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Abstract

Development of Multiple Reaction Monitoring-
Mass Spectrometry based Proteome

Multimarker Panel and Panel Development
Software for the Detection of Hepatocellular

Carcinoma

Jaenyeon Kim

Interdisciplinary Program in Bioengineering

The Graduate School

Seoul National University

Introduction: Conventional methods for the surveillance of hepatocellular

carcinoma (HCC) by imaging, with and without serum tumor markers, are

suboptimal with regard to accuracy. We aimed to develop and validate a reliable

serum biomarker panel for the early detection of HCC using a proteomic technique.

To simplify the computational process during the biomarker study aiming for

clinical application, we developed two web application, one for marker panel

development and the other for method validation.

Method: In Chapter 1, This multicenter case-control study comprised 727

patients with HCC (case group, n=393) and patients with risk factors (ie, cirrhosis,

chronic hepatitis B, or chronic hepatitis C) but no HCC (control group, n=334). We

developed a multiple reaction monitoring-mass spectrometry (MRM-MS)

multimarker panel using 17 proteins from the sera of 398 patients (training set: 199

cases and 199 controls). Area under the receiver operating characteristics curve

(AUROC) values of this MRM-MS panel with and without alpha-fetoprotein (AFP)

and protein induced by vitamin K absence or antagonist-II (PIVKA-II) were

compared in the training set and the independent test (n=170: 85 cases and 85

controls) and validation sets (n=159: 109 cases and 50 controls). In Chapter 2, web

application for model development, Web Model Developer (WMD), were
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programed with Python and Scikit Learn Module where web application was built

with Django framework. Sample process methods regarding batch correction and

transformation are provided. Forward, Backward and Recursive Feature

Elimination options are available for feature selection with Logistic Regression or

Support Vector Machine. Method Validation Portal (MVP), are designed with

Spring boot, which was used as a framework for webpage development, which

follows MVC Pattern. JSP, HTML, XML, and Java Script were used to develop the

webpage. A server was composed of Apache Tomcat, MySQL. Input files were

skyline-derived output files (csv file), and each files were organized by specific

columns in order. SQL, JAVA were interworked to evaluate all the categories and

show the results.

Results: In Chapter 1, The AUROC value of the MRM-MS panel that was

combined with AFP and PIVKA-II was significantly higher than the standalone

MRM-MS panel in the training (0.989 vs 0.937, P<0.05) and validation sets (0.958

vs 0.940, P<0.05) but not the test set (0.898 vs 0.891, P=0.28). The combination

and standalone MRM-MS panels had higher AUROC values than AFP in the

training (0.940 and 0.929 vs 0.775, both P<0.05), test (0.894 and 0.893 vs 0.593,

both P<0.05), and validation sets (0.961 and 0.937 vs 0.806, both P<0.05) in

detecting small (<2 cm) single HCC. The combination and standalone MRM-MS

panels had significantly higher AUROC values than the GALAD score (0.945 and

0.931 vs 0.829, both P<0.05). In Chapter 2, WMD are provided as single webpage

with Data process, Feature Selection and Model evaluation sections. WMD were

able to process raw MRM data and suggest best set of features. The MVP portal

reads a Skyline-output file and produces the following results: calibration curve,

specificity, sensitivity, carryover, precision, recovery, matrix effect, dilution

integrity, stability and QC according to the standards of each independent agency.

The final tables and figures pertaining to the 11 evaluation categories are displayed

in an individual page.

Conclusion: Our proteome 17-protein multimarker panel distinguished HCC

patients from high-risk controls and had high accuracy in the early detection of

HCC. Our web applications could have simplified the model development process

and method evaluation process.

Keyword: hepatocellular carcinoma, biomarker, proteome, serum, software

Student Number: 2018-36314
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General Introduction

Hepatocellular carcinoma (HCC) accounts for 75% to 85% of all primary liver

cancer cases, and its mortality rate is nearly equivalent to its global incidence(1).

The burden of HCC is highest in East Asia, where cirrhosis, hepatitis B and C virus,

and excessive alcohol consumption are the major risk factors(2).

Attempts to utilize protein biomarkers in clinical applications, including

diagnosis, disease prognosis, therapeutic evaluations, and drug efficacy

assessments were reported(3). Aspects of patient physiology, as tumor growth or

disease conditions can be reflected by screening human plasma proteins. As one of

less invasive diagnostic method, blood-based protein biomarkers is a promising

source of disease indicator(4). Proteomic analysis by mass spectrometry (MS), in

particular, multiple reaction monitoring method using liquid chromatography

coupled mass spectrometry (MRM-LC/MS) has been widely applied to biomarker

development for their high reproducibility, sensitivity and selectivity(5).

Nonetheless, as MRM-LC/MS detects designated peptide of interest and

fragmented ions, they are less affected with matrix effects With above mentioned

characteristics of MRM-LC/MS, an MRM-LC/MS utilized assay may be suggested

as a new clinical diagnostic tool to substitute conventional methods as antibody

assays(6).

For MRM-MS based biomarker panel to become clinically ready, the study on

performance of the multi marker panel and reproducibility of the sample

preparation method have to be performed and well established. Computational

manipulation is critical, which are both time-consuming and prone to error if

processed with inefficient methods. After data collection, combination of feature
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selected by machine learning algorithms needs to be discovered to represent the

case/control, where importance of data processing prior to the process are

immerging for a more statistically significant result. Where to appeal clinical

reproducibility, analytical method evaluation is required specifically by

administrations [US Food and Drug Administration (FDA), European Medicines

Agency (EMA), and Korea Food and Drug Administration (KFDA)] for each

marker presented in the multi marker panel. To date, there are no known

application to guide through the marker panel development nor method validation

required by the administrations. Solving fore mentioned computational procedures

with more accessible environment, study on multi marker panel for clinical

application could draw more attention to the fellow researchers and applied to

many major diseases.

In chapter 1, the multicenter study aimed to develop and evaluate a new

multimarker panel for the detection of HCC with target proteins using known

biomarkers, examine whether the incorporation of AFP and PIVKA-II into the

panel improves its accuracy, validate the panel in an independent cohort, and

compare its performance with that of the GALAD score.

In the next chapter, two web applications to assist multi marker panel

development and method evaluation are presented. The Web Model Developer

(WMD), can process a 2-dimension sample-feature data with data normalization

methods and suggests best feature combination to represent the data. The MRM-

Method Validation Portal (M-MVP), which assists user to calculate and evaluate

uploaded data corresponding to 11 categories of method valuation guideline

published by FDA, EMA and KFDA.
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Chapter 1.

Proteome Multimarker Panel for the
Early Detection of Hepatocellular

Carcinoma: Multicenter Derivation,
Validation, and Comparison
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1.1. Introduction

Although controversies exist over whether HCC surveillance programs

provide a survival benefit for at-risk patients, a randomized controlled trial and

several retrospective studies have concluded that surveillance through imaging

studies, such as ultrasonography and serum alpha-fetoprotein (AFP) testing, results

in early detection of HCC and reduced mortality(7-11). However, in a meta-

analysis of patients with cirrhosis, abdominal ultrasonography, a universally

recommended imaging modality for the surveillance of HCC, had a low sensitivity

of 63% in detecting early-stage HCC with concomitant use of AFP(12).

Considering the operator-dependent nature of ultrasonography and the high costs

and potential physical harms of other imaging modalities (eg, radiation hazards

with computed tomography), there is a need for the development of a highly

sensitive yet economical and safe measure for the early detection of HCC(13).

The molecular heterogeneity of HCC has prompted attempts to integrate

various serum biomarkers to detect the disease at an early stage(14). The GALAD

score, which comprises age, sex, AFP, lectin-bound AFP, and protein induced by

vitamin K absence or antagonist-II (PIVKA-II), is one of the most widely

examined biomarker panels(15). Since the initial study, GALAD score were

validated in various studies(16-20), granted with Breakthrough Device Designation

by FDA(21).

Similarly, multiple reaction monitoring-mass spectrometry (MRM-MS), a

targeted proteomic approach, quickly and accurately analyzes hundreds of proteins

as potential biomarkers in various types of cancer(22-24). Our group has proposed
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a multimarker panel for the detection of early-stage HCC, consisting of 28 proteins

that have been identified by MRM-MS(25).

In this multi cohort study, we developed a multi marker panel with lesser

proteins to distinguish HCC patients to high risk non-HCC controls. The developed

cohort was validated by chronically independent data set and compared its

performance to AFP and GALAD score.
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1.2. Methods

1.2.1 Study design and participants

This case-control study was based on 2 independently established datasets of

HCC patients and high-risk controls who selected per the same criteria from 3

referral centers [Seoul National University Hospital (SNUH), Asan Medical Center

(AMC), and Samsung Medical Center (SMC)] in Seoul, Korea. The derivation set

included 568 patients from all 3 participating centers—284 HCC patients and 284

non-HCC controls—whose serum samples were drawn between January 3, 2011

and September 3, 2013. They were randomly divided into the training set (199

HCC patients and controls each) and test set (85 HCC patients and controls each).

The panel was developed and validated using these training and test sets,

respectively. Serum samples were also drawn from 159 patients—109 HCC

patients from SNUH and AMC and 50 non-HCC controls from AMC—between

September 7, 2013 and August 3, 2020 to establish another independent validation

set. (Figure 1-1)
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Figure 1-1 Overview of development of the MRM-MS panel

The study was performed with 2 independent cohorts: derivation and validation. A total of
383 target candidates were trained and internally validated with the derivation cohort, and
the final 17-marker panel was validated with the validation cohort. Subgroups—tumor size
under 2 cm, LC, and CHB—were also tested with regard to performance of the model.

Patients diagnosed with HCC were eligible if they were aged 20 to 80 years

and diagnosed with single HCC that was smaller than 5 cm or 2–3 HCCs, each

smaller than 3 cm, within 3 months prior to collection of their sera. The diagnosis

of HCC was made according to radiographic or histological findings following the

updated 2011 American Association for the Study of Liver Disease (AASLD)

guidelines(26). Patients with radiological vascular invasion or extrahepatic

metastasis of HCC by computed tomography (CT) or magnetic resonance (MRI)

imaging, which detects advanced HCC, were excluded. The high-risk controls

comprised patients aged 20 to 80 years with cirrhosis or chronic hepatitis B (CHB)

or C (CHC) who were confirmed not to have had HCC by abdominal

ultrasonography, computed tomography, or magnetic resonance imaging within 3

months prior to collection of their samples. Common exclusion criteria were (i)

impaired hepatic function, defined as Child-Pugh class C; (ii) poor performance
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status; considered an Eastern Cooperative Oncology Group performance status

score of 3 or above; and (iii) any other malignancy within 3 years prior to the

collection of sera.

Cirrhosis was diagnosed clinically per the following criteria: (i) histological

findings, (ii) thrombocytopenia (<100,000/mm3) and a blunted, nodular liver edge

with splenomegaly (>12 cm), or (iii) the presence of ascites, varices, or hepatic

encephalopathy. CHB and CHC were defined as a positive serum hepatitis B

surface antigen test and a positive serum anti-hepatitis C virus antibody test,

respectively, on 2 separate occasions that were separated by at least 6 months.

This study was approved by the institutional review board of each

participating center (Seoul National University Hospital, No. H-1710-028-891;

Asan Medical Center, No. 2017-1049; Samsung Medical Center, No. 2017-08-164).

1.2.2 GALAD cohort

103 samples from independent validation cohort were analyzed for AFP and AFP-

L3 level for GALAD score. The μTAS autoanalyzer (Wako Pure Chemical

Industries) is an FDA clearance device for diagnosing HCC by measuring AFP and

AFP-L3 concentrations. A sample load of 100 μL was analyzed for 9 min with a 2-

min interval between each sample. The AFP-L3 concentration was calculated

automatically as a percentage of total AFP and printed out. The quantifiable ranges

of AFP and AFP-L3 were 0.3 to 4000.0 ng/mL and 0.5% to 99.5%, respectively,

using a 2-point calibrator. All serum samples were measured following the

manufacturer's instructions.
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1.2.3 Biomarker Study

In a previous study, 383 peptides, corresponding to 176 proteins, had been

identified as being suitable for quantitative MRM-MS analysis. Starting with 2189

proteins that were identified in 5 biobank resources, semiquantitative MRM-MS

assay was performed on pooled serum samples of HCC patients and controls with

cirrhosis or CHB, in which 23,184 peptides, representative of 1,693 proteins, were

filtered by a proteomic approach using prediction servers and a database. Among

1583 reproducibly detectable peptides, 542 were differentially expressed in

individual samples of HCC patients compared with controls, 421 of which were

verified as being acceptable for subsequent screening according to pre-existing

mass spectrometry spectral data. A subsequent quantitative MRM-MS analysis

targeted 385 peptides that had undergone an interference screen using a stable

isotope-labeled standard peptide mixture(27).

In this study, we performed MRM-MS quantification for 383 target peptides,

correlating to 176 proteins, except for 2 peptides for which compatible stable

isotope-labeled standard peptides were not obtained due to unavailability. Their

exclusion did not affect the performance of the developed panel, because the 2

peptides were part of proteins that were represented by other peptides in the MRM-

MS quantification. Screening methods of 383 targets are shown in Table 1-1.

1.2.4 Quantitative MRM-MS analysis

Prior to sample preparation, block randomization was performed to minimize

the variance. A volume of 44 µL of each sample was mixed with 176 µL of MARS
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buffer A (Agilent Technologies, CA) and passed through 0.22-µm Spin-X filters

(Corning Costar, NY). The 6 most abundant proteins (albumin, immunoglobulin A,

immunoglobulin G, transferrin, haptoglobin, and α1-antitrypsin) were removed

from 200 µL of each sample mixture by a Multiple Affinity Removal System

Human-6 (MARS Hu-6×100 mm; Agilent Technologies, Santa Clara, CA) column

that was loaded onto a high-performance liquid chromatography system (Shimadzu

Co., Kyoto, Japan). Five milliliters of each depleted sample was then concentrated

on a 3000-Da molecular weight cutoff (MWCO) filter unit (Amicon Ultra-4 3K,

Millipore, MA) in a precooled centrifuge at 4°C for 6 hours.

The protein in each depleted sample was quantified by bicinchoninic acid

(BCA) assay, in which 2 mg/mL of BSA standard was diluted 1:2 6 times to

generate a standard curve. Each sample was diluted 1:20 and 1:40 and loaded onto

a 96-well plate. Further, 200 µL of a 1:50 mixture of copper solution and BCA

solution was added and incubated at 37°C for 1 hour before scanning.

Samples were digested according to the results of the BCA assay. For a 100-

µg digestion, each sample was adjusted with HPLC water to a volume of 20 µL.

The adjusted sample was mixed with 20 μL of 0.2% RapiGest, 20 mM DTT, and

100 mM ABC buffer and reacted in 60°C for 1 hour. Next, 10 μL 100 mM

iodoacetamide (IAA) was added and stored in the dark at room temperature for 30

minutes, after which 40 µL trypsin (Promega, sequencing-grade modified, Madison,

WI) in 50 mM ABC was added to the mixture and incubated at 37°C for 4 hours.

Finally, 10 µL 10% formic acid was added and incubated at 37°C to stop the

reaction. Supernatants were collected after centrifugation at 15,000 rpm and 4°C.

Prior to the mass spectrometry analysis, each sample was spiked with stable

isotope-labeled standard peptide (30% to 70% purity per the manufacturer, JPT,
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Berlin, Germany) at a 9:1 ratio.

1.2.5 Capillary Liquid Chromatography

MRM-MS analysis was performed on a fully automated online 1260

Capillary-flow liquid chromatography (LC) system (Agilent Technologies, Santa

Clara, CA, USA). The autosampler was set to 4 °C, where the LC separation was

performed at 40 °C. Sample cleanup was performed using a guard column (2.1 ×

15.0 mm, 1.8 μm, 80 Å), and peptides were separated on an analytical column (0.5

× 35.0 mm, 3.5 μm, 80 Å) (both columns from Agilent Technologies, Santa Clara,

CA, USA).

Ten microliters of the digested sample were injected onto a guard column at

40 μL/min for a minute in 10% solvent B. Sample flow was directed from the

guard to the analytical column after the valves were switched. Then, 10% solvent B

was run at a flow rate of 40 μL/min for a minute. To separate the peptides, A linear

gradient of 10% to 60% solvent B over 5 mins at 40 μL/min eluted bound peptides

from the analytical column. The column wash was held at 90% solvent B for 1 min

at 40 μL/min and then equilibrated at 10% solvent B for 4 mins. The switching

valve was returned to its original position after a minute of equilibration, while

reconditioning performed simultaneously in both guard and analytical columns.

1.2.6 Mass Spectrometry

Quantitative analysis was performed on an Agilent 6490 triple quadrupole

(QqQ) mass spectrometer with an Electrospray source (Agilent Technologies,



12

Santa Clara, CA, USA), operated in positive ion, scheduled multiple reaction

monitoring (MRM) mode. Gas temperature was set to 250 °C where gas flow as 15

L/min. Sheath gas temperature was set to 350 °C where the gas flows at 12 L/min.

The delta electron multiplier voltage (EMV) was set to 200 V, and the cell

accelerator voltage and fragment voltage were 5 V and 380 V, respectively.

1.2.7 Data preprocessing

Data transformation were performed for the normality of data distribution.

Many statistical procedures assume that the variables are normally distributed. To

ensure the normal distribution of each marker, data were transformed to log (x +

10–10). The skewness value for each marker in raw and log transform were

calculated with the skewness function in the e1071 package of R. The absolute

skewness value of the case group and the control group were calculated and added.

The final data type for each marker were selected based on lower absolute

skewness value, which the resulted in 233 raw data type and 150 log(x+10-10) data

type. From proteins associated with multiple peptides, only a single peptide was

selected on the basis of AUC and P values, to ensure that each peptide

corresponded to a single protein (Figure 1-2)(28). We performed student’s t test

and calculated area under the receiver operating characteristics (AUROC) value for

the transformed data of each peptide, leaving 107 peptides (79 proteins) with P

<0.05 by student’s t test and AUROC >0.6. Based on the P values and AUROC

values, a single peptide was selected for each protein that was associated with

multiple peptides. Consequently, 79 candidate proteins were included in the

development of the panel.
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Figure 1-2 Density plot of the 17 marker peptides in the MRM-MS panel

Density plot of raw and log (x+10-10)-transformed data on the 17 markers. The less skewed
format was used as the final transformation method.

1.2.8 Panel development and assessment

Protein expression levels were compared between HCC patients and controls

in the training set for the 79 biomarker candidates by Mann-Whitney U test. We

used logistic regression analysis to build the MRM-MS multimarker panel, with

recursive feature elimination with crossvalidation to determine the markers that

were to remain in the panel. AFP and PIVKA-II were later combined with the

MRM-MS panel as continuous variables. The discriminatory abilities of AFP and

the MRM-MS panel with and without AFP and/or PIVKA-II were evaluated by

AUROC analysis. By DeLong test, we compared, in pairs, the AUROC values of

the standalone MRM-MS panel, AFP, and the combination MRM-MS panels in the

training, test, and validation sets, with that of the GALAD score in a subset

(GALAD cohort) of the validation cohort(29). Youden index was used as the
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optimal cutoff in training set and applied to test and validation set at which the

sensitivity and specificity were calculated for the standalone MRM-MS and

combination MRM-MS panels(30). The sensitivities and specificities were

compared in each set with those of AFP at a cutoff of 20 ng/mL, a common value

for screening HCC(31). All reported P values were two-sided, and P values less

than 0.05 were deemed to be significant.

All statistical analyses were conducted in R (version 4.0.4; R development

Core Team, Vienna, Austria; http://www.R-project.org) and SPSS (version 25.0;

SPSS, Chicago, IL).
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Table 1-1 MS Method Information of 383 targets

ALBU_QTALVELVK 500.8 2 587.4 1 y5

ALBU_RPCFSALEVDETYVPK 637.6 3 719.3 1 b6

ALBU_VPQVSTPTLVEVSR 504.6 3 589.3 1 y5

ALBU_FQNALLVR 480.8 2 685.4 1 y6

ALBU_QNCELFEQLGEYK 553.3 3 645.3 1 b5

ALBU_LVTDLTK 395.2 2 577.3 1 y5

ALBU_AACLLPK 386.7 2 630.4 1 y5

ALBU_AAFTECCQAADK 686.3 2 1082.4 1 y9

ALBU_YLYEIAR 464.3 2 651.3 1 y5

ALBU_DDNPNLPR 470.7 2 596.4 1 y5

ALBU_LCTVATLR 467.3 2 660.4 1 y6

ALBU_SLHTLFGDK 339.9 3 465.8 2 y8

ALBU_LVNEVTEFAK 575.3 2 937.5 1 y8

ALBU_DLGEENFK 476.2 2 723.3 1 y6

AFAM_YHYLIR 432.7 2 564.4 1 y4

A2MG_TEVSSNHVLIYLDK 540.0 3 694.4 2 y12

A2MG_HYDGSYSTFGER 473.5 3 508.3 1 y4

A2MG_AIGYLNTGYQR 628.3 2 1071.5 1 y9

A2MG_TGTHGLLVK 309.2 3 412.8 2 y8

A2MG_QGIPFFGQVR 574.8 2 850.5 1 y7

A2MG_FEVQVTVPK 523.8 2 770.5 1 y7

A2MG_TEHPFTVEEFVLPK 558.3 3 861.5 1 y7

A2MG_NEDSLVFVQTDK 697.8 2 836.5 1 y7

A2GL_GQTLLAVAK 450.8 2 715.5 1 y7

A2GL_DLLLPQPDLR 590.3 2 725.4 1 y6

A2AP_LFGPDLK 395.2 2 529.3 1 y5

A2AP_DFLQSLK 425.7 2 588.4 1 y5

A2AP_QEDDLANINQWVK 524.9 3 674.4 1 y5

A2AP_LCQDLGPGAFR 617.3 2 604.3 1 y6

A2AP_LGNQEPGGQTALK 656.8 2 771.4 1 y8

A1BG_LELHVDGPPPRPQLR 575.3 3 616.3 2 y11

A1AT_ 821.4 2 1103.6 1 y9

A1AG1_SDVVYTDWK 556.8 2 811.4 1 y6

A1AG1_NWGLSVYADKPETTK 570.3 3 704.9 2 y13

Protein Precursor
Mz

Precursor
Charge

Product
Mz

Product
Charge

Fragment
Ion
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APOD_IPTTFENGR 517.8 2 824.4 1 y7

APOC4_AWFLESK 440.7 2 623.3 1 y5

APOC4_ELLETVVNR 536.8 2 717.4 1 y6

APOC3_DYWSTVK 449.7 2 620.3 1 y5

APOC3_GWVTDGFSSLK 598.8 2 854.4 1 y8

APOC3_DALSSVQESQVAQQAR 573.0 3 672.4 1 y6

APOC2_TYLPAVDEK 518.3 2 658.3 1 y6

APOC2_TAAQNLYEK 519.3 2 865.4 1 y7

APOB_AASGTTGTYQEWK 700.3 2 911.4 1 y7

APOB_QIDDIDVR 487.3 2 732.4 1 y6

APOB_TSSFALNLPTLPEVK 808.9 2 1010.6 1 y9

APOB_AQIPILR 405.8 2 498.3 1 y4

APOB_LATALSLSNK 509.3 2 833.5 1 y8

APOB_SGSSTASWIQNVDTK 790.9 2 1090.6 1 y9

APOB_SVGFHLPSR 333.9 3 407.2 2 y7

APOB_ALVDTLK 380.2 2 575.3 1 y5

APOB_QGFFPDSVNK 569.8 2 659.3 1 y6

APOB_SVSLPSLDPASAK 636.3 2 885.5 1 y9

APOB_EVYGFNPEGK 570.3 2 911.4 1 y8

APOA4_ISASAEELR 488.3 2 775.4 1 y7

APOA4_IDQNVEELK 544.3 2 974.5 1 y8

APOA2_SPELQAEAK 486.8 2 659.4 1 y6

APOA2_EPCVESLVSQYFQTVTDY
GK

784.0 3 1062.5 2 y18

APOA1_THLAPYSDELR 434.6 3 619.3 1 y5

ANT3_LPGIVAEGR 456.3 2 531.3 1 y5

ANT3_VAEGTQVLELPFK 715.9 2 746.4 1 y6

ANT3_VWELSK 381.2 2 662.4 1 y5

ANGT_SLDFTELDVAAEK 719.4 2 975.5 1 y9

ANGT_VLSALQAVQGLLVAQGR 575.0 3 643.4 1 y6

ANGT_DPTFIPAPIQAK 649.4 2 724.4 1 y7

AMBP_EYCGVPGDGDEELLR 854.9 2 1100.5 1 y10

AMBP_TVAACNLPIVR 607.3 2 1013.6 1 y9

ALS_LEALPNSLLAPLGR 732.4 2 1037.6 1 y10

ALS_LEYLLLSR 503.8 2 764.5 1 y6

ALS_NLIAAVAPGAFLGLK 727.9 2 802.5 1 y8

ALS_ANVFVQLPR 522.3 2 759.5 1 y6

Protein Precursor
Mz

Precursor
Charge

Product
Mz

Product
Charge

Fragment
Ion
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CFAB_STGSWSTLK 483.7 2 778.4 1 y7

CFAB_DISEVVTPR 508.3 2 787.4 1 y7

CETP_ASYPDITGEK 540.8 2 759.4 1 y7

CBPB2_DTGTYGFLLPER 684.8 2 831.5 1 y7

CBPB2_YPLYVLK 448.3 2 732.5 1 y6

CATA_DAQIFIQK 481.8 2 648.4 1 y5

CATA_LFAYPDTHR 373.9 3 625.3 1 y5

CALR_FVLSSGK 369.2 2 491.3 1 y5

CAH2_SADFTNFDPR 585.3 2 749.4 1 y6

CAH1_VLDALQAIK 485.8 2 758.4 1 y7

CAH1_YSSLAEAASK 513.8 2 776.4 1 y8

CAH1_GGPFSDSYR 493.2 2 627.3 1 y5

CADH1_NTGVISVVTTGLDR 716.4 2 1060.6 1 y10

C4BPB_ALLAFQESK 503.8 2 822.4 1 y7

C4BPA_TWYPEVPK 510.3 2 732.4 1 y6

C4BPA_DTIVFK 361.7 2 506.3 1 y4

C1RL_GSEAINAPGDNPAK 670.8 2 698.3 1 y7

C1R_GYGFYTK 418.2 2 615.3 1 y5

C1R_ESEQGVYTCTAQGIWK 928.9 2 1227.6 1 y10

C1R_YTTEIIK 434.2 2 704.4 1 y6

C1R_NIGEFCGK 462.7 2 697.3 1 y6

C1QC_TNQVNSGGVLLR 629.3 2 815.5 1 y8

BTD_LSSGLVTAALYGR 654.4 2 751.4 1 y7

BTD_ILSGDPYCEK 591.3 2 955.4 1 y8

BTD_VDLITFDTPFAGR 726.4 2 1011.5 1 y9

BGH3_GDELADSALEIFK 704.4 2 993.5 1 y9

BGH3_DLLNNHILK 360.5 3 426.3 2 y7

BCDO2_VDIETLEK 473.8 2 732.4 1 y6

BAG6_EHIAASVSIPSEK 456.6 3 460.2 1 y4

ATRN_CTWLIEGQPNR 687.3 2 813.4 1 y7

APOM_AFLLTPR 409.3 2 599.4 1 y5

APOM_SLTSCLDSK 505.7 2 810.4 1 y7

APOL1_LNILNNNYK 553.3 2 765.4 1 y6

APOH_ATVVYQGER 511.8 2 751.4 1 y6

APOF_SGVQQLIQYYQDQK 566.6 3 613.3 1 b6

APOE_AQAWGER 409.2 2 514.2 1 b5

Protein Precursor
Mz

Precursor
Charge

Product
Mz

Product
Charge

Fragment
Ion
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CO7_VLFYVDSEK 550.3 2 887.4 1 y7

CO7_ELSHLPSLYDYSAYR 605.3 3 774.3 1 y6

CO7_LSGNVLSYTFQVK 728.4 2 985.5 1 y8

CO6A2_LFAVAPNQNLK 607.8 2 713.4 1 y6

CO6A1_VAVVQYSGTGQQRPER 592.3 3 703.8 2 y12

CO6_TLNICEVGTIR 425.9 3 446.3 1 y4

CO6_QLEWGLER 515.8 2 789.4 1 y6

CO6_GFVVAGPSR 445.2 2 487.3 1 y5

CO6_ENPAVIDFELAPIVDLVR 670.7 3 811.5 1 y7

CO6_SEYGAALAWEK 612.8 2 845.5 1 y8

CO5_GGSASTWLTAFALR 719.4 2 1078.6 1 y9

CO4A_DSSTWLTAFVLK 684.4 2 791.5 1 y7

CO3_NEQVEIR 444.2 2 644.4 1 y5

CO3_VVLVAVDK 421.8 2 644.4 1 y6

CO2_HAFILQDTK 358.2 3 469.3 1 b4

CNDP1_AIHLDLEEYR 420.2 3 467.2 1 y3

CNDP1_ALEQDLPVNIK 620.4 2 798.5 1 y7

CLUS_ALQEYR 390.2 2 595.3 1 y4

CLUS_ELDESLQVAER 644.8 2 802.4 1 y7

CLUS_EILSVDCSTNNPSQAK 881.9 2 1221.5 1 y11

CLUS_RPHFFFPK 359.2 3 411.7 2 y6

CLUS_ASSIIDELFQDR 697.4 2 922.4 1 y7

CLUS_IDSLLENDR 537.8 2 846.4 1 y7

CLUS_TLLSNLEEAK 559.3 2 903.5 1 y8

CLUS_EIQNAVNGVK 536.3 2 829.5 1 y8

CHLE_YLTLNTESTR 599.3 2 921.5 1 y8

CHLE_AEEILSR 409.2 2 617.4 1 y5

CHLE_IFFPGVSEFGK 614.3 2 967.5 1 y9

CHLE_TQILVGVNK 486.3 2 742.5 1 y7

CHLE_NIAAFGGNPK 494.8 2 761.4 1 y8

CFAI_VFSLQWGEVK 596.8 2 946.5 1 y8

CFAI_FSVSLK 340.7 2 533.3 1 y5

CFAH_EGWIHTVCINGR 481.2 3 619.3 1 y5

CFAB_QLNEINYEDHK 468.2 3 485.2 1 b4

CFAB_VSEADSSNADWVTK 754.8 2 1007.5 1 y9

CFAB_VASYGVKPR 488.8 2 806.5 1 y7
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FCN3_SWSSYR 393.2 2 611.2 1 b5

FCN3_GEPGDPVNLLR 583.8 2 711.5 1 y6

FCGBP_LASVSVSR 409.7 2 634.4 1 y6

FCGBP_GNPAVSYVR 481.8 2 694.4 1 y6

FCG3A_AVVFLEPQWYR 704.4 2 749.4 1 y5

FBLN1_GYHLNEEGTR 392.5 3 462.2 1 y4

FAS_WVESLK 381.2 2 502.2 1 b4

FABPL_AIGLPEELIQK 605.9 2 856.5 1 y7

FA9_VPLVDR 349.7 2 502.3 1 y4

FA9_SALVLQYLR 531.8 2 692.4 1 y5

FA9_NCELDVTCNIK 455.9 3 635.3 1 y5

FA7_TLAFVR 353.7 2 492.3 1 y4

EXT2_ASVVVPEEK 479.3 2 502.3 1 y4

ESYT1_GSNPHLQTFTFTR 502.6 3 575.8 2 y9

ENTP5_ALLFEVK 410.3 2 635.4 1 y5

ENPL_GVVDSDDLPLNVSR 743.4 2 1115.6 1 y10

ECM1_NLPATDPLQR 562.8 2 897.5 1 y8

DSG2_YKPTPIPIK 352.9 3 389.2 1 b3

DOPO_TPEGLTLLFK 559.8 2 920.5 1 y8

CXCL7_GTHCNQVEVIATLK 523.9 3 773.5 1 y7

CXCL7_NIQSLEVIGK 550.8 2 745.4 1 y7

CRP_ESDTSYVSLK 564.8 2 609.4 1 y5

CPN2_GQVVPALNEK 527.8 2 671.4 1 y6

CPN2_LSNNALSGLPQGVFGK 801.4 2 989.5 1 y10

COL11_VFIGINDLEK 574.3 2 901.5 1 y8

COF1_NIILEEGK 458.3 2 688.4 1 y6

CO9_AIEDYINEFSVR 728.4 2 751.4 1 y6

CO9_DVVLTTTFVDDIK 733.4 2 938.5 1 y8

CO9_TSNFNAAISLK 583.3 2 716.4 1 y7

CO9_TEHYEEQIEAFK 508.6 3 607.3 1 y5

CO9_VVEESELAR 516.3 2 833.4 1 y7

CO8B_IPGIFELGISSQSDR 540.3 3 679.3 1 y6

CO8B_SGFSFGFK 438.7 2 585.3 1 y5

CO8B_YEFILK 406.7 2 520.3 1 y4

CO7_AASGTQNNVLR 565.8 2 901.5 1 y8

CO7_QNDFNSVEEK 605.3 2 705.3 1 y6
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Mz

Precursor
Charge

Product
Mz
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HEMO_QGHNSVFLIK 381.5 3 520.3 1 y4

HEMO_ELISER 373.7 2 391.2 1 y3

HEMO_GEFVWK 383.2 2 579.3 1 y4

HCDH_LVEVIK 350.7 2 488.3 1 y4

HBA_VGAHAGEYGAEALER 510.6 3 617.3 1 y5

HABP2_GQCLITQSPPYYR 791.9 2 1011.5 1 y8

GSHB_LFVDGQEIAVVYFR 552.6 3 584.3 1 y4

GPV_YLGVTLSPR 503.3 2 729.4 1 y7

GPV_TLPAAAFR 423.7 2 632.4 1 y6

GELS_TGAQELLR 444.3 2 658.4 1 y5

GBLP_LWNTLGVCK 545.8 2 791.4 1 y7

G6PI_VFEGNRPTNSIVFTK 570.3 3 731.9 2 y13

G3BP1_INIPPQR 419.3 2 724.4 1 y6

FUCO_DGLIVPIFQER 643.9 2 888.5 1 y7

FINC_GEWTCIAYSQLR 495.2 3 503.3 1 y4

FINC_IGDQWDK 431.2 2 748.3 1 y6

FINC_HTSVQTTSSGSGPFTDVR 622.0 3 734.4 1 y6

FINC_IGDTWR 374.2 2 634.3 1 y5

FINC_FLATTPNSLLVSWQPPR 643.0 3 770.4 1 y6

FINC_IYLYTLNDNAR 678.4 2 966.5 1 y8

FINC_SYTITGLQPGTDYK 772.4 2 1079.5 1 y10

FINC_LGVRPSQGGEAPR 441.9 3 605.8 2 y12

FINC_WSRPQAPITGYR 477.9 3 496.3 1 y4

FIBG_DNCCILDER 597.7 2 965.4 1 y7

FIBB_YQISVNK 426.2 2 560.3 1 y5

FIBB_AHYGGFTVQNEANK 512.6 3 703.3 1 y6

FIBA_GSESGIFTNTK 570.8 2 610.3 1 y5

FIBA_HPDEAAFFDTASTGK 531.9 3 621.3 1 b6

FIBA_VPPEWK 378.2 2 423.2 1 b4

FHR5_TGDAVEFQCK 577.8 2 711.3 1 y5

FHR2_TGDIVEFVCK 584.3 2 781.4 1 y6

FHR2_ITCAEEGWSPTPK 738.3 2 772.4 1 y7

FHR1_TGESAEFVCK 564.3 2 840.4 1 y7

FETUB_LVVLPFPK 456.8 2 700.4 1 y6

FETUA_QYGFCK 401.7 2 511.2 1 y4

FETA_GYQELLEK 490.3 2 759.4 1 y6
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ITIH1_FAHYVVTSQVVNTANEAR 669.3 3 775.4 1 y7

ITIH1_QAVDTAVDGVFIR 695.9 2 805.5 1 y7

ITB1_IGFGSFVEK 492.3 2 870.4 1 y8

IPSP_AVVEVDESGTR 581.3 2 892.4 1 y8

IL1AP_NEVWWTIDGK 624.3 2 905.5 1 y7

IL1AP_LYIEYGIQR 577.8 2 878.5 1 y7

IGJ_IIVPLNNR 469.8 2 613.3 1 y5

IGJ_SSEDPNEDIVER 695.3 2 971.5 1 y8

IGJ_IVLVDNK 400.7 2 588.3 1 y5

IGHM_QVGSGVTTDQVQAEAK 809.4 2 1090.5 1 y10

IGHM_QIQVSWLR 515.3 2 561.3 1 y4

IGHM_NVPLPVIAELPPK 693.9 2 1173.7 1 y11

IGHM_YAATSQVLLPSK 639.4 2 1043.6 1 y10

IGF2_GIVEECCFR 585.3 2 900.3 1 y6

ICAM1_VELAPLPSWQPVGK 760.9 2 1108.6 1 y10

IBP3_YGQPLPGYTTK 612.8 2 876.5 1 y8

IBP3_FLNVLSPR 473.3 2 685.4 1 y6

IBP3_ALAQCAPPPAVCAELVR 912.0 2 1208.6 1 y11

HPT_VTSIQDWVQK 602.3 2 1003.5 1 y8

HPT_VGYVSGWGR 490.8 2 562.3 1 y5

HGFA_VANYVDWINDR 682.8 2 818.4 1 y6

HGFA_TTDVTQTFGIEK 670.3 2 923.5 1 y8

HGFA_LCNIEPDER 573.3 2 872.4 1 y7

HEXA_IQPDTIIQVWR 684.9 2 1127.6 1 y9

HEXA_TEIEDFPR 503.7 2 776.4 1 y6

HEP2_IAIDLFK 410.3 2 706.4 1 y6

HEP2_EVLLPK 349.7 2 357.2 1 y3

HEP2_TLEAQLTPR 514.8 2 814.4 1 y7

HEP2_QFPILLDFK 560.8 2 845.5 1 y7

HEP2_SVNDLYIQK 540.3 2 893.5 1 y7

HEP2_NFGYTLR 435.7 2 609.3 1 y5

HEP2_YEITTIHNLFR 469.6 3 557.8 2 y9

HEP2_FAFNLYR 465.7 2 712.4 1 y5

HEP2_LNILNAK 393.2 2 558.4 1 y5

HEP2_GGETAQSADPQWEQLNNK 987.0 2 1156.6 1 y9

HEP2_GPLDQLEK 450.2 2 632.3 1 y5

Protein Precursor
Mz

Precursor
Charge

Product
Mz

Product
Charge

Fragment
Ion



22

MBL2_FQASVATPR 488.8 2 701.4 1 y7

LUM_LPSGLPVSLLTLYLDNNK 653.0 3 766.4 1 y6

LUM_SLEYLDLSFNQIAR 834.9 2 1063.6 1 y9

LUM_SLEDLQLTHNK 433.2 3 549.3 2 y9

LUM_NNQIDHIDEK 409.2 3 435.2 2 y7

LMNB1_EYEAALNSK 512.8 2 532.3 1 y5

LG3BP_SQLVYQSR 490.8 2 765.4 1 y6

LG3BP_AVDTWSWGER 603.8 2 634.3 1 y5

LG3BP_SDLAVPSELALLK 678.4 2 870.5 1 y8

LG3BP_SLGWLK 352.2 2 503.3 1 y4

LG3BP_VEIFYR 413.7 2 598.3 1 y4

LDHA_ISGFPK 324.7 2 535.3 1 y5

LCAT_STELCGLWQGR 653.8 2 876.4 1 y7

LCAT_SSGLVSNAPGVQIR 692.9 2 941.5 1 y9

KNG1_DFVQPPTK 466.2 2 669.4 1 y6

KNG1_AATGECTATVGK 583.3 2 922.4 1 y9

KNG1_TVGSDTFYSFK 626.3 2 1051.5 1 y9

KLKB1_VLTPDAFVCR 589.3 2 864.4 1 y7

KLKB1_DSVTGTLPK 459.3 2 616.4 1 y6

KAIN_FFSAQTNR 485.7 2 676.3 1 y6

KAIN_WADLSGITK 495.8 2 733.4 1 y7

KAIN_LGFTDLFSK 514.3 2 914.5 1 y8

KAIN_VGSALFLSHNLK 429.2 3 593.8 2 y11

K2C1_SLVNLGGSK 437.8 2 674.4 1 y7

ITIH3_EVSFDVELPK 581.8 2 934.5 1 y8

ITIH2_FYNQVSTPLLR 669.4 2 686.4 1 y6

ITIH2_IQPSGGTNINEALLR 791.9 2 1157.6 1 y11

ITIH2_TILDDLR 423.2 2 631.3 1 y5

ITIH2_AHVSFKPTVAQQR 490.3 3 630.9 2 y11

ITIH2_IYLQPGR 423.7 2 570.3 1 y5

ITIH2_VQFELHYQEVK 473.9 3 596.8 2 y9

ITIH2_VVNNSPQPQNVVFDVQIPK 708.0 3 945.5 1 y8

ITIH1_GSLVQASEANLQAAQDFVR 668.7 3 806.4 1 y7

ITIH1_LDAQASFLPK 545.3 2 861.5 1 y8

ITIH1_AAISGENAGLVR 579.3 2 902.5 1 y9

ITIH1_EVAFDLEIPK 580.8 2 714.4 1 y6
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QSOX1_LAGAPSEDPQFPK 678.8 2 1044.5 1 y9

QSOX1_SFYTAYLQR 574.8 2 751.4 1 y6

PVR_SVDIWLR 444.8 2 702.4 1 y5

PSMD1_VSTAVLSITAK 545.3 2 731.5 1 y7

PROZ_ENFVLTTAK 511.8 2 533.3 1 y5

PROS_NNLELSTPLK 564.8 2 787.5 1 y7

PROS_FSAEFDFR 509.7 2 784.4 1 y6

PROS_SFQTGLFTAAR 599.8 2 836.5 1 y8

PROC_TFVLNFIK 491.3 2 733.5 1 y6

PROC_ELNQAGQETLVTGWGYHS
SR

745.0 3 874.9 2 y16

PRDX2_TDEGIAYR 462.7 2 708.4 1 y6

PRDX2_ATAVVDGAFK 489.8 2 806.4 1 y8

PON1_IQNILTEEPK 592.8 2 943.5 1 y8

PON1_IFFYDSENPPASEVLR 628.6 3 868.5 1 y8

PON1_STVELFK 412.2 2 635.4 1 y5

PON1_SFNPNSPGK 474.2 2 599.3 1 y6

PON1_EVQPVELPNCNLVK 819.9 2 1282.7 1 y11

PLTP_TGLELSR 388.2 2 504.3 1 y4

PLMN_YEFLNGR 449.7 2 606.3 1 y5

PLMN_EAQLPVIENK 570.8 2 699.4 1 y6

PLMN_LSSPAVITDK 515.8 2 830.5 1 y8

PLMN_LFLEPTR 438.3 2 615.3 1 y5

PLMN_HSIFTPETNPR 433.6 3 487.3 1 y4

PLMN_WELCDIPR 544.8 2 773.4 1 y6

PLMN_VYLSECK 449.7 2 636.3 1 y5

PLGA_DVVLFEK 425.2 2 635.4 1 y5

PHLD_IADVTSGLIGGEDGR 730.4 2 1061.5 1 y11

PHLD_VAFLTVTLHQGGATR 524.3 3 570.8 2 y11

PERM_VVLEGGIDPILR 640.9 2 840.5 1 y8

PEDF_GQWVTK 359.7 2 471.2 1 b4

P5CS_DEILLANK 458.3 2 471.2 1 b4

NHRF1_LGVQVR 336.2 2 558.3 1 y5

MVP_LAQDPFPLYPGEVLEK 606.0 3 771.4 1 y7

MUC18_EVTVPVFYPTEK 704.9 2 980.5 1 y8

MUC18_GATLALTQVTPQDER 533.9 3 644.3 1 y5

MMSA_AISFVGSNK 461.8 2 738.4 1 y7

Protein Precursor
Mz

Precursor
Charge

Product
Mz

Product
Charge

Fragment
Ion
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TSP1_DLASIAR 373.2 2 517.3 1 y5

TSP1_SITLFVQEDR 604.3 2 793.4 1 y6

TRFE_YLGEEYVK 500.8 2 724.4 1 y6

TRFE_NPDPWAK 414.2 2 501.3 1 y4

TRFE_EGYYGYTGAFR 642.3 2 771.4 1 y7

TRFE_SASDLTWDNLK 625.3 2 776.4 1 y6

TRFE_EFQLFSSPHGK 426.2 3 612.3 1 y6

TRFE_DGAGDVAFVK 489.7 2 735.4 1 y7

THRB_ETWTANVGK 503.3 2 589.3 1 y6

THRB_SPQELLCGASLISDR 823.4 2 978.5 1 y9

THRB_ELLESYIDGR 597.8 2 710.3 1 y6

THRB_SEGSSVNLSPPLEQCVPDR 1036.0 2 1210.6 1 y10

THBG_GWVDLFVPK 530.8 2 817.5 1 y7

THBG_NALALFVLPK 543.3 2 787.5 1 y7

TFR1_VEYHFLSPYVSPK 522.6 3 690.4 1 y6

SYEP_LLSVNIR 407.8 2 588.3 1 y5

SSRP1_ELQCLTPR 508.8 2 646.3 1 y5

SPRC_YIPPCLDSELTEFPLR 650.7 3 837.4 2 y14

SODE_AGLAASLAGPHSIVGR 492.9 3 618.3 2 y13

SHBG_DIPQPHAEPWAFSLDLGLK 712.0 3 953.5 2 y17

SHBG_QAEISASAPTSLR 665.9 2 889.5 1 y9

SHBG_IALGGLLFPASNLR 721.4 2 804.4 1 y7

SHBG_QVSGPLTSK 458.8 2 689.4 1 y7

SHBG_TWDPEGVIFYGDTNPK 613.6 3 941.4 1 y8

SHBG_TSSSFEVR 456.7 2 637.3 1 y5

SEPP1_VSLATVDK 416.7 2 733.4 1 y7

SEPP1_DDFLIYDR 528.8 2 566.3 1 y4

SEPP1_QPPAWSIR 477.8 2 729.4 1 y6

SAMP_IVLGQEQDSYGGK 697.4 2 1068.5 1 y10

SAE2_ESVLQFYPK 555.8 2 795.4 1 y6

SAA4_FRPDGLPK 310.5 3 573.3 1 b5

SAA4_GPGGVWAAK 421.7 2 688.4 1 y7

S10AD_SLDVNQDSELK 624.3 2 833.4 1 y7

RET4_DPNGLPPEAQK 583.3 2 669.4 1 y6

RET4_LLNLDGTCADSYSFVFSR 689.0 3 742.4 1 y6

RET4_YWGVASFLQK 599.8 2 849.5 1 y8

Protein Precursor
Mz

Precursor
Charge

Product
Mz

Product
Charge

Fragment
Ion
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ZPI_LFDEINPETK 603.3 2 945.5 1 y8

ZA2G_SSGAFWK 391.7 2 608.3 1 y5

VWF_VTVFPIGIGDR 587.3 2 727.4 1 y7

VWF_AVSPLPYLR 508.3 2 548.3 1 y4

VTNC_VDTVDPPYPR 579.8 2 629.3 1 y5

VTNC_QPQFISR 438.2 2 522.3 1 y4

VTNC_FEDGVLDPDYPR 711.8 2 875.4 1 y7

VTNC_GSQYWR 398.7 2 524.3 1 y3

VTNC_DVWGIEGPIDAAFTR 823.9 2 1076.5 1 y10

VTNC_GQYCYELDEK 652.8 2 956.4 1 y7

VTNC_CTEGFNVDK 535.2 2 909.4 1 y8

VTDB_VLEPTLK 400.2 2 458.3 1 y4

VTDB_LCDNLSTK 475.7 2 837.4 1 y7

VTDB_VCSQYAAYGEK 638.3 2 1016.5 1 y9

VTDB_FPSGTFEQVSQLVK 522.9 3 574.4 1 y5

VIME_SSVPGVR 351.2 2 527.3 1 y5

VIGLN_INIPPPSVNR 553.8 2 766.4 1 y7

VCAM1_LTAFPSESVK 539.8 2 646.3 1 y6

VCAM1_NTVISVNPSTK 580.3 2 845.5 1 y8

UCHL3_YLENYDAIR 578.8 2 880.4 1 y7

TTHY_AADDTWEPFASGK 697.8 2 921.4 1 y8

TTHY_VLDAVR 336.7 2 460.3 1 y4

TTC37_DFNCWESLGEAYLSR 616.3 3 738.4 1 y6

TSP1_GTSQNDPNWVVR 686.8 2 770.4 1 y6

TSP1_TIVTTLQDSIR 623.9 2 933.5 1 y8

Protein Precursor
Mz

Precursor
Charge

Product
Mz

Product
Charge

Fragment
Ion
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1.3. Results

1.3.1 Characteristics of the study population

Most participants had cirrhosis (62.3%, 65.9%, and 82.6% for HCC patients

and 78.9%, 75.3%, and 100.0% for controls in the training, test, and validation sets,

respectively) and Child-Pugh class A liver function (92.4%, 89.4%, and 96.3% and

87.9%, 89.4%, and 70.0%, respectively). All HCC patients with noncirrhotic liver,

except 1 in the validation set, had CHB or CHC. No participant had a coinfection

with hepatitis B and C viruses. Most HCC patients had a single tumor (90.5%,

89.4%, and 82.6% in the training, test, and validation sets, respectively) (Table 1-2).
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Table 1-2 Characteristics of the study population

Noncirrhotic CHB, N

(%)
65 (32.7%) 34 (17.1%) 20 (23.5%) 16 (18.8%) 15 (13.8%) 0

Cirrhosis, N (%) 124 (62.3%) 157 (78.9%) 56 (65.9%) 64 (75.3%) 90 (82.6%) 50 (100.0%)

Risk factors <0.001 0.346 0.004

Prothrombin time, INR 1.1 (1.0–1.2) 1.1 (1.0–1.2) <0.001 1.2 (1.1–1.3) 1.1 (1.0–1.2) <0.001 1.1 (1.0–1.1) 1.1 (1.1–1.3) <0.001

Total bilirubin, mg/dL 0.9 (0.5–1.2) 1.1 (0.7–1.6) <0.001 0.9 (0.6–1.3) 1.0 (0.8–1.4) 0.115 0.7 (0.5–0.9) 1.6 (1.0–2.3) <0.001

ALT, IU/L
41.0

(26.0–114.5)

23.0

(17.0–33.0)
<0.001

51.0

(28.0–121.0)

26.0

(18.0–35.0)
<0.001

26.0

(19.0–36.0)

23.0

(19.0–30.0)
0.236

Albumin, g/dL 3.8 (3.5–4.0) 4.2 (3.8–4.5) <0.001 3.8 (3.4–4.0) 4.4 (4.0–4.6) <0.001 3.8 (3.6–4.1) 3.9 (3.7–4.3) 0.829

Creatinine, mg/dL 0.9 (0.8–1.0) 0.8 (0.6–0.9) <0.001 0.8 (0.8–1.0) 0.8 (0.6–0.9) 0.002 0.9 (0.7–1.0) 0.7 (0.6–0.9) <0.001

Platelet, ⅹ 103/μL
142.0

(112.5–175.

0)

87.0

(65.0–127.0)
<0.001

140.0

(110.0–180.0)

92.0

(64.0–147.0)
<0.001

140.0

(102.0–186.

0)

74.0

(56.0–102.0)
<0.001

Body mass index, kg/m2
24.7

(22.5–26.7)

24.4

(22.3–26.5)
0.504

24.8

(22.6–26.3)

24.0

(22.4–25.8)
0.161

24.5

(22.5–26.6)

24.4

(23.0–27.9)
0.765

Male 165 (82.9%) 119 (59.8%) 62 (72.9%) 44 (51.8%) 92 (84.4%) 24 (48.0%)

Female 34 (17.1%) 80 (40.2%) 23 (27.1%) 41 (48.2%) 17 (15.6%) 26 (52.0%)

Sex, N (%) <0.001 0.007 <0.001

Age, years
58.0

(52.0–64.0)

56.0

(51.5–61.0)
0.010

58.0

(50.0–63.0)

56.0

(52.0–64.0)
0.332

61.0

(56.0–67.0)

57.0

(51.0–61.0)
0.001

HCC
(n=199)

Control
(n=199)

P
value

HCC
(n=85)

Control
(n=85)

P
value

HCC
(n=109)

Control
(n=50) P value

Training set Test set Validation set
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AJCC stage, n (%)

Tumor size, cm 2.4 (1.6–3.0) 2.4 (1.5–3.7) 2.5 (1.5–3.2)

3 7 (3.5%) 3 (3.5%) 4 (3.7%)

2 12 (6.0%) 6 (7.1%) 15 (13.8%)

1 180 (90.5%) 76 (89.4%) 90 (82.6%)

Tumor number, N (%)

PIVKA-II mAU/mL,

median (IQR)

32.0

(23.0–83.5)

16.0

(13.0–20.0)
<0.001

37.0

(23.0–78.0)

16.0

(13.0–20.0)
<0.001

42.0

(26.0–216.0)

17.0

(14.0–21.0)
<0.001

AFP ng/mL, median
(IQR)

6.0

(2.9–14.1)
2.5 (1.7–3.8) <0.001 5.7 (2.7–19.3) 2.8 (2.0–3.9) <0.001

10.9

(3.5–43.9)

3.0

(2.3–5.6)
<0.001

Hypertension, N (%) 60 (30.2%) 13 (6.5%) <0.001 17 (20.0%) 7 (8.2%) 0.047 34 (31.2%) 13 (26.0%) 0.632

Diabetes mellitus, N (%) 45 (22.6%) 19 (9.5%) 0.001 11 (12.9%) 5 (5.9%) 0.189 30 (27.5%) 5 (10.0%) 0.023

Alcoholic, N (%) 20 (10.1%) 12 (6.0%) 0.197 6 (7.1%) 8 (9.4%) 0.780 14 (12.8%) 6 (12.0%) 1.000

B 15 (7.6%) 24 (12.1%) 9 (10.6%) 9 (10.6%) 4 (3.7%) 15 (30.0%)

A 183 (92.4%) 175 (87.9%) 76 (89.4%) 76 (89.4%) 105 (96.3%) 35 (70.0%)

Child-Pugh class, N (%) 0.183 1.000 <0.001

Others, N (%) 0 0 1 (0.9%)

Noncirrhotic CHC, N
(%)

10 (5.0%) 8 (4.0%) 9 (10.6%) 5 (5.9%) 3 (2.8%) 0

HCC
(n=199)

Control
(n=199)

P
value

HCC
(n=85)

Control
(n=85)

P
value

HCC
(n=109)

Control
(n=50)

P value

Training set Test set Validation set
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II 17 (8.5%) 9 (10.6%) 19 (17.4%)

IB 105 (52.8%) 45 (52.9%) 48 (44.0%)

IA 77 (38.7%) 31 (36.5%) 42 (38.5%)

HCC
(n=199)

Control
(n=199)

P
value

HCC
(n=85)

Control
(n=85)

P
value

HCC
(n=109)

Control
(n=50)

P value

Training set Test set Validation set

Data are provided in N (%) or median (interquartile range). HCC, hepatocellular carcinoma; ALT, alanine aminotransferase; INR, international normalized

ratio; CHB, chronic hepatitis B; CHC, chronic hepatitis C; AFP, alpha-fetoprotein; PIVKA-II, protein induced by vitamin K absence or antagonist-II; AJCC,

American Joint Committee on Cancer; IQR, interquartile range.
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1.3.2 Development of an MRM-MS panel

Of the 79 candidate proteins that were significantly associated with the

presence of HCC (P<0.05), 17 proteins [PPBP (platelet basic protein), SERPINC1

(antithrombin-III), MCAM (cell surface glycoprotein), CFL1 (cofilin-1), C4A

(complement C4-A), AMBP (protein AMBP), THBS1 (thrombospondin-1),

UCHL3 (ubiquitin carboxyl-terminal hydrolase isozyme L3), LCAT

(phosphatidylcholine-sterol acyltransferase), C1QC (complement C1q

subcomponent subunit C), CNDP1 (Beta-Ala-His dipeptidase), C2 (cytochrome c

oxidase subunit 2), CA2 (carbonic anhydrase 2), C6 (complement component C6),

SAA4 (serum amyloid A-4 protein), SERPINA10 (protein Z-dependent protease

inhibitor), and APOH (beta-2-glycoprotein 1)] were selected as optimal

constituents of the MRM-MS panel by stepwise selection. The predicted

probability of HCC cases according to the panel was calculated in the training set

(Table 1-3).
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Table 1-3 Logistic regression equation (logit [P=HCC]) with selective log
transformation for the 17 marker proteins

APOH ATVVYQGER Normal 0.078

SERPINA10 LFDEINPETK Log (x+10-10) 19.721

SAA4 GPGGVWAAK Log (x+10-10) -2.048

C6 QLEWGLER Log (x+10-10) 1.005

CA2 SADFTNFDPR Log (x+10-10) 22.593

C2 HAFILQDTK Log (x+10-10) 5.261

CNDP1 AIHLDLEEYR Log (x+10-10) 2.839

C1QC TNQVNSGGVLLR Log (x+10-10) -2.258

LCAT SSGLVSNAPGVQIR Log (x+10-10) -10.386

UCHL3 YLENYDAIR Normal 32.042

THBS1 GTSQNDPNWVVR Log (x+10-10) 2.614

AMBP TVAACNLPIVR Log (x+10-10) 0.034

C4A DSSTWLTAFVLK Log (x+10-10) 1.175

CFL1 NIILEEGK Normal 141.879

MCAM EVTVPVFYPTEK Log (x+10-10) -22.293

SERPINC1 VWELSK Normal -1.48

PPBP NIQSLEVIGK Log (x+10-10) 1.714

(Intercept) -1.977

Protein
(gene name)

Peptide sequence Transformation Coefficient
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1.3.3 Performance of the MRM-MS panel with and without
AFP and PIVKA-II in detecting HCC

In the training set, the standalone MRM-MS panel had a significantly higher

AUROC value (0.937 vs 0.759; P <0.001) than AFP alone. At the optimal cutoff of

20 ng/mL per the Youden index, the MRM-MS panel had greater sensitivity (80.4%

vs 17.1%) and lower specificity (93.5% vs 97.5%) than AFP. The addition of AFP

to the MRM-MS panel (designated as the MA panel) improved the AUROC value

(0.949; 95% CI, 0.929–0.969; P=0.006), whereas that of PIVKA-II to it (the MP

panel) did not (0.941; 95% CI, 0.920–0.963; P=0.073). The combination MRM-MS

panel with AFP and PIVKA-II (the MAP panel) had a significantly higher AUROC

value (0.953; 95% CI, 0.934–0.971; P=0.002), similar sensitivity (80.4%), and

greater specificity (96.5%) compared with the standalone MRM-MS panel. (Figure

1-3)
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Figure 1-3 Performance of AFP and the MRM-MS panel with and without AFP and
PIVKA-II in detecting HCC.

ROC curves of AFP, standalone MRM-MS panel, MRM-MS + AFP (MA) panel, MRM-
MS + PIVKA-II (MP) panel, and MRM-MS + AFP + PIVKA-II (MAP) panel in the (A)
training set, (B) test set, and (C) validation set.

In the test set, the MRM-MS panel yielded a significantly higher AUROC

value (0.891 vs 0.691; P<0.001), greater sensitivity (78.8% vs 24.7%), and lower

specificity (81.2% vs 97.7%) than AFP. The AUROC values of the MA (0.891; 95%

CI, 0.844–0.938; P=0.598), MP (0.901; 95% CI, 0.856–0.945; P=0.086), and MAP

panels (0.907; 95% CI, 0.863–0.952; P=0.280) were comparable with that of the

standalone MRM-MS panel. However, the sensitivity and specificity were higher

in the MAP panel (81.2% and 82.3%, respectively) versus the standalone MRM-

MS panel.
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In the validation set, the MRM-MS panel had a significantly higher AUROC

value (0.940 vs 0.779, P <0.001), higher sensitivity (88.1% vs 35.8%), and lower

specificity (82.0% vs 96.0%) than AFP. The AUROC values of the MA (0.958; 95%

CI, 0.929–0.986; P=0.004), MP (0.953; 95% CI, 0.923–0.983; P=0.001), and MAP

panels (0.970; 95% CI, 0.947–0.994; P <0.001) were also higher than that of the

standalone MRM-MS panel. The sensitivity and specificity of the MAP panel were

89.9% and 98.0%, respectively—both higher compared with the standalone MRM-

MS panel (Table 1-4).
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Table 1-4 Performance of AFP and the MRM-MS panel with and without AFP and
PIVKA-II in detecting HCC

MAP panel
0.970

(0.947–0.994)
<0.001† 89.9 98.0

MP panel
0.953

(0.923–0.983)
0.001† 88.1 98.0

MA panel
0.958

(0.929–0.986)
0.004† 92.7 70.0

Standalone

MRM-MS panel

0.940

(0.906–0.975)
<0.001* 88.1 82.0

AFP
0.779

(0.707–0.852)
35.8 96.0

Validation set

MAP panel
0.907

(0.863–0.952)
0.280† 81.2 82.3

MP panel
0.901

(0.856–0.945)
0.086† 81.2 78.8

MA panel
0.898

(0.852–0.945)
0.598† 89.4 74.1

Standalone

MRM-MS panel

0.891

(0.844–0.938)
<0.001* 78.8 81.2

AFP
0.691

(0.610–0.772)
24.7 97.7

Test set

MAP panel
0.953

(0.934–0.971)
0.002† 80.4 96.5

MP panel
0.941

(0.920–0.963)
0.073† 81.4 94.5

MA panel
0.949

(0.929–0.969)
0.006† 88.4 87.5

Standalone

MRM-MS panel

0.937

(0.915–0.959)
<0.001* 80.4 93.5

AFP
0.759

(0.712–0.806)
17.1 97.5

Training set

AUROC
95% CI

P value Sensitivit
y (%)

Specificity
(%)

* AUROC of the standalone MRM-MS panel versus AUROC of AFP. † AUROC of MA,
MP, or MAP panel versus AUROC of the standalone MRM-MS panel. AUROC- area
under the receiver operating characteristics curve; AFP- alpha-fetoprotein; MA- multiple
reaction monitoring-mass spectrometer + AFP; MP- multiple reaction monitoring-mass
spectrometer + protein induced by vitamin K absence or antagonist-II; MAP- multiple
reaction monitoring-mass spectrometer + AFP + protein induced by vitamin K absence or
antagonist-II.
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1.3.4 Performance of the MRM-MS panel with and without
AFP and PIVKA-II vs GALAD in detecting HCC

The GALAD score was introduced as a substitute for conventional AFP

method and were granted with Breakthrough Device Designation by FDA(21). For

the multi marker panel to be suggested to clinical stage, performance comparison

between GALAD score and the panel were inevitable.

The GALAD cohort was a subset of the validation set and was composed of

53 HCC patients and 50 controls from a single participating center (AMC) (Table

1-6). The MRM-MS panel had a significantly higher AUROC value (0.931 vs

0.718; P <0.001), greater sensitivity (88.7% vs 52.8%), and lower specificity (82.0%

vs 92.0%) than the GALAD score. The AUROC value of the MAP panel was

significantly higher (0.958; 95% CI, 0.916–1.000; P=0.009) than the standalone

MRM-MS panel (Figure 1-5). The addition of AFP and PIVKA-II to the MRM-MS

panel improved its sensitivity (90.6%) and specificity (98.0%) (Table 1-7).

Combining AFP, and PIVKA-II, the marker panel could have outperformed

GALAD score in both sensitivity and specificity.



37

Table 1-5 Characteristics of the GALAD cohort

Tumor number, N (%)

PIVKA-II, mAU/mL
68.0

(27.0–241.0)

17.0

(14.0–21.0)
<0.001

AFP, ng/mL 6.8 (3.0–58.1) 3.0 (2.3–5.6) <0.001

Hypertension, N (%) 18 (34.0%) 13 (26.0%) 0.506

Diabetes mellitus, N (%) 14 (26.4%) 5 (10.0%) 0.058

Alcoholic, N (%) 4 (7.5%) 6 (12.0%) 0.518

B 3 (5.7%) 15 (30.0%)

A 50 (94.3%) 35 (70.0%)

Child-Pugh class, N (%) 0.003

Others, N (%) 0

Noncirrhotic CHC, N (%) 2 (3.8%) 0

Noncirrhotic CHB, N (%) 9 (17.0%) 0

Cirrhosis, N (%) 42 (79.2%) 50 (100.0%)

Risk factors 0.001

Prothrombin time, INR 1.1 (1.0–1.1) 1.1 (1.1–1.3) <0.001

Total bilirubin, mg/dL 0.6 (0.4–0.8) 1.6 (1.0–2.3) <0.001

ALT, IU/L
22.0

(18.0–37.0)

23.0

(19.0–30.0)
0.685

Albumin, g/dL 3.8 (3.6–4.1) 3.9 (3.7–4.3) 0.437

Creatinine, mg/dL 0.9 (0.8–1.0) 0.7 (0.6–0.9) <0.001

Platelet, ⅹ103/μL
162.0

(121.0–192.0)

74.0

(56.0–102.0)
<0.001

Body mass index, kg/m2 25.2

(22.5–27.1)

24.4

(23.0–27.9)
0.791

Male 46 (86.8%) 24 (48.0%)

Female 7 (13.2%) 26 (52.0%)

Sex, N (%) <0.001

Age, years
60.0

(52.0–66.0)

57.0

(51.0–61.0)
0.072

HCC
(n=53)

Control
(n=50)

P value
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II 6 (11.3%)

IB 30 (56.6%)

IA 17 (32.1%)

AJCC stage, n (%)

Tumor size, cm 2.5 (1.9–3.5)

3 2 (3.8%)

2 4 (7.5%)

1 47 (88.7%)

HCC
(n=53)

Control
(n=50)

P value

Data are provided as N (%) or median (interquartile range). HCC, hepatocellular carcinoma;
ALT, alanine aminotransferase; INR, international normalized ratio; CHB, chronic hepatitis
B; CHC, chronic hepatitis C; AFP, alpha-fetoprotein; PIVKA-II, protein induced by
vitamin K absence or antagonist-II; AJCC, American Joint Committee on Cancer.
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Figure 1-4 Performance of GALAD score and the MRM-MS panel with and without
AFP and PIVKA-II in detecting HCC

ROC curves of the GALAD score, standalone MRM-MS panel, MRM-MS + AFP (MA)
panel, MRM-MS + PIVKA-II (MP) panel, and MRM-MS +AFP + PIVKA-II (MAP) panel
in the GALAD cohort.
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Table 1-6 Performance of AFP and the MRM-MS panel with and without AFP and
PIVKA-II compared with GALAD in detecting HCC

MAP panel
0.958

(0.916–1.000)
0.009† 90.6 98.0

MP panel
0.945

(0.896–0.993)
0.013† 88.7 98.0

MA panel
0.945

(0.897–0.994)
0.064† 92.5 70.0

Standalone

MRM-MS

panel

0.931

(0.878–0.985)
<0.001* 88.7 82.0

GALAD 0.718
(0.751–0.907)

52.8 92.0

AUROC
95% CI

P value
Sensitivit
y (%)

Specificity
(%)

* AUROC of the standalone MRM-MS panel versus AUROC of GALAD score. † AUROC
of the multimarker panel with AFP and/or PIVKA-II versus AUROC of the standalone
MRM-MS panel. AUROC; area under the receiver operating characteristics curve; AFP,
alpha-fetoprotein; MA, multiple reaction monitoring-mass spectrometer + AFP; MP,
multiple reaction monitoring-mass spectrometer + protein induced by vitamin K absence or
antagonist-II; MAP, multiple reaction monitoring-mass spectrometer + AFP + protein
induced by vitamin K absence or antagonist-II.

1.3.5 Performance of the MRM-MS panel with and without
AFP and PIVKA-II in detecting small (<2 cm) single HCC

Patients with small (ie, <2 cm) single HCC and high-risk controls in each set

were analyzed. In the training set, the standalone MRM-MS panel had a

significantly higher AUROC value (0.929 vs 0.775, P<0.001), greater sensitivity

(76.6% vs 22.1%), and lower specificity (93.5% vs 97.5%) compared with AFP.

The AUROC values of the MA (0.938; 95% CI, 0.909–0.968; P=0.072), MP (0.931;

95% CI, 0.898–0.963; P=0.498), and MAP panels (0.940; 95% CI, 0.911–0.969;

P=0.074) were similar to that of the standalone MRM-MS panel. The sensitivity

and specificity of the MAP panel were 72.7% and 96.5%, respectively. (Figure 1-4)
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Figure 1-5 Performance of AFP and the MRM-MS panel with and without AFP and
PIVKA-II in detecting small (<2 cm) single HCC

(A): ROC curve of AFP and the MRM-MS Panel with/without combination of AFP and/or
PIVKA-II in the training set. (B): ROC curve of AFP and the MRM-MS Panel with/without
combination of AFP and/or PIVKA-II in the test set. (C): ROC curve of AFP and the MRM-
MS Panel with/without combination of AFP and/or PIVKA-II in the validation set.

In the test set, the MRM-MS panel yielded a significantly higher AUROC

value (0.893 vs 0.593; P<0.001), better sensitivity (74.2% vs 22.6%), and lower

specificity (81.2% vs 97.5%) than AFP. The AUROC values of the MA (0.895; 95%

CI, 0.934–0.957; P=0.882), MP (0.893; 95% CI, 0.832–0.953; P=0.938), and MAP

panels (0.894; 95% CI, 0.832–0.957; P=0.943) were comparable with that of the

standalone MRM-MS panel. The sensitivity and specificity of the MAP panel were
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77.4% and 82.4%, respectively.

In the validation set, the standalone MRM-MS panel had a significantly higher

AUROC value (0.937 vs 0.806; P=0.019), greater sensitivity (88.1% vs 31.0%),

and lower specificity (82.0% vs 96.0%) than AFP. The AUROC values of the MP

(0.946; 95% CI, 0.892–1.000; P=0.04) and MAP panels (0.961; 95% CI,

0.912–1.000; P=0.026) were significantly higher versus the standalone MRM-MS

panel, unlike the MA panel (0.955; 95% CI 0.901–1.000; P=0.062). The sensitivity

and specificity of the MAP panel were 90.5% and 98.0%, respectively (Table 1-5).
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Table 1-7 Performance of AFP and the MRM-MS panel with and without AFP and
PIVKA-II in detecting small (<2 cm) single HCC

MAP panel
0.961

(0.912–1.000)
0.026† 90.5 98.0

MP panel
0.946

(0.892–1.000)
0.040† 88.1 98.0

MA panel
0.955

(0.901–1.000)
0.062† 95.2 70.0

Standalone
MRM-MS panel

0.937
(0.878–0.996)

0.019* 88.1 82.0

AFP 0.806
(0.717–0.896)

31.0 96.0

Validation set

MAP panel
0.894

(0.832–0.957)
0.943† 77.4 82.4

MP panel
0.893

(0.832–0.953)
0.938† 74.2 78.8

MA panel
0.895

(0.834–0.957)
0.882† 90.3 74.1

Standalone

MRM-MS panel

0.893

(0.834–0.952)
<0.001* 74.2 81.2

AFP 0.593
(0.464–0.721)

22.6 97.5

Test set

MAP panel
0.940

(0.911–0.969)
0.074† 72.7 96.5

MP panel
0.931

(0.898–0.963)
0.498† 76.6 94.5

MA panel
0.938

(0.909–0.968)
0.072† 83.1 87.4

Standalone

MRM-MS panel

0.929

(0.896–0.962)
<0.001* 76.6 93.5

AFP 0.775
(0.710–0.813)

22.1 97.5

Training set

AUROC
95% CI

P value
Sensitivit
y (%)

Specificit
y (%)

* AUROC of the standalone MRM-MS panel versus AUROC of AFP. † AUROC of MA,
MP, or MAP panel versus AUROC of the standalone MRM-MS panel. AUROC- area
under the receiver operating characteristics curve; AFP- alpha-fetoprotein; MA- multiple
reaction monitoring-mass spectrometer + AFP; MP- multiple reaction monitoring-mass
spectrometer + protein induced by vitamin K absence or antagonist-II; MAP- multiple
reaction monitoring-mass spectrometer + AFP + protein induced by vitamin K absence or
antagonist-II.
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1.3.6 Subgroup analysis

A separate subgroup analysis was performed for patients with cirrhosis in each

set and those with noncirrhotic CHB in the training and test sets. An analysis of

participants with noncirrhotic CHB in the validation set was not feasible, because

all controls in the set had cirrhosis.

For patients with cirrhosis, the standalone MRM-MS model yielded a

significantly higher AUROC value (0.927 vs 0.790; P<0.001), higher sensitivity

(76.6% vs 20.2%), and lower specificity (94.9% vs 97.5%) than AFP in the training

set. The AUROC value of MAP panel (0.945; 95% CI, 0.919–0.970; P=0.021) was

significantly higher versus the standalone MRM-MS panel. In the test and

validation sets, the MRM-MS model also had a significantly higher AUROC value

(0.875 and 0.944 vs 0.712 and 0.798; P=0.005 and P<0.001, respectively), greater

sensitivity (76.8% and 88.9% vs 28.6% and 36.7%, respectively), and lower

specificity (78.1% and 82.0% vs 96.9% and 96.0%, respectively) than AFP alone.

The AUROC value of the MRM-MS panel improved with the addition of AFP and

PIVKA-II (ie, MAP panel) in the validation set (0.973; 95% CI, 0.949–0.997;

P=0.001), but this increase was not significant in the test set (0.897; 95% CI,

0.839–0.954; P=0.303) (Table 1-8 and Figure 1-6).
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Table 1-8 Subgroup analysis of patients with cirrhosis

* AUROC of standalone MRM-MS panel versus AUROC of AFP. † AUROC of
multimarker panel with AFP and/or PIVKA-II versus AUROC of the standalone MRM-MS
panel. AUROC; area under the receiver operating characteristics curve; AFP, alpha-
fetoprotein; MA, multiple reaction monitoring-mass spectrometer + AFP; MP, multiple
reaction monitoring-mass spectrometer + protein induced by vitamin K absence or
antagonist-II; MAP, multiple reaction monitoring-mass spectrometer + AFP + protein
induced by vitamin K absence or antagonist-II.

MAP panel
0.973

(0.949–0.997)
0.001† 90.0 98.0

MP panel
0.956

(0.924–0.987)
0.005† 88.9 98.0

MA panel
0.960

(0.930–0.990)
0.005† 92.2 70.0

Standalone
MRM-MS panel

0.944
(0.909–0.980)

<0.001* 88.9 82.0

AFP
0.798

(0.725–0.872)
36.7 96.0

Validation set

MAP panel
0.897

(0.839–0.954)
0.303† 80.4 81.3

MP panel
0.890

(0.833–0.947)
0.088† 80.4 76.6

MA panel
0.885

(0.825–0.945)
0.591† 87.5 70.3

Standalone

MRM-MS panel

0.875

(0.815–0.937)
0.005* 76.8 78.1

AFP 0.712
(0.617–0.807)

28.6 96.9

Test set

MAP panel
0.945

(0.919–0.970)
0.021† 77.4 96.2

MP panel
0.928

(0.899–0.958)
0.672† 76.6 95.5

MA panel
0.944

(0.919–0.969)
0.019† 86.3 87.9

Standalone

MRM-MS panel

0.927

(0.898–0.957)
<0.001* 76.6 94.9

AFP 0.790
(0.736–0.844) 20.2 97.5

Training set

AUROC
95% CI

P value
Sensitivit
y (%)

Specificity
(%)
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For patients with noncirrhotic CHB in the training set, the MRM-MS panel

had a significantly higher AUROC value (0.951 vs 0.734; P<0.001), greater

sensitivity (86.2% vs 13.8%), and lower specificity (85.3% vs 97.1%) than AFP,

whereas the MAP panel had a statistically similar AUROC value (0.962; 95% CI,

0.929–0.994; P=0.111) as the standalone MRM-MS panel. In the test set, the

MRM-MS panel also had a significantly higher AUROC value (0.909 vs 0.702;

P<0.001) compared with AFP alone, and the addition of AFP and PIVKA-II (ie, the

MAP panel) did not significantly improve the AUROC value (0.931; 95% CI,

0.854–1.000; P=0.298) (Table 1-9 and Figure 1-6).
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Table 1-9 Subgroup analysis of patients with chronic hepatitis B

MAP panel
0.931

(0.854–1.000)
0.298† 85.0 81.3

MP panel
0.913

(0.822–1.000)
0.843† 85.0 81.3

MA panel
0.922

(0.838–1.000)
0.388† 90.0 81.3

Standalone

MRM-MS panel

0.909

(0.813–1.000)
0.048* 85.0 87.5

AFP 0.702
(0.525–0.878) 15.0 100.0

Test set

MAP panel
0.962

(0.929–0.994)
0.111† 84.6 97.1

MP panel
0.958

(0.923–0.994)
0.085† 87.7 88.2

MA panel
0.955

(0.918–0.993)
0.286† 92.3 85.3

Standalone

MRM-MS panel

0.951

(0.909–0.992)
<0.001* 86.2 85.3

AFP 0.734
(0.633–0.836)

13.8 97.1

Training

set

AUROC
95% CI

P value Sensitivit
y (%)

Specificity (%)

* AUROC of the standalone MRM-MS panel versus AUROC of AFP. † AUROC of
multimarker panel with AFP and/or PIVKA-II versus AUROC of the standalone MRM-MS
panel. AUROC; area under the receiver operating characteristics curve; AFP, alpha-
fetoprotein; MA, multiple reaction monitoring-mass spectrometer + AFP; MP, multiple
reaction monitoring-mass spectrometer + protein induced by vitamin K absence or
antagonist-II; MAP, multiple reaction monitoring-mass spectrometer + AFP + protein
induced by vitamin K absence or antagonist-II.
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Figure 1-6 Subgroup analysis of patients with cirrhosis and chronic hepatitis B

ROC curves of AFP, standalone MRM-MS panel, MRM-MS + AFP (MA) panel, MRM-MS + PIVKA-II (MP) panel, and MRM-MS + AFP + PIVKA-II
(MAP) panel in the (A) training set, (B) test set, and (C) validation set with cirrhosis and in the (D) training set and (E) test set with chronic hepatitis B.
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1.4. Discussion

We have developed a multimarker panel of 17 proteins by MRM-MS analysis

for detecting HCC. This MRM-MS panel performed significantly better than AFP

in differentiating HCC patients from controls in every dataset, especially with

regard to sensitivity. The incorporation of AFP and PIVKA-II into the MRM-MS

panel improved its performance in every set, although statistical significance was

not achieved with the test set. The diagnostic superiority of the MRM-MS panel

over AFP was maintained in patients with small single HCC, but the significant

improvement that was affected by the addition of AFP and PIVKA-II was observed

only in the validation set.

With the limitation of sample yield, only a small portion of the cohort could

have analyzed and validated. Nonetheless, the MRM-MS panel outperformed the

GALAD score and demonstrated its efficacy in identifying HCC patients among

cirrhotic patients and those with noncirrhotic CHB. We hope the performance of

the panel and the GALAD score comparison can be validated in other study.

The low concentrations of potential biomarkers and the wide range of protein

levels are major setbacks in the proteomic analysis of serum(32). MRM-MS, which

can detect attomole levels of peptides(33-36) and quantify hundreds of peptides in

an automated manner(37, 38), is an effective modality in examining and validating

candidate biomarkers for early detection of HCC. The data that are generated by

MRM-MS assays are highly reproducible(39).

HCC surveillance programs that are based on abdominal ultrasonography with

and without serum AFP assay have low sensitivities in cirrhotic patients(12, 40),
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whose alterations in liver parenchyma are associated with poor imaging quality(41)

and a high risk of HCC(42). Although recent studies have examined the value of

cross-sectional imaging modalities (eg, computed tomography and magnetic

resonance imaging) as potential alternatives(43-45), their limited accessibility and

high cost are major barriers to their widespread use(46). HCC surveillance using an

MRM-MS panel has the advantages of being readily available and cost-effective,

because it requires only blood samples for mass spectrometry assays.

No study that has aimed to identify new HCC serum markers through mass

spectrometry(47-51) has validated the discriminatory performance of the identified

markers in a chronologically separately collected, multicenter cohort. The current

study is also distinct from a previous report by our group(27), in that data

preprocessing was adopted before the selection of the markers and that fewer

markers were involved in the developed panel. The smaller number of markers

renders the MRM-MS panel economically competitive with regard to the amount

of internal standard peptides and reagents that are needed for mass spectrometry

assays(52).

Our MRM-MS panel showed excellent accuracy in discriminating HCC

patients, with an AUROC value of 0.891 being the lowest across all analyses,

considering that a value over 0.8 is excellent(53). However, its specificity was

lower than that of AFP, as was the case with our group’s earlier panel. AFP, despite

its low sensitivity of 39% to 65% in detecting HCC(54), improved the sensitivity

when added to the MRM-MS panel, although its specificity declined. This

drawback was overcome by introducing PIVKA-II, which is more specific than

AFP in detecting HCC(55). A similar trend was observed when the analysis was

confined to patients with small single HCC. These results imply that the serum
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levels of proteins in the MRM-MS panel are affected by the presence of HCC

through mechanisms that are independent of those that affect the levels of AFP and

PIVKA-II. Notably, the MRM-MS panel was consistently reliable when classifying

patients with cirrhosis and those with noncirrhotic CHB, in contrast to AFP, the

levels of are frequently elevated in patients with cirrhosis or CHB(56).

Among 17 proteins in the marker, several markers have been reported directly

associated with HCC. SERPINC1 is considered as one of the most important serine

protease inhibitors in plasma that regulates the blood coagulation cascade. This

surrogate protein was reported being associated independently with HCC,

consistent with a previous report(57, 58). MCAM promotes tumor growth,

angiogenesis and metastasis and is regarded as a promising target for tumor

therapy(59). This protein was observed highly elevated in HCC patients(60). The

expression of AMBP has been found to be down-regulated in both HCC tissues and

cell lines(58). THBS1 is linked to tumor invasiveness and progression in HCC and

is a proangiogenic factor that stimulates angiogenesis in HCC(61). LCAT has been

shown to generate cholesteryl esters (CEs) in the circulation of males from high-

density lipoprotein (HDL) and transfer them to apolipoprotein (apo) B-containing

lipoproteins with the help of lipid transfer protein (LTP)(62). A previous research

has purpose using LCAT as diagnostic model for HCC(63). C1QC associates with

the proenzymes C1r and C1s to yield C1, the first component of the serum

complement system. In a previous study, upregulation of C1QC was reported in

HCC cases(64). Both complement components have been reported associated with

HCC. As an important part of the complement system, C2 is mainly involved in the

formation of C3 convertase of the classical pathway and MBL pathway. Single

nucleotide polymorphism (SNP) of C2 was first found to be related with systemic
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lupus erythematosus and age-related macular degeneration(65, 66). complement

component 2 (C2) to be associated with CHB by exome sequencing(67). A C6 is an

indispensable ingredient for MAC formation in complement defense against

invading pathogens, which has also been reported to be associated with HCC(68).

APOH is a multifunctional apolipoprotein encoded by the human APOH gene and

one of its functions is to bind cardiolipin(69). APOH was highly overexpressed in

hepatitis B-related HCC tissue(70).

Although haven’t been reported associated directly with HCC, other proteins

showed statistically significant attribute to the model. PPBP is a protein that is

released in large amounts from platelets following their activation(71). It stimulates

various processes including mitogenesis, synthesis of extracellular matrix, glucose

metabolism and synthesis of plasminogen activator(72, 73). cytoskeletal proteins

CFL1 an actin depolymerizing protein involved in invadopodium formation and

required for tumor cell directionality in response to chemotactic or growth-factor

stimulation(74, 75). C4A is a blood coagulation protein reported to fluctuate in

lupus nephritis which are related to colorectal cancer development(76). UCHL3

displays hydrolyzing activity during the processing of both ubiquitin precursors

and the poly-Ub chain from substrates(77, 78). Moreover, UCHL3 cleaves Nedd8,

a ubiquitin-like protein, from substrates, which is a unique feature of this

enzyme(79, 80). CNDP1 is a secreted protein of 57 kDa found in human blood and

the central nervous system, which act as homodimer(81). The carbonic anhydrase

family (CAHs) plays an important role in extracellular acidification; a possible

involvement CA2 in tumor invasion has been proposed(82). SAA4 exists as a

minor apolipoprotein on high-density lipoprotein in plasma and is a minor acute-

phase reactant in humans. SAA4 can be used as a possible nutritional marker of
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hepatic protein synthesis in the absence of inflammation(83). SERPINA10 was

reported to be associated with tumor progression(84).

Our study has several limitations. The depletion of the 6 most abundant

proteins before the MRM-MS assays might have eliminated other proteins with

significant discriminatory value, as inferred from the finding that AFP was not

included in the list of the 17 markers. This issue has been discussed in other

proteomic studies(85, 86) and was addressed in our study through the subsequent

addition of AFP, which is the only commonly used serum biomarker for screening

HCC(54).

Further, it is unknown whether the MRM-MS panel is useful for patients with

other risk factors for HCC, such as alcoholic liver cirrhosis, or nonalcoholic fatty

liver disease. However, most cases of HCC are associated with cirrhosis that is

related to CHB or CHC(87); thus, our study population represents most patients

who are subject to an HCC screen. Also, the effectiveness of the MRM-MS panel

in patients of various ethnicities is unverified—all of our participants were Korean.

Finally, no comparison with abdominal ultrasonography was performed in this

study.

Increased AUROC value in independent validation cohort to the derivation

cohort were reported among all the performance comparison in the result. Not only

the panel itself but AUROC of AFP also was increased. This phenomenon could be

explained as error rates presented by the sample size of validation cohort, which all

the AUROC of the model combinations and AFP were within 95% CI of the

corresponding training set AUROC(88).
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1.5. Conclusion

In conclusion, with chronically separated cohort, this MRM-MS multimarker

panel, comprising 17 proteins, showed excellent performance in distinguishing

HCC patients from high-risk controls with cirrhosis or CHB or CHC despite the

collection time. Its combination with AFP and PIVKA-II enhanced its performance,

although statistical significance was not consistently reached. Prospective studies

are warranted to determine whether our MRM-MS panel is a viable alternative to

abdominal ultrasonography in HCC surveillance.
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Chapter 2.

Panel Development Software for
biomarker Study
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2.1. Introduction

Biomarkers are instrumental in the detection and management of diseases(89).

Despite an enormous number of publications, novel technologies, and abundant

funding, very few biomarkers make it to clinical practice. These phenomena can

be partially attributed to the lack of a clear and accessible path for selection of

biomarker and validating biomarker candidates for clinical use(90).

A clinically applicable marker panel requires various computational methods

in panel development and proving clinical level reproducibility. Machine Learning

Algorithms are frequently proposed for Multi marker panel development along

with data preprocess methods for statistically accurate analysis.

Because biomarkers vary in characteristics and are evaluated accordingly, it is

necessary to validate biomarker assays by several criteria and methods(91, 92). For

instance, blood protein-based biomarkers are often detected using quantitative

immunoassays. In contrast, protein-based biomarkers and DNA-based biomarkers

in tissue are generally detected using immunohistochemical and in situ

hybridization assays, respectively(93). In the past decade, mRNA-based

biomarkers have been studied using microarrays(94).

Regardless of the assay type, a biomarker assay must be analytically validated

prior to clinical use. Analytical method validation involves confirming the accuracy,

precision, specificity, robustness, and stability of the biomarker assay and overall

method(91, 92, 95-97) Other assay validation criteria include linearity,

parallelism, recovery following analyte addition, and functional sensitivity.

Multiple reaction monitoring-mass spectrometry (MRM-MS) assays are
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suitable for measuring multi-marker panels in clinical applications(98-101). An

MRM-MS assay can accurately quantify multiple biomarkers. However, the panel

development and analytical validation of MRM-MS assays, which simultaneously

measure thousands of transitions corresponding to quantitative values of multi-

markers, can be rather difficult and laborious, especially if the interpretation and

evaluation of numerous procedures and categories are performed manually.

Currently, MRM-MS data can be processed in part using vendor-specific

software (e.g., MassHunter Quantitative Analysis, Agilent; MultiQuant, ABSciex;

Pinpoint, Thermo Scientific) or vendor-independent programs, such as

Skyline(102-105). Overall, these software programs are generally used to perform

a preliminary analysis of mass spectral data and transitions and also allow the user

to verify and edit peak selection/integration. None of these software programs

possess a feature that gives insight into the marker panel development and

analytical validation of detected transitions of a given MRM-MS assay.

For MRM-MS assay to be more accessible in the clinical area, the assay

requires a linear process of multi biomarker panel development and analytical

validation process to be used for measuring multiple biomarkers in clinical settings.

However, limitations in the analytical validation of the MRM-MS assay will be

encountered. To address this challenge, we developed and launched two web

application: WMD (Web Model Developer) for panel development and an assay

portal, named M-MVP (MRM–MS assay-analytical method Validation Portal,

http://pnbvalid.snu.ac.kr), as a free tool (Figure 1). WMD is a python-based web

application that assists preliminary marker panel development with basic machine

learning functions while M-MVP is designed to automatically evaluate MRM-MS

assay data. The method validation items configured in M-MVP are designed to
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meet the requirements of three sets of guidelines [US Food and Drug

Administration (FDA), European Medicines Agency (EMA), and Korea Food and

Drug Administration (KFDA)].

Various Panel development and analytical validation procedures can be

evaluated with both web application with minimal effort. While WMD process

quantified candidate biomarker data and develop multimarker panel, M-MVP

centralizes all method validation calculations, which significantly reduces the time,

effort, and errors that would likely occur with manual processing. These

advantages facilitate the implementation of MRM-MS assays in clinical settings by

simplifying the analytical validation computational process of multi-marker panel

assays.
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2.2. Methods

2.2.1 Architecture of WMD

To implant dominantly used machine learning module in web application,

Python(106) were used as basic programming language while the web application

was structured using Django framework (Django Software Foundation. Django

[Internet]. 2019. Available from: https://djangoproject.com). Django framework

enabled developing secured and maintainable website with minimum effort and

focus on development of core function. Pandas(107) module was implanted for

data loading and reconstruction.

Data manipulation as data normalization prior to feature selection is an

essential procedure for machine to study the data without biased abnormality(108).

In WMD, we provide two functions commonly used in biology data study: batch

effect correction and data transformation.

Batch effect is a phenomenon observed in biological study which non-

biological differences that make samples in different batches not directly

comparable(109). If not corrected properly, the data might lead to biased biological

insight. Several statistical methods and programming library have been introduced

to correct such effects(110). In this web application, we implanted pyComBat

module(111) which utilized Empirical Bayes method to normalize batch effect(112).

Data transformation was performed by comparing skewness of every

independent feature within dataset with normal, log, square, and square root

form(113). Each feature in the dataset are transformed with NumPy(114) to each

form and absolute z score of each group, case and control cohort, are calculated
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and added. Finally, the data set are transformed into the form with lowest absolute

z score.

Prior to feature selection, reducing statistically insignificant features are

encouraged. In this web application, Students’ T-test and individual AUROC

calculation and cut-off customization are provided. P value of Students’ T-test and

AUROC are calculated by SciPy(115) and Scikit-learn(116) module, respectively.

Feature selection methods were provided with 3 options: Forward, Backward

and Recursive Feature Elimination which are all wrapper methods-based. In

wrapper methods, the feature selection process is based on a specific machine

learning algorithm that we are trying to fit on a given dataset. It follows a greedy

search approach by evaluating all the possible combinations of features against the

evaluation criterion. The evaluation criterion is simply the performance measure

which depends on the type of problem, for e.g. For regression evaluation criterion

can be p-values, R-squared, Adjusted R-squared, similarly for classification the

evaluation criterion can be accuracy, precision, recall, f1-score, etc. Finally, it

selects the combination of features that gives the optimal results for the specified

machine learning algorithm. When testing an estimator or setting hyperparameters,

one needs a reliable metric to evaluate its performance. Using the same data for

training and testing is not acceptable because it leads to overly confident model

performance, a phenomenon also known as overfitting. Cross-validation is a

technique that allows one to reliably evaluate an estimator on a given dataset. It

consists in iteratively fitting the estimator on a fraction of the data, called training

set, and testing it on the left-out unseen data, called test set. Several strategies exist

to partition the data. For example, k-fold cross-validation consists in dividing

(randomly or not) the samples in k subsets: each subset is then used once as testing
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set while the others k − 1 subsets are used to train the estimator. This is one of the

simplest and most widely used cross-validation strategies. In this application, we

provide 3- or 5-fold cross-validation.

Logistic Regression (LR) or Support Vector Machine (SVM) are selectable as

classifier with hyperparameter tuning options. Hyperparameter tuning is the

problem of choosing a set of optimal hyperparameters for a learning algorithm.

Although tuning hyperparameter may lead to optimum results from the dataset, it

requires certain level of understanding to machine learning algorithm. WMD was

developed for researcher who are not familiar with implanting machine learning

techniques to a biomarker study and collect a preliminary result from the dataset.

Nonetheless, including parameter tuning options for advanced researcher would

results in a more optimum result for user. 15 parameter options for LR and 13

parameter options for SVM are provided by scikit-learn package.

In scikit-learn, all objects and algorithms accept input data in the form of 2-

dimensional arrays of size samples × features. For this web application, uploaded

data need to upload quantified MS data as such.

2.2.2 Architecture of M-MVP

The SPRING(117) framework, which features a standard Model-View-

Controller (MVC) ideal for webserver applications, was the fundamental

component of the server that formed M-MVP’s infrastructure. As part of the MVC

model, the Java(118) controller handles requests and mapping, in which

JavaScript(119) works as a dynamic web page, with Ajax(120) for asynchronous

web applications and file upload for user interfaces. Mybatis (Mybatis. Mybatis
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[Internet]. 2004. Available from: https://www.mybatis.org) framework was used to

handle Structured Query Language (SQL) statements for data calculation and

storage to the MySQL(121) Database Server. Bootstrap (Bootstrap. Bootstrap

[Internet]. 2011. Available from: https://www.getboostrap.com) is a general open

source jQuery(jQuery. jQuery [Internet]. 2006. Available from: https://jquery.com)

library for web page user interface design. Bootstrap was used to design the table

format in M-MVP that was used for cases in which evaluation guidelines and

output files were presented in table form. Gradle(122) is a build automation system

that automatically manages libraries and builds a Web Application Archive (WAR)

file that is deployed on a Tomcat server(The Apache Software Foundation. Tomcat

[Internet]. 1999. Available from: https://tomcat.apache.org/). Because floating-

point calculation varies by programming language, data calculation and validation

were performed exclusively with SQL query to ensure consistency.

To specify the architecture of the portal, Controllers, which are the main java

files that control all the input output commands, are divided into three categories.

LoginController.java handles login related request from the client, where

InfoController.java handles experiment data information of the logged in user. All

other request for webpage loading or calculation functions are handled in

SampleController.java. Upload and calculation of user data requires server to

connect with the database server, which are controlled by Mybatis package. Within

the package xml files contains SQL queries, which are called by the controller

under user’s request. The database contains individual schema for user information,

experimental information and uploaded data. All the webpages are composed with

JSP, where design is composed with html and CSS. Dynatable(Alpha Jango.

Dynatable [Internet]. 2014. Available from: https://www.dynatable.com/), an open
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source interactive table using jQuery is implanted for the entire table format of the

portal.

2.2.2.1 Data format

Depending on the analyte and the type of mass spectrometer, data analysis

software may vary. Skyline (MacCoss Lab) is the most commonly used data

processing software for MRM-MS. We developed M-MVP to accept Skyline

output files in csv format, in which the column and analyte names must agree with

our specified format. We defined validation categories, such as calibration curve,

specificity, sensitivity, carryover, precision, accuracy, matrix effects, recovery,

dilution integrity, stability, and QC (samples and frequency), based on guidelines

from the FDA, EMA, and KFDA. For all validation categories, step-by-step

instructions for adopting the Skyline output file into the format that M-MVP

requires are provided. Only with a specific format can M-MVP accept the uploaded

Skyline data for calculations and validation.

To develop the portal, we used the entire validation datasets of our previous

study(123). The datasets were verified to pass the standards of all 3 administrations.

2.2.2.2 Calculation and Validation Method

For calculations, M-MVP extracts light and heavy area values from the

Skyline files. PAR and concentration ratio (from the reverse calibration curve data)

are used for linear regression analysis. The user chooses a linear equation that is

used by M-MVP to calculate the concentrations of subsequent categories, such as
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Sensitivity and Recovery. For some categories, the standard deviation and

coefficient of variation (CV) of PAR or concentration are calculated. Percent

difference between the initial value and measured value is also calculated when

required by the guidelines.

The calibration curve presents reverse and forward calibration curve data. The

calibration curve falls within the range of measured concentrations by the

instrument in which mass spectrometry can show linear measurements. Specificity

is assessed by definite signals of analyte and Internal Standard (IS) in blank

samples. Sensitivity is assessed by the first calibrator or lower limit of

quantification (LLOQ), when the method provides acceptable precision and

accuracy. Evaluation of carryover is assessed by injecting blank samples following

a high-concentration sample or samples that are used for upper limit of

quantification (ULOQ). Precision and accuracy are assessed by analyzing QC

samples. Within-run precision and accuracy are calculated by averaging the

concentration of replicates of each target QC concentration on each day, whereas

between-run precision and accuracy are calculated by averaging the first run of

each target QC concentration across all days. Accuracy values are assessed by

dividing the measured concentration by the expected concentration.

For the validation of matrix effects, PAR of a spiked target in each matrix and

in neat solution is calculated, and then, the values of all six matrices at the same

concentration are averaged. Recovery was assessed as the relative recovery of

recovered target to input target in terms of PAR at each QC concentration. Dilution

integrity evaluates whether dilution affects the precision and accuracy and is

assessed by calculating the change in concentration resulting from sample dilution.

For stability validation, M-MVP sets day-0 as the standard point and compares the
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measured values at day-0 with other conditions at every QC concentration. In terms

of QC (samples and frequency), the accuracy of QC samples is assessed in at least

5% of the total number of patient samples. This method assures that sample

preparation and storage do not affect sample concentration. All aforementioned

calculations are performed by SQL queries in the MySQL server; calculation

methods are summarized in Table 2-1. M-MVP provides an assorted list of

validation standards that are issued by the three regulatory agencies as references

from FDA (https://www.fda.gov/media/70858/download), EMA (https://www.e

ma.europa.eu/en/documents/scientific-guideline/guideline-bioanaly

tical-method-validation_en.pdf), and kFDA (https://www.spmed.kr/

bbs/bbs_download.php?idx=74&download=1).
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Table 2-1 Specific value description and formula for the 11 categories
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2.2.2.3 Implementation

A schematic of the M-MVP pipeline is shown in (Figure 2). The user is

required to log in as a guest or with the registered ID and password that are issued

by the administrator. The process for the analytical method validation is accessible

from the validation tab on the main page of M-MVP (Figure 1). On the following

page, users are required to input information regarding their experiment and

corresponding validated data. Once the user provides all required fields, a unique

ID of the experiment is generated and is applied by the user to access and proceed

with uploading the data. We designed the portal with a login function for two

critical obstacles when evaluating the method: to avoid uploading the same files

each session if the user did not pass the designated criteria in the first attempt and

to manage each distinct experiment easily under the designated login ID. We also

developed a guest log-in feature that does not require a login that features a nearly

identical login process that differs by requiring users to remember their experiment

ID. Uploaded data are stored and deleted after 1 week from the initial upload.

To proceed to the validation step, users operate three separate tasks. Users

must upload all experimental data that are relevant to each of the 11 categories; two

entries for calibration curve are available for upload. Only the categories with

uploaded files will be validated according to integrative multinational guidelines.

Although multiple data files for each category can be uploaded, only the most

recently uploaded files are used for calculations and validation. This design allows

users to re-do one specific category, as opposed to repeating the entire experiment.

The next step is to upload the expected concentrations. Accuracy is defined as the

closeness of agreement between an assay result (experimental measurement) and
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the expected concentration (true value). With respect to accuracy measurements,

users must input true values for calibration curve, quality control (QC), and

dilution integrity in the corresponding web page of M-MVP so that calculations

and validation are performed. The last step is for the user to choose the scale of the

calibration curve, which is subsequently reflected in the corresponding calculations

of the other categories. Under the Data menu, the “Linear Regression” page

contains the linearity result for each transition (Figure 6). The user is given an

option to choose normal, log2, or log10 scale for calculating the concentration.

Once the user chooses a scale, the result is shown instantly in table form. By

showing the intercepts, slope, and R2 in a table, M-MVP provides flexibility to the

user for determining which one should be used to calculate the linear regression.

The linear equation that the user selects from the Reverse Calibration Curve page is

used for calculating the concentration of other categories. With all steps

accomplished, M-MVP processes the calculation and method evaluation and shows

the results to the user.
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2.3. Result

2.3.1 Web Model Developer

The main objective of WMD is to suggest potential combination of biomarker

and provide performance of the combination visually. The web application

provides essential statistical computational function for biomarker study within one

web page divided in 3 sections: Data-preprocess, Feature Selection and Predict

page.

In the Data-preprocess section, the application provides 3 core data process

function prior to data analysis (Figure 2-1). Batch effect correction is the procedure

of removing variability from your data that is not due to your variable of interest.

Batch effects are due to technical differences between your samples, such as the

type of sequencing machine or even the technician that ran the sample. To perform

batch correction, uploaded data must include batch number of each sample data

with other variance. To provide visualized image of batch effect correction, WMD

also displays before and after box chart of the uploaded data manipulated by batch

effect correction (Figure 2-2). In a separate tab only for batch effect correction

inspection, user can discover distribution of data before and after batch effect

correction. Outlier values are displayed as dots in the figure.

The goal of normalization is to transform features to be on a similar scale

which improves the performance and training stability of the model. In the

application, we provide data transformation based on skewness of each feature in

the data. Calculation Z-score of each feature with method selected, which are

Square, Square Root and Logarithm to normal scale, the application will transform
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each feature with the best way of normalizing the data. In many data analysis study,

if only prepared with one large dataset, separation of the dataset into train and test

set are required for validation of the study. In this application we provide data split

function with selectable split ratio of the data. Selecting the function in need and

uploading the raw data, the web application will process and provide the data to

download, where one csv data will be provided if data divide function is not

selected, train and test data if selected.

Figure 2-1 Data-Preprocess page
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Figure 2-2 Box plot function for Batch Effect Correction

Whether process the data prior to feature selection or not, the Feature

Selection Section of the application can proceed with its core function (Figure 2-3).

In general, all the features provided in the data will be tested for feature candidate.

For machine to select statistically significant candidates within the data, the

application provides a pre-feature selection base on p-value of Student’s T-test and

AUROC value of the individual candidates. If chosen, the features in the data
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under conditions selected by the researcher, for example p-value under 0.05 and

AUROC more than 0.6, will be processed with feature selection. In this application,

Forward, Backward selection and Recursive Feature Elimination (RFE) which are

all wrapper methods-based technique are provided. After selection the selection

methods, user have to choose which estimator, provided Logistic regression and

SVM, to analysis the best features to represent the data. User can also choose to

perform 3- or 5-fold cross validation with maximum of 10 repetition to aim for a

more statistically general feature combination. WMD provides LR and SVM for

classifier, with hyperparameter tuning options (Figure 2-4). Without editing

hyperparameter, WMD will process with default setting. When data are uploaded

and processed, the web application will the best set of features below the “Run”

button as text separated with comma.
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Figure 2-3 Feature Selection Page
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Figure 2-4 Classifier Hyperparameter Tuning

Finally, in the Prediction section, user can evaluation the selected feature to

the train or test data with ROC curve and AUROC values. The web application

requires which features to fit and predict, which does not have to be features

selected by the application but any combination of the features that are provided in

the dataset, combination of features, formatted exactly as results from feature

selection must be written on the feature textbox. After choosing which estimator to

proceed same as Feature selection section, user can upload train and/or test data set
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to observe the performance. With the uploaded data, the application will fit the

train data with provided features and present ROC curve and AUROC value in the

corner, where test data prediction performance will appear under the train set result

(Figure 2-5).

Figure 2-5 Prediction Page

2.3.2 Method Validation Portal

The main objective of method validation is to test the reliability of the method

presented by the researcher for determining one or more analyte concentration in a

specific biological matrix (Figure 2-6). For the method to be considered

reproducible and reliable, FDA, EMA and kFDA provides 11 criteria, some of
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which across administrations, that must be fulfilled for validation. The categories

are: Calibration Curve, Specificity, Sensitivity, Carryover, Precision, Accuracy,

Matrix effects, Recovery, Dilution integrity, Stability, and Quality Control.

Calibration Curve needs to be examined to show the linearity of quantitation range

of the assay that can be expected in the study. Specificity of the method requires

that target analyte and Internal standards are distinguishable from the endogenous

components in the matrix with confidence. Lower Limit of Quantification (LLOQ)

point of the calibration curve for each analyte defines the sensitivity of the method.

Validating Carryover insures that if a high concentration of analyte in a matrix in

measured, the data of the following batch will not be affected by it. Precision and

Accuracy, which are self-explanatory, validates the method by assessing closeness

of repeated individual measures of analytes and closeness of the observed value to

the nominal value. Matrix effects are a crucial factor to account for when a method

is performed by LC-MS for ion suppression or enhancement may occur during the

experiment and impacts on the results. Recovery of the method requires

optimization to ensure the extraction of analyte is efficient and reproducible.

Dilution Integrity is a category to ensure diluting the matrix or the analyte does not

impact the accuracy and precision. Stability is a category that determine the analyte

in the matrix are stable during the handling and storage. Finally, QC evaluate the

performance of the method and the stability of the target analyte. The detailed

methods and assays are described in detail in our previous study 17. For every

category, administrations have specified conditions to pass the standard, and the

portal automatically calculates from the uploaded data corresponding to each

category and present both calculated values and evaluation results on individual

pages.
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Figure 2-6 M-MVP homepage for simple and advanced analytical method validation
of MRM-MS assays

Results pages are divided into two parts: calculation and method evaluation

pages (Figure 2-7).
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Figure 2-7 Overview of M-MVP

For calculation pages, the calculated results are shown in table form, in which

peptide sequence, fragment, product charge, and replicate name are set as default

column descriptions. Calculated values, such as averaged Peak Area Ratio (PAR)

and standard deviation, are shown if required by the category (Figure 2-7). In the

table, the results are shown in list form, and 10 lines and a maximum of 100 rows

can be observed in a table. To save the results for personal use, M-MVP supports

downloading of the table as a csv file (Figure 2-9).
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Figure 2-8 Linear Regression result page

For method evaluation pages, when the user requests the calculation pages,

the server will evaluate if the current categories pass the performance specification

of three regulatory agencies (FDA, EMA, and KFDA) and will then store the result,

along with the uploaded data. The user must examine each category to determine

whether M-MVP result for a category satisfies the specified guideline. After

examining all 11 categories, the user can check to see if the categories pass the

performance specifications and validation practices by displaying “Pass” or “Not

Pass” or “Not Addressed” if the regulatory agency did not specify a certain

standard (Figure 2-10). Evaluation is performed based on the guidelines from all

three regulatory agencies and the results are shown in a single table. When one or

several categories fail to pass the evaluation, the user must revise the relevant

category in the experiment and then upload the revised csv file.
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Figure 2-9 Calibration curve result page
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In the process of designing M-MVP on a working server, one of the main

priorities was to implement an MRM-MS assay for AFP-L3, diagnosing well-

known diagnostic biomarker of hepatocellular carcinoma 17. As a working

example, the analytical method for M-MVP was verified using the data from the

previous assay experiments, for all categories of method validation experiment was

performed for the assay and already verified with standards from 3 administrations.

With Skyline output data for the 11 categories, we developed and tested the

performance of M-MVP of the study. The performance specifications and

validation practices of the categories are embodied in M-MVP and are represented

in the shape of the resulting tables, in which the format of input data and guideline

details are adopted from the supplemental tables that were created for the previous

study17. Furthermore, the performance specifications of the calculations that were

performed by M-MVP were compared to that of a manual method using Excel with

the same data. The M-MVP calculations agreed with Excel values up to 4 decimal

points, at which point differences were insignificant. In terms of the time that was

required for performance and validation, M-MVP completed all categories

instantaneously, whereas the manual process of calculation and validation in Excel

took several hours. All data for the 11 categories of the MRM-MS AFP-L3 assay

are in the Tutorial tab, where users can access these data for self-education.
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Figure 2-10 Method Evaluation Page
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2.4. Discussion

We developed WMD for multi marker panel development and M-MVP for

validating the MRM-MS assay using Skyline data. For the time-consuming nature

of Machine learning methods, WMD was developed as web application but aimed

to work at local terminal of the user. M-MVP, as an online assay portal,

calculations are performed on the server side, which lowers the computational

burden on users. Our web application aims to support the panel development and

analytical validation of the MRM-MS assay. WMD have simplified the data

normalization and feature selection process where M-MVP is especially effective

for processing large sets of MRM-MS data, such as data that are generated with a

multi-marker panel assay.

Several issues require further development. WMD, as a preliminary marker

panel development tool, offers basic but essential functions to present combination

of biomarkers from the uploaded data. The batch effect correction offered in this

application is a method which frequently used in microarray study with limited

data size(112). Many other libraries like Liger utilize various methods are offered

for both R and Python(110). Unfortunately, many libraries offer for R are not

supported for Python at the time being, and some Python library have not updated

their library to be compatible with other libraries, resulting not able to run several

libraries at same time.

A summarizing table and figure for each step might be a great assist to the

researcher. Version 1.0 of WMD only shows final data results for each step, not

telling what have changed or how have it calculated and transformed. It would be a
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great addition to the WMD if there is an intuitive summary of how batch effect

correction changed the data distribution for examples.

Feature selection is the core function of WMD. Scikit-learn offers forward,

backward and RFE as wrapper methods at the time being. Stepwise features

selection, which is one of most popular method, are not supported. WMD only

implanted methods that are included in the Scikit-learn package, which we hope an

addition of methods might be introduced and implanted in WMD.

As for MVP, the current build is sensitive to naming parameters and requires

that the dataset follow the naming conventions of Skyline-generated csv files.

Therefore, the user needs to ensure that uploaded files have the correct naming

format that is required by M-MVP. Developing a flexible naming functionality

may decrease the learning curve for users.

Implementing M-MVP into the external tools of the Skyline software site is

another plausible option for development. Implementing the core functionality of

M-MVP into Skyline's external tool would drastically reduce the time that is

required for validation of the MRM-MS assay, because the process would run

immediately on the Skyline site. Even if using M-MVP as external tool for Skyline

requires more computing power from the user, he or she would not have to move

files from the Skyline site to our portal and perform the entire process on a local

computer. This process will ultimately lead to automation of the analytical method

validation process of the MRM-MS assay.
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2.5. Conclusion

Rapid advances in the sensitivity and selectivity of mass spectrometry will

result in successful development of MRM-MS-based multi-marker assays. To

facilitate this technology to its maximum, handling the resulting data are as much

crucial as accurate and reproducible analysis method. The founding idea of WMD

was to simplify the data handling process to lower the barrier for researcher to

develop statistically significant assay model to reach clinical standard. With more

implantation of machine learning in the diagnosis study, we look forward more

clinical researchers to discover various results.

The main purpose of developing M-MVP was to facilitate the introduction of

MRM-MS-based multi-marker assay into commercial sectors. Naturally, the assay

development process must abide by the multinational guidelines. We hope that M-

MVP will accelerate the implementation of the MRM-MS assay in clinical

applications by lowering clinical entry barriers.

Furthermore, we expect that M-MVP will be applicable for metabolomics

research of small molecules and chemicals, for which relevant assays will require

analytical method validation.
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General Conclusion

The ‘omics’ studies have been developed and conducted for many decades

with the advance of computational power. Typically for proteomics, mass

spectrometry has made it possible to screen thousands of proteins in a limited

amount of biological material. Even more, MRM methods could have quantified

targeted proteins in nanogram level, which made it possible for researchers to test

its ability in the clinical area. To the present day, MRM-MS have been proved with

High sensitivity and specificity, reproducible result with multiplexing capability.

Blood is one of most frequently tested clinical source since it represents the

systemically complex human body with minimum invasiveness. Around the world,

blood is also one of the most collected human material, which made it more

accessible then other human material for researcher to develop diagnostic and

prognostic methods. With above mentioned advantages, developing an assay which

analyze human serum protein with MRM-LC/MS could benefit clinical diagnosis

area. In chapter 1, we have developed a clinically applicable 17 protein marker

panel for the early detection of HCC using chronically separated cohorts, which the

performance was overwhelming compare to conventional methods and relatively

advanced method called GALAD score.

While developing an MRM-LC/MS method, many computational obstacles

were faced. Data manipulation and machine learning methods had to be

experienced prior to data collection to develop a statistically significant model,

which is one of the great challenges for many researchers with potential data to

present a clinically applicable assay. In chapter 2, we have presented an user



87

friendly web application called WMD for those researchers who are unfamiliar

with machine learning to process the data and glimpse a potential multi marker

panel. Not only for beginners, WMD also provides hyperparameter tuning option

for advanced users to optimize their result.

To present an analytical method to the clinical area, administrations have

announced standard procedures for specific categories to prove the newly

developed analytical method are reproducible and stable. For a multiplexed panel

method, the administration requires validation result of each category for every

single target in the panel, which not only made it frustrating for researchers to

conduct each experiment, but to manipulate and calculate the resulting data

according to the validation guide. The MVP web application have simplified the

calculation and evaluation procedure with a single upload of the data for each

category, which could have saved time and cost but more importantly it could have

eliminated human error.

Overall, in this thesis, a multi marker panel were developed using mass

spectrometry-based method. During the development of the panel, computational

process were complicated, which lead to the idea of creating user friendly web

application to aid the researchers to develop a clinically applicable panel with less

frustration.
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국 문 초 록

서론:전통적인 간세포암의 감시진단은 이미징 기법과 혈청 종양

마커의 정량으로 진단하나, 충분치 못한 정확성의 한계가 있다.

간세포암 조기진단에 대한 수요는 존재하며, 본 실험에서는 이를

프로테오믹 기술 기반 혈청 분석 바이오마커 패널의 제작 및 검증을

통해 정확성이 향상된 기법을 제시한다. 또 한 이러한 바이오마커

패널의 임상적용을 위한 바이오마커 개발과 분석법 검증의 전산작업을

직관적으로 진행 할 수 있는 두개의 웹 어플리케이션을 개발 및

제시한다.

방법:1장에서는 다기관 환자 대조군 시료는 간세포암 환자군과

간경화증,만성 B형 간염,만성 C형 간염등을 보유 하나 간세포암이

아닌 집단군이다. 본 실험은 질량분석기 다중반응검지법기반의 17

단백질 바이오마커를 398명의 환자 대조군으로 개발하였다.알파태아닌

단백질, 비타민 K 길항제-II를 개발된 패널의 마커에 더 했을때의

성능을 곡선 아래 면적으로 확인하였으며,이를 398명의 학습데이터와

170명의 평가데이터, 시간적으로 단절된 159명의 검증 데이터로

검증하였다.2장에서 바이오마커 개발 웹 어플리케이션은 파이썬 언어와

Scikit-Learn 모듈로 개발하였으며, Django Framework로 웹

어플리케이션의 틀을 구성하였다.배치 효과 정규화와 데이터 치우침

기반 정규화 기능을 제공하며,전진선택법,후진선택법 및 Recursive

Feature Elimination 기법을 바이오마커 선정 기능으로 개발하였다.

머신러닝 평가 기능은 로지스틱 회귀 기법과 서포트 벡터 머신 기법을

채용하였다. 분석법 평가 포탈은 Spring boot로 웹 어플리케이션

기반을 확립했으며,JSP,HTML,JavaScript를 프론트단을 개발하였다.

아파치 톰캣,MySQL로 서버의 개발과 데이터베이스를 개발하였다

결과:1장에서는 알파태아닌 단백질,비타민 K 길항제-II를 추가한

패널에서 곡선 아래 면적의 수치가 패널 단일일 떄보다 높은 것을

학습데이터 (0.989 vs 0.937, P<0.05)와 검증데이터 (0.958 vs

0.940, P<0.05)에서 확인하였으나 평가데이터 (0.898 vs 0.891,

P=0.28)에서 하락함을 확인하였다.조합 및 단일 패널에서 모두 현행

알파태아닌단백질 단독 마커에 비해 2센치 이하의 단일 간세포암
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환자군 구별에 있어 높은 곡선 아래 면적 수치을 학습데이터 (0.940 &

0.929 vs 0.775,모두 P<0.05),평가 데이터 (0.894 &0.893 vs

0.593,모두 P<0.05),검증데이터 (0.961 &0.937 vs 0.806,모두

P<0.05)에서 확인 할 수 있었다.조합 및 단일 패널에서 모두 GALAD

score 보다 높은 곡선 아래 면적 수치를 확인 할수 있었다(0.945 and

0.931 vs 0.829, 모두 P<0.05). 제 2장에서는 WMD는 데이터

전처리, 바이오마커 선정 및 개발된 모델에 대한 평가를 섹션별로

기능제공을 하는 웹 어플리케이션을 개발하였다.WMD로 개별 샘플의

타겟 정량데이터가 들어있는 2차원 데이터를 최종적으로 모델까지 개발

할 수 있음을 확인하였다.MVP 포탈은 Skyline 프로그램에서 추출된

아래 각 분석법 검증 항목의 실험 결과 데이터를 계산하고 검증 할 수

있다: 검량선, 특이성, 선택성, 캐리오버, 정확성, 생체시료 효과,

회수율,희석의 타당성,안정성 및 품질관리시료 항목등이 있다.계산이

끝난 항목들의 계산 결과 및 기준 통과 여부는 관 페이지에서 확인 할

수 있다.

결론:본 실험에서 개발한 17 단백 다중 마커 패널은 간세포암

환자를 고위험군 대조군에서 구분 할 수 있었으며 조기 발견에 높은

정확성을 보였다.또 한 바이오마커 개발에 요구되는 전산 작업을 할 수

있는 웹 어플리케이션으로 모델 개발 과정과 분석 검증 과정을 간소화

할 수 있었다.

주요어 :간세포암,바이오마커,프로테옴,혈청,소프트웨어

학 번 :2018-36314
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