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Abstract

Current LSM-tree based key-value database systems are optimized for the

DRAM-SSD memory architecture. With the emergence of persistent mem-

ory(PMEM), which is a non-volatile storage device with performance close to

DRAM, memory architecture have changed. In this new hybrid memory ar-

chitecture, we need to optimize database system to exploit the benefits given

by persistent memory. LSM-tree based key-value database systems suffer from

(1)Write Ahead Logging and (2)Write stalls from compaction jobs. In this pa-

per, we separate read/write path of the system. First, we write data on per-

sistent memory directly, eliminating the need of write ahead logging. Since

PMEM provides larger space than DRAM, concerns for compaction stalls di-

minish as well. Data written on persistent memory is then forwarded to DRAM.

Since DRAM is free of compaction jobs and write path, there are some flexibil-

ity of customization to improve read performance. Our work was made above
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vanilla RocksDB. We evaluate our work by using YCSB workloads, comparing

with original version of RocksDB system. The result showed that our system

works well on write-intensive workloads, and showed little improvement on read-

intensive workloads.

Keywords: Persistent Memory, LSM-Tree, Key-Value Database, Write Stalls,

Reducing Log Overhead, Separate Read/Write Path

Student Number: 2019-20797
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Chapter 1

Introduction

Current database systems are well developed for DRAM-SSD memory architec-

ture, and it is optimized in many ways under this hardware layout. With the

emergence of Intel Optane Persistent Memory(PMEM) [1] however, memory hi-

erarchy have changed. Since PMEM have middle performance level in between

DRAM and SSD, it is desirable to use PMEM as middle layer between DRAM

and SSD rather than replacing either one of them, as shown in Figure 1.1. With

persistent memory adopted, new opportunities for optimizations have appeared.

While there are various kinds of database systems, our work focus on LSM-Tree

based key-value database system, such as RocksDB, LevelDB and Cassandra.
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Figure 1.1 Memory Hierarchy

In this paper, we analyze the details of performance characteristics of PMEM

and workflow of LSM-tree to find some way to exploit them.

1.1 Motivation

LSM-tree is a data structure that performs well on write-intensive workloads.

It was originally designed for DRAM-SSD like architecture, which have fast

volatile memory and slow stable storage. Insertion of a data in LSM-tree works

in append-only way, which means that write can be done in average O(1) time.

To provide decent read latency, LSM-tree maintains each nodes as sorted run

which is merged and flushed down to bottom level as each node grows to full

size. This work of maintaining the structure creates an overhead. Also, writing
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data down to non-volatile memory means that there is a need for some methods

to provide atomicity and consistency of data. This is handled by Write Ahead

Logging(WAL) policy, which is also an overhead, since writing actual key-value

pair can’t be done until log is written to slow and stable storage.

Since the commercial release of Intel DC Persistent Memory Module in

2019 [1], there were many studies to reduce down the overheads explained above

by utilizing the benefits of persistent memory. Some of them used persistent

memory as a log storage. This strategy provides faster write by reducing WAL

overhead. [2] Other works have used PMEM as container for data along with

DRAM. [3] With this strategy, database system have less threats of write stalls

because there is more likely to have additional room to write. Our work adopted

an idea of using PMEM as an additional container for data and expanded it.

In our work, PMEM works alone as a write buffer to disk without DRAM. By

avoiding writes to volatile memory, logging won’t be necessary. Also, we use

DRAM as a read buffer, which makes an opportunity to optimize for faster

read.
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1.2 Contribution

Our work was implemented on vanilla version of RocksDB [4]. Our design goal

was to successfully separate read and write path of data. In this design, PMEM

carries data within a instance called MemTable. Immutable Memtables, which

is an instance copied from MemTable when it becomes full, also resides in

PMEM. Compaction and flush jobs operate within PMEM and SSD, not in-

volving DRAM. Data in PMEM is copied to DRAM, and DRAM behaves as

a read buffer. When read request is handled, DBMS looks at DRAM first, and

then PMEM and disks. This separation of read and write path gives an op-

portunity to customize the read workflow. Which means that it is easier to

adopt new ideas, such as changing data structure that is read-favorable, such

as B-Tree.

We compared our modified design of RocksDB with the vanilla version with

YCSB workloads. [5] The results showed that it performed 8% - 12% better on

write-intensive workloads, and about 1% - 3% better on read-intensive work-

loads. Also, we implemented our idea on LevelDB, which is premature version,
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to compare with NoveLSM [3]. Our result in levelDB showed about 30% better

performance on write-intensive workloads.

1.3 Outline

This paper have structures like below :

• Chapter 2 summarizes the background about the performance charac-

teristics of Intel Optane DC Persistent Memory Module [1], how LSM

tree based key-value database storage engine works, and related works

that optimized LSM-tree with persistent memory.

• Chapter 3 provides the reasons why we designed the system in this way

and how we implemented them in detail.

• Chapter 4 introduces the experimental setup and analyze the result of

experiments.

• Chapter 5 summarizes and concludes our work. It also points out the

directions for future work.
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Chapter 2

Background

This research is about optimizing LSM tree based key-value database under

an assumption that memory hierarchy will be changed with persistent mem-

ory device. We used Intel Optane DC Persistent Memory Module device for an

experimental setup. In this chapter, we explain (1)the performance character-

istics of Intel Optane Persistent Memory device, (2)the workflow of RocksDB’s

LSM-tree based database systems, and (3) related works that our work referred

to.
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2.1 Intel Optane Persistent Memory

Intel DC Persistent memory is a persistent storage device that provides read

and write latency close to DRAM. Many studies have shown the details of

performance characteristics of PMEM since 2019, when it was commercially

released. There are 4 major features of PMEM : 1.Non-volatility; which means

that the data is not lost on power crash. 2. Faster than SSD, slower than

DRAM; PMEM is approximately 20-40 times faster than SSD and 5-10 times

slower than DRAM. 3.Byte Addressablilty : the data moves with byte unit,

unlike solid state disk or hard disk drive where data moves with a block unit.

However as shown in figure 2.1 PMEM performs best at 256B granularity, so

programmers should be aware of this. 4. Higher capacity than DRAM; PMEM

offers greater memory capacity per socket than DRAM, which of course is in

lower cost.
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Figure 2.1 Performance of Intel Optane DC 200 Persisent Memory Mod-
ule(256GB)

2.2 LSM Tree based Key-Value Database

In modern database systems, B-Trees and LSM-Trees are data structures most

commonly used for key-value storage engines. These two data structures have

different optimal characteristics; While B-Trees work better on read-intensive

workloads, such as short-range queries, LSM-Trees, on the other hand, work

better on write-intensive workloads, such as update queries. This different be-

havior comes from the difference that LSM-Trees have exponentially growing

size of node on bottom level, like in Figure 2.2. B-Trees, however, have same

bounded size node at every level(height) of tree. In B-Trees, each node have a
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Figure 2.2 structure of B-Tree and LSM-Tree

fixed size, which is 4 in Figure 2.2. This structural difference results in different

read and write latency. B-tree’s average insert and search time takes O(logn)

time, because height of the tree is dominant factor. LSM Tree keeps a append-

only structure on top level, which makes O(1) average write time. As shown in

Figure 2.2, LSM-Tree merges down to bottom level as they grow in size. Since

bottom level keeps larger data, read takes average O(n) time to finish. There

are some methods to overcome poor read performance such as bloom filters and

fence pointers, yet these are not our concern.

Whenever an insertion query arrives, database system handles it by stor-
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ing a key-value pair in a in-memory write buffer called ”MemTable”. When

MemTable size grows and becomes full, with size is predetermined by user or

default setting, it is turned to an read-only in-memory buffer called ”Immutable

MemTable. Several Immutable Memtables, which number is also predetermined

by user or default setting, are merged and flushed down to disk/SSD as a

”Sorted Strings Table”(SST) data file. As shown in figure, SSTs are organized

as a sorted run and compose a level. When level n SSTs become full, they are

merged and flushed to level n+1.

The major performance bottleneck in LSM tree based database systems is

a write stall due to compaction and flush jobs. This happens when the rate of

write request overwhelms the rate of compaction and flush jobs.It is known that

most of write stall comes from compaction in between L0 and L1. [6]

2.3 Related Works

There were many studies to improve database systems by utilizing persistent

memory. ”Managing Non-Volatile Memory in Database Systems” [7] separated
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cold/hot data and used PMEM as a additional MemTable buffer to store them.

NoveLSM [3] also used PMEM as an additional MemTable buffer, but used it

mainly for storing immutable Memtables, and secondly for storing MemTables

under write stall conditions. MatrixKV [6] used PMEM as a matrix container

for handling compaction jobs for L0 tree. This matrix container is a compaction

optimized architecture, and the idea comes from the analysis that L0,L1 com-

paction jobs are most critical to write stalls. ChameleonDB [8] and SpanDB [2]

used PMEM as a storage for WAL, to reduce overheads of writing logs to Disks

before storing key-value pairs.

Our work was largely motivated by work of NoveLSM [3], and it’s design

is shown in Figure. While RocksDB keeps both MemTable and immutable

MemTables in DRAM, NoveLSM copies immutables to PMEM. Additional

MemTables can be also created upon write stalls in DRAM. When writing data

to MemTable in PMEM, logging doesn’t take place because PMEM is a stable

storage. We focused on this idea and expanded by moving every MemTables to

PMEM, removing the overhead of logging. There are some works to adopt new
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Figure 2.3 Structure of RocksDB and NoveLSM

data structures to enhance performance. HiKV [9] used hybrid index key-value

store, and ”LSM-trees and B-trees: The best of both worlds” [10] tried to use

both LSM-trees and B-trees to utilize their advantages. In our work, we sepa-

rated read and write path to make easier to adopt these ideas, by creating a

room for flexible customization.
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Chapter 3

Implementation and Design

Our design policy is based on the goal to exploit the benefits of PMEM, to

overcome the overhead of logging and compaction jobs. Our main idea is to

write data on PMEM without logging to enhance write performance and to

forward data to DRAM to maintain the read performance. This is implemented

by separating read and write path. In this design, DRAM behaves like a buffer

carrying latest written data. In this chapter, we show the details of the design

and implementation of our work.

13



(a) Write path

(b) Compaction and flush

Figure 3.1 Insert workflow

14



3.1 Write Path

Figure 3.1(a) shows the write path of our design. When insert query is han-

dled, key-value pair is directly stored in PMEM, which is implemented by

storing them in MemTable. After safely storing key-value pair in stable stor-

age(PMEM), it is then copied and forwarded to DRAMTable. DRAMTable is

a MemTable-like instance that resides in DRAM, and works as a container for

faster read. If the size of MemTable grows and becomes full, it is turned to

an Immutable MemTable. Several Immutable MemTables are wating for back-

ground compaction jobs. As shown in Figure 3.1(b), Immutable MemTables are

also stored in PMEM. Accessing persistent memory was implemented with the

help of PMDK libraries.

In this design, we can point out 3 advantages compared to the original

version; (1)This design reduces overhead of logging by writing data to stable

storage, which is PMEM. (2) We can avoid write stalls due to compaction

by keeping MemTable and Immutable Memtables in larger container, which is

provided by PMEM. (3) Since both compaction and flush jobs are done without

15



involving DRAM, we can utilize DRAM space better by keeping MemTable and

Immutable MemTables in PMEM. This will be a cornerstone for optimizing read

path by using read-favorable data structures.

3.2 Read Path

Figure 3.2 shows the read path of our design. For reading the data, DBMS looks

for the key in DRAM first. If the key is not found in DRAM, the process will go

through PMEM and SSD. This process of reading can have a synchronization

issues upon updates on existing data. It means that when a data is updated,

the same data that resides in DRAM must be updated too, in atomic way.

Since read path first looks for DRAM, there is a chance of reading invalid old

data. We handle this problem by logically deleting the data in DRAM before an

actual update. In this way, read request will not be able to read an old data in

DRAM, which data is updated in PMEM. However, if there is a lot of update

request, many data in DRAM would be logically deleted. This leads to write

amplification. Biggest problem about write amplification in original LSM-tree

16



Figure 3.2 Read path

based database system was that it caused too many unnecessary compaction

jobs. In our design this is not a problem becasuse DRAM doesn’t take part in

compaction.
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Chapter 4

Evaluation

4.1 Experimental Setup

Hardware Platform : As shown in Figure 4.1.(a), We used a server ma-

chine with 2-way 16 core processor, 32GB DRAM, 2 128GB Intel DC Optane

Persistent Memory Module, and 1TB hard disk drive.

System Configuration : The baseline of the experiment is RocksDB with

version 6.24.0. Our modification was done on the vanilla RocksDB. We used

default RocksDB settings for the MemTable, using 3 MemTables with 16MB

maximum size.
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Figure 4.1 Experimental Setup

Workload and Dataset : We used YCSB benchmark, which is the most pop-

ular key-value database workload. The workload’s dataset size is set to 40GB,

with 1 record having 1KB size. Each workload runs 4 million operations. In ad-

dition to 5 YCSB workloads, we customized two workloads more. Like shown in

Figure 4.1.(b), workload G and H are our customized version of workload. We

added them to test the write intensive workloads, because our work is focused

on improving write performance just yet. We also implemented our work in

levelDB, to compare the performance against NoveLSM. Again, we used YCSB

benchmark with workload size varying from 1 to 10GB(1KB record).

19



4.2 Experiment Result

Figure 4.2 shows the throughput of baseline and modified version of RocksDB

in 7 YCSB workloads. In workloads G and H, we achieved 13.83% and 9.97%

of performance gain. This gain comes from reducing logging overhead of insert

operations. Workload A is also write-intensive, but showed 2.82% performance

gain, which is less than workload g and h. The difference between them is that

queries consist of update operations, not insert operations.

Read-intensive workloads showed about 1-3% performance gain, except for

workload B. It seems that updates cause some overhead in our policy. We

have talked earlier in Chapter 3.2 that update queries results in logical deletes

in DRAM. This can be a problem by reducing hit ratio in DRAM. However,

figure 4.4 shows that DRAM hit ratio have decreased by small amount in 3

workloads, A, B and C. So it seems that our update policy doesn’t create much

overhead.

Figure 4.5 shows the throughput of baseline and our modified version(WBL)

of LevelDB in 2 YCSB workloads. Here, we used NoveLSM [3] as baseline to

20



Figure 4.2 YCSB Result in RocksDB

Figure 4.3 Performance Gain

Figure 4.4 DRAM hit compare with baseline
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Figure 4.5 YCSB Result in LevelDB

compare with our modified version. WBL showed average of about 20000(ops/s)

throughput, which is 30% better than NoveLSM. This seems very impressive,

but we have to again, note that our work in LevelDB is very premature. Our

work in levelDB was done on base of NoveLSM [3]. We simply forced every

key-value store to be stored in NVMTable, and forwarded them to DRAM.
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Chapter 5

Conclusion

With the arrival of persistent memory device in data centers, database systems

gained a significant room for improvement. It is inevitable to change our system

to better fit into new hybrid memory architecture with persistent memory. LSM-

tree based key-value database systems, such as RocksDB [4], LevelDB [11], and

Cassandra [12] are also optimized for original DRAM-SSD based hierarchy.

Major problems for LSM-tree based database system was (1)overhead of

Write Ahead Logging, which sits on top of critical path in writing data, and

(2)write stalls induced by waiting for compaction and flush jobs. Computer

scientists in other work have tried to to handle both problems by utilizing
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PMEM as log or data storage. We propose a idea of separating read and write

path, using PMEM as an initial write buffer instead of DRAM. By writing down

to stable storage, we removed the overhead of WAL. We use DRAM as a read

buffer which is filled by forwarded data from PMEM.

Our experiment results showed that our work performed well on insert

queries and write-intensive workloads. This is due to removing overhead of writ-

ing logs. On updates queries and read-intensive workloads, however, it showed

little performance gain. Updates creates write amplification in our system, but

there were little difference in DRAM hit ratio between baseline and our work.

Our plans for future work take place in read path. In our design, space in

DRAM can be customized to best provide read performance only. First, we

will adopt some garbage policy to handle read performance loss generated by

updates. Also, we will test some eviction policy for DRAM. Finally, we plan to

change the data structure in DRAM, to provide fast read.
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요약

현재 LSM 트리 기반의 키-밸류 데이터베이스 시스템은 DRAM-SSD 메모리 구조

를기반으로최적화되어있다.하지만영구메모리가등장함으로서,메모리계층구

조에변화가생겼다.영구메모리는 DRAM에근접한수준의성능을가진비휘발성

메모리이다.우리는제이하이브리드메모리계층구조에서영구메모리를잘활용

해서데이타베이스시스템을새롭게최적화할필요가있다.보통 LSM트리기반의

키-밸류 데이터베이스 시스템은 Write-Ahead-Logging(WAL)과 (2)Compaction

으로인한Write Stall에의해성능이저하되는문제점을가지고있다.이연구에서

는 영구메모리가 도입된 메모리 계층구조에서 읽기/쓰기 경로를 분리함으로서 이

문제를 해결하고자 한다. 먼저 쓰기 경로는 DRAM을 거치지 않고 바로 PMEM에

씀으로서 WAL의 필요성을 제거한다. 영구 메모리에 적은 데이터는 후에 DRAM

으로 이동한다. DRAM은 compaction이나 쓰기 경로 위에 존재하지 않기 때문에

오직 읽기만을 위해 최적화 되기 편해진다. 이 연구는 rocksDB 버전 위에서 코드

수정을 통해 진행되었다. 그리고 기존의 rocksDB와의 성능 평가를 위해 YCSB

워크로드를 사용했다. 실험 결과를 통해 우리의 연구가 write가 많은 워크로드에
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서는 주목할만한 성능 개선이 있었고, read가 많은 워크로드에서는 약간의 성능

개선이 있다는 것을 알게 되었다.

주요어: 영구 메모리, LSM 트리, 키-밸류 데이터베이스, Write Stall, WAL, 읽기/

쓰기 경로 분리

학번: 2019-20797
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