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Abstract

MP3DU: Multi-Projection 3D U-Net
for Automatic Segmentation of

Temporal Bone Structures in CT images

Bo Soung Jeoun
Interdisciplinary Program in Bioengineering
College of Engineering

Seoul National University

Background: The inner ear surgery such as cochlea implantation and tumor removal
requires accurate identification and comprehension of temporal bone structures to
make appropriate preoperative planning. However, it is considered to be challenging
locate and understand the critical temporal bone structures, facial nerve, cochlea, and
ossicle, due to their small sizes and anatomical variations. In addition, the low
contrast of temporal bone computed tomography (CT) causes blurry boundaries of

anatomical structures so it causes confusion to distinguish anatomical structures.



Though, it is required to the otologists to acquire segmentation of temporal bone
structures manually. Therefore, a multi-projection 3-dimensional (3D) U-Net
(MP3DU) was proposed for automatic segmentation of temporal bone structures in

CT images.

Materials and Methods: In this study, 381 temporal bone CT of normal condition
were collected from the 418 patients who were diagnosed inner ear diseases. The
MP3DU was designed based on 3D U-Net that has 3D encoder-decoder architecture
with multi-projection maps generated from 3D volume input. The 3D contextual
information and structural shape information simultaneously complement and
optimize the segmentation performance during training in end-to-end manner. The
multi-projection maps of MP3DU minimizes the feature loss while passing through

3D encoder-decoder architecture.

Result: The MP3DU achieved 0.81 dice similarity coefficient score (DSC), 0.71
jaccard index (JI), 0.81 precision (PR), and 0.84 recall (RC) in 2-dimensional (2D)
performance metrics, and 0.34 relative volume difference (RVD), and 0.43 volume
of error (VOE) in 3D performance metrics for the whole temporal bone structures
which outperformed than other popular deep learning networks. Also, fewer false
positives and negatives were observed from segmentation results than in other
networks. In particular, a tubular structure, facial nerve, had improved segmentation
results maintaining its anatomical shape well and achieving the highest evaluation

metric of all others.
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Conclusion: The proposed network, MP3DU, could provide the automatic
segmentation of temporal bone structures by improving the structural shape and 3D
contextual information through multi-projection maps with 3D encoder-decoder

architecture.

Keyword: 3D Segmentation of the temporal bone structures, CT image, Deep

Learning Network, Multi-projection

Student Number: 2020-24482
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Introduction

Inner ear surgery is an otologic procedure that requires extensive
knowledge of radiology and surgical anatomy for patients’ safety [1]. Thus, the
accurate identification of critical structures and appropriate comprehension of their
complexity are essential for pre- and intra-operative planning of inner ear surgery
[2]. Specifically, cochlea implantation, the most commonly practiced otological
procedure, is highly influenced by anatomical variability so it is important to
understand the orientation and geometry of structures [1, 3]. The temporal bone
computed tomography (CT) is largely used for diagnosis and surgical plan for inner
ear surgery to discern temporal bone structures since it provides otologists crucial
insights into inherent anatomical information [1, 4, 5]. However, it is challenging to
precisely distinguish the interested temporal bone structures such as facial nerve,

cochlea, and ossicle due to their small sizes and pathologic variations as well as the



difficulties derived from multiple unrelated structures like air cells [1, 4].
Especially, facial nerve, which is a tubular structure that travels from stylomastoid
foramen to internal auditory meatus, is more critical to locate accurately due to the
risk of temporal or permanent facial paralysis during procedures [6-8]. Yet, it is
considered to be demanding since it has high topological differences and low

visibility with unclear boundaries caused by the lack of contrast from CT [6, 9]

(Figure 1).

Figure 1. The example of critical temporal bone structures. The facial nerve, cochl
ea, and ossicle are visualized in red, yellow, and blue, respectively. The (a), and (b)
denotes stylomastoid foramen and internal auditory meatus for facial nerve. The co
rresponding temporal bone computed tomographic image slices for (a) and (b) are

displayed with red arrows indicating facial nerve, from left to right.
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Furthermore, CT needs to be reviewed routinely by the experts through 2-
dimensional (2D) image slices even if it is composed of 3-dimensional (3D) volume
[1, 4, 10]. This process requires mental compilation to translate and assemble the
information acquired from 2D image slices into 3D information [1, 4]. Thus,
commercially available volume rendering techniques have been used for 3D
reconstruction [4, 10, 11]. However, unlike large anatomical structures such as
lungs and large vessels, these techniques are not likely to render accurate results for
small structures for otological applications. In addition, it may generate artifacts
around the inner ear boundaries due to the large variations of intensity values in CT
[12]. In the end, the segmentation of temporal bone structures necessitates the
interactions and manual efforts from the experts to obtain reliable segmentation

results, which is labor-intensive, tedious, and time-consuming [4, 10, 11, 13, 14].

In early works, atlas-based approaches and other customized solutions
were studied for automatic segmentation of temporal bone structures [9, 15-18].
However, these methods not only require a large amount of data but are also highly
limited to averaged shape model from the collected dataset so the segmentation
performance was likely to fail if the input image diverged from the atlas [4, 19].
Recently, deep learning has been widely applied for automatic medical image
segmentation particularly using convolutional neural networks (CNNs) and
achieved superior performance to traditional approaches [20-26]. Yet, the existing
deep learning networks are mostly used to segment solid organs with relatively

clear boundaries, such as kidneys and livers [27-29]. Especially, 3D CNNs are



rarely used for the segmentation of small, complicated, and tubular anatomical
structures such as temporal bone structures due to the possibility of the feature
disappearance during training [14]. Still, 3D CNNs are desirable in the medical
imaging field since these take spatial context information from the volume into

account for volumetric segmentation [30].

In this study, a multi-projection 3D U-Net (MP3DU) was proposed for
automatic segmentation of temporal bone in CT images. It was hypothesized that
the 3D encoder-decoder architecture learns volumetric contextual information and
the multi-projection maps of each anatomical structure compensate for the feature
loss that may occur through 3D encoder-decoder architecture while training by
providing structural information. In particular, the MP3DU was designed to
overcome the low visibility and high topological variations, and yield more accurate

segmentation results with a tubular structure such as facial nerve.



Materials and Methods

Participants and Data acquisition

The patients of 381 (221 females and 170 males; mean age 50.93 & 15.24 years)
who were diagnosed sudden sensory neural hearing loss or otitis media at the Gachon
University Gil Hospital (2012-2018). The obtained CT was separated into left and
right and the sides that showed normal condition were collected and the rest which
had diseases and inflammations were excluded, therefore, total 418 CT were
acquired. The patient data were obtained at 120 kVp and 180 mAs using CT
(SOMATOM Definition; Siemens Healthcare, Munich, Germany). The CT images
had dimensions of 512x512%z pixels, which z were varied from 60 to 96, voxel sizes
ranging from 0.13x0.13x0.6 to 0.16x0.16x0.6 mm?®, and 16-bit depth. This study
was performed with approval from the institutional review board of the Gachon
University Gil Hospital (GCIRB2020-339) and in accordance with the Declaration

of Helsinki.



Data preparation

The temporal bone structures, facial nerve, cochlea, ossicle, were manually
annotated by four otologists using a software (AVIEW KOREA for Windows 10;
Coreline, Seoul, Korea). We used the cropped images consisting of 48 slices of
256x256 pixels that were centered at whole regions containing temporal bone
structures in order to reduce the memory requirement. Zero-padding was performed
to maintain the input volume of the same length for all patients showing different

lengths of anatomical structures (Figure 2).
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Figure 2. The example of data preprocess for multi-projection 3D U-Net (MP3DU).
The original images of 512x512xz were cropped into 256x256x48 for memory
requirement. Zero-padding was done to provide the same length of volume to the

network. n denotes the number of z which varies from patient to patients.
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We estimated the minimally required sample size to detect significant
differences in the accuracy between the MP3DU and the other networks, when both
assessed the same subjects in CT images. We designed to capture a mean accuracy-
difference and a standard deviation of 0.05 and 0.10 between the MP3DU and the
other networks. Based on an effect size of 0.5, a significance level of 0.05, and a
statistical power of 0.80, we obtained a sample size of N = 128 (G* Power for
Windows 10, Version 3.1.9.7; Universitét Diisseldorf, Diisseldorf, Germany) [31, 32].
Eventually, we split the CT dataset with ratio of 0.8, and 0.2, thus 331 volumes
(13086 slices) and 87 volumes (3373 slices) were selected randomly, and used for

training, and test dataset.



MP3DU

The MP3DU was designed based on 3D encoder-decoder architecture with
multi-projection maps from each anatomical structure (Figure 3). While training, the
MP3DU generated the 2D multi-projection images of each facial nerve, cochlea, and
ossicle from the input volume of temporal bone structures directly, which the
network was able to learn the overall volume and structural shapes of each structure
simultaneously (Multi-projection outputs and the output volume in Figure 3). It was
optimized in an end-to-end where the segmentation outputs of temporal bone

structures were generated directly from the input volumes of the CT images.

Through the encoder, MP3DU learned to capture contextual information
from input volume and enable precise location. The input volume underwent the
convolutional blocks of each stage, which were comprised of two repeated modules
of two 3x3x3 3D convolutions, batch normalization, ReLU, and 2x2x2 max-pooling
sequentially. The first initial convolutional block produced 256 feature maps as
output, and the number of feature maps gradually decreased from 256 to 128, 64,
and 32. The features from at the end of the encoder passed the corresponding up-
sampling layer and fed to the convolutional blocks in decoder path, which were
composed of two repeated modules of two 3x3x3 3D convolutions, batch
normalization, ReLU, and 2x2x2 up-sampling. The number of feature maps
gradually increased from 32 to 64, 128, and 256 after each stage of decoder path.
The encoder and decoder were connected by skip connections to maintain the

features.



The 3D volume loss and multi-projection map losses from the 2D
projections simultaneously encouraged the network to learn the structural
information of the temporal bone structures, especially the tubular features of facial
nerve. The multi-projection map losses were calculated by the 2D projection map
generated from axial plane of each anatomical structure (Figure 4). The dice
similarity coefficient score (DSC) was used for the two loss functions. The loss
function (Lt = DLyor + DLyyp) of the MP3DU consisted of 3D volume loss
(DL,,;) for the entire canal volume, and the multi-projection map losses as sum of
the 2D projection losses from each facial nerve (DLgsy,), cochlea (DL.), and ossicle

(DL,s), respectively (Liotq; in Figure 3).

The proposed networks were trained using an Adam optimizer, and the learning
rate of 0.00025 was reduced on plateau by a factor of 0.5 every 25 epochs in 300
epochs with the batch size of 1. They were implemented with Python3 based on

Keras with a Tensorflow backend using a single NVIDIA Titan RTX GPU 24G.
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Figure 4. The example of multi-projection maps of each anatomical structures

generated from 3D input volume during training of multi-projection 3D U-Net
(MP3DU). The example of projection map from facial nerve, cochlea, and ossicle

are visualized from left to right.



Performance evaluation
The segmentation performance of temporal bone structures by MP3DU was
compared with those by other networks of 2D U-Net [33], EfficientNet [34], 3D U-

Net [35]. To evaluate the performances quantitatively, the networks were compared

with the 2D segmentation performance metrics of DSC (DSC = L — ), Jaccard
2TP+FN+FP

. TP .. TP TP

index (JI = m), precision (PR = m), recall (RC = TP+FN) among

networks, where TP, FP, and FN denoted true positives, false positives, and false
negatives, and also 3D volumetric performance metrics of volume of error (VOE =

1— Vgtnvpred |Vgt_Vpred|

), and relative volume difference (RVD =
VgtUVpred Vgt

), where Vg, and
Vprea rtepresented the number of voxels for the ground truth and for the predicted
volume, respectively. The higher values of DSC, JI, PR, and RC, and the lower
values of VOE, and RVD indicated better segmentation performance. The paired
two-tailed t-tests (SPSS Statistics for Windows 10, Version 26.0; IBM, Armonk,

New York, USA) was used to compare performances between MP3DU and others.

The statistical significance level was set at 0.05.
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Results

The performances of MP3DU, 3D U-Net, EfficientNet, and 2D U-Net were
evaluated for a total of 87 temporal bone structures not used for training. Table 1
shows the quantitative results of the segmentation performance for the whole
temporal bone structures by each network. The MP3DU achieved the highest values
of 0.81 DSC, 0.71 JI, 0.81 PR, and 0.84 RC in 2D performance metrics, and also the
lowest values of 0.34 RVD, and 0.43 VOE in 3D performance metrics for the whole
temporal bone structures (Table 1). In addition, the quantitative evaluation for each
anatomical structure, facial nerve, cochlea, and ossicle, were performed respectively
as well as the whole structures and the results showed better values for both 2D and
3D evaluation metrics (Table 1). Especially, the results for facial nerve segmentation
of MP3DU outperformed other networks achieving the highest values of 0.75 DSC,

0.63 JI, 0.73 PR, and 0.79 RC, and the lowest values of 0.60 RVD, and 0.40 VOE

13



(Table 1). Therefore, MP3DU showed better results than all the other networks in

DSC, JI, PR, RC, RVD, and VOE (Table 1).

The performance of the networks for whole temporal bone structures is also
plotted in boxplots in Figure 5. Though the data dispersion and whisker length of
MP3DU seemed similar to other networks, it had a relatively small number of
outliers and better median scores (Figure 5). Specifically, the boxplots of facial
nerve segmentation results were plotted in Figure 6. As the Figure 5, even though
MP3DU represented similar data dispersion and whisker length to other networks, it

had the best median score among others (Figure 6).
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DSC JI PR RC RVD VOE
MP3DU 0.81+0.13 0.71+0.12 0.81+0.13 0.84+0.13 0.34 £ 0.06 0.43+0.03
Whol 3D U-Net 0.79+0.05* 0.68+0.05* 0.81+0.05 0.81+0.08*% 0.36+0.07* 0.44+0.03*
ole
structures .
EfficientNet 0.80 +0.04% 0.69 +0.05f 0.83+0.04f 0.81+0.0671 0.37+0.097 0.44+0.037
2D U-Net 0.79+0.13%f 0.69+0.12f 0.81+0.13f 0.82+£0.13%f 0.36+0.05%f 0.44=0.03%
MP3DU 0.75+0.14 0.63+0.15 0.73+0.18 0.79+0.17 0.60+0.10 0.40+0.15
Facial 3D U-Net 0.73+0.10* 0.61+0.10* 0.76 £0.11* 0.76 £0.13* 0.61+£0.08* 0.45+0.18*
acia
nerve .
EfficientNet 0.73+0.09% 0.60+0.10f 0.76+0.12%f 0.78=+0.11f 0.61+0.08F 0.44+0.247
2D U-Net 0.71+0.14f 0.60+0.14f 0.72+0.18% 0.75+£0.17f 0.61£0.10f 0.44+0.14%
MP3DU 0.84+0.15 0.74+0.14 0.84+0.15 0.85+0.15 0.46 +£0.06 0.40+0.07
3D U-Net 0.82+0.04* 0.71+0.05* 0.84+0.07 0.84+0.09* 047+0.04* 0.40+0.07
Cochlea
EfficientNet 0.83 £0.03f 0.72+0.04f 0.84+0.05 0.80+0.06f 0.47=+0.05f 0.43+0.06F
2D U-Net 0.83+0.15% 0.73+£0.14f 0.84=+0.16 0.83+0.15f 047+0.07f 0.41+0.07%
MP3DU 0.83+0.16 0.73+0.15 0.83+0.15 0.84+0.16 0.22+0.03 0.22+0.03
3D U-Net 0.82+0.10* 0.72+0.10* 0.85+0.06* 0.83+0.11* 0.23+£0.02* 0.22+0.02
Ossicle
EfficientNet 0.82+0.08F 0.72+0.09f 0.85+0.07f 0.83+0.10f 0.23+0.03F 0.23+£0.027
2D U-Net 0.81+0.18%f 0.72+0.16f 0.82+0.18% 0.82+0.18% 0.23+£0.05f 0.22+0.04

Table 1. The evaluation metric calculation results for whole temporal bone
structures and each anatomical structure from multi-projection 3D U-Net (
MP3DU), 3D U-Net, EfficientNet, and 2D U-Net. Mean (SD) Dice simila
rity coefficient score (DSC), Jaccard index (JI), precision (PR), recall (R
C), volume of error (VOE), and relative volume difference (RVD) are de
monstrated in each column (*: significant difference between MP3DU and 3D
U-Net (p < 0.05), T: between MP3DU and EfficientNet (p < 0.05), }: between
MP3DU and 2D U-Net (p < 0.05)).
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Figure 5. The boxplots of whole temporal bone structure segmentation
performance results of the (a) Dice similarity coefficient score (DSC), (b) Jaccard
index (JI), (c) precision (PR), (d) recall (RC), (e) relative volume difference
(RVD), (f), and volume of error (VOE) for the deep learning networks, multi-
projection 3D U-Net (MP3DU), 3D U-Net (3DU), EfficientNet, and 2D U-Net
(2DU). Each box contains the first and third quartile of data. The medians are
located inside of the boxes, visualized as red lines. The whiskers are extended
above and below each box in £1.5 times the interquartile range (IQR), and the

outliers are visualized as red + marks defining values 1.5 IQR away from the box.
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Figure 6. The boxplots of facial nerve segmentation performance results of the
(a) Dice similarity coefficient score (DSC), (b) Jaccard index (JI), (¢) precision
(PR), (d) recall (RC), (e) relative volume difference (RVD), (f), and volume of
error (VOE) for the deep learning networks, multi-projection 3D U-Net
(MP3DU), 3D U-Net (3DU), EfficientNet, and 2D U-Net (2DU). Each box
contains the first and third quartile of data. The medians are located inside of the
boxes, visualized as red lines. The whiskers are extended above and below each
box in +1.5 times the interquartile range (IQR), and the outliers are visualized as

red + marks defining values 1.5 IQR away from the box.
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In Figure 7, the MP3DU exhibited more accurate predictions with more true
positives and less false positives and false negatives compared to other networks in
each different temporal bone structure. In the 3D segmentation results, the MP3DU
exhibited better prediction results with less false positives and false negatives
compared to other networks (Figure 8). Especially, the MP3DU predicted more
accurately the entire facial nerve volume and exhibited improved structural
continuity to other networks (Figure 8). The DSC for the entire test dataset were
plotted from the stylomastoid foramen to the internal auditory meatus, and the
MP3DU generally exhibited less variations of the performances compared to other
networks (Figure 9). The MP3DU demonstrated the most consistent performances
with the less fluctuations of true segmentation compared to the others throughout the
entire facial nerve volume (Figure 9). As a result, the MP3DU represented the best

segmentation performances overall and also for tubular structure such as facial nerve.
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CT Ground truth MP3DU 3D U-Net EfficientNet 2D U-Net

Figure 7. Segmentation images for the deep learning networks of multi-projection
3D U-Net (MP3DU), 3D U-Net, EfficientNet, and 2D U-Net. Each temporal bone
structure is shown in CT images. The facial nerve, cochlea, and ossicle are visualized

as red, yellow, and blue respectively.
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Figure 8. The 3D reconstructed temporal bone structures for the ground truth and
segmentation results of the multi-projection 3D U-Net (MP3DU), 3D U-Net,
EfficientNet, and 2D U-Net displayed from the left to right. The facial nerve, cochlea,

and ossicle are visualized as red, yellow, and blue respectively.
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Figure 9. The Dice similarity coefficient score (DSC) line plots of facial nerve from
the stylomastoid foramen to the internal auditory meatus for multi-proejction 3D U-

Net (MP3DU), 3D U-Net, EfficientNet, and 2D U-Net.
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Discussion

In this study, the MP3DU was proposed which learned 3D anatomical
contextual information of the structures through 3D encoder-decoder architecture
and the structural shapes from multi-projection maps by multi-projection losses in
order to segment the temporal bone structures. The MP3DU was able to learn the
volumetric information with the structural information of the temporal bone
structures simultaneously. During training, The MP3DU obtained complementarily
optimized features from 3D volume loss and multi-projection losses. Therefore, the
MP3DU showed improved performance of automatic segmentation of the temporal
bone structures by combining anatomical context information and structural shape
information, resulting in higher accuracy throughout the entire volume in the CT

images.
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The accurate identification of the critical temporal bone structures in inner
ear is an essential prerequisite for the preoperative planning of otological procedures
such as cochlea implantation and tumor removal [1-3]. However, it is considered to
be difficult to understand the complications and geometric information of structures
for several reasons. First, the size of temporal bone structures is small and have large
pathological variations. Second, CT, the most commonly used 3D imaging technique
for inner ear diagnosis [1, 4, 5], does not provide enough information to distinguish
temporal bone structures, especially facial nerve due to its low contrast compared to
other areas [6, 9]. This may affect facial nerve to be seen with blurry boundaries, and
the otologists to experience difficulties distinguishing it from unrelated structures [6,
9]. Though it is challenging to comprehend the temporal bone structures through CT
images, it is crucial to acquire accurate segmentation of temporal bone structures for

successful preoperative planning eventually.

The proposed network, MP3DU, was compared with other popular
segmentation networks such as 2D U-Net, EfficientNet, and 3D U-Net. In
segmentation performances of anatomical structures in CT images, 2D U-Net and
EfficientNet exhibited slightly lower accuracies compared to the 3D networks in
general. Especially, for the facial nerve, false negatives and positives were observed
at a higher rate around the stylomastoid foramen and internal auditory meatus area
due to the unclear boundaries of soft tissues affected by low contrast and confusion
caused by unrelated structures such as air cells. Since the 2D networks were not able

to learn the 3D contextual features of the temporal bone structures in CT images, the
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2D networks exhibited coarser 3D segmentation volumes with more fluctuations of
3D performance accuracy from the stylomastoid foramen to the internal auditory
meatus regions. In terms of learning 3D spatial contextual information between
image slices of the 3D anatomical structures, 3D U-Net was generally expected to
generate more accurate segmentation results compared to 2D networks [35]. In the
present study, the 3D U-Net predicted the more accurate segmentation of the
temporal bone structures with fewer false positives and negatives compared to the
2D U-Net and EfficientNet. However, the 3D U-Net had still limitations in
segmenting the facial nerve regions with unclear boundaries accurately by only
learning 3D spatial information between image slices. Moreover, it exhibited
inaccurate segmentation results with disconnections around the stylomastoid
foramen and internal auditory meatus area, since other bigger structures such as

cochlea and ossicle affected learning of smaller features of facial nerve while training.

The network in this study showed an improvement for segmentation of
temporal bone structures. The false positives and negatives were barley observed
than other networks. Specifically, MP3DU demonstrated the better overall structural
shape compared to 3D U-Net because its spatial information was complemented with
the structural information by learning through multi- projection maps. Therefore, the
MP3DU represented the most accurate segmentation of the entire volume of
temporal bone structure compared to the other networks by simultaneously learning

structural shape through multi-projection maps.

In the MP3DU, the multi-projection maps complementarily provided
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structural shape information from each anatomical projection map to spatial
contextual information of 3D encoder-decoder architecture. Unlike other temporal
bone structures such as cochlea and ossicle, in the facial nerve areas with low
visibility of unclear boundaries in CT images, the MP3DU exhibited the best
outcomes with continuous and consistent facial nerve volumes from the stylomastoid
foramen to the internal auditory meatus. The MP3DU especially surpassed other
networks by showing continuous facial nerve volumes around the stylomastoid
foramen and internal auditory meatus area where it is considered to be challenging
due to unrelated similar structures like air cells, and in areas that had large
topological variations in CT images [1, 4]. Compared with previous study using 3D
U-Net [14, 30], our MP3DU achieved 0.75 of DSC while two previous studies
reported 0.74, and 0.70 of DSC [14, 30]. Compared with two previous studies [14,
30], the MP3DU showed substantially enhanced performance of facial nerve

segmentation in CT image.

The primary reason for improved segmentation performance by MP3DU
was that its network architecture was constructed to complimentary learn the 3D
anatomical context information of the temporal bone structure through 3D encoder-
decoder architecture and the structural shape information by multi-projection maps.
In the MP3DU, the complementary context information was successfully learned in
the proposed network architecture, leading to maintain accurate anatomical structure
volumes overall, particularly for facial nerve from the stylomastoid foramen to the

internal auditory meatus areas. As a result, the most beneficial point of the proposed
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network is that the simultaneous learning process from 3D volume and multi-
projection maps minimizes the feature loss that may be caused by the 3D encoder-
decoder and optimizes the segmentation results during training. This could improve
the segmentation performance accuracy of temporal bone structures, especially for

facial nerve in difficult areas with low contrast and unclear boundaries in CT images.

Based on the segmentation of the temporal bone structures in inner ear on
CT images, The MP3DU could be used for clinical application. The advantage of
automatic segmentation of the temporal bone structures using the MP3DU was that
it could provide accurate identification of the temporal bone structures in the inner
ear, maintaining accuracy and consistency when conducting large amounts of
analysis. The MP3DU achieved automatic 3D segmentation of temporal bone
structures. Specifically, the proposed networks showed improvement for the tubular
structure such as facial nerve with large topological variations and unclear
boundaries in low contrast area of CT images, which helps operators to reduce the
workload and the time required for the segmentation of those. Moreover, it would be
more useful for a preoperative planning procedure for cochlea implantation and
tumor removal by automatic and accurate identification of the temporal bone

structures.

Though, there are several limitations to overcome for our study. First, it is
necessary to optimize memory use for efficient network learning and GPU usage. As
there was a problem with reducing the memory requirements for dealing with large

amounts of volumetric data when using 3D networks on GPU, we ended up using

26



the cropped images with smaller dimensions than the original. This data
preprocessing task required additional time and labor. Second, there is a possibility
of limitation of the generalization ability of our study due to using internal data from
a single organization. Thus, the proposed network needs to be trained and evaluated
for datasets from multiple organizations. In the future, we will improve the
generalization ability and clinical efficacy of the MP3DU by using datasets from

multiple organizations or devices with various acquisition settings.
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Conclusions

In this study, the network for automatic segmentation of critical temporal
bone structures to plan safe and efficient inner ear surgeries was proposed based on
3D encoder-decoder architecture with multi-projection maps. The MP3DU was
designed based on a 3D U-Net with multi-projection maps which are generated from
3D volume input in order to complementally learn anatomical contexts and structural
shape information. As a result, the MP3DU achieved substantially enhanced
performances compared to other networks such as 3D U-Net, EfficientNet, and 2D
U-Net in 2D and 3D performances. Furthermore, MP3DU demonstrated improved
segmentation performance of temporal bone structures in volume. In particular, it was
observed that facial nerve was maintained with more accurate structural shape than
other networks due to the complementary learning with multi-projection maps. The

MP3DU could be contributed to accurate and automatic identification of the temporal
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bone structures for the preoperative planning such as cochlea implantation and tumor

extraction to avoid any surgical complications.
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