

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Multi-Robot Environmental Learning and Target Tracking
with Distributed Gaussian Process

분산가우시안과정을통한다중로봇환경학습및목표물추적기법

2022년 8월

서울대학교대학원

항공우주공학과

장 도 현

Multi-Robot Environmental Learning and Target Tracking
with Distributed Gaussian Process

분산가우시안과정을통한다중로봇환경학습및목표물추적기법

지도교수김현진

이논문을공학박사학위논문으로제출함

2022년 5월

서울대학교대학원

항공우주공학과

장 도 현

장도현의공학박사학위논문을인준함

2022년 6월

위 원 장 : 김 유 단

부위원장 : 김 현 진

위 원 : 박 찬 국

위 원 : 김 우 진

위 원 : 유 재 현

Multi-Robot Environmental Learning and Target Tracking
with Distributed Gaussian Process

A Dissertation

by

Jang, Dohyun

Presented to the Faculty of the Graduate School of

Seoul National University

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Department of Aerospace Engineering

Seoul National University

Supervisor : Professor H. Jin Kim

AUGUST 2022

Multi-Robot Environmental Learning and Target Tracking
with Distributed Gaussian Process

Jang, Dohyun

Department of Aerospace Engineering

Seoul National University

APPROVED:

Youdan Kim

Youdan Kim, Chair, Ph.D.

H. Jin Kim

H. Jin Kim, Ph.D.

Chan Gook Park

Chan Gook Park, Ph.D.

Woojin Kim

Woojin Kim, Ph.D.

Jaehyun Yoo

Jaehyun Yoo, Ph.D.

to my

FAMILY and HARIM

with love

ix

Abstract

Multi-Robot Environmental Learning and Target Tracking
with Distributed Gaussian Process

Jang, Dohyun

Department of Aerospace Engineering

The Graduate School

Seoul National University

This dissertation presents an investigation on distributed environment learning techniques in

multi-robot systems and applies them to multi-target search and tracking problems. A multi-robot

system has the advantages of reliability, efficiency, and scalability, facilitated by the cooperative

work of multiple robots. Such a system can be easily applied to data-driven environmental learn-

ing. Data-driven environmental learning is a technique for obtaining comprehensive information

on a region of interest by acquiring a large amount of sensor data from a specific region of inter-

est. However, distributed-learning algorithms and collaborative algorithms are required to enable

multiple robots to perform such tasks.

The first part of this dissertation focuses on the distributed environment learning algorithm.

Given noisy sensor measurements obtained at the location of robots with no prior knowledge of

the environmental map, Gaussian process regression can be an efficient solution for constructing

a map that represents spatial information with confidence intervals. However, because the con-

ventional Gaussian process algorithm operates in a centralized manner, processing information

coming from multiple distributed sensors in real time is difficult. In this work, a multi-robot ex-

ploration algorithm is proposed, which deals with the following challenges: i) construction of

a distributed environmental map using networked sensing platforms, ii) online learning using

successive measurements suitable for a multi-robot team, and iii) active sensing and control for

multi-agent coordination to determine the highest peak of an unknown environmental field. The

effectiveness of the proposed algorithm is demonstrated through simulation and a topographic

xi

survey experiment with multiple unmanned aerial vehicles (UAVs). However, this technique lacks

path planning in the cooperative search process, resulting in myopic behavior. Accordingly, the

second part of this dissertation proposes a multi-robot informative path planning algorithm work-

ing in a fully distributed manner. This algorithm tackles the following challenges: i) online dis-

tributed learning of environmental map using multiple robots, ii) generation of safe and efficient

exploration paths based on the learned map, and iii) maintenance of scalability with respect to the

number of robots. Accordingly, the entire process is divided into two stages: environmental learn-

ing and path planning. Distributed algorithms are applied to each stage and combined through

communication between adjacent robots. The learning algorithm uses a distributed Gaussian pro-

cess, and the path planning algorithm uses a distributed Monte Carlo tree search. Therefore, a

scalable system without a constraint on the number of robots is built. Simulation results demon-

strate the performance and scalability of the proposed system. Moreover, a hardware experiment

validates the utility of the proposed algorithm in a more realistic scenario.

Finally, the results of environmental learning can be applied to search and tracking prob-

lems using multi-robots. Deployment of multiple robots for target search and tracking has many

practical applications; however, the challenge of planning for unknown or partially known tar-

gets remains difficult to address. With recent advances in deep learning, intelligent control tech-

niques such as reinforcement learning have enabled agents with little to no prior knowledge

to learn autonomously from environmental interactions. Such methods can address the explo-

ration–exploitation tradeoff of planning for unknown targets in a data-driven manner, eliminat-

ing the reliance on heuristics—typical of traditional approaches—and streamlining the decision-

making pipeline with end-to-end training. Accordingly, a multi-agent reinforcement learning

technique with target map building based on a distributed Gaussian process is proposed. The

distributed Gaussian process to encode belief over the target locations is leveraged to efficiently

plan for unknown targets. Further, the performance and transferability of the trained policy is

evaluated through simulation, and the method is demonstrated through hardware experiments on

a swarm of micro UAVs.

Keywords: multi-robot system, environmental learning, informative path planning, deep re-

xii

inforcement learning

Student Number: 2019-35974

xiii

xiv

Table of Contents

Page

Abstract . xi

Table of Contents . xv

List of Tables . xix

List of Figures . xxi

Abbreviations and Acronyms . xxv

Chapter

1 Introduction . 1

1.1 Contributions and Outline . 3

2 Preliminaries . 5

2.1 Multi-Robot Systems . 5

2.2 Gaussian Process . 7

2.3 Karhunen–Loève (KL) Kernel Expansion . 9

2.4 Average Consensus Algorithm . 10

3 Multi-robot Environmental Learning with Distributed Gaussian Process 11

3.1 Introduction . 11

3.1.1 Related work . 12

3.1.2 Problem Statement . 14

3.1.3 Contribution . 15

3.2 Distributed Gaussian Process . 15

3.2.1 Multi-Agent Distributed Gaussian Process 15

3.2.2 Online Information Fusion by Moving Agents 18

3.3 Multi-Agent Active Sensing and Control . 22

3.3.1 Exploration and Exploitation . 22

xv

3.3.2 Collision Avoidance and Coordination 24

3.4 Simulation Result . 25

3.4.1 Simulation: robotic sensor networks for 4 agents 25

3.5 Experimental Result . 29

3.5.1 Experimental Setup . 29

3.5.2 Experiment: robotic sensor networks for 3 agents 29

3.6 Summary . 31

4 Informative Path Planning for Multi-Robot Systems 33

4.1 Introduction . 34

4.1.1 Literature Review . 34

4.1.2 Contribution . 36

4.2 Multi-Robot System Setup and Preliminaries 37

4.2.1 Multi-Robot System Setup . 37

4.2.2 Informative Path Planning . 38

4.3 Path Planning: Distributed Monte Carlo Tree Search 39

4.3.1 Trajectory Merging . 41

4.3.2 Informational Reward Function . 41

4.3.3 Tree Search with D-UCB Alogrithm . 42

4.4 Result and Analysis . 44

4.4.1 Simulation - synthetic environment learning 44

4.4.2 Experiment - topographic survey using multiple UAVs 50

4.5 Summary . 52

5 Target Search and Tracking with Reinforcement Learning 53

5.1 Introduction . 54

5.1.1 Related Works . 55

5.1.2 Contributions . 56

5.2 Problem Statement and Preliminaries . 57

5.2.1 Problem Statement . 57

xvi

5.2.2 Multi-Agent Systems . 57

5.2.3 Gaussian Process for Target Search . 58

5.2.4 Deep Reinforcement Learning . 59

5.3 Method . 60

5.3.1 Multi-Agent Consensus-Based Map Building 61

5.3.2 Map-Based MADDPG . 63

5.4 Results . 66

5.4.1 Hyperparameters . 66

5.4.2 Multi-Sensor Consensus-Based Map Building 66

5.4.3 Map-Based MADDPG . 67

5.4.4 Simulation Experiments . 69

5.4.5 Multi-UAV Setup . 71

5.4.6 Multi-UAV Experiments . 72

5.5 Summary . 73

6 Conclusion . 79

Appendix

A Proof of Theorem 1 . 83

References . 85

Abstract (in Korean) . 97

xvii

xviii

List of Tables

4.1 Scalability comparison between centralized and distributed systems for multi-

agent tasks. See text for symbols. 37

5.1 Performance metric for various configurations. 70

xix

xx

List of Figures

2.1 Overview of multi-robot systems. 6

2.2 Two types of networks. Symbol ‘A’ means a robot agent and ‘S’ means a central

server. Solid lines are peer-to-peer communication channels. 7

2.3 Gaussian process regression. 8

3.1 Topographic survey experiments with multiple UAVs. 13

3.2 Bi-modal environmental phenomenon for simulation. (left) 3D perspective view.

(right) top-down view. 17

3.3 The process of the environmental model construction performed by 64 stationary

sensors with distributed Gaussian process regression. It shows (a) the uncertainty

propagation and (b) the change of the GP estimate with time from k = 0 to

k = 75 in order from the left figure. The environmental model is presented in

Fig 3.2. The communication range is equal to the distance between two adjacent

agents. All results are obtained by agent #1 located at the bottom-left corner. In

addition to the results of agent #1, the results of all the other agents converge to

the same. 18

3.4 Convergence rate according to the maximum number of neighbors. 19

3.5 The process of the dynamic environmental model construction performed by 64

stationary sensors with distributed Gaussian process regression. It shows (a) the

uncertainty propagation, (b) the change of the GP estimate, and (c) the change

of dynamic environment with time from k = 0 to k = 90 in order from the left

figure. Yellow lines are communication links between agents. All results are ob-

tained by agent #1 located at the bottom-left corner. With the online information

fusion algorithm, dynamic environment can be estimated for all agents. 20

xxi

3.6 GP estimation error according to the hyperparameter. 26

3.7 Robotic sensor networks simulation for four agents to search for the highest peak

location. It shows (a) the environmental process estimate and the trajectories of

the agents, (b) the uncertainty propagation, and (c) the change of the GP estimate

with time from k = 0 to k = 1500 in order from the left figure. The environmen-

tal model is presented in Fig 3.2. All results are estimates of agent #1 initially

located at bottom-left corner. 27

3.8 Final results of distributed GP for each agent. All GP mean estimates converge

to the same because of the average consensus algorithm. 28

3.9 3 UAVs robotic sensor networks experiment to search the highest peak location.

Snapshots from 0 to 125 seconds are shown. All UAVs complete the area explo-

ration and at the end gather at the highest peak. 30

3.10 Experiment - robotic sensor networks for three UAVs to search for the highest

peak location. It shows (a) the uncertainty propagation and (b) the change of the

GP estimate with time from 0 to 125 seconds in order from the left figure. All

results are estimate of the agent #1. 31

4.1 Topographic survey using multiple UAVs. All UAVs can only communicate with

their neighbors. 35

4.2 Structure of the distributed exploration and environmental model learning sys-

tem. Each agent has its own distributed GP and distributed MCTS planner mod-

ules that operate through peer-to-peer communication with each other. 38

4.3 Illustration of the distributed MCTS process. Nearby robots exchange their pre-

dicted trajectories. These trajectories are used to temporarily update GPs and

grow search trees. This process is repeated until the time budget is met. 40

4.4 Node closing method for obstacle avoidance in MCTS. (left) finite action space

that the robot can take. (right) tree expansion and node closing process. 43

xxii

4.5 Simulation A. The process of the environmental model construction by 12 agents

with fully distributed informative planning. (a) Change of GP estimate and (b) un-

certainty propagation over time from 0 to 50 seconds in order from the left figure.

(c) Ground truth of environmental model. Yellow lines in (b) indicate communi-

cation links between agents. All the presented results are obtained by agent #1

(red dot in (b)). 47

4.6 Simulation A. Environmental model estimation error. The solid green line shows

the box plot of RMSE values between all agents and the ground truth. The dashed

red line shows the box plot of RMSE values between all agents and the agent #1.

This graph means that all GP estimation results converge to the same result with

only local communication. 48

4.7 Simulation B. Environmental model construction with different conditions. (a) 6

agents’ exploration results with different search depths. (b) 8 agents’ exploration

results with the different number of iterations. (c) Exploration results with the

different number of agents. 49

4.8 Simulation C. 4 agents’ exploration results with different type of systems for 10

trials (with different environments). 50

4.9 Experiment results. The three white pillars are the obstacles. After 40 seconds,

the UAV team complete the area exploration and topographic survey. 51

5.1 Schematics for target search and tracking with distributed GP and RL. 60

5.2 Network architecture for map-based MADDPG actor and critic. 63

5.3 An example of consensus-based distributed map building for multi-sensor array. . 67

5.4 Network architecture ablation for map-based MADDPG. 68

xxiii

5.5 Multi-agent target search and tracking demonstration with micro-UAVs: each col-

umn represents a different zero-shot transfer setting with a varying number of

targets and obstacles. From top to bottom, snapshots of the episode are arranged

in chronological order. The three supplementary plots of each snapshot denote

the top-down view, GP mean, and GP variance from left to right. 74

5.6 Multi-agent target search and tracking demonstration with micro-UAVs: each col-

umn represents a different zero-shot transfer setting with a varying number of

targets and obstacles. From top to bottom, snapshots of the episode are arranged

in chronological order. The three supplementary plots of each snapshot denote

the top-down view, GP mean, and GP variance from left to right. Note that zero-

shot transfer is successful for minor(±1) changes in the number of targets and

the UAVs were able to find and converge to unknown targets. 75

5.7 Multi-agent target search and tracking demonstration with micro-UAVs: each col-

umn represents a different zero-shot transfer setting with a varying number of tar-

gets and obstacles. From top to bottom, snapshots of the episode are arranged in

chronological order. The three supplementary plots of each snapshot denote the

top-down view, GP mean, and GP variance from left to right. Note that zero-shot

transfer is successful for minor(±1) changes in the number of obstacles and the

UAVs were able to find and converge to unknown targets. 76

5.8 Multi-UAV experiment setup. 77

xxiv

Abbreviations and Acronyms

1D 1-Dimensional

2D 2-Dimensional

3D 3-Dimensional

AGL Above Ground Level

CNN Convolutional Neural Network

CPU Central Processing Unit

D-UCB Distributed-Upper Confidence Bound

DDPG Deep Deterministic Policy Gradient

DGP Distributed Gaussian Process

DP Dynamic Programming

DRL Deep Reinforcement Learning

FEM Finite Element Method

GM-PHD Gaussian Mixture-Probabilistic Hypothesis Density

GMM Gaussian Mixture Model

GP Gaussian Process

GPR Gaussian Process Regression

IIR Infinite Impulse Response

INS Inertial Navigation System

KF Kalman Filter

KL Karhunen–Loève

LASER Light Amplification by Simulated Emission of Radiation

MADDPG Multi-Agent Deep Deterministic Policy Gradient

MARL Multi-Agent Reinforcement Learning

xxv

MAS Multi-Agent System

MCTS Monte Carlo Tree Search

MDP Markov Decision Process

ML Maximum Likelihood

MLP Multi-Layer Perceptron

MRS Multi-Robot System

NCS Networked Control System

POMDP Partially-Observable Markov Decision Process

RL Reinforcement Learning

RMSE Root Mean Square Error

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

RVI Reduced Value Iteration

SE Squared-Exponential

ToF Time-of-Flight

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

UCB Upper Confidence Bound

WSN Wireless Sensor Network

xxvi

1
Introduction

In recent years, multi-agent systems (MASs)—as a means of solving complex and difficult prob-

lems— have received considerable attention in various academic fields, including mechanical en-

gineering, aerospace engineering, and computer science [1–4]. A multi-agent system comprises

autonomous entities known as agents, which are assigned individual tasks to achieve a common

goal. Each agent can judge a situation and act on its own through interaction with a neighboring

agent or its environment. This flexibility and scalability allowsallow MASs to solve various prob-

lems. When these agent entities are replaced by robotic agents, they are referred to as multi-robot

systems (MRSs) [5, 6].

A multi-robot system differs from a system comprising virtual computer agents in that it

has a physical location. Robots need to be moved to a suitable place occasionally, and changing

positions is not only difficult in itself but also incurs time and cost. Moreover , based on a robot’s

position, a communication channel between robots is established. In particular, small UAVs or

robots use communication modules that are relatively light and have low performance due to the

limitation of payload and minimization of cost. This makes unrestricted information exchange

between robots difficult, which prevents sophisticated perception of the environment and decision

1

on the situation [7, 8]. To implement an algorithm that operates robustly even in such a limited

communication network environment, studies on distributed systems are attracting attention.

An example is an application that realizes environmental awareness and learning through a

wireless sensor network (WSN) [9]. Instead of installing wireless sensors in a fixed location,

installing them on a moving robot can help implement a robotic sensor network system [10, 11].

By using the robotic sensing platform, acquiring continuous sensor data along the path of the

robot is possible, rather than just learning the sensor data at a predetermined initial position.

Therefore, even with fewer sensors, an environmental map for a larger area can be obtained at

a higher resolution. However, if the environmental map needs to be learned in real time, all the

sensor information cannot be utilized if communication with the central server is limited. In this

case, a distributed algorithm that can exchange and fuse information only through communication

with adjacent robots is required.

Path planning and cooperative algorithms are also required for autonomous movement of

robots. A robot must move to its destination by avoiding obstacles and optimize the traveled

path. The optimization criterion may be the minimum time or shortest distance, or it may be

the maximum amount of information that can be obtained. The cooperative algorithm increases

the task performance efficiency by considering each other’s trajectories . In some cases, multiple

robots may need to create a specific formation and maintain it while moving. This cooperative

formation control problem has been addressed in various studies [12, 13].

The problem of considering the environmental learning and path planning simultaneously

is the multi-robot informative path planning [14–16]. Various papers have previously addressed

these issues. However, in most cases, a suitable distributed algorithm was not applied, so the

scalability for the number of robots was not considered. Also, due to the low cooperation in the

path creation process, it is not possible to efficiently utilize a large number of robots. In order

to perform the efficient navigation task of multiple robots, a fully distributed algorithm must be

applied to both the environmental learning process and the path planning process.

2

1.1 Contributions and Outline

The dissertation aims to tackle the problem of distributed environmental learning and target

search and tracking in multi-robot sysetms. Because mobile robots use inherently light and weak

communication modules, communication distance and bandwidth are limited. To overcome this

harsh network environment, a distributed algorithm that works only on local communication is

essential. Therefore, I apply the distributed Gaussian process to learning the unknown environ-

ment as shown in Chapter 3. Next, Chapter 4 proposes the informative path planning algorithm

for multiple robots to obtain additional sensory data helpful to improve GP estimation quality.

Extending these environmental learning problems, I have addressed the multi-target search and

tracking problem as shown in Chapter 5. Using the signal intensity map learned by distributed

GP, I propose a multi-agent deep reinforcement learning technique that can guide multiple agents

to point to the targets’ location. The contributions of this dissertation are summarized as follows.

Chapter 3: Multi-Robot Environmental Learning with Distributed Gaussian Process

• Distributed Gaussian process: I propose a distributed Gaussian process for the learning

of unknown environment in a distributed manner. In this chapter, Karhunen–Loève (KL)

kernel expansion and an average consensus algorithm are presented for cooperative envi-

ronmental learning.

• Succesive data fusion and active sensing: I propose an environmental learning technique

in which multiple robots fuse sensory data obtained from new locations in real time, and

design a multi-robot guidance control technique to acquire additional sensory data.

Chapter 4: Informative Path Planning for Multi-Robot Systems

• Informative path planning: I propose a distributed search and path planning algorithm

based on the amount of information. The confidence of the learned map obtained by the

Gaussian process becomes a criterion for measuring the amount of information in the pre-

3

dicted trajectory.

• Monte Carlo tree search: A sampling-based Monte Carlo tree search technique is com-

bined with the Gaussian process to compute an optimally predicted trajectory for the robot.

A near-optimal prediction trajectory is obtained with fewer sampling times using the upper

confidence bound (UCB) algorithm based on probability theory.

• Distributed Monte Carlo tree search: Robot agents share the predicted path obtained by

Monte Carlo tree search with neighboring agents to influence each other’s path regener-

ation. This method allows multiple robots to collaboratively perform exploration, taking

into account collision avoidance and coordination.

Chapter 5: Target Search and Tracking with Reinforcement Learning

• Multi-agent reinforcement learning: I combine the distributed GP with deep reinforce-

ment learning to tackle the problem of multi-agent target search and tracking. Even with

only partial information about the environment, multiple robots can actively perform search

missions by using past experiences.

• Map-based MADDPG: I design the network architecture accommodating high-dimensional

inputs to incorporate the belief map with MADDPG. This method allows for a zero-shot

transfer during deployment. The proposed technique enables multiple robots to actively

search for and locate each target even in a distributed network environment.

4

2
Preliminaries

2.1 Multi-Robot Systems

In a multi-robot system, multiple robots work together with a common goal. As depicted in

Fig. 2.1, the multi-robot system consists of multiple robots, environment, and a communication

network. To interact with the environment, each robot senses environmental data and acts based

on the environmental information.

We consider n robot agents exploring the environment, assuming all robots have the same

dynamic model. In the multi-robot system we are dealing with, all robots obtain sensory data

periodically from their location through on-board sensors and exchange them with neighboring

robots. Each robot i takes the measurement yik of an unknown environmental process f(·) in its

position xik ∈ Xw(i = 1, 2, · · · , n) at time k which has the following relationship:

yik = f(xik) + vik, (2.1)

where Xw is the domain of working space and the measurement of f(xik) is corrupted by the

additive white Gaussian noise vik ∼ N (0, σ2
v). The unknown environmental process f(·) will be

estimated by Gaussian process regression algorithm.

5

Figure 2.1: Overview of multi-robot systems.

During exploration, robots estimate environmental process by using both measured and shared

data obtained from neighbors. To share measured data with other robots, all robots utilize the

communication network. Let us briefly distinguish the network characteristics for the two main

types of networks: centralized and distributed networks shown in Fig. 2.3. In the centralized net-

work, all the robots send measurement data to a central server, and the global estimate obtained at

the server is sent back to all the robots. Therefore, this method consumes much energy for com-

munication and is vulnerable to bottlenecks and malfunction of the central server. On the other

hand, the distributed network does not have the central server. Because the distributed schemes

operate only through local communication with neighbor robots, it does not have constraints on

network size or link failure risks [17–19]. Therefore, it is appropriate to be applied to a large

system with many deployed robots.

The distributed network of n robots is defined based on the graph theory. Let G(k) = {V , E(k)}

be an undirected graph of order n with the non-empty set of nodes V = {vi| i ∈ N} and the set

6

S

A

A

A

A

A

A

A
A

A
A

A

A A

A

(a) Centralized network (b) Distributed network

Figure 2.2: Two types of networks. Symbol ‘A’ means a robot agent and ‘S’ means a
central server. Solid lines are peer-to-peer communication channels.

of edges E(k) = {(vi, vj)| i, j ∈ N , ‖xik − xjk‖ < dcomm} at time k, where N = {1, 2, · · · , n}

is the index set of nodes. (vi, vj) is the communication channel from the robot i to j, and

dcomm is the communication range of the robot. We define a set of neighbors for robot i as

N i
k = {j| (vj, vi) ∈ E(k), j ∈ N /i}, and we also define N i+ as N i ∪ {i}. For arbitrary variable

A, Ai+ means {Aj}j∈N i+ , and Ai− means {Aj}j∈N i for brevity.

2.2 Gaussian Process

Gaussian process is a data-driven non-parametric learning method designed to solve regression

and probabilistic classification problems, taking into account joint Gaussian probability distribu-

tion between the sampled dataset [20]. This method can provide the probabilistic prediction over

the set Xw so that it can compute empirical confidence intervals. In (2.1), the unknown process

model f(·) is assumed to follow a zero-mean Gaussian process as

7

f(·) ∼ GP(0, κ(x′,x′′)), (2.2)

where κ(x′,x′′) is a kernel or covariance function for positions x′,x′′ ∈ Xw. The covariance

function is the crucial element in Gaussian process, as it defines the similarity between data points

to lean unknown process. There are a number of common covariance functions (e.g., squared

exponential, Ornstein-Uhlenbeck, and Matérn), and different covariance functions make different

function estimations. In this work, we choose the original squared exponential (SE) kernel, which

is defined as

κ(x′,x′′) = σ2
sexp(−1

2
(x′ − x′′)>Σ−1

l (x′ − x′′)), (2.3)

where σ2
s is the signal variance of f(·), and Σl is the length scale. The hyper parameters σ2

s and

Σl can be determined by maximizaing the marginal likelihood [20].

(a) Sampled dataset (b) Gaussian posterior process

Figure 2.3: Gaussian process regression.

Formally, let Di
k = {(xit, yit)}t∈Mk

be the training dataset sampled by the robot i, where t is

the sampling time. Mk is the set of sampling time indices up to time k. With the dataset Di
k of

size mi
k, we can simply define the input data matrix as Xi

k = [x̄i1, · · · , x̄imik]
> ∈ Rmik×3 and the

output data vector as yik = [ȳi1, · · · , ȳimik]
> ∈ Rmik×1. According to the test point x ∈ Xw, the

posterior distribution over f(x) by robot i is derived as follows:

p(f(x)|Xi
k,y

i
k,x) ∼ N (f̄ i(x),Σi(x)), (2.4)

8

where

f̄ i(x) = k>(Xi
k,x)(K(Xi

k,X
i
k) + σ2

vI)−1yik, (2.5a)

Σi(x) = κ(x,x)

− k>(Xi
k,x)(K(Xi

k,X
i
k) + σ2

vI)−1k(Xi
k,x).

(2.5b)

K(Xi
k,X

i
k) is the mi

k ×mi
k kernel matrix whose (u, v)-th element is κ(x̄iu, x̄

i
v) for x̄iu, x̄

i
v ∈ Xi

k.

k(Xi
k,x) is the mi

k × 1 column vector that is also obtained in the same way.

2.3 Karhunen–Loève (KL) Kernel Expansion

Let the usual GP consider n robots. We can simply define the input data matrix for n robots as

Xk = [X1>
k , · · · ,Xn>

k]> ∈ Rmn×3. For simplicity, it is assumed that mi
k’s are same for all robots,

and we omit the subscript k, so mi
k = m hereafter. With the matrix Xk, the usual GP requires all

the sampled data Xk and inversion ofK(Xk,Xk) withO((mn)3) operations. These requirements

are impractical when peer-to-peer communication is only used, and the computational burden

also increases depending on the data size. For this reason, a new kernel method is needed. The

kernel (2.3) can be expanded in terms of eigenfunctions φe and corresponding eigenvalues λe as

follows [21]:

κ(x′,x′′) =
+∞∑
e=1

λeφe(x
′)φe(x

′′), (2.6)

where λeφe(x′) =
∫
Xw κ(x′,x′′)φe(x

′′)dµ(x′′). It is difficult to derive the kernel eigenfunctions in

a closed-form, but the SE kernel expansion has already been obtained via Hermite polynomials,

as mentioned in [22]. Then, the process model f for the position x ∈ Xw is expanded as

f(x) =
E∑
e=1

aeφe(x) +
+∞∑

e=E+1

aeφe(x)

= fE(x) +
+∞∑

e=E+1

aeφe(x),
(2.7)

where ae ∼ N (0, λe) for e = 1, 2, · · · ,∞. fE(x) is the E-dimensional model of f(x) where

E is a constant design parameter. This parameter can be tuned by the SURE strategies [23]. As

9

shown in [22], the optimal E-dimensional models can be obtained by a convex combination of

the first E-kernel eigenfunctions as the size of sampled dataset increases to infinity.

2.4 Average Consensus Algorithm

Each agent can receive data only from neighbor agents due to the limitations of the communi-

cation network. Against the communication constraint, the consensus algorithm enables multiple

agents to operate on the same protocol so that each local estimate converges to the global esti-

mate. More details for obtaining a global estimate are addressed in Section 3.2.

We define the following dynamics with the state matrix {Xi}Ni=1 and the consensus protocol

{Ui}Ni=1:

Xi((k + 1)T) = Xi(kT) + Ui(kT). (2.2)

where k ∈ Z≥0, and T is the sampling time. We replace all ”(kT)” by ”(k)” for brevity. The

average consensus for these N state matrices is satisfied when the following two conditions are

met [24]:

lim
k→∞
||Xi(k)−Xj(k)|| = 0, ∀i, j ∈ N (2.3)

and ∑
i∈N

Xi(k) = X̄(k0), ∀k ∈ (k0,∞). (2.4)

The variable X̄(k) is the average matrix of all state matrices Xi at k. If only (2.3) is satisfied,

consensus is achieved.

When the graph G(k) is connected, the protocol for the system (2.2) to achieve the average

consensus is as follows [25]:

Ui(k) = − 1

|Ni(k)|
∑

j∈Ni(k)

γ(Xi(k)−Xj(k)) (2.5)

for agent i ∈ N . |Ni(k)| is the cardinality of Ni(k) and γ ∈ R is the parameter for convergence

rate. We will show how the multi-agent team performs distributed Gaussian process regression in

the networked control systems using this average consensus protocol.

10

3
Multi-robot Environmental Learning with

Distributed Gaussian Process

This chapter deals with multi-robot cooperative exploration and environmental learning tech-

niques. The given goal is to map the environmental process of the field of interest through a

Gaussian process. At this time, it is necessary to use a distributed algorithm for real-time learn-

ing through the sensor network of multiple robots. In this chapter, I introduce distributed Gaussian

process to enable distributed environmental learning. In addition, by using the mobility of multi-

ple robots, it is possible to acquire more sensor data not only in the initial position of robots but

also in a wider area. The acquired data is fused to update the learned environment model in real

time.

3.1 Introduction

Multi-robot systems can be better specialized than a single robot for missions in large areas such

as crop monitoring, observing climate changes, and terrain surveying [26]. These missions can

be viewed as environmental process estimation problems in which each robot measures spatio-

11

temporal data on its own. As such, techniques for multiple robots to move around and acquire

local information for constructing a global environmental map are referred to as robotic sensor

networks [11].

In robotic sensor networks, robots move to optimal locations where most valuable data can be

obtained, and these data are used to generate an environmental map. I need to learn an environ-

mental model from the collected data and estimate the information gain to decide which location

to investigate further.

Another challenge in multi-robot systems is the limitation of network resources such as com-

munication distance, transmission throughput, and channel bandwidth [27, 28]. Given these is-

sues, network control systems (NCS) have been developed to facilitate the cooperative work by

using mutually agreed protocols for data communication of a large number of robots [24, 25].

In this chapter, I present a distributed multi-robot exploration method for joint sensing and

learning of an unknown environmental process with the following challenges: i) distributed learn-

ing for an environmental process and communication protocol in networked control systems, ii)

online update of an environmental process model with newly acquired sensory data for multi-

robot systems, and iii) multi-robot coordination for improving the process estimation perfor-

mance.

3.1.1 Related work

Gaussian process (GP) regression [20] can be used to construct an environmental process from

data [29, 30]. It derives a spatial relationship between sampled data by using a kernel function

and performs Bayesian inference for prediction at an unknown location. An online version of

GP [31], which is extended from typical batch learning, would be more suitable for real-time

robot learning scenarios [32].

However, most online GP approaches have been designed for centralized systems, making

it difficult to apply them for a multi-robot NCS subject to the limitation of network resources

(e.g., transmission power, throughput, or channel bandwidth). Even though relay communication

might be a solution for large-scale data transition [33, 34], it takes too much time and bandwidth

12

Crazyflie 2.1

ToF sensor

Agent 1Agent 2

Agent 3

Figure 3.1: Topographic survey experiments with multiple UAVs.

to adapt rapidly changing environment in multi-robot NCS.

In [23], distributed GP regression is introduced for multi-agent systems, in which a finite-

dimensional GP estimator is designed by using Karhunen–Loève (KL) kernel expansion. It is

more flexible on a network scale because only a connected graph is needed where each node is

connected to the other nodes through a sequence of edges (i.e. path), not a centralized network

where all agents are directly connected to a central server. In contrast to the decentralized GP’s

local estimate, the distributed GP yields a global estimate as if using the sensory data of all

agents by exchanging estimator information with neighbors. However, this study considers sensor

networks only, not moving robot platforms. Thus, the sensor position is fixed, and data cannot be

obtained where the sensor is not installed. The main difference with my work lies in the fact that

I can update the GP estimate using newly measured sensory data from a multi-robot team.

I am interested in robotic sensor networks that could enable active sensing and construct-

ing the environmental model using mobile robots. [35] represents informative planning for au-

tonomous robot with online sparse GP, which takes advantage of a subset of data. In contrast

13

to my work, it considered only single-agent exploration. In [36], a multi-robot sensor coverage

problem is addressed with a mixture of the Gaussian process. These papers employ multi-robot

systems and GP but concentrate only on the optimal sensor placement objectives without consid-

eration of collision avoidance.

The idea of combining GP and multi-robot systems has already been explored in several

works. [37] presents a decentralized multi-agent exploration with online GP, focusing on multi-

agent coordination and physical process construction. In [38], Gaussian radial basis functions

and multi-agent systems are utilized to discover peak, considering the communication distance.

In contrast to my study, both [37] and [38] only address the local-estimate-based exploration,

not the global-estimate-based. With local estimates for multi-robot control, each agent would

follow an inefficient path or converge to the local peaks. [39] developed multi-UAS planning

with a decentralized GP fusion algorithm, which takes a different approach from my works in

implementing a distributed GP. It has an advantage of communication efficiency; however, this

technique does not guarantee the global estimate’s performance.

3.1.2 Problem Statement

Multiple robots (e.g., ground vehicles or UAVs) explore an unknown environmental process in

3-D space with onboard sensors. Each agent estimates environmental information across an un-

known area that has not yet been explored by using both own measurements and shared data

received from neighbors. The robot determines its next location to move based on the prediction

by the distributed GP, where a search for a place of high uncertainty is prioritized. I consider the

following setting:

• The exploration area is finite, and all agents know the boundary of the exploration area. The

environmental process is time-invariant.

• Each agent has its localization and navigation capabilities in the global coordinate system.

• Each agent can only communicate directly with agents within the communication range.

Communication between the two agents is bidirectional.

14

3.1.3 Contribution

This chapter focuses on three main contributions to multi-robot exploration in the networked

control system.

• I present a distributed GP algorithm with global mean and variance estimation through

Karhunen–Loève expansion and an average consensus protocol [23].

• I expand the distributed GP algorithm to be suitable for continuous data collection to enable

online GP learning for mobile robots.

• To find the location of the peak value of a scalar function, which has been considered

in [38, 40], I propose the maximum variance exploration and maximum mean exploitation for

individual agents. For safe and efficient exploration, I apply a collision avoidance and coordina-

tion algorithm.

I perform a multi-robot exploration simulation in a virtual environment and conduct a topo-

graphic survey experiment using multiple unmanned aerial vehicles (UAVs) with a laser rangefinder.

The outline of this chapter is as follows. Sec. 2 summarizes distributed GP. Sec. 3 combines dis-

tributed GP and multi-robot coordination. Simulation and real-time experiments are presented in

Sec. 4. Finally, Sec. 5 concludes the chapter.

3.2 Distributed Gaussian Process

3.2.1 Multi-Agent Distributed Gaussian Process

I apply E-dimensional approximation to the GP estimator in (2.5) to derive the estimation of

fE(x). According to E-dimensional approximation, the kernel function (2.6) can be described as

κ(x′,x′′) ≈
E∑
e=1

λeφe(x
′)φe(x

′′). For the input data matrix Xk, kernel matrices included in (2.5)

are defined by

K(Xk,Xk) = GΛEG
>, (3.1a)

k(Xk,x) = GΛEΦ(x), (3.1b)

15

where Φ(x) :=
[
φ1(x), · · · , φE(x)

]>
and G :=

[
Φ(x̄1

1) · · ·Φ(x̄1
m), · · · ,Φ(x̄n1) · · ·Φ(x̄nm)

]>
. ΛE

is the diagonal matrix of kernel eigenvalues.

With (2.5a) and (3.1a), the E-dimensional estimator for GP is expressed as follows [23]:

f̄E(x) := Φ>(x)HEy, (3.2)

where

HE :=

(
G>G

mn
+

σ2
v

mn
Λ−1
E

)−1
G>

mn
. (3.3)

Because each agent cannot obtain G and y in (3.2) without a fully connected network, I

decompose the associated terms included in (3.3) as follows:

G>G

mn
=

1

mn

n∑
i=1

m∑
t=1

Φ(x̄it)Φ
>(x̄it) =

1

n

n∑
i=1

αim, (3.4a)

G>y

mn
=

1

mn

n∑
i=1

m∑
t=1

Φ(x̄it)ȳ
i
t =

1

n

n∑
i=1

βim, (3.4b)

where αim :=
∑m

t=1 Φ(x̄it)Φ
>(x̄it)/m and βim :=

∑m
t=1 Φ(xit)ȳ

i
t/m are GP states after the m-th

sensor measurements. Now (3.2) is reformulated in the following distributed form:

f̄ iE(x) := Φ>(x)

(
αim +

σ2
v

mn
Λ−1
E

)−1

βim. (3.5)

As the results of average consensus protocol in Section 2.4, (3.5) converges to (3.2) after iterative

communication. Similarly, the distributed form of Σ(x) in (2.5b) is expressed as

ΣE(x) := κ(x,x)− Φ>(x)HEGΛEΦ(x), (3.6)

Σi
E(x) := κ(x,x)− Φ>(x)

(
αim +

σ2
v

mn
Λ−1
E

)−1

×αimΛEΦ(x).

(3.7)

When I compare (2.5) with (3.5) and (3.7), the computational complexity of the distributed

algorithm is O(E3), whereas that of the centralized algorithm is O((mn)3) due to the matrix

inversion [23]. Therefore, the distributed algorithm is more scalable since E � mn in general.

16

Figure 3.2: Bi-modal environmental phenomenon for simulation. (left) 3D perspective
view. (right) top-down view.

Fig. 3.3 shows distributed GP example using 64 stationary agents for unknown environmental

model in Fig. 3.2. The overall uncertainty for the workspace decreases over time, and the GP

mean estimate converges to the original model.

Fig. 3.4 shows the analysis of convergence rate according to the network. In general, the

greater the number of neighbors connected to each agent, the faster the convergence speed of the

consensus algorithm. However, when excessive communication channels are connected, the net-

work overload increases, and bottleneck occurs. If communication channels are fully-connected,

it is a centralized network.

17

(a)

(b)

0 steps 15 steps 30 steps 75 steps

0 steps 15 steps 30 steps 75 steps

Figure 3.3: The process of the environmental model construction performed by 64 sta-
tionary sensors with distributed Gaussian process regression. It shows (a)
the uncertainty propagation and (b) the change of the GP estimate with time
from k = 0 to k = 75 in order from the left figure. The environmental model
is presented in Fig 3.2. The communication range is equal to the distance
between two adjacent agents. All results are obtained by agent #1 located
at the bottom-left corner. In addition to the results of agent #1, the results
of all the other agents converge to the same.

3.2.2 Online Information Fusion by Moving Agents

If the (m + 1)-th new training dataset {(x̄im+1, ȳ
i
m+1)}ni=1 are obtained, {αim}ni=1 and {βim}ni=1

have to be discarded to include new data so that the consensus process must be restarted from

scratch. To avoid repeated restarts and keep the continuity of environmental estimate, I introduce

the online information fusion algorithm.

Let me assume that the sensor measurement frequencies of all agents are same for conve-

nience. The update rule of αim and βim is defined as follows:

18

Figure 3.4: Convergence rate according to the maximum number of neighbors.

αim+1 = (1− r)αim + rΦ(x̄im+1)Φ>(x̄im+1),

βim+1 = (1− r)βim + rΦ(x̄im+1)yim+1,

(3.8)

where αi0 = 0 and βi0 = 0. This rule is an infinite impulse response (IIR) filter. If r = (m+ 1)−1,

The update rule reflects all dataset equally, so it is suitable for static environmental learning. If

r > (m + 1)−1, this rule reflects more of the recent data, so it is suitable for dynamic environ-

mental learning. Fig. 3.5 shows distributed GP example using 64 stationary agents to estimate the

dynamic environment. The online information fusion algorithm enables learning about dynamic

environments. Because the propagation of information takes time, it is not possible to predict the

ground truth in real time. However, it keeps up with the changing environment through iterative

information exchange.

Theorem 1. Using the average consensus protocol and update rules in (3.8), new data are suc-

cessively fused with the existing {αim}ni=1 and {βim}ni=1, so that {αim+1}ni=1 and {βim+1}ni=1 con-

verge towards (3.4a) and (3.4b), respectively, in a distributed manner.

Proof. See The Appendix.

19

0 steps 30 steps 60 steps 90 steps

0 steps 30 steps 60 steps 90 steps

0 steps 30 steps 60 steps 90 steps

(a)

(c)

(b)

Figure 3.5: The process of the dynamic environmental model construction performed
by 64 stationary sensors with distributed Gaussian process regression. It
shows (a) the uncertainty propagation, (b) the change of the GP estimate,
and (c) the change of dynamic environment with time from k = 0 to k = 90
in order from the left figure. Yellow lines are communication links between
agents. All results are obtained by agent #1 located at the bottom-left cor-
ner. With the online information fusion algorithm, dynamic environment can
be estimated for all agents.

20

Algorithm 3.1: Multi-Robot Exploration for agent #i
1: αi(k < k0)← 0, βi(k < k0)← 0

2: k ← k0,m← 1

3: while True do
4: /*Sensing*/
5: if mod(k,SensingPeriod) = 0 then
6: yi(k)← f(xi(k)) + ν

7: αi(k)← m−1
m
αi(k − 1) + 1

m
Φ(xi(k))ΦT (xi(k))

8: βi(k)← m−1
m
βi(k − 1) + 1

m
Φ(xi(k))yi(k)

9: m← m+ 1

10: end
11: /*Communication*/
12: ∆αi(k)← −

∑
j∈Ni

γ(αi(k)− αj(k))

13: ∆βi(k)← −
∑
j∈Ni

γ(βi(k)− βj(k))

14: αi(k + 1)← αi(k) + ∆αi(k)

15: βi(k + 1)← βi(k) + ∆βi(k)

16: /*Multi-Robot Coordination (Algorithm3.2)*/
17: xi(k + 1)← π(xi(k), αi(k), βi(k))

18: k ← k + 1

19: end

21

3.3 Multi-Agent Active Sensing and Control

3.3.1 Exploration and Exploitation

In the previous section, I introduced the distributed GP to construct an unknown environmental

model by letting multiple agents explore. In this section, I establish a multi-robot exploration

strategy to improve GP performance with additional data collection and exploitation strategies to

improve problems when focusing only on exploration.

To make up for the lack of information in the initial location, each robot would move in the

direction of the region where the uncertainty of GP estimation is high (exploration). Each robot

sets a searching area like (3.9) based on its current location xi and calculates the distributed GP

variance (3.7).

Xc = {xc = l∠θc + xi| θc ∈ [0, 2π)} (3.9)

where l is the search range. If the uncertainty around the robot is lower than a parameter σ2
threshold,

the search for nearby areas of the robot is not likely to be effective for improving the overall

amount of information. In this case, the robot should broaden the search area and examine the GP

uncertainty over a wider area (line 15 of Algorithm 3.2). If there is a region where the uncertainty

exceeds σ2
threshold, the robot moves toward the direction decided by the lines 12-13,23-24,29 of

Algorithm 3.2. If the robot cannot find an area having the uncertainty above a certain threshold

after trying expanding the search area, it enters the exploitation process (lines 17-20,27-28 of

Algorithm 3.2).

The goal of the robots is to find the highest value for the environmental process. GP increases

the uncertainty as the test location moves away from the data acquisition location. Therefore,

exploration techniques that chase only uncertainty have a limit in the detailed description of

the peak. To better describe the model around the peak, the exploitation step is needed [41].

Considering the confidence region of GP, exploration and exploitation can be performed at the

same time by adding the mean value estimate and variance estimate, such as (3.10) (lines 26-27

22

Algorithm 3.2: Multi-Robot Control Policy π for agent #i
input : xi, αi, βi
output : xi,next

1: l← linit
2: ExplorationFlag← True
3: Θinit ← [0, 2π)

4: while True do
5: /*Boundary condition*/
6: Θbc ← {θbc ∈ Θinit| (l∠θbc + xi) ∈ Xmap}
7: /*Collision Avoidance condition*/
8: Θca ← {θca ∈ Θinit| ||(linit∠θca + xi)− xj|| > lca,

9: ∀j ∈ Ni}
10: /*Motion Candidates*/
11: Θc ← Θbc ∩Θca

12: if max
θc∈Θc

ΣE,i(l∠θc + xi) > σ2
threshold then

13: break
14: else
15: l← l + linit
16: if l > lthreshold then
17: ExplorationFlag← False
18: break
19: end
20: end
21: end
22: if ExplorationFlag then
23: /*Exploration*/
24: θd,i ← arg max

θc∈Θc

[wi(l∠θc + xi)× ΣE,i(l∠θc + xi)]

25: else
26: /*Exploitation*/
27: θd,i ← arg max

θc∈Θc

[f̂E,i(l∠θc + xi) + ηΣE,i(l∠θc + xi)]

28: end
29: xi,next ← linit∠θd,i

23

of Algorithm 3.2).

θd,i = arg max
θc∈Θc

(f̂E,i(l∠θc + xi) + ηΣE,i(l∠θc + xi)) (3.10)

η ∈ R≥0 defines the confidence interval of GP model.

Local maxima can still happen in a rare situation when all the following conditions hold :

i) the exploration range of individual agents, lthreshold (in Algorithm 3.2), is very small, so the

distance between all agents and a global maximum is greater than lthreshold (lthreshold can be limited

by computational resource), ii) the variance of global maximum is small enough, so the agent can

no longer access it, and iii) the estimation result of a global maximum by GP is incorrectly lower

than local maxima.

3.3.2 Collision Avoidance and Coordination

For safe multi-robot exploration, I calculate the collision avoidance condition and the coordi-

nation weight. Robot i is assumed to know the locations of neighbor robots j ∈ Ni within the

communication range lcomm.

In (3.9), the region farther than the collision-free distance lca is set as collision-free area Θca

(lines 7-8 of Algorithm 3.2). The workspace boundary condition is also applied in the same way

(lines 5-6 of Algorithm 3.2).

For efficient coordination of multiple robots during the exploration, each agent gives the

weights to the directions as far away from its neighbors as possible (lines 23-24 of Algorithm

3.2). The weight function wi(xc) for agent i is defined as follows:

wi(xc) =
∑
j∈Ni

(||xj − xc||)/(||xi − xc||) (3.11)

It gives a linear weight with respect to ||xj−xc||, which is scaled to 1 when the ratio of ||xj−xc||

to ||xi − xc|| is 1.

24

3.4 Simulation Result

This section presents a simulation on the virtual environmental model, as shown in Fig. 3.2. This

bi-modal environmental model is unknown a priori, and each robot should obtain the sensory data

from the current robot location. Since the communication range lcomm is 1, some agents may not

be able to communicate with each other. The goal of this simulation is to find the highest peak in

the entire workspace.

3.4.1 Simulation: robotic sensor networks for 4 agents

In this simulation, I perform distributed GP and active sensing for four agents. They conduct ex-

ploration to obtain an estimate of the overall environmental map, considering collision avoidance

and coordination, then complete the simulation after rendering the highest peak. I set σ2
s = 1

and Σ = diag([0.02, 0.02]) for the Gaussian kernel (2.3). To find a proper E for E-dimensional

estimator (3.2) and (3.6), I tested the change in estimation error over E as shown in Fig. 3.6.

In general, the larger E, the smaller the estimation error. However, E larger than a certain level

increases computation time and memory usage. Therefore, in this simulation, I set E to 80 ap-

propriately.

25

Figure 3.6: GP estimation error according to the hyperparameter.

Fig. 3.7 represents the progress over time from k = 0 to k = 1500. As shown in Fig. 3.7(a),

four agents searched the map together and gathered at the peak position without colliding with

one another. All agents moved as far as possible from neighbors to improve exploration efficiency.

Also, they avoid being close to the places in which the estimate is already reliable. Fig. 3.7(b)

shows the result of the online GP variance estimate for the agent #1 starting from the left-bottom

corner, with the result of uncertainty lowering in all regions over time. Similarly, Fig. 3.7(c)

shows the GP mean value estimate of the agent #1, which gradually converges to the estimation

result similar to Fig. 3.2. The exploitation process starts after k = 1000, and the shape of the peak

becomes valid. By the average consensus, all the distributed GP estimates of each agent converge

(see Fig.3.8).

26

(a)

(c)

(b)

0 steps 300 steps 600 steps 900 steps 1200 steps 1500 steps

Figure 3.7: Robotic sensor networks simulation for four agents to search for the highest
peak location. It shows (a) the environmental process estimate and the tra-
jectories of the agents, (b) the uncertainty propagation, and (c) the change
of the GP estimate with time from k = 0 to k = 1500 in order from the
left figure. The environmental model is presented in Fig 3.2. All results are
estimates of agent #1 initially located at bottom-left corner.

27

(a) Agent 1 (b) Agent 2

(c) Agent 3 (d) Agent 4

Figure 3.8: Final results of distributed GP for each agent. All GP mean estimates con-
verge to the same because of the average consensus algorithm.

28

3.5 Experimental Result

3.5.1 Experimental Setup

I validate my algorithm by experiment with multiple UAVs. Fig. 3.1 imitates the rough terrain

to be used for the survey experiment. There are three hills with different height in a 4 m×4 m

workspace marked with green lines, and the peak values are 39 cm (the beige), 29 cm (the red),

and 19 cm (the blue), respectively. Three Crazyflie 2.1 nanocopters shown in Fig. 3.1 measure

height above ground level (AGL) using VL53L1x Time-of-Flight (ToF) sensor, which is mounted

on the bottom of the Crazyflie. VL53L1x is a laser rangefinder that can measure a distance up to

4 meters, and the measurement error is from ±1% to ±0.15%. The Time-of-Flight sensor noise

is considered in GP calculation. VICON motion capture system and inertial navigation system

(INS) in Crazyflie are used for indoor navigation. They fly at a constant altitude and perform

topographic surveys over the entire workspace based on distance values measured with VL53L1x.

The entire system is implemented in Robot Operating System (ROS), and the overall algorithm

runs at 50 Hz including the online distributed GP. Because of the limited onboard computation

resource of Crazyflie nanocopters, GP computation of all the individual UAVs is performed on a

laptop (Intel i7-7500U CPU). The communication network is implemented based on the distance

between agents, so such setting is not different from the distributed control scenario.

3.5.2 Experiment: robotic sensor networks for 3 agents

In this experiment, all UAVs perform an exploration to estimate the topographic map of the

workspace, taking into account collision avoidance and coordination during exploration and com-

plete the experiment at the highest peak (the center of the beige-colored umbrella). I set σ2
s = 1

and Σ = diag([0.02, 0.02]) for the Gaussian kernel (2.3), and I set E = 80 for E-dimensional

estimator (3.2) and (3.6).

29

0 sec 40 sec

80 sec 125 sec

Agent 1Agent 2

Agent 3

Agent 1Agent 2
Agent 3

Agent 1Agent 2
Agent 3

Agent 1
Agent 2

Agent 3

Figure 3.9: 3 UAVs robotic sensor networks experiment to search the highest peak lo-
cation. Snapshots from 0 to 125 seconds are shown. All UAVs complete the
area exploration and at the end gather at the highest peak.

Fig. 3.9 shows some snapshots taken during the experiment. All UAVs travel around the

workspace, construct the topographic map using a laser rangefinder, and gather at the highest

peak in the end.

30

(a)

(b)

Blue

Beige Red

0 sec 25 sec 50 sec 75 sec 100 sec 125 sec

0 sec 25 sec 50 sec 75 sec 100 sec 125 sec

Figure 3.10: Experiment - robotic sensor networks for three UAVs to search for the high-
est peak location. It shows (a) the uncertainty propagation and (b) the change
of the GP estimate with time from 0 to 125 seconds in order from the left
figure. All results are estimate of the agent #1.

Fig. 3.10 represents the progress of this experiment during t = 125 seconds. Fig. 3.10(a)

shows the result of the online GP variance estimate for the agent #1, with the result of uncertainty

lowering in all regions over time except that the boundaries still had high uncertainty because of

flight zone restriction of UAVs. Similarly, Fig. 3.10(b) shows that the GP mean value estimate

of the agent #1 gradually converges to the estimation result similar to Fig. 3.1. The exploitation

process starts after about 100 seconds, and the shape of the beige region becomes sharp in Fig.

3.10(b).

3.6 Summary

In this chapter, I present a distributed GP and multi-robot sensor networks to obtain a global

environmental model estimate. With the kernel expansion and average consensus algorithm, I

implement online distributed GP in a networked control system. Using GP estimate, I establish

a multi-agent exploration and exploitation algorithm with collision avoidance and coordination.

Then, multi-robot exploration simulation is performed in a virtual environment, and an exper-

31

iment is performed to construct a topographic map with multiple UAVs. This study is limited

to a stationary environmental model, and I am working on expanding this work into a dynamic

environment as future work.

32

4
Informative Path Planning for Multi-Robot

Systems

This chapter introduces an information-based path planning technique for environmental learning

of multi-robot systems. If a multi-robot team is used for environmental learning, there is an

advantage in that a lot of sensor data can be obtained along the path of multiple robots. To

maximize this advantage, robots should be located to a position with a lot of information to

acquire the most valuable sensor data. In this chapter, I use the Monte Carlo tree search technique

to find the path with the largest amount of information. A scalable system that operates in a

distributed network environment is constructed using a distributed Gaussian process. Also, by

using distributed Monte Carlo tree search, multiple robots coordinate together by using only

local communication.

33

4.1 Introduction

Robotic sensor networks, which combine local sensing capabilities of various sensors with the

mobility of robots, can provide more versatility than conventional stationary sensor networks due

to their capability to extend the sensing range and improve the resolution of sensory data maps

[42]. These networks have been studied extensively in survey of global environment [43–46],

industrial environment perception [47], radio signal search [48], and so on.

To construct sensor networks, I first deploy many sensors in a working space. Then, I establish

communication channels with the central server to collect and fuse data acquired from all sensors.

Since the wireless communication range of sensors is limited, sensors usually make an indirect

connection with the central server, such as a mesh network that connects all sensors and the

central server by relay channels.

However, the relay network requires a routing table that must be rebuilt every time the robot

network is reconfigured, which is cumbersome for robotic sensor networks. This problem is par-

ticularly noticeable in UAVs or small robots since they need to use relatively weak communica-

tion modules to reduce power consumption.

Decentralizing the system can be a proper solution to network problems by removing the de-

pendency of robots on the central server. For example, if a robot can infer the entire sensory map

only from the local information directly provided by surrounding robots, the search task can be

completed without the help of the central server. This chapter applies decentralization to the en-

vironmental learning phase and the path planning phase, respectively. With an online information

fusion algorithm, I build a distributed autonomous system of multiple robots to search and learn

even dynamic environments that change over time.

4.1.1 Literature Review

The first part of my work is multi-robot environmental learning in a distributed manner. For

environmental learning, some useful techniques exist such as Gaussian mixture model (GMM)

34

Figure 4.1: Topographic survey using multiple UAVs. All UAVs can only communicate
with their neighbors.

[36, 49, 50], finite element method (FEM) [51], and GP regression [45, 46, 48]. In particular, GP

is a popular approach that derives a spatial relationship between sampled data using a kernel and

performs Bayesian inference for prediction in an unknown region.

However, most GP-related researches focus on centralized systems, making it difficult to

expand to large-scale multi-robot systems due to network resource limitations such as channel

bandwidth and transmit power. Distributed multi-agent Gaussian regression is introduced in [23],

which designs a finite-dimensional GP estimator by using KL expansion [21]. In contrast to the

decentralized GP presented in [37], the distributed GP provides a common copy of the global

estimate to all agents by exchanging the estimated information with their neighbors. This chapter

extends [52], which shows that distributed GPs can construct environmental models using mobile

robots in order to take the distributed path planning into account.

The second part of my work is informative path planning in a distributed multi-robot system.

As an initial study of informative path planning, the problem of optimal sensor placement has

35

been investigated to create an environmental map in a given space by properly placing a finite

number of sensors [36, 50, 53]. Since then, by applying GPs and information theory, the research

of optimal sensor placement has grown into the informative path planning research as presented

in [35,40,46,49,54–56]. Some studies have combined GP with conventional planning algorithms

such as rapidly-exploring random tree (RRT) [57], dynamic programming (DP) [35], or Monte

Carlo tree search (MCTS) [58].

Besides the above approaches that mainly focus on informative path planning for single

agents, many studies have applied informative planning for multi-robot systems. In [37, 48], al-

though both studies deal with decentralized multi-robot exploration using GP, these algorithms

are not scalable as they consider only two robots. [59] introduced the combination of the Kalman

filter (KF) and the reduced value iteration (RVI) method for the parallelized active information

gathering. While this technique is scalable to a large number of robots, it is noted that the envi-

ronmental model has to be known, and only discrete environments can be represented since the

model is expressed in KF. Considering the scalability for multi-robot systems, I extend the MCTS

path planning in a distributed manner to be compatible with the distributed GP.

4.1.2 Contribution

To achieve my goal of fully distributed multi-robot informative planning, I divide the whole

process into two phases: environmental learning and path planning. During these phases, I focus

on three main contributions as follows.

• I propose a distributed informative path planning algorithm using a distributed MCTS com-

bined with GP. In addition, I introduce the trajectory merging method to consider predicted tra-

jectories of other agents.

• I build a fully distributed exploration and learning architecture using only local peer-to-peer

communication for system scalability, as shown in Table 4.1.

• I perform a multi-robot exploration simulation with a virtual environment setting and hard-

ware experiment for topographic survey as shown in Fig. 4.1.

36

The outline of this chapter is as follows. Sec. 2 briefly describes a multi-robot system setup

and preliminaries. Sec. 3 combines environmental learning and MCTS in the distributed system.

Simulations for the synthetic environment and real-world dataset are presented in Sec. 4. Finally,

Sec. 5 concludes the chapter.

Table 4.1: Scalability comparison between centralized and distributed systems for
multi-agent tasks. See text for symbols.

Centralized Distributed (ours)

GP Computation

Complexity
O((mn)3) ([37, 48]) O(E3) ([52])

MCTS Planner

Action Cardinality
|A|n ([60]) |A| ([61])

Communication

Complexity
O(n2) ([49, 60]) O(n) ([37, 48, 52])

4.2 Multi-Robot System Setup and Preliminaries

I focus on the environment learning problem in multi-robot systems by considering a target do-

main as a 3-dimensional compact set Xw ⊂ R3. Multiple robots (e.g., ground vehicles or UAVs

with onboard sensors) explore an unknown area and estimate environmental information using

both self-measurements and shared data received from neighbors. All robots can discover ob-

stacles nearby using the range sensor and only communicate with adjacent robots within the

communication distance.

4.2.1 Multi-Robot System Setup

Each robot has its process modules, Distributed GP and Distributed MCTS, for the distributed

monitoring task. During these processes, they share GP variables and predicted trajectories through

37

Peer-To-Peer Network

Environment

Sensor

𝑦𝑖 = 𝑓 𝐱𝑖 + 𝑣𝑖
Controller

𝑢𝑖 = 𝜋(𝐱𝑖, 𝑋𝑇
𝑖)

Plant

ሶ𝐱𝑖 ← 𝐷𝑦𝑛(𝐱𝑖, 𝑢𝑖)

GP State

𝛼𝑚
𝑖 , 𝛽𝑚

𝑖

Trajectory merging

ො𝛼𝑚
𝑖 𝑋𝑇

𝑖− , መ𝛽𝑚
𝑖 (𝑋𝑇

𝑖−)

MCTS Planning

𝑋𝑇
𝑖 ← 𝑀𝐶𝑇𝑆(ො𝛼𝑚

𝑖 , መ𝛽𝑚
𝑖)

Learning: Distributed GP Planning: Distributed MCTS

⋰

E-dim Estimator
ҧ𝑓𝐸
𝑖 𝐱 , Σ𝐸

𝑖 𝐱

(𝐱𝑖 , 𝑦𝑖)

𝛼𝑚
𝑖+, 𝛽𝑚

𝑖+

InteractionInteraction

𝑋𝑇
𝑖− 𝑋𝑇

𝑖

𝑢𝑖

𝑛 agents

𝑋𝑇
𝑖

Agent 𝑖

Figure 4.2: Structure of the distributed exploration and environmental model learning
system. Each agent has its own distributed GP and distributed MCTS plan-
ner modules that operate through peer-to-peer communication with each
other.

a peer-to-peer communication network. This operation process is summarized in Fig. 4.2. The

controller design process is not covered in this work.

4.2.2 Informative Path Planning

To obtain the better description of a spatial process model, robots perform informative path plan-

ning. It maximizes the information gain I(;), which is the mutual information between the pro-

cess f and measurements y:

I(y; f) = H(y)− H(y|f), (4.1)

where H(·) is the entropy of a random variable. Let X i
1:k be the possible trajectory of robot i and

X1:k = {X1
1:k, · · · , Xn

1:k} be the possible trajectories of all robots. Then, the multi-robot team’s

global objective function J(X1:k) is defined as follows:

38

J(X1:k) = I(y1:k; f). (4.2)

y1:k is the measurements corresponding to X1:k. As a result, the optimal trajectories for all agents

are defined as follows:

X∗1:k= arg max
X1:k

J(X1:k)

= arg max
X1:k

I(y1:k; f)

= arg max
X1:k

(H(y1:k)− H(y1:k|f)).

(4.3)

In this study, the entropy H(·) is obtained using GP. With the result of GP estimation (2.5), the

optimal trajectory generation for each agent will be addressed in Section 4.3.

4.3 Path Planning: Distributed Monte Carlo Tree Search

Using the distributed model learning discussed in the previous section, all agents create a local

environmental map that converges to the global environmental map even in a distributed network.

To find the most promising search trajectories with the learned map, all agents should consider

every possible action. However, because the cardinality of possible action set grows exponentially

with respect to the number of robots, the distributed planning strategy is needed in multi-robot

path planning [59]. In [61], the decentralized MCTS approach is studied to alleviate the car-

dinality of possible action set from |A|n to |A|, where A represents the discrete action space

of each robot. I apply this advantage to my GP-based informative planning of multiple robots.

With the distributed MCTS, each robot calculates a promising trajectory by communication with

neighboring agents only. This process is shown in Fig. 4.3. This section introduces the trajectory

merging method to reflect the neighbor’s path in each agent’s tree search process. The contents

of this section are summarized in Algorithm 4.1 and 4.2.

39

▪ Grow tree ▪ Get best trajectory

▪ Communicate

▪ Grow tree

▪ Get best trajectory

▪ Communicate

▪ Grow tree

Repeat

Figure 4.3: Illustration of the distributed MCTS process. Nearby robots exchange their
predicted trajectories. These trajectories are used to temporarily update GPs
and grow search trees. This process is repeated until the time budget is met.

40

4.3.1 Trajectory Merging

For each agent i, X i
k+1:k+T = (x̂ik+1, · · · , x̂ik+T) denotes the predicted trajectory with the pre-

diction length T , or it can be represented by X i
T for brevity. Assuming that the agent i receives

the predicted trajectories of neighboring agents X i−
T = {Xj

T}j∈Ni , I modify the GP state αim as

follows:

α̂im (X i−
T) =

mn

mn+ n(X i−
T)

αim

+
n(X i−

T)

mn+ n(X i−
T)

∑
j∈Ni

T∑
t=1

Φ(x̂jk+t)Φ
>(x̂jk+t).

(4.4)

n(X i−
T) is the number of sensing points included in X i−

T . With (4.4) and the E-dimensional

estimator in (3.7), I define the trajectory-merged GP estimator as follows:

Σ̂i
E(x) := κ(x,x)

−Φ>(x)

(
α̂im +

σ2
v

mn+ n(X i−
T)

Λ−1
E

)−1

×α̂imΛEΦ(x).

(4.5)

In this way, predicted trajectories of neighboring agents are temporarily included in the acquired

data set of the GP estimator. Because (4.4) and (4.5) are temporary values for tree search in

distributed MCTS, they do not affect αim and disappear after getting new predicted trajectories.

This process is summarized in the Distributed MCTS block of Fig. 4.2. With this result, the path

planning process will be explained in the next section.

4.3.2 Informational Reward Function

As I mentioned in (4.2), the information gain I is the objective function I have to maximize. With

the definition in (4.3), the optimal trajectory considering neighboring paths is defined as follows.

X i∗
T = arg max

Xi
T∈X

i
k

J(X i
T ∪X i−

T ∪X1:k)

= arg max
Xi
T∈X

i
k

I(yiT ∪ yi−T ∪ y1:k; f),

(4.6)

41

yiT and yi−T are the measurements corresponding toX i
T andX i−

T , respectively. Xi
k is the domain of

possible trajectories for agent i. As shown in (4.1), information gain is represented with entropies

as follows:

I(yiT ∪ yi−T ∪ y1:k; f)= H(yiT ∪ yi−T ∪ y1:k)

−H(yiT ∪ yi−T ∪ y1:k|f).

(4.7)

Using the mesuarement model (2.1) and the entropy calculation for the normal distribution [62],

conditional entropy becomes

H(yiT ∪ yi−T ∪ y1:k|f) = 1
2

log |2πeσ2
vI|. (4.8)

H(yiT ∪yi−T ∪y1:k) is decomposed using conditional entropy, and it is obtained by calculating the

entropy of GP as follows:

H(yiT ∪ yi−T ∪ y1:k)= H(yi−T ∪ y1:k) + H(yiT |yi−T ∪ y1:k)

≈ H(yi−T ∪ y1:k) + 1
2

log |2πeΣ̂i
E(X i

T)|.
(4.9)

As a result, with the trajectory-merged GP estimator in (4.5), the optimal trajectory for agent i is

defined as follows:

X i∗
T = arg max

Xi
T∈X

i
k

J(X i
T ∪X i−

T ∪X1:k)

≈ arg max
Xi
T∈X

i
k

1
2

log |2πeΣ̂i
E(X i

T)|

= arg max
Xi
T∈X

i
k

Ri(X i
T).

(4.10)

I callRi(·) the informational reward function, which is utilized in the tree search algorithm.

4.3.3 Tree Search with D-UCB Alogrithm

Using the informational reward function defined in 4.3.2, the tree search algorithm iteratively

explores and evaluates predictive path candidates according to the discounted upper confidence

42

Figure 4.4: Node closing method for obstacle avoidance in MCTS. (left) finite action
space that the robot can take. (right) tree expansion and node closing pro-
cess.

bound (D-UCB) rule to find the optimal path. UCB rule assigns the probabilistic search priority

to the action candidates [63].

The tree structure consists of nodes s and edges (s, a) for all legal actions a ∈ A(s). Each

edge contains a set of variables {Na
s ,W

a
s , τ

a
s , C

a
s } where Na

s is the visit count, W a
s is the total

action value, τas is the number of iterations for tree search (shown in line 5 of Algorithm 4.2), and

Ca
s is a closing variable which will be discussed. I follow the tree search process in Algorithm

4.1 and the distributed MCTS with GP in Algorithm 4.2. The MCTS process can be divided into

four main steps as follows.

Selection (lines 4, 12-22 of Algorithm 4.1): The selection phase focuses on finding a leaf

node sleaf. Following the D-UCB rule, the selected action at node s is defined as follows [62]:

at = arg max
a∈A(s)

(
W a
s

Na
s

+ Ua
s

)
, (4.11)

where

Ua
s =

√
ln
∑

a′∈A(s) N
a′
s

Na
s

. (4.12)

The first term on the right-hand side of (4.11) means exploration term for the tree search, and

the second term means exploitation term. As shown in Algorithm 4.2, each agent periodically

receives the predicted trajectories of adjacent agents, which are utilized in the tree search process.

It means that the tree, obtained by using previously given trajectories, may not be optimal when

43

new neighboring trajectories are received. Therefore, adopting the discount factor γ makes the

previously visited nodes less influential on the current UCB value.

Expansion (line 5 of Algorithm 4.1) : The expansion phase expands the selected node with

uniformly sampled action from the action space A(s) if the depth of the selected node does not

exceed the search depth T . When the expanded node collides with an obstacle, the algorithm

closes this edge (Ca
s ← 1) and returns to the selection phase.

Simulation (lines 9, 23-27 of Algorithm 4.1) : In the simulation phase, it calculates the in-

formational rewardRi(X
i
T) of the selected trajectory. If the selected node’s depth is less than the

search depth T , it performs random walks. After that, the reward is calculated with the predicted

trajectory X i
T as shown in Section 4.3.2.

Backpropagation (line 10 of Algorithm 4.1) : The edge variables are updated in a backward

pass. The visit counts are incremented, Na
s ← Na

s γ
τ−τas +1, and the total action value is updated,

W a
s ← W a

s γ
τ−τas + Ri. As described in the selection step, the discount factor γ is applied to

reduce the weight of the previous value.

4.4 Result and Analysis

This section presents environmental learning simulations on the various situations and a hard-

ware demo. The simulation is conducted on a synthetic environment, and the experiment is on a

artificial terrain environment. These environmental models are unknown a priori, and each robot

obtains the sensory data from the current location. Furthermore, since the communication range

is finite, some agents may not be able to communicate with each other.

4.4.1 Simulation - synthetic environment learning

I perform the fully distributed informative planning simulation for multiple agents. They conduct

exploration to obtain an estimate of the environmental map, considering collision avoidance and

coordination. They can communicate only with neighbors within the range of 10 m (the map size

44

Algorithm 4.1: Tree Search with Obstacle Avoidance

1 Function TreeSearch(T ik, τ):
2 s0 ← getRootNode(T ik);
3 for t← 1 to Niteration do
4 sleaf ← selection(s0, τ);
5 (st, a)← expansion(sleaf, τ);
6 if collisionCheck(st) then
7 Ca

sleaf
← true;

8 continue;

9 rt ← simulation(st);
10 backprop(st, rt);

11 return T ik;

12 Function selection(sleaf, τ):
13 while not leafNodeFound do
14 if not depth(sleaf) > T then
15 if Ca

sleaf
= true ∀a ∈ A(sleaf) then

16 C
aleaf−1
sleaf−1 ← true;

17 back to the parent node;
18 sleaf ← sleaf−1;

19 else
20 a←D-UCB(sleaf, τ) . eq. (4.11);
21 sleaf ← getNode(sleaf, a);

22 return sleaf;

23 Function simulation(st):
24 X i

T ← trajectory from s0 to st;
25 for j ← depth(st) to T do
26 X i

T ← {X i
T , randomWalk(xik+j)};

27 returnRi(X i
T);

45

Algorithm 4.2: Distributed MCTS with GP for agent i
Input: xik, α

i
m−1, β

i
m−1, X

i−
T

Output: X i
T

1 yik ←getMeasurement(xik) . eq. (2.1);
2 (αim, β

i
m)←updateGP(αim−1, β

i
m−1,x

i
k, y

i
k) . eq. (3.8);

3 (αim, β
i
m)←GPconsensus(αim, β

i
m) . eq. (18) in [52];

4 T ik ←initializeTree(xik);
5 for τ ← 1 to Nsearch do
6 (α̂im, β̂

i
m)←TrajectoryMerging(X i−

T) . eq. (4.4);
7 T ik ← TreeSearch(T ik, α̂

i
m, β̂

i
m, τ) . Algorithm 4.1;

8 X i
T ← getBestTraj(T ik);

9 X i−
T ← communicateTraj(X i

T);

10 return X i
T ;

is 20 m × 20 m) and move at 1 m/s constantly. I set σ2
s = 1 and Σl = diag([0.02, 0.02]) for the

Gaussian kernel (2.3), and I set E = 80 for E-dimensional estimator (3.2) and (3.6).

The progress over time from 0 to 50 seconds is shown in Fig. 4.5. As shown in Figs. 4.5(a)-

(b), twelve agents search the map together and generate the GP estimate, where the ground truth

model is presented in 4.5(c). The agents scatter naturally and find the next locations to be up-

dated based on the variance map. Also, as they avoid the places where the estimate is already

reliable, they can minimize the redundant actions that can decrease the exploration efficiency.

Through Fig. 4.5(b), it can be confirmed that the information of all agents is diffused through a

communication link.

Although Figs. 4.5(a)-(b) show results from agent #1 only, all the distributed GP estimates of

each agent converge to the same by the average consensus as shown in Fig. 4.6. In other words,

all the agents construct a global GP estimation map in a distributed manner despite sharing the

local measurements with their neighbors only.

I conduct more simulations in various environments to investigate the factors that affect

search performance. In the tree search algorithm, the search depth T and the number of itera-

tionsNiterations are the factors that directly affect the search result. The simulation results in Figs.

46

(a)

(b)

(c)

0 sec 15 sec 50 sec

0 sec 15 sec 50 sec

Figure 4.5: Simulation A. The process of the environmental model construction by 12
agents with fully distributed informative planning. (a) Change of GP es-
timate and (b) uncertainty propagation over time from 0 to 50 seconds in
order from the left figure. (c) Ground truth of environmental model. Yellow
lines in (b) indicate communication links between agents. All the presented
results are obtained by agent #1 (red dot in (b)).

47

Figure 4.6: Simulation A. Environmental model estimation error. The solid green line
shows the box plot of RMSE values between all agents and the ground truth.
The dashed red line shows the box plot of RMSE values between all agents
and the agent #1. This graph means that all GP estimation results converge
to the same result with only local communication.

4.7(a)-(b) show that the search performance is proportional to both T and Niterations. The deeper

the search, the longer paths are considered. As the number of searching iterations increases, the

probability of finding an optimal route increases. Fig. 4.7(c) shows that the search performance

can be improved as the number of agents increases through a distributed algorithm. From these

results, I can see that my algorithm is scalable for a large number of robots as well.

Fig. 4.8 compares the search performance of distributed systems, centralized systems, and

independent systems. In the independent system, agents explore the area without communication.

The centralized system has a central server that gathers all the information regardless of the

communication range, and the server calculates paths for all agents. Because the action space of

centralized system (n(A)n) is much bigger than that of distributed system (n(A)), the centralized

system requires greater Niterations than the distributed system. Even with limited communication

and much fewer iterations, the distributed system performs similarly to the centralized system.

48

0 10 20 30 40 50

time t [sec]

0

0.5

1

E
s
ti
m

a
ti
o
n
 e

rr
o
r

(R
M

S
E

)

(a) Search depths

0 10 20 30 40 50

time t [sec]

0

0.5

1

E
s
ti
m

a
ti
o

n
 e

rr
o

r
(R

M
S

E
)

(b) Number of iterations

0 10 20 30 40 50

time t [sec]

0

0.5

1

E
s
ti
m

a
ti
o
n
 e

rr
o
r

(R
M

S
E

)

(c) Number of agents

Figure 4.7: Simulation B. Environmental model construction with different conditions.
(a) 6 agents’ exploration results with different search depths. (b) 8 agents’
exploration results with the different number of iterations. (c) Exploration
results with the different number of agents.

49

0 10 20 30 40 50

time t [sec]

0

0.2

0.4

0.6

0.8
E

s
ti
m

a
ti
o

n
 e

rr
o

r
(R

M
S

E
) Independent system

Centralized system

Distributed system

Figure 4.8: Simulation C. 4 agents’ exploration results with different type of systems
for 10 trials (with different environments).

4.4.2 Experiment - topographic survey using multiple UAVs

I conduct a hardware demonstration with multiple UAVs. Fig. 4.1 represents the experimental

setup for the topographic surey on the 6 m × 6 m rough terrain. There are eight Crazyflie 2.1

quadrotors to measure height AGL using VL53L1x ranging sensor. VL53L1x has the measure-

ment error from ±1% to ±0.15%, which error is considered in GP estimation. OptiTrack motion

capture system is used for indoor navigation. The entire system is implemented in ROS, and the

computation of GP and planning for each agent is run on the ground station due to the limited

computational resource of Crazyflie 2.1.

In this scenario, a team of UAVs flies over the search area and gathers height data from the

current UAV’s location. Because their communication distance is limited, sometimes they can be

disconnected from one another. Fig. 4.9 shows snapshots taken during the experiment. The UAV

team explores the unknown environment, measures the height AGL, and estimates the terrain

with only local communication and distributed GP regression.

50

(a) Unknown target environment and a team of UAVs.

(b) The result of topographic survey with UAVs.

Figure 4.9: Experiment results. The three white pillars are the obstacles. After 40 sec-
onds, the UAV team complete the area exploration and topographic survey.

51

4.5 Summary

This chapter presents fully distributed robotic sensor networks to obtain a global environmental

model estimate. I combine the Gaussian process with the Monte Carlo tree search in a distributed

manner for peer-to-peer communication. My method allows multiple robots to collaboratively

perform exploration, taking into account collision avoidance and coordination. I validate my

algorithm in various scenarios through simulations and experiments. The results confirm that

multiple agents can successfully explore the environment, and it is scalable with the increasing

number of agents in the distributed network.

52

5
Target Search and Tracking with

Reinforcement Learning

This chapter introduces multi-target search and tracking techniques using multiple robots. To

find a multi-target whose initial location is unknown, Gaussian process-based signal intensity

map learning is preceded. Based on the learned signal intensity map, I aim to locate each robot

near targets. However, it is not possible to know the initial position of targets, nor to accurately

estimate target positions from the learned map. This problem makes it difficult to track multiple

targets using the conventional path planning algorithms. In this chapter, I introduce deep rein-

forcement learning with a signal intensity map as an input, leading to the most efficient search

and tracking scheme based on past experiences. The learned robots can be transferred immedi-

ately even to a new environment.

53

5.1 Introduction

Multi-agent systems have garnered increasing attention recently within the robotics commu-

nity. These systems have great potential to address practical applications in large-scale and un-

known environments, including but not limited to search and rescue, reconnaissance, and surveil-

lance [46, 49, 64, 65]. Specifically, I am interested in the challenge of multi-agent target search

and tracking, which requires processing the combined signal intensity from multiple targets mea-

sured by agents at various locations and time intervals. In general, the signal intensity field is

unknown beforehand in these situations [66]. Planning efficiently over the unknown signal field

is not straightforward and leads to the exploration-exploitation dilemma [62]. Reinforcement

learning (RL) is a promising approach to intelligently deal with this dilemma by learning from

past experiences in a data-driven manner [67].

However, there are multiple challenges to applying RL to a multi-agent system in unknown

signal fields. While extending RL from single agent to multi-agent is straightforward in theory, it

may be infeasible in practice. The observation-action space scales exponentially to the number of

agents which hinders optimization (curse of dimensionality). Scalability issues aside, the number

of agents or the connection between agents can vary in multi-agent systems, which is difficult to

accommodate with existing RL algorithms. In addition, partial-observability of the target search

and tracking mission renders it incompatible with RL, which assumes a fully-observable Markov

decision process (MDP).

There exists a body of research on multi-agent reinforcement learning (MARL). These meth-

ods formulate the problem from a generalized Markov game perspective, such as decentralized

partially-observable MDP (POMDP), and they assume a sparse interaction between agents to

avoid the scalability issue [68, 69]. This stems from the fact that each agent, in most cases,

can rely only on its information and act independently of other agents unless coordination be-

tween agents is required. Thus, existing approaches mainly focus on partial-observability arising

from agent-centric observation and sparse interactions rather than from the problem setting it-

self. However, this is not the case for distributed multi-agent target search and tracking, where

54

partial-observability appears directly in the form of an unknown signal intensity environment.

In this chapter, I propose to augment deep reinforcement learning (DRL) with distributed GP

multi-agent consensus-based map building to tackle the partial-observability of the search and

tracking mission. This hybrid approach transforms the original problem of POMDP into MDP

by incorporating the belief of the environment map into the observation input of the RL agent.

An added benefit of this approach is in combining the strengths of GP and RL, marrying the in-

terpretability afforded by the GP with the generalizability and transferability of DRL algorithms.

One of the downsides of RL is that it can be difficult to understand the factors that lead to the

agents’ actions, more so in a multi-agent setting. Thus, explicitly constructing a belief of the

environment provides useful insight for diagnosing and refining the technique.

5.1.1 Related Works

Various studies have tackled the problem of collecting environmental information using multiple

robots equipped with sensors. In [51], FEM was used for persistent environmental monitoring

with multiple robots. In [70], multiple UAVs generated a target probability distribution map us-

ing GMM for target search. A more common approach than these methods is to use GP. GP is a

non-parametric regressor based on training data, which is advantageous for inferring spatial in-

formation using a kernel. In [45, 46, 71], the sensor data gathered from each robot was processed

with GP, and multiple robots performed tasks such as wind map building and ocean monitoring.

In [36, 49], environmental modeling was performed with a mixture of GP combining GMM and

GP.

However, it is not straightforward how to extend conventional GP to distributed settings since

GP requires that all data be collected and processed on a single device such as a server. Thus, de-

centralized techniques have been proposed to apply GP to distributed robot networks [23,39,52].

In [23], a consensus algorithm was applied to a network of sensors to obtain an estimate of the

entire map through local communications alone. In [52], a multi-robot system performed envi-

ronmental learning in a distributed network based on the distributed GP and consensus algorithm.

55

Recent studies on multi-robot systems have integrated intelligent controllers with environ-

mental learning algorithms to achieve higher autonomy. One such approach is RL which lies at

the intersection of approximate dynamic programming and stochastic optimal control. Recent ad-

vances in data-driven techniques such as deep learning have extended the reach of RL to various

domains [72–75]. DRL has been successfully applied to complex skills and high-dimensional

inputs both in simulation and physical systems [76,77]. DRL may overcome the shortcomings of

traditional methods in balancing the exploration-exploitation tradeoff of multi-agent target search

and tracking mission by leveraging a diverse set of prior experiences to learn a generalized strat-

egy that balances the tradeoff in an end-to-end manner.

Multi-agent multi-target capture has been considered in MARL domain [78]. However, such

works mostly focus on the theoretical aspect and only consider grid-world examples which do not

apply to robotic systems. My work resembles previous work which applied MARL to UAVs [79].

It defined the multi-UAV target tracking problem and applied an existing MARL algorithm under

the multi-particle simulation environment. Unlike prior work, I consider a more realistic setting

where target information is initially unknown and must be gathered from exploration. To do so, I

propose a GP-based cooperative map building and demonstrate my method not just in simulation

but with multi-UAV experiments as well.

5.1.2 Contributions

To achieve my objective, I focus on the following three main contributions:

• I build a belief for the target locations to circumvent the partial-observability arising from

the unknown signal intensity field.

• I decentralize the map building process with distributed GP, which improves the scalability

of the system by alleviating the computational and network burden.

• I modify an existing MARL algorithm to accommodate the belief map as an image input

and facilitate policy transfer.

56

I perform various multi-agent target search and tracking simulations to evaluate the performance

and transferability of my method and demonstrate on a swarm of micro-UAVs for experimental

validation.

The outline of the chapter is as follows. Section 2 briefly describes the problem statement and

preliminaries. Section 3 details a method for cooperative map building and map-based MARL

algorithm to tackle multi-agent target search and tracking mission. Simulations and multi-UAV

experiments for the various scenarios are presented in Section 4. Section 5 concludes the chapter.

5.2 Problem Statement and Preliminaries

5.2.1 Problem Statement

I focus on the target search and tracking problem with N multiple agents by considering a target

domain as a 2-dimensional compact set Xc ⊂ R2. There are M targets deployed in the target

domain, which locations are unknown in advance. Each agent has a sensor that measures signal

power, which is radiated in all directions from each target. Since this signal power is inversely

proportional to the travel distance, it can be a clue to estimating the target position. The main

objective is to locate all targets and position at least one agent for each target while avoiding

agent-agent and agent-obstacle collision.

5.2.2 Multi-Agent Systems

I define the agent index set as N = {1, 2, · · · , N} for N agents. The i-th agent’s location at

timestep k is represented as xik ∈ Xc (i ∈ N). Each agent can communicate with neighbor

agents via peer-to-peer communication. I define a set of neighbors for robot i at time k as N i
k =

{j| ‖xik − xjk‖ < dcomm, j ∈ N /{i}}, where dcomm is the communication distance. N i+ is a

shorthand for N i ∪ {i}.

The target index set is represented asM = {1, 2, · · · ,M} forM multiple targets. Each target

radiates a signal in all directions, and the signal intensity field ϕ(x) at position x is defined by

57

the sum of all signal intensities as follows:

ϕ(x) =
∑
m∈M

Amh(‖pm − x‖), x ∈ Xc, (5.1)

where Am ∈ R≥0 and pm ∈ Xc are the maximum signal intensity and positions of m-th target,

respectively. h(·) represents a monotonic-decreasing intensity function where h(d) → 0 as d →

+∞.

Each agent has a signal power sensing unit that takes the measurement yik of ϕ(·) at its current

position xik (i ∈ N), which has the following relationship:

yik = ϕ(xik) + nik, (5.2)

where the measurement ofϕ(xik) is corrupted by the additive white Gaussian noise nik ∼ N (0, σ2
n).

5.2.3 Gaussian Process for Target Search

With the signal power measurement in (5.2), GP is utilized to estimate target locations. GP is a

data-driven non-parametric regressor, which can provide probabilistic inference over the set Xc,

taking into account joint probability distribution between the sampled dataset [20]. In (5.2), the

unknown signal intensity field ϕ(·) is assumed to be represented as the following GP:

ϕ(·) ∼ GP(0, κ(x′,x′′)), (5.3)

where κ(x′,x′′) is a kernel for positions x′,x′′ ∈ Xc, and I use the original SE kernel which is

defined as

κ(x′,x′′) = σ2
f exp(−1

2
(x′ − x′′)>Σ−1

l (x′ − x′′)), (5.4)

where σ2
f is the signal variance of ϕ(·), and Σl is the length-scale matrix. The hyper parameters

σ2
f and Σl can be optimized by the maximum likelihood (ML) method [20].

When the agent i samples the data xik and yik at time k, these are stored sequentially in the GP

input dataset X i
k = {x̄i1, · · · , x̄iwik} and the GP output dataset yik = {ȳi1, · · · , ȳiwik}, respectively.

58

wik is the size of dataset at time k. For simplicity, I assume that wik’s are identical for all agents,

such that wik = w hereafter. For any test position x ∈ Xc, the posterior distribution over ϕ(x) by

agent i is derived as follows:

p(ϕ(x)|X i
k,y

i
k,x) ∼ N (ϕ̄i(x),Σi(x)), (5.5)

where,

ϕ̄i(x) = k>(X i
k,x)(K(X i

k, X
i
k) + σ2

nI)−1yik, (5.6a)

Σi(x) = κ(x,x)

− k>(X i
k,x)(K(X i

k, X
i
k) + σ2

nI)−1k(X i
k,x)

(5.6b)

K(X i
k, X

i
k) is Rw×w matrix whose (u, v)-th element is κ(x̄iu, x̄

i
v) for x̄iu, x̄

i
v ∈ X i

k. k(X i
k,x) is

Rw×1 column vector that is also obtained in the same way.

5.2.4 Deep Reinforcement Learning

RL is defined by a sequential decision making problem over MDP. MDP is a tuple of (O, A,

P , r), where O is the observation space, A is the action space, P is the transition probability

P (ot+1|ot, at), and r(ot, at) is the immediate reward function. The goal of a RL agent is to find

the optimal policy π∗(a|o) that maximizes the expected γ-discounted return Eπ[
∑∞

t=0 γ
tr(ot, at)].

The discount factor γ ∈ [0, 1] provides convergence guarantee for the Bellman operator and

incentivizes the agent to take actions early.

With powerful function approximators, deep learning has pushed RL beyond the tabular set-

ting. I opt for an off-policy, actor-critic variant of the DRL algorithm that can handle continuous

observation and action spaces. Specifically, I opt for deep deterministic policy gradient (DDPG)

algorithm [80] and its multi-agent variant MADDPG [81]. Off-policy methods reuse past experi-

ence from the replay buffer D = {(ot, at, rt, ot+1)} leading to better sample efficiency compared

to their on-policy counterparts. Actor-critic methods consist of an actor which is a policy that

maps observations to actions and a critic that evaluates the value of an observation-action pair

59

under the given policy. The critic is updated via the temporal difference loss defined by the Bell-

man operator and the actor is updated by taking an ascending gradient on the critic.

5.3 Method

Communication Network

Unknown Environment

Sensor

𝑦𝑖 = 𝜑 𝐱𝑖 + 𝑛𝑖

Cooperative Map Building

⋰

E-dim Estimator

ത𝜑𝐸
𝑖 𝐱 , Σ𝐸

𝑖 𝐱

(𝐱𝑖, 𝑦𝑖)

𝛼𝑚
𝑖+, 𝛽𝑚

𝑖+

Interaction 𝑁 agents

Observation

Agent Dynamics

ሶ𝐱𝑖 ← 𝑓(𝐱𝑖, 𝑎𝑖)

Interaction

𝑎𝑖

Agent 𝑖

Action

𝜋 𝑄

GP State

𝛼𝑚
𝑖 , 𝛽𝑚

𝑖

RL Controller

Execution
Training

𝑜𝑖 , 𝑎𝑖 𝑜𝑖 , 𝑎𝑖 𝑖=1:𝑁

𝜕𝑄

𝜕𝑎𝑖

Figure 5.1: Schematics for target search and tracking with distributed GP and RL.

The overview of multi-agent target search and tracking with distributed GP and MADDPG is

shown in Fig. 5.1. N agents, connected through a local communication network, operate while

interacting with an environment with unknown targets. There are two main modules: coopera-

tive map building and RL controller. Cooperative map building constructs a belief of the signal

intensity map based on each agent’s current position and sensor measurement. The actor network

π inputs the observation including the generated GP map and agent information to output the

corresponding action. This action is then applied to the system and the observation is transitioned

according to the agent dynamics and interaction with the unknown target environment.

60

RL controller is trained in a centralized manner and executed in a decentralized manner.

During training, critic network Q is evaluated with the observation-action pairs of all agents to

update the actor network π. The reward function for the RL controller is a product of two sub-goal

rewards, r = rtarget × rcollision. The sub-goal rewards are as follows:

rtarget =

[
M∏
m=1

0.1 + 0.9e−d
m/dchar

] 1
M

(5.7a)

rcollision =

0, agent-agent/obstacle collision.

1, otherwise.
(5.7b)

Both sub-goal rewards are bounded to the range [0, 1]. rtarget is additionally normalized by the

number of targets. dm is the distance between m-th target and its corresponding optimally as-

signed agent, derived from the linear assignment problem [82]. dchar is the environment-dependent

characteristic distance that is set to some appropriate value. rcollision is a binary reward that heav-

ily penalizes any agent-agent or agent-obstacle collision.

5.3.1 Multi-Agent Consensus-Based Map Building

Let the GP training dataset collected from all agents be Xk = ∪Ni=1X
i
k and yk = ∪Ni=1y

i
k. In the

distributed multi-agent system, the conventional GP in Chapter 5.2.3 cannot incorporate Xk and

yk due to the lack of a central server. For this reason, multi-agent consensus-based map building

is required.

The first step for consensus-based map building is to apply the E-dimensional approximation

to the GP with Karhunen–Loève (KL) expansion [21]. This process is described in detail in

[83]. According to E-dimensional approximation, the kernel (5.4) can be represented in terms

of eigenfunctions φe and corresponding eigenvalues λe as κ(x′,x′′) ≈
∑E

e=1 λeφe(x
′)φe(x

′′),

and the E-dimensional estimator for (5.6a) on the training dataset Xk and yk is expressed as

follows [23]:

ϕ̄E(x) := Φ>(x)FEy, (5.8)

61

where,

Φ(x) :=
[
φ1(x), · · · , φE(x)

]>
, (5.9a)

FE :=

(
G>G

wN
+

σ2
n

wN
Λ−1
E

)−1
G>

wN
, (5.9b)

G :=
[
Φ(x̄1

1) · · ·Φ(x̄1
w), · · · ,Φ(x̄N1) · · ·Φ(x̄Nw)

]>
. (5.9c)

The second step for consensus-based map building is to rewrite (5.8) into a distributed form,

since constructing G and y in (5.8) and (5.9) requires centralized processing. The associated

terms included in (5.9b) can be decomposed as follows:

G>G

Nw
=

1

N

N∑
i=1

αiw,
G>y

Nw
=

1

N

N∑
i=1

βiw, (5.10)

where αiw :=
w∑
t=1

Φ(x̄it)Φ
>(x̄it)/w and βiw :=

w∑
t=1

Φ(xit)ȳ
i
t/w are GP states after the w-th sensor

measurements.

As a result, (5.8) is modified to the following distributed form:

ϕ̄iE(x) := Φ>(x)

(
αiw +

σ2
n

wN
Λ−1
E

)−1

βiw. (5.11)

Using the average consensus algorithm [24] for the GP states, (5.11) converges to (5.8) through

repeated communication. Similarly, the distributed form of Σ(x) in (5.6b) is represented as fol-

lows:

Σi
E(x) := κ(x,x)− Φ>(x)

(
αiw +

σ2
n

wN
Λ−1
E

)−1

×αiwΛEΦ(x).

(5.12)

When comparing distributed GPs with the conventional GPs in terms of (5.6), the computational

complexity of the distributed algorithm is O(E3), which is less than that of the centralized algo-

rithm, O((wN)3), since E � wN holds in practice.

The final step in building the consensus map is to incorporate the newly acquired data into

(5.11) and (5.12) to maintain the continuity of GP estimate. Data is collected as each agent navi-

gates the environment. Applying the online information fusion algorithm of [83], the update rule

62

Critic (𝑄)

Actor (𝜋)

CNN Spatial
Softmax MLP

4x4
Conv
ReLU

32 filters

20

20

Input
Map

40

40

3x3
Conv
ReLU

64 filters

10

10

2x2
Conv
ReLU

64 filters

128

Input 1

Input 2

Output

Agent
Velocity

All Agents’
Input Map

All Agents’
Velocities & Actions

Q-value

𝑁 Var
Maps

𝑁 Mean
Maps

128

Action

All targets’
& Agents’
position

⋯ ⋯

40

40

2𝑁 2𝑁

Concat.

2

10

10

⋮

Figure 5.2: Network architecture for map-based MADDPG actor and critic.

of αiw and βiw is defined as

αiw+1 = w
w+1

αiw + 1
w+1

Φ(x̄iw+1)Φ>(x̄iw+1),

βiw+1 = w
w+1

βiw + 1
w+1

Φ(x̄iw+1)yiw+1,

(5.13)

where αi0 = 0 and βi0 = 0. In the theorem 1, it has been proven that new data are successively

merged with the existing {αiw}Ni=1 and {βiw}Ni=1, such that {αiw+1}Ni=1 and {βiw+1}Ni=1 converge

towards (5.10) in a distributed manner.

5.3.2 Map-Based MADDPG

I choose MADDPG as the base RL algorithm for the multi-agent target search and tracking mis-

sion. MADDPG overcomes the non-stationary dynamics arising from the partial-observability

of multi-agent settings by adopting centralized critics Qψi that inputs the combined set of ob-

servation and action spaces of all agents. MADDPG also proposes network ensembles for the

decentralized actors πθi to improve robustness and prevent the overfitting of policies with respect

63

to other agents’ actions which is especially problematic in competitive settings. To accommodate

heterogeneous agents and individualized objectives, each agent i has a pair of centralized critic

Qψi and decentralized actor πθi . This configuration also allows for centralized training and decen-

tralized deployment. During training, the critic is updated by minimizing the temporal difference

loss, and the actor is updated by gradient ascent on the critic. Temporal difference loss for the

centralized critic of the i-th agent parameterized by network weights ψi is as follows:

L(ψi) = ED[(Qπi
ψi

(o1
t , · · · , oNt , a1

t , · · · , aNt)− lit)2], (5.14)

where

lit = rit + γQπi
ψ̄i

(o1
t+1, · · · , oNt+1, πθ̄1(o

1
t+1), · · · , πθ̄N (oNt+1)).

The target q-value li is evaluated with the target actor and target critic networks with delayed

parameters θ̄i and ψ̄i. Policy gradient for the i-th agent decentralized actor parameterized by

network weights θi is as follows:

∇θiJ (πθi) (5.15)

= ED[∇ait
Qπi
ψi

(o1
t , · · · , oNt , a1

t , · · · , aNt)|ait=πθi (oit)∇θiπθi],

where ∇ait
denotes the action gradient of critic Qψi with respect to the i-th agent’s action. Note

that only the i-th action is generated by the actor while the rest of the actions are sampled from

the replay buffer D.

I adapt the standard MADDPG implementation for the multi-agent target search and tracking

task. Since my approach incorporates GP map as the input for the RL agent, I use convolutional

neural nets (CNNs) to extract features from image inputs which are then fed into the multi-layer

perceptron (MLP) to form the actor and critic networks (Fig. 5.2). However, the combination of

high-dimensional inputs with the multi-agent setting hinders RL. Specifically, it hinders repre-

sentation learning which captures and condenses relevant information from the high-dimensional

inputs. In practice, I make some modifications to aid representation learning. To reduce the num-

ber of network parameters, I adopt the spatial softmax module from [84]. For typical CNNs, the

64

flatten layer contains most of the network parameters. Spatial softmax replaces the flatten layer

with a channel-wise soft-argmax operation that extracts 2D positions, applying a strong bottle-

neck without introducing additional parameters. In addition, it has been known to be beneficial

to match the modality of various inputs [85]. For multi-agent target search and tracking mission,

the agent has access to 1D agent-centric information such as relative position of other agents

and obstacles as well as the GP map (Fig. 5.2). Thus, I encode agent-centric information as an

image and concatenate them alongside the GP mean and standard deviation channels forming a

3-channel image input for each agent.

The algorithm is further streamlined to improve computational efficiency. In the multi-agent

target search and tracking mission considered in this chapter, agents are homogeneous and share

the same objective (reward function). Thus, I can share a single centralized critic network for all

agents. I also share a single actor network for all agents. However, unlike sharing a critic which

inputs the combined observations and actions of all agents, sharing an actor requires additional

justification. Assuming homogeneous agents and shared objective, the optimal action for any

given observation is invariant to the choice of actor: a∗ = π∗θ1(o) = · · · = π∗θN (o),∀o ∈ O. In

other words, the actors of different agents will converge to the same optimal policy in theory

(π∗ = π∗θ1 = · · · = π∗θN). Thus, I can share a single actor for all agents without the loss of

optimality. A beneficial side-effect of this approach is the transferability to a varying number of

agents during deployment. In standard MADDPG, there are multiple actors and it is not apparent

which actor to exclude or duplicate when the number of agents decreases or increases during

deployment. A single shared actor alleviates this ambiguity. I also do not use network ensembles

for the shared actor. Network ensembles for actors are important in competitive settings but less

so in cooperative settings, and policy robustness can still be maintained without ensembles since

a single shared actor is trained with experience from all agents.

65

5.4 Results

5.4.1 Hyperparameters

I conduct simulation and hardware experiments to evaluate the proposed method on multi-agent

target search and tracking mission. Simulation environment is based on the OpenAI multi-agent

particle environment [86] with the workspace of 2×2. Radii of various entities such as the agent,

target, obstacle were set to 0.05, 0.1, and 0.1. In addition, velocity and acceleration limit for

the agents were set to 0.1 and 0.5, respectively. For signal intensities in (5.1), Am = 1 was set

for all m ∈ M. The intensity function was set to h(d) = exp(−0.5d2/0.06). Likewise, the

hardware experiment setup was configured to replicate the simulation environment but with a

larger workspace of 4m×4m.

The following hyperparameters were used throughout the experiments unless otherwise spec-

ified. For GP kernel (5.4), I set σ2
f = 1 and Σl = diag([0.05, 0.05]). The dimension E of the

approximated model was 40. A communication range of 2 was used. The training environment

included 3 agents, 3 targets, and 2 obstacles (A3T3O2) with randomized location of various en-

tities at the start of every episode (domain randomization). The discount factor of 0.95 and the

maximum episode length of 100 were used. Actor and critic networks in Fig. 5.2 were configured

with three convolutional layers of (number of filters, kernel size, stride) tuple (32,4,2), (64,3,2),

and (64,2,1) followed by two fully-connected layers of hidden layer dimension 128. The spatial

soft-argmax module was applied to the last convolutional layer to extract a 128-dimensional fea-

ture vector which was then concatenated with agent velocity (decentralized actor) or velocities

and actions of all agents (centralized critic) to be fed into the fully-connected network. A batch

size of 1024 and a learning rate of 0.001 were used to update the networks every 100 steps.

5.4.2 Multi-Sensor Consensus-Based Map Building

In order to better visualize the inner workings of the consensus-based map building module under

the distributed network environment, it is applied to an example setting of a multi-sensor array. In

66

100 steps0 steps 15 stepsGround truth

1

0.5

0

(c) (d)

100 steps0 steps 15 steps

1

0.5

0Network

(a) (b)

Figure 5.3: An example of consensus-based distributed map building for multi-sensor array.

Fig. 5.3-(a), there are 64 uniformly distributed sensors throughout the map. They are connected

with neighbors via local communication and each sensor measures only once at the beginning.

Relying solely on local information exchange and the consensus algorithm with neighboring

sensors, map information is shared with the entire network. Fig. 5.3-(b) shows the result of in-

formation propagation from the perspective of the agent in the lower left (red dot). Fig. 5.3-(c) is

the ground truth data, and Fig. 5.3-(d) represents the process of building the map over time. As

a result of the average consensus algorithm, all sensors’ GP maps converge to the same global

map.

5.4.3 Map-Based MADDPG

To demonstrate the importance of representation learning in image-based MARL, I compare the

learning curve of CNN with and without the spatial softmax module. To eliminate the exploration

burden on the MADDPG agent and test the effect of the spatial softmax module on representa-

tion learning in isolation, I assume that the cooperative map building module can recover and

provide the MADDPG module with the ground-truth map. Also, obstacles were removed from

the training environment and the episode length was reduced for fast training and comparison.

67

Figure 5.4: Network architecture ablation for map-based MADDPG.

Fig. 5.4 compares the episodic return, distance-to-goal at final timestep, and collision rate of the

proposed network and naı̈ve convolutional neural net for 3M training steps.

In terms of the episodic return and distance-to-goal, the proposed network was up to 50%

more performant while the collision rate remained more or less identical for both cases. There

was also a marked difference in learning stability as well, where the naı̈ve CNN, in many training

instances, has seen catastrophic failure occurs after convergence. This may be attributed to the

overfitting of the actor due to a lack of network ensembles which is further compounded by the

challenging representation learning under high-dimensional inputs.

68

5.4.4 Simulation Experiments

I evaluate the performance of the proposed algorithm (consensus-based map building + map-

based MADDPG) in simulation and check the transferability of the learned actor to a varying

number of entities at test time. I consider the following three cases: varying number of agents

and targets (A = T = n), varying number of targets (T = n), and varying number of obstacles

(O = n). The first scenario assumes that the number of targets with unknown location is known

and the matching number of agents can be deployed. In the second scenario, even the number of

targets is unknown and a fixed number of available agents are deployed, most likely resulting in

a mismatch between the number of agents and targets. The last scenario represents the varying

threat level of the test environment. Various performance metrics for the three scenarios are shown

in Table 5.1. ravg is the average episodic step reward, dfinal is the distance-to-target at the final

timestep and craa, crao is the agent-agent and agent-obstacle collision rate, respectively. Note

that the metrics for each configuration are averaged over 10 episodes with randomized entity

locations.

69

Table 5.1: Performance metric for various configurations.

config. ∗ ravg
† dfinal

∗∗ craa
†† crao

††

A3T3O2 0.3648 0.270 0.025 0.017

A1T1O2 0.3781 0.308 0.000 0.012

A2T2O2 0.3128 0.324 0.000 0.006

A4T4O2 0.2875 0.371 0.075 0.014

A5T5O2 0.2114 0.334 0.241 0.016

A3T1O2 0.3238 0.257 0.073 0.029

A3T2O2 0.3414 0.287 0.043 0.013

A3T4O2 0.3612 0.267 0.017 0.006

A3T5O2 0.4110 0.177 0.003 0.004

A3T3O1 0.3210 0.341 0.001 0.004

A3T3O3 0.3457 0.291 0.001 0.023

∗ blue font denotes deviation from the training environment
† average episodic step reward
∗∗ distance-to-target at the final timestep
†† agent-agent (’aa’) or agent-obstacle (’ao’) collision rate

70

In the first scenario, ravg decreased as the number of agents and targets increased. Specifically,

while performance was somewhat maintained for dfinal, increasing rate of agent-agent collision

negatively impacted ravg. Since the map size has remained unchanged, increasing the number

of agents increased the agent density, resulting in a more frequent collision between agents. For

the special case of A1T1O2 with no agent-agent collision (craa = 0), ravg even outperformed

the baseline. In the second scenario, the trends were reversed where the performance improved

as the number of targets increased. Since the agent density remains a constant, ravg was directly

tied with contention between agents. With fewer targets than agents, two or more agents fighting

for the same target led to a higher chance of collision between agents. Varying the number of

obstacles (scenario 3) did not meaningfully impact the result. There was a slight increase in

crao as the number of obstacles increased but this did not have a meaningful impact on ravg.

I expected complete collision avoidance by penalizing obstacle collisions, however, temporary

collisions were unavoidable. I think the reason is that agents learned to take a slight penalty in

order to quickly approach the target.

5.4.5 Multi-UAV Setup

I demonstrate my algorithm with multi-UAV experiments. Fig. 5.8 represents the experiment

setup for multi-agent target search and tracking mission. There are three targets (blue circle) and

two obstacles (red cone) in a 4 m×4 m workspace marked by black lines. Three Crazyflie 2.1

nano quadcopters measure the combined signal intensities of all targets. VICON motion capture

system and onboard INSes were used for indoor localization. The entire system was implemented

in ROS, and computations from the cooperative map building and RL controller modules were run

on the laptop (Intel i7-7500U CPU) since Crazyflie 2.1 does not have an onboard microcomputer.

The local communication links were implemented based on the distance between agents to mimic

distributed control systems.

71

5.4.6 Multi-UAV Experiments

Hardware experiments were performed on various transfer scenarios: one baseline scenario, two

scenarios with varying numbers of targets, and two scenarios with varying numbers of obstacles.

These scenarios only consider a subset of transfer scenarios presented in the simulation experi-

ments due to time and physical constraints. Hardware demonstration was only performed once

for each scenario.

Each snapshot in Figs. 5.5-5.7 displays a captured footage and three supplementary plots

(simplified top-down view, belief of the estimated target position denoted by the distributed GP

mean and variance) at various times. Indigo indicates low values and yellow indicates high values

in GP plots. The result of the baseline experiment is shown in Fig. 5.5. For the GP variance plot,

the uncertainty about the target gradually decreases as agents explore. In the case of GP mean

plot, it is initialized to zero at the beginning of the episode and when an agent discovers a tar-

get, the estimated target location turns yellow. In summary, the performance was maintained for

the baseline environment of A3T3O2 despite the domain gap between simulation and hardware.

Considering that there are subtle differences in system dynamics between simulation and the real

world, the performance degradation was minimal.

The hardware demonstration for reducing or increasing the number of targets is shown in Fig.

5.6. Due to the domain gap, it took more time for the agent to converge to the target compared

to the baseline scenario. When there were fewer targets than agents, two agents would converge

to a single target or a surplus agent would keep searching for a non-existent third target. When

there were more targets than agents, the agents would surround the targets or one agent would

oscillate between two targets. In Fig. 5.7, the hardware demonstrations for reducing or increasing

the number of obstacles are shown. In the case of one obstacle, it is less difficult than the baseline

and the agent would quickly converge to the target. In the case of three obstacles, it is more

difficult than the baseline and took more time to find the target. Overall, the trained agent could

successfully zero-shot transfer to minor changes in the number of targets and obstacles.

72

5.5 Summary

This chapter addressed the challenge of multi-agent target search and tracking under an unknown

environment. The decentralized map building module was proposed to construct a belief map

and locate unknown targets with a distributed network of agents. The network architecture for

the MARL agent was devised to accommodate high-dimensional inputs to incorporate the belief

map with RL and allow for a zero-shot transfer during deployment. The proposed method was

validated with simulated and hardware experiments in various scenarios and was able to search

and track multiple targets under an unknown environment whilst avoiding obstacles. I also eval-

uated the zero-shot transferability of the method to a varying number of environment entities

during deployment and demonstrated that performance is maintained. These results indicate that

the proposed algorithm is applicable to a broader class of autonomous multi-agent target search

and tracking operations and can be adapted for practical applications.

73

(a) Baseline

Figure 5.5: Multi-agent target search and tracking demonstration with micro-UAVs:
each column represents a different zero-shot transfer setting with a vary-
ing number of targets and obstacles. From top to bottom, snapshots of the
episode are arranged in chronological order. The three supplementary plots
of each snapshot denote the top-down view, GP mean, and GP variance from
left to right.

74

(a) Fewer targets (b) More targets

Figure 5.6: Multi-agent target search and tracking demonstration with micro-UAVs:
each column represents a different zero-shot transfer setting with a vary-
ing number of targets and obstacles. From top to bottom, snapshots of the
episode are arranged in chronological order. The three supplementary plots
of each snapshot denote the top-down view, GP mean, and GP variance from
left to right. Note that zero-shot transfer is successful for minor(±1) changes
in the number of targets and the UAVs were able to find and converge to un-
known targets.

75

(a) Fewer obstacles (b) More obstacles

Figure 5.7: Multi-agent target search and tracking demonstration with micro-UAVs:
each column represents a different zero-shot transfer setting with a vary-
ing number of targets and obstacles. From top to bottom, snapshots of the
episode are arranged in chronological order. The three supplementary plots
of each snapshot denote the top-down view, GP mean, and GP variance from
left to right. Note that zero-shot transfer is successful for minor(±1) changes
in the number of obstacles and the UAVs were able to find and converge to
unknown targets.

76

Crazyflie 2.1

target

obstacle

Figure 5.8: Multi-UAV experiment setup.

77

78

6
Conclusion

In the dissertation, I tackle the problem of dealing with distributed environmental learning and

target search and tracking in multi-robot sysetms. Most systems using multiple robots inherently

contain network problems due to limitations in communication distance and bandwidth. To over-

come a harsh network environment, I utilize a distributed algorithm that works only with local

communication. I apply the distributed Gaussian process in the learning of unkown environment.

Using GP states and update model, newly sensed data is successfully fused to current GP esti-

mates online. I have proposed the informative path planning algorithms for multiple robots to

obtain additional sensory data useful to improve GP estimation quality. Extending these environ-

mental learning problems, I have addressed the multi-target search and tracking problem. Using

the signal intensity map learned by GP, I have designed a deep reinforcement learning technique

that can control multiple agents to point to the targets’ location. In the following, I present a

concise summary of each chapter addressed in this dissertation.

Chapter 3: Multi-Robot Environmental Learning with Distributed Gaussian Process. I

proposed a multi-robot environmental learning technique that can operate even in a distributed

network. With the kernel expansion and average consensus algorithm, I implement online dis-

79

tributed GP in a networked control system. Using GP estimate, I establish a multi-agent explo-

ration and exploitation algorithm with multi-robot coordination. All real-time environment learn-

ing results obtained by multiple robots converge to global estimation results, helping multiple

robots to consistently perform cooperative tasks.

Chapter 4: Informative Path Planning for Multi-Robot Systems. I proposed a distributed

search and path planning technique that works even in a distributed network. I combine the Gaus-

sian process with the Monte Carlo tree search in a distributed manner for peer-to-peer commu-

nication. The Monte Carlo tree search technique combined with GP induces multiple robots to

actively move to the path with the largest amount of information. My method allows multiple

robots to collaboratively perform exploration, taking into account collision avoidance and coor-

dination. Based on the informative path planning with a predictive trajectory of a certain distance,

all robots have a non-myopic behavioral policy.

Chapter 5: Target Search and Tracking with Reinforcement Learning. To address the

challenge of multi-agent target search and tracking under an unknown environment, I have com-

bined the distributed GP with deep reinforcement learning. The network architecture accommo-

dating high-dimensional inputs was devised to incorporate the belief map with RL and allow for a

zero-shot transfer during deployment. The proposed technique enables multiple robots to actively

search for and locate each target even in a distributed environment. In addition, the fact that it can

be transferred to various environments and can immediately adapt to changes in the number of

agents or targets is a differentiated advantage from existing multi-agent reinforcement learning

algorithms.

A possible future study is to address the problem of search and tracking of moving targets.

The distributed GP is also capable of learning about the changing environment, confirming that it

is possible to track the location of moving targets. However, due to the limitations of the proposed

deep reinforcement learning algorithm, policy learning that tracks a target based on a changing

environment map is impossible. In order to overcome this problem, a technique for predicting

positions of targets more precisely based on the Gaussian mixture probability hypothesis density

(GM-PHD) filter is being studied. The predicted positions of targets can be used to leverage the

80

policy learning for tracking moving targets.

81

82

A
Proof of Theorem 1

Proof. The GP states αim(k) and βim(k) in (3.5) are state variables at time k. We assume the m-th

training data (x̄im, ȳ
i
m) is obtained at time km, where m ≥ 1. The E-dimensional estimator for

GP (3.2) has to meet the following condition:

G>G

mn
=

1

mn

n∑
i=1

m∑
t=1

Φ(x̄it)Φ
>(x̄it) =

1

n

n∑
i=1

αim(km),

G>y

mn
=

1

mn

n∑
i=1

m∑
t=1

Φ(x̄it)ȳ
i
t =

1

n

n∑
i=1

βim(km).

(A.1)

When all agents obtainm-th measurement {ȳim}ni=1 at km, the left terms in (A.1) can be expressed

as follows:

83

G>G

mn
=

1

mn

n∑
i=1

m∑
t=1

Φ(x̄it)Φ
>(x̄it)

=
1

mn

n∑
i=1

(
m−1∑
t=1

Φ(x̄it)Φ
>(x̄it) + Φ(x̄im)Φ>(x̄im))

=
1

n

n∑
i=1

(m−1
m
αim−1(km−1) + 1

m
Φ(x̄im)Φ>(x̄im))

=
1

n

n∑
i=1

αim(km),

(A.2)

G>y

mn
=

1

mn

n∑
i=1

m∑
t=1

Φ(x̄it)y
i
t

=
1

mn

n∑
i=1

(
m−1∑
t=1

Φ(x̄it)y
i
t + Φ(x̄im)yim)

=
1

n

n∑
i=1

(m−1
m
βim−1(km−1) + 1

m
Φ(x̄im)yim)

=
1

n

n∑
i=1

βim(km).

(A.3)

Using the update rule (3.8), (A.1) is satisfied at all times k ≥ k1. With the help of average consen-

sus algorithm, {αim(k)}ni=1 and {βim(k)}ni=1 move towards their average value, i.e., limk→∞ α
i
m(k) =∑n

i=1 α
i
m(km) and limk→∞ β

i
m(k) =

∑n
i=1 β

i
m(km). As a result, {αim(km)}ni=1 and {βim(km)}ni=1

become equal to the leftmost terms in (A.1).

84

References

[1] D. S. Drew, “Multi-agent systems for search and rescue applications,” Current Robotics

Reports, vol. 2, no. 2, pp. 189–200, 2021.

[2] A.-M. Zou, K. D. Kumar, and Z.-G. Hou, “Distributed consensus control for multi-agent

systems using terminal sliding mode and chebyshev neural networks,” International Journal

of Robust and Nonlinear Control, vol. 23, no. 3, pp. 334–357, 2013.

[3] A. Zidan, M. Khairalla, A. M. Abdrabou, T. Khalifa, K. Shaban, A. Abdrabou, R. El Shat-

shat, and A. M. Gaouda, “Fault detection, isolation, and service restoration in distribution

systems: State-of-the-art and future trends,” IEEE Transactions on Smart Grid, vol. 8, no. 5,

pp. 2170–2185, 2016.

[4] M. Wooldridge, An introduction to multiagent systems. John wiley & sons, 2009.

[5] T. Arai, E. Pagello, L. E. Parker et al., “Advances in multi-robot systems,” IEEE Transac-

tions on robotics and automation, vol. 18, no. 5, pp. 655–661, 2002.

[6] A. Gautam and S. Mohan, “A review of research in multi-robot systems,” in 2012 IEEE 7th

international conference on industrial and information systems (ICIIS). IEEE, 2012, pp.

1–5.

[7] A. Serra-Gómez, B. Brito, H. Zhu, J. J. Chung, and J. Alonso-Mora, “With whom to com-

municate: learning efficient communication for multi-robot collision avoidance,” in 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,

2020, pp. 11 770–11 776.

85

[8] J. Gregory, J. Fink, E. Stump, J. Twigg, J. Rogers, D. Baran, N. Fung, and S. Young, “Ap-

plication of multi-robot systems to disaster-relief scenarios with limited communication,”

in Field and Service Robotics. Springer, 2016, pp. 639–653.

[9] I. F. Akyildiz and M. C. Vuran, Wireless sensor networks. John Wiley & Sons, 2010.

[10] G. A. Hollinger, S. Choudhary, P. Qarabaqi, C. Murphy, U. Mitra, G. S. Sukhatme, M. Sto-

janovic, H. Singh, and F. Hover, “Underwater data collection using robotic sensor net-

works,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 5, pp. 899–911,

2012.

[11] B. J. Julian, M. Angermann, M. Schwager, and D. Rus, “Distributed robotic sensor net-

works: An information-theoretic approach,” The International Journal of Robotics Re-

search, vol. 31, no. 10, pp. 1134–1154, 2012.

[12] Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control of multi-agent sys-

tems using complex laplacian,” IEEE Transactions on Automatic Control, vol. 59, no. 7, pp.

1765–1777, 2014.

[13] M. Jafarian, E. Vos, C. De Persis, A. J. Van Der Schaft, and J. M. Scherpen, “Formation

control of a multi-agent system subject to coulomb friction,” Automatica, vol. 61, pp. 253–

262, 2015.

[14] N. Cao, K. H. Low, and J. M. Dolan, “Multi-robot informative path planning for ac-

tive sensing of environmental phenomena: A tale of two algorithms,” arXiv preprint

arXiv:1302.0723, 2013.

[15] K.-C. Ma, Z. Ma, L. Liu, and G. S. Sukhatme, “Multi-robot informative and adaptive plan-

ning for persistent environmental monitoring,” in Distributed Autonomous Robotic Systems.

Springer, 2018, pp. 285–298.

86

[16] A. Dutta, A. Ghosh, and O. P. Kreidl, “Multi-robot informative path planning with contin-

uous connectivity constraints,” in 2019 International Conference on Robotics and Automa-

tion (ICRA). IEEE, 2019, pp. 3245–3251.

[17] H. Long, Z. Qu, X. Fan, and S. Liu, “Distributed extended kalman filter based on consensus

filter for wireless sensor network,” in Proceedings of the 10th World Congress on Intelligent

Control and Automation. IEEE, 2012, pp. 4315–4319.

[18] R. Olfati-Saber, “Distributed kalman filter with embedded consensus filters,” in Proceedings

of the 44th IEEE Conference on Decision and Control. IEEE, 2005, pp. 8179–8184.

[19] F. S. Cattivelli and A. H. Sayed, “Distributed nonlinear kalman filtering with applications

to wireless localization,” in 2010 IEEE International Conference on Acoustics, Speech and

Signal Processing. IEEE, 2010, pp. 3522–3525.

[20] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer school on machine

learning. Springer, 2003, pp. 63–71.

[21] B. C. Levy, “Karhunen loeve expansion of gaussian processes,” in Principles of Signal De-

tection and Parameter Estimation. Springer, 2008, pp. 1–47.

[22] H. Zhu, C. K. Williams, R. Rohwer, and M. Morciniec, “Gaussian regression and optimal

finite dimensional linear models,” 1997.

[23] G. Pillonetto, L. Schenato, and D. Varagnolo, “Distributed multi-agent gaussian regression

via finite-dimensional approximations,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 41, no. 9, pp. 2098–2111, 2018.

[24] R. O. Saber and R. M. Murray, “Consensus protocols for networks of dynamic agents,”

2003.

87

[25] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous

agents using nearest neighbor rules,” IEEE Transactions on automatic control, vol. 48, no. 6,

pp. 988–1001, 2003.

[26] G. Pajares, “Overview and current status of remote sensing applications based on unmanned

aerial vehicles (uavs),” Photogrammetric Engineering & Remote Sensing, vol. 81, no. 4, pp.

281–330, 2015.

[27] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry,

“Kalman filtering with intermittent observations,” IEEE transactions on Automatic Control,

vol. 49, no. 9, pp. 1453–1464, 2004.

[28] V. Gupta, B. Hassibi, and R. M. Murray, “On sensor fusion in the presence of packet-

dropping communication channels,” in Proceedings of the 44th ieee conference on decision

and control. IEEE, 2005, pp. 3547–3552.

[29] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-efficient

learning in robotics and control,” IEEE transactions on pattern analysis and machine in-

telligence, vol. 37, no. 2, pp. 408–423, 2013.

[30] N. Chen, Z. Qian, I. T. Nabney, and X. Meng, “Wind power forecasts using gaussian pro-

cesses and numerical weather prediction,” IEEE Transactions on Power Systems, vol. 29,

no. 2, pp. 656–665, 2013.

[31] H. Bijl, J.-W. van Wingerden, T. B. Schön, and M. Verhaegen, “Online sparse gaussian

process regression using fitc and pitc approximations,” IFAC-PapersOnLine, vol. 48, no. 28,

pp. 703–708, 2015.

[32] D. Nguyen-Tuong, J. Peters, and M. Seeger, “Local gaussian process regression for real

time online model learning,” Advances in neural information processing systems, vol. 21,

2008.

88

[33] Z. Jin and R. M. Murray, “Multi-hop relay protocols for fast consensus seeking,” in Proceed-

ings of the 45th IEEE Conference on Decision and Control. IEEE, 2006, pp. 1001–1006.

[34] S. Manfredi, “Design of a multi-hop dynamic consensus algorithm over wireless sensor

networks,” Control Engineering Practice, vol. 21, no. 4, pp. 381–394, 2013.

[35] K.-C. Ma, L. Liu, and G. S. Sukhatme, “Informative planning and online learning with

sparse gaussian processes,” in 2017 IEEE International Conference on Robotics and Au-

tomation (ICRA). IEEE, 2017, pp. 4292–4298.

[36] W. Luo, C. Nam, G. Kantor, and K. Sycara, “Distributed environmental modeling and adap-

tive sampling for multi-robot sensor coverage,” in Proceedings of the 18th International

Conference on Autonomous Agents and MultiAgent Systems, 2019, pp. 1488–1496.

[37] A. Viseras, T. Wiedemann, C. Manss, L. Magel, J. Mueller, D. Shutin, and L. Merino,

“Decentralized multi-agent exploration with online-learning of gaussian processes,” in 2016

IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.

4222–4229.

[38] J. Choi, S. Oh, and R. Horowitz, “Distributed learning and cooperative control for multi-

agent systems,” Automatica, vol. 45, no. 12, pp. 2802–2814, 2009.

[39] R. Allamraju and G. Chowdhary, “Communication efficient decentralized gaussian process

fusion for multi-uas path planning,” in 2017 American Control Conference (ACC). IEEE,

2017, pp. 4442–4447.

[40] G. Flaspohler, V. Preston, A. P. Michel, Y. Girdhar, and N. Roy, “Information-guided

robotic maximum seek-and-sample in partially observable continuous environments,” IEEE

Robotics and Automation Letters, vol. 4, no. 4, pp. 3782–3789, 2019.

[41] S. Ishii, W. Yoshida, and J. Yoshimoto, “Control of exploitation–exploration meta-parameter

in reinforcement learning,” Neural networks, vol. 15, no. 4-6, pp. 665–687, 2002.

89

[42] F. Deng, S. Guan, X. Yue, X. Gu, J. Chen, J. Lv, and J. Li, “Energy-based sound source

localization with low power consumption in wireless sensor networks,” IEEE Transactions

on Industrial Electronics, vol. 64, no. 6, pp. 4894–4902, 2017.

[43] M. Coombes, W.-H. Chen, and C. Liu, “Boustrophedon coverage path planning for uav

aerial surveys in wind,” in 2017 International Conference on Unmanned Aircraft Systems

(ICUAS). IEEE, 2017, pp. 1563–1571.

[44] Q. Feng, H. Cai, Y. Yang, J. Xu, M. Jiang, F. Li, X. Li, and C. Yan, “An experimental

and numerical study on a multi-robot source localization method independent of airflow

information in dynamic indoor environments,” Sustainable Cities and Society, vol. 53, p.

101897, 2020.

[45] J. Patrikar, B. G. Moon, and S. Scherer, “Wind and the city: Utilizing uav-based in-situ mea-

surements for estimating urban wind fields,” in 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 1254–1260.

[46] K.-C. Ma, L. Liu, and G. S. Sukhatme, “An information-driven and disturbance-aware plan-

ning method for long-term ocean monitoring,” in 2016 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 2102–2108.

[47] J. Zhang, R. Liu, K. Yin, Z. Wang, M. Gui, and S. Chen, “Intelligent collaborative localiza-

tion among air-ground robots for industrial environment perception,” IEEE Transactions on

Industrial Electronics, vol. 66, no. 12, pp. 9673–9681, 2018.

[48] A. Quattrini Li, P. K. Penumarthi, J. Banfi, N. Basilico, J. M. O’Kane, I. Rekleitis,

S. Nelakuditi, and F. Amigoni, “Multi-robot online sensing strategies for the construction

of communication maps,” Autonomous Robots, vol. 44, no. 3, pp. 299–319, 2020.

[49] Y. Shi, N. Wang, J. Zheng, Y. Zhang, S. Yi, W. Luo, and K. Sycara, “Adaptive informative

sampling with environment partitioning for heterogeneous multi-robot systems,” in 2020

90

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,

2020, pp. 11 718–11 723.

[50] D. Gu, “Distributed em algorithm for gaussian mixtures in sensor networks,” IEEE Trans-

actions on Neural Networks, vol. 19, no. 7, pp. 1154–1166, 2008.

[51] M. L. Elwin, R. A. Freeman, and K. M. Lynch, “Distributed environmental monitoring with

finite element robots,” IEEE Transactions on Robotics, vol. 36, no. 2, pp. 380–398, 2019.

[52] D. Jang, J. Yoo, C. Y. Son, D. Kim, and H. J. Kim, “Multi-robot active sensing and environ-

mental model learning with distributed gaussian process,” IEEE Robotics and Automation

Letters, vol. 5, no. 4, pp. 5905–5912, 2020.

[53] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in gaussian pro-

cesses: Theory, efficient algorithms and empirical studies.” Journal of Machine Learning

Research, vol. 9, no. 2, 2008.

[54] P. R. Silveira, D. d. F. Naiff, C. M. Pereira, and R. Schirru, “Reconstruction of radiation dose

rate profiles by autonomous robot with active learning and gaussian process regression,”

Annals of Nuclear Energy, vol. 112, pp. 876–886, 2018.

[55] A. Meliou, A. Krause, C. Guestrin, and J. M. Hellerstein, “Nonmyopic informative path

planning in spatio-temporal models,” in AAAI, vol. 10, no. 4, 2007, pp. 16–7.

[56] L. Bottarelli, M. Bicego, J. Blum, and A. Farinelli, “Orienteering-based informative path

planning for environmental monitoring,” Engineering Applications of Artificial Intelligence,

vol. 77, pp. 46–58, 2019.

[57] K. Yang, S. Keat Gan, and S. Sukkarieh, “A gaussian process-based rrt planner for the ex-

ploration of an unknown and cluttered environment with a uav,” Advanced Robotics, vol. 27,

no. 6, pp. 431–443, 2013.

91

[58] W. Chen and L. Liu, “Pareto monte carlo tree search for multi-objective informative plan-

ning,” arXiv preprint arXiv:2111.01825, 2021.

[59] B. Du, K. Qian, C. Claudel, and D. Sun, “Parallelized active information gathering using

multisensor network for environment monitoring,” IEEE Transactions on Control Systems

Technology, 2021.

[60] B. Kartal, E. Nunes, J. Godoy, and M. Gini, “Monte carlo tree search for multi-robot task

allocation,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1,

2016.

[61] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-mcts: Decentralized planning

for multi-robot active perception,” The International Journal of Robotics Research, vol. 38,

no. 2-3, pp. 316–337, 2019.

[62] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Information-theoretic regret

bounds for gaussian process optimization in the bandit setting,” IEEE transactions on infor-

mation theory, vol. 58, no. 5, pp. 3250–3265, 2012.

[63] A. Garivier and E. Moulines, “On upper-confidence bound policies for switching bandit

problems,” in International Conference on Algorithmic Learning Theory. Springer, 2011,

pp. 174–188.

[64] E. T. Alotaibi, S. S. Alqefari, and A. Koubaa, “Lsar: Multi-uav collaboration for search and

rescue missions,” IEEE Access, vol. 7, pp. 55 817–55 832, 2019.

[65] H. Wang, C. Zhang, Y. Song, and B. Pang, “Master-followed multiple robots cooperation

slam adapted to search and rescue environment,” International Journal of Control, Automa-

tion and Systems, vol. 16, no. 6, pp. 2593–2608, 2018.

[66] J. Lim, J. H. Park, and H. J. Kim, “Bayesian online learning for information-based multi-

agent exploration with unknown radio signal distribution,” IFAC-PapersOnLine, vol. 50,

no. 1, pp. 2621–2626, 2017.

92

[67] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[68] C. Yu, M. Zhang, F. Ren, and G. Tan, “Multiagent learning of coordination in loosely cou-

pled multiagent systems,” IEEE transactions on cybernetics, vol. 45, no. 12, pp. 2853–2867,

2015.

[69] L. Zhou, P. Yang, C. Chen, and Y. Gao, “Multiagent reinforcement learning with sparse

interactions by negotiation and knowledge transfer,” IEEE transactions on cybernetics,

vol. 47, no. 5, pp. 1238–1250, 2016.

[70] P. Yao, H. Wang, and H. Ji, “Gaussian mixture model and receding horizon control for

multiple uav search in complex environment,” Nonlinear Dynamics, vol. 88, no. 2, pp. 903–

919, 2017.

[71] J. Binney, A. Krause, and G. S. Sukhatme, “Optimizing waypoints for monitoring spa-

tiotemporal phenomena,” The International Journal of Robotics Research, vol. 32, no. 8,

pp. 873–888, 2013.

[72] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,

L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go without human knowledge,”

Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[73] Y. Sun and Y. Zhang, “Conversational recommender system,” in The 41st international acm

sigir conference on research & development in information retrieval, 2018, pp. 235–244.

[74] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct reinforcement learning for finan-

cial signal representation and trading,” IEEE transactions on neural networks and learning

systems, vol. 28, no. 3, pp. 653–664, 2016.

[75] S. Choi, S. Kim, and H. Jin Kim, “Inverse reinforcement learning control for trajectory

tracking of a multirotor uav,” International Journal of Control, Automation and Systems,

vol. 15, no. 4, pp. 1826–1834, 2017.

93

[76] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic ma-

nipulation with asynchronous off-policy updates,” in 2017 IEEE international conference

on robotics and automation (ICRA). IEEE, 2017, pp. 3389–3396.

[77] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,

A. Petron, M. Plappert, G. Powell, A. Ray et al., “Learning dexterous in-hand manipula-

tion,” The International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.

[78] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep decentralized multi-task

multi-agent reinforcement learning under partial observability,” in International Conference

on Machine Learning. PMLR, 2017, pp. 2681–2690.

[79] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, “Joint optimization of multi-uav target

assignment and path planning based on multi-agent reinforcement learning,” IEEE access,

vol. 7, pp. 146 264–146 272, 2019.

[80] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” in Proceedings of

the 4th International Conference on Learning Representations, 2016. [Online]. Available:

http://arxiv.org/abs/1509.02971

[81] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-agent actor-

critic for mixed cooperative-competitive environments,” Advances in neural information

processing systems, vol. 30, 2017.

[82] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the

society for industrial and applied mathematics, vol. 5, no. 1, pp. 32–38, 1957.

[83] D. Jang, J. Yoo, C. Y. Son, and H. J. Kim, “Fully distributed informative planning for envi-

ronmental learning with multi-robot systems,” arXiv preprint arXiv:2112.14433, 2022.

[84] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor

policies,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334–1373, 2016.

94

http://arxiv.org/abs/1509.02971

[85] X.-H. Chen, S. Jiang, F. Xu, Z. Zhang, and Y. Yu, “Cross-modal domain adaptation for

cost-efficient visual reinforcement learning,” Advances in Neural Information Processing

Systems, vol. 34, 2021.

[86] I. Mordatch and P. Abbeel, “Emergence of grounded compositional language in multi-agent

populations,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,

no. 1, 2018.

95

96

국문초록

본논문은다중로봇시스템에서의분산환경학습기법을다루며,이를다중표적탐색및추

적문제에적용한다.다중로봇시스템은기본적으로로봇의협동작업을통해신뢰성,효율성

및 확장성의 장점을 얻는다. 이러한 다중 로봇 시스템은 데이터 기반 환경 학습에 적용하기

용이하다. 데이터 기반 환경 학습은 특정 관심 영역에서 다수의 센서 데이터를 획득하여 관

심영역에대한포괄적인정보를얻는기법이다.그러나다중로봇이이러한작업을수행하기

위해서는분산학습알고리즘과협업알고리즘이필수적으로요구된다.

본 논문은 첫째로 분산 환경 학습 알고리즘을 중점적으로 다룬다. 사전에 알려지지 않은

환경 과정에 대하여, 다중 로봇이 현재 위치에서 잡음이 포함된 센서 데이터를 획득한다면,

가우시안프로세스회귀알고리즘을통해신뢰구간을바탕으로공간정보지도를구성할수

있다. 그러나 기존의 가우시안 프로세스 알고리즘은 중앙 집중형으로 동작하기 때문에, 공간

상에 넓게 분포한 다수의 센서로부터 오는 정보를 실시간으로 처리하기 어렵다. 이 논문에서

는다음과같은도전과제를해결할수있는다중로봇탐색알고리즘을제안한다: i)네트워크

센싱플랫폼을사용한분산환경지도구축, ii)다중로봇팀에적합하도록,연속적인센서데

이터 측정 및 융합을 사용한 온라인 학습, iii) 알려지지 않은 환경 과정의 최고점을 탐색하기

위한 다중 로봇 능동 감지 및 제어 기법. 이러한 알고리즘의 효율성을 다수의 UAV를 사용한

시뮬레이션과지형조사실험을통해검증한다.

그러나이러한기법은협력탐색과정에서의경로계획이부재한관계로,로봇들의근시안

적인행동을초래한다.따라서다음장에선완전히분산화된방식으로동작하는다중로봇의

정보량기반의경로계획알고리즘을제안한다.이알고리즘은다음과같은도전과제의해결

을목표로한다: i)다중로봇을사용한온라인분산환경지도학습, ii)학습된지도를기반으로

안전하고효율적인탐색경로생성, iii)로봇수의변화에대한확장성유지.이를위해전체과

정을 환경 학습과 경로 계획의 두 단계로 나눈다. 각 단계에 분산화된 알고리즘을 적용하고,

오직 인접 로봇 간의 통신을 통해 두 알고리즘을 결합한다. 환경 학습 알고리즘은 분산 가우

시안프로세스를사용하고,경로계획알고리즘은분산몬테카를로트리탐색을이용한다.그

97

결과,로봇수의제약없이확장가능한다중로봇시스템을구축할수있다.시뮬레이션을통해

제안된 시스템의 성능과 확장성을 보여주며, 또한 하드웨어 실험으로 보다 현실적인 시나리

오에서알고리즘의유용성을검증한다.

마지막으로, 앞서 설명한 환경 학습의 결과를 다중 목표물의 탐색 및 추적 문제에 적용할

수있다.목표물의탐색및추적을위해여러대의로봇을배치하는것은많은연구에서다뤄져

왔지만, 표적의 위치가 사전에 알려지지 않았거나 부분적으로 알려진 경우에서의 로봇 경로

계획 문제는 여전히 해결하기 어려운 문제이다. 그러나 최근에 떠오르고 있는 딥러닝과 강화

학습같은지능형제어기술을이용하여,에이전트는사전지식없이오직환경과의상호작용

을 통해 자율적으로 목표물을 탐색 및 추적할 수 있다. 이러한 방법은 데이터 기반 기법으로

동작함으로써, 경로 계획 문제에서의 탐색-활용 트레이드오프를 다룰 수 있으며, 기존 접근

방식의 전형적이고 실험적인 기법을 사용하지 않고도, 종단 간 학습을 통해 의사 결정 과정

을간소화할수있다.이논문에서는분산가우시안프로세스를기반으로목표물위치지도를

구축하고, 이를 다중 에이전트 강화 학습에 적용하는 기법을 제안한다. 분산 가우시안 프로

세스를 활용하여 대상 위치에 대한 신뢰 지도를 생성하고, 위치를 알 수 없는 목표물에 대해

효율적으로탐색및추적을할수있는경로계획법을고안한다.훈련된정책의성능과새로운

환경으로의 전이 가능성을 시뮬레이션으로 평가하고, 다중 UAV를 활용한 하드웨어 실험을

통해검증한다.

주요어: 다중로봇시스템,환경학습,정보량기반경로계획,심층강화학습

학 번: 2019-35974

98

	1 Introduction,
	1.1 Contributions and Outline,

	2 Preliminaries,
	2.1 Multi-Robot Systems,
	2.2 Gaussian Process,
	2.3 KarhunenLove (KL) Kernel Expansion,
	2.4 Average Consensus Algorithm,

	3 Multi-robot Environmental Learning with Distributed Gaussian Process,
	3.1 Introduction,
	3.1.1 Related work,
	3.1.2 Problem Statement,
	3.1.3 Contribution,

	3.2 Distributed Gaussian Process,
	3.2.1 Multi-Agent Distributed Gaussian Process,
	3.2.2 Online Information Fusion by Moving Agents,

	3.3 Multi-Agent Active Sensing and Control,
	3.3.1 Exploration and Exploitation,
	3.3.2 Collision Avoidance and Coordination,

	3.4 Simulation Result,
	3.4.1 Simulation: robotic sensor networks for 4 agents,

	3.5 Experimental Result,
	3.5.1 Experimental Setup,
	3.5.2 Experiment: robotic sensor networks for 3 agents,

	3.6 Summary,

	4 Informative Path Planning for Multi-Robot Systems,
	4.1 Introduction,
	4.1.1 Literature Review,
	4.1.2 Contribution,

	4.2 Multi-Robot System Setup and Preliminaries,
	4.2.1 Multi-Robot System Setup,
	4.2.2 Informative Path Planning,

	4.3 Path Planning: Distributed Monte Carlo Tree Search,
	4.3.1 Trajectory Merging,
	4.3.2 Informational Reward Function,
	4.3.3 Tree Search with D-UCB Alogrithm,

	4.4 Result and Analysis,
	4.4.1 Simulation - synthetic environment learning,
	4.4.2 Experiment - topographic survey using multiple UAVs,

	4.5 Summary,

	5 Target Search and Tracking with Reinforcement Learning,
	5.1 Introduction,
	5.1.1 Related Works,
	5.1.2 Contributions,

	5.2 Problem Statement and Preliminaries,
	5.2.1 Problem Statement,
	5.2.2 Multi-Agent Systems,
	5.2.3 Gaussian Process for Target Search,
	5.2.4 Deep Reinforcement Learning,

	5.3 Method,
	5.3.1 Multi-Agent Consensus-Based Map Building,
	5.3.2 Map-Based MADDPG,

	5.4 Results,
	5.4.1 Hyperparameters,
	5.4.2 Multi-Sensor Consensus-Based Map Building,
	5.4.3 Map-Based MADDPG,
	5.4.4 Simulation Experiments,
	5.4.5 Multi-UAV Setup,
	5.4.6 Multi-UAV Experiments,

	5.5 Summary,

	6 Conclusion,
	Appendix
	A Proof of Theorem 1,

	References,
	Abstract (in Korean),

		<startpage>28

		1 Introduction		 1

		 1.1 Contributions and Outline		 3

		2 Preliminaries		 5

		 2.1 Multi-Robot Systems		 5

		 2.2 Gaussian Process		 7

		 2.3 KarhunenLove (KL) Kernel Expansion		 9

		 2.4 Average Consensus Algorithm		 10

		3 Multi-robot Environmental Learning with Distributed Gaussian Process		 11

		 3.1 Introduction		 11

		 3.1.1 Related work		 12

		 3.1.2 Problem Statement		 14

		 3.1.3 Contribution		 15

		 3.2 Distributed Gaussian Process		 15

		 3.2.1 Multi-Agent Distributed Gaussian Process		 15

		 3.2.2 Online Information Fusion by Moving Agents		 18

		 3.3 Multi-Agent Active Sensing and Control		 22

		 3.3.1 Exploration and Exploitation		 22

		 3.3.2 Collision Avoidance and Coordination		 24

		 3.4 Simulation Result		 25

		 3.4.1 Simulation: robotic sensor networks for 4 agents		 25

		 3.5 Experimental Result		 29

		 3.5.1 Experimental Setup		 29

		 3.5.2 Experiment: robotic sensor networks for 3 agents		 29

		 3.6 Summary		 31

		4 Informative Path Planning for Multi-Robot Systems		 33

		 4.1 Introduction		 34

		 4.1.1 Literature Review		 34

		 4.1.2 Contribution		 36

		 4.2 Multi-Robot System Setup and Preliminaries		 37

		 4.2.1 Multi-Robot System Setup		 37

		 4.2.2 Informative Path Planning		 38

		 4.3 Path Planning: Distributed Monte Carlo Tree Search		 39

		 4.3.1 Trajectory Merging		 41

		 4.3.2 Informational Reward Function		 41

		 4.3.3 Tree Search with D-UCB Alogrithm		 42

		 4.4 Result and Analysis		 44

		 4.4.1 Simulation - synthetic environment learning		 44

		 4.4.2 Experiment - topographic survey using multiple UAVs		 50

		 4.5 Summary		 52

		5 Target Search and Tracking with Reinforcement Learning		 53

		 5.1 Introduction		 54

		 5.1.1 Related Works		 55

		 5.1.2 Contributions		 56

		 5.2 Problem Statement and Preliminaries		 57

		 5.2.1 Problem Statement		 57

		 5.2.2 Multi-Agent Systems		 57

		 5.2.3 Gaussian Process for Target Search		 58

		 5.2.4 Deep Reinforcement Learning		 59

		 5.3 Method		 60

		 5.3.1 Multi-Agent Consensus-Based Map Building		 61

		 5.3.2 Map-Based MADDPG		 63

		 5.4 Results		 66

		 5.4.1 Hyperparameters		 66

		 5.4.2 Multi-Sensor Consensus-Based Map Building		 66

		 5.4.3 Map-Based MADDPG		 67

		 5.4.4 Simulation Experiments		 69

		 5.4.5 Multi-UAV Setup		 71

		 5.4.6 Multi-UAV Experiments		 72

		 5.5 Summary		 73

		6 Conclusion		 79

		Appendix 83

		 A Proof of Theorem 1		 83

		References		 85

		Abstract (in Korean)		 97

		</body>

