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Abstract

Calderón-Zygmund estimates for elliptic
equations with nonstandard growth

Ho-Sik Lee

Department of Mathematical Sciences
The Graduate School

Seoul National University

We investigate a certain kind of regularity results so-called Calderón-
Zygmund estimates for the various kind of elliptic equations in divergence
form and functionals. Several generalizations of p-Laplace equation are con-
sidered in this thesis. First, we study the following Orlicz growth problems:
equations involving a more general form of nonlinearity, and equations with
measurable nonlinearities. We also study general double phase problems and
their extensions to p(x)-Laplace: equations for non-uniformly elliptic prob-
lems with BMO nonlinearity, ω-minimizers of functionals for double phase
problems with variable powers p(x) and q(x), equations for Orlicz double
phase problems with variable exponents.

The next topic under consideration is to establish the global Calderón-
Zygmund theory for the elliptic equations with degenerate/singular coeffi-
cients. The coefficients are matrix weights whose absolute values belong to
Muckenhoupt class. We first prove maximal regularity for Laplace and p-
Laplace equations with degenerate weights, assuming that the boundary of
the domain is Lipschitz. We find the sharp relation between the exponent
of higher integrability and the smallness parameters, which will be shown
by an example in this thesis. Finally, we consider the equations with matrix
weights and measurable nonlinearities under the setting of the Reifenberg
flat domain and prove global weighted gradient estimates.

Key words: Calderón-Zygmund theory, Orlicz growth, variable exponent,
double phase problems, degenerate weights, Muckenhoupt class
Student Number: 2016-29232
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Chapter 1

Introduction

This thesis concerns Calderón-Zygmund type estimates, which are originated
from the pioneering works of [59, 60], for weak solutions of elliptic equations
of divergence form or minimizers of integral functionals involving elliptic
operators. The Calderón-Zygmund theory deals with the relations between
the integrability of the gradient of solutions or functionals and those of the
associated datum. Since considered in [59] for the linear case and [139] for the
nonlinear case, the theory has been developed and many regularity results
have been provided.

Let us consider the following elliptic equation:

−div(c(x)|Du|p−2Du) = −div(|F |p−2F ) in Ω, (1.0.1)

where p > 1, Ω ⊂ Rn is a bounded and open domain with n ≥ 2, F =
(f1, . . . , fn) : Ω → Rn is a given vector-valued function with |F | ∈ Lp(Ω),
and the coefficient function c(x) : Ω → R satisfies the following uniform
ellipticity condition

0 < ν ≤ c(x) ≤ L <∞ (1.0.2)

for positive constants ν and L. For a weak solution u ∈ W 1,p(Ω) of (1.0.1), we
want to obtain that F ∈ Lγ implies Du ∈ Lγ for all γ > p with the standard
form of estimate. However, as in [177], the implication F ∈ Lγ ⇒ Du ∈ Lγ
fails in general, and so the VMO assumption for c(x) (see [89, 152]) and the
small BMO assumption for c(x) (see [51]) are considered later to prove the
relation. In this thesis, we generalize the nonlinearity |Du|p−2Du in (1.0.1) to
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CHAPTER 1. INTRODUCTION

Orlicz growth and general double phase problem, and also generalize the uni-
form ellipticity (1.0.2) of c(x) to degenerate ellipticity to extend the Calderón-
Zygmund theory for a larger class of problems.

1.1 Elliptic equations with Orlicz growth

There has been a historical progress of studying the regularity theory of
nonlinear p-Laplacian type equations of divergence form over last several
decades such that there is almost no possibility to mention all the works that
have been done up to now. We refer some pioneering results in this direction,
see for instance [10, 16, 18, 28, 29, 55, 58, 139, 140, 152, 159, 160, 179, 180,
193, 203] and references therein.

The problems with Orlicz growth and generalized Orlicz growth are cen-
tral topics as natural generalizations of p-Laplacian problems which have
been an object of intensive studies over last decades. Besides the papers
aforementioned, there is a wide literature on regularity properties of ellip-
tic/parabolic equations of p-Laplacian or ϕ-Laplacian type, see for instance,
Lipschitz regularity for elliptic/parabolic equations [23, 50, 98, 118], Po-
tential estimates [20, 128], higher integrability [71, 131], Hölder continuity
[97, 100, 133, 134, 136], Calderón-Zygmund estimates [40, 70, 135, 205], and
so on.

Equations with measurable nonlinearities. We first investigate the
validity of Calderón–Zygmund type estimates for solutions of elliptic equa-
tions when the behavior of the assigned nonlinearity is irregular in one of
the variables. Our result is natural continuation of the recent observation
that even the coefficient of the equation is fairly general discontinuous in
one direction so that the coefficient has a jumping from the constant, yet
the solutions can attain a certain degree of uniform regularity estimate. The
problem under consideration has a deep relationship with natural substances
having a big jump property in one direction. In this spirit, we refer to the
problems related to composite materials [110, 142, 162, 163], linear laminates
[67, 102, 109], transmission problems [19, 113, 114] and the references therein.

We consider the following general elliptic equation

div

(
b1(x1)b2(x′)

ϕ′(|Du|)
|Du|

Du

)
= div

(
ϕ′(|F |)
|F |

F

)
in Ω, (1.1.1)

2



CHAPTER 1. INTRODUCTION

where Ω ⊂ Rn is a bounded and open domain with n ≥ 2, F = (f1, . . . , fn) :
Ω → Rn is a given vector-valued function with |F | ∈ L1(Ω), x = (x1, x

′) ∈
Rn, b1 : R → R, b2 : Rn−1 → R are measurable functions such that ν ≤
b1(·) ≤ L and ν ≤ b2(·) ≤ L with constants 0 < ν ≤ L <∞. Here, we denote
by ϕ′ : R≥0 → R≥0 to mean a C1((0,∞)) ∩ C([0,∞)) function satisfying
ϕ′(0) = 0 and

0 < κ1 − 1 ≤ tϕ′′(t)

ϕ′(t)
≤ κ2 − 1 <∞ (1.1.2)

for some constants κ1, κ2 > 1. If ϕ(t) = tp for p > 1, then κ1 = κ2 = p and so
our problem is a natural generalization of the p–Laplace equation. Typical
examples of the function ϕ include

ϕ(t) = tp + a0t
q (1 < p ≤ q, a0 ≥ 0) and ϕ(t) = tp log(e+ t) (p > 1).

The rate of growth and decay of the function ϕ varies but is controllable
in terms of the constant κ1 and κ2 as in (1.1.2). We refer to the noteworthy
results [32, 68, 74, 82, 97, 98, 100, 135, 136] concerning the nonlinear problem
with Orlicz growth, and [24, 87, 181] regarding the related problems.

With the function space W 1,ϕ(Ω) to be introduced in Chapter 2, the
purpose of the present section is to prove the following implication

ϕ(|F |) ∈ Lγloc ⇒ ϕ(|Du|) ∈ Lγloc for each γ > 1 (1.1.3)

for a weak solution u ∈ W 1,ϕ(Ω) of (1.1.1). In [177], the author shows that if
there is no regularity assumption, (1.1.3) fails in general even when ϕ(t) = t2,
the case of Laplace equation. Indeed, the VMO condition for both b1(x1) and
b2(x′) are considered in [89], and the small BMO condition for both b1(x1)
and b2(x′) are considered in [51, 58]. Now it is natural to ask that such a
smallness assumption is indeed the minimal one. One may conjecture that

• considering the paper [67], (1.1.3) should hold when there is no regu-
larity assumption in x1 7→ b1(x1).

• On the other hand, according to the paper [177], (1.1.3) fails in general
when there is no regularity assumption in both x1 7→ b1(x1) and x′ 7→
b2(x′).

Following this viewpoint, a possible minimal condition is that it is only mea-
surable in x1 7→ b1(x1) and has a small BMO for x′ 7→ b2(x′). In [54, 103, 148],

3



CHAPTER 1. INTRODUCTION

the authors are able to show the implication (1.1.3) with such a partial BMO
assumption for the linear problem. Later, the authors of [36] prove (1.1.3) for
the nonlinear problem with linear growth, while the p–Laplace case is studied
in [149]. For a further regularity results under the partial BMO assumption,
we refer to [104, 150] for parabolic problems, [37] for Riesz potential estimates
for parabolic equations, [201] for Morrey regularity for the elliptic equations.

The main difficulty in considering this problem arises from the fact that
the homogeneity does not hold for the function ϕ and that we are only able
to use the property (1.1.2). Moreover, compared to p–Laplacian problem, we
should argue with the unified approach for both the case 1 < p < 2 (sub-
quadratic case) and p > 2 (superquadratic case) in order to carry out the
resulting delicate and complicated computations. We overcome these diffi-
culty by developing some analytic tools in the literature to deal with Orlicz
growth in order to employ the Moser type iteration argument along with the
Caccioppoli type estimate and Sobolev-Poincaré inequality.

Equations with u-dependence. Next, we shall deal with the global
gradient estimates of a weak solution to the following Dirichlet problem:−div

(
a(x, u)

G′(|Du|)
|Du|

Du

)
= −div

(
G′(|F |)
|F |

F

)
in Ω

u = 0 on ∂Ω,
(1.1.4)

where Ω ⊂ Rn (n ≥ 2) is a bounded domain with possibly nonsmooth bound-
ary ∂Ω and G is an N -function in the sense of the definition introduced in
Chapter 2, a : Rn×R→ R with ν ≤ a(·) ≤ L with constants 0 < ν ≤ L <∞,
whereas F : Ω → Rn is a given vector field such that F ∈ LG(Ω;Rn). The
main purpose of this section is to prove that any bounded weak solution u
to the equation (1.1.4) satisfies the following implication

G(|F |) ∈ Lγ(Ω) =⇒ G(|Du|) ∈ Lγ(Ω) for any γ > 1 (1.1.5)

under the most general structure and minimal regularity assumptions on
a(x, u) and ∂Ω. To go further, we briefly overview the previous known results
related to our purpose in the only sense of Calderón-Zygmund theory case
by case:

1. In the case of G(t) ≡ tp for p > 1, our problem is reduced to a nonlinear
elliptic problem with p-growth, which is considered in [47, 184].

4



CHAPTER 1. INTRODUCTION

2. If a(x, u) ≡ constant, then the global Calderón-Zygmund estimate over
the whole domain Rn have been achieved in [204] and the same result
was proved over bounded non-smooth domains [33].

3. When a(x, u) has no u-dependence, the Lipschitz regularity has been
proved in [72] for equations and [73] for systems, respectively. In this
case, Calderón-Zygmund estimates over non-smooth domain have been
obtained in [70].

In particular, assuming the Lipschitz continuity for z 7→ a(x, z), the au-
thors of [184] proved the local Calderón-Zygmund type estimates, whereas
in [47] only the uniform continuity is assumed in z variable, and the global
Calderón-Zygmund estimates have been obtained based on [51]. We point
out that we provide the results globally in a unified way under the gen-
eral Orlicz setting. The main difficulties for obtaining the desired result are
the lack of homogeneity properties naturally appearing from the presence
of solution-dependence in z-variable in the nonlinearity. To overcome them,
we here interplay the minimal regularity assumptions offered in (3.2.3) and
(3.2.4) with a new parameter K in (3.2.20), a dilated size of the associated
domain under a correct scaling and normalization as in Remark 3.2.5, so that
we are able to adopt the method so-called maximal function free technique
introduced first in [3] in order to derive the desired global estimate.

1.2 General double phase problems

In this section, we investigate elliptic equations which have the prototype of

div(|Du|p−2Du+ a(x)|Du|q−2Du)

= div(|F |p−2F + a(x)|F |q−2F ) in Ω,
(1.2.1)

where Ω ⊂ Rn is a bounded domain (n ≥ 2), F = (f1, . . . , fn) : Ω → Rn is
a given vector field such that |F | ∈ L1(Ω), the constants p, q and a Hölder
continuous function a(·) : Ω→ [0,∞) satisfy

1 < p < q <∞, (1.2.2)

a(·) ∈ C0,α(Ω) for some α ∈ (0, 1] (1.2.3)

5



CHAPTER 1. INTRODUCTION

and

q

p
≤ 1 +

α

n
. (1.2.4)

Double phase problem is originally connected to the study of homogeniza-
tion theory and the Lavrentiev phenomenon, as in [206, 208, 209]. Since
then, there have been a lot of progress and regularity results in the realm of
double phase problem. In [17, 117] it is ascertained that (1.2.2)–(1.2.4) are
unavoidable conditions not only for the absence of Lavrentiev phenomenon
but also for the higher integrability of the gradient of the weak solution.
In recent years several notable results are known, see [22, 77, 78] for the
C1,α-regularity of minimizers for the double phase functionals, and [79, 84]
for the gradient estimates of solutions to the equations related to (1.2.1).
Now we see many research activities for this type of the problem (1.2.1),
see [41, 69, 76, 85, 130, 165, 188, 189, 199], and several types of general-
izations, including [88, 83] for multi–phase problem, [38, 65, 182, 194, 198]
for double phase problem with variable exponents, and [13, 43] for Orlicz
double/multi–phase problem. We also refer [21, 24, 87, 86, 133, 136, 181] for
further generalization and studies.

The equation (1.2.1) is regarded to involving a non-uniformly elliptic
operator since the ratio between the highest and the lowest eigenvalue of the
matrix ∂z

[
|z|p−2z + a(x)|z|q−2z

]
with x ∈ Ω and z ∈ Rn could be comparable

to

1 +Rα|z|q−p ≈
|z|p−2 + supBR a(x)|z|q−2

|z|p−2 + infBR a(x)|z|q−2
,

if a ball BR(x0) intersects the zero set {a(x) = 0} and a(x) ≈ |x − x0|α.
The above ratio is not bounded with respect to z-variable so that the related
operator is non-uniformly elliptic.

Double phase problems with BMO nonlinearity. With the assump-
tions (1.2.2)–(1.2.4) and the notation

H(x, t) = tp + a(x)tq (x ∈ Ω, t ≥ 0), (1.2.5)

we deal with the following equation of the form:

div(A(x,Du)) = div(|F |p−2F + a(x)|F |q−2F ) in Ω. (1.2.6)

6



CHAPTER 1. INTRODUCTION

Here, F = (f1, . . . , fn) : Ω→ Rn is a given vector field such that H(x, |F |) ∈
L1(Ω), and the given nonlinearity A(x, z) : Ω× Rn → Rn is a Carathéodory
vector field which is specified later in 3.3.1. A weak solution u of (1.2.6)
belongs to the Musielak-Orlicz space W 1,H(Ω) which is specifically defined
in Chapter 2. Under a certain smallness assumption on x 7→ A(x, z), we want
to find the validity of the following implication for u ∈ W 1,H(Ω):

H(x, |F |) ∈ Lγ(Ω) =⇒ H(x, |Du|) ∈ Lγloc(Ω) (∀γ > 1). (1.2.7)

Following the spirit of the paper [58, 51] together with [89, 177], it is
known that imposing the small BMO condition to the nonlinearity A is one
of the natural smallness conditions for obtaining the relation (1.2.7). There
are many relevant results for the p-Laplacian case, see [6, 56, 103, 175, 176].
Also, the small BMO condition is considered for the weighted Laplacian and
p-Laplacian problem, see [16, 61, 191]. Furthermore, this condition is properly
extended and imposed for several kinds of nonstandard growth problems such
as p(x)-Laplace [45, 151], generalized p-Laplace [70] and the borderline case
of double phase problem [42] for proving Calderón-Zygmund type estimate
like (1.2.7). The purpose of this section is to establish an optimal Calderón-
Zygmund theory for the double phase problem under this kind of small BMO
assumption for the nonlinearity A as in Definition 3.3.1.

Compared to the another nonstandard growth problems, double phase
problem exhibits the drastic phase transition as the value of the function
a(x) changes. Thus a known technique, now being considered to be classi-
cal, for obtaining the gradient estimates is the difference quotient technique,
developed in [79] and used later in [13, 41, 83]. This technique enables us
to achieve much higher integrability estimates for the gradient of solutions
of a suitable reference problem to provide the desired comparison estimates.
On the other hand, in order to apply this approach, we need to assume Cα-
continuity of the nonlinearity A for the x-variable. Here we consider a new
approach which needs only from the small higher integrability result, together
with the extrapolation results based on [129, 136], and so thereby we only
impose the small BMO assumption to our problem. Meanwhile, along with
this small BMO assumption, we assume an extra structure condition as

q − p < ν

L
. (1.2.8)

This assumption is necessary when we consider the uniform ellipticity con-

7



CHAPTER 1. INTRODUCTION

dition for a typical p-Laplacian problem on the nonlinearity A. We discuss
the legitimacy of the assumption (1.2.8) in Remark 3.3.3 below.

ω-minimizers of functionals to p(x), q(x) double phase. We con-
cerns the integral functionals involving non-uniformly elliptic operators. The
functional under consideration is

P(w,Ω) :=

∫
Ω

(f1(x,Dw) + a(x)f2(x,Dw)) dx (1.2.9)

whose model case is when f1(x, z) = |z|p(x) and f2(x, z) = |z|q(x). Here Ω
is a bounded open domain in Rn for n ≥ 2 and the continuous functions
p(x), q(x), a(x) : Ω→ R are assumed to satisfy

0 ≤ a(x) ∈ C0,α(Ω), 1 < γ1 ≤ p(x) ≤ q(x) ≤ γ2 <∞,
q(x)

p(x)
≤ 1 +

α

n

(1.2.10)

for some constants α ∈ (0, 1], γ1, γ2 and for every x ∈ Ω. Additionally, we
assume that p(x) and q(x) are log-Hölder continuous in Ω, i.e., there exists
a constant cp(·),q(·) > 0 such that

|p(x)− p(y)|+ |q(x)− q(y)| ≤
cp(·),q(·)

− log |x− y|
(1.2.11)

for every x, y ∈ Ω with |x− y| ≤ 1
2
.

For a given nonhomogeneous term F = (f 1, · · · , fn) : Ω→ Rn, H̃(x, F ) ∈
L1(Ω) where

H̃(x, z) = |z|p(x) + a(x)|z|q(x) (x ∈ Ω, z ∈ Rn) , (1.2.12)

the main goal of this section is to establish an optimal Calderón-Zygmund
theory for ω-minimizers of the functional

F(w,Ω) := P(w,Ω)−
∫

Ω

〈
|F |p(x)−2F + a(x)|F |q(x)−2F,Dw

〉
dx (1.2.13)

among w ∈ W 1,1(Ω) with H̃(x,Dw) ∈ L1(Ω), in the sense of variable expo-
nent Lebesgue spaces. More precisely, we suppose that for a non-decreasing

8



CHAPTER 1. INTRODUCTION

function µ̃(·) : R+ → R+ and a continuous function γ(·) : Ω→ R,

1 < γ1 ≤ γ(x) ≤ γ2 <∞, |γ(x)− γ(y)| ≤ µ̃(|x− y|),

µ̃(r) log
1

r
≤ cγ,

(1.2.14)

and we want to identify minimal regularity assumptions on the associated en-
ergy densities f1(x, z) and f2(x, z) under which an ω-minimizer u ∈ W 1,1(Ω)
to F(w,Ω) satisfies the desired implication

H(x, F ) ∈ Lγ(·)(Ω) =⇒ H(x,Du) ∈ Lγ(·)
loc (Ω). (1.2.15)

We will describe a detailed and precise notion of ω-minimizer later in Def-
inition 3.4.1. For the case that u is a minimizer to F(w,Ω) and γ(·) ≡ γ,
it is proved in a recent paper [38] that the relation (1.2.15) holds true. The
aim of the present section is to show that it still holds even to a generalized
minimizer such as ω-minimizer.

The study on generalized minimizers in the literature has been made
in many research areas such as geometric measure theory [7], Cα-regularity
[101, 133, 144, 188], higher integrability [131], singular sets [154, 155], and
Calderón-Zygmund estimates [46, 49, 187]. A main difficulty in establishing
the desired regularity estimates is that an ω-minimizer does not necessarily
satisfy the Euler-Lagrange equation of the assigned functional (1.2.13) and
so the regularity results obtained from the equations can not be directly ap-
plied to our variational problem. In this section we are using Taylor’s formula
and considering minimizers or solutions of appropriate reference problems in
order to prove the implication (1.2.15) with the desired Calderón-Zygmund
type estimate. To this end, we first show that (1.2.10) and (1.2.11) are un-
avoidable for the absence of Lavrentiev phenomenon regarding (1.2.9), and
then prove a higher integrability for the gradient to the energy functional.
Our result contributes to the theory of Calderón-Zygmund estimates to be
more applicable in other areas such as the various concept of generalized
minimizers. In particular, we clarify the dependence of the constants in the
main result and we give a comprehensive investigation of the comparison
estimates which makes the proof of [38] in a rigorous and clear way.

Orlicz double phase problems with variable exponents. This sec-
tion aims to investigate the gradient estimates for weak solutions of elliptic
equations of the divergence form with general non-standard growth condi-
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CHAPTER 1. INTRODUCTION

tions. The initial model equation under consideration is of the form

−div

(
Gp(x)(|Du|)
|Du|2

Du+ a(x)
Hq(x)(|Du|)
|Du|2

Du

)
= −div

(
Gp(x)(|F |)
|F |2

F + a(x)
Hq(x)(|F |)
|F |2

F

)
in Ω,

(1.2.16)

which is primarily defined for u ∈ W 1,1(Ω), here Ω ⊂ Rn (n ≥ 2) is a bounded
open domain and F : Ω → Rn is a given vector field. The functions G,H
appearing in the equation (1.2.16) belong to N in the sense of Definition
2.1.1, and the functions in the exponents p(·), q(·) : Ω→ [1,∞) are bounded
and log-Hölder continuous functions in the following way that

1 ≤ p(x), q(x) ≤ mpq for every x ∈ Ω, (1.2.17)

and

|p(x)− p(y)|+ |q(x)− q(y)| ≤ Mpq

− log |x− y|
(1.2.18)

for some non-negative constants mpq and Mpq, whenever x, y ∈ Ω with |x−
y| ≤ 1/2, whereas the coefficient function a : Ω→ [0,∞) satisfies

0 ≤ a(·) ∈ C0,α(Ω), α ∈ (0, 1]. (1.2.19)

We shall assume that the functions presented above satisfy the central as-
sumption in this section:

κ := sup
x∈Ω

sup
t>0

Hq(x)(t)

Gp(x)(t) +G(1+α
n

)p(x)(t)
<∞. (1.2.20)

Denoting

Ψ(x, z) := Gp(x)(|z|) + a(x)Hq(x)(|z|) for every x ∈ Ω and z ∈ Rn or z ∈ R,

our interest lies in finding the optimal condition under which the following
local Calderón-Zygmund type relation

Ψ(x, F ) ∈ Lγ(Ω) =⇒ Ψ(x,Du) ∈ Lγloc(Ω) (1.2.21)
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CHAPTER 1. INTRODUCTION

holds for every γ > 1.
The problem extensively covers the following ones:

1. p(x)-Laplacian: Ψ(x, z) = |z|p(x), e.g., [1, 2, 35, 44, 94, 99].

2. Double phase: Ψ(x, z) = |z|p+a(x)|z|q, e.g., [34, 41, 77, 78, 79, 84, 188,
199].

3. Orlicz growth: Ψ(x, z) = G(|z|), e.g., [11, 40, 70, 97, 100, 129].

4. Double phase with variable exponents: Ψ(x, z) = |z|p(x) + a(x)|z|q(x),
e.g., [38, 39, 65, 194, 198].

5. Orlicz double phase: Ψ(x, z) = G(|z|) + a(x)H(|z|), e.g., [43, 12, 13].

6. Orlicz growth with variable exponents: Ψ(x, z) = Gp(x)(|z|), e.g., [124,
186].

The all significant examples aforementioned fall in a realm of the function-
als with nonstandard growth treated first in a series of papers [171, 172, 173].
Over the decades the problems with nonstandard growth have been the ob-
ject of intensive studies, see for instance [115, 116, 117, 121] reference therein.
There are two keywords in this section: first one is p(x)-Laplacian and the
other one is double phase or Orlicz double phase.

Zhikov was the first who introduced p(x)-growth functionals in [143]
which go beyond the p-Laplace problem by investigating that the integrand
in the energy functional can be varied depending on each point of the do-
main to deal with the generalizations of the p-Laplace problems. For exam-
ple, p(x)-Laplacian problems are considered in many models coming from
non-Newtonian fluids [4], homogenization theory [207] and electrorheological
fluids [196]. The functions p(·) and q(·) are assumed to be continuous and to
enjoy the assumption (1.2.18) below, which is not avoidable even when we
consider p(x)-Laplacian problems. In the case of G(t) = tpm and H(t) = tqm

for some constants 1 < pm, qm, our problem can be reduced to double phase
with variable exponents type problem examined in [38], where in order to
obtain the Calderón-Zygmund type estimates it has been shown that the
minimal required condition on the variable exponents is

pmp(x)

qmq(x)
≤ 1 +

α

n
for every x ∈ Ω. (1.2.22)
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On the other hand, in the case of the functions p(·) ≡ q(·) ≡ 1, then our
problem (1.2.16) can be curtailed to Orlicz double phase problem which was
investigated in [12, 43]. In particular, in such a case it can become double
phase problem when G(t) = tpm and H(t) = tqm for some constants 1 < pm ≤
qm. The double phase problem was also introduced first by Zhikov [206, 207]
in order to provide models of strongly anisotropic materials in the framework
of homogenization and nonlinear elasticity and later applied in the image
restoration [130]. Recently, in [12] it has been proved that necessary and
sufficient condition to have Calderón-Zygmund type implication like (1.2.21)
is

sup
t>0

H(t)

G(t) +G1+α
n (t)

< +∞. (1.2.23)

In the view of the conditions (1.2.22) and (1.2.23) our central assumption
(1.2.20) is needed and not avoidable. Under this assumption we are able
to obtain the desired Calderón-Zygmund estimates (1.2.21) and to have the
absence of Lavrentiev phenomenon [208], see Theorem 3.5.5. Besides the pa-
pers mentioned above, there is a richness of literature concerning general
Musielak-Orlicz growth problems, see for instance [132, 133, 136] and refer-
ences therein.

We remark that one of the most difficult parts for proving the relation
(1.2.21) under the assumption (1.2.20) is to obtain the higher integrability
estimates and freeze the exponent functions of the nonlinearity in a proper
way during the comparison process. We also point out that the methods, that
have been used in earlier papers, cannot be directly employed in our case.
Moreover, because of the lack of homogeneity properties for the equations
of the Orlicz double phase with variable exponents type, we adopt the so-
called maximal function-free technique initially introduced in the work [3],
alongside a method of approximation developed and employed in [58, 51]
and the references therein for each variant, in order to obtain the interior
Calderón-Zygmund estimates (3.5.14).
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1.3 Elliptic equations with degenerate weights

We consider the weighted elliptic equations which have the prototype of the
form

−div(M2(x)Du) = −div(M2(x)F ) in Ω,

u = 0 on ∂Ω.
(1.3.1)

Here, Ω ⊂ Rn is a bounded domain with n ≥ 2, 1 < p < ∞, F : Ω → Rn

is a given vector-valued function, M : Rn → Rn×n is a given symmetric and
positive definite matrix-valued weight satisfying

|M(x)| |M−1(x)| ≤ Λ (x ∈ Rn) (1.3.2)

for some constant Λ ≥ 1, where |·| is the spectral norm.
Let us define the scalar weight

ω(x) = |M(x)|. (1.3.3)

Supposing that ω2 is an A2-Muckenhoupt weight (see Chapter 2) and F ∈
L2
ω(Ω) := L2(Ω, ω2 dx), we prove the following global estimate

|F |ω ∈ Lq(Ω) =⇒ |Du|ω ∈ Lq(Ω) (∀q > 2) (1.3.4)

under the suitable assumption of ∂Ω. When M is the identity matrix, our
result is related to [59, 60], from which the linear Calderón-Zygmund theory
originates. If M(x) is assumed to be only measurable, but uniformly elliptic
in the sense that

λmin|ξ|2 ≤
〈
M2(x)ξ, ξ

〉
≤ λmax|ξ|2 (1.3.5)

for any x ∈ Ω and ξ ∈ Rn, a local version of the result (1.3.4) is proved
in [177] for q ∈ [2, 2 + ε) for some small ε > 0. To obtain the estimate for
all q ∈ (1,∞), one needs additional regularity assumption on M. In [89] the
assumption M ∈ VMO is made to prove (1.3.4) for q ∈ (1,∞) for ∂Ω ∈ C1,1

and in [9] for ∂Ω ∈ C1. A global result on Rn is obtained in [141] and a
local result for the case of systems is proved in [90] for M ∈ VMO. The
condition M ∈ VMO is relaxed to a small BMO condition. The global results
for bounded domains are obtained in a series of papers [27, 31, 51].
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Muckenhoupt weights have extensive applications in the field of analy-
sis including partial differential equations and harmonic analysis, see [94,
120, 122, 127, 129, 137, 138] and references therein. In particular, the reg-
ularity of elliptic and parabolic equations with degenerate/singular coeffi-
cients has been exhaustively investigated along with the research of estab-
lishing uniform weighted norm inequalities for the purpose of identifying
minimal requirements on the matrix weight and the nonlinearity for the
optimal regularity theory to be valid in the literature as in, for instance,
[16, 61, 106, 107, 108, 191] and references therein. This allows us to analyze
the behaviors and properties of solutions of such wide ranging problems even
when the coefficient has singularity or degeneracy in some region of the do-
main. Those problems are usually considered as a generalization of elliptic
equations with a uniform ellipticity and the theory developed in this direction
is a natural outgrowth of another thing under a certain regularity condition
of singular or degenerate coefficients connecting to the associated uniformly
elliptic operator.

Sharp global gradient estimates. We study the following degenerate
elliptic equation of the form

−div(A(x)∇u) = −div(A(x)F ) in Ω,

u = 0 on ∂Ω,
(1.3.6)

in the linear case, and of the form

−div(|M(x)∇u|p−2M2(x)∇u) = −div(|M(x)F |p−2M2(x)F ) in Ω,

u = 0 on ∂Ω,
(1.3.7)

in the non-linear case. We often write M(x) to emphasize the dependence
of the weight on x. Here, Ω ⊂ Rn is a bounded domain with n ≥ 2, 1 <
p < ∞, F : Ω → Rn is a given vector-valued function, M : Rn → Rn×n is a
given symmetric and positive definite matrix-valued weight satisfying (1.3.2),
and A(x) := M2(x). This condition says that M has a uniformly bounded
condition number. Note that a right-hand side of the form −divG with G :
Ω→ Rn can be immediately rewritten in the above form in terms of F . Note
that (1.3.6) is a special case of (1.3.7) for p = 2. The condition (1.3.2) in this
case reads as

|A(x)| |A−1(x)| ≤ Λ2 (x ∈ Rn). (1.3.8)
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Let us define the scalar weight

ω(x) = |M(x)| =
√
|A(x)|. (1.3.9)

If ωp is an Ap-Muckenhoupt weight (see Chapter 2) and F ∈ Lpω(Ω) :=
Lp(Ω, ωp dx), then there exists a unique weak solution u ∈ W 1,p

0,ω(Ω) of (1.3.7),
which means∫

Ω

|M(x)∇u|p−2M2(x)∇u · ∇φ dx =

∫
Ω

|M(x)F |p−2M2(x)F · ∇φ dx

(1.3.10)

for all φ ∈ W 1,p
0,ω(Ω). Moreover, we have the following standard energy esti-

mate ∫
Ω

|∇u|pωp dx ≤ c

∫
Ω

|F |pωp dx (1.3.11)

with c = c(n, p,Λ), see [16, 61].
We investigate the validity of the following global maximal regularity

estimates ∫
Ω

|∇u|qωq dx ≤ c

∫
Ω

|F |qωq dx (1.3.12)

for every q ∈ (1,∞) in the linear case (1.3.6), and for every q ∈ [p,∞) in the
non-linear case (1.3.7). The positive constant c is independent of F and u, un-
der minimal extra assumptions on both the boundary of Ω and the weight M
in addition to (1.3.2). We pay special attention to the optimal dependence of
the parameters of the boundary and of the coefficients on q. Estimates of this
type are also known under the name of global non-linear Calderón-Zygmund
estimates. Our main results are presented in Theorem 4.1.3 and 4.1.4.

In this section we are also interested in the degenerate case, where (1.3.5)
fails. The most simple example of which is A(x) = |x|±ε id with ε > 0 small.
Instead of (1.3.5), we assume

Λ−2µ(x)|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ µ(x)|ξ|2 (1.3.13)

where µ(x) := |A(x)| = |M(x)|2 = ω2(x). In [120], it is proved that if µ
belongs to the Muckenhoupt class A2, then the solution u of (1.3.6) is Hölder
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continuous. Gradient estimates are obtained in [61] under (1.3.13), µ ∈ A2

and a smallness assumption in terms of a weighted BMO norm of A. They
yield |F |qµ ∈ L1

loc ⇒ |∇u|qµ ∈ L1
loc for all q ∈ (1,∞), including the case

µ(x) = |x|±ε id for small ε > 0. The global result is obtained in [191] and the
local result for the case of systems is proved in [62]. In the recent paper [16],
the authors prove a new type of gradient estimates with the implication that
(|F |ω)q ∈ L1

loc ⇒ (|∇u|ω)q ∈ L1
loc for all q ∈ (1,∞), assuming (1.3.13) and

the smallness condition for the BMO norm of logA as follows:

sup
BbΩ
−
∫
B

|logA(x)− (logA)B | dx ≤
δ

q
(1.3.14)

for some δ = δ(n, p,Λ), where

(f)B = −
∫
B

f dx

for an integrable function f : Rn → Rn×n
sym . Here, we can define logA : Rn →

Rn×n
sym , the logarithm of the matrix-valued weight A, since A is positive definite

almost everywhere. This novel log–BMO condition of [16] not only includes
the degenerate weights of the form A(x) = |x|±ε id for small ε > 0, but also
has the optimality in terms of the obtainable integrability exponent q. The
condition of the logarithm of a matrix weight in BMO is natural, since in
the scalar weight case, µ ∈ Ap for some p ≥ 1 implies log(µ) ∈ BMO, and
conversely, for any p ≥ 1 there exists δ = δ(p) such that if [µ]BMO ≤ δ, then
we have eµ ∈ Ap.

Compared to [61], where µ dx is treated as a measure, the degenerate
weight µ or better ω in [16] plays the role of a multiplier. Also here we treat ω
as a multiplier, which seems also important for the optimal dependency of q
on the constants.

Now, consider the p-Laplacian case. If we write A(ξ) := |ξ|p−2ξ and
A(x, ξ) := |M(x)ξ|p−2M2(x)ξ, then (1.3.7) is equivalent to

−divA(·,∇u) = −divA(·, F ). (1.3.15)

Writing M2 = A and A(·, F ) = G for A : Ω → Rn×n
sym and G : Ω → Rn we
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can write (1.3.15) as

−div
(
〈A∇u,∇u〉

p−2
2 A∇u

)
= −divG. (1.3.16)

Then u is the minimizer of the following functional:

P(v) :=
1

p

∫
Ω

〈A∇v,∇v〉
p
2 dx−

∫
Ω

G · ∇v dx

=
1

p

∫
Ω

|M∇v|p dx−
∫

Ω

|MF |p−2MF · (M∇v) dx.

If p ∈ (1,∞) and M = id, then A(∇u) = A(·,∇u). In this case, the
Hölder continuity of u and ∇u is investigated in [161, 203], and the gradient
regularity estimates were obtained in [91, 140]. In the recent years, there
have been many research activities for the gradient estimates in terms of
A(∇u). The BMO type estimate with the implication that G ∈ BMO ⇒
A(∇u) ∈ BMO is shown in [91] for p > 2 and [95] for 1 < p < ∞. In [95],
the implication G ∈ C0,α ⇒ A(∇u) ∈ C0,α for small α > 0 is proved. A local
pointwise estimate is proved in [28] and extended to the global one in [29].
Estimates in Besov space and Triebel-Lizorkin spaces up to differentiability
one for n = 2 and p > 2 are shown in [18]. Besov space regularity for ∇u
is also considered in [14, 75]. The result A(∇u) ∈ W 1,2 when divG ∈ L2 is
obtained in [61] for scalar equations for p > 1 and for vectorial systems in [62]
for p > 3

2
and for p > 2(2−

√
2) ≈ 1.1715 in [15]. Gradient potential estimates

are studied for equations in [156, 157] and for systems in [57, 112, 158, 159].
Now, we pay attention to the weighted case. The local version of (1.3.12)

is proved for 1 < p < ∞, with a uniformly elliptic weight M as in (1.3.5)
with M ∈ VMO in [152]. Since M is uniformly elliptic, we have ω(x) h 1,
so the results reduce to the transfer of Lq-regularity from F to ∇u. The
global estimate is obtained in [153] with a C1,α domain Ω for α ∈ (0, 1]. The
assumption M ∈ VMO has been weakened to the one that M has a small
BMO-norm, as shown in [53, 56, 70, 164]. Under similar assumptions it is
possible to replace the Lq-regularity transfer by Lq(σ dx)-regularity transfer
for suitable Muckenhoupt weights σ, see [48, 175, 176, 192]. Note that the
weight σ is not related to the weight ω of the equation.

Now, we introduce Lipschitz domains along with our optimal regularity
assumption for the boundary of the domain.
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Definition 1.3.1. Let δ ∈ [0, 1
2n

] and R > 0 be given. Then Ω is called
(δ, R)–Lipschitz if for each x0 ∈ ∂Ω, there exists a coordinate system
{x1, . . . , xn} and Lipschitz map ψ : Rn−1 → R such that x0 = 0 in this
coordinate system, and there holds

Ω ∩BR(x0) = {x = (x1, . . . , xn) = (x′, xn) ∈ BR(x0) : xn > ψ(x′)} (1.3.17)

and

‖∇ψ‖∞ ≤ δ. (1.3.18)

Imposing a Lipschitz condition for the boundary of the domain appears in
many papers, the regularity and the asymptotic behavior of caloric function
[8], homogenization [146], oblique derivative problem [166, 168, 170], Hölder
continuity of solutions for Robin boundary condition [185], regularity results
for elliptic Dirichlet problem [197], Calderón-Zygmund estimates [30, 53]. We
would like to point out that in [152] C1,α regularity with α ∈ (0, 1] is assumed
for ∂Ω. It was observed in [9] (in the linear case) that ∂Ω ∈ C1 is enough.
Our Lipschitz assumption for the boundary is weaker than both C1,α and
C1 assumption on ∂Ω, so Theorem 4.1.3 and 4.1.4 can be both applied in
particular to C1,α and C1-domains. Our assumption is indeed an optimal one
to be discussed later. The sharp relation between the smallness parameter of
the boundary and the integrability exponent q is, as far as we know, new in
the literature, even in the unweighted, linear case.

In principle we use a standard perturbation argument combined with the
regularity of p-harmonic functions. This argument is for example developed
in [139] and [58], and used in [152]. However, we modify this technique such
that it is possible to obtain optimal estimates in terms of the smallness
of oscillation parameter |logM|BMO and the boundary regularity parameter
‖∇ψ‖∞. In particular, we obtain a linear dependence for the reciprocal of
the integrability exponent instead of an exponential one. This is one of the
main novelties of this result.

The approach from [139] and [58] can be reduced to redistributional esti-
mates in terms of maximal operator of the gradient. However this technique
always introduces an exponential dependence of q on the smallness param-
eter δ. We avoid this problem by using a qualitative version of the global
Fefferman-Stein inequality ‖f‖Lq(Rn) ≤ cq‖M]

1f‖Lq(Rn). The important fea-
ture is the linear dependency on the exponent q. This allows us to extract
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the sharp dependency of |logM|BMO and ‖∇ψ‖∞.
The interior maximal regularity with optimal constants was already de-

scribed in [16]. In this thesis we extend those results up to the boundary with
an optimal dependence and the boundary parameters. To this end, we first
use the localization argument adapted to our boundary comparison estimate
and provide the pointwise sharp maximal function estimate for the localized
function of u. As an auxiliary step we provide C1,α-regularity and the decay
estimates up to boundary for the solutions of the reference problems. To this
end, we employ the reflection principle of the reference problems, which is
one of the intrinsic property in the divergence type equation, see [174].

Weighted elliptic equations with measurable nonlinearity. We
consider a general elliptic equation with singular/degenerate nonlinearity in
divergence form{

div(M(x)A(x,M(x)Du)) = div(M2(x)F ) in Ω,
u = 0 on ∂Ω,

(1.3.19)

where Ω ⊂ Rn, n ≥ 2, is a bounded domain with nonsmooth boundary
∂Ω and A(x, ξ) : Rn × Rn → Rn is a Carathéodory vector field with the
assumption (4.2.2). Assuming (1.3.2) and ω2 being A2-Muckenhoupt weight,
the purpose is to prove that the implication

|M(x)F | ∈ Lγ(Ω) =⇒ |M(x)Du| ∈ Lγ(Ω) (1.3.20)

is valid for every γ > 2 with the global Calderón-Zygmund type estimate∫
Ω

|MDu|γ dx ≤ c

∫
Ω

|MF |γ dx (1.3.21)

for some constant c = c(data, γ) > 0. We ask what further minimal extra
assumptions on Ω, A and M other than the mentioned structure assumptions
described in (4.2.2)–(4.2.3) will allow us to obtain this estimate (1.3.20).
Needless to say, as γ is close to 2, we do not need any extra assumptions.
However, as γ is away from 2 and getting larger, we need to impose a suitable
smallness assumption on (x2, · · · , xn) 7→ A(x1, x2, · · · , xn, ξ), uniformly in x1

and ξ even when M is the id matrix In, as we have seen from earlier works
including [36, 37, 103]. We also mention notable related results [54, 105, 148,
149, 150] and references therein for various types of elliptic and parabolic
problems for the case that M is a constant matrix.
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Here in this section we are mainly focusing on the general case that M
is a variable matrix weight. In this case of elliptic equations with degener-
ate weights, Hölder continuity is studied in [120] while an optimal gradient
estimate in weighted Lebesgue spaces is investigated in [61] for the linear
problem and in [16] for the nonlinear problem, respectively, in the spirit of
Muckenhoupt matrix weights. We would like to mention a series of interest-
ing works [106, 107, 108] when M(x) = xα1 In with α being in a suitable range
in R.

Returning to our problem (4.2.1), we observe from the basic relation-
ship between Muckenhoupt weight and BMO(bounded mean oscillation) that
logM is in the BMO class, and so it is naturally expected that the minimal
condition is a suitable small BMO condition on logM. Indeed, in the very
interesting paper [16] in which the case of

A (x,M(x)ξ) = (M(x)ξ ·M(x)ξ)
p−2

2 M(x)ξ

for p > 1 is considered, a local Calderón-Zygmund type estimate is proved
under a small BMO condition on logM. Our present work is motivated from
the variational problem [16]. However there are two main differences. Initially,
our problem is not necessarily of variational form, as we are enlarging our
inventory to include very general nonlinearities A(x, ξ) which are depending
on also x-variables. The other is that we extend the interior gradient estimates
to study the higher integrability of weak solutions up to the nonsmooth
boundary. Additionally, it is now well understood from [36, 37] that if M = In,
a minimal condition on (A,Ω) is the following:

1. An optimal regularity requirement on x 7→ A(x, ξ) is that it is merely
measurable in one variable while it has a small BMO condition on the
other variables.

2. A minimal geometric assumption on ∂Ω is sufficiently flat in Reifenberg
sense.

We are again making the same assumptions on the triple (Ω,M, A) as in
M from [16] and as in the couple (Ω, A) from [36, 37, 103], respectively, in
order to prove that the implication (1.3.20) is still available for the full range
of γ ∈ [2,∞). A main difficulty comes from the inherent connectivity and
complexity of the matrix weight M and the nonlinearity A(x, ξ) as well as the
nonsmooth boundary ∂Ω. One idea is that given a large γ > 2 one can find
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a small universal constant δ > 0 so that if the BMO semi-norm of logM is
less than δ, then M is in the Aγ class. Along with this basic observation, we
are making a systematic analysis of competitive interplay between associated
matrix weights and nonlinearities in view of the utility of assigned regularity
assumptions on (Ω,M, A).

More studies also need to be done to understand the measurability of the
matrix weight M(x) in one of the variables as well as a precise dependence
of the smallness parameter δ, in particular in terms of γ, though it seems
unclear as this smallness assumption in the other variables except one vari-
able is closely associated to both A and M as well as the choice of a point
near the very irregular boundary and a size of the localized domain under
consideration. We leave these issues to be investigated in the future.

The domain Ω under consideration in this section is usually called by a
(δ, R)-Reifenberg flat domain. Its definition is as follows.

Definition 1.3.2. We say that Ω is (δ, R)-Reifenberg flat if for every r ∈
(0, R] and x0 ∈ ∂Ω, there exists a new coordinate system {y1, · · · , yn} with
the origin at x0 such that

Br(0) ∩ {y : yn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {y : yn > −δr}

holds in this coordinate system.

The boundary of this domain goes beyond the Lipschitz category with
a small Lipschitz constant, and allows a fractal boundary such as Koch
snowflake. Later, this is considered in many literatures in the field of the reg-
ularity theory for partial differential equations, see [48, 51, 52, 56, 175, 176]
and references therein. For further studies, we refer to [81, 145, 202].

The problem is deeply related to composite material. We refer [26, 37, 163]
for the further studies to this topic. A property of matter such as conductivity
or density can be discontinuously changed in nature, and in this spirit our
assumption describes and allows the situation that there are big jumps of
the property of the matter in x1-direction.
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Chapter 2

Preliminaries

Throughout the thesis, let Ω ⊂ Rn be an open and bounded set with n ≥ 2
and Bρ(x0) = {x ∈ Rn : |x − x0| < ρ} be an open ball in Rn centered at
x0 ∈ Rn with radius ρ > 0. If the center is clear from the context, we shall
write it by Bρ ≡ Bρ(x0). We also offer the following notations.

• x = (x1, x2, . . . , xn) = (x1, x
′) ∈ Rn.

• B′ρ(y′) := {x′ ∈ Rn−1 : |x′−y′| < ρ} and Qρ(y) := (−ρ, ρ)×B′ρ(0)+y.

• Q+
ρ (y) := Qρ(y) ∩ {x ∈ Rn : x1 > 0} and Ωρ(y) := Qρ(y) ∩ Ω.

• Tρ := Qρ(0) ∩ {x ∈ Rn : x1 = 0} and ∂wΩρ(y) := Qρ(y) ∩ ∂Ω.

We occasionally use the simple notations such as B′ := B′(0), Qρ :=
Qρ(0), Q+

ρ := Q+
ρ (0), and Ωρ := Ωρ(0), when the center point is zero. For a

ball B, let rB be the radius and xB be the center of B. For x = (x1, . . . , xn)
write B+

r (x) = Br(x)∩ {y = (y1, . . . , yn) ∈ Rn : yn ≥ xn}. For an open set U
having finite and positive measure, and a function f we abbreviate

(f)U := −
∫
U

f(x) dx =
1

|U |

∫
U

f(x) dx.

We write χU for the characteristic function of the set U .
We denote by c a generic positive constant, which could vary from line

to line; special constants will be denoted by symbols such as c1, c2, c∗, and
so on. Moreover, relevant dependencies on parameters will be emphasized by
using brackets, that is, for example c ≡ c(n, s(G), s(H),mpq, L) means that
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c is a constant depending only on constants n, s(G), s(H),mpq, L. We also
write f . g when f ≤ cg, and write f h g when f . g and g . f hold. For
1 < p <∞, p′ = p

p−1
means the conjugate exponent of p.

For an integrable map f : B ⊂ Ω→ RN (N ≥ 1) and a measurable subset
B ⊂ Rn having finite and positive measure, we denote by

[f ]0,β;B := sup
x,y∈B,x 6=y

|f(x)− f(y)|
|x− y|β

, [f ]0,β := [f ]0,β;Ω,

‖f‖0,β;B := ‖f‖L∞(B) + [f ]0,β;B and ‖f‖0,β;Ω := ‖f‖0,β

for any β ∈ (0, 1].
We say µ : Rn → [0,∞) is a weight if µ is positive a.e. For 1 < p <∞, a

weight µ ∈ L1
loc(Rn) belongs to the class of Muckenhoupt weights Ap if

[µ]Ap := sup
Br⊂Rn

(∫
Br

µ dx

)(∫
Br

µ−
1
p−1 dx

)p−1

<∞.

For 1 < p <∞ and a weight ω ∈ Lploc(R
n) with ω−1 ∈ Lp

′

loc(R
n), we define

the weighted Lebesgue spaces

Lpω(Rn) = Lp(Ω, dω) := {f : Rn → Rk : ωf ∈ Lp(Rn)} (k = 1, n),

equipped with the norm ‖f‖p,ω := ‖fω‖p. In particular, we treat the weight ω

as a multiplier. The dual space of Lpω(Rn) is Lp
′

1/ω(Rn). Both Lpω(Rn) and

Lp
′

1/ω(Rn) are Banach spaces and continuously embedded into L1
loc(Rn). Let

W 1,p
ω (Ω) be the weighted Sobolev space which consists of functions u ∈

W 1,1(Ω) such that u, |∇u| ∈ Lpω(Ω), equipped with the norm ‖u‖W 1,p
ω (Ω) =

‖u‖Lpω(Ω) + ‖∇u‖Lpω(Ω). Let W 1,p
0,ω(Ω) denote the subspace of W 1,p

ω (Ω) of func-
tions with zero traces on ∂Ω.

We write Rn×n
sym for symmetric, real-valued matrices. We denote Rn×n

≥0 by
the cone of symmetric, real-valued and positive semidefinite matrices. The
collection of positive definite matrices is denoted by Rn×n

>0 . For X,Y ∈ Rn×n
sym ,

we write X ≥ Y provided X − Y ∈ Rn×n
≥0 . Let M : Rn → Rn×n

≥0 be a (matrix-
valued) weight if M is positive definite a.e., and ω : Rn → [0,∞) be a (scalar)
weight if ω is positive a.e.. For L ∈ Rn×n, let |L| denote the spectral norm,
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which means |L| = sup
|ξ|≤1

|Lξ|. If L is symmetric, then |L| = sup
|ξ|≤1

〈Lξ, ξ〉.

We consider the matrix exponential exp: Rn×n
sym → Rn×n

>0 , with its unique
inverse mapping log : Rn×n

>0 → Rn×n
sym . Thus, we can define logM : Rn → Rn×n

sym ,
since M : Rn → Rn×n

sym is positive definite a.e. We now define the logarithmic
means

〈ω〉log
U := exp

(∫
U

logω

)
,

〈M〉log
U := exp

(∫
U

logM
)
,

for some subset U ⊂ Rn. The logarithmic mean has the following compati-
bility property under taking reciprocal:〈

1

ω

〉log

U

= exp

(
−
∫
U

logω

)
=

1

〈ω〉log
U

.

Moreover, using log(M−1) = − logM and (exp(L))−1 = exp(−L), we also
obtain〈

M−1
〉log

U
= exp (− (log(M))U) = (exp (log(M))U)−1 = (〈M〉log

U )−1.

If µ is an Ap-Muckenhoupt weight, then the maximal operator is bounded
on Lp(Rn, µ) for 1 < p <∞. We point out some properties for a Muckenhoupt
weight related to its logarithmic means. If ωp is an Ap-Muckenhoupt weight,
then from Jensen’s inequality,(

−
∫
B

ωp dx

) 1
p

≤ [ωp]
1
p

Ap 〈ω〉
log
B ,

(
−
∫
B

ω−p
′
dx

) 1
p′

≤ [ωp]
1
p

Ap

〈
ω−1

〉log

B
=

[ωp]
1
p

Ap

〈ω〉log
B

.

(2.0.1)

Conversely, if (2.0.1) holds, then ωp is an Ap-Muckenhoupt weight, since we

have 〈ω〉log
B

〈
ω−1

〉log

B
= 1.

The next lemma is classical one which will be employed later on.

Lemma 2.0.1 ([126]). Let h : [ρ0, ρ1] → R be a non-negative and bounded
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function, θ ∈ (0, 1), A,B ≥ 0, and γ1, γ2 ≥ 0. Assume that

h(t) ≤ θh(s) +
A

(s− t)γ1
+

B

(s− t)γ2

holds for 0 < ρ0 ≤ t < s ≤ ρ1. Then the following inequality holds with
c ≡ c(θ, γ1, γ2) :

h(ρ0) ≤ cA

(ρ1 − ρ0)γ1
+

cB

(ρ1 − ρ0)γ2
.

Finally, we display a lemma for the difference quotient from [119, Chapter
5].

Lemma 2.0.2. We have the followings.

(1) Let 1 ≤ p <∞ and u ∈ W 1,p(U). For each V b U ,

‖Dhu‖Lp(V ) ≤ c‖Du‖Lp(U) (2.0.2)

for some constant c = c(n, p) > 0 and all h ∈ R with 0 < |h| <
1

2
dist(V, ∂U), where

Dh
i u(x) =

u(x+ hei)− u(x)

h
,

Dhu(x) = (Dh
1u(x), Dh

2u(x), . . . , Dh
nu(x)) (x ∈ V ).

(2) Let 1 < p <∞ and u ∈ Lp(V ). Suppose that for some c̃, we have

‖Dhu‖Lp(V ) ≤ c̃

for all 0 < |h| < 1

2
dist(V, ∂U). Then there holds u ∈ W 1,p(V ) with

‖Du‖Lp(V ) ≤ c, (2.0.3)

where c = c(n, p, c̃) > 0.
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2.1 Musielak-Orlicz functions and spaces

Throughout the thesis, we occasionally use the notion of Musielak-Orlicz
functions and spaces which is introduced in this section.

Definition 2.1.1. We say that a measurable function Φ : Ω×[0,∞)→ [0,∞)
is a Musielak-Orlicz function if, for any fixed x ∈ Ω, Φ(x, ·) is an increasing
convex function such that

Φ(x, 0) = 0, lim
t→∞

Φ(x, t) =∞, lim
t→0+

Φ(x, t)

t
= 0 and lim

t→∞

Φ(x, t)

t
=∞.

We denote by N (Ω) to mean the set of Musielak-Orlicz functions Φ : Ω ×
[0,∞)→ [0,∞) satisfying the following two conditions:

1. For any fixed x ∈ Ω, Φ(x, ·) ∈ C1([0,∞)) ∩ C2((0,∞)),

2. There exists a constant s(Φ) ≥ 1 with

1

s(Φ)
≤ t∂2

ttΦ(x, t)

∂tΦ(x, t)
≤ s(Φ),

uniformly for all x ∈ Ω and t > 0. We shall call this number s(Φ) by an
index of Φ. We shall denote by N a set of functions Φ ∈ N (Ω) that does not
depend on x ∈ Ω.

Remark 2.1.2. Let Φ ∈ N (Ω) with s(Φ) ≥ 1. It can be easily seen that

1 +
1

s(Φ)
≤ t∂tΦ(x, t)

Φ(x, t)
≤ 1 + s(Φ),

and then

t2∂2
ttΦ(x, t) ≈ t∂tΦ(x, t) ≈ Φ(x, t),

uniformly for all x ∈ Ω and t > 0, where all implied constants only depend
on the index s(Φ).

Definition 2.1.3. Let Φ be a Musielak-Orlicz function.

1. We say that Φ satisfies the ∆2-condition, denoted by Φ ∈ ∆2, if there
is a positive number ∆2(Φ) such that Φ(x, 2t) ≤ ∆2(Φ) Φ(x, t) for all
x ∈ Ω and t ≥ 0.

26



CHAPTER 2. PRELIMINARIES

2. We say that Φ satisfies the ∇2-condition, denoted by Φ ∈ ∇2, if there is
a positive number ∇2(Φ) > 1 such that Φ(x,∇2(Φ) t) ≥ 2∇2(Φ) Φ(x, t)
for all x ∈ Ω and t ≥ 0.

3. We write Φ ∈ ∆2 ∩∇2 if Φ ∈ ∆2 and Φ ∈ ∇2.

The Musielak-Orlicz class KΦ(Ω;RN), N ≥ 1, is a set of all measurable
functions v : Ω→ RN such that∫

Ω

Φ(x, |v(x)|) dx < +∞.

The Musielak-Orlicz space LΦ(Ω;RN) is the vector space generated by the
class KΦ(Ω;RN). If Φ ∈ ∆2, then KΦ(Ω;RN) = LΦ(Ω;RN) and it is a Banach
space with the Luxemburg norm

‖v‖LΦ(Ω;RN ) = inf

{
σ > 0 :

∫
Ω

Φ

(
x,
|v(x)|
σ

)
dx ≤ 1

}
.

The Musielak-Orlicz-Sobolev space W 1,Φ(Ω;RN) is the one consisting of
all measurable functions v ∈ LΦ(Ω;RN) such that its weak gradient vector
Dv belongs to LΦ(Ω;RNn). For v ∈ W 1,Φ(Ω;RN), its norm is defined by

‖v‖W 1,Φ(Ω;RN ) = ‖v‖LΦ(Ω;RN ) + ‖Dv‖LΦ(Ω;RNn) .

As usual, the spaceW 1,Φ
0 (Ω;RN) is understood as the closure of C∞0 (Ω;RN) in

W 1,Φ(Ω;RN). ForN = 1, we simply write LΦ(Ω) := LΦ(Ω;R) andW 1,Φ(Ω) :=
W 1,Φ(Ω;R). For a further discussion of the Musielak-Orlicz space, Orlicz
space and the associated Sobolev space, we refer the readers to [5, 94, 129,
183].

We end this chapter with the additional properties of Musielak-Orlicz
functions.

Lemma 2.1.4 ([43]). Let Φ ∈ N (Ω) with s(Φ) ≥ 1. Then,

1. Φ ∈ ∆2 ∩∇2, and the constants ∆2(Φ),∇2(Φ) depend only on s(Φ).

2. For every fixed x ∈ Ω, Φ(x,Λt) ≤ Λs(Φ)+1Φ(x, t) for any Λ ≥ 1 and
t ≥ 0.

3. For every fixed x ∈ Ω, Φ(x, λt) ≤ λ
1

s(Φ)
+1Φ(x, t) for any 0 < λ ≤ 1 and

t ≥ 0.
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Lemma 2.1.5 ([12]). Let Φ, Φ̃ ∈ N (Ω) with s(Φ), s(Φ̃) ≥ 1. Then,

1. For any non-negative numbers a, b with a + b > 0, aΦ + bΦ̃ ∈ N (Ω)
with s(Φ + Φ̃) := s(Φ) + s(Φ̃) and ΦΦ̃ ∈ N (Ω) with
s(ΦΦ̃) := 4s(Φ)s(Φ̃)(s(Φ) + s(Φ̃)).

2. For any number d ≥ 1, Φd ∈ N (Ω) with s(Φd) := s(Φ)+(d−1)(s(Φ)+
1).

3. For any number d ≥ 0, Φd(x, t) := tdΦ(x, t) ∈ N (Ω) with s(Φd) :=
d+ 3[s(Φ)]2.

4. There exists θΦ ∈ (0, 1) depending only on s(Φ) such that ΦθΦ ∈ N (Ω)
with an index depending only on s(Φ).

Lemma 2.1.6 ([12]). Let Φ ∈ N (Ω) with s(Φ) ≥ 1. Then there is a positive
constant c ≡ c(s(Φ)) such that

s
Φ(x, t)

t
+ t

Φ(x, s)

s
≈ s∂tΦ(x, t) + t∂tΦ(x, s) ≤ εΦ(x, s) +

c

εs(Φ)
Φ(x, t)

holds, whenever x ∈ Ω, s, t ≥ 0 and 0 < ε ≤ 1.
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Calderón-Zygmund estimates
for nonstandard growth
problems

3.1 Local estimates with measurable nonlin-

earities under Orlicz growth

In this section, we are concerned with weak solutions of elliptic equations
involving measurable nonlinearities with Orlicz growth to address what would
be the weakest regularity condition on the associated nonlinearity for the
Calderón–Zygmund theory. We prove that the gradient of weak solution is
as integrable as the nonhomogeneous term under the assumption that the
nonlinearity is only measurable in one of the variables while it has a small
BMO assumption in the other variables. To this end, we develop a nonlinear
Moser type iteration argument for such a homogeneous reference problem
with one variable–dependent nonlinearity under Orlicz growth to establish
W 1,q–regularity for every q > 1.

Our results open a new path into the comprehensive understanding of
the problem with nonstandard growth in the literature of optimal regularity
theory in highly nonlinear elliptic and parabolic equations.
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3.1.1 Hypothesis and main results

We consider the following general elliptic equation

div(A(x,Du)) = div

(
ϕ′(|F |)
|F |

F

)
in Ω, (3.1.1)

where Ω ⊂ Rn is a bounded and open domain with n ≥ 2, F = (f1, . . . , fn) :
Ω → Rn is a given vector-valued function with |F | ∈ L1(Ω), and A(x, ξ) :
Rn × Rn → Rn is a Carathéodory vector field which is C1 \ {0}-regular for
ξ–variable and satisfies|A(x, ξ)|+ |∂ξA(x, ξ)||ξ| ≤ Lϕ′(|ξ|)

〈∂ξA(x, ξ)ζ, ζ〉 ≥ ν
ϕ(|ξ|)
|ξ|2

|ζ|2
(3.1.2)

for any a.e. x ∈ Rn, ξ ∈ Rn \ {0} and ζ ∈ Rn with some constants 0 < ν ≤
L <∞. Here, we denote by ϕ′ : R≥0 → R≥0 to mean a C1((0,∞))∩C([0,∞))
function satisfying ϕ′(0) = 0 and

0 < κ1 − 1 ≤ tϕ′′(t)

ϕ′(t)
≤ κ2 − 1 <∞ (3.1.3)

for some constants κ1, κ2 > 1.
We define a function θ(A,Qr(y)) on Qr(y) by

θ(A,Qr(y))(x) = sup
ξ∈Rn\{0}

∣∣A(x1, x
′, ξ)− ĀB′r(y′)(x1, ξ)

∣∣
ϕ′(|ξ|)

, (3.1.4)

where

ĀB′r(y′)(x1, ξ) =

∫
B′r(y

′)

A(x1, x
′, ξ) dx′

is the integral average of A(x1, ·, ξ) on B′r(y
′) for each fixed x1 ∈ (y1−r, y1+r)

and ξ ∈ Rn \ {0}. Then one can observe from (3.1.2) and (3.1.4) that

|θ(A,Qr(y))(x)| ≤ 2L for a.e. x ∈ Qr(y).

For given δ ∈ (0, 1) and R > 0, we say that A is (δ, R)-vanishing of codimen-
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sion 1 if

sup
0<r≤R

sup
y∈Rn

∫
Qr(y)

θ(A,Qr(y))(x) dx ≤ δ. (3.1.5)

A typical example forA(x, ξ) satisfying (3.1.5) isA(x, ξ) = a1(x1)a2(x′)ϕ
′(|ξ|)
|ξ| ξ,

where a1(·) : R → R with
√
ν ≤ a1(·) ≤

√
L, and a2(·) : Rn−1 → R with√

ν ≤ a2(·) ≤
√
L and [a2]BMO(Rn−1) ≤ δ/

√
L.

Then the statement of the main theorem is the following.

Theorem 3.1.1. For a given γ > 1, assume ϕ(|F |) ∈ Lγloc(Ω) with (3.1.2)
and (3.1.3). Let u ∈ W 1,ϕ(Ω) be a weak solution of (3.1.1). Then there
exists a small constant δ = δ(n, κ1, κ2, ν, L, γ) ∈ (0, 1] such that if A is
(δ, R)-vanishing of codimension 1, then ϕ(|Du|) ∈ Lγloc(Ω) and we have the
estimate∫

QR

ϕ(|Du|)γ dx ≤ c

(∫
Q2R

ϕ(|Du|) dx
)γ

+ c

∫
Q2R

ϕ(|F |)γ dx, (3.1.6)

whenever Q2R b Ω with c = c(n, κ1, κ2, ν, L, γ) > 0.

Remark 3.1.2. The essence of proving (3.1.6) is to show that if q > 1 is
any given number, F ≡ 0 holds and A(x, ξ) ≡ A(x1, ξ) satisfies (3.1.2) and
(3.1.3), then ϕ(|Du|) ∈ Lqloc(Ω) with the estimate∫

QR

ϕ(|Du|)q dx ≤ c

(∫
Q2R

ϕ(|Du|) dx
)q

, (3.1.7)

whenever Q2R b Ω with c = c(n, κ1, κ2, ν, L, q) > 0. Since we do not assume
that the map x1 7→ A(x1, ξ) has a small BMO condition, we cannot apply the
perturbation argument as in [58]. Here we argue directly a Moser type itera-
tion for the regularized problem to derive the uniform W 1,q–estimate (3.1.7).
This regularization will be justified by an usual approximation argument.

3.1.2 Lq-estimates for the reference problem

First, we record basic properties of the function ϕ which will be used in this
subsection. The function ϕ satisfying (3.1.3) is usually called an N–function.
For the precise definition and properties of N–functions, we refer to [5, 93].
The function ϕ has the following properties.
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Remark 3.1.3 (Properties of the N–function ϕ). From (3.1.3), we see that
(ϕ′)−1(t) : R≥0 → R≥0 exists,

ϕ′(t), ϕ(t) and ϕ−1(t) are increasing, (3.1.8)

tϕ′′(t) h ϕ′(t) (t ≥ 0), (3.1.9)

tϕ′(t) h ϕ(t) (t ≥ 0), (3.1.10)

min{sκ1−1, sκ2−1}ϕ′(t) ≤ ϕ′(st) ≤ max{sκ1−1, sκ2−1}ϕ′(t) (s, t ≥ 0),
(3.1.11)

min{sκ1 , sκ2}ϕ(t) ≤ ϕ(st) ≤ max{sκ1 , sκ2}ϕ(t) (s, t ≥ 0), (3.1.12)

and

min{s
1
κ1 , s

1
κ2 }ϕ−1(t) ≤ ϕ−1(st) ≤ max{s

1
κ1 , s

1
κ2 }ϕ−1(t) (s, t ≥ 0).

(3.1.13)

Note that in (3.1.9) and (3.1.10), the implicit constants depend only on κ1

and κ2.

Now we define the conjugate of ϕ by

ϕ∗(t) := sup
s>0
{st− ϕ(s)} (t ≥ 0).

Then the following properties of ϕ∗ are known.

Remark 3.1.4 (Properties of the conjugate function ϕ∗). We have

ϕ∗(t) =

∫ t

0

(ϕ′)−1(s) ds, (3.1.14)

ϕ∗(t) : [0,∞)→ [0,∞) is convex and increasing, (3.1.15)
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(ϕ∗)∗ ≡ ϕ,

(ϕ∗)′(t) = (ϕ′)−1(t) (t ≥ 0),

t(ϕ∗)′(t) h ϕ∗(t) (t ≥ 0) (3.1.16)

with the implicit constant c = c(κ1, κ2), and

min{s
κ1
κ1−1 , s

κ2
κ2−1}ϕ∗(t) ≤ ϕ∗(st) ≤ max{s

κ1
κ1−1 , s

κ2
κ2−1}ϕ∗(t) (3.1.17)

for any s, t ≥ 0. Moreover, by (3.1.10), (3.1.14) and (3.1.16), we get the
following inequality

ϕ∗(ϕ′(t)) h ϕ(t) (t ≥ 0) (3.1.18)

with the implicit constant c = c(κ1, κ2) > 0. Since (ϕ∗)∗ ≡ ϕ, changing
the role of ϕ and ϕ∗ and using (3.1.13), we have an analogous relation of
(3.1.18):

ϕ((ϕ∗)′)(t) h ϕ∗(t) (t ≥ 0) (3.1.19)

with c = c(κ1, κ2) > 0.

We also need useful inequalities involving Young’s inequality for ϕ.

Remark 3.1.5. By the definition of ϕ∗(t), (3.1.12) and (3.1.17), we can see
that for ε̄ ∈ (0, 1] and s, t ≥ 0,

st = (ε̄s)

(
t

ε̄

)
≤ ϕ(ε̄s) + ϕ∗

(
t

ε̄

)
≤ ε̄κ1ϕ(s) +

(
1

ε̄

) κ1
κ1−1

ϕ∗(t)

and so for any ε > 0, the following Young’s inequality holds:

st ≤ εϕ(s) + c(ε)ϕ∗(t) (s, t ≥ 0) (3.1.20)

with c(ε) = c(κ1, κ2, ε) > 0. On the other hand, combining (3.1.20) and
(3.1.18) yields

sϕ′(t) ≤ c(ε)ϕ(s) + εϕ(t) (ε ∈ (0, 1) s, t ≥ 0). (3.1.21)
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For s ≤ t, by (3.1.9), (3.1.10) and (3.1.21), it holds that

sϕ′′(t) h s
ϕ′(t)

t
.
c(ε)ϕ(s) + εϕ(t)

t
h
c(ε)ϕ(s)

t
+ εϕ′(t) . c(ε)ϕ′(s) + εϕ′(t)

for any ε ∈ (0, 1), and so we have the following type of inequality:

sϕ′′(t) . c(ε)ϕ′(s) + εϕ′(t) (ε ∈ (0, 1), s ≤ t). (3.1.22)

The following triangle inequalities are occasionally used in this section.

Lemma 3.1.6. For any s, t ≥ 0 and ε ∈ (0, 1), we have

ϕ′(s+ t) ≤ (1 + ε)ϕ′(s) + c(ε)ϕ′(t),

ϕ(s+ t) ≤ (1 + ε)ϕ(s) + c(ε)ϕ(t)
(3.1.23)

and

ϕ∗(s+ t) ≤ (1 + ε)ϕ∗(s) + c(ε)ϕ∗(t) (s, t ≥ 0) (3.1.24)

with c(ε) = c(κ1, κ2, ε) > 0. Moreover, it holds that

|ϕ(s+ t)− ϕ(s)| ≤ εϕ(s) + c(ε)ϕ(t). (3.1.25)

Proof. Let ε ∈ (0, 1) and s, t ≥ 0 be given. To show (3.1.23), we consider the
following alternatives with θ ∈ (0, 1), which is a small parameter determined
later:

either θs ≤ t or θs > t.

If θs ≤ t, then s ≤ 1
θ
t and so (3.1.8) and (3.1.11) yield

ϕ′(s+ t) ≤ ϕ′
((

1 + 1
θ

)
t
)
≤
(
1 + 1

θ

)κ2−1
ϕ′(t).

If θs > t, then again by (3.1.8) and (3.1.11) we have

ϕ′(s+ t) ≤ ϕ′((1 + θ)s) ≤ (1 + θ)κ2−1ϕ′(s).

Summing up the above two estimates, we obtain

ϕ′(s+ t) ≤ (1 + θ)κ2−1ϕ′(s) +
(
1 + 1

θ

)κ2−1
ϕ′(t).
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Now choosing θ = θ(κ2, ε) ∈ (0, 1) such that (1 + θ)κ2−1 ≤ 1 + ε, we have
the left-hand side of (3.1.23). The right-hand side of (3.1.23) and (3.1.24)
are proved similarly. Finally, (3.1.25) is a direct consequence of (3.1.23).

We also derive a lemma which will be used in Section 3.1.3.

Lemma 3.1.7. Let X, Y ∈ Rn and γ ≥ 1. Then for any κ > 0 we have

ϕ(|X|) ≥ κ ⇒ ϕ(|X|) ≤ cϕ(|X − Y |) + c(γ)κ1−γϕ(|Y |)γ

with c = c(n, κ1, κ2) and c(γ) = c(n, κ1, κ2, γ).

Proof. Using (3.1.8) and (3.1.23), we observe

ϕ(|X|) ≤ ϕ(|X − Y |+ |Y |) ≤ cϕ(|X − Y |) + cϕ(|Y |). (3.1.26)

If ϕ(|X − Y |) ≤ ϕ(|Y |) holds, then by (3.1.26) it follows that κ ≤ ϕ(|X|) ≤
cϕ(|Y |). Since γ ≥ 1, we have

ϕ(|Y |) ≤ c(γ)κ1−γϕ(|Y |)γ

and so ϕ(|X|) ≤ c(γ)κ1−γϕ(|Y |)γ, then the conclusion follows. If ϕ(|Y |) ≤
ϕ(|X − Y |) holds, then (3.1.26) implies the conclusion directly.

We now start to prove higher integrability estimates for the reference
problem (3.1.28) with respect to our problem (3.1.1). For the N–function ϕ
with (3.1.3), let a Carathéodory vector field
Ā(x1, ξ) = (Ā1(x1, ξ), . . . , Ān(x1, ξ)) : R× Rn → Rn be C1(Rn \ {0})-regular
for ξ variable and satisfy|Ā(x1, ξ)|+ |DξĀ(x1, ξ)||ξ| ≤ Lϕ′(|ξ|)〈

DξĀ(x1, ξ)ζ, ζ
〉
≥ ν

ϕ(|ξ|)
|ξ|2

|ζ|2
(3.1.27)

for every ξ, ζ ∈ Rn, x1 ∈ R and some constants 0 < ν ≤ L <∞.
For 0 < r < 1, we consider the following homogeneous problem

divĀ(x1, Dv) = 0 in Q4r. (3.1.28)

The main theorem that we are going to assert in this section is the following
Lq-estimate for ϕ(|Dv|), where v ∈ W 1,ϕ(Q4r) is a weak solution of (3.1.28),
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which means that ∫
Q4r

Ā(x1, Dv)Dη dx = 0

for every η ∈ W 1,ϕ
0 (Q4r).

Theorem 3.1.8. Let v be a weak solution of (3.1.28) with the assumptions
(3.1.3) and (3.1.27). Then for every q > 1, we have(∫

Qr

ϕq(|Dv|) dx
) 1

q

≤ c

∫
Q4r

ϕ(|Dv|) dx,

where c = c(n, κ1, κ2, ν, L, q).

To prove the above theorem, we first consider the regularized problems.
Define φ ∈ C∞c (Rk) (k = 1, n) as a standard mollifier:

φ(x) =

c0 exp

(
1

|x|2 − 1

)
if |x| < 1,

0 if |x| ≥ 1,

where c0 = c0(k) is the constant such that∫
Rk
φ(x) dx = 1. (3.1.29)

Let 0 < ε < r and Āε(x1, ξ) be a mollification of Ā(x1, ξ) in the following
way:

Āε(x1, ξ) =

∫
R

∫
Rn
Ā(x1 − εz1, ξ − εη)φ(η)φ(z1) dη dz1

=

∫ 1

−1

∫
B1

Ā(x1 − εz1, ξ − εη)φ(η)φ(z1) dη dz1.

(3.1.30)

Then Āε(x1, ξ) is C1(R×Rn)-regular in x1 ∈ R and ξ ∈ Rn. For the ellipticity
and growth conditions of Āε(x1, ξ), we have the following lemma.
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Lemma 3.1.9. We have{
|Āε(x1, ξ)|+ |DξĀε(x1, ξ)|(|ξ|+ ε) ≤ cLϕ′(|ξ|+ ε)〈
DξĀε(x1, ξ)ζ, ζ

〉
≥ cνϕ′′(|ξ|+ ε)|ζ|2

(3.1.31)

for every x1 ∈ R and ξ, ζ ∈ Rn with some c = c(n, κ1, κ2) > 0.

Proof. The proof is motivated from [116]. To derive the first inequality of
(3.1.31), by (3.1.8) and (3.1.27) we have

|Āε(x1, ξ)| ≤
∫ 1

−1

∫
B1

|Ā(x1 − εz1, ξ − εη)|φ(η)φ(z1) dηdz1

≤ L

∫ 1

−1

∫
B1

ϕ′(|ξ − εη|)φ(η)φ(z1) dηdz1

≤ cL

∫ 1

−1

∫
B1

ϕ′(|ξ|+ ε)φ(η)φ(z1) dηdz1 ≤ cLϕ′(|ξ|+ ε)

with c = c(n, κ1, κ2) > 0. Also, to estimate |DξĀε(x1, ξ)|, we consider two
alternatives:

either |ξ| > 2ε or |ξ| ≤ 2ε.

If |ξ| > 2ε holds, then |ξ − εy| h |ξ| + ε for y ∈ B1 so that by (3.1.8) and
(3.1.27), we obtain

|DξĀε(x1, ξ)| ≤
∫ 1

−1

∫
B1

∣∣DξĀ(x1 − εz1, ξ − εη)
∣∣φ(η)φ(z1) dηdz1

≤ cL

∫ 1

−1

∫
B1

ϕ′(|ξ − εη|)
|ξ − εη|

φ(η)φ(z1) dηdz1

≤ cL

∫ 1

−1

∫
B1

ϕ′(|ξ|+ ε)

|ξ|+ ε
φ(η)φ(z1) dηdz1 ≤ cL

ϕ′(|ξ|+ ε)

|ξ|+ ε
.

37
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In case of |ξ| ≤ 2ε, ε h ε+ |ξ| holds and so (3.1.8) and (3.1.27) yield

|DξĀε(x1, ξ)| =
∣∣∣∣1ε
∫ 1

−1

∫
B1

Ā(x1 − εz1, ξ − εη)φ′(η)φ(z1) dηdz1

∣∣∣∣
≤ L

ε

∫ 1

−1

∫
B1

ϕ′(|ξ − εη|)φ′(η)φ(z1) dηdz1

≤ cL

|ξ|+ ε

∫ 1

−1

∫
B1

ϕ′(|ξ|+ ε)φ′(η) dηdz1 ≤ cL
ϕ′(|ξ|+ ε)

|ξ|+ ε

with c = c(n, κ1, κ2) > 0. Thus the first inequality of (3.1.31) holds.
To show the second inequality of (3.1.31), by (3.1.9), (3.1.10) and (3.1.27)

we observe that〈
DξĀε(x1, ξ)ζ, ζ

〉
=

〈(∫ 1

−1

∫
B1

DξĀ(x1 − εz1, ξ − εη)φ(η)φ(z1) dηdz1

)
ζ, ζ

〉
≥ cν

(∫ 1

−1

∫
B1

ϕ′′(|ξ − εη|)φ(η)φ(z1) dηdz1

)
|ζ|2.

Here, simple computations together with (3.1.8), (3.1.9) and (3.1.11) give us
that ∫

B1

ϕ′′(|ξ − εη|)φ(η) dη =

∫
B1

ϕ′′(||ξ|2 + ε2|η|2 − 2ε 〈ξ, η〉 |
1
2 )φ(η) dη

& ν

∫
(B1\B 1

2
)∩{〈ξ,η〉≤0}

ϕ′(||ξ|2 + ε2|η|2 − 2ε 〈ξ, η〉 | 12 )

||ξ|2 + ε2|η|2 − 2ε 〈ξ, η〉 | 12
φ(η) dη

& ν

∫
(B1\B 1

2
)∩{〈ξ,η〉≤0}

ϕ′(||ξ|2 + ε2|η|2| 12 )

||ξ|2 + ε2|η|2| 12
φ(η) dη

& ν

∫
(B1\B 1

2
)∩{〈ξ,η〉≤0}

ϕ′(||ξ|2 + 1
4
ε2| 12 )

||ξ|2 + ε2| 12
φ(η) dη

& ν

∫
(B1\B 1

2
)∩{〈ξ,η〉≤0}

ϕ′′(|ξ|+ ε)φ(η) dη

& ν

∫
B1\B 1

2

φ(η) dη

ϕ′′(|ξ|+ ε) ≥ cνϕ′′(|ξ|+ ε)
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with implicit constants c = c(n, κ1, κ2) > 0, and so the conclusion follows.

Remark 3.1.10. Under the conclusion of Lemma 3.1.9, we obtain the fol-
lowing inequality by the same proof as [11, 16, 18]. For each x1 ∈ R and
ξ1, ξ2 ∈ Rn we have

ϕ(|ξ1 − ξ2|+ ε)

≤ εϕ(|ξ1|+ ε) + c(ε)
〈
Āε(x1, ξ1)− Āε(x1, ξ2), ξ1 − ξ2

〉 (3.1.32)

for any ε ∈ (0, 1) with c(ε) = c(κ1, κ2, ε) > 0.

We also need the following approximation lemma.

Lemma 3.1.11. Let vε ∈ W 1,ϕ(Q2r) be the weak solution of{
divĀε(x1, Dvε) = 0 in Q2r,

vε = v on ∂Q2r,
(3.1.33)

where v ∈ W 1,ϕ(Q4r) is a weak solution of (3.1.28). Then we have

lim
ε→0

∫
Q2r

ϕ(|Dvε −Dv|) dx = 0.

Proof. Testing vε − v ∈ W 1,ϕ
0 (Q2r) to (3.1.33) and (3.1.28), we have∫

Q2r

〈
Āε(x1, Dvε)− Āε(x1, Dv), Dvε −Dv

〉
dx

=

∫
Q2r

〈
Ā(x1, Dv)− Āε(x1, Dv), Dvε −Dv

〉
dx.

Then together with (3.1.32), we observe that∫
Q2r

ϕ(|Dvε −Dv|+ ε) dx

≤ c(ε)

∫
Q2r

〈
Ā(x1, Dv)− Āε(x1, Dv), Dvε −Dv

〉
dx

+ c ε

∫
Q2r

ϕ(|Dv|+ ε) dx

(3.1.34)
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for any ε ∈ (0, 1). On the other hand, due to (3.1.20) we have∫
Q2r

〈
Ā(x1, Dv)− Āε(x1, Dv), Dvε −Dv

〉
dx

≤
∫
Q2r

|Ā(x1, Dv)− Āε(x1, Dv)||Dvε −Dv| dx

≤ c(ε)

∫
Q2r

ϕ∗(|Ā(x1, Dv)− Āε(x1, Dv)|) dx

+ c ε

∫
Q2r

ϕ(|Dvε −Dv|) dx

=: c(ε)I1 + c εI2

(3.1.35)

with the same ε ∈ (0, 1) as in (3.1.34). Here, for each a.e. x ∈ Q2r, by (3.1.29)
we can use Jensen’s inequality with the measure φ(η)φ(z1) dη dz1 to find

ϕ∗(|Ā(x1, Dv(x))− Āε(x1, Dv(x))|)

. cϕ∗
(∫ 1

−1

∫
B1

∣∣Ā(x1, Dv(x))− Ā(x1 − εz1, Dv(x)− εη)
∣∣φ(η)φ(z1) dη dz1

)
.
∫ 1

−1

∫
B1

ϕ∗
(∣∣Ā(x1, Dv(x))− Ā(x1 − εz1, Dv(x)− εη)

∣∣)φ(η)φ(z1) dηdz1

.
∫ 1

−1

∫
B1

ϕ∗

(∣∣Ā(x1, Dv(x))− Ā(x1 − εz1, Dv(x)− εη)
∣∣

ϕ′(|Dv(x)|+ ε)
ϕ′(|Dv(x)|+ ε)

)
× φ(η)φ(z1) dηdz1

.
(3.1.27)
(3.1.31)

ϕ(|Dv(x)|+ ε)

×
∫ 1

−1

∫
B1

(∣∣Ā(x1, Dv(x))− Ā(x1 − εz1, Dv(x)− εη)
∣∣

2Lϕ′(|Dv(x)|+ ε)

)
dηdz1

with implicit constants c = c(n, κ1, κ2, ν, L). Here, using (3.1.27), for each
a.e. x ∈ Q2r we see that∫ 1

−1

∫
B1

∣∣Ā(x1, Dv(x))− Ā(x1 − εz1, Dv(x)− εη)
∣∣ dηdz1 → 0 as ε→ 0.
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Hence it follows that

ϕ∗(|Ā(x1, Dv(x))− Āε(x1, Dv(x))|)→ 0 as ε→ 0

for a.e. x ∈ Q2r. Moreover, using (3.1.18), (3.1.27), (3.1.31) and 0 < ε < 1,
we have

ϕ∗(|Ā(x1, Dv(x))− Āε(x1, Dv(x))|) ≤ cϕ(|Dv(x)|+ 1)

with some c = c(n, κ1, κ2, ν, L) > 0. Then in (3.1.35), Lebesgue’s dominated
convergence theorem together with the above two displays yields that

I1 → 0 as ε→ 0.

For I2, testing vε − v ∈ W 1,ϕ
0 (Q2r) to (3.1.33) and then using (3.1.23) we

obtain ∫
Q2r

ϕ(|Dvε −Dv|) dx ≤ c

∫
Q2r

ϕ(Dvε) dx+ c

∫
Q2r

ϕ(Dv) dx

≤ c

∫
Q2r

ϕ(Dv) dx

with c = c(n, κ1, κ2, ν, L). Then merging (3.1.34) and (3.1.35), and combining
the above two results, we have

lim
ε→0

∫
Q2r

ϕ(|Dvε −Dv|) dx ≤ cε

∫
Q2r

ϕ(|Dv|) dx.

Since ε ∈ (0, 1) was arbitrary, we have the conclusion.

Now we define some functions which are used for our Caccioppoli type
estimate, see Lemma 3.1.16. With two parameters M > 1 and β ∈ (0, 1] to
be determined later, we write

Āε(x1, ξ) = (Ā1
ε(x1, ξ), · · · , Ānε (x1, ξ)),

gε(x1, ξ;M) = ϕ(|ξ′|+ ε) +Mϕ∗(|Ā1
ε(x1, ξ)|+ ϕ′(ε))
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and

ĝε(x1, ξ; β) = |ξ′|+ ε+
βϕ−1(gε(x1, ξ;M))

ϕ′(ϕ−1(gε(x1, ξ;M)))
(|Ā1

ε(x1, ξ)|+ ϕ′(ε))

for all x1 ∈ R and ξ = (ξ1, ξ
′) ∈ R× Rn−1. Then the following lemma holds.

Lemma 3.1.12. There exists M = M(n, κ1, κ2, ν, L) such that

gε(x1, ξ;M) h ϕ(|ξ|+ ε) (3.1.36)

and

β(|ξ|+ ε) . ĝε(x1, ξ; β) . |ξ|+ ε (3.1.37)

with the implicit constant c = c(n, κ1, κ2, ν, L) > 0, whenever ξ ∈ Rn and
β ∈ (0, 1].

Proof. First, the inequality gε(x1, ξ;M) . ϕ(|ξ| + ε) follows from (3.1.17),
(3.1.18) and (3.1.31):

gε(x1, ξ;M) ≤
(3.1.31)

ϕ(|ξ′|+ ε) +Mϕ∗(cLϕ′(|ξ|+ ε) + ϕ′(ε))

≤
(3.1.17)

ϕ(|ξ|+ ε) + cMϕ∗(ϕ′(|ξ|+ ε))

≤
(3.1.18)

cMϕ(|ξ|+ ε)

(3.1.38)

with c = c(n, κ1, κ2, ν, L) > 0.
To show gε(x1, ξ;M) & ϕ(|ξ| + ε), we first prove a lower bound of |Ā1

ε |.
Denote 0 = (01, 0

′) with 01 ∈ R and 0′ ∈ Rn−1. By triangle inequality, we
have

|Ā1
ε(x1, ξ)| ≥ −|Ā1

ε(x1, ξ)− Ā1
ε(x1, ξ1, 0

′)|+ |Ā1
ε(x1, ξ1, 0

′)|
=: −I1 + I2.

(3.1.39)
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For I1, by (3.1.9) and (3.1.31) we estimate

I1 =

∣∣∣∣∫ 1

0

d

dt
[Ā1

ε(x1, tξ + (1− t)(ξ1, 0
′))] dt

∣∣∣∣
≤
∫ 1

0

∣∣DξĀ
1
ε(x1, tξ + (1− t)(ξ1, 0

′))
∣∣ |(01, ξ

′)| dt

≤ L|ξ′|
∫ 1

0

ϕ′′(|tξ + (1− t)(ξ1, 0
′)|+ ε) dt

≤ c|ξ′|
∫ 1

0

ϕ′′(|ξ1|+ |tξ′|+ ε) dt

= c [ϕ′(|ξ1|+ |tξ′|+ ε)]
1
0 = c0ϕ

′(|ξ1|+ |ξ′|+ ε)− c0ϕ
′(|ξ1|+ ε)

(3.1.40)

with c0 = c0(n, κ1, κ2, ν, L) > 0. Here, we see that for any θ ∈ (0, 1),

if |ξ′| ≤ θ(|ξ1|+ ε)⇒ ϕ′(|ξ1|+ |ξ′|+ ε) ≤
(3.1.8)

ϕ′((1 + θ)(|ξ1|+ ε))

≤
(3.1.11)

(1 + θ)κ2ϕ′(|ξ1|+ ε),

if |ξ′| > θ(|ξ1|+ ε)⇒ ϕ′(|ξ1|+ |ξ′|+ ε) ≤
(3.1.8)

ϕ′((1
θ

+ 1)(|ξ′|+ ε))

≤
(3.1.11)

(1
θ

+ 1)κ2ϕ′(|ξ′|+ ε).

Using the above inequalities, and observing that θ ∈ (0, 1) implies (1+θ)κ2−
1 ≤ c(κ2)θ, we obtain

I1 ≤ c0ϕ
′(|ξ1|+ |ξ′|+ ε)− c0ϕ

′(|ξ1|+ ε)

≤ c0[(1 + θ)κ2 − 1]ϕ′(|ξ1|+ ε) + c0(1
θ

+ 1)κ2ϕ′(|ξ′|+ ε)

≤ c0c(κ2)θϕ′(|ξ1|+ ε) + c0(1
θ

+ 1)κ2ϕ′(|ξ′|+ ε).

(3.1.41)
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On the other hand, for I2, we observe that

Ā1
ε(x1, ξ1, 0

′)ξ1

=
〈
Ā1
ε(x1, ξ1, 0

′)− Ā1
ε(x1, 01, 0

′), (ξ1, 0
′)
〉

+
〈
Ā1
ε(x1, 01, 0

′), (ξ1, 0
′)
〉

=

〈∫ 1

0

d

dt
(Ā1

ε(x1, tξ1, 0
′)) dt, (ξ1, 0

′)

〉
+
〈
Ā1
ε(x1, 01, 0

′), (ξ1, 0
′)
〉

=

∫ 1

0

〈
DξĀ

1
ε(x1, tξ1, 0

′)(ξ1, 0
′), (ξ1, 0

′)
〉
dt+

〈
Ā1
ε(x1, 01, 0

′), (ξ1, 0
′)
〉

and so by (3.1.31), there holds

Ā1
ε(x1, ξ1, 0

′)ξ1 ≥ c

∫ 1

0

ϕ′′(|tξ1|+ ε)|ξ1|2 dt− cϕ′(ε)|ξ1|

≥ c

∫ 1

1
2

ϕ′′(|tξ1|+ ε)|ξ1|2 dt− cϕ′(ε)|ξ1|

≥ c|ξ1|2
(

min
t∈[ 1

2
,1]
ϕ′′(|tξ1|+ ε)

)
− cϕ′(ε)|ξ1|

≥ c|ξ1|2
(

1

2

)κ2

ϕ′′(|ξ1|+ ε)− cϕ′(ε)|ξ1|.

(3.1.42)

Note that the last inequality is obtained by the following observations. For
any t ∈

[
1
2
, 1
]
, we see that

ϕ′′(|tξ1|+ ε) &
(3.1.9)

ϕ′(|tξ1|+ ε)

|tξ1|+ ε

&
(3.1.8)

ϕ′(1
2
|ξ1|+ ε)

|ξ1|+ ε
&

(3.1.11)

(
1

2

)κ2 ϕ′(|ξ1|+ ε)

|ξ1|+ ε
&

(3.1.9)

(
1

2

)κ2

ϕ′′(|ξ1|+ ε).

Then from (3.1.42), (3.1.9) and (3.1.22) with small ε = ε(n, κ1, κ2, ν, L) ∈
(0, 1), we have

I2 ≥ c|ξ1|ϕ′′(|ξ1|+ ε)− Lϕ′(ε)
≥ c(|ξ1|+ ε)ϕ′′(|ξ1|+ ε)− cεϕ′′(|ξ1|+ ε)− Lϕ′(ε)
≥ cϕ′(|ξ1|+ ε)− εϕ′(|ξ1|+ ε)− c(ε)ϕ′(ε)− Lϕ′(ε)
≥ c1ϕ

′(|ξ1|+ ε)− c2ϕ
′(ε)

(3.1.43)
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for c1 = c1(n, κ1, κ2, ν, L) > 0 and c2 = c2(n, κ1, κ2, ν, L) ≥ 1. Summing up
(3.1.39), (3.1.41) and (3.1.43), it follows that

|Ā1
ε(x1, ξ)|
≥ [c1 − c0c(κ2)θ]ϕ′(|ξ1|+ ε)− c0(1

θ
+ 1)κ2ϕ′(|ξ′|+ ε)− c2ϕ

′(ε).
(3.1.44)

Now by choosing θ = θ(n, κ1, κ2, ν, L) ∈ (0, 1) sufficiently small such that
c1 − c0c(κ2)θ ≥ c1

2
, we have

|Ā1
ε(x1, ξ)|+ ϕ′(ε) ≥ c1

2c2
ϕ′(|ξ1|+ ε)− c0

c2
(1
θ

+ 1)κ2ϕ′(|ξ′|+ ε)

and so

|Ā1
ε(x1, ξ)|+ ϕ′(ε) + c3ϕ

′(|ξ′|+ ε) ≥ cϕ′(|ξ1|+ ε) + cϕ′(|ξ′|+ ε) (3.1.45)

with c3 = 2c0
c2

(1
θ

+ 1)κ2 and c = c(n, κ1, κ2, ν, L) > 0.
For the left-hand side of the above inequality, by taking ϕ∗ and using

(3.1.17), (3.1.18) and (3.1.24) we obtain

ϕ∗
(
[|Ā1

ε(x1, ξ)|+ ϕ′(ε)] + c3ϕ
′(|ξ′|+ ε)

)
≤ cϕ∗

(
[|Ā1

ε(x1, ξ)|+ ϕ′(ε)]
)

+ cmax

{
c

κ1
κ1−1

3 , c
κ2
κ2−1

3

}
ϕ∗ (ϕ′(|ξ′|+ ε))

≤ cϕ∗
(
[|Ā1

ε(x1, ξ)|+ ϕ′(ε)]
)

+ cmax

{
c

κ1
κ1−1

3 , c
κ2
κ2−1

3

}
c4ϕ(|ξ′|+ ε)

≤ cgε(x1, ξ;M)

with c4 = c4(n, κ1, κ2, ν, L), provided

M = M(n, κ1, κ2, ν, L) := max

{
c

κ1
κ1−1

3 , c
κ2
κ2−1

3

}
c4.

For the right-hand side of (3.1.45), by taking ϕ∗ and using (3.1.8), (3.1.11)
and (3.1.18), we observe

ϕ∗(cϕ′(|ξ1|+ ε) + cϕ′(|ξ′|+ ε)) ≥ cϕ∗(ϕ′(|ξ|+ ε)) ≥ cϕ(|ξ|+ ε). (3.1.46)

Thus by (3.1.45)–(3.1.46), we have gε(x1, ξ;M) & ϕ(|ξ| + ε) and so (3.1.36)
holds.

Now we start to prove (3.1.37). By (3.1.8), (3.1.9), (3.1.13), (3.1.31) and
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(3.1.36), we have

ĝε(x1, ξ; β) . |ξ′|+ ε+
β(|ξ|+ ε)

ϕ′(|ξ|+ ε)
(ϕ′(|ξ|+ ε) + ϕ′(ε))

. |ξ′|+ ε+
ϕ′(|ξ|+ ε)

ϕ′′(|ξ|+ ε)
. |ξ|+ ε.

On the other hand, note that by (3.1.19), ϕ−1(ϕ∗)(t) h (ϕ∗)′(t) holds for
t ≥ 0. Then together with (3.1.8), (3.1.13), (3.1.16) and (3.1.19), one can
find

ϕ−1(gε(x1, ξ;M))(|Ā1
ε(x1, ξ)|+ ϕ′(ε))

& ϕ−1(Mϕ∗(|Ā1
ε(x1, ξ)|+ ϕ′(ε)))(|Ā1

ε(x1, ξ)|+ ϕ′(ε))

& ϕ−1(ϕ∗(|Ā1
ε(x1, ξ)|+ ϕ′(ε)))(|Ā1

ε(x1, ξ)|+ ϕ′(ε))

& (ϕ∗)′(|Ā1
ε(x1, ξ)|+ ϕ′(ε))(|Ā1

ε(x1, ξ)|+ ϕ′(ε))

& ϕ∗(|Ā1
ε(x1, ξ)|+ ϕ′(ε)).

Thus together with (3.1.36) and (3.1.10), we have

ϕ′(ϕ−1(gε(x1, ξ;M)))ĝε(x1, ξ; β)

= ϕ′(ϕ−1(gε(x1, ξ;M)))(|ξ′|+ ε)

+ βϕ−1(gε(x1, ξ;M))(|Ā1
ε(x1, ξ)|+ ϕ′(ε))

& ϕ(|ξ′|+ ε) + βϕ∗(|Ā1
ε(x1, ξ)|+ ϕ′(ε))

& βgε(x1, ξ;M)

& βϕ′(ϕ−1(gε(x1, ξ;M)))(|ξ|+ ε),

which implies (3.1.37).

Remark 3.1.13. Since Āε(x1, ξ) is C1(R × Rn)-regular, we observe from
Lemma 3.1.9 that Dvε ∈ L∞loc(Q2r). We refer to [167, 169] for the proof.

The following lemma is a higher order differentiability result for Dx′vε of
the regularized problem (3.1.33). See also [66] for the related results.

Lemma 3.1.14. Let x0 ∈ Qr and 0 < ρ < 1
4
r. Then we have DDx′vε ∈

L2(Qρ(x0)).

Proof. Write Qjρ = Qjρ(x0) for j = 1, 2, 3. We select a smooth cutoff function
φ satisfying 0 ≤ φ ≤ 1, φ ≡ 1 on Qρ, φ ≡ 0 on Rn \Q2ρ and |Dφ| ≤ 2

ρ
. Now
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let |h| ∈ (0, ρ) be small, choose k ∈ {2, . . . , n} and write

ϕ(x) = −D−hk (φ2(x)Dh
kvε(x)) (x ∈ Qρ).

Then we have

0 =

∫
Q3ρ

〈
Āε(x1, Dvε), D[−D−hk (φ2Dh

kvε)]
〉
dx.

Using integration by parts for difference quotient gives us that

0 =

∫
Q3ρ

〈
Dh
kĀε(x1, Dvε), D(φ2Dh

kvε)
〉
dx

=

∫
Q3ρ

(
φ2
〈
Dh
kĀε(x1, Dvε), D

h
kDvε

〉
+2φDh

kvε
〈
Dh
kĀε(x1, Dvε), Dφ

〉)
dx

=: I1 + I2.

(3.1.47)

Here, we compute

Dh
kĀε(x1, Dvε) =

Āε(x1, Dvε(x+ hek))− Āε(x1, Dvε(x))

h

=
1

h

∫ 1

0

d

ds
Āε(x1, {(1− s)Dvε(x) + sDvε(x+ hek)}) ds

=

(∫ 1

0

DξĀε(x1, {(1− s)Dvε(x) + sDvε(x+ hek)}) ds
)

(Dh
kDvε(x))

=: Āhk(x)(Dh
kDvε(x)).

Then by (3.1.31), it follows that

I1 =

∫
Q3ρ

φ2
〈
Āhk(x)(Dh

kDvε), D
h
kDvε

〉
dx

≥ c

∫
Q3ρ

φ2

(∫ 1

0

ϕ′′(|(1− s)Dvε(x) + sDvε(x+ hek)|+ ε) ds

)
︸ ︷︷ ︸

=:I3

|Dh
kDvε|2 dx

with c = c(n, κ1, κ2, ν, L) > 0. Furthermore, by Young’s inequality with
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τ ∈ (0, 1) and (3.1.31), we have

|I2| =

∣∣∣∣∣
∫
Q3ρ

2φDh
kvε
〈
Āhk(x)(Dh

kDvε), Dφ
〉
dx

∣∣∣∣∣
≤ cτ

∫
Q3ρ

φ2|Āhk(x)||Dh
kDvε|2 dx+

c

τρ

∫
Q3ρ

|Āhk(x)||Dh
kvε|2 dx

≤ cτ

∫
Q3ρ

φ2I3|Dh
kDvε|2 dx+

c

τρ

∫
Q3ρ

I3|Dh
kvε|2 dx.

(3.1.48)

By merging (3.1.47)–(3.1.48), and selecting τ small enough to find∫
Qρ

I3|Dh
kDvε|2 dx ≤

∫
Q3ρ

φ2I3|Dh
kDvε|2 dx ≤

c

ρ

∫
Q3ρ

I3|Dh
kvε|2 dx (3.1.49)

with c = c(n, κ1, κ2, ν, L) > 0.
Here, we observe from (3.1.8) and (3.1.9) that

I3 ≥ c

∫ 1

0

ϕ′(|(1− s)Dv(x) + sDv(x+ hek)|+ ε)

|(1− s)Dv(x) + sDv(x+ hek)|+ ε
ds

≥ c

∫ 1

0

ϕ′(ε)

‖Dvε‖L∞(Q2ρ(x0)) + ε
ds

=
cϕ′(ε)

‖Dvε‖L∞(Q2ρ(x0)) + ε

and

I3 ≤ c

∫ 1

0

ϕ′(|(1− s)Dv(x) + sDv(x+ hek)|+ ε)

|(1− s)Dv(x) + sDv(x+ hek)|+ ε
ds

≤ c

∫ 1

0

ϕ′(‖Dvε‖L∞(Q2ρ(x0)) + ε)

ε
ds

=
cϕ′(‖Dvε‖L∞(Q2ρ(x0)) + ε)

ε

(3.1.50)

with c = c(n, κ1, κ2, ν, L) > 0.
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Summing up (3.1.49)–(3.1.50) and applying (3.1.10), we have∫
Qρ

|Dh
kDvε|2 dx

≤
cϕ′(‖Dvε‖L∞(Q2ρ(x0)) + ε)(‖Dvε‖L∞(Q2ρ(x0)) + ε)

ϕ′(ε)ερ

∫
Q3ρ

|Dh
kvε|2 dx

≤
cϕ(‖Dvε‖L∞(Q2ρ(x0)) + ε)

ϕ(ε)ρ

∫
Q3ρ

|Dh
kvε|2 dx.

Then by (2.0.2) and (2.0.3), it holds that∫
Qρ

|Dh
kDvε|2 dx ≤

cϕ(‖Dvε‖L∞(Q2ρ(x0)) + ε)

ϕ(ε)ρ

∫
Q3ρ

|Dvε|2 dx

and so considering all cases k ∈ {2, . . . , n}, we find∫
Qρ

|DDx′vε|2 dx ≤
cϕ(‖Dvε‖L∞(Q2ρ(x0)) + ε)

ϕ(ε)ρ

∫
Q3ρ

|Dvε|2 dx.

Then DDx′vε ∈ L2(Qρ(x0)) holds.

From now on, we write

g = g(x) := gε(x1, Dvε(x);M) and ĝ = ĝ(x) := ĝε(x1, Dvε(x); β),

where M is given in Lemma 3.1.12, while β is to be determined later in
Lemma 3.1.16. Moreover, we define

E1,i := Di(|Dx′vε|+ ε)

and

E2,i := Di

(
ϕ−1(g)

ϕ′(ϕ−1(g))
(|Ā1

ε(x1, Dvε)|+ ϕ′(ε))

)
so that the following holds:

Diĝ = E1,i + βE2,i (1 ≤ i ≤ n). (3.1.51)

Then for Dĝ, we have the following lemma.
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Lemma 3.1.15. Let x0 ∈ Qr and 0 < ρ < 1
4
r. Then we have

Dĝ ∈ L2(Qρ(x0)) and

|Dĝ(x)| ≤ c |DDx′vε(x)| a.e. in x ∈ Qρ(x0) (3.1.52)

for some positive constant c depending only on n, κ1, κ2, ν, L but independent
of β.

Proof. We first claim that

|Dg| ≤ c ϕ′(|Dvε|+ ε)|DDx′vε| in Qρ(x0) (3.1.53)

with c = c(n, κ1, κ2, ν, L) > 0. Indeed, by (3.1.9), Remark 3.1.13 and Lemma
3.1.14, we have

ϕ′′(|Dvε|+ ε)|DDx′vε|

≤ c
ϕ′(|Dvε|+ ε)

|Dvε|+ ε
|DDx′vε|

≤ c
ϕ′(‖Dvε‖L∞ + ε)

ε
|DDx′vε| ∈ L2 in Qρ(x0).

(3.1.54)

Then for 1 < k ≤ n, by (3.1.31) we obtain

∣∣Dk[Ā
1
ε(x1, Dvε)]

∣∣ =

∣∣∣∣∣ ∑
1≤j≤n

Dξj Ā
1
ε(x1, Dvε)Dkjvε

∣∣∣∣∣
≤ cϕ′′(|Dvε|+ ε)|DDx′vε| ∈ L2 in Qρ(x0).

(3.1.55)

On the other hand, since vε is a weak solution of (3.1.33), together with
(3.1.31) it holds that

∣∣D1[Ā1
ε(x1, Dvε)]

∣∣ =

∣∣∣∣∣− ∑
1<i≤n

Di[Ā
i
ε(x1, Dvε)]

∣∣∣∣∣
=

∣∣∣∣∣ ∑
1<i≤n

∑
1≤j≤n

Dξj Ā
i
ε(x1, Dvε)Dijvε

∣∣∣∣∣
≤ cϕ′′(|Dvε|+ ε)|DDx′vε| ∈ L2 in Qρ(x0).

(3.1.56)
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Then by (3.1.55) and (3.1.56), we obtain∣∣D[Ā1
ε(x1, Dvε)]

∣∣ ≤ cϕ′′(|Dvε|+ ε)|DDx′vε|. (3.1.57)

Now together with (3.1.57), Lemma 3.1.9 yields

|Dg| ≤ c

∣∣∣∣ϕ′(|Dx′vε|+ ε)
Dx′vε
|Dx′vε|

|DDx′vε|
∣∣∣∣

+ c(ϕ∗)′(|Ā1
ε(x1, Dvε)|+ ϕ′(ε))

∣∣Ā1
ε(x1, Dvε)

∣∣
|Ā1

ε(x1, Dvε)|+ ϕ′(ε)

∣∣D(Ā1
ε(x1, Dvε))

∣∣
≤ c ϕ′(|Dx′vε|+ ε)|DDx′vε|

+ c (ϕ∗)′(|Ā1
ε(x1, Dvε)|+ ϕ′(ε))ϕ′′(|Dvε|+ ε)|DDx′vε|.

Here, by (3.1.9), (3.1.10), (3.1.16), (3.1.17), (3.1.18) and (3.1.31), it holds
that

(ϕ∗)′(|Ā1
ε(x1, Dvε)|+ ϕ′(ε))ϕ′′(|Dvε|+ ε)

≤
(3.1.31)

c(ϕ∗)′(ϕ′(|Dvε|+ ε))ϕ′′(|Dvε|+ ε)

≤
(3.1.16)

c
ϕ∗(ϕ′(|Dvε|+ ε))

ϕ′(|Dvε|+ ε)
ϕ′′(|Dvε|+ ε)

≤
(3.1.18)

c
ϕ(|Dvε|+ ε)ϕ′′(|Dvε|+ ε)

ϕ′(|Dvε|+ ε)

≤
(3.1.9)
(3.1.10)

cϕ′(|Dvε|+ ε)

with c = c(n, κ1, κ2, ν, L) > 0, and so (3.1.53) follows.
To show (3.1.52), we observe that

|E1,i| ≤
∣∣∣∣ Dx′vε
|Dx′vε|

DDx′vε

∣∣∣∣ = |DDx′vε|

and

|E2,i| ≤
∣∣∣∣Di

(
ϕ−1(g)

ϕ′(ϕ−1(g))
(|Ā1

ε(x1, Dvε)|+ ϕ′(ε))

)∣∣∣∣ ≤ I1 + I2 + I3,
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where

I1 =
(ϕ−1)′(g)|Dg|(|Ā1

ε(x1, Dvε)|+ ϕ′(ε))

ϕ′(ϕ−1(g))
,

I2 =
ϕ−1(g)|DĀ1

ε(x1, Dvε)|
ϕ′(ϕ−1(g))

,

I3 =
ϕ−1(g)(|Ā1

ε(x1, Dvε)|+ ϕ′(ε))ϕ′′(ϕ−1(g))(ϕ−1)′(g)|Dg|
ϕ′(ϕ−1(g))2

.

Here, by inverse function theorem for ϕ, (3.1.31), (3.1.36) and (3.1.53), we
have

I1 ≤ c
(ϕ−1)′(ϕ(|Dvε|+ ε))ϕ′(|Dvε|+ ε)|DDx′vε|ϕ′(|Dvε|+ ε)

ϕ′(ϕ−1(g))

≤ c(ϕ−1)′(ϕ(|Dvε|+ ε))ϕ′(|Dvε|+ ε)|DDx′vε|

≤ c
ϕ′(|Dvε|+ ε)

ϕ′(|Dvε|+ ε)
|DDx′vε| ≤ c|DDx′vε|

with c = c(n, κ1, κ2, ν, L) > 0. For I2, owing to (3.1.9), (3.1.36) and (3.1.57),
there holds

I2 ≤ c
ϕ−1(g)ϕ′′(|Dvε|+ ε)|DDx′vε|

ϕ′(ϕ−1(g))

≤ c
(|Dvε|+ ε)ϕ′′(|Dvε|+ ε)|DDx′vε|

ϕ′(|Dvε|+ ε)
≤ c|DDx′vε|.

Finally, for I3, by (3.1.9) we have ϕ−1(g)ϕ′′(ϕ−1(g)) h ϕ′(ϕ−1(g)). Then by
(3.1.57) it follows that

I3 ≤ c
ϕ−1(g)ϕ′′(ϕ−1(g))

ϕ′(ϕ−1(g))
I1 ≤ c|DDx′vε|.

Therefore, we have

|E2,i| ≤ c|DDx′vε| (3.1.58)

with c = c(n, κ1, κ2, ν, L) > 0. Then the lemma follows.

Now we prove the following Caccioppoli type estimates.
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Lemma 3.1.16. Let x0 ∈ Qr and 0 < ρ < 1
4
r. For a given α ∈ [0, 4q],

there exists β ∈ (0, 1) depending on n, κ1, κ2, ν, L and q such that for any
η ∈ C∞0 (Qρ(x0)) we have∫

Q2r

η2ϕα(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2 dx

≤ c

∫
Q2r

ϕα+1(|Dvε|+ ε)|Dη|2 dx
(3.1.59)

for c = c(n, κ1, κ2, ν, L) > 0.

Proof. Fix 1 < k ≤ n. For each 1 ≤ i, j ≤ n, by (3.1.31), (3.1.54) and (3.1.57)
we obtain

|DkĀ
i
ε(x1, Dvε)| =

∣∣Dξj Ā
i
ε(x1, Dvε)Dkjvε

∣∣
≤ cϕ′′(|Dvε|+ ε)|DDx′vε| ∈ L2(Qρ(x0))

(3.1.60)

with ε > 0. Then testing Dkφ ∈ C∞c (Qρ(x0)) to (3.1.33) and using integration
by parts, we have

0 =

∫
Q2r

Dk

[
Āiε(x1, Dvε)

]
Diφ dx

=

∫
Q2r

Dξj Ā
i
ε(x1, Dvε)DkjvεDiφ dx.

(3.1.61)

Note that in (3.1.61), we omit the summation over 1 ≤ i, j ≤ n. Due to
(3.1.60), we have (3.1.61) for all φ ∈ W 1,2

0 (Qρ(x0)).
Now let η ∈ C∞c (Qρ(x0)) be a smooth cutoff function with 0 ≤ η ≤ 1,

η ≡ 1 on Q ρ
2
(x0), η ≡ 0 on Q2r \Qρ(x0) and |Dη| ≤ 4

ρ
. Note that

Remark 3.1.13 and Lemma 3.1.14 ⇒ Dkvε ∈ W 1,2(Qρ(x0))∩L∞(Qρ(x0)),
Lemma 3.1.12, Remark 3.1.13 and Lemma 3.1.15

⇒ ĝ ∈ W 1,2(Qρ(x0)) ∩ L∞(Qρ(x0)).

Test φ = Dkvεϕ
α(ĝ)η2 ∈ W 1,2

0 (Qρ(x0)) for (3.1.61) to obtain that

0 =

∫
Q2r

Dξj Ā
i
ε(x1, Dvε)DkjvεDi(Dkvεϕ

α(ĝ)η2) dx. (3.1.62)
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Here, we compute

Di(Dkvεϕ
α(ĝ)η2)

= Dkivεϕ
α(ĝ)η2

+ αDkvεϕ
α−1(ĝ)ϕ′(ĝ)Di(ĝ)η2 + 2Dkvεϕ

α(ĝ)ηDiη.

(3.1.63)

Then taking into account (3.1.51), (3.1.62)–(3.1.63) and summing up all in-
tegers k such that 1 < k ≤ n, we have

I1 + I2 = −I3 − I4, (3.1.64)

where

I1 =
∑

1<k≤n

∫
Q2r

η2ϕα(ĝ)Dξj Ā
i
ε(x1, Dvε)DkjvεDkivε,

I2 = α
∑

1<k≤n

∫
Q2r

η2ϕα−1(ĝ)ϕ′(ĝ)Dξj Ā
i
ε(x1, Dvε)DkjvεDkvεE1,i dx,

I3 = αβ
∑

1<k≤n

∫
Q2r

η2ϕα−1(ĝ)ϕ′(ĝ)Dξj Ā
i
ε(x1, Dvε)DkjvεDkvεE2,i dx,

I4 =
∑

1<k≤n

∫
Q2r

2ηϕα(ĝ)Dξj Ā
i
ε(x1, Dvε)DkjvεDkvεDiη dx.

To estimate I1, by Lemma 3.1.9 we have

c5

∫
Q2r

η2ϕα(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2 dx ≤ I1 (3.1.65)

for some c5 = c5(n, κ1, κ2, ν, L) > 0. To deal with I2, using Lemma 3.1.9 and
recalling that the summation is taken over 1 ≤ i, j ≤ n, we yield the estimate∑

1<k≤n

Dξj Ā
i
ε(x1, Dvε)DkjvεDkvεE1,i

=
∑

1<k≤n

Dξj Ā
i
ε(x1, Dvε)DkjvεDkvε

Dx′vε
|Dx′vε|

DiDx′vε

≥ cϕ′′(|Dvε|+ ε)|DDx′vε|2|Dx′vε|
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and so for c6 = c6(n, κ1, κ2, ν, L),

I2 ≥ c6

∫
Q2r

η2ϕα−1(ĝ)ϕ′(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2|Dx′vε| dx. (3.1.66)

We now consider I3. Observe that by (3.1.58), it follows that

β

∣∣∣∣∣ ∑
1<k≤n

DkjvεDkvε

∣∣∣∣∣ |E2,j| ≤ cβ|DDx′vε|2|Dx′vε|

and so by Lemma 3.1.9 and α ∈ [0, 4q], together with the constant c7 =
c7(n, κ1, κ2, ν, L), we obtain

|I3| ≤ c7qβ

∫
Q2r

η2ϕα−1(ĝ)ϕ′(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2|Dx′vε| dx. (3.1.67)

To estimate I4, by Young’s inequality with ε ∈ (0, 1), (3.1.9), (3.1.10), (3.1.37)
and Lemma 3.1.9, we have

I4 ≤ c

∫
Q2r

ηϕα(ĝ)|Dξj Ā
i
ε(x1, Dvε)||Dkjvε||Dkvε||Diη| dx

≤ ε

∫
Q2r

η2ϕα(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2 dx

+ c(ε)

∫
Q2r

ϕα(ĝ)ϕ′′(|Dvε|+ ε)|Dvε|2|Dη|2 dx

≤ ε

∫
Q2r

η2ϕα(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2 dx

+ c(ε)

∫
Q2r

ϕα+1(|Dvε|+ ε)|Dη|2 dx

(3.1.68)

for any ε ∈ (0, 1]. Merging the estimates (3.1.65), (3.1.66), (3.1.67) and
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(3.1.68) into (3.1.64), it holds that

c5

∫
Q2r

η2ϕα(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2 dx

+ c6

∫
Q2r

η2ϕα−1(ĝ)ϕ′(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2|Dx′vε| dx

≤ c7qβ

∫
Q2r

η2ϕα−1(ĝ)ϕ′(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2|Dx′vε| dx

+ ε

∫
Q2r

η2ϕα(ĝ)ϕ′′(|Dvε|+ ε)|DDx′vε|2 dx

+ c(ε)

∫
Q2r

ϕα+1(|Dvε|+ ε)|Dη|2 dx.

Choosing ε ≤ c5
2

and β = β(n, κ1, κ2, ν, L, q) sufficiently small such that
c7qβ ≤ c6

2
, we have the desired estimate (3.1.59).

Now we prove the reverse Hölder’s inequality.

Lemma 3.1.17. We have(∫
Qr

ϕq(|Dvε|+ ε) dx

) 1
q

≤ c

∫
Q2r

ϕ(|Dvε|+ ε) dx (3.1.69)

with c = c(n, κ1, κ2, ν, L, q) > 0.

Proof. Define

χ =

{
n
n−2

n > 2,

2 n = 2.

Let x0 ∈ Qr and 0 < ρ < 1
4
r. For any η ∈ C∞c (Qρ(x0)) with 0 ≤ η ≤ 1, η ≡ 1

on Q ρ
2
(x0), η ≡ 0 on Q2r \Qρ(x0) and |Dη| ≤ 4

ρ
, we first claim that for any

α ∈ [0, 4q], we have(∫
Q ρ

2
(x0)

[
ϕα+1(|Dvε|+ ε)

]χ
dx

) 1
χ

≤ c

∫
Qρ(x0)

ϕα+1(|Dvε|+ ε) dx, (3.1.70)
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if the right-hand side is finite. Indeed, observe that by triangle inequality,
(3.1.9), (3.1.10), (3.1.37) and (3.1.52),∣∣∣D (ϕα+1

2 (ĝ)η
)∣∣∣2

≤ c

∣∣∣∣α + 1

2
ϕ
α−1

2 (ĝ)ϕ′(ĝ)(Dĝ)η

∣∣∣∣2 + c
∣∣∣ϕα+1

2 (ĝ)Dη
∣∣∣2

≤ c(α + 1)2ϕα−1(ĝ)(ϕ′(ĝ))2η2|DDx′vε|2 + cϕα+1(ĝ)|Dη|2

≤ c(q + 1)2ϕα(ĝ)ϕ′′(|Dvε|+ ε)η2|DDx′vε|2

+ cϕα+1(|Dvε|+ ε)|Dη|2.

(3.1.71)

By Sobolev-Poincaré inequality and Lemma 3.1.16 we have∫
Qρ(x0)

[
ϕ
α+1

2 (ĝ)η

ρ

]2χ

dx

 1
χ

≤ c

∫
Qρ(x0)

∣∣∣D (ϕα+1
2 (ĝ)η

)∣∣∣2 dx
≤ c

∫
Qρ(x0)

ϕα+1(|Dvε|+ ε)|Dη|2 dx

≤ c

∫
Qρ(x0)

[
ϕ
α+1

2 (|Dvε|+ ε)

ρ

]2

dx.

Then by (3.1.37) and α ∈ [0, 4q] there holds(∫
Q ρ

2
(x0)

[
ϕα+1(|Dvε|+ ε)

]χ
dx

) 1
χ

≤ c

(∫
Qρ(x0)

[
ϕ
α+1

2 (ĝ)η
]2χ

dx

) 1
χ

≤ c

∫
Qρ(x0)

ϕα+1(|Dvε|+ ε) dx

with c = c(n, κ1, κ2, ν, L, q) > 0, and so we have (3.1.70).
Let β = β(n, κ1, κ2, ν, L, q) ∈ (0, 1] be the constant in Lemma 3.1.16.

Since χ > 1, there exists a integer m0 = m0(n, q) ≥ 0 such that

χm0 < q ≤ χm0+1.
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By taking α = χm − 1 ≤ 4q for m = 0, · · · ,m0, we find from (3.1.70) that(∫
Q

2−m0−1ρ
(x0)

[
ϕα+1(|Dvε|+ ε)

]χ
dx

) 1
(α+1)χ

≤ c

∫
Qρ(x0)

ϕ(|Dvε|+ ε) dx,

and so it follows that(∫
Q

2−m0−1ρ
(x0)

ϕq(|Dvε|+ ε) dx

) 1
q

≤ c

∫
Qρ(x0)

ϕ(|Dvε|+ ε) dx.

Since the above estimate is invariant under scaling and translation, by the
covering argument, (3.1.69) follows.

Now we give the proof of main theorem in this section.

Proof of Theorem 3.1.8. From (3.1.69), it follows that

lim sup
ε→0

(∫
Qr

ϕq(|Dvε|+ ε) dx

) 1
q

≤ c lim sup
ε→0

(∫
Q2r

ϕ(|Dvε|+ ε) dx

)
(3.1.72)

with c = c(n, κ1, κ2, ν, L, q) > 0. For the right-hand side of (3.1.72), by
Lemma 3.1.11 and (3.1.25), for any ε ∈ (0, 1) we have

lim sup
ε→0

∫
Q2r

|ϕ(|Dvε|+ ε)− ϕ(|Dv|)| dx

≤ c(ε) lim sup
ε→0

∫
Q2r

ϕ(|Dvε −Dv|+ ε) dx+ ε

∫
Q2r

ϕ(|Dv|) dx

≤ ε

∫
Q2r

ϕ(|Dv|) dx.

Since ε ∈ (0, 1) was arbitrary, we have

lim sup
ε→0

∫
Q2r

ϕ(|Dvε|+ ε) dx =

∫
Q2r

ϕ(|Dv|) dx.

For the left-hand side of (3.1.72), since ε ∈ (0, 1) and Lemma 3.1.11 holds,
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we observe(∫
Qr

ϕq(|Dvε|) dx
) 1

q

≤
(∫

Qr

ϕq(|Dvε|+ ε) dx

) 1
q

≤ c

∫
Q2r

ϕ(|Dvε|+ ε) dx

≤ c

∫
Q2r

ϕ(|Dv|+ 1) dx,

(3.1.73)

and so {Dvε}ε>0 is uniformly bounded in Lϕ
q

(Qr) which is a reflexive Banach
space by [129, Theorem 6.1.4]. Then we have a subsequence {εj}∞j=1 with

εj → 0 as j →∞ and f ∈ Lϕq(Qr) such that

Dvεj ⇀ f in Lϕ
q

(Qr) and so∫
Qr

ϕq(|f |) dx ≤ lim inf
j→∞

∫
Qr

ϕq(|Dvεj |) dx.
(3.1.74)

Then Dvεj ⇀ f in Lϕ(Qr) as q > 1. But then, according to Lemma 3.1.11
and (3.1.74), f must be Dv a.e. in Qr by the uniqueness of weak limit.
Consequently we conclude that

Dvεj ⇀ Dv in Lϕ
q

(Qr) and so∫
Qr

ϕq(|Dv|) dx ≤ lim inf
j→∞

∫
Qr

ϕq(|Dvεj |) dx.

Thus we have the conclusion by letting j →∞ in (3.1.73).

3.1.3 Proof of Theorem 3.1.1

We give in this section the proof of Theorem 3.1.1. To do this, let us provide
first comparison estimates to be essentially used in the proof of Theorem
3.1.1. Assume F ∈ Lϕ

γ

loc(Ω,R
n) for γ > 1 and consider that u ∈ W 1,ϕ(Ω) is a

weak solution of (3.1.1), which means that∫
Ω

A(x,Du) ·Dη dx =

∫
Ω

ϕ′(|F |)
|F |

F ·Dη dx
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for every η ∈ W 1,ϕ
0 (Ω). Let Q16r ⊂ Ω with 0 < 16r ≤ R and h ∈ W 1,ϕ(Q8r)

be the weak solution of{
divA(x,Dh) = 0 in Q8r,

h = u on ∂Q8r,
(3.1.75)

and v ∈ W 1,ϕ(Q4r) be the weak solution of{
divĀ(x1, Dv) = 0 in Q4r,

v = h on ∂Q4r,
(3.1.76)

where

Ā(x1, ξ) =

∫
Q′4r

A(x1, x
′, ξ) dx′

is the integral average of A(x1, ·, ξ) over Q′4r for fixed x1 ∈ R and ξ ∈ Rn.
Then we have the following.

Lemma 3.1.18. For any ε ∈ (0, 1), there exists a δ = δ(n, κ1, κ2, ν, L, ε) > 0
such that if ∫

Q4r

θ(A,Q4r(y))(x) dx ≤ δ, (3.1.77)

then we have∫
Q4r

ϕ(|Du−Dv|) dx ≤ c8ε

(∫
Q8r

ϕ(|Du|) dx+

∫
Q8r

ϕ(|F |)
δ

dx

)
(3.1.78)

for some c8 = c8(n, κ1, κ2, ν, L) > 0. On the other hand, for any γ > 1 there
holds (∫

Qr

ϕ2γ(|Dv|) dx
) 1

2γ

≤ c9

∫
Q8r

ϕ(|Du|) dx (3.1.79)

for some c9 = c9(n, κ1, κ2, ν, L, γ) > 0.

Proof. The proof of (3.1.78) is the same as in [11, Section 3] and [70, Section
5]. We test v− h ∈ W 1,ϕ

0 (Q4r) to (3.1.76) and h− u ∈ W 1,ϕ
0 (Q8r) to (3.1.75),
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respectively, and use Young’s inequality to find that∫
Q4r

ϕ(|Dv|) dx .
∫
Q4r

ϕ(|Dh|) dx .
∫
Q8r

ϕ(|Du|) dx.

Then (3.1.79) follows from Theorem 3.1.8.

Now we revisit the maximal function-free technique developed in [3] to
prove the estimate on super-level sets of ϕ(|Du|) in Lemma 3.1.19 below. We
select real numbers r1 and r2 such that R ≤ r1 < r2 ≤ 2R. Let Q2R b Ω and
λ0 be such that

λ0 :=

(
80R

r2 − r1

)n ∫
Q2R

[
ϕ(|Du|) +

ϕ(|F |)
δ

]
dx (3.1.80)

with δ ∈ (0, 1) being a free parameter to be chosen later. Then one can see
that∫

Qρ(y)

[
ϕ(|Du|) +

ϕ(|F |)
δ

]
dx ≤ λ0

(
y ∈ Qr1 ,

r2 − r1

40
≤ ρ ≤ R

)
. (3.1.81)

Lemma 3.1.19. For any ε ∈ (0, 1), there exists a δ = δ(n, κ1, κ2, ν, L, ε) > 0
such that if

sup
0<ρ≤R

sup
y∈Q2R

∫
Qρ(y)

θ(A,Qρ(y))(x) dx ≤ δ, (3.1.82)

then for any λ ≥ λ0 and large N > 1, we have∫
Qr1∩{ϕ(|Du|)>Nγ}

ϕ(|Du|) dx

≤ c(ε+N1−2γ)

(∫
Qr2∩{ϕ(|Du|)>λ

3
}
ϕ(|Du|) dx+

∫
Qr2∩{ϕ(|F |)> δλ

3
}

ϕ(|F |)
δ

dx

)
.

Proof. Fix λ ≥ λ0, and let us define the upper-level set

E(λ) =

{
x ∈ Qr1 : ϕ(|Du|) +

ϕ(|F |)
δ

> λ

}
.

If E(λ) = ∅, then one can see that {x ∈ Qr1 : ϕ(|Du|) > Nλ} = ∅ and so
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the conclusion holds. Thus we assume E(λ) 6= ∅.
With the help of Lebesgue differentiation theorem, for a.e. y ∈ E(λ) we

have

lim
ρ→0+

∫
Qρ(y)

[
ϕ(|Du|) +

ϕ(|F |)
δ

]
dx > λ.

Using (3.1.81) and the fact that λ ≥ λ0, we see that there exists a positive
radius ρy ∈

(
0, r2−r1

40

)
such that∫
Qρy (y)

[
ϕ(|Du|) +

ϕ(|F |)
δ

]
dx = λ (3.1.83a)

and ∫
Qρ(y)

[
ϕ(|Du|) +

ϕ(|F |)
δ

]
dx ≤ λ (ρy < ∀ρ ≤ R). (3.1.83b)

From (3.1.83a), we observe

|Qρy(y)| = 1

λ

∫
Qρy (y)

ϕ(|Du|) +
ϕ(|F |)
δ

dx

≤
2|Qρy(y)|

3
+

1

λ

∫
Qρy (y)∩{ϕ(|Du|)>λ

3
}
ϕ(|Du|) dx

+
1

λ

∫
Qρy (y)∩{ϕ(|F |)> δλ

3
}

ϕ(|F |)
δ

dx,

and so

|Qρy(y)| ≤ c

λ

∫
Qρy (y)∩{ϕ(|Du|)>λ

3
}
ϕ(|Du|) dx

+
c

λ

∫
Qρy (y)∩{ϕ(|F |)> δλ

3
}

ϕ(|F |)
δ

dx.

(3.1.84)

Next, we observe from (3.1.83b) that∫
Q40ρy (y)

ϕ(|Du|) dx ≤ λ and

∫
Q40ρy (y)

ϕ(|F |) dx ≤ δλ.
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Fix any ε ∈ (0, 1). Then by Lemma 3.1.18, we have∫
Q20ρy (y)

ϕ(|Du−Dv|) dx ≤ cελ

and

(∫
Q5ρy (y)

ϕ2γ(|Dv|) dx

) 1
2γ

≤ cλ

(3.1.85)

provided (3.1.82) holds.
Fix any large N > 1 to be determined in (3.1.91). Then we have

ϕ(|Du(x)|) ≥ Nλ

⇒ ϕ(|Du(x)|) ≤ cϕ(|Du(x)−Dv(x)|) + c(γ)(Nλ)1−2γϕ(|Dv(x)|)2γ.

With the help of (3.1.85), it follows that∫
Q5ρy (y)∩{ϕ(|Du|)>Nλ}

ϕ(|Du|) dx

≤ c

∫
Q5ρy (y)∩{ϕ(|Du|)>Nλ}

[
ϕ(|Du−Dv|) + (Nλ)1−2γϕ(|Dv|)2γ

]
dx

≤ c
(
ελ+ (Nλ)1−2γλ2γ

)
|Qρy(y)|

= c(ε+N1−2γ)λ|Qρy(y)|.
(3.1.86)

Now we use Vitali covering lemma to obtain a covering {Q5ρm(ym)}∞m=1

of {x ∈ Qr1 : ϕ(|Du(x)|) > Nλ} ⊂ E(λ) with

ym ∈ E(λ), ρm ∈
(

0,
r2 − r1

40

)
and {Qρm(ym)}∞m=1 are mutually disjoint.

(3.1.87)

Since 40ρm ≤ r2 − r1, we notice that ∪∞m=1Qρm(ym) ⊂ Qr2 . Hence it follows
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from (3.1.84), (3.1.86) and (3.1.87) that∫
Qr1∩{ϕ(|Du|)>Nλ}

ϕ(|Du|) dx

≤
∞∑
m=1

∫
Q5ρm (ym)∩{ϕ(|Du|)>Nλ}

ϕ(|Du|) dx

≤ c(ε+N1−2γ)λ
∞∑
m=1

|Qρm(ym)|

≤ c(ε+N1−2γ)

(∫
Qr2∩{ϕ(|Du|)>λ

3
}
ϕ(|Du|) dx+

∫
Qr2∩{ϕ(|F |)> δλ

3
}

ϕ(|F |)
δ

dx

)
,

which is the conclusion of the lemma.

We are now ready to prove Theorem 2.1 using Fubini’s theorem.

Proof of Theorem 2.1. We define the truncated functions by

[ϕ(|Du|)]t := min {ϕ(|Du|), t} (t ≥ 0).

According to Lemma 3.1.19, we have that for t ≥ 2λ0∫ t

2λ0

λγ−2

∫
Qr1∩{ϕ(|Du|)>Nλ}

ϕ(|Du|) dxdλ

≤ c(ε+N1−2γ)

[∫ t

2λ0

λγ−2

∫
Qr2∩{ϕ(|Du|)>λ

3
}
ϕ(|Du|) dxdλ

+

∫ t

2λ0

λγ−2

∫
Qr2∩{ϕ(|F |)> δλ

3
}

ϕ(|F |)
δ

dxdλ

]
,

(3.1.88)

provided A is (δ, R)–vanishing of codimension 1. For the left-hand side of the
above display, we use change of variables and Fubini’s theorem to observe
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that ∫ t

2λ0

λγ−2

∫
Qr1∩{ϕ(|Du|)>Nλ}

ϕ(|Du|) dxdλ

=
1

Nγ−1

∫ Nt

2Nλ0

λγ−2

∫
Qr1∩{ϕ(|Du|)>λ}

ϕ(|Du|) dxdλ

=
1

Nγ−1

∫
Qr1

ϕ(|Du|)
∫ min{ϕ(|Du|),Nt}

2Nλ0

λγ−2 dλdx

=
1

Nγ−1(γ − 1)

∫
Qr1

ϕ(|Du|)
[
min{ϕ(|Du|), Nt}γ−1

−(2Nλ0)γ−1
]
dx

≥ 1

Nγ−1(γ − 1)

∫
Qr1

ϕ(|Du|)
[
min{ϕ(|Du|), t}γ−1 − (2Nλ0)γ−1

]
dx.

(3.1.89)

For the right-hand side of (3.1.88), by the similar computation as above, we
have∫ t

2λ0

λγ−2

∫
Qr2∩{ϕ(|Du|)>λ

3
}
ϕ(|Du|) dxdλ

=
3γ−1

γ − 1

∫
Qr2

ϕ(|Du|)
[
min{ϕ(|Du|), 3t}γ−1 − (6λ0)γ−1

]
dx

≤ 3γ

γ − 1

∫
Qr2

ϕ(|Du|) min{ϕ(|Du|), t}γ−1 dx

and ∫ t

2λ0

λγ−2

∫
Qr2∩{ϕ(|F |)> δλ

3
}

ϕ(|F |)
δ

dxdλ

≤ 1

δλ−1

∫ ∞
0

λγ−2

∫
Qr2∩{ϕ(|F |)>λ}

ϕ(|F |)
δ

dxdλ

≤ c

∫
Qr2

(
ϕ(|F |)
δ

)γ
dx.

(3.1.90)

65
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Combining all the estimates (3.1.89)–(3.1.90) with (3.1.88), we find that∫
Qr1

ϕ(|Du|) [min{ϕ(|Du|), t}]γ−1 dx

≤ c̄3γ(εNγ−1 +N−γ)

×

(∫
Qr2

ϕ(|Du|) [min{ϕ(|Du|), t}]γ−1 dx+

∫
Qr2

(
ϕ(|F |)
δ

)γ
dx

)
+ c(2λ0)γ−1

∫
Qr2

ϕ(|Du|) dx

for some positive constants c̄ = c̄(n, κ1, κ2, ν, L, γ) and c = c(n, κ1, κ2, ν, L, γ).
We make

c̄3γ(εNγ−1 +N−γ) ≤ 1

2
, (3.1.91)

by first selecting the constant N = N(n, κ1, κ2, ν, L, γ) > 1 sufficiently large,
and then choosing ε = ε(n, κ1, κ2, ν, L, γ) ∈ (0, 1) sufficiently small. Accord-
ingly, we can find a small δ = δ(n, κ1, κ2, ν, L, γ) > 0 from Lemma 3.1.19.
Consequently, we have∫

Qr1

ϕ(|Du|) [min{ϕ(|Du|), t}]γ−1 dx

≤ 1

2

∫
Qr2

ϕ(|Du|) [min{ϕ(|Du|), t}]γ−1 dx

+ c

∫
Qr2

ϕ(|F |)γ dx+ cλγ−1
0

∫
Qr2

ϕ(|Du|) dx

≤ 1

2

∫
Qr2

ϕ(|Du|) [min{ϕ(|Du|), t}]γ−1 dx+ c

∫
Qr2

ϕ(|F |)γ dx

+ c

(
80R

r2 − r1

)n(γ−1)(∫
Q2R

[
ϕ(|Du|) +

1

δ
ϕ(|F |)

]
dx

)γ
.
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Now from Lemma 2.0.1, we discover∫
QR

ϕ(|Du|) [min{ϕ(|Du|), t}]γ−1 dx

≤ c

∫
Q2R

ϕ(|F |)γ dx+ c

(∫
Q2R

[
ϕ(|Du|) +

1

δ
ϕ(|F |)

]
dx

)γ
≤ c

(∫
Q2R

ϕ(|Du|) dx
)γ

+ c

∫
Q2R

ϕ(|F |)γ dx.

Finally, letting t→∞, the conclusion of Theorem 3.1.1 follows.

3.2 Global estimates for a general class of

quasilinear elliptic equations with Orlicz

growth

This section is devoted to providing an optimal global Calderón-Zygmund
theory for quasilinear elliptic equations of a very general form with Orlicz
growth on bounded nonsmooth domains under minimal regularity assump-
tions of the nonlinearity A = A(x, u,Du) in the first and second variables
(x, z) as well as on the boundary of the domain. Our result improves known
regularity results in the literature regarding nonlinear elliptic operators de-
pending on a given bounded weak solution.

3.2.1 Hypothesis and main results

We shall deal with the global gradient estimates of a weak solution to the
following Dirichlet problem:−divA(x, u,Du) = −div

(
G′(|F |)
|F |

F

)
in Ω

u = 0 on ∂Ω,
(3.2.1)

where Ω ⊂ Rn (n ≥ 2) is a bounded domain with possibly nonsmooth
boundary ∂Ω and G is an N -function in the sense of the definition intro-
duced in Section 3.2.2, whereas F : Ω→ Rn is a given vector field such that
F ∈ LG(Ω;Rn). Throughout the section, we shall assume that the vector
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field A : Rn × R× Rn → Rn is a Carathéodory map satisfying the following
structure assumptions with fixed constants 0 < ν ≤ L <∞:

ν
G(|ξ|)
|ξ|2

|η|2 ≤ 〈DξA(x, z, ξ)η, η〉

|A(x, z, ξ)|+ |ξ||DξA(x, z, ξ)| ≤ L
G(|ξ|)
|ξ|

(3.2.2)

for every x ∈ Ω, (z, ξ) ∈ R× (Rn \ {0}) and η ∈ Rn.
In order to achieve the desired result, we need to ask minimal smooth-

ness condition on A(x, z, ξ) with respect to x and z-variables, and a proper
geometric structure on ∂Ω. Based on works [33, 55], we suppose that

1. Continuity with respect to second variable of A: For every M > 0,
there exists a non-decreasing function ωM : [0,∞)→ [0,∞) such that

lim
ρ→0+

ωM(ρ) = 0 (3.2.3)

and

|A(x, z1, ξ)− A(x, z2, ξ)| ≤ ωM(|z1 − z2|)G′(|ξ|) (3.2.4)

holds for a.e. x ∈ Rn, z1, z2 ∈ [−M,M ] and ξ ∈ Rn.

2. (δ, R)-vanishing of A: For every M > 0, there exist R > 0 and δ > 0
depending on M such that

sup
z∈[−M,M ]

sup
0<ρ≤R

sup
y∈Rn

∫
Bρ(y)

θ(Bρ(y))(x, z) dx ≤ δ, (3.2.5)

where θ(Bρ(y))(·, ·) : Rn × R→ R are defined by

θ(Bρ(y))(x, z) = sup
ξ∈Rn\{0}

|A(x, z, ξ)− (A(·, z, ξ))Bρ(y)|
G′(|ξ|)

with the notation

(A(·, z, ξ))Bρ(y) =

∫
Bρ(y)

A(x, z, ξ) dx.
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3. (δ, R)-Reifenberg flatness of Ω: For every r ∈ (0, R] and x0 ∈ ∂Ω, there
exists a new coordinate system {y1, · · · , yn} with the origin at x0 such
that

Br(0) ∩ {y : yn > δr} ⊂ Br(0) ∩ Ω ⊂ Br(0) ∩ {y : yn > −δr} (3.2.6)

holds in this coordinate system.

The continuity assumption (3.2.3)-(3.2.4) on the second variable of the
nonlinearity A is a minimal one in the setting of Orlicz growth. Roughly
speaking, the (δ, R)-vanishing property (3.2.5) exhibits a kind of smallness in
terms of BMO, which allows x-discontinuity of the nonlinearity. The geomet-
ric structure (3.2.6) means that the boundary of Ω can be locally dominated
by hyperplanes with proper chosen scale. In fact, a set having rough fractal
boundaries such as the Koch snowflake with smallness of the angle of the
spike with respect to the horizontal is included in the class of the Reifen-
berg flat domains and in particular, domains with C1-smooth boundary or
boundary that can be locally expressed as a graph of a Lipschitz function
with small Lipschitz constant are also members of the Reifenberg flat class.

Remark 3.2.1. If Ω is (δ, R)-Reifenberg flat, then it holds that

sup
y∈Ω

sup
0<r≤R/2

|Br(y)|
|Ω ∩Br(y)|

≤
(

2

1− 4δ

)n
< 4n. (3.2.7)

Now we are ready to state the main theorem.

Theorem 3.2.2. Let u ∈ W 1,G(Ω)∩L∞(Ω) be a weak solution of (3.2.1) with
‖u‖L∞(Ω) ≤M under the assumptions (3.2.2)-(3.2.4). Suppose that G(|F |) ∈
Lγ(Ω) for some γ > 1. Then there exists δ = δ(n, sG, ν, L,M, ωM(·), γ) > 0
such that if the conditions (3.2.5) and (3.2.6) hold for some R, then there
holds that G(|Du|) ∈ Lγ(Ω) with the estimate∫

Ω

Gγ(|Du|) dx ≤ c

∫
Ω

Gγ(|F |) dx (3.2.8)

for some constant c ≡ c(n, sG, ν, L,M, ωM(·), |Ω|, γ).
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3.2.2 Proof of Theorem 3.2.2

Before the proof of main theorem, we state the definition of an N -function
G introduced in the previous section.

Definition 3.2.3. Φ : [0,∞) → [0,∞) is said to be an N-function with
index sΦ if Φ ∈ C1([0,∞)) ∩ C2((0,∞)) is an increasing convex function

such that lim
t→0+

Φ(t)
t

= 0, lim
t→∞

Φ(t)
t

= ∞ and there exists a positive constant

sΦ ≥ 1 satisfying

1

sΦ

≤ tΦ′′(t)

Φ′(t)
≤ sΦ (3.2.9)

for uniformly all t > 0.

Clearly, Φ satisfies ∆2 and ∇2 conditions (see for details [5, 94, 129, 195]).
As a consequence of (3.2.9), we easily observe that

1

sΦ

+ 1 ≤ tΦ′(t)

Φ(t)
≤ sΦ + 1 for every t > 0 (3.2.10)

and

min
{
λsΦ+1, λ

1
sΦ

+1
}

Φ(t) ≤ Φ(tλ) ≤ max
{
λsΦ+1, λ

1
sΦ

+1
}

Φ(t) (3.2.11)

for all s, t > 0. Let Φ be an N -function with the index sΦ. We also need the
following Young’s inequality [12], which will be used frequently later. There
exists a positive constant c ≡ c(sΦ) such that

s
Φ(t)

t
+ t

Φ(s)

s
≈ sΦ′(t) + tΦ′(s) ≤ εΦ(s) +

c

εsΦ
Φ(t) (3.2.12)

holds for all s, t > 0 and 0 < ε ≤ 1.
Given an N -function Φ with index sΦ, we also define a vector field VΦ :

Rn \ {0} → Rn by

VΦ(ξ) :=

(
Φ′(|ξ|)
|ξ|

) 1
2

ξ. (3.2.13)
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Then the following known fact will be used frequently (see for instance [92]):

|VΦ(ξ1)− VΦ(ξ2)|2 ≈ Φ′′(|ξ1|+ |ξ2|)|ξ1 − ξ2|2

≈ Φ′(|ξ1|+ |ξ2|)
|ξ1|+ |ξ2|

|ξ1 − ξ2|2
(3.2.14)

for every ξ1, ξ2 ∈ Rn with |ξ1|+|ξ2| > 0, where all the implied constant depend
only on sΦ. Moreover, we shall also use the following useful inequality several
times afterwards.

Lemma 3.2.4. Let Φ be an N-function with the index sΦ. Then there exists
a constant c ≡ c(sΦ) such that

Φ(|ξ1 − ξ2|) ≤ εΦ(|ξ1|) +
c

ε
|VΦ(ξ1)− VΦ(ξ2)|2 (3.2.15)

holds, whenever ε ∈ (0, 1) and ξ1, ξ2 ∈ Rn with |ξ1|+ |ξ2| > 0.

Proof. Firstly, using (3.2.11), we observe that

Φ(|ξ1 − ξ2|) ≤ Φ(2|ξ1|) + Φ(2|ξ2|) ≤ 2sΦ+1 (Φ(|ξ1|) + Φ(|ξ2|)) (3.2.16)

holds for every ξ1, ξ2 ∈ Rn. Then, it can be easily seen that

Φ(|ξ1 − ξ2|) ≤ c
Φ′(|ξ1 − ξ2|)

[Φ′′(|ξ1|+ |ξ2|)]1/2
[Φ′′(|ξ1|+ |ξ2|)]1/2|ξ1 − ξ2|

≤ τ
[Φ′(|ξ1 − ξ2|)]2

Φ′′(|ξ1|+ |ξ2|)
+
c

τ
Φ′′(|ξ1|+ |ξ2|)|ξ1 − ξ2|2

≤ cτΦ(|ξ1|+ |ξ2|) +
c

τ
|VΦ(ξ1)− VΦ(ξ2)|2

hold for some constant c ≡ c(sΦ) and every τ > 0, where we have applied the
property that the function Φ′ is increasing and Young’s inequality together
with the properties (3.2.9), (3.2.10) and (3.2.14). Now using (3.2.16) and
(3.2.11) in the resulting term of the last display and recalling τ > 0 is a free
parameter, we find

Φ(|ξ1 − ξ2|) ≤ τΦ(|ξ1 − ξ2|) + τΦ(|ξ1|) +
c

τ
|VΦ(ξ1)− VΦ(ξ2)|2
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with some constant c ≡ c(sΦ). In particular, we have

Φ(|ξ1 − ξ2|) ≤
τ

1− τ
Φ(|ξ1|) +

c

τ(1− τ)
|VΦ(ξ1)− VΦ(ξ2)|2.

Finally, replacing τ := ε
1+ε

for any ε ∈ (0, 1) in the last display, we arrive at
the desired inequality (3.2.15).

Using this vector field defined in (3.2.13), it’s convenient to formulate the
monotonicity properties of A appeared in (3.2.1) as follows:

〈A(x, z, ξ1)− A(x, z, ξ2), ξ1 − ξ2〉 ≈ |VG(ξ1)− VG(ξ2)|2 (3.2.17)

and

〈A(x, z, ξ), ξ〉 ≈ |VG(ξ)|2 ≈ G(|ξ|) (3.2.18)

for all x ∈ Ω, z ∈ R and ξ, ξ1, ξ2 ∈ Rn \ {0}.

Remark 3.2.5. Here we introduce the scaling invariant properties of the
equation (3.2.1). Let u ∈ W 1,G

0 (Ω) be a weak solution of (3.2.1) under the
assumptions (3.2.2) and (3.2.3)-(3.2.6). For fixed x0 ∈ Ω, r > 0, and λ > 0,
we define

Ã(x, z, ξ) :=
A(x0 + rx, λrz, λξ)

G′(λ)
, G̃(t) :=

G(λt)

G(λ)
,

ũ(x) :=
u(x0 + rx)

rλ
, and F̃ (x) :=

F (x0 + rx)

λ

for every x ∈ Ω̃ :=
{
y−x0

r
: y ∈ Ω

}
, ξ ∈ Rn, z ∈ R and t ≥ 0. Then the

followings hold:

1. G̃ is an increasing convex function satisfying the condition (3.2.9) that
means G̃ is an N-function with the index sG.

2. The newly defined nonlinearity Ã satisfies the following structure as-
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sumptions: 
〈
DξÃ(x, z, ξ)η, η

〉
≥ ν̃

(G̃)′(|ξ|)
|ξ|

|η|2,

|Ã(x, z, ξ)|+ |ξ||DξÃ(x, z, ξ)| ≤ L̃
G̃(|ξ|)
|ξ|

with some constants ν̃ = ν̃(ν, sG) and L̃ = L̃(L, sG), whenever x, η ∈
Rn, ξ ∈ Rn \ {0} and z ∈ R.

3. Clearly, ũ ∈ W 1,G̃
0 (Ω̃), F̃ ∈ LG̃(Ω̃;Rn), and they satisfy∫

Ω̃

〈
Ã(x, ũ,Dũ), Dϕ

〉
dx =

∫
Ω̃

〈
G̃(|F̃ |)
|F̃ |

F̃ , Dϕ

〉
dx

for all ϕ ∈ W 1,G̃
0 (Ω̃).

4. By the very definition ‖ũ‖L∞(Ω̃) ≤M/(λr), it holds that

|Ã(x, z1, ξ)− Ã(x, z2, ξ)| ≤ ωM(λr|z1 − z2|)G̃′(|ξ|). (3.2.19)

5. If A is (δ, R)-vanishing, then Ã is (δ, R
r
)-vanishing, and if Ω is (δ, R)-

Reifenberg flat, then Ω̃ is (δ, R
r
)-Reifenberg flat.

Based on Remark 3.2.5, we shall proceed a series of comparison estimates
in the scaled version with the parameters (ρ,K) from the original given two
parameters (r, λ), where the free parameter K will be determined afterwards.
In what follows, for ρ = 1, 2, 3, 4 or K, we denote

Bρ = Bρ(0), Ω̃ρ := Ω̃ ∩Bρ, B+
ρ (0) := {x ∈ Bρ : xn > 0},

where Ω̃ has been defined by Remark 3.2.5. Before we start the comparison

estimates, let us provide a Poincaré type inequality for functions of W 1,G̃
0 (Ω̃ρ).

Proposition 3.2.6. There exists a constant c ≡ c(n, sG) such that∫
Ω̃ρ

G̃(|f |) dx ≤ c
(
ρ

1
sG

+1
+ ρsG+1

)∫
Ω̃ρ

G̃(|Df |) dx
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holds, whenever f ∈ W 1,G̃
0 (Ω̃ρ).

Proof. By redefining f ≡ 0 on Bρ \ Ω̃, one can assume that f ∈ W 1,G̃(Bρ).
Then we are able to apply Poincaré inequality [92, Theorem 7]. In turn, it
yields that ∫

Bρ

G̃

(
|f |
ρ

)
dx ≤ c

∫
Bρ

G̃ (|Df |) dx

with some constant c ≡ c(n, sG). Therefore, using (3.2.11) and recalling that
f ≡ 0 on Bρ \ Ω̃, we obtain the desired estimate.

We only consider the boundary case since the interior case can be handled
in a similar way. By the scaling invariance property and the definition of the
Reifenberg flat domain introduced in Remark 3.2.5, it suffices to proceed the
comparison estimates for ũ instead of u. Let K ≥ 4 be a free parameter which
will be chosen in Lemma 3.2.7, and ũ be a localized solution in Ω̃K of the
equation (3.2.1) as follows:−divÃ(x, ũ,Dũ) = −div

(
G̃′(|F̃ |)
|F̃ |

F̃

)
in Ω̃K ,

ũ = 0 on ∂Ω̃ ∩BK .

(3.2.20)

Throughout this section we suppose that

‖ũ‖L∞(Ω̃) ≤M/(Kr), (3.2.21)∫
Ω̃K

G̃(|Dũ|) dx ≤ 1, (3.2.22)

and ∫
Ω̃K

G̃(|F̃ |) dx ≤ δ. (3.2.23)

We further assume that∫
Ω̃K

θ(BK)(x, (ũ)Ω̃5
) dx ≤ δ

and BK ∩ {x : xn > 0} ⊂ Ω̃K ⊂ BK ∩ {x : xn > −2Kδ}.
(3.2.24)
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First comparison estimate: Under the assumptions (3.2.21)-(3.2.23), let

w ∈ W 1,G̃(Ω̃K) be the weak solution of the following homogeneous problem:{
−divÃ(x, ũ,Dw) = 0 in Ω̃K

w = ũ on ∂Ω̃K .
(3.2.25)

Then we collect the known facts regarding w.

1. (Energy estimate) There exists a constant c ≡ c(n, sG, ν, L) such that∫
Ω̃K

G̃(|Dw|) dx ≤
∫

Ω̃K

G̃(|Dũ|) dx ≤ c. (3.2.26)

2. (Comparison estimate) By taking w − ũ as a test function to the
equations (3.2.20) and (3.2.25), respectively, following the proof of [70,
Lemma 5.3] and applying Lemma 3.2.4, for any τ, τ1 ∈ (0, 1), we dis-
cover that∫

Ω̃K

G̃(|Dũ−Dw|) dx

≤ c

τ1

∫
Ω̃K

|VG̃(Dũ)− VG̃(Dw)|2 dx+ τ1

∫
Ω̃K

G̃(|Dũ|) dx

≤ c

τ1

∫
Ω̃K

G̃′(|F̃ |)|Dũ−Dw| dx+ τ1

∫
Ω̃K

G̃(|Dũ|) dx

≤ c

τ1

(
δ

τ sG
+ τ

)
+ cτ1

for some constant c ≡ c(n, sG, ν, L), where we have applied (3.2.12)

for G̃ and (3.2.26). As a result, by choosing small τ1 := δ
1

2(1+sG) and

τ := δ
1

1+sG in the last display, we find that∫
Ω̃K

G̃(|Dũ−Dw|) dx ≤ cδ
1

2(1+sG) . (3.2.27)

3. (Higher integrability) According to the proof of the higher integrability
for (3.2.25) [70, Lemma 5.6] with (3.2.26), there exists a small constant
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σ0 ≡ σ0(n, sG, ν, L) > 0 such that(∫
Ω̃3

G̃1+σ0(|Dw|) dx
) 1

1+σ0

≤ c

∫
Ω̃K

G̃(|Dw|) dx ≤ c (3.2.28)

with some constant c ≡ c(n, sG, ν, L).

4. (Oscillation estimate) Using [167, Corollary 1.5], there exists a constant
β ∈ (0, 1), depending only on n, sG, ν and L such that

osc
Ω̃3

w ≤ c

(
3

K

)β
‖w‖L∞(Ω̃K) (3.2.29)

holds for some c ≡ c(n, sG, ν, L).

Second comparison estimate: We consider a function v ∈ W 1,G̃(Ω̃3)
being the weak solution of the following problem:{

−divÃ(x, (ũ)Ω̃3
, Dv) = 0 in Ω̃3

v = w on ∂Ω̃3.
(3.2.30)

Then we provide a comparison estimate between functions w and v in the
next lemma.

Lemma 3.2.7. For any ε ∈ (0, 1), there exist two constants δ ∈ (0, 1/8)
and K ≥ 4 depending only on n, sG, ν, L,M, ωM(·) and ε such that if w ∈
W 1,G̃(Ω̃K) is the weak solution of (3.2.25) and v ∈ W 1,G̃(Ω̃3) is the weak so-
lution of (3.2.30) under the assumptions (3.2.21)-(3.2.24), then the following
comparison estimate holds:∫

Ω̃3

G̃(|Dw −Dv|) dx ≤ ε. (3.2.31)

Proof. First we show that, for any τ ∈ (0, 1), we have∫
Ω̃3

G̃(|Dw −Dv|) dx

≤ τ

∫
Ω̃3

G̃(|Dw|) dx+
c

τ sG+1

∫
Ω̃3

ωM(Kr|ũ− (ũ)Ω̃3
|)G̃(|Dw|) dx

(3.2.32)
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with c ≡ c(n, sG, ν, L,M, ωM(·)). Indeed, taking w − v as a test function in
both (3.2.25) and (3.2.30), we see∫

Ω̃3

〈
Ã(x, ũ,Dw), Dw −Dv

〉
dx =

∫
Ω̃3

〈
Ã(x, (ũ)Ω̃3

, Dv), Dw −Dv
〉
dx.

On the other hand, recalling (3.2.19) and Young’s inequality (3.2.12), we
obtain that ∫

Ω̃3

〈
Ã(x, (ũ)Ω̃3

, Dw)− Ã(x, ũ,Dw), Dw −Dv
〉
dx

≤
∫

Ω̃3

ωM(Kr|ũ− (ũ)Ω̃3
|)G̃(|Dw|)
|Dw|

|Dw −Dv| dx

≤ c

τ sG1

∫
Ω̃3

ωM(Kr|ũ− (ũ)Ω̃3
|)G̃(|Dw|) dx

+ τ1

∫
Ω̃3

ωM(Kr|ũ− (ũ)Ω̃3
|)G̃(|Dw −Dv|) dx

for some constant c ≡ c(n, sG, ν, L) and for any τ1 ∈ (0, 1). Recalling that
|ũ− (ũ)Ω̃3

| ≤ 2M/(Kr) by the assumption (3.2.21) and using Lemma 3.2.4,
the property (3.2.17) and (3.2.19), we have that∫

Ω̃3

G̃(|Dw −Dv|) dx

≤ τ

2

∫
Ω̃3

G̃(|Dw|) dx

+
c

τ

∫
Ω̃3

〈
Ã(x, (ũ)Ω̃3

, Dw)− Ã(x, (ũ)Ω̃3
, Dv), Dw −Dv

〉
dx

=
τ

2

∫
Ω̃3

G̃(|Dw|) dx

+
c

τ

∫
Ω̃3

〈
Ã(x, (ũ)Ω̃3

, Dw)− Ã(x, ũ,Dw), Dw −Dv
〉
dx

≤ τ

2

∫
Ω̃3

G̃(|Dw|) dx+
c∗
τ sG1 τ

∫
Ω̃3

ωM(Kr|ũ− (ũ)Ω̃3
|)G̃(|Dw|) dx

+
c∗ ωM(2M)τ1

τ

∫
Ω̃3

G̃(|Dw −Dv|) dx
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holds for every τ, τ1 ∈ (0, 1) with some constants c∗ ≡ c∗(n, sG, ν, L). Choos-
ing τ1 := τ/(2c∗ ωM(2M)) after some manipulations, we arrive at (3.2.32).

We next show that there exists a constant c0 ≡ c0(n, sG, ν, L,M, ωM(·))
such that ∫

Ω̃3

G̃(|Dw −Dv|) dx ≤ c0G̃

(
M

Kr

)
. (3.2.33)

For this, let η ∈ C∞0 (B4) be a cut-off function such that 0 ≤ η ≤ 1, η ≡ 1
in B3 and |Dη| ≤ 2. By taking ηsG+1w as a test function in the equation
(3.2.25), using (3.2.2) and Young’s inequality (3.2.12), we have that∫

Ω̃4

ηsG+1G̃(|Dw|) dx ≤ c

∫
Ω̃4

〈
Ã(x, ũ,Dw), ηsG+1Dw

〉
dx

= −c(sG + 1)

∫
Ω̃4

〈
Ã(x, ũ,Dw), ηsGwDη

〉
dx

≤ c

∫
Ω̃4

ηsG|w|(G̃)′(|Dw|)
|Dw|

|Dη| dx

≤
∫

Ω̃4

ηsG
(

(τη)G̃(|Dw|) +
c

(τη)sG
G̃(|w||Dη|)

)
dx

≤ τ

∫
Ω̃4

ηsG+1G̃(|Dw|) dx+ c(τ)

∫
Ω̃4

G̃(|w|) dx

with some constant c(τ) ≡ c(n, sG, ν, L, τ). By choosing τ := 1/2 and ob-
serving that η ≡ 1 on Ω̃3 in the last display, we conclude∫

Ω̃3

G̃(|Dw|) dx ≤ c

∫
Ω̃4

G̃(|w|) dx.

Using the last display and recalling |ũ− (ũ)Ω̃3
| ≤ 2M/(Kr) in (3.2.32) with

fixed τ ≡ 1/2, we conclude that∫
Ω̃3

G̃(|Dw −Dv|) dx ≤ ωM(2M)

∫
Ω̃3

G̃(|Dw|) dx+ c

∫
Ω̃3

G̃(|Dw|) dx

≤ c

∫
Ω̃4

G̃(|w|) dx

with c ≡ c(n, sG, ν, L,M, ωM(·)). Therefore, (3.2.33) follows from the maxi-
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mum principle that

‖w‖L∞(Ω̃4) ≤ ‖w‖L∞(Ω̃K) ≤M/(Kr).

If c0G̃( M
Kr

) ≤ ε, then the conclusion directly holds by (3.2.33). So, we
consider the remaining case that

c0G̃

(
M

Kr

)
> ε (3.2.34)

holds. Recalling that ωM(·) is a modulus of continuity, we can choose a small
δ0 ≡ δ0(sG,M, ωM(·), τ) ∈ (0, 1) such that

0 < ωM(ρ) < τ sG+2 for all ρ ∈ (0, δ0).

On the other hand, for any α ∈ (0, α0) with α0 := 1
1+sG

logδ0
1
2
, one can see

that

[G̃(δ0)]α =

[
G(Kδ0)

G(K)

]α
≥ δ

α(1+sG)
0 ≥ 1

2
,

where we have used (3.2.11). Then in the view of the last two display it
follows that

ωM(ρ) ≤ τ sG+2 + 2ωM(2M)G̃(ρ)α for all ρ ∈
(

0,
2M

Kr

]
. (3.2.35)

Using the last display in (3.2.32) and absorbing the terms, we find that∫
Ω̃3

G̃(|Dw −Dv|) dx

≤ cτ

∫
Ω̃3

G̃(|Dw|) dx+
c

τ sG+1

∫
Ω̃3

G̃(Kr|ũ− (ũ)Ω̃3
|)αG̃(|Dw|) dx.

(3.2.36)

Now we estimate the second term in the above display. For this, we first

take α ≤ min
{

σ0

1+σ0
, α0

}
in such a way that α ≡ α(n, sG, ν, L,M, ωM(·), τ),

where σ0 is the higher integrability exponent that has been defined in (3.2.28).
Therefore, using Hölder’s inequality and higher integrability (3.2.28), we find
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that∫
Ω̃3

G̃(Kr|ũ− (ũ)Ω̃3
|)αG̃(|Dw|) dx

≤
(∫

Ω̃3

G̃(Kr|ũ− (ũ)Ω̃3
|) dx

)α(∫
Ω̃3

G̃(|Dw|)
1

1−α dx

)1−α

≤ c

(∫
Ω̃3

G̃(Kr|ũ− (ũ)Ω̃3
|) dx

)α(∫
Ω̃3

G̃(|Dw|)1+σ0 dx

) 1
1+σ0

≤ c

(∫
Ω̃3

G̃(Kr|ũ− (ũ)Ω̃3
|) dx

)α
(3.2.37)

for some c ≡ c(n, sG, ν, L,M, ωM(·)), where our choice of α guarantees the
validity of 1

1−α ≤ 1 + σ0. Now, it follows from the triangle and Jensen’s
inequalities that∫

Ω̃3

G̃(Kr|ũ− (ũ)Ω̃3
|) dx

≤ c

∫
Ω̃3

G̃(Kr|ũ− w|) dx+ c

∫
Ω̃3

G̃(Kr|w − (w)Ω̃3
|) dx

+ c

∫
Ω̃3

G̃
(
Kr|(w)Ω̃3

− (ũ)Ω̃3
|
)
dx

≤ c∗

∫
Ω̃3

G̃(Kr|ũ− w|) dx+ c∗

∫
Ω̃3

G̃(Kr|w − (w)Ω̃3
|) dx

=: c∗(I3 + I4)

(3.2.38)

for some c∗ ≡ c∗(n, sG). By recalling (3.2.34) and (3.2.11), notice that

ε < c0G

(
M

Kr

)
≤ cG

(
1

Kr

)
≤ c

(
1

Kr

) 1
sG

+1

holds for some constant c ≡ c(n, sG, ν, L,M) if Kr ≥ 1. Therefore, one can
see that

c

εsG
>

c

2εsG
+ 1 ≥ c

(
(Kr)1+sG + 1

)
(3.2.39)

with some constant c ≡ c(n, sG, ν, L,M). The last display together with
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(3.2.27), (3.2.11) and applying Proposition 3.2.6 implies that

I3 ≤ c

∫
Ω̃4

max
{

(Kr)sG+1, (Kr)1/sG+1
}
G̃(|ũ− w|) dx

≤ c

∫
Ω̃4

(
1 + (Kr)sG+1

)
G̃(|ũ− w|) dx

≤ c

εsG

∫
Ω̃K

G̃(|ũ− w|) dx

≤ c(1 +KsG+1)

εsG

∫
Ω̃K

G̃(|Dũ−Dw|) dx

≤ cδ
1

2(1+sG)

εsG
Kn+sG+1

for some c ≡ c(n, sG, ν, L,M, ωM(·)). The remaining term I4 in (3.2.38) can
be controlled using the oscillation estimate (3.2.29) as follows:

I4 =

∫
Ω̃3

G̃(Kr|w − (w)Ω̃3
|) dx ≤ c

∫
Ω̃3

G̃

(
Kr

(
3

K

)β
‖w‖L∞(Ω̃K)

)
dx

≤ c

∫
Ω̃3

G̃(M)

(
3

K

)β(1/sG+1)

dx ≤ c

Kβ(1/sG+1)

for some c ≡ c(n, sG, ν, L,M), where we have used the fact that ‖w‖L∞(Ω̃K) ≤
‖w‖L∞(Ω̃) ≤ M

Kr
and (3.2.11). Inserting the last two displays into (3.2.38), we

conclude that∫
Ω̃3

G̃(|ũ− (ũ)Ω̃5
|) dx ≤ c

(
cδ

1
2(1+sG)

εsG
Kn+sG+1 +

1

Kβ(1/sG+1)

)

with some constant c ≡ c(n, sG, ν, L,M, ωM(·)). This estimate together with
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(3.2.36) implies that the following inequality∫
Ω̃3

G̃(|Dw −Dv|) dx

≤ c2

(
τ + c(τ)

(
cδ

1
2(1+sG)

εsG
Kn+sG+1 +

1

Kβ(1/sG+1)

)α)

≤ c2τ + c3(τ)

(
δ

1
2(1+sG)

εsG

)α

K(n+sG+1)α + c3(τ)

(
1

K

)αβ(1/sG+1)

.

holds for any numbers τ ∈ (0, 1), K ≥ 4 and δ ∈ (0, 1/8) to be chosen
in a few lines, where the dependencies of constants are as follows: c2 ≡
c2(n, sG, ν, L,M, ωM(·)), c3(τ) ≡ c3(τ)(n, sG, ν, L,M, ωM(·), τ),
α ≡ α(n, sG, ν, L,M, ωM(·), τ) and β ≡ β(n, sG, ν, L). Choosing τ small, K
sufficiently large and then finally select δ sufficiently small in such a way that
the following inequalities hold:

c2τ ≤
ε

3
, c3(τ)

(
1

K

)αβ(1/sG+1)

≤ ε

3

and c3(τ)

(
δ

1
2(1+sG)

εsG

)α

K(n+sG+1)α ≤ ε

3
.

Therefore, the claim (3.2.31) follows.

Third comparison estimate: Finally, we consider the limiting homo-
geneous equation: {

−divĀ(Dh) = 0 in B+
2

h = 0 on B2 ∩ {xn = 0}

with Ā(ξ) :=

∫
B+

2

Ã(x, (ũ)Ω̃3
, ξ) dx.

(3.2.40)

Under the assumptions of Lemma 3.2.7, there exists a weak solution h ∈
W 1,G̃(B+

2 ) to the equation (3.2.40) such that

‖G̃(|Dh̄|)‖L∞(Ω̃1) ≤ cb and

∫
Ω̃2

G̃(|Dv −Dh̄|) dx ≤ ε (3.2.41)
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for some constant cb ≡ cb(n, sG, ν, L) > 1, where h̄ is the null extension of
h from B+

2 to B2. Indeed, the first inequality of (3.2.41) follows from [169,
Theorem 1.2]. Then following the proof of [70, Lemma 5.4], we obtain the
second inequality of (3.2.41). In the case of interior estimates, we consider
the following equation:{
−divĀ(Dh) = 0 in B2

h = v on ∂B2

with Ā(ξ) :=

∫
B2

Ã(x, (ũ)B3 , ξ) dx. (3.2.42)

We are also able to obtain the exactly same estimates as (3.2.41), with h =
h̄. Taking into account (3.2.40)-(3.2.42) and combining all of the estimates
obtained in (3.2.27), (3.2.41) and the one by Lemma 3.2.7 based on the
triangle inequality, we can now achieve the following lemma.

Lemma 3.2.8. For any ε ∈ (0, 1), there exist constants K ≥ 4 and δ ∈
(0, 1/8), both depending on n, sG, ν, L,M, ωM(·) and ε such that if

ũ ∈ W 1,G̃(Ω̃K) is a weak solution of (3.2.20) under the assumptions (3.2.21)-

(3.2.24), there exists the weak solution h ∈ W 1,G̃(B2) of (3.2.42) for the

interior case or a weak solution h ∈ W 1,G̃(B+
2 ) of (3.2.40) for the boundary

case such that

‖G̃(|Dh̄|)‖L∞(Ω̃1) ≤ cb and

∫
Ω̃2

G̃(|Dũ−Dh̄|) dx ≤ ε

for some constant cb ≡ cb(n, sG, ν, L) > 1, where h̄ ∈ W 1,G̃(Ω̃2) is equal to h
for the interior case, and h̄ is the zero extension of h from B+

2 to B2 for the
boundary case.

Proof of Theorem 1.1. The proof is based on the techniques employed in [70,
Theorem 2.5] and initially introduced in [3]. For λ > 0, we define

E(u, λ) := {x ∈ Ω : G(|Du(x)|) > λ}

and

Hy(ρ) :=

∫
Ωρ(y)

[
G(|Du|) +

1

δ
G(|F |)

]
dx (y ∈ Ω, ρ > 0).

Here, δ ∈ (0, 1/8) will be determined later, depending only on
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n, sG, ν, L,M, ωM(·) and γ. By the Lebesgue differentiation theorem, we have

lim
r→0

Hy(r) ≥ G(|Du(x)|) > λ (3.2.43)

for a.e. y ∈ E(u, λ). Let ε be a positive number to be determined by the end
of the proof and consider a number K ≥ 4 as given in Lemma 3.2.8 depending
on n, sG, ν, L,M, ωM(·) and ε, where in what follows we fix M := ‖u‖L∞(Ω).
From now on, we only consider the values of λ satisfying the following bounds:

λ ≥
(

(8000K)n
|Ω|
|BR|

+ 1

)
λ0

for λ0 :=

∫
Ω

[
G(|Du|) +

1

δ
G(|F |)

]
dx,

(3.2.44)

where R is a number coming from the assumptions of Theorem 3.2.2. It can
be easily seen that for a given y ∈ E(u, λ),

Hy(r) ≤
|Br(y)|
|Ωr(y)|

|Ω|
|Br(y)|

λ0 ≤ (8000K)n
|Ω|
|BR|

λ0 < λ

for any r ∈
[

R

2000K
,
R

2

]
.

(3.2.45)

By (3.2.43) and (3.2.45), for a.e. y ∈ E(u, λ), there exists ry ∈
(
0, R

2000K

)
such that

Hy(ry) = λ and Hy(r) < λ for all r ∈ (ry, R/2].

Now by the Vitali covering lemma, there exist mutually disjoint open balls
{Bri(yi)}∞i=1 for yi ∈ E(u, λ) and ri ∈ (0, R

2000K
) such that

E(u, λ) ⊂
∞⋃
i=1

Ω5ri(yi) ∪ {a set of measure zero}, (3.2.46)∫
Ωri (yi)

[
G(|Du|) +

1

δ
G(|F |)

]
dx = λ, (3.2.47)
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and ∫
Ωr(yi)

[
G(|Du|) +

1

δ
G(|F |)

]
dx < λ for all r ∈ (ri, R/2]. (3.2.48)

Then since R
5ri

> 5K > 5, following the proof of [70, Section 6] and applying
(3.2.48) and Lemma 3.2.8 with the scaling invariant property introduced in
Section 3.2.2, we see that there exists hi ∈ W 1,∞(Ω5ri(yi)) such that

‖G(Dhi)‖L∞(Ω5ri
(yi)) < c(n)cbλ

and

∫
Ω5ri

(yi)

G(|Du−Dhi|) dx < c(n)ελ,
(3.2.49)

where cb > 1 is the same one determined by Lemma 3.2.8.
Let cm := 2sG+2 · c(n)cb ≥ 1. For a.e x ∈ E(u, cmλ) ∩ Ω5ri(yi), after

elementary manipulations, we find

G(|Du(x)|) ≤ 2sG+1G(|Du(x)−Dhi(x)|) + 2sG+1G(|Dhi(x)|)
≤ 2sG+1G(|Du(x)−Dhi(x)|) + 2sG+1c(n)cbλ

≤ 2sG+1G(|Du(x)−Dhi(x)|) +
1

2
G(|Du(x)|).

In particular, we have

G(|Du(x)|) ≤ 2sG+2G(|Du(x)−Dhi(x)|) a.e x ∈ E(u, cmλ) ∩ Ω5ri(yi).

Therefore, using (3.2.49), it follows that∫
E(u,cmλ)∩Ω5ri

(yi)

G(|Du|) dx ≤ c

∫
Ω5ri

(yi)

G(|Du−Dhi|) dx

≤ c4|Ωri(yi)|ελ
(3.2.50)

for some constant c4 ≡ c4(n, sG, ν, L). On the other hand, (3.2.47) implies
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that

|Ωri(yi)| ≤
2

λ

∫
E(u,λ4 )∩Ωri (yi)

G(|Du|) dx

+
2

δλ

∫
E(F, δλ4 )∩Ωri (yi)

G(|F |) dx,
(3.2.51)

where we denote by

E(F, λ) := {x ∈ Ω : G(|F (x)|) > λ}.

Now, inserting (3.2.51) into (3.2.50), it yields that∫
E(u,cmλ)∩Ω5ri

(yi)

G(|Du|) dx

≤ 2c4ε

∫
E(u,λ4 )∩Ωri (yi)

G(|Du|) dx+
2c4ε

δ

∫
E(F, δλ4 )∩Ωri (yi)

G(|F |) dx.

Meanwhile, the choice of cm ≥ 1 and (3.2.46) imply that

E(u, cmλ) ⊂
∞⋃
i=1

(E(u, cmλ) ∩ Ω5ri(yi)) ∪ {a set of measure zero}.

Combining the last two displays, we conclude∫
E(u,cmλ)

G(|Du|) dx ≤
∞∑
i=1

∫
E(u,cmλ)∩Ω5ri

(yi)

G(|Du|) dx

≤ 2c4ε
∞∑
i=1

(∫
E(u,λ4 )∩Ωri (yi)

G(|Du|) dx+
1

δ

∫
E(F, δλ4 )∩Ωri (yi)

G(|F |) dx

)

≤ 2c4ε

(∫
E(u,λ4 )

G(|Du|) dx+
1

δ

∫
E(F, δλ4 )

G(|F |) dx

)
,

where we have used the fact that {Bri(yi)}∞i=1 is a collection of mutually
disjoint balls. After arguing similarly as it has been done in [70, Section 6]
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CHAPTER 3. CALDERÓN-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

and choosing ε ∈ (0, 1) so small such that 2c4(c(n)cb)
γ−1ε < 1, we have∫

Ω

[G(|Du|)]γ dx ≤ cλγ0 + c

∫
Ω

[G(|F |)]γ dx (3.2.52)

for some c ≡ c(n, sG, ν, L,M, ωM(·), |Ω|, γ). Then we find small
δ ≡ δ(n, sG, ν, L,M, ωM(·), γ) > 0 from Lemma 3.2.8. Here, we note that the
following energy estimate holds for the problem (3.2.1):∫

Ω

G(|Du|) dx ≤ c

∫
Ω

G(|F |) dx

for some c ≡ c(n, sG, ν, L). This together with Jensen’s inequality yields

λγ0 =

(∫
Ω

[
G(|Du|) +

1

δ
G(|F |)

]
dx

)γ
≤ c

∫
Ω

G(|F |)γ dx.

Inserting the above inequality into (3.2.52), it yields (3.2.8), which completes
the proof.

3.3 Local estimates for non-uniformly elliptic

problems with BMO nonlinearity

In this section, we provide a new approach to obtain Calderón-Zygmund
type estimates for non-uniformly elliptic equations with discontinuous non-
linearities of double phase growth. This approach, which is based on a small
higher integrability result for the gradient of weak solutions to the associ-
ated homogeneous problems together with extrapolation from Muckenhoupt
weights, enables us to find a proper comparison estimate of approximation by
imposing merely a small BMO assumption on the nonlinearity with respect
to the x-variable. As a consequence, we are able to prove an optimal regu-
larity theory for a larger class of double phase problems with discontinuous
nonlinearities in the literature.
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3.3.1 Hypothesis and main results

To present our gradient estimates, we display the precise structure assump-
tions of the problem. With the assumptions (1.2.2)–(1.2.4) and the notation

H(x, t) = tp + a(x)tq (x ∈ Ω, t ≥ 0), (3.3.1)

we actually deal with the following equation of the form:

div(A(x,Du)) = div(|F |p−2F + a(x)|F |q−2F ) in Ω. (3.3.2)

Here, F = (f1, . . . , fn) : Ω→ Rn is a given vector field such that H(x, |F |) ∈
L1(Ω), and the given nonlinearity A(x, z) : Ω× Rn → Rn is a Carathéodory
vector field which is C1(Rn \ {0})–regular for z variable and satisfies|A(x, z)||z|+ |∂zA(x, z)||z|2 ≤ LH(x, |z|)

ν
H(x, |z|)
|z|2

|ξ|2 ≤ 〈∂zA(x, z)ξ, ξ〉
(3.3.3)

for any ξ ∈ Rn with some constants 0 < ν ≤ L < ∞. A weak solution u
of (3.3.2) belongs to the Musielak-Orlicz space W 1,H(Ω) which is specifically
defined in Chapter 2.

We consider a smallness assumption on x 7→ A(x,z)
|z|p−1+a(x)|z|q−1 in the BMO

sense, uniformly in z, as we now state.

Definition 3.3.1. We define

θ(A;Br(y))(x)

:= sup
z∈Rn\{0}

∣∣∣∣∣ A(x, z)

|z|p−1 + a(x)|z|q−1
−
(

A(·, z)
|z|p−1 + a(·)|z|q−1

)
Br(y)

∣∣∣∣∣
≤ 2L.

(3.3.4)

With two parameters R ∈ (0, 1
2
) and δ ∈ (0, 1

8
), we call that A is (δ, R)-

vanishing if the following holds:

sup
0<r≤R

sup
Br(y)⊂Ω

∫
Br(y)

θ(A;Br(y))(x) dx ≤ δ. (3.3.5)
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With the convenient notation

data = {n, p, q, α, ‖a‖0,α, ν, L, ‖H(·, |Du|)‖L1(Ω)},

we now state our main theorem.

Theorem 3.3.2. Under the assumptions (1.2.2)–(1.2.4) and (3.3.3), sup-
pose H(x, |F |) ∈ Lγ(Ω) for some γ > 1. Then together with the assumption
(1.2.8), there exists a constant δ = δ(data, γ) > 0 such that if A is (δ, R)-
vanishing for some small R > 0, any weak solution u ∈ W 1,H(Ω) of (3.3.2)
satisfies H(x, |Du|) ∈ Lγloc(Ω). Moreover, for any Ω0 b Ω there exists a ra-
dius R = R(data, dist(Ω0, ∂Ω), γ, ‖H(x, |F |)‖Lγ(Ω)) > 0 such that for each
Br(y) ⊂ Ω0 with 0 < 2r < R and BR(y) ⊂ Ω, we have∫

Br(y)

H(x, |Du|)γ dx

≤ c

(∫
B2r(y)

H(x, |Du|) dx
)γ

+ c

∫
B2r(y)

H(x, |F |)γ dx
(3.3.6)

for some constant c = c(data, dist(Ω0, ∂Ω), γ, ‖H(x, |F |)‖Lγ(Ω)).

We then explain why (1.2.8) is needed when treating double phase growth
problems with discontinuous coefficients.

Remark 3.3.3. Let Ω = BR(0) for some R > 0, and let the constants
n, p, q, α satisfy (1.2.2)–(1.2.4). Suppose that the function a(x) ∈ C0,α(BR(0))
defined in (1.2.3) is such that{

a(x) = 0 if x ∈ B+
R(0) := BR(0) ∩ {x ∈ Rn : xn ≥ 0}

a(x) > 0 if x ∈ B−R(0) := BR(0) ∩ {x ∈ Rn : xn < 0}.

With F being a given vector field as above, we now consider the following
equation:

−div[(1 + a(x)|Du|q−p)Ã(x,Du)] = −div[|F |p−2F + a(x)|F |q−2F ] in BR(0),

where Ã(x, z) : BR(0)× Rn → Rn is a Carathéodory vector field with Ã(x, ·)
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being C1(Rn \ {0})-regular such that{
|Ã(x, z)||z|+ |∂zÃ(x, z)||z|2 ≤ L|z|p

ν|z|p−2|ξ|2 ≤
〈
∂zÃ(x, z)ξ, ξ

〉 (3.3.7)

for any ξ ∈ Rn and some constants 0 < ν ≤ L < ∞. It is indeed necessary
to assume (3.3.7) on Ã(x, z) for x ∈ B+

R(0), since a(x) = 0 in this set.
Now let us denote Φ : BR(0)× (R+∪{0})→ R and B : BR(0)×Rn → Rn

by

Φ(x, t) = 1 + a(x)tq−p and B(x, z) := Φ(x, |z|)Ã(x, z).

It is also necessary to assume the following ellipticity, considering the case
of x ∈ B−R(0): |B(x, z)||z|+ |∂zB(x, z)||z|2 ≤ L̃H(x, |z|)

ν̃
H(x, |z|)
|z|2

|ξ|2 ≤ 〈∂zB(x, z)ξ, ξ〉
(3.3.8)

for any ξ ∈ Rn and some constants 0 < ν̃ ≤ L̃ <∞. But in this case,

∂zB(x, z) = ∂tΦ(x, |z|) z
|z|
⊗ Ã(x, z) + Φ(x, z)∂zÃ(x, z)

and so by (3.3.7),

〈∂zB(x, z)ξ, ξ〉
≥ −|∂tΦ(x, |z|)||Ã(x, z)||ξ|2 + Φ(x, z)|∂zÃ(x, z)||ξ|2

≥ −L(q − p)a(x)|z|q−p−1|z|p−1|ξ|2 + ν(1 + a(x)|z|q−p)|z|p−2|ξ|2

≥ (ν − L(q − p))(1 + a(x)|z|q−p)|z|p−2|ξ|2

≥ (ν − L(q − p))H(x, |z|)
|z|2

|ξ|2.

Thus to hold true (3.3.8), we need to assume that ν̃ := ν − L(q − p) > 0,
which is exactly our additional structure assumption (1.2.8). We also point
out that (1.2.8) is to be used in Lemma 3.3.9 and its proof.
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3.3.2 Preliminaries and basic regularity results

To use the extrapolation in the proof, we also record the conditions (A0),
(A1), (aInc)s1 and (aDec)s2 for constants s1, s2 > 0 concerning a given func-
tion ϕ(x, t) : Ω× [0,∞)→ [0,∞).

• (A0) There exists a constant M ≥ 1 such that M−1 ≤ ϕ(x, 1) ≤M for
every x ∈ Ω.

• (aInc)s1 The map t 7→ ϕ(x,t)
ts1

is almost increasing with constant M ≥ 1,
uniformly in x ∈ Ω, i.e., for any 0 < t1 < t2 <∞, there holds

ϕ(x, t1)

ts11

≤M
ϕ(x, t2)

ts12

.

• (aDec)s2 The map t 7→ ϕ(x,t)
ts2

is almost decreasing with constant M ≥ 1,
uniformly in x ∈ Ω, i.e., for any 0 < t1 < t2 <∞, there holds

ϕ(x, t2)

ts22

≤M
ϕ(x, t1)

ts21

.

• (A1) Assuming ϕ(x, t) satisfies (aInc)1, ϕ(x, t) is said to satisfy (A1)
condition if there exists a constant M ≥ 1 such that for any Br b Ω
with |Br| < 1,

ϕ+
Br

(t) ≤Mϕ−Br(t) for all t > 0 with ϕ−Br(t) ∈ [1, |Br|−1], (3.3.9)

where ϕ+
Br

(t) := sup
x∈Br

ϕ(x, t) and ϕ−Br(t) := inf
x∈Br

ϕ(x, t).

We sometimes regard H as the following one, other than (3.3.1):

H(x, z) = |z|p + a(x)|z|q (x ∈ Ω, z ∈ Rn). (3.3.10)

For the comparison estimates, we also need the following higher integra-
bility results. We refer to [84, Theorem 4] for the proof.

Lemma 3.3.4. Let u ∈ W 1,H(Ω) be a weak solution of (3.3.2) under the
assumptions (1.2.2)–(1.2.4), (3.3.3) and H(x, F ) ∈ Lγ(Ω) for some γ > 1.
Then there exists a constant σ0 = σ0(data) ≤ γ − 1 such that H(x,Du) ∈
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L1+σ0
loc (Ω). Moreover, for any B2ρ ⊂ Ω and σ ∈ (0, σ0] we have the estimate(∫

Bρ

H(x,Du)1+σ dx

) 1
1+σ

≤ c

∫
B2ρ

H(x,Du) dx+ c

(∫
B2ρ

H(x, F )1+σ dx

) 1
1+σ

for some c = c(data). Moreover, for any Ω0 b Ω and σ ∈ (0, σ0], we have

‖H(x,Du)1+σ‖L1(Ω0) ≤ c (3.3.11)

for some constant c = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω)).

Next, we provide the following lemma which will be frequently used for
our comparison estimates.

Lemma 3.3.5 ([16, 18]). For each x ∈ Ω and z1, z2 ∈ Rn we have

H(x, z1 − z2) ≤ εH(x, z1) + c(ε) 〈A(x, z1)− A(x, z2), z1 − z2〉 (3.3.12)

for any ε ∈ (0, 1) with c(ε) = c(p, q, ε).

In [16, 18], they considered the case when there is no x dependence for
A and H. However, we can follow the same argument for each fixed x and
prove Lemma 3.3.5.

We now give the Lipschitz regularity estimate for a reference problem.
With n, p, q from (1.2.2)–(1.2.4) and with a constant ā ≥ 0, we denote

H̄(z) = |z|p + ā|z|q (z ∈ Rn) .

A given C1(Rn \ {0}) vector field Ā : Rn → Rn is assumed to satisfy|Ā(z)||z|+ |∂zĀ(z)||z|2 ≤ L̄H̄(z)

ν̄
H̄(z)

|z|2
|ξ|2 ≤ 〈∂zĀ(z)ξ, ξ〉

for z ∈ Rn \ {0}, ξ ∈ Rn, where 0 < ν̄ ≤ L̄. With U ⊂ Ω being an open set,
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let v ∈ W 1,H̄(U) be a weak solution of

divĀ(Dv) = 0 in U. (3.3.13)

We then state the Lipschitz estimate for v without proof. For the proof, we
refer [169].

Lemma 3.3.6 ([79, 169]). Let v ∈ W 1,H̄(U) is a weak solution of (3.3.13),
then there holds Dv ∈ L∞loc(U). Moreover, for any B2r ⊂ U we have the
estimate

sup
x∈Br

H̄(Dv(x)) ≤ c1

∫
B2r

H̄(Dv(x)) dx

for an appropriate constant c1 = c1(n, p, q, ν̄, L̄) which is independent of ā.

3.3.3 Comparison estimates and the proof of Theorem
3.3.2

We start to provide the comparison estimates. From now on, we always
assume (1.2.2)–(1.2.4) and (3.3.3). Let R ∈ (0, 1

2
) and δ ∈ (0, 1

8
), and fix

Ω0 b Ω. We assume B8r = B8r(y) ⊂ Ω0 with 8r ≤ R and BR(y) ⊂ Ω. With
a solution u under consideration to the problem (3.3.2), let h ∈ W 1,H(B4r)
be the weak solution of{

−divA(x,Dh) = 0 in B4r

h ∈ u+W 1,H
0 (B4r).

(3.3.14)

Then we list here some estimates for h as follows. For proofs, see [13, 38, 84].

Lemma 3.3.7 (Comparison estimate). Let λ ≥ 1 be given. For any ε ∈
(0, 1), there exists a constant δ0 = δ0(data, ε) ∈ (0, 1) such that if for δ ∈
[0, δ0], ∫

B4r

H(x,Du) dx ≤ λ and

∫
B4r

H(x, F ) dx ≤ δλ
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hold, then we have∫
B4r

H(x,Dh) dx ≤ c

∫
B4r

H(x,Du) dx ≤ cλ (3.3.15)

and ∫
B4r

H(x,Du−Dh) dx ≤ ελ (3.3.16)

for some c = c(n, p, q, ν, L).

For later use, with σ0 mentioned in Lemma 3.3.4, we have the following
lemma:

Lemma 3.3.8 (Higher integrability for h). There exists a small constant
σ1 = σ1(data) ≤ σ0 such that H(x,Dh) ∈ L1+σ1

loc (B4r). Moreover, for any
B2ρ ⊂ B4r and σ ∈ (0, σ1] there holds(∫

Bρ

H(x,Dh)1+σ dx

) 1
1+σ

≤ c

∫
B2ρ

H(x,Dh) dx

for some c = c(data).

Note that (3.3.15) is used for the proof of Lemma 3.3.8, when we keep
track of the exact dependence of σ1 and c.

We next move for further comparison estimates. Let K ≥ 4 be a free
parameter to be determined later, and define

a0 = a0,B2r =


inf
x∈B2r

a(x) if inf
x∈B2r

a(x) > K[a]0,αr
α

0 if inf
x∈B2r

a(x) ≤ K[a]0,αr
α.

(3.3.17)

(3.3.18)

We denote

H0(t) = tp + a0t
q (t ≥ 0) or H0(z) = |z|p + a0|z|q (z ∈ Rn)

and define A0 : Ω× Rn → Rn by

A0(x, z) = A(x, z)
H0(|z|)
H(x, |z|)

.
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Now we write

Ā0(z) =

∫
B4r

A0(x, z) dx. (3.3.19)

Then we have the following lemma.

Lemma 3.3.9. Together with the assumption (1.2.8), we have|Ā0(z)||z|+ |∂zĀ0(z)||z|2 ≤ L̃H0(|z|)

ν̃
H0(|z|)
|z|2

|ξ|2 ≤
〈
∂zĀ0(z)ξ, ξ

〉 (3.3.20)

for some ν̃ = ν̃(p, q, ν, L) and L̃ = L̃(p, q, ν, L) with 0 < ν̃ ≤ L̃ <∞. Also, it
holds that

|A(x, z)− Ā0(z)| ≤ L(a(x)− a0)|z|q−1 +
H0(|z|)
|z|

θ(B4r)(x), (3.3.21)

where θ(B4r)(x) := θ(A;B4r)(x) as in (3.3.4).

Proof. Throughout the proof, H(x, t) and H0(t) are understood as H(x, t) =
tp + a(x)tq and H0(t) = tp + a0t

q. First, we compute

∂zA0(x, z) = (∂zA(x, z))
H0(|z|)
H(x, |z|)

+
H ′0H −H0H

′

H2
(x, |z|) z

|z|
⊗ A(x, z).

Here, we have∣∣∣∣H ′0H −H0H
′

H2
(x, |z|)

∣∣∣∣ ≤ ∣∣∣∣(p− q)a(x)|z|p+q−1

H(x, |z|)2

∣∣∣∣
≤
∣∣∣∣(p− q)a(x)|z|p+q−1

a(x)|z|p+q

∣∣∣∣ H0(|z|)
H(x, |z|)

≤ (q − p) H0(|z|)
|z|H(x, |z|)

,

(3.3.22)
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and so by (3.3.3), there holds

|∂zA0(x, z)| ≤ |∂zA(x, z)| H0(|z|)
H(x, |z|)

+

∣∣∣∣H ′0H −H0H
′

H2
(x, |z|)

∣∣∣∣ |A(x, z)|

≤ L
H0(|z|)
|z|2

+ (q − p)H0(|z|) |A(x, z)|
|z|H(x, |z|)

≤ L
H0(|z|)
|z|2

+ L(q − p)H0(|z|)
|z|2

≤ L(1 + q − p)H0(|z|)
|z|2

.

Moreover, we observe from (3.3.3) that

|A0(x, z)| ≤ |A(x, z)| H0(|z|)
H(x, |z|)

≤ L
H0(|z|)
|z|

.

Hence we obtain

|A0(x, z)||z|+ |∂zA0(x, z)||z|2 ≤ L̃H0(|z|) (3.3.23)

with L̃ = L(2 + q − p). Now the conclusion (3.3.20)1 follows from (3.3.19)
and (3.3.23).

To show (3.3.20)2, we first compute

〈∂zA0(x, z)ξ, ξ〉 =

〈
∂zA(x, z)

H0(|z|)
H(x, |z|)

ξ, ξ

〉
+

〈
H ′0H −H0H

′

H2
(x, |z|) z

|z|
⊗ A(x, z)ξ, ξ

〉
=: I1 + I2.

(3.3.24)

But then, by (3.3.3) we estimate

I1 ≥ ν
H0(|z|)
|z|2

|ξ|2 (3.3.25)
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and by (3.3.22) and (3.3.3), it follows that

I2 ≥ −
∣∣∣∣H ′0H −H0H

′

H2
(x, |z|)

∣∣∣∣ |A(x, z)||ξ|2

≥ −(q − p) H0(|z|)
|z|H(x, |z|)

|A(x, z)||ξ|2

≥ −L(q − p)H0(|z|)
|z|2

|ξ|2.

Now applying (1.2.8), for ν̃ := ν − L(q − p) > 0, we discover

〈∂zA0(x, z)ξ, ξ〉 ≥ (ν − L(q − p))H0(|z|)
|z|

|ξ|2 ≥ ν̃
H0(|z|)
|z|

|ξ|2. (3.3.26)

Then the conclusion (3.3.20)2 follows from (3.3.19) and (3.3.26).
Finally, to obtain (3.3.21), first observe that

|A(x, z)− Ā0(z)|
≤ |A(x, z)− A0(x, z)|+ |A0(x, z)− Ā0(z)|

= |A(x, z)|
(

(a(x)− a0)|z|q

H(x, |z|)

)
+
H0(|z|)
|z|

(
|z|(A0(x, z)− Ā0(z))

H0(|z|)

)
≤ L(a(x)− a0)|z|q−1 +

H0(|z|)
|z|

(
|z|(A0(x, z)− Ā0(z))

H0(|z|)

)
.

Here, by the definition of θ as in (3.3.5), we have∣∣∣∣ |z|(A0(x, z)− Ā0(z))

H0(|z|)

∣∣∣∣ =

∣∣∣∣ |z|A(x, z)

H(x, |z|)
−
∫
B4r

|z|A(y, z)

H(y, |z|)
dy

∣∣∣∣ ≤ θ(B4r)(x),

which gives (3.3.21).

We next let v ∈ W 1,H0(B2r) be the weak solution of{
−divĀ0(Dv) = 0 in B2r

v ∈ h+W 1,H0

0 (B2r).
(3.3.27)

When (3.3.17) holds, the comparison estimate is proved similarly as in [79],
but the case of (3.3.18) is delicate to handle. As mentioned in Chapter 1, we
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are going to avoid using the difference quotient method. Instead, we provide
two propositions which enable us to deal with the comparison estimate for
the case of (3.3.18). First one is the boundary higher integrability for v, with
the boundary data h. Note that σ1 is as in Lemma 3.3.8.

Proposition 3.3.10. Let v ∈ W 1,H0(B2r) be the weak solution of (3.3.27)
and h ∈ W 1,H(B4r) be the weak solution of (3.3.14). If (3.3.18) holds, then
H(x,Dv) ∈ L1+σ1(B2r). Moreover, for any σ ∈ [0, σ1] we have∫

B2r

H(x,Dv)1+σ dx ≤ c

∫
B2r

H(x,Dh)1+σ dx+ c (3.3.28)

for some c = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω)) ≥ 1 which is independent
of r. Especially, if σ = 0, then we have∫

B2r

H(x,Dv) dx ≤ c

∫
B3r

H(x,Dh) dx+ c (3.3.29)

c = c(data) ≥ 1.

Proof. The proof is similar to the one of [136, Lemma 4.15]. We first prove
(3.3.28). Note from (3.3.18) that H0(t) = tp. Then one can show that for any
µ(·) ∈ A1+σ,∫

Br

|Dv|p(1+σ)µ(x) dx ≤ c([µ]A1+σ)

∫
Br

|Dh|p(1+σ)µ(x) dx, (3.3.30)

where c([µ]A1+σ) = c(data, [µ]A1+σ) > 0. For the proof, see [136] together
with [48, 79]. Now for each j = 1, 2, . . . , define

Φj(x, t) := min
{

(t+ a(x)t
q
p )1+σ, jt1+σ

}
.

Then for each Φj, one can assert the conditions (A0), (A1), (aInc)1+σ and
(aDec) q

p
(1+σ) in Section 3.3.2 for a universal constant M = M(n, ‖a‖0,α)

which is independent of j and σ. We only show (A1) condition, especially

(3.3.9). Indeed, by (1.2.4), one can see that rαr−n(
q−p
p ) ≤ 1 and so for any

t ∈ [0, |Br|−1], we have

rαt
q−p
p ≤ c(n).
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Then there holds

rαt
q
p ≤ c(n)t. (3.3.31)

For a+
Br

:= sup
x∈Br

a(x) and a−Br := inf
x∈Br

a(x), (3.3.31) implies

(rαt
q
p )1+σ ≤ c(n)(t+ a−Brt

q
p )1+σ. (3.3.32)

Thus denoting by

H̃(x, t) := (t+ a(x)t
q
p )1+σ,

H̃+
Br

(t) := sup
x∈Br

H̃(x, t) =
(
t+ a+

Br
t
q
p

)1+σ

and

H̃−Br(t) := inf
x∈Br

H̃(x, t) =
(
t+ a−Brt

q
p

)1+σ

,

it follows from (1.2.3) and (3.3.32) that

H̃+
Br

(t)− H̃−Br(t) =
(
t+ a+

Br
t
q
p

)1+σ

−
(
t+ a−Brt

q
p

)1+σ

≤ c
[(
t+ a+

Br
t
q
p

)
−
(
t+ a−Brt

q
p

)]1+σ

+ c
(
t+ a−Brt

q
p

)1+σ

≤ c(rαt
q
p )1+σ + c

(
t+ a−Brt

q
p

)1+σ

≤ c(n)
(
t+ a−Brt

q
p

)1+σ

= c(n)H̃−Br(t).

Therefore, for any x ∈ Br and t ∈ [0, |Br|−1], we have

H̃+
Br

(t) h H̃−Br(t) h (t+ a(x)t
q
p )1+σ (3.3.33)

with an implicit constant depending only on n. Let us denote

Φ+
j,Br

(t) = sup
x∈Br

min
{

(t+ a(x)t
q
p )1+σ, jt1+σ

}
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and

Φ−j,Br(t) = inf
x∈Br

min
{

(t+ a(x)t
q
p )1+σ, jt1+σ

}
.

Since 0 ≤ t1+σ ≤ Φ−j,Br(t), Φ−j,Br(t) ∈ [1, |Br|−1] implies t ∈ [0, |Br|−1]. Then

by (3.3.33), for all x ∈ Br and Φ−j,Br(t) ∈ [1, |Br|−1], there holds

Φj(x, t) h Φ+
j,Br

(t) h Φ−j,Br(t)

with an implicit constant depending only on n. Then (A1) is proved for
Φj(x, t) for each j = 1, 2, . . . , with M = M(n) which is independent of j and
σ. Now we apply the extrapolation with Φj(x, t), take j →∞, and apply the
argument of the proof of [136, Lemma 4.15] to find that∫

B2r

H(x,Dv)1+σ dx

≤ c

[(∫
B2r

H(x,Dh)1+σ dx

) q
p
−1

+ 1

]

×
(∫

B2r

H(x,Dh)1+σ dx+ 1

) (3.3.34)

for some c = c(data) ≥ 1. But then, we use Lemma 3.3.8, the energy estimate
(3.3.15), Hölder’s inequality, and (3.3.11), to discover∫

B2r

H(x,Dh)1+σ dx ≤ crn
∫
B2r

H(x,Dh)1+σ dx

≤ crn
(∫

B4r

H(x,Dh) dx+ 1

)1+σ

≤ crn
(∫

B4r

H(x,Du) dx+ 1

)1+σ

≤ crn
∫
B4r

H(x,Du)1+σ dx+ 1

≤ c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω)),

and so we obtain the estimate (3.3.28).
Now it remains to show (3.3.29). By Hölder’s inequality, (3.3.34) with
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CHAPTER 3. CALDERÓN-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

σ = ζ = min{− 1
log r

, σ1}, and Lemma 3.3.8, there holds

∫
B2r

H(x,Dv) dx ≤
(∫

B2r

H(x,Dv)1+ζ dx

) 1
1+ζ

≤ c

[(∫
B2r

H(x,Dh)1+ζ dx

) q
p
−1

+ 1

] 1
1+ζ

×
(∫

B2r

H(x,Dh)1+ζ dx

) 1
1+ζ

≤ c

[(∫
B2r

H(x,Dh)1+ζ dx

)( qp−1) 1
1+ζ

+ 1

]

×
(∫

B3r

H(x,Dh) dx+ 1

)
.

(3.3.35)

Here, by Lemma 3.3.8 and the energy estimate (3.3.15), it follows that(∫
B2r

H(x,Dh)1+ζ dx

) 1
1+ζ

≤ cr
n

1+ζ

(∫
B2r

H(x,Dh)1+ζ dx

) 1
1+ζ

≤ cr
n

1+ζ

(∫
B4r

H(x,Dh) dx+ 1

)
= cr

n
1+ζ r−n

(∫
B4r

H(x,Dh) dx+ 1

)
≤ c(data)r−

ζn
1+ζ

(3.3.36)

and

r−
ζn

1+ζ ≤ r
n

log r = elog r n
log r = en ≤ c. (3.3.37)

Therefore, combining (3.3.35)–(3.3.37), we have the conclusion (3.3.29) with
c = c(data) ≥ 1.

We now handle the case of (3.3.18) in the following proposition.

Proposition 3.3.11. If (3.3.18) holds, then there exists σ2 = σ2(data) > 0
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such that∫
B2r

a(x)|Dh|q dx ≤ cKrσ2

(∫
B4r

H(x,Dh) dx+ 1

)
(3.3.38)

and ∫
B2r

a(x)|Dv|q dx ≤ cKrσ2

(∫
B4r

H(x,Dh) dx+ 1

)
(3.3.39)

for some positive constant c = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω)).

Proof. First we claim the following type of higher integrability: for

q̃ :=

(
1 +

nσ1

n+ α

)
q,

we have ∫
B2r

a(x)|Dh|q̃ dx ≤ c

(∫
B3r

H(x,Dh) dx

)1+σ1

+ c (3.3.40)

for some c = c(data). Indeed, there holds (q̃− q)1+σ1

σ1
≤ p(1 + σ1) by (1.2.4),

and so by Hölder’s inequality and Lemma 3.3.8, we have∫
B2r

a(x)|Dh|q̃ dx =

∫
B2r

a(x)|Dh|q|Dh|q̃−q dx

≤
(∫

B2r

(a(x)|Dh|)q(1+σ1) dx

) 1
1+σ1

(∫
B2r

|Dh|(q̃−q)
1+σ1
σ1 dx

) σ1
1+σ1

≤
(∫

B2r

(a(x)|Dh|)q(1+σ1) dx

) 1
1+σ1

(∫
B2r

|Dh|p(1+σ1) dx+ 1

) σ1
1+σ1

≤
∫
B2r

H(x,Dh)1+σ1 dx+ 1

≤ c

(∫
B3r

H(x,Dh) dx

)1+σ1

+ c.

(3.3.41)

Thus the claim is proved.
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Now, for σ̃ ∈ (0, 1] being such that q
1−σ̃ = q̃, i.e., with

σ̃ =
nσ1

α + n(1 + σ1)
, (3.3.42)

we will show

rασ̃
∫
B2r

a(x)1−σ̃|Dh|q dx ≤ crσ2

∫
B4r

H(x,Dh) dx (3.3.43)

for some σ2 = σ2(data) and c = c(data). Indeed, by Hölder’s inequality and
(3.3.40) we have∫

B2r

a(x)1−σ̃|Dh|q dx

=

∫
B2r

(
a(x)|Dh|

q
1−σ̃

)1−σ̃
dx

≤
(∫

B2r

a(x)|Dh|
q

1−σ̃ dx

)1−σ̃

≤ c

(∫
B3r

H(x,Dh) dx

)(1−σ̃)(1+σ1)

+ c

≤ c

(∫
B4r

H(x,Dh) dx

)(1−σ̃)(1+σ1)−1(∫
B3r

H(x,Dh) dx

)
+ c.

(3.3.44)

But then, since

(1− σ̃)(1 + σ1)− 1 =

(
n+ α

α + n(1 + σ1)

)
(1 + σ1)− 1

=
α + ασ1 + n(1 + σ1)− α− n(1 + σ1)

α + n(1 + σ1)

=
ασ1

α + n(1 + σ1)
> 0,
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we see by the energy estimate (3.3.15), Hölder’s inequality and (3.3.11) that(∫
B4r

H(x,Dh) dx

)(1−σ̃)(1+σ1)−1

≤
(∫

B4r

H(x,Du) dx

)(1−σ̃)(1+σ1)−1

≤ c

(∫
B4r

H (x,Du)1+σ1 dx

)(1−σ̃)− 1
1+σ1

≤ cr
−n
[
(1−σ̃)− 1

1+σ1

](∫
B4r

H (x,Du)1+σ1 dx

)(1−σ̃)− 1
1+σ1

≤ cr
−n
[
(1−σ̃)− 1

1+σ1

]

(3.3.45)

for some positive constant c = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω)).
Now we observe (3.3.42) from that

σ2 := ασ̃ − n
(

1− σ̃ − 1

1 + σ1

)
> ασ̃ − n [(1− σ̃)(1 + σ1)− 1]

= ασ̃ − n (−σ̃ + σ1 − σ̃σ1)

= [α + n(1 + σ1)] σ̃ − nσ1 = 0.

Hence combining (3.3.44) and (3.3.45), we find

rασ̃
∫
B2r

a(x)1−σ̃|Dh|q dx

≤ crασ̃

[(∫
B4r

H(x,Dh) dx

)(1−σ̃)(1+σ1)−1(∫
B3r

H(x,Dh) dx

)
+ c

]

≤ crσ2

(∫
B3r

H(x,Dh) dx+ c

)
for some c = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω)), which is (3.3.43). Now
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considering

a(x) ≤ sup
x∈Br

a(x)

≤ c[a]0,αr
α + inf

x∈Br
a(x) ≤ (c+K)[a]0,αr

α ≤ cK[a]0,αr
α,

(3.3.46)

we have (3.3.38).
As for (3.3.39), like the estimates in (3.3.41) together with using (3.3.28),

we have∫
B2r

a(x)|Dv|q̃ dx

≤
(∫

B2r

(a(x)|Dv|)q(1+σ1) dx

) 1
1+σ1

(∫
B2r

|Dv|(q̃−q)
1+σ1
σ1 dx

) σ1
1+σ1

≤
(∫

B2r

(a(x)|Dv|)q(1+σ1) dx

) 1
1+σ1

(∫
B2r

|Dv|p(1+σ1) dx+ 1

) σ1
1+σ1

≤
∫
B2r

H(x,Dv)1+σ1 dx+ 1

≤
(3.3.28)

c

∫
B2r

H(x,Dh)1+σ1 dx+ c

≤ c

(∫
B3r

H(x,Dh) dx

)1+σ1

+ c.

(3.3.47)

Thus by Hölder’s inequality, we see that∫
B2r

a(x)1−σ̃|Dv|q dx =

∫
B2r

(
a(x)|Dv|

q
1−σ̃

)1−σ̃
dx

≤
(∫

B2r

a(x)|Dv|
q

1−σ̃ dx

)1−σ̃

+ c

≤
(3.3.47)

c

(∫
B3r

H(x,Dh) dx

)(1−σ̃)(1+σ1)

+ c.

We then apply the same argument as in (3.3.45)–(3.3.46) to derive (3.3.39).

We also need the following higher integrability results for the problem
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(3.3.27). Note that σ1 is defined in Lemma 3.3.8. The proof is the same as in
that of Lemma 3.3.8.

Lemma 3.3.12. There exists a constant σ2 = σ2(data) ≤ σ1 such that
H(x,Dv) ∈ L1+σ2

loc (B2r). Moreover, for any B2ρ ⊂ B2r and σ ∈ (0, σ2] there
holds (∫

Bρ

H(x,Dv)1+σ dx

) 1
1+σ

≤ c

∫
B2ρ

H(x,Dv) dx+ c (3.3.48)

for some c = c(data).

Now we provide the comparison estimates for w and h defined in (3.3.27)
and (3.3.14), respectively. In case of (3.3.18), we additionally apply Proposi-
tion 3.3.10 and Proposition 3.3.11 for our proof. Recall that δ0 is defined in
Lemma 3.3.7 and σ2 is in Proposition 3.3.11.

Lemma 3.3.13. Under the assumptions and conclusions of Lemma 3.3.7,
we further assume (1.2.8). Then there exists a constant δ1 = δ1(data, ε) ≤ δ0

such that if A is (δ, R)-vanishing for some R ∈ (0, 1) and δ ∈ [0, δ1], then we
have ∫

B2r

H(x,Dv) dx ≤ c

∫
B3r

H(x,Dh) dx ≤ cλ (3.3.49)

for some constant c = c(data), and∫
B2r

H(x,Dh−Dv) dx ≤
[
ε+ c(ε)

(
1

K
+Krσ2

)]
λ (3.3.50)

with any K ≥ 4, where c(ε) = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω), ε).

Proof. We first prove (3.3.49). To this end, by testing v− h ∈ W 1,H0

0 (B2r) to
(3.3.27) and applying the same argument for obtaining (3.3.15), we have∫

B2r

H0(Dv) dx ≤ c

∫
B2r

H0(Dh) dx. (3.3.51)

We first consider the case of (3.3.17). Since K ≥ 4, one can observe that for
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x ∈ B2r,

a(x) ≤ sup
x∈B2r

a(x)

≤ a0 + osc
x∈B2r

a(x)

≤ a0 + 4[a]0,αr
α ≤

(
4

K
+ 1

)
a0 ≤ 2a0 ≤ 2a(x).

(3.3.52)

Then together with (3.3.15), it follows that∫
B2r

H(x,Dv) dx ≤ 2

∫
B2r

H(x,Dh) dx ≤ cλ.

If (3.3.18) holds, then by (3.3.29) in Proposition 3.3.10,∫
B2r

H(x,Dv) dx ≤ c

∫
B3r

H(x,Dh) dx

holds for c = c(data). Then by (3.3.15), we have (3.3.49).
Next we will show (3.3.50). First, note that if (3.3.18) holds,

v ∈ W 1,H(B2r) by Proposition 3.3.10. If (3.3.17) holds, again v ∈ W 1,H(B2r)
by (3.3.52). Then testing h− v ∈ W 1,H(B2r) ⊂ W 1,H0(B2r) to both (3.3.14)
and (3.3.27), we have

I1 =

∫
B2r

〈A(x,Dh)− A(x,Dv), Dh−Dv〉 dx

=

∫
B2r

〈
Ā0(Dv)− A(x,Dv), Dh−Dv

〉
dx = I2.

(3.3.53)

For I1, applying (3.3.12) and (3.3.49), there holds∫
B2r

H(x,Dh−Dv) dx ≤ c(ε0)I1 + ε0λ
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for any ε0 ∈ (0, 1). For I2, by (3.3.21) and Young’s inequality, we estimate

I2 ≤ c

∫
B2r

[
(a(x)− a0)|Dv|q−1 +

H0(Dv)

|Dv|
θ(B4r)(x)

]
|Dh−Dv| dx

≤ c

∫
B2r

(a(x)− a0)(|Dv|q + |Dh|q) dx

+ c

∫
B2r

H0(Dv)

|Dv|
θ(B4r)(x)|Dh−Dv| dx

=: I3 + I4.

For I3, if (3.3.17) holds, by (3.3.52) we have

a(x)− a0 ≤ 4[a]0,αr
α ≤ 4a(x)

K
≤

(3.3.52)

8a0

K
(3.3.54)

for any x ∈ B2r. Then applying (3.3.51), it follows that

I3 ≤
8c

K

∫
B2r

a0(|Dv|q + |Dh|q) dx ≤ 8c

K

∫
B2r

(H0(Dv) +H0(Dh)) dx ≤ c

K
λ

for some c = c(data). On the other hand, if (3.3.18) holds, we apply (3.3.28)
in Proposition 3.3.11 to I3, to see that

I3 = c

∫
B2r

a(x)(|Dv|q + |Dh|q) dx

≤ cKrσ2

(∫
B4r

H(x,Dh) dx+ 1

)
≤ cKrσ2λ.

Here, the constant c depends on c = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω)).
Thus in any case, we have

I3 ≤
( c
K

+ cKrσ2

)
λ.

To estimate I4, we have

I4 ≤ ε1

∫
B2r

H0(Dh−Dv) dx+ c(ε1)

∫
B2r

θ(B4r)H0(Dv) dx =: I5 + I6
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for all ε1 ∈ (0, 1) with some c(ε1) = c(p, q, ε1), where we have used Young’s
inequality and the fact that

θ(B4r) ≥ max
{
θ(B4r)

p
p−1 , θ(B4r)

q
q−1

}
.

For I6, first note from (3.3.4) that θ(B4r) ≤ 2L. Then by Hölder’s inequality
and (3.3.48), we have

I6 ≤ c(ε1)

(∫
B2r

θ0(B4r)
1+σ2
σ2 dx

) σ2
1+σ2

(∫
B2r

H0(Dv)1+σ2 dx

) 1
1+σ2

≤ c(ε1)L
1

1+σ2

(∫
B2r

θ(B4r) dx

) σ2
1+σ2

(∫
B3r

(H0(Dv) + 1) dx

)
≤ c(ε1)δ

σ2
1+σ2

(∫
B3r

(H0(Dv) + 1) dx

)
,

(3.3.55)

provided A is (δ, R)-vanishing for some R ∈ (0, 1) and δ > 0.
Combining all the estimates (3.3.53)–(3.3.55), we have∫
B2r

H(x,Dh−Dv) dx ≤
[
ε0 + c̃(ε0)

(
1

K
+Krσ2

)]
λ

+ c(ε0)

(
ε1

∫
B2r

H0(Dh−Dv) dx+ c(ε1)δ
σ2

1+σ2 λ

)
,

where c̃(ε0) = c̃(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω), ε0), c(ε0) = c(p, q, ε0)
and c(ε1) = c(p, q, ε1). We now take ε0 = ε

4
, ε1 ≤ 1

2c(ε0)
and δ1 = δ1(data, ε)

sufficiently small so that c(ε0)c(ε1)δ
σ2

1+σ2
1 ≤ ε

4
. Then for δ ≤ δ1, we discover∫

B2r

H(x,Dh−Dv) dx ≤
[
ε+ c̃(ε)

(
1

K
+Krσ2

)]
λ,

which is (3.3.50).

We combine all the comparison estimates made in Lemma 3.3.7, Lemma
3.3.13 and Lemma 3.3.6, to derive the following key lemma. Recall that δ1 is
in Lemma 3.3.13 and σ2 is in Proposition 3.3.11.

Lemma 3.3.14. Assume (1.2.8) and let λ ≥ 1 be given. Then for any ε ∈
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(0, 1), there exists a small positive constant δ1 = δ1(data, ε) such that if∫
B4r

H(x,Du) dx ≤ λ,

∫
B4r

H(x, F ) dx ≤ δλ

and A is (δ, R)-vanishing for some R ∈ (0, 1) and δ ∈ [0, δ1], then for any
K ≥ 4 we have∫

Br

H(x,Du−Dv) dx ≤ 3

[
ε+ c(ε)

(
1

K
+Krσ2

)]
λ (3.3.56)

with some σ2 = σ2(data) > 0 and
c(ε) = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω), ε) > 0. Also, there holds

sup
x∈Br

H(x,Dv(x)) ≤ cλ (3.3.57)

for some c = c(data).

Proof. Note that (3.3.56) follows from (3.3.16), (3.3.50) and triangle inequal-
ity. To show (3.3.57), we fix K = 10 and divide the proof into two cases as
(3.3.17) and (3.3.18). If (3.3.17) holds, then it follows from (3.3.52), Lemma
3.3.6 and (3.3.49) that

sup
x∈Br

H(x,Dv(x)) ≤ 2 sup
x∈Br

H0(Dv(x)) ≤ c

∫
B2r

H0(Dv(x)) dx ≤ cλ.

If (3.3.18) holds, then H0(t) = tp, and then by Lemma 3.3.6 with H̄(t) = tp,
we have

sup
x∈Br
|Dv(x)|p ≤ c

∫
B2r

|Dv(x)|p dx. (3.3.58)
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Now using (3.3.18), (3.3.58), (1.2.4), (3.3.49) and (3.3.15) in order, we find

sup
x∈Br

(a(x)|Dv(x)|q) ≤ crα( sup
x∈Br
|Dv(x)|p)

q
p

≤ crα
(∫

B2r

|Dv(x)|p dx
) q

p

≤ c

(∫
B2r

|Dv(x)|p dx
) q−p

p
(∫

B2r

|Dv(x)|p dx
)

≤ c

(∫
B4r

H(x,Du) dx

) q−p
p
(∫

B2r

|Dv(x)|p dx
)

≤ c(‖H(x,Du)‖L1(Ω))λ,

which implies (3.3.57).

Now we are all set in position to give the proof of our main result.
Proof of Theorem 3.3.2. The proof is based on [38, 79]. Fix Ω0 b Ω. For

a chosen γ ∈ (1,∞), let H(x, F ) ∈ Lγ(Ω). Then we have H(x, F ) ∈ Lγ(B2r)
for B8r ⊂ Ω0 with 8r ≤ R and BR(y) ⊂ Ω. Select two radii r ≤ r1 < r2 ≤ 2r
and define

λ0 :=
20nrn2

(r2 − r1)n

∫
Br2

(
H(x,Du) +

H(x, F )

δ

)
dx (3.3.59)

for δ > 0 to be determined later. We write

E(s, λ) := {x ∈ Bs : H(x,Du(x)) > λ} for λ > λ0 + 1 and r ≤ s ≤ 2r,

and define

Ψy(ρ) =

∫
Bρ(y)

(
H(x,Du) +

H(x, F )

δ

)
dx for Bρ(y) ⊂ Br.

Then Lebesgue differentiation theorem says that for a.e. y ∈ E(s, λ), it holds
that

lim
ρ→0

Ψy(ρ) = H(y,Du(y)) +
H(y, F (y))

δ
> λ. (3.3.60)
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On the other hand, for any y ∈ Br1 and ρ ∈
[
r2−r1

20
, r2 − r1

]
, we observe

Ψy(ρ) ≤ 20nrn2
(r2 − r1)n

∫
Br2

(
H(x,Du) +

H(x, F )

δ

)
dx = λ0 < λ. (3.3.61)

Then (3.3.60) and (3.3.61) imply that for a.e. y ∈ E(r1, λ), there exists a
radius ρy ∈

(
0, r2−r1

20

)
such that

Ψy(ρy) = λ and Ψy(ρ) < λ for any ρ ∈ (ρy, r2 − r1].

Hence, Vitali covering lemma provides us with a countable family of mutually
disjoint balls {Bρi(yi)}∞i=1 with yi ∈ E(r1, λ) and ρi ∈

(
0, r2−r1

20

)
such that

E(r1, λ) ⊂
∞⋃
i=1

B5ρi(yi) ∪N (N : a measure zero set),

Ψyi(ρi) = λ (3.3.62)

and

Ψyi(ρ) < λ for each ρ ∈ (ρi, r2 − r1].

Then we are under the setting of Lemma 3.3.14, which implies that for
any ε ∈ (0, 1), there exists a constant δ1 = δ1(data, ε) > 0 such that if∫

B20ρi
(yi)

H(x,Du) dx ≤ λ and

∫
B20ρi

(yi)

H(x, F ) dx ≤ δλ,

and A is (δ, R)-vanishing for some R ∈ (0, 1) and δ ∈ [0, δ1], then we have a
function vi ∈ W 1,∞(B5ρi(yi)) satisfying∫

B5ρi
(yi)

H(x,Du−Dvi) dx ≤ 3

[
ε+ c(ε)

(
1

K
+KRσ2

)]
λ (3.3.63)

for any K ≥ 4 and some c(ε) = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω), ε) and
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σ2 = σ2(data). Also, we have

sup
x∈B5ρi

(yi)

H(x,Dvi) ≤ c∗λ

for some c∗ = c∗(data) which is independent of i and λ.
Now for c2 = 2q+1c∗, we perform the integration of H(x,Du) over

E(r1, c2λ). We see that for a.e. x ∈ E(r1, c2λ)∩B5ρi(yi) with B20ρi(yi) ⊂ Br2 ,

H(x,Du) ≤ 2qH(x,Du−Dvi) + 2qH(x,Dvi)

≤ 2qH(x,Du−Dvi) + 2qc∗λ

≤ 2qH(x,Du−Dvi) +
1

2
H(x,Du),

which implies

H(x,Du) ≤ 2q+1H(x,Du−Dvi).

Then in light of (3.3.63), we have∫
E(r1,c2λ)∩B5ρi

(yi)

H(x,Du) dx ≤ 2q+1

∫
B5ρi

(yi)

H(x,Du−Dvi) dx

≤ c̄ · 2q+15n|Bρi(yi)|
[
ε+ c(ε)

(
1

K
+KRσ2

)]
λ

(3.3.64)

for an appropriate constant c̄ = c̄(data). Using (3.3.62), one can easily see
that

|Bρi(yi)| ≤
2

λ

(∫
Bρi (yi)∩E(r2,

λ
4

)

H(x,Du) dx

+

∫
Bρi (yi)∩{H(x,F )> δλ

4
}

H(x, F )

δ
dx

)
.

(3.3.65)
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Plugging (3.3.65) to (3.3.64), we find∫
E(r1,c2λ)∩B5ρi

(yi)

H(x,Du) dx

≤ c3S(ε, R,K)

×

(∫
Bρi (yi)∩E(r2,

λ
4

)

H(x,Du) dx+

∫
Bρi (yi)∩{H(x,F )> δλ

4
}

H(x, F )

δ
dx

)

≤ c3S(ε, R,K)

(∫
E(r2,

λ
4

)

H(x,Du) dx+

∫
{H(x,F )> δλ

4
}

H(x, F )

δ
dx

)

for some constants c3 = c̄ · 2q+25n and S(ε, R,K) = ε + c(ε)
(

1
K

+KRσ2
)
,

where for the last inequality we have used the fact that {Bρi(yi)}∞i=1 is mu-
tually disjoint.

Now denoting

[H(x,Du)]t := min{H(x,Du), t},

and arguing similarly as in [79, Section 4, Step 11] or [38], we discover∫
Br1

[H(x,Du)]γ−1
t H(x,Du) dx

≤ c3S(ε, R,K)(4c1)γ−1

∫
Br2

[H(x,Du)]γ−1
t H(x,Du) dx

+ c3S(ε, R,K)
(4c1)γ−1

δγ

∫
Br2

[H(x, F )]γdx+ cγ−1
1 λγ0 .

We now recall that S(ε, R,K) = ε + c(ε)
(

1
K

+KRσ2
)
, σ2 = σ2(data) is

given in Proposition 3.3.11, c(ε) = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(Ω), ε)
and K ≥ 4 is a free parameter. We first select

ε = ε(data, γ) ∈ (0, 1),

and

K = K(data, dist(Ω0, ∂Ω), γ, ‖H(x, F )‖Lγ(Ω)) ≥ 4. (3.3.66)
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Then we choose a small positive constant

R = R(data, dist(Ω0, ∂Ω), γ, ‖H(x, F )‖Lγ(Ω)) (3.3.67)

in order to satisfy

0 < c3S(ε, R,K)(4c2)γ−1 <
1

2
.

Accordingly there exists δ = δ(data, γ) > 0 from Lemma 3.3.14. Now we
recall the definition of λ0 as in (3.3.59) to find∫

Br1

[H(x,Du)]γ−1
t H(x,Du) dx

≤ 1

2

∫
Br2

[H(x,Du)]γ−1
t H(x,Du) dx+ c(γ)

∫
Br

H(x, F )γ dx

+ cγ
20nγrnγ

(r2 − r1)nγ

{∫
Br

(H(x,Du) +H(x, F )) dx

}γ
,

where c = c(data) and c(γ) = c(data, γ). We use the technical lemma [126,
Lemma 6.1] to conclude∫

Br

[H(x,Du)]γ−1
t H(x,Du) dx ≤ cγ

{∫
B2r

(H(x,Du) +H(x, F )) dx

}γ
+ c(γ)

∫
B2r

H(x, F )γdx.

Letting t→∞ and using Jensen’s inequality, we obtain∫
Br

H(x,Du)γ dx ≤ cγ
(∫

B2r

H(x,Du) dx

)γ
+ c(γ)

∫
B2r

H(x, F )γ dx,

which is (3.3.6). Now the assertion that H(x,Du) ∈ Lγloc(Ω) follows from a
standard covering argument. The proof is completed.
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3.4 Local estimates of ω–minimizers to dou-

ble phase variational problems with vari-

able exponents

In this section, we are concerned with an optimal regularity for ω-minimizers
to double phase variational problems with variable exponents where the asso-
ciated energy density is allowed to be discontinuous. We identify basic struc-
ture assumptions on the density for the absence of Lavrentiev phenomenon
and higher integrability. Moreover we establish a local Calderón-Zygmund
theory for such generalized minimizers under minimal regularity requirements
regarding such double phase functionals.

3.4.1 Hypothesis and main results

The functional under consideration is

P(w,Ω) :=

∫
Ω

(f1(x,Dw) + a(x)f2(x,Dw)) dx. (3.4.1)

Here, Ω is a bounded open domain in Rn for n ≥ 2 and the continuous
functions p(x), q(x), a(x) : Ω→ R are assumed to satisfy

0 ≤ a(x) ∈ C0,α(Ω), 1 < γ1 ≤ p(x) ≤ q(x) ≤ γ2 <∞,
q(x)

p(x)
≤ 1 +

α

n

(3.4.2)

for some constants α ∈ (0, 1], γ1, γ2 and for every x ∈ Ω. Additionally, we
assume that there exists a constant cp(·),q(·) > 0 such that

|p(x)− p(y)|+ |q(x)− q(y)| ≤
cp(·),q(·)

− log |x− y|
(3.4.3)

for every x, y ∈ Ω with |x − y| ≤ 1
2
. Let F = (f 1, · · · , fn) : Ω → Rn be a

given nonhomogeneous term such that H(x, F ) ∈ L1(Ω), where

H(x, z) = |z|p(x) + a(x)|z|q(x) (x ∈ Ω, z ∈ Rn) . (3.4.4)
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We suppose that for a non-decreasing function µ̃(·) : R+ → R+ and a con-
tinuous function γ(·) : Ω→ R,

1 < γ1 ≤ γ(x) ≤ γ2 <∞, |γ(x)− γ(y)| ≤ µ̃(|x− y|),

µ̃(r) log
1

r
≤ cγ,

(3.4.5)

and we want to identify minimal regularity assumptions on the associated en-
ergy densities f1(x, z) and f2(x, z) under which an ω-minimizer u ∈ W 1,1(Ω)
to F(w,Ω) satisfies the desired implication

H(x, F ) ∈ Lγ(·)(Ω) =⇒ H(x,Du) ∈ Lγ(·)
loc (Ω). (3.4.6)

We next describe basic structure assumptions regarding our energy func-
tional (3.4.1). Suppose that f1, f2 : Ω×Rn → R are Carathéodory functions,
C2-regular for second variable z ∈ Rn and satisfy{

ν|z|p(x) ≤ f1(x, z) ≤ L|z|p(x)

ν|z|q(x) ≤ f2(x, z) ≤ L|z|q(x)
(3.4.7)

and {
ν|z|p(x)−2|η|2 ≤ 〈D2

zf1(x, z)η, η〉 ≤ L|z|p(x)−2|η|2

ν|z|q(x)−2|η|2 ≤ 〈D2
zf2(x, z)η, η〉 ≤ L|z|q(x)−2|η|2

(3.4.8)

for all x ∈ Ω, z ∈ Rn, η ∈ Rn with constants 0 < ν ≤ L. We write

f(x, z) = f1(x, z) + a(x)f2(x, z).

We now define ω-minimizer. For a radius r > 0 and y ∈ Ω, let us write
Br = Br(y) = {x ∈ Rn : |x− y| < r}.

Definition 3.4.1. Let ω : R+ → R+ be a continuous and non-decreasing
function. We say that a function u ∈ W 1,H

loc (Ω) is a (local) ω-minimizer for
the functional F if for every ball Br b Ω and every w ∈ W 1,H(Br) with
w − u ∈ W 1,H

0 (Br), we have

F(u,Br) ≤ (1 + ω(r))F(w,Br). (3.4.9)

To get the desired regularity estimates, we further impose additional as-
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sumptions on ω, p(·), q(·), f1 and f2. Throughout this section, the constant
of two parameters R ∈ (0, 1

2
) and δ ∈ (0, 1

8
) are to be determined later. First

we assume

ω(R) ≤ δ. (3.4.10)

Since ω is non-decreasing, ω(r) ≤ δ holds for every r ∈ (0, R). Suppose also
that there exists a non-decreasing function µ : [0,∞) → [0,∞) such that
µ(0) = 0,

|p(x)− p(y)|+ |q(x)− q(y)| ≤ µ (|x− y|)

and sup
0<r≤R

µ(r) log
1

r
≤ δ.

(3.4.11)

Moreover, we assume

sup
0<r≤R

sup
Br(y)⊂Ω

∫
Br(y)

[θ1(Br(y))(x) + θ2(Br(y))(x)] dx ≤ δ, (3.4.12)

where

θ1(Br(y))(x) = sup
z∈Rn\{0}

∣∣∣∣∣f1(x, z)

|z|p(x)
−
(
f1(·, z)
|z|p(·)

)
Br(y)

∣∣∣∣∣ ≤ 2L (3.4.13)

and

θ2(Br(y))(x) = sup
z∈Rn\{0}

∣∣∣∣∣f2(x, z)

|z|q(x)
−
(
f2(·, z)
|z|q(·)

)
Br(y)

∣∣∣∣∣ ≤ 2L. (3.4.14)

Definition 3.4.2. We say that (ω, p(·), q(·), f1, f2) is (δ, R)-vanishing if the
conditions (3.4.10), (3.4.11) and (3.4.12) hold.

One can see that in [2] and [177], it is considered that the condition
(ω, p(·), q(·), f1, f2) being (δ, R)-vanishing is necessary. We point out that
f1 and f2 are allowed to be nearly discontinuous in x variable, even if the
condition (3.4.12) holds. The assumption (3.4.12) means that the maps x 7→
f1(x,z)

|z|p(x) and x 7→ f2(x,z)

|z|q(x) have small BMO semi-norms which are less than or

equal to δ uniformly in z variable.
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We denote

data ≡ data(n, ν, L, γ1, γ2, α, ‖a‖0,α, µ(·), µ̃(·), cγ, ‖H(x,Du)‖L1(Ω))

and state the main result of this section.

Theorem 3.4.3. Assume (3.4.2), (3.4.3), (3.4.5), (3.4.7), (3.4.8) and
H(x, F ) ∈ Lγ(·)(Ω). Then for any ω-minimizer u ∈ W 1,H(Ω) of F in (3.4.1),
there exists δ = δ(data, ‖H(x, F )‖Lγ(·)(Ω)) such that if (ω, p(·), q(·), f1, f2) is

(δ, R)-vanishing for some small R > 0, then H(x,Du) ∈ Lγ(·)
loc (Ω). Moreover,

for any Ω0 b Ω there exists R = R(data, ω(·), dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(·)(Ω))
such that for all Br(y) b Ω with y ∈ Ω0 and 0 < 2r < R,(∫

B r
2

(y)

H(x,Du)γ(·) dx

)

≤ c

(∫
B2r(y)

H(x,Du) dx

)γ−
+ c

(∫
B2r(y)

H(x, F )γ(·) dx

)
+ c

(3.4.15)

for some constant c = c(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(·)(Ω)), where γ− =
inf

x∈Br(y)
γ(x).

3.4.2 Proof of Theorem 3.4.3

In order to give perturbation argument required in this section, the following
higher integrability lemmas are essential. Also, the lemmas itself provide the
fact that without the regularity assumptions (3.4.10), (3.4.11) and (3.4.12),
we can prove the implication (3.4.6) for very small γ1 > 0 depending on the
data.

Lemma 3.4.4. Assume (3.4.2), (3.4.3), and (3.4.7). Let H(x, F ) ∈ Lγ1

loc(Ω)
for some γ1 > 1 and u ∈ W 1,H(Ω) be an ω-minimizer of F satisfying∫

Ω

H(x,Du) dx+ 1 ≤M (3.4.16)

for some constant M . We further assume that a positive constant ρ satisfies

ρ ≤ 1

4M
and µ(4ρ) ≤ min

{√
n+ γ1

n+ 1
− 1, 1

}
. (3.4.17)
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Then there exists σ0 = σ0(n, ν, L, γ1, γ2, α, ‖a‖0,α, ‖H(x,Du)‖L1(Ω), cp(·),q(·)) ∈
(0, 1) with 1 + σ0 < γ1 such that if σ ∈ (0, σ0], then we have∫

Bρ

H(x,Du)1+σ dx

≤ c

(∫
B2ρ

H(x,Du) dx

)1+σ

+ c

∫
B2ρ

H(x, F )1+σ dx+ c

(3.4.18)

for some constant c = c(n, ν, L, γ1, γ2, α, ‖a‖0,α, cp(·),q(·)), whenever B2ρ b Ω.

Proof. Let p+ = sup
x∈B2ρ

p(x), q+ = sup
x∈B2ρ

q(x) and s =
√

n+γ1

n+1
> 1. Consider

concentric balls Bρ1 ⊂ Bρ2 ⊂ B2ρ with ρ ≤ ρ1 < ρ2 ≤ 2ρ. Let η ∈ C∞0 (B2ρ)
be a cut-off function such that 0 ≤ η ≤ 1, η ≡ 1 on Bρ1 , η ≡ 0 on B2ρ \ Bρ2

and |Dη| ≤ 2
ρ2−ρ1

. Taking w = u−η(u− (u)B2ρ) in (3.4.9), triangle inequality

and Young’s inequality with
(
p(x), p(x)

p(x)−1

)
and with

(
q(x), q(x)

q(x)−1

)
yield∫

Bρ2

H(x,Du) dx

≤ c

∫
Bρ2

H(x, (1− η)Du− (Dη)(u− (u)B2ρ)) dx

+ c

∫
Bρ2

(
|F |p(x)−1 + a(x)|F |q(x)−1

)(
|Du|+

∣∣∣∣u− (u)B2ρ

ρ2 − ρ1

∣∣∣∣) dx

≤ c

∫
Bρ2\Bρ1

H(x,Du) dx+ c

∫
Bρ2

H

(
x,
u− (u)B2ρ

ρ2 − ρ1

)
dx

+ c

∫
Bρ2

H(x, F ) dx.
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Filling-hole method gives∫
Bρ1

H(x,Du) dx

≤ c− 1

c

∫
Bρ2

H(x,Du) dx+ c

∫
Bρ2

H

(
x,
u− (u)B2ρ

ρ2 − ρ1

)
d

+ c

∫
Bρ2

H(x, F ) dx.

By Lemma 2.0.1, it follows that∫
Bρ

H(x,Du) dx ≤ c

∫
B2ρ

H

(
x,
u− (u)B2ρ

ρ

)
dx+ c

∫
B2ρ

H(x, F ) dx.

Thus, we get the following Caccioppoli type inequality:∫
Bρ

H(x,Du) dx ≤ c

∫
B2ρ

(∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣p+

+ a(x)

∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣q+
)
dx

+ c

∫
B2ρ

H(x, F ) dx+ c.

Now, following the proof of [38, Lemma 4.1], we have∫
Bρ

H(x,Du) dx ≤ c

(∫
B2ρ

H(x,Du)
1
s dx

)s

+ c

∫
B2ρ

H(x, F ) dx+ c.

(3.4.19)

Finally by Gehring’s lemma [2, Theorem 4], we obtain (3.4.18).

We also consider another type of higher integrability. Assume that the
functions ξ1, ξ2 : Bρ(y)→ R satisfy

0 ≤ ξ1(x) ≤ (1 + σ)p(x) and q(x) ≤ ξ2(x) ≤ q(x) + σp(x), (3.4.20)

where ρ and σ are the same as in Lemma 3.4.4. The proof is similar to [38,
Lemma 4.3].
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Lemma 3.4.5. Under the assumptions and conclusions of Lemma 3.4.4, we
obtain ∫

Bρ

(
|Du|ξ1(x) + a(x)|Du|ξ2(x)

)
dx

≤ c

(∫
B2ρ

H(x,Du) dx

)1+σ

+ c

∫
B2ρ

H(x, F )1+σ dx+ c

for some constant c = c(n, ν, L, γ1, γ2, ‖a‖0,α, cp(·),q(·)) > 0.

Note that we still obtain (3.4.18) with the assumption (3.4.11) instead of
(3.4.3). Then σ0 and c are independent of cp(·),q(·) in this case.

We first make comparison estimates used in the proof of the main result.
Fix y ∈ Ω0, r ≤ R

4
with R to be determined later in (3.4.28), (3.4.51) and

(3.4.75), and assume B4r = B4r(y) b Ω in this section. Let u ∈ W 1,H(Ω)
be an ω-minimizer of F and h ∈ u + W 1,H

0 (B4r) be the minimizer of the
functional

F0(Dh) :=

∫
B4r

f(x,Dh) dx ≤
∫
B4r

f(x,Dh+Dϕ) dx

for all ϕ ∈ W 1,H
0 (B4r).

(3.4.21)

We refer to [63, 64, 126, 178] for a discussion on the regularity for minimizers
of variational integrals.

Note that h is the weak solution of the following Dirichlet problem:{
−div (Dzf(x,Dh)) = 0 in B4r

h = u on ∂B4r.
(3.4.22)

With u and h above and σ0 given in Lemma 3.4.4, we prove the following
comparison estimates:

Lemma 3.4.6. Let λ ≥ 1. Then for each ε > 0, there exists a small δ =
δ(n, ν, L, γ1, γ2, ε) > 0 such that if∫

B4r

H(x,Du) dx ≤ λ,

(∫
B4r

H(x, F )1+
σ0
4 dx

) 4
4+σ0

≤ δλ, (3.4.23)
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and ω(4r) ≤ δ hold, then we have∫
B4r

H(x,Dh) dx ≤ c1λ and

∫
B4r

H(x,Du−Dh) dx ≤ ελ, (3.4.24)

where c1 = c1(n, ν, L, γ1, γ2) ≥ 1.

Proof. By (3.4.7), ω(4r) ≤ δ and (3.4.21), we have∫
B4r

H(x,Dh) dx ≤ 1

ν

∫
B4r

f(x,Dh) dx

≤ 1

ν

∫
B4r

f(x,Du) dx ≤ L

ν

∫
B4r

H(x,Du) dx,

(3.4.25)

which is the first inequality of (3.4.24). Now by Taylor’s formula of f , the
conditions (3.4.7) and (3.4.8), we obtain

1

c

(
(|z1|+ |z2|)p(x)−2 |z1 − z2|2 + a(x) (|z1|+ |z2|)q(x)−2 |z1 − z2|2

)
≤ f(x, z1)− f(x, z2)− 〈Dzf(x, z2), z1 − z2〉

with c = c(n, ν, L, γ1, γ2) ≥ 1. Then plugging z1 = Du, z2 = Dh and testing
(3.4.22) with a test function u − h ∈ W 1,H

0 (B4r), it follows by Hölder’s in-
equality, Young’s inequality, (3.4.7), (3.4.9), ω(4r) ≤ δ, (3.4.23) and the first
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CHAPTER 3. CALDERÓN-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

inequality of (3.4.24) that

I0 :=

∫
B4r

(
(|Du|+ |Dh|)p(x)−2 + a(x) (|Du|+ |Dh|)q(x)−2

)
|Du−Dh|2 dx

≤ c

∫
B4r

f(x,Du)− f(x,Dh) dx

≤ cω(4r)

∫
B4r

f(x,Dh) dx

+ c

∫
B4r

〈
|F |p(x)−2F + a(x)|F |q(x)−2F,Du−Dh

〉
dx

− cω(4r)

∫
B4r

〈
|F |p(x)−2F + a(x)|F |q(x)−2F,Dh

〉
dx

≤ cδ

∫
B4r

H(x,Dh) dx+ cκ

∫
B4r

[H(x,Du) +H(x,Dh)] dx

+ c(κ)

∫
B4r

H(x, F ) dx

≤ (cδ + cκ+ c(κ)δ)λ

for any κ ∈ (0, 1), where c(κ) depends on γ1, γ2 and κ.
Denote

A1 = {x ∈ B4r : p(x) ≥ 2 and q(x) ≥ 2},
A2 = {x ∈ B4r : p(x) < 2 and q(x) ≥ 2},
A3 = {x ∈ B4r : p(x) < 2 and q(x) < 2}.

Since (|Du|+ |Dh|)p(x)−2 ≥ |Du−Dh|p(x)−2 and (|Du|+ |Dh|)q(x)−2 ≥ |Du−
Dh|q(x)−2 on A1, we have∫

A1

H(x,Du−Dh) dx ≤ I0.

On A3, by Young’s inequality with
(

2
2−p(x)

, 2
p(x)

)
and

(
2

2−q(x)
, 2
q(x)

)
, for any
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κ1 ∈ (0, 1),∫
A3

H(x,Du−Dh) dx

=

∫
A3

{
(|Du|+ |Dh|)

p(x)(2−p(x))
2 (|Du|+ |Dh|)

p(x)(p(x)−2)
2 |D(u− h)|p(x)

+ a(x) (|Du|+ |Dh|)
q(x)(2−q(x))

2 (|Du|+ |Dh|)
q(x)(q(x)−2)

2 |D(u− h)|q(x)
}
dx

≤ κ1

∫
A3

(
(|Du|+ |Dh|)p(x) + a(x) (|Du|+ |Dh|)q(x)

)
dx

+ c(κ1)

∫
A3

(
(|Du|+ |Dh|)p(x)−2 + a(x) (|Du|+ |Dh|)q(x)−2

)
× |D(u− h)|2 dx

≤ κ1c

∫
A3

(H(x,Du) +H(x,Dh)) dx+ c(κ1)I0.

By (3.4.23) and (3.4.25), we have∫
A3

H(x,Du−Dh) dx ≤ κ1cλ+ c(κ1)I0. (3.4.26)

Similarly, the estimate on A2 can be proceeded as (3.4.26). Consequently we
find ∫

B4r

H(x,Du−Dh) dx ≤ κ1c∗λ+ c(κ1)I0

and so ∫
B4r

H(x,Du−Dh) dx ≤ [κ1c∗ + c(κ1)κ+ c(κ1) (1 + c(κ)) δ]λ

for any κ1 ∈ (0, 1), where c∗ depends on n, ν, L, γ1, γ2, while c(κ1) depends
on n, ν, L, γ1, γ2, κ1.

Now choose κ1 = ε
3c∗

and κ = ε
3c(κ1)

, and then select δ such that c(κ1)(1+

c(κ))δ ≤ ε
3
. This yields the second inequality of (3.4.24).

We next discuss each minimizer of the corresponding freezing functionals
and higher integrabilities of them. To this end, let M be the number given
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in Lemma 3.4.4. Then by (3.4.25), we have∫
B4r

H(x,Dh) dx ≤ c1

(
‖H(x,Du)‖L1(Ω) + 1

)
(3.4.27)

for some constant c1 as in Lemma 3.4.6. By (3.4.7) and [80, Proposition 2.32],
we obtain

|Dzf1(x, z)| ≤ L̃|z|p(x)−1 and |Dzf2(x, z)| ≤ L̃|z|q(x)−1

for a positive constant L̃ = L̃(n, ν, L, γ1, γ2). With this L̃, we consider a
sufficiently small radius R > 0 such that

R ≤ 1

4c1

(
‖H(x,Du)‖L1(Ω) + 1

) < 1

4
,

and µ(2R) ≤ min

{√
n+ γ1

n+ 1
− 1,

σ0

4
,

ν

8(L+ L̃)

}
≤ 1

2
.

(3.4.28)

Then R = ρ satisfies (3.4.17) and so r satisfies also (3.4.17) for all 4r ≤ R.
Denote

H1(x, z) = |z|p2 + a(x)|z|q2 (x ∈ B4r, z ∈ Rn),

where p2 = sup
x∈B4r

p(x) and q2 = sup
x∈B4r

q(x). Define two functions f̃1, f̃2 : B4r ×

Rn → R and f̄1, f̄2 : Rn → R by{
f̃1(x, z) = f1(x, z)|z|p2−p(x)

f̃2(x, z) = f2(x, z)|z|q2−q(x)
and

{
f̄1(z) =

∫
B4r

f̃1(x, z) dx

f̄2(z) =
∫
B4r

f̃2(x, z) dx.

Then by [46, Eq. (3.15)], we have{
ν|z|p2 ≤ f̄1(z) ≤ L|z|p2

ν|z|q2 ≤ f̄2(z) ≤ L|z|q2
(3.4.29)
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and 
ν

8
|z|p2−2|η|2 ≤

〈
D2f̄1(z)η, η

〉
≤ 2L|z|p2−2|η|2

ν

8
|z|q2−2|η|2 ≤

〈
D2f̄2(z)η, η

〉
≤ 2L|z|q2−2|η|2.

(3.4.30)

Now let us write

f̄(x, z) = f̄1(z) + a(x)f̄2(z).

Note that for any x ∈ Ω,

sup
z∈Rn\{0}

|f̃1(x, z)− f̄1(z)|
|z|p2

= θ1(B4r)(x),

sup
z∈Rn\{0}

|f̃2(x, z)− f̄2(z)|
|z|q2

= θ2(B4r)(x)

(3.4.31)

as in [46, Eq. (3.17)].
Let h1 ∈ h+W 1,H1

0 (B3r) be the minimizer of the functional

F1(Dh1) :=

∫
B3r

f̄(x,Dh1) dx ≤
∫
B3r

f̄(x,Dh1 +Dϕ) dx

for all ϕ ∈ W 1,H1

0 (B3r).

(3.4.32)

Then h1 is the weak solution of the following Dirichlet problem:{
−div(Dzf̄(x,Dh1)) = 0 in B3r

h1 = h on ∂B3r.
(3.4.33)

Now we exhibit some estimates which follow from the higher integrability
results Lemma 3.4.4 and Lemma 3.4.5: with (3.4.28) and (p(·), q(·)) being
(δ, 4r)-vanishing, we have∫

B3r

H1(x,Dh1) dx ≤ c

∫
B4r

H(x,Dh) dx+ c, (3.4.34)

(∫
B3r

H1(x,Dh)1+
σ0
4 dx

) 4
4+σ0

≤ c

∫
B4r

H(x,Dh) dx+ c, (3.4.35)
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(∫
B3r

H1(x,Dh1)1+σ2 dx

) 1
1+σ2

≤ c

∫
B4r

H(x,Dh) dx+ c, (3.4.36)

where σ0 is as same as in Lemma 3.4.4, the constant
σ2 = σ2(n, ν, L, γ1, γ2, α, ‖a‖0,α, ‖H(x,Du)‖L1(Ω)) ≤ σ0

4
and the generic con-

stants c depend on n, ν, L, γ1, γ2, α, ‖a‖0,α and ‖H(x,Du)‖L1(Ω). To prove
these, first observe that

p2 ≤ p(x) (1 + 2µ(8r)) ≤ p(x)(1 + σ0) (3.4.37)

and

q2 ≤ q(x) (1 + µ(8r))

≤ q(x) + p(x)
(

1 +
α

n

)
µ(8r)

≤ q(x) + 2p(x)µ(8r) ≤ q(x) + σ0p(x).

(3.4.38)

Hence by (3.4.37) and (3.4.38), the choice ξ1(x) = p2, ξ2(x) = q2 and σ =
2µ(8r) ∈ (0, σ0] is applicable for Lemma 3.4.5. Thus we have∫

B3r

H1(x,Dh) dx ≤ c

(∫
B4r

H(x,Dh) dx

)1+2µ(8r)

+ c. (3.4.39)

Here, note that by (3.4.27) and (3.4.28), if (p(·), q(·)) is (δ, 4r)-vanishing,(∫
B4r

H(x,Dh) dx

)2µ(8r)

≤ c

(
M

rn

)2µ(8r)

≤ c

(
1

r

)2(n+1)µ(8r)

≤ ce−2(n+1)(log r)µ(8r) ≤ ce2(n+1)δ ≤ c. (3.4.40)

Thus together with (3.4.39) and (3.4.40), we have∫
B3r

H1(x,Dh) dx ≤ c

∫
B4r

H(x,Dh) dx+ c. (3.4.41)
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Now, using (3.4.32) with ϕ = h1 − h, one can see that∫
B3r

H1(x,Dh1) dx ≤ 1

ν

∫
B3r

f̄(x,Dh1) dx

≤ 1

ν

∫
B3r

f̄(x,Dh) dx ≤ L

ν

∫
B3r

H1(x,Dh) dx.

(3.4.42)

Then by (3.4.41) and (3.4.42), we have (3.4.34). Now by (3.4.19) with h
instead of u and (3.4.41), we observe∫

B3r

H1(x,Dh) dx ≤ c

∫
B 10

3 r

H(x,Dh) dx+ c

≤ c

∫
B 11

3 r

H(x,Dh)
1
s dx

s

+ c

≤ c

∫
B 11

3 r

(|Dh|p2 + a(x)|Dh|q2)
1
s dx

s

+ c

= c

∫
B 11

3 r

H1(x,Dh)
1
s dx

s

+ c,

where s is as in the proof of Lemma 3.4.4. Then we have by Gehring’s lemma
[2, Theorem 4],(∫

B3r

H1(x,Dh)1+σ dx

) 1
1+σ

≤ c

∫
B 11

3 r

H1(x,Dh) dx+ c

for all σ̃ ∈ (0, σ0], where σ0 is exactly same as in Lemma 3.4.4. Especially,
we have(∫

B3r

H1(x,Dh)1+
σ0
4 dx

) 4
4+σ0

≤ c

∫
B 11

3 r

H1(x,Dh) dx+ c. (3.4.43)

Now together with (3.4.41), we have (3.4.35). Now (3.4.36) follows from [84,
Theorem 3] and (3.4.41).

Next let us introduce an inequality which will be used in the following
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lemma. Let 0 < β1 ≤ β2 < ∞ and s1 > 1. Then there exists a constant
c(s1, β1, β2) > 0 such that for any function f ∈ L1(Ω) and β ∈ [β1, β2],∫

Ω

|f |
[
log

(
e+

|f |∫
Ω
|f | dx

)]β
dx ≤ c(s1, β1, β2)

(∫
Ω

|f |s1 dx
) 1

s1

. (3.4.44)

(See [2].)
Now we prove the following comparison estimates:

Lemma 3.4.7. Under the assumptions and conclusions of Lemma 3.4.6,
there exists a small δ = δ(n, ν, L, γ1, γ2, α, ‖a‖0,α, ‖H(x,Du)‖L1(Ω), ε) > 0
such that if (p(·), q(·), f1, f2) is (δ, 4r)-vanishing with R ≥ 4r satisfying
(3.4.28), then there exists h1 ∈ W 1,H1(B3r) such that∫

B3r

H1(x,Dh1) dx ≤ cλ and

∫
B3r

H1(x,Dh−Dh1) dx ≤ ελ (3.4.45)

hold for some constant c = c(n, ν, L, γ1, γ2, α, ‖a‖0,α).

Proof. The first inequality of (3.4.45) follows by (3.4.41) and Lemma 3.4.6.
By Taylor’s formula of f̄ and the conditions (3.4.29) and (3.4.30), we

obtain

1

c

(
(|z1|+ |z2|)p2−2 |z1 − z2|2 + a(x) (|z1|+ |z2|)q2−2 |z1 − z2|2

)
≤ f̄(x, z1)− f̄(x, z2)−

〈
Dzf̄(x, z2), z1 − z2

〉 (3.4.46)

with c = c(n, ν, L, γ1, γ2) ≥ 1. Applying z1 = Dh, z2 = Dh1 and (3.4.33)
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CHAPTER 3. CALDERÓN-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

with the test function h− h1 ∈ W 1,H1

0 (B3r), it follows that

I1 :=

∫
B3r

(
(|Dh|+ |Dh1|)p2−2 + a(x) (|Dh|+ |Dh1|)q2−2) |Dh−Dh1|2 dx

≤ c

∫
B3r

f̄(x,Dh)− f̄(x,Dh1)−
〈
Dzf̄(x,Dh1), Dh−Dh1

〉
dx

= c

∫
B3r

(
f̄(x,Dh)− f̃(x,Dh)

)
dx+ c

∫
B3r

(
f̃(x,Dh)− f(x,Dh)

)
dx

+ c

∫
B3r

(f(x,Dh)− f(x,Dh1)) dx

+ c

∫
B3r

(
f(x,Dh1)− f̃(x,Dh1)

)
dx

+ c

∫
B3r

(
f̃(x,Dh1)− f̄(x,Dh1)

)
dx

=: I2 + I3 + I4 + I5 + I6.

Estimates I2 and I6: Since (f1, f2) is (δ, 4r)-vanishing, together with (3.4.31),
Hölder’s inequality, (3.4.34), (3.4.35) and (3.4.36), we obtain

|I2|+ |I6| ≤ c

∫
B3r

θ(B4r) [H1(x,Dh) +H1(x,Dh1)] dx

≤ c

(∫
B3r

θ(B4r)
1+σ2
σ2 dx

) σ2
1+σ2

λ

≤ c

(
L

1
σ2

∫
B3r

θ(B4r) dx

) σ2
1+σ2

λ ≤ cδ
σ2

1+σ2 λ.

Estimates I3 and I5: Write

I3 =

∫
B3r

(
f̃1(x,Dh)− f1(x,Dh)

)
dx

+

∫
B3r

a(x)
(
f̃2(x,Dh)− f2(x,Dh)

)
dx =: I3,p + I3,q.

Now let us estimate I3,q first. To this end, by mean value theorem and Fubini’s
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theorem, we find

I3,q ≤ L

∫
B3r

a(x)

[∫ 1

0

(q2 − q(x))| log (|Dh|) |Dh|(q2−q(x))t dt

]
|Dh|q(x) dx

≤ cµ(8r)

∫ 1

0

∫
B3r

a(x)| log(|Dh|)||Dh|(q2−q(x))t+
γ1
2 |Dh|q(x)− γ1

2 dxdt.

For every α > 0 and β > 1 we have

tα| log t| ≤


eα

α
if 0 < t ≤ e,

2tα log
(
e+ t

β
2

)
if e < t,

and for any t1, t2 > 0 we see log(e + t1t2) ≤ log(e + t1) + log(e + t2). Then
we estimate

| log(|Dh|)||Dh|(q2−q(x))t+
γ1
2 |Dh|q(x)− γ1

2

≤ 2| log(e+ |Dh|p2)||Dh|q2 +
2eγ2

γ1

|Dh|q(x)− γ1
2

≤ 2 log

(
e+

|Dh|p2

(H1(x,Dh))B3r

)
|Dh|q2 + 2 log

(
e+ (H1(x,Dh))B3r

)
|Dh|q2

+ c(γ1, γ2)|Dh|q(x)

≤ 2 log

(
e+

H1(x,Dh)

(H1(x,Dh))B3r

)
|Dh|q2 + 2 log

(
e+ (H1(x,Dh))B3r

)
|Dh|q2

+ c(γ1, γ2)|Dh|q(x).
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Thus, it follows by (3.4.28), (3.4.35) and (3.4.44) that

|I3,q| ≤ cµ(8r)

∫
B3r

a(x)|Dh|q2 log

(
e+

H1(x,Dh)

(H1(x,Dh))B3r

)
dx

+ cµ(8r)

∫
B3r

a(x)|Dh|q2 log
(
e+ (H1(x,Dh))B3r

)
dx

+ cµ(8r)

∫
B3r

a(x)|Dh|q(x) dx

≤ cµ(8r)

(∫
B3r

H1(x,Dh)(1+
σ0
4 ) dx

) 4
4+σ0

+ cµ(8r) log

(
1

r

)∫
B3r

H1(x,Dh) dx+ cµ(8r)

∫
B3r

H(x,Dh) dx

≤ cµ(8r) log

(
1

r

)(∫
B3r

H1(x,Dh)(1+
σ0
4 ) dx

) 4
4+σ0

≤ cδλ,

since (p(·), q(·)) is (δ, 4r)-vanishing. By substituting p(x) for q(x) and p(x),
and 1 for a(x), with the same argument as above, we see

|I3,p| ≤ cδλ.

By the similar argument for I3,p and I3,q, we have

|I5| ≤ cδλ.

Here, note that we have to use (3.4.36) instead of (3.4.35).
Estimate I4: (3.4.21) yields I4 ≤ 0.
Estimate I1: Similar to the proof of Lemma 3.4.6, we have∫

B3r

H1(x,Dh−Dh1) dx ≤ κ2cλ+ c(κ2)I1

for any κ2 ∈ (0, 1), where c(κ2) depends on n, ν, L, γ1, γ2 and κ2. Therefore,
we have ∫

B3r

H1(x,Dh−Dh1) dx ≤ κ2cλ+ c(κ2)
(
cδ

σ0
4+σ0 + 4cδ

)
λ.
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Now choose κ2 = ε
2c

and then select δ small enough so that

c(κ2)
(
cδ

σ0
4+σ0 + 4cδ

)
≤ ε

2
.

This finishes the proof of the lemma.

Now, let v ∈ W 1,H1(B2r) be the weak solution of{
div(Dzf̄(xM , Dv)) = 0 in B2r

v = h1 on ∂B2r,
(3.4.47)

where xM ∈ B2r is such that a(xM) = sup
x∈B2r

a(x). Now we refer the following

comparison estimates.

Lemma 3.4.8 ([79, 84]). Assume H(x, F ) ∈ Lγ(·)(Ω) with (3.4.5). Under
the assumptions and conclusions of Lemma 3.4.7, there exists a small δ =
δ(n, ν, L, γ1, γ2, α, ‖a‖0,α, ‖H(x,Du)‖L1(Ω), ε) > 0 such that

sup
x∈Br

H1(xM , Dv) ≤ cλ (3.4.48)

for some constant c = c(n, ν, L, γ1, γ2, α, ‖a‖0,α) and∫
B 3r

2

H1(x,Dh1 −Dv) dx ≤
(

2ε+
c̄

K
+ c∗(K)rσ3

)
λ

with K ≥ 4, c̄ = c̄(n, ν, L, γ1, γ2),
c∗(K) = c∗(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(·)(Ω), K) and
σ3 = σ2(n, ν, L, γ1, γ2, α, ‖a‖0,α, ‖H(x,Du)‖L1(Ω)).

We combine all the estimates in Lemma 3.4.6, 3.4.7 and 3.4.8 to reach
the desired comparison estimates.

Lemma 3.4.9. Let λ ≥ 1, K ≥ 4 and assume H(x, F ) ∈ Lγ(·)(Ω) with
(3.4.5). Then for any ε > 0, there exists a small
δ = δ(n, ν, L, γ1, γ2, α, ‖a‖0,α, ‖H(x,Du)‖L1(Ω), ε) > 0 such that if∫

B4r

H(x,Du) dx ≤ λ,

(∫
B4r

H(x, F )1+
σ0
4 dx

) 4
4+σ0

≤ δλ, (3.4.49)
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and (ω, p(·), q(·), f1, f2) is (δ, 4r)-vanishing with R ≥ 4r satisfying (3.4.28),
then there exist h ∈ W 1,H(Br), h1 ∈ W 1,H1(Br) and v ∈ W 1,∞(Br) such that∫

Br

H(x,Du−Dh) dx ≤ 4nελ,∫
Br

H1(x,Dh−Dv) dx ≤ 4nS(ε, R,K)λ,

and

sup
x∈Br

H1 (xM , Dv(x)) ≤ c4λ.

Here, S(ε, R,K) = 4ε+ c2
K

+ c3R
σ3, where c2 = c2(n, ν, L, γ1, γ2),

c3 = c3(data, dist(Ω0, ∂Ω), ‖H(x, F )‖Lγ(·)(Ω), K),
σ3 = σ3(n, ν, L, γ1, γ2, α, ‖a‖0,α, ‖H(x,Du)‖L1(Ω)) and
c4 = c4(n, ν, L, γ1, γ2, α, ‖a‖0,α).

Now we are ready to prove Theorem 3.4.3. Let H(x, F ) ∈ Lγ(·)(Ω) with
(3.4.5) and u ∈ W 1,H(Ω) be an ω-minimizer of F in (3.4.1). For R ≥ 4r with
(3.4.28), let B4r(y) = B4r b Ω. Define λ0 > 0 by

λ0 :=

∫
B2r

H(x,Du) dx+
1

δ

{(∫
B2r

H(x, F )1+σ0 dx

) 1
1+σ0

+ 1

}
, (3.4.50)

where σ0 is given in Lemma 3.4.4 and δ ∈ (0, 1
8
) will be determined later

depending on data and ‖H(x, F )‖Lγ(·)(Ω). With 4r ≤ R satisfying (3.4.28),
choose r1 and r2 such that r

2
≤ r1 < r2 ≤ r and write

E(s, λ) = {x ∈ Bs : H(x,Du(x))
γ(x)
γ− > λ},

E(s, λ) = {x ∈ Bs : H(x, F (x))
γ(x)
γ− > λ}

for λ > 0 and r
2
≤ s ≤ r, where γ− := inf

x∈B2r

γ(x) and γ+ := sup
x∈B2r

γ(x). Let

A :=

(
20

r2 − r1

)n
≥ 1.

Now we give the following lemma obtained from an exit time argument and
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Vitali covering lemma.

Lemma 3.4.10. Assume for c1 as in Lemma 3.4.6,

4r ≤ R ≤ 1

4c1

(
‖H(x,Du)‖L1(Ω) + 1

) < 1

4
and µ̃(R) ≤ σ0

8
<

1

8
. (3.4.51)

Then there exist
c̃ = c̃(n, ν, L, γ1, γ2, ‖a‖0,α, cγ, ‖H(x,Du)‖L1(Ω), ‖H(x, F )‖Lγ(·)(Ω)) such that if
λ > c̃Aλ0 ≥ 1, then there is a countable collection of mutually disjoint open
balls {Bρi(y

i)}∞i=1 with yi ∈ E(r1, λ) and ρi ∈
(
0, r2−r1

20

)
such that

E(r1, λ) ⊂
∞⋃
i=1

B5ρi(y
i) ∪ (a negligible set), (3.4.52)

∫
Bρi(yi)

H(x,Du)
γ(x)
γ− dx+

1

δ

(∫
Bρi(yi)

H(x, F )
(1+

σ0
4 ) γ(x)

γ− dx

) 4
4+σ0

= λ

(3.4.53)

and ∫
Bρ(yi)

H(x,Du)
γ(x)
γ− dx+

1

δ

(∫
Bρ(yi)

H(x, F )
(1+

σ0
4 ) γ(x)

γ− dx

) 4
4+σ0

< λ

(3.4.54)

for each ρ ∈ (ρi, r2 − r1].

Proof. First, note that for every Bρ ⊂ Br,(∫
Bρ

H(x,Du) dx

)µ̃(2ρ)

= ρ−nµ̃(2ρ)

(∫
Bρ

H(x,Du) dx

)µ̃(2ρ)

≤
(3.4.51)

ρ−(n+1)µ̃(2ρ)

≤ e−(n+1)(log ρ)µ̃(2ρ) ≤
(3.4.5)

e(n+1)cγ ≤ c (3.4.55)
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with c = c(n, cγ) and(∫
Bρ

H(x, F )1+σ0 dx

) µ̃(2ρ)
1+σ0

= ρ
−nµ̃(2ρ)

1+σ0

(∫
Bρ

H(x, F )1+σ0 dx

) µ̃(2ρ)
1+σ0

≤ e
−n(log ρ)µ̃(2ρ)

1+σ0

(
‖H(x, F )‖Lγ(·)(Ω) + 1

)
≤ ce

ncγ
1+σ0 ≤ c (3.4.56)

with c = c(n, cγ, ‖H(x, F )‖Lγ(·)(Ω)).
For each Bρ(ỹ) ⊂ Br, define

Φỹ(ρ) =

∫
Bρ(ỹ)

H(x,Du)
γ(x)
γ− dx+

1

δ

(∫
Bρ(ỹ)

H(x, F )
(1+

σ0
4 ) γ(x)

γ− dx

) 4
4+σ0

.

Then by Lebesgue differentiation theorem, for almost every ỹ ∈ E(s, λ),

lim
ρ→0

Φỹ(ρ) = H(ỹ, Du(ỹ))
γ(ỹ)
γ− +

1

δ
H(ỹ, F (ỹ))

γ(ỹ)
γ− > λ. (3.4.57)
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If ỹ ∈ Br1 , for ρ ∈
[
r2−r1

20
, r2 − r1

]
, by Hölder’s inequality, we have

Φỹ(ρ) ≤ A

∫
B r

2

H(x,Du)
γ(x)
γ− dx+

1

δ

{
A

∫
B r

2

H(x, F )
(1+

σ0
4 ) γ(x)

γ− dx

} 4
4+σ0

= A

∫
B r

2

H(x,Du)
1
2H(x,Du)

1
2

+
γ(x)−γ−

γ− dx

+
A

δ

(∫
B r

2

H(x, F )
1
2

+
σ0
8 H(x, F )

1
2

+
σ0
8

+
γ(x)−γ−

γ− (1+
σ0
4 )
dx

) 4
4+σ0

≤ A

(∫
B r

2

H(x,Du) dx

) 1
2
(∫

B r
2

H(x,Du)
1+2

γ(x)−γ−
γ− dx

) 1
2

+
A

δ

(∫
B r

2

H(x, F )1+
σ0
4 dx

) 4
2(4+σ0)

×

(∫
B r

2

H(x, F )
1+

σ0
4

+
2(γ(x)−γ−)

γ− (1+
σ0
4 )
) 4

2(4+σ0)

≤ A2
n
2

(∫
Br

H(x,Du) dx

) 1
2

(∫
B r

2

H(x,Du)1+2µ̃(2r) dx+ 1

) 1
2

+
A2

n
2

δ

(∫
Br

H(x, F )1+σ0 dx

) 1
2(1+σ0)

×

(∫
B r

2

H(x, F )(1+2µ̃(2r))(1+
σ0
4 ) dx+ 1

) 4
2(4+σ0)

. (3.4.58)
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Here, by (3.4.5), Lemma 3.4.4, (3.4.55), (3.4.56) and Hölder’s inequality,(∫
B r

2

H(x,Du)1+2µ̃(2r) dx+ 1

) 1
2

≤ c

(∫
Br

H(x,Du) dx

) 1+2µ̃(2r)
2

+ c

(∫
Br

H(x, F )1+2µ̃(2r) dx

) 1
2

+ c

≤ c

(∫
Br

H(x,Du) dx

) 1
2

+ c

(∫
Br

H(x, F )1+σ0 dx

) 1+2µ̃(2r)
2(1+σ0)

+ c

≤ c

(∫
Br

H(x,Du) dx

) 1
2

+ c

(∫
Br

H(x, F )1+σ0 dx

) 1
2(1+σ0)

+ c

and (∫
B r

2

H(x, F )(1+2µ̃(2r))(1+
σ0
4 ) dx+ 1

) 4
2(4+σ0)

≤

(∫
B r

2

H(x, F )(1+
σ0
4 )

2

dx

) 8+16µ̃(2r)

(4+σ0)2

+ c

≤

(∫
B r

2

H(x, F )1+σ0 dx

) 1
2 +µ̃(2r)

1+σ0

+ c

≤ c

(∫
B r

2

H(x, F )1+σ0 dx

) 1
2(1+σ0)

+ c

with c = c(n, ν, L, γ1, γ2, ‖a‖0,α, cγ, ‖H(x,Du)‖L1(Ω), ‖H(x, F )‖Lγ(·)(Ω)).
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Hence,

Φỹ(ρ)

≤ cA

(∫
Br

H(x,Du) dx

) 1
2

×

{(∫
Br

H(x,Du) dx

) 1
2

+ c

(∫
Br

H(x, F )1+σ0 dx

) 1
2(1+σ0)

+ c

}

+
cA

δ

(∫
Br

H(x, F )1+σ0 dx

) 1
2(1+σ0)


(∫

B r
2

H(x, F )1+σ0 dx

) 1
2(1+σ0)

+ c


≤ cA

∫
B r

2

H(x,Du) dx+
cA

δ


(∫

B r
2

H(x, F )1+σ0 dx

) 1
1+σ0

+ 1

 ≤ c̃Aλ0,

(3.4.59)

where c̃ = c̃(n, ν, L, γ1, γ2, ‖a‖0,α, cγ, ‖H(x,Du)‖L1(Ω), ‖H(x, F )‖Lγ(·)(Ω)). Thus
if c̃Aλ0 < λ, since Φỹ(ρ) is continuous, (3.4.57) and (3.4.59) imply that for
almost every ỹ ∈ E(r1, λ), there is a small number ρỹ ∈

(
0, r2−r1

20

)
such that

Φỹ(ρỹ) = λ and Φỹ(ρ) < λ for all ρ ∈ (ρỹ, r2 − r1].

Therefore by the Vitali covering lemma to {Bρi(y
i)}∞i=1 with yi ∈ E(r1, λ),

where yi are the Lebesgue points of H(x,Du) and H(x, F )1+σ0 , we obtain
(3.4.52), (3.4.53) and (3.4.54).

Now we apply Lemma 3.4.9. By (3.4.54),∫
B20ρi

(yi)

H(x,Du)
γ(x)
γ− dx ≤ λ

and

(∫
B20ρi

(yi)

H(x, F )
(1+σ0)

γ(x)
γ− dx

) 1
1+σ0

≤ δλ.

Then we have∫
B20ρi

(yi)

H(x,Du) dx ≤
∫
B20ρi

(yi)

(
H(x,Du)

γ(x)
γ− + 1

)
dx ≤ 2λ (3.4.60)
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and (∫
B20ρi

(yi)

(
H(x, F )

δ

)1+σ0

dx

) 1
1+σ0

≤

(∫
B20ρi

(yi)

(
H(x, F )

δ

)(1+σ0)
γ(x)
γ−

dx+ 1

) 1
1+σ0

≤ cλ.

(3.4.61)

Denote H i
1(x, z) = |z|pi2 + a(x)|z|qi2 with pi2 = sup

x∈B20ρi
(yi)

p(x)

and qi2 = sup
x∈B20ρi

(yi)

q(x) and let xiM ∈ B20ρi(y
i) satisfy a(xiM) = sup

B20ρi
(yi)

a(x).

By Lemma 3.4.9, for any ε ∈ (0, 1), we find sufficiently small positive number
δ = δ(n, ν, L, γ1, γ2, ‖a‖0,α, ‖H(x,Du)‖L1(Ω), γ, ε) such that if

(ω, p(·), q(·), f1, f2) is (δ, R)-vanishing, there exist hi ∈ W 1,Hi
1
(
B5ρi(y

i)
)

and
vi ∈ W 1,∞ (B5ρi(y

i)
)

with the estimate∫
B5ρi

H(x,Du−Dhi) dx ≤ 4nελ,

∫
B5ρi

H i
1(x,Dhi−Dvi) dx ≤ 4nS(ε, R,K)λ

and

sup
x∈B5ρi

H i
1(xiM , Dvi(x)) ≤ c4λ,

where the constant c4 is given in Lemma 3.4.9 and so independent of i and
λ. Then we have ∫

B5ρi

H(x,Du−Dhi)
γ(x)
γ− dx ≤ cε

1
2λ, (3.4.62)

∫
B5ρi

H i
1(x,Dhi −Dvi)

γ(x)
γ− dx ≤ cS(ε, R,K)

1
2λ (3.4.63)

and

sup
x∈B5ρi

H i
1(xiM , Dvi(x))

γ(x)
γ− ≤ cλ, (3.4.64)
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where the generic constants c depend on
n, ν, L, γ1, γ2, ‖a‖0,α, cγ, ‖H(x,Du)‖L1(Ω), ‖H(x, F )‖Lγ(·)(Ω) in (3.4.62), (3.4.63)
and (3.4.64). Indeed, by Hölder’s inequality, Lemma 3.4.4 to u and hi, (3.4.51),
(3.4.55), (3.4.56), (3.4.60) and (3.4.61),∫

B5ρi

H(x,Du−Dhi)
γ(x)
γ− dx =

∫
B5ρi

H(x,Du−Dhi)
1
2

+
(
γ(x)
γ−
− 1

2

)
dx

≤

(∫
B5ρi

H(x,Du−Dhi) dx

) 1
2
(∫

B5ρi

H(x,Du−Dhi)
2
γ(x)
γ−
−1
dx

) 1
2

≤ ε
1
2λ

1
2

(∫
B5ρi

H(x,Du−Dhi)
2
γ(x)
γ−
−1
dx

) 1
2

≤ ε
1
2λ

1
2

(∫
B5ρi

(H(x,Du) +H(x,Dhi))
1+2µ̃(2r) dx+ 1

) 1
2

≤ cε
1
2λ

1
2

{∫
B10ρi

(H(x,Du) +H(x,Dhi)) dx

+

(∫
B10ρi

H(x, F )1+σ0 dx

) 1
1+σ0

+ 1


1
2

≤ cε
1
2λ
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and so (3.4.62) holds. Similarly,∫
B5ρi

H i
1(x,Dhi −Dvi)

γ(x)
γ− dx =

∫
B5ρi

H i
1(x,Dhi −Dvi)

1
2

+
(
γ(x)
γ−
− 1

2

)
dx

≤

(∫
B5ρi

H i
1(x,Dhi −Dvi) dx

) 1
2
(∫

B5ρi

H i
1(x,Dhi −Dvi)

2
γ(x)
γ−
−1
dx

) 1
2

≤ S(ε, R,K)
1
2λ

1
2

(∫
B5ρi

H i
1(x,Dhi −Dvi)

2
γ(x)
γ−
−1
dx

) 1
2

≤ S(ε, R,K)
1
2λ

1
2

(∫
B5ρi

(
H i

1(x,Dhi) +H i
1(x,Dvi)

)1+2µ̃(2r)
dx+ 1

) 1
2

≤ cS(ε, R,K)
1
2λ,

thus we have (3.4.63). Finally,

sup
x∈B5ρi

H i
1(xiM , Dvi(x))

γ(x)
γ− ≤ sup

x∈B5ρi

H i
1(xiM , Dvi(x))

γ+
γ− + 1

≤

(
sup
x∈B5ρi

H i
1(xiM , Dvi(x))

) γ+
γ−

+ 1

≤ cλ
γ+
γ−

so we have (3.4.64).
Let c5 = 2 · 4γ2−1(c4 + 2‖a‖0,α + 2) > 1. Since E(r1, c5λ) ⊂ E(r1, λ),

observe that ∫
E(r1,c5λ)

H(x,Du)
γ(x)
γ− dx

≤
∞∑
i=1

(∫
E(r1,c5λ)∩B5ρi

(yi)

H(x,Du)
γ(x)
γ− dx

)
.

(3.4.65)

For almost every x ∈ E(r1, c5λ) ∩ B5ρi(y
i) with B80ρi(y

i) ⊂ Br2 , it follows
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that

H(x,Du)

≤ 4γ2−1 (H(x,Du−Dhi) +H(x,Dhi −Dvi) +H(x,Dvi))

≤ 4γ2−1
(
H(x,Du−Dhi) +H i

1(x,Dhi −Dvi) +H i
1(xiM , Dvi) + 2‖a‖0,α + 2

)
≤ 4γ2−1

(
H(x,Du−Dhi) +H i

1(x,Dhi −Dvi)
)

+ 4γ2−1(c2 + 2‖a‖0,α + 2)λ

≤ 4γ2−1
(
H(x,Du−Dhi) +H i

1(x,Dhi −Dvi)
)

+
1

2
H(x,Du)

with (3.4.63). Then we have

H(x,Du) ≤ 2 · 4γ2−1
(
H(x,Du−Dhi) +H i

1(x,Dhi −Dvi)
)
. (3.4.66)

and so

H(x,Du)
γ(x)
γ−

≤ 4
γ2

2

γ1

(
H(x,Du−Dhi)

γ(x)
γ− +H i

1(x,Dhi −Dvi)
γ(x)
γ−

) (3.4.67)

Thus, it follows by (3.4.62), (3.4.63) and (3.4.67) that∫
E(r1,c5λ)∩B5ρi

(yi)

H(x,Du)
γ(x)
γ− dx

≤ 4
γ2

2

γ1

(∫
B5ρi

(yi)

H(x,Du−Dhi)
γ(x)
γ− dx (3.4.68)

+

∫
B5ρi

(yi)

H i
1(x,Dhi −Dvi)

γ(x)
γ− dx

)

≤ c · 4
γ2

2

γ1 5n|Bρi(y
i)|
(
ε

1
2 + S(ε, R,K)

1
2

)
λ, (3.4.69)

where c = c(n, ν, L, γ1, γ2, ‖a‖0,α, cγ, ‖H(x,Du)‖L1(Ω), ‖H(x, F )‖Lγ(·)(Ω)). To
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estimate |Bρi(y
i)|, we have from (3.4.53) that∫

Bρi (y
i)

H(x,Du)
γ(x)
γ− dx ≥ λ

2

or

∫
Bρi (y

i)

H(x, F )
(1+

σ0
4 ) γ(x)

γ− dx ≥
(
δλ

2

) 4+σ0
4

(3.4.70)

hold. The first inequality of (3.4.70) implies that

|Bρi(y
i)| ≤ 2

λ

∫
E(r2,

λ
4

)∩Bρi (yi)
H(x,Du)

γ(x)
γ− dx+

|Bρi(y
i)|

2

and so

|Bρi(y
i)| ≤ 4

λ

∫
E(r2,

λ
4

)∩Bρi (yi)
H(x,Du)

γ(x)
γ− dx.

Likewise, the second inequality of (3.4.70) implies that

|Bρi(y
i)| ≤ 22+σ0

(δλ)1+σ0

∫
E(r2,2

−1− 1
1+σ0 δλ)∩Bρi (yi)

H(x, F )
(1+σ0)

γ(x)
γ− dx.

Therefore, we have

|Bρi(y
i)| ≤ 4

λ

∫
E(r2,

λ
4

)∩Bρi (yi)
H(x,Du)

γ(x)
γ− dx

+
22+σ0

(δλ)1+σ0

∫
E(r2,2

−1− 1
1+σ0 δλ)∩Bρi (yi)

H(x, F )
(1+σ0)

γ(x)
γ− dx. (3.4.71)

By (3.4.68) and (3.4.71), we see that∫
E(r1,c5λ)∩B5ρi

(yi)

H(x,Du)
γ(x)
γ− dx

≤ cS(ε, R,K)

∫
E(r2,

λ
4

)∩Bρi (yi)
H(x,Du)

γ(x)
γ− dx

+
cS(ε, R,K)

λσ0

∫
E(r2,2

−1− 1
1+σ0 δλ)∩Bρi (yi)

(
H(x, F )

δ

)(1+σ0)
γ(x)
γ−

dx (3.4.72)

145
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for each i. Since Bρi(y
i) is mutually disjoint, by (3.4.65) and (3.4.72) we have∫

E(r1,λ)

H(x,Du)
γ(x)
γ− dx

≤ cS(ε, R,K)

∫
E(r2,

λ
4c5

)

H(x,Du)
γ(x)
γ− dx

+
cS(ε, R,K)

λσ0

∫
E(r2,

2
−1− 1

1+σ0 δλ
c5

)

(
H(x, F )

δ

)(1+σ0)
γ(x)
γ−

dx (3.4.73)

for any λ ≥ c̃c5Aλ0.
Define the truncated functions[

H(x,Du)
γ(x)
γ−

]
t

= min

{
H(x,Du)

γ(x)
γ− , t

}
(t ≥ 0). (3.4.74)

Then for t ≥ 2c̃c5Aλ0,∫ t

c̃c5Aλ0

λγ−−2

∫
E(r1,λ)

H(x,Du)
γ(x)
γ− dxdλ

≤ cS(ε, R,K)

∫ t

c̃c5Aλ0

λγ−−2

∫
E(r2,

λ
4

)

H(x,Du)
γ(x)
γ− dxdλ

+ cS(ε, R,K)

∫ t

c̃c5Aλ0

λγ−−σ0−2

∫
E(r2,

2
−1− 1

1+σ0 δλ
c5

)

(
H(x, F )

δ

)(1+σ0)
γ(x)
γ−

dxdλ.

By change of variables and Fubini’s theorem,∫ t

c̃c5Aλ0

λγ−−2

∫
E(r1,λ)

H(x,Du)
γ(x)
γ− dxdλ

=
1

γ1 − 1

∫
Br1

[H(x,Du)
γ(x)
γ− ]

γ−−1
t H(x,Du)

γ(x)
γ− dx

−
∫ c̃c5Aλ0

0

λγ−−2

∫
E(r1,λ)

H(x,Du)
γ(x)
γ− dxdλ,
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CHAPTER 3. CALDERÓN-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

∫ t

c̃c5Aλ0

λγ−−2

∫
E(r2,

λ
4c5

)

H(x,Du)
γ(x)
γ− dxdλ

≤ 1

γ1 − 1

∫
Br2

[H(x,Du)
γ(x)
γ− ]

γ−−1
t

4c5

H(x,Du)
γ(x)
γ− dx

≤ 1

γ1 − 1

∫
Br2

[H(x,Du)
γ(x)
γ− ]

γ−−1
t H(x,Du)

γ(x)
γ− dx

and ∫ t

c̃c5Aλ0

λγ−−σ0−2

∫
E(r2,

2
−1− 1

1+σ0 δλ
c5

)

(
H(x, F )

δ

)(1+σ0)
γ(x)
γ−

dxdλ

≤
∫ ∞

0

λγ−−σ0−2

∫
E(r2,

δλ
4c5

)

(
H(x, F )

δ

)(1+σ0)
γ(x)
γ−

dxdλ

≤ c

∫
Br2

(
H(x, F )

δ

)γ(x)

dx.

Moreover, by the definition of λ0, Lemma 3.4.4, and (3.4.55) and (3.4.56),
we find ∫ c̃c5Aλ0

0

λγ−−2

∫
E(r1,λ)

H(x,Du)
γ(x)
γ− dxdλ

≤
∫ c̃c5Aλ0

0

λγ−−2dλ

∫
Br2

H(x,Du)
γ(x)
γ− dx

≤ (c̃c5Aλ0)γ−−1

γ1 − 1

∫
Br2

H(x,Du)
γ(x)
γ− dx

≤ (c̃c5Aλ0)γ−−1|Br2|
γ1 − 1

(∫
Br2

H(x,Du)1+µ̃(r) dx+ 1

)

≤ c(c̃c5Aλ0)γ−|Br2|
γ1 − 1

.
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Consequently, we discover∫
Br1

[H(x,Du)
γ(x)
γ− ]

γ−−1
t H(x,Du)

γ(x)
γ− dx

≤ cS(ε, R,K)

∫
Br2

[H(x,Du)
γ(x)
γ− ]

γ−−1
t H(x,Du)

γ(x)
γ− dx

+ cS(ε, R,K)

∫
Br2

(
H(x, F )

δ

)γ(x)

dx+ c(c̃c5)γ−
(

λ0

(r2 − r1)n

)γ−
,

where c = c(data, dist(Ω0, ∂Ω), γ1, ‖H(x, F )‖Lγ(·)(Ω)) ≥ 1. Choose 0 < ε < 1,
K ≥ 4 and then 0 < R < 1 such that
R = R(data, ω(·), dist(Ω0, ∂Ω), γ1, ‖H(x, F )‖Lγ(·)(Ω)) in order to have

0 < cS(ε, R,K) <
1

2
. (3.4.75)

Then we find a small δ = δ(data) > 0 from Lemma 3.4.9. In light of Lemma
2.0.1, we obtain∫

B r
2

[H(x,Du)
γ(x)
γ− ]

γ−−1
t H(x,Du)

γ(x)
γ− dx ≤ cλ

γ−
0 + c

∫
B2r

H(x, F )γ(x) dx.

Letting t → ∞ and then recalling the definition of λ0 in (3.4.50), Hölder’s
inequality, we have∫

B r
2

H(x,Du)γ(x) dx

≤ c

(∫
B2r

H(x,Du) dx+

(∫
B2r

H(x, F )1+σ0 dx

) 1
1+σ0

+ 1

)γ−

+ c

∫
B2r

H(x, F )γ(x) dx

≤ c

(∫
B2r

H(x,Du) dx

)γ−
+ c

∫
B2r

H(x, F )γ(x) dx+ c,

and so we arrive at the required Calderón-Zygmund estimates (3.4.15). Now
H(x,Du) ∈ Lγ(·)(Ω0) is obtained by a standard covering argument. The proof
is complete.
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CHAPTER 3. CALDERÓN-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

3.5 Local estimates for Orlicz double phase

problems with variable exponents

In the present section, optimal regularity estimates are established for the
gradient of solutions to non-uniformly elliptic equations of Orlicz double
phase with variable exponents type in divergence form under sharp conditions
on such highly nonlinear operators for the Calderón-Zygmund theory.

3.5.1 Hypothesis and main results

The functions in the exponents p(·), q(·) : Ω → [1,∞) are bounded and
log-Hölder continuous functions in the following way that

1 ≤ p(x), q(x) ≤ mpq for every x ∈ Ω, (3.5.1)

and

|p(x)− p(y)|+ |q(x)− q(y)| ≤ Mpq

− log |x− y|
(3.5.2)

for some non-negative constants mpq and Mpq, whenever x, y ∈ Ω with |x−
y| ≤ 1/2, whereas the coefficient function a : Ω→ [0,∞) satisfies

0 ≤ a(·) ∈ C0,α(Ω), α ∈ (0, 1]. (3.5.3)

We shall assume that the functions presented above satisfy the central as-
sumption in this section:

κ := sup
x∈Ω

sup
t>0

Hq(x)(t)

Gp(x)(t) +G(1+α
n

)p(x)(t)
<∞. (3.5.4)

We consider weak solutions of the equation

−divA(x,Du) = −divB(x, F ) in Ω, (3.5.5)

where the vector field A : Ω× Rn → Rn is represented by

A(x, z) = A1(x, z) + a(x)A2(x, z) (3.5.6)

for every x ∈ Ω and z ∈ Rn, in which A1, A2 : Ω×Rn → Rn are Carathéodory
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vector fields and differentiable with respect to second variable z ∈ Rn \ {0}
satisfying the following structure assumptions

|z||∂zA1(x, z)|+ |A1(x, z)| ≤ L
Gp(x)(|z|)
|z|

|z||∂zA2(x, z)|+ |A2(x, z)| ≤ L
Hq(x)(|z|)
|z|

,

(3.5.7)

and 
〈∂zA1(x, z)ξ, ξ〉 ≥ ν

Gp(x)(|z|)
|z|2

|ξ|2

〈∂zA2(x, z)ξ, ξ〉 ≥ ν
Hq(x)(|z|)
|z|2

|ξ|2
(3.5.8)

with fixed constants 0 < ν ≤ L < ∞, whenever z ∈ Rn \ {0}, ξ ∈ Rn and
x ∈ Ω. The map B : Ω × Rn → Rn appearing on the right-hand side of the
equation (3.5.5) is a Carathéodory vector field such that

|B(x, z)| ≤ L

(
Gp(x)(|z|) + a(x)Hq(x)(|z|)

|z|

)
(3.5.9)

for all x ∈ Ω and z ∈ Rn \ {0}.
To go further on, we need to define a notion of (δ, R)-vanishing condition.

Definition 3.5.1. With small numbers δ ∈ (0, 1/8) and R ∈ (0, 1), we say
that the quadruple (p(·), q(·), A1, A2) is (δ, R)-vanishing if the following two
conditions are satisfied:

1. There is a non-decreasing concave function ω : [0,∞) → [0,∞) such
that

|p(x)− p(y)|+ |q(x)− q(y)| ≤ ω(|x− y|), ω(0) = 0 (3.5.10)

for every x, y ∈ Ω, with

sup
0<ρ≤R

ω(ρ) log
1

ρ
≤ δ. (3.5.11)
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2. The following inequality holds true:

sup
0<ρ≤R

sup
Bρ(y)⊂Ω

∫
Bρ(y)

[θ(A1, Bρ(y))(x) + θ(A2, Bρ(y))(x)] dx ≤ δ, (3.5.12)

where, with fixed y ∈ Ω, the maps θ (A1, Bρ(y)) (·), θ (A2, Bρ(y)) (·) :
Ω→ [0,∞) are given by

θ (A1, Bρ(y)) (x)

:= sup
z∈Rn\{0}

∣∣∣∣∣ A1(x, z)

Gp(x)−1(|z|)G′(|z|)
−
(

A1(·, z)
Gp(·)−1(|z|)G′(|z|)

)
Bρ(y)

∣∣∣∣∣
and

θ (A2, Bρ(y)) (x)

:= sup
z∈Rn\{0}

∣∣∣∣∣ A2(x, z)

Hq(x)−1(|z|)H ′(|z|)
−
(

A2(·, z)
Hq(·)−1(|z|)H ′(|z|)

)
Bρ(y)

∣∣∣∣∣
for every x ∈ Ω.

Remark 3.5.2. In fact, the smallness of the quantity described in (3.5.12)

says that the mappings x 7→ A1(x,z)

Gp(x)−1(|z|)G′(|z|) and x 7→ A2(x,z)

Hq(x)−1(|z|)H′(|z|) have a

small BMO (Bounded mean oscillation) condition, uniformly in z variable,
that are naturally considered in earlier works [16, 51, 58, 89] and references
therein, as an minimal condition for the Calderón-Zygmund type estimates.

Remark 3.5.3. The structure assumptions (3.5.7) together with Remark
2.1.2 imply that

θ (A1, Bρ(y)) (x) ≤ 2L and θ (A2, Bρ(y)) (x) ≤ 2L

for every x ∈ Ω, whenever Bρ(y) ⊂ Ω is a ball. Moreover, with a number
d ≥ 1, we also notice the following obvious but useful inequality:∫

Bρ(y)

[θ(A1, Bρ(y))(x) + θ(A2, Bρ(y))(x)]d dx

≤ (4L)d−1

∫
Bρ(y)

[θ(A1, Bρ(y))(x) + θ(A2, Bρ(y))(x)] dx.

151
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For the abbreviation of notations, we shall use a set of parameters which
is data of our problem for a solution u of the equation (3.5.5) as follows:

data ≡
(
n, κ, s(G), s(H), ν, L,mpq, α, ‖a‖0,α , ω(·), ‖Ψ(x,Du)‖L1(Ω)

)
.

Denoting

Ψ(x, z) := Gp(x)(|z|) + a(x)Hq(x)(|z|) for every x ∈ Ω and z ∈ Rn or z ∈ R,

we are ready to state the main result of this section.

Theorem 3.5.4. Let u ∈ W 1,Ψ(Ω) be a weak solution to (3.5.5) with
Ψ(x, F ) ∈ Lγ(Ω) for some γ > 1 under the assumptions (3.5.1)-(3.5.4)
and (3.5.7)-(3.5.9). Then there exists δ ≡ δ(data, γ) ∈ (0, 1/8) such that
if (p(·), q(·), A1, A2) is (δ, R)-vanishing for some small R > 0, then the fol-
lowing implication holds:

Ψ(x, F ) ∈ Lγ(Ω) =⇒ Ψ(x,Du) ∈ Lγloc(Ω). (3.5.13)

Moreover, for every open subset Ω0 b Ω, there exists a radius R depend-
ing only on data, dist(Ω0, ∂Ω),γ and ‖Ψ(x, F )‖Lγ(Ω) such that the following
inequality(∫

Br/2(x0)

[Ψ(x,Du)]γ dx

) 1
γ

≤ c

∫
Br(x0)

Ψ(x,Du) dx+ c

(∫
Br(x0)

[Ψ(x, F )]γ dx+ 1

) 1
γ

(3.5.14)

holds for some constant c ≡ c(data, dist(Ω0, ∂Ω), γ, ‖Ψ(x, F )‖Lγ(Ω)), when-
ever Br(x0) b Ω0 is a ball with 0 < r < R.

The above theorem is a considerable generalization of the work [38], where
local gradient estimates for the case G(t) = tpm and H(t) = tqm with some
numbers pm, qm > 1 were investigated. Moreover, it covers the results from
[12] when the exponent functions p(·) ≡ q(·) ≡ 1.

Furthermore, we can always assume that

G(1) = H(1) = 1, (3.5.15)
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otherwise we restate the problem under the new settings by considering
G(t) := G(t)

G(1)
and H(t) := H(t)

H(1)
for every t ≥ 0.

3.5.2 Absence of Lavrentiev phenomenon and Sobolev-
Poincaré type inequality

In the sequel we prove an approximation property for functions of W 1,Ψ(Ω),
the so-called absence of Lavrentiev phenomenon.

Theorem 3.5.5. Under the assumptions (3.5.1)-(3.5.4), for any function
v ∈ W 1,Ψ(Ω) and a ball B b Ω, there exists a sequence of functions {vk}∞k=1 ⊂
W 1,∞(B) such that

vk → v in W 1,Gp(·)(B)

and lim
k→∞

∫
B

Ψ(x,Dvk) dx =

∫
B

Ψ(x,Dv) dx.
(3.5.16)

Proof. Fix a ball B b Ω and take small enough ε0 ∈ (0, 1) such that B ≡
Br b Br+ε0 b Ω. Let ρ ∈ C∞0 (B1(0)) be a standard mollifier with

∫
Rn ρ dx =

1. Set ρε(x) := 1
εn
ρ
(
x
ε

)
for x ∈ Bε(0) with 0 < ε < ε0. Then

ρε ∈ C∞0 (Bε),

∫
Rn
ρε dx = 1, 0 ≤ ρε ≤ c(n)ε−n.

Let us denote by

aε(x) := inf
y∈Bε(x)

a(y), pε(x) := inf
y∈Bε(x)

p(y)

and qε(x) := inf
y∈Bε(x)

q(y),
(3.5.17)

and consider the mollified functions by

vε(x) = (v ∗ ρε)(x) and Ψε(x, z) = Gp(x)(|z|) + aε(x)Hq(x)(|z|)

for every x ∈ B and z ∈ Rn. First, using the assumption (3.5.2), we observe
that

ε−(p(x)−pε(x)) + ε−(q(x)−qε(x)) ≤ e(log 1
ε)(p(x)−pε(x)) + e(log 1

ε)(q(x)−qε(x))

≤ 2eMpq
(3.5.18)
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holds true for every x ∈ B. Therefore, the last display directly implies

ε−
n

pε(x) = ε−
n
p(x)(

p(x)−pε(x)
pε(x) )ε−

n
p(x) ≤ enMpqε−

n
p(x) ≤ c(n,Mpq)ε

− n
p(x) .

By the very definition of convolution together with Hölder’s and Jensen’s
inequalities, we have

G(|Dvε(x)|) = G(|(Dv ∗ ρε)(x)|) ≤
∫
Rn
G(|Dv(x− y)|)ρε(y) dy

≤ c

∫
Bε(x)

G(|Dv(y)|) dy ≤ c

(∫
Bε(x)

Gpε(x)(|Dv(y)|) dy
) 1

pε(x)

≤ c

(∫
Bε(x)

Gp(y)(|Dv(y)|) dy + 1

) 1
pε(x)

≤ cε−
n

pε(x)

(∫
Ω

Gp(y)(|Dv(y)|) dy + 1

)
≤ cε−

n
pε(x)

for some c ≡ c(n,mpq, ‖Ψ(x,Dv)‖L1(Ω)). Combining the last two displays, we
see that

G(|Dvε(x)|) ≤ cε−
n
p(x) (3.5.19)

holds with some constant c ≡ c(n,mpq,Mpq, ‖Ψ(x,Dv)‖L1(Ω)) for every x ∈
B. Moreover, again recalling the definition of pε and qε in (3.5.17) together
with (3.5.18) and (3.5.19), we have

Gp(x)(|Dvε(x)|) = Gpε(x)(|Dvε(x)|)Gp(x)−pε(x)(|Dvε(x)|)
≤ cε−

n
p(x)

(p(x)−pε(x))Gpε(x)(|Dvε(x)|)
≤ cGpε(x)(|Dvε(x)|)

(3.5.20)
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and

Hq(x)(|Dvε(x)|)
= Hqε(x)(|Dvε(x)|)Hq(x)−qε(x)(|Dvε(x)|)

≤ c
(
Gp(x)(|Dvε(x)|) +G(1+α

n)p(x)(|Dvε(x)|)
) q(x)−qε(x)

q(x)

×Hqε(x)(|Dvε(x)|)

≤ c
(
ε−n + ε−n(1+α

n)
) q(x)−qε(x)

q(x)
Hqε(x)(|Dvε(x)|)

≤ cHqε(x)(|Dvε(x)|)

(3.5.21)

with some constant c ≡ c(n, κ,mpq,Mpq, α, ‖Ψ(x,Dv)‖L1(Ω)) for every x ∈ B,
where we have used the assumption (3.5.4) and some elementary manipula-
tions. Therefore, applying again Jensen’s inequality, we obtain

Gpε(x)(|Dvε(x)|) = Gpε(x)

(∣∣∣∣∫
Bε(x)

Dv(y)ρε(x− y) dy

∣∣∣∣)
≤
∫
Bε(x)

Gpε(x)(|Dv(y)|)ρε(x− y) dy

≤
∫
Bε(x)

Ψ(y,Dv(y))ρε(x− y) dy + c

≤ [Ψ(·, Dv(·)) ∗ ρε] (x) + c

(3.5.22)

and

aε(x)Hqε(x)(|Dvε(x)|) = aε(x)Hqε(x)

(∣∣∣∣∫
Bε(x)

Dv(y)ρε(x− y) dy

∣∣∣∣)
≤ aε(x)

∫
Bε(x)

Hqε(x)(|Dv(y)|)ρε(x− y) dy

≤
∫
Bε(x)

Ψ(y,Dv(y))ρε(x− y) dy + c

≤ [Ψ(·, Dv(·)) ∗ ρε] (x) + c

(3.5.23)
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for some constant c independent of ε. To proceed further, let us observe

Ψ(x,Dvε(x)) ≤ Ψε(x,Dvε(x)) + |a(x)− aε(x)|Hq(x)(|Dvε(x)|)
≤ Ψε(x,Dvε(x)) + [a]0,αε

αHq(x)(|Dvε(x)|).
(3.5.24)

Using again the assumption (3.5.4) together with (3.5.19), we have

Hq(x)(|Dvε(x)|) ≤ κ
(
1 +G

α
n
p(x)(|Dvε(x)|)

)
Gp(x)(|Dvε(x)|)

≤ c(1 + ε−α)Gp(x)(|Dvε(x)|) ≤ c(1 + ε−α)Ψε(x,Dvε(x)).

Then inserting the last display into (3.5.24), we find

Ψ(x,Dvε(x)) ≤ Ψε(x,Dvε(x)) + cεα(1 + ε−α)Ψε(x,Dvε(x))

≤ cΨε(x,Dvε(x))

with some constant c ≡ c(n, κ,mpq,Mpq, α, [a]0,α, ‖Ψ(x,Dv)‖L1(Ω)). Now tak-
ing (3.5.20)-(3.5.23) into account in the last display, we conclude with

Ψ(x,Dvε(x)) ≤ c [Ψ(·, Dv(·)) ∗ ρε] (x) + c

for some constant c ≡ c(n, κ,mpq,Mpq, α, [a]0,α, ‖Ψ(x,Dv)‖L1(Ω)) indepen-
dent of ε, whenever x ∈ B. Since

[Ψ(·, Dv(·)) ∗ ρε] (x)→ Ψ(x,Dv(x)) strongly in L1(B),

we are able to apply a variant of Lebesgue’s dominated convergence theorem
for a sequence of functions {vεk} ⊂ C∞0 (Br+ε0) with some choice of εk → 0.

As a result, vk → v in W 1,Gp(·)(B) and this ensures the existence of a sequence
satisfying our desired convergence (3.5.16). The proof is complete.

Let us now consider a Sobolev-Poincaré type inequality related to an
Orlicz function with variable exponent, which plays an important role after-
wards. In the following, let b(·) : Br → [0,∞) be a continuous function such
that

1 ≤ bi := inf
y∈Br

b(y) ≤ b(x) ≤ sup
y∈Br

b(y) =: bs <∞

and |b(x)− b(y)| ≤ ω(|x− y|)
(3.5.25)

holds, whenever x, y ∈ Br with |x − y| < 1/2, where ω(·) is a modulus
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continuous function such that

ω(0) = 0, sup
0<ρ≤r

ω(ρ) log
1

ρ
≤ 1 and ω(2r) ≤

√
n

n− 1
− 1. (3.5.26)

Lemma 3.5.6. Let Φ ∈ N with s(Φ) ≥ 1 and let b(·) : Br → [0,∞) be a
function as defined in (3.5.25)-(3.5.26). Then, for any d ∈

[
1, n

n−1

)
, there

exists θ ≡ θ(n, s(Φ), bi, bs, d) ∈ (0, 1) such that[∫
Br

Φdb(x)

(∣∣∣∣v − (v)Br
r

∣∣∣∣) dx

] 1
d

≤ c

[(∫
Br

Φb(x)(|Dv|) dx
)ω(2r)

+ 1

][∫
Br

Φθb(x)(|Dv|) dx
] 1
θ

+ c

(3.5.27)

holds for some constant c ≡ c(n, s(Φ), bi, bs, d), whenever v ∈ W 1,Φb(·)(Br).

Moreover, the above inequality still holds for every v ∈ W 1,Φb(·)

0 (Br) if v−(v)Br
is replaced by v.

Proof. First we notice the following classical formula that

|v(x)− (v)Br | ≤ c(n)

∫
Br

|Dv(y)|
|x− y|n−1

dy

holds for a.e. x ∈ Br, whenever v ∈ W 1,1(Br), see for instance [125, Lemma
7.16]. Using the last formula and the property that the function Φdb(x)(·) is
increasing for any fixed x ∈ Br, and then applying Lemma 2.1.4, we have

I :=

∫
Br

Φdb(x)

(∣∣∣∣v − (v)Br
r

∣∣∣∣) dx ≤ c

∫
Br

Φdb(x)

(∫
Br

|Dv(y)|
r|x− y|n−1

dy

)
dx

≤ c

∫
Br

Φdbs

(∫
Br

|Dv(y)|
r|x− y|n−1

dy

)
dx+ c

with c ≡ c(n, s(Φ), d). Now by Lemma 2.1.5, there exists

θ ≡ θ(n, bi, s(Φ), d) ∈
(√

n−1
n
d, 1

)
such that Φbiθ ∈ N with s(Φbiθ) de-

pending only on n, bi, s(Φ), d. Let E :=
∫
Br

Φbiθ(|Dv|) dx. One can always
assume E > 0, otherwise (3.5.27) becomes trivial. Recalling the fact that∫
Br

1
r|x−y|n−1 dy ≤ c(n), where the constant c(n) is independent of x ∈ Br and
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the ball Br, we apply Jensen’s inequality for the convex function Φbiθ(·) with
respect to the measure r−1|x− y|−(n−1) dy. In turn, it yields that

I ≤ c

∫
Br

(∫
Br

Φbiθ(|Dv(y)|)r−1|x− y|−(n−1) dy

) bsd
biθ

dx+ c

= cr
bs(n−1)d

biθ E
bsd
biθ

∫
Br

(∫
Br

Φbiθ(|Dv(y)|)
|x− y|n−1

E−1 dy

) bsd
biθ

dx+ c

≤ cr
bs(n−1)d

biθ E
bsd
biθ

∫
Br

∫
Br

Φbiθ(|Dv(y)|)

|x− y|
(n−1)bsd

biθ

E−1 dydx+ c,

(3.5.28)

where in the last inequality of above display we have applied again Jensen’s

inequality to the convex function t 7→ t
bsd
biθ with respect to the probability

measure E−1Φbiθ(|Dv(y)|) dy. Note also that∫
Br

1

|x− y|
(n−1)bsd

biθ

dx ≤ 1

|Br|

∫
B2r(y)

1

|x− y|
(n−1)bsd

biθ

dx

≤ c(n, s(Φ), d)r
− (n−1)bsd

biθ

(3.5.29)

by observing that

(n− 1)bsd

biθ
=

(n− 1)(bs − bi)d
biθ

+
(n− 1)d

θ

< (n− 1)ω(2r)

(
n

n− 1

) 1
2

+ (n− 1)

(
n

n− 1

) 1
2

≤ n,

where we have used our choice of θ, (3.5.25) and (3.5.26). Merging the
estimate (3.5.29) into (3.5.28) and using Hölder’s inequality together with
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(3.5.25) and (3.5.26), we conclude with

I ≤ E
bsd
biθ + c ≤ c

(∫
Br

Φb(x)θ(|Dv|) dx
) bsd

biθ

+ c

≤ cr
−n(bs−bi)d

bi

(∫
Br

Φb(x)(|Dv|) dx
) (bs−bi)d

bi

(∫
Br

Φb(x)θ(|Dv|) dx
) d

θ

+ c

≤ c

[(∫
Br

Φb(x)(|Dv|) dx
)ω(2r)

+ 1

]d(∫
Br

Φb(x)θ(|Dv|) dx
) d

θ

+ c

for some c ≡ c(n, s(Φ), bi, bs, d). Obviously our desired inequality (3.5.27)
follows from the last estimate.

3.5.3 Higher integrability

Before proving the higher integrability, for a given Φ ∈ N (Ω), we define a
vector field VΦ : Ω× (Rn \ {0})→ Rn as follows:

VΦ(x, z) :=

[
∂tΦ(x, |z|)
|z|

] 1
2

z.

Using these maps, it is convenient to formulate the monotonicity properties
of the vector field A(·, ·) in (3.5.6), i.e., the following inequality holds:

|VΨ(x, z1)− VΨ(x, z2)|2 ≤ c 〈A(x, z1)− A(x, z2), z1 − z2〉 (3.5.30)

with some constant c ≡ c(n, s(G), s(H),mpq, ν, L), whenever z1, z2 ∈ Rn\{0}
and x ∈ Ω. We also shall use the following facts frequently, for any Φ ∈ N (Ω)
with s(Φ) ≥ 1, that

|VΦ(x, z1)− VΦ(x, z2)|2 ≈ ∂2
ttΦ(x, |z1|+ |z2|)|z1 − z2|2

≈ ∂tΦ(x, |z1|+ |z2|)
|z1|+ |z2|

|z1 − z2|2,

〈
∂tΦ(x, |z1|)

z1

|z1|
− ∂tΦ(x, |z2|)

z2

|z2|
, z1 − z2

〉
≈ |VΦ(x, z1)− VΦ(x, z2)|2
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and

Φ(x, z1 − z2) ≤ c(τ)|VΦ(x, z1)− VΦ(x, z2)|2 + τΦ(x, z1) (3.5.31)

for every τ > 0 with some constant c(τ) ≡ c(s(Φ), τ), whenever x ∈ Ω and
z1, z2 ∈ Rn with |z1|+ |z2| > 0, where all the implied constants depend only
on n and s(Φ) (see [12, 92]).

Remark 3.5.7. We notice that Ψ ∈ N (Ω) with the index s(Ψ) depending
only on s(G), s(H) and mpq by Lemma 2.1.4 and Lemma 2.1.5, which means
that

1

s(Ψ)
≤ t∂2

ttΨ(x, t)

∂tΨ(x, t)
≤ s(Ψ)

holds for all x ∈ Ω and t > 0. Also we note the following elementary but
useful inequality by Lemma 2.1.4 as

Ψ(x, t1 + t2) ≤ 2s(Ψ)+1 (Ψ(x, t1) + Ψ(x, t2)) (3.5.32)

for all x ∈ Ω and t1, t2 ∈ R.

In the present section we provide a higher integrability of solutions to the
equation (3.5.5) and its homogeneous equation.

Lemma 3.5.8. Let u ∈ W 1,Ψ(Ω) be a weak solution to the equation (3.5.5)
under the assumptions (3.5.1)-(3.5.4) and (3.5.7)-(3.5.9). We also assume
that Ψ(x, F ) ∈ Lγ(Ω) for some γ > 1. Then there exists a positive higher in-
tegrability exponent σ0 ≡ σ0(data, γ) < γ−1 such that Ψ(x,Du) ∈ L1+σ0

loc (Ω).
Moreover, there exists a constant c ≡ c(data) such that(∫

Bρ

[Ψ(x,Du)]1+σ dx

) 1
1+σ

≤ c

∫
B2ρ

Ψ(x,Du) dx+ c

(∫
B2ρ

[Ψ(x, F )]1+σ dx

) 1
1+σ

+ c

(3.5.33)
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holds for every σ ∈ (0, σ0], whenever B2ρ ⊂ Ω is a ball such that

sup
0<τ≤4ρ

ω(τ) log
1

τ
≤ 1 and ω(4ρ) ≤

√
n

n− 1
− 1 (3.5.34)

for ω(·) being a modulus continuous function introduced in (3.5.10). In par-
ticular, for every Ω0 b Ω and σ ∈ (0, σ0], there exists a constant c ≡
c(data, dist(Ω0,Ω), ‖Ψ(x, F )‖Lγ(Ω)) such that

‖Ψ(x,Du)‖L1+σ(Ω0) ≤ c. (3.5.35)

Proof. Let η ∈ C∞0 (B2ρ) be a cut-off function such that χBρ ≤ η ≤ χB2ρ

and |Dη| ≤ 4/ρ. We take ϕ := ηs(Ψ)+1
(
u− (u)B2ρ

)
as a test function in the

equation (3.5.5), where s(Ψ) is the index of Ψ depending only on s(G), s(H)
and mpq by Remark 3.5.7, to observe that

I0 :=

∫
B2ρ

ηs(Ψ)+1〈A(x,Du), Du〉 dx

= −(s(Ψ) + 1)

∫
B2ρ

ηs(Ψ)(u− (u)B2ρ)〈A(x,Du), Dη〉 dx

+

∫
B2ρ

ηs(Ψ)+1 〈B(x, F ), Du〉 dx

+ (s(Ψ) + 1)

∫
B2ρ

ηs(Ψ)(u− (u)B2ρ) 〈B(x, F ), Dη〉 dx

=: I01 + I02 + I03.

Clearly, by the monotonicity property (3.5.30), we have∫
B2ρ

ηs(Ψ)+1Ψ(x,Du) dx ≤ cI0

for some c ≡ c(s(G), s(H), ν, L,mpq). Applying Lemma 2.1.6, for every ε ∈
(0, 1), we find
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I01 ≤ c

∫
B2ρ

ηs(Ψ)|A(x,Du)|
∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣ dx
≤ c

∫
B2ρ

ηs(Ψ) Ψ(x,Du)

|Du|

∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣ dx
≤ c

∫
B2ρ

ηs(Ψ)(εη)Ψ(x,Du) dx+ c

∫
B2ρ

ηs(Ψ) 1

(εη)s(Ψ)
Ψ

(
x,
u− (u)B2ρ

ρ

)
dx

≤ cε

∫
B2ρ

ηs(Ψ)+1Ψ(x,Du) dx+
c

εs(Ψ)

∫
B2ρ

Ψ

(
x,
u− (u)B2ρ

ρ

)
dx

with c ≡ c(s(G), s(H), L,mpq). Similarly, using again Lemma 2.1.6, for every
ε ∈ (0, 1), we have

I02 ≤ ε

∫
B2ρ

ηs(Ψ)+1Ψ(x,Du) dx+
c

εs(Ψ)

∫
B2ρ

ηs(Ψ)+1Ψ (x, F ) dx

and

I03 ≤ c

∫
B2ρ

ηs(Ψ)Ψ(x, F ) dx+ c

∫
B2ρ

ηs(Ψ)Ψ

(
x,
u− (u)B2ρ

ρ

)
dx

for some constant c ≡ c(s(G), s(H), L,mpq). Combining the last three dis-
plays and choosing small enough ε after some standard manipulations, we
have∫

Bρ

Ψ(x,Du) dx ≤ c

∫
B2ρ

Ψ

(
x,
u− (u)B2ρ

ρ

)
dx+ c

∫
B2ρ

Ψ(x, F ) dx

(3.5.36)

for some c ≡ c(n, s(G), s(H), ν, L,mpq).
Now we estimate the term on the right-hand side of the above display.
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For this, using the assumption (3.5.4), we estimate as follows:

I1 :=

∫
B2ρ

Ψ

(
x,
u− (u)B2ρ

ρ

)
dx

=

∫
B2ρ

(
Gp(x)

(∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣)
+(a(x)− ai(B2ρ))H

q(x)

(∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣)) dx

+

∫
B2ρ

ai(B2ρ)H
q(x)

(∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣) dx

≤ c∗

∫
B2ρ

Gp(x)

(∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣) dx

+ c∗ρ
α

∫
B2ρ

Gp(x)(1+α
n)
(∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣) dx

+ c∗ai(B2ρ)

∫
B2ρ

Hq(x)

(∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣) dx

=: c∗(I11 + I12 + I13)

(3.5.37)

for some c∗ ≡ c∗(κ, [a]0,α), where ai(B2ρ) := inf
x∈B2ρ

a(x). Now we estimate

the terms appearing in the last display. For I11, applying Lemma 3.5.6 with
Φ ≡ G, b(·) ≡ p(·) and d ≡ 1, there exists θ1 ≡ θ1(n, s(G),mpq) ∈ (0, 1) such
that

I11 ≤ c

(∫
B2ρ

Gp(x)(|Du|) dx

)ω(4ρ)

+ 1


×

[∫
B2ρ

Gθ1p(x)(|Du|) dx

] 1
θ1

+ c

≤ c

(∫
B2ρ

Ψθ1(x,Du) dx

) 1
θ1

+ c

(3.5.38)

for some constant c ≡ c(n, κ, s(G),mpq, ‖Ψ(x,Du)‖L1(Ω)). For the estimate
on I12, let us first observe that 1 + α

n
< n

n−1
. Therefore, we are able to apply
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Lemma 3.5.6 for Φ ≡ G, b(·) ≡ p(·) and d ≡ 1 + α
n
. In turn, there exists

θ2 ≡ θ2(n, s(G), α,mpq) ∈ (0, 1) such that

I12 ≤ cρα

(∫
B2ρ

Gp(x)(|Du|) dx

)(1+α
n)ω(4ρ)

+ 1


×

(∫
B2ρ

Gθ2p(x)(|Du|) dx

)(1+α
n) 1

θ2

+ cρα

≤ c

(∫
B2ρ

Gp(x)(|Du|) dx

)α
n

+(1+α
n)ω(4ρ)

+

(∫
B2ρ

Gp(x)(|Du|) dx

)α
n


×

(∫
B2ρ

Gθ2p(x)(|Du|) dx

) 1
θ2

+ c

≤ c

(∫
B2ρ

Ψθ2(x,Du) dx

) 1
θ2

+ c

(3.5.39)

with some constant c ≡ c(n, κ, s(G), α,mpq, ‖Ψ(x,Du)‖L1(Ω)). Finally, to es-
timate I13, we consider two cases depending on smallness of the quantity
ai(B2ρ), which means that if ai(B2ρ) ≤ 4ρα, then using the assumption
(3.5.4), we see that

I13 ≤ c(κ) (I11 + I12) .

In particular, in this case the estimates obtained in (3.5.38)-(3.5.39) imply
that

I13 ≤ c

(∫
B2ρ

Ψθ1(x,Du) dx

) 1
θ1

+ c

(∫
B2ρ

Ψθ2(x,Du) dx

) 1
θ2

+ c (3.5.40)

for some c ≡ c(n, κ, s(G), α,mpq, ‖Ψ(x,Du)‖L1(Ω)). Now we consider the re-
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maining case ai(B2ρ) > 4ρα. In this case we observe

[ai(B2ρ)]
−ω(4ρ) ≤ [4ρ]−αω(4ρ) ≤ eα

by the assumption (3.5.34). Then using the last display and applying Lemma
3.5.6 for Φ ≡ H, b(·) ≡ q(·) and d ≡ 1, there exists θ3 ≡ θ3(n, s(H),mpq) ∈
(0, 1) such that

I13 ≤ cai(B2ρ)

(∫
B2ρ

Hq(x)(|Du|) dx

)ω(4ρ)

+ 1


×

(∫
B2ρ

Hθ3q(x)(|Du|) dx

) 1
θ3

+ c

= c

[ai(B2ρ)]
−ω(4ρ)

(∫
B2ρ

ai(B2ρ)H
q(x)(|Du|) dx

)ω(4ρ)

+ 1


×

(∫
B2ρ

[ai(B2ρ)]
θ3Hθ3q(x)(|Du|) dx

) 1
θ3

+ c

≤ c

(∫
B2ρ

Ψθ3(x,Du) dx

) 1
θ3

+ c

(3.5.41)

for some c ≡ c(n, s(H), α,mpq, ‖a‖L∞(Ω) , ‖Ψ(x,Du)‖L1(Ω)). Taking (3.5.38)-
(3.5.39) and (3.5.41) into account, we conclude that

∫
B2ρ

Ψ

(
x,
u− (u)B2ρ

ρ

)
dx ≤ c

(∫
B2ρ

Ψθ(x,Du) dx

) 1
θ

+ c (3.5.42)

for some c ≡ c(data), where θ := max{θ1, θ2, θ3} ∈ (0, 1) depending only
on n, s(G), s(H), α and mpq. Inserting the estimate in the last display into
(3.5.36), we find an exponent θ ≡ θ(n, s(G), s(H),mpq, α) ∈ (0, 1) such that

∫
Bρ

Ψ(x,Du) dx ≤ c

(∫
B2ρ

[Ψ (x,Du)]θ dx

) 1
θ

+ c

∫
B2ρ

Ψ(x, F ) dx+ c
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for some c ≡ c(data). Now we apply Gehring’s lemma to obtain(∫
Bρ

[Ψ(x,Du)]1+σ dx

) 1
1+σ

≤ c

∫
B2ρ

Ψ(x,Du) dx+ c

(∫
B2ρ

[Ψ(x, F )]1+σ dx

) 1
1+σ

+ c

for every σ ∈ (0, σ0], where σ0 ≡ σ0(data, γ) < γ − 1 and c ≡ c(data),
which proves (3.5.33). Clearly, by a standard covering argument, (3.5.35)
follows.

Throughout this section, let u be a weak solution of the equation (3.5.5).
Our purpose here is to prove a higher integrability of the solution of the
following Dirichlet boundary value problem:{

−divA(x,Dw) = 0 in B32r ≡ B32r(y0)

w ∈ u+W 1,Ψ
0 (B32r)

(3.5.43)

for a ball B32r b Ω0 b Ω such that

sup
0<ρ≤64r

ω(ρ) log
1

ρ
≤ 1 and ω(64r) ≤

√
n

n− 1
− 1 (3.5.44)

with ω(·) being a modulus continuous function that has been introduced in
(3.5.10).

Lemma 3.5.9. Let w ∈ W 1,Ψ(B32r) be the weak solution to the equation
(3.5.43) under the assumptions (3.5.1)-(3.5.4), (3.5.7)-(3.5.8) and (3.5.44).
Then there exist a positive exponent σ1 ≡ σ1(data, γ) ∈ (0, 1) with σ1 ≤ σ0

and c ≡ c(data) such that

1. For every ball B2ρ ≡ B2ρ(y) b B32r and σ ∈ (0, σ1], it holds that[∫
Bρ

[Ψ(x,Dw)]
1+σ

dx

] 1
1+σ

≤ c

(∫
B2ρ

Ψ(x,Dw) dx+ 1

)
. (3.5.45)
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CHAPTER 3. CALDERÓN-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

2. The following energy estimate∫
B32r

[Ψ(x,Dw)]1+σ dx ≤ c

∫
B32r

[Ψ(x,Du)]1+σ dx+ c (3.5.46)

holds for every σ ∈ (0, σ1].

Proof. Let us start with testing the equation (3.5.43) by u−w ∈ W 1,Ψ
0 (B32r).

In turn, by (3.5.8) and then (3.5.7) and Lemma 2.1.6 it yields that∫
B32r

Ψ(x,Dw) dx ≤ c

∫
B32r

〈A(x,Dw), Dw〉 dx

≤ c

∫
B32r

|A(x,Dw)||Du| dx

≤ c

∫
B32r

Ψ(x,Dw)

|Dw|
|Du| dx

≤ cτ

∫
B32r

Ψ(x,Dw) dx+
c

τ s(Ψ)

∫
B32r

Ψ(x,Du) dx

(3.5.47)

for any τ ∈ (0, 1) and some constant c ≡ c(n, s(G), s(H), ν, L,mpq). By
taking τ small enough in the last display after arranging the terms, we have
the energy estimate∫

B32r

Ψ(x,Dw) dx ≤ c

∫
B32r

Ψ(x,Du) dx (3.5.48)

for some c ≡ c(n, s(G), s(H), ν, L,mpq).
Arguing similarly as in the proof of Lemma 3.5.8, we obtain the following

Caccioppoli type inequality:∫
Bρ

Ψ(x,Dw) dx ≤ c

∫
B2ρ

Ψ

(
x,
w − (w)B2ρ

ρ

)
dx

for some constant c ≡ c(n, s(G), s(H), ν, L,mpq). Therefore, by this inequal-
ity and with similar computations as in (3.5.37)-(3.5.42) under the assump-
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tion (3.5.44), there exists θ ≡ θ(n, s(G), s(H), α,mpq) ∈ (0, 1) such that

∫
Bρ

Ψ(x,Dw) dx ≤ c

(∫
B2ρ

Ψθ(x,Dw) dx

) 1
θ

+ c (3.5.49)

for some c ≡ c(data). Now we apply Gehring’s lemma to obtain(∫
Bρ

Ψ1+σ(x,Dw) dx

) 1
1+σ

≤ c

∫
B2ρ

Ψ(x,Dw) dx+ c

for every σ ∈ (0, σ1], where σ1 ≡ σ1(data) and c ≡ c(data). This yields
(3.5.45). To show (3.5.46), we need to prove a version of the last inequality
near the boundary of B32r. For this, let B2ρ(y) ⊂ Rn be a ball such that

y ∈ B32r and 1
10
< |B2ρ(y)\B32r|

|B2ρ(y)| . We take a test function by ϕ ≡ ηs(Ψ)+1(u−w),

where η ∈ C∞0 (B2ρ) is a standard cut-off function as before so that χBρ ≤
η ≤ χB2ρ and |Dη| ≤ 4/ρ. This choice of ϕ is admissible since supp ϕ b
B32r ∩B2ρ(y). Arguing similarly as we have done above, we see that∫

B32r∩B2ρ(y)

ηs(Ψ)+1Ψ(x,Dw) dx

≤ c

∫
B32r∩B2ρ(y)

ηs(Ψ) Ψ(x,Dw)

|Dw|

∣∣∣∣w − uρ
∣∣∣∣ dx

+ c

∫
B32r∩B2ρ(y)

ηs(Ψ) Ψ(x,Dw)

|Dw|
|Du| dx

≤ c

∫
B32r∩B2ρ(y)

ηs(Ψ)

(
(εη)Ψ(x,Dw) +

1

(εη)s(Ψ)
Ψ

(
x,
w − u
ρ

))
dx

+ c

∫
B32r∩B2ρ(y)

ηs(Ψ)

(
(εη)Ψ(x,Dw) +

1

(εη)s(Ψ)
Ψ (x,Du)

)
dx.

Again choosing ε small enough and reabsorbing the terms, we find that∫
B32r∩B2ρ(y)

ηs(Ψ)+1Ψ(x,Dw) dx

≤ c

∫
B32r∩B2ρ(y)

Ψ

(
x,
w − u
ρ

)
dx+ c

∫
B32r∩B2ρ(y)

Ψ (x,Du) dx
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for some constant c ≡ c(n, s(G), s(H), ν, L,mpq). Redefining w − u ≡ 0 on
B2ρ(y)\B32r, we are able to repeat the same proof for the estimate in (3.5.49).
In turn, there exists θb ≡ θb(n, s(G), s(H), α,mpq) ∈ (0, 1) such that

∫
B32r∩B2ρ(y)

Ψ

(
x,
w − u
ρ

)
dx ≤ c

(∫
B32r∩B2ρ(y)

[Ψ(x,Dw −Du)]θb dx

) 1
θb

+ c

≤ c

(∫
B32r∩B2ρ(y)

[Ψ(x,Dw)]θb dx

) 1
θb

+ c

∫
B32r∩B2ρ(y)

[Ψ(x,Du)] dx+ c

for some constant c ≡ c(data), where for the last inequality we have used
(3.5.32) and Hölder’s inequality. Combining the last two displays, we have

∫
Bρ(y)

[V (x)]
1
θm dx ≤ c

(∫
B2ρ(y)

V (x) dx

) 1
θm

+ c

∫
B2ρ(y)

U(x) dx+ c

for some c ≡ c(data), where θm = max{θ, θb},

V (x) := [Ψ(x,Dw)]θmχB32r(x) and U(x) := Ψ(x,Du)χB32r(x)

for every ball B2ρ(y) ⊂ Rn satisfying either B2ρ(y) ⊂ B32r or 1
10
< |B2ρ(y)\B32r|

|B2ρ(y)|
with y ∈ B32r. Applying a variant of Gehring’s lemma and a standard cover-
ing argument together with Lemma 3.5.8, we arrive at the desired estimate
(3.5.46).

As a consequence of the above lemma, we need another type of higher
integrability results. For a given ball B2ρ(y) b B32r, let p̃, q̃ : B2ρ(y)→ [0,∞)
be functions satisfying the following bounds:

0 ≤ p̃(x) ≤ (1 + σ)p(x) and q(x) ≤ q̃(x) ≤ q(x)

(
1 +

nσ

n+ α

)
(3.5.50)

for some σ ∈ (0, σ1], where σ1 ≡ σ1(data) is a higher integrability exponent
determined by Lemma 3.5.9.
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Lemma 3.5.10. Under the assumptions and conclusions of Lemma 3.5.9
and notations introduced in (3.5.50), it holds that∫

Bρ(y)

(
Gp̃(x)(|Dw|) + a(x)H q̃(x)(|Dw|)

)
dx

≤ c


(∫

B2ρ(y)

Ψ(x,Dw) dx

)1+σ

+ 1


for some constant c ≡ c(data).

Proof. By Lemma 3.5.9, it follows that∫
Bρ(y)

Gp̃(x)(|Dw|) dx ≤
∫
Bρ(y)

Gp(x)(1+σ)(|Dw|) dx+ 1

≤ c


(∫

B2ρ(y)

Ψ(x,Dw) dx

)1+σ

+ 1

 .

(3.5.51)

By (3.5.50), for every x ∈ B2ρ(y) and t ≥ 0, we also notice

H q̃(x)−q(x)(t) ≤
[
κ
(
Gp(x)(t) +G(1+α

n)p(x)(t)
)] q̃(x)−q(x)

q(x)

≤ c
(

1 +G(1+α
n)p(x)(t)

) q̃(x)−q(x)
q(x)

≤ c
(

1 +G(1+α
n)p(x)

q̃(x)−q(x)
q(x) (t)

)
≤ c

(
1 +Gσp(x)(t)

)
(3.5.52)

for some c ≡ c(κ). Then, using Hölder’s inequality together with the assump-
tion (3.5.50), Lemma 3.5.9, the estimates (3.5.51) and (3.5.52), we conclude
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that∫
Bρ(y)

a(x)H q̃(x)(|Dw|) dx =

∫
Bρ(y)

a(x)Hq(x)(|Dw|)H q̃(x)−q(x)(|Dw|) dx

≤

(∫
Bρ(y)

[
a(x)Hq(x)(|Dw|)

]1+σ
dx

) 1
1+σ

×

(∫
Bρ(y)

H(q̃(x)−q(x)) 1+σ
σ (|Dw|) dx

) σ
1+σ

≤ c

(∫
B2ρ(y)

[Ψ(x,Dw)]1+σ dx+ 1

) 1
1+σ

×

(∫
Bρ(y)

[
Gp(x)(|Dw|)

]1+σ
dx+ 1

) σ
1+σ

≤ c

(∫
B2ρ(y)

Ψ(x,Dw) dx

)1+σ

+ 1


for some constant c ≡ c(data). This completes the proof.

3.5.4 Comparison estimates

Throughout this section, let us fix a ball B32r ≡ B32r(y0) b Ω0 b Ω with r
being a small number depending on data to be determined later, and let also
u ∈ W 1,Ψ(Ω) be a weak solution to the equation (3.5.5). In the following, we
shall discuss a series of comparison estimates until we arrive at the limiting
equation.

Lemma 3.5.11. Let w ∈ W 1,Ψ(B32r) be the solution to the equation (3.5.43)
under the assumptions (3.5.7)-(3.5.9). Then for every ε > 0, there exists a
small number δ ≡ δ(n, s(G), s(H), ν, L,mpq, ε) such that if∫

B32r

Ψ(x,Du) dx ≤ λ and

∫
B32r

Ψ(x, F ) dx ≤ δλ
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hold for some λ ≥ 1, then we have∫
B32r

Ψ(x,Dw) dx ≤ cλ and

∫
B32r

Ψ(x,Du−Dw) dx ≤ ελ (3.5.53)

for some constant c ≡ c(n, s(G), s(H), ν, L,mpq).

Proof. Let us start with testing the equation (3.5.43) by u−w ∈ W 1,Ψ
0 (B32r).

Arguing similarly to (3.5.47)-(3.5.48), we see that∫
B32r

Ψ(x,Dw) dx ≤ c

∫
B32r

Ψ(x,Du) dx ≤ cλ (3.5.54)

for some c ≡ c(n, s(G), s(H), ν, L,mpq). This gives the validity of the first
inequality of (3.5.53). To show the second estimate in (3.5.53), recalling that
u− w ∈ W 1,Ψ

0 (B32r) is admissible as a test function to (3.5.5), we have∫
B32r

〈A(x,Du)− A(x,Dw), Du−Dw〉 dx =

∫
B32r

〈B(x, F ), Du−Dw〉 dx.

By using (3.5.30) and (3.5.31) together with the last equality, we see that∫
B32r

Ψ(x,Du−Dw) dx ≤ cτ1

∫
B32r

|VΨ(x,Du)− VΨ(x,Dw)|2 dx

+ τ1

∫
B32r

Ψ(x,Du) dx

≤ cτ1

∫
B32r

〈A(x,Du)− A(x,Dw), Du−Dw〉 dx

+ τ1

∫
B32r

Ψ(x,Du) dx

≤ cτ1

∫
B32r

|B(x, F )||Du−Dw| dx+ τ1λ

≤ cτ1

∫
B32r

Ψ(x, F )

|F |
|Du−Dw| dx+ τ1λ

≤ τ2cτ1

∫
B32r

Ψ(x,Du−Dw) dx+ cτ1τ2δλ+ τ1λ

holds with cτ1 ≡ cτ1(n, s(G), s(H), ν, L,mpq, τ1) and
cτ1τ2 ≡ cτ1τ2(n, s(G), s(H), ν, L,mpq, τ1, τ2), whenever τ1, τ2 ∈ (0, 1) are ar-
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bitrary numbers, where in the last inequality of the above display we have
applied Lemma 2.1.6. By choosing τ2 := 1

2cτ1
in the last display, we have∫

B32r

Ψ(x,Du−Dw) dx ≤ cτ1δλ+ τ1λ.

Finally, taking small τ1 ≤ ε/2 and δ ≤ ε/(2cτ1) in the above display, the
second inequality of (3.5.53) follows.

From now on, let us fix the auxiliary notations as

pi := inf
x∈B32r

p(x), ps := sup
x∈B32r

p(x), qi := inf
x∈B32r

q(x) and qs := sup
x∈B32r

q(x).

Define a function Ψs : Ω× Rn → R by

Ψs(x, z) := Gps(|z|) + a(x)Hqs(|z|) (3.5.55)

for every x ∈ Ω and z ∈ Rn.

Remark 3.5.12. Let us remark several important observations regarding Ψs.

1. Applying Lemma 2.1.5, for every t > 0, we observe that

1

s(Gps)
≤ (Gps)′′(t)t

(Gps)′(t)
≤ s(Gps)

and
1

s(Hqs)
≤ (Hqs)′′(t)t

(Hqs)′(t)
≤ s(Hqs)

(3.5.56)

with s(Gps) = s(G) + (mpq − 1)(s(G) + 1) and s(Hqs) = s(H) + (mpq −
1)(s(H) + 1).

2. By (3.5.56), for every x ∈ Ω and t > 0, we have

1

s(Ψs)
≤ ∂2

ttΨs(x, t)t

∂tΨs(x, t)
≤ s(Ψs) (3.5.57)

with s(Ψs) := s(G) + s(H) + (mpq − 1)(s(G) + s(H) + 2).
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3. We can also easily see that

sup
t>0

[H(t)]qs

[G(t)]ps + [G(t)](1+α
n)ps
≤ (κ+ 1)mpq . (3.5.58)

We shall consider the vector fields Ã1,B32r , Ã2,B32r : B32r×Rn → Rn given
by

Ã1,B32r(x, z) = Gps−p(x)(|z|)A1(x, z)

and Ã2,B32r(x, z) = Hqs−q(x)(|z|)A2(x, z).
(3.5.59)

Using the structure assumptions (3.5.7), (3.5.8) and recalling Remark 2.1.2,
the standard manipulations yield that


|z||∂zÃ1,B32r(x, z)|+ |Ã1,B32r(x, z)| ≤ Ls

Gps(|z|)
|z|

〈∂zÃ1,B32r(x, z)ξ, ξ〉 ≥ νs
Gps(|z|)
|z|2

|ξ|2
(3.5.60)

and 
|z||∂zÃ2,B32r(x, z)|+ |Ã2,B32r(x, z)| ≤ Ls

Hqs(|z|)
|z|

〈∂zÃ2,B32r(x, z)ξ, ξ〉 ≥ νs
Hqs(|z|)
|z|2

|ξ|2
(3.5.61)

for every x ∈ B32r, z ∈ Rn \ {0} and ξ ∈ Rn, provided

ω(64r) ≤ min

{
1,

ν

(s(G) + 1)(s(H) + 1)

}
,

where Ls = L(2mpq(1 + s(G) + s(H)) + 1) and νs = ν/2.
To proceed further, we need to consider another type of the higher inte-

grability of w. In what follows let σ0 and σ1 be universal higher integrability
exponents depending on data, which have been determined by Lemma 3.5.8
and 3.5.9, respectively.

Proposition 3.5.13. Under the assumptions and conclusions of Lemma
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3.5.9, suppose also that

sup
0<ρ≤64r

ω(ρ) log
1

ρ
≤ 1 and

ω(64r) ≤ min

{
1,

ν

(s(G) + 1)(s(H) + 1)
,
nσ1

n+ α
,

√
n

n− 1
− 1

}
.

(3.5.62)

Then there exist constants σ̃1 ≡ σ̃1(data) and c ≡ c(data) such that(∫
B16r

Ψ1+σ
s (x,Dw) dx

) 1
1+σ

≤ c

(∫
B32r

Ψ(x,Dw) dx+ 1

)
(3.5.63)

holds for every σ ∈ (0, σ̃1].

Proof. First, by the assumption (3.5.62), we observe that

ps ≤ p(x)

(
1 +

n+ α

n
ω(64r)

)
≤ p(x)(1 + σ1)

and

qs ≤ q(x)

(
1 +

n

n+ α

n+ α

n
ω(64r)

)
≤ q(x)

(
1 +

nσ1

n+ α

)
.

Thus we apply Lemma 3.5.10 for p̃(x) ≡ ps, q̃(x) ≡ qs and σ ≡ n+α
n
ω(2ρ) ∈

(0, σ1] to obtain

∫
Bρ

Ψs(x,Dw) dx ≤ c

(∫
B2ρ

Ψ(x,Dw) dx

)1+σ

+ c

≤ c

(∫
B2ρ

Ψ(x,Dw) dx

)1+n+α
n
ω(2ρ)

+ c

(3.5.64)

for some constant c ≡ c(data). Therefore, by (3.5.62) and (3.5.54), we notice
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that (∫
B2ρ

Ψ(x,Dw) dx

)n+α
n
ω(2ρ)

≤ c

(
‖Ψ(x,Dw)‖L1(B32r)

ρn

)n+α
n
ω(2ρ)

≤ ce(n+α)(log 1
2ρ

)ω(2ρ) ≤ c(data).

Inserting the last display into (3.5.64), we obtain that∫
Bρ

Ψs(x,Dw) dx ≤ c

∫
B2ρ

Ψ(x,Dw) dx+ c

for some c ≡ c(data), whenever B2ρ ⊂ B32r is a ball. Therefore, using a
standard covering argument, we find that∫

B16r

Ψs(x,Dw) dx ≤ c

∫
B64r/3

Ψ(x,Dw) dx+ c. (3.5.65)

On the other hand, by taking ηs(Ψ)+1(w − (w)B64r/3
) ∈ W 1,Ψ

0 (B2r) as a test
function to the equation (3.5.43), where η ∈ C∞0 (B64r/3(y)) is a cut-off
function such that χB64r/3(y) ≤ η ≤ χB80r/3(y) and |Dη| ≤ 12/r, and fol-
lowing the similar proof for obtaining (3.5.49) in Lemma 3.5.9, there exists
θ ≡ θ(n, s(G), s(H), α,mpq) ∈ (0, 1) such that

∫
B64r/3

Ψ(x,Dw) dx ≤ c

(∫
B80r/3

Ψθ(x,Dw) dx

) 1
θ

+ c.

for some c ≡ c(data). Recalling the definition of Ψs in (3.5.55) and the above
inequality together with (3.5.65) yields

≤ c

(∫
B80r/3

Ψθ(x,Dw) dx

) 1
θ

+ c ≤ c

(∫
B32r

Ψθ
s(x,Dw) dx

) 1
θ

+ c.

Then by applying Gehring’s lemma, there exists a positive number σ̃1 ≡
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σ̃1(data) such that(∫
B16r

Ψ1+σ
s (x,Dw) dx

) 1
1+σ

≤ c

∫
B32r

Ψs(x,Dw) dx+ c

with some constant c ≡ c(data) for every σ ∈ (0, σ̃1].

Now let ṽ ∈ W 1,Ψs(B16r) be the weak solution of the following Dirichlet
boundary value problem:{

−divÃB32r(x,Dṽ) = 0 in B16r

ṽ ∈ w +W 1,Ψs
0 (B16r),

(3.5.66)

where

ÃB32r(x, z) := Ã1,B32r(x, z) + a(x)Ã2,B32r(x, z) (3.5.67)

for every x ∈ B32r and z ∈ Rn, in which the vector fields Ã1,B32r and Ã2,B32r

have been introduced in (3.5.59).

Lemma 3.5.14. Let ṽ ∈ W 1,Ψs(B16r) be the weak solution to the equation
(3.5.66) under the assumption (3.5.1)-(3.5.4), (3.5.7)-(3.5.8) and (3.5.62).
There exists a positive number σ2 ≤ min{σ1, σ̃1} depending only on data

and γ such that∫
B16r

[Ψs(x,Dṽ)]1+σ dx ≤ c

∫
B16r

[Ψs(x,Dw)]1+σ dx+ c (3.5.68)

with some constant c ≡ c(data) for every σ ∈ (0, σ2].

Proof. Firstly, the standard energy estimate and (3.5.63) imply that∫
B16r

Ψs(x,Dṽ) dx ≤ c

∫
B16r

Ψs(x,Dw) dx ≤ c

∫
B16r

Ψ(x,Du) dx+ c ≤ c

holds with some constant c ≡ c(data). For a ball B2ρ ≡ B2ρ(y) b B16r, let
η ∈ C∞0 (B2ρ(y)) be a standard cut-off function satisfying χBρ(y) ≤ η ≤ χB2ρ(y)

and |Dη| ≤ 4/ρ. Let us take the function ϕ = ηs(Ψs)+1
(
ṽ − (ṽ)B2ρ

)
as a test

function in the equation (3.5.66), where s(Ψs) has been defined in (3.5.57).
This choice of ϕ is admissible due to the assumption (3.5.62). Then using
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(3.5.60) and (3.5.61) and Lemma 2.1.6 to Ψs, we have∫
B2ρ

ηs(Ψs)+1Ψs(x,Dṽ) dx

≤ c

∫
B2ρ

ηs(Ψs)
Ψs(x,Dṽ)

|Dṽ|

∣∣∣∣ ṽ − (ṽ)B2ρ

ρ

∣∣∣∣ dx
≤ c

∫
B2ρ

ηs(Ψs)
(

(εη)Ψ(x,Dṽ) +
1

(εη)s(Ψs)
Ψs

(
x,
ṽ − (ṽ)B2ρ

ρ

))
dx.

Choosing ε sufficiently small in the last display, we conclude that∫
Bρ

Ψs(x,Dṽ) dx ≤ c

∫
B2ρ

Ψs

(
x,
ṽ − (ṽ)B2ρ

ρ

)
dx

for a constant c ≡ c(n, s(G), s(H), ν, L,mpq, α). Repeating the argument in
the proof of Lemma 3.5.8 with Ψs, there exists θs ≡ θs(n, s(G), s(H),mpq) ∈
(0, 1) such that∫

Bρ

Ψs(x,Dṽ) dx ≤ c

∫
B2ρ

Ψs

(
x,
ṽ − (ṽ)B2ρ

ρ

)
dx

≤ c

(∫
B2ρ

[Ψs(x,Dṽ)]θs dx

) 1
θs

(3.5.69)

holds for some constant c ≡ c(data) whenever B2ρ b B16r is a ball. Now we
prove a version of the last inequality near the boundary of B16r. For this, let
B2ρ(y) ⊂ Rn be a ball such that y ∈ B16r and 1

10
< |B2ρ(y)\B16r|

|B2ρ(y)| . We take a

test function by ϕ ≡ ηs(Ψs)+1(w− ṽ), where η ∈ C∞0 (B2ρ) is a standard cut-off
function as before so that χBρ ≤ η ≤ χB2ρ and |Dη| ≤ 4/ρ. This choice of
ϕ is admissible since supp ϕ b B16r ∩ B2ρ(y). Arguing similarly as we have
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done before, we see that∫
B16r∩B2ρ(y)

ηs(Ψs)+1Ψs(x,Dṽ) dx

≤ c

∫
B16r∩B2ρ(y)

ηs(Ψs)
Ψs(x,Dṽ)

|Dṽ|

∣∣∣∣ ṽ − wρ
∣∣∣∣ dx

+ c

∫
B16r∩B2ρ(y)

ηs(Ψs)
Ψs(x,Dṽ)

|Dṽ|
|Dw| dx

≤ c

∫
B16r∩B2ρ(y)

ηs(Ψs)
(

(εη)Ψs(x,Dṽ) +
1

(εη)s(Ψs)
Ψs

(
x,
ṽ − w
ρ

))
dx

+ c

∫
B16r∩B2ρ(y)

ηs(Ψs)
(

(εη)Ψs(x,Dṽ) +
1

(εη)s(Ψs)
Ψs (x,Dw)

)
dx.

Again choosing ε small enough and reabsorbing the terms, we find that∫
B16r∩B2ρ(y)

ηs(Ψs)+1Ψs(x,Dṽ) dx

≤ c

∫
B16r∩B2ρ(y)

Ψs

(
x,
ṽ − w
ρ

)
dx+ c

∫
B16r∩B2ρ(y)

Ψs (x,Dw) dx

for some constant c ≡ c(n, s(G), s(H), ν, L,mpq). Redefining ṽ − w ≡ 0 on
B2ρ(y) \ B16r and following again the proof of Lemma 3.5.8, there exists
θs ≡ θs(n, s(G), s(H),mpq, α) ∈ (0, 1) as appearing in (3.5.69) such that∫

B16r∩B2ρ(y)

Ψs

(
x,
ṽ − w
ρ

)
dx

≤

(∫
B16r∩B2ρ(y)

[Ψs(x,Dṽ −Dw)]θs dx

) 1
θs

≤

(∫
B16r∩B2ρ(y)

[Ψs(x,Dṽ)]θs dx

) 1
θs

+ c

∫
B16r∩B2ρ(y)

[Ψs(x,Dw)] dx

for some constant c ≡ c(data), where for the last inequality we have used
again (3.5.32) and Hölder’s inequality. Combining the last two displays, we
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have ∫
Bρ(y)

[V (x)]
1
θs dx ≤ c

(∫
B2ρ(y)

V (x) dx

) 1
θs

+ c

∫
B2ρ(y)

U(x) dx

for some c ≡ c(data), where

V (x) := [Ψs(x,Dṽ)]θsχB16r(x) and U(x) := Ψs(x,Dw)χB16r(x)

for every ball B2ρ(y) ⊂ Rn satisfying either B2ρ(y) ⊂ B16r or 1
10
< |B2ρ(y)\B16r|

|B2ρ(y)|
with y ∈ B16r. Applying a variant of Gehring’s lemma and a standard cover-
ing argument, we arrive at the desired estimate (3.5.68).

Moreover, we also need some elementary properties regarding log func-
tion, see for instance [2].

1. For any s, t ≥ 0, it holds that

log(e+ st) ≤ log(e+ s) + log(e+ t), (3.5.70)

where e is Euler’s constant.

2. For any 0 < β1 ≤ β ≤ β2 and 0 < t < e, there exists c(β1, β2) > 0 such
that

tβ| log t| ≤ c(β1, β2). (3.5.71)

3. For any 0 < β1 ≤ β2 < ∞ and s1 > 1, there exists c(s1, β1, β2) > 0
such that∫

Ω

|f |
[
log

(
e+

|f |∫
Ω
|f | dx

dx

)]β
dx

≤ c(s1, β1, β2)

(∫
Ω

|f |s1 dx
) 1

s1

,

(3.5.72)

whenever β ∈ [β1, β2] and f ∈ L1(Ω).

Then we shall deal with the second comparison estimates which are es-
sential parts of our comparison process.
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Lemma 3.5.15. Let ṽ ∈ W 1,Ψs(B16r) be the weak solution to (3.5.66) under
assumptions and conclusions of Lemma 3.5.14. Then for every ε > 0, there
exists a small number δ ≡ δ(data, γ, ε) such that if∫

B32r

Ψ(x,Du) dx ≤ λ (3.5.73)

and

sup
0<ρ≤64r

ω(ρ) log
1

ρ
≤ δ (3.5.74)

for some λ ≥ 1, then we have∫
B16r

Ψs(x,Dṽ) dx ≤ cλ (3.5.75)

for some constant c ≡ c(n, s(G), s(H), ν, L,mpq, ‖a‖0,α) and∫
B16r

Ψs(x,Dw −Dṽ) dx ≤ ελ. (3.5.76)

Proof. The standard energy estimates together with Proposition 3.5.13, we
have ∫

B16r

Ψs(x,Dṽ) dx ≤ c

∫
B16r

Ψs(x,Dw) dx

≤ c

∫
B32r

Ψ(x,Du) dx+ c ≤ cλ

(3.5.77)

for some constant c ≡ c(data). To show (3.5.76), first let us observe that the
following equality

I1 : =

∫
B16r

〈ÃB32r(x,Dw)− ÃB32r(x,Dṽ), Dṽ −Dw〉 dx

=

∫
B16r

〈ÃB32r(x,Dw)− A(x,Dw), Dṽ −Dw〉 dx =: I2

(3.5.78)

holds by the admissibility of ṽ − w in the equation (3.5.43). The structure

181
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properties (3.5.60)-(3.5.61), (3.5.31) and the last display give us that∫
B16r

Ψs(x,Dṽ −Dw) dx ≤ τcλ+ cτI1 (3.5.79)

for every τ ∈ (0, 1), where c ≡ c(data) and cτ ≡ cτ (data, τ). Recalling
the definition of the vector field ÃB32r introduced in (3.5.66) and using the
structure assumptions (3.5.7) and (3.5.8), we estimate I2 as follows:

I2 ≤ c∗

∫
B16r

∣∣Gps(|Dw|)−Gp(x)(|Dw|)
∣∣ |Dw −Dṽ|
|Dw|

dx

+ c∗

∫
B16r

a(x)
∣∣Hqs(|Dw|)−Hq(x)(|Dw|)

∣∣ |Dw −Dṽ|
|Dw|

dx

=: c∗ (I3 + I4) .

(3.5.80)

For the simplicity, let us denote by

H1 := {x ∈ B16r : |Dw(x)| ≥ |Dṽ(x)| and 0 < H(|Dw(x)|) ≤ 1},
H2 := {x ∈ B16r : |Dw(x)| ≥ |Dṽ(x)| and 1 < H(|Dw(x)|)},
H3 := {x ∈ B16r : |Dw(x)| < |Dṽ(x)| and 0 < H(|Dw(x)|) ≤ 1},
H4 := {x ∈ B16r : |Dw(x)| < |Dṽ(x)| and 1 < H(|Dw(x)|)}.

Now applying the mean value theorem, the second term in (3.5.80) can be
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estimated as

I4 ≤
ω(64r)

|B16r|

∫
B16r∩{|Dw|>0}

a(x)H tx(qs−q(x))+q(x)(|Dw|)| logH(|Dw|)|

× |Dw −Dṽ|
|Dw|

dx

≤ 2
ω(64r)

|B16r|

∫
H1

a(x)H tx(qs−q(x))+q(x)(|Dw|)| logH(|Dw|)| dx

+ 2
ω(64r)

|B16r|

∫
H2

a(x)H tx(qs−q(x))+q(x)(|Dw|)| logH(|Dw|)| dx

+ 2
ω(64r)

|B16r|

∫
H3

a(x)H tx(qs−q(x))+q(x)(|Dw|)| logH(|Dw|)| |Dṽ|
|Dw|

dx

+ 2
ω(64r)

|B16r|

∫
H4

a(x)H tx(qs−q(x))+q(x)(|Dw|)| logH(|Dw|)| |Dṽ|
|Dw|

dx

=: 2 (I41 + I42 + I43 + I44)

(3.5.81)

for some tx ∈ [0, 1] depending on x ∈ B16r. Now we estimate the integrals
appearing in the last display. First using (3.5.71) with the observation that
1 ≤ tx(qs − q(x)) + q(x) ≤ mpq for every x ∈ B16r, we have

I41 ≤ c(mpq)ω(64r) ≤ c(mpq)δλ. (3.5.82)

For every x ∈ H2, recalling (3.5.15) and H ∈ N , we see

H tx(qs−q(x))+q(x)(|Dw(x)|) logH(|Dw(x)|)
≤ (1 + s(H))Hqs(|Dw(x)|) log (|Dw(x)|)
≤ cHqs(|Dw(x)|) [log(e+Gps(|Dw(x)|))]

for some c ≡ c(n, κ, s(G), s(H), α,mpq). Therefore, using the last display
and (3.5.70), (3.5.72), (3.5.54), (3.5.63), (3.5.74) and Hölder’s inequality, it
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implies that

I42 ≤
cω(64r)

|B16r|

∫
H2

(a(x)Hqs(|Dw|) log (e+Gps(|Dw|)) + c) dx

≤ cω(64r)

∫
B16r

a(x)Hqs(|Dw|) log

(
e+

Ψs(x,Dw)∫
B16r

Ψs(x,Dw)dx

)
dx

+ cω(64r)

∫
B8r

a(x)Hqs(|Dw|) log

(
e+

∫
B16r

Ψs(x,Dw)dx

)
dx

+ cω(64r)

≤ cω(64r)

(∫
B16r

Ψ1+σ2
s (x,Dw) dx

) 1
1+σ2

+ cω(64r) log

(
1

r

)∫
B16r

Ψs(x,Dw) dx+ cω(64r)

≤ cω(64r) log

(
1

r

)[(∫
B16r

Ψ1+σ2
s (x,Dw) dx

) 1
1+σ2

+ 1

]
≤ cδλ

(3.5.83)

with some constant c = c(data, γ), where we have applied the following
inequality∫

B16r

Ψs(x,Dṽ) dx ≤ c

∫
B16r

Ψs(x,Dw) dx

=
c

|B16r|

∫
B16r

Ψs(x,Dw) dx

≤ c

rn
‖Ψ(x,Du)‖L1(Ω) + c ≤ c

rn

(3.5.84)

with c ≡ c(data), which is valid by (3.5.77) and (3.5.63). Applying Lemma
2.1.5, there exists θH ∈ (0, 1) depending only on s(H) such that HθH ∈ N .
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Then we write I43 in the following form:

I43 ≤
ω(64r)

|B16r|

∫
H3

a(x)HθH(tx(qs−q(x))+q(x))(|Dw|) |Dṽ|
|Dw|

×H(1−θH)(tx(qs−q(x))+q(x))(|Dw|)| logH(|Dw|)| dx

≤ cω(64r)

|B16r|

∫
H3

a(x)HθH(tx(qs−q(x))+q(x))(|Dw|) |Dṽ|
|Dw|

dx

≤ cω(64r)

|B16r|

∫
H3

a(x)HθH (|Dw|) |Dṽ|
|Dw|

dx

(3.5.85)

for some constant c ≡ c(s(H),mpq), where we have used (3.5.71) with the
observation that

1− θH ≤ (1− θH) (tx(qs − q(x)) + q(x)) ≤ (1− θH)mpq for every x ∈ B16r.

In order to estimate I43 further, we apply Lemma 2.1.6 for HθH in the re-
sulting term of (3.5.85). In turn, it yields that

I43 ≤
cω(64r)

|B16r|

∫
H3

(
a(x)HθH (|Dw|) + a(x)HθH (|Dṽ|)

)
dx

≤ cω(64r)

∫
B16r

‖a‖1−θH
L∞(Ω) [a(x)H(|Dw|)]θH dx

+ cω(64r)

∫
B16r

‖a‖
qs−θH
qs

L∞(Ω) [a(x)]
θH
qs [H(|Dṽ|)]θH dx

≤ cω(64r)

∫
B16r

[a(x)H(|Dw|)]θH dx

+ cω(64r)

∫
B16r

[a(x)]
θH
qs [H(|Dṽ|)]θH dx

≤ cω(64r)

(∫
B16r

a(x)H(|Dw|) dx
)θH

+ cω(64r)

(∫
B16r

a(x)Hqs(|Dṽ|) dx
) θH

qs

for some constant c ≡ c(s(H),mpq, ‖a‖L∞(Ω)), where in the inequalities of
the above display we have used some elementary manipulations, and then
Hölder’s inequality. Finally, recalling the energy estimate (3.5.77), we find
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the desired estimate as

I43 ≤ cω(64r)λ ≤ cδλ (3.5.86)

with c ≡ c(n, s(H), ν, L,mpq, α, ‖a‖0,α). It remains to estimate I44 in (3.5.81)
and this can be handled in a similar way as we have done for I42. First, using
Remark 2.1.2, for every x ∈ H4, we have

H tx(qs−q(x))+q(x)(|Dw(x)|) |Dṽ(x)|
|Dw(x)|

≤ cHqs−1(|Dw(x)|)H ′(|Dw(x)|)|Dṽ(x)|

≤ cHqs−1(|Dṽ(x)|)H ′(|Dṽ(x)|)|Dṽ(x)|
≤ cHqs(|Dṽ(x)|)

and

Hqs(|Dṽ(x)|) logH(|Dṽ(x)|) ≤ cHqs(|Dṽ(x)|) log (e+Gps(|Dṽ(x)|))

with some constant c ≡ c(n, κ, s(G), s(H), α,mpq). Therefore, taking the last
two displays into account and arguing similarly as in (3.5.83), we discover
that

I44 ≤ ω(64r)

|B16r|

∫
H4

a(x)Hqs(|Dṽ|) logH(|Dṽ|) dx

≤ cω(64r)

∫
B16r

a(x)Hqs(|Dṽ|) log (e+Gps(|Dṽ|)) dx

(3.5.70)

≤ cω(64r)

∫
B16r

a(x)Hqs(|Dṽ|) log

(
e+

Ψs(x,Dṽ)∫
B16r

Ψs(x,Dṽ) dx

)
dx

+ cω(64r)

∫
B16r

a(x)Hqs(|Dṽ|) log

(
e+

∫
B16r

Ψs(x,Dṽ) dx

)
dx

(3.5.68)

≤ cω(64r) log

(
1

r

)[(∫
B16r

Ψ1+σ2
s (x,Dw) dx

) 1
1+σ2

+ 1

]
(3.5.54),(3.5.63),(3.5.74)

≤ cδλ

(3.5.87)

for some c ≡ c(data, γ). Inserting the estimates obtained in (3.5.82)-(3.5.83)
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and (3.5.86)-(3.5.87) into (3.5.79), we find

I4 ≤ cδλ for some c ≡ c(data, γ). (3.5.88)

In a similar way as we have treated for I4, we also can see that

I3 ≤ cδλ for some c ≡ c(data, γ). (3.5.89)

Merging (3.5.88) and (3.5.89) into (3.5.78), and then into (3.5.79), we find
that ∫

B16r

Ψs(x,Dṽ −Dw) dx ≤ c (τλ+ cτδλ)

with some constant cτ ≡ c(data, γ, τ) for every τ ∈ (0, 1). Therefore, choosing
small enough τ and δ depending on data, γ and ε, the desired comparison
estimate (3.5.76) follows.

First let us define the vector fields Ā1,B32r , Ā2,B32r : Rn → Rn by
Ā1,B32r(z) :=

∫
B32r

Ã1,B32r(x, z) dx

Ā2,B32r(z) :=

∫
B32r

Ã2,B32r(x, z) dx.
(3.5.90)

Clearly, the vector fields Ā1,B32r and Ā2,B32r belong to C1(Rn\{0}) and satisfy
the following structure conditions:


|z||∂zĀ1,B32r(z)|+ |Ā1,B32r(z)| ≤ Ls

Gps(|z|)
|z|

〈∂zĀ1,B32r(z)ξ, ξ〉 ≥ νs
Gps(|z|)
|z|2

|ξ|2
(3.5.91)

and 
|z||∂zĀ2,B32r(z)|+ |Ā2,B32r(z)| ≤ Ls

Hqs(|z|)
|z|

〈∂zĀ2,B32r(z)ξ, ξ〉 ≥ νs
Hqs(|z|)
|z|2

|ξ|2
(3.5.92)
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CHAPTER 3. CALDERÓN-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

for every z ∈ Rn \ {0} and ξ ∈ Rn, provided

ω(64r) ≤ min

{
1,

ν

(s(G) + 1)(s(H) + 1)

}
,

where Ls = L(2mpq(1 + s(G) + s(H)) + 1) and νs = ν/2. Recalling the
definition of Ã1,B32r in (3.5.59) and Ā1,B32r in (3.5.90), we observe that

|Ã1,B32r(x, z)− Ā1,B32r(z)|
Gps−1(|z|)G′(|z|)

=

∣∣∣∣∣ Ã1,B32r(x, z)

Gps−1(|z|)G′(|z|)
−
∫
B32r

Ã1,B32r(x̃, z)

Gps−1(|z|)G′(|z|)
dx̃

∣∣∣∣∣
=

∣∣∣∣ A1(x, z)

Gp(x)−1(|z|)G′(|z|)
−
∫
B32r

A1(x̃, z)

Gp(x̃)−1(|z|)G′(|z|)
dx̃

∣∣∣∣
for x ∈ B32r and z ∈ Rn \ {0}. Therefore, by (3.5.12), it holds that∫

B32r

sup
z∈Rn\{0}

|Ã1,B32r(x, z)− Ā1,B32r(z)|
Gps−1(|z|)G′(|z|)

dx

=

∫
B32r

θ(A1, B32r(y0))(x) dx ≤ δ.

(3.5.93)

Arguing similarly, we also see∫
B32r

sup
z∈Rn\{0}

|Ã2,B32r(x, z)− Ā2,B32r(z)|
Hqs−1(|z|)H ′(|z|)

dx

=

∫
B32r

θ(A2, B32r(y0))(x) dx ≤ δ.

(3.5.94)

In what follows we denote by

ĀB32r(x, z) := Ā1,B32r(z) + a(x)Ā2,B32r(z) for every x ∈ Ω, z ∈ Rn.

We now consider a function v̄ ∈ W 1,Ψs(B8r) as the weak solution of the
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following Dirichlet boundary value problem:{
−divĀB32r(x,Dv̄) = 0 in B8r

v̄ ∈ ṽ +W 1,Ψs
0 (B8r).

(3.5.95)

Arguing similarly as for Lemma 3.5.14, we are also able to prove the following
higher integrability.

Lemma 3.5.16. Let v̄ ∈ W 1,Ψs(B8r) be the weak solution to (3.5.95) under
the assumptions of Lemma 3.5.15. Then there exists a higher integrability
exponent σ3 ≤ σ2 depending on data and γ such that(∫

B8r

[Ψs(x,Dv̄)]1+σ dx

) 1
1+σ

≤ c

(∫
B8r

[Ψs(x,Dṽ)]1+σ dx

) 1
1+σ

+ c (3.5.96)

with some constant c ≡ c(data) for every σ ∈ (0, σ3].

Taking the conditions (3.5.91), (3.5.92) and Remark 3.5.12 into account,
we are able to apply [12, Theorem 5.1] to have the following higher differen-
tiability.

Lemma 3.5.17. Under the assumptions of Lemma 3.5.15, let v̄ be the weak
solution to (3.5.95). Then it holds that

Gps(|Dv̄|) ∈ L
n

n−2β

loc (B8r) ∩W β,2
loc (B8r) (3.5.97)

for every β < α/2.

In the following we shall deal with the third comparison estimates.

Lemma 3.5.18. Under the assumptions and conclusions of Lemma 3.5.15,
let v̄ ∈ W 1,Ψs(B8r) be the weak solution to (3.5.95). Then for every ε > 0,
there exists δ = δ(data, γ, ε) > 0 such that if∫

B32r(y0)

[θ(A1, B32r(y0))(x) + θ(A2, B32r(y0))(x)] dx ≤ δ, (3.5.98)

then there exists a constant c ≡ c(n, s(G), s(H), ν, L,mpq, α, ‖a‖0,α) such that∫
B8r

Ψs(x,Dv̄) dx ≤ cλ (3.5.99)
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and ∫
B8r

Ψs(x,Dṽ −Dv̄) dx ≤ ελ. (3.5.100)

Proof. First, taking v̄ − ṽ ∈ W 1,Ψs
0 (B8r) as a test function in (3.5.95) and

using some standard manipulations that we have already employed in the
previous lemmas, we find∫

B8r

Ψs(x,Dv̄) dx ≤ c

∫
B8r

Ψs(x,Dṽ) dx ≤ cλ (3.5.101)

with c = c(n, s(G), s(H), ν, L,mpq, α, ‖a‖0,α), which proves (3.5.99). On the
other hand, testing v̄ − ṽ in the equation (3.5.95), it can be written as

J1 :=

∫
B8r

〈ĀB32r(x,Dv̄)− ĀB32r(x,Dṽ), Dv̄ −Dṽ〉 dx

=

∫
B8r

〈ÃB32r(x,Dṽ)− ĀB32r(x,Dṽ), Dv̄ −Dṽ〉 dx =: J2.

(3.5.102)

Again by (3.5.31), for every τ1 ∈ (0, 1), we see∫
B8r

Ψs(x,Dṽ −Dv̄) dx ≤ cτ1λ+ cτ1J1 (3.5.103)

with cτ1 ≡ c(data, τ1). Before we go on further, using Hölder’s inequality and
the assumption (3.5.98) together with Remark 3.5.3, for a higher integrability
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exponent σ2 > 0 determined by Lemma 3.5.14, we observe that∫
B8r

[θ(A1, B32r(y0))(x) + θ(A2, B32r(y0))(x)] Ψs(x,Dṽ) dx

≤
(∫

B8r

[θ(A1, B32r(y0))(x) + θ(A2, B32r(y0))(x)]
1+σ2
σ2 dx

) σ2
1+σ2

×
(∫

B8r

[Ψs(x,Dṽ)]1+σ2 dx

) 1
1+σ2

≤ c(4L)
1
σ2 δ

σ2
1+σ2

(∫
B16r

[Ψs(x,Dw)]1+σ2 dx

) 1
1+σ2

≤ cδ
σ2

1+σ2

(∫
B32r

Ψ(x,Dw) dx+ 1

)
≤ cδ

σ2
1+σ2 λ

(3.5.104)

for some c ≡ c(data), where we have applied Lemma 3.5.14 and Proposition
3.5.13. We now estimate J2 based on the assumption (3.5.98). In turn, we
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have that

J2 ≤
∫
B8r

|Ã1,B32r(x,Dṽ)− Ā1,B32r(Dṽ)||Dṽ −Dv̄| dx

+

∫
B8r

a(x)|Ã2,B32r(x,Dṽ)− Ā2,B32r(Dṽ)||Dṽ −Dv̄| dx

≤
∫
B8r

θ(A1, B32r(y0))(x)Gps−1(|Dṽ|)G′(|Dṽ|)|Dṽ −Dv̄| dx

+

∫
B8r

θ(A2, B32r(y0))(x)a(x)Hqs−1(|Dṽ|)H ′(|Dṽ|)|Dṽ −Dv̄| dx

≤ τ2

∫
B8r

[θ(A1, B32r(y0))(x) + θ(A2, B32r(y0))(x)] Ψs(x,Dṽ −Dv̄) dx

+ cτ2

∫
B8r

[θ(A1, B32r(y0))(x) + θ(A2, B32r(y0))(x)] Ψs(x,Dṽ) dx

≤ 4Lτ2

∫
B8r

Ψs(x,Dṽ −Dv̄) dx

+ cτ2

∫
B8r

[θ(A1, B32r(y0))(x) + θ(A2, B32r(y0))(x)] Ψs(x,Dṽ) dx

for every τ2 ∈ (0, 1) and some constant cτ2 ≡ cτ2(s(G), s(H), L, τ), where
we have applied Lemma 2.1.6 for Gps and Hqs and Remark 3.5.3. Applying
(3.5.104) in the last display, we conclude that

J2 ≤ 4Lτ2

∫
B8r

Ψs(x,Dṽ −Dv̄) dx+ cτ2δ
σ2

1+σ2 λ

with cτ2 ≡ cτ2(data, τ2). Plugging the above display into (3.5.103), we find
that∫
B8r

Ψs(x,Dṽ −Dv̄) dx ≤ cτ1λ+ cτ1τ2

∫
B8r

Ψs(x,Dṽ −Dv̄) dx+ cτ1τ2δ
σ2

1+σ2 λ

holds for every τ1, τ2 ∈ (0, 1), where cτ1 ≡ cτ1(data, τ1) and
cτ1τ2 ≡ cτ1τ2(data, τ1, τ2). First we choose small enough τ2 ≤ 1

2cτ1
to obtain∫

B8r

Ψs(x,Dṽ −Dv̄) dx ≤ cτ1λ+ cτ1δ
σ2

1+σ2 λ
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for any τ1 ∈ (0, 1) and some constant cτ1 ≡ cτ1(data, τ1). Finally, selecting
small enough τ1 ≡ τ1(data, ε), and then δ ≡ δ(data, γ, ε) again sufficiently
small, we arrive at the desired comparison estimate (3.5.100). The proof is
complete.

Let xm ∈ B4r be a point such that a(xm) = sup
x∈B4r

a(x). Now we consider

a function h ∈ W 1,Ψs,m(B4r) as the weak solution of{
−divĀB32r(xm, Dh) = 0 in B4r

h ∈ v̄ +W
1,Ψs,m
0 (B4r),

where

Ψs,m(t) = Gps(t) + a(xm)Hqs(t) for every t ≥ 0.

The existence of h is guaranteed by Lemma 3.5.17 since v̄ ∈ W 1,Ψs,m
loc (B8r). At

this stage, proofs of [12, Theorem 2.1] and [169] imply the following important
result.

Lemma 3.5.19. Under the assumptions of Lemma 3.5.18, for every ε ∈
(0, 1) and Θ ≥ 4, it holds that

sup
x∈Br

Ψs(xm, Dh(x)) ≤ cλ

for some c ≡ c(data, ‖Ψ(x, F )‖Lγ(Ω)) > 0, and that∫
Br

Ψs(x,Dv̄ −Dh) dx ≤
(
ε+ 2c0(Θ)rs0 +

c1

Θ

)
λ =: S(ε, r,Θ)λ (3.5.105)

holds, where the dependence of constants are as follows: s0 ≡ s0(data) ∈
(0, 1), c0(Θ) ≡ c0(data, dist(Ω0, ∂Ω), ‖Ψ(x, F )‖Lγ(Ω),Θ) and
c1 ≡ c1(n, s(G), s(H), ν, L,mpq).

Summarizing all the comparison estimates discussed in Lemmas 3.5.11-
3.5.19, we can conclude the following most important part of the present
section.

Lemma 3.5.20. Let λ ≥ 1 be a given number and B32r(y0) b Ω0 b Ω be a
given ball. Then for every ε > 0 and Θ ≥ 4, there exists δ ≡ δ(data, γ, ε) > 0
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such that if∫
B32r(y0)

[θ(A1, B32r(y0))(x) + θ(A2, B32r(y0))(x)] dx ≤ δ,

∫
B32r(y0)

Ψ(x,Du) dx ≤ λ,

∫
B32r(y0)

Ψ(x, F ) dx ≤ δλ,

sup
0<ρ≤64r

ω(ρ) log
1

ρ
≤ δ and

ω(64r) ≤ min

{
1,

ν

(s(G) + 1)(s(H) + 1)
,
nσ1

n+ α
,

√
n

n− 1
− 1

}
,

then there exist w ∈ W 1,Ψs(B32r) and h ∈ W 1,Ψs(B4r) such that∫
Br

Ψ(x,Du−Dw) dx ≤ ελ,

∫
Br

Ψs(x,Dw −Dh) dx ≤ S(ε, r,Θ)λ

and

sup
x∈Br

Ψs(xm, Dh(x)) ≤ cλ

for some constant c ≡ c(data, ‖Ψ(x, F )‖Lγ(Ω)), where S(ε, r,Θ) is the same
one that has been defined in (3.5.105) and Ψs is the same one as in (3.5.55).

3.5.5 Proof of Theorem 3.5.4

In the present section we shall provide the proof of Theorem 3.5.4. Our proof
based on the so-called maximal function-free technique introduced in [3].
Suppose that Ψ(x, F ) ∈ Lγ(Ω) for some γ > 1. Let Br ≡ Br(x0) b Ω be a
ball with r ≤ R/64 for some R > 0 to be determined later in (3.5.109) and
(3.5.116). Choose radii r1, r2 such that r/2 ≤ r1 < r2 ≤ r and consider the
super-level sets

E(s;λ) := {x ∈ Bs(x0) : Ψ(x,Du) > λ} (r/2 ≤ s ≤ r, λ > 0) .
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For each ball Bρ(y0) ⊂ Br, we define

T (Bρ(y0)) :=

∫
Bρ(y0)

(
Ψ(x,Du) +

1

δ
Ψ(x, F )

)
dx

for some δ ∈ (0, 1/8) to be determined later.
Then one can see that for almost every y0 ∈ E(s;λ) and r/2 ≤ s ≤ r,

lim
ρ→0

T (Bρ(y0)) > λ.

On the other hand, for y0 ∈ Br1 and ρ ∈
[
r2−r1

160
, r2 − r1

]
we have

T (Bρ(y0)) ≤ 160nrn2
(r2 − r1)n

∫
Br2

(
Ψ(x,Du) +

1

δ
Ψ(x, F )

)
dx =: λ0. (3.5.106)

From now on, we only consider

λ > λ0.

Then in the view of last three displays, for almost every y0 ∈ E(r1;λ), there
is a small radius ρy0 ∈

(
0, r2−r1

160

)
such that

T (Bρy0
(y0)) = λ and T (Bρ(y0)) < λ for all ρ ∈ (ρy0 , r2 − r1]. (3.5.107)

Since (3.5.107) holds for almost every y0 ∈ E(r1;λ), the set of balls {Bρy0
(y0)}

covers E(r1;λ) up to a negligible set. Hence by the Vitali covering lemma,
there is a family of mutually disjoint countable balls {Bρyk

(yk)}∞k=1 such that

E(r1;λ) ⊂
∞⋃
k=1

B5ρyk
(yk)

and

T (Bρyk
(yk)) = λ and T (Bρ(yk)) < λ

for every ρ ∈ (ρyk , r2 − r1]
(3.5.108)

for each k ∈ N. From now on we denote

Bk := Bρk(yk) and ρk := 5ρyk .
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We notice that

32Bk ⊂ Br2 and ρk = 5ρyk ≤
r2 − r1

32
.

Now we will employ Lemma 3.5.20. Before that, let us denote by

Ψs,k(x, z) := Gps,k(|z|) + a(x)Hqs,k(|z|)

for every x ∈ Ω and z ∈ Rn, where

ps,k = sup
x∈32Bk

p(x) and qs,k = sup
x∈32Bk

q(x)

and let xm,k ∈ 32Bk be a point such that

a(xm,k) = sup
x∈32Bk

a(x).

By (3.5.108), we have∫
32Bk

Ψ(x,Du) dx ≤ λ and

∫
32Bk

Ψ(x, F ) dx ≤ δλ.

Thus by Lemma 3.5.20, there exists a small δ ≡ δ(data, γ, ε) such that if
(p(·), q(·), A1, A2) is (δ, R)-vanishing and

ω(R) ≤ min

{
1,

ν

(s(G) + 1)(s(H) + 1)
,
nσ1

n+ α
,

√
n

n− 1
− 1

}
(3.5.109)

holds, then there exist functions wk ∈ W 1,Ψs,k(Bk) and hk ∈ W 1,∞(Bk) such
that ∫

Bk

Ψ(x,Du−Dwk) dx ≤ ελ,∫
Bk

Ψs,k(x,Dwk −Dhk) dx ≤ S(ε, R,Θ)λ

(3.5.110)

and

sup
x∈Bk

Ψs,k(xm,k, Dhk(x)) ≤ clλ (3.5.111)
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for some constants cl ≡ cl(data, ‖Ψ(x, F )‖Lγ(Ω)) > 0, where

S(ε, R,Θ) := 2ε+ 2c0(Θ)Rs0 +
2c1

Θ
(3.5.112)

for any numbers ε ∈ (0, 1) and Θ ≥ 4 to be chosen later, while the dependence
of the other constants are as follows: s0 ≡ s0(data) ∈ (0, 1/2), c0(Θ) ≡
c0(data, dist(Ω0, ∂Ω), ‖Ψ(x, F )‖Lγ(Ω),Θ) and
c1 ≡ c1(n, s(G), s(H), ν, L,mpq). We here notice that all constants appearing
in the last display are independent of k and λ.

Let tl := 2·4mpq−1(cl+2 ‖a‖L∞(Ω)+2) for the constant cl being determined
in (3.5.111). Since E(r1; tlλ) ⊂ E(r1;λ), we have∫

E(r1;tlλ)

Ψ(x,Du) dx ≤
∞∑
k=1

(∫
E(r1;tlλ)∩Bk

Ψ(x,Du) dx

)
. (3.5.113)

Therefore, for almost every x ∈ E(r1; dlλ)∩Bk, by (3.5.111) and elementary
manipulations, it holds that

Ψ(x,Du) ≤ 4mpq−1 [Ψ(x,Du−Dwk) + Ψ(x,Dwk −Dhk) + Ψ(x,Dhk)]

≤ 4mpq−1 [Ψ(x,Du−Dwk) + Ψs,k(x,Dwk −Dhk)

+Ψs,k(xm,k, Dhk) + 2 ‖a‖L∞(Ω) + 2
]

≤ 4mpq−1 (Ψ(x,Du−Dwk) + Ψs,k(x,Dwk −Dhk))
+ 4mpq−1(cl + 2 ‖a‖L∞(Ω) + 2)λ

≤ 4mpq−1 (Ψ(x,Du−Dwk) + Ψs,k(x,Dwk −Dhk)) +
1

2
Ψ(x,Du),

and so

Ψ(x,Du) ≤ 2 · 4mpq−1 (Ψ(x,Du−Dwk) + Ψs,k(x,Dwk −Dhk)) (3.5.114)

holds for almost every x ∈ E(r1; dlλ) ∩Bk. Thus by (3.5.110) and (3.5.114),
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for any k ∈ N, we obtain∫
E(r1;tlλ)∩Bk

Ψ(x,Du) dx

≤ 2 · 4mpq−1

(∫
Bk

Ψ(x,Du−Dwk) dx

+

∫
Bk

Ψs,k(x,Dwk −Dhk) dx
)

≤ 2 · 4mpq−15n|Bρyk
(yk)| (ε+ S(ε, R,Θ))λ.

(3.5.115)

Clearly, we see

|Bρyk
(yk)|

≤ 1

λ

[∫
E(r2;λ

4
)∩Bρyk (yk)

Ψ(x,Du) dx+
1

δ

∫
{x∈Bρyk (yk):Ψ(x,F )> δλ

4
}

Ψ(x, F ) dx

]

+
|Bρyk

(yk)|
2

,

and so

|Bρyk
(yk)|

≤ 2

λ

(∫
E(r2;λ

4
)∩Bρyk (yk)

Ψ(x,Du) dx+
1

δ

∫
{x∈Bρyk (yk):Ψ(x,F )> δλ

4
}

Ψ(x, F ) dx

)
.

Merging the above inequality into (3.5.115) and absorbing ε to S(ε, R,Θ),
we get∫

E(r1;tlλ)∩Bk
Ψ(x,Du) dx

≤ 8mpq5nS(ε, R,Θ)

(∫
E(r2;λ

4
)∩Bρyk (yk)

Ψ(x,Du) dx

+
1

δ

∫
{x∈Bρyk (yk):Ψ(x,F )> δλ

4
}

Ψ(x, F ) dx

)
.

Recalling that {Bρyk
(yk)}∞k=1 is mutually disjoint, merging the last inequality
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into (3.5.113), we find∫
E(r1;tlλ)

Ψ(x,Du) dx

≤ 8mpq5nS(ε, R,Θ)

(∫
E(r2;λ

4
)

Ψ(x,Du) dx+
1

δ

∫
E(r2; δλ

4
)

Ψ(x, F ) dx

)
,

where we denote by

E(s;λ) := {x ∈ Bs(x0) : Ψ(x, F ) > λ} for r/2 ≤ s ≤ r and λ > 0.

In other words, we have∫
E(r1;λ)

Ψ(x,Du) dx

≤ 8mpq5nS(ε, R,Θ)

(∫
E(r2; λ

4tl
)

Ψ(x,Du) dx+
1

δ

∫
E(r2; δλ

4tl
)

Ψ(x, F ) dx

)

for any λ ≥ tlλ0. To proceed further we define the truncated functions by

[Ψ(x,Du)]t := min {Ψ(x,Du), t} (t ≥ 0).

For t ≥ 2tlλ0, we have∫ t

tlλ0

λγ−2

∫
E(r1;λ)

Ψ(x,Du) dxdλ

≤ c S(ε, R,Θ)

∫ t

tlλ0

λγ−2

∫
E(r2; λ

4tl
)

Ψ(x,Du) dxdλ

+ c
S(ε, R,Θ)

δ

∫ t

tlλ0

λγ−2

∫
E(r2; δλ

4tl
)

Ψ(x, F ) dxdλ.
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By change of variables and Fubini’s theorem, we see∫ t

tlλ0

λγ−2

∫
E(r1;λ)

Ψ(x,Du) dxdλ

=
1

γ − 1

∫
Br1

[Ψ(x,Du)]γ−1
t Ψ(x,Du) dx

−
∫ tlλ0

0

λγ−2

∫
E(r1;λ)

Ψ(x,Du) dxdλ,

∫ t

tlλ0

λγ−2

∫
E(r2; λ

4tl
)

Ψ(x,Du) dxdλ

≤ 1

γ − 1

∫
Br2

[Ψ(x,Du)]γ−1
t

4tl

Ψ(x,Du) dx

≤ 1

γ − 1

∫
Br2

[Ψ(x,Du)]γ−1
t Ψ(x,Du) dx

and ∫ t

tlλ0

λγ−2

∫
E(r2; δλ

4tl
)

Ψ(x, F ) dxdλ ≤
∫ ∞

0

λγ−2

∫
E(r2; δλ

4tl
)

Ψ(x, F ) dxdλ

≤ c

∫
Br2

Ψγ(x, F ) dx.

Moreover, we also notice that∫ tlλ0

0

λγ−2

∫
E(r1;λ)

Ψ(x,Du) dxdλ ≤
∫ tlλ0

0

λγ−2dλ

∫
Br2

Ψ(x,Du) dx

≤ (tlλ0)γ−1

γ − 1

∫
Br2

Ψ(x,Du) dx.

Therefore, taking the estimates in last four displays into account, it follows
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that∫
Br1

[Ψ(x,Du)]γ−1
t Ψ(x,Du) dx

≤ c2S(ε, R,Θ)

∫
Br2

[Ψ(x,Du)]γ−1
t Ψ(x,Du) dx

+ c
S(ε, R,Θ)

δ

∫
Br2

[Ψ(x, F )]γ dx+ tγ−1
l λ0

γ−1

∫
Br2

Ψ(x,Du) dx

with the constant c2 = c2(data, γ) ≥ 1.
Choose ε(data, γ) = 1/(8c2) ∈ (0, 1), and so we obtain δ ≡ δ(data, γ) > 0

from Lemma 3.5.20. Now select Θ ≥ 4 and then 0 < R < 1 to satisfy

0 < c2S(ε, R,Θ) ≤ 1

2
, (3.5.116)

where S(ε, R,Θ) is defined in (3.5.112). Then by (3.5.109) together with
the above display, we obtain R ≡ R(data, dist(Ω0, ∂Ω), γ, ‖Ψ(x, F )‖Lγ(Ω)) >
0. In turn, recalling the definition of λ0 in (3.5.106) and applying Young’s

inequality with conjugate exponents
(

γ
γ−1

, γ
)

, we have∫
Br1

[Ψ(x,Du)]γ−1
t Ψ(x,Du) dx

≤ 1

2

∫
Br2

[Ψ(x,Du)]γ−1
t Ψ(x,Du) dx+ c

∫
Br

[Ψ(x, F )]γ dx

+ c
rn(γ−1)

(r2 − r1)n(γ−1)

(∫
Br

Ψ(x,Du) dx+

∫
Br

Ψ(x, F ) dx

)γ
for some constant c = c(data, dist(Ω0, ∂Ω), γ, ‖Ψ(x, F )‖Lγ(Ω)). At this point,
we apply Lemma 2.0.1 with γ1 ≡ n(γ − 1), γ2 ≡ 0 for a function

h(s) :=

∫
Bs

[Ψ(x,Du)]γ−1
t Ψ(x,Du) dx

being non-negative and bounded on [r/2, r] in order to obtain the following
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estimate: ∫
Br/2

[Ψ(x,Du)]γ−1
t Ψ(x,Du) dx

≤ c

(∫
Br

Ψ(x,Du) dx

)γ
+ c

∫
Br

[Ψ(x, F )]γ dx

with again some constant c = c(data, dist(Ω0, ∂Ω), γ, ‖Ψ(x, F )‖Lγ(Ω)). Fi-
nally, taking t→∞ in the last display, we conclude with the desired Calderón-
Zygmund estimate (3.5.14). Clearly, (3.5.13) follows from a standard covering
argument. We finish the proof.
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Chapter 4

Global gradient estimates for
elliptic equations with
degenerate matrix weights

4.1 Global maximal regularity for equations

with degenerate weights

In this section, we are concerned with global maximal regularity estimates for
elliptic equations with degenerate weights. We consider both the linear case
and the non-linear case. We show that higher integrability of the gradients
can be obtained by imposing a local small oscillation condition on the weight
and a local small Lipschitz condition on the boundary of the domain. Our
results are new in the linear and non-linear case. We show by example that
the relation between the exponent of higher integrability and the smallness
parameters is sharp even in the linear or the unweighted case.

4.1.1 Hypothesis and main results

We study the following degenerate elliptic equation of the form

−div(A(x)∇u) = −div(A(x)F ) in Ω,

u = 0 on ∂Ω,
(4.1.1)
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in the linear case, and of the form

−div(|M(x)∇u|p−2M2(x)∇u) = −div(|M(x)F |p−2M2(x)F ) in Ω,

u = 0 on ∂Ω,
(4.1.2)

in the non-linear case. We often write M(x) to emphasize the dependence of
the weight on x.

Here, Ω ⊂ Rn is a bounded domain with n ≥ 2, 1 < p <∞, F : Ω→ Rn

is a given vector-valued function, M : Rn → Rn×n is a given symmetric and
positive definite matrix-valued weight satisfying

|M(x)| |M−1(x)| ≤ Λ (x ∈ Rn) (4.1.3)

for some constant Λ ≥ 1, where |·| is the spectral norm, and A(x) := M2(x).
This condition says that M has a uniformly bounded condition number. Note
that a right-hand side of the form −divG with G : Ω→ Rn can be immedi-
ately rewritten in the above form in terms of F . Note that (4.1.1) is a special
case of (4.1.2) for p = 2. The condition (4.1.3) in this case reads as

|A(x)| |A−1(x)| ≤ Λ2 (x ∈ Rn). (4.1.4)

Let us define the scalar weight

ω(x) = |M(x)| =
√
|A(x)|. (4.1.5)

Now, we introduce Lipschitz domains along with our optimal regularity
assumption for the boundary of the domain.

Definition 4.1.1. Let δ ∈ [0, 1
2n

] and R > 0 be given. Then Ω is called
(δ, R)–Lipschitz if for each x0 ∈ ∂Ω, there exists a coordinate system
{x1, . . . , xn} and Lipschitz map ψ : Rn−1 → R such that x0 = 0 in this
coordinate system, and there holds

Ω ∩BR(x0) = {x = (x1, . . . , xn) = (x′, xn) ∈ BR(x0) : xn > ψ(x′)} (4.1.6)

and

‖∇ψ‖∞ ≤ δ. (4.1.7)

Our optimal regularity assumption for M is a small BMO assumption on
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its logarithm. This condition is also used in [16] for the interior estimates.

Definition 4.1.2. We say that logM is (δ, R)-vanishing if

|logM|BMO(Rn) := sup
y∈Rn

sup
0<r≤R

−
∫
Br(y)

|logM(x)− (logM)Br(y)| dx ≤ δ. (4.1.8)

Now, we state the main theorems.

Theorem 4.1.3 (Linear case). Define ω as (4.1.5), and assume (4.1.3) and
F ∈ Lqω(Ω) for q ∈ (1,∞) in (4.1.1). Then there exists a constant δ =
δ(n,Λ) ∈ (0, 1

2
) such that if for some R,

logA is

(
δmin

{
1

q
, 1− 1

q

}
, R

)
–vanishing and (4.1.9a)

Ω is

(
δmin

{
1

q
, 1− 1

q

}
, R

)
–Lipschitz, (4.1.9b)

then the weak solution u ∈ W 1,2
0,ω(Ω) of (4.1.1) satisfies ∇u ∈ Lqω(Ω) and we

have the estimate ∫
Ω

(|∇u|ω)q dx ≤ c

∫
Ω

(|F |ω)q dx (4.1.10)

for some c = c(n,Λ,Ω, q).

For the non-linear case, we have the following result.

Theorem 4.1.4 (Non-linear case). Define ω as (4.1.5), and assume (4.1.3)
and F ∈ Lqω(Ω) for q ∈ [p,∞) in (4.1.2). Then there exists a constant δ =
δ(n, p,Λ) ∈ (0, 1

2
) such that if for some R,

logM is

(
δ

q
, R

)
–vanishing and Ω is

(
δ

q
, R

)
–Lipschitz, (4.1.11)

then the weak solution u ∈ W 1,p
0,ω(Ω) of (4.1.2) satisfies ∇u ∈ Lqω(Ω) and we

have the estimate ∫
Ω

(|∇u|ω)q dx ≤ c

∫
Ω

(|F |ω)q dx (4.1.12)
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for some c = c(n, p,Λ,Ω, q).

4.1.2 Notation and preliminary results

Let Ω be (δ, 4R)–Lipschitz and x0 ∈ ∂Ω. Then there exists a Lipschitz map
ψ : Rn−1 → R as in Definition 4.1.1. By translation, without loss of generality
we assume x0 = 0 and ψ(0) = 0. We define Ψ : Rn → Rn as

Ψ(x′, xn) = (x′, xn − ψ(x′)) for (x′, xn) ∈ Rn (4.1.13)

and so there hold Ψ(∂Ω ∩ B4R(0)) ⊂ {(y′, yn) : yn = 0}, Ψ(Ω ∩ B4R(0)) ⊂
{(y′, yn) : yn ≥ 0} and Ψ(0) = 0. The mapping Ψ is invertible, with a
Lipschitz continuous inverse Ψ−1. We easily obtain

∇Ψ(x′, xn) =

(
I 0

−∇ψ(x′) 1

)
=


1 0 . . . 0

0
. . .

...
... 1 0

−∂x1ψ(x′) . . . −∂xn−1ψ(x′) 1


(4.1.14)

for (x′, xn) ∈ Rn, where the right-hand side of (4.1.14) is an n×n matrix. In
particular, det(∇Ψ(x)) = 1 and so |Ψ(B)| = |B| for each ball B ⊂ Rn. Note
that | id−(∇Ψ)(x)| ≤ n‖∇ψ‖∞.

Now, we provide some geometric properties related to the maps ψ and Ψ
which will be used throughout the section.

Remark 4.1.5. From now on, we implicitly use the following properties. If
we assume

Ω is (δ, 4R)–Lipschitz with δ ∈
[
0,

1

2n

]
and R > 0, (4.1.15)

Then for any induced map Ψ from the Lipschitz map ψ assigned to given
x0 ∈ ∂Ω, we have |id−∇ψ| ≤ 1

2
,

1
2
B ⊂ Ψ(B) ⊂ 2B (4.1.16)
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for all ball B ⊂ Rn, and the following measure density properties also hold:

sup
0<r≤4R

sup
y∈Ω

|Br(y)|
|Ω ∩Br(y)|

≤ 4n (4.1.17)

and

inf
0<r≤4R

inf
y∈∂Ω

|Br(y) ∩ Ωc|
|Br(y)|

≥ 4−n. (4.1.18)

We first consider a weighted Poincaré inequality with partial zero bound-
ary values. The corresponding mean value version is given in [16].

Proposition 4.1.6 (Weighted Poincaré inequality at boundary). Let
1 < p < ∞ and θ ∈ (0, 1) be such that θp ≥ max{1, np

n+p
}. Moreover, let

Br = Br(x0) with x0 ∈ Ω and B 3
2
r(x0) 6⊂ Ω. Assume that Ω is (δ, 3r)-

Lipschitz with δ ∈ [0, 1
2n

] and that ω is a weight on B3r with

sup
B′⊂B3r

(
−
∫
B′
ωp dx

) 1
p
(
−
∫
B′
ω−(θp)′ dx

) 1
(θp)′

≤ c1. (4.1.19)

Then for any v ∈ W 1,p
ω (B2r ∩ Ω) with v = 0 on ∂Ω ∩B2r,(

−
∫
B2r∩Ω

∣∣∣v
r

∣∣∣p ωp dx) 1
p

≤ c

(
−
∫
B2r∩Ω

(|∇v|ω)θp dx

) 1
θp

(4.1.20)

holds with c = c(n, p, c1).

Proof. Since v ∈ W 1,p
ω (Ω2r) with v = 0 on ∂Ω ∩ B2r, we can take the zero

extension of v on the set B2r \Ω. Since B 3r
2

(x0) 6⊂ Ω, by (4.1.17) and (4.1.18)

in Remark 4.1.5, for A := B2r \ Ω, |A| h |B2r ∩ Ω| holds. Then (v)A = 0
holds, and so by Remark 4.1.5, Proposition 3 in [16] and Jensen’s inequality,
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we have(
−
∫
B2r∩Ω

∣∣∣v
r

∣∣∣p ωp dx) 1
p

.

(
−
∫
B2r

∣∣∣∣v − (v)B2r

r

∣∣∣∣p ωp dx)
1
p

+

(
−
∫
B2r

∣∣∣∣(v)B2r − (v)A
r

∣∣∣∣p ωp dx) 1
p

.

(
−
∫
B2r

(|∇v|ω)θp dx

) 1
θp

+

[
−
∫
B2r

(
−
∫
A

∣∣∣∣v(y)− (v)B2r

r

∣∣∣∣ dy)p ωp dx] 1
p

.

Here, using |A| h |B2r ∩Ω| h |B2r|, Hölder’s inequality, (4.1.19) and Propo-
sition 3 in [16], it follows that

−
∫
B2r

(
−
∫
A

∣∣∣∣v(y)− (v)B2r

r

∣∣∣∣ dy)p ω(x)p dx

. −
∫
B2r

[(
−
∫
B2r

∣∣∣∣v(y)− (v)B2r

r

∣∣∣∣p ω(y)p dy

) 1
p
(
−
∫
B2r

ω(y)−p
′
dy

) 1
p′
]p
ω(x)p dx

h
(
−
∫
B2r

∣∣∣∣v − (v)B2r

r

∣∣∣∣p ωp dy)(−∫
B2r

ω−p
′
dy

)p−1(
−
∫
B2r

ωp dx

)
.

(
−
∫
B2r

(|∇v|ω)θp dx

) 1
θ

.

Now, since v = |∇v| = 0 onB2r\Ω and |B2r∩Ω| h |B2r|, we have (4.1.20).

Let us collect a few auxiliary results from [16] that will be used later. It
follows from [16, (3.24)] with ω = |M| that

Λ−1 〈|M|〉log
B ≤ |〈M〉

log
B | ≤ 〈|M|〉

log
B ,

Λ−2 〈|A|〉log
B ≤ |〈A〉

log
B | ≤ 〈|A|〉

log
B .

(4.1.21)

Moreover, by monotonicity of the scalar versions of exp and log we have

〈|A|〉log
B ≤ (|A|)B. (4.1.22)

Lemma 4.1.7. [16, Lemma 4] For a matrix-valued weight M and ω = |M|
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we have

−
∫
B

|logω(x)− (logω)B | dx ≤ 2−
∫
B

|logM(x)− (logM)B | dx

and so |logω|BMO(B) ≤ 2|logM|BMO(B).

The next results provides a qualitative John-Nirenberg type inequality.

Lemma 4.1.8. [16, Proposition 5] There exist constants κ1 = κ1(n,Λ) > 0
and c2 = c2(n,Λ) > 0 such that the following holds: If t ≥ 1 and M is a
matrix-valued weight with |logM|BMO(B) ≤ κ1

t
, then we have

(
−
∫
B

(
|M(x)− 〈M〉log

B |
| 〈M〉log

B |

)t

dx

) 1
t

≤ c2t|logM|BMO(B).

The same holds with ω instead of M.

The following results is a minor modification of [16, Proposition 6].

Lemma 4.1.9. Let κ1 and c2 be as in Lemma 4.1.8. Then with a constant
β = β(n,Λ) = min {κ1, 1/c2} > 0, the following holds for all weights ω.

1. If |logω|BMO(B) ≤ β
γ

with γ ≥ 1, then there holds

(
−
∫
B

ωγ dx

) 1
γ

≤ 2 〈ω〉log
B and

(
−
∫
B

ω−γ dx

) 1
γ

≤ 2
1

〈ω〉log
B

.

2. If |logω|BMO(B) ≤ βmin{1
p
, 1
p′
} with 1 < p < ∞, then ωp is an Ap–

Muckenhoupt weight and

[ωp]
1
p

Ap = sup
B′⊂B

(
−
∫
B′
ωp dx

) 1
p
(
−
∫
B′
ω−p

′
dx

) 1
p′

≤ 4.

3. Let 1 < p < ∞ and θ ∈ (0, 1) be such that θp > 1. If |logω|BMO(B) ≤
βmin{1

p
, 1− 1

θp
}, then

sup
B′⊂B

(
−
∫
B′
ωp dx

) 1
p
(
−
∫
B′
ω−(θp)′ dx

) 1
(θp)′

≤ 4.
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Proof. The proof is the same as in [16, Proposition 6] with minimal changes
due to the localized versions.

Remark 4.1.10. Using the relation log(M−1) = − log(M) and log(ω−1) =
− log(ω), we can apply Lemma 4.1.8 and Lemma 4.1.9 also to M−1 and ω−1.

We now define a specific N-function

φ(t) :=
1

p
tp.

Then we denote

A(ξ) :=
φ′(|ξ|)
|ξ|

ξ = |ξ|p−2ξ,

V (ξ) :=

√
φ′(|ξ|)
|ξ|

ξ = |ξ|
p−2

2 ξ.

Let φ̃∗ be the conjugate of an N-function φ̃ as follows:

φ̃∗(t) := sup
s≥0

(ts− φ̃(s)), t ≥ 0,

and so φ∗(t) = 1
p′
tp
′
.

We also need the shifted N-functions as introduced in [92, 96, 93, 16]. For
a ≥ 0 we define φa as

φa(t) :=

∫ t

0

φ′(a ∨ s)
a ∨ s

s ds. (4.1.23)

Here s1 ∨ s2 := max{s1, s2} for s1, s2 ∈ R. We call a the shift. So for t ≤ a,
then function φa(t) is quadratic in t. One can see that φ0 = φ holds, and
a h b implies φa(t) h φb(t). Also, we have

φa(t) h (a ∨ t)p−2t2, (4.1.24)

φ′a(t) h (a ∨ t)p−2t, (4.1.25)

(φa)
∗ = (φ∗)φ′(a), (4.1.26)

(φ|ξ|)
∗ = (φ∗)φ′(|ξ|) (4.1.27)

with constants depending only on p. Moreover, for a ≥ 0, the collection of
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φa and (φa)
∗ satisfy the ∆2-condition with a ∆2-constant independent of a.

We also have Young’s inequality. For every ε > 0 there exists c(ε) =
c(ε, p) ≥ 1 such that for all s, t, a ≥ 0

st ≤ c(ε)(φa)
∗(s) + εφa(t). (4.1.28)

Here, c(ε) h max{ε−1, ε−
1
p−1}. Similarly, considering the relations φa(t) h

φ′a(t)t and (φa)
∗ h (tφ′a(t)), we have

φ′a(s)t ≤ c(ε)φa(s) + εφa(t),

φ′a(s)t ≤ εφa(s) + c̃(ε)φa(t)
(4.1.29)

for all s, t, a ≥ 0, where c̃(ε) h max{ε−1, ε1−p}. Moreover, the following rela-
tion holds for a ≥ 0:

φa(λa) h

{
λ2φ(a), for λ < 1,

φ(λa) for λ ≥ 1.
(4.1.30)

We emphasize the relation between A, V and φa as in the following:

Lemma 4.1.11 ([93, Lemma 41]). For all P,Q ∈ Rn we have

(A(P )− A(Q)) · (P −Q) h |V (P )− V (Q)|2

h φ|Q|(|P −Q|) h (φ∗)|A(Q)|(|A(P )− A(Q)|),

A(Q) ·Q = |V (Q)|2 h φ|Q|(|Q|) h φ(|Q|)

and

|A(P )− A(Q)| h (φ|Q|)
′(|P −Q|) h φ′|P |∨|Q|(|P −Q|),

where the implicit constants depend only on p.

We usually use the following change of shift :

Lemma 4.1.12 (Change of shift, [93, Corollary 44]). For ε > 0, there exists
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cε = cε(ε, p) such that for all P,Q ∈ Rn we have

φ|P |(t) ≤ cεφ|Q|(t) + ε|V (P )− V (Q)|2,(
φ|P |
)∗

(t) ≤ cε
(
φ|Q|
)∗

(t) + ε|V (P )− V (Q)|2,

where cε = c(ε, p).

Also, we need the following removal of shift.

Lemma 4.1.13 (Removal of shift, [16, Lemma 13]). For all a ∈ Rn, t ≥ 0
and ε ∈ (0, 1], we have

φ′|a|(t) ≤ φ′
(
t

ε

)
∨ (εφ′(|a|)), (4.1.31)

φ|a|(t) ≤ εφ(|a|) + cεφ

(
t

ε

)
, (4.1.32)

(φ|a|)
∗(t) ≤ εφ(|a|) + cεφ∗

(
t

ε

)
(4.1.33)

with c = c(p).

4.1.3 Global maximal regularity estimates

We now provide global maximal regularity estimates for the weak solutions of
our weighted p-Laplace equation for the linear case p = 2 as well as the non-
linear case p ∈ (1,∞). Let Ω ⊂ Rn be (δ, R)–Lipschitz and M : Rn → Rn×n

>0 be
a degenerate elliptic matrix-valued weight with uniformly bounded condition
number (4.1.3). Recall, that ω(x) := |M(x)|. Note, that (4.1.3) is equivalent
to

Λ−1ω(x)|ξ| ≤ |M(x)ξ| ≤ ω(x)|ξ| for all ξ ∈ Rn (4.1.34)

and also

Λ−1ω(x)Id ≤M(x) ≤ ω(x)Id for all x ∈ Ω. (4.1.35)

If we assume that logM has a small BMO-norm, i.e., assume

|logM|BMO(Ω) ≤ κ, (4.1.36)
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we also have |logω|BMO(Ω) ≤ 2κ by Lemma 4.1.7. Suppose that κ is so small
such that by Lemma 4.1.9, ωp is an Ap-Muckenhoupt weight. Then C∞0 (Ω)
is dense in W 1,p

0,ω(Ω). Now, let u ∈ W 1,p
0,ω(Ω) be the weak solution of (4.1.2)

with F ∈ Lpω(Ω), i.e., if we denote

A(x, ξ) := |M(x)ξ|p−2M2(x)ξ = M(x)A(M(x)ξ),

then ∫
Ω

A(x,∇u) · ∇ξ dx =

∫
Ω

A(x, F ) · ∇ξ dx (4.1.37)

for all ξ ∈ W 1,p
0,ω(Ω). Since ωp is an Ap-Muckenhoupt weight, the existence

and uniqueness of u is guaranteed by standard arguments from the calculus
of variations.

We start with the standard Caccioppoli estimates associated with our
degenerate p-Laplacian problem. We fix a ball B0 := BR(x0) with x0 ∈ ∂Ω.
Then since Ω is (δ, 4R)–Lipschitz, there exists a coordinate system
{x1, . . . , xn} such that x0 = 0 in this coordinate system, and with the assigned
Lipschitz map ψ : Rn−1 → R we have (4.1.6) with 4R instead of R. Let
u ∈ W 1,p

ω (4B0 ∩ Ω) be a weak solution of

−divA(x,∇u) = −divA(x, F ) in 4B0 ∩ Ω,

u = 0 on ∂Ω ∩ (4B0).
(4.1.38)

From now on, let Br = Br(x̃) denote an arbitrary ball with x̃ ∈ Ω and
4Br ⊂ 2B0. Denoting aΩr = aBr∩2B0∩Ω for a ∈ R+, we have the following:

Proposition 4.1.14 (Caccioppoli inequality). Let u ∈ W 1,p
ω (4B0 ∩ Ω) be a

weak solution of (4.1.38) and Br = Br(x̃) denote an arbitrary ball with x̃ ∈ Ω
and 4Br ⊂ 2B0.

(1) (Interior case) If 2Br ⊂ Ω, then we have

−
∫

Ωr

|∇u|pωp dx ≤ c−
∫

2Ωr

∣∣∣∣u− (u)2Ωr

r

∣∣∣∣p ωp dx+ c−
∫

2Ωr

|F |pωp dx. (4.1.39)
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(2) (Boundary case) Assume (4.1.15). If 2Br 6⊂ Ω, then we have

−
∫

Ωr

|∇u|pωp dx ≤ c−
∫

2Ωr

∣∣∣u
r

∣∣∣p ωp dx+ c−
∫

2Ωr

|F |pωp dx. (4.1.40)

In both cases c = c(n, p,Λ).

Proof. First, (4.1.39) follows from [16, Proposition 8]. To show (4.1.40), let
η be a smooth cut-off function with χBr ≤ η ≤ χ2Br and |∇η| ≤ c

r
. Testing

ηpu ∈ W 1,p
0,ω(2Ωr) in (4.1.38), we get

∫
2Ωr

|M∇u|p−2M∇u ·M∇(ηpu) dx =

∫
2Ωr

|MF |p−2MF ·M∇(ηpu) dx.

Using (4.1.34) we have∫
2Ωr

ηp|∇u|pωp dx .
∫

2Ωr

ηp−1|∇u|p−1
∣∣∣u
r

∣∣∣ωp dx
+

∫
2Ωr

ηp|F |p−1|∇u|ωp dx+

∫
2Ωr

ηp−1|F |p−1
∣∣∣u
r

∣∣∣ωp dx.
By Young’s inequality, absorb the term ηp|∇u|pωp into left-hand side, it fol-
lows that ∫

Ωr

|∇u|pωp dx .
∫

2Ωr

∣∣∣u
r

∣∣∣p ωp dx+

∫
2Ωr

|F |pωp dx.

Now, by (4.1.17), we have |Ωr| h |Br| h |2Br| h |2Ωr|. Then (4.1.40) follows.

Now, we can provide the reverse Hölder’s inequality.

Lemma 4.1.15. Assume (4.1.15). There exists κ2 = κ2(n, p,Λ) > 0 and
θ ∈ (0, 1) such that if |logM|BMO(3Br) ≤ κ2, then

−
∫

Ωr

|∇u|pωp dx ≤ c

(
−
∫

2Ωr

(|∇u|ω)θp dx

) 1
θ

+ c−
∫

2Ωr

|F |pωp dx

holds with c = c(n, p,Λ).
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Proof. If 3
2
Br ⊂ Ω, then we can select small κ2 such that Lemma 4.1.9 (c)

holds true to use Proposition 3 in [16]. This and Proposition 4.1.14 proves
the claim.

If 3
2
Br 6⊂ Ω, using Proposition 4.1.6 instead of Proposition 3 in [16], we

again prove the claim.

Now, we have the following higher integrability.

Corollary 4.1.16 (Higher integrability). Assume (4.1.15). There exist κ2 =
κ2(n, p,Λ) > 0 and s = s(n, p,Λ) ∈ (1, 2) such that if |logM|BMO(3Br) ≤ κ2,
then (

−
∫

Ωr

(|∇u|pωp)s dx
) 1

s

≤ c−
∫

2Ωr

|∇u|pωp dx+ c

(
−
∫

2Ωr

(|F |pωp)s dx
) 1

s

holds with c = c(n, p,Λ).

Proof. After extending ∇u = F = 0 in 2Br \ Ω, and considering |Ωr| h |Br|
and |2Ωr| h |2Br|, Gehring’s lemma (e.g. [126, Theorem 6.6]) implies the
conclusion.

In this section, we only prove boundary comparison estimates, since the
interior estimates are proved in [16]. Let us assume MF ∈ Lq(Ω). Choose a
cut-off function η ∈ C∞0 (B0) with

χ 1
2
B0
≤ η ≤ χB0 and ‖∇η‖∞ ≤ c/R. (4.1.41)

Define z on Rn as follows: first let z on B0 ∩ Ω be such that

z := uηp
′

(4.1.42)

and take the zero extension for z on Rn \ (B0 ∩ Ω), if necessary. Also, we
denote

g := ηp
′∇u−∇z = −u∇(ηp

′
) = −up′ηp′−1∇η. (4.1.43)

Then we have the following estimate:

|g| . |u|
R
. (4.1.44)
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For the convenience of notation, we write

MBr := 〈M〉log
Br
,

ωBr := 〈ω〉log
Br
,

and so

ABr(ξ) := |MBrξ|p−2M2
Brξ = MBrA(MBrξ),

V(x, ξ) := V (M(x)ξ),

VBr(ξ) := V (MBrξ).

Then we have the following relations for all ξ ∈ Rn:

A(x, ξ) · ξ = |V(x, ξ)|2, (4.1.45)

ABr(ξ) · ξ = |VBr(ξ)|2, (4.1.46)

|ABr(ξ)| . ωpBr |ξ|
p−1 (4.1.47)

and by [16, Section 3],

Λ−1ωBr |ξ| ≤ |MBrξ| ≤ ωBr |ξ|, (4.1.48)

Λ−1ωBr ≤ |MBr | ≤ ωBr . (4.1.49)

Summing up the above result, we have [16, Lemma 16] as follows: for all
ξ ∈ Rn and all x ∈ Br there holds

|ABr(ξ)−A(x, ξ)| . |M−MBr(x)|
|MBr |

(|ABr(ξ)|+ |A(x, ξ)|) . (4.1.50)

Before introducing the reference problem, we provide the following lemma
for the well-posedness:

Lemma 4.1.17. Assuming (4.1.15), there exists κ3 = κ3(n, p,Λ) > 0 and
s = s(n, p,Λ) ∈ (1, 2) such that if |logM|BMO(4Br) ≤ κ3, then with 2Ωr =
2Br ∩B0 ∩ Ω there holds

−
∫

Ωr

(|∇u|ωBr)p dx . −
∫

2Ωr

(|∇u|ω)p dx+

(
−
∫

2Ωr

(|F |ω)ps dx

) 1
s

. (4.1.51)
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Proof. Using Hölder’s inequality, |Ωr| h |Br| and Lemma 4.1.9, we have

−
∫

Ωr

(|∇u|ωBr)p dx ≤
(
−
∫

Ωr

(|∇u|ω)ps dx

) 1
s
(
−
∫

Ωr

(ωBrω
−1)ps

′
dx

) 1
s′

.

(
−
∫

Ωr

(|∇u|ω)ps dx

) 1
s
(
−
∫
Br

(ωBrω
−1)ps

′
dx

) 1
s′

.

(
−
∫

Ωr

(|∇u|ω)ps dx

) 1
s

.

Then Corollary 4.1.16 yields the conclusion.

Now, let h ∈ W 1,p
ωBr

(Ωr) be the weak solution of

−div (ABr(∇h)) = 0 in Ωr,

h = z on ∂Ωr.
(4.1.52)

Then h is the unique minimizer of

w 7→
∫

Ωr

φ(|MBr∇w|) dx (4.1.53)

with boundary data w = z on ∂Ωr. Now, we provide the first comparison
estimate. Recall that Br = Br(x̃), B0 = BR(x0), 4Br ⊂ 2B0, x̃ ∈ Ω and z, h
are given by (4.1.42) and (4.1.52), respectively. Moreover, as [16, Eq. (3.25)],
we have

−div (ABr(∇z)−ABr(∇h))

= −div (ABr(∇z)−A(·,∇z))− div (A(·,∇z)−A(·,∇z + g))

− ηpdiv (A(·, F ))−∇(ηp) · A(·,∇u)

(4.1.54)

on Ωr, in the distributional sense.

Proposition 4.1.18 (First comparison at boundary). Assuming (4.1.15),
let h be as in (4.1.52) and z be as in (4.1.42). There exist s > 1 and κ4 =
κ4(n, p,Λ) ∈ (0, 1), such that if |logM|BMO(4Br) ≤ κ4 holds, then for every
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ε ∈ (0, 1) we have

−
∫

Ωr

|VBr(∇h)− VBr(∇z)|2 dx

≤ c
(
|logM|2BMO(Br) + ε

)(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

+ cC∗(ε)

(
−
∫

2Ωr

(
|u|p

Rp
ωp
)s

dx

) 1
s

+ cC∗(ε)

(
−
∫

2Ωr

(|F |pωp)s dx
) 1

s

(4.1.55)

for some c = c(n, p,Λ), and C∗(ε) = max
{
ε1−p, ε−

1
p−1

}
.

Proof. The proof is similar to the one of [16, Proposition 17]. Observe that
|logM|BMO(4Br) ≤ κ4 implies that (4.1.52) is well-defined. Testing z − h to
(4.1.52) and (4.1.38), by (4.1.54) it follows that

I0 := −
∫

Ωr

(ABr(∇z)−ABr(∇h)) · (∇z −∇h) dx

= −
∫

Ωr

(ABr(∇z)−A(x,∇z)) · (∇z −∇h) dx

+−
∫

Ωr

(A(x,∇z)−A(x,∇z + g)) · (∇z −∇h) dx

+−
∫

Ωr

A(x, F ) · (∇(ηpz)−∇(ηph)) dx

+−
∫

Ωr

∇(ηp) · A(x,∇u)(z − h) dx =: I1 + I2 + I3 + I4.

(4.1.56)

By Lemma 4.1.11, we have

I0 h −
∫

Ωr

|VBr(∇h)− VBr(∇z)|2 dx h −
∫

Ωr

φ|∇z|(|∇z −∇h|)ωpBr dx. (4.1.57)
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To estimate I1, arguing as in the proof of [16, Proposition 17], we have

I1 = −
∫

Ωr

(ABr(∇z)−A(x,∇z)) · (∇z −∇h) dx

≤ σ−
∫

Ωr

φ|∇z|(|∇z −∇h|)ωpBr dx

+ c(σ)−
∫

Ωr

(
|M−MBr |
|MBr |

)2

φ(|∇z|)

(
ωpBr
ωp

+
ωp

ωpBr
+
ωp
′

ωp
′

Br

)
ωp dx

= I1,1 + I1,2

(4.1.58)

for any σ ∈ (0, 1). Now, I1,1 is absorbed to the left-hand side I0 by choosing
σ = σ(n, p,Λ) sufficiently small, and so c(σ) = c. For I1,2, we first assume
|logM|BMO(Br) ≤ κ1 = κ1(n, p,Λ) and then use Lemma 4.1.8, together with
|Ωr| h |Br| (the measure density of Ωr to Br) from (4.1.15) and (4.1.17), to
have

I1,3 :=

(
−
∫

Ωr

(
|M−MBr |
|MBr |

)4s′

dx

) 1
2s′

.

(
−
∫
Br

(
|M−MBr |
|MBr |

)4s′

dx

) 1
2s′

. |logM|2BMO(Br).

(4.1.59)

Also, assume |logM|BMO(Br) ≤ κ4 for some small κ4 = κ4(n, p,Λ) and then
use Lemma 4.1.9, together with |Ωr| h |Br| from (4.1.17) with the help of
(4.1.15) to have

I1,4 := −
∫

Ωr

(
ωpBr
ωp

+
ωp

ωpBr
+
ωp
′

ωp
′

Br

)2s′

dx

. −
∫
Br

(
ωpBr
ωp

+
ωp

ωpBr
+
ωp
′

ωp
′

Br

)2s′

dx ≤ c.

(4.1.60)
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Then by Hölder’s inequality and the above two displays, we obtain

I1,2 ≤ c I1,3I
1

2s′
1,4

(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

. c |logM|2BMO(Br)

(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

.

(4.1.61)

From now on, we only specify the necessary tools to provide each resulting
estimates, since we mainly follow the proof of [16, Proposition 17], and when
we use the measure density property, we apply the similar manipulation as
above. First, by (4.1.44), Lemma 4.1.12 and Lemma 4.1.9 together with the
measure density property of Ωr to Br, we estimate I2 as follows:

I2 ≤ σ−
∫

Ωr

φ|∇z|(|∇z −∇h|)ωpBr dx

+ cσε

(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

+ cσε
− 1
p−1

(
−
∫

Ωr

(
|u|p

Rp
ωp
)s

dx

) 1
s

(4.1.62)

for any σ, ε ∈ (0, 1). To estimate I3, using Young’s inequality and 0 ≤ η ≤ 1,
we have

I3 . ε−
1
p−1−
∫

Ωr

ωp
′

ωp
′

Br

ηp|F |pωp dx

+ ε−
∫

Ωr

|∇z −∇h|pωpBr dx+ ε−
∫

Ωr

∣∣∣∣z − hr
∣∣∣∣p ωpBr dx

=: I3,1 + I3,2 + I3,3.

(4.1.63)

Extending z−h as 0 in Br \Ω, and using Proposition 3 in [16], we have I3,3 .
I3,2. We employ triangle inequality, minimizing property of h in (4.1.53),
(4.1.48), Hölder’s inequality and Lemma 4.1.9 together with |Ωr| h |Br|, to
obtain

I3,2 ≤ εc

(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

. (4.1.64)
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Using also Hölder’s inequality and Lemma 4.1.9 with |Ωr| h |Br|, we have

I3,1 . cε−
1
p−1

(
−
∫

Ωr

(|F |pωp)s dx
) 1

s

. (4.1.65)

Finally, to estimate I4, instead of dividing the case into p > 2 and 1 <
p ≤ 2 as in [16], we consider the cases in a unified way. By p′(p−2+ 1

p
) = p−1

and ηp
′∇u = ∇z + g, we first see that

I4 ≤ −
∫

Ωr

|∇(ηp)||A(x,∇u)||z − h| dx

. −
∫

Ωr

|∇η||ηp′∇u|p−2+ 1
p |∇u|1−

1
p |z − h|ωp dx

. −
∫

Ωr

r

R
|∇z + g|p−2+ 1

p |∇u|1−
1
p

∣∣∣∣z − hr
∣∣∣∣ωp dx

. ε−
∫

Ωr

|∇z + g|pωp dx

+ C∗(ε)−
∫

Ωr

( r
R

) p2

p−1 |∇u|pωp dx+ ε−
∫

Ωr

∣∣∣∣z − hr
∣∣∣∣p ωp dx

(4.1.66)

for any ε ∈ (0, 1], where for the last step we have used Young’s inequality for

the exponents

(
p

p−2+ 1
p

, p2

p−1
, p

)
and 0 ≤ η1 ≤ 1. Here, C∗(t) : (0, 1] → R+ is

such that

C∗(t) = max
{
t1−p, t−

1
p−1

}
, (4.1.67)

which is a continuous function on (0, 1] for each fixed p ∈ (1,∞). Recalling
(4.1.44), we have

−
∫

Ωr

|∇z + g|pωp dx . −
∫

Ωr

|∇z|pωp dx+−
∫

Ωr

∣∣∣ u
R

∣∣∣p ωp dx. (4.1.68)
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Also, since p2

p−1
> p on p ∈ (1,∞) and r ≤ R hold, there holds

−
∫

Ωr

( r
R

) p2

p−1 |∇u|pωp dx .
( r
R

)p
−
∫

Ωr

|∇u|pωp dx

.
( r
R

)p
−
∫

2Ωr

∣∣∣u
r

∣∣∣p ωp dx+−
∫

2Ωr

|F |pωp dx

. −
∫

2Ωr

∣∣∣ u
R

∣∣∣p ωp dx+−
∫

2Ωr

|F |pωp dx.

(4.1.69)

Extending z − h as 0 in Br \Ω, and using Proposition 3 in [16], Hölder’s
inequality, Lemma 4.1.9 together with |Ωr| h |Br|, triangle inequality, mini-
mizing property of h in (4.1.53) and (4.1.48) yields

−
∫

Ωr

∣∣∣∣z − hr
∣∣∣∣p ωp dx .

(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

, (4.1.70)

as in [16]. Note that the argument used in [16] for (4.1.70) can be applied in
all cases p ∈ (1,∞). Thus it follows that

I3 . ε

(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

+ C∗(ε)−
∫

2Ωr

∣∣∣ u
R

∣∣∣p ωp dx+ C∗(ε)−
∫

2Ωr

|F |pωp dx.
(4.1.71)
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Summing up the above all estimates, we have

−
∫

Ωr

|VBr(∇h)− VBr(∇z)|2 dx

. σ−
∫

Ωr

φ|∇z|(|∇z −∇h|)ωpBr dx

+ c(σ)( |logM|2BMO(Br) + ε)

(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

+ c(σ)
(
ε−

1
p−1 + C∗(ε)

)(
−
∫

2Ωr

(
|u|p

Rp
ωp
)s

dx

) 1
s

+ c(σ)
(
ε−

1
p−1 + C∗(ε)

)(
−
∫

2Ωr

(|F |pωp)s dx
) 1

s

= I5 + I6 + I7 + I8.

(4.1.72)

By Lemma 4.1.11 and (4.1.34), φ|∇z|(|∇z−∇h|)ωpBr h |VBr(∇h)−VBr(∇z)|2.
Then by choosing σ ∈ (0, 1) sufficiently small depending on n, p and Λ, I5 is

absorbed to the left-hand side. Finally, ε−
1
p−1 ≤ C∗(ε) holds when ε ∈ (0, 1),

and so the estimate (4.1.55) holds true.

Now, we give the second comparison estimate. With y = Ψ(x), we define

h̃(y) := h(Ψ−1(y)). (4.1.73)

Let ṽ = ṽ(y) ∈ W 1,p(Ψ(1
2
Ωr)) be the weak solution of

−divy(|MBr∇yṽ|p−2M2
Br∇yṽ) = 0 in Ψ(1

2
Ωr),

ṽ = h̃ on ∂(Ψ(1
2
Ωr)).

(4.1.74)

Since Ψ is a homeomorphism, together with (4.1.6) we have ∂(Ψ(1
2
Ωr)) =

Ψ(∂(1
2
Ωr)). Denoting v(x) = ṽ(y) = ṽ(Ψ(x)), we have

∇v(x) = ∇ṽ(Ψ(x)) = (∇Ψ)(x)∇yṽ(Ψ(x)) = (∇Ψ)(x)∇yṽ(y). (4.1.75)
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Denoting T (x) = (∇Ψ)−1(x), (4.1.74) transforms into

−div(T t(x)|MBrT (x)∇v|p−2M2
BrT (x)∇v) = 0 in 1

2
Ωr,

v(x) = h(x) on ∂(1
2
Ωr),

(4.1.76)

where T t(x) abbreviation stands for transpose. Or equivalently, denoting

AΨ(x, ξ) := T t(x)|MBrT (x)ξ|p−2M2
BrT (x)ξ, (4.1.77)

we have

−div(AΨ(x,∇v)) = 0 in 1
2
Ωr,

v(x) = h(x) on ∂(1
2
Ωr).

(4.1.78)

The problems (4.1.76) and (4.1.78) can be derived also from the weak for-
mulation of the equation. At this time we have also used that det(∇Ψ) = 1
for the change of coordinate in the integrals. The natural function space for
v is W 1,p

ωBr
(1

2
Ωr) and v is the unique minimizer of

w 7→
∫

1
2

Ωr

φ(|MBrT (x)∇w|) dx (4.1.79)

subject to the boundary condition v = h on ∂(1
2
Ωr).

Now, we need the following lemma.

Lemma 4.1.19. Assume (4.1.15). For all ξ ∈ Rn and x ∈ 1
2
Ωr we have

|T (x)| h |T−1(x)| h c (4.1.80)

and

|AB(ξ)−AΨ(x, ξ)| ≤ c‖∇ψ‖∞ωpB min
{
|ξ|p−1, |T (x)ξ|p−1

}
(4.1.81)

for some c = c(n, p,Λ).

Proof. First, since (T (x)− id)2 = ((∇Ψ(x))−1 − id)2 = 0, we have T−1(x)−
id = id−T (x). Then

|T−1(x)− id | = | id−T (x)| ≤ n‖∇ψ‖∞ (4.1.82)
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holds, and so together with ‖∇ψ‖∞ ≤ 1
2n

, it follows that

1

2
≤ | id | − n‖∇ψ‖∞ ≤ |T (x)| ≤ | id |+ n‖∇ψ‖∞ ≤

3

2
. (4.1.83)

Hence we have |T (x)| h c. Similarly, we have |T−1(x)| h c.
On the other hand, observe that by (4.1.48),

|AB(ξ)−AΨ(x, ξ)|
=
∣∣|MBξ|p−2M2

Bξ − |MBT (x)ξ|p−2T t(x)M2
BT (x)ξ

∣∣
≤
∣∣MB|MBξ|p−2MBξ −MB|MBT (x)ξ|p−2MBT (x)ξ

∣∣
+ |MB − T t(x)MB| ·

∣∣|MBT (x)ξ|p−2MBT (x)ξ
∣∣

. ωB · |A(MBξ)− A(MBT (x)ξ)|+ ωB · | id−T t(x)| · |MBT (x)ξ|p−1.

Here, by (4.1.80) and (4.1.48),

|MBrξ| = |MBrT
−1(x)T (x)ξ|

. |MBr | · |T−1(x)| · |T (x)ξ| . |MBr | · |T (x)ξ| . |MBrT (x)ξ|

and similarly |MBrT (x)ξ| . |MBrT (x)T−1(x)ξ| = |MBrξ| holds. Thus we
have |MBrT (x)ξ| h |MBrξ|. Then together with (4.1.82) and Lemma 4.1.11,
there holds

|A(MBrξ)− A(MBrT (x)ξ)| h φ′|MBr ξ|∨|MBrT (x)ξ| (|MBrξ −MBrT (x)ξ|)
h (|MBrξ| ∨ |MBrT (x)ξ| ∨ |MBrξ −MBrT (x)ξ|)p−2 |MBrξ −MBrT (x)ξ|
. ωBr | id−T (x)||ξ| (|MBrξ| ∨ |MBrT (x)ξ| ∨ |MBrξ −MBrT (x)ξ|)p−2

. ωBr | id−T (x)||ξ|(|MBrξ|+ |MBrT (x)ξ|)p−1

|MBrξ|
. Λ| id−T (x)| (|MBrξ|+ |MBrT (x)ξ|)p−1

. ‖∇ψ‖∞|MBrT (x)ξ|p−1.

Thus, together with | id−T t(x)| = |(id−T (x))t| = | id−T (x)| ≤ n‖∇ψ‖∞,
we have

|ABr(ξ)−AΨ(x, ξ)| . ωBr‖∇ψ‖∞|MBrT (x)ξ|p−1 . ωpBr‖∇ψ‖∞|T (x)ξ|p−1.

Finally, since ωBr |T (x)ξ| h |MBrT (x)ξ| h |MBrξ| h ωBr |ξ|, we get the con-
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clusion.

Now, we can compute the comparison estimate.

Proposition 4.1.20 (Second comparison at boundary). Assuming (4.1.15),
let v be as in (4.1.76) and h be as in (4.1.52). There exists κ4 = κ4(n, p,Λ)
such that if |logM|BMO(4Br) ≤ κ4, then for some c = c(n, p,Λ), we have

−
∫

1
2

Ωr

|VBr(∇v)− VBr(∇h)|2 dx ≤ c‖∇ψ‖2
∞−
∫

Ωr

(|∇h|pωpBr) dx. (4.1.84)

Proof. Test v − h to (4.1.52) and (4.1.76) to have

−
∫

1
2

Ωr

(ABr(∇v)−ABr(∇h)) · (∇v −∇h) dx

= −
∫

1
2

Ωr

(ABr(∇v)−AΨ(x,∇v)) · (∇v −∇h) dx.

(4.1.85)

We apply Lemma 4.1.11, (4.1.81) and then use Young’s inequality to obtain

−
∫

1
2

Ωr

|VBr(∇v)− VBr(∇h)|2 dx

h −
∫

1
2

Ωr

φ|∇v|(|∇v −∇h|)ωpBr dx

. −
∫

1
2

Ωr

|AΨ(x,∇v)−ABr(∇v)||∇v −∇h| dx

. −
∫

1
2

Ωr

‖∇ψ‖∞ωpBrφ
′(|∇v|)|∇v −∇h| dx

≤ σ−
∫

1
2

Ωr

φ|∇v|(|∇v −∇h|)ωpBr dx

+ c(σ)−
∫

1
2

Ωr

(φ|∇v|)
∗(‖∇ψ‖∞φ′(|∇v|))ωpBr dx =: I1 + I2

(4.1.86)

for any σ ∈ (0, 1). Then I1 is absorbed to the left-hand side by choosing σ
sufficiently small depending on n, p and Λ. To estimate I2, we use (4.1.30),
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(φ∗)φ′(|a|)(φ
′(|a|)) h φ(|a|) and then (4.1.80) to have

I2 . −
∫

1
2

Ωr

(φ∗)φ′(|∇v|)(‖∇ψ‖∞φ′(|∇v|))ωpBr dx

. ‖∇ψ‖2
∞−
∫

1
2

Ωr

(φ∗)φ′(|∇v|)(φ
′(|∇v|))ωpBr dx

. ‖∇ψ‖2
∞−
∫

1
2

Ωr

φ(|∇v|)ωpBr dx

. ‖∇ψ‖2
∞−
∫

1
2

Ωr

φ(|T (x)∇v|)ωpBr dx.

(4.1.87)

Now, we use minimizing property of ∇v together with (4.1.48), (4.1.80) and
|Ωr| h |12Ωr| to have

−
∫

1
2

Ωr

φ(|T (x)∇v|)ωpBr dx . −
∫

1
2

Ωr

φ(|T (x)∇h|)ωpBr dx

. −
∫

Ωr

φ(|∇h|)ωpBr dx.
(4.1.88)

Summing up the above estimates, we obtain (4.1.84).

Before providing decay estimates of V(·,∇z), we discuss some regularity
results and corresponding estimates related to ṽ and v which are defined
in (4.1.74) and (4.1.78), respectively. First, we have the following estimates
which imply Lipschitz regularity and C1,α regularity of ṽ.

Proposition 4.1.21. Assuming (4.1.15), let ṽ be the solution of (4.1.52).
Then there holds

sup
1
32
Br∩Rn+

|∇ṽ|pωpBr ≤ c−
∫

1
4
Br∩Rn+

|∇ṽ|pωpBr dy. (4.1.89)

Moreover, there exist α = α(n, p,Λ) ∈ (0, 1) and c = c(n, p,Λ) > 0 such that

−
∫
λBr∩Rn+

|VBr(∇ṽ)− (VBr(∇ṽ))λBr∩Rn+ |
2 dy

≤ cλ2α−
∫

1
8
Br∩Rn+

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
8
Br∩Rn+

|2 dy
(4.1.90)
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holds for all λ ∈ (0, 1
80

).

Proof. We first show (4.1.90). Throughout the proof of (4.1.90), let us write
the center of the ball Br as yBr .
Step 1. If 1

8
Br ⊂ {y ∈ Rn : yn ≥ 0}, then it directly follows from [16,

Proposition 15].
Step 2. Now, we consider zBr ∈ {y ∈ Rn : yn = 0}. We have by (4.1.49) that

Λ−1ωBr id ≤MBr ≤ ωBr id .

Since the equation (4.1.74) and estimate (4.1.90) are invariant under normal-
ization, without loss of generality we let ωBr = 1. Also, assume that Br is
centered at 0, i.e., zBr = 0.

Since MBr is symmetric, there is an orthogonal matrix Q and a diagonal
matrix DBr such that MBr = QDBrQ

∗. Then w̃0(y) := ṽ(Qy) is a solution of
(4.1.74) with DBr instead of MBr . Notice that the boundary of the domain
is also rotated, and for DBr we have

Λ−1 id ≤ DBr ≤ id . (4.1.91)

Now, we apply an anisotropic scaling y 7→ D−1
Br
y. This turns estimates on

half balls (with the rotated flat part) into estimates on half-ellipses (with the
rotated flat part) of uniformly bounded eccentricity depending on n and Λ.
Thus, after properly rotating the coordinate axis to make the rotated flat
part to the subset of {y ∈ Rn : yn = 0}, we can take the odd extension to
(4.1.74) to obtain (4.1.90).

In detail, let Q̃ be an n × n orthogonal matrix which maps D−1
Br
Q∗({y ∈

Rn : yn = 0}) to {y ∈ Rn : yn = 0}. In other words, Q̃ satisfies

Q̃(D−1
Br
Q∗({y ∈ Rn : yn = 0})) = {y ∈ Rn : yn = 0}. (4.1.92)

Now, using this n× n orthogonal matrix Q̃, define

w̃(y) := ṽ(Q̃DBrQ
∗y). (4.1.93)

Then we have

(QD−1
Br

(Q̃)∗)∗M2
Br(QD

−1
Br

(Q̃)∗) = Q̃D−1
Br
Q∗M2

BrQD
−1
Br

(Q̃)∗

= Q̃D−1
Br
D2
BrD

−1
Br

(Q̃)∗ = id
(4.1.94)
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and for t = QD−1
Br

(Q̃)∗y, we have

w̃(QD−1
Br

(Q̃)∗y) = ṽ(y) = w̃(t) (4.1.95)

and so

∇yṽ(y) = ∇yw̃(t) = (QD−1
Br

(Q̃)∗)∇tw̃(t). (4.1.96)

Therefore, (4.1.74) defined in Ψ(1
2
Ωr) ⊂ Br transforms into

divy(|MBr∇ṽ|p−2M2
Br∇ṽ) = divy(〈MBr∇ṽ,MBr∇ṽ〉

p−2
2 M2

Br∇ṽ)

= divt

(
(QD−1

Br
(Q̃)∗)∗

〈
MBrQD−1

Br
(Q̃)∗∇tw̃,MBrQD−1

Br
(Q̃)∗∇tw̃

〉 p−2
2

·M2
BrQD

−1
Br

(Q̃)∗∇tw̃
)

= divt

(〈
(MBrQD−1

Br
(Q̃)∗)∗MBrQD−1

Br
(Q̃)∗∇tw̃,∇tw̃

〉 p−2
2 ∇tw̃

)
= divt(|∇tw̃|p−2∇tw̃) = 0

defined in t ∈ QD−1
Br

(Q̃)∗({y ∈ Rn : yn = 0}). Note that since Ψ(1
2
Ωr) ⊂

{y ∈ R : yn = 0} and (4.1.92) hold, we can employ [174] and apply the
odd extension for divt(|∇tw̃|p−2∇tw̃) = 0 and get the analogous estimate
to (4.1.90) for w with half-ellipses instead of half-balls. Using the relation
(4.1.94) and MBr = QDBrQ

∗ for changing w to v, and then using the fact
that all balls can be covered by slightly enlarged ellipses and vice versa, the
estimate (4.1.90) is also true for half balls. Then we have (4.1.90).

Step 3. Now, we consider the general case, i.e., 1
4
Br 6⊂ {y ∈ Rn : yn ≥ 0}

and z = zBr 6∈ {y ∈ Rn : yn = 0} holds. We employ the argument of [152,
Lemma 3.7]. Denote z = (z1, . . . , zn−1, zn), z̄ = (z1, . . . , zn−1, 0), and recall
that 0 < λ < 1

80
and zn > 0 since x̃ ∈ Ω, where x̃ is the center of the ball Br

with 4Br ⊂ 2B0. Let us specify the exact center of the balls in this step. In
particular, we write Br = Br(z).

Case 1. zn >
r
10

. In this case we have

λBr(z) ⊂ 1
10
Br(z) ⊂ zn

r
Br(z) ⊂ Rn

+. (4.1.97)
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By the interior estimates in [100, Theorem 6.4], we obtain

−
∫
λBr(z)

|VBr(∇ṽ)− (VBr(∇ṽ))λBr(z)|2 dy

.

(
λ

1/10

)2α

−
∫

1
10
Br(z)

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
10
Br(z)
|2 dy

.

(
λ

1/10

)2α
(

1

| 1
10
Br(z)|

∫
1
4
Br(z)∩Rn+

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
4
Br(z)∩Rn+

|2 dy

)
. λ2α−

∫
1
4
Br(z)∩Rn+

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
4
Br(z)∩Rn+

|2 dy.

(4.1.98)

Thus we obtain (4.1.90) in this case.
Case 2. 0 < zn ≤ r

10
. We divide the proof into two subcases.

Subcase 1. 0 < λ < zn
4r

. In this subcase

λBr(z) ⊂ zn
4r
Br(z) ⊂ 5zn

4r
B+
r (z̄). (4.1.99)

By the interior estimates in [100, Theorem 6.4], we have

−
∫
λBr(z)

|VBr(∇ṽ)− (VBr(∇ṽ))λBr(z)|2 dy

.

(
4λ

zn/4r

)2α

−
∫
zn
4r
Br(z)

|VBr(∇ṽ)− (VBr(∇ṽ)) zn
4r
Br(z)|2 dy

.

(
4λ

zn/4r

)2α

−
∫

5zn
4r
B+
r (z̄)

|VBr(∇ṽ)− (VBr(∇ṽ)) 5zn
4r
B+
r (z̄)|

2 dy.

(4.1.100)

Since z̄ ∈ {y ∈ Rn : zn = 0}, by Step 2 above and then using 0 < zn ≤ r
10

,
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we have

−
∫

5zn
4r
B+
r (z̄)

|VBr(∇ṽ)− (VBr(∇ṽ)) 5zn
4r
B+
r (z̄)|

2 dy

.

(
5zn
r

)2α

−
∫

1
8
B+
r (z̄)

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
8
B+
r (z̄)|

2 dy

.

(
5zn
r

)2α

−
∫

1
4
Br(z)∩Rn+

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
4
Br(z)∩Rn+

|2 dy.

(4.1.101)

Combining the above two estimates, (4.1.100) and (4.1.101), we obtain (4.1.90)
in this subcase.

Subcase 2. λ ≥ zn
4r

. Since λ ≤ 1
40

, we see that

λBr(z) ∩ Rn
+ ⊂ 5λB+

r (z̄) ⊂ 1
8
B+
r (z̄) ⊂ 1

4
Br(z) ∩ Rn

+. (4.1.102)

Therefore, using the boundary estimate above in Step 2, we have

−
∫
λBr(z)∩Rn+

|VBr(∇ṽ)− (VBr(∇ṽ))λBr(z)∩Rn+|
2 dy

. −
∫

20λB+
r (z̄)

|VBr(∇ṽ)− (VBr(∇ṽ))20λB+
r (z̄)|

2 dy

.

(
5λ

1/8

)2α

−
∫

1
8
B+
r (z̄)

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
8
B+
r (z̄)|

2 dy

. λ2α−
∫

1
4
Br(z)∩Rn+

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
4
Br(z)∩Rn+

|2 dy.

(4.1.103)

Merging all cases Case 1 –Case 2, we have (4.1.90) in Step 3. Therefore, by
Step 1–Step 3, we have (4.1.90).

To show (4.1.89), we employ the similar argument as above. If 1
4
Br ⊂

{y ∈ Rn : yn ≥ 0}, then it follows from [16, Proposition 15]. Now, when
zBr ∈ {y ∈ Rn : yn = 0}, by employing the same matrix Q̃, DBr , Q

∗ as
above, we can apply [167, Lemma 5] and we have (4.1.89) in this case. In the
general case, i.e., when 1

4
Br 6⊂ {y ∈ Rn : yn ≥ 0} and zBr 6∈ {y ∈ Rn : yn = 0}

holds, we divide the cases as same as above and apply the argument of [169]
instead of [100]. Now, (4.1.89) is obtained.

Now, we transform the above estimates for ṽ to the estimates for v.
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Proposition 4.1.22. Assuming (4.1.15), let v be the solution of (4.1.78).
Then there holds

sup
1
32

Ωr

|∇v|pωpBr ≤ c−
∫

1
4

Ωr

|∇v|pωpBr dx. (4.1.104)

Moreover, there exist α = α(n, p,Λ) ∈ (0, 1) and c = c(n, p,Λ) > 0 such that

−
∫
λΩr

|VBr(∇v)− (VBr(∇v))λΩr |2 dx

≤ cλ2α−
∫

1
4

Ωr

|VBr(∇v)− (VBr(∇v)) 1
4

Ωr
|2 dx

+ c‖∇ψ‖2
∞λ
−n−
∫

1
4

Ωr

|∇v|pωpBr dx

(4.1.105)

holds for all λ ∈ (0, 1
80

).

Proof. To obtain (4.1.105), using (4.1.16) with the help of (4.1.15), there
holds

−
∫
λΩr

|VBr(∇v)− (VBr(∇v))λΩr |2 dx

= −
∫

Ψ(λΩr)

|VBr((∇Ψ)∇ṽ)− (VBr((∇Ψ)∇ṽ))Ψ(λΩr)|2 dy

. −
∫

Ψ(4λΩr)

|VBr((∇Ψ)∇ṽ)− (VBr(∇ṽ))Ψ(4λΩr)|2 dy

. −
∫

Ψ(4λΩr)

|VBr((∇Ψ)∇ṽ)− VBr(∇ṽ)|2 dy

+−
∫

Ψ(4λΩr)

|VBr(∇ṽ)− (VBr(∇ṽ))Ψ(4λΩr)|2 dy =: I1 + I2.

(4.1.106)
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For I1, by Lemma 4.1.11 and Lemma 4.1.19, we obtain

I1 . −
∫

Ψ(4λΩr)

|A((∇Ψ)∇ṽ)−ABr(∇ṽ)| · |(∇Ψ)∇ṽ −∇ṽ| dy

. −
∫

Ψ(4λΩr)

ωpBr‖∇ψ‖∞|(∇Ψ)∇ṽ|p−1 · ‖∇ψ‖∞|∇ṽ| dy

. ‖∇ψ‖2
∞−
∫

Ψ(4λΩr)

ωpBr |(∇Ψ)∇ṽ|p|(∇Ψ)−1| dy

. ‖∇ψ‖2
∞−
∫

4λΩr

|∇v|pωpBr dx

. ‖∇ψ‖2
∞λ
−n−
∫

1
4

Ωr

|∇v|pωpBr dx.

(4.1.107)

On the other hand, for I2, we apply (4.1.16) from (4.1.15), and (4.1.90) to
have

I2 . −
∫

8λBr∩Rn+
|VBr(∇ṽ)− (VBr(∇ṽ))8λBr∩Rn+|

2 dy

. λ2α−
∫

1
8
Br∩Rn+

|VBr(∇ṽ)− (VBr(∇ṽ)) 1
8
Br∩Rn+

|2 dy

. λ2α−
∫

Ψ−1( 1
8
Br∩Rn+)

|VBr((∇Ψ)−1∇v)− (VBr(∇v)) 1
4

Ωr
|2 dx

. λ2α−
∫

1
4

Ωr

|VBr((∇Ψ)−1∇v)− VBr(∇v)|2 dx

+ λ2α−
∫

1
4

Ωr

|VBr(∇v)− (VBr(∇v)) 1
4

Ωr
|2 dx

=: λ2α(I2,1 + I2,2).

(4.1.108)

To obtain (4.1.105), we only have to estimate I2,1. By the similar argument
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as (4.1.107), we have

I2,1 . −
∫

1
4

Ωr

|A((∇Ψ)−1∇v)−ABr(∇v)| · ‖∇ψ‖∞|∇v| dx

. ‖∇ψ‖2
∞−
∫

1
4

Ωr

ωpBr |(∇Ψ)−1∇v|p|∇Ψ| dx

. ‖∇ψ‖2
∞−
∫

1
4

Ωr

|∇v|pωpBr dx.

(4.1.109)

Summing up all estimates (4.1.106)–(4.1.109), we conclude (4.1.105).
To show (4.1.104), by using (4.1.80) and (4.1.16), there holds

sup
x∈ 1

32
Ωr

|∇v(x)|pωpBr ≤ sup
y∈Ψ( 1

32
Ωr)

|(∇Ψ)∇ṽ(y)|pωpBr

. sup
y∈ 1

16
Br∩Rn+

|∇ṽ(y)|pωpBr
(4.1.110)

and by (4.1.89), we have

sup
y∈ 1

16
Br∩Rn+

|∇ṽ(y)|pωpBr . −
∫

1
8
Br∩Rn+

|∇ṽ|pωpBr dy

. −
∫

Ψ−1( 1
8
Br∩Rn+)

|(∇Ψ)−1∇v|pωpBr dx

. −
∫

1
4

Ωr

|∇v|pωpBr dx.

(4.1.111)

Summing up the above two inequalities, we have (4.1.104).

With the help of the above estimates for v, we give the following decay
estimate of V(·,∇z). Recall that for B0 = BR(x0) with x0 ∈ ∂Ω, let Br =
Br(x̃) with x̃ ∈ Ω and 4Br ⊂ 2B0. Also, z on B0 ∩ Ω is such that z := uηp

′

and we take the zero extension for z on Rn \ (B0 ∩ Ω), if necessary.

Proposition 4.1.23 (Decay estimate at boundary). Let z, u and F be as in
(4.1.38) and (4.1.42). There exist λ = λ(n, p,Λ) ∈ (0, 1

80
), s = s(n, p,Λ) > 1

and κ5 = κ5(n, p,Λ) ∈ (0, 1) such that the following holds: If |logM|BMO(4Br) ≤
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κ5, and (4.1.15) hold, then for every ε ∈ (0, 1) there holds

−
∫
λBr

|V(x,∇z)− (V(·,∇z))λBr |2 dx

≤ 1

4
−
∫
Br

|V(x,∇z)− (V(·,∇z))Br |2 dx

+ c
(
|logM|2BMO(Br) + ‖∇ψ‖2

∞ + ε
)(
−
∫
Br

|V(x,∇z)|2s dx
) 1

s

+ cC∗(ε)

(
−
∫

2Br

(
χ2B0∩Ω|u|p

Rp
ωp
)s

dx

) 1
s

+ cC∗(ε)

(
−
∫

2Br

|χ2B0∩ΩV(x, F )|2s dx
) 1

s

(4.1.112)

with c = c(n, p,Λ) and C∗(ε) defined in (4.1.67).

Proof. We first assume |logM|BMO(4Br) ≤ κ4 with κ4 from Proposition 4.1.20.
Since z = |∇z| = 0 in λBr \Ω and |λΩr| h |λBr| hold from (4.1.17) because
of (4.1.15) and x̃ ∈ Ω, we have

I1 := −
∫
λBr

|V(x,∇z)− (V(·,∇z))λBr |2 dx

. −
∫
λBr

|V(x,∇z)− (V(·,∇v))λΩr |2 dx

. −
∫
λΩr

|V(x,∇z)− (V(·,∇v))λΩr |2 dx

. −
∫
λΩr

|V(x,∇v)− (V(·,∇v))λΩr |2 dx

+−
∫
λΩr

|V(x,∇z)− V(x,∇v)|2 dx

=: I2 + I3.

(4.1.113)
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We start to estimate I3. There holds

I3 . λ−n−
∫

1
2

Ωr

|V(x,∇z)− V(x,∇v)|2 dx

. λ−n−
∫

1
2

Ωr

|VBr(∇z)− VBr(∇v)|2 dx

+ λ−n−
∫

1
2

Ωr

|V(x,∇z)− VBr(∇z)|2 dx

+ λ−n−
∫

1
32

Ωr

|V(x,∇v)− VBr(∇v)|2 dx

=: I3,1 + I3,2 + I3,3.

(4.1.114)

For I3,2 and I3,3, since x̃ ∈ Ω and (4.1.15) holds, |Ωr| h |Br| also holds.
Then we can apply the similar argument of the proof as in Proposition 18
in [16]. By (4.1.34), (4.1.48), (4.1.49), Lemma 4.1.11, (4.1.30), and Hölder’s
inequality with exponents (2s′, s, 2s′), we have

I3,2 . λ−n

(
−
∫

Ωr

(
|MBr −M|
|MBr |

)4s′

dx

) 1
2s′ (
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

×

1 +

(
−
∫

Ωr

(
ωpBr
ωp

)2s′

dx

) 1
2s′
 .

(4.1.115)

Together with z = |∇z| = 0 in Br \ Ω and |Ωr| h |Br| due to (4.1.15), we
obtain

I3,2 . λ−n
(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

. (4.1.116)

Note that by 4Br ⊂ 2B0, χ2B0∩Ω can be inserted in the integrand of the
above estimate. On the other hand, similar to I3,2, we continue to estimate
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I3,3 as follows:

I3,3 = λ−n−
∫

1
32

Ωr

|V (M∇v)− V (MBr∇v)|2 dx

. λ−n−
∫

1
32

Ωr

(
|M−MBr |
|MBr |

)2 (
|∇v|pωp + |∇v|pωpBr

)
dx

. λ−n

(
sup
1
32

Ωr

|∇v|pωpBr

)(
−
∫

1
2

Ωr

(
|M−MBr |
|MBr |

)2(
ωp

ωpBr
+ 1

)
dx

)
= λ−nI3,3,1I3,3,2.

(4.1.117)

Here, (4.1.104) in Proposition 4.1.22, (4.1.80) and (4.1.48) imply

I3,3,1 := sup
1
32

Ωr

|∇v|pωpBr

. −
∫

1
4

Ωr

|∇v|pωpBr dx

. −
∫

1
4

Ωr

|MBrT (x)∇v|p|T−1(x)|p dx . −
∫

1
2

Ωr

|MBrT (x)∇v|p dx

(4.1.118)

and the minimizing property of v and h, together with (4.1.80) and (4.1.48)
give us that

I3,3,1 . −
∫

1
2

Ωr

|MBrT (x)∇h|p dx

. −
∫

Ωr

|MBr∇h|p dx . −
∫

Ωr

|∇z|pωpBr dx.
(4.1.119)

Then we use Hölder’s inequality, |Ωr| h |Br| from (4.1.15), Lemma 4.1.9 and
z = |∇z| = 0 in Br \ Ω to obtain

I3,3,1 .

(
−
∫

Ωr

(|∇z|pωp)s dx
) 1

s

(
−
∫

Ωr

(
ωpBr
ωp

) s
s−1

dx

)1− 1
s

.

(
−
∫
Br

(|∇z|pωp)s dx
) 1

s

,

(4.1.120)
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provided |logM|BMO(4Br) ≤ κ4 holds. On the other hand, by Hölder’s inequal-
ity, Lemma 4.1.8 and Lemma 4.1.9 we obtain

I3,3,2 .

(
−
∫

1
2

Ωr

(
|M−MBr |
|MBr |

)4

dx

) 1
2

(−∫
1
2

Ωr

(
ωp

ωpBr

)2

dx

) 1
2

+ 1


. |logM|2BMO(Br).

(4.1.121)

Summing up, there holds

I3,3 . λ−n|logM|2BMO(Br)

(
−
∫
Br

|V(x,∇z)|2s dx
) 1

s

. (4.1.122)

For I3,1, we first apply Proposition 4.1.18 and Proposition 4.1.20, use z =
|∇z| = 0 in 2Br \ Ω and |2Ωr| h |2Br| with the help of (4.1.15), and ar-
gue similarly to (4.1.119)–(4.1.120) for the integral of |∇h|pωpBr term. The
resulting estimate is as follows:

I3,1 . λ−n−
∫

1
2

Ωr

|VBr(∇z)− VBr(∇h)|2 dx+ λ−n−
∫

1
2

Ωr

|VBr(∇h)− VBr(∇v)|2 dx

. λ−n(|logM|2BMO(Br) + ε)−
∫

Ωr

(|∇z|pωp) dx+ λ−n‖∇ψ‖2
∞−
∫

Ωr

(|∇h|pωpBr) dx

+ λ−nC∗(ε)

(
−
∫

2Ωr

(
|u|p

Rp
ωp
)s

dx

) 1
s

+ λ−nC∗(ε)

(
−
∫

2Ωr

|V(x, F )|2s dx
) 1

s

. λ−n(|logM|2BMO(Br) + ‖∇ψ‖2
∞ + ε)

(
−
∫
Br

|V(x,∇z)|2s dx
) 1

s

+ λ−nC∗(ε)

(
−
∫

2Br

(
χ2B0∩Ω|u|p

Rp
ωp
)s

dx

) 1
s

+ λ−nC∗(ε)

(
−
∫

2Br

|χ2B0∩ΩV(x, F )|2s dx
) 1

s

.
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Consequently, we have

I3 . λ−n
(
|logM|2BMO(4Br) + ‖∇ψ‖2

∞ + ε
)(
−
∫
Br

|V(x,∇z)|2s dx
) 1

s

+ λ−nC∗(ε)

(
−
∫

2Br

(
χ2B0∩Ω|u|p

Rp
ωp
)s

dx

) 1
s

+ λ−nC∗(ε)

(
−
∫

2Br

|χ2B0∩ΩV(x, F )|2s dx
) 1

s

.

(4.1.123)

For I2, we have

I2 . −
∫
λΩr

|VBr(∇v)− (VBr(∇v))λΩr |2 dx

+−
∫
λΩr

|V(x,∇v)− VBr(∇v)|2 dx

. −
∫
λΩr

|VBr(∇v)− (VBr(∇v))λΩr |2 dx

+ λ−n−
∫

1
2

Ωr

|V(x,∇v)− VBr(∇v)|2 dx

=: I2,1 + I2,2.

(4.1.124)

With the help of (4.1.105) in Proposition 4.1.22, it follows that

I2,1 . λ2α−
∫

1
4

Ωr

|VBr(∇v)− (VBr(∇v)) 1
4

Ωr
|2 dx

+ ‖∇ψ‖2
∞λ
−n−
∫

1
4

Ωr

|∇v|pωpBr dx.
(4.1.125)
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Triangle inequalities yield

I2,1 . λ2α−
∫

Ωr

|V(x,∇z)− (V(·,∇z))Br |2 dx

+ λ2α−
∫

1
2

Ωr

|VBr(∇z)− VBr(∇v)|2 dx

+ λ2α−
∫

1
2

Ωr

|V(x,∇z)− VBr(∇z)|2 dx

+ λ2α−
∫

1
2

Ωr

|V(x,∇v)− VBr(∇v)|2 dx

+ ‖∇ψ‖2
∞λ
−n−
∫

1
4

Ωr

|∇v|pωpBr dx

=: I2,1,0 + I2,1,1 + I2,1,2 + I2,1,3 + I2,1,4.

(4.1.126)

To estimate I2,1,0, by z = |∇z| = 0 in Br \Ω and |Ωr| h |Br| due to (4.1.15),
we have

I2,1,0 . λ2α−
∫
Br

|V(x,∇z)− (V(x,∇z))Br |2 dx. (4.1.127)

Besides, using the similar argument for I3,1, I3,2 and I3,3, we estimate
I2,1,1, I2,1,2 and I2,1,3, respectively, with replacing the factor λ−n with λ2α. For
I2,1,4, by the same argument as in (4.1.118)–(4.1.120), we have

I2,1,4 . ‖∇ψ‖2
∞λ
−n
(
−
∫
Br

|V(x,∇z)|2s dx
) 1

s

. (4.1.128)

On the other hand, for I2,2 we apply the same estimate for I3,3. Finally, we
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have

I1 ≤ I2 + I3

≤ cλ2α−
∫
Br

|V(x,∇z)− (V(·,∇z))Br |2 dx

+ cλ−n
(
|logM|2BMO(4Br) + ‖∇ψ‖2

∞ + ε
)

×
(
−
∫
Br

|V(x,∇z)|2s dx
) 1

s

+ cλ−nC∗(ε)

(
−
∫

2Br

(
χ2B0∩Ω|u|p

Rp
ωp
)s

dx

) 1
s

+ cλ−nC∗(ε)

(
−
∫

2Br

|χ2B0∩ΩV(x, F )|2s dx
) 1

s

(4.1.129)

for some c = c(n, p,Λ). We select a small λ = λ(n, p,Λ) ∈ (0, 1
80

) such that
cλ2α ≤ 1

4
holds, so that we get (4.1.112).

We define the Hardy-Littlewood maximal function and the sharp maximal
function for f ∈ L1

loc and ρ ∈ [1,∞) by

Mρf(x) := sup
r>0

(
−
∫
Br(x)

|f |ρ dy
) 1

ρ

,

M]
ρf(x) := sup

r>0

(
−
∫
Br(x)

|f − (f)Br(x)|ρ dy
) 1

ρ

.

(4.1.130)

Now, we employ Proposition 4.1.23 to show the pointwise sharp maximal
function estimate, which is more adaptable form to our gradient estimates.
Recall that for B0 = BR(x0) with x0 ∈ ∂Ω.

Proposition 4.1.24. Let z, u and F be as in (4.1.38) and (4.1.42). There
exists s = s(n, p,Λ) > 1 and κ5 = κ5(n, p,Λ) such that the following holds:
If |logM|BMO(4B0) ≤ κ5 and (4.1.15) hold, then for a.e. x ∈ Rn and any
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ε ∈ (0, 1], there holds

M]
2 (V(·,∇z)) (x)

≤ c
(
|logM|BMO(4B0) + ‖∇ψ‖∞ + ε

)
M2s (V(·,∇z)) (x)

+ cC∗(ε2)R−
p
2 (Ms (χ4B0∩Ω|u|pωp) (x))

1
2

+ cC∗(ε2)M2s (χ4B0∩ΩV(·, F )) (x)

+ c
Rn

(R + |x− x0|)n

(
−
∫
B0

|V(y,∇z)− (V(·,∇z))B0|2 dy
) 1

2

(4.1.131)

for c = c(n, p,Λ) > 0.

Proof. Let κ5 and s be as in Proposition 4.1.23. Since V(·,∇z) ∈ L2(Rn),
V(·, F ) ∈ L2(4B0 ∩ Ω) and |u|pωp ∈ Ls(4B0 ∩ Ω) by Proposition 4.1.6, all
terms in (4.1.131) are finite for a.e. x. Choose x ∈ Rn and denote

I :=M]
2(V(·,∇z))(x)

= sup
r>0

(
−
∫
Br(x)

|V(y,∇z)− (V(·,∇z))Br(x)|2 dy
) 1

2

.
(4.1.132)

We divide the case for r ∈ (0,∞) as follows:

(1) J1 := {r > 0 : Br(x) ∩B0 ∩ Ω = ∅}

(2) J2 := {r > 0 : 4
λ
Br(x) ⊂ 4B0 and x ∈ Ω}

(3) J3 := {r > 0 : 4
λ
Br(x) ⊂ 4B0 and x 6∈ Ω}

(4) J4 := {r > 0 : Br(x) ∩B0 ∩ Ω 6= ∅ and 4
λ
Br(x) 6⊂ 4B0}.

For k = 1, 2, 3, 4 let us denote

Ik := sup
r∈Jk
−
∫
Br(x)

|V(y,∇z)− (V(·,∇z))Br(x)| dy. (4.1.133)

We immediately find I1 = 0 since z = 0 in Rn \ (B0∩Ω). For I2, we apply
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Proposition 4.1.23 with Br = λ−1Br(x) and ε2 instead of ε to have

I2 ≤
1

4
I + c

(
|logM|BMO(4B0) + ‖∇ψ‖∞ + ε

)
M2s(V(·,∇z))(x)

+ cC∗(ε2)R−
p
2 (Ms (χ4B0|u|pωp) (x))

1
2

+ cC∗(ε2)M2s(χ4B0V(·, F ))(x).

(4.1.134)

For I3, when r ∈ J1, then I3 ≡ 0. If r ∈ J3 \ J1, then for x = (x1, . . . , xn),
denote x̃ = (x1, . . . , xn + r) and consider 2Br(x̃)(⊃ Br(x)). Then since x̃ ∈ Ω
and 2

λ
Br(x̃) ⊂ 4B0, we can apply Proposition 4.1.23 similarly as above with

B = λ−1Br(x̃) and ε2 instead of ε and obtain

I3 ≤
1

4
I + c

(
|logM|BMO(4B0) + ‖∇ψ‖∞ + ε

)
M2s(V(·,∇z))(x)

+ cC∗(ε2)R−
p
2 (Ms (χ4B0|u|pωp) (x))

1
2

+ cC∗(ε2)M2s(χ4B0V(·, F ))(x).

(4.1.135)

For I4, since r ∈ J4 implies r ≥ cR, and so together with suppz ⊂ B0, we
have

I4 ≤ c
Rn

(R + |x− x0|)n

(
−
∫
B0

|V(y,∇z)− (V(·,∇z))B0|2 dy
) 1

2

. (4.1.136)

Merging the above estimates, taking the supremum for all r > 0, and ab-
sorbing 1

4
I in the estimates of I2 and I3 to the left-hand side, the conclusion

holds.

Now, we prove Theorem 4.1.4, the non-linear case. To extract the sharp
dependency of q, we apply the following global Fefferman-Stein inequality.

Lemma 4.1.25. [16, Theorem 20] Let q > 1. Then for all f ∈ Lq(Rn) and
g ∈ Lq′(Rn), we have

‖f‖Lq(Rn) ≤ cq‖M]
1f‖Lq(Rn) (4.1.137)

and

‖M1g‖Lq′ (Rn) ≤ cq‖g‖Lq′ (Rn) (4.1.138)

for some c = c(n).
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We also need the following lemma, which is from [95].

Lemma 4.1.26. Let B ⊂ Rn be a ball and g, h : B → R be such that
g, h ∈ L1(B). Suppose that for some θ ∈ (0, 1), we have

−
∫
B̃

|g| dx ≤ c0

(
−
∫

2B̃

|g|θ dx
) 1

θ

+−
∫

2B̃

|h| dx (4.1.139)

for any 2B̃ ⊂ B. Then for any γ ∈ (0, 1), there holds

−
∫
B

|g| dx ≤ c1

(
−
∫

2B

|g|γ dx
) 1

γ

+ c1−
∫

2B

|h| dx (4.1.140)

for some constant c1 = c1(c0, γ, θ). Here, c1 is an increasing function on c0.

Now, we prove gradient estimate results for the local boundary case, when
there is a priori assumption u ∈ W 1,q

ω (4B0 ∩ Ω).

Proposition 4.1.27 (Local boundary estimate). Assume (4.1.15) and let
u ∈ W 1,q

ω (Ω) be a weak solution of (4.1.38) with F ∈ Lqω(Ω) for q ∈ (p,∞).
Then there exists δ = δ(n, p,Λ) such that for any balls B with xB ∈ ∂Ω,
rB ≤ 4R and all q ∈ [p,∞) with

|logM|BMO(8B) + ‖∇ψ‖∞ ≤
δ

q
, (4.1.141)

there holds(
−
∫

1
2
B∩Ω

(|∇u|pωp)ρ dx

) 1
ρ

≤ c̄−
∫

4B∩Ω

(|∇u|ω)p dx+ c̄

(
−
∫

4B∩Ω

(|F |pωp)ρ dx
) 1

ρ

(4.1.142)

for some c̄ = c̄(n,Λ, q) which is continuous on q.

Proof. Define z = uηp
′

as in the previous subsection with |∇u|ω ∈ Lq(Ω).
Let B0 = BR(x0) with x0 ∈ ∂Ω and

ρ :=
q

p
≥ 1.
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We first claim the following type of reverse Hölder’s inequality:(
−
∫

1
2
B0∩Ω

(|∇u|pωp)ρ dx

) 1
ρ

≤ c(q)

(
−
∫

4B0∩Ω

(|∇u|pωp)θρ dx
) 1

θρ

+ c(q)

(
−
∫

4B0∩Ω

(|F |pωp)ρ dx
) 1

ρ

(4.1.143)

for some θ ∈ (0, 1). If 1 ≤ ρ ≤ s where s is defined in Corollary 4.1.16, then
the conclusion directly follows from Corollary 4.1.16. Hence we only consider
the case ρ > s. To prevent constants blowing up as ρ close to 1, we change s
to s2 so that 1 < s < s2 < ρ holds.

Let ε ≤ min{κ5

p
, 1
n
}, where κ5 is as in Proposition 4.1.24. Under the

assumptions |logM|BMO(4B0) ≤ ε and ‖∇ψ‖∞ ≤ ε, taking L2ρ(B0 ∩ Ω) norm
‖ · ‖2ρ to Proposition 4.1.24, we have

I := ‖M]
2(V(·,∇z))‖2ρ

≤ c
(
|logM|BMO(4B0) + ‖∇ψ‖∞ + ε

)
‖M2s(V(·,∇z))‖2ρ

+ cC∗(ε2)R−
p
2‖Ms(χ4B0∩Ω|u|pωp)

1
2‖2ρ

+ cC∗(ε2)‖M2s(χ4B0∩ΩV(·, F ))‖2ρ

+ c

∥∥∥∥ Rn

(R + | · −x0|)n

∥∥∥∥
2ρ

(
−
∫
B0

|V(x,∇z)− (V(·,∇z))B0|2 dx
) 1

2

=: I1 + I2 + I3 + I4.

(4.1.144)

Since |∇u|pωp ∈ Lρ(B0), it follows that V(·,∇z) ∈ L2q(Rn) and so I < ∞.

First, using Lemma 4.1.25 together with M2s(g) = (M(|g|2s))
1
2s and 2ρ

2s
≥

s ≥ 1, we obtain

‖M2s(V(·,∇z))‖2ρ ≤ cs
2ρ

2ρ− 1
‖V(·,∇z)‖2ρ

≤ cs
(2ρ)2

2ρ− 1
‖M]

1(V(·,∇z))‖2ρ

≤ cs
(2ρ)2

2ρ− 1
‖M]

2(V(·,∇z))‖2ρ.

(4.1.145)
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Thus for I1, one can see that

I1 ≤ c3q
(
|logM|BMO(4B0) + ‖∇ψ‖∞ + ε

)
I (4.1.146)

for some c3 = c3(n, p,Λ). Here, we choose

δ = min

{
1

6c3

,
κ5

p
,

1

n

}
and ε =

δ

q

so that

I1 ≤
1

2
I (4.1.147)

holds. Then we are able to absorb I1 to I. For the remaining term I2, I3 and
I4, by (4.1.138) one can see that

I2 ≤ cC∗( 1
q2 )R−

p
2

∥∥∥Ms[(χ4B0∩Ω|u|pωp)
1
2 ]
∥∥∥

2ρ

≤ cC∗( 1
q2 )R−

p
2

ρ
ρ−s ‖M1[(χ4B0∩Ω|u|pωp)s]‖

1
2s
ρ
s

≤ cC∗( 1
q2 )R−

p
2 ‖(χ4B0∩Ω|u|pωp)s‖

1
2s
ρ
s

≤ cC∗( 1
q2 )

(∫
4B0∩Ω

(
|u|p

Rp
ωp
)ρ

dx

) 1
2ρ

(4.1.148)

with c = c(n, p,Λ), and similarly,

I3 ≤ cC∗( 1
q2 )

(∫
4B0∩Ω

|V(x, F )|2ρ dx
) 1

2ρ

. (4.1.149)

For I4, if we assume (4.1.15), then |B0∩Ω| h |B0| holds. Then together with
the fact that z = |∇z| = 0 in B0 \ Ω, we have

I4 ≤ c|B0|
1
2ρ

(
−
∫
B0∩Ω

|V(x,∇z)|2 dx
) 1

2

. (4.1.150)
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On the other hand, by Lemma 4.1.25 there holds

I = ‖M]
2V(·,∇z)‖2ρ ≥ c‖M]

1V(·,∇z)‖2ρ ≥
c

q
‖V(·,∇z)‖2ρ. (4.1.151)

Summing up, we have

‖V(·,∇z)‖2ρ ≤ cqC∗( 1
q2 )

(∫
4B0∩Ω

(
|u|p

Rp
ωp
)ρ

dx

) 1
2ρ

+ cqC∗( 1
q2 )

(∫
4B0∩Ω

|V(x, F )|2ρ dx
) 1

2ρ

+ cq|B0|
1
2ρ

(
−
∫
B0∩Ω

|V(x,∇z)|2 dx
) 1

2

.

(4.1.152)

If we assume (4.1.15), then |B0 ∩ Ω| h |B0| and the above estimate implies(
−
∫
B0∩Ω

(|∇z|pωp)ρ dx
) 1

ρ

≤ c(qC∗( 1
q2 ))2

(
−
∫

4B0∩Ω

(
|u|p

Rp
ωp
)ρ

dx

) 1
ρ

+ c(qC∗( 1
q2 ))2

(
−
∫

4B0∩Ω

(|F |pωp)ρ dx
) 1

ρ

+ cq−
∫
B0∩Ω

|V(x,∇z)|2 dx.

(4.1.153)

Since z = uηp
′

as in (4.1.42), it follows that(
−
∫

1
2
B0∩Ω

(|∇u|pωp)ρ dx

) 1
ρ

≤ c(q)

(
−
∫

4B0∩Ω

(
|u|p

Rp
ωp
)ρ

dx

) 1
ρ

+ c(q)

(
−
∫

4B0∩Ω

(|F |pωp)ρ dx
) 1

ρ

+ c(q)−
∫
B0∩Ω

|∇u|pωp dx,

(4.1.154)

where c(q) h (qC∗( 1
q2 ))2 which is a continuous and increasing function on q.

Then since |logM|BMO(4B0) ≤ κ5 and (4.1.15) holds, together with Lemma
4.1.9, we can apply Proposition 4.1.6. Consequently, we have (4.1.143).
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Now, using (4.1.143), we next claim that(
−
∫

1
2
B

(χΩ|∇u|pωp)ρ dx

) 1
ρ

≤ c(q)

(
−
∫

4B

(χΩ|∇u|pωp)θρ dx
) 1

θρ

+ c(q)

(
−
∫

4B

(χΩ|F |pωp)ρ dx
) 1

ρ

(4.1.155)

for all B ⊂ Rn. Indeed, if 4B ⊂ Ω, then we employ [16, Proposition 22] to
obtain (4.1.155). If 4B ⊂ (Rn\Ω), then (4.1.155) becomes trivial since χΩ = 0
on Rn\Ω. Finally, if 4B 6⊂ Ω and 4B 6⊂ (Rn\Ω), we use the similar argument
of Step 3 in the proof of Proposition 4.1.21 and so we have (4.1.155).

Now, Lemma 4.1.26 gives us that(
−
∫

1
2
B0∩Ω

(|∇u|pωp)ρ dx

) 1
ρ

≤ c̄(q)

(
−
∫

4B0∩Ω

|∇u|ω dx
)p

+ c̄(q)

(
−
∫

4B0∩Ω

(|F |pωp)ρ dx
) 1

ρ

,

(4.1.156)

where c̄(q) is still a continuous and increasing function on q. This proves
(4.1.142).

Proof of Theorem 4.1.4. Applying the argument of the proof of [16, Theorem
2], we can eliminate the assumption u ∈ W 1,q

ω (4B0 ∩ Ω) in the statement of
Proposition 4.1.27. Note that here we used the fact that c̄(q) is continuous
and increasing function on q. Now, by considering Proposition 4.1.27 for the
boundary case and [16, Theorem 2] for the interior case, using the covering
argument, together with the assumption

logM is

(
δ

q
, R

)
–vanishing and Ω is

(
δ

q
, R

)
–Lipschitz, (4.1.157)

we get∫
Ω

(|∇u|pωp)ρ dx ≤ c∗
(∫

Ω

|∇u|pωp dx
) ρ

p

+ c∗
∫

Ω

(|F |pωp)ρ dx, (4.1.158)

where c∗ = c∗(n, p,Λ,Ω, R, q). Then the standard energy estimate as in
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(1.3.11) and Hölder’s inequality imply (4.1.12).

Here we prove Theorem 4.1.3 using the duality argument.

Proof of Theorem 4.1.3. We only show in the case 1 < q < 2, since the case
q ≥ 2 follows from Theorem 4.1.4 with p = 2. As the previous argument,
we first prove the local boundary case, and then employ the result of [16,
Theorem 1] as the interior case to use the standard covering argument. Recall
that

−div(A(x)∇u) = −div(A(x)F ) (4.1.159)

and that B0 = BR(x0) with x0 ∈ ∂Ω. Define H ∈ Lq′ω (B0) with the following
property: (

−
∫

2B0

(|H|ω)q
′
dx

) 1
q′

≤ 1. (4.1.160)

Let aB0 ∩ Ω := BaR(x0) ∩ Ω for a > 0 and w ∈ W 1,2
0,ω(2B0 ∩ Ω) be the weak

solution of

−div(A(x)∇w) = −div(A(x)χ2B0H) in 4B0 ∩ Ω,

w = 0 on ∂(4B0 ∩ Ω).
(4.1.161)

Under the assumption that

|logM|BMO(4B0) ≤ δ

(
1− 1

q

)
and ‖∇ψ‖∞ ≤ δ

(
1− 1

q

)
, (4.1.162)

by (4.1.156) with the exponent q′ ≥ 2 and Hölder’s inequality, it follows that(
−
∫

2B0∩Ω

(|∇w|ω)q
′
dx

) 1
q′

≤ c

(
−
∫

4B0∩Ω

(|∇w|ω)2 dx

) 1
2

+ c

(
−
∫

2B0∩Ω

(|H|ω)q
′
dx

) 1
q′

.

(4.1.163)
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Here, testing w itself in (4.1.161), we have

−
∫

4B0∩Ω

(|∇w|ω)2 dx ≤ c−
∫

2B0∩Ω

(|H|ω)2 dx ≤ c

(
−
∫

2B0∩Ω

(|H|ω)q
′
dx

) 2
q′

(4.1.164)

and so there holds(
−
∫

2B0∩Ω

(|∇w|ω)q
′
dx

) 1
q′

≤ c

(
−
∫

2B0∩Ω

(|H|ω)q
′
dx

) 1
q′

≤ c. (4.1.165)

Let η ∈ C∞0 (2B0) be a smooth cut-off function with χB0 ≤ η ≤ χ2B0 and
‖∇η‖∞ ≤ c/R. From (4.1.161), we have

I := −
∫

2B0∩Ω

A(x)∇(η2u) ·H dx

= −
∫

2B0∩Ω

A(x)∇(η2u) · ∇w dx

= −
∫

2B0∩Ω

A(x)∇u · ∇(η2w) dx

+−
∫

2B0∩Ω

A(x)u∇(η2) · ∇w dx−−
∫

2B0∩Ω

A(x)w∇u · ∇(η2) dx

=: I1 + I2 + I3.

(4.1.166)

To estimate I1, using the equation for u in (4.1.38), there holds

I1 = −
∫

2B0∩Ω

A(x)F · ∇(η2w) dx

≤ c−
∫

2B0∩Ω

ω2|F ||∇(η2w)| dx

≤ c

(
−
∫

2B0∩Ω

(ω|F |)q dx
) 1

q
(
−
∫

2B0∩Ω

(ω|∇(η2w)|)q′ dx
) 1

q′

.

(4.1.167)

With the help of triangle inequality and Proposition 4.1.6, we have

|I1| ≤
(
−
∫

2B0∩Ω

(ω|F |)q dx
) 1

q
(
−
∫

2B0∩Ω

(ω|∇w|)q′ dx
) 1

q′

. (4.1.168)
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For I2, by Hölder’s inequality and Proposition 4.1.6, we have

|I2| ≤ c

(
−
∫

2B0∩Ω

(
ω
|u|
R

)q
dx

) 1
q
(
−
∫

2B0∩Ω

(ω|∇w|)q′ dx
) 1

q′

≤ c

(
−
∫

2B0∩Ω

(ω|∇u|)θp dx
) 1

θp
(
−
∫

2B0∩Ω

(ω|∇w|)q′ dx
) 1

q′
(4.1.169)

for some θ ∈ (1
q
, 1). Similarly, for I3, there holds

|I3| ≤ c

(
−
∫

2B0∩Ω

(ω|∇u|)θ2p dx
) 1

θ2p

(
−
∫

2B0∩Ω

(
ω
|w|
R

)(θ2q)′

dx

) 1
(θ2q)

′

≤ c

(
−
∫

2B0∩Ω

(ω|∇u|)θ2q dx
) 1

θ2q
(
−
∫

2B0∩Ω

(ω|∇w|)q′ dx
) 1

q′

.

(4.1.170)

Now, without loss of generality we assume θ = θ2. Consequently, with (4.1.165)
we have

|I| ≤ c

[(
−
∫

2B0∩Ω

(ω|∇u|)θq dx
) 1

θq

+

(
−
∫

2B0∩Ω

(ω|F |)q dx
) 1

q

]

×
(
−
∫

2B0∩Ω

(ω|∇w|)q′ dx
) 1

q′

≤ c

(
−
∫

2B0∩Ω

(ω|∇u|)θq dx
) 1

θq

+ c

(
−
∫

2B0∩Ω

(ω|F |)q dx
) 1

q

.

(4.1.171)

Since H was an arbitrary function with (4.1.160) and (Lq
′

ω )∗ = Lqω−1 holds,
we obtain(

−
∫

2B0∩Ω

(
|A∇(η2u)|ω−1

)q
dx

) 1
q

≤ c

(
−
∫

2B0∩Ω

(ω|∇u|)θq dx
) 1

θq

+ c

(
−
∫

2B0∩Ω

(ω|F |)q dx
) 1

q

.

(4.1.172)
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Since A∇(η2u) = A∇u on 2B0 ∩ Ω and |A∇u| h ω2|∇u| hold, we conclude(
−
∫
B0∩Ω

(ω|∇u|)q dx
) 1

q

≤ c

(
−
∫

2B0∩Ω

(ω|∇u|)θq dx
) 1

θq

+ c

(
−
∫

2B0∩Ω

(ω|F |)q dx
) 1

q

,

(4.1.173)

which is analogous to (4.1.143). Now, by applying the argument of the proof
of Proposition 4.1.27, we can change the exponent θq to 1. Then similar to
the proof of Theorem 4.1.4, using the covering argument, together with the
assumptions

logA is

(
δmin

{
1

q
, 1− 1

q

}
, R

)
–vanishing and (4.1.174)

Ω is

(
δmin

{
1

q
, 1− 1

q

}
, R

)
–Lipschitz, (4.1.175)

we get (4.1.10). This proves Theorem 4.1.3.

4.1.4 Sharpness and smallness conditions

In this section we discuss the sharpness of our smallness condition. We have
shown in Theorem 4.1.3 and Theorem 4.1.4 that reciprocal of the expo-
nent q of higher integrability is linearly connected to the smallness condition
on logA and ∂Ω. In this section we show that this linear dependence is the
best possible. It has been shown already in [16, Section 4] that the smallness
on logA is necessary by means of analyzing the counterexample introduced
by Meyers [177]. Therefore, we concentrate in this article on the sharpness of
the condition on Ω. Since the effect already occurs in the unweighted case,
we assume that M = id. We provide a two dimensional example, but the
principle generalizes to higher dimensions as well.

Example 4.1.28. For n = 2 and ε ∈ (0, 1), we consider the following type
of the domain:

Ω = {x = (x1, x2) ∈ B1(0) : x2 > −ε|x1|}.
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Then Ω is (ε, 1)-Lipschitz. Moreover, the assigned Lipschitz map for the origin
is ψ : R→ R such that ψ(x1) = −ε|x1| and so ‖∇ψ‖∞ ≤ ε.

Now, for α := π/2
π/2+tan−1 ε

we define in polar coordinates x = r(cosφ, sinφ)

u(x) = u(r, φ) = cos
(
α(φ− π

2
)
)
rα.

Then u is a solution of the equation

∆u = 0 in Ω,

u = 0 on {(x1, x2) ∈ R2 : x2 = −ε|x1|} ∩B1(0).

Indeed, we have

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂φ2

=
(
α(α− 1)rα−2 +

α

r
rα−1 − α2

r2

)
cos
(
α(φ− π

2
)
)
rα = 0.

Moreover, with er := (cosφ, sinφ) and eφ := (− sinφ, cosφ) that

|∇u| =
∣∣∣∣∂u∂r er +

∂u

r∂φ
eφ

∣∣∣∣
=
∣∣α cos

(
α(φ− π

2
)
)
rα−1er − α sin

(
α(φ− π

2
)
)
rα−1eφ

∣∣ = αrα−1.

Assume that q > 2. Then ∇u ∈ Lq,∞(B1(0)) (Lorentz space or weak Lebesgue
space) is equivalent to (α− 1)q ≥ −2. This simplifies to

∇u ∈ Lq,∞(B1(0)) ⇔ tan−1 ε ≤ π

q − 2
.

Thus,

∇u ∈ Lq(B1(0)) ⇔ tan−1 ε <
π

q − 2
.

Note that for small ε, we have tan−1 ε ≈ ε. This implies that the smallness
assumptions (4.1.9b) and (4.1.11) are optimal.

From now on we compare our smallness condition to other type of condi-
tions as found in [61, 62]. Let us assume that A : Rn → Rn×n

>0 with bounded
condition number with |A||A−1| ≤ Λ2. In this section we compare our small-
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ness condition on the weight in terms of logM with the smallness condition
on M from Cao, Mengesha and Phan in [61, 62]. In [61], they introduced the
quantity1

|A|BMO2
µ

:= sup
B

(
1

µ(B)

∫
B

|A(x)− 〈A〉B |
2µ−1(x) dx

) 1
2

(4.1.176)

in order to measure the oscillations of A, where µ(x) := |A(x)| and the
supremum is taken over all balls. In addition to the smallness conditions
Cao, Mengesha and Phan assume that µ := |A| ∈ A2.

In [62] they use the simpler quantity

|A|BMOµ
:= sup

B

1

µ(B)

∫
B

|A(x)− 〈A〉B | dx. (4.1.177)

Note that by Hölder’s inequality

|A|BMOµ
≤ |A|BMO2

µ
.

In contrast our measure of oscillations is

|logA|BMO = sup
B
−
∫
B

|logA− 〈logA〉B| dx. (4.1.178)

Due to 1 ≤ |A||A−1| ≤ Λ2 we have

〈µ〉B
〈
µ−1
〉
B
≤ 〈|A|〉B

〈
|A−1|

〉
B
≤ Λ2 〈µ〉B

〈
µ−1
〉
B
. (4.1.179)

The following lemma shows that our smallness condition on |logA|BMO

is weaker than the smallness condition on |A|BMO2
µ

combined with the A2-

condition.

Lemma 4.1.29. Let A : Rn → Rn×n
>0 be a weight with |A||A−1| ≤ Λ2 and

1Cao, Mengesha and Phan do not use µ(x) := |A(x)|, but treat µ as an independent
function that satisfies the equivalence µ(x) h |A(x)|. However, choosing µ(x) := |A(x)| is
always an equivalent valid choice.
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µ := |A| ∈ A2. Then for all balls B ⊂ Rn there holds

−
∫
B

|logA− 〈logA〉B| dx

≤ 4 〈|A|〉B
〈
|A−1|

〉
B

(
1

µ(B)

∫
B

|A(x)− 〈A〉B |
2µ−1(x) dx

) 1
2

.

Moreover, |logA|BMO ≤ 4 Λ2[µ]2|A|BMO2
µ
.

Proof. We begin with

−
∫
B

|logA− 〈logA〉B| dx ≤ 2 inf
A0∈Rn×n>0

−
∫
B

|logA− logA0| dx

≤ 2−
∫
B

|logA− log(〈A〉B)| dx.

It has been shown e.g. in [123, Example 1] that for all G,H ∈ Rn×n
>0 there

holds

|logG− logH| ≤ max{|G−1|, |H−1|}|G−H|.

This implies

−
∫
B

|logA− 〈logA〉B| dx ≤ 2−
∫
B

max{|A−1|, |〈A〉−1
B |}|A− 〈A〉B| dx

≤ 2−
∫
B

|A−1||A− 〈A〉B| dx+ 2|〈A〉−1
B |−
∫
B

|A− 〈A〉B| dx

=: I + II.

By Hölder’s inequality we obtain

I = −
∫
B

|A−1||A− 〈A〉B| dx

≤
(
−
∫
B

|A−1| dx
) 1

2
(
−
∫
B

|A− 〈A〉B|
2|A|−1 dx

) 1
2

≤ 〈|A|〉B
〈
|A−1|

〉
B

(
1

〈|A|〉B

∫
B

|A− 〈A〉B|
2|A|−1 dx

) 1
2

.
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On the other hand by Hölder’s inequality

I ≤ |〈A〉−1
B |−
∫
B

|A− 〈A〉B| dx ≤ |〈A〉
−1
B ||〈A〉B|

(
−
∫
B

|A− 〈A〉B|
2|A|−1 dx

) 1
2

.

Due to [25, Exercise 1.5.10] the mapping A 7→ A−1 is convex on Rn×n
>0 . Thus,

by Jensen’s inequality 0 < 〈A〉−1
B ≤

〈
A−1

〉
B

and as a consequence
∣∣〈A〉−1

B

∣∣ ≤∣∣〈A−1
〉
B

∣∣ ≤ 〈|A−1|
〉
B

. Using this fact, we obtain for II the same estimate as
for I. Combining all estimates proves the first claim. Taking the supremum
over all balls B and using (4.1.179) proves the second claim.

On the other hand we will show now that if |logA|BMO is small enough,
then it controls |A|BMO2

µ
in a linear way.

Lemma 4.1.30. Let A : Rn → Rn×n
>0 be a weight such |A||A−1| ≤ Λ2. Then

there exists δ = δ(n,Λ) > 0 such that the following holds: If |logA|BMO ≤ δ,
then for all balls B ⊂ Rn

(
|B|
µ(B)

−
∫
B

|A(x)− 〈A〉B |
2µ−1(x) dx

) 1
2

≤ c(n,Λ)|logA|BMO(B).

In particular, |A|BMO2
µ(B) ≤ c(n,Λ)|logA|BMO(B).

Proof. Let |logA|BMO(B) ≤ δ. We choose δ > 0 so small such that we can ap-
ply Lemma 4.1.8 (for t = 4) and Lemma 4.1.9 (for γ = 2). By Lemma 4.1.9 2
we obtain µ = |A| ∈ A2 with [µ]A2 = [|A|]A2 ≤ 16. Thus, with (4.1.179) we
have 〈|A|〉B

〈
|A−1|

〉
B
≤ 16 Λ2. Recall that

µ(B) =

∫
B

µ dx =

∫
B

|A| dx = |B| 〈|A|〉B .
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For all A0 ∈ Rn×n
>0 we estimate with Jensen’s inequality in the third step(
1

µ(B)

∫
B

|A(x)−
∫
A
B|2µ−1(x) dx

) 1
2

=

(
1

〈|A|〉B
−
∫
B

|A(x)− 〈A〉B |
2|A(x)|−1 dx

) 1
2

≤
(

1

〈|A|〉B
−
∫
B

|A(x)− A0|2|A(x)|−1 dx

) 1
2

+

(
1

〈|A|〉B
−
∫
B

| 〈A− A0〉B |
2|A(x)|−1 dx

) 1
2

=: I + II.

With Jensen’s inequality, Hölder’s inequality and µ−1 = |A|−1 ≤ |A−1| we
obtain

II ≤ −
∫
B

|A(x)− A0| dx
(〈|A|−1〉

B

〈|A|〉B

) 1
2

≤
(
−
∫
B

|A(x)− A0|2|A(x)|−1 dx

) 1
2

〈|A|〉
1
2
B

(〈|A|−1〉
B

〈|A|〉B

) 1
2

=
(
〈|A|〉B

〈
|A−1|

〉
B

) 1
2

(
1

〈|A|〉B
−
∫
B

|A(x)− A0|2|A(x)|−1 dx

) 1
2

=
(
〈|A|〉B

〈
|A−1|

〉
B

) 1
2 I ≤ 4 Λ I.

Overall, we obtain(
1

µ(B)

∫
B

|A(x)− 〈A〉B |
2µ−1(x) dx

) 1
2

≤ (1 + 4 Λ) inf
A0∈Rn×n>0

(
1

〈|A|〉B
−
∫
B

|A(x)− A0|2|A(x)|−1 dx

) 1
2

︸ ︷︷ ︸
=:III

.
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Now, choosing A0 = 〈A〉log
B and using Hölder’s inequality we obtain

III ≤
(

1

〈|A|〉B
−
∫
B

A(x)− 〈A〉log
B |

2|A(x)|−1 dx

) 1
2

≤
|〈A〉log

B |
〈
|A|−2〉 1

4

B

〈|A|〉
1
2
B

(
−
∫
B

|A(x)− 〈A〉log
B |4

|〈A〉log
B |

4 dx

) 1
4

.

With Lemma 4.1.9 1 (with −γ = −2), (4.1.21) and (4.1.22) we obtain

|〈A〉log
B |
〈
|A|−2〉 1

4

B

〈|A|〉
1
2
B

≤ 2 |〈A〉log
B |

〈|A|〉
1
2
B (〈|A|〉log

B )
1
2

≤ 2.

This and Lemma 4.1.8 (with t = 2) gives

III ≤ 2 c(n,Λ) |logA|BMO(B).

Collecting the estimates proves the claim.

Remark 4.1.31. We shown that if |logA|BMO(B) is small enough, then it con-
trols |A|BMO2

µ(B) and therefore also |A|BMOµ(B). On the other hand we know

from Lemma 4.1.29 that |logA|BMO(B) is directly controlled by |A|BMO2
µ(B).

Based on standard John-Nirenberg estimates, it is possible to show that suf-
ficient smallness of |A|BMOµ(B) implies that |logA|BMO2

µ(B) can be linearly

controlled by |A|BMOµ(B).

So overall, once one of the three quantities |logA|BMO(B), |A|BMOµ(B) and

|A|BMO2
µ(B) is small, then they are all comparable. This allows to transfer re-

sults state in one language to the others. For example, smallness of
|logA|BMO(B) implies the validity of the estimates in [61] and we obtain
‖∇u‖Lq(µdx) . ‖F‖Lq(µdx) for q > p = 2. However, the smallness of
|logA|BMO(B) depends (negative) exponentially on q, see the discussion in [16,
Remark 23].
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4.2 Global estimates for equations with ma-

trix weights and measurable nonlineari-

ties

We study general elliptic equations with singular/degenerate matrix weights
and measurable nonlinearities on nonsmooth bounded domains to obtain a
global Calderón-Zygmund type estimate under possibly minimal assumptions
that the logarithm of the matrix weight has a small BMO norm, the non-
linearity is allowed to be merely measurable in one variable but has a small
BMO norm in the other variables and that the boundary of the domain is
sufficiently flat in Reifenberg sense.

4.2.1 Hypothesis and main results

We consider a general elliptic equation with singular/degenerate nonlinearity
in divergence form{

div(M(x)A(x,M(x)Du)) = div(M2(x)F ) in Ω,
u = 0 on ∂Ω,

(4.2.1)

where Ω ⊂ Rn, n ≥ 2, is a bounded domain with nonsmooth boundary ∂Ω.
The Carathéodory vector field A(x, ξ) : Rn×Rn → Rn is C1(Rn)-regular for
ξ-variable and satisfies{

|A(x, ξ)|+ |∂ξA(x, ξ)||ξ| ≤ L|ξ|
ν|ζ|2 ≤ 〈∂ξA(x, ξ)ζ, ζ〉

(4.2.2)

for any ζ ∈ Rn, a.e. x ∈ Rn and some constants 0 < ν ≤ L < ∞. A main
point in this section is that we are treating with a symmetric and positive
definite matrix-valued weight M(x) : Rn → Rn×n satisfying

|M(x)||M−1(x)| ≤ Λ (4.2.3)

for some constant Λ > 0. With this basic structure on Ω, A and M, through-
out this section we write

ω(x) = |M(x)| and data = {n,Λ, ν, L, |Ω|}. (4.2.4)

259



CHAPTER 4. GLOBAL GRADIENT ESTIMATES FOR ELLIPTIC
EQUATIONS WITH DEGENERATE MATRIX WEIGHTS

The nonhomogeneous term F = (f1, . . . , fn) : Ω → Rn is a given vector-
valued function with |MF | ∈ Lγ(Ω) for some γ ∈ [2,∞). Then with (4.2.2)
and (4.2.3), we will see later in Section 4.2.2 that there is a unique weak so-
lution u of (4.2.1) in W 1,2

0 (Ω, dω2) and we have the standard energy estimate∫
Ω

|M(x)Du|2 dx ≤ c

∫
Ω

|M(x)F |2 dx (4.2.5)

with c = c(n,Λ, ν, L) > 0, provided ω(x)2 belongs to A2-Muckenhoupt class.
We will return to some issues including preliminaries of Muckenhoupt class
and weighted Sobolev spaces, and the existence and uniqueness of the prob-
lem (4.2.1) with the estimate (4.2.5). Assuming (1.3.2) and ω2 being A2-
Muckenhoupt weight, the purpose is to prove that the implication

|M(x)F | ∈ Lγ(Ω) =⇒ |M(x)Du| ∈ Lγ(Ω) (4.2.6)

is valid for every γ > 2 with the global Calderón-Zygmund type estimate∫
Ω

|MDu|γ dx ≤ c

∫
Ω

|MF |γ dx (4.2.7)

for some constant c = c(data, γ) > 0.
With the precise notation and assumptions to be presented in detail in

the next section, we now state our main theorem.

Theorem 4.2.1. Assume (4.2.2), (4.2.3), M2 ∈ A2 and let |MF | ∈ Lγ(Ω)
for some γ ≥ 2. Then there exists δ = δ(data, γ) > 0 such that if (Ω,M, A) is
(δ, R)–vanishing of codimension 1, then the weak solution u ∈ W 1,2

0 (Ω, dω2)
of (4.2.1) satisfies |MDu| ∈ Lγ(Ω) with the estimate (4.2.7).

More studies also need to be done to understand the measurability of the
matrix weight M(x) in one of the variables as well as a precise dependence
of the smallness parameter δ, in particular in terms of γ, though it seems
unclear as this smallness assumption in the other variables except one vari-
able is closely associated to both A and M as well as the choice of a point
near the very irregular boundary and a size of the localized domain under
consideration. We leave these issues to be investigated in the future.
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4.2.2 Preliminaries and basic definitions

For x = (x1, x
′) ∈ Rn, y0 = (y0,1, y

′
0) ∈ Rn and ρ ∈ (0, R], we define

θ(M, Qρ(y0))(x) := | logM(x)− (logM)Qρ(y0)|. (4.2.8)

Also, we write

θ(A,Qρ(y0))(x) := sup
ξ∈Rn\{0}

|A(x1, x
′, ξ)− ĀB′ρ(y′0)(x1, ξ)|

|ξ|
≤ 2L, (4.2.9)

where

ĀB′ρ(y′0)(x1, ξ) :=

∫
B′ρ(y′0)

A(x1, x
′, ξ) dx′.

Then we introduce the following condition.

Definition 4.2.2. Let δ ∈ (0, 1
8
) and R ∈ (0, 1) be given. We say that

(Ω,M, A) is (δ, R)-vanishing of codimension 1, if for any y ∈ Ω and every
r ∈ (0, R] together with

dist(y, ∂Ω) = min
z0∈∂Ω

dist(y, z0) >
√

2r,

there is a coordinate system depending on y and r, whose variables are still
denoted by x = (x1, x

′), such that in this coordinate system, y is the origin
and there holds∫

Qρ(x0)

(|θ(A,Qρ(x0))(x)|2 + |θ(M, Qρ(x0))(x)|2) dx ≤ δ2

for every Qρ(x0) ⊂ Qr.

(4.2.10)

Also, for any y ∈ Ω and every r ∈ (0, R] together with

dist(y, ∂Ω) = |y − z0| ≤
√

2r

for some z0 ∈ ∂Ω, there is a new coordinate system depending on y and r,
whose variables are still denoted by x = (x1, x

′), such that in this coordinate
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system, z0 is the origin and there hold

Q3r ∩ {(x1, x
′) : x1 > 3δr} ⊂ Ω3r ⊂ Q3r ∩ {(x1, x

′) : x1 > −3δr} (4.2.11)

and ∫
Qρ(x0)

(|θ(A,Qρ(x0))(x)|2 + |θ(M, Qρ(x0))(x)|2) dx ≤ δ2

for every Qρ(x0) ⊂ Q3r.

(4.2.12)

If Ω satisfies (4.2.11) with δ ≤ 1
8
, then it is well-known that the following

measure density conditions hold:

sup
0<r≤R

sup
y∈Ω

|Qr(y)|
|Ω ∩Qr(y)|

h inf
0<r≤R

inf
y∈∂Ω

|Qr(y) ∩ Ωc|
|Qr(y)|

h 1 (4.2.13)

with the implicit constant c = c(n). For further studies, we refer to [81, 145,
202].

We first introduce the weighted Sobolev-Poincaré inequality as in [16].

Lemma 4.2.3. Let n ≥ 2. For any θ ∈ ( n
n+2

, 1], we have the following
lemmas:

(1) (Interior case) Let Q2r(x0) be a cylinder in Rn. If µ is a scalar weight
with

sup
Qρ(y)⊂Q2r(x0)

(∫
Qρ(y)

µ2 dx

) 1
2
(∫

Qρ(y)

µ−(2θ)′ dx

) 1
(2θ)′

≤ csp (4.2.14)

for some csp > 0, then for every v ∈ W 1,2(Qr(x0), dµ2) we have∫
Qr(x0)

∣∣∣∣v − (v)Qr(x0)

r

∣∣∣∣2 µ2 dx ≤ c

(∫
Qr(x0)

(|Dv|µ)2θ dx

) 1
θ

(4.2.15)

for some c = c(n, csp) > 0.

(2) (Boundary case) Let Ω ⊂ Rn be a domain satisfying

|Q4r(x0) \ Ω| ≥ α|Q4r(x0)| (4.2.16)
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for some α > 0. If µ is a scalar weight with

sup
Qρ(y)⊂Q5r(x0)

(∫
Qρ(y)

µ2 dx

) 1
2
(∫

Qρ(y)

µ−(2θ)′ dx

) 1
(2θ)′

≤ csp (4.2.17)

for some csp > 0, then for every v ∈ W 1,2(Ω4r(x0), dµ2) with v = 0 on
∂Ω ∩Q4r(x0) we have

1

|Q4r|

∫
Ω4r(x0)

∣∣∣v
r

∣∣∣2 µ2 dx ≤ c

(
1

|Q4r|

∫
Ω4r(x0)

(|Dv|µ)2θ dx

) 1
θ

(4.2.18)

for some c = c(n, csp, α) > 0.

Proof. First, (4.2.15) follows from [16, Proposition 3] together with [111].
To show (4.2.18), let us abbreviate Q4r = Q4r(x0) and Ω4r := Ω4r(x0). We
extend v as zero on the set K := Q4r \ Ω. Then we have (v)K = 0, thus
employing (4.2.17) and Proposition 3 of [16], there holds

1

|Q4r|

∫
Ω4r

∣∣∣v
r

∣∣∣2 µ2 dx

≤
∫
Q4r

∣∣∣∣v − (v)Q4r

r

∣∣∣∣2 µ2 dx+

∫
Q4r

∣∣∣∣(v)Q4r − (v)K
r

∣∣∣∣2 µ2 dx

≤ c

[∫
Q4r

(|Dv|µ)2θ dx

] 1
θ

+

∫
Q4r

(∫
K

∣∣∣∣v(y)− (v)Q4r

r

∣∣∣∣ dy)2

µ2 dx

for some c = c(n, csp) > 0. For the last integral on the right-hand side, we
apply (4.2.16). Using Hölder’s inequality, (4.2.17) and Proposition 3 in [16]
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yields that∫
Q4r

(∫
K

∣∣∣∣v(y)− (v)Q4r

r

∣∣∣∣ dy)2

µ2 dx

≤
∫
Q4r


(∫

Q4r

∣∣∣∣v(y)− (v)Q4r

r

∣∣∣∣2 µ2 dy

) 1
2 (∫

Q4r

µ−2 dy

) 1
2


2

µ2 dx

≤ c

(∫
Q4r

∣∣∣∣v − (v)Q4r

r

∣∣∣∣2 µ2 dy

)(∫
Q4r

µ−2 dy

)(∫
Q4r

µ2 dx

)

≤ c

(∫
Q4r

(|Dv|µ)2θ dx

) 1
θ

for some c = c(n, csp, α) > 0. Then (4.2.18) follows, since |Dv| = 0 on
Q4r \ Ω.

Remark 4.2.4. We also deduce the following Poincaré type inequality on a
(δ, R)-Reifenberg flat domain Ω ⊂ Rn for δ ∈ (0, 1

8
) and R ∈ (0, 1). If µ is a

scalar weight with

sup
Qρ(y)⊂Rn

(∫
Qρ(y)

µ2 dx

)(∫
Qρ(y)

µ−2 dx

)
≤ csp2 (4.2.19)

for some csp2 > 0, i.e., µ2 ∈ A2, then for every v ∈ W 1,2
0 (Ω, dµ2) we have∫

Ω

|v|2 µ2 dx ≤ c

∫
Ω

(|Dv|µ)2 dx (4.2.20)

for some c = c(n, csp2, |Ω|) > 0.

We next introduce the following lemmas related to the logarithm of a
matrix-valued weight L.

Lemma 4.2.5. [16, Proposition 5] Let Qr(y0) ⊂ Rn be a cylinder and p ≥ 1
be given. There exists a constant c1 = c1(n) > 0 such that if L is a matrix-
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valued weight with [logL]BMO(Qr(y0)) ≤ c1
p

, then we have

[∫
Qr(y0)

(
|L− LQr(y0)|
|LQr(y0)|

)p

dx

] 1
p

≤ c2p[logL]BMO(Qr(y0))

with some c2 = c2(n) > 0, where LQr(y0) := exp((logL)Qr(y0)).

Lemma 4.2.6. [16, Proposition 6] For any matrix-valued weight L, there
exists a constant c3 = c3(n) > 0 such that the followings hold.

(1) If [logL]BMO(Qr(y0)) ≤ c3
p

with p ≥ 1, then we have

[∫
Qr(y0)

(
|L|

|LQr(y0)|

)p

dx

] 1
p

+

[∫
Qr(y0)

(
|LQr(y0)|
|L|

)p

dx

] 1
p

≤ 4,

where LQr(y0) := exp((logL)Qr(y0)).

(2) If [logL]BMO(Qr(y0)) ≤ c3 min{1
p
, 1
p′
} with 1 < p < ∞, then [|L|p]

1
p

Ap ≤ 4

and so |L|p ∈ Ap.

(3) Let θ ∈ (1
2
, 1) be given. If | logL|BMO(Qr(y0)) ≤ c3(1− 1

2θ
), then we have

sup
Qρ(y)⊂Qr(y0)

(∫
Qρ(y)

|L|2 dx

) 1
2
(∫

Qρ(y)

|L|−(2θ)′ dx

) 1
(2θ)′

≤ 4.

We now provide the existence of a solution to the problem (4.2.1). Before
that, we give useful inequalities. Under the assumptions (4.2.2) and (4.2.3),
we have the following inequalities. For the proof, see [11, 16, 18].

• For each ξ1, ξ2 ∈ Rn,

ν|ξ1 − ξ2|2 ≤ 〈A(x, ξ1)− A(x, ξ2), ξ1 − ξ2〉 . (4.2.21)

• For any ξ ∈ Rn,

Λ−1ω|ξ| ≤ |Mξ| ≤ ω|ξ|, (4.2.22)

where ω = |M|.
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We remark that the inequality (4.2.22) implies that ω|f | ∈ Lp if and only if
|Mf | ∈ Lp for any vector valued function f : Rn → Rn.

Lemma 4.2.7. Let Ω ⊂ Rn be a (δ, R)-Reifenberg flat domain for δ ∈ (0, 1
8
)

and R ∈ (0, 1). Suppose that M is a matrix-valued weight with ω2 = |M|2 ∈
A2 and (4.2.3). Also, assume (4.2.2) and F ∈ L2(Ω, dω2). Then there exists a
unique weak solution u ∈ W 1,2

0 (Ω, dω2) of the problem (4.2.1) with the energy
estimate ∫

Ω

|MDu|2 dx ≤ c̃

∫
Ω

|MF |2 dx (4.2.23)

with some c̃ = c̃(data) > 0.

Proof. Note that div(M2(x)F ) ∈ (W 1,2
0 (Ω, dω2))′, the dual space of

W 1,2
0 (Ω, dω2). Moreover, since ω2 ∈ A2, (4.2.22) and (4.2.2) hold, by the

standard theory of monotone operators (see [200, II.2.]), there exists a unique
solution u ∈ W 1,2

0 (Ω, dω2) satisfying (4.2.1).
We now show (4.2.23). Testing u ∈ W 1,2

0 (Ω, dω2) to (4.2.1), there holds∫
Ω

A(x,MDu) ·MDudx =

∫
Ω

MF ·MDudx.

Then by (4.2.21), and Young’s inequality,∫
Ω

|MDu|2 dx ≤ c

∫
Ω

A(x,MDu) ·MDudx

≤ c

∫
Ω

|MF ||MDu| dx

≤ 1

2

∫
Ω

|MDu|2 dx+ c

∫
Ω

|MF |2 dx.

Then (4.2.23) follows.

4.2.3 Proof of Theorem 4.2.1

In this section we derive comparison estimates with reference problems. Re-
call that M : Rn → Rn×n

≥0 is a matrix-valued weight with the assumption
(4.2.3) and that ω := |M|. Also (4.2.2) is enforced. Here we only compute
the boundary comparison estimates, as we can deduce the interior estimates
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in a similar way. According to our main assumption that (Ω,M, A) is (δ, R)-
vanishing of codimension 1, with the choice of a size 0 < 5r < R and a point
in Ω, we are now under the following setting:

Q+
5r ⊂ Ω5r ⊂ Q5r ∩ {(x1, x

′) : x1 > −10δr}, (4.2.24)

∫
Qρ(x0)

|θ(A,Qρ(x0))(x)|2 dx ≤ δ2

and

∫
Qρ(x0)

|θ(M, Qρ(x0))(x)|2 dx ≤ δ2, ∀Qρ(x0) ⊂ Q5r.

(4.2.25)

Here, δ ∈ (0, 1
8
) will be determined later. We also denote

ĀB′(x1, ξ) :=

∫
B′4r

A(x1, x
′, ξ) dx′,

MQ := exp (logM(·))Q4r
, and ωQ := exp (logω(·))Q4r

.

Then we have the following properties from (4.2.2) and (4.2.3).

• There holds{
|ĀB′(x1, ξ)|+ |∂ξĀB′(x1, ξ)||ξ| ≤ L|ξ|
ν|ζ|2 ≤

〈
∂ξĀB′(x1, ξ)ζ, ζ

〉 (4.2.26)

for a.e. x1 ∈ R and for all ζ ∈ Rn.

• (See [16]) We have

Λ−1ωQ|ξ| ≤ |MQξ| ≤ ωQ|ξ| for all ξ ∈ Rn. (4.2.27)

Let u ∈ W 1,2(Ω4r, dω
2) satisfy the problem{

div(M(x)A(x,M(x)Du)) = div(M2(x)F ) in Ω4r,
u = 0 on ∂wΩ4r.

(4.2.28)

267



CHAPTER 4. GLOBAL GRADIENT ESTIMATES FOR ELLIPTIC
EQUATIONS WITH DEGENERATE MATRIX WEIGHTS

We then suppose that for some λ ≥ 1,∫
Ω4r

|M(x)Du|2 dx ≤ λ and

∫
Ω4r

|M(x)F |2 dx ≤ δλ. (4.2.29)

Next, we sequentially consider the following problems:{
div(M(x)A(x,M(x)Dh)) = 0 in Ω4r,

h = u on ∂Ω4r,
(4.2.30)

and {
div(MQĀB′(x1,MQDw)) = 0 in Ω2r,

w = h on ∂Ω2r.
(4.2.31)

We now show the following higher integrability results of MDh in the
problem (4.2.30).

Lemma 4.2.8. Let h ∈ W 1,2(Ω4r, dω
2) be the weak solution of (4.2.30).

Then there exists δ = δ(n) > 0 such that if (4.2.24) and (4.2.25)2 hold, then
there is a constant σ = σ(n,Λ, ν, L) ∈ (0, 1) such that(∫

Ω2r

|MDh|2(1+σ) dx

) 1
1+σ

≤ c

∫
Ω4r

|MDh|2 dx (4.2.32)

holds with c = c(n,Λ, ν, L) > 0.

Proof. Let η be a smooth cut-off function with 0 ≤ η ≤ 1, η = 1 in Q2r,
η = 0 in Rn \ Q4r, and |Dη| ≤ c

r
. Testing η2h ∈ W 1,2

0 (Ω4r, dω
2) in (4.2.30)

and using (4.2.2) and Young’s inequality, we have∫
Ω4r

η2|MDh|2 dx ≤ c

∫
Ω4r

η2A(x,MDh) ·MDhdx

≤ c

∫
Ω4r

η|h||A(x,MDh)||M||Dη| dx

≤ c

∫
Ω4r

η|MDh|
∣∣∣∣hr
∣∣∣∣ω dx

≤ 1

2

∫
Ω4r

η2|MDh|2 dx+ c

∫
Ω4r

∣∣∣∣hr
∣∣∣∣2 ω2 dx,
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which follows the weighted Caccioppoli estimate

1

|Q2r|

∫
Ω2r

|MDh|2 dx ≤ c

|Q4r|

∫
Ω4r

∣∣∣∣hr
∣∣∣∣2 ω2 dx (4.2.33)

with some constant c = c(n,Λ, ν, L) > 0.
From (4.2.24) and δ < 1

8
, we figure out |Q4r \Ω| ≥ (11

16
)n|Q4r|. In addition,

using Lemma 4.2.6 (3), we choose δ = δ(n) > 0 sufficiently small so that the
condition (4.2.17) holds true with (4.2.25)2. Now, we are under the assump-
tions in Lemma 4.2.3 (2). Then applying Lemma 4.2.3 (2), (4.2.33) deduces
the reverse Hölder’s inequality∫

Ω2r

|MDh|2 dx ≤ c

(∫
Ω4r

|MDh|
2n
n+2 dx

)n+2
n

.

Here, we also used (4.2.22) and (4.2.24). Then Gehring’s lemma, e.g. [126],
yields (4.2.32).

We prove that the weak solution h to (4.2.30) is of W 1,2(Ω2r, dω
2
Q), which

guarantees that the problem (4.2.31) with the boundary value h is well-posed.

Lemma 4.2.9. Let h ∈ W 1,2(Ω4r, dω
2) be the weak solution to (4.2.30). Then

there exists δ = δ(n,Λ, ν, L) > 0 such that if (4.2.24) and (4.2.25)2 hold, then
h belongs to W 1,2(Ω2r, dω

2
Q) together with the estimate∫

Ω2r

|MQDh|2 dx ≤ c

∫
Ω4r

|MDh|2 dx

for some c = c(n, λ, ν, L) > 0.

Proof. We first choose δ > 0 sufficiently small so that conclusions of Lemma
4.2.8 hold. For σ > 0 as in Lemma 4.2.8, Hölder’s inequality implies∫

Ω2r

|MQDh|2 dx

≤
(∫

Ω2r

|MDh|2(1+σ) dx

) 1
(1+σ)

(∫
Ω2r

|MQM−1|2(1+σ)′ dx

) 1
(1+σ)′

.

Meanwhile, using |Ω2r| h |Q2r|, (4.2.3) and selecting δ smaller, Lemma 4.2.6
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(1) implies(∫
Ω2r

|MQM−1|2(1+σ)′ dx

) 1
(1+σ)′

≤ c

(∫
Q2r

|MQM−1|2(1+σ)′ dx

) 1
(1+σ)′

≤ c.

This and (4.2.32) follow that∫
Ω2r

|MQDh|2 dx ≤ c

(∫
Ω2r

|MDh|2(1+σ) dx

) 1
1+σ

≤ c

∫
Ω4r

|MDh|2 dx.

We next consider the problems (4.2.31). Let us define a map a(x1, η) :
R× Rn → Rn such that

a(x1, η) :=
MQAB′(x1,MQη)

|MQ|2
.

We also mention that MQ is a symmetric and positive definite constant ma-
trix. Then we have

∂ηa(x1, η) =
MQ

|MQ|2
· ∂ξAB′(x1,MQη) ·MQ

for a.e. x1 ∈ R and for all η ∈ Rn. By (4.2.26) and (4.2.27), it follows that

〈∂ηa(x1, η)ζ, ζ〉 =
1

|MQ|2
〈
∂ηAB′(x1,MQη)MQζ,MQζ

〉
≥ ν

|MQ|2
|MQζ|2 ≥

ν

Λ2
|ζ|2.

Then together with (4.2.26), one can see that{
|a(x1, η)|+ |∂ηa(x1, η)||η| ≤ L|η|
ν

Λ2
|ζ|2 ≤ 〈∂ηa(x1, η)ζ, ζ〉 .

(4.2.34)

Moreover, W 1,2(Ω2r, dω
2
Q) = W 1,2(Ω2r). Then the problem (4.2.31) is con-
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verted into {
div a(x1, Dw) = 0 in Ω2r,

w = h on ∂Ω2r.
(4.2.35)

Now, investigating properties of the problem (4.2.35) with (4.2.34), we obtain
the following lemma for the weak solution w ∈ W 1,2(Ω2r, dω

2
Q) to (4.2.31).

Lemma 4.2.10. Under the assumptions and conclusion of Lemma 4.2.9,
let w ∈ W 1,2(Ω2r, dω

2
Q) be the weak solution to (4.2.31). Then there exists

δ = δ(n,Λ, ν, L) > 0 such that if (4.2.24) and (4.2.25)2 hold, then w belongs
to W 1,2(Ω2r, dω

2).

Proof. We first recall that |MDh| ∈ L2(1+σ)(Ω2r) for σ ∈ (0, 1) as in
Lemma 4.2.8. By Hölder’s inequality and Lemma 4.2.6 (1) with the selection
of δ > 0 smaller, we obtain that

(∫
Ω2r

|MQDh|2(1+σ1) dx

) 1
1+σ1

≤

∫
Ω2r

(
|MQ|
|M|

) 2(2+σ)(1+σ)
σ

dx

 σ
(1+σ)(2+σ)

×
(∫

Ω2r

|MDh|2(1+σ) dx

) 1
1+σ

≤ c

(∫
Ω2r

|MDh|2(1+σ) dx

) 1
1+σ

, (4.2.36)

where σ1 := σ
2
. Since MQ is a positive definite constant matrix with (4.2.27),

this means that |Dh| ∈ L2(1+σ1)(Ω2r). We now remark that the domain Ω2r

satisfies a uniform measure density condition from (4.2.24), and w is also
the weak solution of (4.2.35) satisfying (4.2.34) with the boundary value h.
Hence, the weak solution w has a global higher integrability for the gradient
such that |Dw| ∈ L2(1+τ)(Ω2r) for some 0 < τ ≤ σ1, see [147, 190] for the
proof. From (4.2.27), we get |MQDw| ∈ L2(1+τ)(Ω2r). Again with Hölder’s
inequality and Lemma 4.2.6 (1), we deduce |MDw| ∈ L2(Ω2r) provided that
δ > 0 is sufficiently small. Therefore, the conclusion holds.

We also provide a useful lemma. Note that θ(A,Q4r) is defined in (4.2.9).
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Lemma 4.2.11. For x ∈ Q4r and ξ ∈ Rn, we have

|MA(x,Mξ)−MQĀB′(x1,MQξ)|
≤ c|M−MQ|(ω + ωQ)|ξ|+ ω2

Qθ(A,Q4r)(x)|ξ|.

Proof. We compute by triangle inequality, (4.2.2), (4.2.9), and (4.2.27),

|MA(x,Mξ)−MQĀB′(x1,MQξ)|
≤ |M−MQ||A(x,Mξ)|

+ ωQ|A(x,Mξ)− A(x,MQξ)|+ ωQ|A(x,MQξ)− ĀB′(x1,MQξ)|
≤ c|M−MQ|ω|ξ|

+ ωQ|A(x,Mξ)− A(x,MQξ)|+ ω2
Qθ(A,Q4r)(x)|ξ|. (4.2.37)

Meanwhile, we have from (4.2.2) that

|A(x,Mξ)− A(x,MQξ)| ≤ L|M−MQ||ξ|.

Inserting this into (4.2.37) we obtain the conclusion.

Now we derive the following comparison estimate.

Lemma 4.2.12. Assume that u ∈ W 1,2(Ω4r, dω
2) satisfies the problem (4.2.28).

Then for any ε ∈ (0, 1) there is a constant δ = δ(n,Λ, ν, L, ε) ∈ (0, 1) such
that if (4.2.29) holds for some λ ≥ 1 under (4.2.24) and (4.2.25), then there
is a function v ∈ W 1,2(Ωr) having∫

Ωr

|MDu−MQDv|2 dx ≤ ελ and
∥∥|MQDv|

∥∥2

L∞(Ωr)
≤ mbλ (4.2.38)

for some mb = mb(n,Λ, ν, L) ≥ 1.

Proof. We first compare u with the weak solution h ∈ W 1,2(Ω4r, dω
2) to the

problem (4.2.30). Testing u−h ∈ W 1,2
0 (Ω4r, dω

2) to (4.2.28) and (4.2.30), we
obtain that∫

Ω4r

〈A(x,MDu),M(Du−Dh)〉 dx =

∫
Ω4r

〈MF,M(Du−Dh)〉 dx

(4.2.39)
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and ∫
Ω4r

〈A(x,MDh),M(Du−Dh)〉 dx = 0, (4.2.40)

since M(x) is symmetric. According to (4.2.2), (4.2.21) and (4.2.29), (4.2.40)
deduces that ∫

Ω4r

|MDh|2 dx ≤ c

∫
Ω4r

|MDu|2 dx ≤ cλ (4.2.41)

for some c = c(n,Λ, ν, L) ≥ 0. Moreover, we subtract (4.2.40) from (4.2.39)
and then we apply (4.2.21), Young’s inequality and (4.2.29), to find∫

Ω4r

|M(Du−Dh)|2 dx ≤ 1

2

∫
Ω4r

|M(Du−Dh)|2 dx+ c

∫
Ω4r

|MF |2 dx

≤ 1

2

∫
Ω4r

|M(Du−Dh)|2 dx+ cδλ

with some c = c(n,Λ, ν, L) > 0. This follows∫
Ω4r

|M(Du−Dh)|2 dx ≤ cδλ. (4.2.42)

We second compare h with the weak solution w ∈ W 1,2(Ω2r, dω
2
Q) to the

problem (4.2.31). We observe φ1 := h−w ∈ W 1,2
0 (Ω2r, dω

2)∩W 1,2
0 (Ω2r, dω

2
Q)

from Lemma 4.2.9 and Lemma 4.2.10. Testing φ1 to (4.2.30) and (4.2.31), we
have ∫

Ω2r

〈A(x,MDh),M(Dh−Dw)〉 dx = 0 (4.2.43)

and ∫
Ω2r

〈
AB′(x,MQDw),MQ(Dh−Dw)

〉
dx = 0, (4.2.44)
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since MQ is also symmetric. Then (4.2.44) and (4.2.26) induce∫
Ω2r

|MQDw|2 dx ≤ c

∫
Ω2r

|MQDh|2 dx,

which implies by Lemma 4.2.9 and (4.2.41) that∫
Ω2r

|MQDw|2 dx ≤ cλ (4.2.45)

for some c = c(n,Λ, ν, L) > 0. Moreover, with (4.2.43) and (4.2.44) we have∫
Ω2r

〈
ĀB′(x1,MQDw)− ĀB′(x1,MQDh),MQ(Dw −Dh)

〉
dx

=

∫
Ω2r

〈
MA(x,MDh)−MQĀB′(x1,MQDh), Dw −Dh

〉
dx.

Since (4.2.21) holds replacing A to ĀB′ , this leads to∫
Ω2r

|MQ(Dw −Dh)|2 dx

≤ c

∫
Ω2r

|MA(x,MDh)−MQĀB′(x1,MQDh)||Dw −Dh| dx

for some c = c(n,Λ, ν, L) > 0. We now apply Lemma 4.2.11, (4.2.27) and
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Young’s inequality, to see that∫
Ω2r

|MQ(Dw −Dh)|2 dx

≤ c

∫
Ω2r

(
|M−MQ|(ω + ωQ) + ω2

Qθ(A,Q4r)(x)
)
|Dh||Dw −Dh| dx

≤ c

∫
Ω2r

(
|M−MQ|
|MQ|

(
1 +

ωQ
ω

)
+
ωQ
ω
θ(A,Q4r)(x)

)
|MDh| (4.2.46)

× |MQ(Dw −Dh)| dx

≤ 1

2

∫
Ω2r

|MQ(Dw −Dh)|2 dx+ c

∫
Ω2r

[
|M−MQ|
|MQ|

(
1 +

ωQ
ω

)]2

|MDh|2 dx

+ c

∫
Ω2r

[
ωQ
ω
θ(A,Q4r)(x)

]2

|MDh|2 dx. (4.2.47)

By the way, using Hölder’s inequality with exponents (t, 2t′, 2t′) with t =
1 + σ, we employ Lemma 4.2.5, Lemma 4.2.6, Lemma 4.2.8 and (4.2.25), to
have ∫

Ω2r

(
|M−MQ|
|MQ|

)2(
1 +

ωQ
ω

)2

|MDh|2 dx

≤ c

[∫
Q2r

(
|M−MQ|
|MQ|

)8t′

dx

] 1
2t′

×

[∫
Ω2r

(
1 +

ωQ
ω

)4t′

dx

] 1
2t′ [∫

Ω2r

|MDh|2t dx
] 1
t

≤ cδ

∫
Ω4r

|MDh|2 dx, (4.2.48)

for some c = c(n,Λ, ν, L) > 0, provided δ = δ(n,Λ, ν, L) > 0 sufficiently
small. Furthermore, again using Hölder’s inequality with exponents (t, 2t′, 2t′),
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we employ Lemma 4.2.6, Lemma 4.2.8, (4.2.9) and (4.2.25), to have∫
Ω2r

(
ωQ
ω

)2

[θ(A,Q4r)(x)]2 |MQDh|2 dx

≤

[∫
Ω2r

(
ωQ
ω

)4t′

dx

] 1
2t′ [∫

Ω2r

[θ(A,Q4r)(x)]4t
′
dx

] 1
2t′
[∫

Ω2r

|MDh|2t dx
] 1
t

≤ cL2− 1
t′

[∫
Ω2r

θ(A,Q4r)(x)2 dx

] 1
2t′
[∫

Ω2r

|MDh|2t dx
] 1
t

≤ cδ
1
t′

∫
Ω4r

|MDh|2 dx (4.2.49)

for some c = c(n,Λ, ν, L) > 0, provided δ = δ(n,Λ, ν, L) > 0 sufficiently
small. Now, combining all estimates (4.2.46)–(4.2.49), we arrive from (4.2.41)∫

Ω2r

|MQ(Dw −Dh)|2 dx ≤ cδ
σ

1+σλ (4.2.50)

for some c = c(n,Λ, ν, L) > 0.

We next consider the problems (4.2.35) as a substitute of the problem
(4.2.31), since w ∈ W 1,2(Ω2r) is the weak solution to (4.2.35). We also observe
from (4.2.45)∫

Ω2r

|Dw|2 dx ≤ |MQ|−2

∫
Ω2r

|MQDw|2 dx ≤ c|MQ|−2λ =: c∗. (4.2.51)

Then employing the results of [36, Section 5], there exists a function v ∈
W 1,2(Ωr) such that∥∥|Dv|∥∥2

L∞(Ωr)
≤ cc∗ and

∫
Ωr

|Dw −Dv|2 dx ≤ ε1c
∗ (4.2.52)

with c = c(n,Λ, ν, L) > 0 for any ε1 > 0, selecting δ = δ(n,Λ, ν, L, ε1) > 0
sufficiently small. Then (4.2.51) and (4.2.52) give us that∥∥|MQDv|

∥∥2

L∞(Ωr)
≤ |MQ|2

∥∥|Dv|∥∥2

L∞(Ωr)
≤ mbλ (4.2.53)
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and ∫
Ωr

|MQ(Dw −Dv)|2 dx ≤ |MQ|2
∫

Ωr

|Dw −Dv|2 dx ≤ cε1λ (4.2.54)

for some constants mb = mb(n,Λ, ν, L) ≥ 1 and c = c(n,Λ, ν, L) > 0.

We finally combine (4.2.42), (4.2.50) and (4.2.54), in order to have∫
Ωr

|MDu−MQDv|2 dx

≤ c

∫
Ωr

|M(Du−Dh)|2 dx+ c

∫
Ωr

∣∣(M−MQ

)
Dh
∣∣2 dx

+ c

∫
Ωr

|MQ(Dh−Dw)|2 dx+ c

∫
Ωr

|MQ(Dw −Dv)|2 dx

≤ c(δ
σ

1+σ + ε1)λ+ c

∫
Ωr

∣∣(M−MQ

)
Dh
∣∣2 dx. (4.2.55)

Meanwhile, we derive by Hölder’s inequality, Lemma 4.2.5, Lemma 4.2.6 (1),
Lemma 4.2.8 and (4.2.41),∫

Ωr

∣∣(M−MQ

)
Dh
∣∣2 dx

≤

∫
Ωr

∣∣∣∣M−MQ

MQ

∣∣∣∣
4(1+σ)
σ

dx

 σ
2(1+σ)

∫
Ωr

(
|MQ|
|M|

) 4(1+σ)
σ

dx

 σ
2(1+σ)

×
(∫

Ωr

|MDh|2(1+σ) dx

) 1
1+σ

≤ cδ2

∫
Ω4r

|MDh|2 dx ≤ cδλ,

provided δ > 0 sufficiently small. With (4.2.55), this yields that∫
Ωr

|MDu−MQDv|2 dx ≤ c(δ
σ

1+σ + ε1)λ (4.2.56)

for some c = c(n,Λ, ν, L) > 0. Choosing δ
σ

1+σ < ε1, we eventually conclude
the result, since ε1 > 0 is an arbitrary number.
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We next provide the interior version of Lemma 4.2.12.

Lemma 4.2.13. Let ρ < R
4

and Q4ρ(x0) ⊂ Ω. Assume that
u ∈ W 1,2(Q4ρ(x0), dω2) satisfies the problem (4.2.28). Then for any ε ∈ (0, 1)
there is a constant δ = δ(n,Λ, ν, L, ε) ∈ (0, 1) such that if (Ω,M, A) is (δ, R)-
vanishing of codimension 1, and it holds∫

Q4ρ(x0)

|M(x)Du|2 dx ≤ λ and

∫
Q4ρ(x0)

|M(x)F |2 dx ≤ δλ (4.2.57)

for some λ ≥ 1, then there is a function v ∈ W 1,2(Qρ(x0)) having∫
Qρ(x0)

|MDu−MQDv|2 dx ≤ ελ

and
∥∥|MQDv|

∥∥2

L∞(Qρ(x0))
≤ maλ

(4.2.58)

for some ma = ma(n,Λ, ν, L) ≥ 1.

In this section, we prove our main theorem. We first construct a suitable
collection of mutually disjoint countable cylinders by Vitali covering lemma,
to cover the upper level set of |MDu| with the enlarged cylinders of the
collection and derive our gradient estimate for the main theorem. With the
comparison estimates obtained previously, we control the measure of the
upper level sets of |MDu| in the cylinders and then finally deduce the gradient
estimate that we want. This technique was introduced in [3].

Proof of Theorem 4.2.1.. Suppose that (Ω,M, A) is (δ, R)–vanishing of codi-
mension 1 for some δ ∈ (0, 1

8
) which is to be determined later depending only

on data and γ. We define

λΩ :=

∫
Ω

(
|MDu|2 +

|MF |2

δ

)
dx, (4.2.59)

Eu(λ) := {x ∈ Ω : |MDu|2 > λ} for λ >

(
12000n

|Ω|
|QR|

+ 1

)
λΩ
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and

Γy(ρ) :=

∫
Ωρ(y)

(
|MDu|2 +

|MF |2

δ

)
dx for y ∈ Ω and ρ > 0.

Then Lebesgue differentiation theorem gives us that

lim
ρ→0

Γy(ρ) = |M(y)Du(y)|2 +
|M(y)F (y)|2

δ
> λ for a.e. y ∈ Eu(λ).

(4.2.60)

Besides, for any ρ ∈
[

R
3000

, R
2

]
, we have from (4.2.11)

Γy(ρ) ≤ |Qρ(y)|
|Ωρ(y)|

|Ω|
|Qρ(y)|

λΩ ≤ 12000n
|Ω|
|QR|

λΩ. (4.2.61)

Then we obtain from (4.2.60) and (4.2.61) that for a.e. y ∈ Eu(λ), there
exists ρy ∈

(
0, R

3000

)
such that

Γy(ρy) = λ and Γy(ρ) < λ for any ρ ∈ (ρy,
R
2

].

By Vitali covering lemma, we know the existence of a collection of mutually
disjoint cylinders {Qρj(yj)}∞j=1 with yj ∈ Eu(λ) and ρj ∈

(
0, R

3000

)
such that

Eu(λ) ⊂
∞⋃
i=1

Ω5ρj(yj) ∪ (negligible set),

Γyj(ρj) =

∫
Ωρj (yj)

(
|MDu|2 +

|MF |2

δ

)
dx = λ (4.2.62)

and

Γyj(ρ) =

∫
Ωρ(yj)

(
|MDu|2 +

|MF |2

δ

)
dx < λ ∀ρ ∈ (ρj,

R
2

]. (4.2.63)
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From the above display, one can see that∫
Ω20ρj

(yj)

|MDu|2 dx < λ and

∫
Ω20ρj

(yj)

|MF |2 dx < δλ. (4.2.64)

Let ε ∈ (0, 1) be given. If Q20ρj(yj) ⊂ Ω, then by (4.2.64) we have∫
Q20ρj

(yj)

|MDu|2 dx < λ and

∫
Q20ρj

(yj)

|MF |2 dx < δλ.

Now we use Lemma 4.2.13 so that there is a constant δ = δ(n,Λ, ν, L, ε) ∈
(0, 1) and a function vaj ∈ W 1,2(Q5ρj(yj)) such that we have∫

Q5ρj
(yj)

|MDu−MQDvaj |2 dx ≤ ελ

and sup
x∈Q5ρj

(yj)

|MQDvaj(x)|2 ≤ maλ
(4.2.65)

with ma = ma(n,Λ, ν, L) ≥ 1. Next, we consider the case of Q20ρj(yj) 6⊂ Ω.
By Definition 4.2.2, there is a coordinate system such that in this coordinate
system

Q+
800ρj

⊂ Ω800ρj ⊂ Q800ρj ∩ {(x1, x
′) : x1 > −1600δρj}, (4.2.66)

∫
Qρ(x0)

|θ(A,Qρ(x0))(x)|2 + |θ(M, Qρ(x0))(x)|2 dx ≤ δ2,

∀Qρ(x0) ⊂ Q800ρj ,

(4.2.67)

Ω5ρj(zj) ⊂ Ω160ρj and Ω640ρj ⊂ Ω1500ρj(zj), (4.2.68)

where we denote yj by zj in the new coordinate system. Here, we remark
that this new coordinate system is obtained by rotation and translation.
In view of (4.2.66)-(4.2.68) and (4.2.63), we are under the assumptions of
Lemma 4.2.12, replacing r by 160ρj. Now, we apply Lemma 4.2.12, to find a
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function vbj such that∫
Ω160ρj

|MDu−MQDvbj |2 dx ≤ ελ

and sup
x∈Ω160ρj

|MQDvbj(x)|2 ≤ mbλ
(4.2.69)

with mb = mb(n,Λ, ν, L) ≥ 1, by selecting δ > 0 smaller. Observing (4.2.68)
and (4.2.69), we recover the original coordinate system, to get∫

Ω5ρj
(yj)

|MDu−MQDvbj |2 dx ≤ ελ

and sup
x∈Ω5ρj

(yj)

|MQDvbj(x)|2 ≤ mbλ.
(4.2.70)

Let vj be either vaj or vbj and let c̄ := max{ma,mb} ≥ 1. We first see
from (4.2.65) and (4.2.70) that for a.e. x ∈ Eu(4c̄λ) ∩ Ω5ρj(yj),

|MDu|2 ≤ 2|MDu−MQDvj|2 + 2|MQDvj|2

≤ 2|MDu−MQDvj|2 +
1

2
|MDu|2,

which implies

|MDu|2 ≤ 4|MDu−MQDvj|2.

Then in light of (4.2.65) and (4.2.70), this follows∫
Eu(4c̄λ)∩Ω5ρj

(yj)

|MDu|2 dx ≤ 4

∫
Ω5ρj

(yj)

|MDu−MQDvj|2 dx

≤ c|Ωρj(yj)|ελ
(4.2.71)

for some c ≥ 0. Using (4.2.62), one can easily see that

|Ωρj(yj)|

≤ 2

λ

(∫
Eu(λ

4
)∩Ωρj (yj)

|MDu|2 dx+

∫
EF ( δλ

4
)∩Ωρj (yj)

|MF |2

δ
dx

)
,

(4.2.72)
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where the following notation is used

EF (λ) := {x ∈ Ω : |MF |2 > λ}.

Plugging (4.2.72) to (4.2.71), since {Bρi(yi)}∞i=1 is mutually disjoint, we find
that ∫

Eu(4c̄λ)

|MDu|2 dx

≤
∞∑
j=1

∫
Eu(4c̄λ)∩Ω5ρj

(yj)

|MDu|2 dx

≤ cε
∞∑
j=1

(∫
Eu(λ

4
)∩Ωρj (yj)

|MDu|2 dx+

∫
EF ( δλ

4
)∩Ωρj (yj)

|MF |2

δ
dx

)

≤ cε

(∫
Eu(λ

4
)

|MDu|2 dx+

∫
EF ( δλ

4
)

|MF |2

δ
dx

)

for some constants c = c(data). Using the similar argument as in [70] and
selecting ε = ε(data, γ) ∈ (0, 1),∫

Ω

|MDu|γ dx ≤ cλ
γ
2
Ω + c

∫
Ω

|MF |γ dx,

where c = c(data) and c(γ) = c(data, γ). Then there exists δ = δ(data, γ) >
0 from Lemma 4.2.12 and Lemma 4.2.13 . Now by Jensen’s inequality and
(4.2.23), we have

λ
γ
2
Ω =

(∫
Ω

(
|MDu|2 + |MF |2

)
dx

) γ
2

≤ c

(∫
Ω

|MF |2 dx
) γ

2

≤ c

∫
Ω

|MF |γ dx.

Then the proof is completed.
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weights, J. Math. Anal. Appl. 347 (2008), no. 1, 286–293.

[112] F. Duzaar and G. Mingione, Gradient estimates via linear and nonlin-
ear potentials, J. Funct. Anal. 259 (2010), no. 11, 2961–2998.

292



BIBLIOGRAPHY

[113] J. Elschner, J. Rehberg, and G. Schmidt, Optimal regularity for elliptic
transmission problems including C1 interfaces, Interfaces Free Bound.
9 (2007), no. 2, 233–252.

[114] L. Escauriaza, E. B. Fabes, and G. Verchota, On a regularity theo-
rem for weak solutions to transmission problems with internal Lipschitz
boundaries, Proc. Amer. Math. Soc. 115 (1992), no. 4, 1069–1076.

[115] L. Esposito, F. Leonetti, and G. Mingione, Regularity for minimizers of
functionals with p-q growth, NoDEA Nonlinear Differential Equations
Appl. 6 (1999), no. 2, 133–148.

[116] , Regularity results for minimizers of irregular integrals with
(p, q) growth, Forum Math. 14 (2002), no. 2, 245–272.

[117] , Sharp regularity for functionals with (p, q) growth, J. Differen-
tial Equations 204 (2004), no. 1, 5–55.

[118] L. Esposito, G. Mingione, and C. Trombetti, On the Lipschitz regularity
for certain elliptic problems, Forum Math. 18 (2006), no. 2, 263–292.

[119] L. C. Evans, Partial differential equations, second ed., Graduate Studies
in Mathematics, vol. 19, American Mathematical Society, Providence,
RI, 2010.

[120] E. B. Fabes, C. E. Kenig, and R. P. Serapioni, The local regularity of
solutions of degenerate elliptic equations, Comm. Partial Differential
Equations 7 (1982), no. 1, 77–116.
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국문초록

이학위논문에서는다양한종류의발산형타원방정식과범함수에대해칼

데론-지그문드추정이라불리는정칙성결과를조사한다. p-라플라스방정식의
여러일반화가고려되는데,우선오리츠증가조건을갖는문제와관련하여좀
더 일반적인 형태의 비선형성을 포함하는 방정식과, 측정 가능한 비선형성이
있는 방정식을 연구한다. 또한 일반적인 이중 위상 문제와 이의 변수지수로의
확장을 고려한다. 구체적으로 BMO 비선형성이 있는 비균일 타원 문제에 대
한 방정식, 변수지수를 갖는 이중 위상 문제에 대한 범함수의 오메가-최소자,
변수 지수가 있는 오리츠 이중 위상 문제에 대한 방정식을 다룬다.
다음으로 축퇴/특이 계수가 있는 타원 방정식에 대한 대역적 칼데론-지그

문드 이론을 수립한다. 여기서 계수는 행렬 가중치로서 그 크기가 무켄호프트
류에 속한다. 우선 립쉬츠 영역에서 축퇴/특이 가중치를 사용하여 라플라스
및 p-라플라스 방정식에 대한 극대 정칙성을 증명한다. 더 높은 적분가능성에
대한 지수와 작은 매개변수 가정 사이의 예리한 관계도 추가적으로 밝혔다.
마지막으로, 라이펜버그 영역에서 행렬 가중치와 측정 가능한 비선형성을 포
함하는 방정식을 고려하고, 대역적 가중 그래디언트 추정치를 증명한다.

주요어휘: 칼데론-지그문드 이론, 오리츠 증가, 변수 지수, 이중 위상 문제, 퇴
화 가중치, 무켄호프트 류
학번: 2016-29232
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