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ABSTRACT

RL based ABR Streaming for 360-Degree
Video

Seoho Jeon
Department of Computer Science & Engineering

The Graduate School

Seoul National University

As Virtual Reality (VR) becomes a more popular media platform, streaming
for VR becomes important. Since the 360-degree video does not display the
entire frame, the video frame is divided into small sections, tiles, and only
the tiles to be displayed on the user screen are transmitted. However, current
techniques do not reflex their focusing area, such as far left side or top-right
corner. This leads to lower users’ Quality of Experience.

In this thesis, we introduce an Object Location-Based Adaptive Bitrate
Streaming algorithm (OLB) to redeem Field of View prediction errors and de-
fine quality functions for Quality of Experience using a Reinforcement Learn-
ing technique. The conducted experiments with network datasets demonstrate
that our Object Location-Based Adaptive Bitrate Streaming (ABR) achieves

better results over the current state-of-the-art models in 360 video streaming.

Keywords: bitrate adaptation, video streaming, reinforcement learn-
ing, quality of the experience, tile-based video streaming

Student Number: 2020-23491
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Chapter 1

Introduction

Virtual Reality (VR) is an artificially created environment where users feel
like they are engaging with their surroundings. It is used in various fields such
as education, architecture, and medical care, beyond entertainment. As the
use of VR rises, streaming 360-degree video for VR became more prevalent.
Unlike a regular video, 360 video contains image frames in all angles and
directions, but not all the frames are displayed in the users’screen. Thus, the
video frame is divided into smaller sections, tiles, and only the tiles to be
displayed on the user screen are transmitted and streamed to users[31]. This
lowers bandwidth usage and improves the Quality of Experience (QoE).
Selecting tiles for video streaming is up to the users’client. The client
needs to predict the usersnext viewport and request specific tiles of the video
chunk. However, this streaming algorithm faces two challenges. First of all,
no algorithms can accurately tell which part of the screen the user will watch
next. Secondly, although a user is not equally interested in all display screen
parts, the current streaming method does not reflect the user’s interest level

in each tile.



In this study, we propose a novel object location-based adaptive bitrate
streaming algorithm to redeem Field of View (FoV) prediction errors and de-
fine novel quality functions for Quality of Experience (QoE). We first analyze
video contents. This information is used to learn an Adaptive Bitrate Stream-
ing (ABR) algorithm that captures both the FoV prediction result and content
feature.

We organize this paper as follows. In Chapter 2, we briefly review adaptive
bitrate streaming, 360-degree video streaming, and human peripheral vision.
We formulate a 360-degree adaptive bitrate streaming problem with traditional
Quality of Experience, in Chapter 3. Then, our Object Location-Based ABR
mode is presented in Chapter 4. Performance of our model is evaluated in
Chapter 5, along with details on the experiment process. Finally, in Chapter 6,

we summarize our study and limitations of our research.



Chapter 2

Background

Video is a sequence of images, also called frames, captured electronically. To
download or to receive a video from a server, a client requests a fragment of
video,video chunk (or video segment), from the video server. Once the request
is accepted by the server, the video will be transmitted from the server to the
client; this transmission of video data is referred to as video streaming.

Video streaming is typically done over a computer network, and people
generally cannot visualize the active transmission with their eyesight. Al-
though there is no obvious spacial limitation where people can see, video
streaming has a limit with amount of data it can transfer in a fixed time
frame. This maximum amount of data transmitted over a given time is re-
ferred as bandwidth.

Unfortunately, the amount of a bandwidth is not static, and it fluctuates
during the video data transmission per video chunk. Thus, when the client
request a video chunk from the server, it is required to send the server an op-
timal information transferring speed (bitrate), typically measured in kilobytes

per second (kbps), as well.



In this chapter, we introduce a popular bitrate optimization technique
Adaptive Bitrate Streaming (ABR) algorithms in Section 2.1. Then, Sec-
tion 2.2 presents a feedback equation used in ABR. 360-video streaming tech-
nology is described in Section 2.3. Lastly, a person’s vision and visual range

will be listed in Section 2.4.

2.1 Adaptive Bitrate Streaming

ABR is a technique used to stream various types of multimedia, over the
internet with adjusted optimal bitrate to provide for a better video streaming
experience. Here are three conditions, required for video to be streaming

smoothly without rebuffering in a high quality:

High Bitrate Higher resolusion requires more data in a given time
to display, which means it requires higher bitrate.

No Empty Bujffer The buffer is a queue of video data waiting to be
displayed. Users typically experience video freeze
(also called buffering) when the their buffer is empty.
Checking the status of the buffer is important to keep
the pace of data transfer.

Quick This is generic condition which applied to a bandwidth
Responsiveness size and a change in user request. If the bandwidth
is lowered, bitrate also needs be lowered, too. Also,
if user suddenly changed the resolution of video or
paused a video, bitrate should be adjusted accordingly.

Description 2.1: Video Streaming Conditions

As seen above in Description 2.1, there are two major items, bitrate and
buffer, which can be used to calculate optimal bitrates[18, 2, 14]. Method,
using previous and current bitrate, are called throughput-based ABR methods.

It computes correlation between previous and current throughput for the next



bitrate. Whereas a buffer-based method assumes that the current buffer’s
occupancy is related to the video rate and current buffer level to decided the
next bitrate for the future video chunk.

However, each method only focuses on one condition, and have their own
downside. For instance, throughput-based[15] results rely on previous and
current bitrate and does not count the fluctuating network’s bandwidth size.
Thus, the optimized result might be too big for the changed bandwidth or the
result wouldn’t be optimal if bandwidth got bigger.

On the other hand, the buffer-based method is heavily dependent on the
current status of the buffer. Suppose the current buffer is empty, and video is
frozen. Then a buffer-based method calculations may not work or would not
be able to compute a highest possible bitrate for the next video chunk[12].

In other word, if the bandwidth is fixed size or the status of client’s buffer
is always non-zero, throughput and buffer-based ABR find the optimal bitrate

and provide sustainable video streaming.

2.2 Quality of Experience

Quality of Experience (QoE) is the overall acceptability of an application or
service, as perceived subjectively by the end-user[6]. It is used as a feed-
back signal in both throughput and buffer based Adaptive Bitrate Streaming
altorithm and contributed to a user’s perceived quality of service [25].

Let N be the total number of video chunk. Following is a notation and

an equation for a QoE in video streaming :

N N—-1 N
QoE =Y q(Cn) = > 1a(Cny1) —a(Cn) | = Y Tn(1) (2.1)
n=1 n=1 n=1



Cn nt" video chunck
T, Stalling of C,

q(x) bitrate of given z

We can see that above equation 2.1 can be broken down into three sub-
equations, SN ¢(C,,) for video bitrate, SN | ¢(Cpi1) — q(Cp) | represents
smoothness, and stalling is denoted as 25:1 T,(1). In this equation, smooth-
ness is the bitrate difference between the past chunk and the current chunk,
and stalling is the video download latency.

However, equation 2.1 does not count the bitrate difference among tiles in
the same video chunk. 360-degree video streaming [8] uses a modified version

of the QoE equation, shown below:

N N M
QOE = Q(On) - Z Z ’ Q(Cn) - Q(Cn,m) ‘ *Pn,m
n—lN_l n=1m=1 N
=Y 1 a(Crir) = q(Cr) | —p > T) (2.2)
n=1 n=1
4(Cy) = Em=lCum) Py (2.3)

2%21 pn7m

In this equation 2.2, M is a number of tiles in a video chunk, (), ,,, repre-
sents mt" tile in n'* Video chunk. Also, Pn,m is boolean type viewport factor

where it will be 1 if Cy, ,, is in the viewport, otherwise 0.



2.3 360 Video Streaming

360 Video is video with image data in all directions; 360 video streaming gives
users a more natural and smooth view of the video, especially while in motion.

However, a client does not need the full video frames, since the user would
not use all the data frames simultaneously. The video server provides video
chunks as tiles, a part of 360-degree images and video data partitioned by
direction. Thus, the client must know the specific tile of the video chunk
where the user will watch next to request server for the data.

This prediction for the next viewport tiles is done by a Field of View (FoV)
prediction model. Once the client predicts the next viewpoint tile, it requests
the server either the specific tiles with high bitrate and other portions with
low bitrate or requests only predicted viewport tiles. To support this system,
a video server extracts video into tiles and stores video as tiles. The 360-video

streaming system architecture is illustrated in Figure 2.1.

Client Server
- R
Tile Stitcher Video Decoder Hemplosd 360° Video
Handler
.
Tile extractor
Play buffer Database T
Video Encoder
/
Monitor

\ /

Figure 2.1: Tile-based 360-degree Video Streaming Design




2.3.1 Tile-based Video Streaming

Tile-base streaming is a 360 video streaming technique which sends a partial
segment of a video chunk (tile), instead of the video chunk with a whole 360-
degree view. The methods encode the chunk with K bitrate level, slice the
chunk into M tiles, and then, it select tiles to set a bitrate.

Typically, all the selected tills holds same bitrate, like 1 or non-zero value,
to differentiate from the rest of non-select tiles which are set to different bi-
trate, such as 0. Yet, there are algorithms such as ATRIA[22] and 360SRLI§]
which calculate and assign different bitrate per tiles.

By splitting the chunk into multiple tiles, a client is allowed to curtail
throughput usage. On the other hand, the cost of video transmission is in-
creased, since they need to encode the data to cut into small tiles, and need
M tiles to decoded later - once the selected data is transmitted.

Thus, to minimize the cost, some methods merge adjacent tiles with the
same bitrate[33] to reduce the number of tiles, or merge entire selected tiles.
Then, they predict the viewport with minimum size[35].

In addition, PAAS[31] uses two queues, one for predicted viewport tiles
the and other for non-predicted viewport tiles, to optimize the predicted
viewport tiles only request. And, as NAS[32], Dasari et al.[5] uses a super-

resolution module to improve video quality.

2.3.2 Field of View Prediction

To predict the next user viewport, the client uses past user behaviors or video
content features. Depending on the input, the FoV algorithms are classified

as follows:



Trajectory-based|[3, 7, 13, 21, 11, 35]: Model uses user behaviors to predict
the next user viewport with an assumption that a user has one’s own behavior
pattern. Yet, the user’s interest may change over time; the model does not
reflect the change promptly.

Content-based[33]: Algorithm predicts the next user viewpoint based on
the video content’s features. However, it does not ensure personal interest as
some features may not relate or reflect users’interest.

Hybrid[4]: The model that use both user behaviors and video content
features. This logical background stems from the assumption that if one does
not watch a viewport with a behavior pattern, one will watch the video portion

that has its own feature.

2.4 Human Peripheral Vision

Carl Gutwin et al.[10] distinguishes 5 levels in the human visual usage: central
vision, para-central vision, near peripheral, mid-peripheral, and far peripheral.
Each horizontal range is about 2.5°, 4°, 30°, 60°, and 100° to 110° far from
the visual axis. Respectively the first three ranges are called the central visual
field, and others called peripheral vision [26]. The human can recognize very

detailed information in the central vision and color in near peripheral.



Chapter 3

Quality Function for QoE

Due to the limitations of traditional Quality of Experience (QoE), we propose
a novel quality function that will be able to consider user interest. Every
tile in the port exerts an equal influence on traditional QoE. According to
Carl Gutwin et al.[10], the human perceives an object differently depending
on where the object is in one’s sight. In [26], the visual acuity at the boundary
between the central visual field and peripheral vision is only one-sixteenth of
foveal value which is the center of the gaze, and visual acuity at out-boundary
of para-central vision is one-fourth of foveal value. Thought most effective
visual encoding method is position and the second on is color[16], the human
cannot distinguish color at peripheral vision.

To demarcate user perceived quality, we define visual importance for each
visual range. We set the maximum visual importance to 1 and the minimum
to % The visual importance of peripheral vision is set to minimum value, for
humans cannot recognize the most effective visual encoding method in this
range. Then, we map the visual acuity to visual importance using the square

. o . b . . . .
root function. Each vision range’s visual importance is as follows: visual

10 2 8-



importance = “central vision”: 1, “para-central vision”: 0.5, “near peripheral”
: 0.25, “mid-peripheral”: 0.2, “far peripheral”: 0.2 Using this importance, we
design a quality function that factors different influences on QoE depending

on the visual importance of each tile. The quality function is as follows:

Z%:l Q(Cn,m) * (wlpn,m + w2vpn,m)
Z%:l(wlpn,m + wQUpn,m)

Q(Cn) = (31)

The notes used to value this are organized in 4.1. Using two different
weight parameters, we modify the importance of the viewpoint and the view-
port. w; (0,1] is the visual importance of the viewport and ws (0,1] is the
visual importance of the viewpoint. High w; means standardized tile qualities

and high wy implies that the human has great interest on one’s viewport.

Notation H Description

N Total Number of video chuncks (n < N)

M Total Number of tiles in a video chunck (m < M)

q(x) Bitrate of x

Ch, n'" video chunck (Current video chunk)
Cnm m! tile in n'* video chunk

Tn Stalling of n* video chunk
Dn,m Boolean value representing the precent of (n,m) in ViewPoint.

1 : m*" tile in n* video chunk is in the viewpoint
0 : it is NOT in the viewpoint

UPn,m Boolean value representing a viewpoint status.
1 : m*" tile in n* video chunk is a viewpoint
0 : is NOT a viewpoint

w1 weight 1: visual importance of viewport

wo weight 2: visual importance of viewpoint

Table 3.1: Variables for the QoE Equation

].1 | -II_- -



Chapter 4

Object Location-Based

Adaptive Bitrate Streaming

Since Field of View (FoV) prediction models cannot guarantee perfect accu-
racy, Adaptive Bitrate Streaming (ABR) algorithms need to estimate optimal
bitrate with additional data to redeem the FoV prediction errors. We can
expect that if one does not watch a viewport with one’s behavior pattern,
one may watch the video portion that has its feature. So, using video fea-
tures may help to improve the algorithm. From this assumption, PARIMA[4]
reduces the FoV prediction error by using object information in video. We
propose an ABR streaming algorithm using image information to make up for
the errors.

To capture FoV prediction result and video contents feature, we detect
locations of an object in a video frame. We create an object location list
OL = [0LW, 0L®, ... OLM)] for a video, where OL®" is a set of object
locations in a i*" video chunk and N is the number of chunk in a video. Then,

we transform object location (OL®) to tile location (m € M).

1 ™
12 A =T



State

past throughput

Chunk size of the next tiles
qualities of previous tiles
Previous predicted viewport tiles

next i-th tile sizes

buffer size

predicted viewport/viewpoint tile

M+~ 3D~ A 30O

predicted object tile

Figure 4.1: Architecture of Object Location-Based Adaptive Bitrate Streaming

We trained a ABR algorithm named Object Location-Based ABR (OLB)
with the list OL. We use Advantage Actor-Critic [19] algorithm to train our
model. The model maximizes the cumulative reward R,, = Zi‘;o fyk'rnJrk over
the training, where  is a discount factor. The architecture of our model OLB
is illustrated in Figure 4.1. and the components of the reinforcement learning

algorithm in our model are as below described.

Action

Action is one of the main key components of Reinforcement Learning. It
decides what to do next. In ABR streaming, action is mapped with bitrate
and search space cost of action is number of possible bitrate K. The action
policy aims to choose a bitrate which maximizes QoE. Due to the space cost
K required to make a decision, choosing a bitrate for M tiles takes space cost

KM This space cost is non—polynomial and is currently unable to implement

13 H-.-l”ﬂl T



and run in real-time. Therefore, we use one action space model which re-uses
the model for all tiles in a video, like ATRIA[22] and 360SRLI8] did.

In step n with state .S,,, M states are informed, and the model goes to the
next step after finishing all computing for the M states. The action in OLB

is defined as ay, ,, which defines a bitrate for mth tile in nt" video chunk.

State

State is information used to decide what happens next. It is a function of
history. Even though using the entire client information seems to guarantee
high performance, it causes a huge space cost which we cannot build or causes
a learning delay that is unable to finish learning in polynomial time. So, in
this work, we selected eight inputs for state. The state of OLB is defined as

follow:

Sn = {Sn+1,1, Snt1,2; s Snt1,M}
T o
Sn+1,m = {ana tSnt1, Qn, UPn, t3n+1,m7 B, UPn,m On,m}

The variables used in the above equations are described in Table 4.1. We
use past throughput and buffer size to estimate network state. Past quality is
given to minimize the smoothness penalty and past viewpoint is provided to
inform past video decisions. Finally, video size, viewport/viewpoint informa-
tion, and object information are provided to choose which tile to allocate high

bitrate.

14 .-'-H.E -l- ]_-li ."‘-'!_ T'I.



Notation H Description

Sn,m State at step n which choose bitrate for y'* tile.
B Current Buffer Size
—7
Ty Past Throughputs
q_n) [Q(Cn,l)y Q(Cn,Q)a ceey Q<Cn,M) ]
tSn.m Stalling of m*" tile in n** video chunk
ad
Lsp, [tSn,lv 1Sn2, tSn,M]
Dn,m Value which represents the presence of (n,m) in ViewPoint.

0.5: mt" tile in n* video chunk is in the viewpoint
0: is NOT in the viewpoint

UPn,m Boolean value which representing a viewpoint status.
1 : mt" tile in n** video chunk is a viewpoint

Dz,y: is NOT a viewpoint

op, [ vpn1, UPn2, VP |

On.m Boolean value: 1 if m in OL'™. Otherwise, 0

Table 4.1: Notations for the QoE Equation

Reward

Reward is scalar feedback which signifies how well the agent is doing at step.

The agent maximizes the policy’s expected cumulative reward E[ Y7, Vormir ]

We use the QoE from Equation 2.2 with the quality Equation 3.1 as the reward

r which is represented as follows:

rn = q(Cpn) — Smy — Z | q(C nm) | *Pnym — wTr) (4.1)

0, n <2
Smy, = (4.2)

| ¢(Cr) —q(Cr—1) |, otherwise

For the given Equation 4.1, the first term ¢(C),) is the average bitrate of

n video chunk and the second term Sm,, describes smoothness which mirrors

15 ot el B



the difference between the nt"® video chunk bitrate and n — 1** video chunk
bitrate. It is 0 if n is smaller than 2. The next term stands for smoothness
which reflects the difference of bitrate among tiles in the n** video chunk. The

last term signifies downloading time of n* video chunk.

16 . H k: 1_'.]| [



Chapter 5

Experiments

In this Chapter, we perform experiments on real-world datasets. We compare
the performance of the proposed model, Object Location-Based ABR (OLB),
with other 360 video Adaptive Bitrate Streaming (ABR) algorithms. Further,

we analyze the results on different videos.

5.1 Experimental Setup

We setup a video server simulation environment by benchmarking the envi-
ronment of Pensieve[17]. We extract a video chunk into 24 tiles with 4 rows
and 6 columns as DRL360[34] did and use 6 bitrate levels: 1, 2.5, 5, 8, 16, 35
Mbps. We are encoding video chunk length 1 second, and setting the number
of tiles M value as 24 and all the possible bitrate K to be 6.

As we divide frame columns into six parts, one tile covers 60 degrees which
covers all of the central visual field. Therefore, set viewpoint weight ws to cen-
tral vision’s visual importance 1 and viewport weight w; to peripheral vision’

s visual importance 0.2. We make FoV prediction dataset using PARIMA[4].

17 H 21} &



To encode these videos in six difference bitrate level, we encoded videos in
.yuv format using the fimpeg[27] command. Then, we extracted these videos
to 4x6 tiles using the kvazaar[29] command and encoded them in six bitrate

levels using the mp4box[9] command.

5.2 Datasets

In this experiment, we use network trace, video, and viewpoint trajectory

dataset to setup simulation environment.

o Network trace: we use two public datasets from Ghent[28] and FCC[24].
Ghent[28] is a 4G dataset which recorded throughput in almost every 1000

milliseconds. FCCJ[24] is a 3G dataset, from December, 2021.

¢ Videos and viewpoint trajectories: We select two videos as a test
set from Wu et al[30], a movie clip and a scene from a football match.
Each video is encoded with six different bit rates: 1, 2.5, 5, 8, 16, and 35
Mbps, then split temporally in one-second chunks. For each video dataset,
48 viewpoint trajectories are attached, where each trajectory is information

tracing the viewpoint of a user, see Table 5.1 for more detailed information.

H Movie \ Football

Category Movie | Sport
Length 294s 165s
Chunk Size 1s 1s
Frame Per Second 30 25
Viewpoint Trajectory# 48 48

Table 5.1: The Video Dataset Information

18 H 2t} 8



5.3 Baselines

We compare our OLB model with the two 360 video ABR streaming algorithms
as below. For fair comparison, we train these models with the proposed QoE

for this test.

o« DRL360[34]: The reinforcement learning based hybrid ABR algorithm
which predicts next throughput and uses this result as an input state ele-

ment instead of past bandwidth.

o ATRIA[22]: The reinforcement learning based hybrid ABR algorithm that
chooses bitrate for each tile. This algorithm chooses one bitrate for a tile

at once.

Model [ DRL 360 | ATRIA | OLB (ours)
Chunk ID o - -
Time Stamp o - -
Buffer occupancy o
Size of the tiles of the next chunk o

Size of the tile to determine the bitrate - -

Predicted viewpoint of the next chunk o

O|lO0O|O|O]|O

Past throughput -

o

Estimated bandwidth

o
1
1

Past bitrate -

Past download time -

Number of Segments remaining -

O|O0|O]|O
1

Decided tile qualities -

Previous viewport tile -

1
O

Object location - - o

Table 5.2: Evaluation Models’ State Input

1 ™
19 *" = L]



5.4 Performance Evaluations

Finally, we calculated the average QoE of our Object Location-Based ABR
(OLB) Algorithm, along with the baseline DRL360 and ATRIA methods. As
a reference, we let an optimal QoE, which represent maximum QokE each video
can achieve, noted as OPT, and set it to be 1. Below, we show the results
of our QoE experiment with existing QoE (Equation 4.1) and our modified
quality function, from the Equation 3.1 in Chapter 3.

First of all, we measured the QoE using the existing quality function
(Equation 2.3). As shown in the Figure 5.1, there are not much of perfor-
mance differences between the OLB and ATRIA algorithms with both FCC
and Ghent network traces. Nevertheless, the result of DRL360 method is

nearly 50% of ATRIA and OLB algorithms.

DRL360 = ATRIA = OLB mOPT

! 1
1
0.795 0.798 0.822 0.833
0.8
0.6
0.423
0.4 0.348
0.2
0
football movie clip

(a) Average QoE with FCC[24] network trace

20 X ﬁr} 2 Eﬂ



0.8

0.6

0.4

0.2

DRL360 " ATRIA

0.871 0.872

0.371

football

OLB mOPT

0.889 0.892

0.442

movie clip

(b) Average QoE with Ghent[28] network trace

Figure 5.1: Average QoE with existing quality function

Now, Equation 3.1 accommodates weights of viewport and viewpoint in

the QoE calculation. Shwon in Figure 5.2, QoE with OLB and ATRIA algo-

rithms result very close performance, for the movie clip.

But, OLB outperforms ATRIA by 4.7% with FCC and 7.6% with Ghent,

using weighted-quality equation, for the football dataset. This is because FoV

prediction of football video does not have false positive errors, while movie

clip has about 0 — 8% false positive errors.

Overall, DRL360 performs 39.4 — 50.8% lower than OLB in every experi-

ments, regardless of the different video datasets, network traces, and the QoE

equation. Although ATRIA and OLB show very similar outcomes when we

use the existing quality equation, OLB shows slightly better result with our

weighted-quality equation, for the football dataset.
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0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

DRL360 © ATRIA

1
0.842
0.795
0.359

football

OLB mOPT

movie clip

(a) Average QoE with FCC[24] network trace

DRL360 1 ATRIA

1
0.871
0.795
0.363

football

OLB mOPT

0.888 0.891
0.437

1
0.832 0.832
0.438
1

movie clip

(b) Average QoE with Ghent[28] network trace

Figure 5.2: Average QoE with new quality function
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Chapter 6

Conclusion

In this research, we proposed Object Location-Based ABR (OLB) 360 video
streaming algorithm and a revised quality function for 360 video streaming
Quality of Experience (QoE). The proposed model is able to capture the video
content feature using object location in video and makes up for field of view.
In order to optimize user perceived video quality, we analyze the human visual
field. Based on this analysis, we design the visual importance factor for each
visual field and design a quality function that absotively reflects the quality
perceived by the user using this importance factor. The results show the pro-
posed model outperforms other the baseline methods in 360-video streaming

task.
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Glossary

Abbreviation
ABR Adaptive Bitrate Streaming
FoV  Field of View

OLB Object Location-Based ABR
RL Reinforcement Learning
QoE  Quality of Experience
VR  Virtual Reality

Notation
¥ Discount Factor
B Current Buffer Size
K All the Possible Bitrates
KM Space Cost for bitrate M
M Number of Tile per Video Chunk (m < M)
N Number of Video Chunks (n < N)
w1 Weight for the View-port

Wy Weight for the ViewPoint
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Functions
Ch nt" Video Chunk
Chm  mt" Tile in nt* Video Chunk

)

onm Value to Indicate If mth Tile of nt* Video Chunk is in the Object
Location OL™.
Value is set to be 1 for Yes, and 0 for No.

OL®) Object Location of k' Frame

Pnm  Value to Indicate If m** Tile is in the View-port.
Value is set to be either 1 or 0.5 for Yes, and 0 for No.

q(n) Bit-rate of n' Video Chunk
n  Past Throughput

qn List of the n'" Bit-rates.
[¢(Cn), 4(Cn2), s ¢(Crnr) ]

Tn An Average Bitrate of n* Video Chunk

R, A Cumulative Reward of n'* Video Chunk

Snm  State of Step n which chooses bitrate for mth Tile
T, Stalling of n'* Video Chunk

tsn [ tsn1, tsn2, tspar |

tsp,m Stalling of mt" Tile in n* Video Chunk

Upn,m Value to Indicate If mt" Tile is in the View-Point.
Value is set to be 1 for Yes, and either 0 or p, ,, for No.

vpn [ Py P2y VP ]
Others

kbps Kilobits per Second

Mbps Megabits per second
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