

저 시 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 목적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

http://creativecommons.org/licenses/by/2.0/kr/legalcode
http://creativecommons.org/licenses/by/2.0/kr/

공학박사 학위논문

Information Flow Control

for Privacy-preserving Advertising

광고 프라이버시를 위한 정보 흐름 제어 기법

2022년 8월

서울대학교 대학원

컴퓨터공학부

박 민 경

광고 프라이버시를 위한 정보 흐름 제어 기법

Information Flow Control

for Privacy-preserving Advertising

지도교수 권 태 경

이 논문을 공학박사 학위논문으로 제출함

2022 년 6 월

서울대학교 대학원

컴퓨터공학부

박 민 경

박 민 경의 공학박사 학위논문을 인준함

2022 년 6 월

위 원 장 김 진 수

부위원장 권 태 경

위 원 백 윤 흥

위 원 전 병 곤

위 원 송 도 경

Abstract

Information Flow Control

for Privacy-preserving Advertising

Minkyung Park

Department of Computer Science & Engineering

The Graduate School

Seoul National University

In online advertising, cross-site tracking enables advertisers to target

potential customers by profiling their online behaviors. However, such

practice raises privacy concerns because of the sensitivity of the collected

user data. To address this issue, there have been proposals for

privacy-preserving advertising. However, they allow ad companies to protect

user privacy only by sacrificing the utility of the advertising. In this paper, I

present a privacy-preserving advertising framework, Pave, which allows ad

companies to sustain the utility and current advertising mechanisms. Pave

provides an arbitrary ad program with an isolated execution environment

equipped with a blackbox monitor, called a PaveBox, inspired by Secure

Multi-Execution (SME). The PaveBox intercepts every data flow from the

ad program and disallows any data flow that may explicitly or implicitly leak

i

the user data. As the PaveBox is built on top of Intel SGX, its integrity can

be remotely attested. I carry out the quantitative analysis with

prototype-based experiments to show its feasibility.

Keywords: Information Flow Control, Secure Multi Execution, Intel SGX,

Privacy-preserving Advertising, User Privacy

Student Number: 2014-21784

ii

Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Background 6

2.1 Current Advertising Ecosystem 6

2.2 Intel SGX . 8

2.3 Secure Multi-Execution (SME) 9

Chapter 3 Overview 12

3.1 Threat Model . 12

3.2 System Goals . 13

Chapter 4 Pave Design 17

4.1 Local Profiling . 17

4.2 Shadow Execution . 18

4.3 Faceted Session . 19

4.4 Chained Attestation . 22

Chapter 5 Pave Implementation 23

5.1 Sandbox . 23

iii

5.2 Syscall and FS Interfaces . 25

5.3 Synchronization . 26

5.4 Selective Remote Attestation (RA) 27

5.5 Lazy Execution . 28

Chapter 6 Formal Analysis 30

6.1 Model Language . 30

6.2 Standard Semantics . 31

6.3 PaveBox Semantics . 32

6.4 Security Properties . 34

6.5 Proof of Security Properties . 35

6.5.1 Proof of Non-Interference 35

6.5.2 Proof of Functionality Preservation 38

Chapter 7 Discussion 44

7.1 Side-channel Attacks . 44

7.2 After AD Selections . 46

Chapter 8 Evaluation 47

8.1 Experiment Setup . 47

8.2 PaveBox Initialization Overhead 49

8.3 User Latency . 49

8.4 Execution Time . 53

Chapter 9 Related Work 55

9.1 Privacy-preserving Ad Systems 55

9.2 Information Flow Control . 57

Chapter 10 Conculsion 59

국문초록 73

iv

List of Figures

Figure 2.1 A process of real-time bidding (RTB) is illustrated. . . 8

Figure 3.1 SME and shadow execution of Pave are compared. . . 15

Figure 4.1 Syscalls are controlled differently depending on whether

the execution is high or low. 18

Figure 4.2 TLS carries data for the faceted session so that Pave

performs (i) targeted advertising among high execu-

tions and (ii) contextual advertising among low execu-

tions. 21

Figure 5.1 A single instance of the PaveBox is illustrated. 25

Figure 6.1 The syntax of our model language is presented. 31

Figure 6.2 Standard execution semantics is defined. 32

Figure 6.3 Local and global semantics under PaveBox are defined. 42

Figure 6.4 Global semantics without the synchronization is defined. 43

Figure 8.1 The user latency to receive an ad URL is plotted. . . . 50

Figure 8.2 The user latency is measured when the number of con-

current ad requests varies. 51

v

Figure 8.3 The user latency is measured when the number of ad

requests per second varies. 52

vi

List of Tables

Table 8.1 The execution time and the number of page faults of each

ad program are plotted. PP refers the pre-processing de-

lay and AP refers the ad-processing delay. PF refers the

total number of page faults. The unit for PP and AP is

ms. 53

vii

Chapter 1

Introduction

Online advertising delivers promotional materials (i.e., advertisements) to users

over the Internet, which plays a crucial role in the Internet economy. Online

users see advertisements by visiting websites, which we call publishers. A pub-

lisher shows advertisements in its webpages so that it can get money from the

advertisers. The online advertising ecosystem has evolved into a complex mar-

ketplace in which various kinds of ad companies try to connect the ad spaces

of publishers (e.g., websites and mobile apps) and advertisers. The ecosystem

of online advertising typically consists of a few kinds of ad companies who

collaborate to determine which advertisement is shown to a user.

To attract a user to click an advertisement and further to increase a chance

to purchase the advertised product, ad companies need to identify her profile

by using her demographic data or search history. For this, the ad companies

keep track of the user behaviors to build up a user profile typically by using

third-party tracking techniques. As a user has different third-party cookies

for different ad companies, the cookies of the same user may be shared across

different ad companies so that they can cooperate to build up a user profile, so-

1

called cookie syncing. Moreover, Google Advertising ID (GAID) and IDentifier

For Advertising (IDFA) for Android or Apple devices, respectively, are used

to identify individual devices.

Many believe that targeted advertisements considering user profiles are

useful, necessary, or time-saving [18]. On the other hand, many studies [15, 32,

53, 1, 34, 57, 10, 2] warn of the privacy leakage from the targeted advertising

due to third-party tracking. While users may be aware of first-party cookies

set by the websites they visit directly, they may not be aware of third-party

cookies set by third-parties. Google’s DoubleClick is reported to be able to

collect a user’s browsing history of 40% of the top Alexa 100K websites using

the third-party cookies in 2015 [15]. Moreover, the ad companies share the

user information between one another. Google shares the user’s behavior data

between its subordinates (e.g., Google Syndication, DoubleClick, and Google

Tag Manager) [10]. According to [2], DoubleClick broadcasts personal data

to over 2,000 companies, and AppNexus conducts 131 billion personal data

broadcasts every day.

Since targeted advertising is one of the main drivers in the Internet econ-

omy, targeted advertising while preserving privacy continues to be studied by

browser vendors, ad companies, and researchers. Commonly [42, 76, 43, 64, 35],

ad servers are given no or only coarse-grained user interests. Hence, they choose

a set of candidate ads, and a user agent locally decides an ad from the candi-

date set.

Such approaches suffer from the coarse granularity of user information,

which lowers the utility of the advertisements. Since current ad selection mech-

anisms target users more specifically, it is difficult for these solutions to be

supported. For example, auction-based advertising (i.e., Real-Time Bidding

or RTB), which is one of the widely used ad selection mechanisms, heavily

relies on choosing advertisements based on highly-targeted users [75]. That

2

is, it becomes important to narrow targeted users by informing ad servers of

fine-grained user data. Thus, the limitation on information granularity may

hurt the online ad ecosystem [27]. For example, Google Chrome has delayed

multiple times its plan to block third-party cookies until 2023 because of the

conflict between the tracking-based advertising and the user privacy [11]. Also,

Apple’s tracking transparency that blocks tracking user behaviors gives nega-

tive impacts on Internet companies (e.g., Meta) that rely on advertising [24].

Furthermore, the existing approaches focus only on a specific mechanism (e.g.,

ad network [42, 76, 43], ranking-based auction [64], on-device retargeting [35],

etc.) and do not explore how to substantiate their designs in the other settings.

I argue that if an arbitrary ad program running on an ad server is mon-

itored by Information Flow Control (IFC), it can process fine-grained user

interests to choose an ad while keeping them secure. IFC is a mechanism to

enforce a program to follow security requirements by controlling data flows

over sensitive channels. Therefore, the ad program is blocked from using the

user interests or their derived output after an ad is selected. For example, if

the ad program tries to store the user interests into persistent storage, the

IFC monitor will block it. Also, I leverage Intel Software Guard eXtension

(SGX) to guarantee the integrity and the confidentiality of the IFC monitor.

SGX provides an isolated container, called an enclave, which prevents other

processes from tampering the IFC monitor. Furthermore, the user agent can

remotely attest this enclave to verify the integrity of the IFC monitor.

The key challenge of integrating the IFC monitor with SGX is how to pre-

vent an ad program from leaking user interests through system call (syscall) in-

terfaces. Since privileged software (e.g., operating system) cannot be protected

by SGX, implicit leakages through the syscall interfaces should be completely

addressed. For example, if the ad program exits only when the user inter-

ests include a specific value, whether the exit syscall is triggered or not leaks

3

the value. Unfortunately, existing IFC implementations cannot be directly ap-

plied to the SGX settings (see Chapter 9). First of all, they do not address the

implicit leakage or incur significant overhead [65, 48, 86, 85, 30, 83, 52, 31].

Moreover, since the program and the IFC monitor have to run with the same

privilege (ring 3) within an enclave, it is important to design the IFC in such

a way that its enforcement can be implemented. Ryoan [44] is the first work

that addresses the challenge by blocking almost all syscalls after reading any

protected data. However, this makes it impossible to perform sophisticated ad

selections such as RTB since the ad programs require syscalls to interact with

each other.

To address this challenge, I present Pave, a novel combination of tech-

niques for privacy-preserving ad selection. In Pave, a user agent profiles fine-

grained user interests locally, which are sent to an ad server. The user interests

on the ad server are protected by ‘shadow execution’, which is a technique in-

spired by Secure Multi-Execution (SME) [29, 16]. Like SME, shadow execution

simulates the ad program execution without the user interests. The simulated

execution thus generates a sequence of syscalls independent of the user inter-

ests. Then, the execution with the user interests is safely interleaved into the

simulated execution to prevent privacy leakage.

When shadow execution simulates the ad program (without the user in-

terests), an IFC monitor, called a PaveBox, replaces the sensitive data by

dummy values. Inappropriate dummy values may restrict the functionality of

the ad selection program, which may fail to serve an advertisement. Thus, in

Pave, instead of letting the PaveBox choose dummy values on its own, they

are fed into the PaveBox from other entities such as the user agent or the

other ad servers. For instance, the user agent sends the context of a website

that the user is currently visiting, which is used as dummy values by the ad

programs.

4

Furthermore, Pave introduces ‘faceted session’ for the ad programs to

exchange the sensitive user data through TLS connections. As the network

activities are not protected by SGX, networking-related syscalls would be for-

bidden by shadow execution. However, in Pave, faceted session carries both

the sensitive data and its dummy values together. Thus, it conceals not only

the content of the sensitive data but also its existence.

I make the following contributions. First, I propose a novel privacy-preserving

advertising framework, Pave, which allows ad companies to continue using the

current ad selection mechanisms with the fine-grained user data. Second, I de-

sign and implement an IFC technique that while an ad program can process

user interests, the PaveBox prohibits it from leaking the user interests. To

the best of our knowledge, this is the first approach to use IFC for privacy-

preserving advertising. Third, I prove the security and the functionality of

Pave using a formal model. Lastly, I carry out prototype-based experiments

to demonstrate its feasibility.

The rest of the thesis is organized as follows. I present the background of

advertising ecosystem, Intel SGX, and Secure Multi-Execution in Chapter 2.

Then, I describe the design goals and challenges in Chapter 3. In Chapter 4

and Chapter 5, I detail the design and the implementation of Pave. Chap-

ter 6 formally proofs the security of Pave. After that, I discuss the feasibility

of Pave in Chapter 7 and Chapter 8. Finally, the related work is explained

in Chapter 9, followed by concluding remarks in Chapter 10.

5

Chapter 2

Background

2.1 Current Advertising Ecosystem

The online advertising ecosystem has become a playground for various kinds

of stakeholders. Various ad companies such as an ad network, a supply-side

platform (SSP), a demand-side platform (DSP), and an ad exchange (ADX)

collaborate in various settings to match advertisers with publishers. There are

two widely used ad selection models for coordinating such ad companies: ad

network and real-time bidding (RTB). An ad network aggregates ad impression

inventories from publishers (i.e., websites that publish ads) and matches them

with advertisers. An ad impression refers to an ad view, which is counted

whenever an ad is shown to a user. However, as the demand for ad spaces

often falls short of the supply, relying on a single ad network is not scalable.

Also, the target users are limited to the visitors to the publishers of a particular

ad network.

To address such issues, multiple kinds of ad companies decide ads to show

in real-time through RTB. That is, special auctions are held so that advertis-

6

ers can bid to buy impressions. The stakeholders for RTB are ad exchanges,

supply-side platforms (SSPs), and demand-side platforms (DSPs). An ad ex-

change is an online marketplace that enables advertisers and publishers to buy

and sell ad spaces. On behalf of the publishers, an SSP sells ad spaces to the

marketplace. The SSP allows the publishers to show advertisements to users in

such a way that the publishers can optimize their ad spaces automatically. On

the other hand, a DSP allows the advertisers to display their ads at the pub-

lishers’ websites that their target users are visiting now. The DSP purchases

advertisements in an automatic fashion by bidding for an impression. Finally,

the ads from the highest bidders are displayed on the publishers’ websites.

Figure 2.1a shows an example of the RTB process.

The ad is delivered as a URL, which is a location to a raw ad material.

This is because the advertisement is delivered in the form of an ad markup,

which is a representation of an advertisement (e.g., HTML tag). After the ad

selection, the user agent loads the raw ad material such as a video or an image

as indicated in the URL. Pave focuses on ad selection, which is from a user

agent sending an ad request to fetching the corresponding ad URL. For the

sake of brevity, ‘advertising’ refers to the ad selection in this paper. I discuss

the remaining processes in Chapter 7. Note that there are various forms of

ad selection mechanisms such as the daisy chain and waterfall models. For

example, the ad exchanges can buy or sell an ad impression between each

other. Or the SSP may send the ad request to ad networks in addition to the

ad exchanges. That is, the ad companies collaborate in variable settings for

online advertising.

With the explosive growth of the online advertising industry, the ad pric-

ing model has become important to advertisers’ budget strategies. Cost per

Impression (CPI), Cost per Click (CPC), and Cost per Action (CPA) are com-

mon metrics for the pricing models to charge for the impressions of ads. CPI is

7

PAVEBOX

Ad Program

User
Agent

Ad ExchangeSSP DSP

1) 2) 3)

6) 5) 4)

Ad Program

User
Agent

Ad Exchange DSPSSP

PAVEBOX

Ad Program

1)

6)

Ad Program Ad Program

PAVEBOX

Ad Program

PAVEBOX

Ad Program

2) 3)

5) 4)

An ad server

A user profile Trusted Untrusted

An ad server equipped with Intel SGX

(a) Current system

PAVEBOX

Ad Program

User
Agent

Ad ExchangeSSP DSP

1) 2) 3)

6) 5) 4)

Ad Program

User
Agent

Ad Exchange DSPSSP

PAVEBOX

Ad Program

1)

6)

Ad Program Ad Program

PAVEBOX

Ad Program

PAVEBOX

Ad Program

2) 3)

5) 4)

An ad server

A user profile Trusted Untrusted

An ad server equipped with Intel SGX

(b) Pave

Figure 2.1: A process of real-time bidding (RTB) is illustrated.

the rate that an advertiser has agreed to pay per 1,000 views (or impressions)

of a particular ad. CPC allows the publishers to charge advertisers for every

click on an ad. In the CPA model, publishers charge advertisers only when

the user completes the required action. Often, the combination of the above

pricing models is used.

2.2 Intel SGX

Intel SGX is a set of instructions added to the Intel processor architecture.

It enables an application to build an enclave, a memory area protected from

disclosure or modification by any privileged software such as the operating

system. Some area of the main memory is reserved for enclaves, which is called

Enclave Page Cache (EPC). The EPC is encrypted by the Memory Encryption

8

Engine (MEE) and decrypted only when it is loaded to the CPU. Intel SGX

also provides the remote attestation that allows an entity (say, challenger)

to verify the integrity of the code and initial data of an enclave in a remote

server. That is, the challenger checks the signed hash of the initial memory of

the enclave.

One of the threat models of Intel SGX is the privileged software outside

the enclave. Therefore, operations that need the intervention of the privileged

software are prohibited. For example, Intel SGX blocks an enclave application

from directly invoking syscalls to access the system resources (e.g., file, time,

or network). Instead, an enclave developer can define an OCALL interface to

call a host function outside the enclave. A thread temporarily exits the enclave,

executes a host function, and re-enters the enclave.

2.3 Secure Multi-Execution (SME)

Non-interference is a security property that IFC seeks to satisfy. A program is

said to be non-interferent if its non-sensitive public outputs (i.e., outputs at

a low security level) cannot be influenced by sensitive inputs (or inputs at a

high security level). Especially, it is timing-sensitive non-interferent when the

program satisfies non-interference at any time of its execution. This means

that sensitive inputs cannot be leaked to timing channels as well. For the sake

of brevity, ‘non-interference’ refers to timing-sensitive non-interference in this

thesis.

Suppose that an ad server runs a DSP program below.

1 user_interest = read_sensitive();

2 bid = bidding_function(user_interest);

3 send_to_TTP(bid);

4 save_to_shared(bid);

The program takes the user interest as sensitive input (line 1). The pro-

9

gram determines the bid price by processing the user interest (line 2); thus,

the output (i.e., bid) becomes sensitive. The bid price is then sent to a trusted

third-party (line 3). In this example, I assume that a trusted third-party plays

the role of the ADX. In other words, I consider send to TTP as a secure out-

put channel. Lastly, the program saves the user interest to a shared storage

(line 4). I assume that the shared storage is accessible by anyone and con-

sider save to shared as an insecure output channel. Consequently, this DSP

program does not satisfy non-interference because the sensitive output (bid)

is transmitted over the insecure channel (save to shared).

Secure Multi-Execution (SME) [16, 29, 45] enforces non-interference on any

given program. The key idea is to execute a given program multiple times, once

for each security level by the following two principles. First, an execution is

disallowed to read input from a channel of a higher security level. Second, an

execution is only allowed to output data to the channel of the same security

level.

For the above DSP program, there are two security levels: low and high.

Thus, SME will spawn two executions, which I refer to as a low execution

and a high execution. In the low execution, user interest is replaced with a

predefined dummy value, say 0, since it is a sensitive (i.e., high security level)

input. Also, send to TTP() is ignored as it is a secure output channel.

1 user_interest = read_sensitive() 0;

2 bid = bidding_function(user_interest);

3 send_to_TTP(bid);

4 save_to_shared(bid);

Meanwhile, during the high execution, save to shared() is ignored because

it is an insecure output channel. This way, SME ensures that the sensitive

user interest value is not leaked to the shared storage.

1 user_interest = read_sensitive();

10

2 bid = bidding_function(user_interest);

3 send_to_TTP(bid);

4 save_to_shared(bid);

11

Chapter 3

Overview

Figure 2.1b illustrates how an ad is selected in Pave. Compared to Figure 2.1a,

the entity that collects user interests is changed from ad servers to a user

agent. Unlike the current advertising, the ad servers do not need to track

user browsing histories. The user agent sends an ad request along with the

user interests. Every ad server processes the ad request under the eyes of a

PaveBox, which is protected by Intel SGX in turn. Eventually, the user agent

receives the corresponding ad URL as in the current practice.

3.1 Threat Model

I assume that a user agent is benign. Usually, browser vendors try to protect

user privacy [82, 88] and it is difficult to compromise a user agent. Moreover,

any malicious behaviors to compromise the user agent may be detected by

various solutions such as anti-virus software. The user agent having the user

interests does not trust the ad companies to keep them secret.

When an ad program is protected by an enclave, a host outside the enclave

12

cannot directly observe the ad program’s execution. However, a malicious ad

company may develop its ad program in such a way that the user interests

are revealed when the ad program has to escape the enclave to access host

resources such as time, network, and so on. In this thesis, I focus on the scenario

in which the adversary exploits software interfaces [44, 4] between an enclave

and a host. The software interfaces are implemented as OCALLs, and thus the

adversary outside the enclave can observe their invocations and parameters (as

mentioned in §2.2). Note that not every syscall needs to be implemented as

the software interfaces. For example, getrandom() can be implemented using

Intel SGX RDRAND instruction. Or, system features can be integrated using

LibOS such as Graphene-SGX [77]. For the sake of brevity, I use ‘syscall’ to

refer to syscall implemented as the software interface.

As to the related work on SGX-based IFC [44, 4], I consider micro-architectural

vulnerabilities [79, 20, 80] and side-channel attacks [67, 61] out of scope. I dis-

cuss the impact of these attacks and countermeasures on Pave in Chapter 7.

Also, denial-of-service attacks are out of the scope of our threat model.

3.2 System Goals

The main goal of Pave is to achieve (timing-sensitive) non-interference of an

ad program. It means that patterns (i.e., order, timing, and passed parame-

ters) of the software interfaces should not leak the user interests. For this, the

PaveBox controls an ad program’s behaviors to ensure that the program exe-

cution exhibits a consistent pattern irrespective of the values of user interests.

In addition, our system seeks to preserve the functionality of an ad pro-

gram. Excessive restrictions on the ad program may hinder its important func-

tionalities. For example, if the non-interference is achieved by forbidding every

syscall, the ad program cannot return an ad URL. Thus, the PaveBox should

not restrict or change the functionality of the program if it does not harm non-

13

interference. Specifically, if an ad program is non-interferent without Pave, its

execution should make the same result in Pave.

To achieve the goals, I propose ‘shadow execution’, which is a technique

inspired by SME. To be brief, shadow execution runs the ad program twice:

a low execution with a dummy profile and a high execution with a real user

profile. The low execution makes syscall invocations, which are independent of

the real user interests. By contrast, the high execution cannot invoke syscalls.

Instead, it reuses the syscall results from the low execution. That is, the high

execution is “safely” interleaved with the low execution. In this way, the high

execution is prevented from leaking the user interests through syscalls.

However, there still remain three challenges. The first challenge is how to

allow a safe exchange of sensitive data (i.e., the user interests and its derived

outputs) over a network. The network is an insecure channel since every opera-

tion to use the network is triggered by a syscall. As illustrated in Figure 3.1a,

SME assumes that the high execution has a dedicated secure channel over

which it can safely read or write sensitive data (IH or OH). However, in Pave,

there cannot be such a channel due to the intervention of a software interface.

In the example in §2.3, read sensitive is labeled high. The low execution will

be fed the dummy value by the SME runtime monitor. The high execution is

supposed to get the actual user interests, which is not possible due to the soft-

ware interface. Thus, I should devise a method to securely transfer sensitive

data over the insecure channel.

I propose faceted session to address this issue. the PaveBox retains two

logical sessions over one TLS session. Outside the enclave, the session looks

like a single encrypted session between the user agent and the ad program.

The endpoint that can encrypt or decrypt the TLS session is not the ad pro-

gram but the PaveBox. When the low execution invokes syscalls to read any

sensitive data, the PaveBox copies the data from the host to the enclave, but

14

System Resources

𝑰𝑯

𝑰𝑳

𝑶𝑯High

Execution

𝑶𝑳
Low

Execution

Trusted High Channel Low ChannelUntrusted

𝑰𝑯

𝑰𝑭𝑺

𝑶𝑯High

Execution

𝑶𝑭𝑺
Low

Execution

𝑰𝑳 𝑶𝑳

𝑶𝒔𝒚𝒔𝑰𝒔𝒚𝒔 System Resources

𝑰𝑯

𝑰𝑳

𝑶𝑯High

Execution

𝑶𝑳
Low

Execution

Trusted Untrusted

𝑰𝑯

𝑰𝑭𝑺

𝑶𝑯High

Execution

𝑶𝑭𝑺
Low

Execution

𝑰𝑳
𝑶𝑳

(a) SME

System Resources

𝑰𝑯

𝑰𝑳

𝑶𝑯High

Execution

𝑶𝑳
Low

Execution

Trusted High Channel Low ChannelUntrusted

𝑰𝑯

𝑰𝑭𝑺

𝑶𝑯High

Execution

𝑶𝑭𝑺
Low

Execution

𝑰𝑳 𝑶𝑳

𝑶𝒔𝒚𝒔𝑰𝒔𝒚𝒔 System Resources

𝑰𝑯

𝑰𝑳

𝑶𝑯High

Execution

𝑶𝑳
Low

Execution

Trusted Untrusted

𝑰𝑯

𝑰𝑭𝑺

𝑶𝑯High

Execution

𝑶𝑭𝑺
Low

Execution

𝑰𝑳
𝑶𝑳

(b) Pave

Figure 3.1: SME and shadow execution of Pave are compared.

gives dummy values to the low execution. On the other hand, when the high

execution invokes syscalls to read any sensitive data, the PaveBox returns

the real data, which were obtained while performing the low execution. As

illustrated in Figure 3.1b, every sensitive data is delivered through the low

channel (IFS or OFS) but the sensitive data is hidden (IH or OH).

The second challenge is how to determine dummy values. When the low

execution tries to read sensitive data, the PaveBox will replace them by

dummy values. As the syscall invocation is fully delegated to the low execution,

the dummy value can affect the result of the syscall invocation. Thus, if the

dummy value goes beyond original semantics (e.g., a garbage value for a user

interest), the functionality of the high execution may become ineffective. Also,

since the ad programs communicate with each other, any derived output (e.g.,

bid) from the user interest requires its dummy value as well. In Pave, the

dummy value is not predefined in advance. Instead, the user agent generates

a dummy value from the user’s current context, which is propagated along

with the ad servers. It helps the low execution make syscalls relevant to the

ad selection.

The last challenge is how to schedule both high and low executions in-

side the enclave. SME preserves the functionality under a low-priority sched-

15

uler [29]. To schedule both executions, a scheduler should be able to learn the

states of the executions, but a host scheduler cannot learn the states protected

by SGX. Also, it is hard to implement the low-priority scheduler inside the

enclave because enclave threads are running with the same Ring 3 privilege.

For this, I propose synchronization in Pave. Both of the executions are sched-

uled by the synchronization inside the enclave without relying on the host

scheduler or the low-priority scheduler.

16

Chapter 4

Pave Design

4.1 Local Profiling

Pave requires the user agent to profile its user. The user agent keeps its local

database of the user interests. Each webpage can declare a context profile,

which is a set of interests (e.g., swim, classic music, wine, etc.) representing

the page, by using an HTML meta tag. For example, a shopping page for

running shoes can declare sport, running, and shoes. Or, for retargeting, its

product ID can be declared. Then, when the user visits the webpage, the

user agent updates the local database. Each interest is an element from the

universal profile set (say, [72]) containing all the possible interests and publicly

available. I assume that user interests can include demographics data such as

language, age group, and so on. The universal profile set should not contain

controversial or highly-sensitive interests for advertising such as race, sexuality,

etc.

When the user agent visits the publisher website, it sends the user interests

(or the user profile) to an ad program. The user profile is a partial set of

17

System resources (Network, Filesystem, etc.)

High
Execution

Low
Execution

1. syscall
Access
QueueMonitor Monitor

3. enqueue

4. syscall2. resp.

5. dequeue

6. resp.

Enclave

Trusted

Untrusted

E2E-encrypted

Plaintext

Trusted

Untrusted

Figure 4.1: Syscalls are controlled differently depending on whether the exe-

cution is high or low.

interests from the local database and is determined by the user agent. I do not

constrain how a user profile is determined. For example, it can select randomly

or frequently appeared interests from the local database. In addition to the

user profile, the user agent also sends the context profile of the currently visited

webpage. This context profile would be used as dummy values. Such contextual

advertising is not privacy-invasive [23] since this website already is known to

ad servers when an ad request is triggered. For example, the HTTP referrer

header identifies the address of the webpage.

Before sending the pair of profiles, the user agent should remotely attest

the ad program to verify whether it is monitored by a PaveBox. If the attes-

tation fails, the user agent does not proceed further. The remote attestation

is detailed in §4.4.

4.2 Shadow Execution

When an ad program processes the ad request from the user agent, thePaveBox

should protect the user profile (not the context profile) from the leakage

through syscalls (i.e., the software interfaces). To achieve this, the PaveBox

simulates every invocation in the low execution with the context profile. The

PaveBox gives this result to the high execution that runs with the user profile.

18

Given an ad program, the PaveBox executes its two copies running in

parallel. The PaveBox maintains a request-response syscall queue, called an

access queue, which is illustrated in Figure 4.1. When the low execution issues

a syscall, the PaveBox hands it over to the OS (out of the enclave). Then,

the PaveBox delivers the corresponding response back to the low execution.

The pair of the issued syscall and the corresponding response is also stored

in the access queue. On the other hand, a syscall from the high execution is

handled directly from the access queue. The PaveBox dequeues the entry of

the same request from the access queue, and its response is delivered to the

high execution. If there is no corresponding request, the high execution waits

until the request is triggered from the low execution and its response arrives

at the queue.

Note that the termination is also handled by the low execution. If the

low execution terminates earlier, both executions are terminated. If the high

execution terminates before the low execution does, the PaveBox holds its

termination and makes the high execution wait until the low execution is

terminated. That is, the low and high executions always terminate at the

same time.

The two executions should be separated from each other to block access

to data of the other counterpart. Likewise, the PaveBox should be protected

from the two executions. For this, I use Software Fault Isolation (SFI) [74],

which is detailed in Chapter 5.

4.3 Faceted Session

Ad programs should interact with one another (say, between an ADX and a

DSP) through the network, which is an insecure channel due to its observability

by an adversary. A faceted session enables the high execution to deliver a

message with sensitive data over the network.

19

A faceted session (for short, a session) refers to a network channel between

(i) the user agent and an ad program, or (ii) two ad programs. A session

is encrypted by the PaveBox (not the executions) through TLS so that the

adversary cannot read the content of messages. Also, the PaveBox pads every

message to a fixed size to hinder the traffic analysis. In addition, PaveBoxes

should be attested when a session is set up.

Every session message should follow a predefined data format, called an

AD Message (ADM), whose structure is similar to key-value pairs. Each entry

in an ADM has three components: key, value, and security level. The key is

an index of the entry, and a value contains the data of the entry. The security

level indicates whether the entry is sensitive (S) or non-sensitive (NS). The

value is composed of a pair of raw data, one for the low execution (L) and the

other for the high execution (H). I call this composite data as a faceted value.

The below illustrates an ADM for an initial ad request where age, sport, and

interest type entries are S, while ad placement one is NS.

1 "ad placement", NS, {L:"top", H:"top"}

2 "interest type", S, {L:"sport", H:"age, sport"}

3 "age", S, {L:null, H:"30s"}

4 "sport", S, {L:"football", H:"tennis"}

To send an ad request, the user agent constructs an ADM from the user

profile and the context profile. For the S entries, it fills its H field with the user

profile and L field with the context profile. For the NS entries, it fills both H

and L fields with the same data.

When an execution accesses (reads or writes) an entry, the PaveBox en-

forces it to access either H or L component depending on its level. Every ADM

is managed by the PaveBox; that is, the execution cannot directly access it.

Instead, the PaveBox passes/updates the corresponding field in the ADM to

the execution (when reading), or from the execution (when writing). Conse-

20

High

Execution

Low

Execution

Network

Transmission

E2E-encrypted

Plaintext

Trusted

Untrusted

“age”: {L: “0”, H: “24”}

High

Execution

Low

Execution

“age”: “0” “age”: “24” L value H value

ADMADM

Faceted

value Enclave

HostEncrypted ADM Encrypted ADM

User agent

SSP

ADX

User

Agent

High

Execution

Low

Execution

PAVEBOX

Monitor

High

Execution

Low

Execution

PAVEBOX

Monitor

Faceted

session

Logical session for

Contextual advertising

Logical session for

Targeted advertising

EnclaveEnclave

TLS-

encrypted

Figure 4.2: TLS carries data for the faceted session so that Pave performs

(i) targeted advertising among high executions and (ii) contextual advertising

among low executions.

quently, the high executions in the distributed ad servers process the real user

profile, while the low executions process the context profile as illustrated in

Figure 4.2.

The transmission or reception of an ADM triggers a syscall. Thus, the low

execution decides when to send or receive an ADM. If the low execution sends

an ADM before the high execution finishes the H field of an entry, the recipient

of the ADM may not obtain the data needed for a proper ad selection. Our

synchronization mechanism prevents such a situation as detailed in §5.3.

Lastly, the ad server connected to the user agent will return an ad URL.

That is, the user agent will receive an ADM with two ad URLs; one in the H

field is tailored to the user profile, and the other in the L field is selected based

on the context profile. On receipt of the ad response, the user agent reads the

ad URL in the H field.

Unfortunately, the user agent may receive an ADM with the URL in the H

21

field missing. For example, if an SSP program is interferent, its high execution

may be stuck while waiting for a syscall result. Thus, if the user agent receives

an empty ad URL in the H field, it uses the ad URL in the L field. Even though

this ad is of less utility, it can be still meaningful to the user.

4.4 Chained Attestation

The user profile should be delivered to the next entity only if it is attested via

faceted session. Since the user agent connects to only one PaveBox (usually,

in an SSP), other PaveBoxes behind it are invisible and unknown. Thus,

after the user agent attests the directly connected PaveBox, the next hop

PaveBoxes are attested by the attested PaveBox. For this, when initiating

a session, a client-side PaveBox remotely attests a server-side PaveBox. For

instance, in RTB, an SSP is attested by the user agent, an ADX is attested

by the SSP, and a DSP is attested by the ADX.

Furthermore, to prevent a user profile from leaking to another user agent,

a pair of high and low executions should process a single ad request at a time.

After an execution pair accepts an incoming session (from the user agent or

another execution pair), it cannot accept another session. It does not mean

that the PaveBox cannot handle multi-threading. The PaveBox can run

multiple pairs of executions, each of which handles a single ad request at a

time. Note that there is no restriction on the number of outgoing sessions.

These rules make execution pairs form a tree topology where nodes are

the execution pairs and edges are their sessions. As a root, the user agent

attests the SSP PaveBox, the other nodes (i.e., PaveBoxes) are iteratively

attested along with the tree links by the remote attestation. Consequently,

only executions monitored by PaveBoxes can participate in the ad selection

in Pave. Note that the client attestation is not required so that the user agent

does not need to be attested.

22

Chapter 5

Pave Implementation

In this chapter, I detail the implementation of PaveBox to enforce the Pave

IFC rules.

5.1 Sandbox

As described in Chapter 4, I use SFI [74] to segregate one enclave into spaces

for two executions and a PaveBox monitor. Since one enclave is a single pro-

cess domain, the high and low executions without SFI can access the memory

space of their counterparts (e.g., the low execution reading H fields). For SFI,

Pave uses address masking by extending Google Native Client (NaCl) [68].

NaCl enforces every memory access of an untrusted program (i.e., an ad pro-

gram) to point to a designated memory region. It is an aligned 4GB region,

and its base address is stored in a designated register (i.e., r15), which is for-

bidden to be modified. Then, an instruction of address access is masked by

using r15 to be in the range [r15, r15+4GB). In the example below, the first

instruction makes r11 under 4GB and the second instruction masks it using

23

r15. Consequently, rip after jmp will point to one of the address range [r15,

r15+4GB).

and 0xffffffe0, %r11d # upper 32-bits are cleared

add %r15, %r11

jmp *%r11

In Pave, the memory regions for code and data are distinct. While masking

any rip-modifying instructions (e.g., jmp) from NaCl is preserved, memory

access for data is changed to point to a data region assigned to each execution.

Figure 5.1 illustrates that individual executions share the code area, and each

has its private data area. As the base address of the data region is initialized to

r14, each execution is forced to access its own data region by address masking

using r14. The example below shows that rbx is masked to store the data in

rax.

mov %ebx, %ebx # upper 32-bits are cleared

add %r14, %rbx

mov %rax, (%rbx)

Specifically, I extend NaCl by the following rules.

• The memory space for an execution consists of a shared code region and a

private data region. Each region is 4GB-aligned and unwrapped.

• The base address of the data region is initialized to r14, which is forbidden

to be modified.

• All instructions of indirect data access should use r14 for its address to be

in the range [r14, r14+4GB).

• rsp and rbp can be modified by copying each other without masking. For

other cases, rsb and rbp should also be masked using r14.

• Any instruction using a rip-relative address is forbidden.

24

Single PAVE instance

Host OS

Trusted

Untrusted

Untrusted runtime

Host interface

System call interface

Enclave interface

PAVEBOX runtime

Untrusted program

PAVEBOX interface

PAVEBOX

Enclave

PAVEBOX

Host

Host OS

Trusted

Untrusted

Untrusted runtime

Software interface

Syscall & FS

interface

PAVEBOX

runtime

monitor

Enclave

Program code (RX)

Data

(RW)

Data

(RW)

Data

(RW)

Data

(RW)
…

Ad

program

Faceted

session

handler

Syscall

monitor

Static

validator

get_adm_entry()

tramp_get_adm_entry:

…

<store registers>

jmp trusted_code

jmp tramp_get_adm_entry

L1:

<code>

trusted_code:

…

<copy entry>

…

<clear trusted registers>

<restore untrusted registers>

jmp L1:

Code area for ad program Code area for PAVEBOXFigure 5.1: A single instance of the PaveBox is illustrated.

Since the address masking for multi-domain has been studied in the litera-

ture [4, 13, 69], I skip its technical details. Note that an ad program is loaded

into designated address regions, which is used for remote attestation (see §5.4).

I provide a toolchain to instrument the address masking. Given C/C++

source codes, it generates an address-masked executable. Also, to check any

violation, as soon as the PaveBox starts, the PaveBox validator statically

analyzes whether every memory access is correctly masked or not. If the vali-

dation fails, the PaveBox aborts the program.

5.2 Syscall and FS Interfaces

For an execution to access a faceted session (or ADM), I introduce faceted

session (FS) interfaces as follows.

• accept() accepts an incoming session. It returns a session identifier sid.

• connect(IP, port) connects to a remote PaveBox using its IP address and

port number. It returns a session identifier sid.

25

• create adm() creates an empty ADM and returns its identifier admfd.

• send adm(sid, admfd) sends the admfd through the session sid.

• receive adm(sid) receives an ADM from the session sid and returns an

ADM identifier admfd.

• get adm entry(admfd, key, security) returns the value of the matched en-

try in the admfd using a given key and the security level of the entry.

• add adm entry(admfd, key, value, security) adds an entry to the admfd. It

is populated with the key, security and value.

Each interface is implemented by using a trampoline, which is a piece of

code to transfer control from an execution to the PaveBoxmonitor. The tram-

poline code is loaded in the untrusted area into which the execution can jump.

Here, the trampoline code is attested by the remote attestation so that the

trampoline can contain sensitive instructions to jump to a PaveBox monitor.

After the control is transferred to the PaveBox monitor, the monitor han-

dles the interface (e.g., copying an ADM to the execution memory) and the

control is returned back to the execution. In NaCl, the trampoline is used to

implement syscalls, while in Pave it enables the PaveBox to intercept every

syscall. Figure 5.1 illustrates that the syscall and FS interfaces are between the

untrusted ad program and the trusted monitor. I provide libc and the library

for the FS interfaces for developers to use easily.

5.3 Synchronization

Synchronization of the high and low executions is important to preserve the

functionality of ad programs. For example, given a non-interferent ad program,

if the low execution proceeds faster than the high execution, the high execution

26

must be terminated by the low execution even though it has not yet completed

its job.

Thus, the PaveBox explicitly synchronizes the two executions. It sched-

ules the two executions in a unit of a basic block to make them keep pace

with each other in terms of the number of executed basic blocks. For this, the

Pave toolchain instruments the program by inserting a sequence of synchro-

nization instructions to every basic block. The inserted instructions transfer

the control of the running thread to the PaveBox scheduler. The scheduler

will check how many basic blocks were executed by the low and high execu-

tion respectively. This way, it figures out which thread should be suspended.

In addition, the toolchain should insert the synchronization instructions be-

fore every send adm() call, too. This is to ensure that the faceted ADM to

send is properly filled in by both of the low and high executions before the

transmission.

Note that the PaveBox validator does not check whether the program is

properly instrumented with the synchronization instructions. This is because

the non-interference property is guaranteed even without the synchronization.

I formally discuss this in Chapter 6.

5.4 Selective Remote Attestation (RA)

The remote attestation is a process to allow an entity (or a challenger) to

verify the integrity of the initial memory of an enclave in a remote machine.

The challenger checks MRENCLAVE, which is a hash of the initial memory.

It is signed by the quoting enclave (in the remote machine), which is a spe-

cial enclave to perform the remote attestation, and the signed data structure

is called a quote. When the enclave (to be attested) sends its quote to the

challenger, the challenger asks the Intel Attestation Service (IAS) to verify

the quote. Then, the IAS returns an attestation verification report, which tells

27

whether the quote is forged or not.

The MRENCLAVE is a hash of a buffer, which is extended by ECRE-

ATE, EADD, EEXTEND, and EINIT instructions on Intel SGX. ECREATE

initializes the buffer with the size of an enclave. When EADD loads a page

to the EPC, the buffer is extended with the metadata of the loaded page

(e.g., RWX permission, size, page type, and offset). Likewise, EEXTEND ex-

tends the buffer with the content of the loaded page. Lastly, EINIT finalizes

the MRENCLAVE by hashing the buffer and the MRENCLAVE cannot be

changed since then. Consequently, EADD and EEXTEND are especially re-

lated to a loaded binary.

Since an ad program is not open to the public, the challenger needs to

attest the PaveBox runtime without knowing the ad program. Thus, the

Pave loader selectively measures the enclave by using that the ad program is

loaded into the designated address regions (as explained in Chapter 5). The

Pave loader measures the metadata and content of the PaveBox runtime

through EEXTEND, but it only measures the metadata of the ad program.

Since EADD measures the metadata (of each page) of the ad program when

it is loaded, the challenger can prove that the ad program is loaded into the

designated memory area. Even though the content of the ad program is not

measured, it will be validated by the static analyzer as soon as the PaveBox

starts. I apply this selective RA to RA-TLS [46], which is a TLS extension to

do the remote attestation during the TLS handshake.

5.5 Lazy Execution

Shadow execution uses almost twice as many thread resources as standard ex-

ecution. To reduce the redundancy, the PaveBox delays shadow execution as

much as possible. In the beginning, there is only one thread running. Once an

entry in the received ADM is read, a new thread is assigned to the high exe-

28

cution; the original thread becomes the low execution. To reduce the runtime

overhead for creating a new thread, the PaveBox creates one in advance.

29

Chapter 6

Formal Analysis

In this chapter, I present the formal model of a PaveBox and discuss its

security properties. Specifically, our model (i) enforces non-interference on

any program; and (ii) preserves the functionality of a secure program.

6.1 Model Language

I start by presenting the syntax of our model language in Figure 6.1. A syscall

command recv reads an ADM, whereas a send command transmits an ADM

to an external host. A get command is used to read the value for key k from

an ADM. Similarly, an add command is used to update the value for key k. I

assume that the sets of sensitive and non-sensitive entry keys are predefined as

KS and KNS , respectively. For example, a get command with k ∈ KS means

an access to a sensitive entry.

For conciseness, I omit several features that are not directly related to the

key idea of our proof for security properties. First, I assume that there is only

one session which is already established, and a program processes only one

30

Command c ::= recv

| send

| get k to x

| add x to k

| skip

| x := e

| c; c

Figure 6.1: The syntax of our model language is presented.

ADM at a time. Also, I omit the syntax for conditionals/loops and syscalls

that are unrelated to the ADM. These can be handled in the same way as in

the formal model of SME [29]. While it is straightforward to extend our model

to support such features, I will focus on the difference between the original

SME [29] and a PaveBox.

6.2 Standard Semantics

Next, I present the standard semantics of our language. I define the semantics

as transition rules of an execution state ⟨c,m, a, I, O⟩. Here, c represents the

remaining commands to execute. Memory m is a mapping from a variable to a

value. Intermediate map a temporarily contains an ADM after it is received,

or before it is sent out. Input I denotes the list of ADM to receive, and output

O is the accumulated list of the transmitted ADM.

Figure 6.2 presents relation → that describes the transition rules of an

execution state. The standard semantics describes the original behavior of the

program expected by developers who are unaware of PaveBox. Therefore, the

standard semantics does not have the concept of a faceted value discussed in

§4.3. Here, eval(e,m) represents a function that evaluates the given expression

e under the provided memory state m. Also, I use m[k 7→ v] to denote a map

31

(1)
I = [a1, a2, ..., an] I ′ = [a2, ..., an]

⟨recv,m, a, I, O⟩ → ⟨skip,m, a1, I
′, O⟩

(2)
O = [a1, ..., an] O′ = [a1, ..., an, a]

⟨send,m, a, I, O⟩ → ⟨skip,m, a, I, O′⟩

(3)
a(k) = v m′ = m[x 7→ v]

⟨get k to x,m, a, I, O⟩ → ⟨skip,m′, a, I, O⟩

(4)
m(x) = v a′ = a[k 7→ v]

⟨add x to k,m, a, I, O⟩ → ⟨skip,m, a′, I, O⟩

(5)
eval(e,m) = v m′ = m[x 7→ v]

⟨x := e,m, a, I, O⟩ → ⟨skip,m′, a, I, O⟩

(6)
⟨skip; c2,m,M, I,O⟩ → ⟨c2,m,M, I,O⟩

(7)
⟨c1,m, a, I, O⟩ → ⟨c′1,m′, a′, I ′, O′⟩

⟨c1; c2,m, a, I, O⟩ → ⟨c′1; c2,m′, a′, I ′, O′⟩

Figure 6.2: Standard execution semantics is defined.

obtained by updating m to have value v for key k. In addition, I consider m(k)

to return a bottom (e.g., ⊥) if key k is not found in map m.

6.3 PaveBox Semantics

Now I present the semantics of program executions under a PaveBox. As I

discussed in §4.2, PaveBox separates a program execution into a low execu-

tion and a high execution to ensure non-interference. In Figure 6.3, rules (L1)

through (L11) define relation ⇒ that corresponds to the local semantics for

a low or high execution. Local state ⟨c,m⟩l denotes remaining commands c

and memory m for the execution level l, which can be either low (L) or high

(H). Other components such as a, I, and O are shared by the two execu-

32

tions. Meanwhile, rule (G1) defines relation ⇝, which is the global execution

semantics over both low and high executions. As described in §5.3, this rule

states that the low and high executions run in a synchronized manner, with

an alternating order.

Note that syscall operations are fully delegated to the low execution, as

described in (L1) through (L4). The semantics of syscall operations ensure

that an ADM is maintained in a faceted form within PaveBox, which I

elaborate shortly after. Rules from (L5) to (L7) show that an access to a faceted

ADM operates on different components of the faceted value, depending on the

execution level.

To define the low execution semantics for recv, I introduce a function that

spawns a faceted ADM. For an ADM entry key k and value v, I define a pre-

processing function fct(k, v) as ⟨v, v⟩ if k ∈ KNS and ⟨vdef (k), v⟩ if k ∈ KS ,

where vdef (k) is the dummy value for k. I can also extend this for an ADM a,

by defining fct(a) as {(k, v′) | (k, v) ∈ a, v′ = fct(k, v)}. While this operation

actually takes place in coordination with the user agent (see §4.3), I abstract

this process and embed it in the semantics of PaveBox.

Next, for send syscall, the low execution should construct an output ADM

by extracting proper components from the faceted ADM. I define a post-

processing function ext(k, ⟨vL, vH⟩) as vL if k ∈ KNS and vH if k ∈ KS .

Again, I extend it over a facetedADM a, by defining ext(a) as {(k, v′) | (k, v) ∈

a, v′ = ext(k, v), v′ ̸= ⊥}. Similarly to the pre-processing step, this operation

actually occurs in coordination with the user agent, but I simplify this and

include it in the PaveBox semantics.

Another notable point is that (L11) ensures that the high execution does

not halt even after the remaining command is reduced to a skip. In contrast,

the low execution halts in such a condition. The global execution will finish

only when the low execution halts.

33

Recall from §5.3 that PaveBox does not validate whether a program is

properly instrumented for the synchronization. Thus, an adversary may re-

move the synchronization instructions from an instrumented program. Fig-

ure 6.4 defines the global execution semantics without an assumption of the

synchronization. Here, the global state contains a counter n, which is initial-

ized to 0. Relation
f
99K is defined with respect to a function f : Z → {L, H}

that specifies the order of the executions. For instance, if I use fsync(n) =

(L if n mod 2 = 0, H otherwise) as f here,
f
99K gets equivalent to ⇝ in

rule (G1) of Figure 6.3. As I formally state in §6.4, PaveBox can enforce the

non-interference under
f
99K for any function f .

6.4 Security Properties

First, I extend the notations for semantic rules. For any transition ↪→, I define

↪→n to mean a transition performed by applying ↪→ for n times. Also, I abuse

↪→n by defining it over the essential input and output components. For exam-

ple, with standard semantics on program P and input I, if ⟨P,m0, a0, I, O0⟩ →n

⟨c,m, a, I ′, O′⟩, I will also say that (P, I) →n (I ′, O′) holds. Here, m0 and a0

are empty maps, and O0 is an empty list.

Next, I introduce the concept of equivalence between two inputs (or two

outputs). For non-faceted ADMs a and a′, I say a=NSa
′ iff dom(a) = dom(a′)

and ∀k ∈ dom(a) ∩ KNS , a(k) = a′(k). Similarly I say a=Sa
′ iff dom(a) =

dom(a′) and ∀k ∈ dom(a) ∩ KS , a(k) = a′(k). Now, I extend =NS on ADM

lists A = [a1, ..., an] and A′ = [a′1, ..., a
′
m]. I say A=NSA

′ iff len(A) = len(A′)

and 1 ≤ ∀i ≤ n, ai=NSa
′
i, where len returns the length of the list. I can extend

=S in the same way.

Definition 1 (Non-interference). Assume a program P , semantics ↪→, and

two inputs I1, I2 such that I1=NSI2. Non-interference of P under ↪→ means

34

that ∀n ≥ 0, if (P, I1) ↪→n (I ′1, O1) then (P, I2) ↪→n (I ′2, O2), where I1=NSI2

and O1=NSO2 hold.

Note that this definition implies len(I ′1) = len(I ′2) and len(O′
1) = len(O′

2).

This means that as long as non-sensitive entries in input ADMs do not change,

the timing of syscall occurrences, which is observable by an adversary, remains

the same.

Theorem 1 (Non-interference under PaveBox). Any program P is non-

interferent under
f
99K, where f is any function that specifies the execution

order.

Recall from §6.3 that the synchronized global semantics (⇝) is a specific

case of
f
99K. Thus, this theorem subsumes the non-interference under ⇝ as

well.

Next, I formally define the functionality preservation property of ourPaveBox

model. While PaveBox can restrict the behavior of a malicious ad program, it

should not amend or limit the functionality of a program if it is non-inteferent

under the standard execution.

Theorem 2 (Functionality Preservation). Assume a program P that is

non-interferent under →. Now, ∀n ≥ 0, if (P, I) →n (I1, O1), then (P, I) ⇝n

(I2, O2) holds where O1 = O2.

6.5 Proof of Security Properties

6.5.1 Proof of Non-Interference

First, I introduce equivalence over the low fields (or high fields). For faceted

values v = ⟨vL, vH⟩ and v′ = ⟨v′L, v′H⟩, I say v=Lv
′ iff vL = v′L. Also, I say

v=Hv
′ iff vH = v′H . I extend this to faceted ADMs a and a′. I say a=La

′ iff

35

∀k ∈ dom(a) ∪ dom(a′), a(k)=La
′(k). I also extend =H to faceted ADMs in

the same way.

From the definition of =NS, =L, and fct(), I can show that if a=NSa
′, then

fct(a)=Lfct(a
′) holds. For k ∈ KNS , fct(a)(k) = ⟨a(k), a(k)⟩ and fct(a′)(k) =

⟨a′(k), a′(k)⟩. Also, I know a(k) = a′(k) from a=NSa
′. Thus, fct(a)(k)=Lfct(a

′)(k)

holds for k ∈ KNS . For k ∈ KS , fct(a)(k) = ⟨vdef (k), a(k)⟩ and fct(a′)(k) =

⟨vdef (k), a′(k)⟩, so fct(a)(k)=Lfct(a
′)(k) holds. Thus, I can conclude that

fct(a)=Lfct(a
′). Similarly, I can also show that if a=La

′, then ext(a)=NSext(a
′)

holds.

Now I introduce two lemmas to prove Theorem 1.

Lemma 1 (Equivalence in Low Execution). Let us assume two transi-

tions, ⟨⟨c,m⟩L, a1, I1, O1⟩ ⇒ ⟨⟨c′1,m′
1⟩L, a′1, I ′1, O′

1⟩ and ⟨⟨c,m⟩L, a2, I2, O2⟩ ⇒

⟨⟨c′2,m′
2⟩L, a′2, I ′2, O′

2⟩, where a1=La2, I1=NSI2, and O1=NSO2. Then, c
′
1 = c′2,

m′
1 = m′

2, a
′
1=La

′
2, I

′
1=NSI

′
2, and O′

1=NSO
′
2 hold.

Lemma 2 (Confinement of High Execution). Let us assume a transition

⟨⟨c,m⟩H , a, I, O⟩ ⇒ ⟨⟨c′,m′⟩H , a′, I ′, O′⟩. Then, a=La
′, I = I ′, and O = O′

hold.

Intuitively, Lemma 1 means that if two low execution states are equivalent

over the low fields and non-sensitive entries, then this equivalence is maintained

after a low execution step. Lemma 2 states that a high execution step cannot

break this equivalence as well.

Proof of Lemma 1. I can prove this lemma by examining the low exe-

cution’s semantic rules in Figure 6.3. First, I can see the transition of a local

state ⟨c,m⟩L is fully decided by this local state itself and the low fields of ai,

where i can be 1 or 2. Since a1=La2, I can prove c′1 = c′2 and m′
1 = m′

2.

Next, I consider the semantic rules that can affect the global state ai, Ii,

and Oi. To start with, when c is ‘add x to k’, it can update the low fields

36

in ai. Still, I know that a1 and a2 will always be updated with the same

value, m(x). Therefore, a′1=La
′
2 holds when c is an add command. Next, a

recv command can also update the global state. Recall that if a=NSa
′, then

fct(a)=Lfct(a
′) holds. With this property and I1=NSI2, I can show a′1=La

′
2

and I ′1=NSI
′
2 hold by examining rule (L1). Similarly, I have shown that if

a=La
′, then ext(a)=NSext(a

′) holds. Thus, when c is send, I can use this

property and a1=La2 to show that O′
1=NSO

′
2 by examining rule (L3).

Proof of Lemma 2. I can also prove this lemma by examining the high

execution’s semantic rules in Figure 6.3. In the high execution, the semantic

rules prevent any update on I and O. Also, rule (L7) only allows updates to

the high fields of a. Therefore, a=La
′ holds. Consequently, Lemma 2 holds.

Proof of Theorem 1. Suppose two inputs I1 and I2 such that I1=NSI2

holds. I will prove the following property that subsumes Theorem 1: ∀n ≥ 0,

if ⟨S0, S0, a0, I1, O0, 0⟩
f

99Kn⟨L′
1, H

′
1, a

′
1, I

′
1, O

′
1, n⟩ then ⟨S0, S0, a0, I2, O0, 0⟩

f

99Kn

⟨L′
2, H

′
2, a

′
2, I

′
2, O

′
2, n⟩, where L′

1 = L′
2, a

′
1=La

′
2, I

′
1=NSI

′
2, and O′

1=NSO
′
2. Here,

S0 is the initial local state ⟨P,m0⟩, where P in an input program. First, this

property trivially holds when n = 0. Next, I prove that if this property holds

for n = k, it also holds for n = k + 1. When f(k) = L, Lemma 1 shows that

L′
1 = L′

2, a
′
1=La

′
2, I

′
1=NSI

′
2, and O′

1=NSO
′
2 hold for n = k+1. Meanwhile when

f(k) = H, I can first show that L′
1 = L′

2 holds for n = k + 1 from rule (G2’)

in Figure 6.4. Similarly, Lemma 2 states that I/O ADM lists do not change,

so I ′1=NSI
′
2 and O′

1=NSO
′
2 hold for n = k + 1. In addition, Lemma 2 shows

that =NS holds between the two a′1 when n = k and n = k+1. Also, the same

holds for a′2. Thus, a
′
1=NSa

′
2 holds for n = k + 1, by the transitivity of =NS.

Therefore, the property is proved by induction on n.

37

6.5.2 Proof of Functionality Preservation

First, I define correspondence between a non-faceted ADM and a faceted

ADM. Assume a raw value v and a faceted value v′ = ⟨vL, vH⟩. I say v≃Lv
′ iff

v = vL and v≃Hv
′ iff v = vH . Next, I define ≃L and ≃H for a non-facetedADM

a and a faceted ADM a′. I say a≃La
′ iff ∀k ∈ dom(a)∪ dom(a′), a(k)≃La

′(k).

And I say a≃Ha
′ iff ∀k ∈ dom(a) ∪ dom(a′), a(k)≃Ha

′(k).

Next, I define a replacement function for sensitive entries of an ADM. I

define rep(k, v) as vdef (k) if k ∈ KS and v if k ∈ KNS . Then, I extend rep for

an ADM a, by defining rep(a) as {(k, v′)|(k, v) ∈ a, v′ = rep(k, v)}. I can also

extend this for an ADM list.

From the definition of ≃L and rep(), I can prove that rep(a)≃Lfct(a). For

k ∈ KNS , rep(a)(k) = a(k) and fct(a)(k) = ⟨a(k), a(k)⟩, so rep(a)(k)≃Lfct(a)(k)

holds. For k ∈ KS , rep(a)(k) = vdef (k) and fct(a)(k) = ⟨vdef (k), a(k)⟩, so

rep(a)(k)≃Lfct(a)(k) holds. Similarly, I can also prove a≃Hfct(a).

In addition, I can show that if a≃La
′ then a=NSext(a

′). From a≃La
′, I

know that the low field of a′(k) is equal to a(k). Since ext() chooses these low

fields for k ∈ KNS , a=NSext(a
′) holds. In a similar way, I can show that if

a≃Ha
′ then a=Sext(a

′).

Lastly, I define =sys on commands c1 and c2. First, I say c1=recvc2 iff (i)

c1 ̸= recv and c2 ̸= recv or (ii) c1 = c2 = recv. Also, I say c1=sendc2 iff (i)

c1 ̸= send and c2 ̸= send or (ii) c1 = c2 = send. Finally, I say c1=sysc2 iff

c1=recvc2 and c1=sendc2.

Now I introduce two lemmas to prove Theorem 2.

Lemma 3 (Correspondence to Low Execution). Let us assume a transi-

tion step with standard semantics ⟨c,m, a1, I1, O1⟩ → ⟨c′1,m′
1, a

′
1, I

′
1, O

′
1⟩ and a

global transition step with thePaveBox semantics ⟨⟨c,m⟩, ⟨cH ,mH⟩, a2, I2, O2⟩⇝

⟨⟨c′2,m′
2⟩, H ′, a′2, I

′
2, O

′
2⟩. Now, if a1≃La2, I1 = rep(I2) and O1=NSO2, then

38

c′1 = c′2, m
′
1 = m′

2, a
′
1≃La

′
2, I

′
1 = rep(I ′2), and O′

1=NSO
′
2.

Lemma 4 (Correspondence to High Execution). Let us assume a transi-

tion step with standard semantics ⟨c,m, a1, I1, O1⟩ → ⟨c′1,m′
1, a

′
1, I

′
1, O

′
1⟩ and a

global transition step with thePaveBox semantics ⟨⟨cL,mL⟩, ⟨c,m⟩, a2, I2, O2⟩⇝

⟨L′, ⟨c′2,m′
2⟩, a′2, I ′2, O′

2⟩. Now, if a1≃Ha2, I1=SI2, O1=SO2, and c=syscL, then

c′1 = c′2, m
′
1 = m′

2, a
′
1≃Ha

′
2, I

′
1=SI

′
2, and O′

1=SO
′
2.

Intuitively, Lemma 3 means that if there is a correspondence between a

standard execution and a low execution, it is maintained after a single step.

Lemma 4 describes the preservation of the correspondence between a standard

execution and a high execution.

Proof of Lemma 3. With rule (G1) of Figure 6.3 and previously proved

Lemma 2, I can decompose the global transition step in Lemma 3 into the fol-

lowing two local transition steps: (i) ⟨⟨c,m⟩L, a2, I2, O2⟩ ⇒ ⟨⟨c′2,m′
2⟩L, ã2, I ′2, O′

2⟩

and (ii) ⟨⟨cH ,mH⟩H , ã2, I
′
2, O

′
2⟩ ⇒ ⟨⟨c′H ,m′

H⟩H , a′2, I
′
2, O

′
2⟩.

First, I consider the low execution step (i). I know that the transition of c

and m in the standard execution is decided by c, m, and a1. Meanwhile, in the

low execution, the transition of ⟨c,m⟩ is decided by c, m, and the low fields

of a2. From a1≃La2, I can see that c,m in the standard execution and c,m in

the low execution always change in the same way. Thus, c′1 = c′2 and m′
1 = m′

2

hold.

Next, I will prove that a′1≃Lã2, I
′
1 = rep(I ′2), and O′

1=NSO
′
2. Note that

if c does not modify ADM components (i.e., a1, a2, I1, I2, O1, O2), then these

properties are directly satisfied. Thus, I will consider commands that can mod-

ify ADM components. First, when c is ‘add x to k’, the standard execution

updates a1 with m(x) while the low execution updates a low field of a2 with

m(x). Therefore, a′1≃La
′
2 holds. Next, let us assume c is recv. Recall that I

have shown rep(a)≃Lfct(a). With this property and I1 = rep(I2), I can prove

39

that a′1≃Lã2 from rule (1) and (L1). Also, these rules remove the first element

in I1 and I2 respectively, so I ′1 = rep(I ′2) holds, too. Lastly, when c is send,

I will use the fact that if a≃La
′ then a=NSext(a

′) holds. With this property

and a1≃La2, I can show that O′
1=NSO

′
2 holds from rule (2) and (L3).

Now, I move on to the high execution step (ii). From Lemma 2, ã2=La
′
2

holds. Since I have proven a′1≃Lã2=La
′
2, I can see that a′1≃La

′
2.

Proof of Lemma 4. As I did in the proof of Lemma 3, I split the transition

with global semantics into two local transitions: (i) ⟨⟨cL,mL⟩L, a2, I2, O2⟩ ⇒

⟨⟨c′L,m′
L⟩L, ã2, I

′
2, O

′
2⟩ and (ii) ⟨⟨c,m⟩H , ã2, I

′
2, O

′
2⟩ ⇒ ⟨⟨c′2,m′

2⟩H , a′2, I
′
2, O

′
2⟩.

I start by proving I ′1=SI
′
2 and O1=SO

′
2. First, I will prove I

′
1=SI

′
2. When c

is not recv, neither is cL, from c=syscL. Then, I1 = I ′1 and I2 = I ′2, so I ′1=SI
′
2.

When c is recv, so is cL, and the first element is removed respectively from

I1 and I2. Since I1=SI2, I can see I ′1=SI
′
2. Next, I will prove O1=SO

′
2. When

c is not send, neither is cL, from c=syscL. Then, O1 = O′
1 and O2 = O′

2, so

O′
1=SO

′
2. When c is send, so is cL, and I will use the fact that if a≃Ha

′ then

a=Sext(a
′). With this property and a1≃Ha2, I can see O′

1=SO
′
2.

Now, I will prove c′1 = c′2, m
′
1 = m′

2 and a′1≃Ha
′
2. For this, I should consider

c = recv case separately. When c = recv, so is cL, from c=syscL. Recall that

I have shown a≃Hfct(a). Using this property, I can examine rule (1) and (L1)

to conclude that a′1≃H ã2 holds. In addition, from rule (L2), ã2 = a′2. From

a′1≃H ã2 = a′2, I can see a′1≃Ha
′
2. Also, c′1 = c′2 and m′

1 = m′
2 trivially hold

from rule (1) and (L2).

Next, I consider the case where c is not recv. Then, cL is not recv as well,

so the low execution can only update the low fields of a2, and a2=H ã2 holds.

From a1≃Ha2=H ã2, I can see a1≃H ã2. Now I can prove c′1 = c′2 and m′
1 = m′

2.

This time, the transition of ⟨c,m⟩ is decided by c, m, and the high fields of

ã2. From a1≃H ã2, I can see that c,m in the standard execution and c,m in

the high execution always change in the same way. Therefore, c′1 = c′2 and

40

m′
1 = m′

2 hold. Lastly, I prove a′1≃Ha
′
2. When c is ‘add x to k’, the standard

execution updates a1 with m(x) while the low execution updates a high field

of ã2 with m(x). Thus, a′1≃Ha
′
2 holds. If c is not add, a1 = a′1 and ã2 = a′2, so

a′1≃Ha
′
2 directly holds from a1≃H ã2.

Proof of Theorem 2. Assume input I, non-interferent program P , and

the following three executions. First, I assume a standard execution with I:

⟨P,m0, a0, I, O0⟩ →n ⟨c1,m1, a1, I1, O1⟩. Second, I assume another standard

execution with rep(I): ⟨P,m0, a0, rep(I), O0⟩ →n ⟨c2,m2, a2, I2, O2⟩. Third, I

assume a PaveBox execution with I: ⟨S0, S0, a0, I, O0⟩⇝n ⟨⟨cL,mL⟩, ⟨cH ,mH⟩

, a3, I3, O3⟩.

To prove Theorem 2, I should prove that ∀n ≥ 0, O1 = O3. I can prove

this by showing that (i) ∀n ≥ 0, O1=NSO3, and (ii) ∀n ≥ 0, O1=SO3.

First, I prove (i) ∀n ≥ 0, O1=NSO3. I first use the non-interference of P .

Since P is non-interferent and rep(I)=NSI, I know that ∀n ≥ 0, O1=NSO2

holds from Definition 1. Next, I will prove that O2=NSO3. For this, I prove

that ∀n ≥ 0, c2 = cL, m2 = mL, a2≃La3, I2 = rep(I3), and O2=NSO3. When

n = 0, this property trivially holds. Also, if the property holds for n = k, I can

prove that it also holds for n = k+1, using Lemma 3. Therefore, the property

holds ∀n ≥ 0, by induction on n. At this point, I have shown O1=NSO2=NSO3.

Next, I prove (ii) ∀n ≥ 0, O1=SO3. For this, I prove that ∀n ≥ 0, c1 = cH ,

m1 = mH , a1≃Ha3, I1=SI3, and O1=SO3. When n = 0, this property trivially

holds. Next, I will use Lemma 4 to show that if the property holds for n = k,

then it also holds for n = k + 1. However, I must first show that ∀n ≥ 0,

c1=syscL holds. From the non-interference of P , I know that ∀n ≥ 0, c1=sysc2,

as the length of I1, I2, O1 and O2 can change only by recv and send. Also,

during the proof of O2=NSO3, I have proved ∀n ≥ 0, c2 = cL. I now know that

∀n ≥ 0, c1=syscL holds, so I can use Lemma 4 and prove the property with

induction on n.

41

(L1)
I = [a1, a2, ..., an] I ′ = [a2, ..., an]

⟨⟨recv,m⟩L, a, I, O⟩ ⇒ ⟨⟨skip,m⟩L, fct(a1), I
′, O⟩

(L2)
⟨⟨recv,m⟩H , a, I, O⟩ ⇒ ⟨⟨skip,m⟩H , a, I, O⟩

(L3)
O = [a1, ..., an] O′ = [a1, ..., an, ext(a)]

⟨⟨send,m⟩L, a, I, O⟩ ⇒ ⟨⟨skip,m⟩L, a, I, O
′⟩

(L4)
⟨⟨send,m⟩H , a, I, O⟩ ⇒ ⟨⟨skip,m⟩H , a, I, O⟩

(L5)
a(k) = ⟨vL, vH⟩ m′ = m[x 7→ vl]

⟨⟨get k to x,m⟩l, a, I, O⟩ ⇒ ⟨⟨skip,m′⟩l, a, I, O⟩

(L6)
m(x) = v a(k) = ⟨vL, vH⟩ a′ = a[k 7→ ⟨v, vH⟩]

⟨⟨add x to k,m⟩L, a, I, O⟩ ⇒ ⟨⟨skip,m⟩L, a
′, I, O⟩

(L7)
m(x) = v a(k) = ⟨vL, vH⟩ a′ = a[k 7→ ⟨vL, v⟩]

⟨⟨add x to k,m⟩H , a, I, O⟩ ⇒ ⟨⟨skip,m⟩H , a′, I, O⟩

(L8)
eval(e,m) = v m′ = m[x 7→ v]

⟨⟨x := e,m⟩l, a, I, O⟩ ⇒ ⟨⟨skip,m′⟩l, a, I, O⟩

(L9)
⟨⟨skip; c2,m⟩l, a, I, O⟩ ⇒ ⟨⟨c2,m⟩l, a, I, O⟩

(L10)
c1 ̸= skip ⟨⟨c1,m⟩l, a, I, O⟩ ⇒ ⟨⟨c′1,m′⟩l, a

′, I ′, O′⟩
⟨⟨c1; c2,m⟩l, a, I, O⟩ ⇒ ⟨⟨c′1; c2,m′⟩l, a

′, I ′, O′⟩

(L11)
⟨⟨skip,m⟩H , a, I, O⟩ ⇒ ⟨⟨skip,m⟩H , a, I, O⟩

(G1)

⟨⟨c1,m1⟩L, a, I, O⟩ ⇒ ⟨⟨c′1,m′
1⟩L, a

′, I ′, O′⟩
⟨⟨c2,m2⟩H , a′, I ′, O′⟩ ⇒ ⟨⟨c′2,m′

2⟩H , a′′, I ′′, O′′⟩

⟨⟨c1,m1⟩, ⟨c2,m2⟩, a, I, O⟩⇝

⟨⟨c′1,m′
1⟩, ⟨c′2,m′

2⟩, a′′, I ′′, O′′⟩

Figure 6.3: Local and global semantics under PaveBox are defined.

42

(G1′)
f(n) = L ⟨⟨c1,m1⟩L, a, I, O⟩ ⇒ ⟨⟨c′1,m′

1⟩L, a
′, I ′, O′⟩

⟨⟨c1,m1⟩, ⟨c2,m2⟩, a, I, O, n⟩
f
99K

⟨⟨c′1,m′
1⟩, ⟨c2,m2⟩, a′, I ′, O′, n+ 1⟩

(G2′)
f(n) = H ⟨⟨c2,m2⟩H , a, I, O⟩ ⇒ ⟨⟨c′2,m′

2⟩H , a′, I ′, O′⟩

⟨⟨c1,m1⟩, ⟨c2,m2⟩, a, I, O, n⟩
f
99K

⟨⟨c1,m1⟩, ⟨c′2,m′
2⟩, a′, I ′, O′, n+ 1⟩

Figure 6.4: Global semantics without the synchronization is defined.

43

Chapter 7

Discussion

7.1 Side-channel Attacks

Preventing side-channel attacks is important; some vulnerabilities on Intel

SGX are discovered. While such attacks are out of the scope in Pave, I discuss

how to mitigate the side-channel attacks.

To launch attacks through side-channels, an attacker usually runs an ad-

versarial process either on the same core or on another core. The same-core

adversary who shares the same physical core with a victim process can ex-

ploit the shared resources such as Branch Prediction Units [33, 49], L1/L2

cache [54], and Translation Lookaside Buffer (TLB) [39]. On the contrary, in

the cross-core side-channel attack, an adversary does not share the same physi-

cal core with the victim process. Thus, the adversary exploits off-core resources

such as last-level cache (LLC) [67] and DRAM row buffer [61]. Moreover, an

untrusted OS can exploit page table entries to launch controlled-channel at-

tacks [84, 55]. The adversary can manipulate the page table to trace accessed

pages, which can be used to analyze the executions of the victim program.

44

Lastly, microarchitectural vulnerabilities should be addressed such as specu-

lative and transient executions [81, 20, 47, 79, 80].

Even if there is no silver-bullet solution, multiple mitigations can be used [21,

59, 70, 41, 3, 73, 22, 71, 60]. First of all, the same-core side-channel at-

tacks [33, 49, 54, 39, 39] can be mitigated by disabling the adversarial process

residing in the same core. Hyperrace [21], Varys [59] and Déjá Vu [22] make

two honest threads run in the same core. Or, it can be useful to disable hyper-

threading; remote attestation can detect whether hyperthreading is disabled.

I applied Hyperrace to Pave by instrumenting its co-location test for every

basic block and it showed that the overhead was modest (under 5%). Also,

many vulnerabilities [81, 20, 47, 79] can be mitigated by microcode patch [58],

which is necessary to keep its version up-to-date. The patch of hardware can

be attested by the user agent through the remote attestation. Lastly, the Pave

toolchain can provide compiler-based mitigations [73, 70, 22, 3] or application-

based approaches [41, 71, 60].

Furthermore, in advertising, the benefit of side-channel attacks is marginal.

Firstly, it is difficult to target a particular user. An ad request is triggered by

a user and the ad servers usually cannot predict which user request will be

processed. It means that targeting a particular user would be impractical. Also,

a single enclave thread in Pave processes only one user profile at a time, which

decreases the utility of the information to be leaked. Secondly, the performance

of advertising will be reduced for the attackers (i.e., ad servers) if they launch

the side-channel attacks. Sometimes, the attackers isolate cores or caches to

reduce the noise from the attacks, which degrades the performance. Thus,

the attackers may not be motivated to collect the profiles of random users.

Further, many advertising services rely on a cloud [38]. If Pave is serviced as

a server-less solution in a third-party cloud, the side-channel attacks would be

infeasible.

45

7.2 After AD Selections

Pave enables the user agent to fetch a tailored ad URL during the ad selection.

Note that the ad delivery of retrieving the raw ad material using the ad URL

can invade the user privacy. The history of ads served to a specific IP address

can be used to infer the user interests. For this, prior studies [64, 42, 8] use a

proxy [64, 42] or a privacy-preserving retrieval technique [8] to anonymize the

user agent. Also, it is possible to use a third-party CDN for serving ads [76].

For billing and measuring the effectiveness of the ads that are delivered,

there already exists an API to aggregate the ad-related information in a

privacy-preserving fashion [23]. Also, some proposals rely on a third-party

service such as IAB (Interactive Advertising Bureau) [8, 42, 76]. Pave as-

sumes such techniques for anonymized ad retrievals and privacy-preserving

billing/measurements.

46

Chapter 8

Evaluation

8.1 Experiment Setup

Prototype. I implement a PaveBox prototype with the toolchain by ex-

tending NaCl and using LLVM. Currently, our toolchain supports C/C++

language with additional libraries for libc and the FS interfaces. It also instru-

ments the code sequence for synchronization, which is inserted at the beginning

of each basic block of the ad program. To narrow the software interface, the

PaveBox manages virtual memory lists for memory mapping (i.e., mmap,

brk, and munmap), process information (i.e., getpid), and random numbers

(i.e., getrandom) inside an enclave without host syscalls. Furthermore, to re-

duce the overhead of (re-)creating a new execution, the PaveBox provides

a snapshot that stores its state after initializing an ad program and restores

the snapshot right after finishing an ad request. Additionally, to thwart Iago

attacks [19], the PaveBox validates inputs from the untrusted OS.

I implement three different versions of the PaveBox; Pave Single, Pave

NoSync, and Pave Sync. Pave Single does not execute the high execution,

47

which means that there is only a low execution. In Pave NoSync, while shadow

execution is implemented, the synchronization is omitted. Note that it still

preserves non-interference. Pave Sync fully implements the PaveBox and

synchronizes the high and low executions.

Benchmark. I implemented ad programs for three ad selection scenar-

ios: decision tree (DT), content-based filtering (CF), and real-time bidding

(RTB). The first and second scenarios are for a single ad network. The deci-

sion tree represents ad campaigns that advertisers register. Given user inter-

ests, the ad network deterministically responds an ad. For the second scenario,

I use a content-based filtering recommendation scheme with TF-IDF (Term

Frequency-Inverse Document Frequency). It is one of the widely used algo-

rithms in advertising [37]. The third scenario is RTB, which consists of one

ADX with an SSP and two DSPs. Here, the SSP and the ADX are co-located to

simplify the experiment since processing the user profile is mainly done by the

DSPs. The two DSPs each choose a bid by the two different bidding algorithms

in [87]. The user agent sends her profile based on the IPinYou dataset [51].

Note that the tasks for the ad program are matching or arithmetic operations

of the above ad models. That is, the models are trained beforehand, and their

computations are done by general Linux programs (without SGX).

Environments. I measure (i) the computation overhead to initialize the

PaveBox, (ii) the user latency to receive an ad URL, and (iii) the execu-

tion time of an ad program. For comparison purposes, baseline programs are

general Linux programs without the enclave or the PaveBox. Every plot is

averaged over ten runs. I conduct experiments on a Linux desktop computer

equipped with an Intel Core i7-8700 CPU with 6 cores and 12 hyper-threads.

As all the ad programs and the user agent run on the same machine, the net-

work propagation delay is not reflected. I measured the four different ADM

sizes (i.e., 2,048, 4,096, 8,192, and 16,384 bytes), but there were no notable

48

differences. Thus, I plot the results when the ADM is 8,192 bytes.

8.2 PaveBox Initialization Overhead

To evaluate the computation overhead to initialize and load the PaveBox,

I measure the time to run a simple C test program ‘int main{return 0;}.’

Specifically, I measure (i) the time to create and load an enclave memory,

(ii) the time to initialize the PaveBox after entering the enclave, and (iii)

the time to run the test program and terminate the enclave. It takes 1,515

ms to create and load an enclave memory. Initializing the PaveBox takes

1,552 ms since it includes the communication with Intel Attestation Service

for remote attestation (to be explained in §5.4). The time for running the

test program is 2 ms. The total time from creating the enclave to exiting

from the enclave is 3,069 ms, which is the minimum time to run a simple

program in the PaveBox. Note that, by using the snapshot technique, the

initialization overhead ((i) and (ii)) incurs only once when the ad server starts

the ad program. In our evaluation, the snapshot overhead is 3.7 ms, which is

much more efficient than the initialization.

8.3 User Latency

The user latency means the time between the moment of sending an ad request

and that of receiving an ad URL, as shown in Figure 8.1. While the ad network

model has only one ad server, an RTB is performed by three ad servers. The

delays of the ad network and RTB models are approximately proportional to

the complexity of the interactions between the ad servers. The user latency

increases from the baseline to Pave Sync. Compared to the baseline, the user

latency for Pave Single is increased by 21.8% on average. In addition, shadow

execution (i.e., in Pave NoSync) and the synchronization (i.e., in Pave Sync)

49

Figure 8.1: The user latency to receive an ad URL is plotted.

incur 3.0% and 2.4% overheads, respectively.

Also, to measure the impact on the user latency when the PaveBox han-

dles multiple ad requests at the same time, I increase the number of execution

pairs from 1 to 6. Note that since SGX1 limits the number of threads to the

number of CPU cores, I evaluate the DT and CF scenarios relying on one

single server. Figure 8.2 shows the user latency as the number of execution

pairs varies. As the number of execution pairs is incremented by one, the user

latency of Pave increases more than that of baseline. I believe it is due to the

limited size of EPC. Also, as the number of execution pairs is incremented

by one, the number of SGX threads of Pave NoSync and Pave Sync is in-

cremented by two. On the other hand, that of Pave Single is incremented by

one. Therefore, the user latencies of Pave NoSync and Pave Sync increases

more than that of Pave Single.

Although Pave incurs some overhead, it may not harm the user experi-

ences notably. Current ad companies provide asynchronous ads (e.g., Amazon

Associates [6]), which loads/renders non-ad content before ads are delivered.

That is, users tend to focus on the non-ad content of webpages, and hence

50

1 2 3 4 5 6
Number of concurrent requests

0

50

100

150

200

250

La
te

nc
y

(m
s)

baseline
PaveBox Single
PaveBox NoSync
PaveBox Sync

(a) Decision Tree.

1 2 3 4 5 6
Number of concurrent requests

0

50

100

150

200

250

La
te

nc
y

(m
s)

baseline
PaveBox Single
PaveBox NoSync
PaveBox Sync

(b) Content-based Filtering.

Figure 8.2: The user latency is measured when the number of concurrent ad

requests varies.

they may not notice whether rendering ads is slightly more delayed.

Further, I measure the user latency when request rate increases to represent

the impact on the server throughput when Pave is deployed. As illustrated

in Figure 8.3, regardless of the application scenarios, the user latencies soar

after request rate becomes 70 requests per second in Pave NoSync and Pave

Sync and 80 requests per second in Pave Single. On the other hand, the user

latency of the baseline is stable compared to Pave. It means that Pave can

51

20 40 60 80 100
Requests Per Second

100

200

300

400

500

600

700

800

La
te

nc
y

(m
s)

Baseline
Pave Single
Pave NoSync
Pave Sync

(a) Decision Tree.

20 40 60 80 100
Requests Per Second

100

200

300

400

500

600

700

800

La
te

nc
y

(m
s)

Baseline
Pave Single
Pave NoSync
Pave Sync

(b) Content-based Filtering.

Figure 8.3: The user latency is measured when the number of ad requests per

second varies.

handle less requests than baseline. It is mainly due to the limited number of

threads of SGX.

52

Table 8.1: The execution time and the number of page faults of each ad

program are plotted. PP refers the pre-processing delay and AP refers the

ad-processing delay. PF refers the total number of page faults. The unit for

PP and AP is ms.

Baseline Pave Single Pave NoSync Pave Sync

DT

PP 7.8 16.9 17.6 21.6

AP 93.7 110.3 115.5 115.1

PF 1,265 3,023 3,838 3,872

CF

PF 7.9 17.4 18.9 26.4

AP 93.4 109.8 113.4 120.3

FF 1,262 3,017 3,831 3,837

RTB

DSP1

PF 12.5 29.7 31.3 47.2

AP 92.0 113.5 117.4 125.9

FF 348 1,539 1,703 1,740

DSP2

PF 12.0 27.7 27.4 42.9

AP 92.9 129.0 132.9 132.4

FF 450 1,535 1,699 1,738

SSP&ADX

PF 0.1 0.1 0.1 0.1

AP 279.8 363.8 367.5 373.1

FF 268 1,230 1,279 1,290

8.4 Execution Time

Table 8.1 shows the execution time to run an ad program, which consists of

(i) the pre-processing delay to initialize data until it is ready for an incoming

connection, and (ii) the ad processing delay from the arrival of an ad request

to the termination. Also, the total number of page faults is measured to see

the paging overhead from the limited EPC size of 128 MB.

For the pre-processing delay, shadow execution (i.e., Pave NoSync) and

synchronization (i.e., Pave Sync) incur 3.4% and 34.0% overheads compared to

53

Pave Single and Pave NoSync, respectively. On the other hand, Pave Single

incurs 101.0% overhead compared to the baseline. It is mainly due to the SGX

overhead to access the enclave memory and the code overhead of the SFI-

compliant binary. Especially, the pre-processing requires the repetitive steps

to read the trained model from the file system and to initialize related data,

which incurs heavy overhead. Nevertheless, the pre-processing is performed

only once in advance, and only the ad processing part will be repeated for

each incoming ad request. Note that the ad processing time is not substantial

in all the scenarios.

54

Chapter 9

Related Work

9.1 Privacy-preserving Ad Systems

Several studies have focused on the targeted advertising systems while preserv-

ing user privacy. In Privad [42] and Adnostic [76], a user agent builds a user

profile. The user agent prefetches k ads from an ad network based on a coarse-

grained interest category [42] or the context of the publisher website [76].

Then, the agent selects one of them based on the user profile. AdScale [40]

improves the scalability of Adnostic by using cryptographic voting schemes.

Hardt and Nath [43] formalize a model that balances user privacy, the com-

putation overheads, and the ad utility. However, the ad utility is decreased

since only the coarse-grained interest category or the context of websites is

used to fetch ads. Also, the above approaches constrain current ad selection

mechanisms.

In Obliviad [8], the user agent makes a user profile, which is sent to an

ad network equipped with trusted hardware. The ad server selects the best

keyword that matches the user profile. Using the oblivious RAM (ORAM)

55

technique, the ad server “obliviously” retrieves an ad that matches the key-

word from its file system. Obliviad focuses on privately retrieving the raw ad

material for the given keyword.

Reznichenko et al. [64] suggest a privacy-preserving ad ranking system.

A user agent computes a score for each candidate ad using the information

about the ad and the user interests profiled locally. Likewise, the ad network

computes a score based on the metadata (of an ad) such as its bid without

the user information. Two scores are aggregated by any of three entities (the

user agent, the ad network, or a third-party) to serve the ad of the highest

final score. It is limited to a static ranking system rather than RTB.

Pri-RTB [28] leverages homomorphic encryption to compute a bid price

on encrypted user profiles. It supports only additions, which limits the ad

selection mechanisms. A secure multi-party computation based approach [78]

has the same issue.

Google Chrome suggests Topics [36] and FLEDGE [35]. In Topics, a browser

classifies a URL to topics from 350 predetermined categories. Then, ad com-

panies can retrieves the topics and selects an appropriate ad based on it.

FLEDGE [35] enables an on-browser auction. Whenever a browser visits an

advertiser’s site, it fetches a code for an auction logic. Then, when the browser

makes an ad request at the publisher’s site, it selects an ad based on the auction

logic codes. Specifically, Topics is for interest-based advertising and FLEDGE

is for retargeted advertising.

Brave [14] runs its own ad platform. Brave browser applies machine learn-

ing models based on user behaviors on a local browser. The models and a list

of ads are periodically downloaded from a Brave ad server.

Additionally, AdAttester [50] uses trusted hardware to prevent click fraud

attacks in advertising.

56

9.2 Information Flow Control

As IFC has been studied comprehensively, I focus on dynamic IFC systems.

I first introduce IFC studies that are not based on SME. In decentralized

IFC approaches using a process-level IFC [48, 86, 85], files and processes are

assigned labels to specify whether a process has a privilege to access a file with

a particular tag. The label and the tag are tracked by a kernel module.

Thoth [30], Riverbed [83], and Mitigator [52] control user data under a

user-defined policy at a server. They aim to thwart poorly-designed or buggy

programs that inadvertently leak the user data. In Thoth, a kernel-level mon-

itor that tracks data flows through I/O interceptions enforces the policy. In

Riverbed, a taint-tracking instrument similar to TaintDroid [31] checks the

policy for a Python source code. In Mitigator, a verifier enclave checks the

compliance of the source code with a privacy policy using static analysis and

produces a signature. Riverbed and Mitigator leverage the trusted hardware

for the remote attestation.

The above schemes target an adversarial program running on a trusted

server. In an untrusted server, Ryoan [44] builds a trusted sandbox by adapting

the NaCl to the Intel SGX settings. To block any implicit leakage through

the syscall interface, the trusted sandbox disallows every syscall except one

output of messages. (Still, their destinations are determined in advance.) Thus,

it severely constrains the functionality of an untrusted program. Moreover,

timing-channel leakages are not considered. The limitations preclude Ryoan

from being adopted in advertising, which motivates us to propose Pave that

provides more flexibility to untrusted programs.

After SME is introduced [16, 29], Kashyap et al. [45] generalize it as a

scheduling approach and analyze its security from the perspective of timing-

and termination-(in)sensitive non-interference. Also, declassification-aware SME

57

schemes are proposed [63, 12]. Rafnsson and Sabelfeld [63] use the concept of

an observable channel to declassification.

Since SME requires a program of interest to be executed multiple times,

some techniques try to simulate the result of the SME without multiple exe-

cutions [9, 7, 66, 56, 5]. Static transformation [9] is proposed to dynamically

transform a code at runtime. Similarly, Multiple Facets [7] defines evaluation

rules to achieve timing-insensitive non-interference, which is further developed

to Faceted SME to achieve the strong security [66, 56, 5].

While the above studies generalize and formalize SME on a well-defined

model, its application and implementation pose another challenge in practice.

FlowFox [25, 26] proposes the security policies for Web APIs and in-browser

monitors. Pfeffer et al. [62] aim to improve the SME performance when the

program is running on Unix-like systems. Also, SME is adapted for Android

applications by Ariel [17].

58

Chapter 10

Conculsion

I propose Pave that allows online ad companies to select an ad that matches

a given user profile while preserving its privacy. In Pave, to receive an ad im-

pression, a user agent propagates the user profile along with a context profile

(of a visiting website) to distributed ad servers. I propose shadow execution

and faceted session to block any explicit or implicit leakage of the user profile

while allowing ad servers to run their arbitrary ad programs. Given an ad

program, a Pave runtime monitor, dubbed PaveBox, monitors and controls

its high and low executions, which handle the real and dummy user profiles,

respectively. The PaveBox blocks an explicit or implicit information leakage

from the high execution by comparing its behaviors to those of the low exe-

cution. Our prototype-based experiments show that the overhead of Pave is

not substantial, which demonstrates that it can be deployed in commercial

services.

59

Bibliography

[1] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and

C. Diaz. The web never forgets: Persistent tracking mechanisms in the

wild. In Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, pages 674–689. ACM, 2014.

[2] F. AdTech. Ad tech GDPR complaint is extended to four

more european regulators, May 2019. [Online]. Available:

https://fixad.tech/ad-tech-gdpr-complaint-is-extended-to-

five-more-european-regulators/ (Retrieved, July 25, 2022).

[3] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee. Obfuscuro: A

commodity obfuscation engine on intel sgx. In Network and Distributed

System Security Symposium, 2019.

[4] A. Ahmad, J. Kim, J. Seo, I. Shin, P. Fonseca, and B. Lee. Chancel: ef-

ficient multi-client isolation under adversarial programs. In Annual Net-

work and Distributed System Security Symposium (NDSS), 2021.

[5] M. Algehed, A. Russo, and C. Flanagan. Optimising faceted secure multi-

execution. In 2019 IEEE 32nd Computer Security Foundations Sympo-

sium (CSF), pages 1–115. IEEE, 2019.

[6] Amazon. Asynchronous ads, n.d. [ONLINE]. Available: https:

60

https://fixad.tech/ad-tech-gdpr-complaint-is-extended-to-five-more-european-regulators/
https://fixad.tech/ad-tech-gdpr-complaint-is-extended-to-five-more-european-regulators/
https://affiliate-program.amazon.com/help/topic/t423?ac-ms-src=recofaqasyncguide
https://affiliate-program.amazon.com/help/topic/t423?ac-ms-src=recofaqasyncguide

//affiliate-program.amazon.com/help/topic/t423?ac-ms-src=

recofaqasyncguide (Retrieved, July 25, 2022).

[7] T. H. Austin and C. Flanagan. Multiple facets for dynamic information

flow. In Proceedings of the 39th annual ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, pages 165–178, 2012.

[8] M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad: Provably secure

and practical online behavioral advertising. In 2012 IEEE Symposium on

Security and Privacy, pages 257–271. IEEE, 2012.

[9] G. Barthe, J. M. Crespo, D. Devriese, F. Piessens, and E. Rivas. Se-

cure multi-execution through static program transformation. In Formal

Techniques for Distributed Systems, pages 186–202. Springer, 2012.

[10] M. A. Bashir, S. Arshad, W. Robertson, and C. Wilson. Tracing informa-

tion flows between ad exchanges using retargeted ads. In 25th USENIX

Security Symposium (USENIX Security 16), pages 481–496, 2016.

[11] D. Bohn. Google delays blocking third-party cookies in chrome until

2023, June 2021. [Online]. Available: https://www.theverge.com/2021/

6/24/22547339/google-chrome-cookiepocalypse-delayed-2023 (Re-

trieved, July 25, 2022).

[12] I. Boloşteanu and D. Garg. Asymmetric secure multi-execution with de-

classification. In International Conference on Principles of Security and

Trust, pages 24–45. Springer, 2016.

[13] N. Boucher. Multi-domain sfi, May 2019. [ONLINE]. Available:

https://github.com/nickboucher/Multi-Domain-SFI/blob/master/

paper/Multi%20Domain%20SFI.pdf (Retrieved, July 25, 2022).

61

https://affiliate-program.amazon.com/help/topic/t423?ac-ms-src=recofaqasyncguide
https://affiliate-program.amazon.com/help/topic/t423?ac-ms-src=recofaqasyncguide
https://affiliate-program.amazon.com/help/topic/t423?ac-ms-src=recofaqasyncguide
https://affiliate-program.amazon.com/help/topic/t423?ac-ms-src=recofaqasyncguide
https://www.theverge.com/2021/6/24/22547339/google-chrome-cookiepocalypse-delayed-2023
https://www.theverge.com/2021/6/24/22547339/google-chrome-cookiepocalypse-delayed-2023
https://github.com/nickboucher/Multi-Domain-SFI/blob/master/paper/Multi%20Domain%20SFI.pdf
https://github.com/nickboucher/Multi-Domain-SFI/blob/master/paper/Multi%20Domain%20SFI.pdf

[14] Brave. An introduction to brave’s in-browser ads, September 2020.

[ONLINE]. Available: https://brave.com/intro-to-brave-ads/ (Re-

trieved, July 25, 2022).

[15] A. Cahn, S. Alfeld, P. Barford, and S. Muthukrishnan. An empirical

study of web cookies. In Proceedings of the 25th International Confer-

ence on World Wide Web, pages 891–901. International World Wide Web

Conferences Steering Committee, 2016.

[16] R. Capizzi, A. Longo, V. Venkatakrishnan, and A. P. Sistla. Preventing

information leaks through shadow executions. In 2008 Annual Computer

Security Applications Conference (ACSAC), pages 322–331. IEEE, 2008.

[17] D. Chakraborty, C. Hammer, and S. Bugiel. Secure multi-execution in

android. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied

Computing, pages 1934–1943, 2019.

[18] F. Chanchary and S. Chiasson. User perceptions of sharing, advertising,

and tracking. In Eleventh Symposium On Usable Privacy and Security

({SOUPS} 2015), pages 53–67, 2015.

[19] S. Checkoway and H. Shacham. Iago attacks: why the system call api is

a bad untrusted rpc interface. ACM SIGARCH Computer Architecture

News, 41(1):253–264, 2013.

[20] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. Sgxpectre:

Stealing intel secrets from sgx enclaves via speculative execution. In 2019

IEEE European Symposium on Security and Privacy (EuroS&P), pages

142–157. IEEE, 2019.

[21] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang, T.-H. Lai,

and D. Lin. Racing in hyperspace: Closing hyper-threading side channels

62

https://brave.com/intro-to-brave-ads/

on sgx with contrived data races. In 2018 IEEE Symposium on Security

and Privacy (SP), pages 178–194. IEEE, 2018.

[22] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged

side-channel attacks in shielded execution with déjá vu. In Proceedings

of the 2017 ACM on Asia Conference on Computer and Communications

Security, pages 7–18, 2017.

[23] Chromium. Google privacy sandbox. [Online]. Available: https:

//www.chromium.org/Home/chromium-privacy/privacy-sandbox (Re-

trieved, July 25, 2022).

[24] K. Conger and B. X. Chen. A change by apple is tor-

menting internet companies, especially meta, 2022. [ONLINE].

Available: https://www.nytimes.com/2022/02/03/technology/apple-

privacy-changes-meta.html (Retrieved, July 25, 2022).

[25] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox: a web

browser with flexible and precise information flow control. In Proceedings

of the 2012 ACM conference on Computer and communications security,

pages 748–759, 2012.

[26] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Secure multi-

execution of web scripts: Theory and practice. Journal of Computer Se-

curity, 22(4):469–509, 2014.

[27] R. Deepak and K. Nitish. Effect of disabling third-party cook-

ies on publisher revenue, August 2019. [Online]. Available:

https://services.google.com/fh/files/misc/disabling third-

party cookies publisher revenue.pdf (Retrieved, July 25, 2022).

[28] E. Deng, H. Zhang, P. Wu, F. Guo, Z. Liu, H. Zhu, and Z. Cao. Pri-rtb:

63

https://www.chromium.org/Home/chromium-privacy/privacy-sandbox
https://www.chromium.org/Home/chromium-privacy/privacy-sandbox
https://www.nytimes.com/2022/02/03/technology/apple-privacy-changes-meta.html
https://www.nytimes.com/2022/02/03/technology/apple-privacy-changes-meta.html
https://services.google.com/fh/files/misc/disabling_third-party_cookies_publisher_revenue.pdf
https://services.google.com/fh/files/misc/disabling_third-party_cookies_publisher_revenue.pdf

Privacy-preserving real-time bidding for securing mobile advertisement in

ubiquitous computing. Information Sciences, 504:354–371, 2019.

[29] D. Devriese and F. Piessens. Noninterference through secure multi-

execution. In 2010 IEEE Symposium on Security and Privacy, pages

109–124. IEEE, 2010.

[30] E. Elnikety, A. Mehta, A. Vahldiek-Oberwagner, D. Garg, and P. Dr-

uschel. Thoth: Comprehensive policy compliance in data retrieval sys-

tems. In 25th USENIX Security Symposium (USENIX Security 16), pages

637–654, 2016.

[31] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,

J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an information-flow

tracking system for realtime privacy monitoring on smartphones. ACM

Transactions on Computer Systems (TOCS), 32(2):1–29, 2014.

[32] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer,

A. Narayanan, and E. W. Felten. Cookies that give you away: The

surveillance implications of web tracking. In Proceedings of the 24th Inter-

national Conference on World Wide Web, pages 289–299. International

World Wide Web Conferences Steering Committee, 2015.

[33] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev.

Branchscope: A new side-channel attack on directional branch predictor.

ACM SIGPLAN Notices, 53(2):693–707, 2018.

[34] G. Franken, T. Van Goethem, and W. Joosen. Who left open the cookie

jar? a comprehensive evaluation of third-party cookie policies. In 27th

USENIX Security Symposium (USENIX Security 18), pages 151–168,

2018.

64

[35] Google. Fledge, May 2021. [ONLINE]. Available: https:

//developer.chrome.com/docs/privacy-sandbox/fledge/ (Retrieved,

July 25, 2022).

[36] Google. Topic, January 2022. [ONLINE]. Available: https:

//developer.chrome.com/docs/privacy-sandbox/topics/ (Retrieved,

July 25, 2022).

[37] Google. Content filtering, n.d. [ONLINE]. Available: https://

support.google.com/adsense/answer/3011871?hl=en (Retrieved, July

25, 2022).

[38] Google. Infrastructure options for building advertising platforms,

n.d. [Online]. Available: https://cloud.google.com/solutions/

infrastructure-options-for-building-advertising-platforms

(Retrieved, July 25, 2022).

[39] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation leak-aside

buffer: Defeating cache side-channel protections with tlb attacks. In

27th USENIX Security Symposium (USENIX Security 18), pages 955–

972, 2018.

[40] M. Green, W. Ladd, and I. Miers. A protocol for privately reporting

ad impressions at scale. In Proceedings of the 2016 ACM SIGSAC Con-

ference on Computer and Communications Security, pages 1591–1601.

ACM, 2016.

[41] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M. Costa.

Strong and efficient cache side-channel protection using hardware transac-

tional memory. In 26th USENIX Security Symposium (USENIX Security

17), pages 217–233, 2017.

65

https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://developer.chrome.com/docs/privacy-sandbox/fledge/
https://developer.chrome.com/docs/privacy-sandbox/topics/
https://developer.chrome.com/docs/privacy-sandbox/topics/
https://support.google.com/adsense/answer/3011871?hl=en
https://support.google.com/adsense/answer/3011871?hl=en
https://cloud.google.com/solutions/infrastructure-options-for-building-advertising-platforms
https://cloud.google.com/solutions/infrastructure-options-for-building-advertising-platforms

[42] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy in online

advertising. In USENIX conference on Networked systems design and

implementation, pages 169–182, 2011.

[43] M. Hardt and S. Nath. Privacy-aware personalization for mobile adver-

tising. In Proceedings of the 2012 ACM conference on Computer and

communications security, pages 662–673. ACM, 2012.

[44] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A distributed

sandbox for untrusted computation on secret data. ACM Transactions

on Computer Systems (TOCS), 35(4):13, 2018.

[45] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing-and termination-

sensitive secure information flow: Exploring a new approach. In 2011

IEEE Symposium on Security and Privacy, pages 413–428. IEEE, 2011.

[46] T. Knauth, M. Steiner, S. Chakrabarti, L. Lei, C. Xing, and M. Vij. In-

tegrating remote attestation with transport layer security. arXiv preprint

arXiv:1801.05863, 2018.

[47] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,

M. Lipp, S. Mangard, T. Prescher, et al. Spectre attacks: Exploiting

speculative execution. In 2019 IEEE Symposium on Security and Privacy

(SP), pages 1–19. IEEE, 2019.

[48] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,

and R. Morris. Information flow control for standard os abstractions.

ACM SIGOPS Operating Systems Review, 41(6):321–334, 2007.

[49] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring

fine-grained control flow inside sgx enclaves with branch shadowing. In

66

26th USENIX Security Symposium (USENIX Security 17), pages 557–

574, 2017.

[50] W. Li, H. Li, H. Chen, and Y. Xia. Adattester: Secure online mobile

advertisement attestation using trustzone. In Proceedings of the 13th

Annual International Conference on Mobile Systems, Applications, and

Services, pages 75–88, 2015.

[51] H. Liao, L. Peng, Z. Liu, and X. Shen. ipinyou global rtb bidding al-

gorithm competition dataset. In Proceedings of the Eighth International

Workshop on Data Mining for Online Advertising, pages 1–6. ACM, 2014.

[52] M. Mazmudar and I. Goldberg. Mitigator: Privacy policy compliance

using trusted hardware. Proceedings on Privacy Enhancing Technologies,

1:18, 2020.

[53] W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee. The price of free:

Privacy leakage in personalized mobile in-apps ads. In NDSS, 2016.

[54] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How sgx am-

plifies the power of cache attacks. In International Conference on Cryp-

tographic Hardware and Embedded Systems, pages 69–90. Springer, 2017.

[55] D. Moghimi, J. Van Bulck, N. Heninger, F. Piessens, and B. Sunar. Copy-

cat: Controlled instruction-level attacks on enclaves. In 29th USENIX

Security Symposium (USENIX Security 20), pages 469–486, 2020.

[56] M. Ngo, N. Bielova, C. Flanagan, T. Rezk, A. Russo, and T. Schmitz. A

better facet of dynamic information flow control. In Companion Proceed-

ings of the The Web Conference 2018, pages 731–739, 2018.

[57] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and

G. Vigna. Cookieless monster: Exploring the ecosystem of web-based

67

device fingerprinting. In 2013 IEEE Symposium on Security and Privacy,

pages 541–555. IEEE, 2013.

[58] A. Nilsson, P. N. Bideh, and J. Brorsson. A survey of published attacks

on intel sgx. arXiv preprint arXiv:2006.13598, 2020.

[59] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and C. Fetzer. Varys:

Protecting sgx enclaves from practical side-channel attacks. In 2018

Usenix Annual Technical Conference (USENIX ATC 18), pages 227–240,

2018.

[60] M. Orenbach, A. Baumann, and M. Silberstein. Autarky: Closing con-

trolled channels with self-paging enclaves. In Proceedings of the Fifteenth

European Conference on Computer Systems, pages 1–16, 2020.

[61] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. Drama: Ex-

ploiting dram addressing for cross-cpu attacks. In 25th USENIX Security

Symposium (USENIX Security 16), pages 565–581, 2016.

[62] T. Pfeffer, T. Göthel, and S. Glesner. Efficient and precise informa-

tion flow control for machine code through demand-driven secure multi-

execution. In Proceedings of the Ninth ACM Conference on Data and

Application Security and Privacy, pages 197–208, 2019.

[63] W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-grained,

declassification-aware, and transparent. Journal of Computer Security,

24(1):39–90, 2016.

[64] A. Reznichenko, S. Guha, and P. Francis. Auctions in do-not-track com-

pliant internet advertising. In Proceedings of the 18th ACM conference

on Computer and communications security, pages 667–676. ACM, 2011.

68

[65] A. Sabelfeld and A. C. Myers. Language-based information-flow security.

IEEE Journal on selected areas in communications, 21(1):5–19, 2003.

[66] T. Schmitz, M. Algehed, C. Flanagan, and A. Russo. Faceted secure

multi execution. In Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, pages 1617–1634, 2018.

[67] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware

guard extension: Using sgx to conceal cache attacks. In International

Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 3–24. Springer, 2017.

[68] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf, B. Yee,

and B. Chen. Adapting software fault isolation to contemporary cpu

architectures. In Proceedings of the 19th USENIX conference on Security.

USENIX Association, 2010.

[69] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan.

Occlum: Secure and efficient multitasking inside a single enclave of intel

sgx. In Proceedings of the Twenty-Fifth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems,

pages 955–970, 2020.

[70] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-sgx: Eradicating

controlled-channel attacks against enclave programs. In NDSS, 2017.

[71] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing your

faults from telling your secrets: Defenses against pigeonhole attacks. arXiv

preprint arXiv:1506.04832, 2015.

[72] smaato. Iab taxonomy, November 2021. [Online]. Available: https:

69

https://developers.smaato.com/marketers/sdx-iab-taxonomy/
https://developers.smaato.com/marketers/sdx-iab-taxonomy/

//developers.smaato.com/marketers/sdx-iab-taxonomy/ (Retrieved,

July 25, 2022).

[73] R. Strackx and F. Piessens. The heisenberg defense: Proactively defending

sgx enclaves against page-table-based side-channel attacks. arXiv preprint

arXiv:1712.08519, 2017.

[74] G. Tan et al. Principles and implementation techniques of software-based

fault isolation. Now Publishers, 2017.

[75] Technavio. Real time bidding market to grow by usd 16.52 bn,

January 2022. [Online]. Available: https://www.prnewswire.com/

news-releases/real-time-bidding-market-to-grow-by-usd-16-

52-bn--abb-ltd-and-adobe-inc-among-key-vendors--technavio-

301458196.html (Retrieved, July 25, 2022).

[76] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas.

Adnostic: Privacy preserving targeted advertising. In Proceedings Network

and Distributed System Symposium, 2010.

[77] C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library

os for unmodified applications on sgx. In 2017 USENIX Annual Technical

Conference (USENIX ATC 17), pages 645–658, 2017.

[78] T. Tulabandhula, S. Vaya, and A. Dhar. Privacy-preserving targeted

advertising. CoRR, abs/1710.03275, 2017.

[79] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx. Foreshadow:

Extracting the keys to the intel sgx kingdom with transient out-of-order

execution. In 27th USENIX Security Symposium (USENIX Security 18),

pages 991–1008, 2018.

70

https://developers.smaato.com/marketers/sdx-iab-taxonomy/
https://developers.smaato.com/marketers/sdx-iab-taxonomy/
https://developers.smaato.com/marketers/sdx-iab-taxonomy/
https://www.prnewswire.com/news-releases/real-time-bidding-market-to-grow-by-usd-16-52-bn--abb-ltd-and-adobe-inc-among-key-vendors--technavio-301458196.html
https://www.prnewswire.com/news-releases/real-time-bidding-market-to-grow-by-usd-16-52-bn--abb-ltd-and-adobe-inc-among-key-vendors--technavio-301458196.html
https://www.prnewswire.com/news-releases/real-time-bidding-market-to-grow-by-usd-16-52-bn--abb-ltd-and-adobe-inc-among-key-vendors--technavio-301458196.html
https://www.prnewswire.com/news-releases/real-time-bidding-market-to-grow-by-usd-16-52-bn--abb-ltd-and-adobe-inc-among-key-vendors--technavio-301458196.html

[80] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin, D. Genkin,

Y. Yarom, B. Sunar, D. Gruss, and F. Piessens. Lvi: Hijacking transient

execution through microarchitectural load value injection. In 2020 IEEE

Symposium on Security and Privacy (SP), pages 54–72. IEEE, 2020.

[81] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,

K. Razavi, H. Bos, and C. Giuffrida. Ridl: Rogue in-flight data load.

In 2019 IEEE Symposium on Security and Privacy (SP), pages 88–105.

IEEE, 2019.

[82] S. J. Vaughan-Nichols. Firefox blocks third-party web trackers by default,

June 2019. [Online]. Available: https://www.zdnet.com/google-amp/

article/firefox-blocks-third-party-web-trackers-by-default/

(Retrieved, July 25, 2022).

[83] F. Wang, R. Ko, and J. Mickens. Riverbed: enforcing user-defined privacy

constraints in distributed web services. In 16th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 19), pages 615–

630, 2019.

[84] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determin-

istic side channels for untrusted operating systems. In 2015 IEEE Sym-

posium on Security and Privacy, pages 640–656. IEEE, 2015.

[85] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making in-

formation flow explicit in histar. Communications of the ACM, 54(11):93–

101, 2011.

[86] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Securing distributed

systems with information flow control. In NSDI, volume 8, pages 293–308,

2008.

71

https://www.zdnet.com/google-amp/article/firefox-blocks-third-party-web-trackers-by-default/
https://www.zdnet.com/google-amp/article/firefox-blocks-third-party-web-trackers-by-default/

[87] W. Zhang, S. Yuan, and J. Wang. Optimal real-time bidding for display

advertising. In Proceedings of the 20th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 1077–1086. ACM,

2014.

[88] Z. Zorz. Firefox 70 lets users track online trackers, October 2019.

[Online]. Available: https://www.helpnetsecurity.com/2019/10/23/

firefox-see-online-trackers/ (Retrieved, July 25, 2022).

72

https://www.helpnetsecurity.com/2019/10/23/firefox-see-online-trackers/
https://www.helpnetsecurity.com/2019/10/23/firefox-see-online-trackers/

국문초록

온라인광고에서는사용자별로맞춤화된광고를제공하기위해교차사이트추적

기법을 이용한다. 교차 사이트 추적은 사용자의 인터넷 활동 기록을 추적하는 방

식으로, 이를 통해 사용자의 관심사를 알아낸다. 그러나 이러한 방식으로 수집된

데이터는 사용자의 민감 정보를 별도의 허가없이 수집하기 때문에 프라이버시

침해의 여지가 있다. 이 문제를 해결하기 위해 프라이버시를 보호하는 광고 시스

템들이제기되어왔다.그러나,기존연구에서는사용자의프라이버시를보호하기

위해 광고의 유틸리티를 저해시킨다.

본 연구에서는, 프라이버시를 보호하는 광고 프레임워크인 Pave 를 제안한

다. Pave 는 광고 회사들이 현재 광고의 유틸리티를 유지할 수 있고, Real-Time

Bidding(RTB)과 같은 현재 광고 프로토콜을 지원한다. Pave 는 임의의 광고

프로그램에게 PaveBox 라는 실시간 모니터가 존재하는 격리된 실행 공간을 제

공한다. Secure Multi-Execution(SME)으로부터 영감을 받은 PaveBox 는 모든

데이터 흐름을 가로채고 어떤 데이터 흐름이 사용자 데이터를 유출시킬 여지가

있다면 이를 금지시킨다. PaveBox 는 Intel SGX로부터 보호받기 때문에 프로

그램의 무결성을 원격에서 검증할 수 있다. 본 연구에서는 형식화된 보안 모델을

수립하고, 이를 통해 프라이버시를 형식적으로 증명한다. 또한 프로토타입을 개

발하여 실험을 통해 모델의 성능적 타당성을 보여준다.

주요어: 정보흐름제어, 안전한다중실행, 인텔 소프트웨어 가드 확장, 사용자 프

라이버시, 프라이버시를 보호하는 광고 기술

학번: 2014-21784

73

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Current Advertising Ecosystem
	2.2 Intel SGX
	2.3 Secure Multi-Execution (SME)

	Chapter 3 Overview
	3.1 Threat Model
	3.2 System Goals

	Chapter 4 Pave Design
	4.1 Local Profiling
	4.2 Shadow Execution
	4.3 Faceted Session
	4.4 Chained Attestation

	Chapter 5 Pave Implementation
	5.1 Sandbox
	5.2 Syscall and FS Interfaces
	5.3 Synchronization
	5.4 Selective Remote Attestation (RA)
	5.5 Lazy Execution

	Chapter 6 Formal Analysis
	6.1 Model Language
	6.2 Standard Semantics
	6.3 PaveBox Semantics
	6.4 Security Properties
	6.5 Proof of Security Properties
	6.5.1 Proof of Non-Interference
	6.5.2 Proof of Functionality Preservation

	Chapter 7 Discussion
	7.1 Side-channel Attacks
	7.2 After AD Selections

	Chapter 8 Evaluation
	8.1 Experiment Setup
	8.2 PaveBox Initialization Overhead
	8.3 User Latency
	8.4 Execution Time

	Chapter 9 Related Work
	9.1 Privacy-preserving Ad Systems
	9.2 Information Flow Control

	Chapter 10 Conculsion
	국문초록

<startpage>11
Chapter 1 Introduction 1
Chapter 2 Background 6
 2.1 Current Advertising Ecosystem 6
 2.2 Intel SGX 8
 2.3 Secure Multi-Execution (SME) 9
Chapter 3 Overview 12
 3.1 Threat Model 12
 3.2 System Goals 13
Chapter 4 Pave Design 17
 4.1 Local Profiling 17
 4.2 Shadow Execution 18
 4.3 Faceted Session 19
 4.4 Chained Attestation 22
Chapter 5 Pave Implementation 23
 5.1 Sandbox 23
 5.2 Syscall and FS Interfaces 25
 5.3 Synchronization 26
 5.4 Selective Remote Attestation (RA) 27
 5.5 Lazy Execution 28
Chapter 6 Formal Analysis 30
 6.1 Model Language 30
 6.2 Standard Semantics 31
 6.3 PaveBox Semantics 32
 6.4 Security Properties 34
 6.5 Proof of Security Properties 35
 6.5.1 Proof of Non-Interference 35
 6.5.2 Proof of Functionality Preservation 38
Chapter 7 Discussion 44
 7.1 Side-channel Attacks 44
 7.2 After AD Selections 46
Chapter 8 Evaluation 47
 8.1 Experiment Setup 47
 8.2 PaveBox Initialization Overhead 49
 8.3 User Latency 49
 8.4 Execution Time 53
Chapter 9 Related Work 55
 9.1 Privacy-preserving Ad Systems 55
 9.2 Information Flow Control 57
Chapter 10 Conculsion 59
국문초록 73
</body>

