
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


공학박사학위논문

Reproducing Human Movements via

Physics-based Simulation of Human

Sensorimotor System

물리 기반 사람의 감각운동계 시뮬레이션을 통한

자연스러운 사람 움직임 재현

2022 년 8 월

서울대학교 대학원

컴퓨터 공학부

이 승 환



Reproducing Human Movements via Physics-based

Simulation of Human Sensorimotor System

물리 기반 사람의 감각운동계 시뮬레이션을 통한

자연스러운 사람 움직임 재현

지도교수 서진욱

이 논문을 공학박사 학위논문으로 제출함

2022 년 7 월

서울대학교 대학원

전기.컴퓨터 공학부

이승환

이승환의 박사 학위논문을 인준함

2022 년 7 월

위 원 장 김건희 (인)

부위원장 서진욱 (인)

위 원 이영기 (인)

위 원 이성희 (인)

위 원 이제희 (인)



Abstract

Many factors in human sensorimotor system contribute to human movements.

In this thesis, we simulate human musculoskeletal system and tactile senso-

rimotor system to model intrinsic mechanisms underlying in the system that

contributes to reliable human movements. The variations in the model generate

motions such as walking, running to highly stylistic variants, and even patho-

logic ones as well. We can also generate a wide spectrum of movements driven

by sensorimotor control ranging from passive reactions to external physical per-

turbations, to active manipulations with clear intentions.

This thesis covers three topics. Since human musculoskeletal system is such

a large-scale system where there are more than 200 bones and 600 muscles,

we first discuss the scalability of the musculoskeletal simulation. Second, we

discuss methodologies for efficient simulation and control of volumetric muscles

to incorporate the true mechanics of the musculoskeletal system. Lastly, we are

to design a dynamic process of the sensorimotor control driven by tactile infor-

mation to reproduce various physically reliable movements when interactions.

We demonstrate various examples that manifest our framework can be a useful

tool for understanding, analyzing, and reproducing the functionality of human

systems that contribute movements.

Keywords: Computer Animation, Physics Simulation, Physics-based Charac-

ter Animation, Deep Reinforcement Learning, Muscle Model, Musculoskeletal

Model, Force Control, Impedance Control

Student Number: 2016-27526
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Chapter 1

Introduction

Many factors in human sensorimotor system contribute to human movements.

Human motor system consists of the musculoskeletal system, where bones sup-

port the body and muscles contract and relax to move the body. Human sensory

system consists of taste, vision, smell, hearing, and touch. These two systems

have intrinsic mechanisms that lead unique human movements. For examples,

the range of joint motion is affected by the geometric structures of muscu-

loskeletal anatomy. The knee cap (a.k.a Patella) prevents hyperextension of the

knee joint, and the elasticity of muscles, ligaments, and tendons also bounds the

range of motions as well (See Figure 1.1). Muscle disorder such as contracture,

weakness, and paralysis would alter overall movements and result in distinctive

movement patterns of each individual. In sensory system, tactile sensors sense

pressures produced by the interactions, and humans behave in a flexible manner

to prevent large external forces and absorb the impacts in accordance with the

tactile information.

Human movements are governed by the equations of motion, and physics
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Figure 1.1: (Left) Human knee joint (Middle) Pathologic gait (Right) Jumping

and landing : human senses ground reaction forces and absorb the impacts to

prevent injuries when landing.

simulation has been thought to be a useful tool to understand, analyze, and

reproduce human motions. Physics simulation provides in-depth observation

or analysis of the way humans recognize their surroundings and actuate their

bodies. When we are to use physics simulation, it is required to model digital

replica of humans accurately. This means not only we need to model precise

human sensorimotor system, but also we need to model suitable movement

mechanisms underlying the system. Human range of motions are collaborations

of bone and muscle geometry, and muscle contraction dynamics and skeleton

articulations also affect the boundaries as well. Physics simulation has capacity

to model and simulate such phenomenon [1].

This thesis aims to build comprehensive human sensorimotor system in

physics simulation to reproduce physically reliable human movements. Fun-

damental challenges stem from the scalability and the complexity of human

musculoskeltal system. Humans have more than 600 muscles and 200 bones,

and human brain harmoniously coordinates muscle activations at every time

instance to actuate its body. To simulate musculoskeletons, we need to coordi-

nate muscle activations as well as we need accurate musculoskeletal model. It

is computationally demanding to deal with 600 muscles at every time instance

of physics simulation. Another challenge lies in non-linear muscle contraction
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Figure 1.2: Actin and Myosin in muscle fibers.

dynamics for each muscle. A muscle consists of a bundle of muscle fibers which

produce contractile forces along the fiber direction. Actin and Myosin filaments

pull each other in accordance with electric signals produced by human nerve

system (See Figure 1.2). The muscle also has background elasticity and the elas-

tic forces restore muscle shapes when muscles are fully relaxed. The process of

the contraction and the relaxation is highly complex and non-linear. These two

characteristics of human musculoskeletal system (scalability and complexity)

are major topics that we are to deal with.

While the accurate simulation of human musculoskeletal system assures

physical and physiological reliability of reproduced movements, we want to add

the interactivity for the physically simulated humanoids. A human interacts

with its surroundings every day such as opening doors, playing sports, and

pushing boxes, and the human interactivity is crucial virtue to plan such in-

teractions as intended. In these situations, tactile sensors provide one of the

primary recognition that decides the way how humans move. Tactile elements

sense instantaneous pressures and humans inherently avoid large impacts that

could potentially result in falling down. We often call this behavior a compli-

ant (or flexible) behavior and it iterates a dynamic process of recognition and

actuation. Reproducing compliant movements is another topic in this thesis.
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Understanding relationship between human movements and the conditions

has been a long standing goal in Computer Graphics, Robotics, and Biome-

chanics. We take into our consideration body conditions (weights, heights, and

muscle conditions) and interaction conditions (compliance) to reproduce plau-

sible motions. We demonstrate the variations in the musculoskeletal model gen-

erate reliable human movements ranging from walking, running to highly stylis-

tic movements, even to pathologic ones as well. We also can generate a wide

spectrum of compliant movements ranging from passive reactions to external

physical perturbations, to active manipulations with clear intentions. We state

this thesis provides frameworks that clearly bridge the intrinsic principles of

movement mechanisms and human motions.

Scalable Muscle-actuated Human Simulation and Control. In Chap-

ter 3, we discuss the scalability of the musculoskeletal simulation. Human mus-

culoskeletal system is such a large-scale system, and there exist complex in-

teractions between them. Due to complexity and high-dimensionality, many

studies in Computer Graphics have aimed on specific body part or have used

small number of muscles. In this chapter, we aim to build a comprehensive

full-body musculoskeletal system that reproduces realistic human movements

driven by muscle contraction dynamics. The technical challenges include ac-

curate and comprehensive musculoskeletal modeling, the scalable and reliable

simulation of anatomical features, and the robust control of the under-actuated

dynamical system. We include all the muscles and bones that contribute to joint

movements. Our model has 342 muscles, 22 joints, and 56 degrees of freedom

(DOFs). Our simulation system reliably deals with muscle contraction dynam-

ics and joint range of motion induced by background elasticity of muscles. We

also present a new control algorithm based on Deep Reinforcement Learning

(DRL).
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Figure 1.3: Physics-based simulation and control of dynamic motor skills ac-

tuated by 346 musculotendon units. (Left) deadlift and cartwheel. (Middle)

Pathological gait driven by hip muscle contracture. (Right) Running with a

prosthetic leg.

Recent advance in DRL has shown its potential in high-dimensional contin-

uous control problem. The control policy based on deep neural networks has

reproduced full-body human movements such as walking, running, cartwheel,

and flipping [2]. In this case virtual humans are assumed to be actuated by the

torques at each joint, and the control policy outputs the Proportional-Derivative

(PD) targets which has 30 to 60 DOFs. Policy learning becomes challenging if

we are to control muscle-driven humanoids, since the policy has to coordinate

muscle activation levels of every musculotendon actuators. We present a new

two-level control framework. Two deep neural networks hierarchically form the

structure of the control policy to deal with the full-body musculoskeletal model

with 346 muscles. We demonstrate the effectiveness and scalability of our frame-

work with various examples ranging from walking, running, and cartwheel to

pathological ones driven by musculoskeletal disorder, even to prostheses walking

and running (See Figure 1.3).

Dexterous Manipulation and Control with Volumetric Muscles. In

Chapter 4, we discuss simulation and control of musculoskeletal system with

volumetric muscles. In Computer Graphics, there has been a research trail of

reproducing natural human motion by incorporating the true mechanics of the
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Figure 1.4: Demonstration of motion control in an anatomical simulation of

a juggling task, actuated by volumetric muscles. Active muscles are shown in

pink.

musculoskeletal system. However, common modeling assumptions simplify the

muscle geometry to line-segment primitives, which may degrade the accuracy

and the biomechanical fidelity of the simulation. Our goal is to develop a control-

lable system that incorporates volumetric muscles into the upper body model.

We also would like to demonstrate the representation power and the function-

ality of the volumetric muscles. In particular, we focus on predicting physical

capabilities under various body conditions.

We use Finite Element Method simulation (FEM) to simulate volumetric

muscles. Since FEM is computationally expensive, it is technically challenging

to incorporate volumetric simulation into muscle dynamics efficiently. More-

over, the control of humanoids with complex and non-linear muscle dynamics

requires Jacobians of muscle forces with respect to control variables. Computing

Jacobians, as well as integrating FEM, are extremely expensive which makes

overall framework intractable. We reduce the computational costs by employing

Projective Dynamics [3]. The newly designed framework for solving FEM allows
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us to simulate volumetric body in real time, while we contribute a novel formu-

lation by which active muscle forces can be accurately added to the Projective

Dynamics. We also derive the Jacobians analytically by a quasistatic assump-

tion of the simulation, which avoids numerical differentiation. The simulation

framework is combined with a two-level trajectory optimization technics that

controls the humanoids robustly via feed-back and feed-forward mechanisms.

We demonstrate our system robustness by dexterous manipulation and control

such as juggling with upper-body humanoids consisting of 128 muscle actua-

tors (See Figure 1.4). We further examine muscle disorders such as contracture,

weakness and paralysis which manifests the representation power of volumetric

muscles.

Deep Compliant Control. While Chapter 4 and Chapter 3 cover the

musculoskeletal simulation Chapter 5 is to reproduce dynamic process of sen-

sorimotor control. Humans interact with their surroundings every day such as

opening doors, pushing boxes, and playing sports. Forces serve as a medium

for such interactions, as humans iterate sensing these forces and actuating their

bodies. In this process, compliance is one of the primary principles which de-

termines human movements during interactions. Compliance provides humans

the ability to move in various ways to avoid large amounts of contact forces and

adapt to unexpected situations. In this chapter, we aim to reproduce physically

reliable movements for the interactions governed by compliance. Technical chal-

lenges include defining and modeling of compliance, reproducing realistic human

movements, and providing robust control of motor skills for under-actuated dy-

namical systems. We define the character’s compliance from a mechanical point

of view. Our motion controller deforms the character to increase compliance.

We also present a learning framework based on DRL.

Recently, DRL has been widely used to learn motor skills for high-dimensional
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Figure 1.5: Our compliant controller learns dynamic interactions. (Left to right)

Hand-in-hand running, hopping game, opening a door, and balancing a ball.

humanoid characters. The core idea in this approach stems from imitation learn-

ing where the character learns how to move from reference motion data. While

existence of the reference motion data enables the imitation of human tasks,

imitation learning uses position control such as PD control to generate control

forces which can produce stiff and unnatural motions when external perturba-

tions are being applied. We develop a motion planning algorithm which provides

motion displacements that adjust the reference motions according to the inter-

action forces. The motion planner is governed by the character’s compliance

to reduce interaction forces as well as internal control forces. We further equip

this algorithm with DRL to robustly control the characters. The resulting con-

troller behaves in a compliant and natural way during the perturbations, and

still recover its movements when there are no external forces as it regresses to

conventional imitation learning. We demonstrate the effectiveness of the con-

troller with various examples (See Figure 1.5).
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Chapter 2

Background

In this chapter we briefly introduce research stream of previous work necessary

for understanding this thesis. This thesis covers three topics regarding human

sensorimotor system, and all these topics use physics simulation and appropri-

ate motion control to reproduce reliable movements, and thus we divide related

work into two categories: simulation and control. Since human musculoskele-

tal system is very complex, high-fidelity musculoskeltal simulation has been a

long-standing goal in Robotics, Biomechanics, and Computer Graphics. In Sec-

tion 2.1, we give you an explanation of previous work for muscle-based anatomy

simulation as well as articulated skeletal simulation equipped with muscle con-

traction dynamics. In Section 2.2, we provide related work that have aimed

on motion control ranging from trajectory optimization to DRL, and addition-

ally, we provide studies for force control in Robotics required for sensorimotor

control with tactile perceptions.
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2.1 Musculoskeletal Simulation

The simulation of musculoskeletal systems has been studied for several decades

[4, 5]. Ever since prototype systems have been built and released [6, 7, 8],

muscle-based modeling and simulation have gained a lot of attention in both

Biomechanics and Computer Graphics. A thorough survey of muscle-oriented

techniques in animation tasks has also been explored [9]. Over the past two

decades, Computer Graphics research has pursued higher biomechanical accu-

racy in anatomy modeling, using Finite Element Method simulations [10] and

models derived from medical imaging [11]. The emphasis on visual plausibility

instead of absolute biophysical accuracy has allowed Computer Graphics re-

search to be more aggressive in the pursuit of full-body soft tissue simulations,

especially when volumetric simulation is involved, compared to the inclination

of biomechanics literature towards localized parts of anatomy (e.g. thigh me-

chanics [12]). Simplified line-segment muscle models have allowed anatomical

modeling to address inverse problems and motion control scenarios, on which

volumetric simulation is often layered as a visual embellishment [13, 14].

There have been a series of studies for modeling and simulation of specific

body parts. Modeling the muscles at the neck and the head produces complex

cervical activities [15]. Modeling muscle fatigueness in lower body generates

physiologically retargeted motions [16]. Pai and his colleagues explored the sim-

ulation of hand manipulation, including musculotendinous simulation with slid-

ing constraints [17]. A coupled Eulerian-on-Lagrangian formulation is utilized in

elastic tendon strands with a control strategy to simulate hand articulation [18].

The Eulerian-On-Lagrangian framework has been applied to the human upper

extremity [19], demonstrating the ability of the framework to handle muscle

contact, and coupling to an articulated skeleton. Nakada et al. [20] modeled
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human sensorimotor control using deep neural networks, which emulate neural

pathways from visual perception to the activation of motor units.

In the domain of facial animation, volumetric descriptions of facial muscles

is used to infer activations that move the face surface in accordance with a

motion-captured target [21]. Ichim et al. [22] optimize shape and contractile

properties of facial tissues, starting from a template, as to reproduce input

blendshape-based animations, yielding facial models that can be actuated into

new animation sequences. The concept of blendshapes to material properties

is extended, allowing simulated facial animations to reproduce motion effects

attributable to temporally variable constitutive properties [23].

Separate from issues related to simulation methods, the authoring of simulation-

ready subject-specific models is a great challenge, even if a small number of

geometric templates exist (which however do not provide strict specifications of

material properties, and are not subject-specific). Skeletal geometry and kine-

matics are jointly inferred from a temporal deformation of only the outer skin

surface [24]. The way of generating a spectrum of human body types with var-

ious degrees of muscle growth is proposed, evolving from a standard template

using physical processes [25]. Surface scan data from various subjects and body

poses is also used to reconstruct personalized anatomical muscle models [26].

Akhter and Black [27] collected a motion capture dataset that includes a variety

of stretching poses and learned a pose-dependent model of joint limits. Jiang

and Liu [28] used the same dataset to learn a joint limit model represented by

a fully-connected neural network.

2.1.1 Simulation of nonlinear volumetric solids

Simulation performance, which has been a significant obstacle in early efforts,

has been improved by virtue of stable implicit time integration schemes [29],
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accelerated deformers based on regular lattices [30], improved contact han-

dling mechanisms [31], and improved interactivity with Projective Dynamics

schemes [3]. Lattice-based deformers make simulator accommodate nontrivial

topological features (e.g. surgical incisions), while safeguarding the regularity

of the underlying data structures and the benefits of parallelism [32]. Hierar-

chies of embedded discretizations are proposed to selectively infuse dynamic

degrees of freedom where artists suggest additional deformation detail is de-

sired [33]. Data-driven frameworks enable creating dynamic deformations of

flesh and tissue on articulated characters [34, 35]. A layered dynamic simulation

of flesh is used, superimposed on a kinematic skeleton, to synthesize detailed

skin deformation [36]. One-way or two-way coupled simulation of skeleton and

flesh enables interactive, skeleton-driven animation of musculoskeleton [37, 38].

Real-time flesh simulation is also available reducing its high dimensionality in

rig space [39]. Multi-body simulation systems have been developed to deal with

rigid bodies, soft bodies and their coupling in a uniform manner [40, 41].

2.2 Motion Control

Controllable musculoskeletal models have overwhelmingly relied on line-segment

approximations of Hill-type models to actuate an articulated character skeleton.

Sueda et al. [17] introduced strand dynamics and sliding/surface constraints for

hand simulation and control with emphasis on tendon dynamics. Balancing the

head with neck muscles has been studied, coordinating their activations by feed

forward and feed back rules [15]. Muscle activation levels in tongue can be

estimated by solving quadratic programming [42].

Muscle-driven locomotion control emerged with the help of stochastic opti-

mization methods, such as CMA-ES (Covariant Matrix Adaptation Evolution-
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ary Strategy), while locomotion control problem without musculotendon actu-

ators has been solved by a rule-based [43], learning-based [44], data-driven [45],

and optimization-based [46] controller. Wang et al. [47] designed a lower-body

model with eight musculotendon units in each leg, which generate torques only

in the sagittal plane. They parameterized muscle control with hand-crafted feed-

back rules and optimized the control parameters using CMA-ES. Geijtenbeek

et al. [48] applied muscle-driven control to a variety of character morpholo-

gies. To do so, they optimized both the control parameters and muscle routing

simultaneously to cope with varied morphologies. Lee et al. [49] designed a

comprehensive model with more than 100 musculotendon units. CMA-ES also

played an important role of optimizing trajectories on top of low-level mus-

cle control, for which Quadratic Programming (QP) effectively handled many

actuated degrees of freedom. They also evaluated the robustness of the opti-

mized controller against external pushes and found that the controller responds

similarly to how humans respond to unexpected pushes. [50].

Due to the complexity of the musculoskeletal system, the action of vol-

umetric simulation mainly used to manifest in skeletal articulation. Control

formulations have been applied to scenarios where the volumetric deformation

itself is the primary output being optimized [51], or where locomotion is caused

by deformation rather than skeletal articulation [52].

2.2.1 Learning Motor Skills with DRL

In 2007, the biped models had less than 10 actuated DOFs [44, 43]. The DOFs

of the dynamic models increased more than tenfold by 2014 [49]. This trend still

continues with the recent addition of deep network models [20]. The scalability

of stochastic optimization methods does not match the exponential growth of

the complexity of dynamic models and thus DRL has gained great attention as
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its alternative.

A variety of DRL algorithms have demonstrated its promise in torque-

actuated control problems, including biped locomotion [53, 54], dynamic sports

activities [55, 56, 2, 57], exotic creatures [58, 59], and learning to dress [60].

It has been shown that DRL algorithms can learn biped locomotion without

any reference motion capture data, though the resulting motion may not look

humanlike [61]. Given a reference motion, the learned control policy can re-

produce high-quality human motion [2, 57]. Recently, generic neural network

policies capable of learning diverse behaviors and multiple motor skills are at-

tracting attention [62, 63, 64]. Not only human-like characters, but also flying

creatures [65], quadrupeds [66] and even underwater animals like octopuses [67]

are succesfully controlled with learned policy with DRL.

Recent approaches exploiting hierarchical structures on DRL have shown

their potential to improve the scalability of control systems. Levy et al. [68]

used multi-level hierarchies to accommodate sparse reward tasks. Vezhnevets

et al. [69] argued that decoupling end-to-end learning across multiple levels

gains efficacy of learning by allowing it to utilize different resolutions of time.

Bacon et al. [70] studied option-based actor-critic models that are capable of

learning both the internal policies and the termination conditions of options.

Despite great successes in torque-actuated control problems, DRL has been

applied to muscle-actuated control problems in limited settings with a small

number of musculotendon units [71, 72, 73]. Even the state-of-the-art DRL al-

gorithms do not scale well with the complexity of muscle-actuated control. Our

learning algorithm reformulates QP-based low-level motor control and plugs

it into the framework of DRL. We will demonstrate that incorporating this

domain-specific control strategy into DRL significantly improves the perfor-

mance and scalability of learning.
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2.2.2 Force Control

Force control is one of the major topics in robot control and has been thoroughly

studied in Robotics over the past four decades. While position-based control

such as PD control focuses mainly on robot positioning, force control aims to

achieve precise control of the forces applied by end-effectors. The concepts of

impedance and admittance are terminologies used to describe the relationship

between the manipulator and the environment [74, 75]. A manipulator is con-

sidered an admittance when it controls motions to minimize the external forces,

whereas a manipulator is considered an impedance when it controls the forces

from the motions. Our framework comprises both the impedance control and

the admittance control.

One way to minimize the interaction forces is to embed spring-actuated

joints so that the joint has inherent elasticity[76, 77]. Another way is to design

a controller as a virtual spring-damper system where the virtual forces of the

spring and the damper act as elastic actuators [78, 79]. The control module

can be applied to many applications where safety is crucial such as exoskeletal

robot control [80, 81, 82, 83] and control in contact-rich spaces [84, 85]. Recent

advances in deep learning have enriched the domain of force control. Learn-

ing of vision and haptic feedback generates robot trajectories for contact-rich

tasks in unstructured environments [86]. Despite great successes in force control,

studies have mainly focused on fully actuated robots with few rigid links. In

this case, there exist closed-form solutions obtainable by solving the differential

kinematics, and it is straightforward to compute trajectories for compliance. It

is not straightforward to apply control methods to under-actuated characters.

We present a two-level architecture to accommodate the bipedal character.

Meanwhile, there has been a series of studies in Computer Graphics mim-
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icking the force control to reproduce human reactions. Data-driven approaches

with semi-physics allow the character to react to external forces such as hitting

or pushing [87, 88]. Push-and-recovery tests are conducted to analyze the stabil-

ity of the locomotion controller [89, 90]. Curriculum learning with DRL can be

used to generate task-specific human responses [91]. Our framework addresses

human reactions in terms of compliance and demonstrates various examples

that reproduce physically reliable movements.
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Chapter 3

Scalable Muscle-Actuated Human
Simulation and Control

Human musculoskeletal system is such a large-scale system consisting of more

than 600 muscles and 200 bones. Due to its large-scale, simulating full-body

musculoskeletal system is especially challenging. This chapter aims to build a

comprehensive musculoskeletal model and its control system that reproduces

realistic full-body movements driven by muscle contraction dynamics. The vari-

ations in the anatomic model generate a spectrum of human movements ranging

from typical to highly stylistic movements. To do so, we discuss scalable and

reliable simulation of anatomical features, robust control of under-actuated dy-

namical systems based on deep reinforcement learning, and modeling of pose-

dependent joint limits. The key technical contribution is a scalable, two-level

imitation learning algorithm that can deal with a comprehensive full-body mus-

culoskeletal model with 346 muscles. We demonstrate the predictive simulation

of dynamic motor skills under anatomical conditions including bone deformity,

muscle weakness, contracture, and the use of a prosthesis. We also simulate
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various pathological gaits and predictively visualize how orthopedic surgeries

improve post-operative gaits.

3.1 Overview

Human motion is affected by many anatomical factors such as the geometry of

bones, muscle conditions, fatigue, habits, and even emotion. Small changes in

anatomical conditions often alter the overall motion and result in distinctive

movement patterns of each individual. The musculoskeleton of a human body is

a highly-complex dynamic system. The human body has over 600 muscles and

the half of them participate in joint movements. Muscle contraction and relax-

ation are a dynamic process of activating and deactivating tension-generating

sites within muscle fibers. The brain sends excitation signal through the ner-

vous system to activate and deactivate individual muscles and thus coordinates

full-body movements.

This work aims to build a comprehensive musculoskeletal model and its

control system that reproduces realistic human movements driven by muscle

contraction dynamics. The variations in the model generate a wide spectrum

of human movements ranging from normal (or typical) movements to highly

stylistic variants, even to pathologic ones as well. The key technical challenges

include accurate and comprehensive musculoskeletal modeling, the scalable and

reliable simulation of anatomical features, and the robust control of the under-

actuated dynamical system. Our model includes most of the skeletal muscles

that serve for moving major joints. Our simulation system reliably deals with

muscle contraction dynamics and joint range of motion (ROM) induced by

background elasticity of muscles. We also present a new control algorithm based

on Deep Reinforcement Learning (DRL).
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Recently, DRL has shown its potentials for the control of physically-simulated

articulated figures. The control policy represented by deep neural networks has

successfully reproduced highly-detailed human movements including walking,

running, cartwheel, and flipping [2]. It has been reported that the performance

of DRL for continuous control depends on the choice of actuator types [72].

It works better when the control policy outputs Proportional-Derivative (PD)

targets rather than outputs joint torques directly. Policy learning becomes even

more challenging if we are to learn a policy that generates activation levels of

musculotendon actuators. There are successful cases of learning to run with a

simple musculoskeletal model with merely 18 muscles [71]. However, its gener-

alization to deal with a comprehensive 3D model has not been reported yet. In

this work, we present a new two-level algorithm equipped with a hierarchical

structure of policy networks. The skeleton layers learn the kinematics and dy-

namics of articulated skeletal motion at low frame rates, while the musculature

layers learn muscle activations at higher frame rates. Our two-level algorithm

is scalable to deal with the full-body musculoskeletal model with 346 muscles.

We will demonstrate the effectiveness of our algorithm with various examples:

• Our simulation and control algorithm predicts how anatomical symp-

toms, such as bone deformity and contracture, affect full-body movements.

Based on this capability, we will demonstrate stylistic, anatomic variations

of human movements, including highly dynamic motor skills.

• We can predict and evaluate the effectiveness of prostheses by simulating

their dynamic models with our musculoskeletal model. We experiment

with both transtibial and transfemoral prostheses. Walking, running, and

dancing with a prosthetic leg will be demonstrated.

• We also simulate and visualize various pathologic gaits and how ortho-
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Figure 3.1: Musculoskeletal Model. (Up right) Simplified two-toe foot. (Bottom

right) Multi-segment foot.

pedic surgeries improve the gaits. Pre-operative gaits are constructed by

providing anatomic conditions. We simulate muscle transplant and os-

teotomy (bone-editing) surgeries on our musculoskeletal model to predic-

tively simulate post-operative gaits.

3.2 Musculoskeletal System

Our musculoskeletal model includes a tree structure of rigid bones connected

by 8 revolute joints (including knees and elbows) and 14 ball-and-socket joints

(including hips, ankles, shoulders, and wrists). The model also includes 284

musculotendon units corresponding to skeletal muscles that contribute to joint

motion in the skeleton (see Figure 3.1). Our model has no fingers and has two
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versions of foot models: Two-toe and Multi-segment. The articulation of the

foot is simplified to have three segments for the two-toe foot, while the multi-

segment foot features additional 12 revolute joints and 31 muscles for each foot.

The muscles that do not contribute to any skeletal motion are omitted.

3.2.1 Muscle Model

The muscles are attached to bones on each end by tendons. The muscle at-

tachment sites are called its origin (on the proximal side) and insertion (on the

distal side). Muscle contraction pulls the bones on each side to move the joint

inbetween them. The muscle geometry is often approximated as a polyline that

starts at the origin of the muscle, passes through a sequence of waypoints, and

ends at its insertion. The polyline better approximates the muscle length than

the straight line between the origin and insertion (see Figure 3.2). The location

of a waypoint is expressed by using the linear blending skinning (LBS) function.

p =
∑

wjTjxj , (3.1)

where Tj ∈ R4×4 is the transformation matrix of a bone computed through

the kinematics of the skeleton, wj is skinning weight, and xj represents the

coordinates relative to each bone coordinate system.

We employ a Hill-type muscle for the formulation of muscle contraction dy-

namics. According to the Hill-type model, contraction of muscle fibers generate

tension f and its magnitude depends on muscle length l, the rate of its change

l̇, and the level of muscle activation a ∈ [0, 1].

f = f(l, l̇, a) = a · fl(l) · fv(l̇) + fp(l), (3.2)

where fl(l) and fv(l̇) are force-length and force-velocity functions, respectively.

The functions describe the maximum isometric tension of the muscle depend-

ing on its length and length changes. Even when the muscle is fully relaxed,

21



Figure 3.2: Rectus Femoris muscle. (Left) 3D surface mesh. (Middle) Polyline

approximation with waypoints. (Right) The LBS coordinates of the waypoints

approximate the muscle route when the knee flexes.

the muscle develops passive force fp(l) because of its background elasticity. We

refer the reader to the work by Thelen [5] and Delp et al. [6] for the details of

force curves, muscle dynamics, and muscle parameters. We assume for simplic-

ity non-stretchable tendons, which are very stiff bands of fibrous material and

transfer muscle force to the attached bone. The polyline transfers muscle force

end-to-end through the waypoints. The waypoints work like pulleys to change

the direction of force while conserving the momentum. We aggregate forces gen-

erated at the origin, insertion, and waypoints of muscle m into a single vector

fm(a).

3.2.2 Muscle-induced Joint limit

The range of joint motion is affected by many factors including bone, joint,

and ligament structures, geometric collision, and muscle tension. For example,
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the knee cap (a.k.a. Patella) prevents the knee from hyperextension, and the

elasticity of a muscle would bound the motion of a joint as well. Muscle passive

force fp(l) is negligible when the muscle length is below a certain threshold, but

the force increases exponentially if the muscle stretches beyond the threshold

(see Figure 3.3). Including such an exponentially-growing force in the physics-

based simulation would result in a very stiff dynamic system that is prone to

cause instability requiring very small simulation time step. Alternatively, we

formulate muscle-induced joint limits by inequality constraints.

Cm(q) := fmax
p − fp(l(q)) ≥ 0 (3.3)

where q ∈ Rn is the generalized coordinates of a full-body pose and fmax
p is a

parameter that users specify. Similarly, we can also express other types of joint

limits by inequality equations and aggregate all constraints into C(q). Explic-

itly enforcing the inequality constraints preemptively prevent the system from

experiencing unstable conditions. The constraint velocity (the rate of change of

the constraint) can be computed by:

vc :=
dC

dt
=
∂C

∂q

dq

dt
= Jcq̇ (3.4)

We detail the derivation of Jc for our muscle-induced constraint in Appendix.

Given the constraint equation C and its velocity vc, the constraint force fc

that enforces the constraint can be computed by impulse-space simulation [92],

which leads to a Linear Complementary Problem (LCP). If constraints are

active Ci(q) = 0 or violated Ci(q) < 0 for some i, solving for the complementary

conditions computes the corresponding constraint forces:

vc ≥ 0

fc ≥ 0

v⊤
c fc = 0

(3.5)
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Figure 3.3: Force-length curves in Hill-type muscles. (Blue) Maximum isometric

force by active contraction of muscle fibers. (Red) Passive muscle-tendon tension

when the fibers are inactive.
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The first condition guarantees that the constraints will not be violated any fur-

ther in the next time step. The second condition guarantees that the constraint

forces are not sticky or pulling. The last condition suggests that the constraint

forces do not perform any work.

3.2.3 Musculoskeletal Dynamics

Given muscle and constraint forces, the Lagrangian dynamics of the muscu-

loskeletal model can be described by

M(q)q̈ + c(q, q̇) =
∑
m

J⊤
mfm(am) + J⊤

c fc + τext (3.6)

where q is generalized coordinates, M(q) is the mass matrix, and c(q, q̇) is

Coriolis and gravitational forces. fm and fc are muscle and constraint forces,

respectively. Jm and Jc are Jacobian matrices that map forces to generalized

coordinates, and τext is external force. Given muscle activation level 0 ≤ am ≤ 1,

Equation (4.10) solves for acceleration q̈ to integrate pose q and its velocity q̇

over time.

Assuming that tendons are non-stretchable, muscle force consists of active

contractile force linearly proportional to activation am and passive force inde-

pendent of the activation, so fm(am) = ∂fm
∂am

am + fm(0). We aggregate ∂fm
∂am

and

fm(0) of all muscles, which are lumped into a matrix A and a vector p such

that:

Mq̈ + c = Aa + p + J⊤
c fc + τext (3.7)

where mth column of A is J⊤
m
∂fm
∂am

, p =
∑

m J⊤
mfm(0) and a is a vector that

aggregates the activation levels of all muscles. Solving forward dynamics of the

musculoskeletal model results in a linear mapping between q̈ and a.

q̈ = La + b (3.8)

where L = M−1A and b = M−1(p + J⊤
c fc + τext − c).
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Figure 3.4: Overview

3.3 Control

To animate musculoskeletal models in physics-based simulation environments,

we follow the trail of data-driven (a.k.a. example-guided) approaches [49, 2].

The user provides with a motion capture clip or a kinematic reference tra-

jectory. Our goal is to learn a control policy (a.k.a. controller) that produces

motions that resemble the reference data while achieving additional task ob-

jectives. The control policy π(a|s) coordinates activation levels of all muscles a

at every time step in forward dynamics simulation to have the muscle-actuated

character mimic the reference data. Here, state s = (sskeleton, smuscle) includes

the kinematic, dynamic, and anatomic states of the skeleton and musculotendon

units.

In this section, we present a novel two-level architecture of policy learning

that combines a state-of-the-art DRL method for trajectory mimicking with

a novel supervised method for learning muscle coordination (see Figure 5.2).

The trajectory mimicker is a stochastic policy πθ(u|sskeleton) that produces PD
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target poses u as output given skeletal states sskeleton, where θ is network pa-

rameters to be optimized using DRL. PD servos q̈d = PD(u) generate desired

accelerations, which are passed to the second policy. The muscle coordinator

a = πψ(q̈d, smuscle) is a deterministic policy that activates muscles to generate

desired motions, where ψ is network parameters determined by regression.

These two policies are jointly learned in a standard DRL framework with

moderate overhead. Roughly speaking, learning a muscle-actuated control pol-

icy is three times as slow as learning a torque-actuated control policy due to the

overhead of solving muscle contraction dynamics in simulation and evaluating

the muscle coordination network. Note that PD targets serve as an intermedi-

ary between the two network policies in the learning process, but they are not

used in actual simulations. Our simulation and control system at runtime is

solely muscle-actuated requiring neither PD targets nor PD control at all. The

trajectory mimicker learns and operates at the frame rate of the reference data,

which is typically 30 frames per second. On the other hand, the muscle coordi-

nator learns and operators at the rate of forward dynamics simulation, which is

typically 900 to 1500 frames per second. Our learning algorithm interleaves two

heterogeneous learning tasks to achieve end-to-end learning from anatomy-level

control inputs all the way to full-body action and balance policies. Even though

the trajectory mimicker takes only the skeletal state as input, the muscle states

affect the skeletal state while generating transition tuples. Conversely, the mus-

cle coordination policy also depends on the kinematics and dynamics of the

skeletal model. In this way, the two policies collaboratively interact with each

other to achieve maximum rewards in DRL.
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3.3.1 Trajectory Mimicking

Trajectory mimicking can be formulated as a Markov decision process repre-

sented by a tuple T = (S,U, P,R, γ, ρ0), where s ∈ S is the kinematic and

dynamic states of the skeleton, which explores an environment defined by tran-

sition probabilities P : S × U 7→ S, u ∈ U is an action that the agent takes,

r ∈ R is a reward, and ρ0 is an initial state distribution. Note that we denote

sskeleton by s for simplicity only in this subsection. The agent explores the en-

vironment according to its policy πθ(s) represented by parameters θ, and the

environment evaluates the action with the reward r. The goal of the agent is to

maximize expected cumulative rewards:

θ∗ = arg max
θ

Es0,u0,s1,···

[ ∞∑
t=0

γtr(st)

]
(3.9)

where s0 ∼ ρ0, ut ∼ πθ(st), and st+1 ∼ p(st,ut). Since the evaluation of the

objective requires intractable computational costs, typical remediation in DRL

uses another neural network called value function V π(s) to approximate the

accumulated rewards. The two networks πθ(s) and V π(s) are iteratively updated

at the training step [93, 94, 95]. We largely follows the implementation by Peng

et al. [2] in defining states and rewards except for the change in the reward

function that improves the output motion qualities.

The state is defined by s = (p,v, ϕ), where p and v are the aggregations of

the 3D position and linear velocity of bones, and ϕ ∈ [0, 1] is a phase variable

which represents the normalized time elapsed in the reference motion. The

position and linear velocity are represented in the moving coordinate system

attached to the root body. The state vector is 112-dimensional. We specify

actions by PD targets, which directly map to desired accelerations at joints.

q̈d(u) = kp(u− q)− kvq̇ (3.10)
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where kp and kv are gains of PD control.

The reward encourages the character to imitate the reference motion and

optionally achieve task objectives simultaneously. The task objectives depend

on the choice of the reference motion. The reward is defined by

r = wqrqre + wgrg (3.11)

where rq, re and rg represent the pose imitation, end-effector imitation and task

objectives, and wq and wg are their respective weights. The imitation rewards

match the current and reference motions in terms of joint angles and end-

effector positions. Let q be the generalized coordinates of the skeleton, and pe

be the position of end-effectors, that include LeftHand, RightHand, LeftFoot,

RightFoot, and Head, relative to the moving coordinate frame attached to the

root.

rq = exp
(
− σq

∑
j

∥q̂j(ϕ)⊖ qj∥2
)

re = exp
(
− σe

∑
e

∥p̂e(ϕ)− pe∥2
) (3.12)

Here, the hat symbols indicates desired values taken from the reference data, j

is the index of joints, and e is the index of end-effectors. The joint configurations

are represented by unit quaternions and the quaternion difference is denoted

by q1 ⊖ q2 = ln(q−1
2 q1) [96]. In our experiments, the weights are σq = 2.0,

σe = 40.0, wq = 0.9 and wg = 0.1.

Note that we multiply two imitation rewards rq and re, while the task

reward is added to them. The multiplication gets rewards when both terms

are rewarded. It makes sense because joint angles and end-effector positions are

tightly related with each other. The end-effectors of two motions are supposed

to match well if their joint angles match well, and vice versa. High joint angle

match reward rq necessarily leads to high end-effector match reward re and
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thus they tend to reinforce each other. The relation between the imitation

and task objectives is conflicting rather than reinforcing. The weighted sum of

rewards allows each individual objectives to be pursued while searching for the

compromise between conflicting goals.

3.3.2 Muscle Coordination

Muscle coordination is a problem of deciding activation levels for all muscles

that achieve desired joint accelerations or torques. Since the human body has

more muscles than minimally required to actuate joints, muscle coordination is

an under-specified problem and thus infinitely many solutions exist. A standard

solution method formulates the problem as Quadratic Programming (QP) that

minimizes two objectives.

min
a

∥q̈d(u)− q̈(a)∥2 + wreg∥a∥2

subject to Mq̈ + c =
∑
m

J⊤
mfm(am) + J⊤

c fc + τext

0 ≤ am ≤ 1 for ∀m.

(3.13)

The first term encourages that a coordination of muscle activations generates

desired accelerations and the second term regularizes large activations. The

equality constraint ensures the equation of motion of the musculoskeletal model,

while the inequality constraints enforce the normalized range [0, 1] of muscle

activations.

We do not solve for the QP explicitly, but reformulate the problem into the

regression-by-supervised-learning framework, which can be incorporated into

DRL. Let a = πψ(q̈d(u), smuscle) be a network policy that maps desired accel-

erations to muscle activations. Here, muscle state smuscle = (vec(A),p) encodes

information as to converting muscle activations into muscle forces in the joint

space such that
∑

m J
⊤
mfm(am) = Aa + p. The matrix A should be vectorized
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to feed into the network policy. Since A is sparse and its structure is fixed,

we compactly pack non-zero values in the vector conversion. Acceleration q̈ is

a function of a as shown in Equation (3.8). Incorporating Equation (3.8) into

Equation (4.14), the loss function for training πψ is:

Loss(a(ψ)) = E
[
∥q̈d(u)− La(ψ)− b∥2 + wreg∥a(ψ)∥2

]
(3.14)

Instead of modeling inquality constraints explicitly, we use a bounded activa-

tion function, such as sigmoid, at the output layer to enforce the normalized

range of muscle activations. To solve for a regression network minimizing the

loss function, we need to sample a large collection of tuples (L,b,u, vec(A),p).

Since DRL for trajectory mimicking readily generates numerous episodes dur-

ing training, we sample tuples for regression from the episodes. During learning,

our algorithm alternates between the trajectory mimicker and the muscle coor-

dinator to collect tuples and jointly update the policy and value networks using

a stochastic gradient descent method.

Our formulation might look somewhat different from the standard formu-

lation of regression or supervised learning, which is supposed to take ground

truth values as input and minimizes the discrepancy between the ground truth

and the network output. Since we want to compute activation levels as the out-

put of the regression network, the ground truth activation a∗ is required in the

standard form. Even though there is no ground truth value in our formulation,

our loss function can evaluate how good the network output is with respect to

the objective of muscle coordination. The objective is provided in terms of PD

target u, the geometric alignments and physiological parameters of musculoten-

don units (A and p), and the equation of motion (L and b). The loss function

alone without ground truth values is sufficient for regression.

The ability to remove inequality constraints from the QP formulation is an

31



unexpected benefit of using neural networks. The most time-consuming step in

solving QP is dealing with inequality constraints. Without the constraints, QP

can be reduced to a system of linear equations that can be solved very efficiently.

The use of a bounded network activation function allows us to reformulate

the problem without constraints and thus simplifies the solution method. The

standard network update and backpropagation steps can readily handle the

unconstrained problem.

3.4 Experimental Results

3.4.1 Simulation Settings and Muscle Parameters

Our dynamic simulation is written in C++. Open source library DART is used

to simulate skeletal dynamics [97]. The implementation code and the data are

available at https://github.com/lsw9021/MASS. Each bone is approximated

using an oriented bounding box to estimate its inertia tensor and detect bone-

to-bone and bone-to-ground collision. Our character is 170cm tall and weighs

72kg.

Our model has two versions of foot models. In our examples, we mostly

used the simplified two-toe foot for its computational efficiency and the multi-

segment foot was used only when we had to simulate delicate foot motion

at extra computational costs. The multi-segment foot consists of two passive

joints (Calcaneocuboid and Naviculocuneiform) and ten active joints between

Metatarsal and Phalangeal bones. The sole is represented by linear blend skin-

ning with respect to foot bones. The points on the sole collide and contact with

the ground surface to support the body. The collision/contact response is com-

puted by an LCP solver. To reduce unnecessary movements of individual toe

joints, we sorted the toes into two groups and controlled each group as if they
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are a reduced deformable model [56]. The passive joints are a spring-damper

system that absorbs foot-ground impact. The simulation time step is 900Hz

for most of the examples except for highly dynamic motor skills, such as Kick

and Cartwheel, which requires smaller time step 1500Hz. The use of the multi-

segment foot also requires small time steps (1200Hz) for simulation stability

(see Table 3.1).

We constructed our musculoskeletal model starting from a human skeleton

geometry. We annotated origins, insertions, and waypoints of all muscles and

tuned their physical parameters including the maximum force, rest length, and

muscle-tendon ratio of all muscles. The muscle is divided into multiple mus-

culotendon units if it origins or inserts at multiple points or areas. A short,

curved, thick muscle such as Deltoid and Glueus Maximus is also divided into

3 to 5 musculotendon units. The weights wj of linear blend skinning were ini-

tially set to be inversely proportional to the distance to nearby joints and then

tuned manually to avoid penetration into bones. We referred to the OpenSIM

data [98] to set the initial values of physical parameters and also tuned the

values further to make the model viable for physics-based simulation.

3.4.2 Control System Settings

Our control system heavily relies on deep neural networks. We use an open

source deep learning platform Pytorch to construct the networks [99]. Our tra-

jectory mimicking policy is trained using PPO [95]. During training, Intel 4

core i7-7700 CPU generate tuples in parallel. Whenever 2048 tuples are col-

lected, the neural networks are updated with a minibatch of size 128. We use

NVIDIA 1070Ti GPU to accelerate the update and backpropagation of the

neural networks. In our experiments, we stack four fully connected layers with

256 nodes for trajectory mimicking and five fully connected layers with 512
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Table 3.1: Simulation parameters

Motion Control Hz Simulation Hz Length(s)

Walk 30 900 1.05

Run 60 1500 0.55

Jump 30 1200 2.21

Dance 30 900 3.17

Deadlift 30 900 2.16

Cartwheel 60 1500 2.38

Kick 30 1500 1.92

nodes for muscle coordination without dropout, and both are initialized using

Xavier initialization. The policy and value networks are updated at learning

rate 10−4, which is linearly decreased to 0 when 20 million tuples are collected.

The Gaussian noise with a diagonal convariance matrix is used for exploration

during training and we set each standard deviation to be 10 percent of the full

range of the motion. All the noises are ignored in run-time simulation.

The regression network for muscle coordination is updated jointly with the

trajectory mimicking networks. We collect the same number of training tuples

for trajectory mimicking and muscle coordination regardless of a discrepancy in

their inference rates. We tested two types of activation functions for bounding

the range of muscle activations to [0, 1]: Sigmoid function and hyperbolic tagent

function followed by ReLU. We found that the latter works better in many cases.

We suspect that the performance difference is related to initialization. The

sigmoid function centers at 0.5, while the clipped hyperbolic tangent function is

zero when its input is zero. The regression network is also updated at learning

rate 10−4 and the minibatch size is 128. The learning takes 12 to 36 hours
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Figure 3.5: The eight phases of gait cycle. Activation levels at lower-limb muscles

are plotted in black dotted lines. The EMG reference data are shown in red solid

lines.

with 10 to 30 million tuples for challenging examples. We sometimes accelerate

learning process by using the network parameters learned by a torque-actuated

model as an initial guess.

3.4.3 Assorted Motor Skills

We learned assorted motor skills from reference motion capture data available

on the web. The motion data clips were retargeted to our model using Autodesk

MotionBuilderTM. Table 3.1 shows the list of motion clips and simulation pa-

rameters.

Gait Cycle

Walking is one of the most fundamental movements of the human body. The gait

cycle of human walking has been comprehensively studied and abundant biome-

chanical data acquired from human subjects are available. The eight phases of
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gait cycle are broadly accepted and the function of muscles at each phase is

thoroughly analyzed [100]. We compare our simulation results with the refer-

ence electromyography (EMG) data during gait cycle in Figure 3.5. Note that

the EMG signal is a reliable source of measuring the activation and deactiva-

tion timing of muscles, but the magnitude of the signal is not accurate. So, we

plotted the activation and deactivation of muscles in red lines. The plots show

that our simulation results match the reference EMG data pretty well except

for Tibialis Anterior, which is supposed to dorsiflex the ankle during swing

phases to increase toe-ground clearance. High toe-ground clearance in dynamic

walking tends to decrease tripping risk. The walking data in our experiments

exhibit a relaxed gait with relatively low toe-ground clearance and therefore

the ankle dorsiflexion is not accentuated.

Sargent Jump

We learned a vertical jump controller from a single reference motion clip that

allows us to generate a continuous spectrum of vertical jump motions parame-

terized by target heights. To do so, the task defines a reward function:

rg(s) = e−γ(ŷCOM−yCOM(s))2 + e−γ(ŷlf−ylf(s))
2

+ e−γ(ŷrf−yrf(s))
2

(3.15)

where ŷCOM, ŷlf , and ŷrf denote respective target heights for the center of mass

and both feet, and shape parameter γ = 40.0 modulates task rewards. In the

spirit of curriculum learning, we first learned the jump task captured in the

reference data with ŷCOM = 1.3 meter and ŷlf = ŷrf = 1.0 meter, and gradually

increased the parameters by 0.01 to address incrementally more challenging

tasks. The reference motion is also timewarped to match the increased target

heights. The learning at each level increases target heights if the character hits

the target and successfully lands in balance, or the learning terminates if there
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Figure 3.6: The Deadlift example. (Left) The number of maximally activated

muscles. (Right) The height of the bar relative to simulation time.

is no improvement in target height over one million tuples. Interestingly, the

character learned to use arms more dynamically to jump higher.

Deadlift

The character learned to lift the bar with weights from the ground to the

pelvis height. Similarly to the previous jump example, we gradually increased

the weights to learn incrementally more challenging tasks. The bar is attached

to the hands using zero-DOF joints. The simulated character has to use its

full potential of muscle capabilities. Whenever the mass is increased, it has

more muscles that maximally activate during motion (see Figure 3.6). Those

maximally-activated muscles lose control over joint motion and therefore the

controller has to learn a different muscle coordination for the increased mass.

As the mass increases, the strenuous control response tends to get jerky. Our

reward function provides a stationary objective of maintaining the balance of

the bar.

rg(s) = e−γ||pleft−pright||2 (3.16)

where pleft and pright are two-dimensional vectors from the center of the bar

to the left and right weights, projected to the character’s sagittal plane. The
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reward function penalizes the bar tilting up and down or leaning back and forth.

Prosthesis

We also learned walking, running, and dancing with a prosthetic leg (see Fig-

ure 3.8). Prosthesis is an artificial device that replaces the missing body parts.

The goal of designing such a device is restoring the functionality of the missing

body parts, capable of reproducing almost same movements of a healthy per-

son. Starting from the motion of a normal person, our policy learning algorithm

simulates the process of adapting to the prosthetic leg. We designed two types

of lower extremity prostheses: Transtibial and transfemoral (see Figure 3.9).

Both have a revolute joint with a passive spring damper system to model the

compliant reaction of the prosthesis. The spring is stiff with coefficient 1000.0

and its damping coefficient 2
√

1000.0 is set to critical damp.

3.4.4 Pathologic Gaits

Many pathologic gait patterns can be attributed to musculoskeletal conditions

such as bone deformity and muscle deficiency. We consciously created such

pathologic conditions in our model to see if gait patterns are generated as

intended. Specifically, we implemented two types of conditions: Muscle con-

tracture and femoral anteversion. Contracture is the shortening or stiffening of

muscles, that results in decreased movements and range of motion. Femoral an-

teversion is an inward twisting of the femur (thigh bone), resulting in in-toeing

gaits. Both symptoms can be easily incorporated into our model by adjusting

the rest length of the muscle and twisting the geometry of the femur.

We want to simulate pathologic gaits starting from normal gait patterns.

If the pathologic conditions are mild, our learning algorithm can adapt to the

conditioned body automatically. However, with severe conditions, the reference
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Figure 3.7: Assorted motor skills: Walk, run, sargent jump, deadlift, cartwheel,

and kick.

Figure 3.8: Walking, running, and dancing with a prosthetic leg.
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Figure 3.9: Transtibial and transfemoral prostheses.

gait may violate the reduced range of motion at joints and the in-toeing stance

foot may slide or penetrate through the ground surface. We can benefit from an

optimization-based pre-processing phase that modifies the kinematic trajectory

of the input gait to better fit to the conditions. The optimization is solved for

every qt of the input gait sequentially in a frame-by-frame manner.

min
qt

wpos∥qt − q̂t∥2 + wvel∥qt − q̂t−1∥2+

wcom∥pcom(qt)−
1

2
(pLeftFoot(q̂t) + pRightFoot(q̂t))∥2

subject to Cm(qt) ≥ 0 for ∀m,

where q̂t denotes the reference motion. The first and second objectives penal-

ize the deviations in position and velocity between the reference and output

motions. The third objective encourages that the center of mass is nearby the

support polygon. The inequality constraints enforce the reduced range of mo-
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Figure 3.10: Pathologic Gaits. (Top to Bottom) Hip flexion contracture, tip toe,

asymmetric stiff knee, and multiple symptoms.
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Figure 3.11: Orthopedic surgery simulation.

tion. We used IPOPT [101] to solve for the frames.

With the aid of this optimization, we successfully learned four types of

pathologic gaits (see Figure 3.10). The first example has the contracture of the

psoas majors, which are strong hip flexors. Hence, their contracture results in

permanent flexion of the hip joints. The second example has the contracture

of the gastrocnemius and the soleus muscles, which results in stiff ankles and

thus the character has to tip-toe. In the third example, the contracture of

the major muscles in the left thigh results in stiff knees. Finally, the fourth

example has a combination of multiple conditions, including the contracture of

hamstring/quadriceps muscles in the thigh, the contracture of the triceps surae

in the calf, and femoral anteversion. This combination of symptoms result in

flexed knees, stiff ankles, and in-toeing feet.

Surgery Simulation

We simulated four types of orthopedic surgeries (TAL, RFT, DHL, and FDO),

which are performed frequently to Cerebral Palsy patients (see Figure 3.11).

Specifically, FDO (Femoral Derotational Osteotomy) is a procedure that cor-

rects rotational deformities in the thigh and helps correct in-toeing and out-
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toeing during walking. The rectus femoris and hamstrings are large muscles in

the front and back of the thigh, which have significant influence on walking.

RFT (Rectus Femoris Transfer) and DHL (Distal Hamstring Lengthening) are

procedures of transferring a muscle insertion to reduce the muscle tension. RFT

and DHL together result in improving the range of motion in the knee joints.

TAL (Tendo-Achilles Lengthening) is a procedure that lengthens the Achilles

tendon to reduce the tension of the calf muscles, which can widen the range of

motion of the ankle and consequently alleviate the symptoms of tiptoe walking.

Implementing the effect of the surgeries is straightforward. We adjusted the tor-

sion angle of the femur (FDO), moved the insertions of the rectus femories and

semitendinosus (RFT and DHL), and changed the rest length of the Achilles

tendon (TAL). The modified musculoskeletal model learned post-operative gaits

that serve as predictive outcomes of the surgery simulation.

3.5 Discussion

Simulating virtual humans in physics-based simulation has been a long standing

challenge in computer graphics. Our hierarchical network architecture enables

reinforcement learning to address both long-term planning of trajectory mim-

icking and short-term muscle coordination in a unified framework, resulting in

a scalable algorithm to simulate and control realistic human movements with

highly-detailed musculoskeletal models.

Our algorithm scales remarkably well with the complexity of simulation

models, though we have not tried to rigorously evaluate its asymptotic behavior.

Each iteration of PPO includes 2048 frames of physics simulation accelerated

by multi-threading. The torque-actuated model with 50 degrees of freedom and

our musculoskeletal (two-toe foot) model with 284 muscles take 5.74 and 13.93
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seconds for the iteration, respectively. Our examples requires 10 to 35 millions

of tuples to learn their controller, taking about 12 to 36 hours of computation

time. A low energy motion such as walking requires between 10 to 20 millions

of tuples, while high energy motions such as cartwheel and jump require more

experience tuples. The cartwheel example samples 35 millions tuples, taking 36

hours until its learning curve plateaus on a single PC. The use of multi-segment

feet with 346 muscles requires about 40% more computation. Since runtime

simulation cannot exploit multi-threading, the muscle-actuated simulation runs

slightly slower than real-time.

Our framework also has numerous limitations. Our method heavily relies

on domain-specific knowledge on anatomic modeling and physics-based simu-

lation. The scalable end-to-end training of a full-body muscle-actuated motor

skill without any domain knowledge is still an open problem. The success-

ful anatomical simulation requires precise modeling of anatomical structures,

careful tuning of kinematic, dynamic, and physiological parameters of muscu-

lotendon units and their geometric alignments. Currently, we rely on manual

parameter tuning and incremental design refinements. The design and construc-

tion of an anatomic model viable for physics-based simulation is a challenging

problem. It might be possible to develop an automatic procedure or algorithm

that evaluates the functionality of musculotendon units and refines its geometric

and physiologic parameters in accordance with its functionality.

Our multi-segment foot model added subtle, yet important details to simu-

lated movements. The foot anatomy includes 26 bones connected by 33 joints,

and numerous muscles, ligaments, and soft-tissue structures contribute to both

active and passive (impact absorbing) behaviors of the foot. Our foot model still

lacks a lot of important anatomical features. We found that the implementation

of some passive features is beyond the scope of muscles and bones. Designing
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an anatomically accurate foot model would be an important corner stone for

achieving the high-quality simulation of realistic human behavior, which poses

a subject for future research.

We can think of many applications that can exploit our new technology. Our

surgery simulation example shows the potential of our approach from the medi-

cal viewpoint. Predictive gait simulation can be a useful tool for medical doctors

who treat patients with gait disturbance and plan surgical procedures for them.

Medical doctors often have to decide which surgical procedures would be ap-

propriate to the patient among several combinations available to the patient.

Predictive gait simulation allows us to predict the outcomes of each surgical

option and visualize the results.
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Chapter 4

Dexterous Manipulation and
Control with Volumetric Muscles

As we demonstrate simulation framework for full-body musculoskeletal model,

we simplify the muscle geometry and its contraction dynamics with line-segment

primitives and closed-form arithmetic force-curve functions respectively. This

approximation implies that the representation of the muscle dynamics is limited

to express anatomical facts such as muscle-muscle contact and cross sectional

muscle contractile forces. Such anatomical features relate to muscle geometries,

and we need to define the muscle model in details. In enhancement of line-

segment approximations that prior work is overwhelmingly restricted to, we

incorporate volumetric muscle actuators into our framework. This drastically

increases the dimensionality of our framework, and it is computationally de-

manding to simulate volumetric muscles. In this chapter we discuss efficient

simulation for the volumetric muscles that are tightly coupled with a control

system capable of demonstrating complex motion tasks such as juggling, and

weightlifting sequences with variable anatomic parameters and interaction con-
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straints.

4.1 Overview

Complex movement of a human body emerges from the geometrical structure

of the musculoskeletal system and its mechanical characteristics. The skele-

ton supports the body, and the muscles contract to induce motion of the at-

tached bones. The human brain coordinates the activations of the muscles in

harmonious synergy, to create intended bulk motion or maintain kinematic bal-

ance. In Computer Graphics, there is a strong research trail of methods for

reproducing natural human motion by incorporating the true mechanics of the

musculoskeletal system. However, common modeling assumptions such as the

near-ubiquitous adoption of line-segment primitives for the actuation of such

systems raise a number of important questions: First, it is not well understood

what impact such simplifying assumptions may have on the accuracy and biome-

chanical fidelity of the simulations thus produced. Second, it is unclear if we

could forego such simplification by just accepting an increase in the compu-

tational cost, or whether current control formulations would be challenged to

accommodate more complex, volumetric actuators. Finally, it is reasonable to

question whether the incorporation of volumetric muscle primitives with con-

trol techniques can cope with the complexity of regenerating highly coordinated

dexterous skills.

The Hill-type muscle model [4, 5] has been broadly adopted to encode the

nonlinear contraction dynamics of muscle in fields such as ergonomics, com-

puter graphics, and robotics. However, almost every prior attempt at tightly

coupled simulation and control of the musculoskeletal system has resorted to

simplifying muscles into sequences of line segments (some of which are capable
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of active contraction), consciously neglecting the geometrical structure of volu-

metric muscles (e.g. cross-sectional geometry and active fiber field distribution).

In addition, various physical parameters such as pennation angle, maximum

force, and way-points in the Hill-type muscle model have to be tuned according

to the actual muscles, in order to empirically match the physiological behavior

of observed human motion.

Prior work has progressed towards tightly integrated volumetric muscu-

lature simulation and control, but has stopped just short of achieving this

goal. Lee and his colleagues demonstrated a volumetric musculoskeletal sim-

ulation, but derived bone kinematics and muscle activations from a separate

line-segment simulation and controller [13]. A volumetric simulation is primar-

ily used for visualization and to mediate force transfer from an aquatic environ-

ment to the skeleton, while the controller still uses line-segment muscles [14].

Fan and his colleagues demonstrates the impressive accomplishment of stable

articulation of the skeleton based on the action of volumetric primitives; never-

theless, control is consciously left outside the scope of this work [19]. Volumetric

muscles have been used in tight integration with control in the realm of facial

animation [21], but without directly articulating the mandible, nor including

any other skeletal bones. We claim that this paper presents the first work in

musculoskeletal simulation in the domain of computer graphics that successfully

incorporates volumetric muscles in tight integration with a motion controller.

The Finite Element Method (FEM) has been used in a large segment of

prior work on anatomical simulation, and it affords a broad spectrum of consti-

tutive models to convey the mechanics of biomaterials. In our work, however,

we use a Corotated Elasticity formulation for the background isotropic elastic-

ity of muscle tissue [29, 25], which allows us to employ Projective Dynamics [3]

for improved robustness and performance. In addition, we contribute a novel
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Figure 4.1: (Left) The simulated muscles and skeletal components. (Middle)

Low-resolution and high-resolution simulation meshes. (Right) Idealized Hill-

type actuator.

formulation by which the active Hill-type muscle force can be accurately added

to the Projective Dynamics framework, while retaining the robustness and effi-

ciency of the method. We demonstrate how Jacobians of muscle forces, required

for optimization-based motion controllers, can be analytically computed via a

quasistatic assumption of the muscle deformation. The simulation framework is

combined with a two-level trajectory optimization approach, motivated by the

formulation of Lee et al. [49] and adapted to the intricacies of our volumetric

actuators.

4.2 Human model

Our model focuses on the upper body musculoskeletal system. We use an ar-

ticulated skeleton with 19 degrees of freedom, and 130 motor units (i.e. inde-

pendently activated contractile regions within muscles), as illustrated in Figure

4.1(left). The skeleton is actuated as a result of muscle excitation, which is

respectively governed by nonlinear internal dynamics. We simulate volumetric
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muscle volumes, discretized into individual tetrahedral meshes, with constitu-

tive properties following a Hill-type model [4]. Sections 4.2.1 and 4.2.2 detail the

volumetric muscle model discretization and simulation, Section 4.2.3 describes

our modeling of the skeletal system, while coupling between the two is detailed

in Section 4.2.4.

4.2.1 FEM simulation

We assume tetrahedral meshes of muscles provided as input. Since we individ-

ually simulate each muscle volume (which might however contain several inde-

pendently controllable contractile regions), consider any individual one of these

meshes with k discrete vertices. The state of this muscle model is represented

in the nodal positions xn ∈ R3k and velocities vn ∈ R3k, where the subscript

indicates a time instance tn in the dynamic evolution of this model. Integrating

the equations of motion in accordance with a Backward Euler scheme, provides

the following update rule:

xn+1 = xn + hvn+1

vn+1 = vn + hM−1(fint(xn+1) + fext) (4.1)

where h denotes the length of the time step, M ∈ R3k×3k is the mass matrix, and

fint(x) = −∇xE(x) are internal forces computed from an elastic strain energy

E(x), and fext is the external force. We note that, in principle, the internal

forces could also be dependent on the nodal velocities (v) as well; this could be

the case if explicit damping was incorporated into our methodology, or when

material properties are allowed to vary as a function of velocity. We do not

include explicit damping in our simulation, but there are velocity-dependent

material properties stemming from the force-velocity relationship of Hill-type

muscles as discussed in Section 4.2.2. In order to simplify our evolution, we use

50



the velocity computed at the end of the previous time step (vn) whenever this

appears in the expression of equation (4.1), essentially rendering it a constant

for the purposes of the evolution from time tn to tn+1; hence, for simplicity we

retain the notation fint(xn+1) for the forces in the update equation, indicating

that only the positions xn+1 are to be solved for.

In general, the Backward Euler update is solved by using a Taylor expansion

to approximate the nonlinear force as f(xn+1) ≃ f(xn)+ ∂f
∂x

∣∣
xn

(xn+1−xn). This

approximation yields the following linear system, which we alternate between

solving and updating the linearization, until convergence:[
M− h2 ∂f

∂x

]
vn+1 = Mvn + h(fint(xn) + fext) (4.2)

In order to reduce the computation cost and improve the robustness of the

Newton approach, we adopt the Projective Dynamics formulation [3], who

solve an equivalent problem by alternating an efficient and parallelizable local

update rule, with a global purely quadratic problem, which can be accelerated

by pre-factorizing its Hessian as a one-time cost. The Projective Dynamics

formulation is centered on the premise that certain elastic strain energies can

be written as the sum E(x) =
∑

iEi(x), where each term Ei(x) (conceptually

associated with an individual constraint) has the form:

Ei(x) = min
pi∈Ci

k

2
∥Aix− pi∥2 (4.3)

Here, Ci is a manifold associated with each individual constraint, and pi is the

“projection” of the quantity Aix onto this manifold, which makes this energy

match the expression of the original strain energy, once the solution has been

reached. The definition of Ai and the process for computing the projection pi

is problem-dependent; for details we refer to the original work of [3]. The local

step amounts to updating all pi values by projecting Aix onto each respective
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Ci, and in the global step we solve the pure quadratic system in equation (4.3)

by assuming all pi to be held constant to their computed projections. For our

problem, this global step amounts to the solution of the equation:

(M + h2L)xn+1 = M(xn + hvn + h2M−1fext) + Jd (4.4)

where L =
∑

iA
T
i Ai, J =

∑
iA

T
i Si, d =

∑
i S

T
i pi, and Si are selector matrices,

such that pi = Sid.

Since the matrix of this system is constant we use Cholesky decomposition

to factorize it as a pre-processing step. Furthermore we adopted a quasistatic

assumption which is fast and robust, by taking the limit of this equation as

h → ∞. Although this simplification eschews dynamic effects (e.g., jiggling),

we found it to have minimal impact on our controller, partially due to the

fact that muscles are attached to the bones tightly, reducing the effect of the

inertial motion on simulation. Under the quasistatic hypothesis, equation (4.4)

simplifies to:

Lxn+1 = fext + Jd (4.5)

4.2.2 Muscle Model

In contraction dynamics of Hill-type muscles, the muscles are divided into three

parts according to their role, as seen in Figure 4.1(right). Those three parts are:

the Passive Element (PE) modeling the background elasticity of the muscle, the

Contractile Element (CE) generating the force when the muscle excites, and the

Serial Element (SE) modeling the tendon which transfers the muscle-generated

force to the skeleton. We discuss how each component is accounted for in our

simulation framework.
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Passive Element

We use a simple Corotational Elastic energy for modeling the background

isotropic elasticity of each muscle:

ΨPE(F) =
1

2
µ∥F−R∥2 (4.6)

where µ is the Young’s modulus , F = UΣVT is the deformation gradient

for the element, and R = UVT . This is the exact constitutive model that

the Projective Dynamics formulation is centered around [3]. Equation (4.6)

provides the energy for each tetrahedral element, and each such tetrahedron

gives rise to one constraint Ci in the Projective Dynamics formulation, where Ai

is the linear operator that maps nodal positions x to the deformation gradient

Fi of the i-th element, and the projection operation maps Fi = UΣVT to

its rotational component pi = R = UVT . Incorporating volume preservation

into the formulation is mathematically involved. We refer to their paper [3] for

volume preservation and details on the relevant algebra.

Contractile Element

Physiologically, when the excitation signal is delivered to the muscle, actin and

myosin fibers pull each other and contract the muscle. In accordance with the

approach in prior Finite Element muscle modeling approaches [11, 13], we model

the anisotropic action of the contractile element by an additive contribution

to the strain energy Ψm(l), which is taken to be dependent only on the fiber

stretch factor l = ∥Fd∥, where F is the deformation gradient and d is a unit

vector in the direction of the muscle fiber. An explicit expression for Ψm(l)

is typically never referenced or pursued, as only the gradient and Hessian of

this energy will ever be used in an FEM simulation. The derivative of this
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quantity, however, is the fiber tension which is given by the well-known Hill-

curve ∂Ψm/∂l := fhill(l, l̇, a) and this expression is the one actually used in

simulation, where a is the level of muscle activation. An application of the

chain rule provides the following formula for the Piola-Kirchhoff stress:

Pm :=
∂Ψm

∂F
=
∂Ψm

∂l
· ∂l
∂F

= fhill(l, l̇, a) · 1

l
FddT (4.7)

from which nodal forces can be readily computed. Sifakis and Barbic provide

the relevant details for tetrahedral meshes [102]. It is well understood that the

Projective Dynamics formulation of [3] supports a specific and somewhat narrow

scope of materials within its core formulation, due to the requirement that the

energy being minimized must be expressible in the form of equation (4.3). This

narrow scope motivated the later approach of Liu et al. [103] that provided the

opportunity to accommodate a broader gamut of materials, with some modest

compromises in the robustness and efficiency of the prior formulation [3] (e.g.,

the need to incorporate a line search for stability).

We introduce a novel approach to incorporate the Hill-type muscle force

into the exact formulation mandated by the Projective Dynamics framework.

We do so by defining the following energy associated with each muscle, in the

exact fashion of equation (4.3):

ΨCE(F) =
1

2
k∥Fd− p(l, l̇, a)∥2 (4.8)

where k is a stiffness coefficient. In the local step of Projective Dynamics, the

vector p(l, l̇, a) is chosen in the subspace of vectors parallel to Fd, with the

specific scale factor in the expression below:

p(l, l̇, a) =

[
1− fhill(l, l̇, a)

k · l

]
Fd (4.9)

In the provided Appendix, we demonstrate that with the selection of this special

value of p, the Piola-Kirchhoff stress ∂ΨCE/∂F computed by this expression
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matches exactly the value of Pm in equation (4.7) corresponding to the stan-

dard active muscle stress of prior FEM approaches; thus, at equilibrium this

Projective Dynamics formulation reproduces exactly the Hill-type muscle force

that prior FEM muscle simulation formulations employed. With p = p(l, l̇, a)

taken to be constant (in the global step), the expression ΨCE(x) becomes a

pure quadratic (F is a linear function of nodal positions x, as mentioned in the

treatment of the corotated energy), and the Projective Dynamics formulation

becomes fully applicable. We ultimately compute nodal forces via the Piola-

Kirchhoff stress in equation (4.7), and distribute them to the forces of each

simulated tetrahedron [102]. Note that the choice of the coefficient k in equa-

tion (4.8) is arbitrary; however, for adequately large values of k, the provided

expression for p(l, l̇, a) most closely approximates a true Euclidean projection in

the vector subspace spanned by Fd. We found that a value of k = 107 (compare

with µ = 5 · 106) generated robust convergence in our examples.

Serial Element

The Serial Element models the tendons on either side of the contractile segment

of the muscle, and transmits the force to the bone insertion. Physiologically, the

tendon is very stiff compared to the muscle and sustains very minimal elongation

even under full muscle activation. Therefore, it was our design decision to model

the tendon as a taut, inextensible wire that provides the boundary condition

for the volumetric muscle simulation, by following the path of the conventional

piecewise line-segment muscle primitive, from the insertion and through any

way-points, until its reference length has been traversed. The endpoint of the

tendon thus routed provides the Dirichlet boundary condition for our volumetric

muscle simulation.

We also use this idealization of the tendon as an inextensible wire, which
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is routed through the muscle way-points to transmit the force generated by

the volumetric muscle to the attached bones. We do so by rigidly transforming

(i.e. rotation) the force along the way-points. Focusing on the way-points of

origin of ith muscle, the axis of wire between (j − 1)th and jth way-point

can be defined as uj =
pj−1−pj

∥pj−1−pj∥ (See Figure 4.2). Starting from the Dirichlet

boundary, j = 0, · · · , s − 1 is an index of the way-points, s is the number of

the way-points on the origin side and pj is position of jth way-point. The force

at the Dirichlet boundary f̃ is transmitted to the end of wire, applying tension

forces to the way-points:

f−j = ∥f̃∥uj , f+j = −f−(j+1)

where f−j is the tension force of jth way-point, and f+j is a reaction to the force

f−(j+1), resulting in conservation of total momentum.

forigin = (fT0 , f
T
1 , · · · , fT(s−1))

T

where fj = f−j + f+j . We apply the same procedure to the way-points on the

insertion side and lump the forces into single vector f .

A single muscle volume may contain multiple individually activated motor

units. Our model captures this ability by attaching multiple serial elements

to individual Dirichlet nodes of a muscle mesh, and modeling several distinct

contractile elements within a single simulation volume. For example, the Biceps

consist of two motor units (Figure 4.2), one originating from the long head, the

other from the short head. Our upper body model incorporates a total of 130

motor units.
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Figure 4.2: Transmission of muscle force to bone. A rigid transformation is ap-

plied such that a vector in the direction of the central (contractile) line segment

will be rotated parallel to the line segment adjacent to the insertion.

4.2.3 Skeleton model

The Euler-Lagrange equations for the dynamics using generalized coordinates

can be represented as follows:

M(q)q̈ + c(q, q̇) = JTmfm(a) + JTextfext (4.10)

where q is the vector of joint angles, M(q) is the generalized mass matrix,

c(q, q̇) represents the Coriolis and gravitational forces, fm = (fT(0), f
T
(1), · · · , f

T
(r−1))

T

are the muscle forces with the number of muscles r, f(i) is the force acting

on ith muscle and its way-points, fext is the external force, Jm and Jext are

Jacobians which map generalized coordinates to Cartesian coordinates, and

a = (a0, a1, ..., ar−1) are the muscle activation levels, where ai corresponds to

the ith motor unit. Internally, Jm includes all the information of the muscle

attachment points.
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Figure 4.3: The overview of our simulation and control framework: Rigid body

states set Dirichlet boundaries for muscle force computation. Our hierarchical

controller takes both rigid and soft body states as input and optimizes joint

trajectories and muscle activation levels.

4.2.4 Coupling

Forward simulation for the musculoskeletal model proceeds by synchronous evo-

lution of the FEM simulator and the rigid body simulator. At time tn, for a

given skeletal pose the boundary conditions for the volumetric muscle simula-

tion are computed via the Serial Elements, as mentioned earlier in this section.

The FEM simulator solves for the equilibrium shape of the muscle volume, in

accordance with equation (4.5). Muscle forces are transmitted from the Dirich-

let nodes of simulated meshes to the bones via the Serial Element, and finally

the dynamic state of the skeleton is advanced using the equations of motion, as

summarized in Algorithm 1.

4.3 control

We animate the musculoskeletal model by proposing a two-level hierarchical

controller. The low-level controller tracks the desired motion on a per-frame

basis and the high-level controller optimizes the motion given a specific task,

such as juggling. Combining the robustness of the low-level controller and the

generality of the high-level controller, our model can generate a diverse range

of desired motion patterns under dynamic situations.
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Algorithm 1: Forward Simulation

Data: a(t) : muscle activation levels.

begin

x0 : initial positions of the soft body.

q0, q̇0 : initial positions and velocities of rigid body.

for t = t0, t1, · · · , do
B ←− SetBoundaryConditions(qi)

f̃ ←− SolveQuasiStatics(B,xi,a(ti))

fm ←− TransferForces(f̃)

qi+1, q̇i+1 ←− ForwardDynamics(qi, q̇i, fm, fext)

end

end

The main objective of the low-level controller is to find optimal activa-

tion levels for all muscles, tracking a given reference motion at each frame.

To achieve this, we adapt the QP-based control method [49, 13] to our model

with volumetric muscles. We explain how the muscle Jacobians are computed

by leveraging the quasistatic simulation assumption for muscle volumes, and

how precomputed factors in the Projective Dynamics formulation can accel-

erate their computation. Using the low-level control, our high-level controller

constructs the reference motion by solving an optimization problem at each

frame. Our controller can flexibly generate desired motion patterns using pa-

rameterized curves without the need for any motion capture or key framing

data.

4.3.1 Low-level controller

The goal of the low-level controller is to compute muscle activations for track-

ing the desired motion on a per-frame basis. A slight complication is that our
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musculoskeletal model is under-determined because the number of degrees of

freedom for the skeleton is smaller than that for the muscle activations. Thus,

there are many solutions for the same pose, and among them our system must

choose one. As detailed below, we compute the solution minimizing three ob-

jectives (tracking, effort, and smoothness) through the optimization.

Tracking.

To track the given motion qd, we compute the desired acceleration q̈d based on

PD (Proportional Derivative) control and penalize the difference between the

actual joint acceleration q̈ produced by muscle actuation.

Etracking = wtracking∥q̈d − q̈∥2,

q̈d = kp(qd − q) + kv(q̇d − q̇)
(4.11)

where kp, kv are gains for PD control.

Effort.

Humans move so as to minimize the required effort [104]. Thus, we introduce

an objective function that penalizes effort by minimizing the required muscle

activations.

Eeffort = weffort∥a∥2 (4.12)

Smoothness.

Physiologically, in activation dynamics, there are processes that convert neural

signals to muscle activations [4]. This prevents sudden changes in activation

levels. Thus, we penalize the variation of current muscle activations.

Esmooth = wsmooth∥ȧ∥2 (4.13)
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Using the three objectives described above, our low-level controller can be

formulated as the following quadratic program:

min
q̈,a

Etracking + Eeffort + Esmooth

subject to M(q)q̈ + c(q, q̇) = JTmfm(a) + JTextfext

0 ≤ ai ≤ 1 for i = 0, 1, · · · r − 1

(4.14)

where the equality constraints keep the equations of motion of the skeleton, and

the inequality constraints enforce all muscle activations in the range of [0, 1].

It is important to appreciate that equation (4.14) is nonlinear on the acti-

vations {ai}, due to the nonlinearity of the muscle force fm(a). The reason for

this nonlinearity is subtle, and can be best elucidated by considering the line-

segment idealization of the Hill-type primitive (e.g. [49]). In accordance with

this model, for a given muscle length, the muscle force is an affine function of

the activation. However, when the aggregate length of the musculotendon is held

constant, e.g. for a given skeletal pose, activation of the contractile element will

alter the lengths of the muscle and tendon individually, even if their sum is held

constant. This variation of the muscle length infuses an additional nonlinearity

in the muscle force as a consequence of activation, rendering the muscle force

no longer an affine function of activation.

This nonlinearity is often consciously overlooked [49], by making an as-

sumption that the muscle length variation is minimal; there would in fact be

no error in this approximation if the tendon was infinitely stiff. With volumet-

ric muscles, however, this approximation would be inexact even if the tendons

were fully inextensible, as the volumetric contractile muscle has the potential

to alter its geometry via non-uniform deformation that can certainly alter the

muscle force produced, even if the longitudinal length of the muscle remained

constant. An accurate linearization of the constraint equation (4.14) needs to
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employ a proper first-order Taylor exansion fm(a) ≃ fm(a∗) + ∂fm
∂a (a− a∗), for

which the Jacobian J = ∂fm/∂a needs to be evaluated.

4.3.2 Jacobian Computation

Notably, no closed-form expression of the force fm(a) exists, since it incorporates

the solution of nonlinear quasistatic equilibrium problem. It is, however, possible

to compute its Jacobian analytically via careful differentiation of the quasistatic

equilibrium condition. For any given value of the Dirichlet conditions applied at

the endpoints of the muscle volume, denote by x the free nodes of the simulation

mesh (excluding Dirichlet boundaries). Let us denote by x∗(a) the equilibrium

positions of these nodes, under applied activations a. Inserting these values

in the expression of the total (passive and active) force f(x,a) satisfies, by

definition, the quasistatic equilibrium condition f(x∗(a),a) = 0. Differentiating

with respect to a yields:

∂

∂a
f(x∗(a),a) =

∂f

∂a
+
∂f

∂x

∂x∗

∂a
= 0 (4.15)

where all partial derivatives of forces are evaluated at x = x∗(a). This allows

us to compute the Jacobian of the muscle force under constant quasistatic

equilibrium conditions, as follows:

J =
∂fm(x∗(a),a)

∂a
=
∂fm
∂a

+
∂fm
∂x

∂x∗

∂a
(4.16)

Closed form expressions of ∂fm/∂x and ∂fm/∂a are readily available, while

the derivative of the quasistatic solution ∂x∗/∂a is computed by solving the

linear system (4.15). Incidentally, the coefficient matrix of this system (i.e.

the stiffness matrix ∂f/∂x) has already been factorized for the needs of the

Projective Dynamics simulation.
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4.3.3 High-level Controller

The high-level controller adjusts the reference motion of the upper body model

in order to control it in a delicate fashion. We adopted the optimal control

technique to solve this finite horizon problem

min
qd(t)

J(s(t),qd(t))

subject to qlower ≤ qd(t) ≤ qupper

ṡ(t) = g(s(t),qd(t), t) for 0 ≤ t ≤ tf

given s(0) = s0

(4.17)

where qd(t) is the trajectory to be optimized, s(t) are the states of the system

which contain positions and velocities of the rigid bodies, and the positions

of all soft bodies, qlower and qupper are joint limits, g(s(t),qd(t), t) governs

the dynamics of the system, and J(s(t),qd(t)) is an objective function which

describes the high-level tasks. To convert this infinite-dimensional problem into

a finite-dimensional optimization, we parametrize the joint trajectory qd(t) with

a Cubic Bézier spline as follows:

qd(t) =
3∑
i=0

Bi(t)ci (4.18)

where Bi(t) is the basis of Bézier spline, and ci are the control points. By

parameterizing qd(t), the original problem is changed to the finite-dimensional

problem of optimizing the control points ci. Once the optimal ci values have

been found, the reference trajectory qd, q̇d is readily computed through the basis

functions of the spline. Specifically, in the juggling problem, our optimization
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problem is described as follows:

min
c0,c1,c2,c3

wp∥pdesired − pball∥2 + wv∥vdesired − vball∥2

subject to qlower ≤ ci ≤ qupper

ṡ(t) = g(s(t),qd(t), t) for t0 ≤ t ≤ tf

given s(t0) = s0

(4.19)

Since the Bézier spline satisfies the convex hull property, just by applying

bounds to the control points ci, we can produce a trajectory qd(t) that is

bounded above and below. The first term of the objective function penalizes

the difference between the ball position and the desired position at the end of

the swing phase. The second term penalizes the difference in velocity. A single

evaluation of the energy requires simulations through the entire time interval

t0 ≤ t ≤ tf ; thus this is a performance-sensitive optimization operation.

4.4 Experimental results

We implemented our muscle-driven control system in C++. The open source

library DART was used for articulated body simulation [97]. Our upperbody

musculoskeletal model includes 8 joints: two wrists, two elbows, two shoulders,

two collar bones, and one torso. The wrist, the shoulder, and the torso are 3-

DOF ball-and-socket joints and all the others are 1-DOF revolute. The model

includes 72 muscles that affect the actuation of arm joints.

We used IPOPT [105] to solve our per-frame optimization in equation (4.14).

The control optimization and FEM simulation are updated at the rate of 200

Hz, while the articulated body dynamics is integrated at the rate of 1000 Hz. We

used the gradient descent method for trajectory optimization with numerical

differentiation of the objective function. Trajectory optimization requires 10 to
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(a) Input geometry mesh (b) Tetrahedralization

(c) Deformed geometry mesh (d) FEM simulation

Figure 4.4: Muscle modeling and rendering
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Figure 4.5: Force-length-velocity curves. (Left) Maximal contractile force at the

origin of the Biceps short head when it lengthens and shortens periodically at

two different speeds. (Right) The Biceps generates larger force when it lengthens

quickly.

20 gradient descent iterations to converge and usually takes 10 to 15 minutes

per iteration on an Intel i7-6700K 4.0GHz CPU.

4.4.1 Muscle Geometry and Tetrahedralization

Starting with high-resolution geometric meshes of bones and muscles (Fig-

ure 4.4(a)), we annotated the origin and insertion of upperbody muscles in 3D

geometry and tetrahedralized each individual muscle. The resolution of tetrahe-

dralization is determined so that geometric features, such as bifurcating heads

of the Biceps, are expressed clearly (Figure 4.4(b)). In our model, Biceps, Tri-

ceps, and Deltoids have about one thousand tetrahedra for each and all the

others are simpler. The tetrahedral mesh undergoes deformation via FEM sim-

ulation (Figure 4.4(d)). We deform the original geometry mesh accordingly for

the visualization of muscle contraction (Figure 4.4(c)). To transfer the deforma-

tion of the tetrahedral mesh to the geometric mesh, The 3D vertex location in

the geometric mesh is expressed by the barycentric coordinates in its enclosing
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tetrahedra. Most of the vertices are enclosed by the tetrahedra and only small

outliers fall outside the tetrahedral mesh. Each outlier vertex is mapped to the

closest tetrahedron and its barycentric coordinates would have negative values.

Although high-resolution tetrahedral meshes are ideal for the accuracy of

FEM simulation, low-resolution, hand-crafted meshes are also useful for the

efficiency of simulating dexterous tasks. We used high-resolution meshes to ex-

amine the functionality and strength of each individual muscle under various

conditions, and low-resolution meshes to simulate and control two-hand manip-

ulation tasks.

The volumetric muscles driven by FEM simulation inherit the contraction

dynamics of the Hill-type model. Each volumetric muscle generates its max-

imal contractile force when it is at its rest length and becomes weaker when

it lengthens or shortens. The elasticity of the deformable material prevents

it from lengthening excessively. The force-length-velocity curve in Figure 4.5

shows velocity-dependent contraction dynamics. The muscle generates its max-

imal force when it lengthens, which is called eccentric contraction.

4.4.2 Juggling

Juggling is a sophisticated performance with two hands for entertainment, art,

or sports. A juggler usually manipulates more than three balls at the same time,

while all of them are dynamic. The balls are repeatedly thrown by one hand,

floating in the air, and finally captured by the other hand.

Mathematical expressions for juggling can be explained by the Siteswap

value. Let T be the time per beat, D be the ratio of holding time that the ball

spends in the hand per beat, and V be the Siteswap value which defines the

pattern of juggling [106]. For each beat, the ball should be thrown such that

it lands on the other hand after V beats. For example, if the sequence of V is
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Figure 4.6: Siteswap patterns of (up) 333 and (down) 423 juggling.

3, 3, 3, · · · , the first ball thrown by the left hand will land on the right hand

after 3 beats. While the first ball is still in the air, the right hand pitches the

second ball after one beat. Figure 4.6 illustrates Siteswap patterns.

The maximum height of the ball is proportional to its Siteswap value V .

Provided that T , D, and the sequence of V are given, we can determine the

time of flight of individual balls, tflight = T (V − 2D). Note that we multiply D

by two because one round trip of the ball takes two swing phases. If the motion

of the ball is parabolic in the Y-axis, we can determine the initial velocity

vy = 1
2gtflight, where g = 9.8m/s2 is the gravitational acceleration.

Our controller generates hand trajectories based on a finite state machine,

where each state specifies either swing or catch tasks (Figure 4.7). For each

beat, catch action moves the hand toward the landing position by solving in-

verse kinematics of the hand. Once the ball lands into the hand, a zero-DOF,

welded joint is used to attach the ball to the hand. Swing (pitch) action requires
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trajectory optimization to match the desired position and velocity at the end

of the swing phase.

Juggling Patterns

A Cascade is the simplest juggling pattern that pitches the balls to the same

height. There are many juggling patterns other than Cascade patterns, vary-

ing the height of the balls, the symmetry/asymmetry of patterns, the shape

of the projectiles, and the number of jugglers. We first demonstrate cascade

patterns starting from 3 balls and adding balls one-by-one to end up with 5

balls (Figure 4.8(a)). With more balls, the juggler has to pitch them higher

to maintain the cascade pattern. Our control system can seamlessly adapt to

the addition/removal of balls and the switching between juggling patterns. Our

muscle-driven control system can also simulate non-cascade juggling patterns.

423 juggling is a non-cascade pattern using three balls. The juggler pitches two

balls higher than the third (Figure 4.8(b)). 64 juggling exhibits an asymmetric

pattern with five balls. The right hand juggles with three balls, while the left

hand independently juggles with the other two (Figure 4.8(c)). Our controller

adaptively optimizes the swing trajectory to pitch the balls toward the desired

direction at the desired speed, starting from the same initial configuration and

parameter settings.

External Perturbation

We tested our controller under external pushes. Random forces of magnitude

300N and duration 0.5s are exerted on the torso, shoulder and elbow joints.

Our solver re-optimizes the disturbed swing trajectory to adapt to the pushes.

Using the original trajectory as initial guess, re-optimizing the trajectory takes

only a few iterations to converge. The controller can endure large pushes on the
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Figure 4.7: A finite state machine for juggling and simulation parameters.

torso and the shoulder, while even small perturbations at the extremities could

be critical for dexterous manipulation such as juggling.

Mass Variations

This example shows the Cascade pattern with three balls of different mass

(0.1kg, 0.5kg and 2kg). All three are thrown to the same height regardless of

their mass difference and consequently their flight duration is the same. Having

the flight time fixed, the response to different mass necessarily leads to the

modulation of the swing duration. We regulate the release timing tf of the ball

in response to the loading mass.

tf = c1mball + c2 (4.20)

where c1 and c2 are scalar coefficients and mball is the mass of the ball. The

hand pulls back further with the heavy ball to absorb impact and travels longer

to compensate for the mass. Our controller also accounts for the physiologi-

cal property of the muscles, which can generate larger force when they are in

eccentric contraction. Eccentric contraction of major agonistic muscles occurs

when the swing arm pulls backward.
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(a) 345 juggling

(b) 423 juggling

(c) 64 juggling

(d) Two person juggling

Figure 4.8: Juggling patterns.
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Figure 4.9: Atrophy and Hypertropy of Biceps and Brachialis in the right arm.

(Left) The crossectional area is scaled down by a factor of 0.5. (Right) The

crossectional area is scaled up by a factor of 1.5. Muscle hypertrophy allows the

weight (10 kg) to be lifted easily at low muscle activation levels.

4.4.3 Muscle Disorder

There are many types of muscle diseases with different causes and outcome.

With muscle models simplified to line segments, we do not have many options

to formulate the symptoms of muscular disorders into computational models.

The most popular approach is to manipulate the force-length and force-velocity

curves of the Hill-type model, which governs the muscle contraction dynamics.

The Hill-type model is an analytic function based on in vitro measurement

of muscle deformation and material properties. Therefore, manipulating the

Hill-type model is an indirect approach based on approximations. The use of

volumetric muscles opens up new possibilities in this regard, since the geometry

and material properties of volumetric cells can be specified and manipulated

directly.

72



Figure 4.10: Muscle weakness simulation. The weight of the dumbbell is 5kg.

(Left) The muscles in the right arm shown in dark brown are weaker than

normal ability. (Right) The scaling of the force-length curve determines the

level of weakness.

Atrophy and Hypertrophy

Atrophy indicates the loss of mass and strength of muscles, which can cause dis-

ability or difficulty of actions. Conversely, hypertrophy is the increase of muscle

volume and enhanced muscle strength. The symptoms of atrophy and hyper-

trophy can be simulated by changing the geometry of the tetrahedral mesh.

As suggested by Kadlecek et al. [26], we scaled the cross-section of the tetra-

hedral mesh by a factor of 0.5 (atrophy) and 1.5 (hypertrophy) to observe the

weakening and strengthening of muscle capacity (Figure 4.9).

Deficiency and Paralysis

Since the material property of our volumetric muscles is derived from the Hill-

type model, we can use the curve trick to simulate muscle deficiencies (Fig-

ure 4.10). The force-length curve indicates the strength of the muscle. In our

simulation, scaling the magnitude of the force-length graph by a factor of 0.5,
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Figure 4.11: Progressive paralysis of Biceps and Brachialis in the right arm.

(From left to right) As dark cells spread, Biceps and Brachialis become weaker

and therefore the nearby muscles in the forearm and the shoulder activate more

to compensate for the weakness.

0.2, and 0.05 resulted in the progressive weakness of the muscle. We can ob-

serve the increased activation of the nearby muscles which compensate for the

weakness. The effect of such graph scaling always affects the entire muscle if the

model is simplified to a line segment. Our volumetric model offers the flexibility

to edit the material property of individual cells. Figure 4.11 demonstrates the

effect of paralysis spreading progressively over the Biceps and Brachialis. The

deactivated cells shown in dark brown do not generate any contractile force

since the muscle-length curve is set to zero at all lengths.

Contracture

Contracture is the shortening or stiffening of muscles, that results in decreased

movements and range of motion (Figure 4.12(middle)). The symptoms of con-

tracture can be simulated by manipulating either the force-length curve or the

volumetric mesh. With the Hill-type model, muscle shortening is described by

its passive element that engages earlier than the normal force-length curve.
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Figure 4.12: Muscle contracture and orthopedic surgery simulation. (Left) A

2D point on the texture atlas maps to a 3D point on the bones. The user can

easily specify the new insertion of the muscle on the texture atlas. (Middle)

The increased tension of the contracted Biceps results in the flexed elbow at

the relaxed arm. (Right) The surgery simulation displaces the insertion of the

Biceps from the top of the Radius to the bottom of the Humerus. As a result,

the Biceps becomes a one-joint muscle. Since the surgery increases the range of

motion, the elbow becomes fully extended at the relaxed arm. The simulation

also confirms the side-effect that the maximum torque at the elbow becomes

weaker with the displaced muscle insertion.
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Alternatively, our volumetric muscles offer a simpler, more intuitive approach.

Shrinking the rest shape of the tetrahedral mesh results in increased tension

between the origin and insertion of the contracted muscle.

Orthopedic Surgery Simulation

Contracture occurs frequently in patients with cerebral palsy. The treatments

include orthopedic surgery, which either lengthens musculotendons or reduces

the tension by displacing the insertion of the muscle. A muscle that is a flexor at

one joint may also be a flexor or extensor at another. These are called two-joint

muscles, which span across two joints. Displacing the insertion across a joint

by surgery can turn a two-joint muscle into one-joint. This type of surgery not

only reduces muscle tension, but has the side-effect of changing the functionality

of the muscle. Therefore, being able to evaluate the effects and side-effects of

the surgery is of practical importance. We implemented a simple user interface

system to simulate orthopedic surgery (Figure 4.12). The user interface shows an

atlas of bone texture maps and allows the user to specify a new insertion point

on the atlas. Our simulation system updates the muscle geometry instantly and

reflects the update to the musculoskeletal simulation, visualizing the effects of

the surgery.

4.4.4 Limitations and Failure Cases

Even though successful applications of volumetric muscles have been demon-

strated so far, we have also faced failure cases. First, the shoulder range of

motion of our model is narrower than normal, making it difficult to raise the

arm over the head. The range of joint motion is influenced by many factors

including the geometric configuration of muscle origins, insertions, and their

way-points, muscle strength, the discretization of simulation meshes, and the
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choice of a contraction dynamics model. Furthermore, parameters of Hill-type

curves affect the stability of dynamics simulation, as discussed by Sachdeva et

al. [18]. The negative slope of the force-length curve could incur numerical in-

stability and consequently restrict the range of motion. We found it non-trivial

to hand-tune parame.ters to achieve a desired range of motion. Optimization-

based automatic parameter tuning is highly desirable in future study.

Secondly, the generated motion looks stiffer than we expected. The main

cause of stiffness is large PD gains, which are necessary for accurate control.

Juggling in particular requires precise aiming and timing of the balls. There

is a trade-off between control accuracy and motion stiffness. Even though the

total sum of muscle activation is minimized during trajectory optimization, the

influence of large PD gains still remains to a certain extent. A potential remedy

is the use of variable PD gains over the trajectory. Large gains are necessary only

when it throws a ball with precision aiming at the end of arm swing. Small gains

are preferred in the middle of arm swing for motion compliance. Variable PD

gains optimized together with arm trajectory would alleviate stiffness without

sacrificing accuracy.

4.5 Discussion

Our attempt to transition the composition of an active simulated musculoskele-

tal system from the established practice of line-segment approximations to vol-

umetric primitives represents a significant step towards the ultimate goal of

a true biomemetic digital replica of the human anatomy and its complexity.

Nevertheless, our current framework still consciously submits to a number of

limitations, both in its scope of applicability, as well as biomechanical accuracy

and computational capability. A number of these limitations stem from the
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computational cost of incorporating a system with a large number of dynamic

degrees of freedom inside a full control loop; we expect that the continually

increasing computational capabilities of current platforms provide an encour-

aging roadmap for addressing such performance-oriented challenges. Secondly,

the degree of biomechanical accuracy that our system can afford is restricted by

the limited availability of highly detailed digital models of anatomy, not only in

terms of geometrical shapes, but also in terms of the governing laws (material

constitutive models, fiber fields of anisotropic contractile muscles, mechanical

response models of fascia and viscoelastic tissues). We aspire that the founda-

tion we have laid will allow us to leverage better models and governing laws, as

those crystallize and become validated in relevant literature.

A number of technical considerations that complicate our pursuit of biome-

chanical accuracy result from the fact that the very nature of the line-segment

simplification conceals certain challenges that are inherently present in real

volumetric musculature. A line segment muscle primitive is constrained, by

definition, to retain the shape of a straight line between any two successive

via-points (or in its entirety, if the muscle primitive is not segmented). As a

consequence, when the skeleton is articulated in a way that would cause the

aggregate length of the musculotendon to shrink from its rest length, there is no

ambiguity as to what the resulting shape of the primitive would be: it remains

a piecewise linear curve. If a true volumetric muscle was modeled in complete

isolation from its surrounding passive/connecting tissue and adjoining muscles

(in direct analogy to how line-segment primitives are), there would be ambi-

guity in its resulting equilibrium shape, as there is a multitude of directions in

which the geometry of the muscle could be laterally deflected, buckled or bent

(in the case of tendons). This incurs a degree of ambiguity in the muscle forces

that a compressed volumetric muscle produces as a result of skeleton-induced
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reduction of the length of the medial axis of the musculotendon (this is allevi-

ated, in part, in scenarios where muscle activation incurs tension in the muscle).

This behavior is stabilized, in reality, by the contact and collision between the

muscle and its surrounding tissue, which helps resolve the resulting equilibrium

shape. However, in our initial exploration presented in this work, we have not

incorporated explicit contact and collision handling between muscle volumes

and their surrounding tissues. As a consequence, our simulated muscles may

experience bending or buckling modes under compression that are not fully

representative of the biophysical behavior. From the standpoint of numerics,

this also induces a practical limitation in the minimum thickness we can allow

the tendon regions to assume, as excessively thin tendons would both increase

this modeling error, and aggrevate the presence of inaccurate buckling modes.

We expect this deficiency to be cured in future work by the incorporation of

careful contact and collision processing between a fully-coupled set of muscles

and passive/connective tissue.

In the real human body, individual muscle volumes are mechanically corre-

lated via their contact coupling. For example, it is possible for the insertions of

a given muscle to exert tension to the skeleton even if the muscle is fully inac-

tive, at a kinematic state where the line-segment approximation would yield no

tension at all; this would be possible if the contraction of a neighboring muscle,

coupled via connective tissue and contact handling, causes a volumetric defor-

mation in the inactive muscle to be deformed as a side-effect, producing tension

(and forces at the insertions) that would not be possible with fully-independent

line-segment muscle primitives. We must highlight that our current formulation

only partially captures this real-world behavior, on volumetric muscle primitives

with multiple independently-activated contractile regions modeled in the same

volumetric simulation mesh; on the other hand, we do not currently capture
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this coupling by means of contact processing between distinct muscle volumes,

which are simulated independently. Our mathematical formulation for com-

puting force Jacobians is able to capture this dependency on muscles with

several contractile regions. Extending this capability (and the Jacobian com-

putation) to contact-coupled muscles will be more challenging, and possibly

restrict our options for contact handling (e.g. creating a preference for coupling

via “penalty” contact forces, instead of impulse-based corrections mediating

momentum exchange [107]).

Finally, the simplicity of the line-segment muscle primitives reduces the com-

plexity of modeling individual muscles to a specification of the muscle path, the

muscle/tendon ratio (without any need for localization), and parameters gov-

erning its maximum force-generating potential. Volumetric muscle primitives

have much broader modeling flexibility, and as a consequence many more op-

portunities for less-than-accurate geometry or material parameter specifications

to create deviations from the ground truth. In a sense, the increased flexibil-

ity of volumetric models to approach reality comes at the cost of increased

opportunities for modeling errors to create deviations from it. As an exam-

ple, the cross-sectional geometry of tendons can have a significant effect on the

resulting geometry of the muscle volume (if the Young’s modulus is set to a

near-constant value, as biophysically expected). Line-segment models can mask

such parameter tuning choices behind an individualized setting of the tendon

stiffness on a muscle-by-muscle basis, making the parameter space easier to

tune (even if such parameters have a very loose connection to the underlying

first principles). Our existing model consciously focuses on upper body motion;

future work should explore extensions to a full-body human model, capable of

resolving more diverse motion.
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Chapter 5

Deep Compliant Control

In addition to the simulation framework of the human motor system, we con-

sider interactivity of the physically simulated humanoid. When manipulating an

object or trying to avoid large impacts, humans consciously plan the sequence

of interactions so that the humans utilize interaction forces. This interactiv-

ity is crucial even in a static scene where there are no external perturbations,

and a human continuously interacts with the ground and takes advantages of

ground reaction forces to maintain its balance. Since human musculoskeletal

system itself lacks of explicit sensory modules that recognize its surroundings,

we can’t guarantee the dynamics of interactions. Tactile sensors provide the

primary recognition of the interactions, and thus in this chapter we model the

tactile sensory system and attach to our learning framework for the motor con-

trol. Technical challenges include defining the ways of interactions, reproducing

physically reliable movements, and robustly controlling under-actuated dynam-

ical systems. The key technical contribution is a two-level control architecture

based on deep reinforcement learning that imitate human movements while
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adjusting their bodies to external perturbations. The controller minimizes the

interaction forces and the control torques for imitation, and we demonstrate

the effectiveness of the controller with various motor skills including opening

doors, balancing a ball, and running hand in hand.

5.1 Overview

Humans interact with their surroundings every day. Opening doors, pushing

boxes, and playing sports are examples of these interactions. Forces serve as

a medium for such interactions, as humans interact with the environment by

repeating a dynamic process of sensing these forces and actuating their bodies.

In this process, compliance is one of the primary principles which determines

human movements during interactions. Compliance provides humans the ability

to move in various ways to avoid large amounts of contact forces and adapt to

unexpected situations.

This paper aims to build a framework for the simulation and control of hu-

manoids, allowing the humanoid character to interact with their surroundings

in physically reliable ways. We can generate a broad spectrum of movements

ranging from passive reactions to external physical perturbations, to active

manipulations with clear intentions. Technical challenges include defining and

modeling of compliance, reproducing realistic human movements, and providing

robust control of motor skills for under-actuated dynamical systems. We define

the character’s compliance from a mechanical point of view. Our motion con-

troller deforms the character to increase compliance. We also present a learning

framework based on Deep Reinforcement Learning (DRL).

Recent progress in DRL has shown its robustness in learning motor skills

for movements of high-dimensional characters such as humanoids in physics
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environments [2, 108, 109, 91]. A control policy (a.k.a controller) learned from

DRL allows the character to generate physically plausible motions. The core

idea of these methods stems from imitation learning. The reference motion data

provides the character on how to move, and the controller actuates its character

bodies based on their physical states to track the reference motion data in the

given environment. While the existence of the reference motion data enables

the imitation of human tasks, it hinders the simulated character from learning

diverse trajectories, generating stiff motions even when large external pertur-

bative forces are being applied. We present a new two-level hierarchical control

algorithm based on DRL which allows the character to flexibly interact and

move with its surroundings. The compliant controller is a kinematic layer that

adjusts the character pose to external perturbations at high frame rates, while

the imitation controller learns the kinematics and the dynamics of the charac-

ter at low frame rates. Our two-level controller minimizes the interaction forces

and the control torques for the imitations. We demonstrate the effectiveness of

the controller with various examples:

• The character can stand, walk and run even when the interaction forces

dominantly affect the character. Based on the forces, our controller gen-

erates heterogeneous movements where the lower extremities balance the

full body while the upper extremities deform in accordance with the

forces.

• We can predict how the mass distributions affect full body movements.

Upon Newton’s third law of motion, two characters behave differently in

order to gain each individual compliance.

• Our controller can perform manipulation tasks such as opening doors or

balancing a ball on the head. We demonstrate our controller’s robustness
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and capability by adding perturbations to the environment.

5.2 Environment

Our framework assumes the character as articulated rigid bodies, which consists

of links and connecting joints. We assume the character is an open-chain (a.k.a

tree-structured) articulation with the floating root. The dynamic states of the

character can be expressed by its joint positions q ∈ Rn and joint velocities q̇ ∈

Rn in generalized coordinates. The equations of motion describe the dynamical

system as follows:

M(q)q̈ + c(q, q̇) = τ + τext (5.1)

where M(q) is the mass matrix and c(q, q̇) is the Coriolis and gravitational

forces. τext is the sum of external forces including contact forces and other

external perturbations. τ is the internal force which is computed from PD servos

for each joint. Given target joint positions q̄, PD servos use proportional and

derivative errors to track the target positions:

τ = kp(q̄− q)− kvq̇ (5.2)

where kp and kv are gains. At each time step, the system evolves in time by

updating the joint positions and velocities via semi-implicit Euler integration.

5.2.1 Stiffness

In classical mechanics, stiffness is the measurement of how much an object re-

sists deformation in response to an applied force. The mathematical expression

of a 1-dof (degrees of freedom) system is defined as k = −f/δx, where f is the

restoring force, and δx is the displacement. Compliance is defined as the inverse

of the stiffness c = k−1. We can generalize these definitions to high-dimensional
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Figure 5.1: Compliance of the left hand. Due to the geometric locking, the

character acts stiffly when applied force is directing to the arm while the other

directions have moderate compliance.

characters. Unlike the 1-dof spring, stiffness changes dynamically depending

on the pose of the character as well as the acting point of an external force.

Given a displacement x ∈ R3 produced by the external force, the stiffness of

the character is given by:

K = − ∂f
∂x

(5.3)

where K ∈ R3×3 is stiffness matrix and f ∈ R3 is a force that the character

actuates due to the displacement x. We first examine the matrix assuming sta-

tionary target positions (i.e. q̄ is constant). As for the PD controlled character,

we can explicitly compute Equation (5.3) by differentiating Equation (5.2):

K = kpL (5.4)

where L = (JJT)−1 with the Jacobian matrix J = ∂x/∂q mapping velocities in

joint space to velocities in work space defined by the acting point of the external
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force. The matrix L is the inverse of the Laplacian matrix of the articulation

graph of the character weighted by moment arms of each body. We detail the

derivation of the matrix K in Appendix. Once the external force is applied at a

certain point, the mechanical stiffness is readily computed through the Jacobian

matrix. We can interpret the matrix by the singular value decomposition (SVD):

K = kpRDRT (5.5)

where L = RDRT, R is a rotation matrix, and D = diag(d0, d1, d2) is a

diagonal matrix consisting of singular values. Since the matrix K is a symmetric

3-by-3 matrix, SVD is identical to eigenvalue decomposition. Each singular

value indicates an anisotropic stiffness value corresponding to each column of

the matrix R, forming an infinitesimal ellipsoid (see Figure 5.1). The stiffness

k = det(K) is computed by taking the determinant of the matrix.

In practice, the stiffness matrix K depends on the joint target positions.

We are able to regulate the stiffness to our preference by modulating q̄. In the

following section, we present a novel motion controller, capable of reducing the

stiffness of the character.

5.2.2 Compliance-induced Motion Controller

The goal of our controller is to generate joint positions q̄(t) at every time step

to react to external perturbations. The controller takes as input the external

forces, the character pose, and the level of compliance to deform the motions.

We begin by deriving the stiffness matrix given joint target positions:

K̂ := kp[L− J−T∂q̄

∂x
] (5.6)

where J−1 is the pseudo-inverse of the Jacobian matrix. Equation (5.6) indicates

the relation between the stiffness and the joint target positions. It is obvious
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Algorithm 2: Compliant-induced Motion Controller

Data: qm(t) = (qm1 ,q
m
2 ,q

m
3 , · · · )

Result: q̂(t)

u0 ← 0

for i = 1, 2, 3, · · · do
δq̈i ← ForwardDynamics(f iext)

ẋi = hJδq̈i

u̇i = αJTLẋi

ui = ui−1 ⊕ hu̇i

q̂i = qmi ⊕ ui

end

that the stiffness changes when q̄ is a function of the displacement x. If we

generate q̄(t) such that it meets the condition ∂q̄/∂x = JTL, the right hand

side of Equation (5.6) sums to zero, implying that the character is infinitely

flexible. Since this means we lose control of the character entirely, we instead

take a middle ground. We modify the condition as follows:

∂q̄

∂x
= αJTL (5.7)

where 0 ≤ α ≤ 1 is the level of compliance. Incorporating Equation (5.7) into

the Equation (5.6) results in:

K̂ = kp[L− J−T(αJTL)] = kp(1− α)L (5.8)

which decreases the stiffness k̂ = det(K̂) = (1 − α)3 det(K) by the factor of

(1−α)3. In our experiments, we choose the level of compliance α = [0.04, 0.16]

depending on the magnitude of the forces. It is important to note that K̂

preserves the features of K. Indeed, there exist numerous choices for ∂q̄/∂x

that reduce stiffness. The rotation matrix R is an intrinsic property of the

87



character that reflects the kinematics of the character. We choose this equation

since it conserves R while decreasing the singular values of K.

Equation (5.7) serves as a first-order dynamics for the motion controller.

We define the displacement in generalized coordinates u(t) := δq̄(t) to produce

joint target positions by operating q̂(t) = qm(t) ⊕ u(t), where qm(t) is the

reference motion. We use the symbol ⊕ to denote quaternion multiplications

for each joint [96]. The dynamic equation for u(t) can be written as:

u̇(t) = αJTLẋ(t)

q̂(t) = qm(t)⊕ u(t).
(5.9)

To compute ẋ(t), we perform forward dynamics of the character to compute

the changes of joint accelerations δq̈. Sequentially integrating with time step h

and transforming to the work space results in ẋ = hJδq̈. We update u(t) by

semi-implicit Euler integration. Algorithm 2 shows the overall sequence of the

motion controller.

Since the character is under-actuated, we carefully incorporate the root joint

into the motion controller. We extract the positional displacement of the root

joint up(t) from u(t) and assume an imaginary linear PD servo for the joint to

measure stiffness and the following displacement. Since there is no actual servo

at the root joint, we do not actuate the root joint directly. It is required for the

character to learn biped locomotion to plan maneuvers driven by up(t). In the

following section, we present a framework for learning the motor skills for the

physically simulated character equipped with our compliance-induced motion

controller.
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Figure 5.2: System overview.

5.3 Learning Motor Skills

Notably, PD control with the joint target positions q̄(t) = q̂(t) will not work;

not only is the character an under-actuated system because of the floating base,

but it is also affected by various contact constraints and external forces. To rem-

edy this, a more sophisticated feedback controller is required to modulate the

joint target positions in accordance with the humanoid state (see Figure 5.2).

We use DRL with imitation rewards to learn this feedback controller. The con-

troller πθ(a|s) is defined by a deep neural network whose parameters are given

by θ to produce an action a. Here, the action is specified by joint target positions

for the PD control. Note that we do not actuate the joint by using q̂(t) directly,

but they serve as imitation rewards in order for the character to track q̂(t) as

close as possible. The state s = (sdyn,u, stask) includes the dynamic state of

the character, the motion displacement of the motion controller, and optionally

the state of the tasks. The action is the modulated target positions q̄(t). In

DRL, the controller observes the state st to produce the action at at each time
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step. The action is then applied to the system, evolving to the next time step

t+ 1. This results in the new state st+1 and the scalar reward rt = R(st, st+1).

The reward function encourages the character to mimic the motion, and the

goal of the controller is to optimize its parameters to maximize the expected

accumulated reward:

θ∗ = arg max
θ

Es0,a0,s1,···

[ ∞∑
t=0

γtrt

]
(5.10)

where γ is the discount factor, s0 ∼ ρ0 is sampled from an initial state distribu-

tion ρ0, at ∼ πθ(st) is the action from the controller, and st+1 ∼ p(st,at) is sam-

pled from transition probability p, which specifies the dynamics of the environ-

ment. Since evaluation of the objectives requires an intractable computational

cost, DRL also learns another network called the value function V π(s) [110, 111].

During each epoch of learning, the controller πθ(a|s) and the value function

V π(s) are jointly optimized using transition tuples (st,at, rt, st+1). We use Prox-

imal Policy Optimization, which uses the surrogate loss of the objective to im-

prove the training robustness by clipping the probability ratio of the action [95].

5.3.1 Imitation Reward with Adversarial Network

The beauty of DRL is the ability to learn complex motor skills with the scalar

reward function. The reward function r encourages the character to imitate the

motion, and optionally guides the character to achieve various task objectives.

The reward is designed as:

r = wimitrimit + wtaskrtask (5.11)

where rimit is an imitation reward which evaluates how closely the character

tracks the reference motion, rtask is a task-specific reward, and wimit = 0.5 and

wtask = 0.5 are their weights. The compliant motion controller describes not
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only the joint angles but also the movements of the root joint. The imitation

reward rimit is defined by the multiplication of two terms:

rimit = rqrp (5.12)

where rq is the pose reward and rp is the positional reward. The pose reward

measures a discrepancy between the simulated character pose and the reference

pose, and the positional reward encourages the character to move in accordance

with the root displacement up(t). The positional goal can be achieved by biped

locomotion, which requires motion planning such as a motion graph [109], an

RNN-based motion generator [108], motion matching [112], or a deep-learning-

based high-level controller [53]. These techniques explicitly calculate the dif-

ference between the simulated pose and the reference pose frame-by-frame and

use it to construct the imitation reward. Complex planning of motion sequences

is required to achieve the positional objective, and thus the positional reward

highly depends on the agility and the quality of the motion planner. Alterna-

tively, we utilize a generative adversarial network for motion planning. Given

an unstructured dataset of motions, we train an adversarial motion network

to discriminate the simulated character pose from the reference motion dis-

tribution. Once trained, the network can evaluate how similar the character

pose is to reference data, acting as the imitation reward function. The ability

to learn the motion distribution enables the controller to actively plan goal-

driven maneuvers along the distribution of the reference data without using

any pre-generated trajectories.

To learn the adversarial motion network, we follow the trails of generative

adversarial imitation learning, which stems from behavior cloning [113, 114,

115]. We first extract expert trajectories from the motion dataset M. The tra-

jectories are represented as pairs of the current and next state (s, s′) ∼ M
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in a per-frame basis. While learning the controller, the controller π generates

controller trajectories (s, s′) ∼ π. The adversarial network Dψ(s, s′) ∈ R is op-

timized to discriminate the controller trajectories from the expert trajectories:

min
ψ

[
E(s,s′)∼M(Dψ(s, s′)− 1)2 + E(s,s′)∼π(Dψ(s, s′) + 1)2

]
(5.13)

where we use a least-square loss to prevent the gradient vanishing problem [115].

The pose reward function rq is given by:

rq(s, s
′) = 1− α(D(s, s′)− 1)2 (5.14)

where α is the shape factor. The collaboration of Equation (5.13) and (5.14)

encourages the controller to produce the current and next state pairs (s, s′)

that are indistinguishable from the expert trajectory’s distribution. When the

expert dataset is small, the discriminator learns to discern expert trajectories

from the controller’s motion too quickly, such that the discriminator reward

becomes unhelpful for the controller to imitate the dataset. In this case we use

α = 0.2 to give an offset reward whereas we use α = 0.25 for large datasets.

The positional reward rp is designed to match the positional displacement:

rp = wp exp
(
− σp∥p− up∥2

)
+ wv exp

(
− σv∥v − u̇p∥2

)
(5.15)

where p and v are the position and the linear velocity of the root body respec-

tively. up and u̇p are the positional displacement of the root joint and its velocity

respectively, which we previously obtained from the compliance-induced motion

controller. In our experiments, the weights are wp = 0.7, wv = 0.3, σp = 0.5,

and σ = 1.0.

5.3.2 State

Similar to previous work, we specify the state [2, 109, 108, 116, 117]. The dy-

namic state sdyn is expressed in terms of positions, orientations, linear velocities,
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Figure 5.3: Expert motion distribution and the controller trajectories. The level-

set represents how much the state is similar to the expert distribution. The

expert trajectories are mainly located in the red area. The dotted line denotes

controller trajectories while the solid line denotes trajectories of the shifted

state. The shifted state is indistinguishable from the expert motion distribution.

and angular velocities of each body. The orientations are encoded using rota-

tion matrices. The positions and the velocities are expressed in the character’s

local coordinate. The local coordinate is defined as the root body position pro-

jected onto the ground and the root body orientation aligned with the xz-plane.

Overall, the state dimension is 306.

We slightly modify features of the state to accommodate for adversarial

motion network training. We represent the state in a velocity-free manner to

easily incorporate the motion displacement into the state features. We include

positions of all bodies at the current character pose and the previous character

pose. The positions are expressed in the character’s current local coordinate.

As the imitation controller learns to displace its bodies according to the

external forces, the controller trajectories deviate from the expert motion tra-
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jectories by the amount of motion displacement u (see Figure 5.3). Learning the

displaced expert motion q̂ = qm⊕u for all m ∈M requires numerous sampling

of the current and next state pairs (s, s′) ∼ q̂ and evaluating again the adversar-

ial motion network for all u. It is intractable to shift the expert motion distribu-

tion directly. We rather shift the state of the simulated character by the opposite

direction of u. We encode the state s = s(q⊖u) where⊖ computes the joint-wise

quaternion differences q⊖u := (log(u−1
0 q0), log(u−1

1 q1), ..., log(u−1
n qn)), where

n is the number of joints. By comparing the expert trajectories and the shifted

state, we can construct an imitation reward that accomodates compliance.

The compliant motion controller evolves in time at a high frame rate (600Hz)

while the imitation controller advances at a low frame rate (30Hz). Forces are

unstable to integrate at a large timestep, and thus the motion controller re-

quires a high frame rate in order to control the forces precisely. The imitation

controller is responsible for long-term planning to achieve complex tasks and

it works well with low frequency control. The motion controller works as a fil-

ter that converts the forces to the integrated form. The motion displacement

u serves as an intermediary between two controllers, and the collaboration of

two controllers enables the character to achieve both per-frame compliance and

long-term goals.

5.4 Experimental Results

5.4.1 Environment and Controller Settings

Our simulation is written in C++. We use the open source library DART to

simulate articulated rigid bodies [97]. Our character consists of 12 ball-and-

socket joints and 2 welded joints. The character is 163cm tall and weighs 65kg.

The shape of each body is modeled by a sphere or a box to compute the inertia
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tensor and to detect collisions between the character and environments. We use

PD gains kp = 300 to 500 N · m/rad and kv = 2
√
kp for critical damping.

Stable PD control is used to increase simulation stability [118]. Our simulation

frequency is 600Hz, but when the external forces are large enough that it affects

the simulation’s stability, we simulate the dynamics at a higher rate of 900Hz.

The compliant motion controller starts with zero displacement and is inte-

grated at the same rate as the physics simulation. Once the interaction forces

are detected, we prepare the Jacobian matrix to compute the stiffness matrix.

We sometimes give weights to the columns of the Jacobian matrix to gener-

ate task-dependent plausible motions. Specificallym we give more weights for

the hip joints and the shoulder joints due to the anatomical property that the

range of motions of those joints are wider than the other joints. When there

are no interaction forces, the spring-damper system is activated on the motion

displacement to recover the original motions.

Our imitation controller is based on a deep neural network. We use the open

source framework PyTorch for learning the neural network [99]. We stack three

fully connected layers for the controller πθ(a|s) as well as the value function

V π(s). Each layer has 256 nodes and is initialized using Xavier initialization,

and no dropout is used in our experiments. We use Proximal Policy Optimiza-

tion(PPO) to learn the imitation controller. We use λ = 0.95 for the Generalized

Advantage Estimate(GAE) and the discount factor γ = 0.95. During learning, a

Gaussian noise for each action space is used for exploration, and we set the stan-

dard deviations to be 6◦. Whenever 2048 state transition tuples (st,at, rt, st+1)

are collected, we update the parameters of the controller using a stochastic

gradient descent method at learning rate 10−5 with a minibatch size of 128.

The learning takes 6 to 24 hours with 20 to 80 million tuples for challenging

tasks such as performing a backflip. We use a Ryzen 3950x CPU equipped with
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Figure 5.4: Levels of compliance. (Left) The ratio of contact force magnitude

when the character collides with an obstacle. (Right) The ratio of control torque

magnitude. Both are normalized by the values of standard PD controlled char-

acter without compliant motion control.

MPI-based parallelization to simulate the physics environment and collect the

state transition tuples. NVIDIA 2070Ti GPU is used to accelerate the training

of neural networks.

We also train a discriminator to evaluate the reward function in DRL. The

discriminator and the imitation controller are updated jointly. The discrim-

inator consists of three fully connected layers with 256 nodes. To learn the

discriminator, we sample the controller trajectories (s, s′) ∼ π from the simula-

tor as well as the expert trajectories from the reference motions (s, s′) ∼M. We

sample an equal amount of tuples (s, s′) from the simulation and the dataset

in order for the discriminator to learn two distributions in a balanced manner.

We use a minibatch size of 16 with learning rate 10−4. In addition to the loss

function (5.13), we add a gradient penalty loss term and a regularization loss

term for the parameters of the last layer to enhance learning stability [119].
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Table 5.1: Task-specific motion lengths and the levels of compliance.

Task Motion Length
Level of

Compliance

Push recovery Stand, Walk 54.6s 0.16

Interactive

Control
Stand 0.03 [0.04, 0.16]

Hand-in-hand

Run

Stand, Walk,

Run
138.0s [0.08, 0.16]

Chicken Fight Chicken hopping 17.6s 0.16

Trampoline Stand, Backflip 4.0s [0.04, 0.08]

Balancing a ball Stand, Walk 54.6s 0.16

Opening Doors Opening a door 5.0s 0.16

5.4.2 Level of Compliance

We choose the level of compliance α = [0.04, 0.16] depending on tasks and

interaction forces (see Table 5.1). To determine a good starting point for this

value, we conduct a simple experiment for our motion control with various levels

of compliance. In this experiment, the character is pushed by obstacles and the

character learns to maintain its balance. The obstacles weigh 1kg and are thrown

in various directions with initial velocities [2.0, 3.0]m/s. During contacts, both

the magnitude of contact forces and magnitude of torques required for PD

control decrease as the level of compliance increases (see Figure 5.4). We observe

that the character’s joint angles produce an implausible range of motion when

α > 0.2. In our later experiments, we mostly use α = 0.16. When the interaction

forces become larger, we decrease the level of compliance until it does not exceed

the range of motion.
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Figure 5.5: The Trampoline example. (Left) Minimum foot height during con-

tact. Higher value indicates lower fluctuation of the trampoline. (Right) Total

energy.

5.4.3 Learning Motor Skills

We learn assorted motor skills with our compliant controller. We use reference

motions available on the web such as CMU motion dataset and Mixamo. The

motion clips are retargeted to our character using Autodesk MotionBuilderTM.

Hand-in-hand running is a task where two characters run together hand in

hand. The hands are attached using ball-and-socket joints and thus forces are

continuously applied along the hands. We prepare a pulling character which

moves kinematically. We do not simulate the pulling character, but it serves as

a kinematic constraint for the simulated character. While adhering to the kine-

matic constraint, the simulated character successfully learns to take additional

steps to prevent losing its balance. In addition, the compliant control reduces

the interaction forces. For a side-by-side comparison, we show a character that

learns motor skills without using our compliant motion control. Since small

changes in movement create drastically changing constraint forces, the charac-
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ter moves dominantly by the constraint forces and produces stiff movements.

Chicken Fight is a sport where two or more players hop on one leg and

bump the opponent players until they fall over. We use 17.6 seconds of hopping

motion which moves in all directions. We learn two players with different mass

distributions. One weighs 85kg and the other weighs 36kg. We modulate PD

gains according to the different masses. According to Newton’s third law of

motion, they receive the same magnitude of forces when bumping. Since the

mass distribution affects the forward dynamics and stiffness, the light character

is pushed out farther away than the heavy character to compensate for the

changes in momentum.

Trampoline is a device consisting of stretchable fabric attached to a steel

frame. Humans leverage spring forces of the fabric to bounce on the trampoline.

We learn motor skills on the trampoline ranging from balancing to backflip. To

simplify the simulation, the trampoline is modeled as a rigid plate with linear

actuators at each corner. We vertically bounce the character every 3 seconds.

Interestingly, our compliant controller dissipates the character’s total energy,

meaning that the character absorbs the impact during contact and reduces

fluctuation of the trampoline (see Figure 5.5).

5.4.4 Manipulation

The character also learns to manipulate objects. During manipulation, it is

crucial to repeat a dynamic process of sensing interaction forces and actuating

bodies to adjust to the situations. Since manipulation tasks require much more

active control from the character, we drive the character by designing additional

task-specific reward functions.

Opening doors are one of the common physical interactions in daily life.

Humans open a door by grabbing and pushing a knob. Since the door consists
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Figure 5.6: Opening doors example. (Left) The constraint force can be decom-

posed to orthogonal and parallel components relative to the knob, shown in

blue and red arrows. (Up Right) The orthogonal force with the varying door

size. (Bottom Right) The parallel force.

100



of a hinge, the manipulability of the knob forms a circle whose center is on the

hinge. To open the door, the end-effector of the character should be on the circle.

While forces acting parallel to the knob’s normal direction works to open the

door, forces acting perpendicular to the normal direction hinder the character

from acting compliantly (see Figure 5.6). In our experiment, the character learns

to open doors with varying door width w. When the hand is close to the knob,

the hand is temporarily glued to the door using a zero-dof joint constraint. We

take the orthogonal term of the constraint force as an input for the compliant

control. The state for the task encodes the angle of the door and the relative

position of knob expressed in the end-effector coordinate stask = (ϕ,pknob).

The task reward is designed as rtask = exp(−1.5 max(0, ϕ̂ − ϕ)) where ϕ̂ = 0.7

is target door angle. After training, the character is able to deal with arbitrary

size of the door ranging w ∈ [1.0, 1.7] even though it only learns for the fixed

size door w = 1.0 during learning. The compliant control successfully maintains

the orthogonal forces consistently low independent of the door size while the

character modulates the parallel forces according to the door size.

Balancing a ball is another example where the character learns to hold a

ball on a rod on the character’s head. Unlike other examples where the charac-

ter passively receives forces, balancing the ball requires active procedures that

produce forces to manipulate the ball as it wants. To do so, we design addi-

tional control variables in DRL. The control variables are 6-DOF which are the

ghost forces at the end-effector and the root joint of the character. We encode

the state for the task stask = (pball,vball,prod,vrod) where pball,vball are the

position and the linear velocity of the ball and prod,vrod are the position and

the linear velocity of the rod. These are expressed in the character’s local coor-

dinate. The task reward rtask = exp(−2.0||projxz(pball − phead)||2) is designed

to minimize the discrepancy between the position of the ball and the head pro-
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jected onto the ground. As a result, the character actively deforms the pose and

steps to move its position, mimicking the control of an inverted pendulum on

a cart.

5.5 Discussion

Deep reinforcement learning with imitation rewards has gained great attention

in physics-based character animation. Our framework enables reinforcement

learning to address both long-term plans for imitation and short-term plans

for compliance. The compliant controller reduces both the interaction forces

and the control torques necessary for the balance and tasks. Moreover, our

framework has the ability to learn manipulation tasks, which require active

alternations of given reference motion sequences.

Our framework bridges the gap between position control and force control.

Position control such as PD control is thought to be an indispensable module for

the control of a high-dimensional floating-base character. Major drawbacks of

using position control arise when the character interacts with its surroundings.

The character applies a large amount of force to the environment, which po-

tentially causes simulation instabilities or undesirable movements. Meanwhile,

studies related to force control in Robotics have aimed on fixed-base low di-

mensional manipulators such as gripper robots. Our framework generalizes the

concept of force control in terms of the character’s compliance to incorporate

force control into DRL. Combining extrinsic imitation of the human movements

with intrinsic measurement of compliance allows the character to seamlessly

learn both position control and force control.

Our framework also has limitations. We defined compliance assuming that

it only relies on the character pose and its articulations, which are geometric
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properties of the character. Indeed, human compliance is more complex than

just geometry and articulation. For example, humans employ three strategies

for maintaining their balance: ankle strategy, ankle-hip strategy, and stepping

strategy. These strategies use extra information about the dynamics of the

system, such as the center of pressure and base of support, which are not in-

corporated into our compliant control. Another limitation is that the method

requires manual tuning of the level of compliance and the weights of the Jaco-

bian matrix columns. It is feasible to tune the parameters by hand since the

dimension of the parameters is relatively low. A straightforward expansion of

our framework would consider anisotropic and joint-wise properties, which dra-

matically increases the dimension of hyperparameters. It might be possible to

find these parameters from the motion dataset to reproduce realistic human

movements.
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Chapter 6

Conclusion

Understanding, analyzing and reproducing human movements have been a long

standing goal in Computer Graphics, Robotics and Biomechanics. We simulate

and control musculoskeletal system to manifest the functionalities of the motor

system, as well as we demonstrate the sensorimotor control driven by the dy-

namics process of sensing forces and actuating bodies according to the tactile

stimulus.

This thesis steps towards the ultimate goal of a true digital replica of the

human and its movements. We incorporate volumetric muscles into our system

to imitate a real mechanics of muscle contraction dynamics. The volumetric

muscles represent much wider space of human body conditions than the mus-

cles with the line-segment primitives. We exhibit such representation power

with various muscle deficits such as muscle weakness, paralysis, and contrac-

ture. We also embed muscle-induced joint limit into our framework to provide

reliable joint range of motions, and it produces variants of biped locomotions

according to the muscle conditions even including pathological ones as well.
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Finally the adoption of the concept of force control produces physically reliable

motions when tactile interactions, which minimizes interaction impacts and

control torques. To reproduce realistic human movements, not only we require

precise modeling of humans, but also we need to suitable movement mechanisms

that incur physiologically reliable motions.

Apparently, the frameworks reproduce human motions in detail as we pro-

vide more DOFs for the human models. For examples, the two heads of the

biceps brachii are mechanically coupled in our system by the virtue of both

being embedded in the same deformable tetrahedral mesh. As a consequence,

contraction of one head would incur a mechanical forces on the endpoints corre-

sponding to the other head, as volumetric muscles have shown its functionality

for simulating real biological system. Our multi-segment foot model has ad-

ditional 24 DOFs and 60 muscles to add subtle, yet important details for gait

analysis. The extra DOFs allows the model to mimic softtissue structures of the

foot, which contributes to absorb ground reaction forces when walking, running

and kicking. In active manipulation as in Balancing a ball in Chapter 5, we

provide additional DOFs in the control spaces, allowing the control policy to

actively deform the body to its preference. The resulting motions imitate the

balance control of an inverted pendulum on a cart.

We can think of many applications that exploit our framework:

• Surgery Planning : Our framework has potential to plan surgeries with the

virtue of predicting pre-operative and post-operative gaits. Predictive gait

simulation can be a useful tool for medical doctors who treat patients with

gait disturbance and plan surgical procedures for them. Medical doctors

often have to decide which surgical procedures would be appropriate to the

patient among several combinations available to the patient. Predictive
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gait simulation allows us to predict the outcomes of each surgical option

and visualize the results.

An orthopedic surgery is such a precise operation to a specific body part,

which incurs our framework limitations. To carefully imitate the surgery,

we require accurate modeling of muscles, ligaments, tendons, nerves, and

cartilages, and their interplays such as muscle-bone contact and muscle-

muscle contact as well. Our volumetric muscle simulation has shown its

potential to step towards highly-detailed human models, yet it is still tech-

nically challenging to incorporate high-dimensional non-linear muscles

into full-body musculoskeletal simulation. Simulation of cutting, break-

ing and lengthening of muscles and bones is yet another technical issue

that needs to be addressed.

• Exoskeleton Testbed : Our framework can be a testbed for designing ex-

oskeletal robots, and optimizing their actuation parameters. In the quest

to leverage intelligent robots that involve in physical human-robot in-

teractions, learning from physically simulated humans and environments

enables robots to safely learn from failure without putting real people at

risk. Our framework as a testbed would be effective for designing robot

such as the way of routing wired exoskeletal robot, and optimizing robot

actuation mechanisms that vary depending on the human body conditions

and the following movement patterns.

Exoskeletal robots physically support humans with additional force pro-

files, and this support forces can be thought to be external perturbative

forces when learning human control policies, which degrades the function

of the exoskeletons. Our compliant control algorithm can be a useful so-

lution and incorporating it into our scalable musculoskeletal simulation
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framework can provide meaningful observations for designing, modeling

and optimizing exoskeletal robots.

• Performance improvement : There is a need in Sports for an assistant tool

that improves athlete performance. Our framework provides in depth mo-

tor skills equipped with the accurate muscle contraction dynamics. We

envision that our framework provides automatic posture correction to en-

hance physical ability such as jumping, lifting a bar, and throwing a ball,

by analyzing the athlete’s movements. We even think of planning muscle

strength training, which requires not only learning relationship between

movements and the performance, but also learning how the physical ca-

pabilities of each individual affect the performance.

Even though our framework demonstrates its potential to analyze hu-

man movements, there remains several future work in terms of computa-

tional costs. Our framework generates motions in specific conditions, and

it needs to learn the control policy again if the body conditions change. It

takes at least a day for each condition, and thus its inverse problem which

finds body conditions given motions takes intractable computational cost.

Learning integrated control policy of human movements eligible for con-

tinuous spectrum of anotamical conditions would be an important cor-

nerstone for understanding the relationship between motions and body

conditions.

Main limitation of this thesis is verification and validation. Even though

we did quantitative comparison between EMG data and simulation results for

biped locomotion, we observe that its generalization for motions other than

biped locomotion to validate all the functionality of muscles as well as skeletal

structures is not obvious propositions. This is because not only our model pa-
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rameters were not finely tuned to synchronize to real world human, but also it is

sometime intractable to acquire appropriate data for comparison. We envision

a validation loop that our framework serves for surgery planning for patients,

a testbed for exoskeletal robots, and performance improvement for athletes in

terms of cost, efficiency, and data, and reversely, these applications verify and

validate our framework by providing relavant data. These processes would be

an important cornerstone for achieving the high-quality musculoskeletal simu-

lation.
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structing personalized anatomical models for physics-based body anima-

tion,” ACM Transactions on Graphics, vol. 35, no. 6, 2016.

[27] I. Akhter and M. J. Black, “Pose-conditioned joint angle limits for 3d

human pose reconstruction,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1446–1455, 2015.

[28] Y. Jiang and C. K. Liu, “Data-driven approach to simulating realis-

tic human joint constraints,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA), pp. 1098–1103, IEEE, 2018.

112



[29] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw, “Robust quasistatic fi-

nite elements and flesh simulation,” in Proceedings of the ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pp. 181–190,

2005.

[30] T. Patterson, N. Mitchell, and E. Sifakis, “Simulation of complex nonlin-

ear elastic bodies using lattice deformers,” ACM Transactions on Graph-

ics, vol. 31, no. 6, 2012.

[31] N. Mitchell, M. Aanjaneya, R. Setaluri, and E. Sifakis, “Non-manifold

level sets: A multivalued implicit surface representation with applica-

tions to self-collision processing,” ACM Transactions on Graphics, vol. 34,

no. 6, 2015.

[32] N. Mitchell, E. Sifakis, et al., “Gridiron: An interactive authoring and cog-

nitive training foundation for reconstructive plastic surgery procedures,”

ACM Transactions on Graphics, vol. 34, no. 4, 2015.

[33] R. Malgat, B. Gilles, D. I. Levin, M. Nesme, and F. Faure, “Multifarious

hierarchies of mechanical models for artist assigned levels-of-detail,” in

Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, pp. 27–36, 2015.

[34] G. Pons-Moll, J. Romero, N. Mahmood, and M. J. Black, “Dyna: A model

of dynamic human shape in motion,” ACM Transactions on Graphics,

vol. 34, no. 4, 2015.

[35] M. Kim, G. Pons-Moll, S. Pujades, S. Bang, J. Kim, M. J. Black, and

S.-H. Lee, “Data-driven physics for human soft tissue animation,” ACM

Transactions on Graphics, vol. 36, no. 4, pp. 54:1–54:12, 2017.

113



[36] A. Murai, Q. Y. Hong, K. Yamane, and J. K. Hodgins, “Dynamic skin

deformation simulation using musculoskeletal model and soft tissue dy-

namics,” Computational Visual Media, vol. 3, no. 1, pp. 49–60, 2017.

[37] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović, “Interactive
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요약

사람의 움직임에는 감각운동계의 많은 요소들이 관여한다. 이 학위논문에서는 사

람의 움직임에 기여하는 내재적인 매커니즘을 재현하기 위해 사람의 근골격계와

촉각운동계를 시뮬레이션한다. 우리는 운동계를 변화함으로써 걷기, 뛰기뿐 아니

라 병적 움직임을 포함한 다양한 동작들을 재현할 수 있다. 우리는 또한 촉각에서

오는 정보를 통해 다양한 움직임을 만들어 낼 수 있는데, 이 움직임으로 외력에

의한 반응뿐아니라 원하는대로 환경을 조작할 수있다.

이 학위논문에서는 3개의 주제를 다룬다. 사람의 근골격계는 200개가 넘는 뼈,

600개가 넘는 근육이 존재하는 큰 시스템이다. 첫번째로 우리는 근골격계 시뮬레

이션의확장성에대해다룬다.두번째로더욱사실적인근골격시뮬레이션을위해,

부피를 가지는 근육을 시뮬레이션 하는 방법론에 대해 다룬다. 마지막으로 우리는

인지, 사고, 행동하는 사람의 감각운동을 디자인하고 촉각에서 오는 정보를 통해

외부와의 상호작용에서 다양하고 자연스러운 움직임을 만들어 내고자 한다. 우리

는 다양한 예제를 통해 우리의 프레임워크가 사람의 움직임을 이해하고 분석하고

재현할 수 있는 유용한 도구가 될 수 있음을 보여주고자 한다.

주요어: 컴퓨터 애니메이션, 물리 시뮬레이션, 물리기반 캐릭터 애니메이션, 심층

강화 학습, 근육 모델, 근골격계 모델, 힘 제어기, 임피던스 제어

학번: 2016-27526
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