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Abstract 

 
MP3DU: Multi-Projection 3D U-Net 

for Automatic Segmentation of 

Temporal Bone Structures in CT images 

 

 
Bo Soung Jeoun 

Interdisciplinary Program in Bioengineering 

College of Engineering 

Seoul National University 

 

 

Background: The inner ear surgery such as cochlea implantation and tumor removal 

requires accurate identification and comprehension of temporal bone structures to 

make appropriate preoperative planning. However, it is considered to be challenging 

locate and understand the critical temporal bone structures, facial nerve, cochlea, and 

ossicle, due to their small sizes and anatomical variations. In addition, the low 

contrast of temporal bone computed tomography (CT) causes blurry boundaries of 

anatomical structures so it causes confusion to distinguish anatomical structures. 
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Though, it is required to the otologists to acquire segmentation of temporal bone 

structures manually. Therefore, a multi-projection 3-dimensional (3D) U-Net 

(MP3DU) was proposed for automatic segmentation of temporal bone structures in 

CT images. 

 

Materials and Methods: In this study, 381 temporal bone CT of normal condition 

were collected from the 418 patients who were diagnosed inner ear diseases. The 

MP3DU was designed based on 3D U-Net that has 3D encoder-decoder architecture 

with multi-projection maps generated from 3D volume input. The 3D contextual 

information and structural shape information simultaneously complement and 

optimize the segmentation performance during training in end-to-end manner. The 

multi-projection maps of MP3DU minimizes the feature loss while passing through 

3D encoder-decoder architecture.  

 

Result: The MP3DU achieved 0.81 dice similarity coefficient score (DSC), 0.71 

jaccard index (JI), 0.81 precision (PR), and 0.84 recall (RC) in 2-dimensional (2D) 

performance metrics, and 0.34 relative volume difference (RVD), and 0.43 volume 

of error (VOE) in 3D performance metrics for the whole temporal bone structures 

which outperformed than other popular deep learning networks. Also, fewer false 

positives and negatives were observed from segmentation results than in other 

networks. In particular, a tubular structure, facial nerve, had improved segmentation 

results maintaining its anatomical shape well and achieving the highest evaluation 

metric of all others. 
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Conclusion: The proposed network, MP3DU, could provide the automatic 

segmentation of temporal bone structures by improving the structural shape and 3D 

contextual information through multi-projection maps with 3D encoder-decoder 

architecture. 

Keyword: 3D Segmentation of the temporal bone structures, CT image, Deep 

Learning Network, Multi-projection 

Student Number: 2020-24482 
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Introduction 

 

 

 

 

 

 

 

 Inner ear surgery is an otologic procedure that requires extensive 

knowledge of radiology and surgical anatomy for patients’ safety [1]. Thus, the 

accurate identification of critical structures and appropriate comprehension of their 

complexity are essential for pre- and intra-operative planning of inner ear surgery 

[2]. Specifically, cochlea implantation, the most commonly practiced otological 

procedure, is highly influenced by anatomical variability so it is important to 

understand the orientation and geometry of structures [1, 3]. The temporal bone 

computed tomography (CT) is largely used for diagnosis and surgical plan for inner 

ear surgery to discern temporal bone structures since it provides otologists crucial 

insights into inherent anatomical information [1, 4, 5]. However, it is challenging to 

precisely distinguish the interested temporal bone structures such as facial nerve, 

cochlea, and ossicle due to their small sizes and pathologic variations as well as the 
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difficulties derived from multiple unrelated structures like air cells [1, 4]. 

Especially, facial nerve, which is a tubular structure that travels from stylomastoid 

foramen to internal auditory meatus, is more critical to locate accurately due to the 

risk of temporal or permanent facial paralysis during procedures [6-8]. Yet, it is 

considered to be demanding since it has high topological differences and low 

visibility with unclear boundaries caused by the lack of contrast from CT [6, 9] 

(Figure 1). 

 

 

Figure 1. The example of critical temporal bone structures. The facial nerve, cochl

ea, and ossicle are visualized in red, yellow, and blue, respectively. The (a), and (b) 

denotes stylomastoid foramen and internal auditory meatus for facial nerve. The co

rresponding temporal bone computed tomographic image slices for (a) and (b) are 

displayed with red arrows indicating facial nerve, from left to right. 
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Furthermore, CT needs to be reviewed routinely by the experts through 2-

dimensional (2D) image slices even if it is composed of 3-dimensional (3D) volume 

[1, 4, 10]. This process requires mental compilation to translate and assemble the 

information acquired from 2D image slices into 3D information [1, 4]. Thus, 

commercially available volume rendering techniques have been used for 3D 

reconstruction [4, 10, 11]. However, unlike large anatomical structures such as 

lungs and large vessels, these techniques are not likely to render accurate results for 

small structures for otological applications. In addition, it may generate artifacts 

around the inner ear boundaries due to the large variations of intensity values in CT 

[12]. In the end, the segmentation of temporal bone structures necessitates the 

interactions and manual efforts from the experts to obtain reliable segmentation 

results, which is labor-intensive, tedious, and time-consuming [4, 10, 11, 13, 14]. 

In early works, atlas-based approaches and other customized solutions 

were studied for automatic segmentation of temporal bone structures [9, 15-18]. 

However, these methods not only require a large amount of data but are also highly 

limited to averaged shape model from the collected dataset so the segmentation 

performance was likely to fail if the input image diverged from the atlas [4, 19]. 

Recently, deep learning has been widely applied for automatic medical image 

segmentation particularly using convolutional neural networks (CNNs) and 

achieved superior performance to traditional approaches [20-26]. Yet, the existing 

deep learning networks are mostly used to segment solid organs with relatively 

clear boundaries, such as kidneys and livers [27-29]. Especially, 3D CNNs are 
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rarely used for the segmentation of small, complicated, and tubular anatomical 

structures such as temporal bone structures due to the possibility of the feature 

disappearance during training [14]. Still, 3D CNNs are desirable in the medical 

imaging field since these take spatial context information from the volume into 

account for volumetric segmentation [30].  

In this study, a multi-projection 3D U-Net (MP3DU) was proposed for 

automatic segmentation of temporal bone in CT images. It was hypothesized that 

the 3D encoder-decoder architecture learns volumetric contextual information and 

the multi-projection maps of each anatomical structure compensate for the feature 

loss that may occur through 3D encoder-decoder architecture while training by 

providing structural information. In particular, the MP3DU was designed to 

overcome the low visibility and high topological variations, and yield more accurate 

segmentation results with a tubular structure such as facial nerve. 
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        Materials and Methods 

 

 

 

 

 

 

Participants and Data acquisition 

The patients of 381 (221 females and 170 males; mean age 50.93 ± 15.24 years) 

who were diagnosed sudden sensory neural hearing loss or otitis media at the Gachon 

University Gil Hospital (2012-2018). The obtained CT was separated into left and 

right and the sides that showed normal condition were collected and the rest which 

had diseases and inflammations were excluded, therefore, total 418 CT were 

acquired. The patient data were obtained at 120 kVp and 180 mAs using CT 

(SOMATOM Definition; Siemens Healthcare, Munich, Germany). The CT images 

had dimensions of 512×512×z pixels, which z were varied from 60 to 96, voxel sizes 

ranging from 0.13×0.13×0.6 to 0.16×0.16×0.6 mm3, and 16-bit depth. This study 

was performed with approval from the institutional review board of the Gachon 

University Gil Hospital (GCIRB2020-339) and in accordance with the Declaration 

of Helsinki. 
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Data preparation 

 The temporal bone structures, facial nerve, cochlea, ossicle, were manually 

annotated by four otologists using a software (AVIEW KOREA for Windows 10; 

Coreline, Seoul, Korea). We used the cropped images consisting of 48 slices of 

256×256 pixels that were centered at whole regions containing temporal bone 

structures in order to reduce the memory requirement. Zero-padding was performed 

to maintain the input volume of the same length for all patients showing different 

lengths of anatomical structures (Figure 2). 

 

 

Figure 2. The example of data preprocess for multi-projection 3D U-Net (MP3DU). 

The original images of 512×512×z were cropped into 256×256×48 for memory 

requirement. Zero-padding was done to provide the same length of volume to the 

network. n denotes the number of z which varies from patient to patients. 
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We estimated the minimally required sample size to detect significant 

differences in the accuracy between the MP3DU and the other networks, when both 

assessed the same subjects in CT images. We designed to capture a mean accuracy-

difference and a standard deviation of 0.05 and 0.10 between the MP3DU and the 

other networks. Based on an effect size of 0.5, a significance level of 0.05, and a 

statistical power of 0.80, we obtained a sample size of N = 128 (G* Power for 

Windows 10, Version 3.1.9.7; Universität Düsseldorf, Düsseldorf, Germany) [31, 32]. 

Eventually, we split the CT dataset with ratio of 0.8, and 0.2, thus 331 volumes 

(13086 slices) and 87 volumes (3373 slices) were selected randomly, and used for 

training, and test dataset. 
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MP3DU 

 The MP3DU was designed based on 3D encoder-decoder architecture with 

multi-projection maps from each anatomical structure (Figure 3). While training, the 

MP3DU generated the 2D multi-projection images of each facial nerve, cochlea, and 

ossicle from the input volume of temporal bone structures directly, which the 

network was able to learn the overall volume and structural shapes of each structure 

simultaneously (Multi-projection outputs and the output volume in Figure 3). It was 

optimized in an end-to-end where the segmentation outputs of temporal bone 

structures were generated directly from the input volumes of the CT images. 

 Through the encoder, MP3DU learned to capture contextual information 

from input volume and enable precise location. The input volume underwent the 

convolutional blocks of each stage, which were comprised of two repeated modules 

of two 3×3×3 3D convolutions, batch normalization, ReLU, and 2×2×2 max-pooling 

sequentially. The first initial convolutional block produced 256 feature maps as 

output, and the number of feature maps gradually decreased from 256 to 128, 64, 

and 32. The features from at the end of the encoder passed the corresponding up-

sampling layer and fed to the convolutional blocks in decoder path, which were 

composed of two repeated modules of two 3×3×3 3D convolutions, batch 

normalization, ReLU, and 2×2×2 up-sampling. The number of feature maps 

gradually increased from 32 to 64, 128, and 256 after each stage of decoder path. 

The encoder and decoder were connected by skip connections to maintain the 

features.  
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The 3D volume loss and multi-projection map losses from the 2D 

projections simultaneously encouraged the network to learn the structural 

information of the temporal bone structures, especially the tubular features of facial 

nerve. The multi-projection map losses were calculated by the 2D projection map 

generated from axial plane of each anatomical structure (Figure 4). The dice 

similarity coefficient score (DSC) was used for the two loss functions. The loss 

function (𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐷𝐿𝑣𝑜𝑙 +  𝐷𝐿𝑚𝑝) of the MP3DU consisted of 3D volume loss 

(𝐷𝐿𝑣𝑜𝑙) for the entire canal volume, and the multi-projection map losses as sum of 

the 2D projection losses from each facial nerve (𝐷𝐿𝑓𝑛), cochlea (𝐷𝐿𝑐𝑐), and ossicle 

(𝐷𝐿𝑜𝑠), respectively (𝐿𝑡𝑜𝑡𝑎𝑙 in Figure 3). 

The proposed networks were trained using an Adam optimizer, and the learning 

rate of 0.00025 was reduced on plateau by a factor of 0.5 every 25 epochs in 300 

epochs with the batch size of 1. They were implemented with Python3 based on 

Keras with a Tensorflow backend using a single NVIDIA Titan RTX GPU 24G. 

  



 

 

 
10 

  

F
ig

u
re

 3
. 

 
T

h
e 

m
u

lt
i-

p
ro

je
ct

io
n

 3
D

 U
-N

et
 (

M
P

3
D

U
) 

ar
ch

it
ec

tu
re

 w
it

h
 a

 3
D

 e
n
co

d
er

-d
ec

o
d
er

 w
it

h
 m

u
lt

i-
p

ro
je

ct
io

n
 m

ap
s.

 T
h

e 
3
D

 

en
co

d
er

-d
ec

o
d
er

 w
as

 u
ti

li
ze

d
 t

o
 c

ap
tu

re
 s

p
at

ia
l 

in
fo

rm
at

io
n

 o
f 

an
at

o
m

ic
al

 s
tr

u
ct

u
re

s,
 a

n
d

 m
u

lt
i-

p
ro

je
ct

io
n
 m

ap
s 

w
er

e 
u
se

d
 t

o
 l

ea
rn

 

o
v
er

al
l 

sh
ap

e 
o
f 

ea
ch

 a
n
at

o
m

ic
al

 s
tr

u
ct

u
re

. 



 

 

 
11 

 

 

Figure 4. The example of multi-projection maps of each anatomical structures 

generated from 3D input volume during training of multi-projection 3D U-Net 

(MP3DU). The example of projection map from facial nerve, cochlea, and ossicle 

are visualized from left to right. 
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Performance evaluation 

The segmentation performance of temporal bone structures by MP3DU was 

compared with those by other networks of 2D U-Net [33], EfficientNet [34], 3D U-

Net [35]. To evaluate the performances quantitatively, the networks were compared 

with the 2D segmentation performance metrics of DSC (𝐷𝑆𝐶 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑁+𝐹𝑃
), Jaccard 

index ( 𝐽𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
 ), precision ( 𝑃𝑅 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 ), recall ( 𝑅𝐶 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 ) among 

networks, where TP, FP, and FN denoted true positives, false positives, and false 

negatives, and also 3D volumetric performance metrics of volume of error (𝑉𝑂𝐸 =

1 −  
𝑉𝑔𝑡∩𝑉𝑝𝑟𝑒𝑑

𝑉𝑔𝑡∪𝑉𝑝𝑟𝑒𝑑
), and relative volume difference (𝑅𝑉𝐷 =

|𝑉𝑔𝑡−𝑉𝑝𝑟𝑒𝑑|

𝑉𝑔𝑡
), where 𝑉𝑔𝑡 and 

𝑉𝑝𝑟𝑒𝑑 represented the number of voxels for the ground truth and for the predicted 

volume, respectively. The higher values of DSC, JI, PR, and RC, and the lower 

values of VOE, and RVD indicated better segmentation performance. The paired 

two-tailed t-tests (SPSS Statistics for Windows 10, Version 26.0; IBM, Armonk, 

New York, USA) was used to compare performances between MP3DU and others. 

The statistical significance level was set at 0.05. 
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 Results 

 

 

 

 

 

 

 

The performances of MP3DU, 3D U-Net, EfficientNet, and 2D U-Net were 

evaluated for a total of 87 temporal bone structures not used for training. Table 1 

shows the quantitative results of the segmentation performance for the whole 

temporal bone structures by each network. The MP3DU achieved the highest values 

of 0.81 DSC, 0.71 JI, 0.81 PR, and 0.84 RC in 2D performance metrics, and also the 

lowest values of 0.34 RVD, and 0.43 VOE in 3D performance metrics for the whole 

temporal bone structures (Table 1). In addition, the quantitative evaluation for each 

anatomical structure, facial nerve, cochlea, and ossicle, were performed respectively 

as well as the whole structures and the results showed better values for both 2D and 

3D evaluation metrics (Table 1). Especially, the results for facial nerve segmentation 

of MP3DU outperformed other networks achieving the highest values of 0.75 DSC, 

0.63 JI, 0.73 PR, and 0.79 RC, and the lowest values of 0.60 RVD, and 0.40 VOE 
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(Table 1). Therefore, MP3DU showed better results than all the other networks in 

DSC, JI, PR, RC, RVD, and VOE (Table 1). 

The performance of the networks for whole temporal bone structures is also 

plotted in boxplots in Figure 5. Though the data dispersion and whisker length of 

MP3DU seemed similar to other networks, it had a relatively small number of 

outliers and better median scores (Figure 5). Specifically, the boxplots of facial 

nerve segmentation results were plotted in Figure 6. As the Figure 5, even though 

MP3DU represented similar data dispersion and whisker length to other networks, it 

had the best median score among others (Figure 6). 
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  DSC JI PR RC RVD VOE 

Whole 

structures 

MP3DU 0.81 ± 0.13 0.71 ± 0.12 0.81 ± 0.13 0.84 ± 0.13 0.34 ± 0.06 0.43 ± 0.03 

3D U-Net 0.79 ± 0.05* 0.68 ± 0.05* 0.81 ± 0.05 0.81 ± 0.08* 0.36 ± 0.07* 0.44 ± 0.03* 

EfficientNet 0.80 ± 0.04† 0.69 ± 0.05† 0.83 ± 0.04† 0.81 ± 0.06† 0.37 ± 0.09† 0.44 ± 0.03† 

2D U-Net 0.79 ± 0.13‡ 0.69 ± 0.12‡ 0.81 ± 0.13‡ 0.82 ± 0.13‡ 0.36 ± 0.05‡ 0.44 ± 0.03‡ 

Facial 

nerve 

MP3DU 0.75 ± 0.14 0.63 ± 0.15 0.73 ± 0.18 0.79 ± 0.17 0.60 ± 0.10 0.40 ± 0.15 

3D U-Net 0.73 ± 0.10* 0.61 ± 0.10* 0.76 ± 0.11* 0.76 ± 0.13* 0.61 ± 0.08* 0.45 ± 0.18* 

EfficientNet 0.73 ± 0.09† 0.60 ± 0.10† 0.76 ± 0.12† 0.78 ± 0.11† 0.61 ± 0.08† 0.44 ± 0.24† 

2D U-Net 0.71 ± 0.14‡ 0.60 ± 0.14‡ 0.72 ± 0.18‡ 0.75 ± 0.17‡ 0.61 ± 0.10‡ 0.44 ± 0.14‡ 

Cochlea 

MP3DU 0.84 ± 0.15 0.74 ± 0.14 0.84 ± 0.15 0.85 ± 0.15 0.46 ± 0.06 0.40 ± 0.07 

3D U-Net 0.82 ± 0.04* 0.71 ± 0.05* 0.84 ± 0.07 0.84 ± 0.09* 0.47 ± 0.04* 0.40 ± 0.07 

EfficientNet 0.83 ± 0.03† 0.72 ± 0.04† 0.84 ± 0.05 0.80 ± 0.06† 0.47 ± 0.05† 0.43 ± 0.06† 

2D U-Net 0.83 ± 0.15‡ 0.73 ± 0.14‡ 0.84 ± 0.16 0.83 ± 0.15‡ 0.47 ± 0.07‡ 0.41 ± 0.07‡ 

Ossicle 

MP3DU 0.83 ± 0.16 0.73 ± 0.15 0.83 ± 0.15 0.84 ± 0.16 0.22 ± 0.03 0.22 ± 0.03 

3D U-Net 0.82 ± 0.10* 0.72 ± 0.10* 0.85 ± 0.06* 0.83 ± 0.11* 0.23 ± 0.02* 0.22 ± 0.02 

EfficientNet 0.82 ± 0.08† 0.72 ± 0.09† 0.85 ± 0.07† 0.83 ± 0.10† 0.23 ± 0.03† 0.23 ± 0.02† 

2D U-Net 0.81 ± 0.18‡ 0.72 ± 0.16‡ 0.82 ± 0.18‡ 0.82 ± 0.18‡ 0.23 ± 0.05‡ 0.22 ± 0.04 

 
Table 1. The evaluation metric calculation results for whole temporal bone 

structures and each anatomical structure from multi-projection 3D U-Net (

MP3DU), 3D U-Net, EfficientNet, and 2D U-Net. Mean (SD) Dice simila

rity coefficient score (DSC), Jaccard index (JI), precision (PR), recall (R

C), volume of error (VOE), and relative volume difference (RVD) are de

monstrated in each column (*: significant difference between MP3DU and 3D 

U-Net (p < 0.05), †: between MP3DU and EfficientNet (p < 0.05), ‡: between 

MP3DU and 2D U-Net (p < 0.05)). 



 

 

 
16 

  

Figure 5. The boxplots of whole temporal bone structure segmentation 

performance results of the (a) Dice similarity coefficient score (DSC), (b) Jaccard 

index (JI), (c) precision (PR), (d) recall (RC), (e) relative volume difference 

(RVD), (f), and volume of error (VOE) for the deep learning networks, multi-

projection 3D U-Net (MP3DU), 3D U-Net (3DU), EfficientNet, and 2D U-Net 

(2DU). Each box contains the first and third quartile of data. The medians are 

located inside of the boxes, visualized as red lines. The whiskers are extended 

above and below each box in ±1.5 times the interquartile range (IQR), and the 

outliers are visualized as red + marks defining values 1.5 IQR away from the box. 
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Figure 6. The boxplots of facial nerve segmentation performance results of the 

(a) Dice similarity coefficient score (DSC), (b) Jaccard index (JI), (c) precision 

(PR), (d) recall (RC), (e) relative volume difference (RVD), (f), and volume of 

error (VOE) for the deep learning networks, multi-projection 3D U-Net 

(MP3DU), 3D U-Net (3DU), EfficientNet, and 2D U-Net (2DU). Each box 

contains the first and third quartile of data. The medians are located inside of the 

boxes, visualized as red lines. The whiskers are extended above and below each 

box in ±1.5 times the interquartile range (IQR), and the outliers are visualized as 

red + marks defining values 1.5 IQR away from the box. 
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In Figure 7, the MP3DU exhibited more accurate predictions with more true 

positives and less false positives and false negatives compared to other networks in 

each different temporal bone structure. In the 3D segmentation results, the MP3DU 

exhibited better prediction results with less false positives and false negatives 

compared to other networks (Figure 8). Especially, the MP3DU predicted more 

accurately the entire facial nerve volume and exhibited improved structural 

continuity to other networks (Figure 8). The DSC for the entire test dataset were 

plotted from the stylomastoid foramen to the internal auditory meatus, and the 

MP3DU generally exhibited less variations of the performances compared to other 

networks (Figure 9). The MP3DU demonstrated the most consistent performances 

with the less fluctuations of true segmentation compared to the others throughout the 

entire facial nerve volume (Figure 9). As a result, the MP3DU represented the best 

segmentation performances overall and also for tubular structure such as facial nerve.  
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Figure 7. Segmentation images for the deep learning networks of multi-projection 

3D U-Net (MP3DU), 3D U-Net, EfficientNet, and 2D U-Net. Each temporal bone 

structure is shown in CT images. The facial nerve, cochlea, and ossicle are visualized 

as red, yellow, and blue respectively. 
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Figure 8. The 3D reconstructed temporal bone structures for the ground truth and 

segmentation results of the multi-projection 3D U-Net (MP3DU), 3D U-Net, 

EfficientNet, and 2D U-Net displayed from the left to right. The facial nerve, cochlea, 

and ossicle are visualized as red, yellow, and blue respectively. 
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Figure 9. The Dice similarity coefficient score (DSC) line plots of facial nerve from 

the stylomastoid foramen to the internal auditory meatus for multi-proejction 3D U-

Net (MP3DU), 3D U-Net, EfficientNet, and 2D U-Net. 
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 Discussion 

 

 

 

 

 

 

 

 In this study, the MP3DU was proposed which learned 3D anatomical 

contextual information of the structures through 3D encoder-decoder architecture 

and the structural shapes from multi-projection maps by multi-projection losses in 

order to segment the temporal bone structures. The MP3DU was able to learn the 

volumetric information with the structural information of the temporal bone 

structures simultaneously. During training, The MP3DU obtained complementarily 

optimized features from 3D volume loss and multi-projection losses. Therefore, the 

MP3DU showed improved performance of automatic segmentation of the temporal 

bone structures by combining anatomical context information and structural shape 

information, resulting in higher accuracy throughout the entire volume in the CT 

images. 
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 The accurate identification of the critical temporal bone structures in inner 

ear is an essential prerequisite for the preoperative planning of otological procedures 

such as cochlea implantation and tumor removal [1-3]. However, it is considered to 

be difficult to understand the complications and geometric information of structures 

for several reasons. First, the size of temporal bone structures is small and have large 

pathological variations. Second, CT, the most commonly used 3D imaging technique 

for inner ear diagnosis [1, 4, 5], does not provide enough information to distinguish 

temporal bone structures, especially facial nerve due to its low contrast compared to 

other areas [6, 9]. This may affect facial nerve to be seen with blurry boundaries, and 

the otologists to experience difficulties distinguishing it from unrelated structures [6, 

9]. Though it is challenging to comprehend the temporal bone structures through CT 

images, it is crucial to acquire accurate segmentation of temporal bone structures for 

successful preoperative planning eventually. 

 The proposed network, MP3DU, was compared with other popular 

segmentation networks such as 2D U-Net, EfficientNet, and 3D U-Net. In 

segmentation performances of anatomical structures in CT images, 2D U-Net and 

EfficientNet exhibited slightly lower accuracies compared to the 3D networks in 

general. Especially, for the facial nerve, false negatives and positives were observed 

at a higher rate around the stylomastoid foramen and internal auditory meatus area 

due to the unclear boundaries of soft tissues affected by low contrast and confusion 

caused by unrelated structures such as air cells. Since the 2D networks were not able 

to learn the 3D contextual features of the temporal bone structures in CT images, the 
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2D networks exhibited coarser 3D segmentation volumes with more fluctuations of 

3D performance accuracy from the stylomastoid foramen to the internal auditory 

meatus regions. In terms of learning 3D spatial contextual information between 

image slices of the 3D anatomical structures, 3D U-Net was generally expected to 

generate more accurate segmentation results compared to 2D networks [35]. In the 

present study, the 3D U-Net predicted the more accurate segmentation of the 

temporal bone structures with fewer false positives and negatives compared to the 

2D U-Net and EfficientNet. However, the 3D U-Net had still limitations in 

segmenting the facial nerve regions with unclear boundaries accurately by only 

learning 3D spatial information between image slices. Moreover, it exhibited 

inaccurate segmentation results with disconnections around the stylomastoid 

foramen and internal auditory meatus area, since other bigger structures such as 

cochlea and ossicle affected learning of smaller features of facial nerve while training. 

 The network in this study showed an improvement for segmentation of 

temporal bone structures. The false positives and negatives were barley observed 

than other networks. Specifically, MP3DU demonstrated the better overall structural 

shape compared to 3D U-Net because its spatial information was complemented with 

the structural information by learning through multi- projection maps. Therefore, the 

MP3DU represented the most accurate segmentation of the entire volume of 

temporal bone structure compared to the other networks by simultaneously learning 

structural shape through multi-projection maps.  

 In the MP3DU, the multi-projection maps complementarily provided 
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structural shape information from each anatomical projection map to spatial 

contextual information of 3D encoder-decoder architecture. Unlike other temporal 

bone structures such as cochlea and ossicle, in the facial nerve areas with low 

visibility of unclear boundaries in CT images, the MP3DU exhibited the best 

outcomes with continuous and consistent facial nerve volumes from the stylomastoid 

foramen to the internal auditory meatus. The MP3DU especially surpassed other 

networks by showing continuous facial nerve volumes around the stylomastoid 

foramen and internal auditory meatus area where it is considered to be challenging 

due to unrelated similar structures like air cells, and in areas that had large 

topological variations in CT images [1, 4]. Compared with previous study using 3D 

U-Net [14, 30], our MP3DU achieved 0.75 of DSC while two previous studies 

reported 0.74, and 0.70 of DSC [14, 30]. Compared with two previous studies [14, 

30], the MP3DU showed substantially enhanced performance of facial nerve 

segmentation in CT image. 

 The primary reason for improved segmentation performance by MP3DU 

was that its network architecture was constructed to complimentary learn the 3D 

anatomical context information of the temporal bone structure through 3D encoder-

decoder architecture and the structural shape information by multi-projection maps. 

In the MP3DU, the complementary context information was successfully learned in 

the proposed network architecture, leading to maintain accurate anatomical structure 

volumes overall, particularly for facial nerve from the stylomastoid foramen to the 

internal auditory meatus areas. As a result, the most beneficial point of the proposed 
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network is that the simultaneous learning process from 3D volume and multi-

projection maps minimizes the feature loss that may be caused by the 3D encoder-

decoder and optimizes the segmentation results during training. This could improve 

the segmentation performance accuracy of temporal bone structures, especially for 

facial nerve in difficult areas with low contrast and unclear boundaries in CT images. 

 Based on the segmentation of the temporal bone structures in inner ear on 

CT images, The MP3DU could be used for clinical application. The advantage of 

automatic segmentation of the temporal bone structures using the MP3DU was that 

it could provide accurate identification of the temporal bone structures in the inner 

ear, maintaining accuracy and consistency when conducting large amounts of 

analysis. The MP3DU achieved automatic 3D segmentation of temporal bone 

structures. Specifically, the proposed networks showed improvement for the tubular 

structure such as facial nerve with large topological variations and unclear 

boundaries in low contrast area of CT images, which helps operators to reduce the 

workload and the time required for the segmentation of those. Moreover, it would be 

more useful for a preoperative planning procedure for cochlea implantation and 

tumor removal by automatic and accurate identification of the temporal bone 

structures. 

 Though, there are several limitations to overcome for our study. First, it is 

necessary to optimize memory use for efficient network learning and GPU usage. As 

there was a problem with reducing the memory requirements for dealing with large 

amounts of volumetric data when using 3D networks on GPU, we ended up using 
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the cropped images with smaller dimensions than the original. This data 

preprocessing task required additional time and labor. Second, there is a possibility 

of limitation of the generalization ability of our study due to using internal data from 

a single organization. Thus, the proposed network needs to be trained and evaluated 

for datasets from multiple organizations. In the future, we will improve the 

generalization ability and clinical efficacy of the MP3DU by using datasets from 

multiple organizations or devices with various acquisition settings. 
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Conclusions 

 

 

 

 

 

 

 In this study, the network for automatic segmentation of critical temporal 

bone structures to plan safe and efficient inner ear surgeries was proposed based on 

3D encoder-decoder architecture with multi-projection maps. The MP3DU was 

designed based on a 3D U-Net with multi-projection maps which are generated from 

3D volume input in order to complementally learn anatomical contexts and structural 

shape information. As a result, the MP3DU achieved substantially enhanced 

performances compared to other networks such as 3D U-Net, EfficientNet, and 2D 

U-Net in 2D and 3D performances. Furthermore, MP3DU demonstrated improved 

segmentation performance of temporal bone structures in volume. In particular, it was 

observed that facial nerve was maintained with more accurate structural shape than 

other networks due to the complementary learning with multi-projection maps. The 

MP3DU could be contributed to accurate and automatic identification of the temporal 



 

 

 
29 

bone structures for the preoperative planning such as cochlea implantation and tumor 

extraction to avoid any surgical complications. 
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국문초록 

MP3DU: CT영상 내 자동적 측두골 구조물 

영상분할을 위한 다중 투영 3차원 U-Net  
 

 

 

연구 배경: 인공와우 이식수술과 같은 내이 수술은 술중 발생할 수 있는 

여러 크고 작은 부작용을 피하기 위해 정확한 술전 계획이 필요하다. 

이를 위해 내이 속 측두골 구조물에 대한 해부적 정보, 위치 등에 대한 

정보의 정확한 이해가 필수적이다. 여러 측두골 구조물 중에서도 

중요하게 여겨지는 대표적인 것들로 얼굴신경, 달팽이관, 이소골이 

있으며 해당 구조물들은 구조적 변형이 크고 크기가 작아 실질적인 

이해가 어려운 것으로 여겨진다. 이러한 구조물들을 비교적 쉽게 

파악하기 위해 내이 수술 전 측두골 CT영상을 취득하게 되지만 

CT영상의 낮은 대비로 인해 구조물들 간의 경계가 모호해져 이비인후과 

전문가도 구분이 어려운 문제가 있다. 그럼에도 불구하고 해당 

구조물들에 대한 정확한 정보는 반드시 획득되어야 하기에 그 과정에서 

이비인후과 전문가들의 수동적 영상분할은 무조건적으로 발생한다. 

따라서 본 연구는 이러한 불편함을 줄이고자 측두골 구조물에 대한 자동 

영상분할을 달성하고자 CT영상 다중 투영 3차원 U-Net을 제안하였다.  
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연구 방법: 연구를 위해 418명의 환자로부터 381개의 CT영상을 

수집하였다. 해당 환자들은 내이 관련 질병으로 내원한 것으로 진단 

과정에서 촬영된 CT영상 중 병변이 없는 정상 내이 영상만 사용하였다. 

다중 투영 3차원 U-Net은 의료영상 영상분할에 많이 사용되는 3차원 

U자형 신경망의 구조를 바탕으로 각 구조물에 대한 2차원의 다중 투영 

영상을 접목하여 자동 영상분할을 달성하고자 하였다. 본 연구에서 

제안하는 네트워크의 3차원 인코더-디코더 구조는 3차원 맥락 정보를 

제공하며 그와 동시에 3차원 정보로부터 얻어진 2차원 다중 투영 

영상이 전체적인 구조적 형태 정보를 딥러닝 학습 중 동시에 제공하며 

상호보완적 결과를 얻고자 하였다. 

 

연구 결과: 딥러닝을 이용한 측두골 영상분할 결과를 비교하기 위해 

의료영상 영상분할에 많이 사용되는 2D U-Net, EfficientNet, 그리고 

해당 네트워크의 기본 구조인 3D U-Net을 사용하였다. 본 연구가 

제안한 네트워크인 다중 투영 3차원 U-Net이 전체 측두골 구조물 

영상분할 결과로 2차원 성능 지표로 0.81의 DSC, 0.71의 JI, 0.81의 

PR, 0.84의 RC를, 3차원 성능 지표로 0.34의 RVD와 0.43의 VOE를 

달성하였으며 이는 다른 비교군 대비 높은 결과를 보였음을 관찰하였다. 

또한 영상분할 결과의 3차원 모델링 비교 결과, 제안한 네트워크가 다른 

비교 네트워크 대비 위양성과 위음성이 적게 관찰되었다. 
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결론: 본 연구는 CT영상에서 측두골 구조물 자동 영상분할을 수행하는 

다중 투영 3차원 U-Net 제안하였으며 해당 네트워크는 3차원 맥락 

정보와 각 구조물의 2차원 다중 투영 영상이 상호보완적으로 최적의 

결과를 학습한 것을 확인할 수 있었으며 결과적으로 측두골 구조물 

영상분할에 있어서 개선된 성능을 보였다.  

 

 

주요어: 측두골 구조물, 3차원 영상분할, 컴퓨터단층영상, 딥러닝, 다중 

투영 
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