

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사 학위논문

DNN Accelerator and Load Balancing
Techniques Tailored for Accelerating

Memory-Intensive Operations

메모리 집약적 연산 가속화를 위해 맞춤화된 DNN
가속기 및 로드 밸런싱 기술

2022년 8월

서울대학교 융합과학기술대학원
융합과학부 지능형융합시스템전공

이 선 정

DNN Accelerator and Load Balancing
Techniques Tailored for Accelerating

Memory-Intensive Operations

지도교수 안 정 호

이 논문을 공학박사 학위논문으로 제출함

2022년 7월

서울대학교 융합과학기술대학원

융합과학부 지능형융합시스템전공

이 선 정

이선정의 공학박사 학위 논문을 인준함

2022년 7월

위 원 장: 유 승 주 (인)
부 위원장: 안 정 호 (인)
위 원: 김 장 우 (인)
위 원: 김 지 훈 (인)
위 원: 정 대 진 (인)

Abstract

DNN Accelerator and Load Balancing

Techniques Tailored for Accelerating

Memory-Intensive Operations

Sunjung Lee

Intelligence Systems

Department of Transdisciplinary Studies

The Graduate School

Seoul National University

Deep neural networks (DNNs) are used in various fields, such as in im-

age classification, natural language processing, and speech recognition based

on high recognition accuracy that approximates that of humans. Due to the

continuous development of DNNs, a large body of accelerators have been in-

troduced to process convolution (CONV) and general matrix multiplication

(GEMM) operations, which account for the greatest level of computational

demand. However, in the line of accelerator research focused on accelerating

compute-intensive operations, the execution time of memory-intensive opera-

tions has increased more than it did in the past.

In convolutional neural network (CNN) inference, recent CNNmodels adopt

depth-wise CONV (DW-CONV) and Squeeze-and-Excitation (SE) to reduce

i

the computational costs of CONV. However, existing area-efficient CNN

accelerators are sub-optimal for these latest CNN models because they were

mainly optimized for compute-intensive standard CONV layers with abundant

data reuse that can be pipelined with activation and normalization operations.

In contrast, DW-CONV and SE are memory-intensive with limited data reuse.

The latter also strongly depends on the nearby CONV layers, making an ef-

fective pipelining a daunting task. Therefore, DW-CONV and SE only occupy

10% of entire operations but become memory bandwidth bound, spending more

than 60% of the processing time in systolic-array-based accelerators.

During the transformer training process, the execution times of memory-

intensive operations such as softmax, layer normalization, GeLU, context, and

attention layer increased because conventional accelerators improved their com-

putational performance capabilities dramatically. In addition, with the latest

trend toward increasing the sequence length, the softmax, context, and atten-

tion layers have much more of an influence as their data sizes have increased

quadratically. Thus, these layers take up to 80% of the execution time.

In this thesis, we propose a CNN acceleration architecture called MVP,

which efficiently processes both compute- and memory-intensive operations

with a small area overhead on top of the baseline systolic-array-based ar-

chitecture. We suggest a specialized vector unit tailored for processing DW-

CONV, including multipliers, adder trees, and multi-banked buffers to meet

the high memory bandwidth requirement. We augment the unified buffer with

tiny processing elements to smoothly pipeline SE with the subsequent CONV,

enabling concurrent processing of DW-CONV with standard CONV, thereby

ii

achieving the maximum utilization of arithmetic units. Our evaluation shows

that MVP improves performance by 2.6× and reduces energy consumption by

47% on average for EfficientNet-B0/B4/B7, MnasNet, and MobileNet-V1/V2

with only a 9% area overhead compared to the baseline.

Then, we propose load balancing techniques that partition multiple pro-

cessing element tiles inside a DNN accelerator for transformer training acceler-

ation. Traffic shaping alleviates temporal fluctuations in the DRAM bandwidth

by handling multiple processing element tiles within a cluster in a synchronous

manner but running different clusters asynchronously. Resource sharing reduces

the execution time of compute-intensive operations by simultaneously execut-

ing the matrix units and vector units of all clusters. Our evaluation shows that

traffic shaping and resource sharing improve the performance by up to 1.27×

for BERT-Large training.

keywords: DNN accelerator, tailored vector unit, CNN, load balancing,

partitioning processing units, transformer, traffic shaping, resource sharing

student number: 2018-38972

iii

Contents

Abstract i

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Accelerating Depth-wise Convolution on Edge Device 3

1.2 Accelerating Transformer Models in Training 6

1.3 Research Contributions . 10

1.4 Outline . 11

2 Background and Motivation 12

2.1 CNN background and trends . 12

2.1.1 Various types of convolution (CONV) operations 12

2.1.2 Trends in CNN model architecture 14

2.1.3 EfficientNet: A state-of-the-art CNN model 17

2.2 Transformer background and trends 20

iv

2.2.1 Bidirectional encoder representations from transformers

(BERT) . 20

2.2.2 Trends in training transformer models 21

2.3 Baseline DNN acceleration architecture 23

2.4 Motivation . 25

2.4.1 Challenges of computing memory-intensive CNN layers . 25

2.4.2 Opportunity for load balancing in BERT training 28

3 DNN accelerator tailored for accelerating memory-intensive operations 32

4 MVP: A CNN accelerator with Matrix, Vector, and Processing-near-

memory units 35

4.1 Contribution . 35

4.1.1 MVP organization . 35

4.1.2 How depth-wise processing element (DWPE) operates . . 38

4.1.3 How processing-near-memory unit (PNMU) operates . . 41

4.1.4 Overlapping the operation of DW-CONVwith PW-CONV 42

4.1.5 Considerations for designing DWIB 44

4.2 Evaluation . 45

4.2.1 Experimental setup . 46

4.2.2 Performance and energy evaluation 47

4.2.3 Comparing MVP with NVDLA 52

4.2.4 Exploring the design space of MVP architecture 54

4.2.5 Evaluating MVP with various SysAr configurations 57

4.3 Related Work . 57

v

5 Load Balancing Techniques for BERT Training 61

5.1 Contribution . 61

5.1.1 Tiled architecture . 61

5.1.2 DRAM traffic shaping . 64

5.1.3 Resource sharing . 66

5.2 Evaluation . 68

5.2.1 Experimental setup . 68

5.2.2 Performance evaluation 69

6 Discussion 73

7 Conclusion 78

REFERENCES 79

국문초록 98

vi

List of Tables

2.1 Categorization of operation types used in various CNN models.

(∗ means that it is only used at the initial layer.) 16

4.1 SysAr, VU-DW, PNMU, and DRAM specifications. 45

vii

List of Figures

1.1 (a) The number of operations and (b) execution time break-

down of EfficientNet-B0/B4/B7 of the evaluated systolic-array-

based accelerator (configurations are specified in Section 4.2.1).

NORM, ACT, and POOL operations are not included as their

execution time is hidden through pipelining. 5

1.2 Execution time breakdown of BERT-Large training using A100.

Here, 128, 512, and 2048 sequence lengths are used by BERT-

Large, and Megatron-LM [64]. We obtain the results using the

latest NVIDIA code [67]. 7

2.1 (a) ST-CONV (in general, ST-CONV includes PW-CONV, but

we distinguish the two terms to emphasize whether the kernel

size is 1×1 or not), (b) abbreviations for IFmaps, OFmaps and

weights, (c) CONVs with different ways to refer channels, and

(d) CONVs with different kernel configurations. 13

viii

2.2 Top-1 accuracy and the number of OPs of CNN models by year.

Handcraft refers to the CNN models in which various configu-

rations are manually tuned by researchers until mid-2017. The

radius of a circle is proportional to the number of MAC opera-

tions required by the models. 15

2.3 Mobile inverted bottleneck block (MBConv) of EfficientNet. . . 18

2.4 Operations per byte (OP/B) of EfficientNet-B0/B4/B7 layers.

The leftmost column represents the layer processing an input im-

age. We only show PW-CONV, DW-CONV, and SE-Scale be-

cause they occupy most operations of the models. It is assumed

that all three operations use 8-bit data type. 19

2.5 BERTmodel structure. Self-attention and feed forward represent

gray and white ranges within an encoder. B, SL, H, andMH refer

to batch, sequence length, hidden, and multi-head, respectively.

Equations such as (B×SL, HW), (B×MH)×(SL, SL) indicate the

output size. 20

2.6 (a) Gradient accumulation. (b) Sequence binning. 21

2.7 (a) Baseline systolic-array architecture (SysAr). When SysAr

computes a CONV layer, IC and OC are mapped to each row

and column of MU [75,76] without using im2col [16]. (b) Tiling

features of ST/PW-CONV in SysAr. Tiling notations are listed

in (c). 23

ix

2.8 MAC and on-chip memory bandwidth used inside of MU when

N×N SysAr computes CONV (assuming that IC and OC are

bigger than N): the cases of (a) executing ST-CONV or PW-

CONV and (b) executing DW-CONV. 26

2.9 Data movement patterns inside SysAr when performing SE-Scale.

Fmaps can be read from either UB or DRAM, depending on their

size. We focus on only Fmaps because they are much larger than

the scale factors. 27

2.10 Example of a memory traffic distribution over time [51]: (a)

concurrent execution with an unlimited DRAM bandwidth, (b)

concurrent execution with a limited DRAM bandwidth and (c)

partitioning of PE tiles into two clusters (C0 and C1). The blue

layers (L0, L2, L4) are GEMM operations, and the yellow layers

(L1, L3, L5) are memory-intensive operations. 29

2.11 Execution time of various training methods using the NVIDIA

Nsight system profiler [66]: (a) conventional training, (b) train-

ing with gradient accumulation, and (c) training with gradi-

ent accumulation and sequence binning. We set the maximum

SL size to 128 and used four gradient accumulation steps. The

Nsight system usesmulti_tensor_apply_kernel as the weight up-

date kernel. 30

3.1 (a) Baseline systolic array architecture. (b) A pipelined architec-

ture tailored for accelerating inference. (c) A tiled architecture

tailored for accelerating training. 33

x

4.1 (a) MVP architecture (the red and blue parts represent the units

added to the baseline SysAr), (b) VU-DW, and (c) PNMU. . . . 36

4.2 An example of how DWPE operates when the number of DW-

MULs and DWIB slices is 4. Because the DWPEs perform the

same operations on independent Fmaps, we describe an example

for one DWPE. (a) An example of DW-CONV where IH and

IW are the same as the tile size used in the previous PW-CONV

(4×4 in the example). (b) DWPE data in/out movement status

at each cycle. The result of PW-CONV, NORM, followed by

ACT, is transferred to DWPE every cycle, assuming that IC of

the previous PW-CONV is smaller than HMU (weights are not

shown for convenience of explanation). (c) DWPE operations in

specific clock cycles. We assume that read/write operations of

DWIB spend one cycle. 39

4.3 Illustration of how PNMU operates. PNMU reads Fmaps from

DRAM and performs SE-Scale and the subsequent CONV con-

currently. (b) Tile traversal of the next CONV. 41

4.4 Timing diagrams for processing PW-CONV followed by DW-

CONV. X-axis represents time and y-axis represents opera-

tion sequences about multiple OFmap tiles. MU and VU pro-

cess PW-CONV and DW-CONV (a) without pipeline, (b) with

pipeline (CyclePW > CycleDW), (c) with pipeline (CyclePW <

CycleDW), and (d) with sharing VU-NA. 43

4.5 MVP area breakdown. 46

xi

4.6 (a) Relative execution time and (b) relative energy consump-

tion of MVP over SysAr by incrementally applying VU-DW,

the overlapped execution between PW-CONV and DW-CONV

(shown as overlap), and PNMU. The absolute execution time

and energy comsumption of the baseline SysAr is shown below

the name of each CNNmodel. The execution time ofMobileNet-

V2 with SysAr is in a similar ball park to the reported execution

time of EdgeTPU [30] (2.6ms), which has the same peak FLOPS

as the evaluated SysAr. 48

4.7 Execution time of EfficientNet-B0 over BBs. Edge overheadmeans

performance overhead due to the datapath contention caused by

the edge IFmaps (Section 4.1.5). Share overhead means perfor-

mance overhead due to the resource contention by VU-NA shar-

ing (Section 4.1.4). Scale overhead means performance overhead

due to the datapath contention when SE-scale is performed in

PNMU (Section 4.1.3). Oracle is an execution time when all

three overheads do not exist. 51

4.8 (a) Relative execution and (b) relative energy of three accelerators

to compare MVP with NVDLA. The absolute execution time

and energy consumption of the baseline SysAr is shown below

the name of each CNN model. 52

xii

4.9 (a) Execution time, Energy, and EDA2P when the number of

DWMULs is varied for a 256B DWIB size (Left side) when the

DWIB size is varied for 5 DWMULs (Right side). (b) EDAP and

EDA2P heatmap by the number of DWMULs and the DWIB size

(the lower, the better [61]). 54

4.10 Area and EDA2P of MVP while varying MU, UB, and ACC pa-

rameters. The outermost category on the x-axis represents the

MU size and the inner category represents the UB size. We se-

lect a candidate configuration that fits UB and ACC capacity in

proportion to the change in MU size and set ACC as one fourth

of the UB size. We obtain the design parameters of MVP for

each SysAr configuration by using the design space exploration

conducted in Section 4.2.4. EDA2P values are calculated as the

geometric mean for the target CNN models. Both EDA2P and

area are expressed as relative values based on each SysAr con-

figuration, which has the smallest UB in each MU size (colored

red). 56

5.1 Baseline tiled architecture. 62

5.2 DRAM Traffic shaping example for BERT training: (a) traf-

fic shaping with the same SL, and (b) Traffic shaping with the

different SLs. The accelerator is divided into two clusters. We

assume that the DRAM capacity is 80GB. 63

xiii

5.3 Figure 8. Mapping description and timing diagram of (a) traffic

shaping and (b) resource sharing. Red indicates that the com-

putation unit does not operate. C0 and C1 denote clusters 0 and

1, respectively. 66

5.4 Relative performance improvement with the same SL during BERT-

Large training. We incrementally apply traffic shaping (TS) and

resource sharing (RS) over the baseline (Base). The task is ex-

pressed as [SL, mini-batch, gradient accumulation step]. 69

5.5 Relative performance improvement with different SLs. We incre-

mentally apply traffic shaping (TS) and resource sharing (RS) the

over baseline (Base). The task is expressed as [SL, mini-batch,

gradient accumulation step]. Blue represents the results of the

same SL, and yellow denotes the results of different SLs. 71

6.1 Classification of places handling DW-CONV in modern DNN

accelerators. We further subdivide the optimizationmethods about

a matrix unit (MU). 74

6.2 Comparison of baseline TPU v3 and FAST architectures when

processing DW-CONV . 75

6.3 Use case for load balancing technique. 77

xiv

Chapter 1

Introduction

Machine learning is one of the most popular applications today, and deep

neural networks (DNNs) are the most influential aspect of machine learning.

Although the popularity of DNNs has been growing, they remained out of the

limelight initially. Early DNNs [57] operated successfully, but the performance

of the computation units at the time could not cope with the vast amounts

of computation. Thus, researchers mainly used statistical learning methods [46]

such as those known as regression, tree, clustering, and support vector machine,

as they are associated with smaller computational loads compared to the use of

a DNN.

The advent of GPUs directly addressed the greatest problem facing DNNs.

With the continuous development of semiconductor processes, modern data-

parallel architectures have been able to provide massive computational perfor-

mance advancements within a single chip. Early DNNs undertook significant

This chapter is based on [59].
”MVP: An Efficient CNN Accelerator with Matrix, Vector, and Processing-Near-Memory

Units”, ©2022 by Sunjung Lee and Jaewan Choi and Wonkyung Jung and Byeongho Kim and
Jaehyun Park and Hweesoo Kim and Jung Ho Ahn, is licensed under CC BY 4.0. https://doi.org/
10.1145/3497745.

1

numbers of computations, implying that it was difficult to use them in commer-

cial services. However, the combination of the DNN and GPU [54] accelerated

the development of related algorithms. In particular, vision and natural language

processing evolved considerably, and various studies [21, 22, 38, 39, 41, 42, 44,

54,64,73,77,79,83–87,89,103] using convolution (CONV) and transformers

were introduced.

As DNNs have been established as non-fungible applications, specialized

DNN accelerators have emerged. Google [50] independently developed a ten-

sor processing unit that provided performance of 92 TOPS and used it for the

first time in their service. NVIDIA [12,19,20,68] provided up to 800 TFLOPs of

the computational performance by adding a tensor core designed for processing

DNNs on the GPU. In addition, many studies [1,2,7,10,13,14,24–26,28,33,

36,37,43,47–50,56,62,63,72,78,80,81,92–94,99,100,105] have introduced

hardwares for DNN acceleration. Therefore, these hardwares significantly re-

duced the execution time of DNNs.

In a DNN, CONV and general matrix multiplication (GEMM) account for

most of the computations. Conventional DNN accelerators are designed to

utilize massive parallelism and abundant data reuse by considering the charac-

teristics of these operations. However, the direction of accelerator research has

focused on compute-intensive operations, leading to several problems. For the

first time, variants of CONV are not processed efficiently because the struc-

ture is optimized for the standard CONV. Second, as the execution time of

compute-intensive operations decreases, the impact of memory-intensive op-

erations, which formerly required minor amounts, increases.

In this dissertation, we propose a novel DNN accelerator and load balancing

2

techniques to address the aforementioned challenges. We propose a customized

accelerator that efficiently processes the latest convolutional neural network

(CNN) models for CNN inference. We also propose load balancing techniques

and supporting hardware to accelerate both compute- and memory-intensive

operations in the transformer training.

1.1 Accelerating Depth-wise Convolution on Edge Device

Convolutional neural networks (CNNs) are used in a variety of applications

such as image recognition and object detection. Mobile and edge devices are

becoming a primary platform for CNN inference due to superior response time,

security, and privacy. Major smartphone companies such as Apple, Google, and

Samsung deploy CNN inference engines in their devices [6,31,80]. By 2022, 7.3

billion mobile device users are projected to have on-device artificial intelligence

(AI) capability [27,82], spurring the need for efficient CNN inference acceler-

ators.

As standard convolution (ST-CONV) layers dominated the computation of

conventional CNN models, a large body of accelerator research has focused

on this layer type [10, 13, 14, 24, 26, 50, 63, 92, 94, 99]. Among those, accelera-

tors supporting systolic execution or its variants [50,65] are gaining popularity

due to superior performance, energy, and area efficiency. These architectures

efficiently exploit massive parallelism and abundant data reuse opportunities

of input feature maps (IFmaps) in computing output feature maps (OFmaps)

for CONV layers. Hence, major industry players such as Google have already

adopted this systolic-array-based acceleration in their production [30,50].

3

The CNN models have evolved to reduce the arithmetic operations while

retaining or improving recognition accuracy. In the early days, designers man-

ually determined the model configurations, such as layer types, depth (the num-

ber of layers), and kernel sizes. ST-CONV with a kernel size of 3×3 or larger

was dominant. As these ST-CONV layers are computationally heavy, vari-

ous CONV types have been proposed to reduce the number of operations by

changing the kernel shape or reducing the number of channels being refer-

enced [18,84,85].

The advent of neural architecture search (NAS [106]) has led to several

changes in configuring CNNs. Early NAS studies reduced the number of opera-

tions drastically by mostly using ST-CONV with 1×1 kernel size (called point-

wise CONV, PW-CONV) and depth-wise CONV (DW-CONV). However,

due to excessive use of skip connection and unstructured layer configurations,

the actual execution time was longer than the time predicted by the number

of arithmetic operations. Therefore, the latest CNN models constructed by

NAS utilize a building block (BB) composed of PW-CONV, DW-CONV, and

squeeze-and-excitation (SE) as a unit since [86], in which memory-intensive

operations have become prevalent.

The systolic array (SysAr) architecture has structural limitations in handling

these emerging, memory-intensive CNN operations. DW-CONV only uses a

single IFmap to create a single OFmap. Therefore, SysAr that feeds a massive

number of MACs in its matrix unit (MU) using a limited bandwidth from the

unified buffer (UB) in a wavefront manner cannot fully utilize itsMACs on DW-

CONV. The other accelerator [15] fully utilizes the MACs it owns by arranging

those with distributed register files and hierarchical on-chip networks, although

4

90.31% 91.74% 93.79%

8.93% 7.70% 5.81%

0.16% 0.06% 0.02%

0.60% 0.49% 0.38%

0%

20%

40%

60%

80%

100%

B0 B4 B7

#
 o

f
O

p
e

ra
ti
o

n
s

B
re

a
k
d

o
w

n

(b)

25.85% 32.44% 36.13%

66.38% 53.74% 49.27%

2.29% 1.18% 0.68%

5.48% 12.64% 13.92%

0%

20%

40%

60%

80%

100%

B0 B4 B7

E
x
e
c
u
ti
o
n
 T

im
e

B
re

a
k
d
o
w

n

(a)

SE-Scale SE-FCDW-CONVPW-CONV

Figure 1.1: (a) The number of operations and (b) execution time breakdown of
EfficientNet-B0/B4/B7 of the evaluated systolic-array-based accelerator (con-
figurations are specified in Section 4.2.1). NORM, ACT, and POOL operations
are not included as their execution time is hidden through pipelining.

at a significant cost in the area [56] and wire energy [33].

When normalization (NORM) and activation (ACT) operations are per-

formed prior to CONV, SysAr becomes inefficient because its MU and vector

unit (VU) cannot be pipelined. PW-CONV occupies more than 90% of the

number of operations but takes under 40% in execution time (see Figure 1.1).

Memory-intensive operations such as DW-CONV and SE-Scale (the operation

of applying the squeezed weights to feature maps) take the remaining 60% of

execution time, demonstrating the importance of accelerating memory-intensive

operations for the latest CNNs.

5

In this paper, we propose anMVP architecture composed ofMatrix, Vector,

and Processing-near-memory units (more accurately, processing-near-on-chip-

unified-memory units) to efficiently process both compute- andmemory-intensive

CNN operations with a small area overhead on the baseline SysAr architecture.

VU of SysAr is augmented to process DW-CONV effectively by adding an ar-

ray of arithmetic units, whose size is much smaller than that of MU. VU stores

a tile of an OFmap produced by PW-CONV in small-but-high-throughput

buffers and performs DW-CONV with the array of multipliers and adder trees,

exploiting the key characteristic of DW-CONV that the reuse distance of its

IFmaps is short. Processing-near-memory unit (PNMU) performs element-

wise operations (NORM, ACT, and SE-Scale) that are processed immediately

prior to CONV, which are performed atMU, to eliminate unnecessary on-/off-

chip memory access. VU and PNMU significantly reduce the execution time of

memory-intensive operations as these operations can mostly be overlapped with

computation for the nearby PW-CONV layers.

1.2 Accelerating Transformer Models in Training

The transformer [91] is one of the most popular deep neural networks (DNNs)

for language modeling, machine translation, question & answering, and text

generation. BERT [22] and GPT [73], which are the modified versions of the

vanilla transformer model, accelerate its popularity by improving recognition

accuracy levels such that they are close to those of a human. However, due to

continuous changes of these models to increase their accuracy, the transformer

model is now associated with certain side effects such as a massive increase in

6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

128 Sequence Length

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2048 Sequence Length

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

512 Sequence Length

GEMM BMM Softmax+Dropout Dropout+LayerNorm GeLU ADD Etc

Figure 1.2: Execution time breakdown of BERT-Large training using A100.
Here, 128, 512, and 2048 sequence lengths are used by BERT-Large, and
Megatron-LM [64]. We obtain the results using the latest NVIDIA code [67].

the number of computations and a large model size.

To process DNN models efficiently, many DNN accelerator studies [1,2,7,

10, 12–14, 19, 20, 24–26, 28, 33, 36, 37, 43, 47–50, 56, 59, 62, 63, 68, 72, 78, 80,

81, 92–94, 99, 100, 105] have been introduced. As compute-intensive opera-

tions such as GEMM and convolution account for most of the computations in

DNN models, conventional DNN accelerators are designed to utilize massive

parallelism and abundant data reuse by considering the characteristics of these

operations. However, because the direction of accelerator research is mainly

focused on the compute-intensive operations, the execution time of memory-

intensive operations becomes a significant factor. Figure 1.2 shows the execu-

tion time breakdown of BERT-Large training. Depending on sequence length

(SL), memory-intensive operations such as softmax, layer normalization, and

GeLU take up to 60% of the execution time. Also, batched matrix multipli-

cation (BMM) with 10 times fewer operations per byte (OP/B) than GEMM

7

occupies up to 20% of the execution time. Therefore, it is important to reduce

the impact of memory-intensive operations in the transformer.

To reduce the execution time of memory-intensive operations, there have

been load balancing studies [8,51,52] by partitioning multiple computing units

within a single chip, and processing tasks in each partition asynchronously. [51]

alleviates temporal fluctuations in the memory bandwidth demands due to the

various computational characteristics of the layers through DRAM traffic shap-

ing. AI-MT [8] andMAGMA [52] propose task scheduling methods for multi-

tenant inference. They categorize DNN models into several dependency-free

groups according to the compute- or memory-intensive characteristics. Then,

they map dependency-free DNN groups on multiple accelerator cores. Lastly,

they execute multiple dependency-free groups concurrently. In this way, they

can reduce the number of stalls caused by the DRAM bandwidth bottleneck.

However, conventional DNN training does not process multiple tasks si-

multaneously in an accelerator due to several limitations. In cloud data centers,

the inference uses a small number of batch sizes to comply with the quality

of service (QoS) requirements. When inference task uses relatively few batch

sizes, it cannot utilize all the computing units included in the single acceler-

ator. Also, multi-tenant inference can be processed in parallel because there

are no dependencies between multiple inference tasks. Therefore, previous load

balancing studies could apply multi-tenant inference by allocating multiple in-

ference tasks in a single accelerator. In contrast, the training processes only a

single DNN model in the single accelerator because it uses a large batch size.

Also, because the training should update weight parameters every time for every

mini-batch, multiple mini-batches cannot be processed in parallel.

8

In this paper, we propose load balancing techniques that utilize the latest

DNN training methods, in this case gradient accumulation [29], and sequence

binning [67]. Gradient accumulation performs weight updates at once after

collecting the gradients of several mini-batches. This relieves the dependency

between mini-batches so that during training multiple tasks can be processed

in parallel in an accelerator. Sequence binning allocates SL variably according

to the padded tokens in the input.

We propose traffic shaping techniques using gradient accumulation. Traf-

fic shaping partitions a single accelerator into multiple clusters and processes

multiple clusters asynchronously during the gradient accumulation step. Traffic

shaping reduces the execution time of memory-intensive operations by allevi-

ating DRAM bandwidth fluctuations during the weight update. Traffic shap-

ing realizes an additional performance improvement through sequence binning.

Traffic shaping is capable of high performance improvements when tasks with

different computational characteristics are assigned to each cluster. Because se-

quence binning provides various SLs, it contributes to a further performance

improvement.

We also propose a resource sharing technique that executes the matrix units

and vector units of all clusters simultaneously when the compute- and memory-

intensive operations are performed concurrently on different clusters. Resource

sharing reduces the execution time of the compute-intensive operations. To the

best of our knowledge this paper is the first work to address training acceleration

with load balancing techniques.

9

1.3 Research Contributions

In this dissertation, we make the following contributions:

• We categorize the layer configurations of various CNN models and iden-

tify that the latest CNN models are composed of BBs that utilize PW-

CONV, DW-CONV, and SE.

• We identify that the arithmetic resource of systolic-array-based CNN ac-

celerators is severely underutilized when processing the memory-intensive

operations prevalent in the BBs of the latest CNN models.

• We propose anMVP architecture that combinesMatrix, Vector, and Processing-

near-memory units to efficiently process both compute- and memory-

intensive operations of the latest CNN models with a small area overhead.

• MVP improves performance by 2.6× and reduces energy consumption by

47% on average over EfficientNet-B0/B4/B7, MnasNet, and MobileNet-

V1/V2 with a 9% area overhead over the baseline SysAr.

• We apply load balancing techniques in transformer training acceleration

using gradient accumulation which is the latest DNN training methods.

• We use sequence binning to realize additional performance improvements

in the load balancing techniques.

• We reduce the execution time of compute-intensive operations through

resource sharing with the simultaneous execution of matrix and vector

units.

• Our load balancing techniques improve performance by up to 1.27× com-

pared to the baseline when we train a BERT-Large model.

10

1.4 Outline

The organization of this dissertation is as follows. Chapter 2 describes the trends

of the latest DNN models and the challenges of existing accelerator when they

process the latest DNN models. Chapter 3 summarize two DNN accelerators

targeting inference and training. In chapter 4, We propose a CNN accelera-

tor tailored for processing DW-CONV, including multipliers, adder trees, and

multi-banked buffered to meet the high memory bandwidth requirement. In

Chapter 5, we propose tiled architecture and load balancing techniques to alle-

viate temporal fluctuations in DRAM bandwidth and to efficiently utilize com-

putation units. Chapter 6 discusses the use cases of both techniques and we

present the conclusions in Chapter 7.

11

Chapter 2

Background and Motivation

2.1 CNN background and trends

2.1.1 Various types of convolution (CONV) operations

ST-CONV is a basic type of CONV where the size of a kernel, KH×KW ,

is typically larger than 1×1. It convolutes IFmaps and weights to produce

OFmaps, requiringKH×KW×IC×OH×OW×OC operations in total (see Fig-

ure 2.1(a)). Recent CNNmodels adopt new types of CONV layers to reduce the

number of operations, either by limiting the number of input/output channels

or using smaller kernels.

Grouped CONV (GR-CONV) and depth-wise CONV (DW-CONV) re-

duce the number of required operations compared to ST-CONV by dividing the

input channels into multiple groups of channels. We call the number of groups

nGR. GR-CONV requires KH×KW×(IC
nGR)×OH×OW×(OC

nGR)×nGR op-

This chapter is based on [59].
”MVP: An Efficient CNN Accelerator with Matrix, Vector, and Processing-Near-Memory

Units”, ©2022 by Sunjung Lee and Jaewan Choi and Wonkyung Jung and Byeongho Kim and
Jaehyun Park and Hweesoo Kim and Jung Ho Ahn, is licensed under CC BY 4.0. https://doi.org/
10.1145/3497745.

12

IH IFmap Height OH OFmap Height

IW IFmap Width OW OFmap Width

IC
of IFmap

Channels
OC

of OFmap

Channels

KH Kernel Height KW Kernel Width

nGR Number of Groups

IW
IC

OC
KH

KW
IC

OH

OW

OC

Modifying Feature Map Channels Modifying Kernel Height & Width

Standard Convolution (ST-CONV)

WeightsInput feature maps Output feature maps

KH=1

KW=1

Point-wise Convolution (PW-CONV)

1HKW / KHH1 Factorization (FACT)

KW=1

KH=1

KW
KH

IH

Grouped Convolution (GR-CONV)

Depth-wise Convolution (DW-CONV)

(c)

(b)(a)

IC=OC OC=IC

(d)

IC�nGR OC�nGR

Group

Figure 2.1: (a) ST-CONV (in general, ST-CONV includes PW-CONV, but
we distinguish the two terms to emphasize whether the kernel size is 1×1 or not),
(b) abbreviations for IFmaps, OFmaps and weights, (c) CONVs with different
ways to refer channels, and (d) CONVs with different kernel configurations.

erations, which are reduced by a factor of nGR times compared to ST-CONV

(see Figure 2.1(c)). DW-CONV is an extreme form of GR-CONV where

nGR = IC = OC.

Point-wise CONV (PW-CONV) and Factorization (FACT) reduce the num-

ber of operations by using smaller kernels (see Figure 2.1(d)). PW-CONV ex-

ploits 1×1 kernels. FACT factorizes a KH×KW kernel into two: one with a

1×KH size and the other with a KW×1 size. Then it performs convolution for

each of the two kernels, thereby reducing the total number of operations by a

factor of (KH×KW)
(KH+KW) times.

13

2.1.2 Trends in CNN model architecture

Various CNN models have been proposed to increase the accuracy of image

recognition and, at the same time, reduce the burden of computation (see Fig-

ure 2.2).

Handcrafted models: In the early days, many researchers tried empirical studies,

tuning myriads of parameters such as layer types, number of layers, channel size,

and resolution by hand to improve the accuracy of CNN models. As the num-

ber of layers increases, the accuracy tends to increase, albeit with the following

issues. First, CNN models are computationally hungry. Early CNN mod-

els populated just a few layers, but later models use dozens of layers or more,

requiring lots of arithmetic operations (e.g., VGGNet [79] requires about 20G

operations). Therefore, GoogleNet [84], Inception-V3 [85], Xception [18], and

ResNext [97] adopted PW-CONV, FACT, DW-CONV, and GR-CONV, re-

spectively, to reduce the number of arithmetic operations. Second, there was

a time when training was nearly impossible if the number of layers exceeds a

certain threshold due to a vanishing gradient problem during backpropagation.

ResNet [38] addressed this problem using skip connection, paving the way for

stacking hundreds of layers. Batch normalization (BN) [45] and SE [42] were

proposed to further increase the accuracy of CNNmodels by changing the entire

Fmap elements using element-wise operations.

NAS models: Because manually developing CNN models requires signifi-

cant engineering efforts, NAS has been proposed to design the models automat-

ically. NAS uses machine learning to explore efficient models in performance,

computation complexity, and memory capacity by using various layer types

developed in the handcrafted models as candidates. In the early NAS works,

14

Im
a

g
e

N
e

t
T
o

p
-1

 A
c
c
u

ra
c
y
 (

%
)

Years2014 2016 2018 2020

90

80

70

NASHandcraft # of OPs

40G -

30G - 40G

20G - 30G

10G - 20G

5G - 10G

1G - 5G

- 1G

GoogleNet

Inception-V3

Xception

MobileNet-V1

MNASNet
EfficientNet-B0

ResNeXt-101

NoisyStudent

EfficientNet-B7
FixEfficientNet

AmoebaNet-C

NASNet

EfficientNet-B4

ResNet-50

VGGNet-16 MobileNet-V2

RepVGG-B3

Additional

Optimizations
Meta Pseudo Labels

Figure 2.2: Top-1 accuracy and the number of OPs of CNN models by year.
Handcraft refers to the CNN models in which various configurations are man-
ually tuned by researchers until mid-2017. The radius of a circle is proportional
to the number of MAC operations required by the models.

NASNet [106] and AmoebaNet [74] obtained high accuracy, but they required

a huge amount of operations and suggested complex structures. Thus, the actual

hardware execution time was much longer than the execution time predicted by

the number of operations. To solve this problem, MnasNet [86] simplified the

model structure using a BB, which was first used in ResNet, as a candidate for

design search. EfficientNet [87] expanded MobileNet-V2 [77] and MnasNet

to obtain high accuracy with fewer operations than the early NAS models.

Additional optimizations: Because EfficientNet demonstrated strength in

computational complexity and accuracy to the other CNN models, subsequent

studies tend to use it as a baseline model. NoisyStudent [96] increased the num-

ber of layers, channel size, and resolution of EfficientNet and changed the train-

ing method to perform pre-processing using ImageNet data and then proceed

15

Table 2.1: Categorization of operation types used in various CNN models. (∗
means that it is only used at the initial layer.)

ST PW FACT DW GR BB SE

VGGNet [79] ✓
GoogleNet [84] ✓ ✓
ResNet [38] ✓ ✓ ✓

Inception-V3 [85] ✓ ✓ ✓
Xception [18] ∗✓ ✓ ✓
ResNeXt [97] ∗✓ ✓ ✓ ✓

MobileNet-V1 [41] ∗✓ ✓ ✓
MobileNet-V2 [77] ∗✓ ✓ ✓ ✓

NASNet [106] ∗✓ ✓ ✓
AmoebaNet [74] ∗✓ ✓ ✓ ✓
MnasNet [86] ∗✓ ✓ ✓ ✓ ✓

EfficientNet [87] ∗✓ ✓ ✓ ✓ ✓
NoisyStudent [96] ∗✓ ✓ ✓ ✓ ✓
FixEfficientNet [89] ∗✓ ✓ ✓ ✓ ✓

Meta Pseudo Labels [71] ∗✓ ✓ ✓ ✓ ✓
RepVGG [23] ✓

with self-training using Instagram data. FixEfficientNet [89] improved accu-

racy by applying image augmentation to both training and test time using Effi-

cientNet. Meta Pseudo Labels [71] achieved a top-1 accuracy of over 90% for

the first time using EfficientNet as a baseline model. Meta Pseudo Labels used

knowledge distillation [40] which trains a student network with a pre-trained

teacher network. For the training, it used the ImageNet dataset as labeled data

and the JFT-300M [40,83] dataset as unlabeled data. RepVGG [23] is designed

to achieve high utilization on conventional accelerators or GPUs. RepVGG uses

skip connection for training and excludes it for inference to simplify the model

and to reduce inference time. Also, RepVGG does not use DW-CONV and

16

PW-CONV which undergo low utilization; instead it only uses ST-CONV

like VGGNet. Although RepVGG is suitable for conventional hardware, it has

lower top-1 accuracy compared to the EfficientNet variants.

Even though the components of the CNN models have been changed over

time, there is little change in the fundamental structure and the types of CONV

in CNN models since MnasNet. CNN models mainly use fixed compositions

consisting of repeated BBs, including PW-CONV, DW-CONV, and SE (Ta-

ble 2.1). PW-CONV and DW-CONV are popular as they are the most efficient

to reduce the number of operations. BB is used to simplify the structure of the

models. SE, like BN, increases accuracy by considering the degree of influence

between Fmaps with a small computational cost. In contrast, ST-CONV is

used only as the initial layer in the latest CNN models due to its high computa-

tional cost. GR-CONV does not appear in the latest CNN models, and FACT

is rarely used even if they are candidates of NAS.

2.1.3 EfficientNet: A state-of-the-art CNN model

EfficientNet [87] is a representative of more recent CNN models that use mul-

tiple BBs to achieve high accuracy with a relatively low computational cost. Ef-

ficientNet is an expanded structure of MobileNet-V2 and MnasNet that scales

all three parameters (resolution, the number of channels, and the number of

layers) concurrently as opposed to previous works [38,41,84] which scale only

subsets of the three dimensions. EfficientNet introduces eight exemplar models

(EfficientNet-B0∼B7), which require 4∼20× lower computational costs com-

pared to the previous CNN models with similar recognition accuracy. For ex-

ample, both EfficientNet-B0 and ResNet-50 achieve nearly 77% Top-1 accu-

17

3LSHOLQH

3
:
�&
2
1
9

1
2
5
0

$
&
7

'
:
�&
2
1
9

1
2
5
0

$
&
7

6
(
�6
F
D
OH

3
:
�&
2
1
9

1
2
5
0

$
&
7

6
(
�$
Y
J
3
2
2
/

6
(
�)
&

6
(
�$
&
7

6
(
�)
&

6
(
�$
&
7

�

�

0RELOH�,QYHUWHG�%RWWOHQHFN�%ORFN

6TXHH]H DQG

([FLWDWLRQ

Figure 2.3: Mobile inverted bottleneck block (MBConv) of EfficientNet.

racy, but they require 390M and 4.1G operations, respectively.

EfficientNet is a sequence of mobile inverted BBs (MBConvs). MBConv

consists of the first PW-CONV followed by DW-CONV, SE, and the sec-

ond PW-CONV (see Figure 2.3), where each CONV has trailing NORM and

ACT layers. SE includes global average pooling (SE-AvgPOOL), fully con-

nected layer (SE-FC), activation (SE-ACT), and element-wise multiplication

(SE-Scale). SE first calculates scale factors for each channel using OFmap cre-

ated by DW-CONV and then operates SE-Scale using the scale factors and the

DW-CONV. There is a data dependency between DW-CONV and SE because

each step uses the whole OFmaps directly. In step 1⃝, SE-AvgPOOL needs all of

the Fmap elements to compute the average, and SE-FC needs all of the channels

to get scale factors per channel. In step 2⃝, SE-Scale multiplies the scale factors

with OFmaps of DW-CONV which is stored at UB or DRAM because all the

Fmaps were used in the previous step. Last, the second PW-CONV follows

SE-Scale.

The compositional characteristics of MBConv make the arithmetic intensity

of EfficientNet fluctuate a lot. Figure 2.4 shows operations per byte (OP/B) over

18

0.1

1

10

100

1000

EfficientNet-B4 layers

PW-CONV DW-CONV SE-Scale

0.1

1

10

100

1000

EfficientNet-B7 layers
0.1

1

10

100

1000

O
P

/B
 (

lo
g
 s

c
a
le

)

EfficientNet-B0 layers

Figure 2.4: Operations per byte (OP/B) of EfficientNet-B0/B4/B7 layers. The
leftmost column represents the layer processing an input image. We only show
PW-CONV, DW-CONV, and SE-Scale because they occupy most operations
of the models. It is assumed that all three operations use 8-bit data type.

the layers in EfficientNet-B0/B4/B7. The leftmost column in each graph repre-

sents the layer processing an input image. PW-CONV reuses an IFmap by OC

times. Because EfficientNet populates more channels as it comes closer to the

classification layer, OP/B increases from left to right on the graphs. DW-CONV

produces an OFmap by using a single IFmap; therefore, EfficientNet’s kernel

sizes determine the degree of data reuse. EfficientNet uses 3×3 and 5×5 ker-

nels. Similar to NORM and ACT (not shown in Figure 2.4), SE-Scale achieves

a low OP/B due to the lack of Fmap data reuse in conducting element-wise

operations. Even if the number of layers and functions differs by the network

sizes (B0 being the smallest and B7 the largest), because OP/B fluctuates a lot

and DW-CONV and element-wise operations appear frequently, CNN ac-

celerators must be designed to perform both compute- and memory-intensive

layers/functions equally well.

19

Encoder

Encoder

…

Embedding

Output

A
tt
e
n
ti
o
n

C
o
n
te

x
t

F
C

 1

F
C

 2

F
C

 3

L
a
y
e
r

N
o
rmQuery

Key

Value

Memory-intensive operationGEMM operation Batched GEMM operation

Encoder

S
c
a
le

M
a
s
k

S
o
ft

m
a
x

D
ro

p
o
u
t

D
ro

p
o
u
t

L
a
y
e
r

N
o
rm

D
ro

p
o
u
t

G
e
L
U

A
D

D

A
D

D

(B×SL, HW)

(B×SL, HW)

(B×SL, HW)

Self-Attention

(B×MH) × (SL, SL)

Feed Forward

(B×SL, HW) (B×SL, 4HW) (B×SL, HW)

Figure 2.5: BERT model structure. Self-attention and feed forward represent
gray and white ranges within an encoder. B, SL, H, and MH refer to batch, se-
quence length, hidden, and multi-head, respectively. Equations such as (B×SL,
HW), (B×MH)×(SL, SL) indicate the output size.

2.2 Transformer background and trends

2.2.1 Bidirectional encoder representations from transformers (BERT)

BERT [22] consists of an embedding layer, 24 encoder layers, and an output

layer (see Figure 2.5). The encoder includes a self-attention layer and a feed-

forward layer. The self-attention layer includes GEMM (query, key, value,

and FC 1 layers), batched GEMM (BMM) (attention, and context layers), and

memory-intensive (scale, mask, softmax, dropout, add, and layer normalization

layers) operations. The GEMM operation has an OP/B higher than 500 due to a

massive data reusability. The BMM operation is less than 100 OP/B because (B

x multi-head (MH)) GEMM operations are performed independently. BMM

operations can degrade the performance due to a DRAM bandwidth bottle-

neck when using an accelerator with high computation performance. Because

memory-intensive operations have less than 10 OP/B, a bandwidth bottleneck

always occurs in all memory hierarchies.

20

(a) Gradient accumulation

Mini-batch

Mini-batch

Mini-batch

Mini-batch
G

lo
b
a

l
G

ra
d
ie

n
t

Weight

update

Dataset

Bin 0

Maximum sequence length (Seq len): 512

Bin 1 Bin 2 Bin 3

Seq len ≤ 128 128 < Seq len ≤ 256 256 < Seq len ≤ 384 384 < Seq len ≤ 512

(b) Sequence binning

G
ra

d
ie

n
t

a
c
c
u
m

.
s
te

p

Figure 2.6: (a) Gradient accumulation. (b) Sequence binning.

The proportion of the execution time for GEMM, BMM, and memory-

intensive operations varies depending on the SL size. The layers between the

attention and context layers change the output size quadratically according to

the SL size. In contrast, the remaining layers increase linearly. Therefore, as

shown in Figure 1.1, when the SL is small, the execution time for GEMM op-

erations takes up a large portion. When the SL is not small, the execution time

for BMM and memory-intensive operations takes up a large portion.

2.2.2 Trends in training transformer models

Training refers to the process of learning optimal weight parameters using a

large dataset. The training consists of multiple pairs of a forward and a back-

ward pass. A forward pass infers results by executing multiple layers with input

data. During the forward pass, intermediate values are stored in DRAM, as

intermediate values are used during the backward pass. After the forward pass,

the classification layer calculates the loss. The backward pass is the step in

which the weight parameters are redesigned using the intermediate values and

loss. Training is conducted in mini-batch unit, referring to a pair consisting of

one forward pass and one backward pass. The weight parameter is updated for

each mini-batch.

21

Due to continuous changes such as increases in the model size and SL [11,

64,73,103] in the transformer, the transformer adopts new training methods.

Gradient accumulation: gradient accumulation [29] is proposed to solve the

DRAM capacity problem of DNN accelerators. Due to increases in the model

size and SL size, the DRAM capacity for intermediate values and weight param-

eters increases. Due to the limited DRAM capacity, the accelerators use small

batch sizes for weight updates. Gradient accumulation increases the total batch

size by performing multiple forward and backward passes during the gradient

accumulation step and updating the weights at once as shown in Figure 2.6(a).

The total batch size is the unit focused on during a single weight update. The

mini-batch size is a unit that can be allocated within the DRAM capacity. The

gradient accumulation step is calculated by dividing the total batch size by the

mini-batch size. Gradient accumulation has the same effect found when mul-

tiple GPUs undertake data parallelism in a distributed learning [32].

Sequence binning: sequence binning [67] is proposed to eliminate redundant

computations on padded tokens. In conventional training, if the input is less

than the maximum SL, padded tokens are added to the input up to maximum

SL. Training is then conducted using the maximum SL. However, sequence

binning does not require the addition of padded tokens to the input, instead dis-

tinguishing multiple inputs into multiple bins during data pre-processing step.

For example, if the maximum SL is 512 and there are four bins, the total dataset

is distinguished into a unit of 128 (see Figure 2.6(b)). Bin 0 stores less than 128

SL, and bin 1 stores SLs between 128 and 256. The other SLs are stored in the

same way. After data pre-processing is finished, training is performed using

various SLs.

22

7,+ 7LOHG�,+ 7,: 7LOHG�,: 7,& 7LOHG�,&

72+ 7LOHG�2+ 72: 7LOHG�2: 72& 7LOHG�2&

�F�

6
\
V
WR
OLF
�'
D
WD
�6
H
WX
S

8
Q
LI
LH
G
%
X
II
H
U

$FWLYDWLRQ

1RUPDOL]DWLRQ

3RROLQJ

9HFWRU�8QLW

�D�

0DWUL[�8QLW

�+
08
H:

08
�

72&

7,&

$FFXPXODWRU

�E�

,QSXW�IHDWXUH�PDSV

7,&
7,+

7,:

2XWSXW�IHDWXUH�PDSV�
72:

72+ 72&

72&

:HLJKWV

7,&

:HLJKW�),)2
0DLQ�0HPRU\�

&RQWUROOHU
'
5
$
0

2II�FKLS 2Q�FKLS

Figure 2.7: (a) Baseline systolic-array architecture (SysAr). When SysAr com-
putes a CONV layer, IC and OC are mapped to each row and column of
MU [75, 76] without using im2col [16]. (b) Tiling features of ST/PW-CONV
in SysAr. Tiling notations are listed in (c).

2.3 Baseline DNN acceleration architecture

TPU [50] and NVDLA [65] adopt systolic execution or its variants, achieving

superior performance and energy efficiency than other architecture types [70]

in performing CNN inference. SysAr fully utilizes the data reuse characteristics

of CONV by operating O(N2) MACs with O(N) on-chip memory bandwidth

from UB in a systolic data flow manner (we assume the height (HMU) and

width (WMU) of MU are bothN). Because NVDLA similarly achieves high area

and energy efficiency by multicasting IFmap elements to MACs, our proposed

23

architecture can also be applied to NVDLA. In this paper, we use SysAr as a

baseline.

SysAr consists of MU, UB, systolic data setup, weight FIFO, accumulator

(ACC), main-memory controller, and VU that includes NORM/ACT/POOL

units (see Figure 2.7(a)). MU is a systolic array, having MACs arranged in

a two-dimensional form. We assume the weights and feature maps are 8-

bit data. UB is an on-chip buffer that stores IFmaps and OFmaps. Through

the systolic data setup, UB sends data to MU in a diagonal wavefront manner

and saves the intermediate results. Weight FIFO temporarily stores a part of

weights transferred from DRAM and sends them to the registers inside MU.

ACC accumulates the partial sums calculated from MU and stores them inside

the buffer until partial sums become complete OFmap elements. NORM/ACT/

POOL units perform element-wise operations on the 32-bit OFmap elements

in a pipelined manner; the OFmap elements are converted into 8-bit values and

transferred to UB.

Although MU targets GEMM operations, it also provides specialized hard-

ware [75], algorithm [76], and instruction set architecture [50] for CONV.

Therefore, SysAr can perform CONV without converting a 3D Fmap into a

2D one (im2col). Figure 2.7(b) shows the tiles of Fmaps and weights and their

dimensions. Each row of MU takes one of TIC IFmap elements, while each

column takes one of TOC weights. Each IFmap element propagates sequentially

from left to right, and the output, which is a partial sum, propagates from top

to bottom. Here we call each column a SysAr lane.

The Fmaps are divided into tiles if they do not fit in the on-chip storage (UB

or ACC). ACC limits the size of an output tile (TOW × TOH) to the capacity of

24

ACC divided by TOC . Data traversal order is determined to maximize the data

reuse of Fmaps and weights. Because the datapath from ACC to UB is uni-

directional, each partial sum inside ACC must be a complete OFmap element.

Thus, SysAr traverses IFmap and weights in all IC-,KW-, andKH-directions

first.

2.4 Motivation

2.4.1 Challenges of computing memory-intensive CNN layers

Conventional CNN accelerators focus on compute-intensive ST-CONV and

PW-CONV operations. They consider only limited types of memory-intensive

operations that immediately follow CONV, such as NORM, ACT, and POOL.

As opposed to ST-CONV and PW-CONV, DW-CONV does not reuse IFmap

between OCs. Therefore, DW-CONV hardly exploits the broadcasting and

systolic execution techniques mainly for IFmap reuse in conventional CNN ac-

celerators. This characteristic of DW-CONV makes MACs in MU underuti-

lized or requires more on-chip memory bandwidth to fully utilize MACs.

Figure 2.8(a) shows MACs in use and on-chip memory bandwidth usage

when performing ST-CONV or PW-CONV in anN×N SysAr. At each cycle,

the MACs in the leftmost column of MU takes N IFmap elements transferred

from the on-chip memory. The IFmap elements shift from left to right at each

cycle, so each element is reused byN weights. In a steady state where IFmap ele-

ments are distributed to all the MACs, N B/cycle on-chip bandwidth is enough

to utilize all the N2 MACs. In contrast, DW-CONV requires each column

of MACs to take IFmap elements from different OCs (see Figure 2.8(b)), not

25

UnusedUsed

(a) (b)

On-chip memory bandwidth

for input feature maps

N byte/cycle N

U
n

if
ie

d
 B

u
ff
e

r

N

N byte/cycle N

U
n

if
ie

d
 B

u
ff
e

r

N

Figure 2.8: MAC and on-chip memory bandwidth used inside of MU when
N×N SysAr computes CONV (assuming that IC and OC are bigger than N):
the cases of (a) executing ST-CONV or PW-CONV and (b) executing DW-
CONV.

taking advantage of multicasting in systolic execution. Therefore, even if DW-

CONV has a significantly smaller computational load compared to ST-CONV

and PW-CONV, it takes a large portion of execution time due to low MAC

utilization. SysAr can only supply the on-chip bandwidth of N B/cycle even

when processing DW-CONV. To fully utilize the N ×N MACs, DW-CONV

requires O(N2) of on-chip memory bandwidth, one of the most expensive re-

sources in conventional CNN accelerators.1

By contrast to SysAr, Eyeriss-v2 [15] adopts a hierarchical mesh structure in

its memory system, having its on-chip memory bandwidth high enough to fulfill

the bandwidth requirement of DW-CONV. This hierarchical structure exploits

distributed SRAM for global buffer where each bank of the global buffer can

transfer data simultaneously and connects several global buffer banks to local

1The structural limitation of Edge TPU also makes it suffer from this problem, resulting in
a much larger execution time than predicted by the number of operations [34]. To resolve this
issue, Edge TPU replaces DW-CONVwith more hardware-friendly ST-CONV at a significantly
increased computational cost.

26

Figure 2.9: Data movement patterns inside SysAr when performing SE-Scale.
Fmaps can be read from either UB or DRAM, depending on their size. We focus
on only Fmaps because they are much larger than the scale factors.

SRAM inside PEs in an all-to-all manner. However, a major drawback of

this design is the large area overhead as it needs to provide local SRAM for all

the three data types: weights, IFmaps, and partial sum. As mentioned in [56],

assuming an equal number of PEs, Eyeriss-v2 is more than twice as large as

SysAr.

Conventional accelerators hide the execution time of NORM, ACT, and

POOL by executing them within VU in a pipelined manner when they follow

CONV. However, as opposed to these memory-intensive operations, such a

pipelined execution is hardly applicable to SE-Scale that follows CONV because

of the data dependency between SE-Scale and CONV (see Figure 2.3). SE-

Scale requires a complete IFmap from the previous CONV to produce one single

OFmap element.

Figure 2.9 shows the data movement patterns inside SysAr when performing

SE-Scale. Depending on the size of Fmaps and UB, data should be read from

27

either UB (yellow arrow) or DRAM (red arrow). We only depict the movement

of Fmaps because Fmaps are much larger than the scale factors, whose number

is the same as the number of channels.

When Fmaps fits in UB, SE-Scale performs multiplication after reading the

Fmaps stored in UB. Because the datapath from UB to VU is uni-directional,

Fmaps must go through MU to reach VU, and MU does not operate in the

meantime, leading to severe underutilization of the MACs. Also, although SE-

Scale requires much smaller computation than that of PW-CONV (150∼250×

in [87]), the execution time of SE-Scale is high because VU has N × fewer

MACs than MU (see Figure 1.1). Even if MU handles SE-Scale to utilize its

MACs, it takes the same time as in VU because the bandwidth of UB is limited to

O(N). When Fmaps do not fit into UB, off-chip memory bandwidth becomes a

performance bottleneck because of the extra access to more bandwidth-hungry

DRAM.

2.4.2 Opportunity for load balancing in BERT training

The load balancing technique minimizes resource under-utilization by pro-

cessing multiple DNN models in parallel within an accelerator. When the

accelerator executes all PE tiles synchronously, compute-intensive operations

achieve a high MU utilization rate, but utilize little DRAM bandwidth. In con-

trast, memory-intensive operations only utilize the VU and DRAM bandwidth.

However, the load balancing technique obtains a benefit in terms of the execu-

tion time by properly distributing MU, VU, and DRAM bandwidth resources.

Figure 2.10 explains the impact of the load balancing technique with an

example in which the memory bandwidth demands from two clusters vary

28

L1

L2

(a) Unlimited DRAM bandwidth (concurrent execution)

Delay due to DRAM

bandwidth limitation

B
a

n
d

w
id

th

Time

C0
C0

C0
C0

C1

C1

C1

C1

L3

L4

(b) Limited DRAM bandwidth (concurrent execution)

B
a

n
d

w
id

th

Time

(c) Limited DRAM bandwidth (2 partition)

B
a

n
d

w
id

th

Time

L0/L3 L1/L4

C0
C1

C0
C0

C1

L0

C0
C1
L0

C0

C1

L1

L2

C0
C1 C0

C1

L3

L4

C0
C1

C0

L0/L4
C1

C1

C0 C0

C1
C1

L2/L0

L2/L5

C0
C0 C0

L3/L0
C1

C1
C1

L4/L2

L4/L1

C0

C1

L5

C0

C1

L5

C0

C1
L5/L2

Figure 2.10: Example of a memory traffic distribution over time [51]: (a) con-
current execution with an unlimited DRAM bandwidth, (b) concurrent execu-
tion with a limited DRAM bandwidth and (c) partitioning of PE tiles into two
clusters (C0 and C1). The blue layers (L0, L2, L4) are GEMM operations, and
the yellow layers (L1, L3, L5) are memory-intensive operations.

depending on the layers. When the DRAM bandwidth is infinite (see Fig-

ure 2.10(a)), the execution time for GEMM and memory-intensive operations is

determined by the MU and VU performance capabilities, respectively. For real-

istic systems with a limited bandwidth, however, memory-intensive operations

are associated with a DRAM bandwidth bottleneck and there are additional de-

lays at L1, L3, and L5 (see green squares in Figure 2.10(b)). When the accelera-

tor is partitioned into two clusters and processes each cluster independently, the

GEMM and memory-intensive operations are performed simultaneously (see

Figure 2.10(c)). Thus, the load balancing technique can distribute the memory

bandwidth demand, which improves the execution time.

However, the load balancing technique cannot be used during conventional

training. To apply the load balancing technique, each task must be able to

operate independently. During the training processes, only a single DNN model

29

(a) Conventional training

(b) Training with gradient accumulation

(c) Training with gradient accumulation and sequence binning

Iter 0 Iter 1 Iter 2 Iter 3

Iter 0 Iter 1 Iter 2 Iter 3

Iter 0 Iter 1 Iter 2 Iter 3

Figure 2.11: Execution time of various training methods using the NVIDIA
Nsight system profiler [66]: (a) conventional training, (b) training with gra-
dient accumulation, and (c) training with gradient accumulation and sequence
binning. We set the maximum SL size to 128 and used four gradient accumu-
lation steps. The Nsight system uses multi_tensor_apply_kernel as the weight
update kernel.

is utilized in a single DNN accelerator given the large batch size. Also, because

training should update the weight parameters every time for each mini-batch,

multiple mini-batches cannot be processed in parallel.

With gradient accumulation, the latest training technique becomes feasible

for the application of load balancing techniques. Figure 2.11 shows the re-

sults of the NVIDIA Nsight systems profiler [66] with various training methods.

Conventional training performs weight updates at every iteration as shown in

30

Figure 2.11(a). To obtain the weight parameters for iteration 1, training for

iteration 0 must be finished. Thus, there is a dependency between iterations.

Gradient accumulation eliminates the dependency between iterations within a

gradient accumulation step. In Figure 2.11(b), iterations 0, 1, 2, and 3 use the

same weight parameters, and four iterations can be processed in parallel.

Sequence binning varies the size of the SLs. Figure 2.11(c) depicts training

with gradient accumulation and sequence binning. Iterations 0, 1, and 3 are

performed with 64 SL because the padded token occupies half of the input. In

contrast, iteration 2 consists of full text and is performed with 128 SL.

The load balancing technique can improve the performance when operations

with opposite characteristics are performed concurrently in clusters. Therefore,

sequence binning helps to obtain an additional performance improvement of

our idea.

31

Chapter 3

DNN accelerator tailored for accelerating memory-

intensive operations

We propose DNN accelerators tailored for accelerating memory-intensive

operations based on a systolic array (see Figure 3.1(a)). Although the systolic

array is the most known structure for accelerating DNN, this structure does

not perfectly cover the trend of the latest DNN. We analyze the computational

characteristics of inference and training of the latest DNN in detail. Through

the analysis, we confirm that it is difficult to design an integrated structure for

optimizing both inference and training because each process has different com-

putational characteristics. Therefore, we design separate architectures for each

process as shown in Figure 3.1(b) and (c).

A DNN accelerator that is specialized for inference fully utilizes the pipelined

manner between layers to reduce off-chip memory access. The inference only

performs a forward pass using a pre-trained model. During inference, when

one layer is executed, the intermediate result of one layer is used to process the

next layer. The intermediate result is used only once as the input of the next

layer, and it is not required after processing the next layer. In most cases, the

intermediate result is not stored in on-chip memory because this size is large.

32

S
y
s
to

lic
 D

a
ta

 S
e

tu
p

U
n
if
ie

d
B

u
ff

e
r

Activation

Normalization

Pooling

Vector Unit

Matrix Unit

(HMU × WMU)

TOC

TIC

Accumulator

Weight FIFO
Main Memory

Controller

On-chip

Weight FIFO
Main-memory

Controller

Matrix Unit

(HMU × WMU)

Accumulator

S
y
s
to

lic
 D

a
ta

 S
e

tu
p

U
n
if
ie

d
B

u
ff

e
r

P
ro

c
e
s
s
in

g
-N

e
a
r

-M
e
m

o
ry

 U
n

it

Normalization & Activation (VU-

NA)

Depth-Wise Convolution

(VU-DW)

Vector Unit
WMU

Bytes

xbar

xbar

xbar

xbar

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU
L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

H
B

M
 M

e
m

o
ry

 C
o
n
tr

o
lle

r

L2 SRAM L2 SRAM

H
B

M
 M

e
m

o
ry

 C
o
n
tr

o
lle

r
(c) Tiled architecture for training

(a) Baseline systolic array

architecture

(b) Pipelined architecture for inference

Figure 3.1: (a) Baseline systolic array architecture. (b) A pipelined architecture
tailored for accelerating inference. (c) A tiled architecture tailored for acceler-
ating training.

If a specific layer is a memory-intensive operation, off-chip memory access

causes a bandwidth bottleneck and degrades the performance. Thus, reusing

the intermediate result as much as possible on-chip has a major impact on the

performance of the accelerator. To maximally utilize the inter-layer pipeline

execution, it is necessary to establish which unit processes the proper operations

considering computational characteristics. By reflecting the trend of the latest

CNN, we assign operations to units in a slightly different position from that of

33

the existing accelerators.

A DNN accelerator that is specialized for training utilizes computational

parallelism to process the massive number of operations. Training performs

both forward and backward passes to learn the model. In the forward pass,

the intermediate result of one layer enters the input of the next layer and is

used to obtain the weight gradient in the backward pass. Because the backward

pass is performed after all of the layers of the forward pass are completed, the

intermediate result cannot be stored in the on-chip memory. Therefore, the

intermediate result is stored in off-chip DRAM. To minimize off-chip memory

access, we propose a tiled architecture with multiple levels of memory because

on-chip cache help to reuse input and weight data. Unlike inference, training

lacks optimization methods to reduce off-chip access. To overcome these, we

further propose a load balancing technique that optimizes memory-intensive

operation when performing training using a tiled architecture. The details of

the structure and operation of the two accelerators are covered in Chapters 4

and 5.

34

Chapter 4

MVP: A CNN accelerator with Matrix, Vector, and

Processing-near-memory units

4.1 Contribution

4.1.1 MVP organization

We propose a novel CNN accelerator architecture called MVP, which includes

an MU, a VU for NORM/ACT (VU-NA) and for DW-CONV (VU-DW),

and a processing-near-memory unit (PNMU) as shown in Figure 4.1(a). As

opposed to the baseline SysAr architecture that suffers from poor performance

in memory-intensive layers such as DW-CONV and SE, MVP is pragmatically

designed to efficiently process both compute-intensive and memory-intensive

CNN layers and functions with a minimal area overhead.

VU-DW takes the OFmaps from MU through VU-NA (processing PW-

CONV, NORM, and ACT) and performs DW-CONV in a pipelined man-

ner (see Figure 4.1(b)). In case DW-CONV does not follow PW-CONV, the

OFmaps bypass VU-DW and head to UB directly. Based on the key observa-

tion that a SysAr lane only processes an output channel, we place a depth-wise

35

(a)

Main

memory
...

...

...

...

+ +

+

+

X X

DEMUX

XX

8888

8

88

20

Adder

Tree

Normalization/Activation

DWPE
0

DWPE
1

DWPE
WMU - 2

DWPE
WMU - 1

8
8

D
e

p
th

-W
is

e

W
e

ig
h
t
B

u
ff

e
r

B
a

rr
e

l
S

h
if
te

r

(b)

D
e

p
th

-W
is

e

In
p
u

t
B

u
ff

e
r

...Slice

0

Slice

1

Slice

k-1

Slice

k-2

(c)

HMU

Bytes

D
E

M
U

X

M
U

X

88

Unified Buffer
S

c
ra

tc
h
 P

a
d

PNME
PNME
PNME
PNME

8
8
8

8

PNME
PNME
PNME
PNME

8
8
8

8

...

S: Scale factor

F: Feature map

element

S

F M
A

C

A
C

T

32

Processing-Near

-Memory-Element

Depth-Wise Multipliers

Depth-Wise

Processing

Element

Weight FIFO
Main-memory

Controller

Matrix Unit

(HMU × WMU)

Accumulator

S
y
s
to

lic
 D

a
ta

 S
e

tu
p

U
n
if
ie

d
B

u
ff

e
r

P
ro

c
e

s
s
in

g
-N

e
a

r

-M
e
m

o
ry

 U
n

it

Normalization & Activation

(VU-NA)

Depth-Wise Convolution

(VU-DW)

Vector Unit
WMU

Bytes

Figure 4.1: (a) MVP architecture (the red and blue parts represent the units
added to the baseline SysAr), (b) VU-DW, and (c) PNMU.

36

processing element (DWPE) per SysAr lane. Each DWPE consists of depth-wise

input/weight buffer (DWIB/DWWB), k depth-wise multipliers (DWMULs), an

adder tree for partial reduction, and registers for accumulation. Each DWMUL

takes the operands from DWIB and DWWB, multiplies them, and sends the

output to the adder tree. DWIB is a buffer for IFmaps in DW-CONV; it con-

sists of k DWIB slices, each being mapped to a DWMUL. Each DWIB slice is

a register file with a word size of 1-byte, allowing the DWMULs to access a

row of DWIB SRAM cells simultaneously. DWWB is a buffer for weights in

DW-CONV. Because the weights are reused with repeating but shuffled pat-

terns to be aligned with the IFmap values to be multiplied at DWMUL, DWWB

consists of a barrel shifter and a small register file. VU and UB are connected bi-

directionally. VU-DW also covers the POOL (pooling) function because recent

CNN models have relatively simple POOL operations such as global average

pooling.

PNMU (Figure 4.1(c)) is a preprocessing unit which is placed near on-chip

unified memory to execute simple element-wise operations conducted prior to

CONV. These operations are pipelined with the subsequent CONV, thereby

hiding the execution time and saving memory accesses. PNMU includes HMU

PNM elements (PNMEs), each placed between a row of UB and MU in an

aligned manner. Each PNME consists of a DEMUX, a MAC, a comparator for

ReLU, a MUX, and tiny registers holding scale factors used in scaling operations

such as SE-Scale and NORM. DEMUX selects either a scale factor or an IFmap

element. PNME only supports ReLU because it is a popular ACT function that

is also used for MBConv [39,44], and the logics for other ACT types take up a

large area. MUX decides whether or not to use preprocessing.

37

4.1.2 How depth-wise processing element (DWPE) operates

We describe how DWPE operates by showing an example of a DW-CONV

layer with stride 1 and with zero-padding: the sizes of inputs are 4×4 for

IFmaps and 2×2 for weights (see Figure 4.2(a)). Figure 4.2(b) presents the data

movement in DWPE I/O at each cycle, while Figure 4.2(c) shows how DWPE

operates internally in detail.

1⃝ VU-NA receives the OFmap elements of PW-CONV from MU and

ACC, performs BN and ACT, and sends the resulting Fmap to DWPE per cycle

at each lane. DWPE takes the IFmap element and stores it to DWIB. At cycle

0, DWIB stores the IFmap element in one of the four DWIB slices. The position

of DWIB slice where an IFmap element is stored is determined by 4.1.

Position of DWIB slice = (rowIFmap + columnIFmap ×KH)%DWMUL

(4.1)

In the equation, the rowIFmap and columnIFmap are the positions of a single

IFmap element on a 2-dimensional IFmap. For example, the rowIFmap and

columnIFmap of an IFmap element numbered 0 are both 0.

2⃝ At cycle 1, DWPE starts the first DW-CONV operation. The first CONV

window requires a single IFmap element numbered 0 and three zero-padding

elements. DWMULs only load an IFmap element numbered 0 from a DWIB

slice for operation. DWMULs which need zero-padding elements do not work.

Because weights are recycled for every OFmap elements in an OFmap, the barrel

shifter rearranges the weights by a shift distance according to 4.2. If the zero-

padding size is odd, a math symbol in the equation is a plus, and vice versa,

38

Tiled IFmap for DW-CONV

(Results of previous CONV/NORM/ACT)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

∗ A B

C D

Weight

① Store a single IFmap element

to a single DWIB slice per cycle.

The element is stored in one of

the four slices in the manner of

Equation 4.1.

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IN

OUT

=
Tiled OFmap

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 15

(a)

(b)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 10 11 12 13 14

② Start the first DW-CONV

operation. DWMULs only load

required IFmap elements.

Barrel shifter works in the

manner of Equation 4.2.

③ Provide 4× higher memory

bandwidth compared to the

baseline SysAr performing DW-

CONV in MU.

: Zero-padding element

CONV window

start point

④ The end of whole DW-CONV

operations

(An example of storing IFmap)

DWPE

VU-NA

Cycle: 0

8

D
W

IB

Slice

0

Slice

1

Slice

2

Slice

3

0

DEMUX

X X X X

Reduction

A C B D

0

DWPE

VU-NA

8

D
W

IB

Slice

0

Slice

1

Slice

2

Slice

3

1

DEMUX

Reduction

D0

0

A C B

DWPE

VU-NA

8

D
W

IB

Slice

0

Slice

1

Slice

2

Slice

3

6

Cycle: 6

DEMUX

X X X X

Reduction

A0

5

C4 B1 D5

0 1

S
h

if
t

d
is

ta
n
c
e

0 0
5

2 36

0 4 1

Cycle: 1

DWPE

VU-NA

D
W

IB

Slice

0

Slice

1

Slice

2

Slice

3

0

DEMUX

X X X X

Reduction

B11

15

D15 A10 C14

1

2 3

9

11

8

10

4

6

13

15

5

7

12

14

8

2

Cycle: 16

X X X X

S
h

if
t

d
is

ta
n
c
e

1

S
h

if
t

d
is

ta
n
c
e

S
h

if
t

d
is

ta
n
c
e

(c)

Figure 4.2: An example of how DWPE operates when the number of DWMULs
and DWIB slices is 4. Because the DWPEs perform the same operations on
independent Fmaps, we describe an example for one DWPE. (a) An example of
DW-CONV where IH and IW are the same as the tile size used in the previous
PW-CONV (4×4 in the example). (b) DWPE data in/out movement status at
each cycle. The result of PW-CONV, NORM, followed by ACT, is transferred
to DWPE every cycle, assuming that IC of the previous PW-CONV is smaller
than HMU (weights are not shown for convenience of explanation). (c) DWPE
operations in specific clock cycles. We assume that read/write operations of
DWIB spend one cycle.

39

the math symbol is a minus. The shift distance numbered 0 means that the

weight elements are allocated to the DWMULs in the same way as storing IFmap

elements to the DWIB slices as shown in cycle 0. The equation of shift distance

is similar to 4.1; however, there are slight differences in considering the OFmap

element, ST, and the zero-padding size.

Shift distance = [ST (rowOFmap + columnOFmap ×KH)± padding]%DWMUL

(4.2)

3⃝ From cycles 1 to 16, DWPE performs a convolution operation for every

cycle. Compared to the baseline SysAr performing DW-CONV in MU, DWPE

provides up to 4× higher memory bandwidth, owing to the 4 DWIB slices op-

erating in parallel. To fully utilize all the DWIB slices at every cycle, each IFmap

element in a CONV window should be placed in a proper DWIB slice. Cycle 6

is an example of fully utilizing 4× bandwidth. The CONV window requires the

IFmap elements numbered 0, 4, 1, and 5: the four elements are distributed, in

column-major order, into the first row of the four DWIB slices. DWPE loads

the IFmap elements 0, 4, 1, and 5 from each DWIB slice, multiplies them with

the corresponding weights, sums up the output to compute OFmap element 5.

4⃝ This data access pattern is repeated until DW-CONV finishes at cycle 16.

Even when a stride is larger than 1, the DEMUX for storing IFmap in the

DWIB slice works the same as the stride 1. The pattern of loading IFmaps

into DWMUL needs no change. For example, when the stride is 2, IFmaps are

loaded in the same way as 6, 8, 14, and 16 cycles of Figure 4.2(b). The barrel

shifter does not change the position of weights when the window moves in the

row direction; it only shifts weights by 2 when the window moves in the column

40

Figure 4.3: Illustration of how PNMU operates. PNMU reads Fmaps from
DRAM and performs SE-Scale and the subsequent CONV concurrently. (b)
Tile traversal of the next CONV.

direction. Thanks to such a straightforward access pattern, DWPE fully exploits

the convolutional reuse on an IFmap, yet being flexible enough to support the

various sizes of kernels and the number of DWMULs.

4.1.3 How processing-near-memory unit (PNMU) operates

PNMU processes element-wise operations that commonly precede a CONV

layer, such as NORM, ACT, and SE-Scale. Figure 4.3 illustrates how PNMU

processes SE-Scale. Here we describe an example of fetching IFmaps of SE-

Scale from DRAM as it accompanies fetching from UB. First, scale factors

required for SE-Scale are computed by VU, stored at UB, fetched from UB, and

stored in the registers inside PNME. Each of TIC PNME holds its own scale

factor for a single input channel (see Figure 4.3(a)). Then, PNMU multiplies

the scale factors with a tile of Fmaps sized TIW ×TIH ×TIC in an element-wise

41

manner. The output of SE-Scale is directly fed into MU for the subsequent

CONV.

After one Fmap tile is complete, one needs to determine which direction

to traverse the Fmap tiles because it determines whether the scale factors are

reused or not. As explained in Section 2.2.2, SysAr sends a complete OFmap

element from ACC to VU. For that, SysAr traverses in IC-direction first (see

Figure 4.3(b)); then, the tiles are traversed in IW- and finally in IH-direction.

PNMU overlaps most of the execution time for SE-Scale with the subse-

quent CONV and saves memory access for SE-Scale, compared to the baseline

SysAr. This design includes inevitable overheads, albeit minimal. Because any

two IFmap tiles processed in a row have completely different input channels,

the scale factors in the PNME registers should be updated for every IFmap tile.

When the datapath between UB and PNME is busy updating the scale factors,

it cannot feed the Fmap for SE-Scale and the subsequent CONV. However,

once a scale factor is updated, it is reused by TIW×TIH , amortizing the time

overhead for the scale factor update to 1
(TIW×TIH) . For the CNN models tak-

ing input images with a resolution of 224×224, the smallest TIW×TIH is 49;

limiting the time overhead to 2% (more details in Section 4.2.2).

4.1.4 Overlapping the operation of DW-CONV with PW-CONV

VU-DW andMU can concurrently execute both PW-CONV and DW-CONV

in a pipelined manner, resulting in additional speedup with the overlapped ex-

ecution. Figure 4.4 shows timing diagrams of PW-CONV and the following

DW-CONV with and without overlapping. Pipelining clearly reduces execu-

tion time. The degree of execution time saving depends on the time to produce

42

PW-CONV NORM/ACT after PW NORM/ACT after DW StallDW-CONV

Tile0

Tile1

Time

Time

(b)

Tile0

Tile1

Overlap

Single IFmaps tile

(a)

(c) Time

(d) Time

VU-NA Sharing

Overlap

Tile0

Tile1

Tile0

Tile1

Figure 4.4: Timing diagrams for processing PW-CONV followed by DW-
CONV. X-axis represents time and y-axis represents operation sequences
about multiple OFmap tiles. MU and VU process PW-CONV and DW-CONV
(a) without pipeline, (b) with pipeline (CyclePW > CycleDW), (c) with pipeline
(CyclePW < CycleDW), and (d) with sharing VU-NA.

an OFmap tile during PW-CONV and DW-CONV, defined as TIW×TIH×IC
HMU

for PW-CONV and TOW×TOH×KH×KW
DWMUL for DW-CONV. Figure 4.4(b) shows

the case when the processing time for an OFmap tile of PW-CONV is larger

than that of DW-CONV. Then, the execution time on DW-CONV fully over-

laps with PW-CONV. If the processing time for an OFmap tile in DW-CONV

is larger than that in PW-CONV (Figure 4.4(c)), there is a stall (shown as an

orange bar) in MU, leading to less saving albeit still beneficial.

Meanwhile, the throughput requirement of VU-NA increases twice due to

the concurrent processing. It is simple to duplicate VU-NA for DW-CONV

and PW-CONV, but it requires 11% additional area (see Section 4.2.1). To

43

avoid this, we share one VU-NA for both DW-CONV and PW-CONV through

multiplexing (see Figure 4.4(d)). We present the performance overhead due to

sharing VU-NA in Section 4.2.2.

4.1.5 Considerations for designing DWIB

Because the DWIB size affects the execution time and energy of both DW-

CONV and PW-CONV and the area of MVP, it must be carefully designed.

PW-CONV can suffer from slowdown and more energy consumption due to

the additional DRAM memory access if DWIB size is too small. PW-CONV

might experience more frequent DRAM accesses due to weight update when

concurrently executing PW-CONV and DW-CONV due to a smaller PW-

CONV tile size compared to the non-overlapped case [60].

DWIB also affects DW-CONV performance. Because DW-CONV uses a

kernel size of 3×3 or larger, the edge part of the previously used IFmap tile is

required (we call it an edge IFmap). All the edge IFmaps are stored in UB and

must be moved to DWIB through a bidirectional path between UB and VU.

However, because the same path is occasionally used for sending the OFmaps

of DW-CONV to UB, contention can occur. The size of edge IFmaps increases

in proportion to the number of the DW-CONV IFmap tiles, which is closely

related to DWIB. We quantify overhead by the contention (Section 4.2.2), and

evaluate MVP performance and energy changes according to the DWIB size

(Section 4.2.4).

44

Table 4.1: SysAr, VU-DW, PNMU, and DRAM specifications.

Resource Value

Systolic Array (TPU): 1
Matrix Unit 64×64 (INT8 MAC)
Accumulator (Unit) 64 (INT32 ADD)
Unified Buffer 1 (512 KB, 8192×512 SRAM)
Accumulator (Buffer) 1 (128 KB, 512×2048 SRAM)
Vector Unit (NORM, ACT) 1

Vector Unit (DW-CONV): 1 (64 Depth-Wise Processing Elements)
Depth-Wise Multiplier 64×5 (INT8 MUL)
Depth-Wise Input Buffer 64 (Each size is 260B, 260×8 SRAM)
Depth-Wise Weight Buffer 64 (Each size is 100B, 20×40 SRAM)
Adder tree 64 (Reduction Unit, Registers)
Barrel Shifter 64
DEMUX 64

Processing-Near-Memory Unit: 1 (64 Processing-Near-Memory Elements)
MAC 64 (INT8 MAC)
ACT 64 (Comparator)
Register 64 (1B)
MUX 64
DEMUX 64

DRAM [58] LPDDR4-3200, 12.8 GB/s, 13 pJ/bit

4.2 Evaluation

We quantified the benefits of MVP architecture over SysAr on execution time,

energy, and area. Then we explored the various design spaces of MVP, such

as DWIB size and the number of DWMULs. We also demonstrated the MVP’s

performance improvement across various SysAr configurations with different

MU dimensions and the size of UB and ACC.

45

MU UB VU-NA ACC VU-DW PNMU

0%

Area

20% 40% 60% 80%

(4.21 ��6)

109%100%

Figure 4.5: MVP area breakdown.

4.2.1 Experimental setup

SysAr is the baseline architecture for evaluation. We set the baseline to have an

MU with 64×64 MACs, 512KB UB, and 128KB ACC buffer (see Table 4.1).

This is the best-performing configuration on ResNet-50 and VGG-16 models

based on EDA2P (Energy Delay Area2 Product) metric [61]. To get a reason-

able SysAr configuration for ST/PW-CONV, we used ResNet-50 and VGG-16

because they are the most well-known CNN models among the ones not using

DW-CONV and SE. VU-DW consists of 64 (=WMU) DWPEs, each including

five 8-bit DWMULs, a 260B DWIB with five slices, a 100B DWWB, and an

adder tree. PNMU has 64 (=HMU) PNMEs, each including DEMUX, 8-bit

MAC unit, ACT unit, MUX, and register. Compared to SysAr, MVP adds an

area overhead of 9% where VU-DW and PNMU incur 8% and 1%, respectively

(see Figure 4.5).

We used Timeloop [70] for evaluation. Timeloop is a simulator for eval-

uating CNN accelerators. Timeloop has two main components: a model to

provide performance, area, and energy projections of hardware components

and amapper to find the optimal mapping of tiling and loop order of any layers

on the targeted architecture. Timeloop requires an ERT (energy reference table)

and an ART (area reference table) that contain energy and area values for each

46

hardware component. We used a custom ERT and ART, whose values were

calculated as follows. We synthesized logic components such as multipliers and

MACs based on TSMC 40nm technology and evaluated the SRAM component

of MVP using CACTI [88]. We set the clock frequency and data precision to

be 500MHz and 8-bit, respectively. We modified Timeloop to support DW-

CONV and SE layers. The mapper of the existing Timeloop officially supports

the layer shape only for CONV. However, Timeloop elaborates that they can

support FC by modifying the layer shape of CONV (IH, IW, OW, OH, KW, and

KH are fixed to 1, whereas only IC and OC are changed) as mentioned in [70].

Wemodified the mapper similarly to FC, considering that DW-CONV is a vari-

ant of CONV and SE consists of two FCs and one element-wise multiplication

layer. Also, we modified the model to add architectures such as VU-DW and

PNMU that are not supported by Timeloop. We validated VU-DW and PNMU

by using the synthesis results of our RTL design.

We used EfficientNet-B0/B4/B7, MnasNet, and MobileNet-V1/V2 as our

target CNN models. Although MobileNet-V1 does not include MBConvs,

MVP can support the model as it has a similar layer pattern where DW-CONV

follows PW-CONV and multiple depth-wise separable CONVs are repeated.

We didn’t evaluate NoisyStudent, FixEfficientNet, and Meta Pseudo Labels be-

cause they exploit the same MBConv and thus have a similar structure to Effi-

cientNet.

4.2.2 Performance and energy evaluation

We demonstrate the performance and energy efficiency of MVP for the target

CNN models. We quantify the performance improvements in detail by in-

47

0.00

0.20

0.40

0.60

0.80

1.00

SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

+PNM SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

SysAr +PNM SysAr +PNM

MnasNet
(1.0mJ)

MobileNet-V1
(1.0mJ)

MobileNet-V2
(1.0mJ)

ResNet-50
(6.8mJ)

VGG-16
(28.4mJ)

R
e
la

ti
v
e

E

n
e
rg

y

0.00

0.20

0.40

0.60

0.80

1.00

SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

+PNM SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

+PNM SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

+PNM

EffcientNet-B0
(2.1ms)

EffcientNet-B4
(19.5ms)

EffcientNet-B7
(130.2ms)

R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 t
im

e
ST-CONV PW-CONV Overlap DW-CONV SE-Scale SE-FC FC Etc

(a)

(b)

0.00

0.20

0.40

0.60

0.80

1.00

SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

+PNM SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

SysAr +PNM SysAr +PNM

MnasNet
(1.6 ms)

MobileNet-V1
(1.2ms)

MobileNet-V2
(1.4ms)

ResNet-50
(3.7ms)

VGG-16
(16.6ms)

R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 t
im

e

0.00

0.20

0.40

0.60

0.80

1.00

SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

+PNM SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

+PNM SysAr +VU-DW
w/o

 overlap

+VU-DW
w/

 overlap

+PNM

EffcientNet-B0
(1.4mJ)

EffcientNet-B4
(21.5mJ)

EffcientNet-B7
(156.1mJ)

R
e
la

ti
v
e

E

n
e
rg

y

DRAM-IFmap DRAM-OFmap DRAM-Weight MU UB ACC VU PNMU

Figure 4.6: (a) Relative execution time and (b) relative energy consumption of
MVP over SysAr by incrementally applying VU-DW, the overlapped execu-
tion between PW-CONV and DW-CONV (shown as overlap), and PNMU.
The absolute execution time and energy comsumption of the baseline SysAr is
shown below the name of each CNNmodel. The execution time of MobileNet-
V2 with SysAr is in a similar ball park to the reported execution time of Ed-
geTPU [30] (2.6ms), which has the same peak FLOPS as the evaluated SysAr.

48

crementally applying VU-DW, the overlapped execution of PW-CONV and

DW-CONV, and PNMU. We verify that there is no significant difference be-

tween SysAr and MVP when running ResNet-50 and VGG-16 as MVP can

operate like SysAr by bypassing the added units and the additional wiring cost

is negligible. We make the following key observations.

MVP significantly reduces the execution time of DW-CONV and SE-Scale.

Figure 4.6(a) shows the relative execution time ofMVP on the latest CNNmod-

els.1 First, when VU-DW is applied without overlapping, the execution time

reduces by 51% on average, mostly attributed to saving time in processing DW-

CONV. VU-DW exploits its high internal memory bandwidth supported by

DWIB; and it utilizes up to 5× more MACs than SysAr, which utilizes only N

MACs (as shown in Figure 2.8), thereby reducing the execution time of DW-

CONV by 78% on average. Also, VU-DW alleviates the off-chip memory

bandwidth bottleneck by forwarding the OFmap elements of PW-CONV from

ACC directly into VU-DW (through VU-NA) and thus removing the accesses

to DRAM. The processing speed of PW-CONV also improves, especially for

larger models such as EfficientNetB7. Second, with the overlapped execution of

PW-CONV and DW-CONV, we further observe an average speedup of 5%.

Last, except for MobileNet-V1/V2, which do not include SE-Scale, PNMU

improves the processing speed additionally by 8% on average. As mentioned

in Section 4.1.3, PNMU removes memory accesses to UB and DRAM while

executing SE-Scale. The speedup is higher for models with large Fmap sizes.

Overall, the total execution time is improved by 61% on average.

1We point out that the SysAr configured for evaluation has a similar performance to Ed-
geTPU [30]: the execution time of MobileNet-V2 with SysAr (1.4ms) is similar to that with
EdgeTPU (2.6ms).

49

MVP significantly saves energy consumption primarily by reducing the DRAM

memory accesses. Figure 4.6(b) shows the relative energy consumption of MVP

over the baseline SysAr. When VU-DW is applied without overlapping, total

energy consumption is reduced by 41%, where the energy reduction in DRAM

accesses is dominant. It is because VU-DW eliminates the DRAM accesses that

were necessary for delivering the intermediate Fmaps between PW-CONV and

DW-CONV before. VU-DW also reduces the energy consumption of UB in

two ways: 1) by eliminating the memory accesses on the intermediate Fmaps

between PW-CONV and DW-CONV and 2) by reducing the repeated mem-

ory accesses on the same Fmap elements through exploiting the convolutional

reuse stated in Section 4.1.2. The reduced energy consumption in ACC, on the

other hand, attributes to the on-the-fly accumulation of partial sums through

the adder tree in DWPE; the partial sums are accessed through small registers

instead of large memory in ACC while processing DW-CONV. Meanwhile,

there is little energy saving by overlapping because it affects only the timing of

processing each layer. PNMU further reduces the energy consumption by 9%,

owing to the elimination of DRAM and UB traffic in SE-Scale. Putting it all

together, MVP reduces energy consumption by 47% in total.

We further quantify the performance overheads of MVP due to the lim-

ited DWIB capacity and the time-division multiplexing of VU-NA. When an

IFmap of DW-CONV does not fit into the limited DWIB capacity, as explained

in Section 4.1.5, we fetch the edge IFmaps from UB, which incurs small perfor-

mance overhead. Figure 4.7 shows that the overhead of fetching edge IFmaps

(shown as Edge overhead) is 4% for EfficientNet-B0. This overhead happens

only in close-to-input BBs whose IFmaps are large. In contrast, Share overhead

50

0

0.02

0.04

0.06

0.08

B
B

 1

B
B

 2

B
B

 3

B
B

 4

B
B

 5

B
B

 6

B
B

 7

B
B

 8

B
B

 9

B
B

 1
0

B
B

 1
1

B
B

 1
2

B
B

 1
3

B
B

 1
4

B
B

 1
5

B
B

 1
6

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Oracle

Edge overhead

Share overhead

Scale overhead

Figure 4.7: Execution time of EfficientNet-B0 over BBs. Edge overhead means
performance overhead due to the datapath contention caused by the edge
IFmaps (Section 4.1.5). Share overhead means performance overhead due to
the resource contention by VU-NA sharing (Section 4.1.4). Scale overhead
means performance overhead due to the datapath contention when SE-scale is
performed in PNMU (Section 4.1.3). Oracle is an execution time when all three
overheads do not exist.

(performance overhead due to the contention by VU-NA sharing) and Scale

overhead (performance overhead caused by the contention when SE-scale is

performed in PNMU) have little effect on execution time. The Share overhead

is low because the frequency of traffic requested to the VU-NA is low. VU-NA

is utilized when CONV produces OFmaps. In the case of PW-CONV, VU-NA

requests occur in a period of IC
TIC

cycles, as mentioned in Section 2.2.2. DW-

CONV uses VU-NA in a period of 2 or 5 cycles for the kernel sizes of 3×3

and 5×5, respectively, when using 5 DWMULs per DWPE. Therefore, as VU-

NA requests from PW-CONV and DW-CONV occur intermittently, MVP can

operate with little overhead using a single VU-NA through time multiplexing.

The Scale overhead is negligible because the period of reading scale factors is

much less than that of Fmaps, as mentioned in Section 4.1.3. Overall, the total

performance overhead for the target CNN models is 2.6% on average.

51

0
0.2
0.4
0.6
0.8

1

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

EffcientNet-B0
(1.4mJ)

EffcientNet-B4
(21.5mJ)

EffcientNet-B7
(156.1mJ)

MnasNet
(1.0mJ)

MobileNet-V1
(1.0mJ)

MobileNet-V2
(1.0mJ)

R
e
la

ti
v
e

 E
n

e
rg

y

0
0.2
0.4
0.6
0.8

1

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

S
y
s
A

r

N
V

D
L

A

M
V

P

EffcientNet-B0
(2.1ms)

EffcientNet-B4
(19.5ms)

EffcientNet-B7
(130.2ms)

MnasNet
(1.6 ms)

MobileNet-V1
(1.2ms)

MobileNet-V2
(1.4ms)

R
e
la

ti
v
e

 E
x
e

c
u

ti
o

n
 t
im

e

(a)

(b)

Figure 4.8: (a) Relative execution and (b) relative energy of three accelerators
to compare MVP with NVDLA. The absolute execution time and energy con-
sumption of the baseline SysAr is shown below the name of each CNN model.

4.2.3 Comparing MVP with NVDLA

We further compare the execution time and energy consumption of MVP with

those of NVDLA. NVDLA consists of a convolution MAC unit, a convolution

buffer, and a convolution accumulator. The convolution MAC unit consists of

HMU MAC cells, which include WMU multipliers and an adder tree. A single

MAC cell takes one of TIC IFmap elements, while HMU MAC cells take one of

TOC weight elements. The convolution buffer is an on-chip buffer that stores

IFmaps and weights. The convolution accumulator stores the partial sums that

are computed by the MAC cells until they become a complete OFmap element.

We set NVDLA as a 64×64 convolutionMAC unit, a 512KB convolution buffer,

and a 128KB convolution accumulator similar to the baseline SysAr (≃TPU).

MVP reduces execution time compared to NVDLA, and the reduction rate

52

is almost the same as that of SysAr. Figure 4.8(a) shows the relative execu-

tion time of SysAr, NVDLA, and MVP for the latest CNN models. NVDLA is

similar to SysAr in how to allocate the IFmap, weights, and OFmap tiles to the

convolution MAC unit, and the OFmap element can be moved out of the con-

volution accumulator when partial sums become a complete value. Therefore,

NVDLA has less than 2% of MAC utilization when processing DW-CONV as

mentioned in Section 2.4.1. Overall, MVP reduces the execution time for the

entire CNN by 60% on average.

MVP reduces energy consumption compared to NVDLA, but the reduction

rate is less than that of SysAr. In the CNN models where PW-CONV, NORM,

ACT, and DW-CONV are repeated, MVP executes PW-CONV, NORM, and

ACT from MU through VU-NA and performs DW-CONV in VU-DW by

taking results directly from VU-NA. In contrast, NVDLA must access UB or

DRAM after processing PW-CONV, NORM, and ACT. Thus, MVP reduces

energy by 34% on average compared to NVDLA as shown in Figure 4.8(b).

However, the energy consumption of NVDLA is smaller than that of SysAr.

Because NVDLA reuses weights in the on-chip memory, it reads fewer weights

from DRAM. In addition, the gap between the two accelerators is getting larger

as the image resolution of the CNN model increases because the accelerator

has to read weights repeatedly from DRAM or UB. Therefore, NVDLA saves

energy consumption by 12% on average with 224×224 resolution (EfficientNet-

B0, MnasNet, MobileNet-V1, and MobileNet-V2) and by 26% on average

with 300×300 and 600×600 resolution (EfficientNet-B4 and EfficientNet-B7)

compared to SysAr.

53

0.0

0.2

0.4

0.6

0.8

1.0

S
y
s
A

r 1 3 5 9

1
3R

e
la

ti
v
e
 E

D
A

2
P

e
x
e
c
u
ti
o
n
 t
im

e
,
e
n
e
rg

y

Execution time Energy EDA2P

0.0

0.2

0.4

0.6

0.8

1.0

S
y
s
A

r

1
2
8

B

2
5
6

B

5
1
2

B

1
K

B

2
K

B

EDA2P

(a)

DWMUL DWIB

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

DWMUL

D
W

IB
1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

DWMUL

20

15

10

(b)

EDA2PEDAP

D
W

IB

80

60

40

1 3 5 9 131 3 5 9 13

Figure 4.9: (a) Execution time, Energy, and EDA2P when the number of DW-
MULs is varied for a 256B DWIB size (Left side) when the DWIB size is varied
for 5 DWMULs (Right side). (b) EDAP and EDA2P heatmap by the number
of DWMULs and the DWIB size (the lower, the better [61]).

4.2.4 Exploring the design space of MVP architecture

Increasing design parameters of MVP, such as the DWIB size and the number

of DWMULs, can improve performance and energy efficiency but worsen area

efficiency. We explore the design space of MVP and find optimal design param-

eters for the given SysAr configuration by using EDAP and EDA2P metrics,

where the latter puts more weights on area efficiency. We use the geometric

mean of all target CNN models to show simple results.

The number of DWMULs significantly affects the execution time. The left

side of Figure 4.9(a) shows the execution time, energy, and EDA2P of MVP

for a various number of DWMULs with 256B DWIB. Even only adding one

DWMUL to SysAr greatly reduces the execution time and energy consumption;

54

it gives the same internal memory bandwidth as SysAr but eliminates DRAM

and UB accesses between PW-CONV and DW-CONV, and overlaps the exe-

cutions. PNMU additionally removes the DRAM and UB access, and hides the

execution. Increasing the number of DWMULs improves the processing speed

by utilizing more ALUs and memory bandwidth until the performance is satu-

rated when the number of DWMULs is 5. The performance saturates because

the execution time of PW-CONV remains unchanged after adding one DW-

MUL and thus dominates. In contrast, populating more than 1 DWMUL has

little impact on total energy consumption. This is because the number of on-

/off-chip memory accesses, which dominate energy consumption, remains the

same after adding one DWMUL. Finally, EDA2P decreases until 5 DWMULs

and then starts increasing because of the growing area overhead.

Even MVP with small DWIBs outperforms SysAr, with high energy effi-

ciency. Increasing the DWIB size has pros and cons. It enables DWIB to ac-

commodate larger DW-CONV tiles, reducing both UB accesses on edge IFmaps

and repeated DRAM accesses on the same weights of PW-CONV. However,

the energy per memory access grows as DWIB becomes larger. The right side of

Figure 4.9(a) shows the execution time, energy, and EDA2P with various sizes

of DWIBs. DWIB of 128B size causes repeated memory accesses to DRAM for

fetching weights of PW-CONV, diluting the energy savings of MVP. Increasing

DWIB over 256B worsens the energy efficiency because the energy per mem-

ory access increases. In contrast, an Fmap tile already, at 256B, becomes large

enough to eliminate the repeated DRAM accesses on the same weights. The

energy spent by the edge traffic is below 0.3% on average, which is negligible.

Because of these reasons, the optimal size minimizing the energy consumption

55

0

1

2

3

4

5

0

1

2

3

4

5
S

y
s
A

r

+
V

U
-D

W

+
P

N
M

U

S
y
s
A

r

+
V

U
-D

W

+
P

N
M

U

S
y
s
A

r

+
V

U
-D

W

+
P

N
M

U

S
y
s
A

r

+
V

U
-D

W

+
P

N
M

U

S
y
s
A

r

+
V

U
-D

W

+
P

N
M

U

S
y
s
A

r

+
V

U
-D

W

+
P

N
M

U

S
y
s
A

r

+
V

U
-D

W

+
P

N
M

U

S
y
s
A

r

+
V

U
-D

W

+
P

N
M

U

S
y
s
A

r

+
V

U
-D

W

+
P

N
M

U

64KB 128KB 256KB 128KB 256KB 512KB 256KB 512KB 1024KB

16x16 32x32 64x64

R
e
la

ti
v
e
 E

D
A

2
P

R
e
la

ti
v
e
 A

re
a

Area (SysAr) Area (VU-DW+PNMU) EDA2PEDA2P

Figure 4.10: Area and EDA2P of MVP while varying MU, UB, and ACC pa-
rameters. The outermost category on the x-axis represents the MU size and
the inner category represents the UB size. We select a candidate configuration
that fits UB and ACC capacity in proportion to the change in MU size and set
ACC as one fourth of the UB size. We obtain the design parameters of MVP
for each SysAr configuration by using the design space exploration conducted
in Section 4.2.4. EDA2P values are calculated as the geometric mean for the
target CNN models. Both EDA2P and area are expressed as relative values
based on each SysAr configuration, which has the smallest UB in each MU size
(colored red).

for DWIB is 256B. Meanwhile, as the DWIB size increases, the area increases,

and the area efficiency worsens. As the DWIB size increases, it has an area

overhead up to 18%, and EDA2P increases as well.

We choose the parameters for MVP, the DWIB size and the number of DW-

MULs, for design space exploration based on the EDAP and EDA2P metrics

(see Figure 4.9(b)). In general, increasing each of the two parameters leads to

better performance while increasing area and energy overhead. We find that

the point with 5 DWMULs and 256B DWIB gives the best (lowest) EDAP and

EDA2P ; we set them as default parameter values for MVP.

56

4.2.5 Evaluating MVP with various SysAr configurations

The proposed MVP is flexible enough to improve both the performance and

energy efficiency across a wide range of configurations. We quantify the per-

formance improvement of MVP with various sizes of MU, UB, and ACC. As

shown in Figure 4.10, all the configurations show significant EDA2P improve-

ment with VU-DW, which is further increased by PNMU, with only a small

area overhead. In conclusion, MVP reduces the EDA2P by at least 51% and

up to 76% for a range of configurations of SysAr.

4.3 Related Work

Conventional DNN inference accelerators: Accelerators often use 2D MAC

array structure to accelerate CNN inference by using their own dataflows in

exploiting the data reuse characteristics of ST/PW-CONV. NVDLA [65] con-

sists of TOC 1D vector engines that process TIC MAC operations. NVDLA does

not use systolic execution; however, dataflow, data mapping, and UB band-

width are similar to TPU. Because NVDLA suffers from the same challenges as

TPU as mentioned in Section 2.4.1, it also processes DW-CONV inefficiently.

ShiDianNao [24] specializes in reusing IFmaps between sliding windows. Al-

though ShiDianNao is good for processing ST and DW-CONV with a large

kernel size, it cannot process PW-CONV efficiently because it does not uti-

lize OC parallelism as mentioned in [55]. As opposed to SysAr, TPU v3 [49]

changes VU structure to accelerate less arithmetically intensive operations such

as inverse-square-root of BN while training, albeit not elaborating on details

about processing DW-CONV in the modified VU. In addition, as TPU v4 [48]

57

reuses hardware designs of TPU v3 except for several components such as on-

chip memory capacity, on-chip interconnect, and DMA, the VU of TPU v4

is the same structure as that of TPU v3. There have been processing-near-

DRAM studies [17,26,53] to provide high off-chip memory bandwidth during

inference. Because [17, 26] use dataflow architecture such as Eyeriss v1 [14]

and systolic array, they still do not process DW-CONV efficiently. In con-

trast, [53] has advantages for memory-intensive operations but has weaknesses

for compute-intensive ST-CONV operations.

Prior works supporting both ST- and DW-CONV: Previous architectural so-

lutions have been mainly proposed to process both ST- and DW-CONV in an

MU. Eyeriss v2 [15] provides flexibility in moving data from UB to PE by com-

posing the memory hierarchy in two stages, mesh and all-to-all, so that both

types of CONV could be processed while maintaining the existing dataflow.

However, a major drawback of this design is the large area overhead as it needs

to provide local SRAM for all the three data types. [9,98,102] make hardware

reconfigurable to process two types of CONV in an MU by changing dataflow

and data mapping according to the CONV type. These solutions can accel-

erate DW-CONV using the existing MU, but require O(N2) UB bandwidth

directly to the MU and incur a huge amount of wiring cost, one of the most

expensive resources in conventional CNN accelerators. In-memory accelera-

tors [4, 5] that accelerate DW-CONV have been proposed, albeit they target

CNN models using binarized DW-CONV. [95] proposes a scheduling method

that reduces off-chip access by fusing three consecutive layers inside the MB-

Conv. However, it does not deal with the under-utilization when conventional

accelerators operate DW-CONV. HPIPE [35] generates a customized dataflow

58

inference accelerator for FPGA by considering layer information of the targeted

CNNmodel and hardware resources such as DSP and BRAM. HPIPE minimizes

unnecessary off-chip memory access and computation by processing multiple

layers in a pipelined manner and by skipping zero activation and weight. HPIPE

is efficient where the user processes a single CNN model or hardware changes

are flexible.

A full-stack accelerator search technique (FAST) [104],which is highly sim-

ilar to our motivation, deals with the problem of extreme under-utilization of

the systolic array when processing DW-CONV in TPU v3. To solve the under-

utilization of systolic arrays, FAST proposes an automated search framework to

find optimal software and hardware combinations. The software technique fo-

cuses on the scheduling method for the fusion of DW-CONV with other layers.

The hardware technique conducts design space exploration by using the num-

ber of MUs, MU size, L1 SRAM, and L2 SRAM as input configurations for

the server-scale tiled architecture. Through the results, FAST suggests the best

combinations for the performance compared to TPU v3 and FAST found best

design in which the architecture has smaller systolic arrays, smaller L1 SRAM,

and larger last level SRAM. Although increasing the capacity of last level SRAM

proposed by FAST is an easy and sure way to reduce off-chip memory access,

it requires a large area. In contrast, our method of extending the vector unit is

expected to benefit the area because SRAM needs much higher area cost than

logic components [90].

NX27V [3] is the first commercial RISC-V vector processor introduced by

Andes and it is developed to process AI efficiently. The NX27V contains a de-

coupled out-of-order vector processing unit (VPU), specialized for processing

59

operations used in AI models. VPU handles matrix multiplication, convolution,

depth-wise convolution, fully connected. For example, if matrices A and B are

32x4, and 4x32, respectively, VPU performs matrix multiplication using eight

vector registers in parallel (assuming that the precision is FP16). VPU aims to

process a massive number of computations, which has a similar purpose to a

systolic array. In contrast, the vector unit in MVP aims to target operations with

low OP/B. Therefore, although the name of the VPU is similar to the vector unit

inside the MVP, there is a difference in processing both standard convolution

and depth-wise convolution in a single computing unit or not.

60

Chapter 5

Load Balancing Techniques for BERT Training

5.1 Contribution

We propose novel load balancing techniques called traffic shaping and resource

sharing for transformer training acceleration. The proposed technique utilizes

the advantage that there is no dependency between mini-batches within a gra-

dient accumulation step, and performs multiple iterations independently in a

single accelerator. We use the same hardware resources for the baseline archi-

tecture.

5.1.1 Tiled architecture

The baseline tiled architecture is composed of multiple clusters which consist

of processing element (PE) tiles (see Figure 5.1). The baseline architecture can

operate independently in a cluster unit. Multiple PE tiles are connected to a

shared L2 SRAM through an on-chip crossbar interconnection network. The

crossbar interconnection network supports broadcasting to multiple PEs.

To process various operations efficiently, a PE tile is composed of a matrix

61

xbar

xbar

xbar

xbar

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

MU

VU

L
1

Weight FIFORouter

Matrix Unit

(HMU × WMU)

Accumulator

S
y
s
to

lic
 D

a
ta

 S
e
tu

p

L
1

 S
R

A
M

P
ro

c
e
s
s
in

g
-N

e
a
r

-M
e
m

o
ry

 U
n
it

Vector Unit
2 WMU

Bytes
Normalization

Activation

Softmax

H
B

M
 M

e
m

o
ry

 C
o

n
tr

o
lle

r

L2 SRAM L2 SRAM

H
B

M
 M

e
m

o
ry

 C
o

n
tr

o
lle

r
Cluster

PE

Tile

Figure 5.1: Baseline tiled architecture.

unit (MU), a vector unit (VU), a processing-near-memory unit (PNMU), an

L1 SRAM, a systolic data setup, a weight FIFO, an accumulator, and a router.

The PE is similar to an MVP [59]. The MU is a systolic array that performs

Hmu × Wmu MAC operations. The VU handles normalization, activation, and

softmax layers. The PNMU performs element-wise operations and simple ac-

tivation processes, such as ReLU. The MU and VU inside the PE can operate in

both a pipelined and an independent manner. The L1 SRAM stores the input,

weight, and output. We assume that the precision is the 16-bit floating point for

the training. The weight FIFO temporarily stores a part of weights transferred

from the L1 SRAM, sending the weight to the registers inside the MU. The

accumulator accumulates the partial sums calculated from the MU and stores

them in a buffer until the partial sums become complete output elements.

62

MU

VU
L
1 MU

VU

L
1

MU

VU

L
1 MU

VU
L
1

L2 SRAMBaseline

Time

MU

VU

L
1 MU

VU

L
1

MU

VU

L
1 MU

VU

L
1

L2 SRAM
Traffic

Shaping

Time

B-64 B-64 B-64 B-64

B-32 B-32 B-32 B-32

B16 B16 B16 B16 B16 B16 B16 B16

Sequence length : 512

Total batch size: 256

DRAM requirement: 320GB

SL-512 / B-256

Weight

Update

Weight

Update

Cluster 0

Cluster 1

(a) Traffic shaping with the same 512 sequence length

MU

VU

L
1 MU

VU

L
1

MU

VU

L
1 MU

VU

L
1

L2 SRAMBaseline

Time

MU

VU

L
1 MU

VU

L
1

MU

VU

L
1 MU

VU

L
1

L2 SRAM
Traffic

Shaping

Time

SL-512

B-64

SL-512

B-64

SL-512

B-32

SL-512

B-32

SL-512

B-32

SL-512

B-32

Sequence length: 128 / 512

Total batch size: 768 / 128

DRAM requirement: 140 /160GB

SL-128 / B-768

Weight

Update

Weight

Update

Cluster 0

Cluster 1

(b) Traffic shaping with different sequence lengths

SL-512 / B-128

SL-128

B-256

SL-128

B-256

SL-128

B-256

SL-128

B-128

SL-128

B-128

SL-128

B-128

SL-128

B-128

SL-128

B-128

SL-128

B-128

Figure 5.2: DRAMTraffic shaping example for BERT training: (a) traffic shap-
ing with the same SL, and (b) Traffic shaping with the different SLs. The ac-
celerator is divided into two clusters. We assume that the DRAM capacity is
80GB.

63

5.1.2 DRAM traffic shaping

Traffic shaping is a bandwidth optimization technique that alleviates fluctua-

tions in DRAM access demands by dividing an accelerator into multiple clus-

ters and forcing different clusters to operate asynchronously. During the train-

ing process, traffic shaping can be applied during the gradient accumulation

step. Because multi-tenant inference can freely adopt DNN models with var-

ious computational characteristics, this approach is more likely to show im-

proved performance with traffic shaping. However, as training uses a single

DNN model, how tasks are mapped to clusters has a major impact on the per-

formance outcome.

Depending on whether the SLs are identical or different, the mapping of

tasks to the cluster can differ.

Traffic shaping with the same SL: when a dataset consists of one SL, traf-

fic shaping improves the performance by allocating a different mini-batch size

to each cluster. Figure 5.2(a) presents an example of traffic shaping when the

dataset consists of 512 SL. The accelerator processes the total batch size by

dividing it into several mini-batches due to the DRAM capacity limitation.

Training with 512 SL and the 256 batch size requires 320GB of DRAM ca-

pacity. The baseline allocates 64 mini-batches and executes all PE tiles at the

same time. The accelerator performs a weight update after processing four runs

of 64 mini-batches.

To apply traffic shaping, a single accelerator is divided into several clusters

and each cluster assigns a task. Each cluster assigns a task with a different mini-

batch. If two clusters allocate tasks of the same mini-batch size, there is a high

probability that the layers processed in the two clusters will be similar. In such

64

a case, the performance improvement is small because training is performed

similarly to the baseline. To improve the performance, therefore, clusters 0 and

1 allocate one 32 mini-batch and two 16 mini-batches, respectively. Due to

the DRAM capacity limitation, the sum of the DRAM requirements for these

two tasks is less than 80GB.

Because dividing the batch size reduces the reuse of weight parameters, there

is a trade-off in which the weight parameters must be read several times from

storage. However, because the weight parameter is significantly smaller than

the input and output, this side-effect is negligible.

Traffic shaping with different SLs: when a dataset consists of multiple SLs,

traffic shaping achieves a performance improvement by allocating different SLs

to each cluster. Figure 5.2(b) illustrates an example of traffic shaping when the

dataset consists of 128 and 512 SLs. Clusters 0 and 1 allocate 512 and 128 SLs,

respectively. Because the two SLs utilize a different proportion of the execution

time of the layers (see Figure 1), there is a high probability that the two clusters

operate layers with different characteristics. To maximize the utilization of PE

tiles fully, the mini-batch size per task is set to the DRAM capacity provided

by the accelerator.

Most of the tasks performed for each cluster are terminated at different times.

When a task in one cluster finishes first, the other cluster uses the entire acceler-

ator. In this case, as the accelerator functions as a baseline, the accelerator does

not have the benefit of traffic shaping. Thus, it is easier to realize a performance

improvement if the two tasks have similar execution times.

65

GEMM operation Memory-intensive operation

(a) Traffic Shaping

Task 1

Task 0
Task 0

MU

VU

L
1 MU

VU

L
1

MU

VU
L
1 MU

VU

L
1

L2 SRAM

Cluster 0

Cluster 1

C0

C1

MU

VU

L
1 MU

VU

L
1

MU

VU

L
1 MU

VU

L
1

L2 SRAM

(b) Resource Sharing

MU

VU

L
1 MU

VU

L
1

MU

VU

L
1 MU

VU

L
1

L2 SRAM

All

Time

Time

Time

Difference

Task 0 & Task 1

Both operations

Figure 5.3: Figure 8. Mapping description and timing diagram of (a) traffic
shaping and (b) resource sharing. Red indicates that the computation unit does
not operate. C0 and C1 denote clusters 0 and 1, respectively.

5.1.3 Resource sharing

Resource sharing increases the utilization of computation units by simultane-

ously operatingMU and VU in a single PE tile. It can be applied when one cluster

processes a GEMM operation and the other processes a memory-intensive op-

eration. Traffic shaping reduces the execution time of the memory-intensive

operation by distributing the fluctuations in the DRAM bandwidth demand. In

contrast, resource sharing further reduces the execution time of GEMM oper-

ations by utilizing the MU and VU more than traffic shaping.

Figure 5.3 illustrates a mapping description and timing diagram of traffic

66

shaping and resource sharing. For simplicity of the explanation here, tasks 0

and 1 are assumed to be GEMMandmemory-intensive operations, respectively.

Traffic shaping assigns task 0 to cluster 0 and task 1 to the remaining clusters

(see Figure 5.3(a)). During task 0, cluster 0 uses only MUs for the GEMM

operation but does not use the VUs (red in the figure). In contrast, cluster 1

does not use MUs. Thus, under-utilization of computation units affects both

clusters.

Resource sharing operates two clusters synchronously when task 0 is the

GEMM operation and the other is the memory-intensive operation (see Fig-

ure 5.3(b)). It processes task 0 at the MUs in all PE tiles and task 1 at the VUs.

Compared to traffic shaping, resource sharing can utilize twice the numbers of

MUs and VUs. However, this only reduces the execution time of the GEMM

operation because the memory-intensive operation is already a memory band-

width bottleneck even when using half of the VUs.

There is a trade-off that slows down memory-intensive operations because

resource sharing doubles the bandwidth requirements of GEMM operations.

However, the decreased execution time of GEMM operations is greater than

the increased execution time of memory-intensive operations.

During resource sharing, both tasks share L1 SRAM. Task 0 is highly likely

to utilize data reuse in the L1 SRAM. To increase the reusability, most of the L1

SRAM stores the data of task 0. In contrast, task 1 rarely reuses data and it is

processed in a streaming manner. To process task 1 without stalls, the L1 SRAM

needs a capacity of at least 2 × Wmu in consideration of double-buffering. In

the experiment, we set the L1 SRAM capacity 1024×Wmu for task 1 to support

bulk data transfers.

67

Load balancing techniques determine the optimal mapping through a search

tool. Mapping is determined according to the combination of the SL and the

total batch size of multiple tasks. Because training repeats the same operation

during the period of a single gradient accumulation step, we only need to con-

sider mapping for a single gradient accumulation step. Thus, if the compiler

generates code for a single gradient accumulation step, it can be used during the

entire training process.

5.2 Evaluation

5.2.1 Experimental setup

We model the baseline tiled architecture for an evaluation, as shown in Figure

4. The baseline architecture has 32 PE tiles and 40MB of L2 SRAM. We set

a PE tile to have an MU with 64×64 MACs, a VU with 1×64 computation

units, 1MB of L1 SRAM, and 1MB accumulator. We set the off-chip memory

to HBM2e with a capacity of 80GB and a bandwidth of 2TB/s. We set the

interconnection network as the crossbar that connects multiple PE tiles and L2

SRAM. The interconnection network supports broadcasting. The specifications

of the baseline architecture are similar to those of A100 GPU [19]. Our simulator

operates similarly to Timeloop [70].

We used BERT-Large [22] as our target transformer model. We set the SL

size to 128, 512, and 2048, values that are used in BERT-Large and Megatron-

LM [64]. The total batch size was set to 4096, which is mainly used in the latest

DNN training methods [32,101].

68

0.85

1

1.15

1.3

1.45

Base TS +RS Base TS +RS Base TS +RS

T0: [128,64,32]
T1: [128,128,16]

T0: [512,16,128]
T1: [512,32,64]

T0: [2048,2,1024]
T1: [2048,4,512]R

e
la

ti
v
e
 P

e
rf

o
rm

a
n
c
e

Im
p
ro

v
e
m

e
n
t

Figure 5.4: Relative performance improvement with the same SL during BERT-
Large training. We incrementally apply traffic shaping (TS) and resource sharing
(RS) over the baseline (Base). The task is expressed as [SL, mini-batch, gradient
accumulation step].

5.2.2 Performance evaluation

We demonstrate the performance efficiency of our load balancing techniques for

the target BERT-Large models. We quantify the performance improvements in

detail by incrementally applying traffic shaping (TS) and resource sharing (RS).

To apply the load balancing techniques, we grouped the baseline architecture

into two clusters. We set the total batch size for one weight update to 4096.

Task 0 (T0) and task 1 (T1) are allocated to clusters 0 and 1, respectively. Each

task is expressed as [SL, mini-batch, gradient accumulation step]. The total

batch size is the sum of (mini-batch × gradient accumulation step) of T0 and

T1. We determine the mini-batch size of two tasks by considering the DRAM

capacity of the accelerator. We make the following key observations.

The performance improvement of traffic shaping and resource sharing is

closely related to the time proportion of memory- and compute-intensive op-

erations. Figure 5.4 shows the relative performance improvement of traffic

shaping and resource sharing with the same SL over the baseline architecture.

Traffic shaping achieves a performance improvement by alleviating the memory

69

bandwidth demands of BMM and memory-intensive operations. In contrast,

resource sharing reduces the execution time of GEMM operations by using MU

more actively than traffic shaping. In the 128 SL case, GEMM operations ac-

count for 60% of the total execution time, hence, the performance improvement

of traffic shaping (1.12×) is less than that of resource sharing (1.13×). In the

512 SL case, as the execution time for GEMM, BMM and memory-intensive

operation is 40%, 10% and 50% of the total time, respectively, the performance

improvement by traffic shaping (1.15×) is greater than that by resource sharing

(1.09×).

The 2048 SL case shows only a slight difference in the performance im-

provement between traffic shaping and resource sharing. The execution time of

the BMM and memory-intensive operations occupies about 80% of the total

in the 2048 SL case. Traffic shaping reduces the execution time by distribut-

ing the DRAM access demands of BMM and memory-intensive operations to

20% of the GEMM operations. Hence, most GEMM operations are utilized for

traffic shaping. If resource sharing reduces the execution time of GEMM oper-

ations, there is a trade-off in that the effectiveness of traffic shaping is reduced.

Therefore, there is little difference in the results. Overall, our load balancing

techniques are shown to improve the performance by up to 1.25× at all SLs.

The more two tasks have different computational characteristics, the more

the proposed techniques improve the performance. Figure 5.5 shows the relative

performance improvement of traffic shaping and resource sharing with different

SLs. In the 2048 maximum SL case, the total performance improvement is small

if two tasks use the same SL size (shaded in blue in the figure). In contrast, the

combination of 128 and 2048 SLs results in the best performance improvement,

70

0.85

1

1.15

1.3

1.45

Base TS +RS Base TS +RS Base TS +RS Base TS + RS Base TS +RS

Same
T0: [128,64,32]

T1: [128,128,16]

Different
T0: [64,256,11]

T1: [128,128,10]

Same
T0: [512,16,128]
T1: [512,32,64]

Different
T0: [128,128,27]
T1: [512, 32,20]

Different
T0: [256,64,64]
T1: [512,32,32]

Maximum SL: 128 Maximum SL: 512

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

Im
p

ro
v
e

m
e

n
t

0.85

1

1.15

1.3

1.45

Base TS +RS Base TS +RS Base TS +RS Base TS +RS

Same
T0: [2048,2,1024]
T1: [2048,4,512]

Different
T0: [128,32,125]
T1: [2048,4,24]

Different
T0: [512,32,114]
T1: [2048,4,112]

Different
T0: [1024,8,384]
T1: [2048,4,256]

Maximum SL: 2048

R
e

la
ti
v
e

 P
e

rf
o

rm
a

n
c
e

Im
p

ro
v
e

m
e

n
t

Figure 5.5: Relative performance improvement with different SLs. We incre-
mentally apply traffic shaping (TS) and resource sharing (RS) the over baseline
(Base). The task is expressed as [SL, mini-batch, gradient accumulation step].
Blue represents the results of the same SL, and yellow denotes the results of dif-
ferent SLs.

as BMM and memory-intensive operations in the 2048 SL case and the GEMM

operations in the 128 SL case are likely to be performed concurrently. Therefore,

our technique improves the performance by up to 1.27×.

In contrast, the more similar the computational characteristics of the tasks,

the less effective the proposed techniques are. In the 128 maximum SL case, the

combination of 64 and 128 SLs has a low performance improvement compared

to the use of the same SL size. This occurs because the 64 SL case requires

a longer execution time for GEMM operations compared to the 128 SL case,

and the 128 SL case already has a sufficiently high proportion set for GEMM

operations. The 512 maximum SL case shows a high performance improvement

71

regardless of whether the same or different SLs are used. Overall, 128 and 512

maximum SLs improve the performance by up to 1.26×.

72

Chapter 6

Discussion

Places to handle DW-CONV: Due to the special computational character-

istics of DW-CONV, modern accelerators have been proposed to handle DW-

CONV in various places. These accelerators have their own pros and cons. We

classify the locations where conventional accelerators process DW-CONV and

describe the characteristics of each location. Figure 6.1 shows where the con-

ventional accelerators process DW-CONV. This figure further subdivides the

optimization methods about a matrix unit (MU).

1⃝ Processing DW-CONV in matrix unit: because DW-CONV is included

as a type of CONV, most accelerators process DW-CONV in theMU. The rep-

resentative accelerators that process DW-CONV in MU are TPU series [49,50]

(we call this the baseline). As the baseline utilizes systolic execution to maximize

feature maps and weight parameters, the MU suffers from under-utilizations

when processing DW-CONV which has low reusability. To process DW-

CONV efficiently in the MU, the latest works [9, 15, 98, 102] increase on-

chip memory bandwidth from an L1 SRAM to the MU. [9, 15, 98, 102] pro-

vide O(N2) on-chip memory bandwidth to efficiently process both CONV and

DW-CONV. The advantage of this structure is that theMU can be used to pro-

73

xbar

xbar

MU

VU

L
1
 S

R
A

M

H
B

M
 M

e
m

o
ry

 C
o

n
tr

o
lle

r

Last level SRAM

H
B

M
 M

e
m

o
ry

 C
o

n
tr

o
lle

r

PE

PE PE

1

2

3

Places to handle DW-CONV

① Matrix unit

a. Baseline TPU architecture

b. Provide huge L1 SRAM bandwidth

c. Smaller systolic array size

② Vector unit

③ Last level SRAM

Figure 6.1: Classification of places handling DW-CONV in modern DNN ac-
celerators. We further subdivide the optimization methods about a matrix unit
(MU).

cess various operations. For example, this can also process batched GEMM that

requires a lot of on-chip memory bandwidth. The disadvantage of this struc-

ture is that on-chip memory bandwidth is required as squared as the baseline.

Considering that most operations in the CNN model are CONV, the accelera-

tors may underutilize on-chip memory bandwidth most of the time. [15] takes

less than O(N2) on-chip memory bandwidth by allocating bulk register files for

MAC units. However, the area overhead of the entire chip becomes larger than

the baseline due to the addition of the register files [56].

FAST [104] improves the performance of DW-CONVby reducing the height

and width size of the systolic array and increasing the number of PEs.

Figure 6.2 compares the baseline and FAST architectures when processing

DW-CONV. The baseline has a systolic array of 128x128 per PE. Among

65,536 MAC units based on 4 PEs, 512 units are actually operating, and MAC

utilization is 0.78%. In contrast, The FAST architecture has a systolic array of

32x32 per PE. Among 65,536 MAC units based on 64 PEs, 2,048 units are

actually operating, and MAC utilization is 3.125%. Therefore, the FAST archi-

74

Single PE Single MAC unit (unused) Single MAC unit (used)

…

128

…

……

128

…

……

…

……

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……

…

…

……
32

32 …

…

… …

Baseline architecture (TPU v3)

Utilization: 512 / 65,536 = 0.78%

FAST architecture

Utilization: 2,048 / 65,536 = 3.125%

Figure 6.2: Comparison of baseline TPU v3 and FAST architectures when pro-
cessing DW-CONV

tecture increases utilization 4 times compared to the baseline. The advantage of

the FAST architecture is that it can increase the performance without changing

the structure of the MU. However, a small systolic array size requires more

last level SRAM traffic. Because the height and width of the systolic array are

TIC and TOC , respectively, the smaller height and width reduces the tiling size.

Therefore, the FAST architecture increases the burden on the last level SRAM.

2⃝ Processing DW-CONV in vector unit: MVP and ENLIGHT NPU [69] in-

crease efficiency of processing DW-CONV through a customized vector unit

(VU-DW). VU-DW can hide the execution time of DW-CONV in CONV

through pipelined execution. In addition, it reduces on/off-chip memory access

that consumes lots of energy. However, due to the characteristics of dedicated

75

hardware, VU-DW cannot process other operations. If the use of DW-CONV

is reduced by the change of the trend of the CNN model, the VU-DW may not

be needed. 3⃝ Processing DW-CONV in last level SRAM: simba [78] processes

DW-CONV in the global buffer placed on the chiplet. Because VU-DW has

a small temporal buffer, the previously processed and stored edge data in the

last level must be read back when performing the sliding window. Stall occurs

in the process of re-reading data, further reducing performance. In contrast,

the global buffer stores all feature maps for processing DW-CONV. Therefore,

Processing DW-CONV in last level SRAM has a performance gain compared

to VU-DW. However, the method is disadvantageous in terms of energy. As

shown in Eyeriss [14], the ratio of normalized energy of local buffer and global

buffer differs by several times. This method requires higher energy than pro-

cessing in VU-DW because data is read from the last level SRAM for every

operation.

Using MVP for CNN training: We designed MVP to process in a pipelined

manner using the characteristic that intermediate feature maps in inference are

discarded after they are used only once. In contrast, to perform the backward

pass, training requires the intermediate feature map generated in the forward

pass. Thus, the training is hard to apply in a pipelined manner. In addi-

tion, batch normalization, which is often used in CNN, only needs to process

element-wise operation in inference, but it needs to obtain mean and variance

in training. Therefore, there is a dependency between layers, so training cannot

utilize the MVP pipeline.

Use case for load balancing technique: Our technique can be used to search

for optimal execution time according to various component configurations in

76

Transformer Model

Dataset

• Same SL size

• Various SL sizes

– Ratio of SL sizes

Search

Mapping Strategy

Load Balancing Technique

D
R

A
M

B
a

n
d

w
id

th

Time

L0/L3

C0

C1

C0

L0/L4

C1

• # of clusters

• Task allocation to the

clusters

• Traffic shaping

– Same SL size

– Various SL sizes

• Resource sharing

Hardware Resource

• # of compute units

• On/off-chip memory BW

• On/off-chip memory cap.

• NoC

• # of encoder

• Hidden size

• Attention head

Figure 6.3: Use case for load balancing technique.

training (see Figure 6.3). One example of a component is a dataset. The in-

put includes information on whether the dataset consists of sequence lengths of

the same size or different sizes, and what percentage of each sequence length

occupies when composed of sequence lengths of different sizes. A transformer

model can also be a component. The transformer model uses the number of

encoders, hidden size, and attention head as input parameters. If the parameter

changes, the operation characteristics of the layers vary significantly. Finally,

the configuration of hardware resources can also be used as an input to obtain

the optimal execution time. Through a search using this information, we can

find out which mapping and load balancing techniques are needed for optimal

training time.

77

Chapter 7

Conclusion

Advances in both hardwares and DNN algorithms have created new chal-

lenges. In CNN, the change to reduce the computational amount of the model

broke the compatibility with the existing CNN accelerators. In Transformer,

the execution time of memory-intensive operations is no longer negligible. In

this dissertation, we propose a novel DNN accelerator and load balancing tech-

niques to address the existing challenges.

We have proposed an MVP architecture composed of Matrix (MU), Vec-

tor (VU), and Processing-near-memory units (PNMU) to effectively accelerate

the inference of the latest CNN models. As opposed to the conventional area-

efficient accelerators which mainly focus on convolution (CONV) with high

arithmetic intensity (e.g., point-wise CONV), MVP effectively supports both

compute- and memory-intensive layers. We significantly reduce the execution

time of depth-wise CONV by adding a high-bandwidth low-capacity regis-

ter file (called DWIB) in the VU of the baseline systolic-array architecture to

This chapter is based on [59].
”MVP: An Efficient CNN Accelerator with Matrix, Vector, and Processing-Near-Memory

Units”, ©2022 by Sunjung Lee and Jaewan Choi and Wonkyung Jung and Byeongho Kim and
Jaehyun Park and Hweesoo Kim and Jung Ho Ahn, is licensed under CC BY 4.0. https://doi.org/
10.1145/3497745.

78

complement the low-bandwidth high-capacity unified buffer (UB). This design

enables the pipelined execution of point-wise CONV and depth-wise CONV,

further improving the performance. Also, a lightweight PNMU added to UB

substantially reduces the execution time of squeeze and excitation, a critical

building block of the latest CNN models. Our evaluation shows that MVP im-

proves the performance of EfficientNet-B0/B4/B7, MnasNet, and MobileNet-

V1/V2 by 2.6× and total energy by 47% on average while incurring only a 9%

area overhead compared to the baseline.

We also have proposed load balancing techniques to alleviate temporal fluc-

tuations in DRAM bandwidth and to efficiently utilize computation units. As

opposed to the conventional training methodologies which operate all process-

ing elements in a single chip synchronously, our proposed techniques partition

multiple processing units into clusters and process multiple tasks in each cluster

asynchronously. Traffic shaping reduces the execution time of the memory-

intensive operations by alleviating DRAMbandwidth fluctuations during a weight

update. Resource sharing processes matrix units and vector units of all clus-

ters simultaneously when the compute- and memory-intensive operations are

performed concurrently on different clusters, reducing the execution time of

the compute-intensive operations. Our evaluation shows that proposed load

balancing techniques improve the performance of BERT-Large up to 1.27×

compared to the baseline tiled architecture.

79

REFERENCES

[1] “Wafer-scale deep learning,” in IEEE Hot Chips 31 Symposium, 2019,

pp. 1–31.

[2] D. Abts, J. Ross, J. Sparling, M. Wong-VanHaren, M. Baker,

T. Hawkins, A. Bell, J. Thompson, T. Kahsai, G. Kimmell, J. Hwang,

R. Leslie-Hurd, M. Bye, E. Creswick, M. Boyd, M. Venigalla, E. Laforge,

J. Purdy, P. Kamath, D. Maheshwari, M. Beidler, G. Rosseel, O. Ah-

mad, G. Gagarin, R. Czekalski, A. Rane, S. Parmar, J. Werner, J. Sproch,

A. Macias, and B. Kurtz, “Think fast: A tensor streaming processor (tsp)

for accelerating deep learning workloads,” in ACM/IEEE 47th Annual

International Symposium on Computer Architecture, ser. ISCA, 2020,

pp. 145–158.

[3] Andes, “Andes infuses into artificial intelligence,” http://

www.andestech.com, 2020.

[4] S. Anginzi, Z. He, and D. Fan, “DIMA: A Depthwise CNN In-Memory

Accelerator,” in Proceedings of the IEEE/ACM International Conference

on Computer-Aided Design, ser. ICCAD, 2018.

80

[5] S. Anginzi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM: An Energy-

Efficient Comparator-based Processing-In-Memory Neural Network

Accelerator,” in Proceedings of the ACM/ESDA/IEEE Design Automa-

tion Conference, ser. DAC, 2018.

[6] Apple, “On-device Deep Neural Network for Face Detection,” https://

machinelearning.apple.com/research/face-detection, 2017.

[7] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,

A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU: Multi-chip-module

GPUs for continued performance scalability,” in Proceedings of the 44th

ACM/IEEE International Symposium on Computer Architecture, ser.

ISCA, 2017.

[8] E. Baek, D. Kwon, and J. Kim, “A multi-neural network acceleration

architecture,” in ACM/IEEE 47th Annual International Symposium on

Computer Architecture, ser. ISCA, 2020, pp. 940–953.

[9] L. Bai, Y. Zhao, and X. Huang, “A CNN Accelerator on FPGA Using

Depthwise Separable Convolution,” IEEE Transactions on Circuits and

Systems II, 2018.

[10] P. Bannon, G. Venkataramanan, D. D. Sarma, and E. Talpes, “Computer

and Redundancy Solution for the Full Self-Driving Computer,” in IEEE

Hot Chips Symposium, ser. HCS, 2019.

[11] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The Long-

Document Transformer,” arXiv:2004.05150, 2020.

81

[12] J. Burgess, “RTX on—The NVIDIA Turing GPU,” Micro, IEEE, vol. 40,

no. 2, pp. 36–44, 2020.

[13] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Di-

anNao: A Small-Footprint High-Throughput Accelerator for Ubiqui-

tous Machine-Learning,” in Proceedings of the 19th International Con-

ference on Architectural Support for Programming Languages and Op-

erating Systems, ser. ASPLOS, 2014.

[14] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An energy-

efficient reconfigurable accelerator for deep convolutional neural net-

works,” in IEEE International Solid-State Circuits Conference, ser.

ISSCC, 2016.

[15] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A Flexible

Accelerator for Emerging Deep Neural Networks on Mobile Devices,”

IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 9, no. 2, pp. 292–308, 2019.

[16] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,

and E. Shelhamer, “cuDNN: Efficient Primitives for Deep Learning,”

2014. [Online]. Available: https://arxiv.org/abs/1410.0759

[17] S. Cho, H. Choi, E. Park, H. Shin, and S. Yoo, “McDRAM v2: In-

Dynamic Random Access Memory Systolic Array Accelerator to Address

the Large Model Problem in Deep Neural Networks on the Edge,” IEEE

Access, vol. 8, pp. 135 223–135 243, 2020.

82

[18] F. Chollet, “Xception: Deep Learning With Depthwise Separable Con-

volutions,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, ser. CVPR, 2017.

[19] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,

“NVIDIA A100 Tensor Core GPU: Performance and Innovation,” Micro,

IEEE, vol. 41, no. 2, pp. 29–35, 2021.

[20] J. Choquette, O. Giroux, and D. Foley, “Volta: Performance and Pro-

grammability,” Micro, IEEE, vol. 38, no. 2, pp. 42–52, 2018.

[21] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,

T. Sarlos, P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, D. Be-

langer, L. Colwell, and A. Weller, “Rethinking Attention with Perform-

ers,” arXiv:2009.14794, 2020.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understand-

ing,” arXiv:1810.04805, 2018.

[23] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun, “RepVGG:

Making VGG-style ConvNets Great Again,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, ser. CVPR,

2021.

[24] Z. Du, R. Fasthuber, T. Chen, P. lenne, L. Li, T. Luo, X. Feng, Y. Chen,

and O. Temam, “ShiDianNao: Shifting Vision Processing Closer to the

Sensor,” in Proceedings of the 42nd ACM/IEEE International Symposium

on Computer Architecture, ser. ISCA, 2015.

83

[25] Y. Fu, E. Bolotin, N. Chatterjee, D. Nellans, and S. W. Keckler,

“GPU Domain Specialization via Composable On-Package Architec-

ture,” ACM Transactions on Architecture and Code Optimization,

vol. 19, no. 4, 2022.

[26] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “TETRIS: Scal-

able and Efficient Neural Network Acceleration with 3D Memory,” in

Proceedings of the 22nd International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ser. ASPLOS,

2017.

[27] Gartner, “Gartner Highlights 10 Uses for AI-Powered Smartphones,”

https://www.gartner.com/en/newsroom/press-releases/2018-03-20-

gartner-highlights-10-uses-for-ai-powered-smartphones, 2020.

[28] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,

“Sparten: A sparse tensor accelerator for convolutional neural networks,”

in Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO, 2019, p. 151–165.

[29] Google, “BERT: Out-of-memory issues,” https://github.com/google-

research/bert, 2018.

[30] Google, “Edge TPU,” https://cloud.google.com/edge-tpu, 2018.

[31] Google, “Pixel 4 is here to help,” https://blog.google/products/pixel/

pixel-4/, 2019.

84

[32] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,

A. Tulloch, Y. Jia, and K. He, “Accurate, LargeMinibatch SGD: Training

ImageNet in 1 Hour,” arXiv:1810.04805, 2018.

[33] S. Gudaparthi, S. Narayanan, R. Balasubramonian, E. Giacomin,

H. Kambalasubramanyam, and P.-E. Gaillardon, “Wire-Aware Archi-

tecture and Dataflow for CNN Accelerators,” in Proceedings of the 50th

Annual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO, 2019.

[34] S. Gupta and B. Akin, “Accelerator-aware Neural Network Design

using AutoML,” in Proceeding of the Conference on Machine Learning

and Systems, ser. MLSys, 2020. [Online]. Available: https://arxiv.org/

abs/2003.02838

[35] M. Hall and V. Betz, “From TensorFlow Graphs to LUTs and Wires:

Automated Sparse and Physically Aware CNNHardware Generation,” in

Proceeding of the IEEE International Conference on Field-Programmable

Technology, ser. ICFPT, 2020.

[36] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H. Park,

S. Lee, K. Park, J. W. Lee, and D.-K. Jeong, “A3: Accelerating atten-

tion mechanisms in neural networks with approximation,” in IEEE Inter-

national Symposium on High Performance Computer Architecture, ser.

HPCA, 2020, pp. 328–341.

[37] T. J. Ham, Y. Lee, S. H. Seo, S. Kim, H. Choi, S. J. Jung, and J. W. Lee,

“ELSA: Hardware-Software Co-design for Efficient, Lightweight Self-

85

Attention Mechanism in Neural Networks,” in ACM/IEEE 48th Annual

International Symposium on Computer Architecture, ser. ISCA, 2021.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, ser. CVPR, 2016.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in

Deep Residual Networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, ser. ECCV, 2016. [Online].

Available: http://arxiv.org/abs/1603.05027

[40] G. Hinton, O. Vinyals, and J. Dean, “Distilling the Knowledge in

a Neural Network,” 2015. [Online]. Available: http://arxiv.org/abs/

1503.02531

[41] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications,” 2017.

[Online]. Available: http://arxiv.org/abs/1704.04861

[42] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation

Networks,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, ser. CVPR, 2018.

[43] C.-T. Huang, Y.-C. Ding, H.-C. Wang, C.-W. Weng, K.-P. Lin, L.-

W. Wang, and L.-D. Chen, “Ecnn: A block-based and highly-parallel

cnn accelerator for edge inference,” in Proceedings of the 52nd Annual

86

IEEE/ACM International Symposium on Microarchitecture, ser. MI-

CRO, 2019, p. 182–195.

[44] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely

Connected Convolutional Networks,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, ser. CVPR, 2017.

[45] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift,” in Proceedings

of the International Conference on Machine Learning, ser. ICML, 2015.

[Online]. Available: http://proceedings.mlr.press/v37/ioffe15.html

[46] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to

statistical learning. Springer, 2013, vol. 112.

[47] Z. Jia, B. Tillman, M. Maggioni, and D. P. Scarpazza, “Dissecting the

Graphcore IPU Architecture via Microbenchmarking,” 2020. [Online].

Available: https:// arXiv:1912.03413

[48] N. P. Jouppi, D. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian,

J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young,

Z. Zhou, and D. Patterson, “Ten Lessons From Three Generations Shaped

Google’s TPUv4i,” in Proceedings of the 48th ACM/IEEE International

Symposium on Computer Architecture, ser. ISCA, 2021.

[49] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young,

and D. Patterson, “A Domain-Specific Supercomputer for Training Deep

Neural Networks,” Communications of the ACM, 2020.

87

[50] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Ba-

jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,

C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,

T. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.

Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,

A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Ku-

mar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,

A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-

garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,

N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,

C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,

M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-

ter, W. Wang, E. Wilcox, and D. Yoon, “In-Datacenter Performance

Analysis of a Tensor Processing Unit,” in Proceedings of the 44th ACM/

IEEE International Symposium on Computer Architecture, ser. ISCA,

2017.

[51] D. Jung, S. Lee, W. Rhee, and J. Ahn, “Partitioning compute units in

cnn acceleration for statistical memory traffic shaping,” IEEE Computer

Architecture Letters, vol. 17, no. 1, pp. 72–75, 2018.

[52] S.-C. Kao and T. Krishna, “Magma: An optimization framework for

mapping multiple dnns on multiple accelerator cores,” in IEEE Interna-

tional Symposium on High Performance Computer Architecture, 2022.

[53] B. Kim, J. Chung, E. Lee, W. Jung, S. Lee, J. Choi, J. Park, M. Wi, S. Lee,

and J. Ahn, “MViD: Sparse Matrix-Vector Multiplication in Mobile

88

DRAM for Accelerating Recurrent Neural Networks,” IEEE Transac-

tions on Computers, vol. 69, pp. 955–967, 2020.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems, F. Pereira, C. Burges, L. Bottou, and K.Wein-

berger, Eds., vol. 25. Curran Associates, Inc., 2012.

[55] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-

ishna, “Understanding Reuse, Performance, and Hardware Cost of DNN

Dataflows: A Data-Centric Approach,” in Proceedings of the 52st An-

nual IEEE/ACM International Symposium on Microarchitecture, ser.

MICRO, 2019.

[56] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling Flexible

Dataflow Mapping over DNN Accelerators via Reconfigurable Inter-

connects,” in Proceedings of the 22nd International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems,

ser. ASPLOS, 2018.

[57] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-

bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code

recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[58] S. Lee, H. Cho, Y. H. Son, Y. Ro, N. S. Kim, and J. Ahn, “Leveraging

Power-Performance Relationship of Energy-Efficient Modern DRAM

Devices,” IEEE Access, vol. 6, pp. 31 387–31398, 2018.

89

[59] S. Lee, J. Choi, W. Jung, B. Kim, J. Park, H. Kim, and J. Ahn, “MVP: An

Efficient CNN Accelerator with Matrix, Vector, and Processing-Near-

Memory Units,” ACM Transactions on Design Automation of Electronic

Systems, 2022.

[60] J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li, “SmartShuttle:

Optimizing Off-ChipMemory Accesses for Deep Learning Accelerators,”

in Design, Automation and Test in Europe Conference, ser. DATE, 2018.

[61] S. Li, J. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi, “Mcpat: An integrated power, area, and timing modeling frame-

work for multicore and manycore architectures,” in Proceedings of the

42nd Annual IEEE/ACM International Symposium on Microarchitec-

ture, ser. MICRO, 2009.

[62] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend:

a scalable and unified architecture for ubiquitous deep neural network

computing : Industry track paper,” in IEEE International Symposium on

High Performance Computer Architecture, ser. HPCA, 2021, pp. 789–

801.

[63] H. Liao, J. Tu, J. Xia, and X. Zhou, “A scalable unified architecture for

neural network computing from nano-level to high performance com-

puting,” in IEEE Hot Chips Symposium, ser. HCS, 2019.

[64] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. A.

Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro,

A. Phanishayee, andM. Zaharia, “Efficient Large-Scale Language Model

90

Training on GPU Clusters Using Megatron-LM,” arXiv:2104.04473,

2021.

[65] NVIDIA, “The nvidia deep learning accelerator,” in IEEE Hot Chips

Symposium, ser. HCS, 2018.

[66] NVIDIA, “NVIDIA Nsight Systems,” https://developer.nvidia.com/

nsight-systems, 2021.

[67] NVIDIA, “Language Datasets and Data Loaders,” https://github.com/

NVIDIA/DeepLearningExamples/tree/master/PyTorch/ LanguageMod-

eling/BERT/lddl, 2022.

[68] NVIDIA, “NVIDIA H100 Tensor Core GPU Architecture,” https://

resources.nvidia.com/ en-us-tensor-core/ gtc22-whitepaper-hopper,

2022.

[69] Opendeges, “Opendeges ENLIGHT NPU,” https://

www.openedges.com/npu, 2022.

[70] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,

R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop: A

Systematic Approach to DNN Accelerator Evaluation,” in Proceedings of

the IEEE International Symposium on Performance Analysis of Systems

and Software, ser. ISPASS, 2019.

[71] H. Pham, Z. Dai, Q. Xie, M.-T. Luong, and Q. V. Le, “Meta Pseudo

Labels,” 2020. [Online]. Available: https://arxiv.org/abs/2003.10580

91

[72] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,

and T. Krishna, “Sigma: A sparse and irregular gemm accelerator with

flexible interconnects for dnn training,” in IEEE International Symposium

on High Performance Computer Architecture, ser. HPCA, 2020, pp. 58–

70.

[73] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving

Language Understanding by Generative Pre-Training,” 2018.

[74] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized

Evolution for Image Classifier Architecture Search,” in Proceedings

of the Conference on Association for the Advancement of Artificial

Intelligence, ser. AAAI, 2019. [Online]. Available: https://doi.org/

10.1609/aaai.v33i01.33014780

[75] J. Ross and A. E. Pheps, “Computing Convolutions Using a Neural Net-

work Processor,” 2015, US Patent App. 62/164,902.

[76] J. Ross and G. M. Thorson, “Rotating Data for Neural Network Com-

putations,” 2015, US Patent App. 62/164,908.

[77] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-

bileNetV2: Inverted Residuals and Linear Bottlenecks,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, ser.

CVPR, 2018.

[78] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,

B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,

W. J. Dally, J. Emer, C. T. Gray, B. Khailany, and S. W. Keckler, “Simba:

92

Scaling deep-learning inference with multi-chip-module-based archi-

tecture,” in Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture, ser. MICRO, 2019, p. 14–27.

[79] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” in Proceedings of the International

Conference on Learning Representations, ser. ICLR, 2015. [Online].

Available: http://arxiv.org/abs/1409.1556

[80] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee, and

I. Kang, “An 11.5TOPS/W 1024-MAC Butterfly Structure Dual-Core

Sparsity-Aware Neural Processing Unit in 8nm Flagship Mobile SoC,”

in Proceedings of the IEEE International Solid-State Circuits Conference,

ser. ISSCC, 2019.

[81] L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Accpar: Ten-

sor partitioning for heterogeneous deep learning accelerators,” in IEEE

International Symposium on High Performance Computer Architecture,

ser. HPCA, 2020, pp. 342–355.

[82] statista, “Forecast number of mobile users worldwide from 2020 to

2024,” https://www.statista.com/statistics/218984/number-of-global-

mobile-users-since-2010/, 2020.

[83] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting Unreasonable

Effectiveness of Data in Deep Learning Era,” in Proceedings of the IEEE

International Conference on Computer Vision, ser. ICCV, 2017.

93

[84] C. Szegedy, W. Liu, Y. jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going Deeper With Convolutions,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, ser. CVPR, 2015.

[85] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-

ing the Inception Architecture for Computer Vision,” in Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, ser.

CVPR, 2016.

[86] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and

Q. V. Le, “Mnasnet: Platform-aware neural architecture search for mo-

bile,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, ser. CVPR, 2019.

[87] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks,” 2019. [Online]. Available: http://

arxiv.org/abs/1905.11946

[88] S. Thoziyoor, J. Ahn, M. Monchiero, J. B. Brockman, and N. P. Jouppi,

“A Comprehensive Memory Modeling Tool and Its Application to the

Design and Analysis of Future Memory Hierarchies,” in Proceedings of

the 35th ACM/IEEE International Symposium on Computer Architec-

ture, ser. ISCA, 2008.

[89] H. Touvron, A. Vedaldi, M. Douze, and H. Jegou, “Fixing the train-test

resolution discrepancy: FixEfficientNet,” 2020. [Online]. Available:

https://arxiv.org/abs/2003.08237

94

[90] TSMC, “TSMC Details 3nm Process Technology: Full Node Scaling for

2H22 Volume Production,” https://www.anandtech.com/show/16024/

tsmc-details-3nm-process-technology-details-full-node-scaling-

for-2h22, 2022.

[91] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances

in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds.,

vol. 30. Curran Associates, Inc., 2017.

[92] R. Venkatesan, Y. S. Shao, B. Zimmer, J. Clemons, M. Fojtik, N. Jiang,

B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang, W. J.

Dally, J. S. Emer, C. T. Gray, S. W. Keckler, and B. Khailany, “A 0.11 PJ/

OP, 0.32-128 Tops, Scalable Multi-Chip-Module-Based Deep Neural

Network Accelerator Designed with A High-Productivity vlsi Method-

ology,” in IEEE Hot Chips Symposium, ser. HCS, 2019.

[93] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention

architecture with cascade token and head pruning,” in IEEE International

Symposium on High Performance Computer Architecture, ser. HPCA,

2021, pp. 97–110.

[94] O. Wechsler, M. Behar, and B. Daga, “Spring hill (nnp-i 1000) intel’s

data center inference chip,” in IEEE Hot Chips Symposium, ser. HCS,

2019.

95

[95] H.-N. Wu and C.-T. Huang, “Data Locality Optimization of Depth-

wise Separable Convolutions for CNN Inference Accelerators,” in Design,

Automation and Test in Europe Conference and Exhibition, ser. DATE,

2019.

[96] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with Noisy

Student improves ImageNet classification,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, ser. CVPR,

2020.

[97] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated Residual

Transformations for Deep Neural Networks,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, ser. CVPR,

2017.

[98] R. Xu, S. Ma, Y. Wang, and Y. Guo, “CMSA: Configurable Multi-

directional Systolic Array for Convolutional Neural Networks,” in Pro-

ceedings of the IEEE Conference on Computer Design, ser. ICCD, 2020.

[99] A. Yang, “Deep learning training at scale spring crest deep learning ac-

celerator,” in IEEE Hot Chips Symposium, ser. HCS, 2019.

[100] A. Yazdanbakhsh, K. Samadi, N. S. Kim, and H. Esmaeilzadeh,

“GANAX: A Unified MIMD-SIMD Acceleration for Generative Ad-

versarial Networks,” in Proceedings of the 45th ACM/IEEE International

Symposium on Computer Architecture, ser. ISCA, 2018.

[101] Y. You, J. Li, J. Hseu, X. Song, J. Demmel, and C. Hsieh, “Reducing

BERT pre-training time from 3 days to 76 minutes,” 1904.00962, 2019.

96

[102] Y. Yu, T. Zhao, K. Wang, and L. He, “Light-OPU: An FPGA-based

Overlay Processor for Lightweight Convolutional Neural Networks,” in

Proceedings of the ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, ser. FPGA, 2020.

[103] M. Zaheer, G. Guruganesh, A. Dubey, J. Ainslie, C. Alberti, S. Ontanon,

P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed, “Big Bird: Trans-

formers for Longer Sequences,” arXiv:2007.14062, 2020.

[104] D. Zhang, S. Huda, E. Songhori, K. Prabhu, Q. Le, A. Goldie, and

A. Mirhoseini, “A Full-Stack Search Technique for Domain Optimized

Deep Learning Accelerators,” in Proceedings of the 27th International

Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS, 2022.

[105] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “Sparch: Efficient archi-

tecture for sparse matrix multiplication,” in IEEE International Sympo-

sium on High Performance Computer Architecture, ser. HPCA, 2020, pp.

261–274.

[106] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable

Architectures for Scalable Image Recognition,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, ser. CVPR,

2018.

97

국문초록

딥 뉴럴 네트워크(DNN)는 인간에 근접한 인식 정확도를 토대로 이미지 분류,

자연어처리, 음성인식과같은다양한분야에서사용된다. DNN의계속된발전으

로 인해, DNN에서 가장 많은 연산량을 요구하는 컨볼루션과 행렬 곱셈(GEMM)

을 전용으로 처리하는 가속기들이 출시되었다. 하지만, 컴퓨팅 집약적인 연산들을

가속하는데에만 치중된 가속기 연구 방향으로 인해, 이전에는 잘 보이지 않았던

메모리 집약적인 연산들의 수행 시간 비중이 증가하였다.

컨볼루션 뉴럴 네트워크 추론(CNN inference)에서, 컨볼루션의 연산 비용을

줄이기 위해 최신 CNN 모델들은 깊이방식의 컨볼루션(depth-wise convolution,

DW-CONV)과 스퀴즈-엑사이테이션(squeeze-and-excitation, SE)을 채택한

다. 그러나, 기존의 CNN 가속기는 컴퓨팅 집약적인 표준 컨볼루션 계층에 최적

화되었기 때문에, 데이터 재사용이 제한된 DW-CONV 및 SE는 연산의 효율성을

떨어뜨린다. 따라서, DW-CONV및 SE의연산량은전체연산의 10%만차지하지

만시스토릭어레이(systolic-array) 기반의가속기에서메모리대역폭의병목으로

인해 처리 시간의 60% 이상을 소비한다.

트랜스포머 학습(transformer training)에서, GEMM의 수행시간이 상대적

으로 감소함에 따라 소프트맥스(softmax), 레이어 정규화(layer normalization),

GeLU, 컨텍스트(context), 어텐션(attention)과 같은 메모리 집약적인 연산들의

수행 시간 비중이 증가하였다. 특히, 입력 데이터의 시퀀스 길이(sequence length)

98

가 증가하는 최신의 트랜스포머 추세로 인해 시퀀스 길이에 따라 데이터 크기가

제곱배가 되는 소프트맥스, 컨텍스트(context), 어텐션(attention) 레이어들의 영

향도가 커진다. 따라서, 메모리 집약적인 특성을 가진 연산들이 최대 80%의 수행

시간을 차지한다.

본 논문에서, 우리는 CNN을 가속하기 위해 시스토릭 어레이 기반 아키텍처

위에 작은 영역 오버헤드로 컴퓨팅 및 메모리 집약적 작업을 모두 효율적으로 처

리하는 연산 유닛을 추가한 MVP 아키텍처를 제안한다. 우리는 높은 메모리 대역

폭 요구 사항을 충족하기 위해 곱셈기, 덧셈 트리(adder tree), 다중의 다중-뱅크

버퍼를 포함한 DW-CONV 처리에 맞춤화된 벡터 유닛(vector unit)을 제안한다.

또한, 우리는 시스토릭 어레이에서 사용하는 통합 버퍼를 확장하여 SE와 같은 요

소단위(element-wise) 연산을뒤따르는 CONV와 파이프라인(pipeline) 방식으로

처리하는 프로세싱-니어-메모리 유닛(processing-near-memory-unit, PNMU)

을 제안한다. MVP 구조는 베이스라인(baseline) 시스토릭 어레이 아키텍처에

비해 9%의 면적 오버헤드만을 이용하여 EfficientNet-B0/B4/B7, MnasNet 및

MobileNet-V1/V2에 대해 성능을 평균 2.6배 향상하고 에너지 소모량을 47%

줄인다.

그리고, 우리는 트랜스포머 학습 가속을 위해 DNN 가속기 내에 존재하는

여러 개의 연산 유닛들을 클러스터(cluster) 단위로 분할하는 기술들을 제안한다.

트래픽 성형(traffic shaping)은 클러스터들을 비동기 방식으로 수행시켜 DRAM

대역폭의 출렁임을 완화시킨다. 자원 공유(resource sharing)는 컴퓨팅 집약적인

연산과 메모리 집약적인 연산이 서로 다른 클러스터에서 동시에 수행될 때 모든

클러스터의매트릭스유닛과벡터유닛을동시에수행시켜컴퓨팅집약적인연산의

수행시간을줄인다. 트래픽성형과자원공유를적용하여 BERT-Large 학습 수행

시 1.27배의 성능을 향상시킨다.

99

주요어: DNN 가속기, 맞춤화된 벡터 유닛, 컨볼루션 뉴럴 네트워크, 부하 균형,

연산 유닛 분할, 트랜스포머, 트래픽 성형, 자원 공유

학번: 2018-38972

100

	1 Introduction
	1.1 Accelerating Depth-wise Convolution on Edge Device
	1.2 Accelerating Transformer Models in Training
	1.3 Research Contributions
	1.4 Outline

	2 Background and Motivation
	2.1 CNN background and trends
	2.1.1 Various types of convolution (CONV) operations
	2.1.2 Trends in CNN model architecture
	2.1.3 EfficientNet: A state-of-the-art CNN model

	2.2 Transformer background and trends
	2.2.1 Bidirectional encoder representations from transformers (BERT)
	2.2.2 Trends in training transformer models

	2.3 Baseline DNN acceleration architecture
	2.4 Motivation
	2.4.1 Challenges of computing memory-intensive CNN layers
	2.4.2 Opportunity for load balancing in BERT training

	3 DNN accelerator tailored for accelerating memory-intensive operations
	4 MVP: A CNN accelerator with Matrix, Vector, and Processing-near-memory units
	4.1 Contribution
	4.1.1 MVP organization
	4.1.2 How depth-wise processing element (DWPE) operates
	4.1.3 How processing-near-memory unit (PNMU) operates
	4.1.4 Overlapping the operation of DW-CONV with PW-CONV
	4.1.5 Considerations for designing DWIB

	4.2 Evaluation
	4.2.1 Experimental setup
	4.2.2 Performance and energy evaluation
	4.2.3 Comparing MVP with NVDLA
	4.2.4 Exploring the design space of MVP architecture
	4.2.5 Evaluating MVP with various SysAr configurations

	4.3 Related Work

	5 Load Balancing Techniques for BERT Training
	5.1 Contribution
	5.1.1 Tiled architecture
	5.1.2 DRAM traffic shaping
	5.1.3 Resource sharing

	5.2 Evaluation
	5.2.1 Experimental setup
	5.2.2 Performance evaluation

	6 Discussion
	7 Conclusion

<startpage>20
1 Introduction 1
 1.1 Accelerating Depth-wise Convolution on Edge Device 3
 1.2 Accelerating Transformer Models in Training 6
 1.3 Research Contributions 10
 1.4 Outline 11
2 Background and Motivation 12
 2.1 CNN background and trends 12
 2.1.1 Various types of convolution (CONV) operations 12
 2.1.2 Trends in CNN model architecture 14
 2.1.3 EfficientNet: A state-of-the-art CNN model 17
 2.2 Transformer background and trends 20
 2.2.1 Bidirectional encoder representations from transformers (BERT) 20
 2.2.2 Trends in training transformer models 21
 2.3 Baseline DNN acceleration architecture 23
 2.4 Motivation 25
 2.4.1 Challenges of computing memory-intensive CNN layers 25
 2.4.2 Opportunity for load balancing in BERT training 28
3 DNN accelerator tailored for accelerating memory-intensive operations 32
4 MVP: A CNN accelerator with Matrix, Vector, and Processing-near-memory units 35
 4.1 Contribution 35
 4.1.1 MVP organization 35
 4.1.2 How depth-wise processing element (DWPE) operates 38
 4.1.3 How processing-near-memory unit (PNMU) operates 41
 4.1.4 Overlapping the operation of DW-CONV with PW-CONV 42
 4.1.5 Considerations for designing DWIB 44
 4.2 Evaluation 45
 4.2.1 Experimental setup 46
 4.2.2 Performance and energy evaluation 47
 4.2.3 Comparing MVP with NVDLA 52
 4.2.4 Exploring the design space of MVP architecture 54
 4.2.5 Evaluating MVP with various SysAr configurations 57
 4.3 Related Work 57
5 Load Balancing Techniques for BERT Training 61
 5.1 Contribution 61
 5.1.1 Tiled architecture 61
 5.1.2 DRAM traffic shaping 64
 5.1.3 Resource sharing 66
 5.2 Evaluation 68
 5.2.1 Experimental setup 68
 5.2.2 Performance evaluation 69
6 Discussion 73
7 Conclusion 78
</body>

