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ABSTRACT

The collapse barrier, �c, of the field clusters located in the low-density environment

is deterministic rather than di↵usive, unlike that of the wall counterparts located in

the superclusters. Analyzing the data from the Mira-Titan (dynamical dark energy cos-

mology) and CoDECS (coupled dark energy cosmology) simulations we investigate the

evolution of deterministic collapse barrier on non-standard dark energy models. We

also use Cosmological Massive Neutrino (massive neutrinos cosmology) and DUSTGRAIN-

pathfinder (f(R) gravity and f(R) gravity with massive neutrinos) simulations to study

various non-standard cosmologies. We first numerically determine mass functions of the

field clusters at various redshifts for each cosmology. Then, we compare the numerical

mass functions with the analytical formula characterized by a single parameter called

the drifting coe�cient, �(z), which quantifies the drifts of the collapse barrier from the

Einstein-de Sitter spherical value, �sc = 1.686. It is found that the analytic formula

with the best-fit coe�cient excellently interpret the numerical results at all redshifts

for all of the cosmologies. Regardless of the background cosmology, the �(z) exhibits a

universal behavior of having a positive value at z = 0 but gradually converging down to

zero as the dominance of dark energy fades with the increment of z. A significant di↵er-

ence of critical redshift zc, at which �(z = zc) = 0, is found among di↵erent cosmologies

distinguishing even the degenerate cosmologies with almost identical power spectrum

and cluster mass functions. It is concluded that the evolution of the departure from the

spherically symmetric collapse measured by �(z) is a powerful probe of cosmology.
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Chapter 1

Introduction

1 Ever since Press & Schechter (1974) derived an analytic formula for the cluster mass

function based on the excursion set theory, its power and usefulness as a cosmological

probe has been widely demonstrated and well appreciated in the field of the large

scale structure (e.g., Fan et al. 1997; Wang & Steinhardt 1998; Vikhlinin et al. 2009;

Basilakos et al. 2010; Ichiki & Takada 2012; Benson et al. 2013; Planck Collaboration

et al. 2014). The excursion set theory basically depicts the gravitational growth and

collapse of an over-dense region into a bound object as a random walk process confined

under a barrier whose height is determined by the underlying dynamics. In the original

formulation of Press & Schechter (1974) who adopted the spherical dynamics, the height

of the collapse barrier has a constant value, �sc, being independent with the cluster mass.

Various N-body experiments, however, revealed that the original Press-Schechter mass

function failed to match well the numerical results at quantitative levels, implying the

inadequacy of the spherical dynamics (Bond & Myers 1996, and references therein).

In the subsequent works which employed more realistic ellipsoidal dynamics to an-

1This chapter was published in Ryu, S. & Lee, J. 2020, ApJ, 889, 62; Ryu, S. & Lee, J. 2020, ApJ,

894, 65; Ryu, S., Lee, J., & Baldi, M. 2020, ApJ, 904, 93.
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2 Introduction

alytically derive the excursion set mass function, the height of the collapse barrier was

deemed no longer a constant value but a decreasing function of the cluster mass, M ,

to account for the fact that the collapse process deviates further from the spherical

dynamics on the lower mass scales (e.g., Bond & Myers 1996; Sheth et al. 2001; Chiueh

& Lee 2001; Sheth & Tormen 2002). Although better agreements with the numerical

results were achieved by employing the mass-dependent ellipsoidal collapse barrier, the

purely analytic evaluation of the cluster mass function had to be relinquished on the

ground that no unique condition for the ellipsoidal collapse exists unlike the case of

the spherical collapse (Bond & Myers 1996; Chiueh & Lee 2001; Sheth et al. 2001).

It was required to empirically determine the functional form of the ellipsoidal collapse

barrier height by fitting the analytic formula to the numerical results, which in turn

inevitably weakened the power of the cluster mass function as a probe of cosmology.

Besides, the high-resolution N-body simulations revealed that even on the fixed mass

scale the collapse barrier height exhibited substantial variations with the environments

as well as with the cluster identification algorithms (e.g., Robertson et al. 2009, and ref-

erences therein). These numerical findings casted down an excursion set based analytic

modeling of the cluster mass function, leading the community to acquiesce in relying

on mere fitting formulae with multiple adjustable parameters (e.g., Tinker et al. 2008).

The excursion set modeling of the cluster mass function, however, attracted a re-

vived attention when Maggiore & Riotto (2010a,b) brought up an insightful idea that

the collapse barrier height should be treated as a stochastic variable rather than a de-

terministic value. Ascribing the di↵usive scatters of the collapse barrier height to the

incessant disturbing influence from the surrounding on the clusters, Maggiore & Riotto

(2010a) successfully incorporated the concept of the stochastic barrier height into the

excursion set theory with the help of the path integral method and showed that the

accuracy of the generalized excursion set mass function with stochastic collapse bar-
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rier was considerably improved even though it has only a single parameter, DB, which

measures the degree of the stochasticity of �c whose ensemble average coincides with

�sc.

Corasaniti & Achitouv (2011a, hereafter, CA) derived a more accurate mass func-

tion by extending the formalism of Maggiore & Riotto (2010a) to the ellipsoidal collapse

case where the ensemble average, h�ci, does not coincide with �sc but drifts away from it,

depending on the cluster mass scale. As a trade-o↵ of introducing an additional param-

eter, �, to quantify the deviation of h�ci from �sc, Corasaniti & Achitouv (2011a) won

two-fold achievement: matching the numerical results as excellently well as pure fitting

formula and simultaneously providing much deeper physical understanding about the

cluster abundance and its evolution (see also Corasaniti, & Achitouv 2011b). Notwith-

standing, the e�cacy of the generalized excursion set mass function as a cosmological

diagnostics was not greatly elevated by introducing the concept of a stochastically drift-

ing collapse barrier due to the obscurity in the choice of the joint probability density

functions of �c expressed in terms of the two parameters, DB and � (Achitouv et al.

2014, and references therein).

It was Lee (2012) who fathomed out that for the case of the field clusters em-

bedded in the lowest-density environments the collapse barrier height would behave

deterministically (i.e., DB = 0) since the degree of the surrounding disturbance as well

as ambiguity in the identification of the field clusters would be negligibly low in the

underdense regions. Defining the field clusters as those which do not belong to super-

clusters, she modified the CA formalism by setting DB = 0 and confirmed its validity

against the N-body results at various redshifts for the case of the currently favored

⇤CDM (cosmological constant ⇤ and cold dark matter) model. The analysis of Lee

(2012) also found a clear trend that the value of � gradually dwindles away to 0 as the

redshift z increases, which indicates that at some critical redshift, zc, the deterministic



4 Introduction

collapse barrier height, �c, for the field clusters will become equal to �sc.

This trend may be physically understood by the following logics. The high-z field

clusters correspond to the highest peaks in the linear density field whose gravitational

collapse proceeds spherically (Bernardeau 1994). At high redshifts z > 0.7 where the

dark matter (DM) density exceeds that of dark energy (DE), the universe is well approx-

imated by the Einstein-de Sitter (EdS) cosmology in which �sc = 1.686. We speculate

that since the convergence rate of the universe to the EdS model is quite susceptible to

the background cosmology, the deterministic collapse barrier of the field clusters would

evolve di↵erently among di↵erent cosmologies. The aim of this Paper is to examine

if the concept of the deterministic collapse barrier for the field clusters is valid even

in various non-standard cosmologies and to explore whether or not the evolution of

�, i.e., the deviation of the deterministic collapse barrier from the EdS spherical col-

lapse value of �sc = 1.686, can discriminate degenerate cosmologies and be used as a

complementary probe of cosmology.

A cosmic degeneracy refers to the circumstance that a standard diagnostic fails to

distinguish between di↵erent cosmologies with high statistical significance. For example,

the cluster mass function, which is regarded as one of the most powerful probes of

cosmology based on the large scale structure, is unable to discriminate a coupled dark

energy (cDE) model in which a scalar field DE coupled to DM particles follows a

supergravity potential (Baldi et al. 2010) from the ⇤CDM cosmology. Another example,

the cluster mass function fails to discriminate the e↵ect of a low amplitude of the

linear density power spectrum from that of massive neutrinos (⌫) (dubbed the �8-

P
m⌫ degeneracy) in a ⌫⇤CDM (massive neutrinos ⌫ + cosmological constant ⇤ +

Cold Dark Matter) cosmology. Since the cosmic degeneracy is caused by the limited

sensitivity of a given standard diagnostic on which the degenerate models have almost

the same e↵ects, what is required to break it is to overcome the limitation by utilizing



Introduction 5

prior information from other independent diagnostics.

The latest Planck analysis of the Cosmic Microwave Background (CMB) tempera-

ture power spectra combined with the priors from the weak gravitational lensing (WL)

and Baryonic Acoustic Oscillations (BAO) concluded M⌫  0.12 eV (Planck Collabo-

ration et al. 2018), assuming the base flat ⇤CDM cosmology (see also Vagnozzi et al.

2017). A higher value of M⌫ above 0.12 eV, however, can still be accommodated by

the Planck data, if the assumption about the background cosmology is released (see

Choudhury & Choubey 2018; Choudhury & Hannestad 2019, and references therein)

or if di↵erent priors are used to complement the CMB probe (e.g., Giusarma et al.

2016). For the past decade, the cluster mass function has been prevalently promoted as

an useful complementary probe of M⌫ (e.g., Marulli et al. 2011; Ichiki & Takada 2012;

Costanzi et al. 2013; Villaescusa-Navarro et al. 2013; Castorina et al. 2014; Biswas et

al. 2019; Hagstotz et al. 2019). Although the cluster mass function is only indirectly

linked to M⌫ through its dependence on the linear density power spectrum, it has a

practical advantage as a probe of M⌫ , being more readily observable than the linear

density power spectrum, the measurements of which are often plagued by the system-

atics stemmed from the existence of nonlinear galaxy bias (Giusarma et al. 2018, and

references therein).

Due to the inherent non-sphericity and stochastic aspect of the cluster formation

process that defies purely analytic modeling from the first principle, a theoretical pre-

diction for the cluster abundance and its dependence on M⌫ was conventionally made in

the empirically modified excursion set formalism (e.g., Costanzi et al. 2013; Villaescusa-

Navarro et al. 2013; Biswas et al. 2019). While a link between the cluster abundance

and M⌫ through the linear power spectrum is provided by the excursion set theory,

the required accuracy and precision was achieved by the empirical modification of the

theory, i.e., deteriorating of a physical model into a fitting formula with multiple free
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parameters (Warren et al. 2006; Tinker et al. 2008). Lack of a physical model for the

cluster abundance undermines its power as a probe of M⌫ . To make matters worse, the

notorious �8-M⌫ degeneracy of the initial density power spectrum translates into the

relative low sensitivity of the cluster mass function to M⌫ . Given the aforementioned

di�culties in constraining M⌫ with the cluster abundance, what may be desirable to

have is a new probe, well described by a physical model, free from the �8-M⌫ degen-

eracy, and highly sensitive to the variation of M⌫ . Our goal here is to prove that the

drifting coe�cient of the field cluster mass function fulfills this expectation.

There are a few cosmic degeneracies which have been found more di�cult to break

even by combining the priors from several independent diagnostics. A notorious example

is the cosmic degeneracy between the ⇤CDM + GR and the ⌫CDM + MG cosmologies,

where GR and MG stand for the general relativity and modified gravity, respectively

(see e.g. Baldi et al. 2014; Wright et al. 2019). All di↵erent versions of the MG theory

adopt a common tenet that the apparent acceleration of the present Universe is caused

not by the dominance of the anti-gravitational ⇤ at the present epoch but by the

deviation of the gravitational law from the prediction of GR on cosmological scales.

The consequence of this tenet is the existence of a long-range fifth force, which in turn

has an e↵ect of enhancing the density power spectrum on the scales comparable to

those a↵ected by the suppression due to free streaming massive neutrinos (for a review,

see Clifton et al. 2012).

In the theory of f(R) gravity, the gravitational dynamics is defined by a modified

Einstein-Hilbert action functional to which an arbitrary function of the Ricci scalar,

f(R), is introduced as a substitution for the Ricci scalar R itself of the original action

in GR (see e.g., Buchdahl 1970; Starobinsky 1980; Hu & Sawicki 2007). Choosing as

a viable MG the f(R) gravity in which the Ricci scalar term, R, in the Einstein-

Hilbert action functional is replaced by an arbitrary function, f(R), Baldi et al. (2014)
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numerically investigated a possible cosmic degeneracy between the ⇤CDM + GR and

the ⌫CDM+ f(R), and demonstrated that the two cosmologies cannot be discriminated

from each other by several standard diagnostics such as the nonlinear density power

spectra, halo bias and cluster mass functions (see also Hagstotz et al. 2019; Garcia-

Farieta et al. 2019). The nonlinear growth rate functions, cluster velocity dispersions,

and tomographic higher-order weak lensing statistics were proposed in subsequent works

as candidate diagnostics that could be capable of breaking this cosmic degeneracy

(Giocoli et al. 2019; Peel et al. 2018; Hagstotz et al. 2019), also employing Machine

Learning techniques (Peel et al. 2019; Merten et al. 2019). Our goal here is to explore

whether or not this new diagnostics can break other cosmic degeneracies including that

between the ⇤CDM + GR and the ⌫CDM + MG models.
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Chapter 2

An Analytical Model for the

Isolated Cluster Mass Function

1 The excursion set modeling of the cluster mass function relates the di↵erential number

density of the clusters, dN/d lnM , to the multiplicity function, f(�), as (Reed et al.

2003)

dN(M, z)

d lnM
=

⇢̄

M

�����
d ln��1

d lnM

�����f [�(M, z)] , (2.1)

where ⇢̄ is the mean matter density at the present epoch, and �(M, z) is the rms

density fluctuation of linear density field smoothed on the mass scale M at redshift z,

and f(�) counts the number of the randomly walking overdensities, �, that just touch

the collapse barrier, �c, when the underlying linear density field has the inverse of the

rms fluctuation in the di↵erential range of [ln��1, ln��1 + d ln��1]. The cosmology

dependence of dN/d lnM stems from the dependence of �(M, z) on the linear growth

factor, D(z), and linear density power spectrum, P (k) as:

�2(M, z) / D2(z)

Z 1

0
dk k2 P (k)W 2(k,M), (2.2)

1This chapter was published in Ryu, S. & Lee, J. 2020, ApJ, 889, 62.

9



10 An Analytical Model for the Isolated Cluster Mass Function

where W (k,M) is a window function. Three types of window (filter) functions are

widely used in the field of cosmology: spherical top-hat filter, Gaussian filter and sharp

k-space filter. We list the functional froms and their Fourier representations of the three

window functions below. The ‘natural volume’ Vf of the window funtions are defined

as the integral of W (r)/W (0) over all space (Lacey & Cole 1994).

1. Top-Hat

WTH(r) =

8
>><

>>:

3/(4⇡R3
TH

) r < RTH

0 r > RTH

(2.3)

ŴTH(k) =
3

(kRTH)3
[sin(kRTH)� (kRTH) cos(kRTH)] (2.4)

VTH = (4⇡/3)R3
TH (2.5)

2. Gaussian

WG(r) =
1

(2⇡)3/2R3
G

exp[�r2/(2R2
G)] (2.6)

ŴG(k) = exp[�k2/(2R2
G)] (2.7)

VTH = (2⇡)3/2R3
G (2.8)

3. Sharp k-space

Wk(r) =
1

2⇡2r3
[sin(r/Rk)� (r/Rk) cos(r/Rk)] (2.9)

ŴTH(k) =

8
>><

>>:

1 k < 1/Rk

0 k > 1/Rk

(2.10)

Vk = 6⇡2R3
k

(2.11)

Here, we use the spherical top-hat window function for our analytical field cluster mass

function model throughout the study. The linear growth factor D(z) is known to have
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the following analytical expression for the case of ⇤CDM universe (Lahav et al. 1991):

D(z) / 5

2
⌦m[⌦m(1 + z)3 + ⌦⇤]

1/2
Z 1

z

dz0
1 + z0

[⌦m(1 + z0)3 + ⌦⇤]3/2
. (2.12)

Here we normalize D(z) to satisfy D(z = 0) = 1.

Assuming that �c is a stochastically drifting variable as in Maggiore & Riotto

(2010a,b), the CA formalism approximates the multiplicity function by

fca(�;DB,�) ⇡ f (0)(�;DB,�) + f (1)
�=0(�;DB) + f (1)

�
(�;DB,�) + f (1)

�2 (�;DB,�) ,(2.13)

f (0)(�;DB,�) =
�sc

�
p
1 +DB

r
2

⇡
e
� (�sc+��2)2

2�2(1+DB) , (2.14)

f (1)
�=0(�;DB) = �̃

�sc
�

r
2a

⇡


e�

a�2sc
2�2 � 1

2
�

✓
0,

a�2sc
2�2

◆�
, (2.15)

f (1)
�

(�;DB,�) = �� a �sc


f (1)
�=0(�;DB) + ̃ erfc

✓
�sc
�

r
a

2

◆�
, (2.16)

f (1)
�2 (�;DB,�) = �2a2�2sc̃

⇢
erfc

✓
�sc
�

r
a

2

◆
+ (2.17)

�

a�sc

r
a

2⇡


e�

a�2sc
2�2

✓
1

2
� a�2sc

�2

◆
+

3

4

a�2sc
�2

�

✓
0,

a�2sc
2�2

◆��
, (2.18)

with a ⌘ 1/(1+DB), ̃ = a,  = 0.475, upper incomplete gamma function �(0, x) and

complementary error function erfc(x). The statistical properties of the randomly drift-

ing collapse barrier, �c, are described by the two parameters, DB and �, in Equations

(2.13)-(2.17). The former, called the di↵usion coe�cient, is related to the scatters of �c

from its ensemble average, while the latter, called the drifting average coe�cient, mea-

sures how much the ensemble average of �c drifts away from the deterministic height of

the spherical collapse barrier �sc on a given mass scale (Corasaniti & Achitouv 2011a;

Corasaniti, & Achitouv 2011b).

Lee (2012) suggested that for the case of the field clusters the collapse barrier

height should be deterministic (i.e., DB = 0) rather than stochastic since the field

clusters would experience the least disturbance from the surroundings. Setting DB = 0

in Equation (2.13) and putting it into Equation (2.1), she modified the CA formalism
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to evaluate the mass function of the field clusters, dNI/d lnM , as

dNI(M, z)

d lnM
=

⇢̄

M

�����
d ln��1

d lnM

�����fca [�(M, z);DB = 0,�] , (2.19)

which has a single coe�cient, �. Empirically determining the values of � at three

di↵erent redshifts (z = 0, 0.5, 1) through numerical adjustment process, Lee (2012)

confirmed the validity of Equation (2.19) for the ⇤CDM case. In the following chapters,

we will test this analytic model against the numerical results from N -body simulations

performed for various non-standard cosmologies, investigate how � evolves in di↵erent

cosmologies and seek its potential as a new complimentary probe of cosmology.

Although the exact value of �sc has been known to weakly depend on the background

cosmology as well as on the redshift (Eke et al. 1996; Pace et al. 2010), we regard

�sc as a constant, setting it at the Einstein-de Sitter value of 1.686 (Gunn, & Gott

1972), as done in the original formulation of the generalized excursion set mass function

theory (Maggiore & Riotto 2010a,b). In reality, the gravitational collapse proceeds in

a non-spherical way, for which the actual critical density contrast, �c, departs from

the idealistic spherical threshold, �sc. The cosmology dependence of �c is expected to

overwhelm that of �sc, given that the degree of the non-sphericity of the collapse process

is closely linked with the anisotropy of the cosmic web, which in turn possesses strong

dependence on the background cosmology (e.g., Shim & Lee 2013; Naidoo et al. 2020).

Unlike �sc, however, the value of �c and its link to the initial conditions cannot be

analytically derived from first principles due to the complexity associated with the

non-spherical collapse process (Bond & Myers 1996).



Chapter 3

Comparison with the Numerical

Results for wCDM model

3.1 Comparison with the Numerical Results

1 To investigate if Equation (2.19) can be validly applied to the case of a wCDM cosmol-

ogy where the DE equation of state, w, evolves with time, we resort to the Mira-Titan

simulation conducted by Heitmann et al. (2016) on a periodic box of (2100Mpc)3 with

32003 DM particles of individual mass mdm ⇠ 1010M� for 10 di↵erent wCDM cos-

mologies (designated as M001, M002, M003, M004, M005, M006, M007, M008, M009,

M010) as well as for the ⇤CDM case (see also, Habib et al. 2016; Heitmann et al.

2019). The initial condition of each cosmology was specified by seven parameters,

{⌦m,⌦b, h,�8, ns, w0, wa}, under the common assumption of a spatially flat geometry

(⌦de+⌦m = 1), no neutrino (⌦⌫ = 0) and evolution of w given as w = w0+waz/(1+z)

(Chevallier & Polarski 2001; Linder 2003).

For the ⇤CDM case (w0 = �1, wa = 0), the other five cosmological parameters

1This chapter was published in Ryu, S. & Lee, J. 2020, ApJ, 889, 62.

13
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Table 3.1. Key cosmological parameters for the eleven models from the HACC

simulations

Cosmology ⌦m ⌦b h �8 ns w0 wa

⇤CDM 0.2648 0.04479 0.7100 0.8000 0.9630 -1.0000 0.0000

M001 0.3871 0.05945 0.6167 0.8778 0.9611 -0.7000 0.6722

M002 0.2411 0.04139 0.7500 0.8556 1.0500 -1.0330 0.9111

M003 0.3017 0.04271 0.7167 0.9000 0.8944 -1.1000 -0.2833

M004 0.3642 0.06710 0.5833 0.7889 0.8722 -1.1670 1.1500

M005 0.1983 0.03253 0.8500 0.7667 0.9833 -1.2330 -0.0445

M006 0.4354 0.07107 0.5500 0.8333 0.9167 -0.7667 0.1944

M007 0.2265 0.03324 0.8167 0.8111 1.0280 -0.8333 -1.0000

M008 0.2570 0.04939 0.6833 0.7000 1.0060 -0.9000 0.4333

M009 0.3299 0.05141 0.6500 0.7444 0.8500 -0.9667 -0.7611

M010 0.2083 0.03649 0.7833 0.7222 0.9389 -1.3000 -0.5222
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Figure 3.1. Linear density power spectra (top panel) and linear growth factors (bottom

panel) from the Mira-Titan simulations for the cases of the ⇤CDM and ten di↵erent

dynamical wCDM cosmologies (Heitmann et al. 2016).
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were set at the best-fit values from the Seven-Year Wilkinson Microwave Anisotropy

Probe (WMAP7) (Komatsu et al. 2011). For the wCDM cosmologies, the values of the

seven key cosmological parameters including w0 and wa were deliberately chosen to be

in the ranges that embrace the WMAP7 constraints (for the details, see Heitmann et

al. 2009, 2016). Table 3.1 lists the values of the key cosmological parameters for each

of the eleven di↵erent cosmologies from the Mira-Titan simulation (see also Table 3 in

Lawrence et al. 2017). Figure 3.1 plots the linear power spectra at the present epoch,

P (k), and the linear growth factor, D(z), for the eleven cosmologies (in the top and

bottom panels, respectively), computed by the CAMB code (Lewis et al. 2000). Note

that the three models, M003, M005 and M008 are almost indistinguishable from the

⇤CDM model in P (k), while the two models, M007 and M009, yield D(z) the shapes

of which are very similar to that for the ⇤CDM case.

Heitmann et al. (2016) compiled the catalogs of the DM halos identified by applying

the friends-of-friends (FoF) algorithm with a linking length of bcd̄p with bc = 0.168

and mean particle separation d̄p to each particle snapshot in the redshift range of

0.0  z  4.0. Following the same procedure of Lee (2012), we analyze the FoF halo

catalogs from each Mira-Titan universe to numerically determine the mass functions of

the field clusters and the associated errors as well:

1. Make a sample of the cluster halos with masses larger than Mc = 3⇥1013 h�1M�

out of the halo catalog at a given redshift in the range of 0  z  zc ⇠ 1. The

catalogs at higher redshifts, z > zc are excluded from the analysis on the ground

that the field clusters at z > zc are too rare to yield statistically significant results.

2. Apply to the above sample the FoF algorithm with a linking length of bscd̄c =

2bcd̄c with mean cluster halo separation d̄c to find a supercluster as a cluster of

clusters each of which consists of two and more cluster halos. This specific choice
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of the linking length was made by Lee (2012) to guarantee that the degree of the

disturbance from the surroundings on the field clusters is indeed negligible (i.e.,

DB = 0) (see Figure 2 in Lee 2012).

3. Find the cluster halos in the sample which appertain to none of the identified

superclusters as the field clusters and count them, dNI, in the logarithmic mass

bin, [lnM, lnM + d lnM ].

4. Split the field clusters into eight Jackknife subsamples according to their positions

and separately determine dNI/d lnM from each subsample. Evaluate the Jack-

knife errors in the measurement of dNI/d lnM as one standard deviation scatter

around the ensemble average over the eight subsamples.

Now that the mass functions of the field clusters from the Mira-Titan simulations

are all determined, we compare them with Equation (2.19) by adjusting the single

coe�cient, �. For this comparison, the spherical barrier height, �sc, is set at the EdS

value of 1.686, since it varies only very weakly with the back ground cosmology (e.g.,

Eke et al. 1996; Pace et al. 2010). We employ the �2-statistics to determine the best-fit

value of � and estimate the associated error, �� , as 1/
p
I� , where I� is the Fisher

information given as I� ⌘ d2�2/d�2 at the best-fit value of �, at each redshift for each

cosmology.

Figure 3.2 plots the numerical result (filled circles) as well as Equation (2.19) with

the best-fit value of � (red solid line) for eleven di↵erent cosmologies at z = 0. In each

panel, the analytic mass function with the best-fit � for the ⇤CDM case is shown as

dashed line for comparison. Figures 3.3-3.4 plot the same as Figure 3.2 but at z = 0.4

and z = 0.78, respectively. As can be seen, Equation (2.19) with the best-fit � is quite

successful in matching the numerically determined mass functions of the field clusters

for all of the eleven cosmologies at all of the three redshifts. As emphasized in Lee
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Figure 3.2. Numerically obtained mass functions of the field clusters (filled circles)

compared with the analytic formula (red solid lines) for 10 di↵erent dynamical wCDM

cosmologies as well as for the ⇤CDM case at z = 0.
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Figure 3.3. Same as Figure 3.2 but for at z = 0.4.
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Figure 3.4. Same as Figure 3.2 but for at z = 0.78.
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(2012), the modified CA formalism with DB = 0 describes well not only the shape but

also amplitude of the mass function of the field clusters even though it has only a single

parameter, �. The good agreements between the analytical and numerical results shown

in Figures 3.2-3.4 prove that the modified CA formalism with the deterministic collapse

barrier for the field clusters can be legitimately extended to the wCDM cosmologies.

It is, however, worth mentioning here that the analytic model for the field cluster

mass function, Equation (2.19), is found to be valid in the limited redshift range z  zc,

which we suspect is due to the failure of the assumption DB = 0 at higher redshifts

z > zc ⇠ 1. The low abundance of the clusters with M � Mc at z > zc makes it

di�cult to properly identify the superclusters via the FoF algorithm, which in turn

contaminates the identification of the field clusters. In other words, the field clusters

identified via the FoF algorithm at z > zc may not be isolated enough to satisfy the

condition of DB = 0.

3.2 Evolution of the Drifting Collapse Barrier

Figure 3.5 plots the best-fit value of � determined in Section 3.1 versus z for the

eleven cosmologies, revealing the presence of a strong anti-correlation between � and

z. We discover an universal behavior of �(z) from all of the eleven cosmologies: it

monotonically declines toward 0 as the redshift increases up to z � 1. In the range

of 0  z  0.3, it declines relatively slowly with z, while in the higher z-range it

drops quite rapidly down to zero. The drifting coe�cient, �(z), from each of the eleven

cosmologies is, however, manifestly di↵erent from one another in its declining rate and

amplitude as well as in the critical redshift at which �(z) becomes zero.

Although �sc/�(M, z) may play a partial role to induce the cosmology dependence

of �(z), we believe that it should not be the main contribution. First of all, the spherical



22 Comparison with the Numerical Results for wCDM model

Figure 3.5. Redshift evolution of the drifting coe�cient, �, for 11 di↵erent DE cos-

mologies.
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collapse barrier height, �sc, has been known to be quite insensitive to the background

cosmology as mentioned in Section 3.1. For the case of flat ⇤CDM models, Eke et al.

(1996) showed that �sc changes very mildly from 1.686 to 1.67 as ⌦m changes from 1 to

0.1. Even for the case of flat wCDM models, the weak dependence of �sc was rigorously

proven by Pace et al. (2010) who directly solved the nonlinear di↵erential equation of

the density contrast in the spherical collapse process to find that the value of �sc(z)

for the wCDM models remain very similar to that for the ⇤CDM model in the whole

redshift range.

Regarding the cosmology dependence of �(M, z), it depends on the background cos-

mology only through D(z) and P (k). Whereas, as can be seen in Figure 3.5, �(z) di↵ers

even among those models which have the same shapes of D(z) and P (k). Therefore,

the cosmology dependence of �(z) witnessed in Figure 3.5 should come mainly from an-

other channel, which we believe is the departure of �c from �sc. In di↵erent cosmologies,

the non-spherical collapse in the nonlinear regime would proceed di↵erently, resulting

in the cosmology dependence of the degree of the departure of �c from �sc, which is

described by the single parameter, �(z), for the case of the field cluster abundance.

Without having a physical model for the e↵ect of the background cosmology on the

departure of �c from �sc at the moment, we find the following fitting formula useful

to quantitatively describe the ways in which �(z) di↵ers among the eleven cosmologies

and to e�ciently assess the statistical significances of their di↵erences:

�(z) = �A sinh�1


1

qz
(z � zc)

�
, (3.1)

where three adjustable parameters, �A, qz and zc, denote the amplitude, redshift dis-

persion and critical redshift of �(z), respectively. The overall amplitude, �A, quantifies

how much �c departs from the EdS value of �sc at z = 0, the critical redshift parameter,

zc, quantifies when �c becomes equal to �sc, while the inverse of the redshift dispersion,
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1/qz, quantifies the rate at which �c converges to �sc, as z increases. The best-fit values

of (�A, qz, zc) and their associated errors (��A ,�qz ,�zc) are obtained by fitting Equation

(3.1) to the empirically determined �(z) in Section 3.1 with the help of the non-linear

least square code of SciPy python library by Virtanent et al. (2020) (see Table 3.2).

Figure 3.6 shows how well Equation (3.1) with three best-fit parameters (red solid

line) describes the empirically determined �(z) (filled circles), comparing the best-

fit �(z) for each of the ten wCDM cosmologies with that for the ⇤CDM case (dashed

line). It is interesting to see that the three cosmologies, ⇤CDM, M007, and M009, which

produce almost identical mass functions of the field clusters at all redshifts (Figures

3.2-3.4), can still be distinguished by their distinct �(z). The di↵erences in the best-

fit values of the critical redshifts, �zc, between the ⇤CDM and M007 (M009) cases

is as high as 3.47��zc (5.89��zc). Here, the errors, ��zc is calculated through the

error propagation as ��zc ⌘
�
�2
zc,1 + �2

zc,2

�1/2
where �zc,1 and �zc,2 are the errors in

the measurements of zc for the ⇤CDM and M007 (M009) cases, respectively. Note also

that �(z) can also distinguish between the two cosmologies, M002 and ⇤CDM, although

both of the cosmologies yield quite similar linear growth factors and field cluster mass

functions (Figure 3.1). The di↵erence, �zc, between the two cosmologies is found to be

as significant as 14��zc .

The evolution of �(z) also allows us to distinguish not only between the wCDM

and ⇤CDM cosmologies but also among di↵erent wCDM cosmologies themselves. For

instance, the two wCDM cosmologies, M001 and M006, are found to have almost no

di↵erence in their field cluster mass functions. Nevertheless, they can be distinguished

by the 6.7��zc di↵erences in the best-fit values of zc. These results clearly indicates

a potential of �(z) to complement the cluster mass function in discriminating the

candidate cosmologies.
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Figure 3.6. Linear fits (red solid lines) to the numerically obtained �(z) (filled circles)

for 11 di↵erent DE cosmologies.
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Table 3.2. Best-fit parameters for the evolution of the drifting coe�cient.

Cosmology �A qz zc

⇤CDM �0.141± 0.008 0.289± 0.033 1.024± 0.014

M001 �0.147± 0.008 0.388± 0.045 1.456± 0.018

M002 �0.135± 0.005 0.343± 0.026 1.302± 0.014

M003 �0.138± 0.006 0.252± 0.026 1.394± 0.011

M004 �0.163± 0.008 0.303± 0.032 1.068± 0.014

M005 �0.111± 0.005 0.186± 0.018 0.872± 0.009

M006 �0.152± 0.005 0.285± 0.021 1.311± 0.012

M007 �0.116± 0.007 0.229± 0.031 1.106± 0.019

M008 �0.124± 0.005 0.269± 0.021 0.859± 0.007

M009 �0.120± 0.006 0.147± 0.019 0.903± 0.015

M010 �0.123± 0.004 0.199± 0.013 0.759± 0.005



Chapter 4

Probing Cosmology with the

Isolated Cluster Mass Function

4.1 The E↵ect of Massive Neutrinos on �(z)

1 We make an extensive use of the publicly available data from the Cosmological Mas-

sive Neutrinos Simulations (MassiveNuS) run by Liu et al. (2018) on a periodic box of

comoving volume 5123 h�3Mpc3, containing 10243 particles, each of which is as massive

as 1010 h�1M�. The MassiveNuS was recurringly performed for one ⇤CDM cosmology

with massless neutrinos and for 100 di↵erent ⌫⇤CDM cosmologies with massive neutri-

nos, whose initial conditions were described by the six key cosmological parameters as

well as M⌫ . For the study of the sole e↵ect of the massive neutrinos on dNI/d lnM and

�(z), we consider only those cosmologies which have identical initial conditions other

than M⌫ with one another. Among the 101 cosmologies are found only 3 to meet this

selection criterion, which have the same matter density parameter, ⌦m = 0.3, and same

amplitude of the primordial density power spectrum, As = 2.1⇥109, but di↵erent total

1This section was published in Ryu, S. & Lee, J. 2020, ApJ, 894, 65.

27
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neutrino mass, M⌫ = 0.0, 0.1 and 0.6 eV, respectively.

The MassiveNuS engaged the Rockstar algorithm (Behroozi et al. 2013) to find

the DM halos at various redshifts and recorded such key properties of each Rockstar

halo as its virial mass (M), virial radius, comoving position vector, peculiar velocity

vector and so forth. From the catalog of the Rockstar halos resolved at each redshift for

each of the three cosmologies, we numerically determine dNI/d lnM and the analytical

single parameter model, Equation (2.19), is fitted by adjusting the value of � following

the same procedure arranged in Section 3.1 but with a linkage length parameter of

bsc = 0.33 for the identification of the superclusters.

In the procedure of evaluating the analytic mass functions of the field clusters, the

CAMB code (Lewis et al. 2000) is again exclusively used for P (k, z). Note that since

the linear growth factor, D(z), acquires a scale dependence in the presence of massive

neutrinos, the rms density fluctuation �(M, z), is no longer equal to D(z)�(M, z = 0).

Instead, we calculate it as �(M, z) =
⇥
(2⇡2)�1

R
dk k2P (k, z)W 2

th(k,M)
⇤1/2

where Wth

is the spherical top-hat filter on the mass scale of M .

Figure 4.1 plots the linear density power spectra, P (k, z), for the three di↵erent cases

of M⌫ at three di↵erent redshifts, computed by the CAMB code. As expected, the more

massive neutrinos suppress more severely the linear density powers on the small scales

(k > 0.02hMpc�1). Note the small di↵erences in P (k, z) between the cases of M⌫ = 0.0

eV and M⌫ = 0.1 eV at all of the three redshifts. Given that the large uncertainties

in the high-mass tails of the cluster mass functions caused by poor-number statistics

and cosmic variance are likely to exceed this small di↵erences in P (k, z), the cluster

mass functions would be unable to discriminate the two ⌫⇤CDM cosmologies from each

other.

Figure 4.2 displays both of the numerical field cluster mass functions from the

MassiveNuS (filled circles) and the analytic model with the best-fit value of � (red
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Figure 4.1. Linear density power spectra for three di↵erent values of total neutrino

mass (M⌫ = 0.0, 0.1, 0.6 eV) at three di↵erent redshifts (z = 0.0, 0.42, 0.83), computed

by the CAMB code (Lewis et al. 2000).
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Figure 4.2. Analytic mass functions of the field clusters (red solid lines) over-plotted

with the numerical results from the MassiveNuS for the three di↵erent cases of M⌫ at

z = 0. The dashed lines in the middle and right panels conform to the red solid line in

the left panel.

solid lines) at z = 0 for the three di↵erent cases of M⌫ . The grey dashed lines in the

middle and right panels conform to the red solid line in the left panel. Figures 4.3-4.4

show the same as Figure 4.2 but at z = 0.42 and 0.83, respectively. As can be seen,

the analytical single parameter model for dNI/d lnM agrees excellently well with the

numerical results at all redshifts for all of the three cases of M⌫ , confirming its validity

even in the presence of massive neutrinos and proving its robustness as a physical

model.

Figures 4.2-4.4 clearly show that dNI/d lnM has a significantly lower amplitude for

the case of M⌫ = 0.6 eV than for the other two cases of M⌫ = 0.0 eV and M⌫ = 0.1 eV,
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Figure 4.3. Same as Figure 4.2 but for at z = 0.42.
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Figure 4.4. Same as Figure 4.2 but for at z = 0.83.
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between which almost no di↵erence is found in dNI/d lnM , no matter at what redshifts

they are compared with each other. Although the di↵erence in dN/d lnM between the

two cases of M⌫ = 0.0 eV and M⌫ = 0.1 eV tends to slightly increase with z, the

larger errors in the measurement of dNI/d lnM at higher redshifts weigh down their

statistical significances. The comparison of Figures 4.2-4.4 with Figure 4.1 indicates that

the M⌫-dependence of the field cluster mass function is almost entirely dictated by the

M⌫-dependence of P (k, z). As mentioned in Section 2, the cosmology-dependence of the

field cluster abundance (including its M⌫-dependence) has two di↵erent sources, P (k, z)

and �. The results shown in Figures 4.2-4.4, however, imply that the former overwhelms

the latter in shaping the M⌫-dependence of the field cluster mass function, which in

turn warns that the field cluster mass function would fail not only in constraining M⌫

below the Planck constraint but also in breaking the �8-M⌫ degeneracy.

Figure 4.5 plots the numerically determined values of �(z) at twenty di↵erent red-

shifts in the range of 0  z  1 for the three di↵erent cases of M⌫ , revealing that �(z)

evolves di↵erently among the three cases. As can be seen, at z . 0.3 the drifting coef-

ficient �(z) has higher values for the case of M⌫ = 0.6 eV than for the other two cases.

Whereas at z & 0.3, the tendency is reversed. The most massive neutrinos case yields

the lowest values of �(z), while its highest values are found for the massless neutrinos

case. In addition, we find that the slope of �(z) substantially di↵ers even between the

two cases of M⌫ = 0.0 eV and M⌫ = 0.1 eV, while no di↵erence found in �(z = 0)

between them.

We speculate that this redshift-dependence of the e↵ect of massive neutrinos on �(z)

might help break the �8-M⌫ degeneracy. Recall that the e↵ect of massive neutrinos on

the linear density power spectra and cluster mass function is consistent in its direction,

regardless of the redshifts, as witnessed in Figures 4.1-4.4. The more massive neutrinos

always reduce more severely the amplitudes of P (k, z) and dNI/d lnM at all redshifts,
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Figure 4.5. Numerical results of the drifting coe�cient, �(z), in the redshift range of

0  z  1 for the three di↵erent cases of M⌫ , from the MassiveNuS.
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Figure 4.6. Best-fit formula for �(z) (red solid line) over-plotted with the numerical

results (filled circles) for the three di↵erent cases of M⌫ . The dashed lines in the middle

and right panels conform to the red solid line in the left panel.

which is why the two diagnostics su↵er from the �8-M⌫ degeneracy. In other words, the

lower value of �8 has the same e↵ect on P (k, z) (and dN/d lnM as well) as the higher

value of M⌫ . Meanwhile, our result shown in Figure 4.5 implies that the e↵ect of the

higher value of M⌫ on �(z) might be di↵erentiated from that of the lower value of �8

on �(z). The latter lowers the amplitude of �(z) without changing its slope, while the

former heightens its amplitude and concurrently steepens its slope. Yet, the possibility

of breaking the �8-⌦m degeneracy with �(z) is only a speculation, since we have yet to

demonstrate its feasibility in practice.

As done in Section 3.2, to e↵ectively quantify the di↵erences in the evolution of the

drifting coe�cient among the three cosmologies, we fit Equation (3.1) to the numerically
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Figure 4.7. Best-fit three parameters of the analytic formula for �(z) for the three

di↵erent cases of M⌫ .
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determined �(z) by adjusting the values of �A, qz and zc to yield the minimum �2.

Figure 4.6 demonstrates how well the simple formula (red solid lines), Equation (3.1),

agrees with the numerically obtained �(z) (black filled circles) for all of the three cases

ofM⌫ . Figure 4.7 shows the best-fit values of ��A, qz, zc with their errors ��A , �qz, �zc,

which are all obtained through the �2 fitting after due consideration of the uncertainties

in �(z) shown in Figure 4.6.

The most significant di↵erences among the three cases are found in the values of

zc, which is consistent with the result of Section 3.2, that zc was found to vary most

sensitively with the dark energy equation of state. Assessing the statistical significances

of the di↵erences in zc among the three cases of M⌫ by estimating the errors of their

mutual di↵erences, ��(zc), propagated from �zc, as done in Section 3.2, we find the

di↵erence in zc between the two cases of M⌫ = 0.0 eV and M⌫ = 0.1 eV (M⌫ = 0.6 eV)

to exceed 4��(zc) (10��(zc)). Whereas, the di↵erences in the other two parameters, �A

and qz, between the two cases of M⌫ = 0.0 eV and M⌫ = 0.1 eV (M⌫ = 0.6 eV) are

found to be statistically insignificant (not so significant as that in zc).

It should be worth explaining here why zc is the most sensitive to the variation of

M⌫ . Given the definition zc as a critical redshift at which �c = 1.686 (i.e, �(zc) = 0),

its value should be determined by two factors, both of which sensitively depend on M⌫ .

The first factor is how fast the matter density parameter ⌦m approaches unity (i.e, the

Einstein-de Sitter value) at high redshifts, while the second one is how rare the field

clusters are in a given universe, since the gravitational collapse of the rarer objects

proceeds in a more spherically symmetrical way (Bernardeau 1994). Meanwhile, the

other two parameters, �A and qz, depend mainly on either of the two factors: �A on

the second, while qz on the first.
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4.2 E↵ect of Coupled Dark Energy on �(z)

2 A cDE cosmology describes an alternative universe where the role of DE is played

by a dynamical scalar field, �, coupled to DM particles through energy-momentum

exchange. The DE-DM coupling that causes the time-variation of DM particle mass

(Wetterich 1995; Amendola 2000, 2004) generates a long-range fifth force via which

the growth of structures can be enhanced (e.g., Mangano et al. 2003; Macciò et al.

2004; Mainini & Bonometto 2006; Pettorino & Baccigalupi 2008; Baldi et al. 2010;

Wintergerst & Pettorino 2010, and references therein). Categorized by the shape of

DE self-interaction potential, V (�), as well as by the strength of the DE-DM coupling,

s(�) ⌘ �d lnmDM/d�, a cDE cosmology has recently attained delving attentions since

it has been found to provide a possible solution to the Hubble tension (Di Valentino et

al. 2020).

To investigate the e↵ect of cDE on the redshift evolution of �(z), we utilize the

data from the Large Coupled Dark Energy Cosmological Simulations (L-CoDECS) run

by Baldi (2012a) with a modified version of the GADGET3 code, a non-public develop-

ers version of the widely-used public code GADGET-2 (Springel 2005). The L-CoDECS

is a series of N -body cosmological runs that simulate a standard ⇤CDM and five dif-

ferent cDE cosmologies on a periodic box of linear size 1h�1Gpc containing 10243

collisionless DM particles of individual mass mDM = 5.84 ⇥ 1010 h�1M� as well as an

equal number of collisionless baryon particles of mbaryon = 1.17⇥ 1010 h�1M�. The ini-

tial conditions of the standard ⇤CDM cosmology were chosen to meet the constraints

from the Seven-Year Wilkinson Microwave Anisotropy observations (Komatsu et al.

2011). The five di↵erent cDE cosmologies are divided into three categories: the con-

stant DM-DE coupling and exponential potentials (EXP001, EXP002, EXP003), the

2This section was published in Ryu, S., Lee, J., & Baldi, M. 2020, ApJ, 904, 93.
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Table 4.1. Best-fit Parameters of �(z) for the CoDECS cosmologies.

Model V (�) s �8 �A qz zc

⇤CDM - - 0.809 �0.16± 0.01 0.31± 0.04 1.10± 0.02

EXP001 e�0.08� 0.05 0.825 �0.16± 0.01 0.31± 0.05 1.04± 0.02

EXP002 e�0.08� 0.10 0.875 �0.17± 0.02 0.35± 0.08 1.32± 0.04

EXP003 e�0.08� 0.15 0.967 �0.14± 0.01 0.19± 0.06 1.44± 0.05

EXP008e3 e�0.08� 0.40 0.895 �0.16± 0.01 0.27± 0.04 1.19± 0.03

SUGRA003 ��2.15e�
2
/2 -0.15 0.806 �0.16± 0.01 0.39± 0.07 1.35± 0.03

exponential DM-DE coupling and exponential potential (EXP008e3) and the constant

coupling and supergravity potential (SUGRA). All cDE cosmologies simulated by the

L-CoDECS were ensured to have a flat geometry, sharing the same values of the five

key cosmological parameters, h = 0.703, ⌦CDM = 0.226, ⌦DE = 0.729, ⌦b = 0.0451,

As = 2.42 ⇥ 10�9 and ns = 0.966. They di↵er from one another only in the potential

shape and DM-DE coupling as well as in the linear density power spectrum amplitude,

information on which are provided in the first four columns of Table 4.1. For more

detailed description of the cDE cosmologies and the L-CoDECS 3, we refer the readers

to Baldi (2012a,b).

The L-CoDECS simulations have been released with catalogs of gravitationally bound

halos identified for each cosmology through a two-step process starting with a Friends-

of-Friends (FoF) algorithm with linking length parameter of bc = 0.2 followed by a

gravitational unbinding procedure of each individual FoF halo using the SUBFIND al-

3All data are available at the CoDECS website, http://www.marcobaldi.it/web/CoDECS.html
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gorithm (Springel et al. 2001) that allows to associate spherical overdensity masses and

radii to each gravitationally bound main substructure. Analyzing the FoF halo cata-

logs, the di↵erential mass function of the field clusters halos, dNI/d lnM , is determined

as explained in Section 3.1. Using the linear density power spectrum of each cDE cos-

mology provided within the CoDECS public data release, we evaluate the linear density

rms fluctuation, �(M), and the analytic mass function of the field cluster, Equation

(2.19), as well. The best-fit value of the drifting coe�cient, � in Equation (2.19) is de-

termined at each redshift (Section 3.1). As done in Section 3.1, once the values of �(z)

are determined at various redshifts, we fit them to Equation (3.1) to find the best-fit

values of the three parameters, �A, qz and zc and their associated errors ��A , �qz and

�zc , respectively (see Table 4.1). Then, we calculate the statistical significance of the

di↵erences in the three parameters among the cosmologies as ��A/���A , �qz/��qz

and �zc/��zc where ��A, �qz and �zc are the di↵erences in the three parameters

between two cosmologies, while ���A , ��qz and ��zc correspond to the propagated

errors in the determination of the di↵erences.

Figure 4.8 (Figure 4.9) plots the numerically determined mass functions of the field

cluster halos (filled black circles) as well as the analytic model (red solid line), Equation

(2.19), with the best-fit value of � for the six cosmologies at z = 0 (z = 1), respectively.

In each panel, the analytic model for the ⇤CDM case (grey dashed line) is also plotted

to show the di↵erences. Although the analytic model, Equation (2.19), succeeds in

matching the numerical results at both of the redshifts for all of the cDE cosmologies,

the field cluster mass functions are found to be incapable of telling apart with high

statistical significance the three cosmologies ⇤CDM, EXP001 and SUGRA at both of

the redshifts, z = 0 and 1.

Figure 4.10 plots the redshift evolution of the empirically determined drifting coe�-

cient, �(z) (filled black circles) as well as the fitting formula (red solid lines) for the six
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Figure 4.8. Field cluster mass functions numerically obtained (black filled circles)

from the CoDECS and analytic model with the best-fit drifting coe�cient (red solid

lines) for a ⇤CDM and five di↵erent cDE cosmologies at z = 0.
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Figure 4.9. Same as Figure 4.8 but at z = 1.
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cosmologies. In each panel, the fitting formula for the ⇤CDM case (grey dashed line)

are also plotted to show the di↵erences. As can be seen, the fitting formula expressed

in terms of the inverse sine hyperbolic function, Equation (3.1), with the best-fit values

of qz, �A and zc indeed describes quite well the behaviors �(z) for all of the six cos-

mologies. Note that the SUGRA can be distinguished by �(z) from the ⇤CDM with

high statistical significance despite that the two cosmologies are mutually degenerate

in the cluster mass functions. The statistical significance of the di↵erence in the criti-

cal redshift parameter, zc, between the ⇤CDM and the SUGRA cosmologies is found

to be as high as 7.48�. Although �(z) distinguishes with high statistical significance

the other cDE cosmologies except for the EXP001 from the ⇤CDM, it fails to break

the degeneracy between the ⇤CDM and the EXP001 cases, due to the extremely weak

DM-DE coupling of the latter cosmology.

We have so far used prior information on the background cosmology for the deter-

mination of dNI/d lnM and �(z). In other words, to examine if �(z) can break a cosmic

degeneracy between two di↵erent cosmologies, we assume that information on the shape

of the linear density power spectrum are available. In practice, however, this prior in-

formation is not available for the determination of �(z). Especially, if a background

cosmology is indistinguishable from the ⇤CDM case by the standard diagnostics, then

it may not be justified to make such a preemptive assumption about the shape of the

linear density power spectrum. The EXP001 corresponds to this case where no prior

information on the background cosmology should be assumed to be available in prac-

tice, since the standard diagnostics including the linear density power spectrum, mass

function, etc., are unable to distinguish it from the ⇤CDM case.

To deal with this degeneracy, we use the linear density power spectrum of the ⇤CDM

case, P (k;⇤CDM), for the computation of �(M) in dNI/d lnM for the EXP001 case

and compare the reevaluated analytic model with the numerical results to find the
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Figure 4.10. Empirically determined redshift evolution of the drifting coe�cient of

the field clusters (black filled circles) and fitting formula (red solid lines) for ⇤CDM

and five di↵erent cDE cosmologies.
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Figure 4.11. Field cluster mass functions for the EXP001 case determined without

using prior information on P (k).

best-fit �(z). That is, we redetermine �(z) for the EXP001 case without using prior

information on P (k; EXP001). Figure 4.11 plots the analytical mass function of the

field clusters (red solid lines) obtained by using P (k;⇤CDM) and compares it with

the numerical results (black filled circles) for the EXP001 case at z = 0 (top panel)

and z = 1 (bottom panel). As can be seen, in spite of no prior information on the

background cosmology, the analytical mass function of the field clusters still describes

quite well the numerical results at both of the redshifts for the EXP001 case.

Figure 4.12 plots the same as the top-right panel of Figure 4.10 but without using

prior information on P (k; EXP001). As can be seen, the EXP001 turns out to yield

larger di↵erences in �(z) from the ⇤CDM. The best-fit values of �A, qz and zc for the

EXP001 case listed in Table 4.1 correspond to the ones obtained without using prior in-
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Figure 4.12. Evolution of the drifting coe�cient of the field clusters for the EXP001

case determined without using prior information on P (k)
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Figure 4.13. Statistical significances of the di↵erences among the ⇤CDM, EXP001,

and SUGRA that are mutually degenerate in the cluster mass functions.
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formation on P (k; EXP001). The statistical significance of the di↵erence in zc between

the ⇤CDM and the EXP001 is found to be as high as 2.53. Figure 4.13 summarizes

the statistical significance of the di↵erence in zc among the three cosmologies, ⇤CDM,

EXP001, and SUGRA, which are mutually degenerate in the field cluster mass func-

tions. Although the degeneracy between the ⇤CDM and the EXP001 can be broken by

�(z) only with 2.53 significance, we speculate that a larger data set would improve the

significance.

4.3 E↵ect of f(R) Gravity on �(z)

4 In the theory of f(R) gravity, the strength of a long range fifth force is quantified

by the absolute value of the derivative of f(R) with respect to the Ricci scalar R at

the present epoch, |fR0| ⌘ |df/dR|0. A larger value of |fR0| corresponds to a stronger

fifth force, which would more severely enhance the small-scale density power (Hu &

Sawicki 2007; Li & Barrow 2007). If neutrinos have a non-zero mass in a f(R) gravity

cosmology, however, the suppressing e↵ect of the free streaming neutrinos on the small-

scale density power spectrum could compensate the enhancing e↵ect of the fifth force,

resulting in a suppression of the deviations from the standard ⇤CDM + GR cosmology

that each of these two scenarios would individually imprint on structure formation. In

other words, the linear density power spectra may not be capable of distinguishing a

certain combination of fR0 with
P

m⌫ from the standard ⇤CDM+GR cosmology, since

they could have zero net e↵ect on the amplitude of small-scale density perturbations

(e.g., Baldi et al. 2014).

To investigate if �(z) can also break the cosmic degeneracy between ⇤CDM+GR

and ⌫CDM+f(R), we use a subset of the data from the DUSTGRAIN-pathfinder N -

4This section was published in Ryu, S., Lee, J., & Baldi, M. 2020, ApJ, 904, 93.
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body simulation suite that were conducted by Giocoli et al. (2019) on a box of volume

7503 h�3Mpc3 for various ⌫CDM+f(R) cosmologies as well as the ⇤CDM+GR cosmol-

ogy. The DUSTGRAIN-pathfinder simulations were performed with the MG-GADGET

code (Puchwein et al. 2013) – another modified version of GADGET-3 implementing an

adaptive mesh solver for the spatial fluctuations of the fR scalar degree of freedom –

to trace the evolution of 7683 DM particles of mass 8.1⇥ 1010 h�1M�. To simulate the

⌫CDM+f(R) cosmologies, the DUSTGRAIN-pathfinder adopted the widely-used reali-

sation of f(R) proposed by Hu & Sawicki (2007) and a particle-based implementation

of massive neutrinos developed by Viel et al. (2010). Collapsed structures were iden-

tified through a FoF finder with a linking length parameter of bc = 0.16 followed by

the unbinding procedure implemented in the SUBFIND code to identify the halo center

and its spherical overdensity mass and radius for all gravitationally bound objects in

each cosmology, similarly to what described above for the CoDECS simulations. For a

detailed description of the technical details of the DUSTGRAIN-pathfinder simulations,

see Giocoli et al. (2019).

Among the various cosmologies simulated by the DUSTGRAIN-pathfinder, we con-

sider three di↵erent CDM+f(R) (namely, fR4, fR5 and fR6 corresponding to |fR0| =

10�4, 10�5 and 10�6, respectively) and three di↵erent ⌫CDM+f(R) (namely fR4+0.3 eV,

fR5+0.15 eV and fR6+0.06 eV corresponding to
P

m⌫ = 0.3 eV, 0.15 and 0.06 eV, re-

spectively) as well as the standard ⇤CDM + GR (from here on, GR) with initial

conditions set at the Planck values (Planck Collaboration et al. 2016). These 7 di↵er-

ent cosmologies were ensured to be flat, described by the common key cosmological

parameter values of h = 0.67, ⌦m = 0.31, ⌦DE = 0.67, ⌦b = 0.0481, As = 2.2 ⇥ 10�9

and ns = 0.97. The first four columns of Table 4.2 list the values of |fR0|,
P

m⌫ , �8 for

each of the seven cosmologies considered in the present work.

We first examine whether or not the analytic model for the field cluster mass func-
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Table 4.2. Best-fit Parameters of �(z) for the DUSTGRAIN-pathfinder cosmologies.

Model |fR0|
P

m⌫ [eV] �8 �A qz zc

⇤CDM - 0.0 0.847 �0.11± 0.01 0.22± 0.06 1.24± 0.03

fR4 10�4 0.0 0.967 �0.10± 0.01 0.16± 0.04 1.39± 0.03

fR5 10�5 0.0 0.903 �0.16± 0.02 0.50± 0.11 1.40± 0.04

fR6 10�6 0.0 0.861 �0.08± 0.01 0.09± 0.04 1.24± 0.04

fR4+0.3eV 10�4 0.3 0.893 �0.09± 0.01 0.29± 0.09 1.52± 0.06

fR5+0.15eV 10�5 0.15 0.864 �0.15± 0.05 0.85± 0.45 1.73± 0.14

fR6+0.06eV 10�6 0.06 0.847 �0.08± 0.01 0.11± 0.04 1.27± 0.04

tion, Equation (2.19), is valid for the three CDM+f(R) cosmologies. Analyzing the

FoF halo catalogs in the redshift range 0  z  1 and following the same procedure

described in Section 3.1, we numerically determine dNI/d lnM for the GR, fR4, fR5

and fR6 cases. To evaluate the analytic model, Equation (2.19), and compare it with

the numerically determined dNI/d lnM to derive �(z) for each of the three f(R) gravity

cosmologies, we use the MGCAMB code (Zhao et al. 2009; Hojjati et al. 2011; Zucca et

al. 2019; Lewis et al. 2000).

Figure 4.14 (Figure 4.15) depicts the numerical mass functions of the field cluster

halos (filled black circles) as well as the analytic model (red solid line) and ⇤CDM case

comparison (grey dashed line) for the four cosmologies at z = 0 (z = 1), respectively,

revealing that the analytic model matches quite well the numerical results even for

the f(R) gravity models. As expected, the fR4 (fR6) yields the most (least) abundant

field clusters in the entire mass range. No statistically significant di↵erence is found in
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Figure 4.14. Field cluster mass functions numerically obtained (black filled circles)

from the DUSTGRAIN-pathfinder and analytic model with the best-fit drifting coe�cient

(red solid lines) for a ⇤CDM and three di↵erent f(R) gravity cosmologies at z = 0.
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Figure 4.15. Same as Figure 4.14 but at z = 1.
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Figure 4.16. Empirically determined redshift evolution of the drifting coe�cient of

the field clusters (black filled circles) and fitting formula (red solid lines) for ⇤CDM

and three di↵erent f(R) cosmologies.
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dNI/d lnM between the GR and the fR6 cases, indicating their mutual degeneracy in

the field cluster mass functions. Figure4.16 plots the redshift evolution of the drifting

coe�cient, �(z) (filled black circles) as well as the fitting formula (red solid lines) and

⇤CDM case comparison (grey dashed line) for the four cosmologies. As can be seen,

despite that the field cluster mass functions fail to distinguish between the GR and the

fR6 cases, the field cluster drifting coe�cient, �(z), can break the degeneracy, showing

a substantial di↵erence between the two cosmologies.

It is worth noting the distinct redshift dependence of the di↵erence in �(z) between

the GR and each f(R) gravity cosmology. The fR4 case yields an almost redshift-

independent shift of �(z) from that of the GR case, while the other two cases show

di↵erent redshift-dependent shifts between each other. That is, for the fR5 (fR6) case,

the largest deviation of �(z) from that of the GR case occurs at the low (high) redshift

ends. A qualitative explanation for this trend is provided in the following.For the fR4

case, the fifth-force is basically always unscreened at low redshifts, which implies that

the haloes of all masses are equally a↵ected by the fifth force, and that there is no sharp

transition between screened and unscreened regions in the cosmic web.

Whereas, for the fR5 and fR6 cases, as the screening properties imply that the

massive halos are screened, while less massive halos are not. This introduces a mass

dependence in the deviation of the halo mass function from that of the GR case. In

particular, for the fR6 case, the high-mass tail of the halo mass function should be

almost una↵ected and thus there should be an enhancement in the number of smaller-

mass halos. This may have a di↵erent impact on the bias of halos at di↵erent masses,

and consequently an impact on the definition of the field clusters (i.e. isolated massive

objects) which could induce a di↵erent evolution of �(z).A more quantitative analysis

is required to fully understand the distinct di↵erences in �(z) between the GR and each

f(R) cosmology, which is, however, beyond the scope of this paper.
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4.4 Combined E↵ect of f(R)+⌫ on �(z)

5 Now that the validity of the analytic model of the field cluster mass function for

the f(R) gravity cosmology is confirmed, we repeat the whole process but for the

fR4+0.3 eV, fR5+0.15 eV and fR6+0.06 eV cosmologies, which were shown to be de-

generate with the GR in the standard statistics including the nonlinear density power

spectrum, cluster mass functions and halo bias (Baldi et al. 2014; Giocoli et al. 2019).

Figure 4.17 (Figure 4.18) depicts the same as Figure 4.14 (Figure 4.15) but for the

fR4+0.3 eV, fR5+0.15 eV and fR6+0.06 eV cosmologies. As can be seen, the analytic

model is still quite valid in matching the numerically obtained field cluster mass func-

tions even for the f(R)+⌫ cosmologies. At z = 0, the three f(R)+⌫ cosmologies show

no di↵erence from the GR case in the field cluster mass functions. At z = 1, the dif-

ferences in dNI/d lnM between the f(R)+⌫ and the GR cases are slightly larger but

still not statistically significant. Figure 4.19 plots the same as Figure 4.16 but for the

fR4+0.3 eV, fR5+0.15 eV and fR6+0.06 eV cosmologies. As can be seen, the fR4+0.3 eV

cosmology yields a substantial di↵erence in �(z) from the GR case, in spite of their

mutual degeneracy in the standard statistics. Yet, both of the fR5+0.15 eV and the

fR6+0.06 eV cosmologies show almost no di↵erence in �(z) from the GR case.

As done in Section 4.2, we redetermine dNI/d lnM for both of the fR5+0.15 eV

and fR6+0.06 eV cases without using prior information on the shapes of their power

spectra, which are plotted in Figure 4.20. As can be seen, the analytic model, Equation

(2.19), still agrees quite well with the numerically obtained field cluster mass functions

for both of the cases at both of the redshifts, despite that P (k;GR) is substituted for

P (k; fR5+0.15 eV) and P (k; fR6+0.06 eV). The drifting coe�cient, �(z), redetermined

without using prior information is plotted in Figure 4.21, which reveals that the three

5This section was published in Ryu, S., Lee, J., & Baldi, M. 2020, ApJ, 904, 93.
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Figure 4.17. Same as Figure 4.14 but for four di↵erent f(R) gravity+⌫ cosmologies.
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Figure 4.18. Same as Figure 4.17 at z = 1.
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Figure 4.19. Same as Figure 4.16 but for the f(R) gravity + ⌫ cosmologies.



Probing Cosmology with the Isolated Cluster Mass Function 59

cosmologies yield much larger di↵erences in �(z).

For each cosmology, we determine the best-fit values of �A, qz and zc by fitting

Equation (3.1) to �(z) obtained without priors. Then, we calculate the statistical sig-

nificance of the di↵erences in the three parameters among the three cosmologies, which

are shown in Figure 4.22. As can be seen, without using prior information on the lin-

ear density power spectra of the f(R)+⌫ cosmologies, the statistical significance of the

di↵erences in zc between the GR and the fR5+0.15 eV and between the fR6+0.06 eV

and the fR5+0.15 eV are as high as 3.48 and 3.22, respectively.

Meanwhile, for the fR6+0.06 eV case, it turns out to be not zc but �A that is

able to distinguish it from the GR case with ��A/���A = 2.03. The lower statistical

significance of the di↵erences in �(z) between the GR and the fR6+0.06 eV is likely to

be at least partially due to the large errors caused by the relatively small box size of the

DUSTGRAIN-pathfinder simulations. Given the distinct behaviors of �(z) between the

the GR and the fR6+0.06 eV shown in Figure 4.21, we suspect that if a halo sample from

a larger simulations were used, the statistical significance would increase.The best-fit

values of �A, qz and zc for each of the seven cosmologies simulated by the DUSTGRAIN-

pathfinder are shown in Table 4.2. For the fR6+0.06 eV and fR5+0.15 eV cosmologies

that are degenerate with the GR case in the standard statistics, what is listed in Table

4.2 is the best-fit values obtained without using priors in the shapes of the linear density

power spectra.
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Figure 4.20. Field cluster mass functions for the fR5+0.1 eV and fR6+0.05 eV cases

determined without using prior information on P (k).
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Figure 4.21. �(z) for the fR5+0.1 eV and fR6+0.05 eV cases determined without using

prior information on P (k).

Figure 4.22. Statistical significances of the di↵erences in zc,�A and qz among the

GR, fR5+0.1 eV and fR6+0.05 eV cases that are mutually degenerate in the standard

diagnostics.
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Chapter 5

Discussion & Conclusions

1 Numerically determining the field cluster mass functions at various redshifts from the

Mira-Titan simulations for eleven di↵erent DE cosmologies (ten di↵erent wCDM and

one ⇤CDM cosmologies) whose key cosmological parameters are chosen to be in the

range covering well the WMAP7 constraints, we have shown that the numerical results

at all redshifts for all eleven cosmologies agree very well with the analytic model ob-

tained by Lee (2012) through a modification of the generalized excursion set formalism

(Figure 3.2-3.4). The success of the analytic model has validated the key assumptions

of Lee (2012) that for the field clusters the collapse barrier can be deemed determin-

istic and thus that their excursion set mass function can be fully characterized by a

single drifting coe�cient, �, which measures the degree of the departure of the collapse

barrier height from the spherical height, �sc. It has been found that �(z) exhibits a uni-

versal tendency of converging to zero with the increment of z and that its convergence

rate as well as the value of critical redshift, zc at which �(z) = 0 depends strongly on

the background cosmology (Figures 3.5). Noting that �(z) di↵ers even among those

1This chapter was published in Ryu, S. & Lee, J. 2020, ApJ, 889, 62; Ryu, S. & Lee, J. 2020, ApJ,

894, 65; Ryu, S., Lee, J., & Baldi, M. 2020, ApJ, 904, 93.
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cosmologies that are degenerate with one another in the linear power spectrum, linear

growth factor and cluster mass function, we suggest that �(z) should be in principle

useful to discriminate the candidate cosmologies.

Nevertheless, since the eleven Mira-Titan cosmologies di↵er not only in their DE

equation of states (w0, wa) and DE density parameters (⌦de) but also in the values

of the other five key cosmological parameters (h,⌦m,⌦b, ns,�8), the detected strong

cosmology dependence of �(z) cannot be entirely ascribed to the di↵erences among the

eleven models in the values of w0, wa and ⌦de. In other words, our work has demon-

strated the usefulness of �(z) as a discriminator of wCDM cosmologies from the ⇤CDM

model, but not as a complementary probe of DE equation of state.

A more comprehensive investigation should be carried out to sort out the sole e↵ect

of the DE equation of state on �(z) before claiming it as a probe of DE in practice.

What will be highly desirable is to examine how sensitively �(z) reacts to the variations

of the DE equation of state and density parameter by determining its shapes from a

series of N-body simulations each of which has a di↵erent DE equation of state but

the same values of the other key cosmological parameters. What will be even more

highly desirable is to construct a theoretical formula for �(z) from a physical principle.

Although Equation (3.1) is a mere fitting formula expressed in terms of an inverse sine

hyperbolic function with three adjustable parameters, its general success in matching

�(z) for all of the eleven cosmologies (Figure 3.6) hints a prospect for finding a physical

formula similar to it and directly linking its three parameters to the initial conditions.

Motivated by the potential of �(z) as a new probe of cosmology and conducting a

numerical analysis of the MassiveNuS data (Liu et al. 2018), we have found that the

massive neutrinos have a unique redshift-dependent e↵ect on the �(z). We have found

that the presence of more massive neutrinos lowers zc and induce a faster increase of

�(z) with the decrement of z below zc. The ⌫⇤CDM cosmology with total neutrino
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mass of M⌫ = 0.6 eV has been found to yield higher (lower) values of � at 0  z . zth

(zth . z  zc) than the ⇤CDM cosmology with massless neutrinos with zth ⇠ 0.3.

Noting that this redshift-dependent e↵ect of massive neutrinos on � is quite unique

and distinct especially from the redshift-independent e↵ect of �8 on �(z), we suggest

that the drifting coe�cient of the field cluster mass function should allow us to break

the notorious �8-M⌫ degeneracy, which has haunted for long the conventional probes

of M⌫ based on the linear density power spectrum.

Our physical explanation for this distinct redshift-dependent e↵ect of M⌫ on �(z)

is that it is generated by a competition between the suppressed small-scale powers and

the increased degree of the anisotropy of the cosmic web in the presence of massive

neutrinos. As shown by Bernardeau (1994), the formation of a rare event like a massive

cluster (or a field cluster) is well approximated by a spherical collapse process. The rarer

an object is, the more spherically its gravitational collapse proceeds. In the presence

of more massive neutrinos which suppress more severely the small-scale powers, a field

cluster corresponds to an even rarer object since it originates from a more extreme

local maximum in the initial density field. Therefore, it is naturally expected that in

the presence of more massive neutrinos the collapse density threshold �c for the field

clusters would become closer to the spherical threshold �sc (or equivalently, � closer to

zero).

The free streaming of massive neutrinos, however, has another e↵ect of rendering the

cosmic web more anisotropic in the deeply nonlinear stage. According to the previous

works (e.g., Shim et al. 2014; Ho et al. 2018) which found the degree of the anisotropy

of the cosmic web to depend on the background cosmology, the stronger gravity at

a given scale pulls down the anisotropic feature of the cosmic web in the nonlinear

stage. The free streaming of massive neutrinos plays a role along with DE in weakening

the gravitational clustering on the cluster scale, which in consequence increases the
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degree of the anisotropy of the cosmic web. The stronger tidal influences from the more

anisotropic cosmic web (Bond et al. 1996) deviate the collapse process further from the

spherical symmetry, elevating � above zero.

At high redshifts (zth . z  zc), the first e↵ect of massive neutrinos overwhelms

the second, lowering � close to zero, since the high-z field clusters correspond to the

rarest events formed through the collapses of the highest density peaks which proceed in

almost perfectly spherically. However, at lower redshifts (0  z . zth) after the onset of

the nonlinear evolution of the cosmic web, the second e↵ect wins over the first, deviating

� further from zero. Our result shown in Figure 4.6 reveals the M⌫-dependence of the

threshold redshift, zth, at which the second e↵ect becomes more dominant than the first.

It is around 0.3 for the case of M⌫ = 0.6 eV, while it becomes around zero for the case

of M⌫ = 0.1 eV. The more massive neutrinos induce the turn-over of the second e↵ect

to occur earlier. Our future work is in the direction of constructing a more theoretical

model for �(z), within which the M⌫-dependences of zth and zc could be predicted.

Another important hint of this work is that the sensitivity of �(z) to M⌫ might

be high enough to detect the e↵ect of massive neutrinos on it, even in case that M⌫

is as low as 0.1 eV below the Planck constraint (Planck Collaboration et al. 2018).

The signal of the di↵erence in zc between the ⇤CDM and ⌫⇤CDM with M⌫ = 0.1 eV

(M⌫ = 0.6 eV) cosmologies has been found to be approximately four (ten) times higher

than the propagated errors. Given that the observational data from much larger volumes

than that of the MassiveNuS are already in the pipeline (e.g., Euclid Collaboration et

al. 2019), we conclude that the drifting coe�cient of the field cluster mass function,

�(z), has a good prospect for providing a very powerful complementary probe of M⌫

in practice.

We have also studied whether or not the �(z) can break the degeneracy between

the non-standard and the standard ⇤CDM+GR cosmologies by utilizing the data from
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the CoDECS and DUSTGRAIN-pathfinder simulations. For this study, we have consid-

ered eleven di↵erent non-standard cosmologies which include 5 di↵erent cDE (EXP001,

EXP002, EXP003, EXP008e3 and SUGRA), 3 di↵erent f(R) gravity (fR4, fR5, fR6),

and 3 di↵erent f(R) gravity+⌫ cosmologies (fR4+0.3eV, fR5+0.15eV, fR6+0.06eV).

Among the cDE and f(R) gravity cosmologies, the EXP001 and fR6 have been

known to be very similar to the ⇤CDM+GR in the linear density power spectra and

cluster mass functions at z = 0, due to their extremely weak DM-DE coupling and

fifth force, respectively. The three f(R) gravity+⌫ cosmologies have been known to be

degenerate not only with the ⇤CDM+GR but also among one another in the standard

diagnostics that include the cluster mass functions, halo bias, and nonlinear density

power spectrum (Baldi et al. 2014; Giocoli et al. 2019). Analyzing the catalogs of the

FoF bound objects for each cosmology, following findings were obtained.

• The analytic model of Lee (2012) for the field cluster mass functions agrees ex-

cellently with the numerical results at all redshifts for all of the non-standard

cosmologies.

• The empirical formula for �(z), Equation (3.1), works fairly well for all of the

non-standard cosmologies.

• Despite that they produce very similar (field) cluster mass functions, the ⇤CDM

and the SUGRA cosmologies substantially di↵er in �(z) from each other.

• The degeneracy between the ⇤CDM and the EXP001 in the (field) cluster mass

functions can be broken by �(z) with 2.53� significance without using any prior

information on the linear density power spectrum, P (k; EXP001).

• The degeneracy between the ⇤CDM+GR and the fR4+0.3eV in the linear density

power spectra and (field) cluster mass functions can be broken by �(z) with high
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statistical significance.

• The degeneracy among the ⇤CDM+GR, fR5+0.15eV and fR6+0.05eV cosmolo-

gies in the standard diagnostics can be broken by �(z) with minimum 2.01�

significance, without using any prior information on the linear density power

spectra.

To understand the advantage of using �(z) as a cosmology discriminator, it may be

worth comparing �(z) with the standard diagnostics such as the linear density power

spectrum, nonlinear density bi spectrum and cluster mass function. As for the linear

density power spectrum, it deals with isotropically averaged densities and thus fail to

capture independent information contained in the anisotropic nonlinear cosmic web

about the background cosmology (Naidoo et al. 2020). As for the nonlinear density

bi spectrum that treats the nonlinear anisotropic density field, it is not readily ob-

servable, su↵ering from highly nonlinear halo bias and redshift space distortion e↵ects.

Regarding the cluster mass function, although it is free from the halo bias and redshift

space distortion e↵ect, it varies most sensitively with the value of �8. If two di↵erent

cosmologies share an identical value of �8 (e.g., ⇤CDM and SUGRA), the cluster mass

function is apt to fail in telling them apart.

Meanwhile, the field cluster drifting coe�cient, �(z), deals with the non-spherical

collapse occurring in the anisotropic cosmic web that contains additional information

on the initial conditions. It is free from the halo bias and redshift space distortion e↵ect,

directly quantifying how the background cosmology deviates from the Einstein-de Sitter

state which sensitively depends on the evolution of the energy contents of the universe.

Notwithstanding, we have yet to find a direct link of �(z) to the initial conditions,

which weakens its power as a probe of gravity and dark sector physics. The very fact

that the inverse sine hyperbolic function provides a fairly good approximation to the
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empirically determined �(z) for all of the cosmologies hints that it should be beyond

a mere fitting formula. Our future work is in the direction of theoretically deriving

�(z) from first principles, providing a physical explanation for why �(z) behaves as

an inverse sine hyperbolic function of z and establishing its direct link to the initial

conditions.

Another advantage is high observational applicability of �(z). As shown in Figure

4.21, the fR5+0.15eV and fR6+0.06eV cases substantially di↵er from the GR case in

the low-z values of �(z) (z < 0.5). In other words, it does not require a large sample of

the high-z clusters with z > 0.5 to distinguish between the f(R)+⌫ and the GR cases

with �(z) in practice. Yet, to distinguish between the fR5+0.15eV and the fR6+0.06eV

cases as well as between the f(R) gravity and the cDE cosmologies with �(z), it indeed

requires a large cluster sample from a wide range of redshifts. The upcoming large-scale

deep surveys such as the LSST (Large Synoptic Survey Telescope) or EUCLID that is

expected to cover the redshift range up to z ⇠ 2 (Tyson 2002; Amendola et al. 2013)

will improve prospects for �(z) as a cosmological discriminator.
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8‰t|ƒ ∏⌧ò 1Ï1Xœ ıt¸‹‡ ƒ¿t  Ã\ �Ù‰D ò ¸hX ƒ 8,

t�x  0–å ‡Ÿ‰î –D ®A»‰. m¡ àp\¥ |‰D Ã‰¥¥‡ l¥ |ƒ

8 ¥5å Ã‹î � t¿Ã ∏⌧ò \�\ ƒ¿D ¸$ x%t¸‡ Y¸ â�‰ x⌅¸,

@Ω⇡, t®¸, – l  ›ÿ ⇣¨i»‰.

¯¨‡ ¿ú 2D⌅ �¥ D⌅‡ ò‡ |ƒ 8 ŒXµ»‰. ∏⌧ò ⌧ §–⌧ ‡‡\

Ñ�©t ⇠¥ ¸‹‡ ¨ë<\ HD¸‡ Ä®ÿÿ ⇣¨X‰î –D ⌅i»‰. ∏⌧ò

t⌅ ⇠ àî å ∆¥ ¯HX‡ ııX‰ –�X‹¿Ã, m¡ ¡– à¥ ¸h0– ¯Â

ò¥|î \ », q�t¸‹î \ »Ã<\ƒ, ∏⌧‡ 0�¥ t ⇠ àî Ût à‰î

ÉÃ<\ƒ, 4® |t à‡ ⌧ ∏–⌧ ∏⌧ò ⌧� T âı\ ∂D ¥ ⇠ àƒ] \ D

‰t¸‰ Ñt à‰î ÉÃ<\ƒ ⌧ê �• å⌘X‡ ⇣¨\ P ÑtÌ»‰. ⇣¨i»‰.

¨ëi»‰.
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