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Data stream has become a hot topic of interest in recent years as its applications 

are increasing drastically. In addition, data streams are being continuously generated 

as a result of excessive usage of electronic devices and network. Thus, data streams 

have these unique characteristics differing to the static data such as speedy data point 

generation and possibly get to an unbounded size over time.  

Due to the distinctive nature of data stream as mentioned above, requirements for 

the data stream clustering algorithms are becoming more and more complex. The basic 

requirements for clustering algorithms for static data are being able to extract 

arbitrary shape and numbers of clusters within the data. In addition, it is crucial for 

stream clustering algorithms to process incoming data fast and efficiently due to the 

time and space limitation. Although existing density-based stream clustering 

algorithms successfully find clusters of arbitrary shape and numbers within incoming 

stream, it has two user parameters density (ε) and minimum points per cluster(minPts) 

that has to be tuned carefully to obtain the desired clustering outcome.  

In this paper, we propose a stream clustering algorithm called StreamHD, which 

is based on a hierarchical density-based clustering algorithm that can detect clusters 



 

 iii 

of arbitrary shapes within the data stream. The proposed algorithm independently 

detects density thresholds of the clusters without much user intervention. In addition, 

StreamHD requires only two user parameters, window size and minPts which 

determines the number of neighboring points of the given point to consider when 

calculating core density and also determines the minimum cluster size. It can be said 

that StreamHD has the least user intervention among the stream clustering algorithms. 

Furthermore, experiment results on real and synthetic datasets have shown that our 

proposed algorithm performs the best among the comparison algorithms in terms of 

window processing time and cluster quality. 
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Chapter 1. Introduction 
 
 

The aim of clustering algorithms is to exploit the underlying 

distribution of the data and partition the dataset into groups based on 

the given criterion (e.g., similarity, distance, density etc). The 

requirements for static data clustering algorithms include cluster 

discovery of arbitrary shape, an ability to deal with noisy data, minimal 

requirement for prior knowledge of the domain and density distribution.  

When the data satisfies 3V characteristics of big data, it 

becomes almost impossible for the data to be processed as static data; 

thus, big data is considered as a data stream. Data streams have 

characteristics that differs from static data such as speedy data arrival 

and infinite length [1]. When clustering data stream or big data, stream 

clustering algorithms face a strict time and space limitation problems 

due to the incoming data stream that is fast-arriving and potentially 

unbounded in size [2].  

There are several approaches that were proposed to solve the 

stream clustering problems. One of them is incremental clustering 

method [3], which has shown to be effective in data warehousing 

applications, but it cannot perform well with a limited memory and also 

faces computation overhead problem with insertion and deletion 

operations. Therefore, most of the existing stream clustering 

algorithms adopt online-offline-phase clustering model [4] to solve 

the temporal and spatial limitations of data stream. It considers infinite 

length of data stream and limited memory. In the online phase, 

summarization of the data stream is continuously performed and the 

summarized data is maintained in order to keep traces of the changing 

distribution of the data. Upon request from the user, the offline phase 

performs a static clustering algorithm on the summarized data to 

deliver the final clustering result at the time of the request.   

Many existing stream clustering algorithms considered 

evolving nature of the data stream that even the older data points has 

an influence on the final clustering results; thus, adopts damped model  

the data points gradually fade and eventually results in cluster expiry. 
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Models adopting the damped window model relies heavily on the 

incoming order of the data stream and newly entered data points 

considered to have more weight than the older ones. Although there 

are several applications that advantages from this model, there are 

still other applications such as real-time traffic congestion reporting 

system that gains benefit from the clustering of unbiased data in a 

certain time frame. By adapting sliding window model for the stream 

data processing, only the recent data points in given time frame would 

be considered.   

Some of the recent online-offline phase stream clustering 

algorithms adopted density-based clustering algorithm such as 

DBSCAN [5] as the offline-phase clustering algorithm. Although 

DBSCAN-based streaming algorithms were able to successfully detect 

arbitrary shaped data clusters within tolerable elapsed time, they still 

lack when it comes to the number of user parameters that needs 

careful tuning for better clustering results. When there are plenty of 

user parameters, it significantly increases user intervention to the 

algorithm and therefore, without careful parameter tuning, user may 

not be able to get the desired clustering quality from the algorithm. In 

other words, the more user parameter there are, the more difficult it 

will become to tune the parameters; thus, might result in decreased 

cluster quality.  

With all the above drawbacks and limitations in mind, we propose 

a stream clustering algorithm called StreamHD which is based on a 

hierarchical density-based clustering algorithm HDBSCAN that can 

discover cluster from data stream with fewer user parameter. 

HDBSCAN was modified to be used as a clustering algorithm in the 

offline phase for micro cluster. With adopting sliding window 

processing model, this algorithm focuses on the recent data within 

given interval and considers all the data points with same weight while 

adapting to concept drifts. In online-phase of StreamHD, micro cluster 

structure keeps the statistical information of the data stream. Micro 

cluster radius threshold is auto-tuned based on the incoming data 

stream which makes the algorithm more sensitive to concept drift. In 

addition, StreamHD has very little user intervention by having only one 
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user parameter outside of window size which is minPts, that 

determines the number of neighbor points to consider when calculating 

core distance of a point and also the minimum cluster size. StreamHD 

was then experimented in comparison to two stream clustering 

algorithms called DBStream and StreamSW, both of which adopted 

online-offline-phase clustering framework and showed great 

performance in previous studies [6]. With extensive experiments, our 

proposed algorithm, StreamHD has shown to produce good quality 

clusters with low latency.  

 

The main contributions of this study are as follows: 

 
• We propose a stream clustering algorithm StreamHD that shows 

the best cluster quality compared to the DBStream and 

StreamSW algorithms in all the input data stream with any 

density distribution.  

• Our proposed algorithm StreamHD has only two user 

parameters which significantly decreases user intervention to 

the algorithm. 

• In addition, StreamHD shows the shortest processing time per 

window in comparison to the DBStream and StreamSW 

algorithms which implies that it has shown the best performance. 

• Micro-clusters of StreamHD are also well adapted to the 

concept drift that its radius threshold is calculated at the 

beginning of each window. 
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Chapter 2. Background 

 

2.1. Data stream 
 

Big data applications have been on the rise in recent years due 

to the fact that a large amount of data such as sensor data, network 

flow data is being generated at high-speed owing to the booming 

internet usage and technology advances in both hardware and software.  

Furthermore, conventional data processing algorithms are no 

longer able to process big data within tolerable elapsed time because 

of special and temporal limitation problem [7].Thus, such big datasets 

are being considered as a data stream in recent data mining 

approaches [8]. 

Data stream is an ordered data sequence that is usually 

assumed to have unbounded size and the arrival rate of the data stream 

is very fast that there is not much time to process each of the data 

points. Therefore, repeated or random access to the data stream is 

considered almost impossible. With limited storage space and 

processing time, applications dealing with data streams are expected 

to focus on keeping the necessary information from the incoming data 

stream while overcoming the limitations mentioned. In addition, data 

stream exhibits concept drift over time where the underlying 

distribution changes over time [9]. 
 

2.2. Data stream processing window models 
 

The underlying distribution of the data stream often changes 

overtime, which is called concept drift or concept shift. Stream 

processing applications often has interest in the recent data or a real-

time data. Data processing window models are often employed to 

capture recent trend of the incoming data stream.  

Window processing approaches aims to minimize the influence of 

historic outdated data to the recent data pattern and controls which 

part of the data stream would influence the pattern. Such window 
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processing approaches aids concept drift adaptability when adopted in 

stream clustering algorithms. 

There are a few window-processing models, and the following 

two are the most widely known and used among the data stream 

clustering approaches. 

 

2.2.1. Damped window model 

 

In the damped window processing model, the historical 

concepts are considered to have impact on the clustering results. The 

damped window processing model assigns weight to the data points or 

micro clusters based on the incoming order such that the recent data 

points are assigned higher weight than those of the past.  

 
Figure 1. Damped window model 

  

In Figure 1, the blue part shows weight distributed to the data 

stream based on the incoming order in damped window model. 

As time flows, weight of each data point is decreased by a factor that 

determines the rate of decay called decay factor (l). Once the data 

point fades to the point where it does not carry any weight, it is 

considered as an expired data point and no longer affects the pattern 

of the existing data points.  
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2.2.2. Sliding window model 

 

The sliding window model only considers the recent datapoints 

within the given interval in the data stream.  All the data points within 

the window are given the same weight and there is no bias towards 

the incoming order of the data points. First-In-First-Out principle is 

often utilized in this model, where the oldest data point of the window 

is removed when a new data point comes into the window.  Figure 2 

has shown sliding window model concept where the window slides as 

the time goes. Size of the window can be fixed or variable-length 

based on the application such that a smaller window size adapts quickly 

to the concept drift, whereas a larger window size considers more data 

points; thus, the summarization accuracy can be higher in stable 

streams. 

 

2.3. Data stream clustering 
 

Data clustering is an unsupervised learning approach that can 

exploit several information from given data. When in streaming data 

environment, there exists a few obstacles for the static clustering 

algorithms.  

Figure 2. Sliding window model 
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Figure 3. Online-offline-phase framework for stream clustering 

Due to the data stream characteristics, stream clustering 

algorithms must process data once at arrival, and detect arbitrary 

shapes of clusters within data stream fast with as little latency as 

possible with restricted time and space resource. Thus, it is required 

for stream clustering algorithms to rapidly process and possibly 

summarize the massive and continuous incoming data in order to 

detect emerging data clusters. Also, due to the memory limitation, 

expired data points should be pruned periodically. Online-offline-

phase framework is a widely used framework among the stream 

clustering algorithms and is shown in Figure 3.  

Online phase, also known as a data abstraction step of the 

framework constantly maintains summarized statistics of the data 

points with the preferred approximation structure.  

Offline phase is triggered by the clustering request from the 

user. In this step, the summarized statistics of the data stream is 

clustered into macro clusters and returned to user as a final clustering 

result. Density-based clustering approaches has shown remarkable 

results in detecting arbitrary shaped data clusters within data. Thus, 



 

 ８ 

density based clustering approaches were often used in the stream 

clustering algorithms offline phase. 

 
2.4. Data stream approximation structures 
 

Approximation-based stream clustering algorithms often 

approximate the data stream by maintaining the summarized 

information within data structures [10]. The following are the most 

widely used summarization data structures used in the approximation-

based stream clustering algorithms. 

 
2.4.1. Micro cluster structure 

 

Micro cluster structure is summarization structure that keeps 

the statistical information about compactly positioned datapoints in 

given space and represents the datapoints as one micro cluster [11]. 

This structure is an extension of cluster feature structure - denoted 

by CF#### - proposed in the renowned BIRCH algorithm [12].  

 

 
Figure 4. Micro cluster structure and types of micro clusters 

In Figure 4, two types of micro clusters are shown. The blue 

points represent the data points from the data stream. Micro cluster is 

represented by a tuple MC	(CF1#####, 	CF2######, w, c, r, ts/)	 where CF1#####  is the 

linear weighted sum of the points, CF2#####,	 is the squared weighted sum 

of the points, w is the weight of the micro cluster which is the total 

number of data points belonging to the MC, c is the center, r is the 

radius and ts/ is the array of timestamps of the datapoints belonging to 

the MC . Radius of the MC	is calculated based on the values of CF1##### and 

CF2##### as following. 
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There are usually 2 types of micro clusters are maintained in 

the summarization step of a stream clustering algorithm. 8 −

9:;1<	;=>?@A1  is a MC that satisfies following thresholds: w > MinPts 

and r < ε	 . < −9:;1<	;=>?@A1  is a MC  that satisfies r < ε  threshold but 

does not satisfy the w > MinPts	threshold which implies that the outliers 

are maintained by < −9:;1<	;=>?@A1. MinPts and ε	thresholds are a user 

parameter in most of the algorithms that adopts micro cluster method 

and the value of the thresholds are usually determined by the user 

parameter values. 

 

2.4.1. Grid structure 

 

Grid structure maintains data points by mapping them into the 

grid cells and keeps the statistical information in a grid characteristic 

vector HI  [13]. The HI  is a tuple HI(4", @", =) where 4"  is the grid 

density, @"  is the timestamp of the grid, =  is a label where = =

{K;@:LA, AM8:1AN, NAO?A, ?8K1?A} . 

 

 
Figure 5. Grid structure and type of grid cells 

Grid density 4" is calculated based on the number currently 

mapped data point and controlling threshold b. Grid density threshold 

is defined as  
#∗%!"#$

&  ,where 4"'()	is the sum of all grid cell weight 

and n is number of all grid cell. Grid is considered dense if the grid 

cell weight is greater than or equal to density threshold, and sparse 
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elsewhere. Macro clusters are generated based on the adjacent dense 

grid cells. In Figure 5, types of grid cells and grid structure is shown. 

When adopting grid structure for the summarizing structure of 

an algorithm, pruning step is crucial because once a grid cell in the 

adjacent dense cells become sparse or empty due to the concept drift 

of the data stream, it seriously affects the clustering quality.  

 

2.5. HDBSCAN algorithm 
 

Hierarchical density-based clustering algorithm HDBSCAN 

algorithm produces clusters of varying density. It has user parameter 

minPts that determines the number of neighbors to consider when 

calculating core points and is also used as the value for minimum 

cluster size for the resulting clusters. It first builds a weighted 

connected graph from the data. Then, it builds minimal spanning tree 

on top of the graph which represents hierarchy of connected 

components from completely connected to completely disconnected at 

varying threshold levels. This way, clusters of various density 

distribution can be discovered. Then flat clustering can be extracted 

to produce final clustering result. The modified version of this 

algorithm is used in the StreamHD algorithm and will be explained 

further in detail in Chapter 4. 
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Chapter 3. Related Works 

 
 

For many years, different clustering approaches has been 

proposed and being used widely in various applications. There are 

number of stream clustering problems, and many approaches are still 

being proposed to solve them. 

The CLUSTREAM [4] algorithm proposed an online-offline-

phase stream clustering framework to overcome the temporal 

limitation problem. The online phase maintains micro-clusters and the 

offline phase returns macro clusters as clustering result by taking the 

micro clusters as an input data.  The micro clusters store the 

approximated statistical information about the data stream while the 

macro clustering uses this data to produce the clustering result 

whenever the clustering request comes in. This online-offline-phase 

model has been widely used among the existing stream clustering 

methods.  

Density-based clustering algorithms partition the data into 

clusters based on the underlying density profile of the data. Dense 

regions of arbitrary shape and has been successfully exploited from 

the data with density based clustering approaches, unlike distance 

based clustering algorithms. However, careful tuning of the 

parameters is needed and the density-based clustering algorithms 

often face with cluster quality trade-off. In streaming data 

environment, another biggest challenge is to estimate density of the 

data in single iteration because of the temporal limitation problem. 

Although stream clustering algorithms that adopted incremental 

clustering method such as Incremental DBSCAN [3] has shown good 

performance in some data warehousing environment, it needs a good 

memory space; thus, cannot perform well with limited memory. DISC 

[14] is a recent state-of-the-art method that expedites the 

incremental operations under the batch updates within sliding window 

model. This	method reduces the incremental insertion and deletion 

costs by removing the redundant retrievals of data points during the 
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batch update along with the traversal and index optimization updates. 

However, it still faces drawback of the dynamic connectivity problem. 

Online-offline-phase summarization model has been a fairly 

good solution to the temporal and special limitation problems.  

Denstream [15] is a density-based stream clustering approach which 

utilized the micro cluster data structure as the online phase and the 

most widely used density-based algorithm DBSCAN as the offline 

phase. Micro cluster size is not pre-defined in this algorithm, which 

means micro cluster can grow in unbounded size. Denstream suffers 

from computation overhead and reduced cluster quality when the 

incoming data is sparse. 

Grid based clustering approaches are also part of the density-

based clustering approaches. A grid structure is used to estimate the 

underlying density profile. DStream [13] is a stream clustering 

algorithm that utilized grid structure as the online-phase and DBSCAN 

as the offline-phase. Grid structure differs from the micro-cluster 

structure by the frequency of the density status change. Dense and 

sparse grids are maintained and empty grids are periodically pruned 

in the online phase. Downside of Dstream algorithm is that when the 

empty grids are not pruned frequently, it affects the cluster quality of 

the DStream. The Q-double-approximate DBSCAN [16] is dynamic 

version of the approximate DBSCAN [17]. It manages a set of grouped 

points as a cell to reduce the computational cost and uses a grid-based 

index to perform the approximate range searches. Theoretically, it 

supports the insertion and deletion in a near-constant time with a grid-

based approach. However, it does not show practically good 

performance for the appropriate parameter settings. StreamSW [18] 

is a stream clustering algorithm that adapted both grid and micro 

cluster structure for the online-phase and DBSCAN as the offline-

phase clustering algorithm. This algorithm utilizes sliding window 

model for processing the data stream. Although the clustering quality 

of this algorithm is good as it solves the problem faced by DStream by 

only maintaining outliers with the grid and makes it impossible for 

empty grids to affect the cluster quality as only micro clusters are 

considered as input in the offline phase. However, the cluster quality 

and performance speed decreases as the window size increases as the 

approximation gets coarser. 
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Graph-based clustering algorithms transform data into a graph 

representation [19]. Vertices of the graph is the data points to be 

clustered, and the edges are given weights based on the similarity 

between data points. Then, there are several approaches [20] [21] 

that exploits cluster in the data by building minimal spanning tree with 

various greedy algorithms such as Boruvka’s algorithm [22], Prim’s 

algorithm [23], Kruskal’s algorithm [24], etc. Each one of them has 

its advantages and disadvantages based on the application.  HDBSCAN 

[25], a representative algorithm has adopted the graph based 

clustering method. An undirected, weighted graph is built from the data, 

and a minimum spanning tree is built on top of the graph to exploit 

hierarchy of density clusters. The original algorithm adopted Prim’s 

algorithm to build minimal spanning tree on top of the graph. 

HDBSCAN* [20] algorithm then accelerated the HDBSCAN by adopting 

much faster Dual Tree Boruvka algorithm to build minimal spanning 

tree which accelerated the overall performance of the algorithm. 

Furthermore, an important concept called the cluster stability was 

proposed in HDBSCAN which enables the algorithm exploit clusters of 

different density distribution from data without need of e parameter 

which is a distance threshold. HASTREAM [21] is a stream clustering 

algorithm that adapts HDBSCAN as its offline-phase clustering 

algorithm. In the online-phase of this algorithm, it adapted the micro 

cluster structure.  

HASTREAM, Dstream and Denstream all considers evolving 

nature of the data stream; thus adapted the damping window model for 

processing the data stream. Although damping window model has its 

advantages, it clearly cannot be a good fit for applications that require 

a focus on data for a given time interval without bias.  
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Chapter 4. Proposed Method 

 
4.1. StreamHD Algorithm 
 

Our proposed StreamHD algorithm adapted the online-offline-

phase model that has shown its efficiency in overcoming temporal 

limitation problem in previous studies. Figure 6 shows the general 

concept of stream clustering algorithm in terms of online-offline-

phase framework. Online phase of the algorithm maintains incoming 

data stream summarization statistic information with the micro cluster 

structure and the offline phase of the algorithm performs modified 

HDBSCAN on the currently active micro clusters upon clustering 

request from the user. 

 

4.2.1. Online phase 

 

Online phase of StreamHD uses the sliding window model with 

micro cluster structure to approximate and represent the 

summarization of data stream efficiently. 

   

 
Figure 6. StreamHD algorithm overview 
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Unlike other algorithms that has user parameter ε ,which also 

is the value for the radius threshold, our algorithm does not have the 

ε user parameter. Therefore, to make sure that micro clusters are 

adapted well to the data stream concept drift, our method calculates 

micro cluster radius threshold periodically unlike the previous 

approaches with fixed micro cluster radius. Once every full window 

slide, micro cluster radius threshold is calculated as the average core-

distance of the first 10% of the data points of the window. 

2 types of micro clusters are maintained in the online phase of 

StreamHD.  p-micro cluster which is a micro cluster that contains 

amount of data points surpassing the minPts threshold and o-micro 

cluster that does not contain enough data points to surpass the minPts 

threshold and maintains outlier data points.  

As the window slides, incoming new data points might transform an 

outlier micro cluster into a p micro cluster and discarding data points  

might result in p micro clusters transform into o micro cluster or 

existing o micro clusters might disappear due to the lack of data points. 

The disappeared micro clusters are periodically pruned in the online 

phase to save memory space and to keep the micro clusters up to date. 

Figure 7. StreamHD Algorithm 
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If a datapoint p fits into the micro cluster it expands the micro 

cluster. If the expanded micro cluster is p micro cluster, it simply 

updates the micro cluster statistics. If the o micro cluster is expanded, 

after updating the statistics of the o-micro cluster, if the weight 

surpasses the minPts threshold, it transforms into a p-micro cluster. 

When the user requests triggers offline phase of the StreamHD, 

accelerated HDBSCAN produces clustering results using p-micro 

clusters as an input. The StreamHD algorithm is shown in Figure 7.  

 

4.2.2. Offline phase 

 
In the offline phase of the StreamHD, accelerated version of 

HDBSCAN - HDBSCAN* is performed on the centers of micro clusters 

that are being maintained at the time of the clustering request. When 

an offline clustering request came in, micro clusters are pruned to 

make sure that only the micro clusters containing the current window 

data points are passed to the offline stage. The macro clusters 

produced as a result of the HDBSCAN* is the final clustering that is 

returned to the user. Figure 8 shows the general concept of offline-

phase of the StreamHD algorithm. 

 

 
Figure 8. StreamHD offline-phase overview 

HDBSCAN* is an accelerated version of the HDBSCAN 

algorithm. We modified the HDBSCAN* to produce macro-clusters 

from micro-clusters. Micro clusters are considered as a virtual data 

point with weight. 

For a given fixed value k, (parameter minPts in our algorithm), 

HDBSCAN defined a new distance metric, called the mutual 

reachability distance.  
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For any micro cluster R* , the core-distance of R*, denoted S(R*) 
is defined to be the distance to the S+, nearest neighbor of R*. 

 Then, given micro clusters R: and RT ,  and their respective 

core-distance, mutual reachability distance can be defined as the 

maximum of the Euclidean distance between the center of the micro 

clusters denoted as N(R:, RT) and their respective core distances: 
 

N'-.(/,(R:, RT	) = U
9KM(V(R:), V(RT), N(R:, RT))	, R: ≠ RT
0																																																				, R:	 = RT

      

 

Then, mutual reachability graph can be built based on the micro 

clusters and mutual reachability distance. Mutual reachability graph 

MRG	(V,	E,	w) is a connected undirected weighed graph. The set of 

vertices V is represented by the micro clusters available at the time 

of clustering result request. Then the Mutual reachability graph MRG	
(V,	E,	w)	can be defined as follows. 
 

]^_	(I, `, 4) = a
! = {#$}																				
& = 	 {'(), +)|), + ∈ !}
.(') = N'-.(/,(>, L	)

                          

 
For the mutual reachability graph, a vertex + is considered 

directly reachable to the vertex ) if there exists an edge between the 

vertices. Therefore, adjacency list of a vertex +  contains all the 

vertices that are directly reachable from the vertex +.  

 

cNT`	(L) = {∀>│> ∈ I	KON	A(L, >) ∈ `}        
 

Connected components of the Mutual Reachability Graph 

]^_	(I, `, 4) are a set of vertices that each vertex has at least one 

adjacent vertex.  

 

H<OOA;@ANH<98<OAO@	(I, `) = 	 gL ∈ IhcNT`(L) ≠ ∅ ∧ cNT`(L) ≠ {L}k 
 

Minimum spanning tree (MST) is a connected subset of the 

edges of a connected undirected weighed graph. Building a MST from 

the ]^_	(I, `, 4) is a crucial step before extracting the clusters from 

the graph. MST is built one edge at a time, adding lowest weighing 

edge that connects the current tree to a vertex in the ]^_	(I, `, 4)that 

is not in connected to the tree yet.  
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The extraction of the clusters can begin after building the MST. 

A dendrogram is built before extracting the cluster results. The root 

node of the dendrogram contains all the micro clusters. Starting from 

the complete MST, edges having largest weights are removed from 

the MST.  By removing the edges, subcomponents of the currently 

considered cluster will be produced. Without consideration of the 

weight of the micro cluster and assume micro cluster as a virtual point, 

clusters discovered from single micro clusters that weighs more than 

the minimum cluster size threshold might get ignored. A subcomponent 

that produces a cluster can be either connected component of another 

micro-cluster, or can be a single micro-cluster. Single or connected 

components of a micro cluster, weight of a subcomponent must exceed 

the minPts threshold in order to be considered as a cluster at current 

hierarchical level. If the weight cannot exceed the minPts the density 

threshold, it cannot be considered as a possible cluster. When all the 

edges are removed, the hierarchical clustering of the micro clusters 

can be represented as a dendrogram. 

The flat extraction of the clusters can be calculated w.r.t the 

cluster stability measure. Cluster stability (denoted as s) of cluster H 

can be defined as  

 

s(H) = 	 l 4(9;) ∗ no'()(9;, H) − o'*&(H)p
'/∈1

=	 l 4(9;) ∗ q
1

r'*&(9;, H)
−

1
r'()(H)

s	
'/∈1

 

 

where 4(9;)  is the weight of the micro cluster 9; , and o =
2
3	  is 

density threshold, o'()(9;, H) is the maximum density threshold value 

where the 9; does not belong to cluster H anymore and o'*&(H) is the 

minimum density threshold where the 9; belong to cluster H. r'*& and 

r'() are the r thresholds that can be extracted for each cluster from 

the dendrogram. 

Flat clustering is then the set of clusters extracted from the 

dendrogram that maximizes the sum of cluster stabilities of each 

cluster excluding the root node of the dendrogram. If the set of 

clusters is {H2, H!, H4, … , H&} , then we wish to select clusters that 

maximize the following value 
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ls(H)
*∈5

 

 

with constraint that "i, j	Î	I	with	i¹j, H* 	∩ H6 = 	∅ . 

 In Flat Clustering Extraction step in Figure 8, the nodes that 

are highlighted in green are the selected clusters as a result of flat 

clustering extraction. It can be seen that the sum of cluster stabilities 

of selected clusters is the largest.  

Lastly, the final clustering result, which is the flat clustering extracted 

from the dendrogram is returned to the user. 
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Chapter 5. Experiments and Results 

 

In evaluation, StreamHD is compared with two of the state-of-

the art stream clustering algorithms.  

DBStream is an stream clustering algorithm based on shared 

density graph of micro clusters. StreamSW is an approximation stream 

clustering algorithm based on micro cluster and grids. Both of the 

algorithms have shown good results in previous studies.  

The parameters of each algorithms were tuned to achieve the 

highest cluster quality for each window size.  

 

5.1. Experiment Environment 
 

The experiments were conducted on a stand-alone machine 

with 2.90GHz Intel(R) Core i7 CPU with 32GB RAM and 500GB SSD 

disk running Ubuntu 20.01 LTS. Datasets were loaded on to the 

memory at the time of the experiment; thus, the disk did not have any 

influence on the experiment results. All the algorithms were 

implemented on Java with JDK 1.8.0 by us. 

 
5.2. Datasets 

 

5.2.1. Synthetic Datasets 

 
To demonstrate unique clustering qualities of StreamHD, 2 

synthetic datasets were used in evaluation. 

Maze is a 2-dimensional uniform distributed synthetic dataset 

with label.  

2D is also a 2-dimensional synthetic dataset we generated for 

this study that consists of 3 clusters that have a different underlying 

density distribution (Shown in Figure 9). In 2D dataset, HDBSCAN 

results were used as a label(Shown in Figure 10). 
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Figure 9. 2D synthetic data 

 

 

Figure 10. 2D synthetic data with HDBSCAN label 

 

5.2.2. Real dataset 

 
DTG [26] is a real dataset collected from the digital 

tachograph devices attached to commercial vehicles in a metropolitan 

city. Each record includes time, location, speed and the acceleration 

information of each vehicle and was generated every 10 seconds. The 

2D coordinates of the location (latitude, longitude) were used in this 

experiment. The total number of records is approximately 300 million.  
 
5.2.3. Static clustering datasets 
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To further examine the cluster qualities, we run the proposed 

algorithm on few of the common labeled static data clustering datasets 

Iris, Aggregation, D31, Flame, Spiral and Jain [27] [28] [29] [30] [31]. 

Some of the datasets were shown in Figure 11.  Iris is a 4-dimensional 

dataset and the rest is all 2 dimensional. 

 

(a) Aggregation 

dataset 

(b) D31 dataset (c) Flame dataset 

 

 

5.3. Evaluation Method 

 
The cluster quality of the algorithms were evaluated by the 

Adjusted Rand Index (c^x) [32] evaluation method.  

c^x determines whether 2 cluster results are similar to each other and 

can be calculated as follows. 

 

c^x = 	
^x − AM8A;@AN(^x)	

max(^x) − AM8A;@AN(^x)
 

 

^x  stands for the rand index that calculates the similarity 

between given 2 cluster results by considering all data points 

partitioned into the same cluster. The c^x value equals to 0 when all 

the data points are assigned into a different cluster in the 2 clustering 

results and 1 when the clustering results match. 

 
5.4. Results 

 
5.4.1. Cluster quality over Sliding window 

 

Figure 11. Static clustering datasets. 
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StreamHD was compared to summarization-based stream 

clustering algorithms DBStream and StreamSW. First, we measured 

quality of clusters over sliding window. Figure 12 and 13 shows the 

ARI results of clustering algorithms over varying window size on 

MAZE and DTG datasets respectively. It can be seen from the figure 

that StreamHD shows the best cluster quality among the compared 

algorithms in varying window size. StreamSW showed the best results 

when the window size was smaller, but the cluster quality dropped 

significantly when the window size increases. Even though the 

StreamSW produces high-quality clusters, it suffers a poor cluster 

quality when handling a bigger size of data at once. 

 

 

 
Figure 12. ARI with MAZE dataset over varying window size 

Although DBStream produces relatively good quality clusters 

compared to the StreamSW, it still suffers scalability problem when it 

comes to handling a big data at once.  

Both StreamSW and DBStream algorithm suffers one of the 

summarization-based clustering problems that when summarizing 

large amount of data, the cluster quality drops. It is because the 

summarized representation become coarser when the incoming data 

increases. StreamHD was able to overcome that problem because the 

underlying HDBSCAN algorithm is able to detect clusters of different 

densities; so that the coarse summarization did not affect the cluster 

quality.  
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Figure 13. ARI with DTG dataset over varying window size 

 
5.4.2. Latency (processing time) over Sliding window 

 
As for the latency of the window for each algorithm, it was 

assumed that the clustering request from the user was came right after 

one full window slides, which means that online phase has maintained 

a full window of data points and then the offline phase started right at 

the end of the window. Our proposed algorithm StreamHD has shown 

the lowest latency on both the DTG and MAZE datasets as shown in 

Figure 14 and 15, respectively. 

DBStream is the slowest among all the algorithms on MAZE 

dataset, and this is because it maintains the shared density among the 

micro clusters. Therefore, it can be said that there is a trade-off 

between processing time and cluster quality for the DBStream 

algorithm. It has performed slightly better on DTG dataset because the 

sparseness of the dataset. As opposed to the StreamSW, which 

maintains micro cluster and grid structure at the same time, it can be 

time consuming to find micro clusters and grid for a given data point, 

DBStream was able to overcome the overhead of sparsity with the 

shared density maintenance.  

StreamHD was able to show lowest latency because even 

though it calculates a hierarchical tree from the micro clusters, the 

computation was faster due to the accelerated HDBSCAN algorithm 

that efficiently builds MST. 
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Figure 14. Latency with DTG dataset over varying window size 

 

 

 
5.4.3. Cluster quality over non-uniform density distribution 

 

To better demonstrate the ability of StreamHD, we run the 

algorithms on a synthetic dataset with varying density profile. As 

shown in Figure 13, StreamHD has produced clusters with the best 

quality with ARI of 0.957 with respect to the HDBSCAN labels of 2D 

synthetic data shown in Figure 9.  

Figure 15. Latency with MAZE dataset over varying window 

size 
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Figure 16. Clustering result of StreamHD on 2D synthetic data 

DBStream has shown relatively good cluster quality as shown 

in Figure 14. Although the clustering results shown good quality, it 

achieved relatively low ARI of 0.561 because it discovered 4 clusters 

among the dataset which was supposed to be 3. Careful parameter 

tuning was performed when achieving this result and due to the non-

uniform density profile of the synthetic data, it is almost impossible 

for DBStream to exploit the right labels from the data with fixed value 

of e. 
 

 
 

Figure 17. Clustering result of DBStream on 2D synthetic data 
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StreamSW has shown ARI of 0.698, which is higher than 

DBStream. However, as shown in the Figure 16, it only extracted 2 

clusters from the dataset. Similar to the DBStream, StreamSW could 

not discover the same clusters as the label as it only considers a fixed 

value of e when exploring clusters within the dataset. In addition, 

parameter modification has a crucial role in achieving the best result 

in StreamSW. 

 

 
Figure 18.Clustering result of StreamSW on 2D synthetic data 

 

5.4.4. Cluster quality of static datasets 

 

 

Table 1. Clustering quality on various static datasets 

To further evaluate StreamHD clustering quality, we used 

various static clustering datasets of varying dimensions with label. The 

first three columns show the name, dimension and number of attributes 

of the datasets. The fourth column shows the ARI value computed with 

Dataset Dimension # of attributes StreamHD ARI 

Aggregation 2 788 0.90 

D31 2 3100 0.878 

Spiral 2 312 0.938 

Jain 2 373 0.94 

Flame 2 240 0.938 

Iris 4 150 0.82 

Average ARI   0.90 
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respect to ground truth labels of the datasets. All the datasets were 

considered to exist in one window. It can be shown that even though 

there exists an approximation, our approach has shown relatively good 

ARI on all the datasets averaging at 0.90.  
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Chapter 6. Conclusion 

 
In this paper, we proposed StreamHD, a stream clustering 

algorithm based on hierarchical density-based clustering over sliding 

window. It was shown that StreamHD can discover varying density 

distribution from the data with the least amount of user parameter; 

thus, leading to less user intervention to the model. Also, we proposed 

a heuristic that calculates the micro cluster radius threshold to be 

adaptable to concept drift corresponding to the varying density cluster 

exploration. Furthermore, when conducting a comparative experiment 

on synthetic and real-world dataset with some of the existing state-

of-the-art algorithms that adapted same online-offline phase 

framework as our proposed algorithm, StreamHD has shown the best 

performance that produces the highest quality clusters with the lowest 

latency among the compared algorithms.   
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초록 

  

데이터 스트림은 응용 프로그램이 급격히 증가함에 따라 최근 몇 년 

동안 뜨거운 관심 주제가 되었다. 또한, 전자 기기 및 네트워크의 과도한 

사용으로 인해 데이터 스트림이 지속적으로 생성되고 있다. 따라서 데이터 

스트림은 빠른 데이터 포인트 생성과 같은 정적 데이터와 다른 고유한 특성을 

가지며 시간이 지남에 따라 무한한 크기에 도달할 수 있다. 

위에서 언급한 데이터 스트림의 고유한 특성으로 인해 데이터 

스트림 클러스터링 알고리즘에 대한 요구 사항은 점점 더 복잡해지고 있다. 

정적 데이터에 대한 클러스터링 알고리즘의 기본 요구 사항은 데이터 내에서 

임의의 모양과 클러스터 수를 추출할 수 있어야 한다. 또한 스트림 

클러스터링 알고리즘은 시간과 공간의 제약으로 인해 들어오는 데이터를 

빠르고 효율적으로 처리하는 것이 중요하다. 기존의 밀도 기반 알고리즘은 

들어오는 스트림 내에서 임의의 모양과 숫자의 클러스터를 성공적으로 

찾았지만 밀도(ε)가 클러스터당 최소 포인트(minPts)와 함께 사용자 고정 

매개변수인 경우가 많기 때문에 밀도 변화를 발견할 때는 여전히 부족하다. 

본 논문에서는 데이터 스트림 내에서 밀도가 다른 클러스터를 

감지할 수 있는 계층적 밀도 기반 클러스터링 알고리즘을 기반으로 하는 

StreamHD 라는 스트림 클러스터링 알고리즘을 제안한다. 제안된 

알고리즘은 사용자 개입을 최소화하면서 클러스터의 밀도 임계 값을 

독립적으로 감지합니다. 또한 StreamHD 는 코어 밀도를 계산할 때 고려하고 

최소 클러스터 크기도 결정하는 주어진 지점의 인접 지점 수를 결정하는 

minPts 와 윈도우 크기의 두 가지 사용자 매개변수만 필요하다. 

StreamHD 는 스트림 클러스터링 알고리즘 중 사용자 개입이 가장 적다고 

할 수 있다. 또한 실제 데이터셋과 합성 데이터셋에 대한 실험 결과 우리가 

제안한 알고리즘이 각 윈도우 처리 시간과 클러스터 품질 측면에서 비교 

알고리즘 중 가장 우수한 성능을 보였다. 

 

주요어: 데이터 스트림, 계층적 클러스터링, 밀도 기반 클러스터링, 슬라이딩 
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