

Furthermore, conventional data processing algorithms are no

longer able to process big data within tolerable elapsed time because

of special and temporal limitation problem [7].Thus, such big datasets

are being considered as a data stream in recent data mining

approaches [8].

Data stream is an ordered data sequence that is usually

assumed to have unbounded size and the arrival rate of the data stream

is very fast that there is not much time to process each of the data

points. Therefore, repeated or random access to the data stream is

considered almost impossible. With limited storage space and

processing time, applications dealing with data streams are expected

to focus on keeping the necessary information from the incoming data

stream while overcoming the limitations mentioned. In addition, data

stream exhibits concept drift over time where the underlying

distribution changes over time [9].

2.2. Data stream processing window models

The underlying distribution of the data stream often changes

overtime, which is called concept drift or concept shift. Stream

processing applications often has interest in the recent data or a real-

time data. Data processing window models are often employed to

capture recent trend of the incoming data stream.

Window processing approaches aims to minimize the influence of

historic outdated data to the recent data pattern and controls which

part of the data stream would influence the pattern. Such window

 ５

processing approaches aids concept drift adaptability when adopted in

stream clustering algorithms.

There are a few window-processing models, and the following

two are the most widely known and used among the data stream

clustering approaches.

2.2.1. Damped window model

In the damped window processing model, the historical

concepts are considered to have impact on the clustering results. The

damped window processing model assigns weight to the data points or

micro clusters based on the incoming order such that the recent data

points are assigned higher weight than those of the past.

Figure 1. Damped window model

In Figure 1, the blue part shows weight distributed to the data

stream based on the incoming order in damped window model.

As time flows, weight of each data point is decreased by a factor that

determines the rate of decay called decay factor (l). Once the data

point fades to the point where it does not carry any weight, it is

considered as an expired data point and no longer affects the pattern

of the existing data points.

 ６

2.2.2. Sliding window model

The sliding window model only considers the recent datapoints

within the given interval in the data stream. All the data points within

the window are given the same weight and there is no bias towards

the incoming order of the data points. First-In-First-Out principle is

often utilized in this model, where the oldest data point of the window

is removed when a new data point comes into the window. Figure 2

has shown sliding window model concept where the window slides as

the time goes. Size of the window can be fixed or variable-length

based on the application such that a smaller window size adapts quickly

to the concept drift, whereas a larger window size considers more data

points; thus, the summarization accuracy can be higher in stable

streams.

2.3. Data stream clustering

Data clustering is an unsupervised learning approach that can

exploit several information from given data. When in streaming data

environment, there exists a few obstacles for the static clustering

algorithms.

Figure 2. Sliding window model

 ７

Figure 3. Online-offline-phase framework for stream clustering

Due to the data stream characteristics, stream clustering

algorithms must process data once at arrival, and detect arbitrary

shapes of clusters within data stream fast with as little latency as

possible with restricted time and space resource. Thus, it is required

for stream clustering algorithms to rapidly process and possibly

summarize the massive and continuous incoming data in order to

detect emerging data clusters. Also, due to the memory limitation,

expired data points should be pruned periodically. Online-offline-

phase framework is a widely used framework among the stream

clustering algorithms and is shown in Figure 3.

Online phase, also known as a data abstraction step of the

framework constantly maintains summarized statistics of the data

points with the preferred approximation structure.

Offline phase is triggered by the clustering request from the

user. In this step, the summarized statistics of the data stream is

clustered into macro clusters and returned to user as a final clustering

result. Density-based clustering approaches has shown remarkable

results in detecting arbitrary shaped data clusters within data. Thus,

 ８

density based clustering approaches were often used in the stream

clustering algorithms offline phase.

2.4. Data stream approximation structures

Approximation-based stream clustering algorithms often

approximate the data stream by maintaining the summarized

information within data structures [10]. The following are the most

widely used summarization data structures used in the approximation-

based stream clustering algorithms.

2.4.1. Micro cluster structure

Micro cluster structure is summarization structure that keeps

the statistical information about compactly positioned datapoints in

given space and represents the datapoints as one micro cluster [11].

This structure is an extension of cluster feature structure - denoted

by CF#### - proposed in the renowned BIRCH algorithm [12].

Figure 4. Micro cluster structure and types of micro clusters

In Figure 4, two types of micro clusters are shown. The blue

points represent the data points from the data stream. Micro cluster is

represented by a tuple MC	(CF1#####, 	CF2######, w, c, r, ts/)	 where CF1##### is the

linear weighted sum of the points, CF2#####,	 is the squared weighted sum

of the points, w is the weight of the micro cluster which is the total

number of data points belonging to the MC, c is the center, r is the

radius and ts/ is the array of timestamps of the datapoints belonging to

the MC . Radius of the MC	is calculated based on the values of CF1##### and

CF2##### as following.

 ９

1 = 3
CF2#####

4
− 6

CF1#####

4
7
!

There are usually 2 types of micro clusters are maintained in

the summarization step of a stream clustering algorithm. 8 −

9:;1<	;=>?@A1 is a MC that satisfies following thresholds: w > MinPts

and r < ε	 . < −9:;1<	;=>?@A1 is a MC that satisfies r < ε threshold but

does not satisfy the w > MinPts	threshold which implies that the outliers

are maintained by < −9:;1<	;=>?@A1. MinPts and ε	thresholds are a user

parameter in most of the algorithms that adopts micro cluster method

and the value of the thresholds are usually determined by the user

parameter values.

2.4.1. Grid structure

Grid structure maintains data points by mapping them into the

grid cells and keeps the statistical information in a grid characteristic

vector HI [13]. The HI is a tuple HI(4", @", =) where 4" is the grid

density, @" is the timestamp of the grid, = is a label where = =

{K;@:LA, AM8:1AN, NAO?A, ?8K1?A} .

Figure 5. Grid structure and type of grid cells

Grid density 4" is calculated based on the number currently

mapped data point and controlling threshold b. Grid density threshold

is defined as
#∗%!"#$

& ,where 4"'()	is the sum of all grid cell weight

and n is number of all grid cell. Grid is considered dense if the grid

cell weight is greater than or equal to density threshold, and sparse

 １０

elsewhere. Macro clusters are generated based on the adjacent dense

grid cells. In Figure 5, types of grid cells and grid structure is shown.

When adopting grid structure for the summarizing structure of

an algorithm, pruning step is crucial because once a grid cell in the

adjacent dense cells become sparse or empty due to the concept drift

of the data stream, it seriously affects the clustering quality.

2.5. HDBSCAN algorithm

Hierarchical density-based clustering algorithm HDBSCAN

algorithm produces clusters of varying density. It has user parameter

minPts that determines the number of neighbors to consider when

calculating core points and is also used as the value for minimum

cluster size for the resulting clusters. It first builds a weighted

connected graph from the data. Then, it builds minimal spanning tree

on top of the graph which represents hierarchy of connected

components from completely connected to completely disconnected at

varying threshold levels. This way, clusters of various density

distribution can be discovered. Then flat clustering can be extracted

to produce final clustering result. The modified version of this

algorithm is used in the StreamHD algorithm and will be explained

further in detail in Chapter 4.

 １１

Chapter 3. Related Works

For many years, different clustering approaches has been

proposed and being used widely in various applications. There are

number of stream clustering problems, and many approaches are still

being proposed to solve them.

The CLUSTREAM [4] algorithm proposed an online-offline-

phase stream clustering framework to overcome the temporal

limitation problem. The online phase maintains micro-clusters and the

offline phase returns macro clusters as clustering result by taking the

micro clusters as an input data. The micro clusters store the

approximated statistical information about the data stream while the

macro clustering uses this data to produce the clustering result

whenever the clustering request comes in. This online-offline-phase

model has been widely used among the existing stream clustering

methods.

Density-based clustering algorithms partition the data into

clusters based on the underlying density profile of the data. Dense

regions of arbitrary shape and has been successfully exploited from

the data with density based clustering approaches, unlike distance

based clustering algorithms. However, careful tuning of the

parameters is needed and the density-based clustering algorithms

often face with cluster quality trade-off. In streaming data

environment, another biggest challenge is to estimate density of the

data in single iteration because of the temporal limitation problem.

Although stream clustering algorithms that adopted incremental

clustering method such as Incremental DBSCAN [3] has shown good

performance in some data warehousing environment, it needs a good

memory space; thus, cannot perform well with limited memory. DISC

[14] is a recent state-of-the-art method that expedites the

incremental operations under the batch updates within sliding window

model. This	method reduces the incremental insertion and deletion

costs by removing the redundant retrievals of data points during the

 １２

batch update along with the traversal and index optimization updates.

However, it still faces drawback of the dynamic connectivity problem.

Online-offline-phase summarization model has been a fairly

good solution to the temporal and special limitation problems.

Denstream [15] is a density-based stream clustering approach which

utilized the micro cluster data structure as the online phase and the

most widely used density-based algorithm DBSCAN as the offline

phase. Micro cluster size is not pre-defined in this algorithm, which

means micro cluster can grow in unbounded size. Denstream suffers

from computation overhead and reduced cluster quality when the

incoming data is sparse.

Grid based clustering approaches are also part of the density-

based clustering approaches. A grid structure is used to estimate the

underlying density profile. DStream [13] is a stream clustering

algorithm that utilized grid structure as the online-phase and DBSCAN

as the offline-phase. Grid structure differs from the micro-cluster

structure by the frequency of the density status change. Dense and

sparse grids are maintained and empty grids are periodically pruned

in the online phase. Downside of Dstream algorithm is that when the

empty grids are not pruned frequently, it affects the cluster quality of

the DStream. The Q-double-approximate DBSCAN [16] is dynamic

version of the approximate DBSCAN [17]. It manages a set of grouped

points as a cell to reduce the computational cost and uses a grid-based

index to perform the approximate range searches. Theoretically, it

supports the insertion and deletion in a near-constant time with a grid-

based approach. However, it does not show practically good

performance for the appropriate parameter settings. StreamSW [18]

is a stream clustering algorithm that adapted both grid and micro

cluster structure for the online-phase and DBSCAN as the offline-

phase clustering algorithm. This algorithm utilizes sliding window

model for processing the data stream. Although the clustering quality

of this algorithm is good as it solves the problem faced by DStream by

only maintaining outliers with the grid and makes it impossible for

empty grids to affect the cluster quality as only micro clusters are

considered as input in the offline phase. However, the cluster quality

and performance speed decreases as the window size increases as the

approximation gets coarser.

 １３

Graph-based clustering algorithms transform data into a graph

representation [19]. Vertices of the graph is the data points to be

clustered, and the edges are given weights based on the similarity

between data points. Then, there are several approaches [20] [21]

that exploits cluster in the data by building minimal spanning tree with

various greedy algorithms such as Boruvka’s algorithm [22], Prim’s

algorithm [23], Kruskal’s algorithm [24], etc. Each one of them has

its advantages and disadvantages based on the application. HDBSCAN

[25], a representative algorithm has adopted the graph based

clustering method. An undirected, weighted graph is built from the data,

and a minimum spanning tree is built on top of the graph to exploit

hierarchy of density clusters. The original algorithm adopted Prim’s

algorithm to build minimal spanning tree on top of the graph.

HDBSCAN* [20] algorithm then accelerated the HDBSCAN by adopting

much faster Dual Tree Boruvka algorithm to build minimal spanning

tree which accelerated the overall performance of the algorithm.

Furthermore, an important concept called the cluster stability was

proposed in HDBSCAN which enables the algorithm exploit clusters of

different density distribution from data without need of e parameter

which is a distance threshold. HASTREAM [21] is a stream clustering

algorithm that adapts HDBSCAN as its offline-phase clustering

algorithm. In the online-phase of this algorithm, it adapted the micro

cluster structure.

HASTREAM, Dstream and Denstream all considers evolving

nature of the data stream; thus adapted the damping window model for

processing the data stream. Although damping window model has its

advantages, it clearly cannot be a good fit for applications that require

a focus on data for a given time interval without bias.

 １４

Chapter 4. Proposed Method

4.1. StreamHD Algorithm

Our proposed StreamHD algorithm adapted the online-offline-

phase model that has shown its efficiency in overcoming temporal

limitation problem in previous studies. Figure 6 shows the general

concept of stream clustering algorithm in terms of online-offline-

phase framework. Online phase of the algorithm maintains incoming

data stream summarization statistic information with the micro cluster

structure and the offline phase of the algorithm performs modified

HDBSCAN on the currently active micro clusters upon clustering

request from the user.

4.2.1. Online phase

Online phase of StreamHD uses the sliding window model with

micro cluster structure to approximate and represent the

summarization of data stream efficiently.

Figure 6. StreamHD algorithm overview

 １５

Unlike other algorithms that has user parameter ε ,which also

is the value for the radius threshold, our algorithm does not have the

ε user parameter. Therefore, to make sure that micro clusters are

adapted well to the data stream concept drift, our method calculates

micro cluster radius threshold periodically unlike the previous

approaches with fixed micro cluster radius. Once every full window

slide, micro cluster radius threshold is calculated as the average core-

distance of the first 10% of the data points of the window.

2 types of micro clusters are maintained in the online phase of

StreamHD. p-micro cluster which is a micro cluster that contains

amount of data points surpassing the minPts threshold and o-micro

cluster that does not contain enough data points to surpass the minPts

threshold and maintains outlier data points.

As the window slides, incoming new data points might transform an

outlier micro cluster into a p micro cluster and discarding data points

might result in p micro clusters transform into o micro cluster or

existing o micro clusters might disappear due to the lack of data points.

The disappeared micro clusters are periodically pruned in the online

phase to save memory space and to keep the micro clusters up to date.

Figure 7. StreamHD Algorithm

 １６

If a datapoint p fits into the micro cluster it expands the micro

cluster. If the expanded micro cluster is p micro cluster, it simply

updates the micro cluster statistics. If the o micro cluster is expanded,

after updating the statistics of the o-micro cluster, if the weight

surpasses the minPts threshold, it transforms into a p-micro cluster.

When the user requests triggers offline phase of the StreamHD,

accelerated HDBSCAN produces clustering results using p-micro

clusters as an input. The StreamHD algorithm is shown in Figure 7.

4.2.2. Offline phase

In the offline phase of the StreamHD, accelerated version of

HDBSCAN - HDBSCAN* is performed on the centers of micro clusters

that are being maintained at the time of the clustering request. When

an offline clustering request came in, micro clusters are pruned to

make sure that only the micro clusters containing the current window

data points are passed to the offline stage. The macro clusters

produced as a result of the HDBSCAN* is the final clustering that is

returned to the user. Figure 8 shows the general concept of offline-

phase of the StreamHD algorithm.

Figure 8. StreamHD offline-phase overview

HDBSCAN* is an accelerated version of the HDBSCAN

algorithm. We modified the HDBSCAN* to produce macro-clusters

from micro-clusters. Micro clusters are considered as a virtual data

point with weight.

For a given fixed value k, (parameter minPts in our algorithm),

HDBSCAN defined a new distance metric, called the mutual

reachability distance.

 １７

For any micro cluster R* , the core-distance of R*, denoted S(R*)
is defined to be the distance to the S+, nearest neighbor of R*.

 Then, given micro clusters R: and RT , and their respective

core-distance, mutual reachability distance can be defined as the

maximum of the Euclidean distance between the center of the micro

clusters denoted as N(R:, RT) and their respective core distances:

N'-.(/,(R:, RT) = U
9KM(V(R:), V(RT), N(R:, RT))	, R: ≠ RT
0																																																				, R:	 = RT

Then, mutual reachability graph can be built based on the micro

clusters and mutual reachability distance. Mutual reachability graph

MRG	(V,	E,	w) is a connected undirected weighed graph. The set of

vertices V is represented by the micro clusters available at the time

of clustering result request. Then the Mutual reachability graph MRG	
(V,	E,	w)	can be defined as follows.

]^_	(I, `, 4) = a
! = {#$}																				
& = 	 {'(), +)|), + ∈ !}
.(') = N'-.(/,(>, L)

For the mutual reachability graph, a vertex + is considered

directly reachable to the vertex) if there exists an edge between the

vertices. Therefore, adjacency list of a vertex + contains all the

vertices that are directly reachable from the vertex +.

cNT`	(L) = {∀>│> ∈ I	KON	A(L, >) ∈ `}

Connected components of the Mutual Reachability Graph

]^_	(I, `, 4) are a set of vertices that each vertex has at least one

adjacent vertex.

H<OOA;@ANH<98<OAO@	(I, `) = 	 gL ∈ IhcNT`(L) ≠ ∅ ∧ cNT`(L) ≠ {L}k

Minimum spanning tree (MST) is a connected subset of the

edges of a connected undirected weighed graph. Building a MST from

the]^_	(I, `, 4) is a crucial step before extracting the clusters from

the graph. MST is built one edge at a time, adding lowest weighing

edge that connects the current tree to a vertex in the]^_	(I, `, 4)that

is not in connected to the tree yet.

 １８

The extraction of the clusters can begin after building the MST.

A dendrogram is built before extracting the cluster results. The root

node of the dendrogram contains all the micro clusters. Starting from

the complete MST, edges having largest weights are removed from

the MST. By removing the edges, subcomponents of the currently

considered cluster will be produced. Without consideration of the

weight of the micro cluster and assume micro cluster as a virtual point,

clusters discovered from single micro clusters that weighs more than

the minimum cluster size threshold might get ignored. A subcomponent

that produces a cluster can be either connected component of another

micro-cluster, or can be a single micro-cluster. Single or connected

components of a micro cluster, weight of a subcomponent must exceed

the minPts threshold in order to be considered as a cluster at current

hierarchical level. If the weight cannot exceed the minPts the density

threshold, it cannot be considered as a possible cluster. When all the

edges are removed, the hierarchical clustering of the micro clusters

can be represented as a dendrogram.

The flat extraction of the clusters can be calculated w.r.t the

cluster stability measure. Cluster stability (denoted as s) of cluster H

can be defined as

s(H) = 	 l 4(9;) ∗ no'()(9;, H) − o'*&(H)p
'/∈1

=	 l 4(9;) ∗ q
1

r'*&(9;, H)
−

1
r'()(H)

s	
'/∈1

where 4(9;) is the weight of the micro cluster 9; , and o =
2
3	 is

density threshold, o'()(9;, H) is the maximum density threshold value

where the 9; does not belong to cluster H anymore and o'*&(H) is the

minimum density threshold where the 9; belong to cluster H. r'*& and

r'() are the r thresholds that can be extracted for each cluster from

the dendrogram.

Flat clustering is then the set of clusters extracted from the

dendrogram that maximizes the sum of cluster stabilities of each

cluster excluding the root node of the dendrogram. If the set of

clusters is {H2, H!, H4, … , H&} , then we wish to select clusters that

maximize the following value

 １９

ls(H)
*∈5

with constraint that "i, j	Î	I	with	i¹j, H* 	∩ H6 = 	∅ .

 In Flat Clustering Extraction step in Figure 8, the nodes that

are highlighted in green are the selected clusters as a result of flat

clustering extraction. It can be seen that the sum of cluster stabilities

of selected clusters is the largest.

Lastly, the final clustering result, which is the flat clustering extracted

from the dendrogram is returned to the user.

 ２０

Chapter 5. Experiments and Results

In evaluation, StreamHD is compared with two of the state-of-

the art stream clustering algorithms.

DBStream is an stream clustering algorithm based on shared

density graph of micro clusters. StreamSW is an approximation stream

clustering algorithm based on micro cluster and grids. Both of the

algorithms have shown good results in previous studies.

The parameters of each algorithms were tuned to achieve the

highest cluster quality for each window size.

5.1. Experiment Environment

The experiments were conducted on a stand-alone machine

with 2.90GHz Intel(R) Core i7 CPU with 32GB RAM and 500GB SSD

disk running Ubuntu 20.01 LTS. Datasets were loaded on to the

memory at the time of the experiment; thus, the disk did not have any

influence on the experiment results. All the algorithms were

implemented on Java with JDK 1.8.0 by us.

5.2. Datasets

5.2.1. Synthetic Datasets

To demonstrate unique clustering qualities of StreamHD, 2

synthetic datasets were used in evaluation.

Maze is a 2-dimensional uniform distributed synthetic dataset

with label.

2D is also a 2-dimensional synthetic dataset we generated for

this study that consists of 3 clusters that have a different underlying

density distribution (Shown in Figure 9). In 2D dataset, HDBSCAN

results were used as a label(Shown in Figure 10).

 ２１

Figure 9. 2D synthetic data

Figure 10. 2D synthetic data with HDBSCAN label

5.2.2. Real dataset

DTG [26] is a real dataset collected from the digital

tachograph devices attached to commercial vehicles in a metropolitan

city. Each record includes time, location, speed and the acceleration

information of each vehicle and was generated every 10 seconds. The

2D coordinates of the location (latitude, longitude) were used in this

experiment. The total number of records is approximately 300 million.

5.2.3. Static clustering datasets

 ２２

To further examine the cluster qualities, we run the proposed

algorithm on few of the common labeled static data clustering datasets

Iris, Aggregation, D31, Flame, Spiral and Jain [27] [28] [29] [30] [31].

Some of the datasets were shown in Figure 11. Iris is a 4-dimensional

dataset and the rest is all 2 dimensional.

(a) Aggregation

dataset

(b) D31 dataset (c) Flame dataset

5.3. Evaluation Method

The cluster quality of the algorithms were evaluated by the

Adjusted Rand Index (c^x) [32] evaluation method.

c^x determines whether 2 cluster results are similar to each other and

can be calculated as follows.

c^x = 	
^x − AM8A;@AN(^x)	

max(^x) − AM8A;@AN(^x)

^x stands for the rand index that calculates the similarity

between given 2 cluster results by considering all data points

partitioned into the same cluster. The c^x value equals to 0 when all

the data points are assigned into a different cluster in the 2 clustering

results and 1 when the clustering results match.

5.4. Results

5.4.1. Cluster quality over Sliding window

Figure 11. Static clustering datasets.

 ２３

StreamHD was compared to summarization-based stream

clustering algorithms DBStream and StreamSW. First, we measured

quality of clusters over sliding window. Figure 12 and 13 shows the

ARI results of clustering algorithms over varying window size on

MAZE and DTG datasets respectively. It can be seen from the figure

that StreamHD shows the best cluster quality among the compared

algorithms in varying window size. StreamSW showed the best results

when the window size was smaller, but the cluster quality dropped

significantly when the window size increases. Even though the

StreamSW produces high-quality clusters, it suffers a poor cluster

quality when handling a bigger size of data at once.

Figure 12. ARI with MAZE dataset over varying window size

Although DBStream produces relatively good quality clusters

compared to the StreamSW, it still suffers scalability problem when it

comes to handling a big data at once.

Both StreamSW and DBStream algorithm suffers one of the

summarization-based clustering problems that when summarizing

large amount of data, the cluster quality drops. It is because the

summarized representation become coarser when the incoming data

increases. StreamHD was able to overcome that problem because the

underlying HDBSCAN algorithm is able to detect clusters of different

densities; so that the coarse summarization did not affect the cluster

quality.

 ２４

Figure 13. ARI with DTG dataset over varying window size

5.4.2. Latency (processing time) over Sliding window

As for the latency of the window for each algorithm, it was

assumed that the clustering request from the user was came right after

one full window slides, which means that online phase has maintained

a full window of data points and then the offline phase started right at

the end of the window. Our proposed algorithm StreamHD has shown

the lowest latency on both the DTG and MAZE datasets as shown in

Figure 14 and 15, respectively.

DBStream is the slowest among all the algorithms on MAZE

dataset, and this is because it maintains the shared density among the

micro clusters. Therefore, it can be said that there is a trade-off

between processing time and cluster quality for the DBStream

algorithm. It has performed slightly better on DTG dataset because the

sparseness of the dataset. As opposed to the StreamSW, which

maintains micro cluster and grid structure at the same time, it can be

time consuming to find micro clusters and grid for a given data point,

DBStream was able to overcome the overhead of sparsity with the

shared density maintenance.

StreamHD was able to show lowest latency because even

though it calculates a hierarchical tree from the micro clusters, the

computation was faster due to the accelerated HDBSCAN algorithm

that efficiently builds MST.

 ２５

Figure 14. Latency with DTG dataset over varying window size

5.4.3. Cluster quality over non-uniform density distribution

To better demonstrate the ability of StreamHD, we run the

algorithms on a synthetic dataset with varying density profile. As

shown in Figure 13, StreamHD has produced clusters with the best

quality with ARI of 0.957 with respect to the HDBSCAN labels of 2D

synthetic data shown in Figure 9.

Figure 15. Latency with MAZE dataset over varying window

size

 ２６

Figure 16. Clustering result of StreamHD on 2D synthetic data

DBStream has shown relatively good cluster quality as shown

in Figure 14. Although the clustering results shown good quality, it

achieved relatively low ARI of 0.561 because it discovered 4 clusters

among the dataset which was supposed to be 3. Careful parameter

tuning was performed when achieving this result and due to the non-

uniform density profile of the synthetic data, it is almost impossible

for DBStream to exploit the right labels from the data with fixed value

of e.

Figure 17. Clustering result of DBStream on 2D synthetic data

 ２７

StreamSW has shown ARI of 0.698, which is higher than

DBStream. However, as shown in the Figure 16, it only extracted 2

clusters from the dataset. Similar to the DBStream, StreamSW could

not discover the same clusters as the label as it only considers a fixed

value of e when exploring clusters within the dataset. In addition,

parameter modification has a crucial role in achieving the best result

in StreamSW.

Figure 18.Clustering result of StreamSW on 2D synthetic data

5.4.4. Cluster quality of static datasets

Table 1. Clustering quality on various static datasets

To further evaluate StreamHD clustering quality, we used

various static clustering datasets of varying dimensions with label. The

first three columns show the name, dimension and number of attributes

of the datasets. The fourth column shows the ARI value computed with

Dataset Dimension # of attributes StreamHD ARI

Aggregation 2 788 0.90

D31 2 3100 0.878

Spiral 2 312 0.938

Jain 2 373 0.94

Flame 2 240 0.938

Iris 4 150 0.82

Average ARI 0.90

 ２８

respect to ground truth labels of the datasets. All the datasets were

considered to exist in one window. It can be shown that even though

there exists an approximation, our approach has shown relatively good

ARI on all the datasets averaging at 0.90.

 ２９

Chapter 6. Conclusion

In this paper, we proposed StreamHD, a stream clustering

algorithm based on hierarchical density-based clustering over sliding

window. It was shown that StreamHD can discover varying density

distribution from the data with the least amount of user parameter;

thus, leading to less user intervention to the model. Also, we proposed

a heuristic that calculates the micro cluster radius threshold to be

adaptable to concept drift corresponding to the varying density cluster

exploration. Furthermore, when conducting a comparative experiment

on synthetic and real-world dataset with some of the existing state-

of-the-art algorithms that adapted same online-offline phase

framework as our proposed algorithm, StreamHD has shown the best

performance that produces the highest quality clusters with the lowest

latency among the compared algorithms.

 ３０

Bibliography

[1] A. Jain, "Data clustering: 50 years beyond k-means.," Springer, no.
Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 3-4, 2008, September.

[2] Gong, S. Y. Zhang and Y. Ge, "Clustering stream data by exploring the
evolution of density mountain," Proceedings of VLDB Endowments,
vol. 11, no. 4, pp. 393-405, 2017.

[3] M. Esther, H. Kriegel, J. Sander and X. Xu, "Incremental clustering for
mining in a data warehousing environment.," In Proceedings of VLDB
Conference, pp. 323-333, 1998.

[4] C. Aggarval, S. Phillip, J. Han and J. Wang, "A framework for
clustering evolving data streams," In Proceedings of VLDB Conference,
pp. 81-92, 2003.

[5] M. Esther, H. Kriegel, J. Sander and X. Xu, "A density-based algorithm
for discovering clusters in large spatial databases with noise.," KDD,
vol. 96, no. 34, pp. 226-231, 1996.

[6] M. Carnein, D. Assenmacher and H. Trautmann, "An empirical
comparison of stream clustering algorithms," In Proceedings of the
computing frontiers conference, pp. 361-366, 2017.

[7] R. Patrigi and A. Ahmed, "Big data: The v's of the game changer
paradigm.," IEEE 18th International Conference on High Performance
Computing and Communications, pp. 17-24, 2016.

[8] I. Louhi, L. Boudjeloud-Assala and T. Tamisier, "Big Data Clustering
using Data Streams Approach," Proceedings of the International
Conference on Big Data and Advanced Wireless Technologies (BDAW
'16), no. Article 42, pp. 1-8, 2016.

[9] Y. Miyata and H. Ishikawa, "Concept drift detection on data stream for
revising DBSCAN cluster," Proceedings of the 10th International
Conference on Web Intelligence, Mining and Semantics, pp. 104-110,
2020.

[10] C. Aggarval, J. Han, J. Wang and P. Yu, "On Clustering Massive Data
Streams: A Summarization Paradigm," Aggarwal C.C. (eds) Data
Streams. Advances in Database Systems, vol. 31, 2007.

[11] A. Amini and T. Wah, "Density micro-clustering algorithms on data
streams: A review.," In World Congress on Engineering, vol. 2188, pp.
410-414, 2012.

[12] T. Zhang, R. Ramakrishnan and M. Livny, "BIRCH: an efficient data
clustering method for very large databases," In Proceedings of the ACM

 ３１

SIGMOD International Conference on Management of Data, pp. 103-
114, 1996.

[13] Y. Chen and L. Tu, "Stream data clustering based on grid density and
attraction.," ACM Transactions on Knowledge Discovery from Data
(TKDD), vol. 3, no. 3, pp. 1-27, 2009.

[14] B. Kim, K. Koo, J. Kim and B. Moon, "DISC: Density-Based
Incremental Clustering by Striding over Streaming Data," IEEE 37th
International Conference on Data Engineering (ICDE), pp. 828-839,
2021.

[15] F. Cao, M. Estert, W. Qian and A. Zhou, "Density-based clustering over
an evolving data stream with noise," In Proceedings of the SIAM
International Conference on Data Mining, pp. 328-339, 2006.

[16] J. Gan and Y. Tao, "Dynamic density based clustering.," In Proceedings
of the ACM International Conference on Management of Data, pp.
1493-1507, 2017.

[17] J. Gan and Y. Tao, "On the hardness and approximation of Euclidean
DBSCAN," ACM Transactions on Database Systems (TODS), vol. 42,
no. 3, pp. 1-45, 2017.

[18] K. Reddy and C. Bindu, "StreamSW: A density-based approach for
clustering data streams over sliding windows," Measurement, vol. 144,
pp. 14-19, 2019.

[19] P. Foggia, G. Percannella, C. Sansone and M. Vento, "A graph-based
clustering method and its applications," In International Symposium on
Brain, Vision, and Artificial Intelligence, pp. 277-287, 2007.

[20] L. McInnes and J. Healy, "Accelerated hierarchical density based
clustering," IEEE International Conference on Data Mining Workshops
(ICDMW), pp. 33-42, 2017.

[21] M. Hassani, P. Spaus and T. Seidl, "Adaptive multiple-resolution
stream clustering," In International Workshop on Machine Learning
and Data Mining in Pattern Recognition , pp. 134-148, 2017.

[22] V. King, "A simpler minimum spanning tree verification algorithm.,"
Algorithmica, vol. 18, no. 2, pp. 263-270, 1997.

[23] S. Gass and M. Fu, " Prim’s Algorithm," in Encyclopedia of Operations
Research and Management Science, Boston,MA, Springer, 2013.

[24] S. Gass and M. Fu, "Kruskal’s Algorithm," in Encyclopedia of
Operations Research and Management Science, Boston, MA, Springer,
2013.

[25] R. Campello, D. Moulavi and Sander.J, "Density-based clustering based
on hierarchical density estimates," In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 160-172, 2013.

[26] "How to Use a Digital Tachograph," StoneRidge, [Online]. Available:
https://www.optac.info/uk/digital-tachograph/.

 ３２

[27] R. Fisher, "The use of multiple measurements in taxonomic problems,"
Annual Eugenics, Vols. 7, Part II, pp. 179-188, 1936.

[28] A. Gionis, H. Mannila and P. Tsaparas, "Clustering aggregation," ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no.
1, pp. 1-30, 2007.

[29] H. Chang and D. Yeung, "Robust path-based spectral clustering,"
Pattern Recognition, vol. 41, no. 1, pp. 191-203, 2008.

[30] C. Veenman, M. Reinders and E. Backer, "A maximum variance cluster
algorithm," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 9, pp. 1273-1280, 2002.

[31] A. Jain and M. Law, "Data clustering: A user's dilemma," Lecture Notes
in Computer Science, vol. 3776, pp. 1-10, 2005.

[32] J. Santos and M. Embrechts, "On the use of the adjusted rand index as
a metric for evaluating supervised classification," In International
Conference on Artificial Neural Networks, pp. 175-184, 2009.

 ３３

초록

데이터 스트림은 응용 프로그램이 급격히 증가함에 따라 최근 몇 년

동안 뜨거운 관심 주제가 되었다. 또한, 전자 기기 및 네트워크의 과도한

사용으로 인해 데이터 스트림이 지속적으로 생성되고 있다. 따라서 데이터

스트림은 빠른 데이터 포인트 생성과 같은 정적 데이터와 다른 고유한 특성을

가지며 시간이 지남에 따라 무한한 크기에 도달할 수 있다.

위에서 언급한 데이터 스트림의 고유한 특성으로 인해 데이터

스트림 클러스터링 알고리즘에 대한 요구 사항은 점점 더 복잡해지고 있다.

정적 데이터에 대한 클러스터링 알고리즘의 기본 요구 사항은 데이터 내에서

임의의 모양과 클러스터 수를 추출할 수 있어야 한다. 또한 스트림

클러스터링 알고리즘은 시간과 공간의 제약으로 인해 들어오는 데이터를

빠르고 효율적으로 처리하는 것이 중요하다. 기존의 밀도 기반 알고리즘은

들어오는 스트림 내에서 임의의 모양과 숫자의 클러스터를 성공적으로

찾았지만 밀도(ε)가 클러스터당 최소 포인트(minPts)와 함께 사용자 고정

매개변수인 경우가 많기 때문에 밀도 변화를 발견할 때는 여전히 부족하다.

본 논문에서는 데이터 스트림 내에서 밀도가 다른 클러스터를

감지할 수 있는 계층적 밀도 기반 클러스터링 알고리즘을 기반으로 하는

StreamHD 라는 스트림 클러스터링 알고리즘을 제안한다. 제안된

알고리즘은 사용자 개입을 최소화하면서 클러스터의 밀도 임계 값을

독립적으로 감지합니다. 또한 StreamHD 는 코어 밀도를 계산할 때 고려하고

최소 클러스터 크기도 결정하는 주어진 지점의 인접 지점 수를 결정하는

minPts 와 윈도우 크기의 두 가지 사용자 매개변수만 필요하다.

StreamHD 는 스트림 클러스터링 알고리즘 중 사용자 개입이 가장 적다고

할 수 있다. 또한 실제 데이터셋과 합성 데이터셋에 대한 실험 결과 우리가

제안한 알고리즘이 각 윈도우 처리 시간과 클러스터 품질 측면에서 비교

알고리즘 중 가장 우수한 성능을 보였다.

주요어: 데이터 스트림, 계층적 클러스터링, 밀도 기반 클러스터링, 슬라이딩

윈도우
학번: 2020-20623

 ３４

Acknowledgement

Throughout the writing of this thesis, I have received a

great deal of support and assistance.

I would first like to thank my supervisor, Professor

Bongki Moon, whose expertise was invaluable in formulating the

research questions and methodology. Your insightful feedback

pushed me to sharpen my thinking and brought my work to a

higher level. I am extremely grateful that you took zme on as a

student and continued to have faith in me over the past two years.

I would like to acknowledge my colleagues from Database

Systems Lab for their wonderful collaboration. I want to thank

you for your support and for all of the opportunities I was given

to further my research.

I also would like to thank my mom, dad, brother and sister

for their unconditional love and support throughout all these

years. I especially want to thank my parents for encouraging me

to further my studies.

I could not have completed this thesis work without the

support of my partner, who provided enormous emotional

support and happy distractions to rest my mind outside of my

research.

Finally, I want to thank Seoul National University GSFS

Scholarship for funding me throughout my Master’s studies.

This accomplishment would not have been possible

without every one of you and I will forever carry on this gratitude

towards you all.

	Chapter 1. Introduction
	Chapter 2. Background
	2.1. Data stream
	2.2. Data stream processing window models
	2.3. Data stream clustering
	2.4. Data stream approximation structures
	2.5. HDBSCAN algorithm

	Chapter 3. Related Works
	Chapter 4. Proposed Method
	4.1. StreamHD Algorithm

	Chapter 5. Experiments and Results
	5.1. Experiment Environment
	5.2. Datasets
	5.3. Evaluation Method
	5.4. Results

	Chapter 6. Conclusion
	Bibliography
	초록
	Acknowledgement

<startpage>8
Chapter 1. Introduction 1
Chapter 2. Background 4
 2.1. Data stream 4
 2.2. Data stream processing window models 4
 2.3. Data stream clustering 6
 2.4. Data stream approximation structures 8
 2.5. HDBSCAN algorithm 10
Chapter 3. Related Works 11
Chapter 4. Proposed Method 14
 4.1. StreamHD Algorithm 14
Chapter 5. Experiments and Results 20
 5.1. Experiment Environment 20
 5.2. Datasets 20
 5.3. Evaluation Method 22
 5.4. Results 22
Chapter 6. Conclusion 29
Bibliography 30
초록 33
Acknowledgement 34
</body>

