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Abstract

Multi-exposure high dynamic range (HDR) imaging aims to generate an HDR

image from multiple differently exposed low dynamic range (LDR) images. Multi-

exposure HDR imaging is a challenging task due to two major problems. One is mis-

alignments among the input LDR images, which can cause ghosting artifacts on result

HDR, and the other is missing information on LDR images due to under-/over-exposed

region. Although previous methods tried to align input LDR images with traditional

methods(e.g., homography, optical flow), they still suffer undesired artifacts on the

result HDR image due to estimation errors that occurred in aligning step.

In this dissertation, disentangled feature-guided HDR network (DFGNet) is pro-

posed to alleviate the above-stated problems. Specifically, exposure features and spa-

tial features are first extracted from input LDR images, and they are disentangled from

each other. Then, these features are processed through the proposed DFG modules,

which produce a high-quality HDR image. The proposed DFGNet shows outstanding

performance compared to previous methods, achieving the PSNR-ℓ of 41.89dB and

the PSNR-µ of 44.19dB.

keywords: High Dynamic Range Imaging, Multi-Exposed Imaging, Feature Disen-

tanglement

student number: 2020-29425
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Chapter 1

Introduction

While the human visual system (HVS) perceives scenes with high dynamic luminance

ranges adaptively, standard digital cameras generally have narrower dynamic ranges

than the HVS. A common approach to capturing HDR scenes with such traditional

cameras is to take the scenes with several different exposures and then merge them

into an HDR image, which is called multi-exposure HDR imaging.

There are two significant problems in this approach, which have long been ad-

dressed in the literature. One is the misalignment between LDR inputs, which leads to

ghosting artifacts on the reconstruction results. The other is the insufficient image in-

formation of LDR inputs due to their saturated regions, especially for the LDR images

taken with short or long exposure times.

Meanwhile, deep convolutional neural networks (CNN) have improved the perfor-

mance of various computer vision tasks, including HDR imaging[5, 1, 8, 13, 16, 14].

In developing the CNN-based HDR imaging, the researchers mainly focused on ex-

ploiting the common structures between the LDR inputs through the explicit image

alignment or implicit feature attention.

Regarding the misalignment problem, conventional methods (before CNN-based

approaches) attempted to align the LDR images before the merging process to alleviate

the ghost artifacts [4, 3, 2, 6, 7]. For example, the optical flow has been adopted in [6,

1



LDR
image 1
(-2.0)

LDR
image 2

(0.0)

LDR
image 3
(+2.0)

HDR image

Figure 1.1: A brief explanation of multi-exposure HDR imaging task. Each LDR image
on left side has different exposure time value(denoted in parenthesis) and not aligned.

7] to align the pixels between the LDR images. The early CNN-based methods also

adopted the optical flow as a pre-processing step. For example, [5] aligned the inputs

by optical flow and then forwarded them to a merging network. Afterward, researchers

focused on designing neural network structures that implicitly align LDR images in

the feature space [1, 8, 13, 16, 14]. For example, AHDRNet[1] proposed an attention-

guided deep neural network that learns the structural relationships between input LDR

images and HDR output. It generates soft attention maps to measure the importance of

different image regions for producing HDR images. NHDRRNet [8] constructs non-

local blocks [9] in the merging process to obtain global features from aggregated LDR

image features. By fusing the global and local features, it effectively merges LDR

images at the feature level and achieves better-aligned results than the optical flow-

based approaches. On the contrary to the misalignment problem, exposure information

has not been well addressed in the existing works, which can enhance the resulting

HDR quality when appropriately utilized.

2



In this dissertation, to address the above-stated major issues in HDR imaging, i.e.,

aligning the structure and exploiting the exposure information, a disentangle network

is proposed that extracts representative exposure features and spatial features sepa-

rately from LDR images. Further, a disentangled feature-guided network (DFGNet)

is designed, which consists of DFG modules that align LDR image features with the

guidance of disentangled spatial and exposure features. The main idea of this disser-

tation is to exploit the disentangled feature-aware attentions during the merge of LDR

image features, which helps the network extract more image-specific exclusive fea-

tures from each LDR image.

3



Chapter 2

Related Works

In this chapter, related works on HDR imaging task are briefly introduced into two cat-

egories: single-frame HDR imaging, multi-frame HDR imaging with dynamic scenes.

2.1 Single-frame HDR imaging

The single-frame HDR imaging aims to produce an HDR image from a single LDR im-

age. Since there is severe missing information in a single LDR image due to the under-

/over-exposed region, reconstructed HDR images often show undesired artifacts and

unsatisfying quality. One popular strategy for addressing the above-stated issue is syn-

thesizing multiple LDR images with a different exposure setting from a single input

LDR image. Lee et al.[21] proposed a method that generates pseudo multi-exposed

LDR images by modeling inverse tone-mapping with a deep neural network(DNN).

Specifically, they adopt a generative adversarial network(GAN)[22] structure for pro-

ducing more realistic pseudo LDR images. After generating pseudo multi-exposed

LDR images, they merge generated LDR images to produce an HDR image. Endo et

al.[23] proposed a network that synthesizes a set of up-exposed LDR images and a set

of down-exposed images from a single LDR image input. They also construct a GAN

4
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HDR image 
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Create bracket 
image

LDR

HDR

Up-/Down-exposed images

Merge

Synthesize

Fully-CNN Model

Training

Figure 2.1: A brief explanation of single-frame HDR imaging method proposed by
endo et al.[23]. The network is trained with external HDR image database and camera
response function database to synthesize multiple LDR images from a single input
LDR image.

based network structure and train the network with an external HDR image dataset

and camera response function(CRF) dataset. The trained network can synthesize mul-

tiple LDR images that have differenent exposure-related attributes from a single LDR

image. The synthesized multiple LDR images are merged to produce an HDR image.

Fig. 2.1 displays a brief explanation of proposed HDR reconstruction process. Liu et

al.[24] model the camera pipeline and reverse it to produce an HDR image from a sin-

gle LDR image. First, they model the HDR-to-LDR image formation pipeline, which

consists of dynamic range clipping, non-linear CRF, and quantization which are repre-

sented in Fig. 2.2. After simulating the HDR-to-LDR pipeline, three specialized CNNs

proposed to reverse each step in the simulated pipeline. Further, the hallucination and

refinement networks are also proposed to predict missing content in over-exposed re-

gions and fine-tune the whole model, respectively.

5



LDRHDR

Range clipping Non-liner mapping Quantization

Linear LDR
Non-linear 

LDR

Figure 2.2: A general camera pipeline in HDR-to-LDR transformation. The pipeline
includes range clipping, non-linear mapping(CRF), and quantization.

2.2 Multi-frame HDR imaging with dynamic scenes

The target of multi-frame HDR imaging is producing an HDR image from multiple

LDR images which are captured in the same scene. Multiple LDR images produce

more rich information, which is important for producing fine HDR images. However,

there are motion differences when moving objects exist in the scene since each frame

is captured independently. The ghosting artifact which is displayed in Fig. 2.4 is most

a common problem in the reconstructed HDR image, caused by misalignment of input

multiple LDR images. To address misalignment problem, previous methods[3, 4, 5, 6,

7, 25] tried to align LDR images before merging process by using traditional aligning

methods. For instance, [7, 6, 5] applied optical flow estimation to compensate motions

of objects by pixel-level alignment. However, they still suffer from undesired artifacts

in the result HDR image due to estimation errors caused in the alignment stage. To

alleviate estimation errors in alignment stage, several methods[29, 30] proposed to

ignore significant estimation error in alignments stage. However, they still suffer from

unstable reconstruction results due to inaccurate pixel-level identification of moving

6
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Figure 2.3: Illustration of spatial attention module in [1]. Input features(F1, F3) are
concatenated with reference frame F2, used to create attention masks A1, A3. Then,
they multiplied with input features to produce aligned features. Red arrows denote the
convolutional layer.

objects.

Recently, CNN-based methods have achieved notable success in the image restora-

tion tasks[26, 27, 28, 36, 38, 35], including HDR imaging. Kalantari et al.[5] firstly

proposed a CNN based merging model. They aligned LDR images with optical flow es-

timation in the pre-processing step. Aligned LDR images are merged through the CNN

model to produce an HDR image. Wu et al.[16] proposed U-Net [12] based network,

which consists of multiple encoders and a single decoder, including skip-connection.

They align the background of LDR images with the homography transformation. Af-

ter the alignment process, aligned LDR images are fed to the proposed network to

produce an HDR image. Yan et al.[1] proposed attention based network to handle mo-

tions in scene. They construct spatial attention modules in the network which align

input features by end-to-end training without any additional alignment process. As

illustrated in Fig. 2.3, attention masks generated are from the concatenated feature,

multiplied with input features for alignment. They also employ dilated residual dense

7



blocks(DRDB) for preserving image details and enlarging the receptive field of the

network. Non-local[9] based network also proposed by Yan et al.[8]. They exploit

non-local attributes of features and extract more rich and diverse global features to

produce more realistic HDR images without any undesired artifacts. Liu et al.[32] em-

ployed pyramid cascading deformable(PCD) alignment module for feature alignment

which proposed in video super-resolution task[34]. They apply the spatial attention

module to input LDR images and the PCD module to gamma-corrected LDR images

separately for more accurate pixel-level alignment. Niu et al[14] proposed GAN based

method with multi-scale structure. The generator is designed with multi-scale individ-

ual encoders and one decoder for HDR image reconstruction. A patchGAN[33] dis-

criminator with sphere loss[31] is adopted for adversarial training. Deep supervision

is also proposed as an additional training objective, which helps the whole network to

generate more fine intermediate features in the reconstruction process.

In this paper, the HDR reconstruction process is divided into a two-step. First, the

spatial feature and the exposure feature are extracted from LDR images through the

disentangle network. These features contain distinctive content information and global

information of LDR images which can represent images effectively. After extracting

features, a reconstruction network produces a realistic HDR image. Especially, the

extracted spatial feature and exposure feature are leveraged in the feature merging

process, which bring significant benefits in the reconstruction step.

8



Figure 2.4: Image samples that show ghosting artifacts and saturated artifacts. Regions
close to the flame(red arrows) show severe ghosting artifacts and saturated artifacts
caused by large motions and exposure setting.
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Chapter 3

Proposed Method

3.1 Disentangle Network for Feature Extraction

The proposed disentangle network extracts global exposure features and local spa-

tial features from LDR images. The extracted features have representative attributes

of input LDR image, and thus can be utilized effectively in the reconstruction step.

As shown in Fig. 3.1, disentangle network consists of two encoders Eex, Esp, and

one decoder D, where Eex extracts the global exposure information F ex
i from given

(H×W ×3) RGB input images Xi, i = 1, 2, 3. More precisely, it consists of 4 down-

sample convolutional blocks and an adaptive average pooling. Esp has a similar archi-

tecture to Eex but has 3 downsample convolutional blocks and 2 residual blocks[20]

without pooling. Consequently, Esp generates (H8 × W
8 × Cs) spatial feature F sp

i ,

and Eex generates (1 × 1 × Ce) exposure feature vector. Decoder D is symmetric

to the architecture of Eex, which consist of 4 bilinear upsample convolutional blocks

and AdaIN[10] module. The AdaIN module applies the encoded style information to

image content, showing impressive performance on style transfer tasks which can be

formulated as

AdaIN(F sp
i , F ex

i ) =

(
F sp
i − µ(F sp

i )

σ(F sp
i )

)
FCs(F

ex
i ) + FCb(F

ex
i ), (3.1)

10
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Figure 3.1: Overall architecture of disentangle network. The disentangle network con-
sist of two encoder(Esp, Eex) and one decoder(D). Each layer denoted on the right
down boxes.

where µ and σ denote mean and variance function, FCs, FCb denote fully connected

layer for calculating scale and bias factor in AdaIN module. With the AdaIN mod-

ule, our encoder-decoder structured disentangle network fuse Eex, Esp effectively and

able to reconstruct the input image more realistic. For network training, L1 loss and

perceptual loss are used:

Lrecon1 =
∑
i

∥Xi −D(Esp(Xi), Eex(Xi))∥1, (3.2)

Lper1 =
∑
i

∥ϕ(Xi)− ϕ(D(Esp(Xi), Eex(Xi)))∥1, (3.3)

where ϕ denotes the Gram matrix of VGG-19[11] network intermediate features.

To boost disentanglement of the network, additional losses with Y
′
1 and Y

′
3 are

adopted, which have the same spatial features with ground-truth HDR image but have

different exposure features. They are mapped from the ground-truth HDR image via

11
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the inverse version of gamma correction function as

Y
′
i = tiY

1
γ , i = 1, 3, (3.4)

where γ= 2.2 denotes the gamma correction parameter and ti denotes exposure time

value. Fig. 3.2 illustrates synthesized LDR images from an HDR image via inverse

gamma correction. Synthesized images show matching global attributes which are re-

lated to exposure level. Each LDR image shows corresponding exposure-related at-

tributes. The additional losses for these spatial features and exposure features are de-

fined as follows:

Lrecon2 =
∑
i=1,3

∥Y ′
i −D(Esp(X2), Eex(Xi))∥1, (3.5)

Lper2 =
∑
i=1,3

∥ϕ(Y ′
i )− ϕ(D(Esp(X2), Eex(Xi)))∥1. (3.6)

Note that only the spatial information is only extracted from X2, which has the same

spatial information as the ground-truth HDR image. Fig. 3.3 displays additional train-

ing objective for the disentangle network. The total loss of the disentangle network is

the weighted sum of reconstruction and perceptual losses as

LDIS = Lrecon1 + Lrecon2 + λ(Lper1 + Lper2), (3.7)

where λ is a balance parameter. Fig. 3.4 displays synthesized images with (F sp
i , F ex

j )

pairs. Images generated with the same F sp
i are spatially consistent (row), and images

generated with the same F ex
j have similar global exposure attribute (column). These

images show that our disentangle network extracts meaningful features F sp
i , F ex

i from

input images.

13
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Figure 3.4: Images generated by decoder D with various F sp
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same row have the same spatial information, and images in the same column have the
same global exposure information.
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3.2 Disentangle Features Guided Network

DFGNet aims at producing high-quality HDR image Ĥ from given multiple LDR

images Xi. Following the existing practice in [5], which maps the given LDR images

Xi to the HDR images X̃i by gamma correction.

X̃i = Xγ
i /ti, i = 1, 2, 3, (3.8)

where γ = 2.2 denotes the gamma correction parameter and ti denotes exposure time

value of Xi. In this work, Xi and X̃i are concatenated along the channel dimension

to obtain 6-channel input Li = [Xi, X̃i]. The U-Net [12] structure is employed as

a base network architecture since many previous HDR imaging networks [5, 14, 13]

show reliable results with the U-Net structure. To extract rich and diverse features from

multiple LDR images, individual encoders are used for each LDR image inputs. Each

encoder contains three 3 × 3 convolutional layers with the stride of 2, except the first

stage. These convolutional layers extracts multi-scale LDR image features of the size

( H
2j−1 × W

2j−1 × 2j−1C), where j denotes the index of the stage. The encoding stage in

each stage can be represented as

Fi,1 = Ei,1(Li) ∈ RH×W×C ,

Fi,2 = Ei,2(Ei,1(Li)) ∈ RH/2×W/2×2C ,

Fi,3 = Ei,3(Ei,2(Ei,1(Li))) ∈ RH/4×W/4×4C ,

(3.9)

where i refers to the index of the frame number of input LDR image. Ei,j denotes

encoding block for ith input LDR frame in jth stage which consists of convolutional

layer and parametric ReLU[17] activation. The decoder merges LDR image features

of the same stage through a DFG module. The decoder contains two 4× 4 transposed

convolutional layers with the stride of 2 that upsample merged features from the pre-

vious stage to the same spatial size of the current stage. Every merged feature of each
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Figure 3.6: The details of a spatial attention unit in j stage. All input features are
summed to create a unified feature Uj . The unified feature is concatenated with ex-
tracted spatial feature F isp

i,j , producing attention maps. Each attention map is multi-
plied with the corresponding input feature and summed to produce a merged feature
U sp
j . Blue arrows denote the 3× 3 convolutional layer.

stage is concatenated with the upsampled features. Note that the DFG module is used

to merge extracted features in the same stage instead of summing those features di-

rectly. The DFG module leverages key features of LDR images, which are extracted

from pre-trained encoder Esp and Eex.

As shown in Fig. 3.5, our DFG module consists of two specific attention units. Fig.

3.6 illustrates detail structure of spatial attention unit. The spatial attention unit obtains

an attention map from the sum of input features Fi,j and extracts intermediate feature

F isp
i,j in the j stage. Attention maps are multiplied to each input feature, and these

features are summed for merging. The whole merging process in the spatial attention

unit is defined as

Uj =
∑
i

Fi,j , i = 1, 2, 3 (3.10)

U sp
j =

∑
i

(Fi,j ⊗ σ(Conv(Concat(F isp
i,j , Uj)))), (3.11)
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Figure 3.7: The details of an exposure attention unit. Each extracted exposure feature
F ex
i is used to create attention vector vi,j by applying a single fully connected layer

and softmax function. Attention vectors are multiplied with the corresponding input
feature and summed to produce a merged feature U ex

j . Red arrows denote the fully
connected layer.

where U sp
j denotes the merged feature of input features Fi,j in the stage j, F isp

i,j is the

extracted intermediate feature of LDR image Xi, and Concat(·) is the channel-wise

concatenation. Note that features in each stage have a different spatial size. Hence, as

described in Fig. 3.1, F isp
i,j is extracted from different intermediate layers of Esp. Fig.

3.7 displays detail structure of exposure attention unit. The exposure attention unit

gives weight along the channel dimension of input features Fi,j . The exposure feature

vector F ex
i,j is used to obtain the channel-wise weight vector vi,j . Similar to the spatial

attention unit, the size of the channel dimension in each stage is different. Thus, one

fully connected layer is added to match the channel size of vi,j to Fi,j , and the softmax

function is applied along channel dimension.

vi,j = FC(F ex
i ), (3.12)
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U ex
j =

∑
i

(Fi,j ⊗ Softmax(vi,j)), (3.13)

where j refers to the index of stage. Note that we construct spatial attention unit and

exposure attention unit in the DFG module parallelly. With this parallel structure, each

unit focus on creating a distinctive merged feature that can compensate for the feature

from the other unit.

Mj = Concat(U sp
j , U ex

j ), (3.14)

where j refers to the index of current stage in network. Finally, decoder concatenate

merged feature in each stage sequentially, which can be represented as

D3 = TC3(Mj) ∈ RH/2×W/2×2C ,

D2 = TC2(Concat(M2, D3)) ∈ RH×W×C ,

D1 = Concat(M1, D2) ∈ RH×W×2C ,

(3.15)

where j refers to the index of the network stage and TCj denotes decoding block that

consists of 4× 4 transposed convolutional layer and parametric ReLU activation. The

predicted HDR image Ĥ is obtained by applying a single 3× 3 convolutional layer to

D1.

Ĥ = Conv(D1). (3.16)

The HDR image is used after ton-mapping and predicted HDR image in loss func-

tion for more effective training according to [5]. Given the ground-truth HDR image

H , the range of the image is compressed with µ-law:

τ (H) =
log(1 + µH)

log(1 + µ)
, (3.17)

where µ is the parameter of the tone-mapping function and τ (H) is a tone-mapped

HDR image. Finally, the DFGNet is trained with L1 loss between the tone-mapped
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HDR image τ (H) and tone-mapped predicted HDR image τ (Ĥ):

LDFG = ∥τ (H)− τ (Ĥ)∥1. (3.18)
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Chapter 4

Experimental Results

4.1 Implementation and Details

The proposed network is implemented with PyTorch[37] and evaluate it on an NVIDIA

Tesla V100 GPU. Parametric ReLU [17] is adopted in DFGNet for more flexible fea-

ture activation. Patches of size 256× 256 with a stride of 64 are sampled for training.

To alleviate overfitting, flip and rotation are applied on sampled patches. The network

is optimized by Adam [18] optimizer with an initial learning rate of 1e-4 and decay

rate of 0.1. During the test step, a set of LDR images at 1440×960 resolution are used.

4.2 Comparison with State-of-the-art Methods

In this section, proposed method are evaluated and compared with state-of-the-art

methods on Kalantari’s dataset [5]. The state-of-the-art methods include patch-based

model [19] and deep learning-based models [5, 16, 8, 1, 14]. Especially, Kalantari et

al. [5] applied the optical flow in the pre-processing step, and DeepHDR [16] used

homography transformation to align the background of the input image. Table 4.1

shows the result of the experiments. The proposed DFGNet outperforms all the pre-

vious methods on all evaluation metrics without using optical flow or additional data.
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Table 4.1: Quantitative comparison of different models. Each score is the average
across all testing images. The best score are indicated in boldface.

Method PSNR-µ PSNR-ℓ HDR-VDP-2[15]
Sen et al.[19] 40.80 38.11 59.38

Kalantari et al.[5] 42.74 41.23 65.05
DeepHDR[16] 41.64 40.91 64.90
AHDRNet[1] 43.63 41.14 64.61

NHDRRNet[8] 42.41 - 61.21
HDR-GAN[14] 43.92 41.57 65.45

Proposed 44.19 41.89 66.84

-2.0

+2.0

0.0

LDRs DFGNet generated tonemapped HDR image

Sen Kalantari DeepHDR AHDRNet Proposed GT

Figure 4.1: An example from the test dataset[5]. Patches of predicted tone-mapped
HDR images from various methods are compared. HDR images are tone-mapped with
Photomatix[39] for visualization. Proposed DFGNet shows brightness matching to the
ground truth and recovers saturated region and details.

Fig. 4.1 shows a qualitative comparison between several models. Note that HDR-GAN

23



is excluded in this comparison since the authors do not provide the code. Sen et al.,

Kalantari et al., and DeepHDR fail to produce an image with similar global bright-

ness to ground-truth and cannot preserve the details of the image. AHDRNet preserves

more details than previous models but shows saturating artifacts due to failure in recov-

ering over-exposed regions. The proposed DFGNet shows HDR image with matching

brightness and color to ground-truth, recovering saturated region and details of image

successfully.
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Chapter 5

Ablation Study

5.1 Impact of Proposed Modules

Table 5.1: The performance evaluation on network variants of DFGNet. The EAU
denotes exposure attention unit and the SAU denotes spatial attention unit.

Method PSNR-µ PSNR-ℓ HDR-VDP-2
Model 1(w/o EAU) 43.57 41.45 65.88
Model 2(w/o SAU) 43.92 41.59 66.91

Full 44.19 41.89 66.84

In this section, the effectiveness of the proposed modules is evaluated. The net-

work without an exposure attention unit and the network without a spatial attention

unit are trained and evaluated in the same scenario. Model 1 and Model 2 in Table 5.1

denote network variants of DFGNet and Full denotes original DFGNet. The exposure

attention unit(EAU) is removed in Model 1, and the spatial attention unit(SAU) is re-

moved in Model 2. For a fair comparison, the channel volume of each network variant

is adjusted to make the network has the same parameter size. The psnr-µ of both vari-

ant Model 1 and Model 2 dropped compared to the original DFGNet. Especially, the

performance dropped significantly when the exposure attention unit is removed. These
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results prove that our proposed exposure attention unit and spatial attention unit in the

DFG module boost HDR reconstruction performance of the network.

31



Chapter 6

Conclusion

In this dissertation, a disentangled feature-guided network is proposed for generat-

ing an HDR image from multiple LDR inputs. To alleviate the major problems in

multi-exposure HDR imaging, namely the misalignments and the information losses in

LDR inputs, we have extracted representative spatial/exposure features and leveraged

those features in the proposed network. Experiments show that the proposed network

successfully merges the LDR inputs with fewer artifacts and better brightness/color

matching to the ground truth compared to state-of-the-art methods.
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초록

다중노출(Multiple-exposure)하이다이나믹레인지(High Dynamic Range, HDR)

이미징은 각각 다른 노출 정도로 촬영된 다수의 로우 다이나믹 레인지(Low Dy-

namic Range, LDR) 이미지를 사용하여 하나의 HDR 이미지를 생성하는 것을 목

표로한다.다중노출 HDR이미징은두가지주요문제점때문에어려움이있는데,

하나는 입력 LDR 이미지들이 정렬되지 않아 결과 HDR 이미지에서 고스트 아티

팩트(Ghosting Artifact)가발생할수있다는점과,또다른하나는 LDR이미지들의

과소노출(Under-exposure)및과다노출(Over-exposure)된영역에서정보손실이발

생한다는점이다.과거의방법들이고전적인이미지정렬방법들(e.g., homography,

optical flow)을사용하여입력 LDR이미지들을전처리과정에서정렬하여병합하

는 시도를 했지만, 이 과정에서 발생하는 추정 오류로 인해 이후 단계에 악영항을

미침으로써발생하는여러가지부적절한아티팩트들이결과 HDR이미지에서나타

나고있다.

본 심사에서는 피쳐 분해를 응용한 HDR 네트워크를 제안하여, 언급된 문제들

을 경감하고자 한다. 구체적으로, 먼저 LDR 이미지들을 노출 피쳐와 공간 피쳐로

분해하고,분해된피쳐를 HDR네트워크에서활용함으로써고품질의 HDR이미지

를생성할수있도록한다.제안한네트워크는성능지표인 PSNR-ℓ과 PSNR-µ에서

각각 41.89dB, 44.19dB의성능을달성함으로써,기존방법들보다우수함을입증한

다.
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