
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사 학위논문

First-principles Study of Electronic,

Magnetic and Topological Properties of

CrSiTe3 Compounds

CrSiTe3 화합물의 전자적, 자기적, 위상적 성질에 대한

제일원리 연구

2022년 8월

서울대학교 대학원

물리천문학부

강 성 모





 

  

First-principles Study of Electronic, 

Magnetic and Topological Properties 

of CrSiTe3 Compounds 

CrSiTe3 화합물의 전자적, 자기적, 위상적 성질에 

대한 제일원리 연구 

지도 교수  유 재 준 

 

이 논문을 이학박사 학위논문으로 제출함 

2022년 8월 

 

서울대학교 대학원 

물리천문학부 

강 성 모 

 

강성모의 이학박사 학위논문을 인준함 

 2022년 7월 

위 원 장          김 창 영        (인) 

부위원장          유 재 준        (인) 

위    원          김 기 훈        (인) 

위    원          민 홍 기        (인) 

위    원          김 흥 식        (인)





First-principles Study of Electronic,

Magnetic and Topological Properties of

CrSiTe3 Compounds

Sungmo Kang

Supervised by

Professor Jaejun Yu

A Dissertation

Submitted to the Faculty of

Seoul National University

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

August 2022

Department of Physics and Astronomy

Graduate School

Seoul National University





Abstract

Study of two-dimensional system is one of interesting subject in condensed

matter physics. In recent, observing magnetism in two-dimensional materials

attract many people’s attention, where transition metal chalcogenides or halo-

genides have been regarded as one of candidate of magnetic layered materials.

CrSiTe3 is one of transition metal tri-chalogenides materials, reported as a fer-

romagnetic insulator in bulk structure. However, atomically thin structure has

never been exfoliated in experiment, where there is controversy in prediction of

magnetic states in CrSiTe3 monolayer among theoretical researches. Therefore,

we firstly reveal the magnetic ground state of CrSiTe3 by understanding the

electronic and magnetic properties using first-priciples study.

In the first part, we investigate the electronic and magnetic structures

of two-dimensional transition metal tri-chalcogenide CrSiTe3 and CrGeTe3

materials by carrying out first-principles calculations. The single-layer CrSiTe3

and CrGeTe3 are found to be a ferromagnetic insulator, where the presence

of the strong dpσ-hybridization of Cr eg -Te p plays a crucial role for the

ferromagnetic coupling between Cr ions. We observe that the bandgaps and

the interlayer magnetic order vary notably depending on the magnitude of

on-site Coulomb interaction U for Cr d electrons. In addition, we find that in-



plane magnetic order in CrSiTe3 monolayer depends on the choice of Hubbard

U , where it has ferromagnetic ground state for U = 1.5 eV. The bandgaps

are formed between the Cr eg - conduction bands and the Te p valence bands

for both CrSiTe3 and CrGeTe3 in the majority-spin channel. The dominant

Te p anti-bonding character in the valence bands just below the Fermi level

is related to the decrease of the bandgap for the increase of U. We elucidate

the energy band diagram, which may serve to understand the electronic and

magnetic properties of the ABX3-type transition metal tri-chalcogenide in

general.

In the remaining part, we report Chern insulating phases emerging from

single layer of layered chalcogenide CrSiTe3, a transition metal tri-chacogenides

materials with layered structure and ferromagnetism, in the presence of charge

doping. Due to strong hybridization with Te p orbitals, spin-orbit coupling

effect opens finite band gap which leads to nontrivial topology of the Cr eg

conduction band manifold with higher Chern numbers. Our calculations show

that quantum anomalous Hall states could be realized by adding one electron

in unit cell equivalent to electron doping by 2.36×1014 cm−2 carrier density. We

find that the doping-induced anomalous Hall conductivity depends on the spin

direction with suppression of magnetic anisotropy energy. Our results show

that anomalous Hall conductivity can be controlled by external magnetic field

via spin-orientation-dependent tuning of the spin-orbit coupling. We suggest

that CrSiTe3 can be a fascinating new platform to realize Chern insulating

systems with higher Chern numbers and field controllable quantum anomalous

Hall effect.
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Chapter 1

Introduction

Since the discovery of graphene, two-dimensional (2d) materials have been

one of the most intensively studied systems owing to their interesting physical

properties as well as chances of applications to atomistic low-power devices[1–3].

Transition metal chalcogenides (TMC) with layered structures is a representa-

tive example of such 2d materials[4, 5]. One intensively pursued subject recently

in TMC is magnetism originating from the presence of localized magnetic

moments in d orbitals at TM ions, where hybridization between TM and

chalcogen anions give rise to interesting magnetic behaviours in XPS3 (X =

Mn, Fe, Ni) and CrBTe3 (B = Si, Ge)[6–10]. Systems like CrBTe3 or CrI3 are

reported to show Ising-type magnetism and exhibit magnetic orders down to

single-layer limit at finite temperatures[11, 12], defying the Mermin-Wagner

theorem that prohibits long range order in systems with d ≤ 2 dimensions via

thermal fluctuations[13]. Successful exfoliations of atomistically-thin CrI3 and

CrGeTe3 layers presents promising magnetic 2d system with potential device

applications[11, 12].

The presence of robust magnetism in 2d system like CrBTe3 becomes

even more interesting in the study of topological properties[14–23], where

1



TMC materials has been recently considered as one of good platform of

researching topological phases of matters[24, 25] and magnetism can be em-

ployed as a control knob to tune topological properties in such systems[26–

28]. Specifically, quantum anomalous Hall effect (QAHE) can be observed in

materials with magnetic ordering and sizable band gap, showing quantized

integer Hall conductivity in the absence of external magnetic fields. Chern

insulator is one of topological phases of matter showing QAHE characterized

by Z topological invariant, i.e. Chern numbers, unlike time-reversal-symmetric

conventional topological insulators classified by Z2-invariants such as Bi2Se3,

Bi2Te3, Sb2Te3[29] or HgTe[30]. Recent studies suggest Chern insulating phases

with high Chern numbers and wide bandgap energy[24, 25] can be applied for

low-power dissipationless device applications, but exploring suitable candidates

is a nontrivial task. CrSiTe3, originally reported to be a 2d ferromagnetic

semiconductors with trivial band topology[8, 31–33], can be an ideal candidate

in the presence of charge doping because of the robust magnetism and the

insulating behavior down to the single-layer limit, in addition due to the

presence of strong SOC from Te sites.

Therefore, we study the electronic and magnetic properties of layered

transition metal tri-chalcogenide CrSiTe3 and CrGeTe3 materials by carrying

out first-principles calculations based on density functional theory. We find

that the band gap energy is inversely proportional to Hubbard U value for

Cr d electrons. In addition, the interlayer magnetic order also depends on the

magnitude of U , where interlayer magnetic interaction energy vanishes near U

= 1.0 eV. In CrSiTe3 monolayer, we find that in-plane magnetic order depends

on the choice of Hubbard U , where it has ferromagnetic ground state for U

= 1.5 eV. Different from general Mott insulating system, the band gap energy

2



is formed between the Cr eg - conduction bands and the Te p valence bands

for both CrSiTe3 and CrGeTe3 in the majority-spin channel. The dominant

Te p anti-bonding character in the valence bands just below the Fermi level

is related to the decrease of the bandgap for the increase of U. We elucidate

the energy band diagram, which may serve to understand the electronic and

magnetic properties of the ABX3-type transition metal tri-chalcogenide in

general.

We also find Chern insulating phases in CrSiTe3 monolayer which can

be realized by electron doping. In Cr eg conduction band manifolds, we find

crossing points including multiple Dirac cones. They removed by introducing

spin-orbit-coupling (SOC) effect, which leads to topologically nontrivial bands

with high Chern numbers. We calculate anomalous Hall conductivity (AHC)

which is quantized at one- and two-electron-doping per unit cell. We focus on the

one electron doping case, where AHC notably depends on spin orientation angle.

In addition, the magnetic anisotropy energy is suppressed as electron doping

is introduced which makes feasible to control the AHC via external magnetic

field. Under one electron doping in unit cell, the calculated magnetic anisotropy

energy is 0.289 meV which corresponds to magnetic field as 1.18 T. Our

results suggest that ferromagnetic monolayer CrSiTe3 is fascinating materials to

realize Chern insulator with high Chern numbers and field controlled quantum

anomalous Hall effect under electron doping.
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Chapter 2

Computational Method

In this chapter, we briefly review basics of density functional theory (DFT)

which is fundamental theory of our research. Firstly, we explain Hohenberg-

Kohn theorem, Kohn-Sham equation and exchange-correlation functions with

relevant approximations. In addition, DFT+U method for treating on-site

Coulomb interaction in localized orbitals and spin-orbit coupling interaction

will be discussed. Finally, we will review formalism of maximally localized

Wannier functions.

2.1 Density Functional Theory

In solid state physics, the eventual goal is the understanding of electronic states

and energies by solving the follwing N-particle Hamiltonian,

H =−
∑

I

ℏ2

2MI
∇2

I +
∑

I ̸=J

ZIZJe
2

|RI −RJ |

−
∑

i

ℏ2

2me
∇2

i −
∑

i ̸=I

ZIe
2

|ri −RI |
+
∑

i ̸=j

e2

|ri − rj |

(2.1)

where the capital and small letters indicate atomic nucleus and electrons,

respectively. In general, nuclei is much heavier than electron so that first two

4



terms in Eq. (2.1) can be treated as constant by considering Born-Oppenheimer

approximation. However, N-electron degree of freedom remain which is hardly

solvable in exact. Density functional theory gives approximate solution of this

N-electron problem by treating electron densities instead of solving individual

electron wavefunctions. Theoretical backgrounds of DFT are discussed in the

following sections.

2.1.1 Hohenberg-Kohn Theorem

The Hohenberg-Kohn theorem is one of basic theory of DFT, considering

certain systems with electrons influenced by an effective external potential

vext(r)[34]. They can be described by following theorem.

Theorem 1 For non-degenerate systems of interacting particles, the prop-

erties of electrons such as Hamiltonian and ground states are determined by

electron densities because the effective external potential functional vext(r) is

unique functional for the electron density n(r).

Proof. If there exist two distinct external potential functional, v
(1)
ext(r) and

v
(2)
ext(r), which gives equal electron density n0(r). The corresponding Hamil-

tonian, Ĥ1 and Ĥ2 will thus have distinct wavefunctions of ground states,

Ψ1 and Ψ2, which give equal electron density n0(r). Because Ψ2 is different

wavefunction to Ψ1 which is ground state of Hamiltonian Ĥ1,

E0
1 < ⟨Ψ2|Ĥ1|Ψ2⟩ = ⟨Ψ2|Ĥ2|Ψ2⟩+ ⟨Ψ2|Ĥ1 − Ĥ2|Ψ2⟩

= E0
2 +

∫
n0(r)[v

(1)
ext(r)− v

(2)
ext(r)]dr

(2.2)

where E0
1 and E0

2 are the energies of Ĥ1 and Ĥ2 Hamiltonian ground states,

respectively. Same equation is valid for exchanging the subscript 1 and subscript
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2,

E0
2 < E0

1 +

∫
n0(r)[v

(2)
ext(r)− v

(1)
ext(r)]dr. (2.3)

If we aggregate Eq. (2.2) and Eq. (2.3), we get E0
1 +E0

2 < E0
1 +E0

2 contradict

inequality.

Therefore, the external potential vext(r) is determined by the ground state

density uniquely, except only for the sum of constant. The distribution of

electrons affect the positions of the nucleus of an atom. In addition, they

determine all physical properties of ground state because Hamiltonian Ĥ is

defined by external potential vext(r) and number of electrons N . The total

energy functional E[n(r)] can be represented by means of the external potential

vext(r) as follows,

E[n(r)] =

∫
n(r)vext(r)dr+ F [n(r)] (2.4)

where F [n(r)] is an unidentified and universal functional. Ground state energy

functional is expressed by Hamiltonian expectation value Ĥ for the wavefuntion

|Ψ⟩ minimizing the total energy of the system. Ground state energy functional

and Hamiltonian can be described as follows,

E[n(r)] = ⟨Ψ|Ĥ|Ψ⟩, (2.5)

Ĥ = F̂ + V̂ext, (2.6)

respectively. F̂ is equal for all systems with electron number N . Therefore, Ĥ

is determined by the external potential vext(r) and electron numbers N.
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Theorem 2 When the ground state density is entered to energy functional,

total energy has minimum value. Therefore, one can obtain the ground state

energy by using variational principles.

Proof. External potential vext(r) is determined by electron density n(r). In

addition, Hamiltonian Ĥ and wavefunction Ψ of system are determined by

external potential vext(r) and number of electrons N . Expectation value of

universal function F̂ in Eq. (2.6) is functional of n(r) because Ψ is functional

of n(r).

F [n(r)] = ⟨Ψ|F̂ |Ψ⟩ (2.7)

The ground state density can be characterized by certain external potential v.

Therefore, energy functional Ev[n
′(r)] is defined by external potential vext(r)

and electron density n′(r) which is different from ground state density,

Ev[n
′(r)] =

∫
n′(r)vext(r)dr+ F [n′(r)]. (2.8)

Using variational priciples,

⟨Ψ′|F̂ |Ψ′⟩+ ⟨Ψ′|V̂ext|Ψ′⟩ > ⟨Ψ|F̂ |Ψ⟩+ ⟨Ψ|V̂ext|Ψ⟩ (2.9)

where Ψ is the wavefunction corresponds to the exact ground state electron

density n(r). It gives following result∫
n′(r)vext(r)dr+ F [n′(r)] >

∫
n(r)vext(r)dr+ F [n(r)], (2.10)

which is the second Hohenberg-Kohn theorem,

Ev[n
′(r)] > Ev[n(r)]. (2.11)
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2.1.2 Kohn-Sham Equation

Hohenberg-Kohn theorem shows properties such as the external potential and

total energy of ground state are determined and can be evaluated using electron

density. However, it does not provide a specific solution of calculating the

ground state electron density. Kohn-Sham equation gives practical solution of

ground state electron density by replacing the N-particle problem to single-

particle problem.[35] To be specific, systems with interacting particles under

the real potential are substituted by non-interacting particles system under an

effective single-particle potential vKS(r), called Kohn-Sham potential. Again,

ground state energy can be estimanted by minimizing energy functional of

many-body systems (variational principle). The constraint of electron numbers

N conservation gives

δ

[
F [n(r)] +

∫
vext(r)n(r)dr− µ

(∫
n(r)dr−N

)]
= 0 (2.12)

and the Lagrange multiplier µ can be written by

µ =
δF [n(r)]

δn(r)
+ vext(r). (2.13)

The ground state wave function ΨKS (Kohn-Sham wavefunction) can be repre-

sented by a determinant of matrix as following equation where the components

ψi(ri) is single-particle orbitals.

ΨKS =
1√
N !
det[ψ1(r1)ψ2(r2)...ψN (rN )]. (2.14)

The universal functional F [n(r)] in Eq. (2.12) can be divided by three parts,

F [n(r)] = TS [n(r)] + EH [n(r)] + EXC [n(r)]. (2.15)
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First term TS [n(r)] is the kinetic energy functional of a non-interacting particle

with electron density n(r). Second term EH [n(r)] corresponds to electrostatic

energy functional written as,

EH [n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′. (2.16)

Final term EXC [n(r)] is known as the exchange-correlation energy functional.

This term is divided by exchange and correlation terms, each of them contain-

ing repulsion among the electrons with same spin component and Coulomb

repulsion, respectively. Using Eq. (2.15) into Eq. (2.13), Lagrange multiplier µ

becomes

µ =
δTS [n(r)]

δn(r)
+ vKS(r), (2.17)

where vKS(r) is written as,

vKS(r) = vext(r) + vH(r) + vXC(r). (2.18)

Second and third term in Eq. (2.18) corresponds to the Hartree potential and

the exchange-correlation potential which is given by,

vH(r) =
δEH [n(r)]

δn(r)
=

∫
n(r′)

|r− r′|
dr′ (2.19)

and

vXC(r) =
δEXC [n(r)]

δn(r)
, (2.20)

respectively. The wave function and density of ground state can be estimated

by calculating the N number of following single-particle Schrodinger equations

[
− 1

2
∇2 + vKS(r)

]
ψi(r) = εiψi(r), (2.21)
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Using the single-particle wave function ψi(r), the electron density is defined

as,

n(r) =
N∑
i=1

|ψi(r)|2. (2.22)

Kohn-Sham potential vKS(r) has a dependence of electron density n(r)

because of the exchange-correlation part vXC(r). Therefore, one can obtain

converged electron density by solving the Kohn-Sham equation self-consistently.

Remaining task is to determine the specific form of exchange-correlation energy

functional EXC [n(r)]. In the following sections, approximations of exchange-

correlation energy functional are introduced that constructing functional as a

function of only electron density or together with gradient of electron density.

2.1.3 Local Density Approximation

The basic approach for the exchange-correlation energy functional is so called lo-

cal density approximation (LDA). This approximation is considering exchange-

correlation energy functional depends notably on the spatial distribution of

the electron density in real space. The exchange-correlation energy functional

for LDA is given by,

ELDA
XC [n(r)] =

∫
n(r)εXC [n(r)]dr, (2.23)

where εXC is the exchange-correlation energy functional per particle of a

homogeneous electron gas (HEG). The exchange-correlation energy functional

can be divided by exchange and correlation parts, ELDA
XC [n(r)] = ELDA

X [n(r)]

+ ELDA
C [n(r)]. The exchange energy functional part has an analytic form as

follows,

ELDA
X [n(r)] = −3

4

(
3

π

)1/3 ∫
n(r)4/3dr. (2.24)

10



The correlation energy functional part is also represented by analytic expres-

sions decomposed by the high and low density limits written as,

ELDA
C [n(r)] =

{
A ln(rs) +B + rs(C ln(rs) +D), if rs < 1

γ

1+β1

√
(rs)+β2rs

, if rs > 1
(2.25)

where rs(n(r)) = ( 3
4πn(r))

1/3. The coefficients in Eq. (2.25) are A = 0.0311,

B = -0.048, C = 0.002, D = -0.0116, γ = -0.1423 , β1 = 1.0529 and β2 =

0.3334, respectively in Hartree unit which is given by the most accurate result

in parameterized by Perduw and Zunger[36] based on the quantum Monte

Carlo simulations for HEG[37].

2.1.4 Generalized Gradient Approximation

In previous section, we discussed about LDA which assumes the slowly varying

electron density. However, the electron density of system undergoes rapid

variations, the approximation is not valid anymore. Therefore, the non-local

effect of electron density on energy functional should be considered. General-

ized Gradient Approximation (GGA) is a way of considering non-locality via

taking into account gradient of electron density in exchange-correlation energy

functional.

EGGA
XC = EGGA

XC [n(r),∇n(r)] (2.26)

The representative form of GGA exchange-correlation energy functional is the

one proposed by Perdew, Burke and Ernzerhof[38], so called PBE functional.

It can be written as,

EGGA
XC [n(r)] =

∫
n(r)εX [n(r)]FXC(rs, ζ, s)dr (2.27)
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where FXC is enhancement factor, ζ is relative spin polarization and s is

dimensionless spatial gradient of electron density written as s= |∇n(r)|
2kFn(r) .

2.2 DFT+U Calculation

So far, we discuss exchange-correlation functional with relevant approximations.

However, there is drawback in treating exchange-correlation functional in DFT

calculation that it does not estimate self-interaction effect precisely which

is significant for strongly correlated system. The DFT+U method can be a

solution of such problems by considering effect of on-site Coulomb repulsion

in single-particle pictures[39]. In DFT+U calculation, generalized Hubbard

model[40, 41] is combined with simple DFT calculation where double counting

term is corrected. The total energy functional is given by

EDFT+U [n(r)] = EDFT [n(r)] + EHub[{nIσmm′}]− EDC [{nIσ}]

= EDFT [n(r)] + EU [{nIσmm′}],
(2.28)

where n(r) and nIσmm′ corresponds to electron density and the orbital occupation

of I-th atom with spin σ and angular momentum m, respectively[42]. The

double counting term EDC [{nIσ}] is a function of net orbital occupation nIσ =∑
m n

Iσ
mm which is distinct from Hubbard term EHub[{nIσmm′}] as a function of

nIσmm′ [39, 43, 44]. The orbital occupation nIσmm′ is represented by projection of

electron wavefunction |ψσ
k ⟩ onto orbital |ϕIm⟩

nIσmm′ =
∑
k

fk⟨ψσ
k |ϕIm′⟩⟨ϕIm|ψσ

k ⟩, (2.29)

where k is wavevector and fk is the weight of the k-th electronic state. General

form of EU [{nIσmm′}] is given by introducing formalism of Dudarev et al. which
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choose unrestricted Hartree-Fock(UHF) description of one electonic states[45].

In this formalism, EUeff
[{nIσmm′}] depends on Ueff = U − J where U and J

is the on-site Coulomb interaction term and exchange parameter, respectively.

The energy functional is given by,

EUeff
[{nIσmm′}] =

Ueff

2

∑
I

∑
m,σ

[
nIσmm −

∑
m′

nIσmm′nIσm′m

]

=
Ueff

2

∑
Iσ

Tr[n̂Iσ(1− n̂Iσ)].

(2.30)

By diagonalizing the occupation matrices n̂Iσ, Eq. (2.30) can be rewritten as

follows

EU [{nIσmm′}] =
U

2

∑
Iσ

∑
i

λIσi (1− λIσi ), (2.31)

where λIσi is electronic occupation of I-th atomic orbital. When Ueff value

is positive, occupation λIσi should be 0 or 1 so that EU [{nIσmm′}] vanishes for

minimizing energy functional. It implies that situations of unoccupied (λIσi = 0)

or fully occupied (λIσi = 1) orbitals are favored which corrects over-estimation

of the self-interactions in partially filled orbitals.

2.3 Spin-orbit Coupling within Non-

collinear Spin Formalism

2.3.1 Non-collinear Spin Density Functional

A wavefunction with two-component spinor is defined by

|ψν⟩ = |φα
να⟩+ |φβ

νβ⟩, (2.32)
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where |φα
να⟩ ≡ |φα

ν ⟩|α⟩ with a spatial part |φα
ν ⟩ and a spin part |α⟩. Then, the

density operator can be written by

n̂ =
∑
ν

fν |ϕnu⟩⟨ϕν | =
∑
ν

fν
(
|φα

να⟩+ |φβ
νβ⟩
)(
⟨φα

να|+ ⟨φβ
νβ|
)
, (2.33)

where fν should be a step function. With the definition of density operator n̂,

a non-collinear electronic density in real space is represented as

nσσ′ = ⟨rσ|n̂|rσ′⟩ =
∑
ν

fνφ
σ
νφ

σ′∗
ν , (2.34)

where σ, σ′ is spin indices α or β and |r⟩ is a position eigenvector. The n′↑

(up-spin density) and n′↓ (down-spin density) at each point are defined by

diagonalizing non-collinear electronic densities matrix as follows:n′↑ 0

0 n′↓

 = UnU † = U

nαα nαβ

nβα nββ

U † (2.35)

The total energy of non-collinear functional[46, 47] could be written by

Etot =
∑

σ=α,β

∑
ν

fν⟨φσ
ν |T̂ |φσ

ν ⟩+
∑
σσ′

∫
wσσ′(r)nσ′σ(r)dr

+
1

2

∫ ∫
n′(r)n′(r′)

|r− r′|
drdr′ + EXC{nσσ′}, (2.36)

where the first, second, third and fourth term corresponds to the kinetic energy,

Coulomb interaction of core electrons, electron-electron Coulomb energy and

exchange-correlation energy functional, respectively. The total energy can also

be represented in terms of the Kohn-Sham eigen-energies εν as follows:

Etot = Eband −
1

2

∫
n′VHdr−

∫
Tr(VXCn)dr+ EXC , (2.37)
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where VXC is a non-collinear exchange-correlation potential functional. By us-

ing orthogonality relation of spinor wavefunctions, a functional F is introduced:

F = Etot +
∑
νν′

ενν′(δνν′ − ⟨ψν |ψν′⟩). (2.38)

The variation of F with respect to φ is presented by

δF

δφσ,∗
µ

= T̂φσ
µ +

∑
σ′

wσσ′φσ′
µ + VHφ

σ
µ +

∑
σ′

V σσ′
XC φ

σ′
µ −

∑
ν

εµνφ
σ
ν (2.39)

with

VH =

∫
n′(r′)

|r− r′|
dr, V σσ′

XC =
δEXC

δnσ′σ
. (2.40)

The variation of F in Eq. (2.39) to be zero with diagonalizing εµν for unitary

transform φσ
ν , the non-collinear Kohn-Sham equation can be obtained,T̂ + wαα + VH + V αα

XC wαβ + V αβ
XC

wβα + V βα
XC T̂ + wββ + VH + V ββ

XC


φα

µ

φβ
µ

 = εµ

φα
µ

φβ
µ

 .

(2.41)

The off-diagonal term in Eq. (2.41) contains exchange-correlation functional

and another contribution w such as spin-orbit coupling effect between spin

component α and β. In Eq. (2.35), the unitary transformation U diagonalize the

average non-collinear spin density matrix. If we diagonalize this non-collinear

spin density matrix n, we can calculate the exchange-correlation functional

V̄XC using the diagonal term for up- and down- spin densities based on LDA

or GGA formalism. The V̄XC is given by

V̄XC =

V ↑
XC 0

0 V ↓
XC


=

1

2
(V ↑

XC + V ↓
XC)I+

1

2
(V ↑

XC − V ↓
XC)σ3
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= V 0
XCI+△VXCσ3, (2.42)

where σ3 is third matrix of Pauli matrices. The non-collinear exchange-correlation

VXC is unitary transformation U of V̄XC ,

VXC = U †V̄XCU

= V 0
XCI+△VXCU

†σ3U

= V 0
XCI+△VXC σ̄3 (2.43)

Finally, the effective potential Veff can be represented by Pauli matrices,

Veff = V 0
effσ0 +△VXC σ̄3 + w (2.44)

where

V 0
eff = VH + V 0

XC , w =

wαα wαβ

wβα wββ

 . (2.45)

2.3.2 Spin-orbit Coupling

The spin-orbit coupling effect is implemented as j-dependent pseudo potentials

in OpenMX code mainly used in our research. Radial part of coupled Dirac

equations in spherical symmetric system is givne by

dGnlj

dr
+
κ

r
Gnlj − a

[
2

a2
+ εnlj − V (r)

]
Fnlj = 0

dFnlj

dr
− κ

r
Fnlj + a[εnlj − V (r)]Gnlj = 0, (2.46)

where G and F are the majority and minority components of the radial wave

function, a ≡ 1/137ina.u., κ = l and κ = −(l+1) for j = l−1/2 and j = l+1/2,

respectively. Collecting two equations in Eq. (2.46) for erasing F , one can get

16



following equation for G:[
1

2M(r)

(
d2

dr2
+

a2

2M(r)

dV

dr

d

dr
+

a2

2M(r)

κ

r

dV

dr
− κ(κ+ 1)

r2

)
+εnlj−V

]
Gnlj = 0

(2.47)

with

M(r) = 1 +
a2(εnlj − V )

2
. (2.48)

By numerical solving of Eq. (2.47) and generating j-dependent pseudopotential

V ps
j , one can define a general pseudopotential,

Vps =
∑
lm

[
|ΦM

J ⟩V l+1/2
ps ⟨ΦM

J |+ |ΦM ′
J ′ ⟩V l−1/2

ps ⟨ΦM ′
J ′ |
]
, (2.49)

where for J = l + 1/2, M = m+ 1/2

|ΦM
J ⟩ =

( l +m+ 1

2l + 1

)1/2
|Y m

l ⟩|α⟩+
( l −m

2l + 1

)1/2
|Y m+1

l ⟩|β⟩, (2.50)

and for J ′ = l − 1/2, M ′ = m− 1/2

|ΦM ′
J ′ ⟩ =

( l −m+ 1

2l + 1

)1/2
|Y m−1

l ⟩|α⟩ −
( l +m

2l + 1

)1/2
|Y m

l ⟩|β⟩. (2.51)

ΦM
J and ΦM ′

J ′ are elements of eigenfunctions for Dirac equations. If we introduce

a local potential VL which close to −Zeff

r as r increases, the j-dependent

pseudopotential is divided into two components,

V l+1/2
ps = V

l+1/2
NL + VL

V l−1/2
ps = V

l−1/2
NL + VL. (2.52)

Finally, pseudopotential in Eq. (2.49) is given by

Vps = VL +
∑
lm

[
|ΦM

J ⟩V l+1/2
NL ⟨ΦM

J |+ |ΦM ′
J ′ ⟩V l−1/2

NL ⟨ΦM ′
J ′ |

]

= VL + V̄
l+1/2
NL + V̄

l−1/2
NL (2.53)
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The non-local potential term is transformed by the Bloch projector into a

separable form.

2.4 Maximally LocalizedWannier Func-

tions

According to Bloch theorem, electronic state under periodic potentials has a

form of plane wave modulated by periodic function,

|ψnk(r)⟩ = eik·r|unk⟩ (2.54)

where unk is periodic function, n is band index, k and r is crystal momentum

and position vector, respectively. By using Fourier transformation of this

electronic state, it can be represented in real space generating Wannier function

(WF)[48],

|Rn⟩ = V

(2π)3

∫
BZ

dkeik·R|ψnk(r)⟩ (2.55)

where the integral is carried out over the Brillouin zone (BZ). R and V is real

space lattice vector and volume of real space primitive cell. However, there

exist gauge freedom in the theory of WF. One can substitute

|ψ̃nk⟩ = eiφn(k)|ψnk⟩ (2.56)

without any change of physical properties, where φn(k) is arbitrary real and pe-

riodic function in momentum space. In multiband case with J bands manifold,

Bloch orbitals are given by gauge transformation

|ψ̃nk⟩ =
J∑

m=1

U (k)
mn|ψmk⟩. (2.57)
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U
(k)
mn is a J dimension unitary matrix which mixes the Bloch orbitals at each

k points. The resulting WF is written as,

|Rn⟩ = V

(2π)3

∫
BZ

dkeik·R
J∑

m=1

U (k)
mn|ψmk⟩. (2.58)

Therefore, it is remaining task to know how to choose unitary matrix U
(k)
mn.

The method of finding unique U
(k)
mn is developed by maximizing localization of

WF[49]. Spread functional which describes the quantity of spatial spread of

WF is defined as follows,

Ω =
∑
n

[
⟨0n|r2|0n⟩ − ⟨0n|r|0n⟩2

]
=
∑
n

[
⟨r2⟩n − r̄2n

]
. (2.59)

By minimizing the gauge dependent part of spread function, the unitary trans-

formation U
(k)
mn is determined so that the maximally localized Wannier func-

tion(MLWF) can be obtained.
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Chapter 3

Effect of Coulomb Interactions on

the Electronic and Magnetic Prop-

erties of Two-Dimensional CrSiTe3

and CrGeTe3 Materials

In this chapter, we introduce one of our main research of electronic and magnetic

properties of CrSiTe3 and CrGeTe3 compounds[50]. First, we find electronic

and structural ground state by performing total energy and structure opti-

mization calculations. Then, we investigate the effect of Coulomb interaction

in magnetism and band gap energy by changing the Hubbard U parameters.

We suggest relevant Hubbard U value which gives comparable results with

experiment and reasonable magnetic ground state.

3.1 Introduction

Transition metal di-chalcogenides (TMDC) in their atomically thin two-dimensional

(2d) forms exhibit a wide range of electronic, optical, mechanical, chemical and
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thermal properties. In particular, their tunable bandgap properties depending

on the number of layers make this class of materials as a candidate for future

electronics and optoelectronics applications[4, 5]. Due to the presence of tran-

sition metal atoms, however, the emergence of magnetism in 2d crystals has

opened up interesting possibilities. For example, chromium tri-iodide (CrI3) was

suggested as an ideal candidate for 2d magnets exfoliated from easily cleavable

single crystals of CrI3, which is a layered and insulating ferromagnet with a

Curie temperature of 61 K[51]. A recent observation of ferromagnetism has

demonstrated its layer dependence down to the monolayer limit[12]. Along with

TMDC, another class of layered transition-metal tri-chalcogenides (TMTC)

with the chemical formula ABX3 (A = Mn, Cr; B= Si, Ge; X = S, Se, Te)

have attracted interest as potential candidates for 2d magnets[6]. Although

these ABX3-class of TMTC materials have been studied for many decades

[51–57], their electronic and magnetic structures as well as mechanism for

magnetic ordering are not clearly understood yet. For instance, CrSiTe3, one

of the TMTC materials, is well known as a candidate for a 2d ferromagnetic

(FM) semiconductor. The Curie temperatures were reported to increase as

the number of layers is reduced[32, 33]. On the other hand, however, there is

controversy of predicting magnetic ground states of CrSiTe3 monolayer[6, 31].

Further, a magnetic phase transition can be induced by the tensile strain in

CrSiTe3 monolayer[6, 31]. Despite ferromagnetism and insulating properties

are reported in bulk structure of CrSiTe3[58], observing monolayer structure

of CrSiTe3 has never been realized. Therefore, it is crucial to demonstrate

electronic and magnetic properties of CrSiTe3 monolayer. As a step toward

understanding the origin of ferromagnetism in the ABX3-class materials, we

investigate the electronic and magnetic structures of 2d TMTC CrSiTe3 and
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CrGeTe3 materials by carrying out first-principles calculations. We performed

total energy calculations for various magnetic configurations in single-, bi-, and

triple-layers as well as bulk CrSiTe3 and CrGeTe3 including their full structural

optimizations. We also examine the effect of on-site Coulomb interactions U

for Cr d electrons by monitoring the bandgap and magnetic order. The results

show an unusual behavior of bandgap as well as magnetic order depending

on U , which may provide a clue to the understanding of the electronic and

magnetic properties of the ABX3-type TMTC materials in general.

3.2 Computational Details

The first-principles calculations were performed by using density-functional

theory (DFT) within the generalized gradient approximation GGA+U method.

To obtain band structures and projected density-of-states (pDOS), we use the

OpenMX code[59, 60] which employ localized orbital bases, especially with the

GGA exchange-correlation functional in the parameterization of Perdew, Burke

and Enzerhof (PBE)[38]. We use the effective on-site Coulomb interaction

Ueff = U − J in a Dudarev implementation[45, 61] to treat the localized Cr d

states throughout the calculations. We examine the electronic and magnetic

structures by varying the Ueff values from 0.0 to 3.0 eV, which will be called

as U from now on, for simplicity. The non-collinear DFT calculations are

performed with the spin-orbit coupling (SOC) incorporated through the fully

relativistic j-dependent pseudo potentials as implemented in the OpenMX

code. To simulate a single or few layers of 2d CrBTe3 (B = Si, Ge) systems, we

make use of a slab geometry with 20 Å vacuum in-between the layers, where

each layer consists of a 2d honeycomb lattice with the Cr2B2Te6 unit cell. The
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cutoff energy of 500 Ry is used for the real and momentum space grids and the

k-mesh of 10× 10× 1 for the Brillouin zone integration. The lattice structures

are relaxed under the contraint of C3 rotation symmetry until the residual

forces converge within 10−4 in atomic unit.

3.3 Results and Discussion

3.3.1 Electronic Structure and Magnetic Prop-

erties of Single-layer CrSiTe3

We carried out first-principles calculations for the ground states of CrBTe3 (B

= Si, Ge). Our results of the electronic band structures and the magnetic ground

states for the single layer and bulk systems are in general agreement with the

previous works[6, 8, 31, 32, 58]. To calculate the electronic band structures and

pDOS, we adopt the on-site Coulomb interaction parameter of U = 1.5 eV.

More discussion one the choice of U will be made in Sec. 3.3.2. Both single-layer

CrSiTe3 and CrGeTe3 are determined to be a FM insulator. Bulk structure of

CrSiTe3 and CrGeTe3 have the same space group of R3 (No.148) in common

with other ABX3 type TMTC. The optimized in-plane lattice constant slightly

depends on the choice of Hubbard U , it is calculated as a = 6.88 Å for CrSiTe3

and a = 6.95 Å for CrGeTe3 monolayer, respectively when U = 1.5 eV. Crystal

structure of CrSiTe3 monolayer is depicted in Fig. 3.1. Basically, Cr atoms

are consisting honeycomb lattice where Si atoms are located at the center

of honeycomb with dimerized structure. Each Cr atom is surrounded by six

Te atoms consisting CrTe6 octahedron, where it is slightly distorted due to

trigonal distorted under relaxed structure. Each CrTe6 octahedron shares its
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Figure 3.1 (Color online) Top view of monolayer CrSiTe3 crystal structure.

Edge sharing CrTe6 octahedron consists of Cr atom (black sphere) and

surrounding six Te atoms (yellow sphere). Dimerized two Si atoms (blue sphere)

are sitting at center of Cr honeycomb lattice. a,b,c is unit vector of hexagonal

unit cell, where x,y,z indicates local axis.

edge with adjacent CrTe6 octahedrons. Under octahedral environment, Cr d

orbitals are split into three t2g levels with lower energy and two eg levels with

higher energy eigenstates. In CrSiTe3 and CrGeTe3 compounds, Cr d orbital

has 3d3 occupation so that electrons are occupying three t2g levels with up-spin

states, i.e. high spin states.

This characteristics are described in Fig. 3.2 which shows the spin-polarized

band structure and pDOS for the FM single-layer CrSiTe3 with U = 1.5 eV.

Since CrGeTe3 exhibits similar features of the valence and conduction bands

except for the states related to Ge, here we focus on the electronic structure

of CrSiTe3 only. The prominent features of the CrSiTe3 electronic structure
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Figure 3.2 (Color online) (a) Band structure, (b) total, (c) Cr- and (d)

Te-pDOS of ferromagnetic single-layer CrSiTe3 at U = 1.5 eV. In the band

structure plot, the majority-spin (minority spin) bands are marked by the red

(blue) lines, respectively. In the pDOS plots, the upper panel represents for the

majority-spin (spin-up) components of the pDOS and the lower panel for the

minority (spin-down) components, where the Fermi level (EF) is set to zero.

are the empty dpσ-hybridized anti-bonding bands of Cr eg - Te p at 1 eV

above the Fermi level (EF) and the fully occupied Cr t3↑2g bands at about −2

eV below EF. Bandgap energy is constructed between Cr eg bands and Te p

bands. The unoccupied spin-down (minority-spin) bands of Cr t2g are located

at about 2 eV above EF, indicating a large exchange splitting of the localized

Cr t2g orbitals.

Thus, the local magnetic moment of each Cr atom is 3.87 µB, where the

extra contribution of 0.87 µB comes from the dpσ bonding states of Cr eg
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- Te p. In fact, this Cr - Te dpσ hybridization gives rise to the Te p holes

with a opposite spin polarization of −0.3 µB per Te atom so that the total

FM moment per CrSiTe3 unit-cell remains 3 µB. In addition, the single-ion

anisotropy energy is found to be about 0.77 meV and 0.31 meV per Cr atom

with an easy axis perpendicular to the layer for the single-layer CrSiTe3 and

CrGeTe3, respectively. It indicates that both CrSiTe3 and CrGeTe3 are Ising-

like ferromagnets, in agreement with previous experiments[58] and calculation

results[62].

The origin of ferromagnetism can be explained by GKA rules(super-exchange

mechanisms)[63, 64]. Fig. 3.3 shows super-exchange hopping process in CrSiTe3.

In intermediate states for FM, Hund’s coupling within d orbitals gain energy

so that FM states are stable compared to AFM states. Apart from the regular

super-exchange contributions which may be valid for fully occupied Cr t3↑2g

states, the presence of the hybridized Te p holes generated by the strong

dpσ-hybridization between Cr d and Te p orbitals plays a crucial role in

the FM-coupling mechanism in this class of TMTC materials. The itinerant

holes residing in the Te p ligands are coupled to their neighboring Cr spins

antiferromagnetically, mediating the FM ordering of Cr local moments. This

mechanism shares a common feature with the Zener’s mechanism[65] where

an effective exchange interaction is generated by the sd-hybridization instead

of the pd-hybridization. Therefore, to stabilize the FM ordering of Cr spins, it

is essential to have the energy gain by the negative polarization of the p state,

which is considered as a relaxation of the non-magnetic elements.

To help the understanding of the electronic structure of TMTC, we present

a schematic energy diagram for CrSiTe3 in Fig. 3.4. This diagram may serve as

a representative picture for the electronic configuration of 2d TMTC materials.
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Figure 3.3 (Color online) (a) Near 90o of Cr-Te-Cr bonding angle, (b)

hopping path from Cr occupied t2g orbitals to adjacent Cr empty eg orbitals

via p orbital, intermediate state of virtual hopping process of (c) FM and (d)

AFM states.
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Figure 3.4 (Color online) Schematic energy diagram of the CrSiTe3
electronic structure. The primary features are the bonding and antibonding

bands of (Cr eg-Te pσ) and (Si sp3-Te p) hybridized states, whereas the localized

Cr t2g bands are split into the spin-up and spin-down channels across the Fermi

level (EF).

As we discussed above, each Cr eg orbital form a bonding and anti-bonding

pair of (Cr eg - Te pσ) states, whereas the weak dpπ hybridization leads to the

localized Cr t2g states. One notable feature is that the Si 3s level is located

at -6.5 eV below EF, which is not shown in Fig. 3.2. Since the Si atom has

the tetrahedral coordination surrounded by another Si atom and 3 Te atoms,

the Si sp3 hybrid orbitals can make a strong bonding and antibonding pair of

(Si sp3 - Te p). Hence, the bandgap in the spin-up channel is formed between

the Cr eg conduction band and the Te p valence band for both CrSiTe3 and

CrGeTe3. The principal components near the top of the valence bands consist

of the anti-bonding Te p - Te p character, while the conduction bands are from

the anti-bonding Cr eg - Te p orbitals.
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3.3.2 On-site U and Magnetic Ground States

of CrBTe3 (B = Si, Ge)

From the results of calculations with varying U , we observe an interesting but

still critical behavior of bandgap as well as magnetic order depending on the

on-site Coulomb interaction for Cr d orbital states. As illustrated in Fig. 3.5(a)

and (b), the change of the indirect and direct bandgaps with varying on-site U

parameters demonstrates that the bandgaps are sensitive to the choice of the U

values for CrSiTe3 and CrGeTe3 monolayer as well as bulk systems. For example,

the U = 0 calculations show an insulating ground state with finite gaps, while

U = 3 eV predicts a semi-metallic ground state with negative indirect gaps for

both CrSiTe3 and CrGeTe3. This U -dependence can be understood from the

electronic structures near EF.

The increase of U pushes down the localized spin-up Cr t2g level relative

to the unoccupied Cr eg - Te p hybridized state. But, the top of the valence

bands, consisting mostly of the Te p component, is not affected by the change

of U . The downward shift of the t2g level in turn raises the anti-bonding Te p

bands. Thus, the increases of U contributes to the relative upward shift of the

anti-bonding Te p bands, thereby leading to the decrease of the indirect and

direct bandgaps. The smaller bandgaps for the bulk systems are attributed to

the large bandwidth of the Te p bands, which reflect the overlap of Te p states

across the layers.

Thus, the choice of U for the Cr 3d orbitals is crucial in the determination

of their ground state. Along with the change of bandgaps, the U -parameters

also affect the magnetic ordering between the layers. While the single-layer

CrSiTe3 and CrGeTe3 favor the FM ground state, the interlayer magnetic

29



-0.06

-0.04

-0.02

 0

 0.02

 0  1  2  3

E
A

F
M

(i
n

te
rl

a
y
e
r)

 -
 E

F
M

 (
e
V

)

U (eV)

(c)

CrSiTe3 bilayer

CrSiTe3 trilayer

CrSiTe3 bulk

CrGeTe3 bilayer

CrGeTe3 trilayer

CrGeTe3 bulk

-0.4

-0.2

 0

 0.2

 0.4

 0.6

E
g
(i

n
d

ir
e
c
t)

 (
e
V

)

(a)

CrSiTe3 monolayer

CrSiTe3 bulk

CrGeTe3 monolayer

CrGeTe3 bulk

-0.3

 0

 0.3

 0.6

 0.9

E
g
(d

ir
e
c
t)

 (
e
V

)

(b)

CrSiTe3 monolayer

CrSiTe3 bulk

CrGeTe3 monolayer

CrGeTe3 bulk

Figure 3.5 (a) Indirect and (b) direct bandgaps for the monolayer and bulk

CrSiTe3 and CrGeTe3 systems and (c) total energy differences between the A-

type (i.e., interlayer-antiferro) antiferromagnetic (AFM) and the ferromagnetic

(FM) for bilayer, trilayer and bulk CrSiTe3 and CrGeTe3 depending on the

on-site Coulomb interaction parameter U .
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couplings are prone to the on-site Coulomb interaction at the Cr site. Fig. 3.5(c)

shows that the FM ground state is stable only for U < 1.0 eV and the

antiferromagnetic (AFM) order takes over for U > 1.0 eV. In the case of

3d transition-metal oxides, U = 3.5 eV was reported for Cr2O3, for instance,

from GGA+U calculations in comparison with experiments[66]. However, if

U = 3.5 eV were adopted for TMTC, both CrSiTe3 and CrGeTe3 would be a

semi-metal with a negative bandgap, which contradicts to the semiconducting

behavior observed in experiment[32, 58, 67–69]. Therefore, in the range of U

< 1.5 eV, we conclude that both bulk CrSiTe3 and CrGeTe3 may have the

FM or A-type AFM ground state, where the interlayer AFM coupling can be

small compared to the intralayer FM couplings. In particular, it is noted in

Fig. 3.5(c) that the interlayer coupling becomes almost zero near U 1.0 eV.

Further, a recent spectroscopic measurement study also support the reduced

value of U [70].

Choice of Hubbard U parameters also affect to magnetic ground state

in CrSiTe3 and CrGeTe3 monolayer. Fig. 3.6 shows magnetic ground state

of using U as 1.5 eV and 4.0 eV for CrSiTe3 and CrGeTe3 monolayer. Under

condition of U = 1.5 eV, the magnetic ground state is FM for both CrSiTe3 and

CrGeTe3 monolayer. However, magnetic ground state changes to AFM(zigzag

configuration) in CrSiTe3 monolayer for U = 4.0 eV, whereas FM ground

state maintains in CrGeTe3 monolayer. It implies that Hubbard U parameters

play crucial role of determining magnetic ground state in CrSiTe3 monolayer.

In addition, one may conclude FM ground state in monolayer of CrSiTe3 and

CrGeTe3 by choosing U as 1.5 eV which makes good agreement in experimental

results[70].
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Figure 3.6 (Color online) Total energy as a function of in-plane lattice

constant a of CrSiTe3 monolayer using Hubbard U parameters as (a) U = 1.5

eV, (b) U = 4.0 eV, respectively. (c) Schematic of spin ordering of magnetic

configurations used in total energy calculations (blue and red arrow indicate

up- and down-spin, respectively). Total energy as a function of in-plane lattice

constant a of CrGeTe3 monolayer using Hubbard U parameters as (d) U = 1.5

eV, (e) U = 4.0 eV, respectively.
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Figure 3.7 (Color online) Band structure calculated by using HSE06 hybrid

functional for (a) CrSiTe3 and (b) CrGeTe3 monolayer. Red and blue lines

indicate up-spin and down-spin components, respectively.
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As a reference, we obtained the bandgaps from HSE06 hybrid-functional

calculations depicted in Fig. 3.7. The HSE06 indirect and direct bandgaps for

the single-layer CrSiTe3 are 0.85 eV and 1.18 eV, which are significantly larger

than the U = 0 eV results of 0.57 eV and 0.84 eV, respectively, as illustrated in

Fig. 3.5. Similarly, the HSE06 indirect (0.77 eV) and direct (1.24 eV) bandgaps

for the single-layer CrGeTe3 are larger than the U = 0 eV results of 0.43 eV and

0.84 eV, respectively. Despite the larger bandgaps, the overall features of the

electronic structures of the HSE06 hybrid-functional calculations are consistent

with the small U results. Since the HSE06 bandgaps for transition metal oxides

and chalcogenides have a complication treating localized 3d electrons[71, 72],

however, it may require further investigations to understand the origin of such

reduced U for TMTC.

3.4 Conclusion

To understand the electronic and magnetic properties of 2d TMTC materials

especially of CrSiTe3 and CrGeTe3, we performed DFT calculations within the

GGA+U method. The single-layer CrSiTe3 and CrGeTe3 are found to be a FM

insulator with a small but finite bandgap for U < 1.5 eV. The total magnetic

moment per formula unit is 3 µB. However, the local magnetic moment of

each Cr atom is determined to be 3.87 µB for U = 1.5 eV, where the extra

contribution of 0.87 µB comes from the dpσ bonding states of Cr eg - Te p. It

is remarkable that the −0.3 µB spin polarization resides at each Te atom as

a result of the strong Cr - Te dpσ hybridization. This negative polarization

of Te p relative to Cr evidences that the strong dpσ-hybridization of Cr eg -

Te p is crucial for the stabilization of FM ordering of Cr ions. In addition to

34



the presence of Te p holes due to the strong Cr - Te dp-hybridization, the role

of the on-site Coulomb interaction U for Cr d electrons seems to be different

from the case of 3d transition metal oxides. The bandgaps for both CrSiTe3

and CrGeTe3 decrease significantly as U increases. In fact, the bandgaps are

formed between the Cr eg conduction band and the Te p valence band for both

CrSiTe3 and CrGeTe3. The dominant Te p anti-bonding bands in the valence

bands just below the Fermi level is related to the decrease of the bandgap for

the increase of U . Besides the U -dependent bandgaps, the magnetic ground

state is also sensitive to U . As illustrated in Fig. 3.5, the interlayer magnetic

coupling in both bulk and multilayers of CrSiTe3 and CrGeTe3 can be FM for

U < 1.0 eV or A-type AFM for U > 1.0 eV. Further, U ≈ 1.0 eV, the energy

difference between FM and A-type AFM is negligile, and the magnetic response

becomes critical. In addition, CrSiTe3 monolayer shows U -dependent in-plane

magnetic ground state. Thus, the magnetic ordering of the TMTC materials

may be sensitive to external fields or strains. We hope that our findings serve

for the future experimental measurements, which will help our understanding

of electronic and magnetic properties of TMTC materials.
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Chapter 4

Field-controlled quantum anomalous

Hall effect in electron doped CrSiTe3

monolayer

In this chapter, we consider topological properties of CrSiTe3 ferromagnetic

monolayer in the presence of electron doping. We investigate crossing points

within Cr eg conduction bands manifold and calculate Berry curvatures after

band gap opening induced by spin-orbit coupling effect. Furthermore, we

check that the anomalous Hall conductivity and magnetic anisotropy energy

depends on direction of magnetic ordering. We draw Berry curvatures in

momentum space and electronic band structure by changing spin angle to

analyze topological properties as well as localized moment picture in electron

doped CrSiTe3 ferromagnetic monolayer.

4.1 Introduction

The nontrivial topology of electronic band structure can give rise to many

novel phenomena. In 2d system, the representative example is Quantum Hall
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effect (QHE) which shows quantized Hall conductivity for two 2d electrons

under external magnetic field. Another example is Haldane model suggested

by Haldane in 1988[14]. A Chern insulator is such a topological state of matter

exhibiting a nonzero quantized Hall conductivity without an external magnetic

field. It shows QAHE characterized by Z topological invariant, i.e. Chern

numbers, unlike time-reversal-symmetric conventional topological insulators

classified by Z2-invariants such as Bi2Se3, Bi2Te3, Sb2Te3[29] or HgTe[30]. In

recent study, transition metal tri-chalcogenides are suggested as candidate of

Chern insulator with high Chern numbers[24]. It shows multiple Dirac cones

in eg bands manifold which leads to high Chern numbers by considering SOC

effect.

In this work, we report that CrSiTe3 monolayer also shows the Chern

insulating phases with high Chern numbers which can be realized by electron-

doping. We find crossing points within the Cr eg conduction band manifolds,

where the crossings are removed as spin-orbit-coupling (SOC) is introduced

and leading to topologically nontrivial bands with Chern number up to 8.

We also find quantized anomalous Hall conductivity (AHC) at one- and two-

electron-doping per unit cell, which can be further varied as spin orientation

angle changes. Additionally, it is found that the magnetic anisotropy energy

is suppressed as electron doping is introduced, consistently with a recent

findings[73, 74], which makes tuning of AHC via external magnetic field feasible.

Our result reveals that single-layers of magnetic CrSiTe3 is promising platforms

to realize Chern insulating materials with high Chern numbers and show field

controlled quantum anomalous Hall conductivity under electron doping.
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4.2 Computational Details

4.2.1 Density Functional Theory Calculations

To obtain band structures and pDOS, we perform ab initio electronic structure

calculation based on density-functional theory (DFT) using openmx[59, 60]

code, which employs linear-combination-of-pseudo-atomic-orbital basis with

norm-conserving pseudopotentials. We choose generalized gradient approxima-

tion (GGA) exchange-correlation functional in the parameterization of Perdew,

Burke and Enzerhof (PBE)[38] with Hubbard U parameters chosen to be 1.5 eV

for Cr d orbital. SOC effects are included in the calculations via fully-relativistic

pseudopotentials implemented in openmx[59, 60]. Pseudo-atomic orbitals are

set to be s3p2d2 for Cr, s2p2d1 for Si, s3p3d2 for Te, respectively. To simulate

two-dimensionality, we insert 20 Å of vacuum in the unit cell. 10 × 10 × 1 of

k-space mesh is adopted for the momentum space integration. Energy cutoff

for choosing real-space grid is set to be 700 Ry (96 × 96 × 360 real space grid).

10−6 Hartree/Bohr of force criterion is chosen for the optimization of internal

coordinates while keeping C3 rotation, inversion and mirror symmetries. SOC

effects are excluded in the process of structural relaxation. We fix Bravais

lattice as hexagonal and determine lattice constant by performing total energy

minimization calculation as a function of unit cell size.

4.2.2 Analysis of Topological Characteristics

Berry curvature is given by

Bn(k) = i
∑
n′ ̸=n

⟨n| ∂H∂kx |n
′⟩⟨n′| ∂H∂ky |n⟩ − (kx↔ky)

(En − En′)2
(4.1)
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Figure 4.1 (Color online) Band structure and pDOS plot of single layer

CrSiTe3 with ferromagnetic state: band structure with majority spin (red line)

and minority spin channel (blue line) in (a), respectively. Total density of

states (black line), projected density of states of Cr eg orbital (red line) and

t2g orbital (blue line), Si p orbital (purple line) and Te p orbital (sky blue line)

are indicated in (b). In pDOS plot, plus and minus sign correspond to majority

and minority spin components, respectively. Fermi level is set to be zero for

both panels.
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where integrating Berry curvature in BZ gives Chern number

Cn =
1

2π

∫∫
BZ
Bn(k)dkxdky (4.2)

En is Kohn-Sham eigenenergy of band index n at certain k=(kx,ky) point and

H is Hamiltonian of system. Anomalous Hall conductivity is calculated by

integrating Berry curvatures over BZ up to arbitrary energy level which is

given by

σH(E) =
e2

h

∫∫
BZ
Bn(k)fFD(E,k)dkxdky (4.3)

where e is electron charge, h is Planck constant and fFD(E,k) is Fermi-Dirac

distribution function, respectively. To compute Berry curvatures, anomalous

Hall conductivity, Chern numbers, and chiral edge states, maximally localized

Wannier function (MLWF) method as implemented in openmx is employed[75,

76]. dz2 and dx2−y2 orbitals at Cr sites are chosen as initial projectors. 10

× 10 × 1 k-space grid is chosen for the construction of MLWFs. From the

MLWF tight-binding Hamiltonian obtained, wannier tools code is used to

compute Berry curvature, Chern numbers and edge states[77]. Specifically, we

employ Fukui-Hatsugai formalism[78] to compute Berry curvature, and edge

state calculations are done employing iterative Green’s functions method in

the semi-infinite geometry.
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4.3 Results and Discussion

4.3.1 Electronic and Magnetic Properties of

Stoichimetric CrSiTe3

CrSiTe3 is one ofMAX3-type TMTC compounds. It has a R3-type stacking of

neighboring CrSiTe3 monolayers, where neighboring layers are coupled by vdW

interaction. Crystal structure of a CrSiTe3 monolayer is depicted in Fig. 3.1,

showing edge-sharing honeycomb network of CrTe6 octahedra and Si-dimers

located at the centers of Cr-hexagons. In undoped CrSiTe3, Cr cations are in

the d3 (Cr3+) high-spin configuration (S = 3/2) with fully occupied t2g orbitals.

In addition, strong dpσ hybridization between Cr d- and Te p-orbitals gives

rise to additional magnetic moment contributions, so that the magnitude of Cr

spin moment is 3.87 µB[50]. The ferromagnetic ground state can be attributed

to the Goodenough-Kanamori-Anderson (GKA) superexchange mechanism[63,

64]. Our results are in agreement with previous reports[8, 31, 58] where choice

of Hubbard U parameters is crucial for determining magnetic ground state of

CrSiTe3[50] and reproducing photoemission spectrum data in CrGeTe3[70].

When electron doping is introduced, orbital occupation of CrSiTe3 changes

so that magnitude of magnetic moment of Cr d orbitals as well as lattice

constant is also affected. With two electron doping per unit cell, Cr eg orbital

of spin majority channel become half-filled so that the high-spin Cr2+ (S = 2)

configuration is obtained (additional moment of 0.51 µB further induced due to

dpσ-hybridization). With this electron doping, the in-plane lattice parameter

a expands to be 7.26 Å, 5.7% larger than that of undoped case[6, 31, 50].
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Figure 4.2 (Color online) Total energy as a function of in-plane lattice

constant of CrSiTe3 monolayer under one electron doping in unit cell (a) and

two electron doping in unit cell (b), respectively.
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We check that ferromagnetic ground state with insulating properties and also

topological phases remain unchanged within the Hubbard U parameters and

lattice constant range of 0.5 eV ≤ U ≤ 1.5 eV and 6.88 Å ≤ a ≤ 7.26 Å,

respectively. Fig. 4.2 shows total energy calculation results of FM and various

AFM configurations under electron doping which demonstrates FM is magnetic

ground state. Therefore, hereafter we choose the lattice constant and Hubbard

U parameters to be 7.0 Å and 1.5 eV, respectively, as a representative case.

4.3.2 Band Crossings in CrSiTe3 eg Conduc-

tion Bands

To study magnetic and topological properties of electron-doped monolayer

CrSiTe3 in the FM state, we first focus on the electronic structure of undoped

CrSiTe3. Fig. 4.1 describes band structures and pDOS of ferromagnetic single

layer CrSiTe3. Spin majority andminority components shows exchange splitting

where spin minority parts have large band gap energy compared to spin

majority parts. Right above the Fermi level, four spin majority bands consisting

of Cr eg- and Te p-orbitals exist and are separated from other bands (except

Cr t2g bands in the spin minority channel). Interestingly, band crossings are

found within the eg bands, at Γ,K points and on the Γ-M, Γ-K high-symmetry

lines as shown in Fig. 4.3. This observation suggests the possibility for the

monolayer CrSiTe3 to host nontrivial band topology in the presence of electron

doping and gap opening via SOC, as discussed in the following section.
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Figure 4.3 (Color online) Cr eg bands manifold with majority spin

component (red lines) in ferromagnetic monolayer of CrSiTe3. Band crossing

points are indicated as a black circle. Blue lines are down spin components of

band structures.
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4.3.3 Berry Curvatures, Chern Numbers and

Chiral Edge States

Fig. 4.7 shows magnified Cr eg band structures with Chern numbers assigned to

each bands, plots of Berry curvature in the momentum space, and edge spectra

in the presence of integer electron doping, SOC, and out-of-plane ferromagnetic

spin orientation. We consider the cases of one and two electron doping per

unit cell, where both systems are insulating as shown in Fig. 4.7(a) and (d).

For each band, we find unusually high Chern numbers of up to 8, with about

10 meV order of SOC-induced band gap mostly originating from Te p orbital

contributions. Fig. 4.7(b) and (e) present Berry curvature of occupied Cr eg

band in the presence of one and two electron doping per unit cell, respectively.

In the presence of one electron doping per unit cell (Fig. 4.7(b)), peaks of

positive Berry curvature for the lowest Cr eg band appear around Γ point and

on the Γ - M lines, while negative peaks appear close to K and K ′ points,

yielding the Chern number of 2 for the lowest eg band. In the case of half-

filled eg (Fig. 4.7(e)), two peaks of negative Berry curvature are located at

K and K ′ points, in addition six negative peaks located in between six Γ -

K lines, resulting in total Chern number of -4. Fig. 4.7(c) and (f) show edge

spectra from the one and two electron doping (per unit cell) results, respectively.

Consistently with the Chern number calculation results, one can find two and

four chiral edge states near Fermi level in Fig. 4.7(c) and (f), respectively. In

Fig. 4.1(a) which shows band structure without SOC effect, lowest and second

lowest Cr eg band are touching at Γ point with quadratic dispersion whereas

along Γ - M and M - K line with linear dispersion. Quadratic band touching

at Γ point can carry ±2 topological monopole charge[79] which gives lowest
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band Chern number while components of along Γ - M and M - K line with

linear dispersion cancel to each other. Between second and third Cr eg bands,

crossing at K point and midpoint of Γ - K line has linear dispersion always

having its own pair in BZ. Therefore, each linear band crossing impose ±0.5

topological charge[79]. Finally, total 8 peaks of Berry curvature exist in BZ with

same sign which can explain total Chern number of half-filled Cr eg band case.

Emergence of multiple band crossings in Cr eg bands as shown in Fig. 4.1(a)

give rise to nontrivial topology with high Chern numbers. Explanation of

microscopic origin of multiple Dirac cones in previous theoretical work[24] can

also be applied in our case, where condition of parameters such as hopping

integrals is almost equivalent. Calculation results of CrSiTe3 are listed in table

4.1. In addition, descriptions for band gap closing at midpoint of Γ - K line

are discussed in following paragraph. To understand features, we start with

a simple tight-binding approach as a toy model. If we consider s band like

orbital with NN hopping in a honeycomb lattice such as graphene case, the

Dirac cone appears at the K point. When 2nd and 3rd NN hopping are taken

into account, the Hamiltonian is given by following expressions which becomes

more complicated than graphene case,

H(k) =

 g(k) f(k)

f∗(k) g(k)

 . (4.4)
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Figure 4.4 (Color online) Band structure plot of simple s orbital like

two band tight-binding model regarding 1st, 2nd and 3rd NN hopping under

condition of (a) dominant 1st NN hoping (t1 >> t3) and (b) dominant 3rd NN

hoping (t1 << t3). The 2nd NN hopping term is set to be zero because it only

affects energy shift of band diagram where overall features of band dispersion

are remain unchanged.
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Component of above Hamiltonian f(k) and g(k) is written by

f(k) = t1[e
ikya/

√
3 + 2e−ikya/2

√
3cos(kxa/2)]

+ t3e
ikya/

√
3(2cos(kxa) + e−

√
3ikya)

g(k) = t2[2cos(kxa) + 4cos(kxa/2)cos(
√
3kya/2)],

(4.5)

where k = (kx, ky), a is lattice constant and ti is i
th NN hopping parameters.

Diagonalizing the Hamiltonian expressed in Eq. (4.4), one can obtain equation

of eigenenergy function as follows.

E(k) = t2(2cos(kxa) + 4cos(kxa/2)cos(
√
3kya/2))±

[
(t1 + 2t3cos(kxa)

2

+ (t1 + 2t3cos(kxa))(4t1cos(kxa/2)cos(
√
3kya/2) + 2t3cos(

√
3kya))

+ (2t1cos(kxa/2))
2 + t3

2 + 4t1t3cos(kxa/2)cos(
√
3kya/2)

]1/2
(4.6)

In this case, additional crossing point appears near the midpoint of Γ - K line

under the condition of large 3rd NN hopping parameter compared to 1st and

2nd NN hopping terms. This features are depicted in fig. 4.4.

(i, j) t(1)ij t(2)ij t(3)ij t(4)ij t(5)ij

dx2−y2 , dx2−y2 -27.97 6.7 175.08 -2.42 36.94

dx2−y2 , dz2 2.55 14.46 10.21 1.76 0.64

dz2 , dx2−y2 1.51 13.7 3.65 1.77 1.09

dz2 , dz2 -8.82 -18.03 -20.36 12.49 -14.85

Table 4.1 Hopping parameters based on convergedMLWF basis. t(n)ij = ⟨ i, 0
| Ĥ | j, rn ⟩, where i, j index indicates pair of MLWFs and rn is cell displacement

vector which corresponds to nth NN site. Unit of hopping parameters is meV.

Table. 4.1 shows overlap matrix from our MLWF calculation results. One

can find large 3rd NN term compare to other terms which satisfies condition
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Figure 4.5 (Color online) Converged MLWF plot of eg band manifold

hybridized with Te p states together with neighboring CrTe6 octahedron: (a)

top view of Nearest neighbor(NN), (b) 2nd NN, (c) 3rd NN and (d) side view

of 2nd NN, (e) 3rd NN, respectively.
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Figure 4.6 (Color online) Band structure with easy plane spin configuration

under two electron doping for various in-plane spin angle which is especially

expanded near middle of (a) Γ - K1, (b) Γ - K2 and (c) Γ - K3 line, respectively.

(d) First BZ with high symmetry points and in-plane spin angle ϕ.

of above simple model approach. It can be confirmed qualitatively in Fig. 4.5

which shows converged MLWF graphically. Hopping between NN sites is small

due to orthogonality of mediating Te p orbitals. For 2nd and 3rd NN hopping,

mediating two Te p orbitals are located in different layer for 2nd NN case

while in same layer for 3rd NN case which induces much large 3rd NN hopping

parameters compared to 1st and 2nd ones.

In many cases, band degeneracy is related to the symmetry of system. If

spin lies in-plane, its direction has chance to become vertical to one of three

mirror planes of CrSiTe3 which contain Γ - K line and perpendicular to its

layer. When spin orientation is perpendicular to mirror plane, mirror symmetry

would then be restored which is shown in Fig. 4.6. For case of ϕ = 90◦, 30◦

and 150◦, band gap is closing near midpoint of Γ - Kn (where n=1,2,3) line,

respectively while still maintaining at other points including Kn points. In
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Figure 4.7 (Color online) (a) Cr eg bandmanifold using DFT (black line) and

Wannier function interpolation (red circle) band structure under one electron

doping per unit cell. Chern numbers for each bands are also remarked. (b) Berry

curvature plot for occupied Cr eg band contribution with high symmetry line.

Unit of Berry curvature is 1/Å2. (c) Chiral edge states plot along armchair

direction under one electron doping per unit cell. Red lines indicate edge

states components. Pink regions are bulk states while blue area corresponds

to vacuum. (d) Cr eg band manifold using DFT (black line) and Wannier

function interpolation (red circle) band structure under two electron doping

per unit cell. Details of figure are equal to figure (a). (e) Berry curvature plot

for occupied two Cr eg band contribution with high symmetry line. (f) Chiral

edge states plot under two electron doping per unit cell. Details of figure are

equal to figure (c). All figures are drawn under introducing SOC effect with

spin aligned to out-of-plane direction.

Fig. 4.6(d), one can confirm each spin angle (ϕ = 30◦, 90◦, 150◦) corresponds

to perpendicular to mirror plane (Γ - K2, Γ - K1, Γ - K3), respectively. We

may conclude additional crossing points at Γ - K line originated from mirror

symmetry of the system, while crossing at K point is from sublattice symmetry

which is equivalent with graphene case.

4.3.4 AHC under Electron Doping

We further examine AHC of Cr eg bands manifold, total density of states

of CrSiTe3 and anisotropy energies illustrated in Fig. 4.8. Total AHC shows
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quantized plateau at integer number of electron doping, consistent again with

the Chern number calculation results in Fig. 4.7(a) and (d). In addition,

total density of states vanishes at one and two electron doping as depicted in

Fig. 4.8(b). Therefore, Cr eg bands are separated to each other together with

nonzero Chern numbers so that Chern insulating phases will be realized under

one or two electron doping in unit cell.

4.3.5 Magnetic Anisotropy and Its Doping De-

pendence

So far, our DFT calculations with SOC effect are considering spin aligned to

out-of-plane direction. However, this out-of-plane spin configurations can be

suppressed or become unstable as the electron doping is introduced, because

magnetic anisotropy may depend on eg occupation. Fig. 4.8(c) shows anisotropy

energies as a function of electron doping concentrations, which have oscillating

behaviors between easy-plane and easy-axis anisotropies. For example, easy-

axis anisotropy occurs at one electron doping, while easy-plane anisotropy

is favored at two electron doping per unit cell. It is worth mentioning that

magnetic anisotropy may vanish as doping is introduced, which may enable

tuning the direction of FM moments and the resulting electronic structure via

external magnetic fields.

Since spins are magnetic dipoles, magnetic long-range dipole-dipole inter-

actions between local moments may change magnetic anisotropy. Because this

inter-dipole interactions are not captured within DFT, we employ Ewald’s

lattice summation technique to compute dipolar energy and estimate its effect

on magnetic anisotropy[80–83]. Magnetic dipole energy is defined as following
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Figure 4.8 (Color online) AHC contributions for each band of Cr eg band

manifolds as a function of electron doping, (a) from the lowest band (red line),

second lowest band (blue line) and sum of two bands (black line), respectively.

(b) Total density of states of Cr eg bands. Note that results shown in (a)

and (b) are obtained in the presence of the out-of-plane spin direction. (c)

Energy difference between easy plane and easy axis configurations of single

layer CrSiTe3 as a function of electron doping.
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equations,

Ed =
∑

qq′

2mqmq′

c2
Mqq′ (4.7)

Mqq′ =
∑

R

1

|R+ q+ q′|3

[
1− 3

[(R+ q+ q′) · m̂q]
2

|R+ q+ q′|2

]
(4.8)

where R is lattice vector, q is atomic position vector of local magnetic moment

in unit cell and mq is local magnetic moment at q, respectively. By using equa-

tion 4.7 and 4.8, we calculate magnetic dipolar interaction energy. Magnitude of

local magnetic moment in equation 4.7 is estimated by using DFT calculation.

Table 4.2 lists magnetic dipolar interactions energies as a function of electron

doping concentrations as well as anisotropy energies from DFT calculations.

It is shown that dipolar interactions favor the easy-plane configuration over

the easy-axis one in FM states (as shown in the negative values of D-MAE in

the table). Combining anisotropy energies from DFT (C-MAE) and dipolar

interactions (D-MAE), it can be seen that easy-plane spin configurations

are more favored except for undoped and one electron doping conditions.

Interestingly, total magnetic anisotropy energy (C-MAE + D-MAE) at ∆n = 1

is reduced to 0.289 meV/f.u., equivalent to 1.18 Tesla of magnetic field strength.

Hence controlling spin alignment and the resulting topological properties of one-

electron-doped (per unit cell) ferromagnetic monolayer CrSiTe3 via applying

external magnetic field become achievable, which will be discussed further in

following section (Sec. 4.3.6).

To investigate more details about suppression of magnetic anisotropy energy

under electron doping as depicted in Fig. 4.8(c), we calculate total energy

changes induced by varying spin directions as illustrated in Fig. 4.9. Without

the change in the electronic structure (i.e. when the local spin moment picture

is robust), total energy as a function of spin directions should have a form of
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Figure 4.9 (Color online) Total energy as a function of polar angle θ (black

line and marker). Zero value is set to be total energy of θ=0. Fitting function

of total energy for 0 ≤ θ ≤ 30 (blue line) and difference between total energy

and fitting function (red line and marker) are also indicated.
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(M·z)2 ∼ cos2θ (see Fig. 4.10 for the angle and vector definition). Such trend is

maintained until θ is increased up to 30◦, and beyond that the anisotropy energy

starts to deviate from the simple local moment picture. This implies an onset of

additional terms that comes into play to favor easy-plane configurations around

θ = 30◦, which turns out to originates from the evolution of the electronic

structure with respect to θ (see below the discussion on Fig. 4.11 for more

detailed discussion). As a result, shape of total energy shows local minimum

near θ ∼ 50◦ and magnitude of magnetic anisotropy energy is suppressed about

1 meV at θ = 90◦ in fig. 4.9.

# of doping
electron (∆n)

magnetic
moment (µB)

C-MAE
(meV/f.u.)

D-MAE
(meV/f.u.)

0.0 3.97 1.378 -0.244

0.5 4.10 0.101 -0.260

1.0 4.23 0.566 -0.277

1.5 4.37 -0.665 -0.295

2.0 4.51 0.085 -0.314

Table 4.2 Magnetic moment and anisotropy energies for each number of

doping electrons in unit cell. Magnetocrystalline anisotropy energy (C-MAE)

is energy difference between easy axis and easy plane spin configuration which

was estimated by DFT calculations. Magnetic dipolar anisotropy energy (D-

MAE) is magnetic dipole-dipole interaction energy. (+) sign indicate preference

of out-of-plane spin directions. All calculation are performed with fixed lattice

constant as 7.0 Å.

4.3.6 Switching AHC via External Magnetic

Fields

Because magnetic anisotropy energy of Cr eg bands in the presence of one

electron doping conditions is small enough to tune the FM via external fields,

we investigate the behavior of AHC as the spin orientation direction is changed
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Figure 4.10 (Color online) Azimuthal spin angle (ϕ) averaged AHC for one

electron doped CrSiTe3 as a function of polar angle (θ). Mean value (black line

with square marker) and standard deviation (blue errorbar) of AHC for each

θ are remarked. Upper right panel shows polar angle (θ) and azimuthal spin

angle (ϕ) of magnetization vector (blue arrow) and CrSiTe3 monolayer as gray

slab.
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from out-of-plane to in-plane direction. Fig. 4.10 shows the magnitude of AHC,

averaged over the azimuthal angle ϕ of the net magnetization, as a function

of polar angle θ of the FM spin orientation with respect to the layer-normal

direction. From θ = 0◦ to θ = 45◦, AHC remains quantized at 2e2/h where

there are deviations with respect to azimuthal spin angle ϕ. Surprisingly, as

θ is increased further, AHC begins to reduce and goes to almost zero at θ =

90◦. We also confirm anti-symmetric behavior of AHC as a function of spin

polar angle θ. One can imagine that spin directions for θ = 180◦ is opposite

to θ = 0◦ so that rotation of corresponding chiral edge modes are reversed, i.e.

clockwise to counterclockwise. Because the direction of the FM moment can

be switched between out-of-plane and in-plane via external magnetic fields at

one electron doping per unit cell, the quantum anomalous Hall phase at this

doping can also be switched on-off via external magnetic fields of about 1.18

Tesla estimated in previous Sec. 4.3.5.

To show the changes of band features and AHC at one electron doping as

the net magnetization is tilted, we plotted Berry curvatures in the BZ and

along the eg band dispersion with tilting the spin orientation direction as

summarized in Fig. 4.11. Note that here we set spin azimuthal angle ϕ = 0

for the plotting of Berry curvatures and band structures. As θ is increased

electron and hole pockets start to develop, close to θ = 30◦, in the middle of

Γ-M1,2,3 lines and aroundM1,3 points (see Fig. 4.11(b) and (c)). Especially, the

presence of hole pockets and its expansion contribute to the reduction of the

AHC as θ is increased beyond 30∼45◦ (compare with Fig. 4.10), while AHC

contributions from electron pockets around M1,3 points are almost vanishing.

As θ is further increased beyond 60◦, sign of Berry curvature distribution

around M1 and M3 points are flipped (compare Fig. 4.11(g) with (i) an
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Figure 4.11 (Color online) (a,c,e,g,i,k) Plots of Berry curvature distribution

originating from occupied Cr eg states in the momentum space (unit in Å
2
)

and (b,d,f,h,j,l) Berry-curvature-projected band structures of Cr eg bands along

the high symmetry lines with increasing polar angle (θ). In Berry curvature

plots (a,c,e,g,i,k) dotted and dashed lines depict Fermi surfaces of lowest and

second lowest bands, respectively. High symmetry points are marked in panel

(a). Polar angle for each case is (a,b) θ = 0◦, (c,d) θ = 30◦, (e,f) θ = 45◦, (g,h)

θ = 60◦, (i,j) θ = 75◦ and (k,l) θ = 90◦. Azimuthal angle of ϕ = 0◦ for the

magnetization direction and one electron doping per unit cell are adopted for

all cases.
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(k)). This is attributed to the band touching below the Fermi level and the

resulting sign reversal of Berry curvature of occupied bands. Comparing panel

Fig. 4.11(h), (i), and (l), it can be noticed that band crossings occur on Γ-M1

and Γ-M3 lines, slightly below the Fermi level, around θ = 75◦. The crossings

give rise to sign flipping of the Berry curvature of involved bands in the vicinity

of the crossing point, which leads to cancellation of net Berry curvature and

vanishing AHC at θ = 90◦.

In addition, note that the band gap between highest-occupied and lowest-

unoccupied bands at Γ is suppressed as θ is increased, so that at θ = 90◦ the

quadratic band touching is restored. This features are depicted in Fig. 4.12.

Schematic band pictures are almost same under the variations of spin angle,

whereas the distance of the eg bands manifold become closer to each other.

Therefore, it can give rise to band touching in the eg bands manifold which

is origin of changing of Chern numbers as described in Fig. 4.11(b-g). At θ =

90◦ (Fig. 4.11(g)), tiny band gap energy remains at Γ and K2 points despite

vanishing of SOC effect. This is because out-of-spin components slightly arise

from the process of convergence step in DFT calculations. In addition, higher

order terms in Hamiltonian also serve to removing degeneracy of eg bands

manifold so that Chern numbers can be still defined and computed even under

the condition of easy-plane spin configurations. This occurs because i) the

bands close to the Γ point consist mostly of Te px,y-orbitals, and ii) SOC in

the presence of FM behaves as an orbital Zeeman fields λSOm · L̂ (λSO and m

being SOC strength and net magnetization, respectively). When m = mzz the

λSOmzL̂z splits the px,y doublet into L̂z eigenstates (px ± ipy), but when m is

in-plane the splitting cannot occur due to the absence of pz character. Hence
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Figure 4.12 Band structure of lowest and second lowest Cr eg bands under

one electron doping in unit cell and considering SOC effect by varying spin

angle (θ). (a) θ = 0◦, (b) θ = 30◦, (c) θ = 45◦, (d) θ = 60◦, (e) θ = 75◦, (f) θ

= 90◦, respectively.
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tilting the spin direction leads to the quenching of SOC in the vicinity of Γ

point.

Lastly, we discuss the relation between the change of Fermi surface topology

and the magnetic anisotropy. Fig. 4.13 shows the orbital-angular-momentum-

projected band structures as θ is increased from 0 to 90◦. At each k point of

band structures, we calculate ⟨L2
z⟩ and ⟨L2

x⟩ for Cr d orbitals and Te p orbitals

using following relations. (ℏ2 is omitted)

L2
z|pz⟩ = 0, L2

z|px⟩ = |px⟩, L2
z|py⟩ = |py⟩

L2
z|dz2⟩ = 0, L2

z|dx2−y2⟩ = 4|dx2−y2⟩

L2
z|dxy⟩ = 4|dxy⟩, L2

z|dyz⟩ = |dyz⟩, L2
z|dzx⟩ = |dzx⟩

L2
x|pz⟩ = |pz⟩, L2

x|px⟩ = 0, L2
x|py⟩ = |py⟩

L2
x|dz2⟩ = 3|dz2⟩+

√
3|dx2−y2⟩, L2

x|dx2−y2⟩ =
√
3|dz2⟩+ 3|dx2−y2⟩

L2
x|dxy⟩ = |dxy⟩, L2

x|dyz⟩ = 4|dyz⟩, L2
x|dzx⟩ = |dzx⟩

(4.9)

Definition of basis set d orbitals and Te p orbitals are listed as followed.

|dz2⟩ = |L = 2, Lz = 0⟩

|dx2−y2⟩ =
1√
2
(|L = 2, Lz = −2⟩+ |L = 2, Lz = 2⟩)

|dxy⟩ =
i√
2
(|L = 2, Lz = −2⟩ − |L = 2, Lz = 2⟩)

|dyz⟩ =
i√
2
(|L = 2, Lz = −1⟩+ |L = 2, Lz = 1⟩)

|dzx⟩ =
1√
2
(|L = 2, Lz = −1⟩ − |L = 2, Lz = 1⟩)

(4.10)

|pz⟩ = |L = 1, Lz = 0⟩

|px⟩ =
1√
2
(|L = 1, Lz = 1⟩+ |L = 1, Lz = −1⟩)

|py⟩ =
i√
2
(|L = 1, Lz = 1⟩ − |L = 1, Lz = −1⟩)

(4.11)
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Figure 4.13 (Color online) L2-projected band structures with (a) θ = 0◦, (b)

θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦, where intensity and color of dots represent

a difference between L2
z- and L

2
x-character (⟨L2

z⟩ - ⟨L2
x⟩) of each Bloch state

(blue and red color indicating preference of out-of-plane and in-plane orbital

angular momenta, respectively.)
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where atomic p orbitals is represented by combination of spherical harmonics

of L = 1 and When θ > 30◦, electron pockets with dominant in-plane orbital

angular momentum (red color in the figures) start to develop near M1 and M3

points, while the hole pockets on the Γ-M lines bear weak orbital momentum.

Such change of Fermi surface topology and enhanced in-plane orbital momen-

tum character of occupied bands strengthens the in-plane magnetic anisotropy

energy (∝ L2
x), leading to deviation from local moment behavior of the energy

cost with respect to spin tilting (i.e. the 1 − cos θ dependence of the energy

cost in Fig. 4.9) beyond θ = 30◦ and preference toward in-plane anisotropy of

the system.

In electronic band structure, SOC band gap energy is affected by spin

orientation angle shown in Sec. 4.3.6. Size of band gap energy is determined

by off diagonal term of Hamiltonian matrix so that SOC band gap energy

could be estimated by calculating components of HSO = λSOL·S matrix. SOC

Hamiltonian could be represented as matrix form by choosing relevant basis

set as atomic p orbitals |pi,σ⟩ because dominant SOC effect comes from heavy

Te atoms where i is coordinates and σ is spin index, respectively. Components

of SOC matrix and basis set can be written as

Hi,j = λSO⟨pi,σ|LxSx + LySy + LzSz|pj,σ′⟩ (4.12)
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If we choose basis set as |px,↑⟩, |py,↑⟩, |pz,↑⟩, |px,↓⟩, |py,↓⟩, |pz,↓⟩, L·S matrix is

equal to Eq. (4.13).

L·S =



0 −i 0 0 0 −1

i 0 0 0 0 −i

0 0 0 1 i 0

0 0 1 0 −i 0

0 0 −i i 0 0

−1 i 0 0 0 0


(4.13)

However, L·S matrix changes to Eq. (4.14) when basis set is |px,+⟩, |py,+⟩,

|pz,+⟩, |px,−⟩, |py,−⟩, |pz,−⟩, where + and - indicate up-spin and down-spin

along x axis. Definition of p orbitals are listed in Eq. (4.11). (ℏ is omitted)

L·S =



0 0 0 0 −i 1

0 0 −i i 0 0

0 i 0 −1 0 0

0 −i −1 0 0 0

i 0 0 0 0 −i

1 0 0 0 i 0


(4.14)

Above matrices are calculated by using followed relations of angular momentum

and spin operators.

Lz|px⟩ = i|py⟩, Lz|py⟩ = −i|px⟩, Lz|pz⟩ = 0 (4.15)

Lx|px⟩ = 0, Lx|py⟩ = i|pz⟩, Lx|pz⟩ = −i|py⟩ (4.16)

Ly|px⟩ = i|pz⟩, Ly|py⟩ = 0, Ly|pz⟩ = −i|px⟩ (4.17)

Sz|↑⟩ = |↑⟩, Sz|↓⟩ = |↓⟩ (4.18)
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Sx|↑⟩ = |↓⟩, Sx|↓⟩ = |↑⟩ (4.19)

Sy|↑⟩ = i|↓⟩, Sy|↓⟩ = −i|↑⟩ (4.20)

Sz|+⟩ = |−⟩, Sz|−⟩ = |+⟩ (4.21)

Sx|+⟩ = |+⟩, Sx|−⟩ = |−⟩ (4.22)

Sy|+⟩ = −i|−⟩, Sy|−⟩ = i|+⟩ (4.23)

At Γ point, px and py orbitals are hybridized with eg band manifolds, off

diagonal term of SOC Hamiltonian matrix ⟨px|L·S|py⟩ determine bandgap

energy. Therefore, bands split due to SOC effect for basis with out-of-plane

spin direction (⟨px,↑|L·S|py,↑⟩≠0. However, band gap is closing for basis with

in-plane spin direction (⟨px,+|L·S|py,+⟩ = 0 indicating SOC effect disappear.

4.3.7 Effect of Electron Doping to Exchange

Interaction

In this section, we discuss magnetic exchange interaction of CrSiTe3 monolayer

in the presence of electron doping. In Fig. 3.6 and Fig. 4.2, total energy differ-

ence among various magnetic configuration changes as a function of electron

doping in unit cell. This total energy difference between FM and AFM states

is related to exchange parameters which determine Curie temperature. To

analyze the exchange interaction of CrSiTe3 monolayer, we construct magnetic

Hamiltonian using Heisenberg model up to third nearest neighbor(NN) written

by[6]

H =
∑
NN

J1S
2 +

∑
2ndNN

J2S
2 +

∑
3rdNN

J3S
2, (4.24)

where Ji is ith NN exchange parameters and S is magnitude of magnetic

moment, respectively. Using Eq. 4.24, total energies of FM and various AFM
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states with zigzag, Neel, stripy type are represented by following expressions,

E(FM) = E(0) + 3J1S
2 + 6J2S

2 + 3J3S
2

E(AFzigzag) = E(0) + J1S
2 − 2J2S

2 − 3J3S
2

E(AFNeel) = E(0) − 3J1S
2 + 6J2S

2 − 3J3S
2

E(AFstripy) = E(0) − J1S
2 − 2J2S

2 + 3J3S
2

(4.25)

where E(0) is spin-independent energy term. Using Eq. (4.25) and our total

energy calculation results, we estimate exchange parameters as a function of

electron doping listed in table 4.3.

# of doping
electron (∆n)

J1 J2 J3

0.0 -14.735 0.199 1.568

1.0 -4.807 -1.035 -12.961

2.0 -0.123 -0.692 -0.729

Table 4.3 Exchange parameters of NN, second NN and third NN hoping for

various doping electrons in unit cell. Unit of exchange parameters is meV.

At one electron doping in unit cell, all three exchange parameters favor

ferromagnetism where there is only NN ferromagnetic exchange in pristine case.

Therefore, the ferromagnetism is much more stabilized under one electron dop-

ing and this enhanced ferromagnetic exchange interaction will increases Curie

temperature of CrSiTe3 monolayer. When electron doping further increases

to two electron in unit cell, ferromagnetic exchange is still favored where the

magnitudes of all three exchange parameters are decreased to order of 0.1 meV.

As a result, the magnetic state will be close to Heisenberg type with weak

ferromagnetism near two electron doping in unit cell.
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4.4 Conclusion

We study electronic and topological properties of electron doped single layer

structure of CrSiTe3 by performing first principle calculation based on density

functional theory (DFT). Lattice constant and Hubbard U parameters are

fixed by confirming FM ground state and topological characters are invariant

under certain conditions. We construct MLWF which is Fourier transform of

Kohn-Sham wavefunctions of each bands and calculate Berry curvatures for

analysis of topological characters using converged MLWF. Nontrivial topology

appear within Cr eg bands manifold which can leads to Chern insulating

phases in CrSiTe3. Chiral edge modes are also calculated which is consistent

with total Chern number calculations. Moreover, we find spin angle dependent

AHC under one electron doping in unit cell, together with suppression of

magnetic anisotropy. Additional electrons may enhance Curie temperature of

ferromagnetic ordering. Curie temperature is proportional to magnitude of

exchange parameters which is determined by energy difference between FM

and AFM states. We find that the energy difference between FM and AFM

with zigzag configuration increases as electron doping increases by comparing

energy diagram described in Fig. 3.6 and Fig. 4.2. One contribution is additional

energy gain of Hund coupling in FM states due to extra magnetic moment in

eg orbitals discussed in section 3.3.1. Another contribution is double exchange

interactions between partially filled Cr eg band. As a result, FM state become

more stablized under electron doping which increases Curie temperature more

beneficial for observing ferromagnetism in CrSiTe3. In order to observe spin

angle dependent AHC in experiment, electron doping in unit cell and applying

external magnetic field is essential. At one electron doping, total magnetic
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anisotropy energy is calculated as 0.289 meV/f.u. which is converted to 1.18

Tesla of magnetic field. For our calculation, one electron doping in unit cell with

7.0Å lattice constant corresponds to carrier density as 2.36×1014 cm−2. Ionic

liquid gating is representative method of charge doping where order of doping

concentration is known as 1014 cm−2 in 2d systems [84–86]. In recent study,

about 2×1014 cm−2 of average electron doping per one layer is accomplished

in CrGeTe3[73], where most of doping electrons are distributed to topmost two

layers. In addition, more electrons are confined in topmost layer, which imply

the doping concentrations are almost adjacent to our theoretical goal. Because

CrGeTe3 has same crystal structure and similar lattice constant with CrSiTe3,

we expect our theoretical suggestion of Chern insulating phases and magnetic

field dependent QAHE can be realized. Therefore, we expect CrSiTe3 can be

a Chern insulator with high Chern numbers controlled by external magnetic

field by applying external magnetic field and ionic liquid gating. Furthermore,

the overall band character and crossing points of Cr eg bands manifold in

CrGeTe3 is almost same with CrSiTe3 as shown in Fig. 3.7. The only difference

is that the band overlap of Cr eg bands is more complicated in CrGeTe3 case.

This makes more difficult to calculate Berry curvature and analyze toplogical

properties. However, the lowest band of Cr eg bands does not touch with other

bands so that topological characters may remain. Therefore, we expect that

Chern insulating phases discussed previous section also emerge in CrGeTe3

monolayer under one electron doping in unit cell.
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Chapter 5

Summary and Perspective

By using openMX code based on DFT calculations within the GGA+U method,

we investigate electronic, magnetic and topological properties of CrSiTe3 com-

pounds. We compare total energy for various magnetic configurations of CrSiTe3

and CrGeTe3 compounds. We find that the magnetic ground state depends

on the choice of Hubbard U parameters in CrSiTe3 monolayer. In addition,

band gap energy and interlayer magnetic interaction energy also depends on

the U value, which indicates on-site Coulomb interaction play a crucial role in

CrSiTe3 and CrGeTe3 compounds. The interlayer magnetic interaction energy

shrinks for near U = 1.0 eV, which is relevant to properties of layered materials

with interlayer van der Waals bonding. Furthermore, selection of U near 1.0

eV makes good agreement with photoemission spectrum experiment result of

CrGeTe3[70]. Under U = 1.5 eV, CrSiTe3 and CrGeTe3 have ferromagnetic

ground state, where the strong dpσ-hybridization between Cr eg - Te p orbitals

is crucial for the stabilization of ferromagnetic ordering of Cr ions. Meanwhile,

we find crossing points including multiple Dirac cones and quadratic dispersion

within Cr eg conduction manifolds. By considering SOC effect, the crossings

are lifted which leads to nontrivial topology bands with high Chern numbers.

70



Chiral edge modes are also calculated which is consistent with our Chern

number and Berry curvature calculation results. We calculate the AHC as a

function of electron doping, where it is quantized at integer electron doping

in unit cell. We focus on the one electron doping concentration in unit cell

and find spin angle dependent AHC together with suppression of magnetic

anisotropy. For our calculation, one-electron doping in the formula unit cell

with 7.0Å lattice constant corresponds to carrier density as 2.36×1014 cm−2.

Ionic liquid gating is representative method of charge doping where order of

doping concentration is known as 1014 cm−2 in 2D systems [84–86]. In recent

study, about 4×1014 cm−2 of electron doping concentration is accomplished

in CrGeTe3[73] where most doping electrons are confined at topmost layer.

This is almost adjacent to our theoretical goal. Because CrGeTe3 has the

same crystal structure and similar lattice constant as CrSiTe3, we expect our

theoretical suggestion of Chern insulating phases and magnetic field dependent

QAHE can be realized as discussed throughout previous section. We hope

that our theoretical findings serve for attracting people’s interest of CrSiTe3,

which activate the experimental research of exfoliating the CrSiTe3 down to

atomically thin film together with observing magnetism and also anomalous

Hall conductivity.
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국 문 초 록

2차원 물질에 대한 연구는 응집물리 분야에서 가장 흥미로운 주제 가운데

하나이다. 최근에는 많은 사람들이 이러한 2차원 물질에서 나타나는 자성을 관측

하는것에관심을집중하고있는데,그가운데전이금속칼코겐화합물혹은할로

겐 화합물은 자성을 갖는 층상구조 물질의 후보군으로 여겨지고 있다. CrSiTe3

화합물은 전이금속 삼칼코겐 화합물 가운데 하나로서, 벌크 구조가 강자성 및

절연체로서의 성질을 가지고 있음이 보고된 바 있다. 하지만 원자단위의 얇은 두

께를 갖는 구조는 아직 실험적으로 보고되지 않았는데, 몇몇 이론 연구들 가운데

자성 바닥 상태를 예측함에 있어서 논쟁이 존재하고 있다. 따라서, 우리는 먼저

제일원리 연구를 통해 CrSiTe3 화합물의 전자적, 자기적 성질에 대한 이해를 바

탕으로 자성 바닥 상태에 대해 밝히려 한다.

논문의 첫번째 장에서는 제일 원리 계산을 통해 2차원 전이금속 삼칼코겐

화합물 CrSiTe3 및 CrGeTe3의 전자적, 자기적 성질에 대해 규명하였다. 단층

구조의 CrSiTe3 및 CrGeTe3는 강자성 절연체로서의 성질을 갖는데, Cr eg 오

비탈과 Te p 오비탈 사이의 강한 dpσ 혼성결합이 Cr 원자간의 강한 강자성에

중요한역할을한다. 우리는밴드갭과층간자성정렬이 Cr d오비탈의쿨롱상호

작용 U에 현저히 의존하는 것을 발견했다. 또한, CrSiTe3 단층에서 층내의 자성

정렬도 U의선택에의존함을발견했는데, U = 1.5 eV조건에서강자성을보였다.

CrSiTe3 및 CrGeTe3 화합물의 밴드갭은 주요 스핀 성분의 Cr eg 전도밴드와 Te

p 원자가밴드 사이에 형성된다. 페르미 레벨 바로 아래의 주요한 Te p 반결합
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특성은 U가 증가함에 따라 밴드갭이 감소하는 특성과 밀접한 관련이 있다. 우

리는 에너지-밴드 도표를 통해 ABX3 형태를 갖는 전이금속 삼칼코겐 화합물의

전자적, 자기적 성질을 설명했다.

논문의나머지장에서는층상구조및강자성을갖는전이금속칼코겐화합물

CrSiTe3이단층구조에서전자도핑을통해천부도체상을나타냄을보고하였다.

Te p 오비탈과의 강한 혼성 결합으로 인해 스핀 궤도 효과가 일정한 밴드갭을 형

성하게 되고, 이는 Cr eg 전도 밴드에서 높은 천 숫자를 갖는 비자명 위상구조를

발생 시킨다. 우리의 계산은 단위 셀 안에 전자 한개를 추가했을때 (약 2.36×1014

cm−2 전자 농도에 해당) 양자 비정상 홀 효과가 나타날수 있음을 보였다. 또한,

전자도핑으로 유도되는 비정상 홀 전도도가 스핀의 방향에 의존하며 이때 자기

이방성 에너지가 줄어드는 현상을 발견했다. 이 결과는 외부 자기장을 인가함으

로써 비정상 홀 전도도를 조절할수 있음을 의미하며 이는 스핀궤도 효과의 스핀

방향 의존성과 관련이 있다. 우리는 CrSiTe3을 높은 천 수를 갖는 천 부도체와

외부 자기장에 의해 조절되는 양자 비정상 홀 효과를 실현할 수 있는 흥미로운

물질로써 제안하였다.

주요어: 밀도범함수 이론, 2차원 물질, 전이금속 칼코겐 화합물, 강자성, 베리 곡

률, 천 부도체, 양자 비정상 홀 효과

학 번: 2015-20316
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