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ABSTRACT 

 

 

A study on the automated 

echocardiogram interpretation using 

deep neural networks for clinical 

decision support system  

 

 

  Jangjay Sohn 

Interdisciplinary Program in Bioengineering 

The Graduate School 

Seoul National University  
 

 

Echocardiography is an indispensable tool for cardiologists in the diagnosis 

of heart diseases. By echocardiography, various structural abnormalities in the 

heart can be quantitatively or qualitatively diagnosed. Due to its non-

invasiveness, the usage of echocardiography in the diagnosis of heart disease 

has continuously increased.  

Despite the increasing role in the cardiology practice, echocardiography 

requires experience in capturing and knowledge in interpreting images. . 

Moreover, in contrast to CT or MRI images, important information can be 

missed once not obtained at the time of examination. Therefore, obtaining and 

interpreting images should be done simultaneously, or, at least, all obtained 

images should be audited by the experienced cardiologist before releasing the 

patient from the examination booth. Because of the peculiar characteristics of 

echocardiography compared to CT or MRI,  there have been incessant 

demands for the clinical decision support system(CDSS) for echocardiography.   



iii 

 

With the advance of Artificial Intelligence (AI), there have been several 

studies regarding decision support systems for echocardiography. The flow of 

these studies is divided into two approaches: One is the quantitative approach 

to segment the images and detects an abnormality in size and function.  The 

other is the qualitative approach to detect abnormality in morphology. 

Unfortunately, most of these two studies have been conducted separately. 

However, since cardiologists perform quantitative and qualitative analysis 

simultaneously in analyzing echocardiography, an optimal CDSS needs to be a 

combination of these two approaches. From this point of view, this study aims 

to develop and validate an AI-based CDSS for echocardiograms through a 

large-scale retrospective cohort. Echocardiographic data of  2,600 patients 

who visited Seoul National University Hospital (1300 cardiac patients and 1300 

non-cardiac patients with normal echocardiogram) between 2016 and 2021. 

Two networks were developed for the quantitative and qualitative analysis, and 

their usefulnesses were verified with the patient data. 

First, a U-net based deep learning network was developed for segmentation 

in the quantitative analysis. Annotated images by the experienced cardiologist 

with the left ventricle, interventricular septum, left ventricular posterior wall, 

right ventricle, aorta, and left atrium,  were used for training. The diameters 

and areas of the six structures were obtained and vectorized from the 

segmentation images, and the frame information at the end-systolic and end-

diastolic phases was extracted from the vector.  

The second network for the qualitative diagnosis was developed using a 

convolutional neural network (CNN) based on Resnet 152. The input data of 

this network was extracted from 10 frames of each patient based on end-

diastolic and end-systolic phase information extracted from the quantitative 

network. The network not only distinguished the input data between normal and 

abnormal but also visualized the location of the abnormality on the image 

through the Gradient-weighted Class Activation Mapping (Grad-CAM) at the 

last layer. 

The performance of the quantitative network in the chamber size and 

function measurements was assessed in 1300 patients.  Sensitivity and 
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specificity were both over 90% except for pathologies related to the left 

ventricular posterior wall, interventricular septum, and aorta. The end-systolic 

and end-diastolic phase detection was also accurate, with an average difference 

of 0.52 frames for the end-systolic and 0.9 frames for the end-diastolic phases.  

In the case of the network for qualitative analysis, 10 input data were 

selected based on the phase information determined from the first network, and 

the results of 10 randomly selected images were compared. As a result, the 

accuracy was 90.3% and 81.2%, respectively, and the phase information 

selected from the first network contributed to the improvement of the 

performance of the network. Also, the results of Grad-CAM confirmed that the 

network trained with 10 images of data extracted based on the phase 

information from the first network displays the location of the lesion more 

accurately than the network trained with 10 randomly selected data.   

In conclusion, this study proposed an AI-based CDSS for echocardiography 

in the quantitative and qualitative analysis. 

 

Keywords: Echocardiogram, AI, Clinical Decision Support System, U-net, 

deep learning, Segmentation 

 

Student Number: 2018-32128 
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1. Introduction 
1.1. Echocardiogram  

1.1.1. Diagnosis using Echocardiogram 

 In echocardiography, the diagnosis of various heart diseases can be 

accomplished by analyzing the reflected ultrasonic wave from the heart. 

Due to its non-invasiveness, the usage of echocardiography in the 

diagnosis of heart disease has continuously increased. Moreover, its 

utilization is also increasing as the number of patients with heart disease 

increases [1]. In echocardiography, various cross-sectional image planes 

depend on the various directions of the ultrasonic beam as seen in Figure 

1.1. Therefore, types of pathologic findings also vary according to the 

various imaging planes. In addition, as the heart is a moving structure, 

an echocardiographic image should be recorded in a moving file, in 

contrast to the still images of the Computed Tomography(CT) or 

Magnetic Resonacne Imageing(MRI) 

 

  

Figure 1.1. Cross-sectional anatomy routinely used in echocardiography 
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1.1.2. Limitation in Echocardiogram 

The technique of image acquisition is very important for a good 

echocardiographic image. Therefore, it takes quite a time to be an 

experienced echocardiographer.   

 In echocardiography, as shown in Figure 1.2, echocardiographers 

search for the optimal probe position and intended image plane, because 

the image can be obtained only in a certain position and plane. The 

echocardiographer should sometimes modify the predefined imaging 

plane to get the image of the area of interest. However, there is no 

limitation in getting cross-sectional images in CT or MRI. However, the 

only obstacle is the presence of artifact-producing objects (prosthesis, 

calcification, etc.) in the image plane. Images are usually obtained by the 

image plane. Images are usually obtained by the pre-defined protocol by 

the paramedical personnel without loss of the anatomic information.  

 

  

Figure 1. 2. Working of echocardiogram. 
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Though, echocardiographic images can be obtained only in certain 

‘places’ and ‘planes.’ Moreover, information once missed at the time of 

examination cannot be detected by the analysis of the images after the 

examination. When the echocardiographic images are obtained by the 

paramedical personnel, obtained images should be audited by the 

echocardiographer before the patient is released from the examination 

booth. 

The echocardiographic evaluation consists of quantitative and 

qualitative analysis. In the quantitative analysis, many studies point to 

inter-and intra- observer variability [2-4]. Even in the qualitative analysis, 

because the heart is a moving organ, diverse opinions may be present in 

a certain specific motion. 

To solve these problems, efforts have been made to standardize and 

apply guidelines for echocardiographic measurements and interpretation. 

However, even with these guidelines, the interpretation of the image is 

decisively determined by the expertise of the person obtaining an 

echocardiogram [5]. As already mentioned above, once an important 

finding is missed in the initial image acquisition, even the experienced 

echocardiographer can pick up the abnormality only by reviewing the 

recorded images. Therefore, not missing a single finding at the time of 

initial image acquisition is of utmost importance. 

The process of interpreting the echocardiogram consists of four 

processes [6]. The first step is to find out the imaging view. Second, the 

image quality of the view has to be checked, so that if the quality of the 

view is suboptimal, the image should be re-obtained. Third, the required 

parameters are measured from the images. Fourth, the abnormal structure 

or motion should be looked for. 

Among these four processes, for the first and second processes, 

high-performance products have been released [7]. In the case of the 
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third and fourth processes, a large number of studies are being conducted 

for quantification of Ejection Fraction (EF), for diagnostic accuracy, or 

to find out a prognostic indicator in a specific disease. 
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1.1.3. Artificial Intelligence in Echocardiogram 
 

Artificial intelligence (AI) has been in progress since 1950s, but 

the use of AI for medical images has increased only recently. AI 

technologies such as machine learning can be trained to identify images, 

quantify them, and discover disease patterns hidden in images, as they 

can consider relationships between pixels in images, or the clinical 

metadata [8]. By combining clinical interpretation with information 

derived from machine learning algorithms, accuracy can be improved 

through the reduction of inter-observer and intra-observer variability, as 

well as by providing subtle information [9-11] invisible to the operator. 

These technologies have the potential to improve the performance of 

clinical decision support systems (CDSS) and reduce unnecessary 

treatments and procedures. In particular, AI is likely to be a valuable tool 

for clinicians without expertise, who cannot diagnose or treat patients 

with higher accuracy and confidence. CDSS may reduce the likelihood 

of error occurrence, thereby improving patient management. Although 

the use of machine learning has developed significantly over the past 

decade, the entire application still needs to be improved, and further 

research is needed to improve its implementation in clinical applications. 
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1.2. Clinical Background 

To develop a CDSS that can effectively help make clinical decisions, 

it is necessary to know how cardiologists use echocardiograms in the 

diagnosis. In the development of deep learning networks to be applied to 

CDSS, following the flow of the clinicians' method of interpretation will 

enable the network to produce faster and more accurate results. The 

echocardiographic evaluation consists of two analyses: a quantitative 

and a qualitative diagnosis and it is necessary to know how these two 

diagnoses are made. 
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1.2.1. Diagnostic Flow  

 Cardiologists have anatomical knowledge and interpret the heart 

structures shown in the echocardiogram quantitatively or qualitatively, 

judging by the appearance of the heart that differs between systole and 

diastole as shown in figure 1.3. Along with the echocardiogram, a single-

lead electrocardiogram (ECG) is included in the echocardiographic 

image. While echocardiography provides the structural and functional 

information of your heart, ECG informs the doctor when the systolic and 

diastolic periods are timed. This information about the timing in the 

cardiac cycle is important, especially in the hemodynamic information 

of the heart. In echocardiography, occasionally, the phase of the 

respiratory cycle is important in the interpretation. Many vendors of the 

echocardiographic machine provide information about the respiratory 

cycle inferred from the ECG voltage change with respiration. 

 

 

  

Figure 1.3. Clinical process of reaching echocardiographic diagnosis 
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 For quantitative analysis, cardiologists measure the size of heart 

structures in systolic and diastolic images in an echocardiogram. Figure 

1.4 shows the criteria for quantitative diagnosis, which can be obtained 

in the parasternal long-axis (PLAX) view used in this study. In the PLAX 

view, anatomical information of the left ventricle, interventricular 

septum, left ventricular posterior wall, right ventricle, aorta, and left 

atrium can be obtained. In normal subjects, the diameters of the 

chambers decrease during the systole and increase during diastole, 

whereas wall thickness increases during systole and decreases during 

diastole. In the disease process, the absolute number or the ratio of 

increment or decrement of these values becomes abnormal. By providing 

these absolute values and changes during the cardiac cycle automatically, 

CDSS can give information about the subtle abnormality that might have 

been overlooked. 

 

 

 

  

Figure 1.4. Criteria for quantitative diagnosis 
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 In addition to the above quantitative diagnosis, the clinician makes 

the diagnosis qualitatively. For example, if the patient has a problem with 

the pericardium, the abnormal septal motion might be accompanied by 

constrictive pericarditis or pericardial effusion might be seen as shown 

in Figure 1.5. Among these two, abnormal septal motion, called septal 

bouncing, is the clue to constrictive pericarditis. For the diagnosis of 

constrictive pericarditis, the anatomic abnormality is almost always not 

evident. Diagnosis usually requires an in-depth Doppler examination 

additionally performed based on the 2D echocardiographic suspicion. 

Therefore, if the finding of septal bouncing is missed at the time of the 

scanning procedure, an in-depth Doppler evaluation might not have been 

done and might have missed the diagnosis of constrictive pericarditis. By 

CDSS, a reasonable basis for pathology similar to the decisions made by 

the experienced echocardiographer is to be presented. 

 

 

 

Figure 1.5. Examples of qualitative diagnosis 
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1.2.2. Previous studies and clinical implications of 

this study  
 

Imaging diagnosis consists of image acquisition and image 

diagnosis. In CT and MR, there is no human factor in image acquisition. 

However, in echocardiography, expertise is needed to get the optimal 

image for the diagnosis. Therefore, not all cardiologists are capable of 

performing the examination. Because of the increasing number of 

examinations, in many Western countries and even in many institutions 

in our country, there is a tendency to transfer image acquisition tasks to 

the sonographer. To ensure the quality of image and for the training 

purpose of the beginners, an AI system for image acquisition such as 

‘Caption guidance’ has already been released in the market.  

Regarding image interpretation, imaging diagnosis is composed of 

quantitative and qualitative analysis. Several studies have been carried 

out in image interpretation as shown in Table 1.  

For the image interpretation, the first task is the segmentation of the 

echocardiogram image [12, 13], which compartmentalizes the structures 

of the heart and compared the difference between the cardiologists’ 

compartmentalized images. If these segmentation models are well 

trained, clinicians can automatically get figures related to changes in 

width or diameter immediately without having to measure them directly 

in the echocardiogram image. 

The second task is to extract cardiovascular parameters [14, 15] or 

end-diastolic / end-systolic phase [16] from the echocardiogram image 

and to distinguish between normal and abnormal. It is a task that allows 

various disease-related indicators to be obtained from echocardiogram 
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images. In this task, the end-systolic and end-diastolic phases should be 

detected accurately, so that the clinician can see these specific timings 

more carefully. 

The final task is to determine whether there is a qualitative 

abnormality. As an end-to-end method, a deep learning network can 

directly classify the normal and abnormal findings present in the image 

[17, 18]. Most of these studies suggest what is called a class activation 

map, indicating the part of the image where the network is significantly 

referred to. 

In the quantitative analysis, the majority of the current studies 

focused on the calculation of EF. EF is the most important parameter 

usually calculated in echocardiography. However, other parameters 

should routinely be obtained in echocardiography. Previous studies used 

apical 4 and 2 chamber views to obtain EF by summation of disks 

method (Biplane Simpson’s method). In these views, other standard 

parameters cannot be obtained. In this current study, the PLAX view was 

used, in which standard M-mode measurements have been made in daily 

clinical practice.  

In the qualitative analysis, one group of previous studies focused on 

the accurate diagnosis of a certain ‘specific’ disease. These studies 

intended to get help in the diagnosis when one encountered subtle 

abnormal findings. The other group of studies was pursued to find out 

prognostic indicators in images among a large number of patients. 

For the CDSS that is useful in daily clinical practice, in addition to 

providing parameters usually measured in the standard M-mode 

measurement, CDSS can detect any abnormality and, desirably, suggest 
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the diagnosis. In this study, the PLAX view was used in which all 

parameters measured in the standard M-mode measurement can be 

obtained. We also trained the system not only with the normal image but 

also with the same number of images with pathologic findings. As CDSS 

to be developed in this study is capable of both quantitative and 

qualitative analysis, and diversifies pathologic findings in the qualitative 

analysis, this CDSS may play a robust role in clinical practice. 
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Task  Author Performance  
Characteristic of 

study 

Segmentation  
Sarah Leclerc et al. [12] LV volume mean correlation 0.95 

Quantitative Analysis 
Neda Azarmehr et al. [13]  Dice coefficient 0.92±0.05 

Parameter extraction and  

Abnormal detection  

Amirata Ghorbani et al. [14] 

Predict presence of pacemaker leads 

 (AUC = 0.89),  

Predict enlarged left atrium 

 (AUC =0.86), Quantitative Analysis 

Jeffrey Zhang et al. [15] 

Detect hypertrophic cardiomyopathy, cardiac amyloidosis, and 

pulmonary arterial hypertension  

(AUC=0.93, 0.87 and 0.85, respectively) 

Detecting cardiac 

Sarcoidosis  
Susumu Katsushika et al. [17] 

Detect cardiac sarcoidosis 

(AUC = 0.855, 95% CI: 0.735–0.975) 
Qualitative Analysis 

Detecting valvular diseases Majid Vafaeezadeh et al. [18] 
Detect Cardiac Sarcoidosis 

(80% rate of model accuracy) 

ES/ED phase detection Zhibin Liao et al. [16] 
Detect ES/ED phase 

(Average, 0.20 and 1.43 frame difference the ED and ES frames,) 
Quantitative Analysis 

Table 1.1. Studies of quantitative and qualitative analysis of echocardiogram. Related tasks include segmentation, parameter extraction, 

measurement of dimensions, and phase detection. Although each study shows excellent performance, AI system providing both quantitative 

and qualitative analysis is lacking. 

https://link.springer.com/article/10.1007/s11548-021-02542-7#auth-Majid-Vafaeezadeh
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Author Characteristic of study 

Sarah Leclerc et al. Apical 4 chamber and apical 2 chamber 

Neda Azarmehr et al.  Apical 4 chamber views 

David Ouyang et al.  Apical 4 chamber views 

Amirata Ghorbani et al Apical 4 chamber 

Jeffrey Zhang et al. Apical 2, 3, 4 chamber, PLAX, PSAX 

Susumu Katsushika et al. Apical 4 chamber 

 Majid Vafaeezadeh et al. Apical 4 chamber 

Huang et al. Apical 2, 4 chamber, PLAX, PSAX 

Table 1.2. Most of the current echocardiogram studies are conducted mainly on the apical 4 chamber and the apical 2 chamber (PLAX: 

Parasternal Long Axis view, PSAX: Parasternal Short Axis view) 
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1.3. Technical Background 

1.3.1. Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNNs), a type of artificial 

neural network in the field of machine learning, are designed with 

inspiration from the working of nerves. Unlike a structure in which all 

neurons in each layer are fully connected to neurons in the previous or 

next layer in the existing neural network, the filter is placed so that 

neuron values are calculated in duplicate according to the movement of 

convolution filters. In addition to the layer performing the convolutional 

operation, a pooling layer, a dropout layer, and a rectified linear unit layer 

(ReLU) are used. From LeNet [19] proposed by LeCun to the present, 

CNN has been widely used in various fields such as video recognition 

[20], recommendation systems, and natural language processing systems. 

CNN calculates the loss value in the soft-max loss layer for the 

probability distribution of each class output from the final layer. CNN 

proceeds with the learning according to the change in the calculated loss 

value. Equation (1) is a method of obtaining the soft-max probability 

distribution for each class, and Equation (2) is a method of calculating 

the loss value of the probability distribution. 

Figure 1.6. A typical shape of Convolutional Neural Network  
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𝑝𝑘 =
𝑒𝑥𝑘  

∑ 𝑒𝑥𝑖  𝑁
𝑘=1

     (1) 

 

𝐿𝑜𝑠𝑠 =
1

𝑁
∑ log(𝑝𝑖, 𝑙𝑖)    (2)

𝑁

𝑖=1
 

 

CNN's training proceeds to optimize weight variables such as a 

filter according to changes in the calculated loss values from the soft-

max loss layer. Optimization proceeds using the Stochastic Gradient 

Descent (SGD) method. SGD updates the weight variables to be used in 

the next learning step through the change in the loss value according to 

the weight map changed in the previous learning step. In this process, the 

learning rate and momentum constants are used. In CNN's soft-max loss 

layer, computation results are transferred through backpropagation 

algorithms to higher layers, full-connect layer, activation function, 

pooling layer, and convolution layer, and each layer has a new weight 

variable through computation through backpropagation algorithms. The 

learning rate is a predetermined constant and is multiplied by a constant 

between 0 and 1 for each predetermined learning step. Finally, it aims to 

minimize the loss value by updating the parameters inside CNN. In the 

echocardiogram, CNN is being used in many ways [21, 22]. 
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1.3.1.1. U-net 

In this dissertation, the U-net model based on CNN Semantic 

Segmentation is modified and used to suit the echocardiogram. The U-

net model is a structure developed for biomedical image segmentation 

[23, 24]. Training about a specific object should be conducted in advance 

to separate the structure to be found from the image from other structures 

or backgrounds. The function of the U-net structure is to connect the 

output of the contraction path for each level and the input of the 

expanding path. These connections allow high spatial resolution 

capabilities to be confined to a fully convolutional network, resulting in 

more accurate output based on information. The contracting path is 

configured by repeatedly applying 3×3 convolution for each convolution 

layer, and ReLU was used as the active function. For each pooling layer, 

a 2×2 max pooling operation with strand 2 is similarly used for 

downsampling. Each time the layer goes down, the number of channels 

doubles and is downsampled. The expanding path used 3×3 convolution 

for each convolution layer, doubling the number of channels as the layer 

climbed, and using ReLU as the activation function. The blue arrow 

connecting the contracting and expanding paths displays copy and crop, 

and the input is made to affect the output. In the final layer, 6 classes 

were classified according to the number of heart structures. In recent 

studies, U-net showed good results in segmentation [12, 25, 26]. 

. 
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Figure 1. 7. U-net structure for segmentation of 6 chamber 
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1.3.1.2. Residual Network 

 ResNet is the architecture that won the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) in 2015. While the previous 

year's winning team had 22 layers of GoogleNet architecture, the ResNet 

architecture consisted of 152 layers, which were approximately 7 times 

deeper. This deep stacking of the layers of the network allowed the top-

5 error to be lowered, and it is still widely used to solve the image 

classification problem. The existing network structure showed poor 

results above a certain depth as the neural network was deeply stacked. 

In other words, the depth of the neural network did not guarantee the best 

results. To solve these problems, the ResNet research team proposed 

Residual Block, which allows results to improve as the neural network 

is deeply stacked. Figure 1.8 shows the Residual Block [27]. The 

Figure 1.8. Traditional neural network learning and residual block learning 
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addition of a shortcut that adds input to the output value distinguishes it 

from the existing neural network layer. .  

If the purpose of existing neural networks was to obtain a function 

𝐻(𝑥)  that maps the input value 𝑥  to the target 𝑦 , ResNet aims to 

minimize 𝐹(𝑥) + 𝑥 . At this time, since 𝑥  is a value that cannot be 

changed, the purpose should be to make 𝐹(𝑥) close to zero. 𝐹(𝑥) can 

be expressed as 𝐻(𝑥) − 𝑥 , which reduces 𝐻(𝑥) − 𝑥  to a minimum. 

𝐻(𝑥) − 𝑥  is called the residual and this network is called ResNet 

because it minimizes the residual.  

Figure 1.12 shows the configuration of the ResNet-152 architecture. 

The ResNet architecture built in this way solved the existing problem 

that the results deteriorated as the neural network deepened, and the 

network was deeply stacked to improve performance. In addition, when 

the neural network was built up with 18, 34, 50, 101, and 152 layers, the 

deeper the network, the better the performance. In this paper, the ResNet-

152 architecture is utilized as a way to distinguish normal and abnormal  

echocardiogram. Many previous studies have demonstrated that 

Residual Network is a suitable structure for finding diseases in the 

echocardiogram [28, 29].  
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1.3.1.3. Gradient-weighted Class Activation 

Mapping (Grad-CAM) 

Learning through a deep learning network is a series of nonlinear 

operations such as deep networks and active functions, therefore, it is 

difficult to know through which process the correct answer was derived. 

Hence, several techniques are being studied to estimate and visualize the 

process of predicting the correct answer by the learned classification 

model. Among the representative learning visualization techniques, a 

class activation map (CAM) was studied to view the class of interest 

predicted by the classification mode [30]. The CAM uses the last 

convolutional layer before the feature map passes through the fully 

connected (FC) layer, which loses spatial information and becomes 

flattened, to identify the region of interest of CNN. We extract 𝑘 feature 

maps from the last convolution layer and call them 𝑓𝑘. All feature maps 

are passed through Global Average Pooling (GAP) to obtain 𝐹𝑘. When 

we obtain the CAM for class 𝑐, we should obtain 𝑆𝑐 by the softmax 

value of the multi-classification function, through the product of weights 

𝑤𝑐 and 𝐹𝑘 toward 𝑐, and we obtain 𝑀𝑐. The expression is as follows. 

 

𝐹𝑘 =   ∑ 𝑓𝑘(𝑥, 𝑦)

𝑥,𝑦

   (3) 

 

𝑆𝑐 = ∑ 𝑤𝑘
𝑐𝐹𝑘

𝑘

= ∑ ∑ 𝑤𝑘
𝑐

𝑘𝑥,𝑦

𝑓𝑘(𝑥, 𝑦)    (4) 

 

𝑀𝑐 = ∑ 𝑤𝑘
𝑐

𝑘

𝑓𝑘(𝑥, 𝑦)        (5) 

The region of interest of CNN could be confirmed through the 
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product of the value corresponding to (𝑥, 𝑦) of the last feature map and 

the weight 𝑤𝑐  of class 𝑐   𝑀𝑐(𝑥, 𝑦)  can be seen as the influence or 

interest of the classification model on classifying the image into class 𝑐. 

However, the CAM has the disadvantage of being able to see the region 

of interest only in the last convolution layer, and GAP must be followed 

after the last convolution in the classification network. Therefore, 

techniques that can be used in general models have been studied to 

improve these shortcomings.  

The gradient-weighted class activation mapping (Grad-CAM) can 

check the CAM in all convolutional layers through the slope of the 

weights generated during the backpropagation of the classification 

network [31]. The Grad-CAM process is as follows. After 

backpropagating with 𝑘  feature maps 𝐴𝑘  through the convolution 

layer and 𝑦𝑐 , the predicted value of class 𝑐 , and the weighted slope 

value of 𝐴𝑘, the position is multiplied and added to all the values 𝑎𝑘 

with GAP according to the order of 𝑘 channels. Then, it passes through 

the activate function Relu to obtain a Grad-CAM 𝐿𝑐 for class c. 

𝑎𝑘 =  
1

𝑍
 ∑ ∑

𝜎𝑦𝑐

𝜎𝐴𝑖,𝑗
𝑘

𝑗𝑖

       (6) 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝑙𝑢(∑ 𝛼𝑘

𝑐𝐴𝑘

𝑘

)      (7) 

 Unlike the CAM, the Grad-CAM can obtain 𝐴𝑘 and 𝑎𝑘 at the 

desired convolution layer, therefore, the CAM at the middle point of the 

network can be obtained. In the process of calculating 𝑎𝑘, the GAP is 

calculated separately from the classification network, therefore, GAP is 

not forced on the network. In this study, we applied it to the last layer of 

Resnet, a classification network that adopted Grad-CAM. In a structure 
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consisting of 3×3 convolution Deepwise and 1×1 convolution Pointwise, 

the feature map after Depthwise was set to 𝐴𝑘  to obtain Grad-CAM. 

Figure 7 shows the Grad-CAM structure.
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Figure 1.9. Architecture of Grad-CAM used in this study. When any network released the result as an output, Grad-CAM provides 

the basis for judgement by looking at the feature map of the last convolution layer. 

.  
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1.4. Unmet Clinical Needs 

So far, most of the echocardiogram-related CDSS have been 

developed separately for qualitative and quantitative diagnosis. However, 

to develop a reliable and convincing CDSS, it is necessary to develop a 

network similar to the flow of clinicians' diagnoses, and such a system 

can be developed using existing deep learning algorithms. It is important 

to develop a system that can make both quantitative and qualitative 

diagnoses by analyzing echocardiogram images, and it is necessary to 

verify this as various heart disease groups can appear in the image.  
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1.5. Objective 

The objective of this dissertation is to develop and validate an AI-

based CDSS for echocardiography. An optimal CDSS, which is useful to 

clinicians  must have the following characteristics: 

 

1) Accurate compartmentalization of anatomical structures in 

images and quantitative diagnosis based on them.  

2) Accurate detection of the end-systole and end-diastole of the heart 

and the presence of pathologic findings as shown in the video. 

3) A system for classifying normal and abnormal findings in patients, 

and the diagnosis based on this should be presented in the video. 
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CHAPTER 2  

Materials & Methods 
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2. Materials & Methods 

2.1. Data Description 

The study was approved by the institutional review board of Seoul 

National University Hospital (IRB No. 2201-110-1293). As a 

retrospective study, this study analyzed 2,600 echocardiographic data 

stored in the Seoul National University Hospital Picture Archiving and 

Communication Systems (PACS) from 2016 to 2021, consisting of data 

of 1300 non-cardiac patients with normal echocardiograms and 1,300 

cardiac patients. The data compositions for the training of quantitative 

and qualitative networks were different, and for quantitative networks, 

training used the method of 5-fold cross-validation with 300 annotated 

images and was verified with 1300 images with pathologic findings as 

shown in Figure 2.1. In addition, information on end-systolic and end-

diastolic frames extracted from the results of quantitative networks was 

verified with 300 annotated data. On the other hand, for a qualitative 

network, training was done with data of 1000 out of 1300 normal 

echocardiograms and 1300 echocardiograms with pathologic findings 

and verified with data of 600 echocardiograms with pathologic findings 

as shown in Figure 2.1. As shown in Table 3.1, several state of art 

echocardiograhic machines from different vendors were used.  
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Figure 2.1. Block diagram of the data selection process for quantitative network. To train quantitative networks, 300 images segmented by 

cardiologists were used for segmentation. 1300 images with pathologic finding and 300 annotated images were used as data to verify them. 1000 

patients and normal finding were used to train the qualitative network, and 300 images with pathologic and normal findings were used for 

verification. All networks were trained using the 5-fold cross validation method. 
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Manufacturer name Model name  Number of devices 

GE Healthcare 

Vivid S70 12 

Vivid q 1 

Vivid E9 769 

Vivid E95 954 

Vivid 7 13 

SIEMENS 
ACUSON SC2000 408 

ACUSON SEQUOIA 1 

Philips Medical Systems 
EPIQ 7C 424 

CX50 18 

Total 2600 

Table 2.1. Echocardiographic machines used in the study. Various models of machines from 3 different vendors were used. 
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2.2. Annotated Data  

Images segmented by a cardiologist are required to train the 

segmentation network. Overall, 300 segmented images were provided. 

In addition, an excel table containing end-systolic and end-diastolic 

frames was prepared for 300 echocardiograms, as shown in Figure 2.3. 

 

 

 

 

 

 

Figure 2.2. Block diagram of the data selection process for qualitative network. 

Echocardiographic images compartmentalized by a cardiologist (annotation 1) for 

training in quantitative analysis networks. Excel files (annotation 2) of the end-systolic 

and end-diastolic frames 
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2.3. Overall Architecture 

Two deep learning networks were used for both quantitative and 

qualitative analysis. As shown in Figure 2.4, a segmentation task-related 

network was used for the quantitation network, through which functional 

abnormalities of the heart could be monitored in real-time, and the 

information related to systolic and diastolic dimensions could be 

extracted. In addition, for qualitative analysis, a network was constructed 

to determine the presence of pathologic findings in the image from the 

data based on the extracted systolic and diastolic frames. In the second 

network, the input data was used to indicate the abnormal finding 

visually.  
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Figure 2.3. An overall network structure that includes networks for quantitative and qualitative analysis 
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2.3.1. Quantitative Network  

Quantitative networks performing segmentation tasks were based on 

U-net, which already showed high accuracy in the previous studies [32, 

33]. Three hundred paired echocardiographic images segmented by a 

cardiologist were used. Data were trained through 5-fold-cross validation, 

batch size was 10 and epoch was 300 times. Optimization was performed 

through Adam optimizer, and the learning rate was set at 0.0001. 

After segmentation was completed, each structure's contour was 

obtained together with the dimension of the short axis. After vectorized 

dimension of the short axis for each frame, the first minimum and 

maximum points of the whole vector were extracted and defined as end-

systolic, and end-diastolic frames, respectively, and stored as variables 

for the second qualitative network. 

With this quantitative analysis, diagnoses were made using 

diagnostic criteria shown in Figure 1.4.
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Figure 2.4. Quantitative network for the segmentation and measurement of dimensions. 
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2.3.2. Qualitative Network 

In the qualitative network, based on end-diastolic and end-systolic 

frame information from the previous network, we used Resnet, a network 

that selects a total of 10 input images at end-diastole and end-systole as 

seen in Figure 2.5. Data were trained through 5-fold-cross validation, 

with a batch size of 10- and 300-times epoch. Optimization was carried 

out through Adam optimizer, and the learning rate was carried out at 

0.0001. 

The Grad-CAM methodology is applied to the last layer of Resnet. 

To check the validity of the input images selected from the quantitative 

analysis, the training was performed in the same environment with 10 

randomly selected images from the input. If the selection process of the 

end-systolic and end-diastolic frames referenced above is valid, it is 

assumed that the network will show better diagnostic performance.
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Figure 2.5. Qualitative network for the pathology and visualization of abnormal findings.  
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2.4. Dice Similarity Score 
 

To compare the segmentation results in this paper, the Dice 

similarity coefficient (DSC) was calculated and compared with the 

Ground Truth image segmented by the clinician. As shown in Figure 2.6, 

the sum of the areas of the two images becomes the denominator, and the 

double of the intersection of the areas of the two images becomes the 

numerator. If the images are similar, it has a value closer to 1[34].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.6. Dice similarity coefficient. It is twice the intersection of the two 

images over the sum of the areas of the two images. It takes a value of 1 when 

completely overlapping and a value of 0 when completely falling. 
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2.5. Intersection over Union  
 

Besides the previous DSC coefficients, to compare the segmentation 

results, the degree of overlap between the predicted value and the ground 

truth is used as Intersection over Union (IoU). Referring to Figure 2.7, 

this coefficient is defined as the intersection area over the union area of 

the two images. A coefficient closer to 1 represents better performance. 

In most cases of segmentation or bounding box, this IoU value is used as 

an indicator of accuracy. The meaning is similar to the DSC coefficient, 

but since each paper uses a different index, the corresponding values 

were also compared. 

  

Figure 2.7. Besides the DSC coefficients, in order to compare the segmentation 

results, the degree of overlap between the predicted value and the ground truth 

is used as Intersection over Union (IoU). IOU of the two image areas has a value 

between 0 and 1. Better performance is represented by a number close to 1. 
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CHAPTER 3  

Results & Discussion 
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3. Results & Discussion 

3.1. Quantitative Network Result  

The segmentation by the quantitative network was performed on 

normal and abnormal echocardiograms. As shown in Figure 3.1, we can 

confirm that dimensional changes of the structures are properly reflected 

according to the systolic and diastolic phases of the heart. The 

dimensional change of the structures was tracked well by the network 

developed in this study, based on U-net. In addition, in Figure 3.2, in the 

echocardiogram showing decreased LV systolic function, the area 

change of the segmented LV is reduced reflecting the decreased left 

ventricular systolic function. This decreased LV systolic function is 

quantitatively reflected in the vector. In both normal echocardiogram and 

echocardiogram with pathologic findings, it was assumed that end-

systolic and end-diastolic timing can be accurately decided by the 

minimum and maximum point on the graph, respectively.  

However, tracking performance in the interventricular septum, left 

ventricular posterior wall, and aorta was somewhat inferior to other 

segments. It is probably because these structures have smaller 

dimensions than other structures and our tracking system is not fine 

enough for these structures.  

In this study, comparable or slightly better results were obtained in 

segmentation compared to the previous study as shown in Table 3.2.  
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Figure 3.1. a) Segmentation in normal echocardiogram, b) Area of each chamber represented by the number of pixels shows change in area 

during the cardiac cycle. 
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Figure 3.2 a) Segmentation in echocardiogram with decreased LV systolic function, b) Decrements or increments in areas during the 

cardiac cycle are decreased compared to the normal values. 
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Figure 3.3. Still frames of the whole cardiac cycle a) in normal and b) in patient with dilated LV with decreased systiolic function.  Note the 

optimal segmentation in whole frames. 
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 ` Parameter Segmentation region Reference studies Our study 

Jeffrey Zhang et al. [15] 
IoU 

Left ventricle 0.88 0.92 
Left atrium 0.86 0.89 

Right ventricle 0.85 0.88 
Aortic 0.86 0.84 

Interventricular septum 0.77 0.76 
LV posterior wall 0.75 0.73 

AUC Averaged 0.89 0.94 

Huang et al. [35] 

DSC, IoU Averaged 0.78 (DSC) 
0.61(IoU) 

0.91(DSC) 
0.84(IoU) 

Sensitivity 
Specificity 

Regional Wall Motion 

Abnormalities 
(Sensitivity: 81.8% 

Specificity: 81.6%) 
(Sensitivity: 90.33%  

Specificity: 87%) 

Table 3.1. Segmemtation performance of previous studies  
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3.1.1. Diagnostic results  

Quantitative analysis was performed in 1300 normal 

echocardiograms and 1300 echocardiograms with pathologic findings. In 

seven pathologic findings that can be assessed in the PLAX, it was 

confirmed that the majority of them showed excellent diagnostic 

performance with relatively high accuracy and specificity.  

However, the diagnostic accuracy was low in pathologic findings 

related to the interventricular septum, left ventricular posterior wall, and 

aorta, probably related to the inferior tracking performances in these 

structures.  

Diagnostics accuracy is low in detecting basal anteroseptal 

hypokinesia with a sensitivity of 42.3% and specificity of 62.8%. 

However, it is well known among the cardiologist that the diagnosis of 

hypokinesia, to which the performance of our system was compared, is 

visually estimated, and therefore, it is subjective. Cardiologists have 

been pursuing an objective way in the diagnosis of hypokinesia. In future, 

our system can provide this objective way of diagnosing hypokinesia.  

 



48 

 

 
Quantitive analysis  

Sensitivity Specificity 

LV enlargement (n=580) 

[Max (a) ≥ 55 mm or Min (a) ≥ 35 mm] 

91.55% 

[0.88 0.93] 

93.75% 

[0.91 0.95] 

LV dysfunction (n=330) 

[(Max (a)2 – Min (a)2)/Max(a)2 ≤ 0.5 (50%)] 

94.55% 

[0.91 0.96] 

96.08% 

[0.94 0.97] 

Increased LV wall Thickness (n=280) 

[Min (b) and Min (c) ≥ 12 mm] 

72.14% 

[0.66 0.77] 

80.39% 

[0.77 0.82] 

Basal anteroseptal hypokinesia (n=26) 

[(Max (b) – Min(b)) / Min(b)] 

42.31% 

[0.23 0.63] 

62.79% 

[0.60 0.65] 

Aorta dilation (n=257) 

[Max (d) ≥ 30 mm] 

78.99% 

[0.73 0.84] 

75.84% 

[0.73 0.78] 

LA Enlargement (n=554) 

[Max (e) ≥ 40 mm] 

97.65% 

[0.96 0.98] 

95.27% 

[0.93 0.97] 

RV Enlargement (n=158) 

[Max (f) ≥ 30 mm] 

 

 

 

 

Table 3.2. Sensitivities and specificities of quantitative diagnosis. (a) Diameter of left ventricle, (b) Diameter of interventricular septum, (c) 

Diameter of left ventricular posterior wall, (d) Diameter of right ventricle, (e) Diameter of aorta, and (f) Diameter of left atrium) 
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3.1.2. Phase Detection Result   

In addition to performing quantitative analysis, frames at or near the 

maximum and the minimum dimensions of the left ventricle could be 

picked up and stored. These data were used to extract the input image of 

the network for qualitative analysis. Images showing left ventricular 

maximum and minimum dimensions were regarded as the end-diastolic 

and end-systolic frames, respectively. The accuracy of detecting end-

diastolic and end-systolic frames was evaluated by comparing the 

difference in the number of frames between the frame detected by the 

network and that decided by a cardiologist. 

There was an average difference of 0.52 and 0.9 frames in end-

diastolic and end-systolic frame detection, respectively. In the second 

network, as the five images before and after the end-diastolic and end-

systolic frames were used, this difference in the frame seems to be 

negligible as shown in Table 3.2 and Figure 3.4.  

In the quantitative analysis, it was found that sufficiently accurate 

phase detection is possible even if a network for phase detection was not 

separately employed as in the preceding paper [16, 36].  
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Frame timing  Mean ± std (frame) 

End- diastole 0.52 ± 1.02 

End -systole 0.9 ± 1.32 

Table 3.3. Phase difference between the network output and the 

cardiologist’s annotation. Differences in frame both in end-diastole 

and end-systole were less than 1.  

Figure 3.4. Boxplot of  end-systolic(ES) and end-diastolic(ED)  phase differences  

between output of quantitative network and the frame annotated by cardiologists 
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3.2. Qualitative Network Results 

To evaluate the accuracy of the qualitative network, accuracy and 

sensitivity were assessed in 600 patients, and the trained network was 

compared with 10 randomly selected images.  

The area under the receiver operating characteristic (AUROC) was 

obtained to determine the overall classification performance. The criteria 

of AUROC values are presented in Table 3.4. The models trained with 

the random images showed AUROC values of 0.89, indicating good 

discrimination performance. However, the AUROC value of 0.94 was 

obtained by the model trained with the input data extracted based on the 

end-systolic and end-diastolic timing, indicating excellent 

discrimination performance as shown in Figure 3.4.  

 

 

 

 

Figure 3.5. The comparison of ROC curves between network trained with 

random serial input images and ED/ES based input images.  
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In the qualitative network, the performance of the network improved 

when the training images were selected based on the systolic and 

diastolic timings compared to training using random images. Referring 

to this result, input data based on the systolic and diastolic timing should 

be selected for the CDSS to be developed in the future as shown in Table 

3.4. 

 

 

 

 

  

 

 

Table 3.5. The rule of thumb for the AUROC. [AUROC: area under the receiver 

operating characteristic curve] 

AUROC=0.5 No discrimination 

0.5<AUC≤0.6 Failed discrimination 

0.6<AUC≤0.7 Bad discrimination 

0.7<AUC≤0.8 Fair discrimination 

0.8<AUC≤0.9 Good discrimination 

0.9<AUC Excellent discrimination 

 

 

Input images 
Accuracy 

n (%) 

Sensitivity 

n (%) 

Random 10 images 
487/600 

(81.16%) 

235/300  

(78.33%) 

Network selected 

images 

542/600 

(90.33%) 

261/300  

(87%) 

Table 3.4. Performance comparison between a network trained with 

randomly selected 10 images and 10 images based on end-systolic and 

end-diastolic phase 
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Sensitivities and specificities of individual qualitative diagnoses 

evaluated in this study are shown in Table 3.5. Also in the qualitative 

diagnosis, pathologic findings related to septum and aorta showed 

relatively low sensitivity, and this finding is probably related to the 

suboptimal segmentation of these structures.   

Most of the incorrect classification results showed that the 

segmentation of the LV posterior wall and the interventricular septum 

was incorrect as shown in Figure 3.6. In most cases, recognizing 

boundaries is difficult unless you are a skilled cardiologist, and this 

means that if it is difficult for humans to learn, it is also difficult for a 

deep learning network. 

In learning a quantitative network, learning only with the 

segmentation image of a normal person may be the cause of this 

limitation. If images of patients segmented by experienced cardiologists 

were acquired, made into a database for each disease case, and trained 

on the network, more accurate segmentation results could be obtained. 
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Figure 3.6. a) The label is “Asymmetric septal hypertrophy,” however wrongly diagnosis as basal septal hypertrophy, b) The label is “Normal” however 

wrongly classified as “Increased LV wall thickness.”  
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Qualitative analysis  

Sensitivity Specificity 

D-shaped left ventricle (n=17) 
88.24% 

[0.63 0.98] 

95.20% 

[0.93 0.97] 

Basal septal hypertrophy (n=4) 
75% 

[0.19 0.99] 

92.95% 

[0.90 0.94] 

Asymmetric septal hypertrophy (n=4) 
100% 

[0.39 100] 

94.46% 

[0.92 0.96] 

Mitral valvular disease (n=65) 
93.85% 

[0.85 0.98] 

91.21% 

[0.88 0.93] 

Aortic valvular disease (n= 78) 
89.74% 

[0.80 0.95] 

96.36% 

[0.94 0.98] 

Prosthetic mitral valvular disease (n=28) 
96.43% 

[0.81 0.99] 

90.03% 

[0.87 0.92] 

Prosthetic aortic valvular disease (n=15) 
93.33% 

[0.68 0.99] 

91.45% 

[0.88 0.93] 

Mitral valve prolapse (n=27) 
81.48% 

[0.62 0.94] 

96.68% 

[0.95 0.97] 

Septal bouncing (n=36) 
86.11% 

[0.70 0.95] 

93.09% 

[0.91 0.95] 

Percardial effusion (n=56) 
89.29% 

[0.78 0.96]

94.67% 

[0.92 0.96]

Table 3.6. Sensitivities and specificities of qualitative diagnosis.  

 

 
Quantitive analysis  

Sensitivity Specificity 

D-shaped left ventricle  
91.55% 

[ 0.88 0.93] 

93.75% 

[0.91  0.95] 

Basal septal hypertrophy 
94.55% 

[0.91 0.96] 

96.08% 

[0.94  0.97] 

Asymmetric septal hypertrophy 
72.14% 

[0.66 0.77] 

80.39% 

[0.77  0.82] 

Basal anteroseptal hypokinesia (n=26) 

[(Max (b) – Min(b)) / Min(b)] 

42.31% 

[0.23 0.63] 

62.79% 

[0.60  0.65] 

Aorta dilation (n=257) 

[Max (d) ≥ 30 mm] 

78.99% 

[0.73 0.84] 

75.84% 

[0.73  0.78] 

prosthetic mitral valve dysfunction 
97.65% 

[0.96 0.98] 

95.27% 

[0.93 0.97] 

RV Enlargement (n=158) 

[Max (f) ≥ 30 mm] 

 

 

 

 

 Table 3.1. Sensitivities and specificities of qualitative diagnosis.  
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3.2.1. Grad-CAM Result 

For the quality assessment of the CDSS in the heart disease 

prediction, Grad-CAM was used to unfold the activation of the network. 

The brighter the heat map is, the higher the evidence that the network 

referred to that area. The reason for applying the Grad-CAM is that it is 

not only important for Resnet to perform well, but it is also important for 

the user to know the abnormality indicated by the network. 

Since the object on the video is moving compared to the object in 

the still image, still images of the end-systolic and end-diastolic timing 

are based on the first quantitative network used. In addition to the good 

performance of the network, Resnet should make the same judgment as 

the clinician. Even if the network correctly classified the images as 

having pathologic findings, the cardiologist would not trust the CDSS if 

the network indicates wrong places on the images as pathologic findings. 

 As seen in Figure 3.5, selecting images based on the ES/ED timing 

not only improved the performance of Resnet networks but also showed 

higher accuracy in indicating the pathology. 
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Figure 3.7. The comparison of Grad-CAM between a network trained with 10 images based on end-systolic and end-diastolic timing and the 

network trained with randomly selected 10 images. 
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3.3. Limitation  

3.3.1. Need for an external dataset for 

generalizable network  
 

The data collected for training is obtained from Seoul National 

University Hospital, where the sonographers and cardiologists are highly 

skilled and high-quality images are obtained. Similar to problems raised 

in previous papers, for more generalizable networks, data not only from 

these large hospitals but also from small local hospitals should be used 

for training. 

In addition, an external validation set should be used to test the 

network, but verification using the data set obtained only from Seoul 

National University Hospital could also be a limitation. 

 

 

 

 

 

 

 

 

 

 



59 

 

3.3.2. Future work of the system  

In this study, CDSS, a system capable of both quantitative and 

qualitative analysis was presented and verified to be valid.  

This CDSS can only be applied in PLAX. The complete CDSS for 

other standard views should be incorporated. However, the PLAX image 

is the most informative compared to other standard views. Moreover, the 

number of structures in the PLAX view is higher than that in other 

standard views. Therefore, segmentation would be tougher in PLAX 

compared to other views, and performance in this system would not 

degrade when other standard view images are trained. 

A heatmap by the Grad-CAM was presented in the still frame. For 

the real-time appreciation of the pathologic finding by the clinicians, this 

result should be overlayed on the moving images. 

As the heart moves at a faster rate, fast-moving objects were 

detected incorrectly in quantitative analysis. This system is suboptimal 

for the quantitative analysis of small subjects. Finer segmentation should 

be accomplished for the structure with small dimensions to be analyzed 

accurately.  

This CDSS was not tested in the detection of multiple pathologies in 

a single image. The performance of detecting multiple pathologies 

should be tested in the future. 
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CHAPTER 4  

Conclusion 
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4. Conclusion 

To the best of our knowledge, this study is the first to develop and 

validate an AI-based CDSS system for echocardiography in quantitative 

and qualitative analysis. In quantitative analysis, both sensitivities and 

specificities were over 90% except pathologies related to interventricular 

septum, left ventricular, left ventricular posterior wall, and aorta. Also 

end-systolic and end-diastolic frames can be detected correctly in the 

quantitative analysis. The qualitative analysis system showed 90% 

sensitivity and 83% specificity in detecting pathologic findings using 

end-systolic and end-diastolic input images.  

   The results suggest that both the interventricular septum and the left 

ventricular posterior wall change rapidly in shape in the entire image, 

sometimes the network has difficulty following. However, all of them 

are improved in segmentation results and diagnostic rules than previous 

studies, and it can be said as the first attempt to detect most of the 

diseases related to the parasternal long-axis view at once. 

In future, to improve the data generation part of this study, the 

segmentation of the structure’s small dimensions such as the 

interventricular septum, left ventricular posterior wall, and aorta should 

be performed finer, having more discrete boundaries, than performed in 

this study. For this, it is necessary to establish a large database well 

segmented by a group of experts. CDSS for other standard views must 

be incorporated to become a complete CDSS for echocardiography. 



62 

 

Abstract in Korean 

국문 초록 

 

심초음파 검사는 심장병 진단에 사용되는 중요한 도구이며, 

수축기 및 이완기 단계의 심장 이미지를 제공한다. 심초음파 검사를 

통해 심방과 심실의 다양한 구조적 이상과, 판막 이상등의 질환을 

정량적으로 또는 정성적으로 진단할 수 있다. 심초음파 검사는 

비침습적인 특성으로 인하여에 심장 전문의들이 많이 사용하고 

있으며, 심장 질환자가 점점 많아지는 추세에 따라 더 많이 사용될 

것으로 기대되고 있다. 

심초음파 검사는 이러한 안전성과 유용성에도 불구하고, CT 나 

MRI와는 달리 1)정확한 영상을 얻는데 오랜 훈련기간이 필요하고 2) 

영상을 얻을 수 있는 부위와 얻을 수 잇는 단면영상이 

제한적이어서 검사 시 놓친 소견은 추후 영상을 감수할 경우에도 

발견할 수 없는 특징을 가지고 있다. 이에 다라 측정과 해석의 

정량화와 함께 검사상 이상소견을 놓치지 않을 수 있는 보완조치에 

대한 요구가 많았고, 이러한 요구에 부응하여 심장전문의를 위한 

임상 의사결정 지원 시스템에 대한 많은 연구가 진행되고 있다..  

인공지능의 발달로 인해 어느정도 이러한 요구에 부응할 수 

있게 되었다.  이 연구의 흐름은 두가지로 나뉘게 되는데, 첫째는 

심장의 구조물들을 분할하여 크기를 측정하고 특이치를 감지하는 

정량적인 연구방법과, 병변이 어느 부위에 있는지 이미지 내에서 

확인하는 정성적 접근법으로 나뉜다. 기존에는 이 두 연구가 대부분 

따로 진행되어 왔으나, 임상의사의 진단 흐름을 고려해 볼 때 이 

두가지 모두가 포함되는 임상 의사 결정 지원 시스템의 개발이 

필요한 현실이다.  

이러한 관점에서 본 학위 논문의 목표는 대규모 코호트 후향적 

연구를 통해 AI 기반의 심장 초음파 임상 의사결정 지원 시스템을 
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개발하고 검증하는 것이다. 데이터는 2016 년에서 2021 년도 사이에 

서울대 병원에서 시행된 2600 예의 심초음파검사 

영상(정상소견 1300 명, 병적소견 1300 명)를 이용하였다.  

정량적분석과 정성적 분석을 모두 고려하기 위해 두개의 

네트워크가 개발되었으며, 그 유효성은 환자 데이터로 검증되었다.  

먼저 정량적 분석을 위한 이미지 분할을 위해 U-net 기반 

딥러닝 네트워크가 개발되었으며, 개발에 필요한 데이터를 위해 

심장전문의가 좌심실, 좌심방, 대동맥, 우심실, 좌심실 후벽 및 

심실간 중격의 정보를 이미지에 표시를 하였다. 훈련된 

네트워크로부터 나온 이미지로부터 6 개의 구조물의 직경과 면적을 

구하여 벡터화 하였으며, 수축기말 및 이완기말 단계의 프레임 

정보를 벡터로부터 추출하였다.  

둘째로 정성적 진단을 위한 네트워크 개발을 위해 Resnet152 

기반의 CNN 을 사용하였다. 이 네트워크의 입력데이터는 정량적 

네트워크에서 추출된 수축기말 및 이완기말 정보를 기반으로 

10 프레임이 추출되었다. 입력데이터가 정상인지 아닌지 구분하도록 

했을 뿐 아니라, 마지막 레이어에서 그라디언트 가중 클래스 활성화 

매핑(Grad-CAM)방법론을 이용하여 네트워크가 이미지상의 어느 

부위를 보고 이상소견으로 분류했는지 시각화 하였다. 

 그 결과 먼저 정량적 네트워크 성능을 측정하기 위해 환자 

1300 명의 데이터를 통해 각 구조물의 직경과 관련된 심장질환이 

얼마나 잘 검출됐는지 확인하였다. 심실중격, 좌심실 후벽,  

대동맥과 관련된 병적소견을 제외하고 다른구조물의 민감도와 

특이성은 모두 90% 이상이다. 수축기 말기 및 확장기 말기 위상 

검출도 정확했는데, 심장전문의에 의해 선택된 프레임에 비하여 

수축기 말기의 경우 평균 0.52 프레임, 확장기 말기의 경우 0.9 

프레임의 차이를 보였다. 
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정성분석을 위한 네트워크의 경우, 첫 번째 네트워크로부터 

선택된 위상정보를 바탕으로 10 개의 입력데이터를 결정하였고, 

무작위로 선택된 10개의 결과를 비교하였다. 그 결과 정확도가 각각 

90.33%, 81.16%로 나타났으며, 1 차 정량적 네트워크 에서 추출된 

수축기말, 이완기말 프레임 정보는 환자를 판별하는 네트워크의 

성능 향상에 기여했음을 알 수 있다. 또한 Grad-CAM 결과는 첫 

번째 네트워크의 프레임 정보를 기반으로 데이터에서 추출된 10 

장의 이미지가 입력데이터로 쓰였을 때가 무작위로 추출된 10 장의 

이미지로 훈련된 네트워크 보다 병변의 위치를 더 정확하게 

표시하는 것을 확인하였다.  

결론적으로 본 연구는 정량적, 정성적 분석을 위한 AI 기반 

심장 초음파 임상의사 결정 지원 시스템을 개발하였으며, 이 

시스템이 실현 가능한 것으로 검증되었다.  

 

주요어: 심방세동심초음파, 인공지능, 임상 의사 결정 지원 시스템, 

U-net, 딥러닝, 생성적 적대 신경망, 영상 분할  

.  

 

주요어: 심방세동심초음파, 인공지능, 임상 의사 결정 지원 시스템, 

U-net, 딥러닝, 생성적 적대 신경망, 영상 분할  

 

학  번: 2018-32128 
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