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Abstract

Multi-exposure high dynamic range (HDR) imaging aims to generate an HDR
image from multiple differently exposed low dynamic range (LDR) images. Multi-
exposure HDR imaging is a challenging task due to two major problems. One is mis-
alignments among the input LDR images, which can cause ghosting artifacts on result
HDR, and the other is missing information on LDR images due to under-/over-exposed
region. Although previous methods tried to align input LDR images with traditional
methods(e.g., homography, optical flow), they still suffer undesired artifacts on the
result HDR image due to estimation errors that occurred in aligning step.

In this dissertation, disentangled feature-guided HDR network (DFGNet) is pro-
posed to alleviate the above-stated problems. Specifically, exposure features and spa-
tial features are first extracted from input LDR images, and they are disentangled from
each other. Then, these features are processed through the proposed DFG modules,
which produce a high-quality HDR image. The proposed DFGNet shows outstanding
performance compared to previous methods, achieving the PSNR-¢ of 41.89dB and
the PSNR-x of 44.19dB.

keywords: High Dynamic Range Imaging, Multi-Exposed Imaging, Feature Disen-

tanglement

student number: 2020-29425
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Chapter 1

Introduction

While the human visual system (HVS) perceives scenes with high dynamic luminance
ranges adaptively, standard digital cameras generally have narrower dynamic ranges
than the HVS. A common approach to capturing HDR scenes with such traditional
cameras is to take the scenes with several different exposures and then merge them
into an HDR image, which is called multi-exposure HDR imaging.

There are two significant problems in this approach, which have long been ad-
dressed in the literature. One is the misalignment between LDR inputs, which leads to
ghosting artifacts on the reconstruction results. The other is the insufficient image in-
formation of LDR inputs due to their saturated regions, especially for the LDR images
taken with short or long exposure times.

Meanwhile, deep convolutional neural networks (CNN) have improved the perfor-
mance of various computer vision tasks, including HDR imaging[5, 1, 8, 13, 16, 14].
In developing the CNN-based HDR imaging, the researchers mainly focused on ex-
ploiting the common structures between the LDR inputs through the explicit image
alignment or implicit feature attention.

Regarding the misalignment problem, conventional methods (before CNN-based
approaches) attempted to align the LDR images before the merging process to alleviate

the ghost artifacts [4, 3, 2, 6, 7]. For example, the optical flow has been adopted in [6,



HDR image

Figure 1.1: A brief explanation of multi-exposure HDR imaging task. Each LDR image
on left side has different exposure time value(denoted in parenthesis) and not aligned.

7] to align the pixels between the LDR images. The early CNN-based methods also
adopted the optical flow as a pre-processing step. For example, [5] aligned the inputs
by optical flow and then forwarded them to a merging network. Afterward, researchers
focused on designing neural network structures that implicitly align LDR images in
the feature space [1, 8, 13, 16, 14]. For example, AHDRNet[1] proposed an attention-
guided deep neural network that learns the structural relationships between input LDR
images and HDR output. It generates soft attention maps to measure the importance of
different image regions for producing HDR images. NHDRRNet [8] constructs non-
local blocks [9] in the merging process to obtain global features from aggregated LDR
image features. By fusing the global and local features, it effectively merges LDR
images at the feature level and achieves better-aligned results than the optical flow-
based approaches. On the contrary to the misalignment problem, exposure information
has not been well addressed in the existing works, which can enhance the resulting

HDR quality when appropriately utilized.
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In this dissertation, to address the above-stated major issues in HDR imaging, i.e.,
aligning the structure and exploiting the exposure information, a disentangle network
is proposed that extracts representative exposure features and spatial features sepa-
rately from LDR images. Further, a disentangled feature-guided network (DFGNet)
is designed, which consists of DFG modules that align LDR image features with the
guidance of disentangled spatial and exposure features. The main idea of this disser-
tation is to exploit the disentangled feature-aware attentions during the merge of LDR
image features, which helps the network extract more image-specific exclusive fea-

tures from each LDR image.



Chapter 2

Related Works

In this chapter, related works on HDR imaging task are briefly introduced into two cat-

egories: single-frame HDR imaging, multi-frame HDR imaging with dynamic scenes.

2.1 Single-frame HDR imaging

The single-frame HDR imaging aims to produce an HDR image from a single LDR im-
age. Since there is severe missing information in a single LDR image due to the under-
/over-exposed region, reconstructed HDR images often show undesired artifacts and
unsatisfying quality. One popular strategy for addressing the above-stated issue is syn-
thesizing multiple LDR images with a different exposure setting from a single input
LDR image. Lee et al.[21] proposed a method that generates pseudo multi-exposed
LDR images by modeling inverse tone-mapping with a deep neural network(DNN).
Specifically, they adopt a generative adversarial network(GAN)[22] structure for pro-
ducing more realistic pseudo LDR images. After generating pseudo multi-exposed
LDR images, they merge generated LDR images to produce an HDR image. Endo et
al.[23] proposed a network that synthesizes a set of up-exposed LDR images and a set

of down-exposed images from a single LDR image input. They also construct a GAN
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Figure 2.1: A brief explanation of single-frame HDR imaging method proposed by
endo et al.[23]. The network is trained with external HDR image database and camera
response function database to synthesize multiple LDR images from a single input
LDR image.

based network structure and train the network with an external HDR image dataset
and camera response function(CRF) dataset. The trained network can synthesize mul-
tiple LDR images that have differenent exposure-related attributes from a single LDR
image. The synthesized multiple LDR images are merged to produce an HDR image.
Fig. 2.1 displays a brief explanation of proposed HDR reconstruction process. Liu et
al.[24] model the camera pipeline and reverse it to produce an HDR image from a sin-
gle LDR image. First, they model the HDR-to-LDR image formation pipeline, which
consists of dynamic range clipping, non-linear CRF, and quantization which are repre-
sented in Fig. 2.2. After simulating the HDR-to-LDR pipeline, three specialized CNNs
proposed to reverse each step in the simulated pipeline. Further, the hallucination and
refinement networks are also proposed to predict missing content in over-exposed re-

gions and fine-tune the whole model, respectively.



HDR

1 em{ |- Jf

Range clipping Non-liner mapping Quantization

Figure 2.2: A general camera pipeline in HDR-to-LDR transformation. The pipeline
includes range clipping, non-linear mapping(CRF), and quantization.

2.2 Multi-frame HDR imaging with dynamic scenes

The target of multi-frame HDR imaging is producing an HDR image from multiple
LDR images which are captured in the same scene. Multiple LDR images produce
more rich information, which is important for producing fine HDR images. However,
there are motion differences when moving objects exist in the scene since each frame
is captured independently. The ghosting artifact which is displayed in Fig. 2.4 is most
a common problem in the reconstructed HDR image, caused by misalignment of input
multiple LDR images. To address misalignment problem, previous methods[3, 4, 5, 6,
7, 25] tried to align LDR images before merging process by using traditional aligning
methods. For instance, [7, 6, 5] applied optical flow estimation to compensate motions
of objects by pixel-level alignment. However, they still suffer from undesired artifacts
in the result HDR image due to estimation errors caused in the alignment stage. To
alleviate estimation errors in alignment stage, several methods[29, 30] proposed to
ignore significant estimation error in alignments stage. However, they still suffer from

unstable reconstruction results due to inaccurate pixel-level identification of moving
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Figure 2.3: Illustration of spatial attention module in [1]. Input features(F}, F3) are
concatenated with reference frame F5, used to create attention masks A, As. Then,
they multiplied with input features to produce aligned features. Red arrows denote the
convolutional layer.

objects.

Recently, CNN-based methods have achieved notable success in the image restora-
tion tasks[26, 27, 28, 36, 38, 35], including HDR imaging. Kalantari et al.[5] firstly
proposed a CNN based merging model. They aligned LDR images with optical flow es-
timation in the pre-processing step. Aligned LDR images are merged through the CNN
model to produce an HDR image. Wu et al.[16] proposed U-Net [12] based network,
which consists of multiple encoders and a single decoder, including skip-connection.
They align the background of LDR images with the homography transformation. Af-
ter the alignment process, aligned LDR images are fed to the proposed network to
produce an HDR image. Yan et al.[1] proposed attention based network to handle mo-
tions in scene. They construct spatial attention modules in the network which align
input features by end-to-end training without any additional alignment process. As
illustrated in Fig. 2.3, attention masks generated are from the concatenated feature,

multiplied with input features for alignment. They also employ dilated residual dense



blocks(DRDB) for preserving image details and enlarging the receptive field of the
network. Non-local[9] based network also proposed by Yan et al.[8]. They exploit
non-local attributes of features and extract more rich and diverse global features to
produce more realistic HDR images without any undesired artifacts. Liu et al.[32] em-
ployed pyramid cascading deformable(PCD) alignment module for feature alignment
which proposed in video super-resolution task[34]. They apply the spatial attention
module to input LDR images and the PCD module to gamma-corrected LDR images
separately for more accurate pixel-level alignment. Niu et al[14] proposed GAN based
method with multi-scale structure. The generator is designed with multi-scale individ-
ual encoders and one decoder for HDR image reconstruction. A patchGANI[33] dis-
criminator with sphere loss[31] is adopted for adversarial training. Deep supervision
is also proposed as an additional training objective, which helps the whole network to
generate more fine intermediate features in the reconstruction process.

In this paper, the HDR reconstruction process is divided into a two-step. First, the
spatial feature and the exposure feature are extracted from LDR images through the
disentangle network. These features contain distinctive content information and global
information of LDR images which can represent images effectively. After extracting
features, a reconstruction network produces a realistic HDR image. Especially, the
extracted spatial feature and exposure feature are leveraged in the feature merging

process, which bring significant benefits in the reconstruction step.



Figure 2.4: Image samples that show ghosting artifacts and saturated artifacts. Regions
close to the flame(red arrows) show severe ghosting artifacts and saturated artifacts
caused by large motions and exposure setting.
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Chapter 3

Proposed Method

3.1 Disentangle Network for Feature Extraction

The proposed disentangle network extracts global exposure features and local spa-
tial features from LDR images. The extracted features have representative attributes
of input LDR image, and thus can be utilized effectively in the reconstruction step.
As shown in Fig. 3.1, disentangle network consists of two encoders E,;, Esp, and
one decoder D, where F,, extracts the global exposure information £ from given
(H x W x 3) RGB input images X;,i = 1,2, 3. More precisely, it consists of 4 down-
sample convolutional blocks and an adaptive average pooling. I, has a similar archi-
tecture to F, but has 3 downsample convolutional blocks and 2 residual blocks[20]
without pooling. Consequently, E, generates (% X % x Cs) spatial feature F;”,
and F., generates (1 x 1 x C¢) exposure feature vector. Decoder D is symmetric
to the architecture of F,,, which consist of 4 bilinear upsample convolutional blocks
and AdaIN[10] module. The AdaIN module applies the encoded style information to
image content, showing impressive performance on style transfer tasks which can be
formulated as

Ffp — u(F, z’sp)

a(FP)

1

AdaIN(FP Ff) = ( ) FCOS(F*) + FCy(FF*), (3.1

10



[ Convolution Layer [l Average Pooling
Eex [ ADAIN Block []Upsample Block
[] Downsample Block [[] Residual Block

Figure 3.1: Overall architecture of disentangle network. The disentangle network con-
sist of two encoder(Es,, F¢,) and one decoder(D). Each layer denoted on the right
down boxes.

where 1 and o denote mean and variance function, F'Cs, F'C}, denote fully connected
layer for calculating scale and bias factor in AdaIN module. With the AdaIN mod-
ule, our encoder-decoder structured disentangle network fuse E.,, Fy), effectively and
able to reconstruct the input image more realistic. For network training, L; loss and

perceptual loss are used:

Lreconl - Z”Xz - D(Esp(Xi)yEex(Xi))Hla (3-2)

Lyper1 = ZH@Z)(Xz’) — ¢(D(Esp(Xi), e (X)) 1, (3.3)

where ¢ denotes the Gram matrix of VGG-19[11] network intermediate features.
To boost disentanglement of the network, additional losses with Yll and Y:,: are
adopted, which have the same spatial features with ground-truth HDR image but have

different exposure features. They are mapped from the ground-truth HDR image via

A & Tl 8} 3
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the inverse version of gamma correction function as
/ 1,
Y, =tY,i=1,3, 3.4)

where v= 2.2 denotes the gamma correction parameter and ¢; denotes exposure time
value. Fig. 3.2 illustrates synthesized LDR images from an HDR image via inverse
gamma correction. Synthesized images show matching global attributes which are re-
lated to exposure level. Each LDR image shows corresponding exposure-related at-
tributes. The additional losses for these spatial features and exposure features are de-

fined as follows:

LreconZ = Z HYVzI - D(Esp(XQ)aEex(Xi))Hla (35)
=13
Lperz = Y _ [6(Y;) — ¢(D(Esp(X2), Eex(X:))) 1. (3.6)
i=1,3

Note that only the spatial information is only extracted from X9, which has the same
spatial information as the ground-truth HDR image. Fig. 3.3 displays additional train-
ing objective for the disentangle network. The total loss of the disentangle network is

the weighted sum of reconstruction and perceptual losses as
LDIS = Lreconl + LrecanQ + )\<Lper1 + Lper2)7 (37)

where ) is a balance parameter. Fig. 3.4 displays synthesized images with (F}”, Fee )
pairs. Images generated with the same F;” are spatially consistent (row), and images
generated with the same F* have similar global exposure attribute (column). These
images show that our disentangle network extracts meaningful features F.”, F* from

input images.

13
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Same Spatial Feature

Figure 3.4: Images generated by decoder D with various F;” and F*. Images in the
same row have the same spatial information, and images in the same column have the
same global exposure information.
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3.2 Disentangle Features Guided Network

DFGNet aims at producing high-quality HDR image H from given multiple LDR
images X;. Following the existing practice in [5], which maps the given LDR images

X; to the HDR images X; by gamma correction.
Xi =X /tii=1,2,3, (3.8)

where v = 2.2 denotes the gamma correction parameter and ¢; denotes exposure time
value of X;. In this work, X, and )Z'i are concatenated along the channel dimension
to obtain 6-channel input L; = [X, XZ] The U-Net [12] structure is employed as
a base network architecture since many previous HDR imaging networks [5, 14, 13]
show reliable results with the U-Net structure. To extract rich and diverse features from
multiple LDR images, individual encoders are used for each LDR image inputs. Each
encoder contains three 3 X 3 convolutional layers with the stride of 2, except the first
stage. These convolutional layers extracts multi-scale LDR image features of the size

( H w

57T X 551 X 271, where j denotes the index of the stage. The encoding stage in

each stage can be represented as

Fz’,l — Ei,l(Li) e RH><W><C’7
Fip = E;2(Ei1(L;)) € RE/2XW/2x2C (3.9)

Fi3=FE;3(E;2(E;1(L))) € ]RH/4><W/4><4C’

where i refers to the index of the frame number of input LDR image. E; ; denotes
encoding block for 7*" input LDR frame in j stage which consists of convolutional
layer and parametric ReLU[17] activation. The decoder merges LDR image features
of the same stage through a DFG module. The decoder contains two 4 X 4 transposed
convolutional layers with the stride of 2 that upsample merged features from the pre-

vious stage to the same spatial size of the current stage. Every merged feature of each

16
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Figure 3.6: The details of a spatial attention unit in j stage. All input features are
summed to create a unified feature U;. The unified feature is concatenated with ex-
tracted spatial feature lejp , producing attention maps. Each attention map is multi-
plied with the corresponding input feature and summed to produce a merged feature
U;". Blue arrows denote the 3 x 3 convolutional layer.

stage is concatenated with the upsampled features. Note that the DFG module is used
to merge extracted features in the same stage instead of summing those features di-
rectly. The DFG module leverages key features of LDR images, which are extracted
from pre-trained encoder F), and F,.

As shown in Fig. 3.5, our DFG module consists of two specific attention units. Fig.
3.6 illustrates detail structure of spatial attention unit. The spatial attention unit obtains
an attention map from the sum of input features F; ; and extracts intermediate feature
Fi‘;ﬁp in the j stage. Attention maps are multiplied to each input feature, and these
features are summed for merging. The whole merging process in the spatial attention

unit is defined as

Uj=> Fji=123 (3.10)

U;p = Z(F” ® a(Conv(Concat(Fz‘;p, Uj)))), (3.1D)

i

s A=t sk w
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Figure 3.7: The details of an exposure attention unit. Each extracted exposure feature
F£* is used to create attention vector v; ; by applying a single fully connected layer
and softmax function. Attention vectors are multiplied with the corresponding input
feature and summed to produce a merged feature U;*. Red arrows denote the fully
connected layer.

where U;" denotes the merged feature of input features Fj ; in the stage j, Fi‘;’-p is the
extracted intermediate feature of LDR image X;, and Concat(-) is the channel-wise
concatenation. Note that features in each stage have a different spatial size. Hence, as
described in Fig. 3.1, Fiij-p is extracted from different intermediate layers of F,. Fig.
3.7 displays detail structure of exposure attention unit. The exposure attention unit
gives weight along the channel dimension of input features F; ;. The exposure feature
vector [ is used to obtain the channel-wise weight vector v; ;. Similar to the spatial
attention unit, the size of the channel dimension in each stage is different. Thus, one
fully connected layer is added to match the channel size of v; ; to F; ;, and the softmax

function is applied along channel dimension.

Vij = FC(F;CC), (312)

].9 e i'



Us® = Z(F” ® Softmax(v; 5)), (3.13)

i

where j refers to the index of stage. Note that we construct spatial attention unit and
exposure attention unit in the DFG module parallelly. With this parallel structure, each
unit focus on creating a distinctive merged feature that can compensate for the feature
from the other unit.

M; = Concar(U;*,U"), (3.14)

where j refers to the index of current stage in network. Finally, decoder concatenate

merged feature in each stage sequentially, which can be represented as

Dy = TC3(M]') c RH/QXW/QXQC’
Dy = TCy(Concat(My, D3)) € REXW*C (3.15)

Dy = Concat(M,, Ds) € RAXW>2C

where j refers to the index of the network stage and 7'C'; denotes decoding block that
consists of 4 x 4 transposed convolutional layer and parametric ReLU activation. The
predicted HDR image H is obtained by applying a single 3 x 3 convolutional layer to
D;.

~

H = Conv(Dy). (3.16)

The HDR image is used after ton-mapping and predicted HDR image in loss func-
tion for more effective training according to [5]. Given the ground-truth HDR image

H, the range of the image is compressed with p-law:

~ log(1+4 pH)

T(H) = P (3.17)

where ( is the parameter of the tone-mapping function and 7 (H) is a tone-mapped

HDR image. Finally, the DFGNet is trained with L; loss between the tone-mapped

20



HDR image 7 (H) and tone-mapped predicted HDR image 7 (H ):

Lpre = ||T(H) =T (H)]|1. (3.18)
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Chapter 4

Experimental Results

4.1 Implementation and Details

The proposed network is implemented with PyTorch[37] and evaluate it on an NVIDIA
Tesla V100 GPU. Parametric ReLLU [17] is adopted in DFGNet for more flexible fea-
ture activation. Patches of size 256 x 256 with a stride of 64 are sampled for training.
To alleviate overfitting, flip and rotation are applied on sampled patches. The network
is optimized by Adam [18] optimizer with an initial learning rate of le-4 and decay

rate of 0.1. During the test step, a set of LDR images at 1440 x 960 resolution are used.

4.2 Comparison with State-of-the-art Methods

In this section, proposed method are evaluated and compared with state-of-the-art
methods on Kalantari’s dataset [5]. The state-of-the-art methods include patch-based
model [19] and deep learning-based models [5, 16, 8, 1, 14]. Especially, Kalantari et
al. [5] applied the optical flow in the pre-processing step, and DeepHDR [16] used
homography transformation to align the background of the input image. Table 4.1
shows the result of the experiments. The proposed DFGNet outperforms all the pre-

vious methods on all evaluation metrics without using optical flow or additional data.
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Table 4.1: Quantitative comparison of different models. Each score is the average
across all testing images. The best score are indicated in boldface.

Method PSNR-x | PSNR-¢ | HDR-VDP-2[15]
Sen et al.[19] 40.80 38.11 59.38
Kalantari et al.[5] 42.74 41.23 65.05
DeepHDR[16] 41.64 4091 64.90
AHDRNet[1] 43.63 41.14 64.61
NHDRRNet[8] 42.41 - 61.21
HDR-GAN][14] 43.92 41.57 65.45
Proposed 44.19 41.89 66.84

Kalantari DeepHDR AHDRNet Proposed

Figure 4.1: An example from the test dataset[5]. Patches of predicted tone-mapped
HDR images from various methods are compared. HDR images are tone-mapped with
Photomatix[39] for visualization. Proposed DFGNet shows brightness matching to the
ground truth and recovers saturated region and details.

Fig. 4.1 shows a qualitative comparison between several models. Note that HDR-GAN

R b
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is excluded in this comparison since the authors do not provide the code. Sen et al.,
Kalantari et al., and DeepHDR fail to produce an image with similar global bright-
ness to ground-truth and cannot preserve the details of the image. AHDRNet preserves
more details than previous models but shows saturating artifacts due to failure in recov-
ering over-exposed regions. The proposed DFGNet shows HDR image with matching
brightness and color to ground-truth, recovering saturated region and details of image

successfully.
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Chapter 5

Ablation Study

5.1 Impact of Proposed Modules

Table 5.1: The performance evaluation on network variants of DFGNet. The EAU
denotes exposure attention unit and the SAU denotes spatial attention unit.

Method PSNR-x | PSNR-¢ | HDR-VDP-2
Model 1(w/o EAU) 43.57 41.45 65.88
Model 2(w/o SAU) 43.92 41.59 66.91

Full 44.19 41.89 66.84

In this section, the effectiveness of the proposed modules is evaluated. The net-
work without an exposure attention unit and the network without a spatial attention
unit are trained and evaluated in the same scenario. Model 1 and Model 2 in Table 5.1
denote network variants of DFGNet and Full denotes original DFGNet. The exposure
attention unit(EAU) is removed in Model 1, and the spatial attention unit(SAU) is re-
moved in Model 2. For a fair comparison, the channel volume of each network variant
is adjusted to make the network has the same parameter size. The psnr-u of both vari-
ant Model 1 and Model 2 dropped compared to the original DFGNet. Especially, the

performance dropped significantly when the exposure attention unit is removed. These
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results prove that our proposed exposure attention unit and spatial attention unit in the

DFG module boost HDR reconstruction performance of the network.
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Chapter 6

Conclusion

In this dissertation, a disentangled feature-guided network is proposed for generat-
ing an HDR image from multiple LDR inputs. To alleviate the major problems in
multi-exposure HDR imaging, namely the misalignments and the information losses in
LDR inputs, we have extracted representative spatial/exposure features and leveraged
those features in the proposed network. Experiments show that the proposed network
successfully merges the LDR inputs with fewer artifacts and better brightness/color

matching to the ground truth compared to state-of-the-art methods.
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