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Abstract

Regional Waterlogging Factors Derived by Geographically 

Weighted Regression and Shapley Additive Explanations 

XIAOLING JIN
Dept. of Landscape Architecture

Graduate school of Environmental Studies
Seoul National University

The landscape is considered as a key component of the ecosystem 

intervention. Human activities have significantly changed the surface 

characteristics, such as affected the circulation and flow of natural 

materials and energy, or weakened the rainwater collection, storage 

function and runoff drainage capacity of the watershed. These led to 

waterlogging disasters and increased the risk to the living environment. 

Therefore, landscape planners and decision-makers need to constantly 

improve and optimize the landscape pattern to maintain the ecosystem's 

dynamic balance and reduce waterlogging at the same time. Development 

of remote sensing technology makes it possible to study large-scale 

watershed units, meanwhile the experiments on such large-scale sites can 

be verified by theory. Existing research on verification of theories ignored 

important interactions within the landscape pattern because the traditional 

linear regression model (a subfield of supervised learning) such as 

Geographically Weighted Regression (GWR) could not analyze the 

relationship between independent variables while analyzing the relationship 

between independent variables and dependent variables. In recent years, 

development of interpretable machine learning models in the field of 

machine learning is making up for this shortcoming. Among them, Shapley 

Additive Explanations (SHAP) is a representative method which provides an 

interpretable machine learning model based on game theory. It can not 



only analyze the relationship between independent variables and dependent 

variables, but also take into account correlations between multiple 

independent variables, and produce importance ranking according to the 

contribution degree. Through our extensive and thorough verification and 

comparative analysis of the two methods, we first find that in the analysis 

results of GWR, the Shannon Diversity Index (SHDI, one representative 

landscape metric) is seriously underestimated, while in the results of SHAP, 

SHDI shows a great impact on waterlogging in any scale of watershed 

units. At the same time, according to the prediction result of Prediction 

Mean Squared Error (MSE), although the error value of GWR is small, 

SHAP is still far more accurate than GWR. Secondly, the water cycle 

process has characteristics of producing multi-scale geographical 

watersheds. In order to taking into account the dynamic balance of 

hydrology, conducting comparative analysis of multi-level watershed-scale 

units is necessary. Our results show that the use of finer-scale watersheds 

as the research scale is not necessarily suitable for waterlogging research. 

In this study, we find that analysis on waterlogging in the Seoul Capital 

Area (SCA) based on Large-scale watershed units (LSWU) is the most 

appropriate and accurate. Finally, it is naturally assumed that a threshold 

for landscape pattern characteristics exists. When the impact on 

waterlogging reaches this critical point, its role in promoting or alleviating 

waterlogging will change. Through estimating threshold values of landscape 

pattern characteristics, the purpose of waterlogging disaster mitigation can 

be achieved accurately and at a low cost. In summary, this study explores 

the new analysis method of interactions between landscape patterns and 

waterlogging, and provid a reference for methods and results of 

waterlogging control based on landscape ecology.

………………………………………
keywords : Waterlogging, Landscape Patterns, Seoul Capital Area, 
Geographically Weighted Regression, Shapley Additive Explanations
Student Number : 2020-20489
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Chapter 1. Introduction

1.1 Urbanization and Human Intelligence

 Urban is an important part of human civilization and development 

progress. With the acceleration of global urbanization, 66% of the population 

will live in large urban areas by 2050 [25]. In the process of urbanization, 

multiple factors keep changing restlessly such as the expansion of roads, the 

increase of buildings, the increase or decrease of urban green space, and 

other landscape patterns affections on the ecological environment. These 

factors then change the spatial characteristics of the urban and thus greatly 

impact the natural landscape and ecological cycle of urban areas [27, 30, 54, 

1]. Therefore, urban planning is important and needs to be constantly 

adjusted and optimized to adapt to the urbanization development. Due to the 

inherent complexity of the urban itself, urban planners cannot fully predict 

how the ecological cycle process would be influenced and disturbed by urban 

expansion, which has caused several environmental problems that increased 

the risk to the living environment [2]. Especially in recent years, the impact 

of urban waterlogging has become more and more significant, and its 

severity and frequency are increasing all over the world. Therefore, in order 

to balance the harmony between human and the environment, research on 

urban ecological environment is thus very urgent and necessary (Fig. 1). 

Human activities can play a positive role through reflection and consciously 

promoting constructive change [55]. Nowadays, experts mainly manage and 

plan the whole landscape through landscape ecology and improve the 

management of the urban ecological environment [38]. Here, landscape 
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ecology is regarded as the scientific basis of land use development and 

restoration, landscape planning and management, and is the basis of 

extensive interdisciplinary human ecology. It is a people-centered research 

field on the complex interrelationship among society, economy, geography, 

and culture related to land use. Study the landscape as a whole composed of 

different and interactive elements, and seek a compromise among these 

conflicting is needed in order to enrich the human ecological environment. 

This emphasis on the impact of human beings on land use and the 

quantitative evaluation of the specific functions of the landscape makes 

landscape ecology the basis for creating balanced and visionary policy and 

decision-making tools and helps overcome the tension between modern 

society and its landscape caused by the increasing needs of industrial 

development and the potential of natural land [48].

1.2 Landscape and Landscape Ecology

 Initially, the definition of ＂landscape＂ was limited to the visual 

perception and aesthetic evaluation of the environment, rather than the 

ecological environment. However, with the development of land use 

evaluation ability, ＂landscape＂ has began to be considered as a part 

of the physical environment. Since then, the landscape is considered as 

a heterogeneous land area composed of interactions among ecosystems 

[13]. It is a spatial body containing all ecological environments within 

the human living environment [50, 14]. With the awakening of 

environmental consciousness dominated by human thinking [61], 

according to the definition of ＂landscape ecology＂, the landscape is 
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not only regarded as the carrier of the ecosystem but also as a control 

system through land use and the total or partial intervention and 

control of human intelligence [9]. Among them, the land is the key 

central point of landscape ecology [72, 48], which means, the evaluation 

of the overall nature of vegetation is also necessary [12]. The 

combination of land as the research object and variable with the key 

variable of human intervention and control [62, 48, 56] helps to clarify 

the relationship between the landscape structure (the element of spatial 

pattern) and the ecosystem (the change of ecological process). This is 

also the main goal of landscape ecology, that is, to clarify the 

relationship between the internal dynamics and interaction of landscape 

[58]. In other words, the quantification of spatial heterogeneity is 

necessary to clarify the relationship between ecological processes and 

spatial patterns [57, 59]. Refer to Fig. 1 for this process.

1.3 Land Use Land Cover and Landscape Pattern Metrics

 The measurement, analysis, and interpretation of spatial patterns 

through the three main characteristics of landscape structure, function, 

and change have attracted much attention in landscape ecology [24]. 

Concretely, structure refers to the spatial relationship between unique 

ecosystems or elements (i.e., landscape composition and configuration). 

Function refers to the interaction relationship between spatial features. 

Change refers to the change of ecological structure and function over 

time [16, 13]. The landscape pattern metrics (also known as landscape 

metrics or spatial pattern metrics) are methods to quantify the specific 
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spatial characteristics of patches, patch classification, and patch mosaic 

near each focus unit or the whole landscape mosaic. It is an effective 

tool for mapping and quantifying Land Use Land Cover (LULC) 

characteristics, which is broadly used in landscape ecology research [23, 

41, 49, 19, 4]. Based on the compatibility between landscape pattern 

index and GIS, it is susceptible to landscape definition in resolution, 

range, and landscape boundary [45]. Therefore, it can objectively and 

accurately provide the change mode of landscape structure and its 

configuration information [21]. At the same time, landscape pattern 

metrics can be used to analyze different landscape levels: (1) patch 

level (i.e., grassland area), (2) class level (i.e., all grassland areas in a 

specific area), (3) landscape level (i.e., all landscape types in a specific 

area) [35, 44]. Therefore, it can measure, analyze, and explain the 

change of spatial heterogeneity and its impact on ecosystems on 

different spatial scales (patch, class, or landscape-level) [3, 58, 10, 7, 

33, 34, 45, 20, 66]. The ecosystem is the change of ecological process, 

that is, the change caused by the interaction of landscape structure 

with time [11]. The landscape pattern metrics can not only help us 

understand and explain the structure and change of the landscape from 

different aspects, but also objectively reflect the spatial heterogeneity 

of the landscape [26, 32]. To this end, we can intervene in the 

geomorphic system from the outside and then adjust the dynamic 

balance of the landscape in a relatively fast cycle [51], which has an 

important contribution to supporting the sustainable development 

planning and landscape management decision-making of landscape 

planning [29, 13, 36, 15, 60, 18].
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1.4 Natural Water Cycle and Urban Waterlogging

 Landscape ecology assumes that the arrangement and combination of 

spatial patterns in the ecosystem is the response to the ecological 

environment or ecological processes such as topography, temperature, 

and natural resource flow. At the same time, the strong changes in 

LULC caused by the demand for human production activities further 

strengthen the impact and interference on the spatial combination [21]. 

It leads to the destruction of the circulation and flow of natural 

material and energy, disrupts the natural hydrological cycle, and 

reduces the natural drainage capacity [67]. There are three types of 

Figure 1. Human activities lead to the change of landscape patterns, which 

affects and destroys the process of the natural hydrological cycle, resulting 

in the change of surface characteristics. This change makes the runoff 

unable to be discharged in time and accumulated on the surface, resulting 

in urban waterlogging. Therefore, urban planning needs to be constantly 

adjusted and optimized to adapt to the development of urbanization.
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common urban hydrological disasters: urban flood, urban rainstorm, and 

urban waterlogging. Urban flood refers to the overflow of river water 

onto normally dry land due to a rainstorm. Urban stormwater refers to 

rainwater and substances carried by rainwater, which may be leaves or 

grease on asphalt pavement. Urban waterlogging mainly refers to the 

phenomenon that human activities lead to LULC change and destroy 

the natural hydrological cycle. When there is a rainstorm or continuous 

rainfall, the surface runoff cannot be discharged in time, which gives 

rise to the accumulation of runoff on the surface [65, 68, 70]. Urban 

waterlogging is a systematic problem caused by spatial heterogeneity, 

thus we should examine this phenomenon from the perspective of 

landscape ecology [37]. The landscape pattern metrics can integrate 

various characteristics of LULC change, which have an important 

impact on urban waterlogging [70]. Therefore, landscape pattern metrics 

are considered to play an important role in rainwater management [31]. 

Many researchers have focused on the impact of the interaction 

between landscape patterns and watershed hydrological process on 

urban waterlogging disasters [64], which ignored important interactions 

between different landscape metrics.

1.5 Comparison with Previous Studies

 Because land is the key center of landscape ecology, the role of its 

vegetation nature cannot be ignored [12, 72, 48]. In previous studies 

related to waterlogging, researchers mostly focuse on the impact of the 

expanded impervious surface on the occurrence of waterlogging events 
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in the process of urban construction [67, 52]. They ignore the nature 

of ＂landscape＂ as a spatial body containing all ecological 

environments in the human living environment. According to the 

research object and the key variable of human intervention and 

control, it is not enough to simply take the impervious property as the 

research basis. At the same time, some researchers focus on green 

infrastructure, ignoring gray infrastructure such as roads [70]. Research 

objects include the administrative unit boundary as the scope 

benchmark [53], the grid units of different scales [68, 71], and the 

watershed scale [31]. Among them, the watershed has the function of 

collecting and storing rainwater, melting snow, and discharging water as 

runoff. At the same time, the change in land cover and land use within 

the watershed scale has a great impact on the catchment and 

subsequent runoff. It is worth noting that the size of the watershed 

scale plays an important role in this impact [5]. Therefore, the 

comparative analysis of the watershed scale is also essential, but this is 

usually missing in previous studies. On the other hand, it should be 

noted that generally, the study methods for waterlogging can be 

roughly divided into three categories: (1) The hydrological and 

hydrodynamic models or software. (2) Qualitative model based on expert 

knowledge. (3) Multivariate statistical method of machine learning [69], 

which provides more powerful data analysis tools for conducting 

regression. With the development of remote sensing technology, it is 

possible to study large-scale sites. Moreover, the development of 

theoretical research enables us to verify the reliability of experimental 

results. In previous studies, researchers have analyzed the relationship 
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between landscape and waterlogging. However, they  have neglected 

the interaction within the landscape structure [31, 53, 64, 67, 68, 70]. In 

other words, the ＂function＂ of one of the three main features of 

landscape ecology has been neglected (the other two are ＂structure＂ 

and ＂change＂) [24]. This is because the traditional linear regression 

model (an instance of supervised learning) can not analyze the 

relationship between independent variables at the same time when 

analyzing the relationship between independent variables and dependent 

variables [39]. Previous studies usually used traditional supervised 

learning methods, such as Geographically Weighted Regression (GWR). 

The influence of specific landscape structures on waterlogging is 

determined by the absolute value of estimated linear regression model 

parameters. To adapt to the heterogeneity of landscape space, GWR 

extends the geographical location-based linear regression model 

(ordinary least square method). However, due to the limitations of the 

linear regression model, the correlation between independent variables 

is intrinsically ignored. In recent years, explainable machine learning 

models have been widely developed in the field of machine learning, 

trying to determine the importance of the influence of independent 

variables on research objectives. This enables us to discover new 

theoretical explorations. Among them, Shapley Additive Explanations 

(SHAP) is a new analysis method based on Game Theory, which not 

only analyzes the relationship between independent variables and 

dependent variables, but also considers the correlation between multiple 

independent variables, and ranks the importance according to the 

contribution degrees. Finally, in order to adjust the ecological balance 
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to mitigate the occurrence of waterlogging events, we also need to 

calculate threshold values. This is because the existence of landscape 

structure threshold and the complex feedback response in landscape 

and geomorphology have played an important role in the process of 

landscape evolution.

 General speaking, in this study, I use the waterlogging area data to 

calculate the waterlogging density in the watershed unit as the 

waterlogging degree data. Through the comparison between the 

supervised learning model and the explainable machine learning model, 

it is observed whether the landscape pattern structure affecting 

waterlogging is different when the interaction between landscape 

patterns is ignored or fully considered. At the same time, considering 

that we need to objectively examine the ecological process, I further 

analyze the impact of landscape patterns on waterlogging under 

different scale watershed units from a macro perspective and select the 

watershed scale most suitable for landscape planning reference through 

the comparison of accurate values. Finally, I estimate threshold values 

of landscape pattern metrics that promote or alleviate waterlogging, 

which will provide a clearer reference for steak-holders and 

decision-makers. Therefore, in this study, I conduct research on the 

following three questions: 

 Question 1: When we fully consider the interaction between 

landscape structures, can we reflect the impact of landscape patterns 

on waterlogging more accurately? Question 2: Considering the 
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geographical watershed division of different scales formed in the 

process of the water cycle, is it more suitable to be used as a site for 

waterlogging research if the watershed scale is smaller and finer? 

Question 3: Is there a threshold for the impact of specific landscape 

patterns on waterlogging?

1.6 Workflow and Study Area

 To study above three research questions, our workflow (Fig. 2) first 

uses the waterlogging area data and the watershed units of three 

scales to calculate waterlogging density respectively, and filters out 

invalid data to obtain the waterlogging density data of three scales as 

the dependent variable. Then, the 41 kinds of LULC data maps 

classified with high precision are summarized into 7 kinds (Table 1), 

and the invalid data are also filtered and only valid data are used. At 

the same time, in view of the correlation between water cycle and 

landform, elevation and slope are taken as additional independent 

variables. Combining these variables with 7 landscape pattern metrics 

(Table 2), 45 independent variables are obtained in total. After 

completing the data processing process, I first select a scale watershed 

unit to compare the analysis results of Geographically Weighted 

Regression (GWR) and Shapley Additive Explanations (SHAP) methods, 

and use the Prediction Mean Squared Error (MSE) to compare the error 

values of the prediction results to decide which method can reflect the 

impact of landscape pattern on waterlogging more objectively and 

accurately. Then, I compare the analysis results of the three watershed 
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scales and use the same MSE metric to compare the error values of 

the prediction results to decide which scale watershed unit is the most 

suitable for landscape planners as a reference for waterlogging 

research. Finally, I analyze the thresholds of specific landscape patterns 

with significant impact of waterlogging in the most suitable analysis 

results. This process enables us to explore whether new research 

theories and methods have presumed advantages, provide a more 

objective analysis scale for the guidance of macro landscape planning, 

and discover which characteristics of specific landscapes have an 

impact on waterlogging. Through the calculation of the threshold 

values, we can optimize and intervene in specific landscape 

characteristics in limited space and reduce the optimization cost of 

landscape ecology.
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Figure 2. Workflow of this study.

The study area is Seoul Capital Area (SCA), it is the fifth-largest 

metropolitan area in the world, located in the northwest of the Republic of 

Korea which includes Seoul Special City, Incheon Metropolitan City, and 

Gyeonggi-do. The area is 12, 685 km (Fig. 3). According to the Korea 
National Statistical Office (https://kostat.go.kr/), SCA has more than 26 million 

residents, accounting for 50.2% population of the Republic of Korea as of the 

year 2020. Based on the Korea Land and Geospatial Informatix＇s (The 

agency is under the Ministry of land, infrastructure and transport of the 

Republic of Korea) public data 

(https://www.data.go.kr/data/15048628/fileData.do), the waterlogging degree of 

SCA is more serious than other regions.
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Figure 3. The Seoul Capital Area (SCA) is located in the northwest of the 

Republic of Korea, including Seoul Special City, Incheon Metropolitan City, and 

Gyeonggi-do (＂do＂ means Province).　The area is 12, 685 km，　has more 

than 26 million residents, accounting for 50.2% population of the Republic of 

Korea as of the year 2020.
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Chapter 2. Materials and Methods

2.1 Land Use Land Cover and Landscape Pattern Metrics

 In this study, I use the Land Use Land Cover (LULC) map adapted 

from an original high-resolution satellite map. First of all, I need to 

process LULC data for later analysis of landscape pattern metrics. The 

LULC data form a 2020 sub-classified land cover map with 1-meter 

resolution and a total of 41 categories provided by the Korean Ministry 

of Environment, which are shapefiles formed as vector data. The data 

is obtained from aeronautical static satellite images (0.25-meter 

resolution), Arirang 2 satellite images (1-meter resolution), and Arirang 

3 satellite images (0.7-meter resolution). I aggregate 41 categories into 

7 categories: Used Area, Transportation Area, Agricultural Area, Forest, 

Grass, Barren, and Water (Table 1). The Used Area includes Detached 

Residential Facility, Common Residential Facility, Industrial Facility, 

Commercial and Business Facility, Commercial and Business Facility 

Mixed Area, Cultural, Sports, and Recreational Facility, Environmental 

Basic Facility, Educational and Administrative Facility, and Other Public 

Facility. The Transportation Area includes Airport, Port, Railroad, Road, 

and Other Transportation and Communication Facilities. The Agricultural 

Area includes Cultivated Paddy, Uncultivated Paddy, Cultivated Field, 

Uncultivated Field, Facility Cultivation Land, Orchard, Pastures and 

Farm, and Other Cultivation Land. The Forest includes Broad-leaved 

Forest, Coniferous Forest, and Mixed Forest. The Grass includes Natural 

Grassland, Golf Course, Cemetery, and Other Grassland. The Barren 
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includes Beach, River Bank, Palisade and Rock, Mining Area, Sports 

Ground and Other Barren. At last, the Water includes Inland Wetland 

and Inland Water. Due to the extreme values appearing when analyzing 

the data containing outside land water, I exclude Coastal Wetland and 

Sea Water. In addition, considering that elevation and slope are also 

parts of the landscape structure, and their composition will also affect 

the process of the water cycle, I add these two kinds of data in 

addition to the LULC data.

 Generally, in previous studies, the landscape pattern metrics were 

analyzed using the Fragstats software. When using this software for 

analysis, vector data needs to be converted into raster data such as 

Tag Image File Format (TIFF), which will reduce the accuracy of 

results. In order to overcome the loss of heterogeneity that occurs 

during the aggregation of pixel-based land cover maps, I need 

alternative solutions that can leverage interdisciplinary strengths [19]. 

Therefore, in this study, I use Python libraries to directly analyze 

vector data (shapefile), so the accuracy can be improved.
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Coarse Classification Detail Classification

Used Area

Detached Residential Facility

Common Residential Facility

Industrial Facility

Commercial and Business Facility

Mixed Area

Cultural, Sports, and Recreational Facility

Environmental Basic Facility

Educational and Administrative Facility

Other Public Facility

Transportation Area 

Airport

Port

Railroad

Road

Other Transportation and Communication Facility

Agricultural Area 

Cultivated Paddy

Uncultivated Paddy

Cultivated Field

Uncultivated Field

Facility Cultivation Land

Orchard

Pastures and Farm

Other Cultivation Land

Forest

Broad-leaved Forest

Coniferous Forest 

Mixed Forest

Grass

Natural Grassland

Golf Course

Cemetery

Other Grassland

Water

Inland Wetland (Waterfront Vegetation)

River

Lake

Barren

Beach

River Bank

Palisade and Rock

Mining Area

Sports Ground

Other Barren

[Table 1] Aggregate 41 Land Use Land Cover (LULC) categories into 7 categories．
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 As for the selection of landscape pattern metrics, I select those 

metrics which meet the following two conditions at the same time: (1) 

The landscape pattern metric is related to hydrological response [68, 53, 

71]. (2) The landscape pattern metric can be analyzed by vector data. 

Therefore, in this study, I select 7 landscape pattern metrics (Table 2). 

They are Percentage of Landscape (PLAND), Degree of Landscape 

Division (D), Large Patch Index (LPI), Landscape Shape Index (LSI), 

Patch Density (PD), Edge Density (ED), and Shannon Diversity Index 

(SHDI).

 The Percentage of Landscape (PLAND) is the ratio of the area of a 

particular patch to the total area of the regional landscape [66]. It 

quantifies the proportional abundance of each patch type in the 

landscape, which is one of the metrics to measure the composition of 

the landscape [46]. Because of the characteristics of its relative 

measurement, it is not affected by spatial distribution or configuration. 

PLAND equals the sum of the areas (square meter) of all patches of 

the corresponding patch type, divided by the total landscape area 

(square meter), then multiplied by 100 (convert to percentage). The 

total landscape area (A) includes any internal background present [8].

 proportion of the landscape occupied by patch type (class).

 .   area ( ) of patch  . 
  total landscape (m ).

   
  
  
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   Jaeger [29] proposed the Degree of Landscape Division (D), which 

reflects the degree of patch dispersion in the same landscape type. When 

D equals to 0 it means there is only one patch type [53, 64, 70]. It 

describes the artificial infiltration of the landscape from a geometric point 

of view and it is calculated according to the cumulative distribution 

function of patch size. D represents the probability that two randomly 

selected places in the investigated landscape are not located in the same 

undissected area [8]. D equals to the sum of 1 minus the patch area 

(square meter) divided by the total landscape area (square meter), then 

summed across all patches of the corresponding patch type. Total 

landscape area (A) includes any internal background present [46]. 

  area ( ) of patch  .
  total landscape (m ).

  
   

  
 Largest Patch Index (LPI) is the percentage of the largest patch (also 

dominance landscape type) in the total landscape area [71, 66, 64]. LPI 

equals the area (square meter) of the largest patch of the corresponding 

patch type divided by total landscape area (square meter). Total landscape 

area (A) includes any internal background present [46]. 

  area (m ) of patch  .
  total landscape (m ).

 
max   

  

 Landscape Shape Index (LSI) is the shape index which measures the 

shape complexity [71]. LSI provides the total edge (edge density) of the 
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amount of standardization. The exponential formula is equal to .25 

(adjustment for raster format) times the sum of the entire landscape 

boundary and all edge segments (meter) within the landscape boundary 

involving the corresponding patch type, including some or all of those 

bordering backgrounds, then divided by the square root of the total 

landscape area (square meter) [46]. 

  total length (m) of edge in landscape between patch types (classes)  
and  ; includes the entire landscape boundary and some or all background 

edge segments involving class  .
  total landscape (m ).

 
  

 

 Patch Density (PD) reflects the degree of fragmentation of the 

landscape and the degree of spatial heterogeneity of the landscape [66]. 

The higher the PD value, the greater the number of patches and the 

higher the degree of fragmentation [53, 71]. The calculation method is 

the number of patches of the corresponding patch type divided by the 

total landscape area (square meter), then multiplied by 10000 square 

meters (or convert to 100 hectares) [46]. 

  number of patches in the landscape of patch type (class)  .
  total landscape (m ).

   



- 20 -

 Edge Density (ED) is the total length of the edges of a particular 

class per unit, while larger ED value means higher fragmentation [53, 

31]. Being calculated according to LSI, ED equals the sum of the 

lengths (meter) of all edge segments involving the corresponding patch 

type, divided by the total landscape area (square meter), then multiplied 

by 10000 square meters (or convert to 100 hectares) [46].

  total length (m) of edge in landscape involving patch type (class)  ; 
includes landscape boundary and background segments involving patch type 

 .
  total landscape (m ).

 
  
  

 Different from above selected landscape pattern metrics (PLAND, D, 

LPI, LSI, PD, ED), the Shannon Diversity Index (SHDI) is not a class 

metric, but a landscape-level metric to describe the number of 

landscape elements and the change in their proportions [53]. A larger 

SHDI value means higher diversity (richness) of the whole landscape 

[64]. Conversely, when the whole landscape is composed of a single 

element, its SHDI value becomes 0 [66]. It can be calculated according 

to PLAND, equals to the sum of subtracting the proportional abundance 

of each patch type in all patch types multiplied by this proportion, and 

Pi is based on the total landscape area (A) [46].

  proportion of the landscape occupied by patch type (class)  .

    
  ln



- 21 -

Landscape Pattern Metrics Level Units Range

Percentage of Landscape 

(PLAND)
Class Percentage 0≺PLAND≤100 

Degree of Landscape Division 

(D)
Class Proportion 0≤D≤1

Largest Patch Index 

(LPI)
Class Percentage 0≤LPI≤100 

Landscape Shape Index 

(LSI)
Class None

LSI≥1, 

without limit

Patch Density 

(PD)
Class

Number per 

100 Hectares
PD≻0

Edge Density 

(ED)
Class

Meters per 

Hectare

ED≥0,

without limit

Shannon Diversity Index 

(SHDI)
Landscape Information

SHDI≥0.

without limit

[Table 2] Landscape Pattern Metrics. 

 In addition to landscape pattern metrics, I also add elevation and 

slope data (Fig. 4-6) as additional independent variables to improve the 

accuracy of our analysis of landscape elements affecting waterlogging. 

The elevation and slope data are obtained from the ALOS World 3D - 

30m (AW3D30), which is a global digital surface model (DSM) with 30 m 

resolution provided by the JAXA Earth Observation Research Center 

taken from 2011. The dataset is based on the DSM dataset (5-meter 

mesh version) of the World 3D Topographic Data. I achieve the data 

through Google Earth Engine API.

 To summarize, I aggregate LULC into 7 categories and use 7 types 

of landscape pattern metric tools for measurement. Among them, there 

are 6 class-level landscape pattern metrics (PLAND, D, LPI, LSI, PD, 
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ED), which can measure each type of LULC. A landscape-level 

landscape pattern metric (SHDI) measures the whole LULC. At the same 

time, I also add the data of elevation and slope. Therefore, there are 

totally 45 independent variables in this study.
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Figure 4. Effective land use land cover (LULC), elevation 

and slope data map of large-scale watershed units.
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Figure 5. Effective land use land cover (LULC), elevation 

and slope data map of middle-scale watershed units.
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Figure 6. Effective land use land cover (LULC), elevation 

and slope data map of small-scale watershed units.
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2.2 Waterlogging Degree of Watershed Units

 Firstly, I assume that the degree of waterlogging can be correctly 

measured and expressed by the density of waterlogging area in the 

basin. The waterlogging area data are selected from the waterlogging 

trace shape files in vector format, which are provided by Korea Land 

and Geospatial Informatix Corporation in 2020. Then, for scale 

comparison to be conducted later, I select the data named HydroSHEDS 

which are developed by the World Wildlife Fund (WWF) conservation 

science program, U.S. Geological Survey, the International Center for 

Tropical Agriculture, the nature conservation, and the center for 

environmental systems research of the University of Kassel, Germany 

together. HydroSHEDS is a mapping product that provides hydrographic 

information for regional and global-scale applications in a consistent 

format. It offers a suite of geo-referenced datasets (vector and raster) 

at various scales, including river networks, watershed boundaries, 

drainage directions, and flow accumulations. HydroSHEDS is based on 

elevation data obtained in 2000 by NASA's Shuttle Radar Topography 

Mission (SRTM). The resolution is 15 arc second resolution (450m), 

obtained through Google Earth Engine. Since the smallest scale 

watershed unit in the Republic of Korea is HYBAS 11, I choose HYBAS 

11, HYBAS 10, and HYBAS 9 as the Small-scale Watershed Units 

(SSWU), Middele-scale Watershed Units (MSWU), and Large-scale 

Watershed Units (LSWU) for comparative analysis. There are 111 (101, 

64) watershed units in SSWU (MSWU, LSWU, respectively) that coincide 

with the SCA administrative boundary. In order to make the analysis 
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results more accurate, I have removed some parts containing incomplete 

data. To this end, when selecting each scale watershed unit, I set the 

following two conditions: (1) The watershed unit should coincide with the 

SCA administrative boundary more than 90%, and (2) the LULC data 

should coincide with the watershed unit more than 90% (as the SCA is 

close the DMZ region, the data of some areas are not public). After 

screening (Table 3), I end up to actually use 62 (55, 31) watershed units 

(Table 3) on SSWU (MSWU, LSWU). Finally, the waterlogging area 

density of each unit under each scale watershed is calculated according 

to the waterlogging spot area data, and the waterlogging degree is 

obtained as the dependant variables (Fig. 7-9).

Scale of Watershed Units
Number of 

Watershed Units

Number of 

Effective 

Watershed Units
Large-scale Watershed Units  

(LSWU)
64 31

Middle-scale Watershed Units 

(MSWU)
101 55

Small-scale Watershed Units  

(SSWU)
111 62

[Table 3] Number of units and effective units at each watershed scale.
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Figure 7. The waterlogging area (red dots) are used to calculate the 

waterlogging density of large-scale watershed units as the waterlogging degree 

data (gray areas are invalid watershed units). 
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Figure 8. The waterlogging area (red dots) are used to calculate the 

waterlogging density of middle-scale watershed units as the waterlogging 

degree data (gray areas are invalid watershed units). 
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Figure 9. The waterlogging area (red dots) are used to calculate the 

waterlogging density of small-scale watershed units as the waterlogging degree 

data (gray areas are invalid watershed units). 
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2.3 Geographically Weighted Regression (GWR)

 The linear regression analysis has long been used by quantitative 

geographers as a general technique for investigating associations 

between geographic variables, and the technique is widely used in the 

research field. However, I would like to note the surprising fact that 

the technique itself does not consider geographic position when 

analyzing the relationships between variables [6, 67]. This gap can be 

addressed by geographically weighted regression (GWR), which is a 

principled extension of ordinary linear regression that takes into 

account the geographic information of the variables. GWR was 

introduced to the geography literature [6] to study the potential for 

relationships in a regression model to vary in geographical space, or 

what is termed parametric non-stationarity. GWR is based on the 

non-parametric technique of locally weighted regression developed in 

statistics for curve-fitting and smoothing applications, where local 

regression parameters are estimated using subsets of data relatively 

close to a model estimation point in variable space. The innovation with 

GWR is using a subset of data proximate to the model calibration 

location in geographical space instead of variable space. While the 

emphasis in traditional locally weighted regression in statistics has been 

on curve-fitting, that is estimating or predicting the response variable, 

GWR has been presented as a method to conduct inference on spatially 

varying relationships, in an attempt to extend the original emphasis on 

prediction to confirmatory analysis [63].
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 Specifically, GWR is generally used to describe the spatial variance 

and explain the effect of the independent variables on the dependent 

variables [28]. The spatial non-stationarity of the parameters in 

different spaces is reflected by estimating them for different regions so 

that the relationship between the variables can change with spatial 

position [17]. By introducing the spatial positions of the data into the 

regression coefficients, non-parametric estimation methods can be used 

to provide local estimates of each geographic position function [40, 47]. 

The regression relationships are mainly explored and analyzed based on 

the variation of regression coefficients for each geographic position 

with space. Therefore many researchers believe that the results of 

using GWR models to analyze the spatial relationships of different 

factors are more in line with the objective reality [43, 64].

 In the case of this study, GWR essentially repeats ordinary linear 

regression for each watershed unit, with specific weights which are 

larger for other watershed units in the neighborhood and smaller for 

other watershed units in distance. A Gaussian kernel function is usually 

used for calculating weights and is adopted in our approach. Finally, for 

the important factor of each feature, I take the absolute value of the 

mean value of coefficients calculated regarding each watershed unit.

In order to formally define the model for GWR, I first start from a simple 

linear regression model for each data point (, ).

    
   
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where  is the matrix containing independent variables,  is the vector 
containing dependent variables,  is the dimension of each independent data 

point, β is the coefficient vector and  is the noise vector which is 

assumed to follow a latent normal distribution. In this case, the coefficient 

vector β can be analytically solved as

     ⊤  ⊤
I would like to note that this coefficient vector obtained by the traditional 

linear regression method is agnostic about relative geographic information. 

The model is calculated in a way that every data point has the same 

importance to each of other data points. Therefore, in order to address the 

difference caused by relative geographical positions, GWR introduced a 

weight matrix which is a diagonal square matrix of size N, the number of 

data points. This is to say, for each data point (, ), there is an individual 
coefficient vector that follows

  ⊤  ⊤         
where the    dignal element of  denotes the distance between 　

and  . This distance is further defined using the Gaussian kernel function

exp
 

where  is the Euclidean distance between the centroids of two 
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watershed units measured in meter, and h is the bandwidth parameter and is 

set to 10, 000 throughout this thesis. In the end, I achieve  different 

coefficient vectors, and use the average prediction for new unseen data 

points.

 In our analysis for GWR, I conducted calculation as defined. For the 

bandwidth of the Gaussian kernel function measuring distance, I used 10, 000 

that is derived from the median value of distances, which is a common 

heuristic method for deciding bandwidth value. Before conducting linear 

regression, I apply a whitening transformation on all independent variables 

and dependent variables to improve the stability of GWR. For conducting 

linear regression, I use the Python library scikit-learn.

2.4 Shapley Additive Explanation (SHAP)

 Shapley Additive Explanations (SHAP) is a game-theoretic quantification 

method for investigating variable importance, which also considers the 

potential cooperation, namely interactions, among variables. Although having 

a combinational complexity, significant developments have been recently 

made to calculate Shapley values in an efficient way [42], which can be 

easily used off-the-shelf by a Python library and is extensively used in 

various research areas.

 Formally, for a data point  SHAP value for the importance of the -th 
feature is defined as
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     ⊂      ∖ 

 where  is the dimension of ,  ⊂  means all possible combinations 

of features in  represented by ∈ , is the number of non-zero 

entries in  and \ means removing -th entry from . My implementation 

mainly used the Python library xgboost and shap. I used the standard 

XGBRegressor as the base regressor, with objective set as squared error. 

Figures of bar chart and beeswarm plot is generated by functions provided 

by shap.

2.5 Prediction Mean Squared Error (MSE)

 Loss functions measure the extent to which model prediction values differ 

from desired target values. There are many different designs of loss 

functions for different problem settings, such as classification, regression, 

ranking, etc. Because regression problem is the focus of this thesis, I 

adopt to used the famous mean squared error (MSE) as

    
  

 where pi denotes the model prediction value for each data points. MSE is 

first proposed by Gauss and enjoys flourish theoretical and practical 

advances.

In order to analyze and compare which method between GWR and SHAP is 
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more advanced, thus which can more accurately reflect the landscape 

pattern analysis that affects waterlogging. I used the Mean Squared Error 

method for prediction analysis. The analysis method is to randomly select 90 

percent of the watershed units in each scale and predict the remaining 10 

percent of the results, which is a commonly used analysis accuracy method 

in machine learning. Therefore, I randomly select 90% watershed units at 

SSWU, MSWU, and LSWU scales, respectively (55, 49, 27 watershed units, 

Table 4). Then, I use GWR and SHAP methods to predict the impact of 

landscape pattern on waterlogging in the remaining 10% watershed units (7, 

6, 4 watershed units), and obtain the mean squared error value. Finally, I 

can distinguish which method and scale watershed are the most accurate for 

analyzing the impact of landscape patterns on waterlogging.

Scale of Watershed Units

Number of 

Utilized 

Watershed Units

Number of 

Predicted  

Watershed Units

Large-scale Watershed Units  (LSWU) 27 4

Middle-scale Watershed Units (MSWU) 49 6

Small-scale Watershed Units  (SSWU) 55 7

[Table 4] Number of watershed Units for Prediction Mean Squared Error (MSE).

2.6 Piecewise Linear Model

Piecewise linear model has a long history in various fields of science, 

and deep neural network is yet another recent example. In this thesis, I 

use the piecewise linear models with only two parts, namely its simplest 

form, to study the threshold of impact.
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Formally, it is defined as

      ≤      

where τ is the threshold value for the independent variable and    
are model parameters.

I implemented the above model in Python using the numpy library and 

solve it using the scipy library.

Chapter 3. Results

I calculate the correlation among 45 independent variables and 3 

dependent variables (corresponding to 3 scales) by using GWR and 

shake methods to know the impact of landscape patterns on 

waterlogging and obtain the ranking of the impact degree of 45 

independent variables on each dependent variable. The results are 

sorted by the absolute values of the degree of influence. That is to 

say, whether the landscape pattern has a positive impact on 

waterlogging (promoting waterlogging) or a negative impact (alleviating 

waterlogging), and larger absolute values means greater impact on 

waterlogging. It should be noted that to accurately analyze which land 

characteristics and what reasons affect the occurrence of waterlogging, 

although I have up to 45 independent variables, in order to explain the 

analysis results more concisely, I will focus on explaining the top 10 

independent variables of each analysis result.
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3.1 Geographically Weighted Regression (GWR)

 By using the Geographically Weighted Regression (GWR) method, I can 

obtain the absolute values of the impact of different characteristics of 

specific landscape patterns on waterlogging, the ranking of results (Fig. 

10-12), and detailed values (Tables 5-7). According to the ranking of absolute 

values, I can observe which characteristics of specific landscape patterns 

have a great impact on waterlogging more intuitively. The detailed values 

help understand whether the specific characteristics of these specific 

landscape patterns have a positive impact on waterlogging (promote 

waterlogging) or a negative impact on waterlogging (alleviate waterlogging).

According to Fig. 10, the top 10 landscape pattern metrics that have the 

greatest impact on waterlogging in LSWU (Large-scale Watershed Units) are 

as follows: Grass PLAND (Percentage of Landscape), Transportation Area D 

(Degree of Landscape Division), Agriculture Area LPI (Largest Patch Index), 

Agriculture Area LSI (Largest Shape Index), Elevation, Grass D, Water ED 

(Edge Density), Water LSI, Barren Area D, Forest LPI. The detailed value are 

as follows (Table 5): Grass PLAND (−3.20×10 ), Transportation Area D (−
2.79×10 ), Agriculture Area LPI (−2.66×10 ), Agriculture Area LSI (−2.31 

× 10 ), Elevation (−2.24 × 10 ), Grass D (−1.63 × 10 ), Water ED 

(1.49 × 10 ), Water LSI (1.44 × 10 ), Barren Area D (−1.26 × 10 ), 
Forest LPI (−1.24 × 10 ).

According to Fig. 11, the top 10 landscape pattern metrics that have the 

greatest impact on waterlogging in MSWU (Middle-scale Watershed Units) are 
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as follows: Water ED (Edge Density), Agriculture Area ED, Forest PLAND 

(Percentage of Landscape), Transportation Area LPI (Largest Patch Index), 

Grass LSI (Largest Shape Index), Water PD (Path Density), Agricultural Area 

PD, Grass ED, Transportation Area PLAND, Barren Area LSI. The detailed 

value are as follows (Table 6): Water ED (1.04×10 ), Agriculture Area ED 
(8.51×10 ), Forest PLAND (7.72×10 ), Transportation Area LPI (6.52×10 ), 
Grass LSI (−5.47×10 ), Water PD (−5.34×10 ), Agricultural Area PD (−
4.86 × 10 ), Grass ED (4.70 × 10 ), Transportation Area PLAND (−4.32 

× 10 ), Barren Area LSI (4.12 × 10 ).

According to Fig. 12, the top 10 landscape pattern metrics that have the 

greatest impact on waterlogging in SSWU (Small-scale Watershed Units) are 

as follows: Barren Area LPI (Largest Patch Index), Barren Area D (Degree of 

Landscape Division), Transportation Area ED (Edge Density), Transportation 

Area LPI, Used Area ED, Agricultural Area LSI (Largest Shape Index), Barren 

Area LSI, Barren Area ED, Transportation Area LSI, Forest LSI. The detailed 

value are as follows (Table 7): Barren Area LPI (−6.23 × 10 ), Barren 
Area D (−5.89 × 10 ), Transportation Area ED (5.27 × 10 ), 
Transportation Area LPI (−3.79 × 10 ), Used Area ED (−3.76×10 ), 
Agricultural Area LSI (3.51×10 ), Barren Area LSI (3.50×10 ), Barren Area 
ED (−3.35×10 ), Transportation Area LSI (−3.24×10), Forest LSI (−

2.55×10 ).
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Figure 10. The correlation degree between landscape 

pattern metrics and large-scale watershed units (LSWU) 

by geographically weighted regression (GWR).
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Landscape Category Value

Grass PLAND -3.20×10
Transportation Area PD -2.79×10
Agricultural Area LPI -2.66×10
Agricultural Area LSI -2.31×10
Elevation -2.24×10
Grass D -1.63×10
Water ED  1.49×10
Water LSI  1.44×10
Barren Area D -1.26×10
Forest LPI -1.24×10
Transportation Area ED -1.09×10
Used Area PD  1.05×10
Transportation Area PLAND  9.09×10
Transportation Area LPI  9.02×10
SHDI -7.45×10
Slope  7.08×10
Agricultural Area ED  7.06×10
Grass ED  6.77×10
Transportation Area D  6.67×10
Water LPI -6.10×10
Used Area D  5.40×10
Forest ED -5.40×10
Agricultural Area D -5.37×10
Water PD -5.16×10
Grass PD -5.13×10
Grass LSI  4.61×10
Transportation Area LSI -4.03×10
Agricultural Area PD  4.00×10
Water D  3.89×10
Agricultural Area PLAND  3.34×10
Used Area LSI  3.32×10
Used Area LPI -3.17×10
Used Area PLAND -2.93×10
Forest PLAND  2.58×10
Grass LPI  2.56×10
Forest LSI -1.46×10
Barren Area PD  1.35×10
Barren Area LPI  1.25×10

[Table 5] The values　of　landscape pattern metrics　of Large-scale Watershed Units 

(LSWU) analyzed by Geographically Weighted Regression (GWR).
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Barren Area LSI  1.06×10
Water PLAND  8.79×10
Barren Area PLAND  8.68×10
Forest D -6.56×10
Forest PD  3.02×10
Used Area ED  2.60×10
Barren Area ED -9.95×10
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Figure 11. The correlation degree between landscape 

pattern metrics and middle-scale watershed units 

(MSWU) by geographically weighted regression (GWR).
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Landscape Category Value

Water ED  1.04×10
Agricultural Area ED  8.51×10
Forest PLAND  7.72×10
Transportation Area LPI  6.52×10
Grass LSI -5.47×10
Water PD -5.34×10
Agricultural Area PD -4.86×10
Grass ED  4.70×10
Transportation Area PLAND -4.32×10
Barren Area LSI  4.12×10
Water LSI -3.96×10
Barren Area D -3.56×10
Forest D -3.20×10
Water LPI -3.11×10
Transportation Area ED  2.92×10
Agricultural Area LPI -2.80×10
Transportation Area LSI  2.75×10
Barren Area PLAND -2.71×10
Forest LPI -2.70×10
Barren Area ED -2.69×10
Used Area LSI -2.55×10
Agricultural Area PLAND  2.44×10
Water PLAND  2.29×10
Used Area PD  1.98×10
Used Area ED -1.93×10
Forest LSI  1.87×10
Grass PLAND -1.56×10
Water D -1.54×10
Barren Area PD  1.34×10
Used Area LPI  1.26×10
Transportation Area D  1.24×10
Used Area PLAND  1.23×10
Agricultural Area LSI -1.18×10
Barren Area LPI -1.13×10
Grass LPI -9.76×10
Transportation Area PD -7.90×10
Agricultural Area D  7.62×10
SHDI  6.37×10

[Table 6] The values　of　 landscape pattern metrics of Middle-scale Watershed Units 

(MSWU) analyzed by Geographically Weighted Regression (GWR).
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Grass D -5.92×10
Used Area D  3.95×10
Slope  3.58×10
Forest PD -2.93×10
Forest ED -2.38×10
Grass PD  2.23×10
Elevation  2.16×10
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Figure 12. The correlation degree between landscape 

pattern metrics and small-scale watershed units (SSWU) 

by geographically weighted regression (GWR).
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Landscape Category Value

Barren Area LPI -6.23×10
Barren Area D -5.89×10
Transportation Area ED  5.27×10
Transportation Area LPI -3.79×10
Used Area ED -3.76×10
Agricultural Area LSI  3.51×10
Barren Area LSI  3.50×10
Barren Area ED -3.35×10
Transportation Area LSI -3.24×10
Forest LSI -2.55×10
Water LSI -2.54×10
Water ED  2.43×10
Agricultural Area ED -2.18×10
Transportation Area PLAND  2.01×10
Used Area LSI  1.48×10
Grass ED -1.22×10
Grass LSI  1.05×10
Agricultural Area PD -1.04×10
Used Area PLAND  1.01×10
Water PD  9.73×10
Forest ED  7.23×10
Water PLAND -6.55×10
Forest LPI -6.30×10
Agricultural Area PLAND -6.08×10
Grass D  5.66×10
Forest D  5.58×10
Forest PD  5.28×10
Forest PLAND  4.93×10
Water LPI  4.67×10
Used Area D  3.86×10
Water D -3.41×10
Slope -3.08×10
Elevation -3.04×10
Agricultural Area LPI  2.96×10
Transportation Area PD -2.84×10
Used Area PD  2.44×10
Grass PD  2.32×10
Grass LPI  1.96×10

[Table 7] The values　 of　 landscape pattern metrics of Small-scale Watershed Units 

(SSWU) analyzed by Geographically Weighted Regression (GWR).
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Grass PLAND -1.80×10
Agricultural Area D  1.78×10
Used Area LPI -1.36×10
Transportation Area D -9.94×10
Barren Area PLAND -5.99×10
Barren Area PD  5.65×10
SHDI -4.24×10

The results after GWR analysis are shown in the Figures 10-12 and Tables 

5-7. To better interpret　the results, I classify the top 10 landscape patterns 

with the highest degree of correlation with　 the impact of waterlogging 

according to the landscape category and use the absolute value superposition 

(based on the 13th power of 10), to sort according to the strength 

relationship. 

In LSWU　 (Fig. 10), the order of the impact of landscape types on 

waterlogging is as follows: Agricultural　Area (LPI & LSI, 4.97 × 10 ) > 
Grass (PLAND & D, 4.83 × 10 ) > Water (ED & LSI,　2.93 × 10 ) > 
Transportation Area (D, 2.79 × 10 ) > Elevation (2.24 × 10 ) > Barren　
Area (D, 1.26 × 10 ) > Forest (LPI, 1.24 × 10 ). Among them, the 

landscape properties　of the Agricultural Area (LPI & LSI) and the Grass 

(PLAND & D) are the dominant factors that　interfere with the water cycle 

balance. According to their characteristics, it is helpful to adjust the　

landscape ecological balance and alleviate waterlogging. As shown in Table 5, 

both Agricultural　Area LPI (−2.66 × 10 ) and Agricultural Area LSI (−2.31 

× 10) are less than 0 (negative impact), which have an effect on 

alleviating waterlogging. LPI is the largest patch index,　which means that 

the agricultural area is the dominant landscape type in the watershed unit of　
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this scale. Therefore, it is necessary to expand the agricultural area with the 

largest proportion　 of area to achieve the purpose of alleviating 

waterlogging. The LSI is the landscape shape index,　which means that the 

simpler its edge shape is, the more beneficial it is to alleviate waterlogging.　

Therefore, in LSWU, we need to find the single patch of agricultural area 

with the largest one,　expand it and simplify the complexity of mosaic edges 

with other landscape types. And the Grass　PLAND (−3.20×10 ) and Grass 
D (−1.63×10 ) also play a role in alleviating waterlogging.　 PLAND is 

Percentage of Landscape, which means that the higher the proportion of 

Grass in the　watershed unit of this scale, the greater the mitigation effect 

of waterlogging. D is the landscape　 division, which reflects the patch 

dispersion degree of a specific landscape type. Here, the higher　the patch 

dispersion degree of Grass, the more beneficial it is to alleviate waterlogging. 

Therefore,　according to the characteristics of Grass, we need fragmented 

dispersion increase to achieve our goal.

In MSWU (Fig. 11), the order of the impact of landscape types on 

waterlogging is as follows: Water (ED & PD, 1.57 × 10 ) > Agricultural 
Area (ED & PD, 1.34 × 10 ) > Transportation　Area (LPI & PLAND, 1.08 

× 10 ) > Grass (LSI & ED, 1.02 × 10 ) > Forest (PLAND,　0.77×10 ) > 
Barren Area (LSI, 0.41×10 ). Among them, the landscape property of Water　

(ED & PD, 1.57 × 10 ) has the strongest correlation with waterlogging, but 
it is similar to that　of the subsequent Agricultural Area (ED & PD, 1.34 × 

10 ) and　Transportation Area (LPI &　PLAND, 1.08 × 10 ). Therefore, at 
this scale, landscape planners need to consider 4 features　 of three 

landscape categories at the same time. ED is the edge density, which means 
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the total length　of the edge of a specific landscape type. The higher the 

value, the larger the fragment. PD is patch　 density, which reflects the 

degree of fragmentation and spatial heterogeneity of the landscape. The　

higher the value, the more patches. As shown in Table 6: Water ED (1.04 × 

10 ), Water PD　 (−5.34 × 10 ), Agricultural Area ED (8.51 × 10 ), 
Agricultural Area PD (−4.86 × 10 ),　Transportation Area LPI (6.52×10 ), 
Transportation Area PLAND (−4.32×10 ) combined　with their values, if we 

want to achieve the purpose of alleviating waterlogging, we need to reduce　

the total length of the edge of Water area and Agricultural Area, and 

increase small water area and　 agricultural area, such as small-scale 

constructed wetlands and collective cultivated land in urban　areas. At the 

same time, the Transportation Area, which accounts for the largest 

proportion, need　be reduced, and the overall ratio of Transportation Area 

cannot be reduced at will because of social　demand. This part needs to be 

compensated by other Agricultural Area adjustments.

In SSWU (Fig. 12), the order of the impact of landscape types on 

waterlogging is as follows:　Barren Area (LPI & D & LSI & ED, 1.90 × 10

 ) > Transportation Area (ED & LPI & LSI,　1.90×10 ) > Used Area (ED, 
0.38×10 ) > Agricultural Area (LSI, 0.35×10 ) > Forest　(LSI, 0.26 × 10 ). 
In SSWU, the comprehensive impact degree of　 Barren Area and 

Transportation Area is the same, and these two landscape types have the 

highest correlation with waterlogging.　Although there are 4 features of the 

Barren Area, 3 features of the Transportation Area are　 related to 

waterlogging. However, because of the low result index of the two landscape 

types, they　 are not sensitive to the response of waterlogging. Their 
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respective values are (Table 7): Barren Area　LPI (−6.23 × 10 ), Barren 
Area D (−5.89 × 10 ), Barren Area LSI (3.50 × 10 ), Barren　Area ED 

(−3.35 × 10 ), Transportation Area ED (5.27 × 10 ), Transportation Area 
LPI　(−3.79 × 10 ), and Transportation Area LSI (−3.24 × 10 ). We can 

observe from the above　data that this means that the largest single barren 

area should be expanded while fragmented barren area being increased. 

The simpler the mosaic structure of patches and other landscape categories,　

the better it is. While the edge length of the transportation area has a 

positive effect on waterlogging,　the more complex the patch and shape of 

the largest single piece of the transportation area are, the　 greater the 

mitigation effect on waterlogging.
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3.2 Shapley Additive Explanations (SHAP)

By using the Shapley Additive Explanations (SHAP) method, I can 

obtain the importance ranking of different characteristics of a specific 

landscape pattern on the impact of waterlogging (Fig. 13, 15, 17), as well 

as the detailed values. For the detailed values of SHAP (Fig. 14, 16, 18), 

the x-axis is based on the value of 0. If it is less than 0, it means the 

landscape type features have a negative impact on the contribution of 

waterlogging (to alleviate waterlogging). If it is greater than 0, it means 

the landscape type features have a positive impact on the contribution 

of waterlogging (to promote waterlogging). Each point on the X-axis 

represents a single watershed unit, and each watershed unit (point) 

represents the value of the landscape type feature in the watershed. 

Y-axis is the order of contribution degree of landscape type characteristics 

to waterlogging at the whole watershed scale. Considering the different 

values of each watershed unit (points on the X-axis), in order to 

comprehensively evaluate the characteristics of each landscape category, I 

reform the values to obtain Tables 9, 11, and 13.

According to Fig. 13, the top 10 landscape pattern metrics that have the 

greatest impact on waterlogging in LSWU (Large-scale Watershed Units) are 

as follows: Transportation Area D (Degree of Landscape Division), SHDI 

(Shannon Diversity Index), Transportation Area LPI (Largest Patch Index), 

Barren Area D, Barren Area LPI, Grass ED, Used Area LPI, Forest ED (Edge 

Density), Grass PLAND (Percentage of Landscape), Transportation Area PD 

(Path Density). The distribution of positive or negative (based on 0 value) 
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waterlogging impact on watershed units by landscape pattern characteristics 

is shown in Figure 14. The detailed impact degrees and the number of 

watershed units affected by negative and positive waterlogging are shown in 

Table 8: Transportation Area D (2.21 × 10  , 24 : 7), SHDI (1.50 × 10  , 
17 : 14), Transportation Area LPI (1.45 × 10  , 26 : 5), Barren Area D (1.43 
× 10  , 26 : 5), Barren Area LPI (1.40 × 10  , 28 : 3), Grass ED (1.39 × 

10  , 18 : 13), Used Area LPI (1.31 × 10  , 24 : 7), Forest ED (1.01 × 10

  , 28 : 3), Grass PLAND (7.37 × 10  , 3 : 28), Transportation Area PD 
(6.19 × 10  , 26 : 5).

According to Fig. 15, the top 10 landscape pattern metrics that have the 

greatest impact on waterlogging in MSWU (Middle-scale Watershed Units) are 

as follows: Transportation Area PD (Path Density), Agricultural Area ED 

(Edge Density), Barren Area LPI (Largest Patch Index), Forest ED, Used Area 

LPI, Transportation Area D (Degree of Landscape Division), Transportation 

Area ED, Agricultural Area D, SHDI (Shannon Diversity Index), Agricultural 

Area LPI. The distribution of positive or negative (based on 0 value) 

waterlogging impact on watershed units by landscape pattern characteristics 

is shown in Figure 16. The detailed impact degree and the number of 

watershed units affected by negative and positive waterlogging are shown in 

Table 9: Transportation Area PD (2.71 × 10  , 44 : 11), Agricultural Area 
ED (2.35 × 10  , 52 : 3), Barren Area LPI (2.06×10  , 52 : 3), Forest ED 
(1.87×10  , 43 : 12), Used Area LPI (1.81×10  , 46 : 9), Transportation 
Area D (1.40 × 10  , 37 : 18), Transportation Area ED (1.12 × 10  , 36 : 
19), Agricultural Area D (8.75 × 10  , 6 : 48), SHDI (8.37 × 10  , 15 : 40), 
Agricultural Area LPI (7.60 × 10  , 48 : 7).
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According to Fig. 17, the top 10 landscape pattern metrics that have the 

greatest impact on waterlogging in SSWU (Small-scale Watershed Units) are 

as follows: Agriculture Area ED (Edge Density), Transportation Area PD (Path 

Density), Barren Area LPI (Largest Patch Index), SHDI (Shannon Diversity 

Index), Used Area PD, Transportation Area D (Degree of Landscape Division), 

Agricultural Area LPI, Slope, Used Area D, Grass D. The distribution of 

positive or negative (based on 0 value) waterlogging impact on watershed 

units by landscape pattern characteristics is shown in Figure 18. The detailed 

impact degrees and the number of watershed units affected by negative and 

positive waterlogging are shown in Table 10: Agriculture Area ED (3.13 × 10

  , 58 : 4), Transportation Area PD (1.92 × 10  , 47 : 15), Barren Area LPI 
(1.80 × 10  , 58 : 4), SHDI (1.67 × 10  , 41 : 21), Used Area PD (1.06 × 

10  , 56 : 6), Transportation Area D (9.02×10  , 58 : 4), Agricultural Area 
LPI (8.95×10  , 51 : 11), Slope (8.95×10  , 55 : 7), Used Area D (8.30 × 

10  , 19 : 43), Grass D (8.22 × 10  , 9 : 53).
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Figure 13.  Contribution of landscape pattern 

metrics to waterlogging in large-scale watershed 

Units by Shapley Additive Explanations (SHAP).
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Figure 14. Contribution of landscape pattern metrics to 

waterlogging in large-scale watershed Units by Shapley 

Additive Explanations (SHAP).
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Landscape Category Value

Number of 

Ｗatershed 

Units Less 

than 0

Number of 

Watershed 

Units 

Greater 

than 0

Transportation Area D 2.21×10  24 7

SHDI 1.50×10  17 14

Transportation Area LPI 1.45×10  26 5

Barren Area D 1.43×10
  26 5

Barren Area LPI 1.40×10
  28 3

Grass ED 1.39×10
  18 13

Used Area LPI 1.31×10
  24 7

Forest ED 1.01×10
  28 3

Grass PLAND 7.37×10  3 28

Transportation Area PD 6.19×10  26 5

Agricultural Area LSI 5.78×10  25 6

Used Area PD 4.49×10  16 15

Used Area D 4.15×10  21 10

Barren Area ED 4.02×10  3 28

Forest D 3.17×10  2 29

Water PLAND 2.34×10
  15 16

Forest PD 2.25×10
  12 19

Elevation 2.04×10
  6 25

Grass D 1.95×10
  22 9

Forest LPI 1.90×10
  15 16

Slope 1.68×10  15 16

Agricultural Area PD 1.66×10  19 12

Agricultural Area ED 1.48×10  29 2

Agricultural Area LPI 9.95×10  15 16

Barren Area PD 9.05×10  15 16

Used Area LSI 6.97×10  4 27

Water PD 5.84×10  28 3

Grass LPI 5.80×10
  21 10

Water ED 3.97×10
  9 22

Agricultural Area D 0 0 0

Water D 0 0 0

Water LPI 0 0 0

Transportation Area LSI 0 0 0

Forest LSI 0 0 0

[Table 8] The values　of　 landscape pattern metrics of Large-scale Watershed Units 

(LSWU) analyzed by Shapley Additive Explanations (SHAP). 
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Grass LSI 0 0 0

Water LSI 0 0 0

Barren Area LSI 0 0 0

Grass PD 0 0 0

Used Area PLAND 0 0 0

Transportation Area PLAND 0 0 0

Agricultural Area PLAND 0 0 0

Forest PLAND 0 0 0

Barren Area PLAND 0 0 0

Used Area ED 0 0 0

Transportation Area ED 0 0 0

Landscape Category Sum Value Promote / Alleviate

Transportation Area D -1.95×10
  Alleviate

SHDI  1.30×10
  Promote

Transportation Area LPI -8.67×10
  Alleviate

Barren Area D  1.73×10
  Promote

Barren Area LPI  1.73×10
  Promote

Grass ED  1.73×10  Promote

Used Area LPI -6.51×10  Alleviate

Forest ED  6.51×10  Promote

Grass PLAND -8.67×10  Alleviate

Transportation Area PD -5.42×10  Alleviate

[Table 9] The top ten landscape pattern characteristics with the highest contribution to the 

occurrence of waterlogging in Large-scale Watershed Units (LSWU) were obtained by using 

Shapley Additive Explanations (SHAP). Then by synthesizing the value of each landscape pattern 

feature, we can confirm whether the impact on waterlogging is positive or negative.
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Figure 15. Contribution of landscape pattern 

metrics to waterlogging in middle-scale watershed 

Units by Shapley Additive Explanations (SHAP). 
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Figure 16. Contribution of landscape pattern metrics to 

waterlogging in middle-scale watershed Units by Shapley 

Additive Explanations (SHAP).



- 61 -

Landscape Category Value

Number of 

Watershed 

Units Less 

than 0

Number of 

watershed 

Units 

Greater 

than 0

Transportation Area PD 2.71×10  44 11

Agricultural Area ED 2.35×10  52 3

Barren Area LPI 2.06×10  52 3

Forest ED 1.87×10
  43 12

Used Area LPI 1.81×10
  46 9

Transportation Area D 1.40×10
  37 18

Transportation Area ED 1.12×10
  36 19

Agricultural Area D 8.75×10
  6 49

SHDI 8.37×10  15 40

Agricultural Area LPI 7.60×10  48 7

Barren Area D 7.55×10  48 7

Water PD 7.04×10  54 1

Barren Area LSI 6.76×10  36 19

Forest D 5.90×10  54 1

Grass ED 5.21×10  4 51

Grass LPI 4.70×10
  44 11

Water LSI 4.60×10
  48 7

Water PLAND 4.52×10
  33 22

Used Area D 4.52×10
  20 35

Elevation 4.27×10
  17 38

Used Area PD 3.87×10  34 21

Slope 3.60×10  46 9

Water D 2.40×10  25 30

Water LPI 2.36×10  40 15

Forest LPI 2.18×10  33 22

Agricultural Area LSI 2.16×10  27 28

Forest PD 2.15×10  15 40

Used Area LSI 1.94×10
  21 34

Water ED 1.70×10
  8 47

Grass D 1.53×10
  23 32

Forest LSI 1.11×10
  47 8

Barren Area PD 8.70×10
  19 36

Barren Area PLAND 8.05×10  39 16

Grass LSI 7.29×10  14 41

[Table 10] The values　of landscape pattern metrics of Middle-scale Watershed Units 

(MSWU) analyzed by Shapley Additive Explanations (SHAP).
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Used Area PLAND 6.73×10  44 11

Grass PD 5.25×10  42 13

Agricultural Area PD 2.72×10  38 17

Grass PLAND 1.62×10  2 53

Transportation Area LPI 0 0 0

Transportation Area LSI 0 0 0

Transportation Area PLAND 0 0 0

Agricultural Area PLAND 0 0 0

Forest PLAND 0 0 0

Used Area ED 0 0 0

Barren Area ED 0 0 0

Landscape Category Sum Value Promote / Alleviate

Transportation Area PD  5.20×10
  Promote

Agricultural Area ED  4.99×10  Promote

Barren Area LPI -1.52×10  Alleviate

Forest ED  1.73×10  Promote

Used Area LPI -1.73×10  Alleviate

Transportation Area D -1.86×10  Alleviate

Transportation Area ED  4.34×10  Promote

Agricultural Area D  5.42×10  Promote

SHDI  8.67×10
  Promote

Agricultural Area LPI -4.34×10
  Alleviate

[Table 11] The top ten landscape pattern characteristics with the highest contribution to the 

occurrence of waterlogging in Middle-scale Watershed Units (MSWU) were obtained by using 

Shapley Additive Explanations (SHAP). Then by synthesizing the value of each landscape pattern 

feature, we can confirm whether the impact on waterlogging is positive or negative.
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Figure 17. Contribution of landscape pattern 

metrics to waterlogging in small-scale watershed 

Units by Shapley Additive Explanations (SHAP).
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Figure 18. Contribution of landscape pattern metrics to 

waterlogging in small-scale watershed Units by Shapley 

Additive Explanations (SHAP). 
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Landscape Category Absolute Value

Number of 

watershed 

units less 

than zero

Number of 

watershed 

units 

greater 

than zero

Agricultural Area ED 3.13×10  58 4

Transportation Area PD 1.92×10  47 15

Barren Area LPI 1.80×10  58 4

SHDI 1.67×10
  41 21

Used Area PD 1.06×10
  56 6

Transportation Area D 9.02×10
  58 4

Agricultural Area LPI 8.95×10
  51 11

Slope 8.95×10
  55 7

Used Area D 8.30×10  19 43

Grass D 8.22×10  9 53

Barren Area D 6.66×10  43 19

Used Area LPI 6.54×10  50 12

Water PD 6.35×10  60 2

Forest D 5.88×10  58 4

Grass LPI 5.76×10  50 12

Forest ED 5.71×10
  41 21

Agricultural Area D 5.21×10
  3 59

Barren Area PLAND 5.04×10
  43 19

Water LPI 4.78×10
  39 23

Water LSI 4.33×10
  51 11

Barren Area LSI 3.42×10  35 27

Elevation 3.22×10  19 43

Agricultural Area LSI 2.86×10  33 29

Used Area LSI 2.69×10  40 22

Transportation Area LPI 2.34×10  17 45

Grass PLAND 2.29×10  6 56

Water D 2.29×10  27 35

Grass PD 1.86×10
  21 41

Water ED 1.80×10
  5 57

Grass LSI 1.14×10
  42 20

Agricultural Area PLAND 1.10×10
  35 27

Barren Area ED 7.73×10
  36 26

Barren Area PD 6.47×10  31 31

Transportation Area ED 4.70×10  41 21

Water PLAND 4.26×10  42 20

[Table 12] The values of landscape pattern metrics of Small-scale Watershed Units (SSWU) 

analyzed by Shapley Additive Explanations (SHAP).



- 66 -

Grass ED 3.89×10  22 40

Agricultural Area PD 1.39×10  9 53

Forest LPI 0 0 0

Transportation Area LSI 0 0 0

Forest LSI 0 0 0

Forest PD 0 0 0

Used Area PLAND 0 0 0

Transportation Area PLAND 0 0 0

Forest PLAND 0 0 0

Used Area ED 0 0 0

Landscape Category Sum Value Promote / Alleviate

Agricultural Area ED -3.04×10
  Alleviate

Transportation Area PD -7.81×10
  Alleviate

Barren Area LPI -4.88×10
  Alleviate

SHDI -3.04×10  Alleviate

Used Area PD  2.60×10  Promote

Transportation Area D -1.29×10  Alleviate

Agricultural Area LPI  8.67×10  Promote

Slope -1.84×10  Alleviate

Used Area D  1.46×10  Promote

Grass D  3.31×10  Promote

[Table 13] The top ten landscape pattern characteristics with the highest contribution to the 

occurrence of waterlogging in Small-scale Watershed Units (SSWU) were obtained by using 

Shapley Additive Explanations (SHAP). Then by synthesizing the value of each landscape pattern 

feature, we can confirm whether the impact on waterlogging is positive or negative.

The results of the SHAP analysis are shown in Figures 13-18 and Tables 

8, 10, and 12. To better explain the results, I classify the top 10 landscape 

pattern metrics (Tables 9, 11, 13) with the highest contribution to 

waterlogging, then confirm the contribution of each landscape category 

to waterlogging by the sum of absolute values (based on the 18th 

power of 10), and then at last analyze whether their impact is positive 

or negative according to the eigenvalue to confirm the impact of each 
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landscape category (Tables 8, 10, 12).

In LSWU (Fig. 14), the contribution of landscape types to the impact of 

waterlogging is sorted as follows: Barren Area (D & LPI, 3.46×10 ), 
Transportation Area (D & LPI & PD, 3.36×10),　Grass (ED & PLAND, 2.60 

× 10 ), SHDI (1.30 × 10 ), Used Area (LPI, 0.65 × 10 ),　Forest (ED, 

0.65 × 10 ). The contribution values of Barren Area and Transportation 
Area to　waterlogging are similar, followed by Grass, SHDI, Used Area, 

and Forest. According to Table 9　 and the definition of landscape 

pattern metrics, it is necessary to greatly reduce the barren area in　

the process of waterlogging control at this watershed-scale unit. 

Although the more dispersed the　transportation area is, the better the 

alleviation of waterlogging will be. However, because of the　 actual 

needs of society, we cannot arbitrarily cut off the transportation area. 

Therefore, in this part,　 we can make up for the gap in the 

contribution of the transportation area by reducing the fine grass　and 

avoiding the excessive dispersion and fragmentation of landscape 

elements. The impact of the　forest is small and can be ignored.

In MSWU (Fig. 16), the contribution of landscape types to the impact of 

waterlogging is sorted as　follows: Transportation Area (PD & ED & D, 7.49 

× 10 ), Agricultural Area (ED & D & LPI,　5.47 × 10 ), Forest (ED, 1.73 
× 10 ), Used Area (LPI, 1.73 × 10 ), Barren Area (LPI,　1.52 × 10 ), 
SHDI (0.87 × 10 ). The contribution of Transportation Area and 

Agricultural　Area to waterlogging is much higher than that of Forest, 

Used Area, Barren Area, and SHDI. According to Table 11 and the 
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definition of landscape metrics, in the process of waterlogging control 

in　this scale watershed, it is necessary to adjust the edge length of 

the agricultural area to gather the　 fragmented agricultural areas 

together to form an agricultural area with a relatively large single area,　

which is more conducive to the alleviation of waterlogging. The 

contribution of the forest is relatively　 small, but since the 

transportation area cannot be changed at will, it can be adjusted by 

adding　scattered forest areas. At the same time, the maximum single 

patch area of Used Area and Barren Area shall be further expanded. 

The contribution of SHDI is relatively low and almost negligible.

In SSWU (Fig. 18), the contribution of landscape types to the impact of 

waterlogging is sorted as　follows: Transportation Area (PD & D, 9.10×10 ), 
Barren Area (LPI, 4.88×10 ), Used Area　(PD & D, 4.00×10), Agricultural 
Area (LPI & ED, 3.91×10 ), Grass (D, 3.31×10 ),　SHDI (3.04 × 10 ), 
Slope (1.84 × 10 ). Although the contribution of the Transportation　

Area to waterlogging is absolutely important, as the previous results, 

the Transportation Area, as　 the demand of human production 

activities, cannot be changed at will, the Barren Area, used area,　and 

agricultural area all have high contributions to waterlogging, so we can 

focus on the intervention　of these three landscape types. Of course, 

the contribution of Grass and SHDI is relatively low, but it　can not be 

ignored. The Slope is a natural landform that should not be changed, 

and its importance　is the lowest, so it can be ignored. According to 

Table 13 and the definition of landscape metrics,　from this result. The 

Barron area patch with the largest single area should be further 
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expanded　to reduce the area proportion of the used area in the basin 

unit, and it is better to concentrate　the Used Area with the scattered 

area. Reduce and disperse the agricultural area with the largest　single 

area. While focusing on Grass, will increase the landscape diversity 

within the watershed unit.

3.3 Prediction Mean Square Error (MSE)

According to the analysis results of GWR and SHAP in each scale 

watershed (Fig. 7-9), the accuracy ranking (starting from the smallest error) 

are as Table 14: LSWU-SHAP (1.51 × 10  ) < MSWU-SHAP (1.60×10  ) < 
SSWU-SHAP (1.90×10  ) < SSWU-GWR (7.45×10  ) < MSWU-GWR (9.20 × 

10  ) < LSWU-GWR (1.64 × 10  ). That is to say, using the SHAP method 

to analyze the relationship between landscape patterns and waterlogging in 

large-scale watershed units, the error is the smallest and the most accurate.

Scale of Watershed Units GWR SHAP

Large-scale Watershed Units  (LSWU) 1.64×10  1.51×10 
Middle-scale Watershed Units (MSWU) 9.20×10  1.60×10 
Small-scale Watershed Units  (SSWU) 7.45×10  1.90×10 

[Table 14] The Results of Prediction Mean Squared Error (MSE).

3.4 Piecewise Linear Model

Through the results of Prediction Mean Squared Error method, we know 

that the results of LSWU analysis using SHAP method are the most accurate. 

Therefore, I calculated the threshold of the top 10 landscape pattern 
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characteristics (Fig. 13-14) that show the greatest impact on waterlogging in 

LSWU as shown as Fig. 19-28. The threshold values are (Table 15): 

Transportation Area D (3.69× 10  ), SHDI (1.65), Transportation Area LPI 
(1.37 × 10 ), Barren Area D (7.68 × 10  ), Barren Area LPI (2.36), Grass 
ED (2.98 × 10 ), Used Area LPI (1.50 × 10  ), Forest ED (7.19 × 10 ), 
Grass PLAND (2.64 × 10  ), Transportation Area PD (2.67).

Combined with Table 9, the results mean that when Barren Area D (Fig. 

19) value reache (7.68 × 10  ), Barren Area LPI (Fig. 20) value reaches 
(2.36), Grass ED (Fig. 24) value reaches (2.98 × 10 ), SHDI (Fig. 26) value 
reaches (1.65), Forest ED (Fig. 28) value reaches (7.19 × 10 ). The 

promoting effect of these landscape features on waterlogging is greatly 

weakened. On the other hand, when Transportation Area D (Fig. 21) value 

reaches(3.69 × 10  ), Transportation Area LPI (Fig. 22) value reaches (1.37 
× 10 ), Grass PLAND (Fig. 25) value reaches (2.64 × 10  ), Used Area LPI 
(Fig. 27) value reaches (1.50 × 10  ). The alleviating effect of these 

landscape features on waterlogging is greatly weakened.
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Figure 19.  Threshold value of Barren Area D (Landscape 

Division Index).

Figure 20. Threshold value of Barren Area LPI (Largest Patch 

Index).
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Figure 21. Threshold value of Transportation Area D (Landscape 

Division Index).

Figure 22. Threshold value of Transportation Area LPI (Largest 

Patch Index).
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Figure 23. Threshold value of Transportation Area PD (Patch 

Density).

Figure 24. Threshold value of Grass ED (Edge Density).
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Figure 25. Threshold value of Grass PLAND (Percentage of 

Landscape).

Figure 26. Threshold value of SHDI (Shannon Diversity Index).
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Figure 27.  Threshold value of Used Area LPI (Largest Patch 

Index).

Figure 28. Threshold value of Forest ED (Edge Density).
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Landscape Category Value

Transportation Area D  3.69×10 
SHDI 1.65

Transportation Area LPI 1.37×10
Barren Area D 7.68×10 
Barren Area LPI 2.36

Grass ED 2.98×10
Used Area LPI 1.50×10 
Forest ED 7.19×10
Grass PLAND 2.64×10

 
Transportation Area PD 2.67

[Table 15] The threshold value of the top ten landscape pattern characteristics with the 

highest contribution to waterlogging in LSWU (Large-scale Watershed Units) by using 

Shapley Additive Explanations (SHAP). 

4. Discussion 

4.1 Selection of Data and Tools

 High precision landscape pattern analysis in the macro-scale watersheds is 

helpful for us to objectively examine the role of the landscape ecosystem in 

waterlogging. If we want to further understand the local situation, we can 

select the watershed unit which we want to know from the waterlogging 

degree data, and use the sub-classified landscape types used in this study 

(There are 41 categories of metadata. In this study, I summarize them into 7 

categories). That is to say, the same data can be used to analyze the macro 

scale, but when necessary, the local scale can be enlarged for analysis. 

However, it is impossible to do this by neglecting the macro impact and 

limiting the study to small-scale areas. Python tools can do this freely. 
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Namely, the Python libraries can directly analyze the shapefile of the fine 

classified landscape, instead of converting it to Fragstats software for 

analysis, avoiding the computational loss caused by the conversion of vector 

data to raster data.

4.2 Supervised Learning and Interpretive Machine Learning

 Taking this study as an example, Geographically Weighted Regression 

(GWR) is an analysis method often used in the study of waterlogging. Many 

researchers use the results of this theory to try to explain the relationship 

between landscape patterns and waterlogging. However, in a strict sense, the 

goal of supervised learning is not to study the correlation, but to reduce the 

errors in prediction through the support of weight values, so as to provide 

useful information in the real world. Therefore, the results predicted by the 

supervised learning method may not reflect the causal relationship in the 

real world [22, 39]. However, because human beings have rich generalization 

ability, they hope to interpret the data of supervised learning and observe 

and infer causality. Also, this method often relies on the verification 

conclusions of previous studies and requires assumptions on this basis. 

However, we need to be vigilant that in the study of the natural 

environment, due to its complexity, there will always be undetected 

interactions between relevant variables. The use of these methods in this 

non-stationary environment may invalidate their prediction results [39]. 

Shapley Additive Explanations (SHAP) is a breakthrough in the field of 

machine learning in recent years. This method uses game theory to compare 

and analyze the impact of the combination of all data on the research object 
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and obtains the contribution value [42].

 From the results　of the Prediction Mean Squared Error (MSE) (Table 14), 

the error value of GWR is actually very small, but far bigger than that of 

SHAP. In terms of several landscape types that GWR and SHAP have an 

impact on waterlogging on LSWU, their common ground is that Barren Area, 

Transportation Area, and Forest have a strong correlation/contribution to 

waterlogging. The difference is that according to the results of GWR, 

Agricultural Area and Elevation are also important, while SHAP gives that 

Used Area and SHDI (Shannon Diversity Index) are both important. Through 

Fig. 29, we can observe the difference in the ratio of correlation 

degree/contribution degree of the elements at these different points (blue is 

the ratio of correlation degree of GWR and red is the ratio of contribution 

degree of SHAP). In MSWU comparison, GWR and SHAP common ground are 

Transportation Area, Agricultural Area, Forest, and Barren Area. The 

difference is that Water and Grass are also important according to the 

results of GWR, while the Used Area and SHDI are important according to 

SHAP. Through Fig. 30, we can observe the difference in the ratio of the 

correlation degree/contribution degree of the elements at these different 

points. In SSWU, they still have the common ground of Transportation Area, 

Barren, and Agricultural Area. The difference is that the Used Area is also 

considered by GWR to have a strong correlation with waterlogging unlike 

before. Also, the difference is that according to the results of GWR, the 

Forest is also very important, while SHAP thinks that Grass and SHDI are 

both important. Through Fig. 31, we can observe the difference in the ratio 

of the correlation degree/contribution degree of the elements at these 
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different points.

 The above is a description of the diversity of landscape categories 

summarized from the top 10 landscape categories with the strongest 

correlation/contribution in the GWR and SHAP results. We can find that 

both GWR and SHAP believe that the Transportation Area and Barron 

area play a role in the occurrence of waterlogging, especially since the 

proportion of Transportation Area is very high, which is also consistent 

with the relevant research conclusions of the past that impermeable 

surface has an important impact on waterlogging. However, it is 

unusual that the SHDI impact index in the results of GWR is very low 

in any watershed unit. Whether it is the result of separating all 

landscape features separately (Fig. 10-12) or only based on the analysis 

of landscape types, the correlation between SHDI and waterlogging is 

very low, even at the bottom. But, according to the results of SHAP, 

SHDI plays an important role in any watershed unit (Fig. 13-18), which 

is one of the important landscape features contributing to waterlogging. 

This also confirms Lipton et al．[39], namely the response prediction of 

the supervised learning model to the causal relationship in the real 

world is likely to be invalid because it does not detect the impact of 

the interaction between the landscape categories and their 

characteristics on the real world.　Therefore, I stated Finding 1: When 

we use the interpretive machine model, we can reflect the interaction 

between landscape patterns and waterlogging more objectively and 

accurately than supervised learning, because it fully considers the 

interaction between landscape patterns and the impact of this 
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interaction on waterlogging.
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Figure 29. The 

proportion of the 

impact of each 

landscape pattern 

on waterlogging in 

the large-scale 

watershed units 

(LSWU) obtained 

by using 

Geographically 

Weighted 

Regression (GWR) 

and Shapley 

Additive 

Explanations 

(SHAP). Red is 

SHAP and blue is 

GWR.
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Figure 30. The 

proportion of the 

impact of each 

landscape pattern 

on waterlogging in 

the middle-scale 

watershed units 

(MSWU) obtained 

by using 

Geographically 

Weighted 

Regression (GWR) 

and Shapley 

Additive 

Explanations 

(SHAP). Red is 

SHAP and blue is 

GWR.



- 83 -

Figure 31. The 

proportion of the 

impact of each 

landscape pattern 

on waterlogging in 

the small-scale 

watershed units 

(SSWU) obtained 

by using 

Geographically 

Weighted 

Regression (GWR) 

and Shapley 

Additive 

Explanations 

(SHAP). Red is 

SHAP and blue is 

GWR.
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4.3 Landscape Threshold and Hydrological Disaster

 According to the results of Prediction Mean Squared Error (MSE, 

Table 14), it is the most accurate to take Large-scale Watershed Units 

(LSWU) as the research object of waterlogging, which also conforms to 

Schumm＇s viewpoint [51]. This is to say, in large-scale watershed 

units, the hydrological disasters caused by the change of geomorphic 

threshold are mainly dominated by climate change. In small-scale 

watershed units, the hydrological disasters caused by the change of 

geomorphic threshold are dominated by weather changes. Climate 

change determines weather change. Therefore, human beings should 

analyze the abnormal phenomenon of imbalance at a reasonable 

watershed scale to fundamentally find out the causes of waterlogging 

while trying to intervene in the ecosystem balance as soon as possible. 

Therefore, I stated Finding 2: Using a finer-scale watershed as a study 

site is not necessarily appropriate for waterlogging study.

4.4 Rational Use of Limited Land Resources

 Although we can adjust the balance of natural ecology through 

external intervention in the landscape pattern to achieve the purpose 

of alleviating waterlogging. However, unlimited expansion of landscape 

types and specific features to alleviate waterlogging cannot solve the 

problem. Because nature itself is a complex composition, it is impossible 

to expand unilaterally and disorderly to alleviate waterlogging, which 

may cause other problems. At the same time, based on the realistic 

budget and other realistic concerns, we need to give full play to human 
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wisdom in the limited land resources. Therefore, I stated Finding 3: 

There are threshold values for landscape features. When the impact on 

waterlogging reaches this critical point, its role in promoting or 

alleviating waterlogging will drastically change.

4.5 Limitation and Future Direction

 Due to the lack of temporal change data of waterlogging, this study 

is not able to conduct a spatio-temporal analysis. For future work, if 

there are more detailed and comprehensive waterlog ging data, 

combined with the change of geomorphic landscape threshold, different 

results can be obtained. At the same time, in the process of 

development, human beings have obtained various materials from 

nature, and composed and invented many new materials. When these 

materials reach a certain amount, they will interfere with the dynamic 

balance of the ecological environment in a short time. Although nature 

can slowly adjust its balance, the impact of this temporary ecological 

imbalance on human beings may be huge. Compared with such a 

complex environment, the current landscape pattern metrics seem a 

little simple. As people pay more and more attention to their living 

environment, the formula of landscape ecology theory will developed in 

near future to better understand and explain the dynamic principle of 

natural ecology. In the past, it was difficult to verify the experimental 

results of large scale study area, but with the in-depth development of 

interpretative machine learning, it can hopefully overturn the results 

that we put forward a possible misleading but seemingly reasonable 
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explanations.

5. Conclusion 

 The Seoul Capital Area (SCA) is the fifth-largest metropolitan area 

in the world, and also the economic hinterland of the Republic of 

Korea. With the concentration of resources and population, it will 

continue to attract new local working populations in the future. The 

developed economy and people's active social production activities have 

caused drastic changes in the land structure and characteristics of the 

region, resulting in the disturbance of the natural hydrological cycle, 

thus causing the waterlogging risk to become higher in SCA. In order 

to restore the dynamic balance of ecology and prevent potential life 

and health risks, based on landscape ecology, this study explores the 

interaction between landscape patterns and waterlogging, provides a 

reference for landscape planning and decision-makers, and draws the 

following conclusions:

Firstly, in the study on the impact of landscape patterns on 

waterlogging, if the interaction between landscape patterns is fully 

considered, the analysis results are more accurate. Both Geographically 

Weighted Regression (GWR) and Shapley Additive Explanations (SHAP) 

show that Barron Area and Transportation Area can promote the 

occurrence of waterlogging. However, the Shannon diversity index 

(SHDI) is seriously underestimated in the analysis results of GWR, 

because the supervised learning method based on regression analysis 
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could not capture the interaction between landscape patterns. On the 

other hand, interpretive machine learning is an analytical method based 

on game theory, which can obtain the contribution to waterlogging 

through any combination of all landscape pattern characteristics. In 

other words, all possible combinations of elements of landscape patterns 

were compared. Therefore, in the results of SHAP, SHDI has a high 

impact on waterlogging in any watershed. At the same time, from the 

perspective of prediction results, SHAP is also far more accurate than 

GWR.

 Secondly, using a finer-scale watershed as a study site is not 

necessarily appropriate for waterlogging study. If we want to adjust the 

landscape from the external intervention to achieve the dynamic 

balance of hydrology, we need to consider the characteristics of water 

first. The water cycle process has the characteristics of producing 

multi-scale geographical watersheds. Therefore, it is necessary to 

compare and analyze multi-level watershed-scale units. In this study, it 

is the most appropriate and accurate to study SCA waterlogging based 

on large-scale watershed units. 

 Finally, the characteristics of landscape patterns have the existence 

of a threshold. When the impact on waterlogging reaches a critical 

point, its role in promoting or alleviating waterlogging will change. 

Through the threshold of landscape pattern characteristics, the goal of 

alleviating waterlogging can be achieved accurately and at a low cost.



- 88 -

 With the mature development of machine learning, we can interpret 

the complex natural environment more accurately. This study has made 

a new exploration of the methods of the interaction between landscape 

pattern and waterlogging. I wish it can provide a reference for the 

method and results of waterlogging control based on landscape ecology.
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Appendix

Attribution Full Name of Proper Noun Abbreviations in this Study

Data

Land Cover Land Use LULC

Large-scale Watershed Units LSWU

Middle-scale Watershed Units MSWU

Small-scale Watershed Units SSWU

Landscape Pattern 

Metrics

Percentage of Landscape PLAND

Landscape Division Index D

Largest Patch Index LPI

Landscape Shape Index LSI

Patch Density PD

Edge Density ED

Shannon Diversity Index SHDI

Study Area Seoul Capital Area SCA

Mathematical 

Methods

Geographically Weighted 

Regression
GWR

Shapley Additive Explanations SHAP

Prediction Mean Squared Error MSE
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초   록

지리 가중 회귀모형 및 섀플리 가법 설명모형에 의한 

지역침수 영향요인 분석 

XIAOLING JIN
환경대학원 환경조경학과

환경조경학 전공

  경관은 생태계 개입의 핵심 요소로 꼽힌다. 인류의 활동은 지표면의 
특징을 크게 변화시키고 있으며, 자연 물질과 에너지의 순환과 흐름에 
영향을 주어 유역에 빗물을 모으는 기능과 경류배수의 능력을 약화시
켜 침수 재해의 발생을 초래하고 생활환경의 위험을 증가시킨다. 따라
서 경관계획가와 정책결정자는 생태계의 동적 균형을 유지하기 위해 
경관구조의 최적화를 끊임없이 개선하여 침수를 완화하는 목적을 달성
할 필요가 있다. 원격 탐사 기술의 발달로 대규모 유역 단위 연구가 가
능해졌으며, 이러한 대규모 현장에서의 실험은 이론으로 검증될 수 있
다. 이론 검증에 대한 과거의 연구는 지리 가중 회귀 모델(GWR)와 같
은 전통적인 선형 회귀 모델(지도 학습)은 독립변수과 종속변수간의 관
계를 분석하면서 독립 변수 간의 관계를 분석할 수 없기 때문에 경관 
패턴 내의 상호 작용을 무시했다. 최근 머신러닝 분야에서 해석 가능한 
머신러닝 모델의 발전이 이러한 단점을 보완하고 있다. 이 중 섀플리 
가법 설명모형(SHAP)은 게임 이론에 기반한 해석 가능한 기계 학습 모
델의 대표이다. 독립변수와 종속변수의 관계를 분석할 수 있을 뿐 아니
라 여러 독립변수의 상관관계를 고려해 기여도에 따른 중요도 순위를 
얻을 수 있다. 두 가지 방법의 검증 및 비교 분석을 통해 GWR의 분석 
결과에서 섀넌 다양성 지수(SHDI)가 심각하게 과소평가된 반면, SHAP 
결과에서 SHDI는 모든 규모의 유역 단위에서 침수에 큰 영향을 미친다
는 것을 알 수 있다. 또한 예측 평균 제곱 오차(MSE)의 예측 결과에 따
르면 GWR의 오차 값은 작지만 SHAP가 GWR보다 훨씬 정확하다. 둘
째, 물 순환 과정은 다단계 지리적 유역을 생성하는 특성을 가지고 있
다. 수문학의 동적 균형을 실현하기 위해서는 다단계 유역 규모 단위의 
비교 분석이 필요하며, 그 결과는 더 미세한 유역을 연구 규모로서 사
용하는 것이 반드시 수문 연구에 적합하지 않음을 보여준다. 본 연구에
서는 대규모 유역단위(LSWU)를 기반으로 한 수도권(SCA)의 침수 연구
가 가장 적절하고 정확하다. 마지막으로 경관패턴 특징은 임계치가 존



재한다. 침수에 대한 영향이 임계점에 도달했을 때, 침수를 촉진하거나 
완화하는 작용이 변화한다. 경관패턴 특징의 임계치를 통해 정확하고 
저비용으로 침수 재해를 완화하는 목적을 달성할 수 있다. 본 연구는 
경관패턴와 침수간의 상호작용 분석방법에 대하여 새로운 탐구를 진행
하여 경관생태학에 기초한 침수 완화방법과 결과를 참고로 제공한다.

………………………………………
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