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Abstract

Phase transitions
in higher-order networks

Yongsun Lee
Department of Physics and Astronomy

The Graduate School
Seoul National University

A complex system is a system in which many elements interact one another in het-

erogeneous forms. Networks have been widely used to describe the universal charater-

istics of the structural properties and dynamical behavior of the system by representing

each element as a vertex and their interactions as edges. However, network represen-

tation has an inherent limitation that stems from the definition. Since an edge can only

express the relationship between two elements, it is difficult to express elements that

do not show pairwise interaction. A higher-order network is a generalization of a net-

work consisting of vertices and higher-order connections, which is not restricted from

this limitation as it considers interactions of three or more elements.

First, in this dissertation, we analyzed the empirical data and model of a growing

complex system from the perspective of a higher-order network and described the

evolutionary stages of the complex system in simplicial complex representation. The

stages of establishing connectivity and robustness, including the stage of the birth,

were separated by the topological quantity, the Betti numbers. It was shown that loop

formations in the macroscopic length scale, which is a typical characteristic of the

stage where connectivity is established, can be quantified by the first Betti number.
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Furthermore, the formation of locally closed surface which begins to appear as the

density of the system increases, which can be interpreted as robustness enhancement,

can be quantified by the second Betti number.

It has been confirmed that the Betti numbers emerge and increase successively

in growing higher-order interacting systems by studying several simplicial complexes

models. In particular, it was numerically confirmed that the Betti numbers defined

in the growing scale-free simplicial complexes also exhibit phase transitions, homo-

logical percolation transitions. Furthermore, we analytically show that the first Betti

number exhibits the same transitional behavior as the percolation phase transition in

both the graph and the simplicial complex.

Second, we investigated the effect of the hub structure in higher-order interactions

of complex systems on phase transitions and critical phenomena through analytical

and numerical analysis of the higher-order synchronization models. Two models of

globally coupled oscillators showing bistability and multistability were dealt with. It

was confirmed that higher-order interactions promote a discontinuous synchronization

transition with critical phenomena, a hybrid synchronization transition.

It was derived numerically and analytically that the behavior of the synchronization

transition changes abruptly based on a specific value of the exponent of degree distri-

bution (λc = 2 + 1/(d− 1)) in the bistable model defined in a scale-free higher-order

network with a heterogeneous structure. When the exponent of degree distribution is

smaller than the critical value (λ < λc), unconditional synchronization occurs due to

a large amount of influence of the hub. Otherwise, for λ = λc, ordinary second-order

synchronization transition occurs, and for λ > λc, an explosive hybrid synchronization

transition emerges.
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Chapter 1

Introduction

Complex systems are composed of many elements that interact with each other in var-

ious unpredictable ways. These systems can be represented by networks, interactions

among elements of a complex system are represented by a graph comprising a set of

vertices (or nodes) and a set of edges (or connections) between pairs of nodes (that

denote the elements) [1–6]. The network representation enables us to describe both

structural and dynamical properties observed in complex systems. For example, the

problems regarding structural properties could be how to determine the important el-

ements [7], to infer missing interactions [8], and to detect community structures [9].

The dynamical processes such as the spread of diseases and synchronization among

dynamical units can be explained as well [10]. We can model such systems more elab-

orately by including the interacting strength (weight) or direction [1], and further-

more the system-wise interactions (multiplex network) [11]. Albeit very successful to

describe, there is a systematic limitation originating from the definition of network:

An edge defined as a linkage of two vertices, which leads to difficulty representing

a higher-order (non-pairwise) interaction. The higher-order networks can represent

higher-order interaction among three or more units without loss of generality. Depend-

ing on the purpose, the higher-order network is realized either as a simplicial complex

with its building block as simplex or a hypergraph with a hyperedge [12–14]. A hyper-

graph, which is a method for representing high-order interactions, is a generalization

of a graph in which interactions involving more than two elements are represented by a

hyperedge [12]. A simplicial complex, which is composed of simplexes, is a particular
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form of hypergraph [13,14]. Details on these representations are displayed subsequent

sections.

Two of the most typical level-specific examples organized via higher-order inter-

actions in real-world are as follows [15–18].

i) A macroscopic-level of example: coauthorship relations made of papers written by

any number of authors,

ii) A microscopic-level of example: brain networks made of simultaneous neural stim-

ulation.

Higher-order interacting structure is directly captured in coauthorship relations, which

means every paper organized by authors represents a simultaneous interaction among

those authors. In the case of the brain network, however, we can hardly see higher-

order interaction due to the limitation of observation. Instead, we confirm the existence

of higher-order interaction by checking if it is descriptive or not. To pose a specific

example regarding this statement, one can cluster neurons to reconstruct a hierarchical

structure associated with the nictation of C. elegans by only considering motifs as the

basis [17], which convincingly shows the higher-order interaction is not too much of a

concern.

As it becomes more important to take the higher-order interaction into account for

various kinds of problems, even for ecology [19] and evolutionary processes [20], it

becomes more evident that the study on the structures and dynamical processes defined

on such structures is needed [21–23]. When it comes to the study on the higher-order

structures, it is much of concern studying connectivity combining topological prop-

erties based on percolation theory: inference of higher-order link [24], extension of

network model [25], and topological percolation transition [26, 27]. For dynamical

processes, the main object is how the higher-order interaction relates to the explosive

phenomena. [28–31]

This dissertation deals with two topics. Firstly, we consider the complex system

that grows in time, and explore its percolating properties inherent in the evolutionary
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stages through topological analysis. Secondly, we consider the dynamical processe,

especially synchronization, associated with the sympathy phenomena defined in the

complex system, and investigate how the existence of the hub relates to the macro-

scopic behavior, phase transition and criticality. The brief introduction of percolation

and synchronization is followed by the main chapters.

1.1 Percolation

It is not an exaggeration that interaction is said to be the most fundamental property

that a large number of real systems possess. Any dynamical process which can be

considered in the real-world is highly conditioned on the underlying topology of inter-

actions, the structure of connections, to proceed appropriately. In other words, one can

manipulate the underlying connection, i.e., topology of interaction between any pair of

units, to make a dynamical process propagate properly or not, depending on the char-

acters of the dynamical processes. For example, in a circumstance of the global spread

of disease, we know that it may never end under the presence of the hub person who

has many connections at a particular period of time. It is understood that the existence

of the hub, say P (k) ∼ k−γ with 2 < γ < 3, where P (k) is degree distribution, the

epidemic threshold vanishes [10]. So in that situation, all we have to do is just cutting

as many connections as possible to make γ � 3, i.e., demolishing the hub node. As

the notion of connection is one of the most fundamental importance, the study related

to connection has been well organized in the mathematical framework in the name of

the percolation theory.

1.1.1 Overview on percolation theory

Percolation theory is organized in mathematical language so that it can reasonably pro-

vide the insight to understand how they are connected to one another or what makes

the global connection occur in many other real-world systems, ranging from social
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relationships to biological systems [32]. For instance, it displays many kinds of tran-

sitional behaviors concerned with global connection conditioned on any kind of para-

metric quantities that may require a microscopic connection. One categorizes physical

systems with the transitional properties in the statistical mechanical point of view. The

main object of percolation problems is the formation of the largest chunk made of

connections, called the giant component. The giant component is defined as a unique

set of vertices that are connected to one another both directly and indirectly and con-

ditioned that it is of the same order compared to the system, say G ∼ O(N), where

we denote G, N as the size of the giant component, the size of system of interset

respectively. Given a set of parameters that controls the number of connections, the

system undergoes phase transition between phases characterized by the giant compo-

nent, G. For the simplest problem defined in Euclidean space as an example, it reveals

second-order phase transition for the order parameter G, G ∼ |p − pc|β , the control

parameter for p, the critical exponent for β. From the fact that any kind of network

is in dimension of intinity, percolation on network is understood as the percolation on

Euclidean space above the critical dimension, dc, above which the system coincides

with percolation of Erdős–Rényi random graph model. There are many other diverse

types of percolation transitions in complex networks, including Erdős–Rényi random

graph. As for the case in Euclidean space, there are two types of percolation problems

in complex networks, bond and site percolation. The site percolation concerns how the

giant component emerges as one occupies each site one at a time randomly on prede-

fined networks, whereas the bond percolation is on how the giant component emerges

as one adds bonds to two nodes one at a time also in a random manner.

1.1.2 Topological viewpoint in percolation transition

It is clear enough to understand the percolation system by ”squinting” at its global

form, not taking any details into account. When the spanning cluster is of a big in-

terest, we can understand its global order by looking for the existence of long range
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interactions, which makes the average distance between pairs of nodes short. In other

words, the number of loops the system has is a direct indicator of percolating state. In

fact, G is to do with the number of loops, which implies that the number of loops can

be used to describe percolation transition of the system as well. This holds for not only

the systems of pairwise interactions but also those of higher-order interactions [33,34].

1.1.3 Simplicial complex and simplicial homology

A simplicial complex, K, is a collection of some set of vertices, sd, with the require-

ment that all the subsets of sd have to be also members of K. So if we want to convert

a sample from hypergraph representation to simplicial complex representation, it is

required that all the downward edges of each hyperedge have to be occupied. In this

representation we call sd a d-dimensional simplex made of d+ 1 vertices, and also de-

note sd as [v1, v2, . . . , vd+1]. Each subset of an d-simplex, sd, is also a simplex which

is called a face of sd. A set of facets in K is a set of maximal faces of K. A graph is a

simplicial complex made of 0-dimensional and 1-dimensional simplexes.

The d-dimensional simplicial homology help us with mathematical quantification

of d-dimensional voids in a given simplicial complex. More precisely, the rank of d-

dimensional homology group is exactly the same as the number of d-dimensional voids

the system contains. Defining a boundary operator exerting on a chain group of each

order, we can write homology group in mathematical form. For the case of d = 1, a

1-void refers to a closed loop made of 1-simplexes. Therefore, if the loop structure

∂k : Ck → Ck−1, (1.1)

where Ck is chain group of order k which is isomorphic to the linear sum of k-faces,

k-chain. Then we can write the homology group of order k as

Hk(K) = ker(∂k)/im(∂k+1), (1.2)

5



which interpreted as the number of k-cycles that are not boundaries of any faces in K.

Hereafter, we only consider coefficients of all faces isomorphic to Z2 group for the

sake of simplicity.

1.2 Synchronization

Synchronization which is one of the most ubiquitous phenomena captured in many

kinds of real-world systems of various scales has been mathematically described by

models of coupled oscillators. From Winfree to Kuramoto, the models for coupled

phase oscillators without amplitude has successfully been able to cover not only the

processes of biological neural systems but also the processes of power systems com-

posed of generators and consumers. Many efforts have been devoted to understanding

of dynamics of coupled oscillators on different types of interacting substrates so far. In

one hand, one of the studies, which is for the collective behavior of synchronization on

small-world network, played a role of a seed for the popularization of heterogeneous

substrates, the complex networks.

1.2.1 Kuramoto model

Kuramoto model is a simple model for coupled phase oscillators in which the oscilla-

tors exhibit an entrainment to one another, similar to an equilibrium phase transition

of magnets. This model has its interacting term as sine function as

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), (1.3)

where K is an interacting strength between each pair of oscillators having their own

phases and intricsic frequencies, θi’s and ωi’s, placed on an all-to-all connected sub-

strate. This simple model reveals various type of synchronization transition condi-

tioned on both the type of diversity of intrinsic frequencies and the type of an interact-
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ing substrate.

1.2.2 Synchronization transition

Given a set of intrinsic frequencies, there is a charateristic value of coupling strength,

Kc, above which oscillators reveal an entrainment,

r


> 0 if K ≥ Kc

= 0 if K < Kc.

(1.4)

where r = 〈eiθ〉 is the order parameter of the system. For instance, if a set of intrinsic

frequencies is a sample of unimodal distribution, the oscillatory system undergoes a

synchronization transition of second-order, i.e. r ∼ (K − Kc)
β . The choice of the

intrinsic frequencies and of the topology of the substrate are crucial for determining

the type of synchronization transition: unimodal frequency distribution gives rise to

continuous synchronization transition, bimodal distribution induces abrupt synchro-

nization transition, and uniform distribution causes a hybrid synchronization transi-

tion [35].

1.2.3 Hybrid synchronization transition

The coupled Kuramoto oscillators exhibit their global behavior through the abruptly

changing order parameter when there effects of suppression, for example, in the form

of the flat distribution of intrinsic frequency, the presence of competitive interaction

(frustration), or higher-order interaction. If such systems also reveal critical behavior

in suprecritical regime, we call this exhibits a hybrid synchronization transition,

r =


rc + C(K −Kc)

β if K ≥ Kc

0 if K < Kc,

(1.5)

7



where rc is the amount of the abrupt change of order parameter, which indecates dis-

continuous synchronization transition.
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Chapter 2

Homological percolations in coauthorship relations

Coauthorship relations have served as representative examples of large-scale social re-

lationships driven by collaborations. Many studies on this subject have been published

and research is still active. The main subject of this chapter is the growth of coau-

thorship relations in a specific scientific research field. The evolution of coauthorship

relation in graph representation of several research topics, including network science,

were explored as a function of time from inception [36]. The percolation transition was

recognized as infinite order. Figure 2.1(b) ilustrates how the macroscopic properties of

the coauthorship graph reach a mature state. The growth process is divided into three

stages from the perspective of graph representation: (i) Small isolated components are

created. (ii) A treelike giant component is formed by merging clusters in the early

stages, followed by the connection of long-range edges. Thus, long loops are formed

in the later stage. (iii) The network becomes entangled by forming intra-cluster edges.

These three stages are characterized by the mean separation, d̄, between two connected

vertices averaged over different clusters. In stage (i), d̄ remains almost constant; in

stage (ii), d̄ increases overall but with fluctuations; and in stage (iii), d̄ decreases over-

all. These three stages are indicated in Figure 2.1(b). However, the classification based

on d̄ can be considered rather primitive owing to the lack of an appropriate mathemat-

ical tool in graph representation. In this chapter, we demonstrate that the evolutionary

steps can be reconstructed from the perspective of simplicial complex representation

as in Figure 2.2 in terms of homological percolation transitions associated with the

first and second Betti numbers. The analysis is based on the homology of the sim-
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Figure 2.1: Evolution of several graph and homological quantities. (a) Plots of the
number of vertices N0(t), the number of edges N1(t), and the size of the largest com-
ponent M(t) versus time step t in graph representation. (b) Plots of the mean separa-
tion between two vertices d̄ as a function of t in the graph representation. (c) Plots of
the zeroth Betti number B0 (the number of components), the first Betti number B1,g

(the number of homological one-dimensional cycles) of the largest cluster, the second
Betti number B2, and the number of facets Nf as a function of time step t. (d) Plots of
the length of the longest cycle `g and the logarithm of the Euler characteristic − ln |χ|
as a function of time step t.

plicial complex representation of the coauthorship relations. A few studies using the

simplicial complex have also been published recently, and here we elucidate portrays

the route by which a coauthorship relations reaches a mature state.

2.1 Homological percolation transitions

The two homological percolation transitions occur successively [38] at transition points

tc1 and tc2, as shown in Figure 2.1(c). They are determined by the first and second
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Figure 2.2: Schematic illustration of the SCR of coauthorship relationships. Each list
enclosed by angle brackets in the left panel represents a paper written by the listed
authors. The SC in the right panel is the coauthorship complex constructed from these
six papers. The facet degree of a vertex is the number of facets in which the vertex
participates. For example, the facet degree of C is 2, and that of G is 3. B-C-G-B
and B-D-C-G-B are examples of homologous cycles, as their symmetric difference,
B-C-D-B, is the boundary of the 2-simplex [B, C, D]. The B-A-D-C-G-B cycle is
also homologous to them. They all represent the same voids. The cycles C-D-F-G and
C-D-E-F-G-C are not homologous to them but are homologous to each other. Any
cycle homologous to B-C-D-F-G-B can be represented as the symmetric difference of
a cycle homologous to B-C-G-B and a cycle homologous to C-D-F-G up to a boundary
cycle. The first Betti number is 2.

Betti numbers in the giant cluster, denoted as B1,g and B2,g, which represent the num-

bers of homological cycles and cavities in the giant cluster, respectively. The homo-

logical cycles also exist in finite clusters smaller than the giant cluster. Moreover, the

giant cluster is also called an infinite cluster in percolation theory because the criti-

cal behavior of percolation transition is treated in the thermodynamic limit N → ∞.

Hence, the homological cycles in finite clusters can be ignored compared with those in

the giant cluster. This is also confirmed by empirical data. In contrast, the second Betti

number is nonzero only in the giant cluster. Thus,B2,g = B2. This homological classi-

fication scheme separates the regions of phases (i) and (ii) into new phases (I) and (II),

as illustrated in Figure 2.1. In phase (I), both Betti numbers are zero; in phase (II), a gi-
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(a) (b)

(c) (d)

Figure 2.3: Snapshots of the coauthorship SC. (a) Snapshot of the simplicial complex
at t = 65, where the second-largest simplicial complex has not yet merged with the
giant SC. (b) Snapshot of the giant simplicial complex at t = 66, where the second-
largest component has merged. (c) Snapshot of the simplicial complex at t = 69,
where the long-range edges are connected. (d) Snapshot of simplicial complex after a
process of homological simplification [37] of (c).

ant one-dimensional homological cycle appears, that is, B1,g > 0, but B2 is still zero.

In phase (III), B2 is also finite. The point tc2 coincides with the previous point [36],

which was determined intuitively. In addition, the homological properties of coauthor-

ship complexes, such as simplicial contraction, facet size distribution, and persistent

homology, have been explored in various coauthorship datasets [?,40]; however, these

datasets were collected at specific times. Thus, the homological percolation transitions

arising in evolutionary processes have not thus far been identified in real-world com-

plexes. Two important phenomena underlie the evolution of coauthorship networks:

divergence and internal entanglement. When a student graduates from a university,

12



she/he moves to a postdoctoral position in another group. This transfer enables both

parties to broaden their experience and is thus beneficial to them. When the former stu-

dent publishes a paper with her/his new colleagues, long-range connections are made

between the old and new groups. These intergroup edges result in the formation of a

long-distance homological loop. In particular, when the length of this loop is macro-

scopic, this giant loop results in an homological percolation transition in simplicial

complex representation (see the snapshots in Figure 2.3). In addition, the intragroup

edges are also reinforced as the group members publish more papers together. This

internal edge entanglement results in the formation of two-dimensional voids. Thus,

another type of homological percolation transition occurs, in which the second Betti

number becomes nonzero. The phenomena of divergence and internal entanglement

correspond to the central factors in the evolution of biological networks, divergence,

and mutation during reproduction [41].

Here, we specifically considered an homological percolation transition of the coau-

thorship complex S(t). We traced the first Betti number of the largest cluster as a

function of time step t, which is denoted as B1,g(t). We found that B1,g(t) first be-

comes nonzero at time step tc1 = 67. It apparently exhibits a power-law increase as

B1,g(t) − B1,g(tc1) ∼ (t − tc1)2.1. We also measured the length of the longest ho-

mological cycle `g(t) as a function of t, as shown in Figure 2.1(d). We find that `g

suddenly increases at tc1, at which the giant cluster acquires an interbranch edge, and

a macroscopic-scale long cycle is formed, as shown in Figure 2.3(d). We regarded

this point as the transition point of the first homological percolation transition. In ret-

rospect, this point was identified in the graph representation, in terms of the mean

separation d̄, where d̄ decreases noticeably, as indicated by the arrow in Figure 2.1(b).

It was reported previously that the length of a homological cycle is positively associ-

ated with the number of linked communities [?]. Thus, the formation of a long cycle

indicates the formation of global collaborations.

We also identified the transition point tc1 using the Euler characteristic [38]. It was
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proposed that the Euler characteristic of the giant cluster, which is defined as χ ≡∑
k(−1)kBk,g, becomes zero near the transition point of the homological percolation

transition. Here, we measured χ = B0,g−B1,g +B2,g, because we obtained Bk,g = 0

for k ≥ 3 and plot − ln |χ| as a function of t. It was found to diverge at tc1.

We separated the region beyond tc1 into two regimes, (II) and (III), using the sec-

ond Betti number B2. In regime (II), the first Betti number, B1,g(t), increases con-

tinuously with time. In contrast, `g increases abruptly and then decreases slowly and

reaches a steady state in which `g is constant overall, with some fluctuations, whereas

d̄ decreases continuously. In this late regime, the simplicial complex becomes increas-

ingly entangled as more papers are published within each group. We measured the

second Betti number B2(t) to check for the formation of cavities enclosed by sim-

plexes. There exists a nonzero second Betti number at a transition point tc2, as shown

in Figure 2.1(c), beyond which B2(t) remains nonzero. We found that these cavities

were formed in the giant cluster.

In Figure 2.1(c), the first Betti number B1,g(t) increases continuously even after

the second Betti number B2(t) appears and then increases. This behavior differs from

that in the Kahle localization, wherein the first Betti number decays rapidly to zero

for the static Erdős–Rényi (ER)-type random complex model [26] as the second Betti

number appears. This difference results from the fact that the coauthorship complex

is growing, and isolated complexes are thus continuously generated and accumulate

over time. Some of them merge with a giant complex and contribute to the formation

of new homological cycles, and the first Betti number B1(t) increases. Therefore, the

number of isolated clusters, B0(t), may be expected to decrease. However, this rate

of decrease was lower than the rate of increase of B0(t) resulting from the creation

of new complexes. Thus, both B0(t) and B1(t) increase. The first and second Betti

numbers, B1(t) and B2(t), exhibit similar behaviors; they also increase together. This

issue is discussed in detail in more subsequent sections.

14



2.2 Facet degree distribution

In graph representation, the degree ki of vertex i is the number of edges connected

to vertex i. Here, this degree is referred to as the graph degree to distinguish it from

the facet degree proposed below. We measured the graph degree of each vertex in the

giant cluster and obtained the graph degree distribution, denoted as Pd,g(k). The graph

degree distribution exhibits power-law decay, Pd,g(k) ∼ k−λg , where λg ≈ 2.89 ±
0.06. In simplicial complex representation, facets are the maximal faces of an SC. The

facet degree mi of vertex i is the number of facets to which the vertex i belongs. The

facet degrees in a giant cluster have a facet degree distribution Pd,f (m), which is also

called the simplicial degree distribution [?]. We obtained Pd,f (m) ∼ m−λf , where

λf ≈ 2.72 ± 0.11, as shown in Figure 2.4(a). Thus, the exponents of the two degree

distributions have slightly different values.

To examine the correlation between the two degrees, we plotted the average facet

degree 〈m(k)〉 of the vertices with graph degree k in Figure 2.4(b) and the average

graph degree 〈k(m)〉 of the vertices with facet degree m in Figure 2.4(c). The vertices

with a large (small) graph degree tend to have a large (small) facet degree, on average.

However, fluctuations are unusual; when k and m are large, both the fluctuations of

the facet degree for a given k and those of the graph degree for a givenm are relatively

small. Thus, the asymptotic behavior of the average quantities 〈m(k)〉 ∼ k1.05±0.06

and 〈k(m)〉 ∼ m0.91±0.04 are reciprocal. However, when 〈k〉 and 〈m〉 are small, the

fluctuations of both are relatively large. This is because the field of network science

includes interdisciplinary research subjects, such as mathematics, theoretical physics,

and biology, where the number of authors per paper varies widely from one to more

than 10 people. Moreover, a few review papers have large graph degrees but small

facet degrees. In contrast, when the dimensions of the complexes are homogeneous,

the two degree distributions have the same degree exponents, as we show later for a

simple model.

15



100 101 102

k, m

10−6

10−5

10−4

10−3

10−2

10−1

100

101

P
g
(k

),
P
f
(m

)
(a)

Pg(k)

Pf (m)

100 101 102

k

101

〈m
(k

)〉

(b)

100 101 102

m

101

〈k
(m

)〉
(c)

Figure 2.4: Graph and facet degree distributions. (a) Plots of the graph degree distri-
bution Pd,g(k) and facet degree distribution Pd,f (m) as functions of k and m, respec-
tively. (b) Plot of the mean facet degree 〈m(k)〉 of each vertex with graph degree k.
The guide line (dotted) has a slope of 1.05 ± 0.06. (c) Plot of the mean graph degree
〈k(m)〉 of each vertex with facet degree m. The guide line (dashed) has a slope of
0.91± 0.04.

2.3 Minimal model

We propose a minimal model of the homological percolation transition that occurs in

a growing simplicial complex. At each time step, a new vertex is added to the system;

then, three vertices are selected with probability proportional to mi + a, where mi

is the facet degree of node i, and a is a constant. The vertices are connected with

probability p. This triangle is regarded as a two-dimensional simplex in the simplicial

complex representation. This process is repeated t times. This model is an extension of

the previous model of a randomly growing graph [42] in which two randomly selected

vertices are connected with probability p. It differs from the previous model in that a
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2-simplex rather than a 1-simplex is added, and the three nodes are selected according

to their facet degrees rather than randomly.

This growing simplicial complex model exhibits an infinite-order percolation tran-

sition in graph representation at a transition point pc0. The cluster size distribution for

p < pc0 exhibits power-law decay, where the exponent depends on p and a. However,

the cluster size distribution of finite clusters for p > pc0 decays exponentially. The

transition point approaches zero as a → 0. The giant cluster size G(p, t) increases

significantly with time as G(p, t) ≈ G(p)t asymptotically. In the steady state, G(p)

exhibits an essential singular behavior: G(p) ∼ exp[−α0(p− pc0)−β0 ], where α0 is a

nonuniversal constant. The transition point, pc0 ≈ 0.0031, and exponent, β0 ≈ 0.44,

are obtained for a = 0.1. For comparison, the exponent β = 1/2 for the growing ran-

dom network model. Analytical treatment for these arguments is displayed in Chap-

ter 3.

We considered the graph degree distribution and obtain analytically Pd,g(k) ∼
k−λg with λg = 2 + a/(3p). However, a pair of 2-simplexes are more likely to be

connected by sharing a vertex than by sharing an edge in large systems because the first

case occurs with probabilityO(1/N), whereas the second case occurs with probability

O(1/N2). Hence, the graph and facet degrees of each vertex depend linearly on each

other. The facet degree distribution exhibits power-law decay with the same exponent

value, that is, λf = λg, as Pf (m) ∼ Pg(k). We confirmed this result using numerical

simulations.

We counted the first Betti number, that is, the number of homological cycles, nu-

merically as a function of t; it shows extensive behavior: B1(p) ≈ b1(p)t asymp-

totically. The first Betti number in the steady state, b1(p), exhibits a transition. The

transition point pc1 is consistent with that for the percolation transition pc0 such that

b1(p) is zero for p ≤ pc1 and finite for p > pc1. To specify pc1, we perform numer-

ical analysis as follows. First, we measure the probability, P (p), that a Monte Carlo

sample contains at least one finite loop in the largest cluster for given p. This quantity
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is similar to the probability that a sample contains a spanning cluster for a given oc-

cupation probability p in ordinary percolation. We examine the slope dP (p)/dp for a

given p and then find p∗ at which the slope becomes maximum . This value, p∗, can

be regarded as the transition point of the homological percolation transition of the first

Betti number. Next, using the finite-size scaling concept, we determine the transition

point, pc1, in the thermodynamic limit t → ∞. That is, pc1 satisfies the power-law

relation p∗ − pc1 ∼ t−1/ν̄∗ . Then, using the estimated pc1, we numerically confirm

that the first Betti number has the essentially singular form near the transition point,

b1 ∼ exp(−α1(p − pc1)−β1), where α1 is a nonuniversal constant, and the exponent,

β1 ≈ 0.44, is the same as that for the percolation transition for a = 0.1 (Figure 2.6(a)).

This result is reminiscent of the result for a growing random graph, in which the expo-

nents β0 = β1 [43] and b1(p) ∼ G2(p).

The second Betti numberB2(t) behaves nonextensively with respect to the number

of 0-simplexes t, but is proportional to t0.7 asymptotically. Thus, B2(t) is written as

B2(t) ≈ b2(p)t0.70 asymptotically. Simulations and finite-size scaling analysis show

that pc2 ≈ 0.053(3) for a = 0.1. This transition point differs from pc1 ≈ 0.0031

for B1(p) for the same value, a = 0.1. b2(p) also exhibits the essential singular form

b2(p) ∼ exp[−α2(p − pc2)−β2 ], where α2 is a nonuniversal constant, and β2 ≈ 0.99

for a = 0.1 (Figure 2.6(b)).

2.4 Kahle localization

We reconsidered the localization of the Betti numbers in the minimal model [26]. To

reproduce the evolution of the Betti numbers shown in Figure 2.1(c), we numerically

simulated the minimal model with a fixed p > pc2 because the second Betti number

is not generated otherwise. The three Betti numbers B0(t), B1(t), and B2(t) were ob-

tained as a function of t. As shown in Figure 2.7(a), the three Betti numbers appear

successively, and they all increase with time. The first and second Betti numbers be-

have similarly to those we obtained from the coauthorship complex dataset. The Kahle
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localization does not occur in the minimal growing model.

To investigate the key factor affecting the localization, we considered a static

model in which N = 100 nodes exist continuously from the beginning. At each time

step, three nodes were selected randomly and connected by a 2-simplex. This pro-

cess was repeated N4 = n4N times. Thus, the parameter p is absent. The three

Betti numbers are calculated as a function of n4 and are presented in Figure 2.7(b).

We confirmed that the Kahle localization indeed occurs. Next, the static model was

modified so that three nodes are selected with a probability proportional to their facet

degree mi (i = 1, 2, 3) in the form of mi +a. As shown in Figure 2.7(c), the first Betti

number immediately increases dramatically and then decreases slowly, whereas the

second Betti number increases slowly. Therefore, the first and second Betti numbers

coexist for a long time. After the first Betti number vanishes, the second Betti number

continues to increase. Next, we considered the case of a growing complex. Initially,

we set Nm0 = 25 nodes. At each time step, a node is added to the system, and three

nodes are selected randomly (Figure 2.7(d)) or according to the degree-dependent rule

in Figure 2.7(e). In Figure 2.7(d), there exists a finite transition point for the second

Betti number; however, the first Betti number increases immediately while remaining

finite but decreases thereafter. At the transition point of the second Betti number, the

decreasing rate of B1(t) is changed. In Figure 2.7(e), the first and second Betti num-

bers exhibit behavior similar to that shown in Figure 2.7(c). This result demonstrates

that the localization behavior occurs only for the static random case in Figure 2.7(b).

2.5 Remark

We investigated the homological percolation transitions of growing simplicial com-

plexes using the empirical data of coauthorship simplicial complexes and a model

study. Homological percolation transitions were identified by the Betti numbers. We

revealed that the first three Betti numbers Bk (k = 0, 1 and 2) are nonzero and the

others are zero in the empirical dataset. This implies that papers with three authors
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play important role in the formation of simplicial complexes. Thus, we propose a

minimal model composed of 2-simplexes. The model was designed to include the

growth and preferential attachment rules, which commonly appear in various com-

plex systems. Owing to these factors, the first Betti number continues to increase in

time even after the second Betti number appears. This implies that the coauthorship

simplicial complexes are still developing, at least above pc2 (see Figure 2.1(c) and

Figure 2.7(a)). To check whether the behaviors of three Betti numbers are universal or

model-dependent, we modified an existing protein-interaction network model in graph

representation [41] into an simplicial complex scheme. This protein-interaction sim-

plicial complex model has two processes: duplication and divergence processes, and

evolves in the following steps: i) At each time step, an existing node (representing pro-

tein, and denoted as A) is chosen. Each facet of node A is duplicated with probability

1 − η. A mutant of A is denoted as B, which corresponds to a new node in a growing

simplicial complex. ii) Two distinct nodes are randomly selected and make a triangle

with node B. This process occurs with probability ζ. Processes i) and ii) mimic du-

plication and mutation, and divergence processes, respectively. We find that the first

three Betti numbers (Figure 2.7(b)) increase with time similarly to the previous ones

(Figure 2.7(a)). However, their behaviors are different from the localization pattern

for the static ER-like random simplicial complex model [26] (Figure 2.7(c)). For the

localization and delocalization of the Betti numbers as a function of the number of tri-

angles n4, we uncovered more detailed properties using the minimal model (see Fig-

ure 2.7(c)- 2.7(f)). Finally, we revealed that the homological percolation transitions in

growing simplicial complexes are of infinite order, which is an intrinsic characteristic

of growing graphs [42] and simplicial complexes.

The formation of a long-range cycle or loop is a significant factor for understand-

ing properties of diverse problems in physical and complex systems, for instance,

phase transitions in equilibrium and nonequilibrium physical systems, and information

spread in complex systems. Mean-field solutions for phase transitions of percolation
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and spin models are equivalent to the solutions on the Bethe lattice (tree structure) [10].

However, in lower dimensions, the mean-field solution is not correct because the effect

of loop structure is significant. Thus, it is necessary to estimate when loop is formed,

what loop size scales to system size, etc. For the ER model in graph representation,

it was revealed that a macroscopic-scale loop is formed at a percolation threshold and

the loop size is scaled as ∼ N1/3 with system size N [44]. Using this scaling, one

can estimate the so-called golden time [45, 46] in an epidemic problem and others. In

simplicial complex representation, however, such important and challenging problems

have not been solved thus far, even though there exists an elegant mathematical tools

such as algebraic topology. This study was intended as a first step toward such a novel

approach.
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the minimal model of growing scale-free simplicial complex at p = 0.055, just above
pc2 ≈ 0.053 and for (b) the protein-interaction simplicial complex model at the model
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scale of the vertical axis) appropriately. (d) Similar to (c), but for the static scale-
free simplicial complex model. (e and f) Similar to (c) and (d), but for the growing
simplicial complex model. For (d) and (f), the localization of the Betti numbers does
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Chapter 3

Percolation of simplicial complex models

Percolation phase transition characterized by the emergence of the giant component is

well studied for both static and growing complex networks. For those various types of

models, we can naturally generalize to corresponding higher-order structure, simplicial

complex. In this chapter, we introduce such models and corroborate that percolation

phase transition also exists.

3.1 Percolation of static simplicial complex

Static random pure d-dimensional simplicial complex (SC), pure d-SC hereafter, is a

higher-order version of Erdős–Rényi random graph model in which a d-face where

there are d+ 1 nodes. A d-SC is pure if every face in d-SC is a subset of a d-face. We

can make use of a d-SC process to understand how the higher-order interaction affects

percolation properties.

3.1.1 Model description

Random graph process is a stochastic process where we have initially N isolated

nodes, and at each step we add a new edge between two uniformly chosen nodes [44].

Similarly, in random d-SC process, where there are initially N isolated nodes, 0-faces,

a d-face is added with probability p and downward closure among those d+ 1 of ran-

domly selected nodes one at a time till the final time,N . For a term downward closure,

it means a simultaneous occupation of all the subsets of the d-face. At the end of the
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Figure 3.1: A sample of the largest cluster in pure 2-SC, withN = 1000, near the tran-
sition point. Every d-face is connected to one another through only one node, which
forms a tree-like structure.

process, there are totally F of d-faces which equals to pN . It is of such a big impor-

tance to track of the evolution of the cluster size distribution during the process, which

enables us to understand percolation properties of the system. Here we define a cluster

as a set of nodes connected through d-faces. To understand this mathematically, we

can build the rate equation of the cluster size as follows.

dNs

dt
= p
[ ∑
i+j+···=s

iNi

N

jNj

N
· · · − (d+ 1)

sNs

N

]
, (3.1)

where Ns stands for the number of clusters of size s. (3.1) is built under the assump-

tion that every pair of adjacent d-faces shares only one node. This assumption is quite

acceptable in a sense that we only deal with percolation problem which is well de-
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Figure 3.2: A sample of the giant cluster in pure 2-SC, with N = 1000, above the
transition point. Complex configuration of loops made of line boundaries of 2-faces is
present.

fined in the regime of the d-face density of order O(N−1). It is too sparse to make

any configuration in which d-faces join multiple nodes in common. Thus, there are

finite trees only, see Fig. 3.1, until the time of imminent emergence of giant compo-

nent with heterogeneous loop structures as ilustrated in Fig. 3.2. The emergence of the

giant component is highly related to the emergence of heterogeneous loop structures,

or 1-homology in topological language. So the percolation phase transition, somehow,

can be interpreted in the language of homology, namly homological percolation tran-

sition [38]. On one hand, there has been many works done concerning various types of

topological quantities including homology in various kind of SC processes [26,27,47].
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3.1.2 Percolation threshold

We built a rate equation for the cluster number above, and now let us rewrite (3.1) as

dns
dt

=
p

N

[ ∑
i+j+···=s

ini jnj · · · − s(d+ 1) ns

]
, (3.2)

where we define cluster density as ns = Ns/N . The strategy is to induce the most

general solusion of any s. First, for s = 1 we have

dn1

dt
= − p

N
(d+ 1) n1. (3.3)

Initially we have n1(t = 0) = 1, so the solution is of the form,

n1(p, t) = exp(−p(d+ 1)t/N). (3.4)

Plugging (3.4) into (3.2), we have a rate equation for s = d+ 1. The rate equation for

s = d+ 1 is
dnd+1

dt
=

p

N

[
nd+1

1 − (d+ 1)(d+ 1) nd+1

]
, (3.5)

and we obtain

nd+1(p, t) = Cd+1

( t
N

)
exp(−p(d+ 1)2t/N). (3.6)

We can generalize the solutions for any s as follows,

ns(p, t) = Cs

( t
N

) s−1
d

exp(−p(d+ 1)st/N), (3.7)

where C ′ss are coefficients independent on time t, which is utilized for generating

functions,

f(x) =
∑
s

sCsx
s, (3.8)

g(x) =
∑
s

Csx
s. (3.9)
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In fact, all the p-dependent terms are in the coefficientsCs as the remaining p-dependent

portion of the exponential term is vanished later on. With (3.8) and (3.9), we can reex-

press (3.2) as

( 1

td
− p(d+ 1)

N

)
f − 1

td
g =

p

t
fd+1 − (d+ 1)

p

N
f. (3.10)

Taking x d
dx on both side of (3.10) at t = N , we have

df

dx
=

f

x(1− pd(d+ 1)fd)
. (3.11)

For non-percolating phase, all clusters are finite, so f(1) =
∑

s sns = 1, by which

(3.11) reduces to

f ′(1) = 〈s〉 =
1

1− pd(d+ 1)
. (3.12)

This explicitly tells us that the mean cluster size, 〈s〉 = 1 at p = 0, same as the

initial state, and 〈s〉 → ∞ as p → 1
d(d+1) , which means the percolation threshold,

pc = 1
d(d+1) where the mean cluster size diverges. This result is consistent with the

result discussed in [34].

3.1.3 Cluster size distribution

It can be easily shown that the critical exponent, τ , for the cluster size distribution of

a pure d-SC at p = pc is the same as that of Erdős–Rényi random graph model. (3.11)

can be rewritten in integral form as

∫ f(x)

f(x0)

df

f
(1− pd(d+ 1)fd) =

∫ x

x0

dx x, (3.13)

where the lower bound can be neglected later on. Thus we simply have

exp(x2/2) = f exp(−p(d+ 1)fd). (3.14)
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Figure 3.3: Evolution of n3(p, t) for d = 2 andN = 106. Though the simulation result
(solid line) is from single sample only, it is in good agreement with the analytical result
(dashed line).

Now the coefficient for any s in f(x), sCs, can be evaluated by using Lagrange inver-

sion formula,

sCs =
1

2πi

∮
dz

f

zs+1

=
p(d+ 1)[ps(d+ 1)]

s−1
d
−1

( s−1
d )!

.

(3.15)

We can check how much the result is consistent with the simulation result by seeing

Fig. 3.3. When it comes to the critical behavior of the cluster size distribution for

sufficiently large s, s� 1,

Cs '
1√
2πd

s−5/2[pd(d+ 1)]
s−1
d exp(s/d). (3.16)
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Figure 3.4: Plot of cluster density, ns, for N = 106 at p = pc. Symbols are placed by
the simulation data where the number of samples is 103. The slope of the guide line
(dashed line) is −5/2.

Then, we have

ns(p, t = N) ' 1√
2πd

s−5/2[pd(d+ 1)]
s−1
d exp

(s
d

(1− pd(d+ 1))
)
, (3.17)

where we obtain that at p = pc(=
1

d(d+1))

ns ∼ s−5/2, (3.18)

which is displayed in Fig. 3.4 for the case of d = 2. As a matter of fact, the critical

exponent τ is not changed in any d.

In this section, we proposed a model for static simplicial complex where the num-

ber of nodes are fixed, N . The novel approach that we made for the static simplicial

complex enalbes to obtain the analytic results for both the threshold and the cluster
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size distribution that are consistent with the simulation results. We specify the exact

threshold, pc, where the giant component emerges and the critical exponent, τ for any

d. One can easily find that when d = 1, the results converge to those of Erdős–Rényi

model.

Meanwhile, a scale-free pure d-SC is also be introduced in [29], generalizing a

static scale-free network. Scale-free d-SC process is the same as random d-SC process

except for choosing each node, i, with the probability, pi,

pi ∼ i−α, (3.19)

where i is an index of each node, i ∈ [1, N ]. The resulting d-SC reveals scaling be-

havior in facet degree distribution defined in Chapter 2, as follows.

Pf (m) ∼ m−γf , (3.20)

with the exponent

γf =
1 + α

α
. (3.21)

Though the macroscopic behaviors of higher-order versions of complex networks

reveal not much change, behaviors of higher-order version of dynamical processes

defined on such structures change. These are thoroughly examined in Chapter 4.

3.2 Percolation of growing simplicial complex

All the real systems do not always leave their sizes, N , the same, but keep changing

their sizes in time. Elements are newly added into the systems at some moment, or

maybe removed from the systems naturally. So the static structures have limitation, to

some extent, to play a role of references to describe such systems by tuning their sizes

in a synthetic fashion. Here, the need for growing reference arises.
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3.2.1 Model description

A pure d-dimensional growing simplicial complex, d-GSC, is a higher-order version of

a growing network which have been representative framework for such systems. The

most minimal picture for GSC process is define as follows. i) A new d′-face is added

into the system, generally d′ = 0. ii) With probability p, a new d-face is occupied

among those existing nodes with downward closure. For d = 1 this reduces to the

growing networks introduced in [42]. This also have percolation phase transition, but

with different type of transition.

G ∼ exp(−α(p− pc)−β), (3.22)

which we call percolation phase transition of infinite-order. As for the case of static

one, we can manually impose scale-free property on a GSC by selecting those existing

nodes preferentially [43]. So the rate equation of the cluster size of the model that

covers them all reads,

dNs

dt
= p
[ ∑
i+j+···=s

QiNiQjNj . . .
]
− (d+ 1)QsNs + δ1s, (3.23)

where Qs stands for the probability for selecting any node in cluster of size s.

Qs =

s∑
n=1

pn =

s∑
n=1

mn + a∑N
n′=1mn′ + a

=
(d+ 1)(s− 1)/d+ sa

(d+ 1)pt+Na
, (3.24)

where we require that pn is proportional to facet degree, m, with initial attractiveness,

a. Facets of a SC is a minimal set of maximal faces of an SC. In this model, facet

degree of a node is nothing but the number of d-faces by which it is joined.
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3.2.2 Percolation threshold

We can specify the percolation threshold, pc, of d-dimensional GSG for any d with the

help of generating function approach. From the fact that N = t, we can rewrite (3.23)

as,

ns = p
[ ∑
i+j+···=s

qiniqjnj . . .
]
− (d+ 1)qsns + δ1s, (3.25)

where ns = Ns/N is a density of cluster of size s, and qs = NQs = s(d+1+ad)−(d+1)
d(d+1)p+ad .

Now let us define two generating functions, f(x) =
∑

s snsx
s and g(x) =

∑
s nsx

s.

In a non percolating phase all the clusters are finite, so f(1) =
∑

s sns = 1, whereas,

in a percolating phase, f(1) = 1 − G. With these two functions, we can express

(3.25). To do so, it is convenient when we introduce a generating function, h(x), in a

composite form of those two functions, f(x) and g(x).

h(x) =
(d+ 1) + da

d(d+ 1)p+ da

(
f(x)− d+ 1

(d+ 1) + da
g(x)

)
, (3.26)

which is nothing but the generating function,
∑

s qsnsx
s. Thus, in a non percolating

phase, h(1) = 1. Now we can express (3.25) in an integrated form as

f(x) = x− p(d+ 1)x
dh(x)

dx
+ px

dhd+1(x)

dx

= x+ p(d+ 1)xh′(x)(hd(x)− 1).

(3.27)

g(x) is now rewritten as

g(x) =

∫ x

0
dx′

f(x′)
x′

= x− p(d+ 1)h(x) + phd+1(x).

(3.28)
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Plugging (3.27) and (3.28) into (3.26), we can get a non-trivial equation for h(x) and

h′(x) as follows.

h(x) =
(d+ 1) + da

d(d+ 1)p+ da

[
x+ p(d+ 1)xh′(x)(hd(x)− 1)

− (d+ 1)

(d+ 1) + da
(x− p(d+ 1)h(x) + phd+1(x))

]
.

(3.29)

Rearrange (3.29) by placing h′(x) on the left hand side.

h′(x) =
(da− p(d+ 1))h(x)− dax+ p(d+ 1)hd+1(x)

p(d+ 1)((d+ 1)) + da)x(hd(x)− 1)
(3.30)

In a non percolating phase, for 0 < p < pc, (3.30) should hold at least for x = 1. By

using h(1) = 1 and L’Hőpital’s theorem as x → 1, we can get an equation for h′(x)

as

h′(1) =
(da− p(d+ 1))h′(1)− da+ p(d+ 1)2h′(1)

pd(d+ 1)((d+ 1) + da)h′(1)
(3.31)

Solving (3.31), we can obtain

h′(1) =
(da+ pd(d+ 1))±

√
(da+ pd(d+ 1))2 − 4pd(d+ 1)((d+ 1) + da)da

2pd(d+ 1)((d+ 1) + da)
(3.32)

The discriminant in (3.32), D = (da + pd(d + 1))2 − 4pd(d + 1)((d + 1) + da)da,

should be positive for a non percolating phase, otherwise D < 0 for a percolating

phase, which implicate that solutions for D = 0 gives the percolation transition point,

pc.

pc =
(−a+ 2a(d+ 1) + 2a2d)±

√
(−a+ 2a(d+ 1) + 2a2d)2 − a2

d+ 1
(3.33)

To test validity of the solution for pc, we can compare the result for d = 1 and a→∞
with that of growing random network [42]. The solution with minus sign is relevant as

only it can reduce to the well know value, pc = 1/8.

Meanwhile, in a percolating phase, p > pc, there is the component which is no
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longer finite, and is of O(N). As a recap, this is quantified by generating function, f ,

which is G = 1 − f(1). Plugging (3.28) for n(x) into (3.26) gives the equation for

f(x), and when x+ 1, we have

f(x) =
d(d+ 1)p+ da

(d+ 1) + da
h(x)+

d+ 1

(d+ 1) + da
(x−p(d+1)h(x)+phd+1(x)). (3.34)

And by taking derivative of f(x) with respect to x, we obtain

f ′(x) =
d(d+ 1)p+ da

(d+ 1) + da
h′(x)

+
d+ 1

(d+ 1) + da
(1− p(d+ 1)h′(x) + p(d+ 1)h′(x)hd(x)).

(3.35)

Thus, the expression for both G and 〈s〉 reads

G =


0 for p < pc,

1− d(d+1)p+da
(d+1)+da h(1)− d+1

(d+1)+da(1− p(d+ 1)h(1) + phd+1(1)) for p > pc,

(3.36)

〈s〉 =


d(d+1)p+da
(d+1)+da

(
(a+p(d+1))−

√
(a+p(d+1))2−4pa(d+1)((d+1)+da)

2p(d+1)((d+1)+a) + d+1
d(d+1)p+da

)
for p < pc,

d(d+1)p+da
(d+1)+da h

′(1) + d+1
(d+1)+da(1− p(d+ 1)h′(1) + p(d+ 1)h′(1)hd(1)) for p > pc,

(3.37)

and we can evaluate h(1) and h′(1) for p > pc from (3.30).

3.2.3 Percolation phase transition

In this subsection, we derive the explicit form ofG in terms of p near the critical point.

First we redefine h(x) as 1−h(x). Then, around x = 1 and p = pc, Eq. (3.29) become

ϕ′(y)ϕ(y)− ϕ(y) ' a/((d+ 1)p)

(1 + a/((d+ 1)p))2
(y1−(d+1+ad) − y), (3.38)

where y ≡ x−1/(d+1+ad) and ϕ(y)/y ≡ h(x)/(1+a/((d+1)p)). This approximation

is valid only around x = 1 and p = pc for small G. When we set y = 1, one can get
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ϕ(1) = 0 for the normal phase, while ϕ(1) 6= 1 and ϕ′(1) = 0 for the percolation

phase. Moreover, f(x) in (3.27)

f(x) = x+ (d+ 1)px
dh(x)

dx
(1− (1− h(x))d)

' x+ d(d+ 1)pxh′(x)h(x), (3.39)

around x = 1 and p = pc. In this regime, the giant cluster size G, defined as G =

1− f(1), is written as

G = 1− f(1) =
d(d+ 1)p

d+ 1 + ad

(
1 +

a

(d+ 1)p

)2
(1− ϕ(1))ϕ(1) (3.40)

Now, let us solve the Eq. (3.38) to find ϕ(1). Near y = 1 and p = pc, this equation

is reduced to

ϕ′(y)ϕ(y)− ϕ(y) ' −(
1

4
+ α)(y − 1), (3.41)

where α is defined as α ≡ (a/((d + 1)p))(d + 1 + ad)/(1 + a/((d + 1)p))2 − 1/4.

The critical point pc(d, a) lies on the (d, a)-plane satisfying the condition of α = 0.

Substituting (y − 1)ψ for ϕ, Eq. (3.41) become

(y − 1)ψ
dψ

dy
= −

[(
ψ − 1

2

)2
+ α

]
, (3.42)

and the solution is written as

ln (C(y − 1)) = −
∫

ψdψ

(ψ − 1/2)2 + α
, (3.43)
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where C is a integration constant. For α > 0, the solution of Eq. (3.43) becomes

ln (C(y − 1)) = −1

2
ln
(( ϕ

y − 1
− 1

2

)2
+ α

)
− 1

2
√
α

[π
2

+ arctan
( 1√

α

( ϕ

y − 1
− 1

2

))]
, (3.44)

thus,

C(y − 1) =
(( ϕ

y − 1
− 1

2

)2
+ α

)−1/2

× exp
[
− 1

2
√
α

[π
2

+ arctan
( 1√

α

( ϕ

y − 1
− 1

2

))]]
. (3.45)

As y → 1 and α → 0, satisfying 1 � y − 1 � exp [−π/(2√α)], the Eq. (3.45) is

reduced to

ϕ(1) =
1

C
exp

(
− π

2
√
α

)
. (3.46)

Substituting this into Eq. (3.40), one finally arrives at

G ' d(d+ 1)p

d+ 1 + ad

(
1 +

a

(d+ 1)p

)2 1

C
exp

(
− π

2
√
α

)
,

=
4ad

C
exp

(
− π

2
√
α

)
,

=
4ad

C
exp

[
−π

2

[a(d+ 1 + ad)

(d+ 1)p

(
1 +

a

(d+ 1)p

)−2
− 1

4

]−1/2]
, (3.47)

for p > pc around p = pc in the percolation phase.

For α = 0, the solution of Eq. (3.43) satisfies

4
[
ln
(

2 +
4ϕ

1− y
)

+
2

2 + 4ϕ
1−y

]
= C − 4 ln (y − 1), (3.48)
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where C is a integral constant. In other form, this equation becomes

ln
( 1

2 + 4ϕ
1−y

)
− 2

2 + 4ϕ
1−y

= ln [C ′(y − 1)], (3.49)

where C ′ is a new constant. Thus, one can get

ϕ(y) =
y − 1

2

(
1 +

1

W [−C ′′(y − 1)]

)
, (3.50)

whereC ′′ is a new constant andW (z) is the Lambert function satisfyingW (z) exp [W (z)] =

z. Using the asymptotic form W (−z) ' ln z for |z| � 1, this solution around y = 1

is reduced to

ϕ(y) ' y − 1

2

(
1 +

1

ln [C ′′(y − 1)]

)
. (3.51)

Thus, when y = 1, one get ϕ(1) = 0 and the giant cluster size G becomes zero at the

critical point p = pc. This is consistent with the fact that the value of Eq. (3.47) for

p > pc becomes zero as p goes to pc.

For α < 0, the solution of Eq. (3.43) becomes

ln (C(y − 1)) =
( 1

4
√−α −

1

2

)
ln
∣∣∣ψ − 1

2
+
√
−α
∣∣∣

+
( −1

4
√−α −

1

2

)
ln
∣∣∣ψ − 1

2
−
√
−α
∣∣∣, (3.52)

where C is a constant. By considering the case of the normal phase for p < pc, The

value of ϕ(1) should be zero at y = 1, because giant cluster is absent. In this case, a

valid solution is written as

C(y − 1)

=
(1

2
−
√
−α− ϕ

y − 1

) 1
4
√−α−

1
2
(1

2
+
√
−α− ϕ

y − 1

) −1
4
√−α−

1
2

, (3.53)
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for ϕ/(y − 1) < 1/2−√−α. This equation can be rewritten as

C ′(y − 1)
4
√−α

1−2
√−α

=
(1

2
−
√
−α− ϕ

y − 1

)(
1− 2

2
√−α+ 1

ϕ

y − 1

)−1−2
√−α

1−2
√−α

' 1

2
−
√
−α− 2ϕ2

(y − 1)2(1− 2
√−α)

, (3.54)

where C ′ is a new constant. Around y = 1, one can get

ϕ2

(y − 1)2
=
(1

2
−
√
−α
)(1

2
−
√
−α− C ′(y − 1)

4
√−α

1−2
√−α

)
. (3.55)

Thus,

ϕ(y) = ±(y − 1)

√(1

2
−
√
−α
)(1

2
−
√
−α− C ′(y − 1)

4
√−α

1−2
√−α

)
. (3.56)

The only plus sign of Eq. (3.56) is valid because the value of ϕ should be always

positive. Finally one get,

ϕ(y) ' (y − 1)
(1

2
−
√
−α+ C ′′(y − 1)

4
√−α

1−2
√−α

)
, (3.57)

where C ′′ is a new constant. It confirm that ϕ(1) = 0 when y = 1, and then the

corresponding value of the giant cluster size G becomes zero in the normal phase for

p < pc.

In summary, the explicit form of the giant cluster size G, around p = pc, is written

as

G =


0 for p < pc,

4ad
C exp

[
−π

2

[
a(d+1+ad)

(d+1)p

(
1 + a

(d+1)p

)−2
− 1

4

]−1/2]
for p ≥ pc,

(3.58)

. where pc is the critical point satisfying α = 0.
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Figure 3.5: Plots of τ versus p in growing scale-free simplicial complexes for (a) d = 1
(link), (b) 2 (triangle), (c) 3 (tetrahedron), and (d) 4 (5-cell). Red (a = 0.5), green
(a = 1.0), and blue (a = 2.0) symbols represent the results obtained from measures
by solving numnerically the rate equation of cluster size distribution. Each solid line
is the analytic solution τ = 3 + 4

√−α/(1− 2
√−α). For each plot, dotted lines from

the left represent the critical points for a = 0.5, 1.0, and 2.0.

3.2.4 Degree distributions

In this subsection, we show that the graph and facet degree distributions of d-GSC are

in power-law with characteristic exponents, γg and γf . Given a fixed facet density, p,

we can construct a rate eqaution for the probability, q(m, t′, t), for a node added at

time t′ to have facet degree, m, at time t, where t′ can be interpreted as a label of each

node. At the moment when a new d-face is occupied with probability p, the probability
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for a node to join r new d-faces is

ur =
(

(d+ 1)
m+ a

pt(d+ 1) + aN(t)

)r(
1− (d+ 1)

m+ a

pt(d+ 1) + aN(t)

)1−r
, (3.59)

where we have r = 0 or 1 in our model. With this, we can write the evolution of

q(m, t′, t) as

q(m, t′, t+ 1) = p
[
(d+ 1)

( m− 1 + a

pt(d+ 1) + aN(t)

)
q(m− 1, t′, t)

+
(

1− (d+ 1)
( m+ a

pt(d+ 1) + aN(t)

))]
+ (1− p)q(m, t′, t)

(3.60)

Summing over all nodes, Pf (m, t) =
∑

t′ q(m, t
′, t)/t, we have

N(t+ 1)Pf (m, t+ 1)− q(m, t+ 1, t+ 1)

= p
[( m− 1 + a

pt/N(t) + a/(d+ 1)

)
Pf (m− 1, t) +

(
N(t)− m+ a

pt/N(t) + a/(d+ 1)

)
× Pf (m, t)

]
+ (1− p)N(t)Pf (m, t) +O(

P

N
).

(3.61)

In the limit, t→∞, (3.61) is rewritten as

d(tPf (m, t))

dt

=
( m− 1 + a

1 + a/(p(d+ 1))

)
Pf (m− 1, t)−

( m+ a

1 + a/(p(d+ 1))

)
Pf (m, t) + δ0m,

(3.62)

where δ0m = q(m, t+ 1, t+ 1) because a node added at t+ 1 has zero facet degree at

t+ 1. Seeking for a seady state solution, dP/dt = 0, we then have

(
1+

a

p(d+ 1)

)
Pf (m)+(m+a)Pf (m)−(m−1+a)Pf (m−1) =

(
a+

a

p(d+ 1)

)
.

(3.63)
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Now we introduce a generating function, Q(z), of facet degree distribution,

Q(z) =
∞∑
m=0

Pf (m)zm. (3.64)

Thus (3.63) is now expressed as

z(1− z)dQ
dz

+ a(1− z)Q+
(

1 +
a

p(d+ 1)

)
Q =

(
1 +

a

p(d+ 1)

)
. (3.65)

The solution, around z = 0, of the differential (3.65) is the hypergeometric function,

Q(z) =
1 + a/(p(d+ 1))

1 + a+ a/(p(d+ 1))
2F1(1, a; 2 + a+

a

p(d+ 1)
; z), (3.66)

where the hypergeometric fuction is

2F1(a, b; c; z) =
∞∑
m=0

1

m!

Γ(m+ a)

Γ(a)

Γ(m+ b)

Γ(b)

Γ(c)

Γ(m+ c)
. (3.67)

So (3.66) is then

Q(z) =

∞∑
m=0

(
1 +

a

p(d+ 1)

)
× Γ(1 + a+ a/(p(d+ 1))

Γ(a)

Γ(m+ a)

Γ(2 +m+ a+ a/(p(d+ 1))
zm,

(3.68)

where the summand is facet degree distribution. For sufficiently large m, Pf (m) can

be approximated as a simple form,

Pf (m) '
(

1 +
a

p(d+ 1)

)Γ(1 + a+ a/(p(d+ 1))

Γ(a)
(m+ a)−(2+a/(p(d+1))), (3.69)

which means that the power-law exponent is obtained as γf = 2 + a/(p(d + 1)).

Similarly, for graph degree distribution, Pg(k), we can write the evolutionary equation
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by simply modifying (3.60),

q(k, t′, t+ 1) = p
[
(d+ 1)

( k − d+ a

pt(d+ 1) + aN(t)

)
q(k − d, t′, t)

+
(

1− (d+ 1)
( k + a

pt(d+ 1) + aN(t)

))]
+ (1− p)q(k, t′, t),

(3.70)

which indicate that when a d-face is newly occupied with probability p, each selected

node gets additive degree of d. Thus,

Pg(k) =
(

1 +
a

p(d+ 1)

)Γ(1 + a+ a/(p(d+ 1))

Γ(a)

Γ(k/d+ a)

Γ(2 + k/d+ a+ a/(p(d+ 1))
.

(3.71)

In large k limit,

Pg(k) =
(

1 +
a

p(d+ 1)

)Γ(1 + a+ a/(p(d+ 1))

Γ(a)
(k/d+ a)−(2+a/(p(d+1))), (3.72)

which reveals the same sacling form of graph degree distribution, Pg(k) ∼ k−γg ,

where γg = 2 + a/(p(d+ 1)).

3.2.5 Cluster size distribution

As we derived the cluster size distribution for d-SSC, we can do the same prodedure

for d-GSC as well. Using the Lagrange inversion formula, we have

sns =
1

2πi

∮
dz

f

zs+1
= (3.73)

where the contour c is a unit circle and counterclockwise closed path encircling the

point z = 0. Substituting Eq. (3.39) into Eq. (3.73), Eq. (3.73) becomes then

ns = δ1s +
d(d+ 1)p

2

∮
c

dz

2πi
h2(z)z−k−1. (3.74)
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Thus we obtain

ns = δ1s −
d(d+ 1)p

2
(d+ 1 + ad)

(
1 +

a

(d+ 1)p

)2

×
∫
c′

dy

2πi
ϕ2ys(d+1+ad)−3, (3.75)

where c′ is the new integration contour and y ≡ z−/(d+1+ad) and ϕ(y)/y ≡ h(z)/(1+

a/((d + 1)p)). Because there is a singularity at y = 1, we change the integration

variable y into 1 + u for small u. For large s, Eq. (3.75) becomes

ns =
d(d+ 1)p

2
(d+ 1 + ad)

(
1 +

a

(d+ 1)p

)2

×
∫
c′′

du

2πi
ϕ2(1 + u)es(d+1+ad))u, (3.76)

where c′′ is the new integral contour.

When p = pc, by using Eq. (3.51), one get the cluster size distribution

ns '
d2(d+ 1)p(1 + a/((d+ 1)p))2

4(d+ 1 + ad)2

1

s3 ln2 s

=
ad2

d+ 1 + ad

1

s3 ln2 s
, (3.77)

for large s at p = pc. The coefficient changes depending on the values of d and a,

however, the corresponding critical exponent τ is always 3 at the critical point.

In the same way, when p < pc, by using Eq. (3.57), one get

ns ∼ s−3−4
√−α/(1−2

√−α), (3.78)

where α is defined as α ≡ (a/((d + 1)p))(d + 1 + ad)/(1 + a/((d + 1)p))2 − 1/4.

Thus, the critical exponent τ is τ = 3 + 4
√−α/(1− 2

√−α) for p < pc.

45



3.3 Homological percolation of simplicial complex models

There are several quantities which share the same notion of global order that the giant

component of the system is supposed to depict, such as the mean distance, loop statis-

tics, and so on. In many cases, there are difficulties to understand such global orders of

the real systems with just the giant component. In one hand, it is much more easier to

understand the orders of the real systems when we are in short of well refined samples,

but we have tools to calculate several topological features. For instance, the number

of loops is more obvious for quantification of the global order rather than the size of

the largest component which we can hardly determine if it is O(N). It is not only easy

to count, but also highly related to the size of the giant component as is that the max-

imal tree can not grow as a tree beyond the very edge of the system, which leads to

intra-cluster linkages to form many loops. We call this the first Betti number, and this

is denoted as B1 in the frame of homology. In this chapter, we mainly focus on both

analytic and numerical analysis for the emergence of the first Betti number both in

d-dimensional static and growing simplicial complex, d-SSC and d-GSC respectively.

3.3.1 The first Betti number of d-GSC

First, we consider the total facet degree of the system.

M(t) = (d+ 1)F (t) =

N(t)∑
i=1

mi(t) (3.79)

where F (t) is the total number of d-faces in the system. In GSC process, we occupy

every d-face in preferential attachment scheme, pi ∼ mi+a∑
j mj+a

, where a is an initial

attractiveness. Thus, the probability, p~n, for a set of d + 1 nodes to be connected is

written as

p~n =

∏d+1
i (mni(t) + a)

(M(t) + aN(t))d+1
. (3.80)
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Let us now define a generating function, f , as

f(N,M ;x, t) =
1

N

〈
δ(N(t)−N)δ(M(t)−M)

N∑
i=1

xsi(t)
〉
, (3.81)

where si is the size of the cluster which i belongs to. This evolves in time as

f(N,M ;x, t+ dt) = (1− dt− pdt)f(N,M ;x, t) +
dt

N

〈
δ(N(t) + 1−N)

× δ(M(t)−M)

N∑
i=1

xsi(t)
〉

+
pdt

N

〈
δ(N(t)−N)δ(M(t) + (d+ 1)−M)

×
∑
~n

∏d+1
i=1 (mni(t) + a)

(M(t) + aN(t))d+1

{ N∑
i=1

xsi(t) −
[ N∑
m=1

Smn1(1− Smn2) . . . (1− Smnd+1
)

×
(
xsn1 (t) − xsn1 (t)+sn2 (t)+···+snd+1

(t)
)

+
N∑
m=1

(1− Smn1)Smn2 . . . (1− Smnd+1
)

×
(
xsn2 (t) − xsn1 (t)+sn2 (t)+···+snd+1

(t)
)

+ · · ·+
N∑
m=1

(1− Smn1)(1− Smn2) . . . Smnd+1

×
(
xsnd+1

(t) − xsn1 (t)+sn2 (t)+···+snd+1
(t)
)]}〉

,

(3.82)

where Sij stands for a connectivity matrix,

Sij =


1 if i and j are in the same cluster ,

0 otherwise.
(3.83)
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As is the case that we only consider tree-like SCs, all the factors, (1− S), in (3.82) is

negligible in the thermodynamic limit. Then,

f(N,M ;x,t+ dt) = (1− dt− pdt)f(N,M ;x, t) + (1− 1

N
)

dt

N − 1

×
〈
δ(N(t) + 1−N)δ(M(t)−M)

N∑
i=2

xsi(t)
〉

+
dt

N

〈
δ(N(t) + 1−N)δ(M(t)−M)

〉
x

+ pdtf(N,M − (d+ 1);x, t)− p(d+ 1)dt

N(M − (d+ 1) + aN)

×
〈
δ(N(t)−N)δ(M(t) + (d+ 1)−M)

N∑
j=1

(mj + a)sj(t)x
sj(t)

〉
+

p(d+ 1)dt

N(M − (d+ 1) + aN)d+1

〈
δ(N(t)−N)δ(M(t) + (d+ 1)−M)

×
( N∑
j=1

(mj + a)sj(t)x
sj(t)

)( N∑
j=1

(mj + a)xsj(t)
)d〉

.

(3.84)

Using the relations,

N(t)∑
i=1

mi(t)si(t)x
si(t) =

d+ 1

d

N(t)∑
j=1

(sj(t)− 1)xsj(t) (3.85)

N(t)∑
i=1

mi(t)x
si(t) =

d+ 1

d

N(t)∑
j=1

(
1− 1

sj(t)

)
xsj(t) (3.86)
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we can rewrite (3.86) as

f(N,M ;x,t+ dt) = (1− dt− pdt)f(N,M ;x, t) + dt(1− 1

N
)f(N − 1,M ;x, t)

+
1

N
f(N,M ; 1, t)x+ pdtf(N,M − (d+ 1);x, t)

− p(d+ 1)dt

N(M − (d+ 1) + aN)

〈
δ(N(t)−N)δ(M(t) + (d+ 1)−M)

×
N∑
j=1

((d+ 1

d
+ a
)
sj(t)−

d+ 1

d

)
xsj(t)

〉
+

p(d+ 1)dt

N(M − (d+ 1) + aN)d+1

×
〈
δ(N(t)−N)δ(M(t) + (d+ 1)−M)

×
( N∑
j=1

((d+ 1

d
+ a
)
sj(t)−

d+ 1

d

)
xsj(t)

)

×
( N∑
j=1

((d+ 1

d
+ a
)
− d+ 1

dsj(t)

)
xsj(t)

)d〉
.

(3.87)

t
∂f

∂t
+ f +

p(d+ 1)

p(d+ 1) + a

((d+ 1

d
+ a
)
x
∂f

∂x
− d+ 1

d
f
)
− p(d+ 1)

(p(d+ 1) + a)d+1

×
((d+ 1

d
+ a
)
x
∂f

∂x
− d+ 1

d
f
)((d+ 1

d
+ a
)
f − d+ 1

d
g
)d

= x

(3.88)

where g(x, t) =
∫ x

0 dyf(y, t)/y. Now (3.88) can be written as

t
∂g

∂t
+ g +

p(d+ 1)

p(d+ 1) + a

((d+ 1

d
+ a
)
f − d+ 1

d
g
)

− p(d+ 1)

(p(d+ 1) + a)d+1

((d+ 1

d
+ a
)
f − d+ 1

d
g
)d+1

= x

(3.89)

From the fact that there are no loops in finite clusters, we need to count the number of

loops in giant component only. Using the Euler characteristic which is an alternating

sum of any finite topological quantities, we can obtain the number of loops, the first
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Betti number.

χ = F0 − F1 + · · · = B0 −B1 + . . . . (3.90)

Though the relation (3.90) is simple enough, it is still annoying to consider all the faces

of dimension 1 < k < d. So we can effectively map a SC to a cell complex of which

constituents are 0-, 1-, and 2-cells. Now let us rewrite (3.90) as

χ = C0 − C1 + C2 = B0 −B1, (3.91)

where C0, C1, C2 are the number of nodes, edges, (d+ 1)-polygons. This map is valid

since we only have tree-like SCs, and can be interpreted as that there are loops only

made of line boundary of (d+ 1)-polygons. Now we get

C0 = t(1− f(1)), (3.92)

C1 = t(d+ 1)(p− 1

d
f(1) +

1

d
g(1)), (3.93)

C2 = t(p− 1

d
f(1) +

1

d
g(1)). (3.94)

Thus, the first Betti number reads

B1/t = b1 ' g(1)− (1− pd), (3.95)

in the limit of t→∞. Rearranging (3.95) with respecto g(1), and pluging it into (3.89)

at x = 1, we get

b1 + (1− pd) +
p(d+ 1)

p(d+ 1) + a

((d+ 1

d
+ a
)

(1−G)− d+ 1

d
(b1 + (1− pd))

)
− p(d+ 1)

(p(d+ 1) + a)d+1

((d+ 1

d
+ a
)

(1−G)− d+ 1

d
(b1 + (1− pd))

)d+1
= 1,

(3.96)

and
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Figure 3.6: Plot of b̃1 versus the G̃ for (a) d = 3, and (b) d = 4. The slopes of the
guidelins both in (a) and (b) are the same, b̃1 ∼ G̃2.
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b1 − pd+ p(d+ 1)
[
1− G((d+ 1) + da) + b1(d+ 1)

pd(d+ 1) + da

]
− p
[
1− G((d+ 1) + da) + b1(d+ 1)

pd(d+ 1) + da

]d+1
= 0.

(3.97)

We finally get

b1 '
pd(d+ 1)

2

( (d+ 1) + da

pd(d+ 1) + da
G
)2

(3.98)

in the vicinity of percolation phase transition. This is in good agreement with the result

of numerical simulation, see Fig. 3.6. This equation shows that the first Betti number

is not just of the same functional form with G, and this can serve the percolation phase

transition of the system as well. We call this a homological percolation transition of

the first Betti number,

b1 ∼ exp(−α1(p− pc)β1). (3.99)

3.3.2 The first Betti number of d-SSC

In the previous chapter, we derived the relation between f and g, from the rate equation

for d-SSCs that we built earlier. Let us invoke

f − g = pd fd+1, (3.100)

which can be used to obtain the number of loops. To count the number of loops made

of very edges of d-faces, we should count the number of nodes, C0, the number of

edges, C1, and the number of d-faces, C2. Everything is the same as that of d-GSC, so

all we need to do is just plugging g(1) of (3.95) into (3.100) at x = 1. So we have

b1 = pd(1− (1−Gd+1))−G

≡ ξ(G)

' (pd(d+ 1)− 1)G,

(3.101)
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Figure 3.7: Plot of b1 versus the ξ(G) for (a) d = 2, and (b) d = 3. The slopes of the
guidelins both in (a) and (b) are the same, which are one.
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which is numerically verified in Fig. 3.7. Now let p = pc + δp, then we have

b1 ∼ δpβ+1, (3.102)

where β is the critical exponent for the ginat component. A homological percolation

transition of the first Betti number is also found in static simplicial complexes, but with

different exponet.

3.4 Remark

We study the models for both static and growing simplicial complexes. In particular,

we investigate percolation transitions in such models and confirm that the critical be-

haviors are the same in any d. This means that the simultaneous group formation has no

effect on long-wavelength behavior of the percolation system no matter what the size

of the group is. It is only to do with the threshold of the system, which is the larger the

size of the group is, the lower the threshold becomes. Furthermore, we obtain analytic

results of the first Betti number in both static and growing models, which is consistent

with the numerical simulation results. In particular, we show that this quantity serves

the critical behavior the giant component reveals.
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Chapter 4

Higher-order interacting oscillators

Kuramoto model is naturally generalized to the model of which constituents are many-

body interacting oscillators on higher-order networks. In this chapter, we show how the

type of synchronization transition changes under such higher-order interaction specif-

ically on uniform hypergraphs.

4.1 Globally coupled higher-order interaction

Consider a rate equation for the phase of each oscillator with a general form of inter-

action,

θ̇j = ωj +K/Nd−1
∑

j1,...,jd−1

G(θj , θj1 , . . . , θjd−1
), (4.1)

which is extended from the kuramoto equation. Note that the subscripts, k’s, of jk in-

dicate that each of them is a k-th neighbor in a certain hyperedge. Since each oscillator

has (N − 1)(N − 2)(' N2) hyperedges considering the order of neighboring oscil-

lators, the interaction strength, K, has to be rescaled by N2 to avoid the divergence

of interaction trem as N → ∞. Compared to the kuramoto dynamics, each oscillator

interacts with the chunks of neighboring oscillators through hyperedges of size d.

4.1.1 Model of bistable synchronization

Consider a model with an interaction of the form,

G(θj , θj1 , . . . , θjd−1
) = sin(θj1 + · · ·+ θjd−1

− θj), (4.2)
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Then, the equation of motion can be written as

θ̇j = ωj +K/Nd−1
∑

j1,...,jd−1

sin(θj1 + · · ·+ θjd−1
− θj). (4.3)

The complex valued order parameter is

R = 1/N
∑
j

eiθj = reiψ, (4.4)

which is utilized to reexpress the Eq. 4.3 as

θ̇j = ωj +KIm(Rd−1e−iθj ),

= ωj +Krd−1sin((d− 1)ψ − θj).
(4.5)

We set ψ = 0 without loss of generality. To further investigate, consider a phase space

distribution, f(ω, θ), which satisfies the continuity equation,

∂

∂t
f +

∂

∂t
(θ̇f) = 0. (4.6)

Because the variable θ is bounded in the range [0, 2π), f(ω, θ) can be expanded by the

Fourier modes.

f(ω, θ, t) =
g(ω)

2π

[
1 +

∞∑
n=1

fn(ω, t)einθ + c.c.
]
, (4.7)

where c.c. stands for complex conjugate of the second term in the bracket. If we

fully understand the dynamical behaviors of each coefficient, fn(ω, t), we have the

entire evolutionary behavior of the f(θ, ω, t). Specifically, if we know the evolution of

f∗1 (ω, t), this gives the evolution of the order parameter by the fact that

∫
f(ω, θ, t)eiθdωdθ = 〈eiθ〉 = R. (4.8)
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Therefore, the only interest of ours is just the dynamical behavior of the first coeffi-

cient, f1(ω, t), as follows,

∂

∂t
f1 + iωf1 +

Krd−1

2
(f2 − 1) = 0. (4.9)

Here comes the ansatz that was originally introduced by Ott and Antonsen to be more

tractable.

f1 = a(ω, t), (4.10)

fn = (a(ω, t))n. (4.11)

Furthermore, if the distribution of intricsic frequency is of Cauchy,

g(ω) =
∆/π

∆2 + ω2
, (4.12)

the order parameter is obtained as

R∗(t) = a(ω = −i∆, t). (4.13)

The rate equation of the order parameter is then,

∂

∂t
r + ∆r +

Krd−1

2
(r2 − 1) = 0. (4.14)

This is in a good agreement with the simulation result, see Fig. 4.1 and Fig. 4.2. Com-

pared to the supercritical behavior, as displayed in Fig. 4.2, the subcritical behavior

shows a clue that there might be a meta-stable state, which means there can be exist

an abrupt change of the order paramete with respect to the coupling strength, K. To

see this, let the time derivative of the order parameter be zero to obtain the steady state

solution of it,

∆r +
Krd−1

2
(r2 − 1) = rF (r,K) = 0. (4.15)
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Figure 4.1: Simulation and analytic results for subcritical dynamics of order parameter
on an all-to-all hypgergraph. The size of the system, N , is 104 with d = 3, ∆ = 0.5,
and K = 2.57. Simulation is performed for the oscillators with intrinsic frequencies
regularly sampled from the distribution.

The roots of the Eq. 4.15 are the steady state solutions of the system, each of which

is either unstable or stable. Especially, the roots of F (r,K) cover the entire non-zero

solutions. We can obtain critical points, where synchronization transition occurs, and

jump sizes for any d. Knowing the fact that the non-zero roots for F (r,K) = 0 exist

only if K ≥ Kc, it is obvious that ∂
∂rF (r,K) = 0, which gives the jump size as

rc =

√
d− 2

d
. (4.16)

Plugging the obtained rc into F (r,K), we can obtain the critical point as follows,

Kc =
1

(d−2
d )

d−2
2 − (d−2

d )
d
2

, (4.17)
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Figure 4.2: Simulation and analytic results for suprecritical dynamics of order pa-
rameter on an all-to-all hypgergraph. The size of the system, N , is 104 with d = 3,
∆ = 0.5, and K = 2.7. Simulation is performed for the oscillators with intrinsic fre-
quencies regularly sampled from the distribution.

which directly shows the critical point for d = 3 as Kc ' 2.598 given the jump size

rc ' 0.577. The critical point where the finite global order emerges is understood as

the point at which a saddle node bifurcation occurs. As K exceeds Kc, both stable

and unstable solutions which are non-zero apppear, which leads to the bistability for

K > Kc. That is why we calculate the solution r of ∂
∂rF (r,K) = 0 to obtain the

critial values of the coupling strength and the order parameter. In the viewpoint of

critical phenomena, we confirm that there exists a hybrid synchronization transition,

which reveals critical behavior right above the explosive change of the global order
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Figure 4.3: Plot of the order parameter, r, with respect to the coupling strength, K, for
d = 4 and ∆ = 0.5. The solid lines are the collection of stable fixed points, whereas
the dashed line is made of unstable fixed points. Bistability holds for K > Kc. Inset
plot indicates that r − rc ' (K −Kc)

1/2.

parameter, δr = rc, such that

r =


rc + C(K −Kc)

β if K ≥ Kc,

0 otherwise,

(4.18)

where β stands for the critical exponent for the order parameter. We can see this by

expanding F (r,K) around r = rc and K = Kc,

F (r,K) = F (rc,Kc) +
∂

∂r
F (r,K)|rc,Kc(r − rc)

+
∂

∂K
F (r,K)|rc,Kc(K −Kc) +

∂2

∂r2
F (r,K)|rc,Kc(r − rc)2 + . . . .

(4.19)
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Since F (rc,Kc) = 0 and ∂
∂rF (r,K)|rc,Kc = 0, considering the first two leading terms

in the vicinity of the critical point, we get

0 = F (r,K) =
∂

∂K
F (r,K)|rc,Kc(K −Kc) +

∂2

∂r2
F (r,K)|rc,Kc(r − rc)2, (4.20)

which leads to

(r − rc) ' (K −Kc)
1/2. (4.21)

Therefore, the value of critical exponent for order parameter, β = 1/2, is universal

for any d larger than two. When it comes to the other critical exponent such as λ for

susceptibility, we can see it as well by introducing the external field,

θ̇j = ωj +K/Nd−1
∑

j1,...,jd−1

sin(θj1 + · · ·+ θjd−1
− θj) + hisin(φi − θi). (4.22)

where hi plays a role of local field exerting on the oscillator i to force it being parallel

to the field. Let us consider a uniform external field,

hi = h (4.23)

φi = φ = ψ, (4.24)

where we let the angular velocity, φ, to be same with ψ for simplicity. Thus, we have

in the rotating frame,

θ̇j = ωj − (Krd−1 + h)sin(θj), (4.25)

which leads to
∂

∂t
r + ∆r +

Krd−1 + h

2
(r2 − 1) = 0. (4.26)

The steady state solution reads

∆r +
Krd−1 + h

2
(r2 − 1) = rF (r,K, h) = 0. (4.27)
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Figure 4.4: Plot of the susceptibility, χ, with respect to the coupling strength, K, for
d = 4 and ∆ = 0.5. The susceptibility diverges as K → K+

c .. The slope of the red
dashed line is -1/2, which means that χ ∼ (K −Kc)

−1/2.

Now, the susceptibility is defined as

χ ≡ ∂r

∂h

∣∣∣
h→0

, (4.28)

which can be easily calculated by taking derivative of f(r,K, h) with respect to h.

∂r

∂h

∣∣∣
h→0

=
r(1− r2)

Krd−1(1 + r2 − (d− 1)(1− r2))
,

∼ (K −Kc)
1/2.

(4.29)

The critical exponent for susceptibility is obtained as γ = 1/2, which leads to ν̄ =

3/2.

There is another approach to obtain (4.15), which is a kind of static method. From

62



(4.5), the phase of each oscillator can be obtained as

θ∗ = sin−1
[ ω

Krd−1

]
(4.30)

which is from the fact that all the locked oscillator have their phase velocities as θ̇ = 0

in the rotating frame. The intrinsic frequencies of the locked oscillators are bounded

in [−Krd−1,Krd−1]. Despite we take the full spectrum of a phase space distribution,

f(ω, θ), we consider a distribution of locked oscillators, flocked(ω, θ). Since the locked

oscillators are in state of θ∗(ω), flocked(ω, θ) can be written as

flocked(ω, θ) = g(ω)δ(θ − θ∗(ω)), (4.31)

where δ(· · · ) stands for the dirac-delta function. Now from (4.8) we have

r =

∫
dωdθg(ω)δ(θ − θ∗(ω))

=
Krd−1∆

π

∫ π
2

−π
2

dθ
cos2(θ)

(Krd−1sin(θ))2 + ∆2

=

√
(Krd−1)2 + γ2 − γ

Krd−1

(4.32)

Thus, the self-consistency function reads

H(r,K) =

√
(Krd−1)2 + γ2 − γ

Krd−1
− r, (4.33)

which is consistent with the result obtained in (4.15).

4.1.2 Model of multistable synchronization

Another model of our concern is of an interacting function of the form,

G(θj , θj1 , . . . , θjd−1
) = sin(θj1 + · · ·+ θjd−1

− (d− 1)θj), (4.34)
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where the arguments in the sine function are diffusive. Then, the equation of motion is

written as

θ̇j = ωj +K/Nd−1
∑

j1,...,jd−1

sin(θj1 + · · ·+ θjd−1
− (d− 1)θj). (4.35)

Thus, the mean-field equation reads,

θ̇j = ωj +Krd−1sin((d− 1)ψ − (d− 1)θj), (4.36)

where we use the order parameter same with that of the former. The only difference

with the former is (d − 1) factor of θj , which directly causes the multistability of the

system. For being locked into the synchronized state, each oscillator j has to be in one

of the fixed states,

θ∗1 =
1

d− 1
sin−1

[ ω

Krd−1

]
+ 2π

1

d− 1
,

θ∗2 =
1

d− 1
sin−1

[ ω

Krd−1

]
+ 2π

2

d− 1
,

. . . ,

θ∗d−1 =
1

d− 1
sin−1

[ ω

Krd−1

]
,

(4.37)

which are the solutions of

ωj = Krd−1sin((d− 1)θj) (4.38)

in the rotating frame such that ψ = 0. Since there are (d − 1) fixed states, the phase

space distribution, f(θ, ω), in the steady state is

flocked(ω, θ) = g(ω)

d−1∑
j=1

ηjδ(θ − θ∗j ), (4.39)
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Figure 4.5: The self-consistency function, H(r,K), versus r in different η1 for d =
3, ∆ = 0.5, K = 4. Black markers represent the simluation results performed for
N = 104. In simulation, each oscillator is initially placed in either θ = 0 state with
probability η1 or θ = π state with probability 1− η1.

where ηj stands for the density of the oscillators in θ∗j state such that
∑d−1

j=1 ηj = 1.

Multistability originate from η, and this is captured via the order parameter, r. The
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Figure 4.6: The Plot of H(r,K)/r versus r in different K for d = 3, ∆ = 0.5. η1

is fixed as one because it gives the upper bound of multistable region, which apppear
along with the unstable point as K exceeds Kc.

self-consistency function for r reads

r =

∫
flocked e

iθdωdθ,

=
d−1∑
j=1

ηj

∫ Krd−1

−Krd−1

eiθ
∗
j (ω)g(ω) dω,

=
d−1∑
j=1

ηj

∫ Krd−1

−Krd−1

cos(θ∗j (ω))g(ω) dω,

=
d−1∑
j=1

ηj(d− 1)Krd−1

×
∫ π

2(d−1)

− π
2(d−1)

cosθ cos((d− 1)θ)g(Krd−1sin((d− 1)θ)) dθ,

(4.40)

where the drifting oscillators have no contribution to the order parameter.
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Figure 4.7: The Plot of r − rc versus K −Kc for d = 3, ∆ = 0.5 and η1 = 1. Slope,
β, of the guide line is 1/2, meaning that r − rc ∼ (K −Kc)

1/2.

Now we turn to the particular case of d = 3, in which all the oscillators are fully

connected by all the possible three dimensional hyperedges. The self-consistency re-

lation for d = 3 is

r =2Kr2(2η1 − 1)

∫ π
4

−π
4

cosθ cos(2θ)g(Kr2sin(2θ)) dθ,

=2Kr2(2η1 − 1)

∫ π
4

−π
4

cosθ cos(2θ)
∆/π

(Kr2sin(2θ))2 + ∆2
dθ,

=
(2η1 − 1)

π

√
2∆2

Kr2

[ tan−1
(√

Kr2√
(Kr2)2+∆2−Kr2

)
√√

(Kr2)2 + ∆2 −Kr2

−
tanh−1

(√
Kr2√

(Kr2)2+∆2+Kr2

)
√√

(Kr2)2 + ∆2 +Kr2

]
,

(4.41)
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Figure 4.8: The Plot of r− rc versus K−Kc for d = 3, ∆ = 0.5 and η1 = 0.9. Slope,
β, of the guide line is 1/2, meaning that r − rc ∼ (K −Kc)

1/2.

with g(ω) as Cauchy distribution. Then the self-consistency function is obtained as

H(r,K) =− r +
(2η1 − 1)

π

√
2∆2

Kr2

[ tan−1
(√

Kr2√
(Kr2)2+∆2−Kr2

)
√√

(Kr2)2 + ∆2 −Kr2

−
tanh−1

(√
Kr2√

(Kr2)2+∆2+Kr2

)
√√

(Kr2)2 + ∆2 +Kr2

]
.

(4.42)

The closed form of the self-consistency function is in good argreement with the sim-

ulation results as displayed in Fig. 4.5. Though we have the systems with the same

K, there are infinitely many realizations conditioned on η1 in supercritical regime.

The origin of multistability is nothing but the population configuration of oscillators

in phase space. From the fact that η1 plays a role of competing strength between two
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Figure 4.9: The Plot of r versus K for d = 3 and η1 = 0.9, 0.95, 1. They show the
same transitional behaviors, but with different thresholds, Kc and rc.

fixed points, it is, to some extent, similar to the case of competing oscillators intro-

duced in [48]. The suprecritical state is characterized by the critical coupling strength,

Kc. The critical values of K and r can be obtained as we did in the former case,

∂

∂r

(H(r,K)

r

)
= 0, (4.43)

which explicitly gives the critical values for η1 = 1 as, see Fig. 4.6,

rc ' 0.5944725985679503,

Kc ' 2.070487838627744,
(4.44)

and for η1 = 0.9,
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rc ' 0.4756101905301064,

Kc ' 3.235137448285337.
(4.45)

The critical coupling strength, Kc, gets larger as η1 gets smaller. Separated oscillators

can hardly be synchronized to one another. It is remarkable that the systems with dif-

ferent η1 reveal the same critical behavior through the order parameter, which helps

us to induce that this holds for any η1. Moreover, the critical behavior of the order

parameter is universal for both bistable and multistable models,

r − rc ∼ (K −Kc)
1/2. (4.46)

This means that the additional factor (d−1) of θj in (4.34) has no effect on the critical

behavior of higher-order system. The only relevant factor for the hybrid synchroniza-

tion transition is the higher-order interactions. One can ask if all the higher-order sys-

tem for synchronization show abrupt synchronization transition with critical behavior

or not. The answer is no. If we take into account heterogeneity in higher-order system,

the existence of hub gives rise to a different scenario. This is thoroughly dealt with in

the following section.

4.2 Heterogeneous higher-order interaction

One of candidates of platforms which enables that three or more elements interact

simultaneously is the hypergrphs. Given a set of hyperedge degrees of size N nodes,

{k1, . . . , kNs}, sampled from arbitrary hyperedge degree distribution, a number of hy-

pergraphs can be realized [49]. Each hypergraph is realized preserving detailed struc-

ture by an adjacency tensor which directly informs the higher-order connectivity.

Aj1,...,jd =


1 if j1, . . . , jd are connected

0 otherwise
(4.47)
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One typical model of heterogeneous hypergraph is scale-free hypergraph introduced

in [29], which follows power-law degree distribution,

P (k) ∼ k−λ. (4.48)

The exponent λ represents the amount of intrinsic heterogeneity the system has. The

scale-free uniform hypergraph of dimension d is realized as follows.

i) Each node, j, has a weight, j−α, which is normalized being the probability for

selection,

pj =
j−α∑N
l=1 l

−α . (4.49)

ii) At each time step, a hyperedge is occupied among d nodes each of which is selected

via probability (4.49).

iii) Repeat ii) till the number of hyperedges reaches to M .

This results in a hypergraph composed of N noeds and M hyperedge, wherein each

node, j, has its hyperedge degree proportional to j−α. In other words, the hypergraph

follows power-law distribution with degree exponent λ = 1 + 1/α.

We suggest a specific model which is a way to generalize the Kuramoto model

defined on complex networks,

θ̇j1 = ωj1 +K
∑

j2,...,jd

Aj1,...,jdsin(θj2 + · · ·+ θjd − θj1), (4.50)

where the distribution of ω, g(ω), is of Lorentzian, a representative of unimodal distri-

bution, with zero mean for the sake of simplicity,

g(ω) =
∆/π

∆2 + ω2
. (4.51)

For an uncorrelated d-dimensional hypergraph in which each hyperedge contains dis-
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tinct d nodes, an adjacency tensor is approximately expressed as

Aj1,...,jd '
kj1 . . . kjd
(N〈k〉)d−1

, (4.52)

where 〈k〉 is the mean hyperedge degree of the hypergraph [50]. The local field exert-

ing on an oscillator, j1, is defined as

hj1e
iφj1 =

1

(d− 1)!

∑
j2,...,jd

Aj1,...,jd(e
iθj2 + · · ·+ eiθjd )

=
kj1
N

∑
l

kle
iθl

〈k〉 .
(4.53)

Now the global order parameter is written as

reiψ =

∑
j hje

iφj∑
j kj

=
1

N

∑
j

kje
iθj

〈k〉 . (4.54)

Thus, the Eq. 4.50 can be written in terms of mean-field exerting on each node,

θ̇j = ωj +Kkj r
d−1sin((d− 1)ψ − θj). (4.55)

4.2.1 Heterogeneous mean-field theory

To further analyze, consider a probability density function, fm(θ, ω, t), for oscillators

with k hyperedge degree, spanning θ, ω space. This function satisfies the continuity

equation since the population of oscillators are fixed,

ḟk +
∂

∂θ
(θ̇fk) = 0, (4.56)

and fk can be expanded with Fourier modes as follows.

fk(θ, ω, t) =
g(ω)

2π

[
1 +

∑
n=1

fk,n(ω, t)einθ + c.c.
]
, (4.57)
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where we have fk,n as an amplitude of the n-th mode in fk. We have each amplitude

of n-th mode satisfying fk,n(ω, t) = (αk(ω, t))
n, which originate from the so called

Ott-Antonsen (OA) ansatz [51]. Now we obtain the rate equation for n = 1 as

α̇k + iωαk +
Kk

2
rd−1(α2

k − 1) = 0, (4.58)

Since (rke
iψk)∗ = αk(ω = −i∆, t) = rke

−iψk in the rotating frame such that ψk = 0.

Now the Eq. 4.58 is rewritten as

ṙk + ∆rk +
Kk

2
rd−1(r2

k − 1) = 0. (4.59)

By integrating the Eq. 4.59 with respect to time, we obtain the exact dynamical trajec-

tory of the order parameter for oscillators with hyperedge degree k. In the steady state,

ṙk = 0, solving Eq. 4.59, we obtain

rk =
−∆±

√
∆2 + (Krd−1k)2

Krd−1k
, (4.60)

where the only + sign is relevant since rk has to be non-negative. So, the self-consistency

equation is

r =

∫ ∞
km

dk
kP (k)rk
〈k〉

= −A(r)

〈k〉 +

∫ ∞
km

dk kP (k)
√

1 +A2(r)/k2,

(4.61)

where we define

A(r) =
∆

Krd−1
(4.62)
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and denote km as minimum hyperedge degree of the system.

1

〈k〉

∫ ∞
km

dk kP (k)
√

1 +A2(r)/k2

= (λ− 2)

∫ ∞
km

dk kλ−2
m k−λ+1

√
1 +A2(r)/k2,

(4.63)

Therefore, given K, the self-consistency function is

H(r) = −A(r)

〈k〉 +
1

〈k〉

∫ ∞
km

dk kP (k)
√

1 +A2(r)/k2 − r (4.64)

By using the fact

〈k〉 =
λ− 1

λ− 2
km

P (k) = (λ− 1)kλ−1
m k−λ,

(4.65)

and letting x ≡ (km/k)2, we have an alternative expression of the Eq. 4.64 as

H(r) = −(λ− 2)A(r)

(λ− 1)km
+
λ− 2

2

∫ 1

0
dx x

λ
2
−2
(

1 +
A2(r)

k2
m

x
)1/2

− r. (4.66)

The second term on the right hand side of Eq. 4.66 is expressed as hypergeometric

function [52, Ch. 15], 2F1(a, b; c; z),

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−adx. (4.67)

Thus, we have

H(r) = −(λ− 2)A(r)

(λ− 1)km
+ 2F1

(
− 1

2
,
λ

2
− 1;

λ

2
;−A

2(r)

k2
m

)
− r, (4.68)

which can be alternatively expressed in terms of 〈k〉 rather than km as

H(r) = −A(r)

〈k〉 + 2F1

(
− 1

2
,
λ

2
− 1;

λ

2
;−
(λ− 1

λ− 2

A(r)

〈k〉
)2)
− r, (4.69)
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Figure 4.10: Plot of self-consistency function, H(r), for λ = 3(> λc) in the case of
d = 3 with mean degree 〈k〉 = 3. Non-zero solutions appear (saddle node bifurcation)
at rc(' 0.487935) if K exceeds Kc(' 0.726385), wherein there are two stable fixed
point and one unstable fixed point.

and H ′(r) reads

H ′(r) =− d− 1

r

A(r)

〈k〉 + 2F1

(1

2
,
λ

2
;
λ

2
+ 1;−

((λ− 1)A(r)

(λ− 2)〈k〉
)2)

× (λ− 1)2

λ(λ− 2)

(d− 1)A2(r)

r〈k〉2 − 1.

(4.70)

To see the asymptotic behavior of Eq. 4.70 as r → 0, we make use of

2F1(a, b; c;−z) =

z−a
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
2F1

(
a, 1− c+ a, 1− b+ a,−1

z

)
+ z−b

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)2F1

(
b, 1− c+ b, 1− a+ b,−1

z

)
.

(4.71)
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Figure 4.11: Plot of self-consistency function, H(r), for λ = 2.5(= λc) in the case
of d = 3 with mean degree 〈k〉 = 3. Non-zero solution appears only if K exceeds
Kc(' 0.327263).

So H ′(r → 0) is expressed as

H ′(r → 0) + 1 =
((λ− 1)A(r)

(λ− 2)〈k〉
)2−λΓ(λ2 + 1)Γ(1−λ

2 )

Γ(1
2)Γ(1)

(2− λ)(d− 1)

rλ

∼
(1

r

)(d−1)(2−λ)+1
.

(4.72)

Thus we have

H ′(r → 0) =


∞ if λ < 2 + 1

d−1

−1 if λ > 2 + 1
d−1 ,

(4.73)

which means there is a characteristic value of λ, namely λc = 2 + 1/(d − 1), that

determines the type of synchronization transition. In other words, this model reveals

three different types of synchronization transition each of which is determined by a
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Figure 4.12: Plot of self-consistency function, H(r) for λ = 2.4(< λc) in the case of
d = 3 with mean degree 〈k〉 = 3. There always exists a non-zero solution, meaning
that unconditional synchronization occurs.

critical value of λ,

λc = 2 + 1/(d− 1). (4.74)

4.2.2 Critical behavior

Expanding H(r) around r = 0 and taking the first two leading orders, we have

H(r) '− r −
( ∆(λ− 1)

Krd−1(λ− 2)〈k〉
)2−λΓ(1−λ

2 )Γ(λ2 )

2
√
π

+
Krd−1(λ− 2)2〈k〉
2(λ− 1)(λ− 3)∆

.

(4.75)
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i) For λ < λc, H ′(r → 0) = ∞ for all K, which means there is no finite transition

point, Kc. Considering the first two terms in the right hand side of Eq. 4.75, we obtain

r ∼ K(λ−2)/(1−(d−1)(λ−2)), (4.76)

which means that the system is unconditionally in synchronized state. The synchro-

nized state is the only stable fixed point for any K.

ii) For λ = λc, the sign of H ′(r → 0) changes only at a certain value of K, namely,

Kc. We can evaluate Kc by H ′(r → 0) = 0. From Eq. 4.72, we obtain

Kc =
( −2

√
π

Γ(1 + 1
2(d−1))Γ(−1

2 − 1
2(d−1))

)d−1 ∆d

〈k〉 . (4.77)

We can express the right hand side of the Eq. 4.75 with respect to Kc. Equating it to

zero, we have

0 =
(( K

Kc

) 1
d−1 − 1

)
− Krd−2〈k〉

2∆d(d− 2)

' 1

d− 1

(K −Kc

Kc

)
− Kcr

d−2〈k〉
2∆d(d− 2)

r ∼ (K −Kc)
1
d−2 .

(4.78)

In this case, there exists a finite transition point,Kc, and the synchronization transition

is of second-order, The synchronized state turn into a stable fixed point whenK > Kc,

otherwise the incoherent state being unstable.

iii) For λ > λc, H ′(r → 0) = −1 for all K. Therefore, there is a finite Kc along with

a finite rc, which cause a discontinuous synchronization transition. By using the fact

that H(r = rc,K = Kc) = 0 and H ′(r = rc,K = Kc) = 0, we can expand H(r)

around r = rc and K = Kc as

H(r) =
1

2
∂2
rH|r=rc,K=Kc(r − rc)2

+ ∂KH|r=rc,K=Kc(K −Kc) + . . . ,

(4.79)
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which indicates that

r − rc ∼ (K −Kc)
1/2. (4.80)

We call this a hybrid synchronization transition. The incoherent state is stable for any

K. When K > Kc, two fixed point emerges, one of which is stable and the other

is unstable. This means that Kc is the critical point at which saddle node bifurcation

occurs. The mean-field behavior of the system with λ > λc is in great agreement with

the results of [30].

4.2.3 Correlation size

The hypergraphs on which the finite number of oscillators are placed has a natural

cutoff in hyperedge degree, kc = kmN
1

λ−1 . This affects the so called finite-size ef-

fect to the oscillators. To see this effect, we should specify the characteristic point for

different sizes, for example the critical coupling, Kc(N), associated with N oscilla-

tors, and see how Kc(N) −Kc(∞) behaves with respect to N . Consider a finite-size

self-consistency function defined as

HN (r) =

∫ kc

km

dk
kPN (k)rk
〈k〉N

− r, (4.81)

where we define

PN (k) = (λ− 1)kλ−1
m (N1/(λ−1) − 1)−1k−λ,

〈k〉N =
λ− 1

λ− 2
km(1−N−(λ−2)/(λ−1))−1.

(4.82)
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Thus, we have

HN (r) = H(r)−N−
λ−2
λ−1 (λ− 2)kλ−2

c

∫ ∞
kc

dk k−λ+1rk.

' H(r)−N−
λ−2
λ−1 2F1

(
− 1

2
,
λ

2
− 1;

λ

2
;−A

2(r)

k2
c

)
= −A(r)

〈k〉 +

∫ ∞
km

dk kP (k)
√

1 +A2(r)/k2,

' H(r)−N−
λ−2
λ−1 .

(4.83)

Expanding the right hand side of Eq. 4.83 near Kc(∞), and equating it to zero, we

can obtain critical coupling strength for finite N , Kc(N), and the critical exponent for

correlation size, ν̄, which are explicitly appeared in Kc(N)−Kc(∞) ∼ N−1/ν̄ .

i) For λ < λc, Kc(∞) = 0, so, K → 0 and for large N , Eq. 4.83 can be rewritten as

HN (r) ' −
( ∆(λ− 1)

Krd−1(λ− 2)〈k〉
)2−λΓ(1−λ

2 )Γ(λ2 )

2
√
π

−N−
λ−2
λ−1 , (4.84)

which implies that, for fixedN , the synchronized state emerges as the maximum value

of the first term on the right hand side of Eq. 4.84 exceeds N−
λ−2
λ−1 . Thus we have

Kc(N)−Kc(∞) ∼ N−
1−(d−1)(λ−2)

λ−1 , (4.85)

where we find ν̄ = (λ− 1)/(1− (d− 1)(λ− 2)).

ii) For λ = λc, Kc(∞) is finite (Eq. 4.77). Similarly, by utilizing Eq. 4.75, we have

HN (r) ' A(K −Kc(∞))r +Brd−1 −N−
λ−2
λ−1 , (4.86)

where A (B) is positive (negative). Therefore, we have

Kc(N)−Kc(∞) ∼ N−
d−2
d(d−1) , (4.87)

which means ν̄ = d(d− 1)/(d− 2).
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iii) For λ > λc, as is the similar case for those above, we have

HN (r) ' H(r) +
∂H

∂K
(K −Kc(∞))−N−

λ−2
λ−1 . (4.88)

So,

Kc(N)−Kc(∞) ∼ N−
λ−2
λ−1 , (4.89)

which indicates ν̄ = (λ− 1)/(λ− 2).

4.3 Numerical simulation

We perfoem numerical simulation of coupled oscillators on a scale-free hypergraph

of dimension three, d = 3, based on the rate equation (4.55). We use Runge-Kutta

method of fourth order with dt = 0.01 [?]. Due to the computational complexity, we

consider an annealed hypergraph for average behabior, in which each node has degree,

dj , not an integer,

dj = N〈k〉 j−α∑N
l=1 l

−α . (4.90)

The mean degree 〈k〉 is controllable, and we set 〈k〉 = 3 for hyperedge density to be

one. To eliminate sample-to-sample fluctuation induced by ramdom initialization of

intrinsic frequencies, we fix a set of frequencies as described in Appendix. The only

remaining fluctuation we have to deal with is induced by multiplicity of a degree-

frequency pair each oscillator has. For example, in a particular sample, the hub node

may come to have maximum value of intrinsic frequency, or maybe zero value. To see

the average behavior of a finite population of the oscillators, we sample ten thousand

realizations out of N ! realizations.

We numerically confirm the analytical result of ν̄ for λ > λc. We track a specific

coupling strength, K∗, of each finite size sample, where the variance of bimodal dis-

tribution of the order parameter becomes maximum, see Fig. X. From the fact that the

critical system reveals its critical behavior through any quantity in any form [34], one
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Figure 4.13: Plot of order parameter with λ = 3 and 〈k〉 = 3 for the case of d = 3.
Solid lines represent collection of stable fixed points whereas dashed line is made of
unstable fixed points. Each marker is obtained by ensemble average of 104 numerical
simulations. Initial configuration is set to be fully synchronized state, i.e., r(t = 0) =
1. Inset shows that the system analytically reveals a hybrid synchronization transition
with the exponent β = 1/2.

can expect that K∗ −Kc serves critical behavior regarding the size of the system as

K∗ −Kc ∼ N−1/ν̄ , (4.91)

which we call the critical decaying of the system. The only one pair ofKc and ν̄ shows

critical decaying, which both are consistent with the analytical results obtained above.

To confirm the critical behavior which the order parameter reveals, we focus on

the upper stable fixed point out of two stable fixed points at λ > λc. For obtaining

the upper stable states which is not an incoherent state, the initial state is set to be

r(t = 0) = 1. In other words, all the oscillator’s phases are set to be equal to one

82



10−2 10−1 100 101

(K −Kc)N
1/ν̄

100

(r
−
r c

)N
β
/
ν̄

10000

20000

40000

80000

(b)

Figure 4.14: Scaling plots of order parameter for non-zero stable fixed point with λ = 3
and 〈k〉 = 3 for the case of d = 3. Data collapse is performed using critical exponents,
β = 0.5 and ν̄ = 2, which are determined analytically.

another to reach the upper stable state as t → ∞, as depicted in Fig. 4.13. By using

the analytic results of critical exponents beta and ν̄ at λ = 3, 3.5 , the lines of upper

stable states with different sizes collapse into a single line, see Fig. 4.14.

4.4 Remark

We study two models of higher-order synchronization, one with bistability and the

other with multistability. For an all-to-all topology, they both show hybrid synchro-

nization transition with the same critical exponents. The crucial factor causing abrupt

synchronization transition is the higher-order interaction that three or more oscillator

do.

To further study what affects to the abrupt synchronization transition, we consider
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heterogeneous substrate on which dynamical units interact in higher-order manner, a

scale-free uniform hypergraph of dimension d. We obtain the critical value of λ which

plays a role of the strength of structural heterogeneity. We found that the existence

of the hubs is critical to offset the local suppression effect come from higher-order

interaction. If the hubs can not make any influences enough their neighbors to offset

the strength of the local suppression, i.e., for λ > λc, each oscillator is likely to be

in its local state, so the globally incoherent state becomes stable. Otherwise, if the

influence of the hubs is strong enough, the globally incoherent state becomes unstable.

This result is lying on the same line as that of higher-order epidemic spreading model

is lying on, which implies that the systems defined in different detailed interaction

actually share the universal critical behaviors.
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Chapter 5

Conclusion

We finalize this dissertation summarizing what we deal with in the whole chpaters. We

investigate both the structural and dynamical properties when considering higher-order

interacting substrates.

For the structural property, we specifically consider coauthorship relations, the

most representative example of growing complex systems wherein the higher-order

structure is inherent. The quantification of topological signals is made use of the deter-

mination of evolutionary stages in growing complex systems. The first appearance of

a long-range loop structure is related to the continuous growth of the complex system,

and the first appearance of a higher-order cavity structure is related to the densely con-

nected regime of the system. The successive emergence of the Betti number in each

order directly indicates that the system undergoes a stage transition in time. This state-

ment is supported by the fact that the Betti numbers in the growing higher-order model

we proposed serve the global order of connectivity. Furthermore, it is confirmed that

the phase transition the first Betti number reveals in the model is precisely the same as

the percolation transition. This implies a possibility for the second Betti number, re-

lated to the higher-order connectivity, to show transitional behavior as well, which was

confirmed in numerical simulation. However, there are still no analytical treatments for

the phase transition of the second Betti number.

For the investigation of the higher-order dynamical processes, we focus on the ex-

plosively switching phenomena that the oscillatory systems exhibit. The existence of

the higher-order interaction has an impact on the stability change of the incoherent
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state, which naturally leads to the abrupt switching between synchronized state and

incoherent state triggered by external perturbation. We specifically show that the sys-

tems with different forms of interaction essentially share the same critical behaviors,

which means they reveal the same form of macroscopic behavior. To further analyze

how structural heterogeneity affects macroscopic behavior, we consider the model on

the scale-free higher-order network. As a result, both the homogeneous structure and

the higher-order interaction must be satisfied for the incoherent state to become stable.

The higher-order interaction plays a role of local suppression on the dynamical units,

whereas the existence of the hub is to do with the global attraction. The exponent of

the degree distribution, the extent of the heterogeneity, determines which ingredient is

dominant. If the local suppression is dominant, each oscillator is astray on determi-

nation of which state to follow. On the other hand, in the case the global attraction is

dominant, every oscillator is likely to be in a synchronized state.

The result on the non-linear higher-order dynamical system is the same as that

of the linear higher-order dynamical system [29]. It is remarkable that the extent of

diffrence in the form of interaction is allowed to the non-linearity. More investigation

is needed on how further the difference in the form of interaction is allowed.
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Appendix A

Computation of the Betti numbers

Given a simplicial complex, K, we have to focus on (k + 1)-th faces, k-th faces and

(k−1)-th faces to compute the k-th Betti number. By definition, the k-th Betti number

is the number of k-cycles which is not boundaries of higher diemnsional simplexes. As

depicted in Fig. A.1, a set of k-cycles is mapped into zero under boundary operation,

which means that it is the kernel of ∂k. A set of arbitrary chains are mapped into

boundaries, meaning it is the image of ∂k+1. This implies that there are, in principle,

cycles that are not boundaries of any higher dimensional simplex. The homology is to

do with such remaining cycles where boundaries are subtracted properly.

In the group theoretical point of view, the coefficient of each simplex is isomorphic

to coefficient group. For example, if the coefficient is boolean, the corresponding group

Figure A.1: Boundary operation on chain groups of each dimension. Ck, Zk, Bk rep-
resent chain, cycle, boundary group of dimension k respectively.
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Figure A.2: Boundary operator in Smith normal form. Except for the diagonal elements
in upper left block, all the elements are zero.

is the group of integer modulo two. The homology group is then written as

Hk(K) = ker(∂k)/im(∂k+1),

= Zk(K)/Bk(K).
(A.1)

This can be computed by using matrix representation of boundary operator in Smith

normal form [54], which directly show the rank of each group according to rank nul-

lity theorem [55], see Fig. A.2. Knowing ranks of groups, we can calculate rank of

homology group, i.e., rank(Zk)− rank(Bk) [56].
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Appendix B

Simplifying homology via strong collapse

An arbitrary simplicial complex can be reduced to the simplest form preserving its

homological properties. Strong collapse, which is introduced in [37], can be realized

as follows.

i) Represent a given simplicial complex as a bipartite network: one set is for 0-

simplexes and the other set is for all faces.

ii) Remove faces if they are subsets of one of facets (maximal faces) of the simpli-

cial complex.

iii) Conjugate the bipartite network to make nodes (faces) to be faces (nodes), and

do ii) again.

iv) Conjugate the bipartite network.

v) Repeat ii)-iv) until it converges.

Doing so, we can get the most simplified form of simplicial complex which has the

same Betti numbers, see Fig. B.1.

Figure B.1: An example of strong collapse. A 2-simplex is collapsed while preserving
the Betti numbers, β0 = 1 and β1 = 1.
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Appendix C

Lagrange inversion formula

Let f(x) =
∑

s sCsx
s be the generating function of the cluster size distribution, such

that f(1) =
∑

s sCs = 1 for non-percolating phase. The coefficient Cs can be ob-

tained by integration in the complex z plane as

sCs =
1

2πi

∮
dz

f

zs+1
=

1

2πi

∮
dx x exp(x2/2)

f

exp(x2/2)s+1

=
1

2πi

∮
df

f
(1− pd(d+ 1)fd)

f exp(ps(d+ 1)fd)

fs

=
1

2πi

∮
df exp(ps(d+ 1)fd)(1− pd(d+ 1)fd)f−s

=
1

2πi

∮
df
∞∑
n=0

[ps(d+ 1)]n

n!
fnd(f−s − pd(d+ 1)fd−s)

=
[ps(d+ 1)]

s−1
d − p(d+ 1)(s− 1)[ps(d+ 1)]

s−1
d
−1

( s−1
d )!

=
p(d+ 1)[ps(d+ 1)]

s−1
d
−1

( s−1
d )!

,

(C.1)

where we utilize (3.14).
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초록

복잡계는 비균질적인 구성원들이 다양한 상호작용을 주고받는 시스템이다. 네

트워크는 이러한 시스템의 각 요소를 점, 그 사이의 상호작용을 선으로 표현함으

로써 복잡계 구조에서 나타나는 보편적인 특성과 그 동역학적 효과를 기술하는데

널리 쓰여왔다. 하지만 네트워크는 정의로부터 기인하는 내재적인 제약을 지니고

있다.연결선은오직두요소의관계만표현할수있기에쌍으로상호작용(pairwise

interaction)하지않는요소들을표현하는것에어려움을갖고있다.고차네트워크는

정점과 고차연결선(higher-order edge)으로 이루어져 있는 네트워크의 일반화인데,

이것은셋이상의고차연결을고려하기에이제약에서자유롭다.

첫째로 우리는 본 학위논문에서 성장하는 복잡계의 데이터 및 모형을 고차 네

트워크의 관점에서 분석하여 복잡계의 단계적 구조 변화를 단체 복합체(simplicial

complex)관점으로기술하였다.태동의단계를비롯하여연결성(connectivity)이확

립되는 단계와 강건성(robustness)이 확립되는 단계를 위상적인 양인 베티 수(Betti

number)로구분하였다.연결성이확립되는단계의특징인거시적인고리형성을첫

째 베티 수로, 강건성이 확립되는 단계에서 계의 밀도가 높아짐에 따라 나타나는

국소적인폐곡면(void)형성을둘째베티수로정량화할수있다는것을보였다.

시간에대해성장하는고차네트워크에서베티수들이순차적으로생기며증가

한다는것이일반적이라는것을여러고차네트워크모델공부를통해확인하였다.

특히성장하는척도없는고차네트워크에서정의되는베티수들또한각각상전이를

보인다는 것을 수치적으로 확인하였다. 또한 첫째 베티수는 네트워크와 단체 복합

체모두에서여과상전이와정확히같은상전이양상을보인다는것을해석적으로도

보였다.

둘째로 복잡계의 고차 상호작용에서 나타나는 허브 구조가 상전이와 임계현상

에 어떤 영향을 미치는지 동기화 모형의 해석적, 수치적 분석을 통해 규명하였다.

이중 안정성, 다중 안정성을 보이는 두 가지의 전역 결합(globally coupled) 모형을
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다루었는데, 공통적으로 고차 상호작용이 불연속 상전이와 임계 현상을 동시에 함

유하는하이브리드상전이를유발한다는것을확인하였다.

비균질적구조를지닌척도없는고차네트워크에서정의되는이중안정모형에

서 연결선 수 분포 지수의 특정 값(λc = 2 + 1/(d − 1))을 기준으로 동기화 해의

양상(임계현상) 이 급격하게 변한다는 사실을 수치적 및 해석적으로 도출했다. 도

수분포 지수가 임계지수보다 작은 경우인 λ < λc일 때에, 즉 허브의 영향력이 큰

영역에서는무조건적동기화현상이나타나고,그렇지않은경우, λ = λc일때연속

상전이가, λ > λc일때폭발적인하이브리드동기화상전이(hybrid synchronization

transition)가발견된다.

주요어: 상전이, 임계현상, 여과이론, 동기화, 단체복합체, 단체호몰로지, 하이퍼그

래프

학번: 2017-29476
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