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Abstract

Calderén-Zygmund estimates for elliptic
equations with nonstandard growth

Ho-Sik Lee

Department of Mathematical Sciences
The Graduate School

Seoul National University

We investigate a certain kind of regularity results so-called Calderdn-
Zygmund estimates for the various kind of elliptic equations in divergence
form and functionals. Several generalizations of p-Laplace equation are con-
sidered in this thesis. First, we study the following Orlicz growth problems:
equations involving a more general form of nonlinearity, and equations with
measurable nonlinearities. We also study general double phase problems and
their extensions to p(x)-Laplace: equations for non-uniformly elliptic prob-
lems with BMO nonlinearity, w-minimizers of functionals for double phase
problems with variable powers p(x) and ¢(x), equations for Orlicz double
phase problems with variable exponents.

The next topic under consideration is to establish the global Calderén-
Zygmund theory for the elliptic equations with degenerate/singular coeffi-
cients. The coefficients are matrix weights whose absolute values belong to
Muckenhoupt class. We first prove maximal regularity for Laplace and p-
Laplace equations with degenerate weights, assuming that the boundary of
the domain is Lipschitz. We find the sharp relation between the exponent
of higher integrability and the smallness parameters, which will be shown
by an example in this thesis. Finally, we consider the equations with matrix
weights and measurable nonlinearities under the setting of the Reifenberg
flat domain and prove global weighted gradient estimates.

Key words: Calderéon-Zygmund theory, Orlicz growth, variable exponent,
double phase problems, degenerate weights, Muckenhoupt class
Student Number: 2016-29232
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Chapter 1

Introduction

This thesis concerns Calderén-Zygmund type estimates, which are originated
from the pioneering works of [59, 60], for weak solutions of elliptic equations
of divergence form or minimizers of integral functionals involving elliptic
operators. The Calderon-Zygmund theory deals with the relations between
the integrability of the gradient of solutions or functionals and those of the
associated datum. Since considered in [59] for the linear case and [139] for the
nonlinear case, the theory has been developed and many regularity results
have been provided.
Let us consider the following elliptic equation:

—div(c(x)|DulP~2Du) = —div(|F|P"*F) in Q, (1.0.1)

where p > 1,  C R" is a bounded and open domain with n > 2, F' =
(fi,--s fa) + @ — R™ is a given vector-valued function with |F| € LP(Q),
and the coefficient function c(z) : © — R satisfies the following uniform
ellipticity condition

O<v<ec(lr)<L<o (1.0.2)

for positive constants v and L. For a weak solution u € W'?(Q) of (1.0.1), we
want to obtain that F' € L7 implies Du € L” for all v > p with the standard
form of estimate. However, as in [177], the implication F' € L7 = Du € L”
fails in general, and so the VMO assumption for ¢(x) (see [89, 152]) and the
small BMO assumption for ¢(z) (see [51]) are considered later to prove the
relation. In this thesis, we generalize the nonlinearity | Du[’~?Du in (1.0.1) to
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Orlicz growth and general double phase problem, and also generalize the uni-
form ellipticity (1.0.2) of ¢(x) to degenerate ellipticity to extend the Calderén-
Zygmund theory for a larger class of problems.

1.1 Elliptic equations with Orlicz growth

There has been a historical progress of studying the regularity theory of
nonlinear p-Laplacian type equations of divergence form over last several
decades such that there is almost no possibility to mention all the works that
have been done up to now. We refer some pioneering results in this direction,
see for instance [10, 16, 18, 28, 29, 55, 58, 139, 140, 152, 159, 160, 179, 180,
193, 203] and references therein.

The problems with Orlicz growth and generalized Orlicz growth are cen-
tral topics as natural generalizations of p-Laplacian problems which have
been an object of intensive studies over last decades. Besides the papers
aforementioned, there is a wide literature on regularity properties of ellip-
tic/parabolic equations of p-Laplacian or ¢-Laplacian type, see for instance,
Lipschitz regularity for elliptic/parabolic equations [23, 50, 98, 118], Po-
tential estimates [20, 128], higher integrability [71, 131], Holder continuity
(97, 100, 133, 134, 136], Calderén-Zygmund estimates [40, 70, 135, 205], and
SO on.

Equations with measurable nonlinearities. We first investigate the
validity of Calderén—Zygmund type estimates for solutions of elliptic equa-
tions when the behavior of the assigned nonlinearity is irregular in one of
the variables. Our result is natural continuation of the recent observation
that even the coefficient of the equation is fairly general discontinuous in
one direction so that the coefficient has a jumping from the constant, yet
the solutions can attain a certain degree of uniform regularity estimate. The
problem under consideration has a deep relationship with natural substances
having a big jump property in one direction. In this spirit, we refer to the
problems related to composite materials [110, 142, 162, 163], linear laminates
(67, 102, 109], transmission problems [19, 113, 114] and the references therein.

We consider the following general elliptic equation

div (bl(xl)bQ(x’)%Du) — div (SO/&TDF) in Q, (1.1.1)
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where 2 C R" is a bounded and open domain with n > 2, F = (f1,..., fu) :
Q) — R" is a given vector-valued function with |F| € L'(Q), z = (x1,2') €
R", b, : R = R, by, : R®! — R are measurable functions such that v <
bi(-) < L and v < by(-) < L with constants 0 < v < L < co. Here, we denote
by ¢ : Rsg — Rsg to mean a C'((0,00)) N C([0,00)) function satisfying
¢'(0) =0 and

O<nr —1<

<hKy—1< o0 (1.1.2)

for some constants kq, ko > 1. If p(t) = t* for p > 1, then k1 = Ky = p and so
our problem is a natural generalization of the p—Laplace equation. Typical
examples of the function ¢ include

ot) =t +apt! (1<p<gq, ap>0) and ¢(t)=t'logle+t) (p>1).

The rate of growth and decay of the function ¢ varies but is controllable
in terms of the constant k1 and k9 as in (1.1.2). We refer to the noteworthy
results [32, 68, 74, 82, 97, 98, 100, 135, 136] concerning the nonlinear problem
with Orlicz growth, and [24, 87, 181] regarding the related problems.

With the function space W'¥(Q) to be introduced in Chapter 2, the
purpose of the present section is to prove the following implication

o(|F) € Ly

loc

= o(|Du|) € L}

loc

for each v > 1 (1.1.3)

for a weak solution u € W#(Q) of (1.1.1). In [177], the author shows that if
there is no regularity assumption, (1.1.3) fails in general even when o (t) = 2,
the case of Laplace equation. Indeed, the VMO condition for both b, (z;) and
be(2") are considered in [89], and the small BMO condition for both by (x1)
and by(z') are considered in [51, 58]. Now it is natural to ask that such a
smallness assumption is indeed the minimal one. One may conjecture that

e considering the paper [67], (1.1.3) should hold when there is no regu-
larity assumption in xy +— by(x7).

e On the other hand, according to the paper [177], (1.1.3) fails in general
when there is no regularity assumption in both z; — by(z1) and 2’ —

bQ(LU/).
Following this viewpoint, a possible minimal condition is that it is only mea-
surable in 21 + by (x1) and has a small BMO for 2’ — by(2'). In [54, 103, 148],

3
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the authors are able to show the implication (1.1.3) with such a partial BMO
assumption for the linear problem. Later, the authors of [36] prove (1.1.3) for
the nonlinear problem with linear growth, while the p—Laplace case is studied
in [149]. For a further regularity results under the partial BMO assumption,
we refer to [104, 150] for parabolic problems, [37] for Riesz potential estimates
for parabolic equations, [201] for Morrey regularity for the elliptic equations.

The main difficulty in considering this problem arises from the fact that
the homogeneity does not hold for the function ¢ and that we are only able
to use the property (1.1.2). Moreover, compared to p-Laplacian problem, we
should argue with the unified approach for both the case 1 < p < 2 (sub-
quadratic case) and p > 2 (superquadratic case) in order to carry out the
resulting delicate and complicated computations. We overcome these diffi-
culty by developing some analytic tools in the literature to deal with Orlicz
growth in order to employ the Moser type iteration argument along with the
Caccioppoli type estimate and Sobolev-Poincaré inequality.

Equations with u-dependence. Next, we shall deal with the global
gradient estimates of a weak solution to the following Dirichlet problem:

_div (a(x,u)%[l)frbl)u) — _div (GI&T DF) in O

u=0 on 0f),

(1.1.4)

where 2 C R" (n > 2) is a bounded domain with possibly nonsmooth bound-
ary 0 and G is an N-function in the sense of the definition introduced in
Chapter 2, a : R" xR — R with v < a(-) < L with constants 0 < v < L < oo,
whereas F' : Q — R" is a given vector field such that F € LE(Q;R"). The
main purpose of this section is to prove that any bounded weak solution u
to the equation (1.1.4) satisfies the following implication

G(|F]) € L"(Q) = G(|Du]) € L"(Q2) for any ~>1 (1.1.5)

under the most general structure and minimal regularity assumptions on
a(x,u) and 9. To go further, we briefly overview the previous known results
related to our purpose in the only sense of Calderén-Zygmund theory case
by case:

1. In the case of G(t) = t* for p > 1, our problem is reduced to a nonlinear
elliptic problem with p-growth, which is considered in [47, 184].
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2. If a(z,u) = constant, then the global Calderén-Zygmund estimate over
the whole domain R" have been achieved in [204] and the same result
was proved over bounded non-smooth domains [33].

3. When a(z,u) has no u-dependence, the Lipschitz regularity has been
proved in [72] for equations and [73] for systems, respectively. In this
case, Calderén-Zygmund estimates over non-smooth domain have been
obtained in [70].

In particular, assuming the Lipschitz continuity for z — a(z, z), the au-
thors of [184] proved the local Calderén-Zygmund type estimates, whereas
in [47] only the uniform continuity is assumed in z variable, and the global
Calderén-Zygmund estimates have been obtained based on [51]. We point
out that we provide the results globally in a unified way under the gen-
eral Orlicz setting. The main difficulties for obtaining the desired result are
the lack of homogeneity properties naturally appearing from the presence
of solution-dependence in z-variable in the nonlinearity. To overcome them,
we here interplay the minimal regularity assumptions offered in (3.2.3) and
(3.2.4) with a new parameter K in (3.2.20), a dilated size of the associated
domain under a correct scaling and normalization as in Remark 3.2.5, so that
we are able to adopt the method so-called maximal function free technique
introduced first in [3] in order to derive the desired global estimate.

1.2 General double phase problems
In this section, we investigate elliptic equations which have the prototype of

div(|Du|P~2Du + a(x)|Du|?*%Du)

1.2.1
= div(|F|P"*F + a(z)|F|" *F) in Q, (12.1)

where 2 C R" is a bounded domain (n > 2), F = (f1,...,fa) : @ = R" is
a given vector field such that |F| € L'(Q), the constants p, ¢ and a Holder
continuous function a(-) : Q — [0, 00) satisfy

1<p<q<oo, (1.2.2)
a(-) € C**(Q)  for some a € (0,1] (1.2.3)
5
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and

T4 2 (1.2.4)

p n

Double phase problem is originally connected to the study of homogeniza-
tion theory and the Lavrentiev phenomenon, as in [206, 208, 209]. Since
then, there have been a lot of progress and regularity results in the realm of
double phase problem. In [17, 117] it is ascertained that (1.2.2)—(1.2.4) are
unavoidable conditions not only for the absence of Lavrentiev phenomenon
but also for the higher integrability of the gradient of the weak solution.
In recent years several notable results are known, see [22, 77, 78] for the
C*regularity of minimizers for the double phase functionals, and [79, 84]
for the gradient estimates of solutions to the equations related to (1.2.1).
Now we see many research activities for this type of the problem (1.2.1),
see [41, 69, 76, 85, 130, 165, 188, 189, 199], and several types of general-
izations, including [88, 83] for multi-phase problem, [38, 65, 182, 194, 198|
for double phase problem with variable exponents, and [13, 43] for Orlicz
double/multi-phase problem. We also refer [21, 24, 87, 86, 133, 136, 181] for
further generalization and studies.

The equation (1.2.1) is regarded to involving a non-uniformly elliptic
operator since the ratio between the highest and the lowest eigenvalue of the
matrix 9, [|z[P 7?2z + a(z)|2|? ?z] with € Q and z € R" could be comparable
to

2P+ supg, al@)|2]72
|2[P=% + inf g, a(x)]2]172

1+ R*|z|97P

if a ball Br(xg) intersects the zero set {a(z) = 0} and a(z) =~ |z — xo|”.
The above ratio is not bounded with respect to z-variable so that the related
operator is non-uniformly elliptic.

Double phase problems with BMO nonlinearity. With the assump-
tions (1.2.2)—(1.2.4) and the notation

H(z,t) =t +a(x)t?! (xe€Q, t>0), (1.2.5)
we deal with the following equation of the form:

div(A(x, Du)) = div(|F|P2F + a(z)|F|9%F) in Q. (1.2.6)
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Here, F = (f1,..., fn) : & = R" is a given vector field such that H(x, |F|) €
L'(Q), and the given nonlinearity A(x,z) : Q x R" — R" is a Carathéodory
vector field which is specified later in 3.3.1. A weak solution u of (1.2.6)
belongs to the Musielak-Orlicz space W' (Q) which is specifically defined
in Chapter 2. Under a certain smallness assumption on x +— A(z, z), we want
to find the validity of the following implication for u € W#(Q):
H(z,|F|)e L'(Q) = H(z,|Du|) € L () (Vy>1). (1.2.7)

Following the spirit of the paper [58, 51] together with [89, 177], it is
known that imposing the small BMO condition to the nonlinearity A is one
of the natural smallness conditions for obtaining the relation (1.2.7). There
are many relevant results for the p-Laplacian case, see [6, 56, 103, 175, 176].
Also, the small BMO condition is considered for the weighted Laplacian and
p-Laplacian problem, see [16, 61, 191]. Furthermore, this condition is properly
extended and imposed for several kinds of nonstandard growth problems such
as p(z)-Laplace [45, 151], generalized p-Laplace [70] and the borderline case
of double phase problem [42] for proving Calderén-Zygmund type estimate
like (1.2.7). The purpose of this section is to establish an optimal Calderén-
Zygmund theory for the double phase problem under this kind of small BMO
assumption for the nonlinearity A as in Definition 3.3.1.

Compared to the another nonstandard growth problems, double phase
problem exhibits the drastic phase transition as the value of the function
a(x) changes. Thus a known technique, now being considered to be classi-
cal, for obtaining the gradient estimates is the difference quotient technique,
developed in [79] and used later in [13, 41, 83]. This technique enables us
to achieve much higher integrability estimates for the gradient of solutions
of a suitable reference problem to provide the desired comparison estimates.
On the other hand, in order to apply this approach, we need to assume C°-
continuity of the nonlinearity A for the x-variable. Here we consider a new
approach which needs only from the small higher integrability result, together
with the extrapolation results based on [129, 136], and so thereby we only
impose the small BMO assumption to our problem. Meanwhile, along with
this small BMO assumption, we assume an extra structure condition as

v
¢—P<7- (1.2.8)

This assumption is necessary when we consider the uniform ellipticity con-
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dition for a typical p-Laplacian problem on the nonlinearity A. We discuss
the legitimacy of the assumption (1.2.8) in Remark 3.3.3 below.

w-minimizers of functionals to p(z), ¢(z) double phase. We con-
cerns the integral functionals involving non-uniformly elliptic operators. The
functional under consideration is

P(w, Q) = /Q (fi(x, Dw) + a(x) fo(z, Dw)) dx (1.2.9)

whose model case is when fi(z,2) = |2|P® and fo(x,2) = |2|9®). Here Q
is a bounded open domain in R" for n > 2 and the continuous functions
p(x),q(x),a(z) : 2 — R are assumed to satisfy

0<a(z) € C™(Q), 1<y <plx)<qgr) <y < oo,

M<1+g

p(x) n

(1.2.10)

for some constants a € (0,1],71,72 and for every x € Q. Additionally, we
assume that p(x) and ¢(x) are log-Holder continuous in €2, i.e., there exists
a constant ¢, ) > 0 such that

B . Cp().a() o
Ip(z) —p(y)| + la(z) —a(y)| < v p— (1.2.11)

for every x,y € Q with |z — y| < %
For a given nonhomogeneous term F = (f*,--- , f"): Q = R", H(x, F) €
L'(Q) where

H(z,2) = |2]P® +a(z)|2]"®  (z€Q,2z€RY), (1.2.12)

the main goal of this section is to establish an optimal Calderéon-Zygmund
theory for w-minimizers of the functional

F(w, Q) :==P(w,Q) — / <|F|p(x)_2F+ a(z)|F|"@=2F, Dw) dz (1.2.13)
Q

among w € W(Q) with H(z, Dw) € L*(R), in the sense of variable expo-
nent Lebesgue spaces. More precisely, we suppose that for a non-decreasing
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function fi(-) : R* — R and a continuous function y(-) : Q — R,

L<y <q(@) <pn<oo, |y(z)—=y) < iz —yl),
1 (1.2.14)
f(r)log — < ¢,
T

and we want to identify minimal regularity assumptions on the associated en-
ergy densities fi(z,2) and fy(x, z) under which an w-minimizer u € W(Q)
to F(w, §2) satisfies the desired implication

H(z,F)e L'O(Q) = H(z,Du) € LIV(Q). (1.2.15)
We will describe a detailed and precise notion of w-minimizer later in Def-
inition 3.4.1. For the case that u is a minimizer to F(w, Q) and v(-) = 7,
it is proved in a recent paper [38] that the relation (1.2.15) holds true. The
aim of the present section is to show that it still holds even to a generalized
minimizer such as w-minimizer.

The study on generalized minimizers in the literature has been made
in many research areas such as geometric measure theory [7], C%regularity
(101, 133, 144, 188], higher integrability [131], singular sets [154, 155], and
Calderén-Zygmund estimates [46, 49, 187]. A main difficulty in establishing
the desired regularity estimates is that an w-minimizer does not necessarily
satisfy the Euler-Lagrange equation of the assigned functional (1.2.13) and
so the regularity results obtained from the equations can not be directly ap-
plied to our variational problem. In this section we are using Taylor’s formula
and considering minimizers or solutions of appropriate reference problems in
order to prove the implication (1.2.15) with the desired Calderén-Zygmund
type estimate. To this end, we first show that (1.2.10) and (1.2.11) are un-
avoidable for the absence of Lavrentiev phenomenon regarding (1.2.9), and
then prove a higher integrability for the gradient to the energy functional.
Our result contributes to the theory of Calderén-Zygmund estimates to be
more applicable in other areas such as the various concept of generalized
minimizers. In particular, we clarify the dependence of the constants in the
main result and we give a comprehensive investigation of the comparison
estimates which makes the proof of [38] in a rigorous and clear way.

Orlicz double phase problems with variable exponents. This sec-
tion aims to investigate the gradient estimates for weak solutions of elliptic
equations of the divergence form with general non-standard growth condi-
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tions. The initial model equation under consideration is of the form

GP@) (| Dul) H@) (| Dul)
—div ( — 7Y = 7D
( [Duf? [Duf? “)

. (GPI(F)) HY)(|F)) ,
= —le (W—PF + CL(I)WF) 111 Q,

Du + a(x)
(1.2.16)

which is primarily defined for u € W (Q), here Q C R"™ (n > 2) is a bounded
open domain and F' : 0 — R" is a given vector field. The functions G, H
appearing in the equation (1.2.16) belong to N in the sense of Definition
2.1.1, and the functions in the exponents p(-), q(-) : @ — [1, 00) are bounded
and log-Holder continuous functions in the following way that

1 <p(x),q(x) <m,, forevery z €, (1.2.17)

and

Ip(x) — p(y)] + lg(z) — q(y)| < My (1.2.18)

~ —log|z —y|

for some non-negative constants my, and M,,, whenever x,y € Q with |z —
y| < 1/2, whereas the coefficient function a : 2 — [0, co) satisfies

0<a()eC”™(Q), ac/(0,1]. (1.2.19)

We shall assume that the functions presented above satisfy the central as-
sumption in this section:

Ha(=) (t) _ L2.20)
K := sup su _ 0. 9
xeg t>(P)) Gp(x)(t) 4+ GU+T)p(@) (t)

Denoting
U(x,z):= Gp(x)(]z\) + a(a:)Hq(z)(‘ZD for every z € Q and z € R" or 2 € R,

our interest lies in finding the optimal condition under which the following
local Calderén-Zygmund type relation

U(z, F) € L(Q) = U(z, Du) € L], (Q) (1.2.21)

10
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holds for every ~v > 1.
The problem extensively covers the following ones:

1. p(x)-Laplacian: ¥(z, 2) = |[2[P®) e.g., [1, 2, 35, 44, 94, 99].

2. Double phase: ¥(z, z) = |2|P +a(x)|2|?, e.g., [34, 41, 77, 78, 79, 84, 188,
199].

3. Orlicz growth: ¥(z, z) = G(|z]), e.g., [11, 40, 70, 97, 100, 129].

4. Double phase with variable exponents: W(z,z) = |2|P® + a(z)|z|!®,
c.g., 38, 39, 65, 194, 198).

5. Orlicz double phase: ¥(z, z) = G(|z]) + a(x)H(|z]), e.g., [43, 12, 13].

6. Orlicz growth with variable exponents: ¥(z, z) = GP9(|z|), e.g., [124,
186].

The all significant examples aforementioned fall in a realm of the function-
als with nonstandard growth treated first in a series of papers [171, 172, 173].
Over the decades the problems with nonstandard growth have been the ob-
ject of intensive studies, see for instance [115, 116, 117, 121] reference therein.
There are two keywords in this section: first one is p(x)-Laplacian and the
other one is double phase or Orlicz double phase.

Zhikov was the first who introduced p(z)-growth functionals in [143]
which go beyond the p-Laplace problem by investigating that the integrand
in the energy functional can be varied depending on each point of the do-
main to deal with the generalizations of the p-Laplace problems. For exam-
ple, p(x)-Laplacian problems are considered in many models coming from
non-Newtonian fluids [4], homogenization theory [207] and electrorheological
fluids [196]. The functions p(-) and ¢(-) are assumed to be continuous and to
enjoy the assumption (1.2.18) below, which is not avoidable even when we
consider p(x)-Laplacian problems. In the case of G(t) = t’™ and H(t) = t™
for some constants 1 < p,,, ¢,n, our problem can be reduced to double phase
with variable exponents type problem examined in [38], where in order to
obtain the Calderén-Zygmund type estimates it has been shown that the
minimal required condition on the variable exponents is

<1+2 for every x € (L (1.2.22)
n

11



CHAPTER 1. INTRODUCTION

On the other hand, in the case of the functions p(-) = ¢(-) = 1, then our
problem (1.2.16) can be curtailed to Orlicz double phase problem which was
investigated in [12, 43]. In particular, in such a case it can become double
phase problem when G(t) = tP™ and H(t) = t™ for some constants 1 < p,, <
¢m- The double phase problem was also introduced first by Zhikov [206, 207]
in order to provide models of strongly anisotropic materials in the framework
of homogenization and nonlinear elasticity and later applied in the image
restoration [130]. Recently, in [12] it has been proved that necessary and
sufficient condition to have Calderén-Zygmund type implication like (1.2.21)
is

sup H{t)

= < 4-00. 1.2.23
b G LG (12.23)

In the view of the conditions (1.2.22) and (1.2.23) our central assumption
(1.2.20) is needed and not avoidable. Under this assumption we are able
to obtain the desired Calderén-Zygmund estimates (1.2.21) and to have the
absence of Lavrentiev phenomenon [208], see Theorem 3.5.5. Besides the pa-
pers mentioned above, there is a richness of literature concerning general
Musielak-Orlicz growth problems, see for instance [132, 133, 136] and refer-
ences therein.

We remark that one of the most difficult parts for proving the relation
(1.2.21) under the assumption (1.2.20) is to obtain the higher integrability
estimates and freeze the exponent functions of the nonlinearity in a proper
way during the comparison process. We also point out that the methods, that
have been used in earlier papers, cannot be directly employed in our case.
Moreover, because of the lack of homogeneity properties for the equations
of the Orlicz double phase with variable exponents type, we adopt the so-
called maximal function-free technique initially introduced in the work [3],
alongside a method of approximation developed and employed in [58, 51]
and the references therein for each variant, in order to obtain the interior
Calder6n-Zygmund estimates (3.5.14).

12



CHAPTER 1. INTRODUCTION

1.3 Elliptic equations with degenerate weights

We consider the weighted elliptic equations which have the prototype of the
form

—div(M?(z)Du) = —div(M?*(z)F)  in ,

1.3.1
u =0 on 0. (1.3.1)

Here, 2 C R" is a bounded domain with n > 2,1 <p < oo, F: Q — R"
is a given vector-valued function, M : R™ — R™ " is a given symmetric and
positive definite matrix-valued weight satisfying

IM(z)| M (z)| <A (z €R") (1.3.2)

for some constant A > 1, where || is the spectral norm.
Let us define the scalar weight

w(z) = [M(2)]. (1.3.3)

Supposing that w? is an Aj-Muckenhoupt weight (see Chapter 2) and F €
L2(Q) := L*(Q,w? dz), we prove the following global estimate

|Flwe L) = |Dulwe L1(Q) (VYq>2) (1.3.4)

under the suitable assumption of 92. When M is the identity matrix, our
result is related to [59, 60], from which the linear Calderén-Zygmund theory
originates. If M(z) is assumed to be only measurable, but uniformly elliptic
in the sense that

)\min|£|2 S <M2($)£,€> S )\maxyﬂz (135>

for any z € Q and £ € R", a local version of the result (1.3.4) is proved
in [177] for ¢ € [2,2 4 €) for some small ¢ > 0. To obtain the estimate for
all ¢ € (1,00), one needs additional regularity assumption on M. In [89] the
assumption M € VMO is made to prove (1.3.4) for ¢ € (1, 00) for 92 € C*
and in [9] for 92 € C*. A global result on R" is obtained in [141] and a
local result for the case of systems is proved in [90] for M € VMO. The
condition M € VMO is relaxed to a small BMO condition. The global results
for bounded domains are obtained in a series of papers [27, 31, 51].

13
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Muckenhoupt weights have extensive applications in the field of analy-
sis including partial differential equations and harmonic analysis, see [94,
120, 122, 127, 129, 137, 138] and references therein. In particular, the reg-
ularity of elliptic and parabolic equations with degenerate/singular coeffi-
cients has been exhaustively investigated along with the research of estab-
lishing uniform weighted norm inequalities for the purpose of identifying
minimal requirements on the matrix weight and the nonlinearity for the
optimal regularity theory to be valid in the literature as in, for instance,
[16, 61, 106, 107, 108, 191] and references therein. This allows us to analyze
the behaviors and properties of solutions of such wide ranging problems even
when the coefficient has singularity or degeneracy in some region of the do-
main. Those problems are usually considered as a generalization of elliptic
equations with a uniform ellipticity and the theory developed in this direction
is a natural outgrowth of another thing under a certain regularity condition
of singular or degenerate coefficients connecting to the associated uniformly
elliptic operator.

Sharp global gradient estimates. We study the following degenerate
elliptic equation of the form

—div(A(z)Vu) = —div(A(z) F) in

1.3.6
u=0 on 02, ( )

in the linear case, and of the form
—div(|M(2)Vu[P?M?(2)Vu) = —div(|M(z)F|P~*M?*(2)F) in Q, (13.7)

u=20 on 0f),

in the non-linear case. We often write M(x) to emphasize the dependence
of the weight on x. Here, 2 C R" is a bounded domain with n > 2, 1 <
p < oo, F': Q0 — R" is a given vector-valued function, M : R” — R™"*" is a
given symmetric and positive definite matrix-valued weight satisfying (1.3.2),
and A(z) := M?(z). This condition says that M has a uniformly bounded
condition number. Note that a right-hand side of the form —divG with G :
) — R" can be immediately rewritten in the above form in terms of F'. Note
that (1.3.6) is a special case of (1.3.7) for p = 2. The condition (1.3.2) in this
case reads as

|A(z)]|A ™ (z)] < A* (x € RM). (1.3.8)

14
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Let us define the scalar weight
w(z) = |M(z)| = V|A(x)]. (1.3.9)

If w? is an A,-Muckenhoupt weight (see Chapter 2) and F' € LF(Q) :=
LP(Q, wP dx), then there exists a unique weak solution u € Wo, () of (1.3.7),
which means

/ IM(2)VulP*M?(z)Vu - Vo do = / |M(2)F|P~*M?(2)F - V¢ dx
Q Q
(1.3.10)

for all ¢ € Wolfj(Q) Moreover, we have the following standard energy esti-
mate

/|Vu|pwpd:v < c/ | F|PwP dx (1.3.11)
Q Q

with ¢ = ¢(n,p, A), see [16, 61].
We investigate the validity of the following global maximal regularity
estimates

/\Vu|qwq dr < c/ |F|w? dx (1.3.12)
0 0

for every ¢ € (1,00) in the linear case (1.3.6), and for every ¢ € [p, 00) in the
non-linear case (1.3.7). The positive constant ¢ is independent of " and u, un-
der minimal extra assumptions on both the boundary of 2 and the weight M
in addition to (1.3.2). We pay special attention to the optimal dependence of
the parameters of the boundary and of the coefficients on ¢. Estimates of this
type are also known under the name of global non-linear Calderon-Zygmund
estimates. Our main results are presented in Theorem 4.1.3 and 4.1.4.

In this section we are also interested in the degenerate case, where (1.3.5)
fails. The most simple example of which is A(z) = |z|*“id with € > 0 small.
Instead of (1.3.5), we assume

@€l < (A)g,€) < ()¢l (1.3.13)

where p(z) = |A(x)] = |M(z)]* = w?(z). In [120], it is proved that if p
belongs to the Muckenhoupt class Aj, then the solution u of (1.3.6) is Holder
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continuous. Gradient estimates are obtained in [61] under (1.3.13), u € A,
and a smallness assumption in terms of a weighted BMO norm of A. They
yield |F|% € Ly, = |Vul?u € L. for all ¢ € (1,00), including the case
p(z) = |z[¢id for small € > 0. The global result is obtained in [191] and the
local result for the case of systems is proved in [62]. In the recent paper [16],
the authors prove a new type of gradient estimates with the implication that
(|F|w)? € L, = (|[Vulw)? € L, for all ¢ € (1,00), assuming (1.3.13) and
the smallness condition for the BMO norm of log A as follows:

Sup][ llog A(z) — (logA) gz | dx < 0 (1.3.14)
BeQJB q

for some § = d(n,p, A), where

(s = fdo

for an integrable function f : R™ — R*". Here, we can define log A : R" —

sym °

RS> the logarithm of the matrix—value};l weight A, since A is positive definite
almost everywhere. This novel log-BMO condition of [16] not only includes
the degenerate weights of the form A(x) = |z|*id for small € > 0, but also
has the optimality in terms of the obtainable integrability exponent ¢. The
condition of the logarithm of a matrix weight in BMO is natural, since in
the scalar weight case, 1 € A, for some p > 1 implies log(p) € BMO, and
conversely, for any p > 1 there exists 6 = d(p) such that if [u|pmo < 0, then
we have e € A,.

Compared to [61], where pdz is treated as a measure, the degenerate
weight u or better w in [16] plays the role of a multiplier. Also here we treat w
as a multiplier, which seems also important for the optimal dependency of ¢
on the constants.

Now, consider the p-Laplacian case. If we write A(¢) := |¢[P7%¢ and
Az, €) == |M(x)E[P>M?(2)€, then (1.3.7) is equivalent to

—divA(-, Vu) = —divA(-, F). (1.3.15)

Writing M? = A and A(-, F) = G for A : Q@ — R” and G : Q — R" we

sym
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can write (1.3.15) as
div <<AVu, V)T AVu) — —divG. (1.3.16)

Then wu is the minimizer of the following functional:

P(v) ::1/ (AVU,VU>g dm—/G~Vvdx
b Ja Q

1
:—/ vau\Pda:—/ IME[P2MF - (MVv) da.
PJa Q

If p € (1,00) and M = id, then A(Vu) = A(-,Vu). In this case, the
Holder continuity of u and Vu is investigated in [161, 203], and the gradient
regularity estimates were obtained in [91, 140]. In the recent years, there
have been many research activities for the gradient estimates in terms of
A(Vu). The BMO type estimate with the implication that G € BMO =
A(Vu) € BMO is shown in [91] for p > 2 and [95] for 1 < p < co. In [95],
the implication G € C** = A(Vu) € C** for small a > 0 is proved. A local
pointwise estimate is proved in [28] and extended to the global one in [29].
Estimates in Besov space and Triebel-Lizorkin spaces up to differentiability
one for n = 2 and p > 2 are shown in [18]. Besov space regularity for Vu
is also considered in [14, 75]. The result A(Vu) € W? when divG € L? is
obtained in [61] for scalar equations for p > 1 and for vectorial systems in [62]
for p > 3 and for p > 2(2—+/2) ~ 1.1715 in [15]. Gradient potential estimates
are studied for equations in [156, 157] and for systems in [57, 112, 158, 159].

Now, we pay attention to the weighted case. The local version of (1.3.12)
is proved for 1 < p < oo, with a uniformly elliptic weight M as in (1.3.5)
with M € VMO in [152]. Since M is uniformly elliptic, we have w(z) =~ 1,
so the results reduce to the transfer of Li-regularity from F' to Vu. The
global estimate is obtained in [153] with a C** domain Q for o € (0, 1]. The
assumption M € VMO has been weakened to the one that Ml has a small
BMO-norm, as shown in [53, 56, 70, 164]. Under similar assumptions it is
possible to replace the Li-regularity transfer by L?(o dx)-regularity transfer
for suitable Muckenhoupt weights o, see [48, 175, 176, 192]. Note that the
weight o is not related to the weight w of the equation.

Now, we introduce Lipschitz domains along with our optimal regularity
assumption for the boundary of the domain.
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Definition 1.3.1. Let § € [0,5] and R > 0 be given. Then Q is called
(0, R)—Lipschitz if for each xo € OS2, there exists a coordinate system
{x1,...,2,} and Lipschitz map ¢ : R"™" — R such that o = 0 in this

coordinate system, and there holds
QN Bgr(xg) ={z = (21,...,2,) = (2',2,) € Br(xo) : &, > (2"} (1.3.17)
and
IV ]los < 6. (1.3.18)

Imposing a Lipschitz condition for the boundary of the domain appears in
many papers, the regularity and the asymptotic behavior of caloric function
8], homogenization [146], oblique derivative problem [166, 168, 170], Holder
continuity of solutions for Robin boundary condition [185], regularity results
for elliptic Dirichlet problem [197], Calderén-Zygmund estimates [30, 53]. We
would like to point out that in [152] C** regularity with o € (0, 1] is assumed
for 9. It was observed in [9] (in the linear case) that 9Q € C' is enough.
Our Lipschitz assumption for the boundary is weaker than both C** and
C' assumption on 9, so Theorem 4.1.3 and 4.1.4 can be both applied in
particular to C** and C'-domains. Our assumption is indeed an optimal one
to be discussed later. The sharp relation between the smallness parameter of
the boundary and the integrability exponent ¢ is, as far as we know, new in
the literature, even in the unweighted, linear case.

In principle we use a standard perturbation argument combined with the
regularity of p-harmonic functions. This argument is for example developed
in [139] and [58], and used in [152]. However, we modify this technique such
that it is possible to obtain optimal estimates in terms of the smallness
of oscillation parameter |log Ml|gyo and the boundary regularity parameter
IV¥||oo. In particular, we obtain a linear dependence for the reciprocal of
the integrability exponent instead of an exponential one. This is one of the
main novelties of this result.

The approach from [139] and [58] can be reduced to redistributional esti-
mates in terms of maximal operator of the gradient. However this technique
always introduces an exponential dependence of ¢ on the smallness param-
eter §. We avoid this problem by using a qualitative version of the global
Fefferman-Stein inequality | f||zo@n) < cg|| M’ f||o@n). The important fea-
ture is the linear dependency on the exponent ¢. This allows us to extract
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the sharp dependency of |log M|pmo and ||V .

The interior maximal regularity with optimal constants was already de-
scribed in [16]. In this thesis we extend those results up to the boundary with
an optimal dependence and the boundary parameters. To this end, we first
use the localization argument adapted to our boundary comparison estimate
and provide the pointwise sharp maximal function estimate for the localized
function of u. As an auxiliary step we provide C**-regularity and the decay
estimates up to boundary for the solutions of the reference problems. To this
end, we employ the reflection principle of the reference problems, which is
one of the intrinsic property in the divergence type equation, see [174].

Weighted elliptic equations with measurable nonlinearity. We
consider a general elliptic equation with singular/degenerate nonlinearity in
divergence form

{div(M(x)A(x,M(x)DU>) = div(M*(2)F) inQ, (1.3.19)

u = 0 on 0f),

where 2 C R", n > 2, is a bounded domain with nonsmooth boundary
02 and A(z,€) : R" x R" — R" is a Carathéodory vector field with the
assumption (4.2.2). Assuming (1.3.2) and w? being A,-Muckenhoupt weight,
the purpose is to prove that the implication

IM(z)F| € L'(Q) = |M(z)Du| € L"(Q) (1.3.20)

is valid for every v > 2 with the global Calderén-Zygmund type estimate
/ IMDu|” dx < c/ IMF|" dx (1.3.21)
Q Q

for some constant ¢ = c(data,~y) > 0. We ask what further minimal extra
assumptions on 2, A and M other than the mentioned structure assumptions
described in (4.2.2)—(4.2.3) will allow us to obtain this estimate (1.3.20).
Needless to say, as 7 is close to 2, we do not need any extra assumptions.
However, as v is away from 2 and getting larger, we need to impose a suitable
smallness assumption on (xg, - -+, x,) — A(x1, T2, - , Ty, §), uniformly in x;
and £ even when M is the id matrix I,,, as we have seen from earlier works
including [36, 37, 103]. We also mention notable related results [54, 105, 148,
149, 150] and references therein for various types of elliptic and parabolic
problems for the case that M is a constant matrix.
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Here in this section we are mainly focusing on the general case that M
is a variable matrix weight. In this case of elliptic equations with degener-
ate weights, Holder continuity is studied in [120] while an optimal gradient
estimate in weighted Lebesgue spaces is investigated in [61] for the linear
problem and in [16] for the nonlinear problem, respectively, in the spirit of
Muckenhoupt matrix weights. We would like to mention a series of interest-
ing works [106, 107, 108] when Ml(z) = z{I,, with « being in a suitable range
in R.

Returning to our problem (4.2.1), we observe from the basic relation-
ship between Muckenhoupt weight and BMO(bounded mean oscillation) that
log M is in the BMO class, and so it is naturally expected that the minimal
condition is a suitable small BMO condition on log M. Indeed, in the very
interesting paper [16] in which the case of

p—2

Az, M(2)€) = (M(z)€ - M(z)€) = Mi(x)¢

for p > 1 is considered, a local Calderén-Zygmund type estimate is proved
under a small BMO condition on log M. Our present work is motivated from
the variational problem [16]. However there are two main differences. Initially,
our problem is not necessarily of variational form, as we are enlarging our
inventory to include very general nonlinearities A(z, &) which are depending
on also z-variables. The other is that we extend the interior gradient estimates
to study the higher integrability of weak solutions up to the nonsmooth
boundary. Additionally, it is now well understood from [36, 37] that if Ml = I,,,
a minimal condition on (A4, 2) is the following:

1. An optimal regularity requirement on x — A(x,&) is that it is merely
measurable in one variable while it has a small BMO condition on the
other variables.

2. A minimal geometric assumption on 052 is sufficiently flat in Reifenberg
sense.

We are again making the same assumptions on the triple (2,M, A) as in
M from [16] and as in the couple (€2, A) from [36, 37, 103], respectively, in
order to prove that the implication (1.3.20) is still available for the full range
of v € [2,00). A main difficulty comes from the inherent connectivity and
complexity of the matrix weight M and the nonlinearity A(z, &) as well as the
nonsmooth boundary 0f2. One idea is that given a large v > 2 one can find
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a small universal constant 6 > 0 so that if the BMO semi-norm of log M is
less than d, then M is in the A, class. Along with this basic observation, we
are making a systematic analysis of competitive interplay between associated
matrix weights and nonlinearities in view of the utility of assigned regularity
assumptions on (2, M, A).

More studies also need to be done to understand the measurability of the
matrix weight M(x) in one of the variables as well as a precise dependence
of the smallness parameter ¢, in particular in terms of v, though it seems
unclear as this smallness assumption in the other variables except one vari-
able is closely associated to both A and M as well as the choice of a point
near the very irregular boundary and a size of the localized domain under
consideration. We leave these issues to be investigated in the future.

The domain 2 under consideration in this section is usually called by a
(0, R)-Reifenberg flat domain. Its definition is as follows.

Definition 1.3.2. We say that Q is (0, R)-Reifenberg flat if for every r €
(0, R] and xo € 0N, there exists a new coordinate system {yi, -+ ,yn} with
the origin at xo such that

B.(0)N{y:y, > or} C B,(0)NQ C B, (0) N{y : y, > —Ir}
holds in this coordinate system.

The boundary of this domain goes beyond the Lipschitz category with
a small Lipschitz constant, and allows a fractal boundary such as Koch
snowflake. Later, this is considered in many literatures in the field of the reg-
ularity theory for partial differential equations, see [48, 51, 52, 56, 175, 176]
and references therein. For further studies, we refer to [81, 145, 202].

The problem is deeply related to composite material. We refer [26, 37, 163]
for the further studies to this topic. A property of matter such as conductivity
or density can be discontinuously changed in nature, and in this spirit our
assumption describes and allows the situation that there are big jumps of
the property of the matter in x;-direction.
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Preliminaries

Throughout the thesis, let 2 C R" be an open and bounded set with n > 2
and B,(z9) = {z € R" : |[x — x9| < p} be an open ball in R" centered at
xo € R" with radius p > 0. If the center is clear from the context, we shall
write it by B, = B,(x(). We also offer the following notations.

o ©= (21,9, ..,00) = (z1,2') € R™.
o B)(y) :={2' e R o' —yf| < p} and Q,(y) := (—p,p)x B,(0)+y.
e Q (y) :=Qy)N{r eR":x; >0} and Q,(y) == Q,(y) N Q.
o T,:=Q,(0)N{z R 12y =0} and 0,Q,(y) == Q,(y) N .

We occasionally use the simple notations such as B’ := B'(0), Q, =
Q,(0), @F := Q7 (0), and Q, := Q,(0), when the center point is zero. For a
ball B, let rg be the radius and zp be the center of B. For z = (x1,...,x,)
write B (z) = B.(z)N{y = (y1,-..,Yn) € R" : y,, > x,,}. For an open set U
having finite and positive measure, and a function f we abbreviate

(o :Z][Uf(:c) dr = ﬁ/Uf(x) dx.

We write yy for the characteristic function of the set U.

We denote by ¢ a generic positive constant, which could vary from line
to line; special constants will be denoted by symbols such as ¢y, cs, c,, and
so on. Moreover, relevant dependencies on parameters will be emphasized by
using brackets, that is, for example ¢ = ¢(n, s(G), s(H), m,,, L) means that
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c is a constant depending only on constants n, s(G), s(H), my,, L. We also
write f < g when f < cg, and write f <~ g when f < g and g < f hold. For
l<p<oo,p= p means the conjugate exponent of p.

For an 1ntegrable map f: B C Q — RY (N > 1) and a measurable subset
B C R" having finite and positive measure, we denote by

(flog:= sup M

z,yeB,aty |z —y|?

) [f]o,ﬁ = [f]oﬁ;m

1 llo g5 = I fll sy + [flogs - and [[fllg o = [1£llo

for any 8 € (0, 1].
We say p: R" — [0,00) is a weight if p is positive a.e. For 1 < p < o0, a
weight 1 € Ly, (R™) belongs to the class of Muckenhoupt weights A, if

1 p—1
(1] 4, == sup <][ ,uda:) <][ T da:) < o0.
B,CRn X .

For 1 < p < oo and a weight w € L (R™), we define

the weighted Lebesgue spaces

loc(Rn) with w™ e L;foc

LP(R™) = [P(Q, dw) == {f : R" = R*: wf € L*(R")} (k=1,n),

equipped with the norm || |, = || fw]|,- In particular, we treat the weight w
as a multiplier. The dual space of L (R") is Lf /o(R"). Both LE(R") and

f /w(R ) are Banach spaces and continuously embedded into L (R"™). Let
WP(Q) be the weighted Sobolev space which consists of functions u €

I/V1 1(Q) such that u,|Vu| € L?(Q), equipped with the norm HUHWJI’(Q) =

lull e @) + [Vl o). Let WOw(Q) denote the subspace of W'?(2) of func-
tions Wlth Z€ero traces on 0.

We write RZ for symmetric, real-valued matrices. We denote RL5"™ by
the cone of symmetric, real-valued and positive semidefinite matrices. The
collection of positive definite matrices is denoted by RY§". For X, Y € R,
we write X > Y provided X —Y € REF"™. Let M: R" — RI5" be a (matrix-
valued) weight if M is positive definite a.e., and w: R™ — [0, 00) be a (scalar)

weight if w is positive a.e.. For . € R”X”, let |L| denote the spectral norm,
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which means |L| = sup |L&|. If L is symmetric, then |L|
1€1<1

= sup (L¢, €).
1€1<1
We consider the matrix exponential exp: RE" — RZ5", with its unique
inverse mapping log: RZ5" — RI7T. Thus, we can define log M: R™ — R
since M: R" — RZTT

sym
is positive definite a.e. We now define the logarithmic
means

@l = oo ( f 1ogw),
(M)2% := exp ( ][U logM) :

for some subset U C R". The logarithmic mean has the following compati-
bility property under taking reciprocal

(2, e (- f o) = 55
— =exp| — ogw | = T log”
w/y U <W>1Ug
Moreover, using log(M ™)

= —logM and (exp(LL))~"
obtain

(M) = exp (-

= exp(—L), we also

(log(M)),;) = (exp (log(M)),) ™" = ((M);*) .
If i is an A ,-Muckenhoupt weight, then the maximal operator is bounded
on LP(R", p) for 1 < p < oo. We point out some properties for a Muckenhoupt

weight related to its logarithmic means. If w? is an A,-Muckenhoupt weight
then from Jensen’s inequality,

(fe dx); < (Wi, (W)

B

(]éwp’ df”)pl/ < [ (w8 = (2.0.1)

B
Conversely, if (2.0.1) holds, then w?” is an A,-Muckenhoupt weight, since we
have ( 1°g< ’1>log

);'c\»—‘
L@\»—‘

The next lemma is classical one which will be employed later on
Lemma 2.0.1 ([126]). Let h :

[0, p1] — R be a non-negative and bounded
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function, 0 € (0,1), A, B >0, and 1,7, > 0. Assume that

A B
h(t) < 0h(s) + G + G

holds for 0 < py < t < s < py. Then the following inequality holds with
c= C<07’717’72) :
cA cB

Hpo) < (p1 — po)" " (p1 — po)72’

Finally, we display a lemma for the difference quotient from [119, Chapter
5].

Lemma 2.0.2. We have the followings.
(1) Let 1 < p < oo and u € WH(U). For each V € U,
|1 D"ul| oy < || Dull o) (2.0.2)
for some constant ¢ = c(n,p) > 0 and all h € R with 0 < |h| <

1
5 dist(V,0U), where

Dlu(z) = u(x + he}i) - u(x)’

D'"u(z) = (DMu(z), Dyu(x), ..., D'u(z)) (z € V).

n

(2) Let 1 < p < oo and u € LP(V). Suppose that for some ¢, we have

D" ul| vy < @
1
for all 0 < |h| < B dist(V,0U). Then there holds u € W'(V) with

| Dul| o vy < c, (2.0.3)

where ¢ = ¢(n, p,¢) > 0.
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2.1 Musielak-Orlicz functions and spaces

Throughout the thesis, we occasionally use the notion of Musielak-Orlicz
functions and spaces which is introduced in this section.

Definition 2.1.1. We say that a measurable function ® : Qx[0, 00) — [0, 00)
is a Musielak-Orlicz function if, for any fized x € Q, ®(x,-) is an increasing
convex function such that
D(x,t O(z,t
®(z,0) =0, tlim O (z,t) = 00, lim (1) =0 and lim (1) = 00
—00

t—0+ t t—o0 t

We denote by N (Q) to mean the set of Musielak-Orlicz functions ® : X
[0,00) — [0,00) satisfying the following two conditions:

1. For any fized v € Q, ®(z,-) € C([0,00)) N C?((0,0)),

2. There exists a constant s(®) > 1 with

1 tOE®D(x,t)
<
s(®) = 0,®(x,t)

— S((I))a

uniformly for all x € Q and t > 0. We shall call this number s(®) by an
index of ®. We shall denote by N a set of functions ® € N(Q) that does not
depend on x € €.

Remark 2.1.2. Let ® € N(Q) with s(®) > 1. It can be easily seen that

1 <t8t<1>(x,t)
s(®) = P(xz,t)

1+ <1+ s(P),

and then

2020 (z,t) ~ t0,P(x,t) =~ ®(x,t),
uniformly for all x € Q and t > 0, where all implied constants only depend
on the index s(P).

Definition 2.1.3. Let ® be a Musielak-Orlicz function.

1. We say that ® satisfies the Ay-condition, denoted by ® € Ao, if there
is a positive number Aq(®) such that ®(x,2t) < Ag(P) P(x,t) for all
zeQandt > 0.
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2. We say that ® satisfies the Vo-condition, denoted by ® € Vs, if there is
a positive number Vo(®) > 1 such that ®(x, Vo(P) 1) > 2V, (P) O(x, 1)
forall x € Q and t > 0.

3. We write ® € AoNVy if ® € Ay and ® € V,.

The Musielak-Orlicz class K*(Q;RY), N > 1, is a set of all measurable
functions v : Q — R¥ such that

/QCD(x, (@) dz < +o0.

The Musielak-Orlicz space L‘I’(Q; RY ) is the vector space generated by the
class K®(Q;RY). If ® € Ay, then K®(Q;RY) = L*(; RY) and it is a Banach
space with the Luxemburg norm

ol oy = intf {a 0 / o (g; M) i < 1}-
, i -

The Musielak-Orlicz-Sobolev space W1 (Q; RY) is the one consisting of
all measurable functions v € L®(Q; R"Y) such that its weak gradient vector
Dv belongs to L®(€; RV™). For v € Wh®(Q; R"Y), its norm is defined by

||U||W174’(Q;]RN) = ||U||L<I>(Q;RN) + ||DU||L‘I>(Q;RN”)'

As usual, the space Wy '® (Q; RY) is understood as the closure of C°(€Q; RY) in
WEe(Q; RY). For N = 1, we simply write L*(Q) := L®(;R) and W"*(Q) :=
WH®(Q;R). For a further discussion of the Musielak-Orlicz space, Orlicz
space and the associated Sobolev space, we refer the readers to [5, 94, 129,
183].

We end this chapter with the additional properties of Musielak-Orlicz
functions.

Lemma 2.1.4 ([43]). Let ® € N (Q) with s(®) > 1. Then,
1. & € Ay N Vs, and the constants Ag(P), Vo (P) depend only on s(P).

2. For every fived x € Q, ®(x,At) < A*PHD(x.t) for any A > 1 and
t>0.

1

3. For every fired z € Q, ®(z,\t) < X d(x,t) for any 0 < X < 1 and
t>0.
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Lemma 2.1.5 ([12]). Let ®,® € N(Q) with s(®),s(®) > 1. Then,

1. For any non-negative numbers a,b with a +b > 0, ad + bd € N(Q)
with s(® + @) := 5(P) + s(P) and ¢P € N(Q) with
S(PP) := 45(D)s(P)(s(P) + s(P)).

2. For any number d > 1, ®* € N(Q) with s(®?) := s(®)+ (d—1)(s(®) +
1).

3. For any number d > 0, ®y(z,t) = t'®(x,t) € N(Q) with s(®,) =
d + 3[s(®)]>.

4. There exists 05 € (0,1) depending only on s(®) such that ®’* € N(Q)
with an index depending only on s(P).

Lemma 2.1.6 ([12]). Let ® € N(Q) with s(®) > 1. Then there is a positive
constant ¢ = ¢(s(P)) such that

D(x,t P
s (:z’ ) +t (z,5) ~ 0P (x,t) +10,P(x,s) < eP(x,s) + %@(w,t)
s €

holds, whenever x € ), s,t >0 and 0 < e < 1.
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Chapter 3

Calderon-Zygmund estimates
for nonstandard growth
problems

3.1 Local estimates with measurable nonlin-
earities under Orlicz growth

In this section, we are concerned with weak solutions of elliptic equations
involving measurable nonlinearities with Orlicz growth to address what would
be the weakest regularity condition on the associated nonlinearity for the
Calderén—Zygmund theory. We prove that the gradient of weak solution is
as integrable as the nonhomogeneous term under the assumption that the
nonlinearity is only measurable in one of the variables while it has a small
BMO assumption in the other variables. To this end, we develop a nonlinear
Moser type iteration argument for such a homogeneous reference problem
with one variable-dependent nonlinearity under Orlicz growth to establish
W4 regularity for every ¢ > 1.

Our results open a new path into the comprehensive understanding of
the problem with nonstandard growth in the literature of optimal regularity
theory in highly nonlinear elliptic and parabolic equations.
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3.1.1 Hypothesis and main results

We consider the following general elliptic equation

"(|F
div(A(z, Du)) = div (90 I(lLI DF) in Q, (3.1.1)
where  C R" is a bounded and open domain with n > 2, F' = (f1,..., fu) :
Q) — R" is a given vector-valued function with |F| € L*(Q), and A(z,¢) :
R™ x R" — R" is a Carathéodory vector field which is C* \ {0}-regular for
&—variable and satisfies

Az, )] + 10eA(x, O)11€] < L' (I€])
p(I€])

(0cA(x,6)C,¢) = VWICF

for any a.e. z € R", £ € R"\ {0} and ¢ € R" with some constants 0 < v <
L < oco. Here, we denote by ¢ : Rsg — Rs to mean a C*((0, 00))NC([0, o0))
function satisfying ¢'(0) = 0 and

(3.1.2)

ty"(t)

O<kr —1<
¢'(1)

<kyg—1< (3.1.3)

for some constants k1, ko > 1.
We define a function 0(A, Q,(y)) on Q.(y) by

|A({L‘1,I/,€)—AB/(y/)(iL'l,f”
0(A r - - 5
4.Q-W)e)= s ()

(3.1.4)

where

AB;(y’)CCla 5) = ][ A<x17 xl7 6) da’

BL.(v')

is the integral average of A(xy,-, &) on B..(y) for each fixed x; € (yy—r,y1+7)
and £ € R™"\ {0}. Then one can observe from (3.1.2) and (3.1.4) that

0(A, Q- (y))(2)] < 2L for a.e. v € Qr(y).

For given ¢ € (0,1) and R > 0, we say that A is (§, R)-vanishing of codimen-
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ston 1 if

sup Sup][ 0(A, Q. () (@) dz < 6. (3.1.5)
Qr(y)

0<r<RyeR™

A typical example for A(z, §) satisfying (3.1.5) is A(x, &) = ay(z1)az(z") 2 IEIIQ)g’

where a;(-) : R — R with v < a;(-) < VL, and ay(-) : R"' — R with
\/; < CLQ(') < L and [CLQ]BMo(Rn—l) < 5/\/Z
Then the statement of the main theorem is the following.

Theorem 3.1.1. For a given v > 1, assume ¢(|F|) € L] (2) with (3.1.2)
and (3.1.3). Let u € W"?(Q) be a weak solution of (3.1.1). Then there
exists a small constant 6 = 6(n, Ky, ke, v, L,y) € (0,1] such that if A is
(9, R)-vanishing of codimension 1, then o(|Dul|) € L] () and we have the
estimate

][QR p(|Dul) dz < ¢ <][Qm ¢(|Dul) dm)” N C][QQR o(|F|) dz,  (3.1.6)

whenever Qo € Q with ¢ = ¢(n, K1, ko, v, L,7y) > 0.

Remark 3.1.2. The essence of proving (3.1.6) is to show that if ¢ > 1 is
any giwen number, F' = 0 holds and A(x,§) = A(x1,€) satisfies (3.1.2) and
(3.1.3), then o(|Dul) € LL (Q) with the estimate

loc

]{QR (| Dul) dz < c (]{923 (| Dul) dm)q, (3.1.7)

whenever Qar € Q with ¢ = ¢(n, k1, ka, v, L, q) > 0. Since we do not assume
that the map z; — A(x1, &) has a small BMO condition, we cannot apply the
perturbation argument as in [58]. Here we argue directly a Moser type itera-
tion for the reqularized problem to derive the uniform W1 —estimate (3.1.7).
This reqularization will be justified by an usual approrimation argument.

3.1.2 L-estimates for the reference problem

First, we record basic properties of the function ¢ which will be used in this
subsection. The function ¢ satisfying (3.1.3) is usually called an N—function.
For the precise definition and properties of N—functions, we refer to [5, 93].
The function ¢ has the following properties.
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Remark 3.1.3 (Properties of the N—function ¢). From (3.1.3), we see that
() 7H(t) : Rsg — Rsq ewists,

(), o(t) and ¢ (t) are increasing, (3.1.8)
to"(t) = () (¢t >0), (3.1.9)
to'(t) = @(t) (t>0), (3.1.10)

min{s™ ! "1} (1) < ¢ (st) < max{s™ ! s} (t) (s, > 0),
(3.1.11)
min{s™, s™}o(t) < p(st) < max{s™, s }p(t) (s,t >0), (3.1.12)
and

min{s™, 57 b (£) < o (st) < max{s™T, 572} (£) (s, > 0).
(3.1.13)

Note that in (3.1.9) and (3.1.10), the implicit constants depend only on Ky
and Ko.

Now we define the conjugate of ¢ by

(1) == sup{st — p(s)} (£ =>0).

s>0
Then the following properties of ¢* are known.

Remark 3.1.4 (Properties of the conjugate function ¢*). We have

c0 = [ (3.1.14)

©*(t) : [0,00) = [0, 00) is conver and increasing, (3.1.15)
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(") ()= (&)1 (t) (t=0),

tHe")'(t) = " (t)  (t=0) (3.1.16)

with the implicit constant ¢ = ¢(k1, Ka), and
min{sm1, s7-1 }o*(t) < ¢ (st) < max{smi-T,s%= T} () (3.1.17)

for any s,t > 0. Moreover, by (3.1.10), (3.1.14) and (3.1.16), we get the
following inequality

P (¢'(t) = p(t) (t=0) (3.1.18)

with the implicit constant ¢ = c(k1,k2) > 0. Since (¢*)* = ¢, changing
the role of v and ¢* and using (3.1.13), we have an analogous relation of
(3.1.18):

p((e™))(t) = ¢*(t) (t=>0) (3.1.19)
with ¢ = ¢(ky, k2) > 0.

We also need useful inequalities involving Young’s inequality for ¢.

Remark 3.1.5. By the definition of ¢*(t), (3.1.12) and (3.1.17), we can see
that for € € (0,1] and s,t > 0,

=) (1) svte+o (L) <o+ (2) e

9 9

and so for any € > 0, the following Young’s inequality holds:
st <ep(s)+cle)p™(t) (s,t>0) (3.1.20)

with ¢(e) = c(k1,ka,e) > 0. On the other hand, combining (3.1.20) and
(3.1.18) yields

sp'(t) < cle)p(s) +ep(t) (e €(0,1) s,t>0). (3.1.21)
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For s <t, by (3.1.9), (3.1.10) and (3.1.21), it holds that

s(t) = P o cle)ols) +ep(t) _ cle)els)

t T2 < SR ol 1) S ele)e () + <0 (1)

for any € € (0,1), and so we have the following type of inequality:
s (t) Scele)g'(s) +ep'(t) (e €(0,1), s <t). (3.1.22)

The following triangle inequalities are occasionally used in this section.

Lemma 3.1.6. For any s,t > 0 and € € (0,1), we have

¢(s+1) < (L+e)¢(s) + cle) (1),

pls +) < (1+£)p(s) + ()l (3129
and
P (5 +0) < (14" () + (1) (5,620 (3120
with ¢(€) = c(s1, ke, €) > 0. Moreover, it holds that
o5 +8) = 9(9)] < 2ls) + ) (t) (3125

Proof. Let e € (0,1) and s,t > 0 be given. To show (3.1.23), we consider the
following alternatives with 6 € (0, 1), which is a small parameter determined
later:

either s <t or 6s>t.
If 0s < t, then s < 3¢ and so (3.1.8) and (3.1.11) yield
P+t < (1+H8)<(1+H™ g
If 6s > t, then again by (3.1.8) and (3.1.11) we have
Pl(s+1) < P((L+0)s) < (1+0)"7¢/(s).
Summing up the above two estimates, we obtain

O(s+t) < (1+0)2"1(s) + (1 + %)@_1 o' (t).
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Now choosing 6 = 0(ky,€) € (0,1) such that (1 +6)™"" < 1+ ¢, we have
the left-hand side of (3.1.23). The right-hand side of (3.1.23) and (3.1.24)
are proved similarly. Finally, (3.1.25) is a direct consequence of (3.1.23). O

We also derive a lemma which will be used in Section 3.1.3.

Lemma 3.1.7. Let XY € R" and v > 1. Then for any k > 0 we have
p(IX)2r = o(X]) < ep(|X = Y]) +c(v)s" (Y ])

with ¢ = ¢(n, k1, ka) and c(y) = ¢(n, K1, K2,7)-

Proof. Using (3.1.8) and (3.1.23), we observe
P X]) < p(IX =Y+ Y]) < ep(|X = Y]) + cp([Y]). (3.1.26)

If o(|X —Y|) < ¢(Y]) holds, then by (3.1.26) it follows that k < (| X]) <
cp(]Y]). Since v > 1, we have

P(IY]) < c(n)s" (1Y)

and so (| X|) < e(v)x"7¢(]Y])?, then the conclusion follows. If o(]Y]) <
©(|X —Y) holds, then (3.1.26) implies the conclusion directly. O

We now start to prove higher integrability estimates for the reference
problem (3.1.28) with respect to our problem (3.1.1). For the N—function ¢
with (3.1.3), let a Carathéodory vector field
Az, €) = (A (21,€), ..., Ap(21,8)) : R x R" — R™ be C*(R™ \ {0})-regular

for £ variable and satisfy

[A(21,§)| + [De Az, §)IE] < L' (€])

- o(|€ (3.1.27)
(Ded(o1,6)6,¢) 2 v P
for every &, € R", 1 € R and some constants 0 < v < L < oo.
For 0 < r < 1, we consider the following homogeneous problem
divA(zy, Dv) =0 in  Qy. (3.1.28)

The main theorem that we are going to assert in this section is the following
Li-estimate for ¢(|Dvl]), where v € W#(Qy,) is a weak solution of (3.1.28),
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which means that
/ A(zy, Dv)Dndz = 0

for every n € Wy ¥ (Qur).

Theorem 3.1.8. Let v be a weak solution of (3.1.28) with the assumptions
(3.1.3) and (3.1.27). Then for every q > 1, we have

(£ eipac) <cf ooy
T Q47'
where ¢ = c¢(n, k1, ke, v, L, q).

To prove the above theorem, we first consider the regularized problems.
Define ¢ € C°(R¥) (k = 1,n) as a standard mollifier:

1
- if 2] < 1,
o(x) = C"eXp(rxP—l) itz
0 if 2| > 1,

where ¢y = ¢o(k) is the constant such that
o(x)de = 1. (3.1.29)
Rk

Let 0 < ¢ < r and A.(71,&) be a mollification of A(zy,€) in the following
way:

A1, €) = /R | / Ay~ 2 €~ en)o(n)o(z) d dz, -
= /_1/3 z‘_l(xl — €21, — 677)¢(U)¢(21)d77d21.

Then A, (z1,&) is C(R x R")-regular in z; € R and § € R". For the ellipticity
and growth conditions of A(x1, ), we have the following lemma.
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Lemma 3.1.9. We have

{|/‘1 (@1, 6) + [DeAc(wr, (18] + €) < L/ ([¢] +¢) (3.1.31)

(DeAc(w1,€)¢, C) = cvg”([¢] + )¢

for every x1 € R and &, ¢ € R™ with some ¢ = ¢(n, Ky, k2) > 0.

Proof. The proof is motivated from [116]. To derive the first inequality of
(3.1.31), by (3.1.8) and (3.1.27) we have

1
A (0, €)] < / [ e e - oo dnd

< / 1 /B (1€ — en)$(m)é(z1) ddz,
<l / 1 /B S (IE] + () d(=1) dndz < Ly (€] + )

with ¢ = ¢(n, k1, k2) > 0. Also, to estimate |D¢A(z1,€)|, we consider two
alternatives:

either [¢] >2¢ or [¢] < 2e.

If [£] > 2¢ holds, then | — ey| =~ [¢| + € for y € B; so that by (3.1.8) and
(3.1.27), we obtain

|DeAc(y, € ]</ / |D5A xy —€21,& —en‘gzﬁ &(z1) dndz,

<L / e | PUE= ) () dimd

=l

|€!+6 ¢' (1€l + )

<c /1/31 GET o(n)p(z1) dndz, < cL e
37
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In case of || < 2¢, e < e+ || holds and so (3.1.8) and (3.1.27) yield

|DeAc(1,€

/—1/31 (21— €21,§ — en) (n)(z1) dnpdzy

_/ /B (1€ = enl)d (n)d(z1) dndz

// (€] + )¢ )dndz1<cL¢(|5|+€)
1B, €l +

with ¢ = ¢(n, k1, ka) > 0. Thus the first inequality of (3.1.31) holds.
To show the second inequality of (3.1.31), by (3.1.9), (3.1.10) and (3.1.27)
we observe that

|€|+€

(peadmec.) = ([ [ DeAter = s = enpotutoten) and ) . )

> [ [ = aomo) iz ) K-

Here, simple computations together with (3.1.8), (3.1.9) and (3.1.11) give us
that

/B (1€ — enl)d(n) dn = / S (IIE + 2l — 26 (€, m) |F)o(n) di

By
@' (111> 4 €*[nl> — 2¢ (&, m)
|

/Bl\B%m{@ <oy ||E +e*nl? — 2¢

1
P IEP +eml*2) oy
1) dy

BBy(Eem<oy  |[E] + €[nf*|2
1
/ P'(I1EP + 3€°12)
BBy nEn<oy €2 + €2

> / (1€ + () di
BI\B )N{(&,n) <0}

v (/B ”, dn) ©"([&] +€) > cve”(|E] +¢)

Vv

v

—~ |
N |~
)
N

Vv
N

¢(n)dn

Vv
<

Vv

38

___;rx_-l! E CI.'II

1_'_] |

el
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with implicit constants ¢ = ¢(n, k1, k2) > 0, and so the conclusion follows. [

Remark 3.1.10. Under the conclusion of Lemma 3.1.9, we obtain the fol-
lowing inequality by the same proof as [11, 16, 18]. For each 1 € R and
&1,& € R™ we have

(|61 — & +¢€)
< ep(lG] + €) + cle) (Ac(z1, &) — Ac(21, &), 6 — &)

for any e € (0,1) with c(e) = c¢(k1, k2, €) > 0.

(3.1.32)

We also need the following approximation lemma.

Lemma 3.1.11. Let v. € WH?(Qs,) be the weak solution of

{diV/_lg(l‘la Dve) =0 in Qo, (3.1.33)

Ve =V 0N 8Q2r7

where v € WH?(Qy,) is a weak solution of (3.1.28). Then we have

lgré o ©(|Dve — Dvl) dx = 0.

Proof. Testing v, — v € W, *(Qa,) to (3.1.33) and (3.1.28), we have

<AE(:1:1, Dv,) — A (x1, Dv), Dv, — Dv> dx
Q2r

= (A(z1, Dv) — A(z1, Dv), Dv. — Dv) da.
Q27'

Then together with (3.1.32), we observe that

/ o(|Dve — Dv| + ¢€) dz
< ¢(e) (A(z1, Dv) — Ac(z1, Dv), Dve — Dv) da (3.1.34)
Q2T‘
+ ce/ o(|Dv| +€) dx

39



CHAPTER 3. CALDERON-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

for any € € (0,1). On the other hand, due to (3.1.20) we have

(A(z1, Dv) — Ac(z1, Dv), Dv. — Dv) dz
Q2r

< / |/_1(ZE1, Dv) — /_16(1:1, DU)HDU6 _ DU| dr
< c(e)/ ©*(|A(z1, Dv) — A (x1, Dv)|) da (3.1.35)

+ ca/ ©(|Dv. — Do) dx
2r
=:c(e)1 + cely

with the same € € (0,1) as in (3.1.34). Here, for each a.e. x € Q)o,, by (3.1.29)
we can use Jensen’s inequality with the measure ¢(n)¢(21) dndz; to find

©"(|A(z1, Dv(x)) — Ac(1, Do(2))])

1
< cp* </ |A x1, Dv(z)) — A(xy — €21, Dv(x) — en ‘¢ (2 dndz1>

/1/3 (|A(z1, Do(z)) — A(zy — ez, Do(z) — en)|) ¢(n)d(21) dndz

. |A x1, Dv(z)) — A(x; — €21, Dv(x) — 677)| ,
5/_1 /Blw ( Z(Do(@)] T ¢'(|Dv(z)| + )

X ¢(n)é(21) dndz
S o(|Du(z)| +€)
(3.1.27)
(3.1.31)

|A l’l,DU A(l‘l—EZl,DU( )—577)‘
/_1 /31 < 2L<p (|Dv(x)| +€) dndz

with implicit constants ¢ = ¢(n, k1, ko, v, L). Here, using (3.1.27), for each
a.e. r € Qg we see that

1
/ |A(z1, Dv(z)) — A(zy — €21, Dv(z) — en)| dndzy — 0 as € — 0.
B1
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Hence it follows that
©*(|A(x1, Dv(z)) — A(z1, Dv(x))]) = 0 as e—0

for a.e. € Q.. Moreover, using (3.1.18), (3.1.27), (3.1.31) and 0 < € < 1,
we have

¢"(|A(z1, Dv(x)) — Ac(x1, Dv(2))]) < co(|Dv(z)| + 1)

with some ¢ = ¢(n, k1, Ko, v, L) > 0. Then in (3.1.35), Lebesgue’s dominated
convergence theorem together with the above two displays yields that

I, >0 as €—0.

For I, testing v, — v € Wy¥(Qy) to (3.1.33) and then using (3.1.23) we
obtain

/ o(|Dve — Do) dzx < c/ ©(Dv,) da:+c/ o(Dv) dx

2r

< c/ o(Dv) dx
Q2r

with ¢ = ¢(n, k1, k2, v, L). Then merging (3.1.34) and (3.1.35), and combining
the above two results, we have

lim o(|Dve — Do) dz < ca/ o(|Dv|) dx.
=0 QQT 2r

Since € € (0,1) was arbitrary, we have the conclusion. ]

Now we define some functions which are used for our Caccioppoli type
estimate, see Lemma 3.1.16. With two parameters M > 1 and 8 € (0,1] to
be determined later, we write

Aﬁ(xbg) = (Ai<x1a§)7 e 7"4?(17176))’

ge(w1, & M) = o(I€] + €) + M@* (| Ac (21, €)| + ¢/ (€))
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and

B~ (ge(1,&; M))
@' (07 H(ge(w1, &5 M)))

for all 77 € R and € = (£1,¢') € R x R™!. Then the following lemma holds.

Ge(w1, & 8) = [€'] + e+ (| Ae(z1, )]+ ¢'(€)

Lemma 3.1.12. There exists M = M(n, k1, ko, v, L) such that

ge(z1,§ M) = o([§] +€) (3.1.36)

and

Bl +€) S ge(x1, 6 8) S 1€ + ¢ (3.1.37)

with the implicit constant ¢ = c(n, Ky, ko, v, L) > 0, whenever & € R" and

g€ (0,1].

Proof. First, the inequality g.(z1,&; M) S ¢(|€] + €) follows from (3.1.17),
(3.1.18) and (3.1.31):

ge(x1,& M) . 1§31) ('] +€) + M (cLe (€] +€) + ¢(€))

oS e(I§+€) + eMe™ (' (€] +€)) (3.1.38)

< eMo([¢] +e)
(3.1.18)

with ¢ = ¢(n, k1, k2, v, L) > 0. )
To show g.(z1,& M) 2 ¢(|€| + €), we first prove a lower bound of |A}|.

Denote 0 = (01,0") with 0; € R and 0’ € R*"!. By triangle inequality, we
have

[Af (21, )] = | Al (21,€) = Ac(wr, &, 0)| + |Ac (21,6, 0)]

(3.1.39)
=. —Il + IQ.
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For I, by (3.1.9) and (3.1.31) we estimate

. / S AN a1+ (1 06, 0)] de

/ |D£ xl,tf+<1—t) 51: ‘ ’ 01, ’dt

< Lj¢| / (1t + (1 1)(0,0)] + ) dt (3.1.40)

1
<clg] [ o6l + 1t + o) d
0
= /(|G| + [t + )y = cod' (161] + €] + €) — co'(|Ea] + )
with ¢g = ¢o(n, k1, k2, v, L) > 0. Here, we see that for any 6 € (0,1),
i1 <0061 +9 = ¢l + 1]+ < SO+l +)
< (1+0)"¢ (|6l +e),
(3.1.11)
if |€'] > 0(|& ]+ €) = ¢ (I&] + €] +€) (3%&;) ¢ (5 + (] +e)

< (D] +e).
(3.1.11)

Using the above inequalities, and observing that 6 € (0, 1) implies (14 6)"* —
1 < ¢(k2)0, we obtain

Iy < co (|61 + €] + €) = co' (|G| + €)
< co[(1+0)™ = 1 (|&] +€) + coly + 1)@ (I + ) (3.1.41)
< coc(k2)0¢ ([61] + €) + co(5 + 1) (€] + €)-
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On the other hand, for I, we observe that

Ai(xl,&,o/)&
= <A2(I17£17 0/) - Ai(xla 017 0/)7 (517 0/>> + <A2<I17 017 O/)a (517 0/)>

1
- </ %@i(xl,t&,()’))dt, <£1,0’>> + (Al(1,00,0), (&1,07)
0
1
- / (DeAl(1,1€1,0) (61,0, (€1,07)) dt + (Al(1,0,07), (6, 07)
0

and so by (3.1.31), there holds
B 1
Ao, 6,006, > ¢ / (] + )62 dt — e (e)]¢]
0

1
> e / L] + e dt — e (e)lé|

2

(3.1.42)
> c&” (tg[llin” P ([t + 6)) — e’ (e)I¢1]

> el (3) @l +0 - el

Note that the last inequality is obtained by the following observations. For
any t € [%, 1}, we see that

/
" @ <|t£1| + 6)
([t +¢€) 2
a1y |t +e

o T
srs) &l +e T \2 &l +€ 370 \2

Then from (3.1.42), (3.1.9) and (3.1.22) with small ¢ = e(n, k1, ko, v, L) €
(0,1), we have

I > cl&|¢"(|&1] +€) — L' (e)
> c(|&i] + €)@ (|&] + €) — cep” ([61] + €) — L'(e)
> e/ (|&i] + €) — e/ (€] + €) — c(e)¢'(€) — Ly'(e)
> 10/ ([61] + €) — 2/ (€)

(3.1.43)
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for ¢; = ¢1(n, K1, Ko, v, L) > 0 and ¢ = ¢o(n, k1, K2, v, L) > 1. Summing up
(3.1.39), (3.1.41) and (3.1.43), it follows that

|Ai($1, 5)‘

> [e1 — coc(ka)0) (|&1] + €) — CO(% + 1520 (|€] + €) — oy (€). (3.1.44)

Now by choosing 6 = 0(n, k1, k2, v, L) € (0,1) sufficiently small such that
c1 — coc(ka)0 > 5, we have

A (21, )] + ¢'(€) > =/ (|a] + ) — (5 + 1) (I€'] + €)
and so
|AL(z1, )] + ¢'(€) + s/ (|€'| + €) = ' (|&1] + €) + e (|€'] +€)  (3.1.45)

with ¢3 = 22(3 + 1)" and ¢ = ¢(n, k1, ko, v, L) > 0.

For the left-hand side of the above inequality, by taking ¢* and using
(3.1.17), (3.1.18) and (3.1.24) we obtain

0" (142 (21, &)l + &'()] + es¢(I€'] +€))

< " (1A a1, 6)] + ¢/ (6)]) + cmax { } o (€] + )

K1 K2

< cp” ([[Ae (21, )] + ¢/ (€)]) + cmax {051_1 e5? } cap(l€'] +€)

< cge(x1,& M)

with ¢4 = e4(n, K1, ka2, v, L), provided

~1 K2
1 )
M = M(n, k1, ke, v, L) := max{c§1 ,C5° }04.

For the right-hand side of (3.1.45), by taking ¢* and using (3.1.8), (3.1.11)
and (3.1.18), we observe

P (e (6] +€) + e (I€] + €) = o™ (@([5] + €)) = co(lg] +€). (3.1.46)

Thus by (3.1.45)—(3.1.46), we have g.(z1,&; M) 2 »(|¢] + €) and so (3.1.36)
holds.
Now we start to prove (3.1.37). By (3.1.8), (3.1.9), (3.1.13), (3.1.31) and
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(3.1.36), we have

Ge(1, &6 8) SIE' + e+ — =

On the other hand, note that by (3.1.19), o *(¢*)(t) = (¢*)'(t) holds for
t > 0. Then together with (3.1.8), (3.1.13), (3.1.16) and (3.1.19), one can
find

o (ge(w1, & M) (| AL (21, §) + ¢ (€))
2 e (M (|Ac(21, )]+ ¢'(€) (1Ac (1, )] + ¢/(e))
R o (@ (A (1, )l + ¢ (6) (JAc (21, §) + ¢ (€))
2 (@) (1AL (21, )] + ¢ () (| AL (21, €) | + ¥'(€))
2 ¢ (| A (21, 6)] + ¢/ (€))-

Thus together with (3.1.36) and (3.1.10), we have

¢ (o (ge(z1,& M) ge(21,&; B)
= ¢ (¢ (ge(z1, & M) (€] + €)
+ B (ge(1, & M) (| AL (1, €)| + ¢ (€))
2 o€ +€) + B (AL (1, )| + ¢ (€))
2 Bge(x1,& M)
2 B (07 (ge(1, & M)))(I€] + €),

which implies (3.1.37). O

Remark 3.1.13. Since A (x1,€) is C'(R x R™)-regular, we observe from
Lemma 3.1.9 that Dv, € Ly (Qa.). We refer to [167, 169] for the proof.

The following lemma is a higher order differentiability result for D,v,. of
the regularized problem (3.1.33). See also [66] for the related results.

Lemma 3.1.14. Let 2o € @, and 0 < p < ir. Then we have DDy, €
L*(Qp(0))-

Proof. Write Q;, = Q;,(x¢) for j = 1,2, 3. We select a smooth cutoff function
¢ satisfying 0 < ¢ <1, ¢ =1on Q,, » =0 on R"\ @, and |D¢| < %. Now
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let |h] € (0, p) be small, choose k € {2,...,n} and write
p(x) = =D (" () Dyve(w)) (v € Q).

Then we have
0= / (A1, Dv.), D[~ D (¢* D)) da.
QSp
Using integration by parts for difference quotient gives us that

0= / (D} A(z1, Dv,.), D(¢*Dyve)) dx
Q

3p
= /Q (¢° (D Ac(w1, Do), Dy Due) (3.1.47)
3p
+2¢Dpve (DY A (1, Dve), Dg)) da
= Il + ]2‘
Here, we compute

A(z1, Dv(x + hey)) — Ac(w1, Do (x))
h

- %/ L Ad(wn, (1= 9)Duda) + sDula + hex)}) ds

DZAG (.1'1, D'Ue) =

= </0 DeA (21, {(1 — 8)Dv(x) + sDv(z + hex)}) ds) (D} Dv(z))
—: Al (a)(D} D)),

Then by (3.1.31), it follows that

I, = ¢* (A} (z)(DpDv,), D Dv.) dx
QSp

ZC/
Q

with ¢ = ¢(n, K1, ke,v, L) > 0. Furthermore, by Young’s inequality with

1
@ (/0 ¢"(|(1 = s)Dve(x) + sDv.(x + heg)| + €) ds) |D!'Duv, | dx

3p NS >
=:I3
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7 € (0,1) and (3.1.31), we have

o] =

/ 26D}v, (Al (x)(D!Dv.), DY) da
Q3p

<er | @ AM)||DIDuPde + = [ |AM(2)||Dlv?de  (3.1.48)
Q3p Tp Q3p

<ecr ¢*I3| D} Dv,|? dz + < Is| D |? da.
QSp Tp QBp

By merging (3.1.47)—(3.1.48), and selecting 7 small enough to find

/ I3| D} Dv|? dx <

¢*I;| D" Dy |2 dz < f/ L|DM.?dz  (3.1.49)
P Q3P p

Q3p

with ¢ = ¢(n, Ky, k2,1, L) > 0.
Here, we observe from (3.1.8) and (3.1.9) that

o' (|(1 = s)Du(z) + sDv(x + hey)| + €)
Iy 2 C/O |(1 —s)Dv(x) + sDv(x + heg)| + € ds

1 /
. C/ ©'(€) s
0 1DVl Loo(Qap (o)) T €

_ c'(€)
||DU6||L°°(Q2P(~’CO)) te

and

Yo' (|(1 — s)Du(z) + sDv(z + heg)| + €)
I < C/O |(1 — s)Dv(x) + sDv(x + heg)| + € ds

1,
SC/ ' (IDvellz=(@uptao)) +€) (3.1.50)
0

€

_ (1 Dvell L@y wo)) + €)
€

with ¢ = ¢(n, k1, ko, v, L) > 0.
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Summing up (3.1.49)—(3.1.50) and applying (3.1.10), we have

| Dl Dv,|* dx
Qp

090’(||Dvs||Lw(Q2p(xo)>+6)(||Dve||L°°(Q2p(xo))+6)/ Dl de
gp’(e)ep Q3p o

< PPVl L (@apw0)) +€) /

B w(e)p Q

| D |* de.

3p

Then by (2.0.2) and (2.0.3), it holds that

co(||Dve|| oo z0)) +
D! Do |? dx < PULDYell 1> (an) E)/ | Do | da
Q3p

Q, p(e)p
and so considering all cases k € {2,...,n}, we find
Duv,|| z0)) T+
DD do < UYL @aen + / [Du[* d.
Qp p(e)p Qsp
Then DD, v, € L*(Q,(x0)) holds. O

From now on, we write

g =g(x):=g(x1, Dv.(x); M) and ¢ = g(z):= g(x1, Dv(x); 5),

where M is given in Lemma 3.1.12, while § is to be determined later in
Lemma 3.1.16. Moreover, we define

El,i = DZ'(|D$/U€| + E)

and

. ¢ '(9) AL (o v (e
Eyii= D, (—Sol(wl(g))(me( L Dud)| + ¢ )))

so that the following holds:
Dig=FEvi+BEy; (1<i<n). (3.1.51)

Then for Dg, we have the following lemma.
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Lemma 3.1.15. Let zg € @), and 0 < p < %r. Then we have
Dg € LQ(Qp(xO)) and

|IDg(x)| < c|DDyve(x)| a.e in x € Qy(xo) (3.1.52)
for some positive constant ¢ depending only on n, Ky, ke, v, L but independent
of B.

Proof. We first claim that

Dyl < e/ (|Dv] + DDy in Qo) (3.1.53)

with ¢ = ¢(n, k1, K2, v, L) > 0. Indeed, by (3.1.9), Remark 3.1.13 and Lemma
3.1.14, we have

O"(|Dve| + €)|DDyrv|
©'(|Dv| + €)
— DD,
S Do e PP (3.1.54)

_ AUDu= +9)
€

|DDv.| € L* in Q,(x).

Then for 1 < k < n, by (3.1.31) we obtain

|Dk (1, Dv,) |— Z Dg xl,Dvg)ijv6

1<j<n

< c”(|Dve| + €)|DDyve| € L? in Q, (o).

(3.1.55)

On the other hand, since v, is a weak solution of (3.1.33), together with
(3.1.31) it holds that

|Dy[Al (21, Dvo)]| = |= > Di[Al(x1, Do)

1<i<n

= Z Z Dg I‘l,DUE)Dij’Ue

1<i<n 1<j<n

c”"(|Dv| + €)|DDyv | € L?  in Q,(xo).

(3.1.56)

IN
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Then by (3.1.55) and (3.1.56), we obtain

|D[AL(z1, Dve)]| < c”(|Dve| + €)|DDyve. (3.1.57)
Now together with (3.1.57), Lemma 3.1.9 yields

Dzlve

Dg| < ¢ | (| Dyve
D9l < el ¢ ([Davel + )75 707

’DD:E/UC|

‘fli (21, DUE)‘
| AL (21, Dve)| + /(e

+c(¢") (| Az (21, Dv)| + ¢/ (€))

< e (|Dpve| + €)|DDyprv|
+c () (|Ac(@1, Dve)| + ¢'(€))¢" (| Due| + €)| DDy

) ’D(Ai<xla Dve))|

Here, by (3.1.9), (3.1.10), (3.1.16), (3.1.17), (3.1.18) and (3.1.31), it holds
that

(") (IAc(@1, Dvo)| + ¢ (€)) " (| Dve| +€)

< (@) (@' (|Dve] + €))¢" (| Dve| + €)
(3.1.31)

(Do +€))
(3.1.16) ¢'(|Dve| +¢€)
o(|Dve| + €)p" (| Dve| + €)

©"(|Dve| + )

<

(3.1.18) ©'(|Dve| + ¢€)
< e (|Dve| +e)

(3.1.9)

(3.1.10)

with ¢ = ¢(n, k1, ke, v, L) > 0, and so (3.1.53) follows.
To show (3.1.52), we observe that
D:c’ve

Ei ;| <|——=DD_ v
| 1,z|_ |DII/U€| x' Ve

= |DDx/’U€|

and

1
|Eo | < ‘Di (@—?)

S0/(8071 g)) (|Ae(x1> DUE)' + 90,(6)>> ‘ <L+ 1+ I,
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where

(™)' (9)|Dgl(|Ai (1, Dve)| + £'(€))

he o) ’
[, _ ¢ (9IDAL(z, Dy
i ¢ (= (9)) ’

1. — ¢ @)A1, Dv)| + ¢ ()" (v (9)) (¢ 7)'(9) Dy
’ ' (9~1(9)) '

Here, by inverse function theorem for ¢, (3.1.31), (3.1.36) and (3.1.53), we
have

(=) (@(|Dve| + €))¢' (| Dve| + €)|DDyrv| ' (| Dve| + €
¢ (p(9))

< (™) (@I Dve| + €)@ (| Dve| + €)| DDy

¢'(|Dve| + €)

c——|DDyv.| < c|DDv,
([ Du o) PPl < AP Dz

11§C

IN

with ¢ = ¢(n, k1, ko, v, L) > 0. For I, owing to (3.1.9), (3.1.36) and (3.1.57),
there holds

v~ (9)¢"(|Dve| + €)| DDyrve
¢'(¢7(9))

(|Dve| + €)¢" (| Dve| + €)| DD yv|

- ¢'(|Dve| + €)

[QSC

< c\DDx/U6|.

Finally, for I3, by (3.1.9) we have o' (g)¢" (¢ (9)) = ©'(¢"*(g)). Then by
(3.1.57) it follows that

-1

L <c? (/)90’_’(90*1(9))]1 < el DDy.
' (p~1(9))
Therefore, we have
|Es.i| < ¢|DDyv| (3.1.58)
with ¢ = ¢(n, k1, ko, v, L) > 0. Then the lemma follows. O

Now we prove the following Caccioppoli type estimates.
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Lemma 3.1.16. Let xg € @, and 0 < p < ir. For a given « € [0,4q|,

there exists f € (0,1) depending on n, ki, ko, v, L and q such that for any
n € C5?(Qy(x0)) we have

][ 772‘)0@(@)90”(|DU6| +€)|DD:L"Ue|2 dx
ar (3.1.59)
< c][ o (|Dve| + €)| Dn|? dz

for ¢ = c(n, k1, ko, v, L) > 0.

Proof. Fix 1 < k <n.Foreach1 <i,j <n,by(3.1.31), (3.1.54) and (3.1.57)
we obtain

|Dy Al (21, Dv,)| = }ng Al(xy, Dve)ijve‘

3.1.60
< (|Du + DDyl € @)

with € > 0. Then testing D¢ € C°(Q,(x0)) to (3.1.33) and using integration
by parts, we have

0= / Dy, [Ai(ml, Dve)] D;¢ dx
2 (3.1.61)
= Dg].zzli(l'l, DUE)ijUEDi¢ dx.

Q2r

Note that in (3.1.61), we omit the summation over 1 < i,j < n. Due to
(3.1.60), we have (3.1.61) for all ¢ € W,*(Q,(x0)).

Now let n € C(Q,(z0)) be a smooth cutoff function with 0 < n < 1,
n=1on Qs(xo), n =0 on Qo \ Qp(2o) and |Dp| < %. Note that

Remark 3.1.13 and Lemma 3.1.14 = Do, € W"*(Q,(z0)) N L™(Q,(x0)),
Lemma 3.1.12, Remark 3.1.13 and Lemma 3.1.15

= §€WH(Qy(x0)) N LX(Qp(w0)).
Test ¢ = Dyvep®(§)n* € Wy (Q,(x0)) for (3.1.61) to obtain that

0= Dy, Al(z1, Dve) DyjveDi(Dyvep® (9)n?) da. (3.1.62)
Qar
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Here, we compute

Di(Dyvep™(9)n°)
= Drivep®(§)n? (3.1.63)
+ aDwep™ 1 (9)¢'(9)Di(§)n” + 2Dgvep® (§)nDim.

Then taking into account (3.1.51), (3.1.62)—(3.1.63) and summing up all in-
tegers k such that 1 < k < n, we have

[1 -+ IQ == —13 - [4, (3164)

where

L = Z / n*¢*(§) De, AL(x1, Dve) DyjveDyive,

L=« Z / R (Q)ngA (21, Dve) Dyjve Dyv By ; dex,

1<k<n

To estimate I, by Lemma 3.1.9 we have

05/ 7?0 (§)¢" (| Dve| + €)|DDyv|? do < I (3.1.65)

2r

for some c5 = c5(n, K1, ko, v, L) > 0. To deal with I5, using Lemma 3.1.9 and
recalling that the summation is taken over 1 < 4,5 < n, we yield the estimate

> D Ai(a1, Dve) Dijoe Dyve By
1<k<n
D v,

Z Df 513'1, Dve)ijveDkve |Dm/1j |

1<k<n

> ¢ (|Dve| + €)|DDyve|?| Dyrve|

l)D/U6
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and so for ¢g = cg(n, K1, Ko, v, L),

L > e / 2 () ()" (|Dv| + | DDy 2| Dy dz.  (3.1.66)
Q2T'

We now consider I3. Observe that by (3.1.58), it follows that

5 ‘E2,j| ScﬁlDDx’fUGP‘D:E’er’

Z ijUeDkUe

1<k<n

and so by Lemma 3.1.9 and a € [0,4q], together with the constant ¢; =
c7(n, Ky, ke, v, L), we obtain

15| < c7q8 772<Pa71(§)90/<§)901/(‘Dve| + €)|DD$/1)€]2‘D$/UE] dr. (3.1.67)
QQT

To estimate 14, by Young’s inequality with ¢ € (0, 1), (3.1.9), (3.1.10), (3.1.37)
and Lemma 3.1.9, we have

L<c / 0 (§)| De, At (21, Dv,)|| Digvel | Dive || Din] e
<e / 720%(8)" (| Dvel + )| DDrv | d
+ele) [ (@00 (1Du + OIDv DA do (3.1.68)
.
<c [ o@D + DDy da
.
o) [ oD+ D s
.

for any ¢ € (0,1]. Merging the estimates (3.1.65), (3.1.66), (3.1.67) and
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(3.1.68) into (3.1.64), it holds that
s / 76 (3)¢"(1Dv| + €)| DDy du
Q?T'
+ ¢ 772900‘_1@)%0'(@)<P"(|Dve| + €>|DDm’Ue|2|Dx’Ue| dx
<egB [ e (@) @)¢" (1Dve] + DDy 2| Dy da
e / 720 (9)¢" (| Dve] + €| DDyv,? du
2r

sele) [ oD + ol Dif do
2r

(&1

Choosing ¢ < 2 and 8 = fB(n, ki1, ke, v, L, q) sufficiently small such that
c7qf < %, we have the desired estimate (3.1.59). ]

Now we prove the reverse Holder’s inequality.

Lemma 3.1.17. We have

(][ ©*(|Dv| + €) da:); < c][% (| Dve| + €) da (3.1.69)

with ¢ = ¢(n, K1, ke, v, L, q) > 0.

Proof. Define

B % n > 2,
X792 n=o

Let 79 € Q, and 0 < p < 37. For any n € C°(Q,(z0)) with0<n <1,p=1
on Qz(zo), 1 =0 on Q2 \ Qy(x0) and [Dn| < %, we first claim that for any
a € [0,4q|, we have

(£

[so““(leeHe)]de) gc][ (| Dve| + €) dz, (3.1.70)
(w0) Qp(wo)

P
2
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if the right-hand side is finite. Indeed, observe that by triangle inequality,
(3.1.9), (3.1.10), (3.1.37) and (3.1.52),

at+l 2
D (" (@)
(0% + 1 a—1 ~ N N
5P (9)¢'(9)(Dg)n
< c(a+1)%0*(9)(¢'(9))*n*|DDyve* + e ()| Dn|?
< c(qg+1)*0"(9)¢" (|IDve| + €)n*| DD v |?
+ e (| Dve| + €)| Dn|*.

2

atl 2
+C‘<p > (9)Dn

(3.1.71)

By Sobolev-Poincaré inequality and Lemma 3.1.16 we have

a+1(A) 2X i

2

][ [u] ) <. ][
Qp(xo) p Qp(iO)

f o (| Dv| + €)| Dnf? de
Qp(iBO)

. 2
y o (|Dv| +
Qp(TO) P

Then by (3.1.37) and « € [0,4q] there holds

IA

IA

dz.

i ol 2 X
(J[ (" (| Doe| + €)] " dw) <c (][ [s@ 3 (?J)ﬂ : dﬂf)
Qg(fﬂo) Qp(wo)

Sc][ e (|Dve| + €) d
Qp (o)

with ¢ = ¢(n, k1, k2, v, L,q) > 0, and so we have (3.1.70).
Let 8 = B(n,k1,k2,v,L,q) € (0,1] be the constant in Lemma 3.1.16.
Since y > 1, there exists a integer mg = mq(n, q) > 0 such that

™ < g < ot
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By taking « = x" — 1 < 4q for m =0, --- ,mg, we find from (3.1.70) that

CEsyY
(][ [(’Oa+1(|DUE| + e)]X dx) < c][ o(|Dv| + €) dz,
Q@y-mg—1,(z0) Qp(0)

and so it follows that

(][ ©(|Dve| + ¢€) dx) < c][ (| Dve| + €) dx.
Qy-mo—1,(z0) Qp(z0)

Since the above estimate is invariant under scaling and translation, by the
covering argument, (3.1.69) follows. O

Now we give the proof of main theorem in this section.

Proof of Theorem 3.1.8. From (3.1.69), it follows that

lim sup (][ ©?(|Dve| + ¢€) d:z:) ' < clim sup <][ ©(|Dve| + ¢€) d:v)
e—0 r e—0 o
(3.1.72)

with ¢ = ¢(n, k1, k2,1, L,q) > 0. For the right-hand side of (3.1.72), by
Lemma 3.1.11 and (3.1.25), for any € € (0,1) we have

lim sup ][ o(IDve] + €) — o(|Dv])| da

e—0

< c(e) limsup][ o(|Dve — Dv| +€) dx + 8][ ©(|Dvl) dx
2r

e—0 20

< 8][ o(|Dv|) dx.

Since € € (0,1) was arbitrary, we have

limsup][ o(|Dve| +€) dx = ][ o(|Dv|) dx.
2r 2r

e—0

For the left-hand side of (3.1.72), since € € (0,1) and Lemma 3.1.11 holds,
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we observe

1

(. g”‘“'Dve')dfo < (f #pul+ o)’

< c]l o(|Dve| +€) dx (3.1.73)
27r

< c][ o(|Dv| + 1) dx,
2r

and so { Dv, }.~ is uniformly bounded in L#"((Q,.) which is a reflexive Banach
space by [129, Theorem 6.1.4]. Then we have a subsequence {¢;}2; with

¢; — 0as j— ooand f € L¥(Q,) such that
Dy, — f in L#"(Q,) and so

| e de <timint [ 1(Du, ) da.
I7ee Ja,

T

(3.1.74)

Then Dv., — f in L¥(Q,) as ¢ > 1. But then, according to Lemma 3.1.11
and (3.1.74), f must be Dv a.e. in @, by the uniqueness of weak limit.
Consequently we conclude that

Dv,, = Dv in L¥"(Q,) and so

/gpq(|Dv|)d:U§hminf/ ©1(|Dv,|) d.
I JQr

r

Thus we have the conclusion by letting j — oo in (3.1.73). O]

3.1.3 Proof of Theorem 3.1.1

We give in this section the proof of Theorem 3.1.1. To do this, let us provide
first comparison estimates to be essentially used in the proof of Theorem
3.1.1. Assume F € LY (2, R") for v > 1 and consider that u € W?(Q) is a
weak solution of (3.1.1), which means that

/
r
/A(x,Du)-DndmZ/M |)F-Dnda:
Q o |F|
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for every n € Wy#(Q). Let Qg C Q with 0 < 16r < R and h € W%(Qs,)
be the weak solution of

divA(z, Dh) = 0 in Qs,,
{ . — % on o, (3.1.75)
and v € W'?(Q4,) be the weak solution of
divA(zy, Dv) = 0 in Qy,
{ y — b on B0, (3.1.76)

where

A, €) = ]{2 Al €) do!

’
4ar

is the integral average of A(xy,-,&) over @), for fixed z; € R and £ € R".
Then we have the following.

Lemma 3.1.18. For any e € (0, 1), there exists a § = 6(n, k1, ke, v, L,e) >0
such that if

g 0(A, Qu-(y))(x) dx <6, (3.1.77)

then we have

][4,« (|Du — Dol) do < cse <][ T o(|Dul) dz +][ T @dx) (3.1.78)

for some cg = cg(n, k1, ko, v, L) > 0. On the other hand, for any v > 1 there
holds

(][Q (|1 D]) dx);w < (;9][& (| Duf) dz (3.1.79)

for some cg = co(n, k1, ko, v, L,y) > 0.

Proof. The proof of (3.1.78) is the same as in [11, Section 3] and [70, Section
5]. We test v —h € Wy#(Qu,) to (3.1.76) and h —u € Wy (Qs,) to (3.1.75),
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respectively, and use Young’s inequality to find that

][M(P(’Dv!)dx S ][ (|Dh|) dz < ]l o(|Dul) da.

Then (3.1.79) follows from Theorem 3.1.8. O

Now we revisit the maximal function-free technique developed in [3] to
prove the estimate on super-level sets of ¢(|Dul) in Lemma 3.1.19 below. We
select real numbers r; and 75 such that R < ry < ry <2R. Let Qog € €2 and
Ao be such that

Ny i ( S0f )n]{“ [¢(|Du|)+ @(lf’)} da (3.1.80)

o —T

with § € (0,1) being a free parameter to be chosen later. Then one can see
that

To —T1

][ [@(\DUD + M} dx < Ao (y € Qr, <p< R) . (3.1.81)
QoY) 0 40

Lemma 3.1.19. For any e € (0, 1), there exists a § = 6(n, k1, ke, v, L,g) >0
such that if

sup sup ][ 0(A,Q,(y))(x)dx < 0, (3.1.82)
o(Y)

0<p<Ry€Q2r JQ

then for any A > Xy and large N > 1, we have

/ (| Dul) dz
QryM{@(|Dul)>N~}

F
<cle+ N7 / @(\DUDdﬂer/ A o).
QroyN{(|Dul)>3} Qryn{e(IF)>2} 0

Proof. Fix A > Ay, and let us define the upper-level set

E\) = {x € Q : o(|Du]) + @ > )\} .

If E(\) = (), then one can see that {z € Q,, : ¢(|Du|) > NA} = 0 and so
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the conclusion holds. Thus we assume E(\) # ().
With the help of Lebesgue differentiation theorem, for a.e. y € E(\) we
have

F
lim {(p(]DuD + il |>1 dr > A
P07 Qp(y) 0

Using (3.1.81) and the fact that A > Ay, we see that there exists a positive

radius p, € (0, rzi)Tl) such that

£, Lot + 2 e = (3.1.530)

and

][ [¢(|Du|> + M} dz <\ (p, <V¥p<R). (3.1.83b)
Qp(y) 6

From (3.1.83a), we observe

F
Qul =5 [ etpu)+ 2

2|Qp, ()] 1

<Ml 1
3 A JQp, )nfe(IDul)>2}

1 F
L1 / p(F]) iz,
A JQ,, wnteFn>2y O

(| Dul) dz

and so

Cc
CROEEY) P(1Du)) do
Qpy (W)N{(IDul)> 3}
F
PFD

(3.1.84)
/pr<y>m{<p<F>>?} 0

+

>

Next, we observe from (3.1.83b) that

][ o(|Dul)dz < A and ][ S(|P|) dx < 6A.
Qaopy (y) Qa0py (V)
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Fix any € € (0,1). Then by Lemma 3.1.18, we have

][ o(|Du — Dv|)dx < ce
Q20py (y)

2
and <][ ©*(|Dv|) dm) < cA
QSpy (v)

provided (3.1.82) holds.
Fix any large N > 1 to be determined in (3.1.91). Then we have

(3.1.85)

p(|Du(z)]) = NA
= @(|Du(x)]) < cp(|Du(x) — Du(x)]) + c(7)(NX)' (| Dv () )™

With the help of (3.1.85), it follows that

/ (| Dul) du
Qspy (Y)N{@(|Dul)>NA}

<c / (| Du — Do) + (NN Du))?] da
Qspy (Y)N{@(|Dul)>NA}

<c(eA+ (NN 1Q,, ()]

— (e + N"2)AQ,, ()]

(3.1.86)
Now we use Vitali covering lemma to obtain a covering {Qs,,. (Ym )}y
of {x € @, : ¢(|Du(zx)]) > NA\} C E(\) with
9o —T1
m € E(N), pm € |0,
4 A, p ( 40 ) (3.1.87)

and  {Q,,. (Ym)}m—q are mutually disjoint.

Since 40p,, < o — 71, we notice that Uy, Q,.. (ym) C Qr,. Hence it follows
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from (3.1.84), (3.1.86) and (3.1.87) that

/ o(|Du]) da
Qri{@(|Dul)>NA}

o0

<

/ (| Dul) dz
Qspm (ym)N{o(|Dul)>NX}

m=1

< C(c’f + Nl—Z'y))\ Z |me (ymﬂ

m=1

F
< cle+ N'") (/ o(|Dul) dx —i—/ () dx) :
QryN{e(IDul)>2} Qran{e(F)>2} 0

3

which is the conclusion of the lemma. ]
We are now ready to prove Theorem 2.1 using Fubini’s theorem.

Proof of Theorem 2.1. We define the truncated functions by

[e([Dul)]; := min {e(|Dul), 1} (¢ = 0).

According to Lemma 3.1.19, we have that for ¢t > 2\

¢
/ )\7_2/ o(|Dul) dzd\
20 Qry N{g(IDul)>NA}

t
<c(e+ N'"?7) [/ A2 o(|Dul) dxd (3.1.88)
2

Xo /Q)r20{<ﬂ(|Du|)>§}

t
F
_|_/ )\72/ Mdajd}\ ,
2X0 QroN{e(IF)>2} 0

provided A is (0, R)-vanishing of codimension 1. For the left-hand side of the
above display, we use change of variables and Fubini’s theorem to observe
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that

/ / o(|Dul) dxd
er N{p(|Dul)>NA}

N2 / (| Dul) dzdx
NXo Qry (| Dul)>A}

- L,
1 / (’ D min{¢(|Dul),Nt} 2 g
= —— o(|Du / AT dNdx
N1 a,, 2N Ao

—_

~ iy, (DD fmin{e D). ey

1

—(2NXo)"7 ] da

1

= m/T ¢(|Dul) [min{e(|Dul),t}7~" = (2N Xe)""'] da.

Qry

(3.1.89)

For the right-hand side of (3.1.88), by the similar computation as above, we

have
/ N 2/ (| Dul) dzdA
220 QryN{(IDul)>2}
3
== [ Dl [min{p(Du, 387 = (630 ] do
Y= Qry
Y
<5 [ eDuhminge(Dul),tp ! do
v=1Ja,
and

/ / m{ o (IFl)d I\
- :

Sc/%( ; )
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Combining all the estimates (3.1.89)—(3.1.90) with (3.1.88), we find that

][Q (| Duf) [min{p(|Dul), )" da

71

<e3(eN" 4 N7
« (][ (1Dul uin{(|ul). oy e+ f (D) dw)

QTQ QT‘Q

+ c(2X0) 1 ][ o(|Dul) dz

Qrg
for some positive constants ¢ = é(n, k1, ko, v, L,7y) and ¢ = ¢(n, k1, ke, v, L, 7).

We make

e3(eNHENT) < o (3.1.91)

N =

by first selecting the constant N = N(n, k1, ko, v, L,7y) > 1 sufficiently large,
and then choosing € = e(n, k1, ke, v, L,y) € (0,1) sufficiently small. Accord-
ingly, we can find a small § = §(n, k1, ko, v, L,7y) > 0 from Lemma 3.1.19.
Consequently, we have

f (| Dul) [min{(|Dul), £}~ da

Qry

<5 elDu) minfe(Du), ) do

Qry
vef w(F) e £ e(Duds
QTQ QTQ
<

FellDul) in{p(Du), 0 do e f (P ds

QTQ QT‘Q

re(2m ) (. [+ Feten] as)

1
2
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Now from Lemma 2.0.1, we discover

][ (| Dul) min{p(|Dul), £} de

R

<of etirydere(f [eupu)+ jo] as)
<o(f clpis) +ef oy

Finally, letting ¢ — oo, the conclusion of Theorem 3.1.1 follows. ]

3.2 Global estimates for a general class of
quasilinear elliptic equations with Orlicz
growth

This section is devoted to providing an optimal global Calderén-Zygmund
theory for quasilinear elliptic equations of a very general form with Orlicz
growth on bounded nonsmooth domains under minimal regularity assump-
tions of the nonlinearity A = A(z,u, Du) in the first and second variables
(x, z) as well as on the boundary of the domain. Our result improves known
regularity results in the literature regarding nonlinear elliptic operators de-
pending on a given bounded weak solution.

3.2.1 Hypothesis and main results

We shall deal with the global gradient estimates of a weak solution to the
following Dirichlet problem:

—divA(z,u, Du) = —div (G (|F|)F> in

7] (3.2.1)

u=0 on 0,

where Q C R" (n > 2) is a bounded domain with possibly nonsmooth
boundary 0f) and G is an N-function in the sense of the definition intro-
duced in Section 3.2.2, whereas F': () — R" is a given vector field such that
F € LYQ;R™). Throughout the section, we shall assume that the vector
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field A: R" x R x R" — R" is a Carathéodory map satisfying the following
structure assumptions with fixed constants 0 < v < L < oo:

G|(§||§2|) n? < (DeA(z, 2, €)n,1)
G (<))

A, 2, &)l + €l DeAlw, 2, )| < L=

14

(3.2.2)

for every x € Q, (2,£) € R x (R"\ {0}) and n € R".

In order to achieve the desired result, we need to ask minimal smooth-
ness condition on A(x, z,£) with respect to x and z-variables, and a proper
geometric structure on 0f). Based on works [33, 55|, we suppose that

1. Continuity with respect to second variable of A: For every M > 0,
there exists a non-decreasing function wyy : [0, 00) — [0, 00) such that

111%1+ wu(p) =0 (3.2.3)
and
Az, 21,§) — Az, 22, §)| < wnr(lz1 — 22 )G (€]) (3.2.4)

holds for a.e. x € R", 21,25 € [-M, M| and £ € R™.

2. (9, R)-vanishing of A: For every M > 0, there exist R > 0 and § > 0
depending on M such that

sup  sup sup ][ 0(B,(y))(x,z)dx < 0, (3.2.5)
By(y)

2€[—M,M] 0<p<R yeR®

where 6(B,(y))(-,-) : R" x R = R are defined by

- ’A(.T,Z,f) - (A('aza’f))Bp(y)‘
0(B,(y))(x, 2) = o &N

with the notation

(A, 2,8))B,) = ][B ( )A(x,z, ) dz.
p\y
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3. (0, R)-Reifenberg flatness of 2: For every r € (0, R] and xy € 02, there
exists a new coordinate system {yi,--- ,¥y,} with the origin at xy such
that

B.(0)N{y:y,>0r} C B.(0)NQ C B.(0)N{y :y, > —0r} (3.2.6)
holds in this coordinate system.

The continuity assumption (3.2.3)-(3.2.4) on the second variable of the
nonlinearity A is a minimal one in the setting of Orlicz growth. Roughly
speaking, the (§, R)-vanishing property (3.2.5) exhibits a kind of smallness in
terms of BMO, which allows z-discontinuity of the nonlinearity. The geomet-
ric structure (3.2.6) means that the boundary of 2 can be locally dominated
by hyperplanes with proper chosen scale. In fact, a set having rough fractal
boundaries such as the Koch snowflake with smallness of the angle of the
spike with respect to the horizontal is included in the class of the Reifen-
berg flat domains and in particular, domains with C'-smooth boundary or
boundary that can be locally expressed as a graph of a Lipschitz function
with small Lipschitz constant are also members of the Reifenberg flat class.

Remark 3.2.1. If Q is (0, R)-Reifenberg flat, then it holds that

sup sup —|B7«(y)| < (
yEQ 0<r<R/2 12N B, (y)] —

2 \"
1_45) <4 (3.2.7)

Now we are ready to state the main theorem.

Theorem 3.2.2. Letu € WHC(Q)NL®(Q) be a weak solution of (3.2.1) with
|ul|Loe @) < M under the assumptions (3.2.2)-(3.2.4). Suppose that G(|F|) €
L7(Q) for some v > 1. Then there exists 6 = d(n, sq, v, L, M,wy(+),7y) > 0
such that if the conditions (3.2.5) and (3.2.6) hold for some R, then there
holds that G(|Dul|) € L7(S2) with the estimate

/G”(|Du|)dm < c/ G(|F)) da (3.2.8)
Q Q

for some constant ¢ = c(n, sq, v, L, M,wp (), [Q],7)-
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3.2.2 Proof of Theorem 3.2.2

Before the proof of main theorem, we state the definition of an N-function
G introduced in the previous section.

Definition 3.2.3. ® : [0,00) — [0,00) is said to be an N-function with

index sp if ® € C'([0,00)) N C?((0,00)) is an increasing convex function
(1)

such that lim+ @ =0, tlim —— = oo and there exists a positive constant
t—0 —0
se > 1 satisfying
1 td"(t)
< < 3.2.9
so = () So ( )

for uniformly all t > 0.

Clearly, ® satisfies Ay and V5 conditions (see for details [5, 94, 129, 195]).
As a consequence of (3.2.9), we easily observe that
1 tP'(t)

—41<
P )

<sg+1 forevery t>0 (3.2.10)

and
min {)\54)“, Ai“} O(t) < B(t\) < max {)\3“1, A%“} O(t)  (3.2.11)

for all s, > 0. Let ® be an N-function with the index s¢. We also need the
following Young’s inequality [12], which will be used frequently later. There
exists a positive constant ¢ = ¢(sg) such that
(¢
sL +1
t
holds for all s,t >0 and 0 <e < 1.

Given an N-function ® with index sg, we also define a vector field Vg :
R™\ {0} — R" by

@ ~ s(I)/(t) —+ tq)/(S) < E(I)(S) + ‘

d(t) (3.2.12)

gse

Va(€) = (%)g (3.2.13)
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Then the following known fact will be used frequently (see for instance [92]):

Va (&) — Va(&)* = (|6 ] + [&])[& — &f

el tla),. o,
RTINS

for every &1, & € R™ with |£;|+|&| > 0, where all the implied constant depend
only on sg. Moreover, we shall also use the following useful inequality several
times afterwards.

(3.2.14)

Lemma 3.2.4. Let ® be an N-function with the index s¢. Then there exists
a constant ¢ = ¢(s¢) such that

(e~ &) <c®(G)) + S Vale) ~Val@)P  (3:215)

holds, whenever ¢ € (0,1) and &,& € R™ with |&1] + |&| > 0.

Proof. Firstly, using (3.2.11), we observe that

(|6 — &) < P2l&]) + (2/&]) < 270 (B(|&]) + @(I&])  (3.2.16)
holds for every &;,& € R"™. Then, it can be easily seen that

(|61 — &)
[D7(|€1] + [€21)]
[(I)/(|£1 _ £2|)]2 E " o 2
= Tq)//<|£1’ + ’52’) + Tq) (’51’ + |§2D\51 €2|

< er (|6 + &) + ZIVa(&) — Vo(&)

D61 —&f) < e 75 P (16] + )] 1é1 — &

hold for some constant ¢ = ¢(sg) and every 7 > 0, where we have applied the
property that the function @' is increasing and Young’s inequality together
with the properties (3.2.9), (3.2.10) and (3.2.14). Now using (3.2.16) and
(3.2.11) in the resulting term of the last display and recalling 7 > 0 is a free
parameter, we find

(61 - &of) < 726 — &) + 7R + ZVa(61) — Vol
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with some constant ¢ = ¢(sg). In particular, we have

T

(61 - &) < -

- T

D(|&1]) + m’vcb(fl) — Vo(&)[%.

_£€

Finally, replacing 7 := ;= for any € € (0,1) in the last display, we arrive at
the desired inequality (3.2.15). O

Using this vector field defined in (3.2.13), it’s convenient to formulate the
monotonicity properties of A appeared in (3.2.1) as follows:

(A(x,2,6) — Az, 2,&),& — &) ~ [Va(&) — Va(&))? (3.2.17)

and

(Alz,2,€),€) = |[Va (& = G([¢]) (3.2.13)
forall z € Q, z € R and &, &,& € R™\ {0}.

Remark 3.2.5. Here we introduce the scaling invariant properties of the
equation (3.2.1). Let u € W, (Q) be a weak solution of (3.2.1) under the
assumptions (3.2.2) and (3.2.3)-(3.2.6). For fixred xo € Q, r > 0, and \ > 0,
we define

Az, 2, 6) = AlT0 +g%?”’k§), G(t) = %
i(z) = w and  F(z) ;:M

for every x € Q = {@:yEQ}, EeR", ze Randt > 0. Then the
followings hold:

1. Gis an increasing convex function satisfying the condition (3.2.9) that
means G is an N-function with the index sq.

2. The newly defined nonlinearity A satisfies the following structure as-
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sumptions:

<D§f1(m,z,f)77>77> > ﬁ%wgy
A, 2,€)| + €l DeA(r, 2,6)] < z%

with some constants v = (v, s¢) and L = L(L, s¢), whenever z,1 €
R", ¢ € R"\ {0} and z € R.

3. Clearly, u € Wol’é(fl), Fe LG(Q;R"), and they satisfy

/ﬂ<%~l(x,&,Dﬂ),Dcp> d:z::/Q<G|(]’§|>ﬁ,Dgp> dx

for all p € WHE(€).

4. By the very definition ||| g < M/(Ar), it holds that
A, 21,€) — Al 20,6)] < wneMrln — )G, (3.2.19)

5. If A is (0, R)-vanishing, then A is (6, %)—vanishmg, and if Q is (6, R)-

Reifenberg flat, then Q is (9, %)—Reifenberg flat.

Based on Remark 3.2.5, we shall proceed a series of comparison estimates
in the scaled version with the parameters (p, K) from the original given two
parameters (r, \), where the free parameter K will be determined afterwards.
In what follows, for p = 1,2,3,4 or K, we denote

B,=B,0), Q,=QnB, B 0):={xcB,:z,>0}

p

where Q has been defined by Remark 3.2.5. Before we start the comparison
estimates, let us provide a Poincaré type inequality for functions of VVO1 ’G(Qp).

Proposition 3.2.6. There ezists a constant ¢ = ¢(n, sg) such that

F. GUshar<e (s + o) £ GBS

Qp
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holds, whenever f & W&’G(Qp).

Proof. By redefining f = 0 on B, \ (), one can assume that f € Wl’é(Bp).
Then we are able to apply Poincaré inequality [92, Theorem 7]. In turn, it

yields that
/] -
]{Bp (p) da:<c]{3pG(|Df|) dx

with some constant ¢ = ¢(n, s¢). Therefore, using (3.2.11) and recalling that
f=0on B,\ (), we obtain the desired estimate. [

We only consider the boundary case since the interior case can be handled
in a similar way. By the scaling invariance property and the definition of the
Reifenberg flat domain introduced in Remark 3.2.5, it suffices to proceed the
comparison estimates for u instead of u. Let K > 4 be a free parameter which
will be chosen in Lemma 3.2.7, and u be a localized solution in Qs of the
equation (3.2.1) as follows:

—divA(z, @, Dit) = —div (@F) in Qp,

|F (3.2.20)
=0 ondQN By.
Throughout this section we suppose that
||12||Loo @ < < M/(Kr), (3.2.21)

]{} (]Du\)d (3.2.22)
and

][ G(|F|)dx < 6. (3.2.23)

QK

We further assume that

F 0B (@) de <5
Qg

and BgN{z:z, >0} C Qg C BxN{z:z, >-2K5}.

(3.2.24)
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First comparison estimate: Under the assumptions (3.2.21)-(3.2.23), let
w € WHY(Qg) be the weak solution of the following homogeneous problem:

{—divfl(x, i, Dw) =0 in Qg (3.2.25)

w=1a on .
Then we collect the known facts regarding w.

1. (Energy estimate) There exists a constant ¢ = ¢(n, sg, v, L) such that

f G(|Dw|) dz < ][ G(|Di) dz < c. (3.2.26)

0 Ox

2. (Comparison estimate) By taking w — @ as a test function to the
equations (3.2.20) and (3.2.25), respectively, following the proof of [70,
Lemma 5.3] and applying Lemma 3.2.4, for any 7,7 € (0,1), we dis-
cover that

f G(|Di — Dw|) dz
Qk

< S d \Va(Da) — Va(Dw)[ dx + 71][ G(| D) dx
T JQy Qx

<< G’(|ﬁ|)|Dﬂ—Dw|da:+7‘1][ G(|Ditf) dz
T1 JOk Qx

()
S_ +T7 ) +cm
T \T%¢

for some constant ¢ = ¢(n, sg, v, L), where we have applied (3.2.12)
~ 1
for G and (3.2.26). As a result, by choosing small 71 := §20+s¢) and
1
7 :=0'c in the last display, we find that

G(|Di — Dwl) da < 6750, (3.2.27)

Qi

3. (Higher integrability) According to the proof of the higher integrability
for (3.2.25) [70, Lemma 5.6] with (3.2.26), there exists a small constant
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oo = oo(n, sg, v, L) > 0 such that

(][ GHUOODw')dm)% = C][ G(|Dwlydr <ec  (3.2.28)

Q3 Qx

with some constant ¢ = ¢(n, sg, v, L).

4. (Oscillation estimate) Using [167, Corollary 1.5], there exists a constant
B € (0,1), depending only on n, sg,v and L such that

3 B
< — o (& 3.2.29
OQS3CU) = ( K) Jwllg (Qk) ( )

holds for some ¢ = ¢(n, sg, v, L).

Second comparison estimate: We consider a function v € Wl’é(ﬁg)
being the weak solution of the following problem:

(3.2.30)

—divA(z, (#)g,, Dv) =0 in Qs
v=w on ds.

Then we provide a comparison estimate between functions w and v in the
next lemma.

Lemma 3.2.7. For any ¢ € (0,1), there exist two constants 6 € (0,1/8)
and K > 4 depending only on n,sq,v, L, M,wy () and & such that if w €
WHC Q) is the weak solution of (3.2.25) and v € WYY (Qs) is the weak so-
lution of (3.2.30) under the assumptions (3.2.21)-(3.2.24), then the following
comparison estimate holds:

f G(|Dw — Dv|) dzx < e. (3.2.31)
Q3

Proof. First we show that, for any 7 € (0, 1), we have

f G(|Dw — Dv|) dx
s (3.2.32)
<7

~ C - - ~
. G(|Dwl|) dx + g ]{}3 wy (Kr|a — (u)Q3\)G(\Dw\) dx
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with ¢ = ¢(n, sqg,v, L, M,wy(+)). Indeed, taking w — v as a test function in
both (3.2.25) and (3.2.30), we see

]{j <151(:B,&, Dw), Dw — Dv> dx = ]{) </~l(a:, (2)g,, Dv), Dw — Dv> dx.

On the other hand, recalling (3.2.19) and Young’s inequality (3.2.12), we
obtain that

][~ <A(x, (@)g,, Dw) — A(z, @, Dw), Dw — Dv> dx

Q
_G(Duw)
< — JU 1 Do\ et V4 —
_]£)3wM(Kr|u (1)g,]) Dul |Dw — Dv|dx
< f wnt (Kl — (i)g, )G(| Duwl) da
T o

+ 7’1]{~2 wy (Krla — (ﬂ)@3|)é(|Dw — Dvl) dx

for some constant ¢ = ¢(n, sg, v, L) and for any 71 € (0,1). Recalling that
U — (@)g,| < 2M/(Kr) by the assumption (3.2.21) and using Lemma 3.2.4,
the property (3.2.17) and (3.2.19), we have that

][ G(|Dw — Dv|) dx

Q3

< g][ G(|Dwl) dx

0
+ E][ </~1(x, (@)g,, Dw) — Az, (@)g,, Dv), Dw — Dv> dx
T Ja,
T ~
= —][ G(|Dw|) dx
2 Ja,
c P T
+ —][ <A(x, (@)g,, Dw) — A(x, 4, Dw), Dw — Dv> dx
T Ja,
<2 Gpuhdr+ e f wnliria - (@, hG(Du) do
2 Qg Tl T Qg
4 M][ G(|Dw — Dul|) dx
T Qs
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holds for every 7,7, € (0,1) with some constants ¢, = c.(n, sg, v, L). Choos-
ing 7 1= 7/(2¢. wp(2M)) after some manipulations, we arrive at (3.2.32).

We next show that there exists a constant ¢y = co(n, sg, v, L, M,wp(+))
such that

. ~ (M
_ < — . 2.
- G(|Dw — Dv|)dzx < oG (Kr) (3.2.33)

Q3
For this, let n € C5°(By4) be a cut-off function such that 0 <n <1, n=1

in B and |Dn| < 2. By taking 7°¢*'w as a test function in the equation
(3.2.25), using (3.2.2) and Young’s inequality (3.2.12), we have that

f n*¢ G (|Dw)) do < c][~ <A(x,ﬂ, Dw),nsc+1Dw> dx

Q Q

= —c(sg + 1)][ <f~1(:v,ﬁ, Dw),nsGan> dx
0

"(|D
<cf werl DDy 0,
Qs | Dw|

< f e (<m>é<|Dw|>+

Q

(Tm)se

ST]{) 778C”L16~¥(|D1,U|)dx+c(7‘)][~ G(|w|)dm

Qy

é<|w||Dn|>) da

with some constant ¢(7) = ¢(n, sg,v, L, 7). By choosing 7 := 1/2 and ob-
serving that n = 1 on €23 in the last display, we conclude

- G(|Dw|)dx < ¢ - G(|w) da.
Qg Q4

Using the last display and recalling |@ — (1)q,| < 2M/(Kr) in (3.2.32) with
fixed T = 1/2, we conclude that

]éG(|Dw—Dv|)d$§wM(2M)][ G(|Dw|)dm—|—c][ G(|Dw|) dz

Qg QS

< ]{2 G(Jw) da

with ¢ = ¢(n, sq, v, L, M,wp(+)). Therefore, (3.2.33) follows from the maxi-
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mum principle that
[w]] oo sy < ]l poeerye) < M/(KT).

If COG’(%) < g, then the conclusion directly holds by (3.2.33). So, we
consider the remaining case that

r

oG (Kﬁ) > € (3.2.34)

holds. Recalling that wy(+) is a modulus of continuity, we can choose a small
do = do(sa, M, wa(+), 7) € (0,1) such that

0 < wy(p) <7562 for all p € (0,6).

On the other hand, for any a € (0, ag) with o := —— logs, %, one can see

1+sa
that

Y

N —

[é((so)]a _ chgig))} > 501(1—1—5@) >

where we have used (3.2.11). Then in the view of the last two display it
follows that

N 2M
wir(p) < 7562 4 2wy (2M)G(p)*  for all p € (0, K_} : (3.2.35)
r
Using the last display in (3.2.32) and absorbing the terms, we find that

: G(|Dw — Dv|) dx
s (3.2.36)

<cr 4 G(Dw|)dr + — ][~CJ(KH&—(ﬂ)93|)a@(|le)dx.
Qg QB

7—8(;—1—1

Now we estimate the second term in the above display. For this, we first

take o < min{li‘;o,ao} in such a way that a = a(n, sg, v, L, M, wy(-), T),
where oy is the higher integrability exponent that has been defined in (3.2.28).

Therefore, using Holder’s inequality and higher integrability (3.2.28), we find

79



CHAPTER 3. CALDERON-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

that

G(Krla — (@)g,])*G(| Dwl) do

Qs

o e (o)
§c<]{§3 G(Krli— (@ ) ( . &(|Dw)) 1+00dx>1+””
<o ctra—@a) dx)

for some ¢ = ¢(n, sg, v, L, M,wy(+)), where our choice of o guarantees the
validity of ﬁ < 1+ 0p. Now, it follows from the triangle and Jensen’s
inequalities that

G(Kr|u — (#)g,|) dx

Q3
<c4 GErli—w|)de+c4 GErlw—(w)g,|)dr
Qs Q3
~ N 3.2.38
+ef G T, - (@a)) do (3:2.38)
3
<, 4 G(Krla—w])de +c. 4 G(Kr|w — (w)g,|) dv
Qg Q3
=:c.(I3+ Iy)

for some ¢, = c.(n, s¢). By recalling (3.2.34) and (3.2.11), notice that

1
M 1 1 \%"
£ <l (Kr) CG(Kr) (Kr)
holds for some constant ¢ = ¢(n, sg, v, L, M) if Kr > 1. Therefore, one can

see that

c
gsa 283

+1>c((Kr)'* e +1) (3.2.39)

with some constant ¢ = c¢(n, sg, v, L, M). The last display together with
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(3.2.27), (3.2.11) and applying Proposition 3.2.6 implies that
I <c ][ max {(Kr)e+, (Ir) 2o+ Gl — w)) da
Q4

< cf (1+ (Kr)*™) G(|a — w|) dx

Q

c )~
e ]{}K G(|la — w|) dx

sg+1 5

<

> o5G o
1
2(1+sq)
co ¢ Kn+sc;+1
> —58G

for some ¢ = ¢(n, sg, v, L, M,wy(+)). The remaining term I in (3.2.38) can
be controlled using the oscillation estimate (3.2.29) as follows:

~ = 3 B
1= Gt =i hds <o f 6 (K (L) fulm, )
Qs {23 K

i 5\ A1/s6+D) .

for some ¢ = ¢(n, sg, v, L, M), where we have used the fact that [[w]| e (g, <

[wl[ o) < 2L and (3.2.11). Inserting the last two displays into (3.2.38), we
conclude that

=)~ - C52(T15G) n+sg+1 1
]{3 G<ru—<u>@5r>dxsfs<—gsc N (Tt

with some constant ¢ = ¢(n, sg, v, L, M,wy(+)). This estimate together with
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(3.2.36) implies that the following inequality

f G(|Dw — Dv|) dx

Q3
§7THG 1 :
c n+sg+1
< <T + ¢(T) <—5sa K + )

1 o
§20+sc) 1\ @A/sc+1)
< o7 + c3(7) ( €SGG ) Re6 e 4 cy() (f) '

holds for any numbers 7 € (0,1), K > 4 and 6 € (0,1/8) to be chosen
in a few lines, where the dependencies of constants are as follows: ¢ =
ca(n, s, v, L, M, wy (7)), e3(7) = e3(7)(n, sq, v, L, M wy(+), T),

a = an,sg, v, L, M,wy(-),7) and § = B(n,sq,v, L). Choosing 7 small, K
sufficiently large and then finally select ¢ sufficiently small in such a way that
the following inequalities hold:

<

Wl M

NG aB(1/5G+1)
CoT 3, C3\T K

1
(52(1+5G)

and 03(7_)( ) K(n+sc+1)a§

€
3

esa

Therefore, the claim (3.2.31) follows. O

Third comparison estimate: Finally, we consider the limiting homo-
geneous equation:

{—divA(Dh) =0 in By

h=0 on Byn{z, =0} (3.2.40)

with  A(¢) ::][ Az, (0)g,,§) dz.

+
BZ

Under the assumptions of Lemma 3.2.7, there exists a weak solution h €
WhC(BF) to the equation (3.2.40) such that

IG(I DA | oy < 6 and ][ G(|Dv — Dh|)dx < ¢ (3.2.41)

Qo
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for some constant ¢, = ¢,(n, sg, v, L) > 1, where h is the null extension of
h from B to Bs. Indeed, the first inequality of (3.2.41) follows from [169,
Theorem 1.2]. Then following the proof of [70, Lemma 5.4, we obtain the
second inequality of (3.2.41). In the case of interior estimates, we consider
the following equation:

with A(¢) = / Az, (@), ) do.  (3.2.42)

Bs

—divA(Dh) =0 in By
h=v on 0B,

We are also able to obtain the exactly same estimates as (3.2.41), with h =
h. Taking into account (3.2.40)-(3.2.42) and combining all of the estimates
obtained in (3.2.27), (3.2.41) and the one by Lemma 3.2.7 based on the
triangle inequality, we can now achieve the following lemma.

Lemma 3.2.8. For any ¢ € (0,1), there exist constants K > 4 and 6 €
(0,1/8), both depending on n, sq,v, L, M,wy/(+) and & such that if

u € Wl’é(QK) is a weak solution of (3.2.20) under the assumptions (3.2.21)-
(3.2.24), there exists the weak solution h € Wl’é(Bg) of (3.2.42) for the

interior case or a weak solution h € WYY (BJ) of (3.2.40) for the boundary
case such that

|GUDRN | ey < ¢ and / G(|Di — Dh|)dz <
Q2

for some constant ¢y = cy(n, sq, v, L) > 1, where h € Wl’é((lg) is equal to h

for the interior case, and h is the zero extension of h from By to By for the
boundary case.

Proof of Theorem 1.1. The proof is based on the techniques employed in [70,
Theorem 2.5] and initially introduced in [3]. For A > 0, we define

E(u,A) :={z € Q: G(|Du(z)|) > A}

and
H,(p) = ]{W) GDu) + 60F) | do (e 00> 0)

Here, 6 € (0,1/8) will be determined later, depending only on
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n, sq, v, L, M,wy(+) and 7. By the Lebesgue differentiation theorem, we have

111%]‘.] (r) > G(|Du(z)]) > A (3.2.43)
T—

for a.e. y € E(u, ). Let € be a positive number to be determined by the end
of the proof and consider a number K > 4 as given in Lemma 3.2.8 depending
on n,sq, v, L, M,wy(-) and &, where in what follows we fix M := [Ju/[ jec (-
From now on, we only consider the values of A satisfying the following bounds:

A > ((SOOOK) % + 1) Ao
R
(3.2.44)

for Ao ;_]{2 [G(|Du|)+%G(1F|)] dz

where R is a number coming from the assumptions of Theorem 3.2.2. It can
be easily seen that for a given y € E(u, \),

IB (y
(Y

Y
1B (y)|

Q

(3.2.45)

)
)
for any r € [2000—[{ 2]

By (3.2.43) and (3.2.45), for a.e. y € E(u, ), there exists r, € (0, 3p0e7)
such that

H,(r,) =X and Hy(r) < forall r e (r,, R/2].

Now by the Vitali covering lemma, there exist mutually disjoint open balls
{B,,(y;)}2, for y; € E(u, A) and r; € (0, 5500 ) such that

’ 2000K
E(u,\) C U Qs (y;) U {a set of measure zero}, (3.2.46)
i=1
1
][ [G(|Du|) +Lauep| de = A, (3.2.47)
2, () 0
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and

1
][ {G(|Du|) + 5G(|F|) de < X forall r e (r;,R/2]. (3.2.48)
Qr(v:)

Then since 7~ > 5K > 5, following the proof of [70, Section 6] and applying
(3.2.48) and Temma 3.2.8 with the scaling invariant property introduced in
Section 3.2.2, we see that there exists h; € W' (Qs,,(y;)) such that

|G(Dhi) || Lo @5, () < €(n)cpA

and ][ G(|Du — Dhy|) dz < ¢(n)eX, (3:249)
QS’I‘Z(y'L)

where ¢, > 1 is the same one determined by Lemma 3.2.8.
Let ¢, = 2°¢72 . ¢(n)c, > 1. For a.e 2 € E(u,c,A\) N Qs (35), after
elementary manipulations, we find

G(|Du(@)]) < 229" G(| Du(x) — Dhy(x)|) + 2°¢ 7' G(| Dhi(2)])
< 25T G(|Du(z) — Dhy(z)]) + 2°¢He(n)epA

< 2 1G(|Dule) ~ Dhi(a)]) + 3G (|Du(x)).
In particular, we have
G(|Du(x)|) < 2°¢2G(|Du(x) — Dhy(x)|) a.e 2 € E(u,cp)) N Qs (1:).
Therefore, using (3.2.49), it follows that

/ G(|Du!)d:v§c/ G(|Du — Dhy|) dx
B(t,em\) 7, (y1) Qs (yi) (3.2.50)

< calQ, (i) leA

for some constant ¢4 = c4(n, sg, v, L). On the other hand, (3.2.47) implies
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that

e G(Du) do
E(”;%)mgri (y’b)

/ G(|F))da.
BE(F,%)nQ0, (v:)

> o

(3.2.51)
_'_

| v

where we denote by
E(F)) :={z € Q:G(|F(x)]) > A}

Now, inserting (3.2.51) into (3.2.50), it yields that

/ G(|Dul) dz
E(u,cmnA)Nsr, (yi)
2c4€

< 2046/ G(|Du|) de + — G(|F|) dx
B(u,% )N, (vi) 0 E(F,22)nQ0, (v:)

Meanwhile, the choice of ¢,, > 1 and (3.2.46) imply that

[e.9]

E(u,eqn\) C U (E(u, ) N Qs (v:)) U {a set of measure zero}.

=1

Combining the last two displays, we conclude

(|Du]) de < / G(|Dul) dz
/E'(U,Cm)\) Z ’lL Cm>\ I’-\|S—25'r ’L

1
< 204e / G(\Du)) dz + - G(F|) do
; < B(u,3)02, (v:) 0 BE(F,2)nQ0, (i)

< 2c¢4e (/E( 5 G(|DU|)d$+%/E(F‘”) G(|F|)dx> ,

4

where we have used the fact that {B, (y;)}io; is a collection of mutually
disjoint balls. After arguing similarly as it has been done in [70, Section 6]
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and choosing € € (0, 1) so small such that 2c4(c(n)c,)” e < 1, we have

]{)[G(|Du|)]7 dr < c\j + c][ [G(|F|)]" dx (3.2.52)

Q

for some ¢ = ¢(n, sq,v, L, M, wp(+),|€2], 7). Then we find small
d =d(n,sg,v, L, M,wp(+),7v) > 0 from Lemma 3.2.8. Here, we note that the
following energy estimate holds for the problem (3.2.1):

/QG(|Du|)dx < c/QG(|F|)dx

for some ¢ = ¢(n, sg, v, L). This together with Jensen’s inequality yields

N = (ﬁ [G(|Du|) +%G(|F|)] dx)7 < c]ic:(|p|)wx.

Inserting the above inequality into (3.2.52), it yields (3.2.8), which completes
the proof. O]

3.3 Local estimates for non-uniformly elliptic
problems with BMO nonlinearity

In this section, we provide a new approach to obtain Calderén-Zygmund
type estimates for non-uniformly elliptic equations with discontinuous non-
linearities of double phase growth. This approach, which is based on a small
higher integrability result for the gradient of weak solutions to the associ-
ated homogeneous problems together with extrapolation from Muckenhoupt
weights, enables us to find a proper comparison estimate of approximation by
imposing merely a small BMO assumption on the nonlinearity with respect
to the x-variable. As a consequence, we are able to prove an optimal regu-
larity theory for a larger class of double phase problems with discontinuous
nonlinearities in the literature.
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3.3.1 Hypothesis and main results

To present our gradient estimates, we display the precise structure assump-
tions of the problem. With the assumptions (1.2.2)—(1.2.4) and the notation

H(z,t) =t +a(x)t! (xe€Q, t>0), (3.3.1)
we actually deal with the following equation of the form:
div(A(x, Du)) = div(|F|P7*F + a(z)|F|*%F) in Q. (3.3.2)

Here, F' = (f1,..., fn) : © — R" is a given vector field such that H(x, |F|) €
L'(Q), and the given nonlinearity A(x,z) : 2 x R — R" is a Carathéodory
vector field which is C*(R™ \ {0})-regular for z variable and satisfies

|[A(z, 2)||2| + |0 A(w, 2)||2|* < LH(=, |2])

@D o o A e 6

ks

(3.3.3)

for any ¢ € R™ with some constants 0 < v < L < oco. A weak solution u
of (3.3.2) belongs to the Musielak-Orlicz space W' (Q) which is specifically
defined in Chapter 2.

We consider a smallness assumption on x % in the BMO
sense, uniformly in z, as we now state.

Definition 3.3.1. We define

0(A; B, (y))(x)

= sup (3.3.4)

2€R™\{0}
<2L.

Az, z) _ A( 2)
2P~ + a(z)|z]e! (!ZP”1 + @(')’Z|q1)Br(y)

With two parameters R € (0,3) and 0 € (0,%), we call that A is (6, R)-
vanishing if the following holds:

sup  sup ][ 0(A; B, (y))(z) dx < 0. (3.3.5)
Br(y)

0<r<R B,(y)CQ
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With the convenient notation
data = {n7p7 q, &, ||a||0,om v, L7 ||H(7 |Du|)||L1(Q)}7
we now state our main theorem.

Theorem 3.3.2. Under the assumptions (1.2.2)—(1.2.4) and (3.3.3), sup-
pose H(z,|F|) € L7(Q2) for some v > 1. Then together with the assumption
(1.2.8), there exists a constant § = d(data,y) > 0 such that if A is (0, R)-
vanishing for some small R > 0, any weak solution uw € W7 (Q) of (3.3.2)
satisfies H(x,|Dul) € L] .(Q). Moreover, for any Qo € Q there exists a ra-

dius R = R(data,dist(Qo,0Q),, ||H(x, |F|)||zv«) > 0 such that for each
B, (y) C Qo with 0 < 2r < R and Bgr(y) C 2, we have

H(zx,|Dul)” dz
Br(y)

gl
Sc(][ H(x,|Du|)d:1:> —{—c][ H(z,|F|) dx
Bar(y) Bar(y)

for some constant ¢ = c(data,dist(Qo, 0Q), 7, ||H(z, |F|)|| v @))-

(3.3.6)

We then explain why (1.2.8) is needed when treating double phase growth
problems with discontinuous coefficients.

Remark 3.3.3. Let Q = Bg(0) for some R > 0, and let the constants
n,p, q, o satisfy (1.2.2)~(1.2.4). Suppose that the function a(z) € C**(Bg(0))
defined in (1.2.3) is such that

a(z) =0 if z€ BEL(0):=Bg(0)Nn{xeR":z, >0}
a(r) >0 if xe€ Bg(0):=Bgr(0)Nn{reR": 2z, <0}

With F being a given vector field as above, we now consider the following
equation:

—div[(1 + a(z)|Du|"P)A(z, Du)] = —div[|F|P~2F + a(z)|F|*"2F] in Bg(0),

where A(z,z) : BR(0) x R" = R" is a Carathéodory vector field with A(z, -)
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being C*(R™ \ {0})-regular such that

Az, 2)||z] + |0, A(z, 2)||2|> < L|z[P
{l( )zl +10: Az, 2)||] 2] (337)

Va2l < (0. A, 2)6,€)

Jor any § € R™ and some constants 0 < v < L < oo. It is indeed necessary
to assume (3.3.7) on A(z, z) for x € B£(0), since a(z) = 0 in this set.

Now let us denote ® : BR(0) x (R*U{0}) — R and B : Bg(0) x R" — R"
by

®(z,t) =1+ a(x)t"™ and B(z,z):= d(xz,|2|)A(z, 2).

It is also necessary to assume the following ellipticity, considering the case
of v € BR(0):

|B(x, 2)||2| + 10.B(x, 2)||2|* < LH(z, |z])
SH(, =)

P €] < (0.B(x, 2)&,€) (3.3.8)

for any £ € R"™ and some constants 0 < v < L < oo. But in this case,

0.B(z,2) = 0,0(x, |zl)é ® Az, 2) + ®(z, 2)0. Az, 2)

and so by (3.3.7),

(0:B(x, 2)€,€)
> (0,2 (, |2 | A(z, 2)[[€[* + ©(z, 2) 0. A(z, 2)||€[*

—L(q = p)a(@)|2|" "7 zPTHEP + v (1 + alx) 2|77 ¢
(v = L{g = p) (1 + a(z)[ 2" 7) |~ [¢]*

<v—L<q—p)>H<| |2'Z’)\s|2

v |\/|

v

Thus to hold true (3.3.8), we need to assume that v = v — L(q — p) > 0,
which is exactly our additional structure assumption (1.2.8). We also point
out that (1.2.8) is to be used in Lemma 3.3.9 and its proof.
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3.3.2 Preliminaries and basic regularity results

To use the extrapolation in the proof, we also record the conditions (A0),
(A1), (alnc)s, and (aDec)s, for constants sy, s3 > 0 concerning a given func-
tion (z,t) : Q x [0,00) — [0, 00).

e (A0) There exists a constant M > 1 such that Mt < o(x,1) < M for
every x € ().

e (alnc)s, The map t — “’Ef{t) is almost increasing with constant M > 1,

uniformly in x € , i.e., for any 0 < t; < t5 < 00, there holds

SD(x7t1) < M(P(l.)t2)
g -

e (aDec),, The map t — 222 ig almost decreasing with constant M > 1,

t52

uniformly in x € €2, i.e., for any 0 < t; < ty < 00, there holds

@(x; t2) < MSO(xs’tl)

e (Al) Assuming ¢(x,t) satisfies (alnc);, p(z,t) is said to satisfy (A1)
condition if there exists a constant M > 1 such that for any B, € Q2
with |B,| < 1,

¢h (t) < Mg (t) forallt>0 with ¢p (t) €[1,|B,]7"], (3.3.9)

where o5 (t) := sup ¢(z,t) and o5 (t) := inf ¢(z,t).
r xeBT r IEBT

We sometimes regard H as the following one, other than (3.3.1):
H(z,z) = |z|P +a(x)|z]? (z €, z€R"). (3.3.10)

For the comparison estimates, we also need the following higher integra-
bility results. We refer to [84, Theorem 4] for the proof.

Lemma 3.3.4. Let u € WHH(Q) be a weak solution of (3.3.2) under the
assumptions (1.2.2)-(1.2.4), (3.3.3) and H(x, F) € L?(?) for some v > 1.
Then there exists a constant og = o¢(data) < v — 1 such that H(x, Du) €
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1409
Lloc

(2). Moreover, for any Bs, C Q2 and o € (0, 00| we have the estimate

1
1+o
H(z, Du)'* dx
By

<c H(m,Du)dx+c(

Ba,

e
H(z, F)** dx)

Bap
for some ¢ = ¢(data). Moreover, for any Qy € Q and o € (0,00], we have

|1H (z, Du)" || iy < ¢ (3.3.11)
for some constant ¢ = c(data,dist(Qp, 0Q), |H (z, F')||1v())-

Next, we provide the following lemma which will be frequently used for
our comparison estimates.

Lemma 3.3.5 ([16, 18]). For each x € Q2 and z1, zo € R™ we have
H(z,z1 — 20) < eH(x,21) +ce) (A(x, z1) — Az, 20), 21 — 20)  (3.3.12)
for any € € (0,1) with c(e) = ¢(p, q,¢).

In [16, 18], they considered the case when there is no = dependence for
A and H. However, we can follow the same argument for each fixed x and
prove Lemma 3.3.5.

We now give the Lipschitz regularity estimate for a reference problem.
With n, p, ¢ from (1.2.2)—(1.2.4) and with a constant a > 0, we denote

H(z) = |z|P +a|]z|? (z€R").
A given C'(R™\ {0}) vector field A : R" — R™ is assumed to satisfy

|[1_(z
_H(

e

Izl + 0. A(2)| |22 < LH(2)
6P < (0.4().€)

for z € R"\ {0}, £ € R", where 0 < # < L. With U C § being an open set,
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let v € W™ (U) be a weak solution of
divA(Dv) =0 in U. (3.3.13)

We then state the Lipschitz estimate for v without proof. For the proof, we
refer [169].

Lemma 3.3.6 ([79, 169]). Let v € WU (U) is a weak solution of (3.3.13),
then there holds Dv € Lis.(U). Moreover, for any Bs, C U we have the
estimate

Sélé) H(Dv(x)) < ¢ ; H(Dv(x))dx

for an appropriate constant ¢, = c1(n, p, q, v, L) which is independent of a.

3.3.3 Comparison estimates and the proof of Theorem
3.3.2

We start to provide the comparison estimates. From now on, we always
assume (1.2.2)—(1.2.4) and (3.3.3). Let R € (0,%) and § € (0, %), and fix

) )
Qg € Q. We assume By, = Bg,(y) C Qo with 8 < R and Bg(y) C Q. With
a solution u under consideration to the problem (3.3.2), let h € W' (B,,)

be the weak solution of

{—divA(x, Dh) =0 in By, (33.14)

h e u+ W, (By).

Then we list here some estimates for h as follows. For proofs, see [13, 38, 84].

Lemma 3.3.7 (Comparison estimate). Let A\ > 1 be given. For any ¢ €
(0,1), there exists a constant 8 = do(data,e) € (0,1) such that if for § €
[0760];

H(z,Du)dx < X and H(z,F)dr <6\

B4T B4r
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hold, then we have

][ H(z,Dh)dz < ¢ H(z,Du)dzx < cA (3.3.15)
By

By

and

H(z,Du — Dh)dz < e (3.3.16)

B4r

for some ¢ = c(n,p,q,v,L).
For later use, with oy mentioned in Lemma 3.3.4, we have the following

lemma:

Lemma 3.3.8 (Higher integrability for h). There ezists a small constant
o1 = o1(data) < oy such that H(z,Dh) € L17(By,). Moreover, for any
Bs, C By, and o € (0, 01] there holds

1

1to
( H(x, Dh)**? d:z:) <c H(x,Dh)dx
Bp B2p

for some ¢ = ¢(data).

Note that (3.3.15) is used for the proof of Lemma 3.3.8, when we keep
track of the exact dependence of o and c.

We next move for further comparison estimates. Let K > 4 be a free
parameter to be determined later, and define

o Jof a(z) i inf a(z) > Klajoar (3.3.17)
o 0 if inf a(z) < Klajo.ar®. (3.3.18)
z€Bar
We denote

Ho(t) =tP +apt? (t>0) or Hy(z)=|z|" 4+ aolz]? (z€R")
and define Ay : Q x R" — R" by

Ho(lz])

Ay(x, 2) = A(z, z)m
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Now we write

Ag(z) = Ao(z, 2) du. (3.3.19)

Byr

Then we have the following lemma.

Lemma 3.3.9. Together with the assumption (1.2.8), we have

ol 12 <9 42, )

|22

{Ao(Z)z +10.A40(2)[|2[* < LHo([2)
(3.3.20)

for some v = v(p,q,v, L) and L= i(p, q,v, L) with 0 < v < L < co. Also, it
holds that

Ho(|21)
2|

|A(x, 2) — Ag(2)| < L(a(x) — ag)|z|? +

0(B,)(z),  (3.3.21)

where 0(By,)(z) := 0(A; By,) () as in (3.3.4).

Proof. Throughout the proof, H(z,t) and Hy(t) are understood as H(x,t) =
t? + a(z)t? and Hy(t) = t* 4 apt?. First, we compute

H(x,|z|) 2 (-’E7|Z|)m®z4(x,z).

0.Ao(z, 2) = (0. A(z, 2))

Here, we have

‘H{)H;QHOHI("T? |Z|)‘ < ‘(p—Q)a(x”Z’:Jrq_
H H(z, 2]) (3.3.22)
(- Qa@leP* | Holl) _ . Holz]) .
S‘ @ | B ) =Y PR E )
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and so by (3.3.3), there holds

Ho(l2) | HyH — HoH'
ZIENE] i
Az, 2)
ERIEE)
D
EE

|0:Ao(, 2)| < |0:A(z, 2)] z, |2[) | 1A(z, 2)

< 20D ()

T e
< LH0(|Z|)
T R

< L(1+q—p)

+ L(q —p)
Ho(l2])

|22

Moreover, we observe from (3.3.3) that

Hol2)) _ | Holl2])

Aol 2l <A@ 2l g Ty < F

Hence we obtain
|Ao(z, 2)||2| 4 |0. Ao(z, 2)||2* < LHy(|2]) (3.3.23)

with L = L(2 + ¢ — p). Now the conclusion (3.3.20); follows from (3.3.19)
and (3.3.23).
To show (3.3.20)s, we first compute

<aon<x,z>s,5>—<azA<x, ) ((‘T'T>s g>

H\H — HyH' 3.3.24
(IR ) S e A ey
H E
= Il + [2.
But then, by (3.3.3) we estimate

Ho([2) |12
L >v 3.3.25
1= |Z|2 |€| ( )
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and by (3.3.22) and (3.3.3), it follows that

HH — HyH'’
- |

B Hy(|z]) o el
z(qpn|(|wﬂ7ﬂm
Ho(]z

g -p |' D e

Now applying (1.2.8), for o := v — L(qg — p) > 0, we discover

I > (z, |2) | |A(z, 2)|[¢]*

Ho(l=]) 5 Ho(2])
|| N

Then the conclusion (3.3.20), follows from (3.3.19) and (3.3.26).
Finally, to obtain (3.3.21), first observe that

A(w,2) — Ao(2)
< |A@.2) = Aoz, 2) + [ Ao(z, 2) = Aa(2)
e ot (@@ = @)=Y | HollzD) (2o 2) — Ay(2)
= late. 2 (G ) + S Hal|2]) )
Bl (o) ()
E m) )

(0:Ao(w,2)€,€) = (v — L(g — p)) €7 > €. (3.3.26)

< L(a(z) — ag)|z|T " +

Here, by the definition of # as in (3.3.5), we have

|21 (Ao(w,2) = Ag(2)) | _ |121AG,2) [ |2lA(y,2) z
Ho(|z]) ’_ H(z,|2)) ]{% H(y, |2]) dy' < 0(Bar) (),

which gives (3.3.21). O

We next let v € W' (B,,) be the weak solution of

(3.3.27)

—divAy(Dv) =0 in By,
v e h+ W™ (By,).

When (3.3.17) holds, the comparison estimate is proved similarly as in [79],
but the case of (3.3.18) is delicate to handle. As mentioned in Chapter 1, we
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are going to avoid using the difference quotient method. Instead, we provide
two propositions which enable us to deal with the comparison estimate for
the case of (3.3.18). First one is the boundary higher integrability for v, with
the boundary data h. Note that o, is as in Lemma 3.3.8.

Proposition 3.3.10. Let v € WYH0(By,) be the weak solution of (3.3.27)
and h € WY (By,) be the weak solution of (3.3.14). If (3.3.18) holds, then
H(z, Dv) € L't (By,). Moreover, for any o € [0,01] we have

H(z,Dv)"*7dr < c H(z, Dh)""*7 dz + ¢ (3.3.28)

BQT BQT

for some ¢ = c(data,dist(, 0Q), | H (x, F)| 1)) = 1 which is independent
of r. Especially, if o = 0, then we have

H(z,Dv)dx < c¢ H(z,Dh)dz + ¢ (3.3.29)
Bay Bs;-

¢ =c(data) > 1.

Proof. The proof is similar to the one of [136, Lemma 4.15]. We first prove
(3.3.28). Note from (3.3.18) that Hy(t) = ¢”. Then one can show that for any

:u() € A1+a>

[ PPt ey s < cllla,.,) [ IDRP O pta)de, (3330)
B,

T

where c([pt)4,,,) = c(data,[p]a,,,) > 0. For the proof, see [136] together
with [48, 79]. Now for each j = 1,2,..., define

®;(x,t) := min {(t + a(x)t%)H”,th”} :

Then for each ®;, one can assert the conditions (A0), (Al), (alnc);y, and
(aDec)s(110) in Section 3.3.2 for a universal constant M = M(n, |lalloq)
which is independent of j and . We only show (A1) condition, especially
(3.3.9). Indeed, by (1.2.4), one can see that o (%57) < 1 and so for any

t €10,|B,|7"], we have

rot s < ¢(n).
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Then there holds

retr < c(n)t. (3.3.31)
For a}, := sup a(r) and ap := inf a(z), (3.3.31) implies
" CCEBT " xEBT
(rot2) 17 < e(n)(t + ajp t#) . (3.3.32)

Thus denoting by
H(w,t) = (t + a(x)tr)"+,

~ ~ 1+o0
Hf (t) == sup H(z,t) = (t + aEﬁ)
(EGBT

and

~ ~ g\ 1+o
Hyg (t) ;= inf H(x,t) = (t—l— aE;Tﬁ) ,

x€B,
it follows from (1.2.3) and (3.3.32) that
~ ~ g\ 1+o g\ 1+o
Hf (t)— Hg (t) = (t + a;ﬁ) — (t + a;ﬂ)
q q 140 q\ 1+o
<cl(t+aptd) - (traptd)] " +e(t+aptr)
q g\ 1+o
<c(rotr)7 4 ¢ <t + agﬁ)
g\ 1+o ~
<) (t+aptt) = en)ily (1)
Therefore, for any x € B, and t € [0,|B,| "], we have
Hy (1) = Hy (1) = (t + a(z)tn)e (3.3.33)
with an implicit constant depending only on n. Let us denote
drp (t) = sup min {(t - a(x)t%)H",th"}
rEDLr
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and

. p () = xiélgr min {(t +a(z)t» )1, jt”“} :
Since 0 < t'17 < o5 (1), D55 (1) €1, |B,| '] implies ¢ € [0, |B,|™"]. Then
by (3.3.33), for all x € B, and ®; 5 (?) € [1, |B,|"], there holds

Dj(x,t) =~ Py (1) = @) 5 (1)

with an implicit constant depending only on n. Then (A1) is proved for
®;(x,t) for each j = 1,2,..., with M = M (n) which is independent of j and
o. Now we apply the extrapolation with ®;(z,t), take j — oo, and apply the
argument of the proof of [136, Lemma 4.15] to find that

H(z, Dv)'*7 dx
BQT

a_1
<c [( H(z, Dh)'* dx) +1 (3.3.34)
B2r

X ( H(z, Dh)"*7 dx + 1)
BQT

for some ¢ = c¢(data) > 1. But then, we use Lemma 3.3.8, the energy estimate
(3.3.15), Holder’s inequality, and (3.3.11), to discover

H(z, Dh)"™ dx < cr™ H(z, Dh)" dx

BQT BQT
140
<er” ( H(z,Dh)dx + 1)
By
1+o
<ecr” ( H(x,Du)dx + 1)
B47'
<ecr" H(z,Du)"™dx +1
B4r
< c(data, dist(Q0, 00), || H (x, F)|| L)),

and so we obtain the estimate (3.3.28).
Now it remains to show (3.3.29). By Holder’s inequality, (3.3.34) with
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0 = (¢ =min{——,01}, and Lemma 3.3.8, there holds
e
H(x,Dv)dx < ( H(zx, Dv)'** das)
Bzr BQr
<c ( H(x,Dh) 1+<dx>
Bay

Ba,

Sc[( H(x,Dh) 1+<da:>
B2T

x( H(x,Dh) dx+1>
BS'r

Here, by Lemma 3.3.8 and the energy estimate (3.3.15), it follows that

( H(x, Dh)'*¢ da:) < crte ( H(zx, Dh)'*¢ dx)
BZT

By

< ermie ( H(xz, Dh)dz + 1)
Bayy

(3.3.36)
= crTicp ( H(x,Dh)dx + 1)
By
_gn
< c¢(data)r ¢
and
T_% S rlogr — lOgrlog'f = 6 < C. (3337)

Therefore, combining (3.3.35)—(3.3.37), we have the conclusion (3.3.29) with
¢ = c(data) > 1. O

We now handle the case of (3.3.18) in the following proposition.

Proposition 3.3.11. If (3.3.18) holds, then there ezists oo = o3(data) > 0
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such that

][ a(x)|Dh|?dr < cKr?? ( H(x,Dh)dx + 1>
Bay

By

and

][ a(x)|Dv|?dx < cKr? ( H(z, Dh)dzx + 1)
Bay

Bar
for some positive constant ¢ = c(data, dist(Qg, 0Q), || H(z, F)| 1q))-

Proof. First we claim the following type of higher integrability: for

- noy
=11
i (1422,

we have

1401
][ a(x)|Dh|%dr < ¢ ( H(x, Dh) da:) +c
B2r B3’V‘

(3.3.38)

(3.3.39)

(3.3.40)

for some ¢ = ¢(data). Indeed, there holds (¢ — q)% < p(l+4o7) by (1.2.4),

and so by Holder’s inequality and Lemma 3.3.8, we have

][ a(x)|Dh|‘7dx:][ o(2)| Dh|?| Dh|7 da
BQr BQT

1
T+oq ~ 1407 140
S(][ (a(x)thl)q“*‘f“dx) (][ IDh\(“)ildx) '
BQT B2r

91

1
140 140
s(][ (a(m)th|)‘1(1+"1)dw) (][ ]Dh\p(1+”1)dx+1) '
BQT B2r

< H(z, Dh)"*" dx + 1

BQT

1401
<ec ( H(z, Dh) dx) + c.
BBT

Thus the claim is proved.
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Now, for & € (0, 1] being such that L= = ¢, i.e., with

noi

— 3.3.42
a + n(l + 0'1) ’ ( )

5=
we will show

ra&][ a(x)*"?|Dh|"dx < cr” H(z, Dh)dzx (3.3.43)
Bar

By

for some oy = 09(data) and ¢ = ¢(data). Indeed, by Hélder’s inequality and
(3.3.40) we have

][ a(x)°|Dh|? dz
BQ'r‘
Q \1-5
:][ (a(w)|Dh|ﬁ) dx
Bay

1—-6
< (][ o(2)| Dh| T dx)
B2r

(1-6)(1+01)
§c< H(x,Dh)da:) +c
Bs,

(1-6)(1401)—1
<c ( H(x, Dh) d:v) ( H(x, Dh) dm) +ec.
B4r

(3.3.44)

Bs

But then, since

n+ o
l-o)l4+0)-1=(—F——|1+4+0) -1
at+aoy+n(l+o)—a—n(l+oy)

a+n(l+oy)
a0

= >0,
a+n(l+o0y)
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we see by the energy estimate (3.3.15), Holder’s inequality and (3.3.11) that

(1-6)(1401)—1
( H(x, Dh) da:)
B4r

(1=6)(14+01)—1
< ( H(z, Du) dx)
B47‘

(1-6)— 75—
S c ( H (x7 Du)l—l-a'l di[/‘) 1 (3345)
B4’V‘

i (1-8) 1357
< cr_”[(l_g)_ﬁ] ( H (z, Du)"™ dx) 1
B4r

for some positive constant ¢ = c(data, dist($2o, 0Q), || H(z, F)|| 1))
Now we observe (3.3.42) from that

1
ngzaé—n<1—5— )
1+O'1

>ac—n[1-0)1+01)—1]
=a6 —n(—6+0,—G0y)
=|a+n(l+0y)]6 —noy =0.

Hence combining (3.3.44) and (3.3.45), we find
ra‘}][ a(x)"?|Dh|? dzx
BQT‘
) (1-6)(1401)—1
<er® ( H(x,Dh) d:E) (
By

< cro? ( H(xz,Dh)dx + c)
Bs;-

H(x,Dh) dx) +c

BS'r

for some ¢ = c(data, dist(€, 0Q), ||[H(z, F)| 1)), which is (3.3.43). Now
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a(z) < sup a(a)

vebr (3.3.46)
< cla)o,ar® + inlg a(z) < (c+ K)laoar® < cKlaoar®,
xre ™

we have (3.3.38).
As for (3.3.39), like the estimates in (3.3.41) together with using (3.3.28),
we have

][ a(x)|Dv|? dx
Bay
1 g1

1+oq ~ 1404 T+o1
< (][ (a(x)|Dv|)q(1+”1)dx> (][ | Dy| 95 dx)
BQT B27‘

1 71

Tto T¥o
][ (a(a:)|Dv\)q(1+"1)dm> 1 (][ | DofP+) g 4 1) 1
By Bar (3.3.47)
< ][ H(z, Dv)"*t7 dx + 1
By

T

< c][ H(z, Dh)*™ " dx + ¢
(3328 Jp,,

1401
<c ( H(x,Dh) dx) + c.
Bs,-

Thus by Holder’s inequality, we see that
_ . \1-0
][ a(x)'~?| Dv|? dx :][ <a(:1:)|Dv|ﬁ> dx
BQT B2'r

1-5
< <][ a(z)|Dv|T7 dx) +c
BQT

(1-5)(1+01)
< ¢ < H(xz, Dh) dx) + c.
) B3’l‘

(3.3.47

We then apply the same argument as in (3.3.45)—(3.3.46) to derive (3.3.39).
0

We also need the following higher integrability results for the problem
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(3.3.27). Note that oy is defined in Lemma 3.3.8. The proof is the same as in
that of Lemma 3.3.8.

Lemma 3.3.12. There exists a constant oo = o03(data) < oy such that
H(x, Dv) € L,)\7(Bsy,). Moreover, for any Ba, C By, and o € (0,0] there
holds

140
( H(z, Dv)'t? dx) < c][ H(z, Dv)dz + ¢ (3.3.48)
B, B

2p
for some ¢ = ¢(data).

Now we provide the comparison estimates for w and h defined in (3.3.27)
and (3.3.14), respectively. In case of (3.3.18), we additionally apply Proposi-
tion 3.3.10 and Proposition 3.3.11 for our proof. Recall that dy is defined in
Lemma 3.3.7 and o5 is in Proposition 3.3.11.

Lemma 3.3.13. Under the assumptions and conclusions of Lemma 3.5.7,
we further assume (1.2.8). Then there exists a constant §; = §1(data, ) < Jy
such that if A is (0, R)-vanishing for some R € (0,1) and § € [0,01], then we

have

H(z,Dv)dx <c H(z, Dh)dzx < cA (3.3.49)

BQT B3r

for some constant ¢ = c¢(data), and

H(z, Dh — Dv)dx < {s + ¢(e) (% + Kr@ﬂ A (3.3.50)

B2T
with any K > 4, where c(e) = c(data, dist(Qo, 0Q), || H(z, F)|| 1), €)-

Proof. We first prove (3.3.49). To this end, by testing v — h € W&’HO(BQT) to
(3.3.27) and applying the same argument for obtaining (3.3.15), we have

Hy(Dv)dx < ¢ Ho(Dh) dzx. (3.3.51)

Bay Bar

We first consider the case of (3.3.17). Since K > 4, one can observe that for
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M B2T7

a(z) < sup ala)
x€Bo,

< ap+ osc a(x) (3.3.52)

rE€Ba,

4
< ag + 4[a)o,ar* < (? + 1) ap < 2ag < 2a(z).
Then together with (3.3.15), it follows that

H(x,Dv)dr <2 H(x,Dh)dzx < cA.
BQr BQr

If (3.3.18) holds, then by (3.3.29) in Proposition 3.3.10,

H(x,Dv)dxr <c H(x, Dh)dz

BQT B3r

holds for ¢ = ¢(data). Then by (3.3.15), we have (3.3.49).

Next we will show (3.3.50). First, note that if (3.3.18) holds,
v € WHH(B,,) by Proposition 3.3.10. If (3.3.17) holds, again v € W (B,,)
by (3.3.52). Then testing h — v € WH(B,,) ¢ W' (B,,) to both (3.3.14)
and (3.3.27), we have

L = ][ (A(x, Dh) — A(z, Dv), Dh — Dv) dx
Bar (3.3.53)
= ][ (Ag(Dv) — A(z, Dv), Dh — Dv) dx = I,.

For I, applying (3.3.12) and (3.3.49), there holds

H(xz,Dh — Dv)dx < c(gg)I1 + €0\
B2T
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for any g9 € (0,1). For I, by (3.3.21) and Young’s inequality, we estimate

H()(D’U)
| Dol

L<c ]{3 {(a(az) ~ ag)[Dvlt + 0(Bu)(x)| |Dh — D da

< c]é (a(x) — ao)(|Dv|? + |Dh|?) dx

HQ(D’U)
By DV
= [3 —|— 14.

+c

0(By.)(z)|Dh — Dv|dx

For I3, if (3.3.17) holds, by (3.3.52) we have

4a(x) 8ag

a(z) — ag < 4lalgr* < < —
(2) = a0 < 4lalo, K  (35) K

for any = € Bs,. Then applying (3.3.51), it follows that

8
L< L ao(Dvlt + DR de < 55 { (Hy(Dv) + Ho(Dh)) dz < S
K /g, K /g, K

< (3.3.54)

for some ¢ = c¢(data). On the other hand, if (3.3.18) holds, we apply (3.3.28)

in Proposition 3.3.11 to I3, to see that
I3 = c][ a(x)(|Dv|? + | Dh|?) dz
B27‘

< cKro2 < H(z,Dh)dz + 1) < cKr72)\.

B4r

Here, the constant ¢ depends on ¢ = c(data, dist(§2, 0Q), | H (z, F)|| L7 (@))-

Thus in any case, we have

Iy < (% n CKT"Q) A

To estimate I, we have

I4 S €1 Ho(Dh - DU) dx + 6(61)][ 9(B4T>H0(DU) dx =: I5 + 16

Bgr B2r
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for all £; € (0,1) with some c(g1) = ¢(p, q,£1), where we have used Young’s
inequality and the fact that

0(B4r)2max{6’(B4r) L0(By,)7T }

For g, first note from (3.3.4) that 6(By,.) < 2L. Then by Hélder’s inequality
and (3.3.48), we have

1+o9o 1+0_2 ﬁ
16 S C(El) 00(B47“ o2 dx HO DU dx
B27- B2r

< c(sl)Lﬁ <][ 0(By,) d ) ( (Ho(Dwv) 1)dw> (3.3.55)
B2' B3’f‘

< c(e1)dT (ﬁ}gr(Ho(Dv) 1)d ) ,

provided A is (§, R)-vanishing for some R € (0,1) and § > 0.
Combining all the estimates (3.3.53)—(3.3.55), we have

1
H(-T,Dh — DU) dr < |:50 —|—6(50) (? + K,r,az):| A

By

+ ¢(e0) (51 Ho(Dh — Dv) dx + 0(51)51132)\> ,

Bar
where ¢(gg) = ¢é(data, dist(€2,90Q), || H (z, F)| (@), €0), c(eo) = ¢(p,q, <o)
and c(e1) = c(p,q,€1). We now take g9 = £, &1 < =~ and 0; = §;(data,¢)

— 2¢(eo)

92

sufficiently small so that c(eg)c(e1)d; ™ < 5. Then for 6 < &y, we discover

e oh - Dy - te) ( L+ kem)

B2'r
which is (3.3.50). O

We combine all the comparison estimates made in Lemma 3.3.7, Lemma
3.3.13 and Lemma 3.3.6, to derive the following key lemma. Recall that d; is
in Lemma 3.3.13 and o is in Proposition 3.3.11.

Lemma 3.3.14. Assume (1.2.8) and let A\ > 1 be given. Then for any e €
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(0,1), there exists a small positive constant 6y = 01(data, ) such that if

H(z, Du)dz < A, H(z,F)dx <6\
B4r B47'
and A is (3, R)-vanishing for some R € (0,1) and § € [0,6;], then for any
K > 4 we have

H(z, Du— Dv)dx < 3 [5 + () (% + Kr”)] A (3.3.56)

By

with some o9 = 09(data) > 0 and
c(e) = c(data, dist(Q0, 0Q), [|H(x, F)|| 1), €) > 0. Also, there holds

sup H(z, Du(x)) < cA (3.3.57)

r€EB,
for some ¢ = c(data).

Proof. Note that (3.3.56) follows from (3.3.16), (3.3.50) and triangle inequal-
ity. To show (3.3.57), we fix K = 10 and divide the proof into two cases as
(3.3.17) and (3.3.18). If (3.3.17) holds, then it follows from (3.3.52), Lemma
3.3.6 and (3.3.49) that

sup H(z, Dv(z)) < 2 sup Ho(Dv(z)) < ¢ Ho(Dv(x))dz < e

xEBr ZGBT BQT

If (3.3.18) holds, then Hy(t) = t*, and then by Lemma 3.3.6 with H(t) = t?,
we have

sup |Dv(x)|P < c][ | Du(z)|? dz. (3.3.58)
Bay

$EBT
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Now using (3.3.18), (3.3.58), (1.2.4), (3.3.49) and (3.3.15) in order, we find

sup (a(x)| Du(x)[?) < er®(sup | Do(x)[?)»
rEB, rEB;

< cro (]{9 | Do(z)|? da:) ’

a—p

<c (/B D)7 dx) N (]{3 ]Dv(x)|pdx>
< c( [t u) dx)qpp (]{9 ]Dv(x)\pdx)

< C(HH(I‘, Du)HLl(Q)))\v
which implies (3.3.57). O

Now we are all set in position to give the proof of our main result.

Proof of Theorem 3.3.2. The proof is based on [38, 79]. Fix Q € Q. For
a chosen v € (1,00), let H(z, F) € L7(2). Then we have H(z, F) € L7(By,)
for Bg, C Qy with 87 < R and Bg(y) C 2. Select two radii » < r; <1y < 2r
and define

Ao = M]{B (H(m, Du) + H(fs’ F)) dz (3.3.59)

(rg —r1)"

T2

for § > 0 to be determined later. We write
E(s,\):=={z € By: H(z,Du(x)) > A} for A>X+1landr <s<2r
and define

,(p) = ]{9 » (H(x,Du) + M) dr for B,(y) C B,

Then Lebesgue differentiation theorem says that for a.e. y € E(s, ), it holds
that

tim 0, (p) = H(y, Du(y)) + LT W)

> . (3.3.60)
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On the other hand, for any y € B,, and p € [%, ry — 7‘1}, we observe

U, (p) < 20y ]{9 (H(:c, Du) + @) dr =X < A (3.3.61)

(ro —m1)" Jg,

Then (3.3.60) and (3.3.61) imply that for a.e. y € E(ry, A), there exists a

radius p, € (0, 21) such that

U, (py,) =A and W,(p) <A forany p € (py, 12 —r1].

Hence, Vitali covering lemma provides us with a countable family of mutually

disjoint balls {B,, (y;)}2, with y; € E(r1,\) and p; € (0, 25™) such that

E(ri,\) C U Bs,(yi) UN (N : a measure zero set),

=1

U, (p;) = A (3.3.62)
and
U,.(p) <A foreach pe (pj,ras—r1)

Then we are under the setting of Lemma 3.3.14, which implies that for
any € € (0, 1), there exists a constant §; = d;(data,e) > 0 such that if

][ H(z,Du)dxr < X and ][ H(z,F)dx <O\,
Baop, (yi) B20p; (y4)

and A is (0, R)-vanishing for some R € (0,1) and § € [0, d;], then we have a
function v; € W™ (Bs,, (v:)) satisfying

1
][ H(z,Du — Dv;)dx <3 [5 + ¢(e) (— + KR”)} A (3.3.63)
Bsps (1) K

for any K > 4 and some c(e) = c(data, dist(£2, 02), || H (z, F')|| L), €) and
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o9 = 0y(data). Also, we have

sup  H(x,Dv;) < A

x€B5pi (yz)

for some ¢* = ¢*(data) which is independent of i and A.
Now for ¢y = 277 ¢*, we perform the integration of H(x, Du) over
E(r1,coN). We see that for a.e. & € E(ry, co)\) N Bs, (y;) with Bag,, (v;) C By,

H(x,Du) < 2?H(z, Du — Dv;) + 2?H(x, Dv;)
< 2YH(x, Du— Dv;) + 29c¢*\

< 29H(x, Du— Dv;) + %H(a:, Du),
which implies
H(z, Du) < 27" H(z, Du — Dv;).
Then in light of (3.3.63), we have

/ H(x,Du)dx < 2q+1/ H(x, Du — Dv;) dx
E(rl’c2)‘)mB5Pi (y’b) B5Pi (y’b) (3 3 64)

1
< e 275" B, ()| [5 + c(e) <E + KR"Q)] A

for an appropriate constant ¢ = ¢(data). Using (3.3.62), one can easily see
that

> o

Bl <5 ([ H(z, Du) da
By, (yi)NB(r2,3)

H(z. F
o @r )
B, () {H(@F)>5) 0

(3.3.65)
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Plugging (3.3.65) to (3.3.64), we find

/ H(x, Du) dx
E(r1,c2A\)NBsp, (yi)

< c35(e, R, K)

H(z. F
X / H(x, Du) dx+/ (2 )d:v>
By, (5i)NE(r2,2) By, (y)n{H(x,F)>2) 0

H(x, F
<S8(g, R, K) / H(;E,Du)da:+/ Md:v
B(ra,2) {(H@F)>%) 0

4

for some constants ¢z = ¢ - 275" and S(e, R, K) = € + c(¢) (£ + KR™),
where for the last inequality we have used the fact that {B,,(y;)}2, is mu-
tually disjoint.

Now denoting

[H(xz, Du)l; := min{ H (z, Du), t},

and arguing similarly as in [79, Section 4, Step 11] or [38], we discover

72 (H (2, D))" H (x, Du) dx
< C3SK£,]%,]()(461)71tf; (H(z, Du))""H (x, Du) dx
(461 )’y— 1

+CgS(€,R,K) 5

f[H@FWM+q*w
B

2
We now recall that S(e, R, K) = € + c(¢) (= + KR™), 02 = 0y(data) is
given in Proposition 3.3.11, c(e) = c(data, dist(Qo, 0Q), [|H (x, F)| 110, €)
and K > 4 is a free parameter. We first select
~ c(data, ) € (0,1),

and

K = K(data, dist(, 8Q), 7, | H(z, F)| 1)) = 4. (3.3.66)
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Then we choose a small positive constant
R = R(data, dist(2,0),7, || H (2, F)||1+0)) (3.3.67)
in order to satisfy
0 < c3S(e, R, K)(der) ! < %

Accordingly there exists 6 = d(data,y) > 0 from Lemma 3.3.14. Now we
recall the definition of A\ as in (3.3.59) to find

]{B [H(z, Du)]} " H(z, Du) dx

1

< %]{9 ) [H(r, D}~ . Du) de+-c(0) . H (. F)da
5200 + Du . ne
e (1o — )™ {][T(H( Du)+ Hiw, F) d } ’

where ¢ = c¢(data) and ¢(y) = c¢(data,y). We use the technical lemma [126,
Lemma 6.1] to conclude

][ (H(z, D)) H(z, Du) dz < & { ]{9 (H(z, Du) + H(z, F)) dx}w

T 2r

+ c(y) H(x,F)dx.
Bay

Letting ¢ — oo and using Jensen’s inequality, we obtain

v
H(z, Du)” dx < " ( H(z, Du) dx) + ¢(7) H(z,F)"dz,

B, Ba, Bar

which is (3.3.6). Now the assertion that H(z, Du) € L] () follows from a
standard covering argument. The proof is completed.
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3.4 Local estimates of w—minimizers to dou-
ble phase variational problems with vari-
able exponents

In this section, we are concerned with an optimal regularity for w-minimizers
to double phase variational problems with variable exponents where the asso-
ciated energy density is allowed to be discontinuous. We identify basic struc-
ture assumptions on the density for the absence of Lavrentiev phenomenon
and higher integrability. Moreover we establish a local Calderén-Zygmund
theory for such generalized minimizers under minimal regularity requirements
regarding such double phase functionals.

3.4.1 Hypothesis and main results

The functional under consideration is
Plw,Q) = / (Fi(x, Dw) + (@) fo(x, Dw)) dz. (3.4.1)
Q

Here, 2 is a bounded open domain in R" for n > 2 and the continuous
functions p(z), ¢(z),a(z) : Q@ — R are assumed to satisfy

0<a(z) € C™(Q), 1<m <px)<qlr) <2< oo,

@) @

p(z) n

(3.4.2)

for some constants a € (0,1],71,7 and for every x € Q. Additionally, we
assume that there exists a constant cp(.q.) > 0 such that

3 o) Cp().q() N
Ip(z) — p(y)| + la(z) —a(y)| < o p— (3.4.3)

for every z,y € Q with [z —y| < L. Let F = (f',---, /") : Q@ > R"bea
given nonhomogeneous term such that H(z, F) € L'(Q), where

H(z,2) = |2|P@ 4+ a(z)|z]'® (zeQ,zeRY). (3.4.4)
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We suppose that for a non-decreasing function ji(-) : R* — R" and a con-
tinuous function v(-) : @ — R,

L<y <y(@) <y <oo, |y =) < iz —yl),
1 (3.4.5)
/1(7”) log ; S Cy,s

and we want to identify minimal regularity assumptions on the associated en-

ergy densities fi(z,2) and fy(x, z) under which an w-minimizer u € W'(Q)
to F(w, ) satisfies the desired implication

H(z,F)e L'V(Q) = H(z,Du) e LIV(Q). (3.4.6)

We next describe basic structure assumptions regarding our energy func-

tional (3.4.1). Suppose that fi, fo : Q@ X R"™ — R are Carathéodory functions,
C?-regular for second variable z € R" and satisfy

p(z) < < L|z|P®)
v[z[P" < fi(z, z) < L2 (3.4.7)
V] 2|") < fo(x, 2) < L|z|"®)
and
[P 2l < (D2fi(x, 2, m) < LI2P@ 22 (3.4.8)
v|2 12 < (D2 folw, 2)n,m) < L|z|172 () B

for all x € ), 2 € R", n € R" with constants 0 < v < L. We write

f(z,2) = fi(z, 2) + a(z) fax, 2).

We now define w-minimizer. For a radius » > 0 and y € €, let us write
B, =B, (y) ={x e R": |z —y| <r}.
Definition 3.4.1. Let w : R™ — R" be a continuous and non-decreasing
function. We say that a function u € W™ (Q) is a (local) w-minimizer for
the functional F if for every ball B, € Q and every w € W H(B,) with
w—u e Wy (B,), we have
F(u,B,) < (14 w(r))F(w, B,). (3.4.9)

To get the desired regularity estimates, we further impose additional as-
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sumptions on w, p(-),q(+), f1 and fo. Throughout this section, the constant
of two parameters R € (0, 1) and 6 € (0, 1) are to be determined later. First
we assume

W(R) < 6. (3.4.10)

Since w is non-decreasing, w(r) < ¢ holds for every r € (0, R). Suppose also
that there exists a non-decreasing function p : [0,00) — [0,00) such that

1(0) =0,

ip(z) —p(W)| + la(z) — q(v)| < p(lz —yl)

1 3.4.11
and  sup p(r)log— <. ( )
0<r<R r
Moreover, we assume
sup  sup ][ 61(B,(y))(x) + 02(B,(y))(x)] de <4, (3.4.12)
0<r<R B, (y)cQ J B, ()
where

01(B,(y))(v) = e;g{){ o

<2L (3.4.13)

fl(xvz) _ (fl('7z))
2P 20 )

and

05(B,(y))(x) = sup < 2L. (3.4.14)

zeR™\{0}

f2<x7 Z) N (f2('7z))
[0 240 ) )

Definition 3.4.2. We say that (w,p(-),q(-), f1, f2) is (J, R)-vanishing if the
conditions (3.4.10), (3.4.11) and (3.4.12) hold.

One can see that in [2] and [177], it is considered that the condition
(w,p(+),q(*), f1, f2) being (9, R)-vanishing is necessary. We point out that
f1 and fy are allowed to be nearly discontinuous in x variable, even if the
condition (3.4.12) holds. The assumption (3.4.12) means that the maps x —
L@2) and g s L2022

217 [2]o(®
equal to 0 uniformly in z variable.

have small BMO semi-norms which are less than or
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We denote

data = data(na v, Ly, 70, ||a”070¢7 :u()v ﬂ()’ Cy» ||H(‘%’7 Du)HLl(Q))

and state the main result of this section.

Theorem 3.4.3. Assume (3.4.2), (3.4.3), (3.4.5), (3.4.7), (3.4.8) and

H(x,F) € L'Y(Q). Then for any w-minimizer u € WHH(Q) of F in (3.4.1),
there exists § = d(data, |H(x, F)| 10 () such that if (w,p(-),q(-), f1, f2) is
(0, R)-vanishing for some small R > 0, then H(x, Du) € LV(')(Q). Moreover,

loc

for any Qy € Q there exists R = R(data,w(-),dist(, 0Q), [|H (z, )| 170 (q))
such that for all B.(y) € Q with y € Qy and 0 < 2r < R,

(J[Bg(y)
Y—
§c(][ H(x,Du)d;v) +c(][ H(x,F)V(')dx)—i-c
Bar(y) Bar(y)

for some constant ¢ = c(data,dist(Qo, 0Q), |H (z, F)|| v)(q)), where v- =
inf ~(x).

z€By(y)

H(x, Du)"®) dac)
(3.4.15)

3.4.2 Proof of Theorem 3.4.3

In order to give perturbation argument required in this section, the following
higher integrability lemmas are essential. Also, the lemmas itself provide the
fact that without the regularity assumptions (3.4.10), (3.4.11) and (3.4.12),
we can prove the implication (3.4.6) for very small 7; > 0 depending on the
data.

Lemma 3.4.4. Assume (3.4.2), (3.4.3), and (3.4.7). Let H(z, F) € L] (Q)
for some y; > 1 and u € WH(Q) be an w-minimizer of F satisfying

/ H(z,Du)dx+1< M (3.4.16)
Q

for some constant M. We further assume that a positive constant p satisfies

1
p< 7 and p(dp) < min {, / 21711 ~1, 1} . (3.4.17)
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Then there exists oy = oo(n, v, L, v1, V2, @, ||a||0.a || H (2, DU)HLl(Q), cp(~),q(~)> <
(0,1) with 1 + 0¢g < 71 such that if o € (0, 0¢], then we have

H(z, Du)'™ dx
By
4o (3.4.18)
§c< H(:U,Du)d;l:) +c H(z, F)"" dx +c
Bs,

Ba,
for some constant ¢ = c(n,v, L,y1,72, @, ||al|o.a, Cp().q¢)), whenever By, € €.

Proof. Let p™ = sup p(z), ¢* = sup ¢q(x) and s = /%21 > 1. Consider

r€B2), T€B2), ntl
concentric balls B, C B,, C By, with p < p; < ps < 2p. Let n € C;°(By,)
be a cut-off function such that 0 <n <1,p=1on B,,n=0on By, \ B,

and |Dn| < pﬁpl. Taking w = u—n(u—(u)p,,) in (3.4.9), triangle inequality

and Young’s inequality with (p(x), pg’x()”?1> and with (q(m), q(qw()mzl> yield

H(x, Du) dx

By,

<c/ H(z, (1 =n)Du— (Dn)(u = (u),,)) dz

u—\u
v [ (PPt aap) (1Duf + [
By P2 — pP1

Sc/ H(x,Du)dx+c/ H(x,%) dx
By, \Bj, By, P2 = pP1

+c/ H(z,F)dx.
B

P2

) i
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Filling-hole method gives

H(z, Du)dz
Bp,
1 _
< ¢ H(a:,Du)d.a:+c/ H<x,%>d
By, P2 — P1

¢ By

+c H(z,F)dx.
By,

By Lemma 2.0.1, it follows that

H(x,Du)dec/

H(x,%) dx +c H(z, F)dx.
B2p sz

p
q+
> dx

By

Thus, we get the following Caccioppoli type inequality:

H(z,Du)dx < c][ (
Bs,

+c H(z,F)dx + c.
Bs,

pt

LW, ()2, + a(x)

p

U — (U)BQp
p

By

Now, following the proof of [38, Lemma 4.1], we have

H(z,Du)dzx < c ( H(x, Du)% dm)

Be B2e (3.4.19)
+c H(z, F)dzx + c.
Ba,
Finally by Gehring’s lemma [2, Theorem 4], we obtain (3.4.18). O

We also consider another type of higher integrability. Assume that the
functions &, & : B,(y) — R satisfy

0<&(2) <(1+o)p(z) and q(z) < &(2) < g(z) +op(z),  (3.4.20)
where p and o are the same as in Lemma 3.4.4. The proof is similar to [38,

Lemma 4.3].
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Lemma 3.4.5. Under the assumptions and conclusions of Lemma 3.4.4, we
obtain

][ (|Du|§1(£) + a(z:)|Du|52(z)) dx
By

140
§c< H(x,Du)dx) +c H(z, F)"dx +c
Bay

Ba,

for some constant ¢ = c(n, v, L,v1, V2, ||allo.a; ¢p().q¢)) > 0.

Note that we still obtain (3.4.18) with the assumption (3.4.11) instead of
(3.4.3). Then 0y and ¢ are independent of c,(.y 4 in this case.

We first make comparison estimates used in the proof of the main result.
Fix y € Qp, 7 < £ with R to be determined later in (3.4.28), (3.4.51) and
(3.4.75), and assume By, = By, (y) € Q in this section. Let u € W'#(Q)
be an w-minimizer of F and h € u + W, (By,) be the minimizer of the
functional

Fo(Dh) = x, Dh) da < x,Dh + Dy) dx
o(Dh) Bhf( ) BMf( %) (3.4.21)

for all p € Wy (Byy,).

We refer to [63, 64, 126, 178] for a discussion on the regularity for minimizers
of variational integrals.
Note that h is the weak solution of the following Dirichlet problem:

(3.4.22)

—div (D, f(z,Dh)) =0 in By,
h=wu on 0By,.

With v and h above and o( given in Lemma 3.4.4, we prove the following
comparison estimates:

Lemma 3.4.6. Let A > 1. Then for each € > 0, there exists a small 6 =
d(n,v, L, y1,72,€) > 0 such that if

. Thog
H(z, Du)dz < A, ( H(z, F)'*% dx) D<o, (3.4.23)
Bar

Byr
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and w(4r) < § hold, then we have

H(x,Dh)dx < A and H(xz,Du— Dh)dx <eX, (3.4.24)

B4r B47'
where ¢; = c1(n,v, L,y1,72) > 1.

Proof. By (3.4.7), w(4r) < 6 and (3.4.21), we have

1
H(x,Dh)dx < — f(x, Dh)dx

Bar 'I Bar . (3.4.25)
< - f(z, Du)dx < — H(z, Du)dz,
v B4',> v B4r

which is the first inequality of (3.4.24). Now by Taylor’s formula of f, the
conditions (3.4.7) and (3.4.8), we obtain
1 p(x)—2 2 q(z)—2 2

(] + 1272 21 = 2o+ o) (] + [2al)™ 2 2 — 2af?)

¢
S f(gjvzl) - f('ljaZQ) - <sz($722)azl - 22>
with ¢ = ¢(n, v, L,v1,72) > 1. Then plugging z; = Du, zo = Dh and testing

(3.4.22) with a test function u — h € W, (B,,), it follows by Hélder’s in-
equality, Young’s inequality, (3.4.7), (3.4.9), w(4r) <6, (3.4.23) and the first
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inequality of (3.4.24) that
Iy = ][ <(|Du| + |DR))P™ 72 4 a(z) (|Du| + |Dh|)q(’”)’2> |Du — Dh|? dz
B4'r'

<c f(x, Du) — f(x, Dh) dx

By

< cw(4r) f(z, Dh)dx

By

+ec4 (|FPW72F + a(x)|F|"™2F, Du — Dh) dx
B47'

— cw(4r) ; <|F|p($)_2F + a(z)|F|1®72F, Dh) dx
4r

<cd H(xz,Dh)dx + c,%][ [H(x, Du) + H(x, Dh)| dz

Byr Byr

+ ¢(k) H(x, F)dx

By
< (ed 4 ¢k + ¢(k)0)A

for any k € (0,1), where ¢(k) depends on 7,72 and .
Denote

Ay ={z € By : p(z) 2 2 and ¢(z) = 2},
Ay ={z € By : p(xr) <2 and ¢(z) = 2},
Az ={x € By, : p(z) <2 and ¢(x) < 2}.

Since (|Du| 4 |Dh|)P'™ 2 > | Du—Dh"™~2 and (| Du| + |Dh|)*™* > | Du—
Dh|1®=2 on A;, we have

H(xz,Du — Dh)dzx < I,.
Ay

On Az, by Young’s inequality with (#ﬁv)’ z%) and <ﬁ($), ﬁ), for any
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K1 € (O’ 1)7

H(x, Du — Dh) dx
Az

~ 4 {upul-+10n)
+ a(x) (|Du| + | Dh|)

p(z)(2—p(x)) p(z)(p(z)—2)
2 2

(|Duf + [Dh) [D(u = h)[)

Q(w)(2;q(w>> a(z)(a(z)—2)

(1Dl + 1DA)) 5 DG — )}
< (UDul-+ 1D+ ale) (1D + DR da
As

+et) £ (D] + DR + afe) (Dul + |DB)?)
A3
x |D(u— h)|*dx
< ch][ (H(xz, Du) + H(x, Dh)) dz + c¢(k1)Io.
Az

By (3.4.23) and (3.4.25), we have

H(xz,Du — Dh)dzx < kieA + c(kq)Io. (3.4.26)
Az
Similarly, the estimate on Ay can be proceeded as (3.4.26). Consequently we

find

H(xz,Du — Dh)dzx < Kic A + c(k1) 1o

Byr

and so

H(z,Du— Dh)dx < [kic, + (k1)K + c(k1) (1 4 ¢(k)) 6] A

B47‘

for any x; € (0,1), where ¢, depends on n, v, L,v1, V2, while ¢(k;) depends
on n, v, L,vi,ve, K.

Now choose £y = 3Z- and k = 3£, and then select 0 such that c(x1)(1+
c(r))d < . This yields the second inequality of (3.4.24). O

We next discuss each minimizer of the corresponding freezing functionals
and higher integrabilities of them. To this end, let M be the number given

125



CHAPTER 3. CALDERON-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

in Lemma 3.4.4. Then by (3.4.25), we have

H(x,Dh)dz < ¢ (|H(z, Du)|| 10y + 1)
B4r

(3.4.27)

for some constant ¢y as in Lemma 3.4.6. By (3.4.7) and [80, Proposition 2.32],

we obtain

ID.fi(z,2)] < L|zP" and  |D,fo(z, 2)| < L|z|9®1

for a positive constant L = E(n, v, L,v1,7). With this L, we consider a

sufficiently small radius R > 0 such that

< 1
401 (HH(Z', Du)HLl(Q) + 1)

. n+ 7 (o v 1
and 2R) < min -1, —, — 7 < -.
u2R) < {Vn+1 4 &L+M} 2

R

<1
47

(3.4.28)

Then R = p satisfies (3.4.17) and so r satisfies also (3.4.17) for all 4r < R.

Denote

Hi(z,z) = |z|”* + a(x)|2|? (x € By, 2 € R"),

where py = sup p(z) and g = sup ¢(z). Define two functions fi, fo: By ¥

ZEE§47— zEBy,

R"™ — R and fi, fo : R® — R by

{fl(w,Z)=f1(x72)|2|”2‘p($) o {f1<z>=f34yf1<xaz>

fol, 2) = fo(w, 2)|2|2271@

Then by [46, Eq. (3.15)], we have
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and
v

8

v
8

Now let us write

|22 nf* < (D*fu(2)n, ) < 2L|z[P~2In?
o o (3.4.30)
|22 n]* < (D fa(2)n,m) < 2L[2| " |nl”.

f(z,2) = f1(2) + a(z) fo(2).

Note that for any z € €2,

sup |fi(z,2) = fi(2)]

2€R™\ {0} |z|P2

sup | folw, 2) — f2(2)|

2€R™\{0} | 2|42

= 01(Bar)(2),
(3.4.31)

= 03(By) ()

as in [46, Eq. (3.17)].
Let hy € h + VVOLH1 (Bs,) be the minimizer of the functional

Fi(Dhy) := f(x, Dhy)dx < f(x, Dhy + Do) dx
1( 1) BsTf( 1) Bgrf( 1 90) <3‘4.32)

for all p € W™ (Bs,.).

Then h; is the weak solution of the following Dirichlet problem:

(3.4.33)

—div(D. f(z,Dhy)) =0 in Bs,
hl =h on aBgr‘

Now we exhibit some estimates which follow from the higher integrability
results Lemma 3.4.4 and Lemma 3.4.5: with (3.4.28) and (p(-),¢(-)) being
(0, 4r)-vanishing, we have

Hi(x,Dhy)dx < ¢ H(z,Dh)dz + c, (3.4.34)
B, Bar

- TTog
< Hy(x, Dh)"* 7% dx) T <e H(z,Dh)dx + c, (3.4.35)
Bsy Byr
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1
T¥og
( H,y(z, Dhy)'"o2 dx) T <e H(z, Dh)dz + c, (3.4.36)
Bgr By

where o0y is as same as in Lemma 3.4.4, the constant

g0

Og = 0-2(717”7[/7717727047 |Ia||0,0¢7 ||H($7 Du)HLl(Q)) < a1 and the generic con-
stants ¢ depend on n,v, L,v1,%,, ||laljo. and ||H(x, Du)|11q). To prove
these, first observe that

p2 < p(x) (14 2u(8r)) < p(2)(1 + 00) (3.4.37)
and
32 < q(z) (1 + p(8r))
q(z) + p(z) (1 + %) pu(8r) (3.4.38)
q(z) + 2p(x)u(8r) < q(z) + oop().

IN

IN

Hence by (3.4.37) and (3.4.38), the choice & (x) = pa, &(x) = g2 and 0 =
2u(8r) € (0, 09| is applicable for Lemma 3.4.5. Thus we have

1+2u(8r)
H(z,Dh)dz < c ( H(z, Dh) dx) +c. (3.4.39)

B3 By

Here, note that by (3.4.27) and (3.4.28), if (p(-), q(+)) is (d, 4r)-vanishing,
2u(8r) M 2u(87) 1 2(n+1)u(8r)
< H(x, Dh) dx) <c <—> <c (—)
By

rm r
< 0672(n+1)(logr)u(8r) < Ce2(n+1)5 <ec. (344())

Thus together with (3.4.39) and (3.4.40), we have

Hi(x,Dh)dz < ¢ H(x, Dh)dz + c. (3.4.41)

Bgr By
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Now, using (3.4.32) with ¢ = h; — h, one can see that

1 _
Hi(z,Dhy)dx < — f(x, Dhy) dx

Ba, Z Bsy . (3.4.42)
< - f(z,Dh)dx < = Hi(x,Dh)dz.
v BST v BS7'

Then by (3.4.41) and (3.4.42), we have (3.4.34). Now by (3.4.19) with A
instead of u and (3.4.41), we observe

Hi(x,Dh)dz < ¢ H(xz,Dh)dx +c

B3, B

(=}

T

o

gc][ H(z,Dh)+dz | +¢
B

gc][ (IDhJP2 + a(2)|Dh|®)* dz | +c
By,
?T‘

:c][ Hl(x,Dh)id:c +c,
B

Ly

where s is as in the proof of Lemma 3.4.4. Then we have by Gehring’s lemma
2, Theorem 4],

1
THo
( H,(z, Dh)'*? d:c) < c][ Hy(xz,Dh)dx + ¢
Bg, B

r

for all 6 € (0,00], where oq is exactly same as in Lemma 3.4.4. Especially,
we have

4
. oo
( Hy(z, Dh)**+ 7% dx) P <e Hi(z,Dh)dzx + c. (3.4.43)
B3'r B11

3T

Now together with (3.4.41), we have (3.4.35). Now (3.4.36) follows from [84,
Theorem 3] and (3.4.41).
Next let us introduce an inequality which will be used in the following
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lemma. Let 0 < 31 < By < oo and s; > 1. Then there exists a constant
c(s1, 81, B2) > 0 such that for any function f € L*(Q) and § € [B1, B,

]{2 If] [log (e + %)r dz < c(s1, B, o) (][Q fI da:) . . (3.4.44)

(See [2].)

Now we prove the following comparison estimates:

Lemma 3.4.7. Under the assumptions and conclusions of Lemma 3.4.6,
there exists a small § = 6(n,v, L,y1,72, @, ||a|oa, [|H (2, Du)|| 1), €) > 0
such that if (p(-),q(+), f1, f2) is (6, 4r)-vanishing with R > 4r satisfying
(3.4.28), then there exists hy € WH(By,) such that

Hy(x,Dhy)dx < cA and Hy(z,Dh — Dhy)dx < e\ (3.4.45)

Bg,« B3r
hold for some constant ¢ = c(n,v, L,y1, %2, o, ||aljo.q)-

Proof. The first inequality of (3.4.45) follows by (3.4.41) and Lemma 3.4.6.
By Taylor’s formula of f and the conditions (3.4.29) and (3.4.30), we
obtain

1 _ _
- ((lzal + 22272 |21 = 22 + a(z) (|21] + |22]) 277 |21 — 20]?)
S fT(IL‘,Zl) - f(xazZ) - <sz(ﬂf,22),21 - ZZ>
with ¢ = ¢(n,v, L,y1,7) > 1. Applying z; = Dh, zo = Dhy and (3.4.33)

(3.4.46)
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with the test function h — hy € W™ (Bs,), it follows that

I = ][ ((|DR] + |Dm|)?* % + a(z) (| DR| + |Dhi])= %) |Dh — Dhy|* da
B

<¢ ][ F(x, Dh) — J(x, Dhy) — (D.f(z, Dhy), Dh — Dhy) da

- C]{gs. <*(x,Dh) - ~(m,Dh)> dx+c]{83. <f(x, Dh) — f(x,Dh)) d
+c]233’ (f(z, Dh) — f(x, Dhy)) dz |

+c][337 (f(:p,Dhl) - f(x,Dhl)) dz

+ c]é (f(:p,Dhl) — f(z, Dh1)> dz

=. [2+IS+[4+[5+[6'

FEstimates Iy and Ig: Since (f1, f2) is (6, 4r)-vanishing, together with (3.4.31),
Hélder’s inequality, (3.4.34), (3.4.35) and (3.4.36), we obtain

L] + 1] < c][ 0(By.) [Hi(x, D) + Hy(z, Dhy)] do

Bs,

1+09 117%'2
<c (][ 0(By.) dx) A
B3T‘

o2
1 1409 a9
<c (LU2 ][ 0(Ba) dx) A < ooz )\
B3r

Estimates I3 and I5: Write
I :][ (fl(a:,Dh) - fl(m,Dh)> dx
BS'r
—{—][ a(x) <f2(93, Dh) — fy(x, Dh)) de =: I3, + I5,.
B3r

Now let us estimate I3 4 first. To this end, by mean value theorem and Fubini’s
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theorem, we find

1
iy < 14 ato) | [0 ate)l1og (D) A2 ] DA i
B3, 0
1
< cu(8r) / ][ a(x)| log(| DA|)|| Dh|@ =9+ % | D@~ ddt.
0 BST

For every a« > 0 and 3 > 1 we have

c if 0<t<e,
t*|logt| < ¢ @ ,
2t* log <e+t5> if e<t,

and for any t1,t3 > 0 we see log(e + tits) < log(e + t1) + log(e + t3). Then
we estimate

| 10g(|Dh|)||Dh|(Q2_q(x))t+771 |Dh|q($)_771
2e7? (2)-2
< 2|log(e + | Dh|P?)||Dh|?" 4+ | DhJ1)~

i

|Dh|p2
(Hl(x7 Dh))BgT

+ c(m,72) | Dh| "

< 210g( + H,(z, Dh)
< e
(Hl(l’7 Dh))Bg,r

+ ¢(71,72) | DR[1®).

< 2log (e + ) |Dh|% + 2log (e + (Hy(xz, Dh)) . ) |Dh|®

) |Dh|% + 21og (e + (Hy(x, Dh»Bsr) |Dh|®
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Thus, it follows by (3.4.28), (3.4.35) and (3.4.44) that

H1 (l’, Dh)
<H1<x7Dh>>Bgr) ¢

Il < entsr) £

Bg,

a(x)|Dh|® log (e +
+ cu(8r)][ a(x)|Dh|® log (e + (Hi(x, Dh))Bsr) dx
BB’V‘
+ cu(8r)][ a(z)|Dh|"® dx
B37‘

SCM(&’)( Hl(x,Dh)(uf;O)dx)uio

Bs

1
+ cp(8r) log (;) Hi(x, Dh) dx + cu(8r) H(z, Dh) dx

Bsy Bg,

r

4
1 - oo
< cp(8r) log (—) ( H(x, Dh)(HTO) da:) "< CON,
B3,

since (p(-), q(+)) is (6, 4r)-vanishing. By substituting p(x) for ¢(z) and p(x),
and 1 for a(z), with the same argument as above, we see

’[371)‘ < cON.
By the similar argument for I5, and I5,, we have
‘I5| < cON.

Here, note that we have to use (3.4.36) instead of (3.4.35).
Estimate I4: (3.4.21) yields I; < 0.
Estimate I,: Similar to the proof of Lemma 3.4.6, we have

Hy(x, Dh — Dhy) dx < kac + ¢(k2) ]y

Bs,

for any ko € (0, 1), where ¢(ky) depends on n,v, L, 7,72 and ky. Therefore,
we have

Hi(x, Dh — Dhy) dz < KocX + ¢(k2) <C(54%0 + 4c<5> A
B37‘
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Now choose ks = 5 and then select § small enough so that
c(K2) (0(5417?’0 + 40(5> < g.
This finishes the proof of the lemma. O

Now, let v € W' (By,) be the weak solution of

(3.4.47)

div(D, f(xar, Dv)) =0 in By,
v=nhy on 0B,,,

where x); € By, is such that a(ry;) = sup a(z). Now we refer the following
r€Boy
comparison estimates.

Lemma 3.4.8 ([79, 84]). Assume H(z,F) € L"Y(Q) with (3.4.5). Under
the assumptions and conclusions of Lemma 3.4.7, there exists a small § =
S(n, v, Ly y1, 72, o, ||al|o,e, [[H (2, Du)|| 1), €) > 0 such that

sup Hi(xy, Dv) < e\ (3.4.48)

LL‘EBT

for some constant ¢ = c(n, v, L,v1, 72, @, ||al|o.n) and

Hl(x, Dhl - DU) d:L’ S (26+ % +C*(K>T03> A

By
2
with K >4, ¢ =¢(n,v, L,v1,72),
¢ (K) = ¢ (data, dist(, 09), [ H(w, F)| 120, K) and
O3 — 02(n7 v, L7 Y1, V2, &, HCLHO,CH HH<LE7 Du)HLl(Q))
We combine all the estimates in Lemma 3.4.6, 3.4.7 and 3.4.8 to reach

the desired comparison estimates.

Lemma 3.4.9. Let A\ > 1, K > 4 and assume H(x,F) € L'Y(Q) with
(3.4.5). Then for any e > 0, there exists a small
§ = 0(n,v, L,v1, 7, a, ||alloa. || H (2, Du)|| L1y, €) > 0 such that if

4
. oo
H(z, Du)dz < A, ( H(x, F)'*% dx) < O, (3.4.49)
B4r

By
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and (w,p(+),q(+), f1, fa) is (0, 4r)-vanishing with R > 4r satisfying (3.4.28),
then there exist h € WY (B,), hy € WH"(B,) and v € W *(B,) such that

H(xz,Du — Dh)dzx < 4",
By

Hi(z,Dh — Dv)dx < 4"S(e, R, K) A,

B

and

sup Hy (zpr, Dv(z)) < ey
IEBT

Here, S(e, R, K) = 4¢ + % + c3R”™, where cy = ca(n, v, L, 1,72),
c3 = cz(data, dist(Q0, 002), | H(z, F)|| v ), K),

o3 = o3(n,v, L,y1,72, , ||alloa, | H(z, Du)| 1)) and

ca = cs(n, v, L, y1, 72, @, || al|o.a)-

Now we are ready to prove Theorem 3.4.3. Let H(z, F) € L'V(Q) with
(3.4.5) and v € W"#(Q) be an w-minimizer of F in (3.4.1). For R > 47 with
(3.4.28), let By, (y) = B4 € Q. Define Ao > 0 by

Ba, Ba,

1 .
)\0 = H(:L‘, DU) dx + g { ( H(.’L’, F)lJrUO d.ﬁ?) + 1} ) (345())

where oq is given in Lemma 3.4.4 and 0 € (0, %) will be determined later

depending on data and ||H(z, F')|| ;¢ (o). With 4r < R satisfying (3.4.28),
choose 71 and ry such that § <7 <ry <r and write

(x)
— > A}

E(s,\) ={x € By : H(xz, Du(x))
y(z

E(s,\)={x € Bs: H(zx,F(x)) "~ > A}

N2

for A >0 and § < s <r, where 7_ := i%f v(z) and vy := sup 7y(z). Let
TE 2r IEBQT‘

2 n
A::( 0 ) > 1.
ro—n

Now we give the following lemma obtained from an exit time argument and
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Vitali covering lemma.
Lemma 3.4.10. Assume for ¢y as in Lemma 3.4.6,

1

1
<= 3.4.51
~ 4o (|H(z, Du)| iy +1) 4 ( )

ool —

and [(R) < % <

4r < R <

Then there exist
¢ = c(n, v, Ly, 72, |lallo,as ¢y [H (@, Du)|| 1), |1 H (2, F)|| 20 (0)) such that if
A > CANg > 1, then there is a countable collection of mutually disjoint open

To—T1

balls {B,,(y")}2, with y* € E(r1,\) and p; € (0,252 such that

E(ry, A U Bs,, (y') U (a negligible set), (3.4.52)

() 1 a0\ v(@) 4+oq
H(z, Du)™ do + ~ <][ H(z, )55 d:r;) .\
| s\,
pi(y") pi(y*)
(3.4.53)

and

(@) 1 < (1490 ) 2 )4+00
][ H(x,Du) "~ dx + = ][ H(x, F)V'" %/ dx <A\
B, (y') 0 \ /B,
(3.4.54)

for each p € (p;,ra —11].

Proof. First, note that for every B, C B,,

£(2p) (2p)
Bp B, (3.4.51)

< e~ (tD(ogp)i(20) < pntley < (3.4.55)

(3.4.5)
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with ¢ = ¢(n, ¢,) and
£(2p) a(2p)

1o —ni(2p) o
H(z, F)' dx = p T+ H(z, F)"*° dg
B, B,

—n(log p) 1(2p)

<e e (|H(z, )l vo@ + 1)
<t <o (3.4.56)

with ¢ = ¢(n, ¢, || H(z, F)||m<‘)(9)).
For each B,(§) C B,, define

()

1 (14+%0) 1) oo
D;(p) = H(z,Du) "~ dx + — o H(z, F) "~ dx .
p\Y

Bo(3) 0

Then by Lebesgue differentiation theorem, for almost every § € E(s, \),

@1 (@)

lim @5(p) = H(G, Du(i) ™ + 5HGFE) ™ >\ (3.4.57)
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Ifye B, forpe [”20” o — 7"1}, by Holder’s inequality, we have

4400
2(z) 1 (1+UTO)W(I)
Q5(p) <A H(x,Du) "~ dx + 5 A H(x, F) "~ dx
Br

Br
2

y(z)—v_

— A H(x Du)*H(z, Du)*™ = dz

1,90 1 70+’Y(Z)*'y_(1+m> tog
Hsz SH(I’F)Q 8 = 1) do

LA
M
% (@) —v— 2
<][ H(z,Du)d ) ( H(:}:,Du)pr2 i d;z:)
Br Br
A
(5

atog)
( H(x +7 dx)
Br
2
Taton)
( H 1+ao+2(w(a;)_'v)(1+a40)> 0
Br
2
1 3
A232 ( H(zx, Du) dx) ( H(x, Du)' "2 dy 4 1)
B, Br

A2§ < H(x, F) 40 dx) e
) B,

VN
bd

atog)
H(w,F) Wr2ae) (%) gy 41 . (3.4.58)
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Here, by (3.4.5), Lemma 3.4.4, (3.4.55), (3.4.56) and Holder’s inequality,

( H(x, Du)*2") dz + 1)
By

1+2,u,(2r

1
2

<c ( H(z, Du)dx +c ( H(x, F)1H2A0en) dx) +c
B

1+2/i(2r)
2(1+00)

<c( H(x, Du) dw) —l—c( HxF)H”de) +c

2(14o0()
Sc( H(x, Du) dx —|— ( HxF)H”Od:c) O—i-c

and

f

" 2(4+09)
Hz, F)(1+2;1(2r))(1+70) dr + 1)

r
2
8416/ (27)

- (4+00)?
<][ [17(31:,]7)(1+70)2 da:) +c
BT

2

IN

L+a(2r)

1+og
<][ H(z, F)™° dx +c
B

r
2

IN

1
2(Tto0)

<c ( H(z, F)ttoo dx) +c
Br

with ¢ = ¢(n, v, L, 1,72, |allo.a, ¢y, [[H (2, Du)l 1@y, [[H (2, E)|[20)-
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Hence,
®5(p)

1
3
< cA ( H(z, Du) d:v)
By

2 oy
X < H(x, Du) dx) +c( H(z, F)'too d:z:) +c
B, B,

1
A ) 20e0)
+ % ( H(z, F)'*+o0 daz) ’ ( H(x, F)'+oo da:) +e
B, B%

1
A 1+og
<cA H(z, Du)dx + % ( H(x, F)'too dx) +1p <A,
Br

Br
2

(3.4.59)

where ¢ = ¢(n, v, L, 11,72, |allo.a; ¢, [|1H (2, Du)l| L, [|1H (2, F)[[120(g))- Thus
if ANy < A, since ®;(p) is continuous, (3.4.57) and (3.4.59) imply that for

almost every § € E(ry, A), there is a small number p; € (O, TQQ*O”) such that

D;(ps) =X and Pz(p) <A forall p € (pg, 2 —r1].

Therefore by the Vitali covering lemma to {B,,(y")}2, with y* € E(r1,\),
where y' are the Lebesgue points of H(z, Du) and H(z, F)'*%, we obtain
(3.4.52), (3.4.53) and (3.4.54). O

Now we apply Lemma 3.4.9. By (3.4.54),

(=)
][ H(xz,Du) "~ dx < X
Baop,; (v*)

1

o) 2(2) *90
and ][ H(z, F)"5 dy < G\
Baop; (y")

Then we have

(x)
]l H(z, Du)dx < ][ (H(x, Du) - + 1) dr <2\ (3.4.60)
Baop; (y*) Baop; (y*)
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and
<f (H( 1+0'O )
Baop, (v°)
o L (3.4.61)
1+o0g
H(x, F
< ][ ( (z, )) dx—i—l < c.
Baop, (y") 0
Denote Hi(z,z) = |22 + a(z)|2|% with pb = sup p()
JJEBQOpi(yi)
and ¢b = sup q(x) and let 2%, € Bay,, (y?) satisfy a(zy;) = sup a(x).
z€B20p, (') Baop, ()
By Lemma 3.4.9, for any ¢ € (0, 1), we find sufficiently small positive number
§ =0(n,v, L,y1,7, |laloq, [[H(z, Du)|| 1), 7, €) such that if

(w,p(+),q(+), f1, f2) is (9, R)-vanishing, there ex1st h; € Whil i (Bsp,(y")) and
v; € Whee (B5p (y Z)) with the estimate

H(z, Du—Dh;) dx < 4", ][ Hi(z, Dhi—Dv;) dz < 4"S(e, R, K)A

Bs,p,

and

sup Hf(m}w,Dvl(x)) < ey,

x€B5Pi

where the constant ¢4 is given in Lemma 3.4.9 and so independent of ¢ and
A. Then we have

H(x, Du— Dh; ) e = dr < cer), (3.4.62)
Bsy,

. y(z) 1
Hi(x,Dh; — Dv;) "~ dx < ¢S(e, R, K)2 )\ (3.4.63)

Bsy,

and

- <o) (3.4.64)
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where the generic constants ¢ depend on

n, v, L, y1, %2, [allo.as ¢y ([ H (2, Du)|| @y, | H (2, F)|| 20 @) in (3.4.62), (3.4.63)
and (3.4.64). Indeed, by Holder’s inequality, Lemma 3.4.4 to u and h;, (3.4.51),
(3.4.55), (3.4.56), (3.4.60) and (3.4.61),

y(x) ;_,_(’y(@_;)
H(z,Du — Dh;) "~ dx = H(xz,Du— Dh;)? " \7= 2/ dz
B5Pi Bspi
2 () 2
< f H(x,DU— Dhl) dx H<x7Du—Dhl)2 v ldﬁC
Bsp, Bs,,
3
1
<eg?

1 22 g
A2 H(x,Du— Dh;)" "= " dx
Bsy,

[V

VA
Q
>
VR
S

1 :
1+o0(
+ H(z, F)*0 dy +1
BlOpZ

1

< ce2 A
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and so (3.4.62) holds. Similarly,

. () . l+<W(Z)7l)
H{(anhz_D,Uz) "~ dr = Hi(l‘,Dhl—D’L)Z)Z - 2/ dx
B5Pz‘ B5Pi

. 2 . o %
S( Hf(x’Dhi—Dmdf) ( Hi(x, Dhy — Duy)* ™ 1dx>
Bsp;

1
1 1 . ’Y(x)_ 2
< S(e, R, K)z Az < Hi(z, Dh; — Dv;)* - ldx)
Bsp,
1 1 { %
< S(e, R, K)3 A3 < ][ (Hi(z, Dhi) + Hi(x, Dv;)) " du + 1)
Bs,,
< eS(e, R, K)2A,

thus we have (3.4.63). Finally,

. . v(z) . . I+
sup Hi(x%y, Dvi(z)) "~ < sup Hi(z%y, Dvi(x))- +1
IEB5pi xeB5pi
4+
. . ’Y_
< | sup Hi(z}y,, Dvi(x)) +1
JJEBE,pi
o+
< eA\-

so we have (3.4.64).
Let ¢ = 247 (cy + 2|jallon + 2) > 1. Since E(ry,cs\) C E(ry, ),
observe that

()
/ H(z,Du) "~ dx
E(r1,e5\)

o) (z)
S ([ ).
i=1 E(T1705)\)QB5pi (yl)

For almost every x € E(ry,cs\) N Bs,, (y') with Bsgp, (y') C B,,, it follows

(3.4.65)

143



CHAPTER 3. CALDERON-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS
that

H(z, Du)
<47 Y (H(x, Du— Dh;) + H(x, Dh; — Dv;) + H(z, Dv;))
< 47" (H(z, Du— Dh;) + H{(z, Dh; — Dv;) + H{(zy;, Dv;) + 2||alo.a + 2)
< 47" (H(x,Du — Dh;) + H(z, Dh; — Dv;)) + 477 (c3 + 2||alo,a + 2)A
(H( i)

. 1
< 47V (H(x, Du— Dh;) + H{(z, Dh; — Dv;)) + 5H(ac, Du)

with (3.4.63). Then we have
H(z,Du) <2-4"7' (H(x,Du— Dh;) + Hi(z, Dh; — Dv;)) . (3.4.66)

and so

. . . (3.4.67)
<4 (H(a:,Du Dh)v— + Hi(x, Dh; — Dv;) 7‘)

Thus, it follows by (3.4.62), (3.4.63) and (3.4.67) that

/ H(z, Du) g = dz
E(r1,es \)NBsp, (y*)

2

<47 (/ H(z, Du— Dhy) do (3.4.68)
5p. (y)

. (=)
+ / Hi(z, Dh; — Dv;) - da
BSpi(yi)

) A (3.4.69)

=

< ¢ 475" B, (y)] (52 +5(e, R, K)

where ¢ = ¢(n, v, L, 1,72, |allo.a, ¢y, [[H (2, Du)| L1, [ H (@, )| 20))- To
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estimate | B,, (y")|, we have from (3.4.53) that

m (3470)

hold. The first inequality of (3.4.70) implies that

7 2 2z) B i yl
Batl <2 [ H(z, D)+ ar -+ 12V
E(r2,3)NBp,; ()

and so

; 4 y(x)
1B, (y")] < X/ v H(z, Du) "~ dx.
)NBy; (y*)

Likewise, the second inequality of (3.4.70) implies that

22+O’0 -y(z)

(1400)5
- H(z, F) dx.
| ( )| (6/\)1+00 /5'(7’2,211"'1"(35>\)m39i(yi)

Therefore, we have

. 4 ()
EXESY) H@ D0 ds
72,7)NBp; ()

22+JO o 'Y(:E)
RN / o H(z, )52 o, (3.4.71)
(5>\) 0 E(rg,2” TFO0 SNNB,, ()

3.4.68) and (3.4.71), we see that

(=)
a: ,Du) "~ dx
7‘1 05)\)ﬂ35p
<

y(z)
S(sRK)/ H(z,Du) - dx
E(r2,2)NByy (")

(=
p (s F (1400) 1=
L SR K) / 1 (ﬁ> BT
\°0 E(r2,2” T TFO0 5NNB,, (v) 0
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for each 4. Since B,,(y") is mutually disjoint, by (3.4.65) and (3.4.72) we have

(2)
/ H(z, Du) = de
E(r1,\)

()
< cS(e, R, K)/ H(z,Du) "~ dx

E(rq, 42‘5 )

R1€))

S(e, R, K H(z, )\ 0=

+M/ I ( (= >) dr  (3.4.73)
)\JO 8(7’2, 2 +o0 5)\) 5

<5
for any A > ces A)g.
Define the truncated functions

y(x)

[H(a:, Du) ”v(f)L — min {H(:z:, Du) ™ ,t} (t > 0). (3.4.74)

Then for t > 2¢c5 Ao,

t ()
/ /\7_2/ H(x, Du) "~ dzd\
ées Ao E(r1,)\)

¢ (z)
<cS(e, R, K)/ )\7_2/ H(z, Du) 7~ dxd\
E(ro

ées Ao 2)
(2)
t H F (1+UO)’Y_
+¢S(e, R, K) / N\7-—o02 / I ( (z )) " dzd),
56514)\0 5(7'27 2 i+00 5>\) 5

5

By change of variables and Fubini’s theorem,

t ()
/ /\7_2/ H(z, Du) "~ dxd\
ées Ao E(r1,\)

1 AW g 7(2)
= po— / [H(xz, Du) - |, H(x,Du) "~ dx
B

1

146

&

| &1



CHAPTER 3. CALDERON-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

t (=)
/ )\7_2/ H(x, Du) "~ dzd\
ées Ao E(Tg,ﬁ)

1 v(x) _
< / [H(x,Du)"~ " "H(z, Du) "~ dx
= 1lJB

T2

1 _
< / [H(x,Du) - ]~ "H(z, Du) "~ dz
T~ 1lJB

and

! N\Y-—00— 2
Zes Ado ”"0“
oy
7’2 4c
H(z, F)\"™
o] (25"
B, 0

Moreover, by the definition of )y, Lemma 3.4.4, and (3.4.55) and (3.4.56),
we find

cées Ao ~(a)
/ )\7_2/ H(z, Du) "~ dzd\
0 E(ri,\)

CC5A)\0 ~(x)
/ NT=2d\ H(z,Du) "~ dx
0 By,

IN

(Ces ANg) =1
-1 By,
< (Ges ANo) =Y B, |
N m-—1
c(écs ANg) | By, |
m-—1 .

(=)
H(xz,Du) "~ dx

IN

H(x, Du)*") dg 4 1
By,
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Consequently, we discover

() _1 ()
][ [H(x,Du)"- |~ H(z,Du) - dx
Br,
y(z) ()
<¢S(e, R, K) ][ [H(z, Du) >~ ] ""H(x, Du) "~ dx
B

T2

+eS(e, R, K) ]{3 <H<:‘;’ F))W) dx + c(Ges) ™ <(742i—°ﬁ)n)7 ,

where ¢ = c(data, dist(2, 9Q), 1, || H (2, F)|| 7)) = 1. Choose 0 < e < 1,
K > 4 and then 0 < R < 1 such that
R = R(data,w(-), dist(Q20, 02), 71, [|H (z, F)||7()(q)) in order to have

0<cSE R K) < - (3.4.75)

DN | —

Then we find a small 6 = §(data) > 0 from Lemma 3.4.9. In light of Lemma
2.0.1, we obtain

() V(@)
][ [H(ma Du) - ]Zi_lH(l’, Du) - dr < C)\BF +c H(x’ F)’Y(x) dzr.
B Ba,

,,0
2

Letting ¢ — oo and then recalling the definition of A¢ in (3.4.50), Holder’s
inequality, we have

H(x, Du)"® dz
Br
2

1 -
1+o0g
<c ( H(x, Du)dx + < H(x, F)'too dx) + 1)
B2r

By

+c H(x, )@ dx
Bay

y—
<c < H(z, Du) dx) +c H(z, F)"® dz + ¢,
BZT BQT

and so we arrive at the required Calderén-Zygmund estimates (3.4.15). Now
H(x, Du) € L"Y(Qy) is obtained by a standard covering argument. The proof
is complete.
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3.5 Local estimates for Orlicz double phase
problems with variable exponents

In the present section, optimal regularity estimates are established for the
gradient of solutions to non-uniformly elliptic equations of Orlicz double
phase with variable exponents type in divergence form under sharp conditions
on such highly nonlinear operators for the Calderén-Zygmund theory.

3.5.1 Hypothesis and main results

The functions in the exponents p(:),q(-) : € — [1,00) are bounded and
log-Holder continuous functions in the following way that

1 <p(z),q(x) <my forevery ze€Q, (3.5.1)
and
Ip() — p(y)| + lala) — a(y)] < ——pa (3.5.2)
— —log|z — y|

for some non-negative constants m,, and M,,, whenever z,y € Q with |z —
y| < 1/2, whereas the coefficient function a : Q — [0, 0o0) satisfies

0<al)eC®™(Q), ac(01]. (3.5.3)

We shall assume that the functions presented above satisfy the central as-
sumption in this section:

HO() < (3.5.4)
K = supsu _ 0. 5
xeg t>£) GP@) (1) + GUHP@) (1)

We consider weak solutions of the equation
—divA(z, Du) = —divB(z, F) in £, (3.5.5)
where the vector field A : 2 x R" — R" is represented by
Az, z) = Ay(z, 2) + a(x) Az (z, 2) (3.5.6)

for every x € (2 and z € R", in which Ay, A5 : O xR" — R" are Carathéodory
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vector fields and differentiable with respect to second variable z € R™ \ {0}
satisfying the following structure assumptions

|2||10. A1 (z, 2)| + |As1 (2, 2)| < LM
Hq<LZ>|(|z|) (3.5.7)
|2[|0: A2 (z, 2)| + |A2(, 2)| < LT,
and
Gr(@)
e .
o) -
(0. Ay(z, 2)¢, ) > i UZ e

||

with fixed constants 0 < v < L < oo, whenever z € R" \ {0},¢ € R" and
x € ). The map B : Q2 x R" — R" appearing on the right-hand side of the
equation (3.5.5) is a Carathéodory vector field such that

@) (| 2]) + a(z)HI® (|2
|B(x, 2)| gL(G (I2]) + a(z) H7(| |))

B (3.5.9)

for all z € Q and z € R™\ {0}.
To go further on, we need to define a notion of (9, R)-vanishing condition.

Definition 3.5.1. With small numbers § € (0,1/8) and R € (0,1), we say
that the quadruple (p(-),q(-), A1, A2) is (0, R)-vanishing if the following two
conditions are satisfied:

1. There is a non-decreasing concave function w : [0,00) — [0,00) such
that

Ip(z) —p()| + lg(z) —q(y)| Sw(|z —y]), w(0)=0 (3.5.10)

for every x,y € ), with

1
sup w(p)log— < 6. (3.5.11)
p

0<p<R
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2. The following inequality holds true:

sup  sup ]{B " 0(A1, B,(y))(z) + 0(A2, B,(y))(x)]dz <6, (3.5.12)

0<p<R B,(y)CQ

where, with fized y € Q, the maps 0 (A1, B,(y)) (+),0 (A2, B,(v)) (+) -
Q2 — [0,00) are given by

0 (A, By(y)) ()

‘= sup
z€R™\{0}

Ay (z, 2) B ( Ay(+, 2) )
GO (D)~ \GOT(NG (D ) 0
and

0 (A2, Bo(y)) ()

= sup
2€R™\{0}

As(z, 2) _ ( As(,2) )
Hi@- () H (|2])  \HO(DH(2]) ) g )
for every x € Q.

Remark 3.5.2. In fact, the smallness of the quantity described in (3.5.12)
says that the mappings T m and T Hq<1>ff((\i]§3{'(|z|) have a
small BMO (Bounded mean oscillation) condition, uniformly in z variable,
that are naturally considered in earlier works [16, 51, 58, 89] and references

therein, as an minimal condition for the Calderon-Zygmund type estimates.

Remark 3.5.3. The structure assumptions (3.5.7) together with Remark
2.1.2 imply that

0 (A1, By(y)) (x) <2L  and 0 (As, B,(y)) (x) < 2L

for every x € Q, whenever B,(y) C  is a ball. Moreover, with a number
d > 1, we also notice the following obvious but useful inequality:

]{3 ( )[G(Alva(y))(x) +0(As, B,(y))(2)]* de

< (4L)! ][ LA B)E) + 0 B)()]
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For the abbreviation of notations, we shall use a set of parameters which
is data of our problem for a solution u of the equation (3.5.5) as follows:

data = (n iy 5(G), s(H), v, Lmyg, a, ally.o (), [ ¥(z, Du)||L1(Q)> .
Denoting
U(xz,2) =GP (|z]) + a(z) H'@(|z|) for every z € Q and z € R" or z € R,

we are ready to state the main result of this section.

Theorem 3.5.4. Let u € WY (Q) be a weak solution to (3.5.5) with
U(z,F) € L) for some v > 1 under the assumptions (3.5.1)-(3.5.4)
and (3.5.7)-(3.5.9). Then there exists § = d(data,y) € (0,1/8) such that
if (p(+),q(+), A1, As) is (0, R)-vanishing for some small R > 0, then the fol-
lowing implication holds:

U(z,F)e L'(Q) = V(z,Du) € L]

loc

Q). (3.5.13)

Moreover, for every open subset Qg € €1, there exists a radius R depend-
ing only on data, dist(Q,00Q),y and |V (x, )| L) such that the following
inequality

<][ [V (z, Du)|” dx) '
Br/2(550)

< c][ U(z, Du) d:zc—l—c(][ [\I/(x,F)]A’dx—i—l)
BT(IO) BT(‘TO)

holds for some constant ¢ = c(data,dist(Q, 0Q),7, [|[¥(z, F)| L7 (@)), when-
ever B,.(xg) € Qo is a ball with 0 < r < R.

(3.5.14)

~

The above theorem is a considerable generalization of the work [38], where
local gradient estimates for the case G(t) = tP™ and H(t) = ¢ with some
numbers p,,, ¢, > 1 were investigated. Moreover, it covers the results from
[12] when the exponent functions p(-) = ¢(-) = 1.

Furthermore, we can always assume that

G(1)=H(1) =1, (3.5.15)
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otherwise we restate the problem under the new settings by considering
G(t) = % and H(t) := % for every ¢t > 0.

3.5.2 Absence of Lavrentiev phenomenon and Sobolev-
Poincaré type inequality

In the sequel we prove an approximation property for functions of Wl"I’(Q),
the so-called absence of Lavrentiev phenomenon.

Theorem 3.5.5. Under the assumptions (3.5.1)-(3.5.4), for any function
v e WHY(Q) and a ball B € Q, there exists a sequence of functions {vy}7>, C
Wt>(B) such that

v = U in WLGP(')(B)
(3.5.16)
and lim [ Y(z, Dvy)dx :/ U(z, Dv)dx.
k—oo Jp B
Proof. Fix a ball B € € and take small enough ¢y € (0,1) such that B =
B, € B¢, € Q. Let p € C°(B;(0)) be a standard mollifier with [, pdx =
1. Set p.(z) := L p (%) for x € B-(0) with 0 < & < 9. Then

p: € C5°(B:), / pedr =1, 0<p. <c¢(n)e "

Let us denote by

ac(r) = inf a(y), -(r) ;= Inf
(z) ot (), p(z) yeBs(w)p(y) -
and ¢.(z):= inf q(y), o
YyEBe ()

and consider the mollified functions by
ve(2) = (v po)(w) and  We(z,2) = G*9(|2]) + ac(a) H(|2))

for every x € B and z € R". First, using the assumption (3.5.2), we observe
that

e~ (P@=pe@) | o~(a@)=a:(2) < o108 1) (p(@)—pe(2)) | o(log 1)(a(x)—ge(2))

3.5.18
< 2Me (3.5.18)
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holds true for every = € B. Therefore, the last display directly implies

__n_ __n_(p@)=pe(@)\ _ _n_ __n_ __n_
g pe@® = ¢ p(z)< r=e) )g p@) < e"Mpa " 5@ < c(’n,, Mpq>5 p(@)

By the very definition of convolution together with Holder’s and Jensen’s
inequalities, we have

G([Dve(x)]) = G([(Dv * pe)(x)]) < / G(|Dv(z —y)|)pe(y) dy

n

<e ][ G(IDw(y))) dy < ¢ (][ Gp€<x><|Dv<y>|>dy)
5( 6(1)

1
pe (z)
( G (| Doy >|>dy+1)
Bex
< ce (@) (/ Gp(y)<|DU< )])dy—f—l) ch_ﬁz)
Q

for some ¢ = c(n, myq, | ¥ (2, Dv)||11(q)). Combining the last two displays, we
see that

G(|Dv.(z)]) < ce 7 (3.5.19)

holds with some constant ¢ = ¢(n, myq, My, || ¥ (2, Dv)||11(q)) for every x €
B. Moreover, again recalling the definition of p. and ¢. in (3.5.17) together
with (3.5.18) and (3.5.19), we have

G*(| Do ()]) = pr‘””)(lee( )I)G”@‘pf(m)(lee<w)l>
< e e PO Gre(@) (| Dyy_(2)]) (3.5.20)
< ¢G™(|Du.(x)])
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and

HY(| Do, (x)))
= H*@ (| Do, (z)]) HU® =@ (| Do, (2)|)

q(z)—qge(x)

¢ (6" (Duc(a)]) + GU+EP (| Du())
x H*@ (| Du.(z)])
a(z)—qe (@)
<c(emen () T g0 (Do)
< cH™ (| Dux(x)])

(3.5.21)

with some constant ¢ = c(n, k, Myq, My, @, ||V (z, Dv)||11(q)) for every x € B,
where we have used the assumption (3.5.4) and some elementary manipula-
tions. Therefore, applying again Jensen’s inequality, we obtain

6 (|Du (o)) = 7

Doly)p(x — ) dyD

Be(z)

< / @Dtz o) dy
Be(z

(3.5.22)
< / U(y, Doly))pa(e — ) dy + ¢
B:(x)
<[U(, Do) # p] (2) + ¢
and
00(@) H®)(| Do, (a)]) = a. () =) ( Do(y)p.(z —y) dy')
B:(z)
a.(x ¢=(2) v T —
< a.(v) Be(x)H (|Dv(y))pe(z — y) dy (35.23)

< /Be(x) U(y, Dv(y))pe(x — y) dy + ¢

< U, Do) pe] (2) + ¢
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for some constant ¢ independent of €. To proceed further, let us observe

U(z, Dv.(2)) < Ve(z, Due(2)) + |a(z) — a(2)|H*(|Do.(z)))

(3.5.24)
U (z, Dv.(z)) + [a]oﬂeo‘Hq(x) (|Dve(z)]).

<
<

Using again the assumption (3.5.4) together with (3.5.19), we have

H(|Dve(2)]) < & (1+ G"(| Doe(w)])) GP (| Dve(w)])

<
< (14 e7)GPD(|Du(z)]) < ¢(1 4 e~ ) U (x, Dv.(x)).

Then inserting the last display into (3.5.24), we find

U(z, Dv.(x)) < W (z, Dv.(x)) 4+ ce®(1 + e~ )W (x, Dv.(x))
< V. (x, Dv.(z))

with some constant ¢ = c(n, &, Myq, Mpq, @, [alo.a, |V (z, Dv)|| 11(q)). Now tak-
ing (3.5.20)-(3.5.23) into account in the last display, we conclude with

U(x, Dv.(x)) < c[V(-, Du()) % p.] (x) + ¢

for some constant ¢ = c(n, K, Myg, Mpq, a, [alo.a, |V (z, Dv)| 11(q)) indepen-
dent of ¢, whenever x € B. Since

[U(-, Du(-)) * pe] (z) — W(x, Du(z)) strongly in L'(B),

we are able to apply a variant of Lebesgue’s dominated convergence theorem
for a sequence of functions {v., } C C;°(B;4,) With some choice of g, — 0.
As aresult, vy — vin et (B) and this ensures the existence of a sequence
satisfying our desired convergence (3.5.16). The proof is complete. O

Let us now consider a Sobolev-Poincaré type inequality related to an
Orlicz function with variable exponent, which plays an important role after-
wards. In the following, let b(-) : B, — [0,00) be a continuous function such
that

1 <b;:= inf b(y) < b(z) < sup b(y) =: bs < o0
veb veB, (3.5.25)
and  [b(z) — b(y)| < w(lz —yl)
holds, whenever x,y € B, with |z —y| < 1/2, where w(:) is a modulus
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continuous function such that

n

1
w(0) =0, sup w(p)log— <1 and w(2r)<
0<p<r p n—

Sl (35.20)

Lemma 3.5.6. Let ® € N with s(®) > 1 and let b(-) : B, — [0,00) be a
function as defined in (3.5.25)-(3.5.26). Then, for any d € [1,-2), there
exists 0 = 0(n, s(®), b;,b,,d) € (0,1) such that

v (=) o]
<c [(/ <I>b(:”)(|Dv|)dx)W(2T) +1

holds for some constant ¢ = c(n, s(®), b;, b, d), whenever v € Wl’(bb(')(B,,).

Moreover, the above inequality still holds for every v € Wol’cpb(') (B,) if v—(v)p,
15 replaced by v.

v—(v)5,

{][ @”’““(!Dv!)derrc (3.5.27)

r

Proof. First we notice the following classical formula that

SC(n)/B | Du(y)| dy

e =yt

[v(z) = (v) B,

holds for a.e. x € B,, whenever v € W'(B,), see for instance [125, Lemma
7.16]. Using the last formula and the property that the function ®®®(.) is
increasing for any fixed x € B,., and then applying Lemma 2.1.4, we have

\ \ B, Tlr —y[*”
§c][ @dbs(/ Mdy) dr +c
\ B, Tz —y["

with ¢ = ¢(n, s(®),d). Now by Lemma 2.1.5, there exists
0 = 0(n,b;,s(P),d) € (,/"Tld, 1> such that ®"¢ € N with s(®"?) de-

pending only on n,b;, s(®),d. Let E := JCBr ®b?(|Dv|) dx. One can always

assume F > 0, otherwise (3.5.27) becomes trivial. Recalling the fact that

Is. ——+——dy < c¢(n), where the constant ¢(n) is independent of z € B, and

rle—y[*=t

v — (),
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the ball B,, we apply Jensen’s inequality for the convex function (IDb"G(-) with
respect to the measure r~ |z — y|_(”_1) dy. In turn, it yields that

I~
IS

Kl

ch£3</'¢MQDm)D| y|“1h@>”cm+c

bsd

b9 b0
_ crbS(Z"l)dE”][ (][ <I)| |D1|1( 3‘)E—1d )bl dr + ¢ (3.5.28)
™ T ,I'_yn

Pt |Dv )
(n— l)b d

Y|

Bl

bs(n—1)d

<cr ue EbG

———— U E N dydx + ¢,

where in the last inequality of above display we have applied again Jensen’s

bsd
inequality to the convex function ¢ +— t%? with respect to the probability
measure £~ '®%° (| Dv(y)|) dy. Note also that

1 1 1
][ (n— l)b d dx |B ’ (n—1)bsd 1)bs dz
(n—1)bsd

< c(n,s(®),d)r wo
by observing that

(n—Dbd  (n—1)(b,—b)d (n—1)d
0o b:0 Ty

<=1 (25) + -0 (1) =

where we have used our choice of 6, (3.5.25) and (3.5.26). Merging the
estimate (3.5.29) into (3.5.28) and using Holder’s inequality together with
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(3.5.25) and (3.5.26), we conclude with

o
IS

S

bsd b;0
I<Ew fc<c <][ <I>b(“"”)9(|Dv\)dx) +c

(bs—b;)d

__n(bs—b;)d T, g
S cr b; (/ Q)b(x)(‘DUD dx) <][ @b(x)e(’DUD dx) +c
r B
w(2r) d
(/ (IJb(’”)(|DU|)dJ:) +1

<c

d d
6
<][ @b(x)9(|Dv|)d:v) +c

for some ¢ = c¢(n, s(P), b;, bs,d). Obviously our desired inequality (3.5.27)

follows from the last estimate.

3.5.3 Higher integrability

]

Before proving the higher integrability, for a given ® € N (), we define a

vector field Vg : © x (R™\ {0}) — R" as follows:

0,0z, |z\>] .

||

Vil = |

Using these maps, it is convenient to formulate the monotonicity properties

of the vector field A(-,-) in (3.5.6), i.e., the following inequality holds:

Va(z, 21) — Vi (z, 2)|? < c{A(z, 21) — Az, 2), 21 — 22) (3.5.30)

with some constant ¢ = ¢(n, s(G), s(H), myy, v, L), whenever z;, zo € R"\ {0}
and z € €. We also shall use the following facts frequently, for any ® € N ()

with s(®) > 1, that

Vo (2, 21) = Va(@, 22) [ & 05 ®(, |21] + |22]) 21 — 2/
_ 0®(z, |z1] + |22])

2
Z1 — &
PIFNPTE

21

<atCI>(x, |21]) Py

z
— 0P (x, |22|)é, 2 — z2> ~ |Va(z,21) — Va(, 20)|?
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and
Oz, 21 — 20) < o(7)|Va(, 21) — Vo (0, 2)|* + 7®(z, 21) (3.5.31)

for every 7 > 0 with some constant ¢(7) = ¢(s(®), 7), whenever z € Q and
21, 29 € R" with |z1]| + |22] > 0, where all the implied constants depend only
on n and s(P) (see [12, 92]).

Remark 3.5.7. We notice that V€ N (Q) with the index s(¥) depending
only on s(G),s(H) and my, by Lemma 2.1.4 and Lemma 2.1.5, which means
that

1 tOL U (x,t)
S0 S ey =W

holds for all x € Q and t > 0. Also we note the following elementary but
useful inequality by Lemma 2.1.4 as

W(x,ty +ty) < 22 (W(z, 1)) + U(z, ty)) (3.5.32)
for all x € Q) and ty,t5 € R.

In the present section we provide a higher integrability of solutions to the
equation (3.5.5) and its homogeneous equation.

Lemma 3.5.8. Let u € W"Y(Q) be a weak solution to the equation (3.5.5)
under the assumptions (3.5.1)-(3.5.4) and (3.5.7)-(3.5.9). We also assume
that ¥(z, F) € L7(Q) for some vy > 1. Then there exists a positive higher in-
tegrability exponent oy = oo(data,y) < v—1 such that ¥(x, Du) € L.t7°(€).
Moreover, there exists a constant ¢ = c(data) such that

(]{9 W, Du)| 7 dm) =
Sc]{BQ U(z, Du) de + ¢ (J{S

N (3.5.33)
(U (z, F)]' dm) +c

2p
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holds for every o € (0,0¢], whenever By, C Q is a ball such that

n

—1 (3.5.34)

1
sup w(T)log— <1 and w(dp) <
T

0<r<4p n—1

for w(-) being a modulus continuous function introduced in (3.5.10). In par-

ticular, for every Qo € Q and o € (0,00|, there erists a constant ¢ =
c(data, dist(Qo, Q), [[¥(2, F)|| 1)) such that

W (2, Du)| 140 < C (3.5.35)

Proof. Let n € C§°(By,) be a cut-off function such that xp, < n < x,,
and |Dn| < 4/p. We take @ := p*(W+1 (u— (u)p,,) as a test function in the
equation (3.5.5), where s(¥) is the index of ¥ depending only on s(G), s(H)
and my, by Remark 3.5.7, to observe that

Iy = ][ n* T A(z, Du), Du) dx
B

2p

— (s() +1) ][ 79 — (), ) A(e, Du), D) de

Ba,

+][ n**(B(z, F), Du) dx
B

2p

T (s(D) + 1) ][ 7 (u — (u),,) (B(z, F), Dr) da

Ba,
=: Io1 + Log + Ios.

Clearly, by the monotonicity property (3.5.30), we have
][ (2, Du) de < el
Ba,

for some ¢ = ¢(s(G),s(H),v, L, my,). Applying Lemma 2.1.6, for every ¢ €
(0,1), we find
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<o At Do) |0 gy
Ba, Y

< C][ 775(‘1!)\:[!(*777 Du) u— (u)B2p dr
Bz, | Du| P

1 —_
< c][ ™ (en) ¥ (x, Du) dz + c][ U v (x e
Ba,

Bap (en)*t¥)

< ce N (2, Du) dx + - Uz, % dx
B 65(\11) Bay

2p

with ¢ = ¢(s(G), s(H), L, m,,). Similarly, using again Lemma 2.1.6, for every

e € (0,1), we have

102§€][
B
IO3SC][

B

2p P

and

OV (z, F) dz + c][

B3, 1Y

2p

77s(\IJ)—i—IIIJ(J:, Du)dx + gTC‘IJ) ][ ns(\lf)+1\IJ (x, F) dx

POy (x u— (W,

for some constant ¢ = ¢(s(G), s(H), L, m,,). Combining the last three dis-
plays and choosing small enough ¢ after some standard manipulations, we

have
][ \If(x,Du)dxgc][ @(x,%) da;—l—c][
B, Ba, P B

for some ¢ = ¢(n, s(G), s(H),v, L, my,).

2p

U(z, F)dx
(3.5.36)

Now we estimate the term on the right-hand side of the above display.
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For this, using the assumption (3.5.4), we estimate as follows:

-/ :p@m) (=)

p
+(a(x) — ai(B,)) HI® <
- ]{9 2 a;(By,) H1® (

< c*][ Gr@) (
Bz,

U — (U)BQp
P

)

) o (3.5.37)

U= (U>B2p

P

) i

U — <U’>32p
p

tept f o @) < v (W, > dx

Bs, P

u— (u
+ ¢oa;(Bay) @) (‘& ) dx
Bap P
=: ¢(l1 + ha + ©13)
for some ¢, = ¢ (k,[a]oq), Where a;(By,) = i%f a(x). Now we estimate
FAS 2p

the terms appearing in the last display. For I;, applying Lemma 3.5.6 with
® =G, b(-) = p(-) and d = 1, there exists 0; = 01(n, s(G), my,) € (0,1) such
that

w(4p)
Bs,

1
01

X ][ G (| Dul) da
Bs,

1
o
U0 (z, Du) dx) +c

gc(]{g

for some constant ¢ = c(n, &, $(G), My, [[¥(2, Du)||11(q))- For the estimate
on Iy, let us first observe that 1+ ¢ < —-. Therefore, we are able to apply

2p

163



CHAPTER 3. CALDERON-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

Lemma 3.5.6 for & = G, b(-) = p(-) and d = 1 + 2. In turn, there exists
0y = 05(n, s(G), o, my,) € (0,1) such that

Ly < cp® /
B

“(/
Ba,

(s )etn)
<c </ Gp(“)(]Du\)da:>
B

2p

(1+2)w(4p)
Gp(x)(]DuDda:) +1

Q)L
n /) 0o

(+
G%P) (| Dul) d:v) + cp”

2p

. ( /
« (ﬂ (;92P<$>(Du)dx>912 be
<c (ﬁ :

02
U%(z, Du) dx) +c
with some constant ¢ = c(n, £, s(G), &, My, || ¥ (2, Du)|| 11 (o). Finally, to es-
timate I3, we consider two cases depending on smallness of the quantity
a;(Bsp), which means that if a;(By,) < 4p®, then using the assumption
(3.5.4), we see that

(3.5.39)

«@
n

GP@ (| Du)) dx)

2p

2p

Iis < c(k) (In + L2) -

In particular, in this case the estimates obtained in (3.5.38)-(3.5.39) imply

that
1
o1
I3 <c <][ U (2, Du) dx) +c <][
B B

for some ¢ = ¢(n, k, 5(G), o, My, [V (2, Du)|[11(q))- Now we consider the re-

03
\IIQQ(x,Du)da:> +c¢ (3.5.40)

2p 2p
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maining case a;(Bs,) > 4p®. In this case we observe
[a:(Ba,)] 1) < [4p] o) < e
by the assumption (3.5.34). Then using the last display and applying Lemma

3.5.6 for ® = H, b(-) = ¢(-) and d = 1, there exists 03 = 03(n, s(H),m,,) €
(0,1) such that

w(4p)
Il3 S Cai(BQp) < Hq(z)(]DuD dl‘) + 1
Ba,
1

03
X ( H93q(”)(\Du])d:U> +c
Bs,

— ¢ | [ai(Bay) ( /

X <]{9 [az’(sz)]%HGSq(m)UDUDdx) 3 tc

<(f

for some ¢ = c(n, s(H), a,myq, ]l oo (o » ¥ (2, Du)||1q)). Taking (3.5.38)-
(3.5.39) and (3.5.41) into account, we conclude that

£ () Mc(][B

for some ¢ = c(data), where 6 := max{f,, 602,603} € (0,1) depending only
on n,s(G),s(H),a and m,,. Inserting the estimate in the last display into
(3.5.36), we find an exponent 6 = 6(n, s(G), s(H), my,, a) € (0,1) such that

]{3 U(z, Du)dz < ¢ <]{3

w(4p)
@i(sz)HQ(x)QDu]) d:c) +1 (3.5.41)

2p

1

03
U9 (z, Du) dx) +c

2p

%
U0(z, Du) d$> +c (3.5.42)

2p

(W (:(:,Du)]edx>6 —i—c]i U(z, F)dr +c

P 2p 2p
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for some ¢ = ¢(data). Now we apply Gehring’s lemma to obtain

(]{3 W, Du)] dx) s
<cf \y(a;,Du)d“C(]{g

for every o € (0,00, where oy = op(data,y) < 7 — 1 and ¢ = c(data),
which proves (3.5.33). Clearly, by a standard covering argument, (3.5.35)
follows. O

e
(U (2, )] d:c) +c

2p 2p

Throughout this section, let u be a weak solution of the equation (3.5.5).
Our purpose here is to prove a higher integrability of the solution of the
following Dirichlet boundary value problem:

—divA(z, Dw) =0 in Bz = Bsar(yo) (3.5.43)
weu+ W017‘11<B32r) o
for a ball B3y, € g € (2 such that
1
sup w(p)log— <1 and w(64r) < A (3.5.44)
0<p<64r P n—1

with w(-) being a modulus continuous function that has been introduced in
(3.5.10).

Lemma 3.5.9. Let w € WYY (Bay,) be the weak solution to the equation
(3.5.43) under the assumptions (3.5.1)-(3.5.4), (3.5.7)-(3.5.8) and (3.5.44).
Then there exist a positive exponent o1 = o1(data,y) € (0,1) with o1 < oy
and ¢ = c¢(data) such that

1. For every ball Ba, = Bs,(y) € Bsy, and o € (0,04], it holds that

]{Bp[\p(x, Dw)]™" dx] - <c (ﬁ

2p

U(z, Dw)dr + 1) . (3.5.45)
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2. The following energy estimate

][ [V (z, Dw)]'™ dx < c][ (U (2, Du)]"*7 dx + ¢ (3.5.46)
B3ar Bsar

holds for every o € (0, 04].

Proof. Let us start with testing the equation (3.5.43) by u—w € Wy " (Bsa,.).
In turn, by (3.5.8) and then (3.5.7) and Lemma 2.1.6 it yields that

]{332T\If(:v, Duw) dx < c][ (A(z, Dw), Dw) dx

Bsar

< c][ |A(z, Dw)||Du| dx
Bsar

V(x, D
c][ M|Du| dx
B327‘ |Dw|

(3.5.47)

IN

< CT][ U(x, Dw) dx + %][ U(z, Du) dx
B32T T B32r

for any 7 € (0,1) and some constant ¢ = c(n,s(G),s(H),v, L, m,,). By
taking 7 small enough in the last display after arranging the terms, we have
the energy estimate

][ U(x, Dw)dx < c][ U(x, Du) dx (3.5.48)
Bsar

Bsar

for some ¢ = ¢(n, s(G), s(H),v, L, my,).
Arguing similarly as in the proof of Lemma 3.5.8, we obtain the following
Caccioppoli type inequality:

][ U(z, Dw)dz < c][ v (:p, %) dx
Bp B2p p

for some constant ¢ = ¢(n, s(G), s(H), v, L, m,,). Therefore, by this inequal-
ity and with similar computations as in (3.5.37)-(3.5.42) under the assump-
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tion (3.5.44), there exists 0 = 0(n, s(G), s(H), a,m,,) € (0, 1) such that

]{9 U(z, Dw)dr < ¢ <]{B

for some ¢ = ¢(data). Now we apply Gehring’s lemma to obtain

T
<][ U7 (2, Dw) dm) < c][ U(z, Dw)dx + ¢
B, B

1
g
U0 (2, Dw) d:L‘) +c (3.5.49)

2p

2p

for every o € (0,04], where 01 = oy(data) and ¢ = ¢(data). This yields
(3.5.45). To show (3.5.46), we need to prove a version of the last inequality
near the boundary of Bsy,. For this, let By,(y) C R™ be a ball such that

Yy € Bsa, and % < %. We take a test function by ¢ = n*(+1(
P

where 7 € Cg°(By,) is a standard cut-off function as before so that xp, <
n < X, and |Dn| < 4/p. This choice of ¢ is admissible since supp ¢ €
Bss, N By,(y). Arguing similarly as we have done above, we see that

u—w),

/ N (2, Dw) dx
Bs32,-NBa,(y)

< c/ ns(q,)\ll(x,Dw) ’w —ul
B32Tﬁng(y) |Dw| p
U(x, D
B32:NB2,(y) ‘Dw|

1 w—u
< C/ 77s(\Il) <(57])\I/(:E, Dw) + ——FV <aj, —)) dx
BiayNBay () (en)*(¥) p
1
+ C/ n*Y) ((577)\If(x, Dw) + ——=V (z, Du)> dx.
B32-NB2,(y) (577)5(\11)

Again choosing € small enough and reabsorbing the terms, we find that

][ (2, Dw) dx
Bs2r-NBa,(y)

§c][ W(m,w_u> dx—i—c][ U (z, Du) dx
B32-NB2,(y) p B32,NBa,(y)
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for some constant ¢ = ¢(n, s(G), s(H),v, L, m,,). Redefining w — u = 0 on
By, (y)\ Bsar, we are able to repeat the same proof for the estimate in (3.5.49).
In turn, there exists 6, = 0y(n, s(G), s(H), o, my,) € (0,1) such that

1

w—u %
][ v <x, > dr < c ][ [U(x, Dw — Du)|® de | +c
Bs2:NB2,(y) P B32,NB2,(y)

1
%
<c(f (2, Dw))* da
B32-NB2,(y)

+c][ [ (z, Du)]dx + ¢
B32-NB2,(y)

for some constant ¢ = c¢(data), where for the last inequality we have used
(3.5.32) and Holder’s inequality. Combining the last two displays, we have

1

7
][ [V(x)}ﬁ dr <c <][ V(z) dx) + c][ U(z)dx+c
Bp(y) Bay(y) Bap(y)

for some ¢ = ¢(data), where 6,, = max{6,0,},

V(l‘) = [\I’(l‘, Dw)]emXBszr (l‘) and U(l’) = \I/(JZ, Du)XBszr (l‘)
for every ball By, (y) C R” satisfying either Ba,(y) C Bsa, or 15 < %
with y € Bss,.. Applying a variant of Gehring’s lemma and a standard cover-

ing argument together with Lemma 3.5.8, we arrive at the desired estimate

(3.5.46). O

As a consequence of the above lemma, we need another type of higher
integrability results. For a given ball Bs,(y) € Bsar, let p, ¢ : Ba,(y) — [0, 00)
be functions satisfying the following bounds:

no

0<p(e) < (1+o)p(a) and qle) < d() < qo) (1+

) (3.5.50)

n 4+ «

for some o € (0, 04|, where 07 = 01(data) is a higher integrability exponent
determined by Lemma 3.5.9.
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Lemma 3.5.10. Under the assumptions and conclusions of Lemma 3.5.9
and notations introduced in (3.5.50), it holds that

][ (Gp(
By (y)

x)(\DwD + a(x)HQ(x)(]Dw])) dx

140
<c ][ U (z, Dw)dz +1
B2p(y)

for some constant ¢ = c¢(data).

Proof. By Lemma 3.5.9, it follows that

][ GP@) (|Dw|) dx < ][ GP@) (| Dw)|) dx + 1
By(y) By(y)

(3.5.51)

1+o
<c ][ U(z, Dw) dx +1
B2p(y)

By (3.5.50), for every x € By,(y) and t > 0, we also notice

HI@=a@) (¢)

i(z)—aq(=)
|:/€ (Gp(z) (t) + G(H—%)p(ax) (t))] q(w)
d(z)—q(x)

<1+G (15 (t)> =
< (146U TR 1))
¢ (1+ G (1))

IN

| /\

(3.5.52)

IN

for some ¢ = ¢(k). Then, using Holder’s inequality together with the assump-
tion (3.5.50), Lemma 3.5.9, the estimates (3.5.51) and (3.5.52), we conclude
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that

][ a<x)Hﬂ<w>(|Dw|)dx:][ o) Y@ (| D)) HT =90 (| Dao|) d
Bp(y)

By (y)

q(z) w 140 J] e

< (pr(y)[ () H1) (| Duw)] )

X <][ (@) —a(2) 52 (|Dw|) )
By (y)

140

o

1+o
« ][ (6" (| Dw)] ™ e+ 1
BP(Z/)

1+o
<c <][ U(z, Dw) dx) +1
BQ,O(?J)

for some constant ¢ = ¢(data). This completes the proof. ]

3.5.4 Comparison estimates

Throughout this section, let us fix a ball Bsy, = Bsa.(y9) € Qo € £ with r
being a small number depending on data to be determined later, and let also
u € WHY(Q) be a weak solution to the equation (3.5.5). In the following, we
shall discuss a series of comparison estimates until we arrive at the limiting
equation.

Lemma 3.5.11. Let w € W'Y (Bay,) be the solution to the equation (3.5.43)
under the assumptions (3.5.7)-(3.5.9). Then for every ¢ > 0, there ezists a
small number 6 = 6(n, s(G), s(H),v, L, myy, €) such that if

][ U(z, Du)dx < X\ and ][ U(z, F)dr < oA
BJQT 352r
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hold for some A > 1, then we have

][ U(z, Dw)dx < c\ and ][ U(z, Du— Dw)dr <eX  (3.5.53)
B3ar Bsar

for some constant ¢ = c(n, s(G), s(H),v, L, my,).

Proof. Let us start with testing the equation (3.5.43) by u—w € W' (Bsa, ).
Arguing similarly to (3.5.47)-(3.5.48), we see that

][ U (z, Dw)dr < c][ V(z, Du)dx < cA (3.5.54)
Bsar

Bsar

for some ¢ = ¢(n,s(G),s(H),v, L,my,). This gives the validity of the first
inequality of (3.5.53). To show the second estimate in (3.5.53), recalling that
uw—w € Wy (Bsy,) is admissible as a test function to (3.5.5), we have

][ (A(z, Du) — A(xz, Dw), Du — Dw) dx = ][ (B(x, F), Du — Dw) dzx.

Bsar

By using (3.5.30) and (3.5.31) together with the last equality, we see that

][ U(x, Du— Dw)dx < ¢, ][ \Vy(x, Du) — Vg (z, Dw)|* do
Bgzar

B3ar
+ 7 ][ U(x, Du)dx
B3or
< cp ][ (A(z, Du) — A(x, Dw), Du — Dw) dx
B3ar
+ 7 ][ U(x, Du)dx
Bsar
Scn][ |B(z, F)||Du — Dw|dx + 73\
Bzar
U(x, F
< cn][ M|Du—Dw|dm—|—ﬁ)\
By |F]

< Tolp ][ U(x, Du— Dw) dz + ¢ r0X + T A
Bszar

holds with ¢;, = ¢, (n, s(G),s(H),v, L, my,,, 1) and
Crim = Cnn(n,s(G),s(H),v,L,my,, 1, 72), whenever 7,7 € (0,1) are ar-

172



CHAPTER 3. CALDERON-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

bitrary numbers, where in the last inequality of the above display we have
applied Lemma 2.1.6. By choosing 7, := 51— in the last display, we have

2071
][ U(z, Du— Dw)dz < ;)0\ + 1\
Bgzar

Finally, taking small 77 < ¢/2 and 6 < ¢/(2¢,,) in the above display, the
second inequality of (3.5.53) follows. O

From now on, let us fix the auxiliary notations as

pi= inf p(z), ps:= sup p(x), ¢;:= inf q(x) and ¢, := sup g(=).

T€B3ar 2E B3y € B3ar € B3ar

Define a function ¥, : 2 x R" — R by

Uy(z, z) == GP(

z]) + alx)H(

2)) (3.5.55)

for every x € 2 and z € R".
Remark 3.5.12. Let us remark several important observations regarding V.

1. Applying Lemma 2.1.5, for every t > 0, we observe that

1 (@)
G =GR ()
<

< S<GPS)

X (HoY (o) (3.5.56)

s(H) = (HeY (@)

and < s(H®*)

with s(GP*) = s(G) + (mpy, — 1)(s(G) + 1) and s(H*) = s(H) + (myp, —
1)(s(H)+1).

2. By (3.5.56), for every x € Q and t > 0, we have

L 02U (x, t)t

A ACE) < s(Ws) (3.5.57)

with s(Vy) == s(G) + s(H) + (mypg — 1)(s(G) + s(H) + 2).

173

&

| &1



CHAPTER 3. CALDERON-ZYGMUND ESTIMATES FOR
NONSTANDARD GROWTH PROBLEMS

3. We can also easily see that

sup

>0 [G(E)]rs + [G(t)) ()P < (w17 (3.5.58)

We shall consider the vector fields AL Baars /127 Bag, & Bsar X R™ — R"™ given
by
Al,Bszr(xv Z) = Gpsjp(x)(‘ZDAl(x? Z)

] (3.5.59)
and Ay p,, (x,2) = H*" 9@ (|2]) Ay(z, 2).

Using the structure assumptions (3.5.7), (3.5.8) and recalling Remark 2.1.2,
the standard manipulations yield that

1 e Gps
|ZH82A1,3327-($7 Z>| + ’A1,3327»<x7 Z)‘ <L, ’£|Z|>
A GP(|2]) .o (3.5.60)
(0:A1 By, (2, 2)€,€) > 14 P €]
and
A ~ HQS
2|10, Az Bay, (7, 2)| + | A2 5oy, (7, 2)| < Ly ’(:Z’)
: (3.5.61)

H%(]2])

|22

<82A27B327‘(:L‘7Z)§’§> > Vs |§|2

for every x € Bsa,, z € R"\ {0} and £ € R", provided

. v
otot0) < min {1 e |
where Ly = L(2my,(1 4+ s(G) + s(H)) + 1) and v, = v/2.

To proceed further, we need to consider another type of the higher inte-
grability of w. In what follows let oy and o; be universal higher integrability
exponents depending on data, which have been determined by Lemma 3.5.8
and 3.5.9, respectively.

Proposition 3.5.13. Under the assumptions and conclusions of Lemma
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3.5.9, suppose also that

1
sup w(p)log— <1 and
0<p<64r P

w(64r) < min {1’ O T DEE T nra Vo1 1} '

(3.5.62)

Then there ezist constants 61 = 61(data) and ¢ = c(data) such that

(][ U (2, Dw) dzv) <c (][ U(z, Dw) dr + 1) (3.5.63)
Blﬁr B32r

holds for every o € (0,1].
Proof. First, by the assumption (3.5.62), we observe that

n—+«a

! w<64r>) < p@) 1+ )

ps < p(x) <1 +

and

gs < q(z) <1+ z ”“‘w(ﬁm) < q() <1+ 1o )

n+oa n n—+u«o

Thus we apply Lemma 3.5.10 for p(z) = ps, §(z) = ¢, and 0 = 2w(2p) €
(0, 01] to obtain

]{B U(x, Dw)dx < ¢ (]{32
§0<]{B

for some constant ¢ = c¢(data). Therefore, by (3.5.62) and (3.5.54), we notice

140
U(z, Dw) dx) +c
TR (3.5.64)
U(z, Dw) dx) +c

2p
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that

252 0(2p) ke, (0)
! U(z, D £ w(2p
][ V(x, Dw) dx <c (H (& w)HLl(Bszr))
ng pn

< Ce(n-‘r@)(bg Tlp)w(QP) < c(data).

Inserting the last display into (3.5.64), we obtain that

][ V(x, Dw)dr < c][ U(x, Dw)dx + ¢
By

Bs,

for some ¢ = c(data), whenever By, C Bsy, is a ball. Therefore, using a
standard covering argument, we find that

][ Uy(x, Dw)dx < c][ U(z, Dw)dzx + c. (3.5.65)
Bier

Bgar 3

On the other hand, by taking 5*™ ™ (w — (0) By, /5) € Wy¥ (By,) as a test
function to the equation (3.5.43), where n € C§5°(Be3(y)) is a cut-off
function such that Xpg,, ,0) < 1 < XBy, 5 and [Dn < 12/r, and fol-
lowing the similar proof for obtaining (3.5.49) in Lemma 3.5.9, there exists
0 =0(n,s(G),s(H),a,my) € (0,1) such that

][ U(z, Dw)dr < ¢ ][ U0(z, Dw) dx) +c.
Bear/s Bsor/s

for some ¢ = ¢(data). Recalling the definition of ¥y in (3.5.55) and the above
inequality together with (3.5.65) yields

S

1
o §
<c ][ U (z, Dw) dx +c§c<][ \Ilg(w,Dw)dx> +c.
Bgor/s Bsar

Then by applying Gehring’s lemma, there exists a positive number ; =
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71(data) such that

TH
(][ \I/iJ“’(x, Dw) dx) < c][ U, (z, Dw)dzr + ¢
Bier Bsor

with some constant ¢ = ¢(data) for every o € (0, 51]. O

Now let © € W¥*(Byg,) be the weak solution of the following Dirichlet
boundary value problem:

jdivﬁBw (f;m) =0 in B (3.5.66)
v € w+ Wy *(Bier),
where
ABSQT‘ (xy Z) = Al,B32r (x7 Z) + a('%)AZBB%“ (w’ Z) <3567>

for every x € B3y, and z € R", in which the vector fields /117 By, and 12127 Basa,
have been introduced in (3.5.59).

Lemma 3.5.14. Let © € WY*(Byg,) be the weak solution to the equation
(3.5.66) under the assumption (3.5.1)-(3.5.4), (3.5.7)-(3.5.8) and (3.5.62).
There exists a positive number oo < min{oy,d1} depending only on data
and v such that

][ (W, (z, DO)]' de < c][ (U, (z, Dw))**7 dx + ¢ (3.5.68)

Bier
with some constant ¢ = c¢(data) for every o € (0, 05].

Proof. Firstly, the standard energy estimate and (3.5.63) imply that

/ U, (x, Dv)dx < c/ U, (z, Dw)dzx < c/ U(x,Du)dx +c<c
Blﬁr BlGr BlGr

holds with some constant ¢ = ¢(data). For a ball By, = Bs,(y) € Bie, let
n € C5°(Ba,(y)) be a standard cut-off function satistying x s,y < 17 < XBo, ()
and |Dn| < 4/p. Let us take the function ¢ = n*(¥=)+1 (0 — (0)p,,) as a test
function in the equation (3.5.66), where s(¥,) has been defined in (3.5.57).
This choice of ¢ is admissible due to the assumption (3.5.62). Then using
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(3.5.60) and (3.5.61) and Lemma 2.1.6 to ¥, we have

/ YN (2, D) da
B

2p

_. / ot Bal, D)
B By |D1~)|
P

SC/
B

Choosing ¢ sufficiently small in the last display, we conclude that

][ U, (z, Dv)dx < c][ U, <a:, %) dx
B, Bz, P

for a constant ¢ = ¢(n, s(G), s(H), v, L, m,,, a). Repeating the argument in
the proof of Lemma 3.5.8 with U, there exists 05, = 6,(n, s(G), s(H), my,) €
(0,1) such that

][ U(x, Do) dx < c][ U, (x, %) dx
B, Bz, P

L (3.5.69)
<c <][ (U, (2, DD)]% dx)

holds for some constant ¢ = c(data) whenever Bs, € Byg, is a ball. Now we
prove a version of the last inequality near the boundary of Big,.. For this, let

Bs,(y) C R™ be a ball such that y € Big, and 1—10 < %. We take a
P

test function by ¢ = n*Y) ™ (w—v), where n € C§°(By,) is a standard cut-off
function as before so that xp, <7 < xp,, and |[Dn| < 4/p. This choice of
¢ is admissible since supp ¢ € Big, N Ba,(y). Arguing similarly as we have

IZ’} - (6)B2p
P

pe(ve) ((577)\11(3:, D7) + (677)%\1/ <x %)) da.

p

dx

2p
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done before, we see that

n* O (z, D) da
B16rNB2,(y)
V—Ww

¢ / v Lol DY)
Bl()"rmBQp (y) |‘DU| p

U.(z, Db
Blgrﬂng(y) |DU|

1 U—w
< c/ n(¥e) ((577)\Ils(x, Do) + ———— U, (a:, )) dx
BlGrﬁB2p(y) (EU)S(\IIS) p

1
+ C/ ns(\lls) ((577)\115(.CE, Df)) + ——U, (aj, Dw)) dr.
Bi16-NBa2,(y) (577)8(%)

IN

‘da:

Again choosing € small enough and reabsorbing the terms, we find that

][ n* YO (2, D) da
B16rNB2,(y)

gc][ \I/S(x’v—w) dxH][ U, (z, Dw) da
B16rNB2,(y) P Bi16rNB2,(y)

for some constant ¢ = ¢(n, s(G),s(H),v, L,m,,). Redefining o — w = 0 on
Bs,(y) \ Bigr and following again the proof of Lemma 3.5.8, there exists
0, = 05(n, s(G),s(H), mpy, ) € (0,1) as appearing in (3.5.69) such that

][ v, (:v, v w) dx
Bi16rNB2y(y) P

o
< ][ [U,(z, Dt — Dw)]% dx
Bi6rNB2,(y)

1

s
< ][ (e, DO de | + e ][ 0., Dw)] dz
Bi6rNB2,(y) B16rNB2,(y)

for some constant ¢ = c¢(data), where for the last inequality we have used
again (3.5.32) and Holder’s inequality. Combining the last two displays, we
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have

1

7
V(z)de | + c][ U(x)dx
() Bap(y)

f NUCLEEE (f

for some ¢ = c¢(data), where

P 2p

V(z) = [Ws(w, DO)]" X5y, (v) and  U(z) := Uy(z, Dw)xpy, (7)

for every ball By, (y) C R" satisfying either B,(y) C Big, or 15 < WW

with y € Big.. Applying a variant of Gehring’s lemma and a standard cover-
ing argument, we arrive at the desired estimate (3.5.68). O

Moreover, we also need some elementary properties regarding log func-
tion, see for instance [2].

1. For any s,t > 0, it holds that
log(e + st) <log(e + s) + log(e + t), (3.5.70)

where e is Euler’s constant.

2. Forany 0 < 81 < < 5 and 0 < t < e, there exists ¢(f1, 52) > 0 such
that

t%|logt| < (B, Ba). (3.5.71)

3. For any 0 < 1 < ff3 < o0 and s; > 1, there exists ¢(sy, 31, 52) > 0
such that

]{2|f| [log (e—f—%dm)r iz

< c(s1, B1, P2) (]{2 |fI* dif) " ;

whenever 3 € [31, 3,] and f € L*(Q).

(3.5.72)

Then we shall deal with the second comparison estimates which are es-
sential parts of our comparison process.
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Lemma 3.5.15. Let & € WhYs(Byg,) be the weak solution to (3.5.66) under
assumptions and conclusions of Lemma 3.5.14. Then for every € > 0, there
exists a small number 6 = §(data,y,e) such that if

][ (e, Du) dz < A (3.5.73)
Bsar
and
1
sup w(p)log— <4 (3.5.74)
0<p<64r 1Y

for some A > 1, then we have
][ V(x, Dv)dx < cA (3.5.75)
Bier
for some constant ¢ = c(n, s(G), s(H),v, L, my,, ||allo) and
][ U (x, Dw — Dv) dx < e (3.5.76)
BlG'r

Proof. The standard energy estimates together with Proposition 3.5.13, we
have

][ U(x, Do) dx < c][ U, (x, Dw) dz
Brer Bior (3.5.77)
Sc][ U(z, Du)dr 4+ c < cA
B3ar

for some constant ¢ = c¢(data). To show (3.5.76), first let us observe that the
following equality

L := ][ (Ap,, (x, Dw) — Ap,, (x, D), Dt — Dw) dx

g (3.5.78)

= ][ (Ap,,, (x, Dw) — A(x, Dw), D0 — Dw) dx =: I,
Bier

holds by the admissibility of o — w in the equation (3.5.43). The structure
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properties (3.5.60)-(3.5.61), (3.5.31) and the last display give us that
][ Vy(z, D0 — Dw)dr < e+ c. Iy (3.5.79)
Bier

for every 7 € (0,1), where ¢ = c(data) and ¢, = c,(data, 7). Recalling
the definition of the vector field Ap,, introduced in (3.5.66) and using the
structure assumptions (3.5.7) and (3.5.8), we estimate I as follows:

Dw — Dv
Bsef |e(pu) - pup P b
Bl6r |Dw|
Dw — Dv
I C*][ a(w) | H*(|Dw]) — H'®(| Dw))| |Dw — Do| ge  (3:5:80)
Bier | Dw|
= Cx ([3 + I4) .

For the simplicity, let us denote by
Hi :={x € B, : |[Dw(x)| > |Do(x)] and 0 < H(|Dw(zx)]) < 1},
Ho :={x € By, : |Dw(x)| > |Do(x)| and 1< H(|Dw(z)|)},
Hs :={x € B¢ : |Dw(z)| < |Do(z)] and 0 < H(|Dw(x)|) <1},
Hy = {x € By, : |Dw(x)| < |Dv(z)] and 1< H(|Dw(x)|)}.

Now applying the mean value theorem, the second term in (3.5.80) can be
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estimated as

1, < 61 / () H'=(@—1@) 40| Dy log H{(| Duw)|
|B167’| B16TH{|Dw|>0}
|Dw — D7
el
[Du] ™
64
< 9% 7“)/ a() H=@=a@) 4@ (| D)) log H (| Dw|)| dx
| Bisr| Ja,
4
L ow(6 7’)/ a() Hi=@=9@)+4@) (| D)) log H (| Dw))| de
|Bisr| Jas
w(647“)/ b (g | D7
+2 a(a)H' =@ (| Dw))| log H(|Dw|)|-=— dx
|Bisr| Jau, | Dl
w(64r) / ‘o | Do
492 alx) Ht=(@s=a@)+a@) (| Dwl loe H (| Dw dx
Bl o (z) (|Dw|)[log H(| |)||Dw|
=:2 (141 + Lyo + L4z + [44)
(3.5.81)

for some ¢, € [0,1] depending on = € Big,.. Now we estimate the integrals
appearing in the last display. First using (3.5.71) with the observation that
1 <t.(gs — q(x)) + q(x) < my, for every x € By, we have

Iy < c(Myg)w(6471) < c(mypg)oA. (3.5.82)
For every x € H,, recalling (3.5.15) and H € N, we see

H=s=a@)+a(@) (| Dap(2)|) log H (| Dw(x)])
< (14 s(H))H* (|Dw(z)|)log (| Dw(x)])
< ¢ H%(|Dw(x)]) [log(e + G**(|Dw(z)]))]

for some ¢ = ¢(n, Kk, s(G),s(H), o, my,). Therefore, using the last display
and (3.5.70), (3.5.72), (3.5.54), (3.5.63), (3.5.74) and Holder’s inequality, it
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implies that
4
o< 200 [ (o)
|B16r| Ho

U (z, Dw)
< 64 H%(|Dw|)1 d
N CW( T) \éler CL(m) (l UJD o (e * fBlST \Ils<x7 D'ZU>dI'> o

Dwl)log (e + G**(

Dw|)) +¢) dx

+ cw(64r) ]{9 a(z) H (| Dw|) log (e + ][B U, (z, Dw)dm) dx

+ cw(64r) (3.5.83)

1

T+og
< cw(64r) <][ Ulto (x. Dw) dx) i
Bier

1
+ cw(64r) log (;) ][ U, (x, Dw) dx + cw(64r)
Bier

1 oy
< cw(64r) log (;) [(][ Ultoz (g Dw) d:v) +1
Bier

with some constant ¢ = c(data,~), where we have applied the following
inequality

< oA

][ U(x, Dv)dx < c][ U, (x, Dw) dx
Bier

Bier

¢ U, (x, Dw) dz (3.5.84)

B |Bl6r‘ Bigr

¢ c
< T_nH‘I’(xyDU)HLI(Q) +c< e

with ¢ = ¢(data), which is valid by (3.5.77) and (3.5.63). Applying Lemma
2.1.5, there exists #y € (0,1) depending only on s(H) such that H" € N
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Then we write I3 in the following form:

w(64r) / 0 (t | Dy

I H0H (te(gs—q(z))+q(z Dw

= | Bior| J3, o) (l |)|Dw|
% H(l QH)(tz(QS q(I) +q (‘Dw‘)“OgH(’le)‘dm

< cw(647")/ e )HGH(t“ do—q(z))+q(z (|D ) | Do s
= Bl Sy | Dw|

64 Dv
< ol ””)/ o) H (| Dw)) 12V gy
|Bier| S, w

(3.5.85)

for some constant ¢ = ¢(s(H), m,,), where we have used (3.5.71) with the
observation that

1 -0y <(1—0n)(ts(qgs —q(z)) +q(x)) < (1 —0g)my, for every x € Big,.

In order to estimate I3 further, we apply Lemma 2.1.6 for H in the re-
sulting term of (3.5.85). In turn, it yields that

I3 < %/ﬁ (a(z)H’" (|Dwl|) + a(z)H*" (|D3|)) dz

Scw(64r)][ lall = la(z) H (| Dw|))™ dz

Bigr
‘IS*QH

+eo(61r) § [all T lole)] ¥ (H( DI do

Bier

< cw(64r) ][ [a(x)H (|Dw))]™ da

Bigr

+ cw(64r) ][ la(2)) # [H (| D)) da

Bier

< cw(64r) ( ]{9 ~ofa)H(Dul) d:c) "

28

+ cw(64r) ( ][B a(z)H(|Dd)) dm) "

for some constant ¢ = c(s(H), myq, [|a]l (o)), where in the inequalities of
the above display we have used some elementary manipulations, and then
Holder’s inequality. Finally, recalling the energy estimate (3.5.77), we find
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the desired estimate as

I3 < cw(64r)\ < oA (3.5.86)

with ¢ = ¢(n, s(H), v, L, myq, o, ||a|, ). It remains to estimate /44 in (3.5.81)
and this can be handled in a similar way as we have done for I5. First, using
Remark 2.1.2, for every x € H4, we have

Htoc(Qs—Q(m))-l—q(a:)(|Dw(x)|) ’Df)(.?ﬁ)‘

and

HQS (

Do(z)|)log H(|Dv(x)]) < cH™(

Dv(z)|) log (e + GP*(

Do(x)]))

with some constant ¢ = ¢(n, k, s(G), s(H), a, my,). Therefore, taking the last
two displays into account and arguing similarly as in (3.5.83), we discover
that

w(64r
Iy < |1(316 ‘>/H a(x)H%(
T 4

< cw(647")][ a(x)H®(|Dv|)log (e + GP*(| D)) dx

BlG'r‘
U (z, DU
D)) log <e + (@ U>)d:p> dx

Dol)log H(|D?|) dx

(3.5.70)

< cw(647’)]{3 a(x)H%(

JCBW U, (z, Do

+ cw(64r)][ a(x)H* (| D) log (e —i-][ U (x, DD) dx) dx
Bier Bier

(3.5.68) 1 , oy
< cw(64r)log | = ][ VT2 (z, Dw) dx +1
r Bier

(3.5.54),(3.5.63),(3.5.74)
<

coA

(3.5.87)

for some ¢ = c(data, ). Inserting the estimates obtained in (3.5.82)-(3.5.83)
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and (3.5.86)-(3.5.87) into (3.5.79), we find

Iy <o\ for some ¢ = c(data,7). (3.5.88)
In a similar way as we have treated for I, we also can see that

I3 <o\ for some ¢ = c(data,7). (3.5.89)

Merging (3.5.88) and (3.5.89) into (3.5.78), and then into (3.5.79), we find
that

][ U (x, DU — Dw)dx < c(TA+ ¢;0))
Bier

with some constant ¢, = ¢(data,~, ) for every 7 € (0, 1). Therefore, choosing
small enough 7 and § depending on data,~ and ¢, the desired comparison
estimate (3.5.76) follows. O

First let us define the vector fields A; p.,,, A2 By, : R" — R™ by

1211,]3327,(2) = ][ Al,BS}r (I, Z) dx
Bsor

A27B327‘(z) = "212,33% (ZL‘, 2) dz.

Bsar

(3.5.90)

Clearly, the vector fields A; p,,, and Ay p,, belong to C'(R™\{0}) and satisfy
the following structure conditions:

—_ _ Gps
2002 (2] + L (2] < 2,570
_ GP (2], o (3.5.91)
<82A1,3327»(Z>£=§> > VSW’H
and
_ _ HQS
210 A (9] + A ()] < LD
| 3.5.92)
_ Hq.s (
0. (16,6) 2 e
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for every z € R"\ {0} and ¢ € R", provided

w(64r) < min {1’ (s(G) + 1)(s(H) + 1) } ’

where Ly = L(2my,(1 + s(G) + s(H)) + 1) and vy = v/2. Recalling the
definition of Ay g, in (3.5.59) and A; p,,. in (3.5.90), we observe that
|A17332r (I7 Z) _ A173327‘ (Z)|
Gt (|G (12])

Al,Bgzr ($, Z) o Al,Bs2r(~’ Z) 7
S ENEE) ﬁmwﬂwwmmd
(

B Aq(z, 2) B Ay (2, 2) .
B ‘Gp(‘“)l(lzl)G’(\ZD ]{93% GPO=1(2))G'(]21) ! '

for x € Bsy, and z € R™ \ {0}. Therefore, by (3.5.12), it holds that

][ sup |"211,B32r (fla Z) B ‘%/_11,33% (Z)| dr
By zek\f0}  GPTH([2])G(Jz])

(3.5.93)
_ ][ O( Ay, Byor (o)) () dx < 0.
Bsor
Arguing similarly, we also see
][ sup |A2,332r (flv Z) B ‘Z}Q,B:s% (Z)| dx
Bsa, z€R™\{0} Ha (|Z|>H ( ZD (3594)

=£3ﬂ&ﬁw%mﬂﬁé&

In what follows we denote by
AB32T(33, z) = flLBw(z) + a(x)f_l27332r(z) for every = €Q, z € R™

We now consider a function o € W'¥+(Byg,) as the weak solution of the
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following Dirichlet boundary value problem:

(3.5.95)

—divAg,,, (z,Dv) =0 in Bg,
o€+ Wy (Bs,).

Arguing similarly as for Lemma 3.5.14, we are also able to prove the following
higher integrability.

Lemma 3.5.16. Let v € W"V+(By,) be the weak solution to (3.5.95) under
the assumptions of Lemma 3.5.15. Then there exists a higher integrability
exponent o3 < oy depending on data and v such that

( ]{B . (W (z, Do)} dx) - <c ( ]{Q : [0, (x, D))o d:c) - +c (3.5.96)

with some constant ¢ = c¢(data) for every o € (0, 03].

Taking the conditions (3.5.91), (3.5.92) and Remark 3.5.12 into account,
we are able to apply [12, Theorem 5.1] to have the following higher differen-
tiability.

Lemma 3.5.17. Under the assumptions of Lemma 3.5.15, let v be the weak
solution to (3.5.95). Then it holds that

Du|) € L% (Bs,) N W/?(Bs,) (3.5.97)

loc

Gps (

for every B < a/2.
In the following we shall deal with the third comparison estimates.

Lemma 3.5.18. Under the assumptions and conclusions of Lemma 3.5.15,
let v € WhY*(Bg,) be the weak solution to (3.5.95). Then for every & > 0,
there ezists 6 = 0(data,y,g) > 0 such that if

]{3 . [0(Ay, Bsar (1)) () + 0( Az, Bagy (10))(2)] dx < 6, (3.5.98)

then there exists a constant ¢ = c(n, s(G), s(H),v, L,myq, @, ||allo,) such that

][ U, (z, Dv)dr < cA (3.5.99)
Bsy
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and

][ U,(z, D — Do) dz < e\ (3.5.100)
Bs

Proof. First, taking © — o € W,'"*(Bs,) as a test function in (3.5.95) and
using some standard manipulations that we have already employed in the
previous lemmas, we find

][ U, (x, Dv)dx < c][ U (x, D0)dx < cA (3.5.101)
Bgr BST

with ¢ = ¢(n, s(G), s(H),v, L, myy, o, ||alo.o), which proves (3.5.99). On the
other hand, testing v — ¢ in the equation (3.5.95), it can be written as

Bii= § (Aay (2,00) = Ap, (2. D). Do~ Do) do
BST

) (3.5.102)
_ ][ (A, (z,D8) — Ap,, (x,Dd), Do — D) dz = Jy.
Bsr
Again by (3.5.31), for every 7, € (0,1), we see
][ U, (x, Do — Dv)dx < e\ + ¢y Jy (3.5.103)
Bsr.

with ¢;, = c¢(data, 71). Before we go on further, using Holder’s inequality and
the assumption (3.5.98) together with Remark 3.5.3, for a higher integrability
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exponent gy > 0 determined by Lemma 3.5.14, we observe that

]{9 [0(A1, Bz (y0)) () + 0(As, Bz (v0))(2)] Ys(z, D) d

< (]{Bgr [0( Ay, Bsar (o)) () + 0(As, Bsa, (1)) ()] Ltog d:zc) 2
: (]{9 [s(w, DO)J d;v) e
< (L)% 675 ( ]{9 G Dt dﬁ) s

< 5T <][ U(z, Dw) dv + 1)
Bsar

< cd Tro3 A

(3.5.104)

for some ¢ = ¢(data), where we have applied Lemma 3.5.14 and Proposition
3.5.13. We now estimate J, based on the assumption (3.5.98). In turn, we
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have that
J, < ]{B Ay, (2, DF) — Ay g, (DD)||Di — Do da
+ ][B a()| A,y (7, DF) — Ay . (DD)|| DB — Di| dac
< - 0(A1, Bsa, (o)) (2)GP* (| Do|)G'(| Do) | Do — Dol da
+]{B 0(As, Bsa,(yo)) (x)a(x) H* (| Do|)H'(| Do])| Do — Dol da
.
< ]{3 0(Av, Baos (10)) () + 0(As, Bar (30)) ()] Wa(r, Db — D7) da
.
+ ¢r, ]{? [0(A1, Baar(yo)) () + 0(As, Bz (10))(2)] (2, DV) dx
.
< 4Lt ]{3 V(x, D0 — Dv) dx
.

+ Cry ]{9 [0(A1, Bsar (y0)) () + 0(Az, Bsar(y0))(2)] ¥s(z, D) do

for every 7 € (0,1) and some constant ¢., = ¢, (s(G),s(H), L, 7), where
we have applied Lemma 2.1.6 for G”* and H% and Remark 3.5.3. Applying
(3.5.104) in the last display, we conclude that

Jy < 4L7'2][ U (xz, Dv — Dv)dzx + 07251173’2/\
Bsr.

with ¢, = ¢,,(data, 7»). Plugging the above display into (3.5.103), we find
that

][ Vy(z, DV — Dv)de < e A + cﬂrg][ U, (2, Di — Dt)dz + 7,0 7752 \
BST

Bs,

holds for every 71,75 € (0,1), where ¢,, = ¢, (data, ;) and
Crimy = Crry(data, 1q, 72). First we choose small enough 75 < % to obtain
1

][ U, (2, Db — D7) dx < er\ + ¢, 07753 \
BST
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for any 7 € (0,1) and some constant ¢, = ¢, (data, 7). Finally, selecting
small enough 7 = 7(data,¢), and then § = d(data,~,¢e) again sufficiently
small, we arrive at the desired comparison estimate (3.5.100). The proof is
complete. O

Let x,, € By, be a point such that a(z,,) = sup a(z). Now we consider
€ By,

a function h € W'¥+m(By,) as the weak solution of

—divAg,, (Tm, Dh) =0 in By,
hev+ W™ (By),

where
U, m(t) =GP (t) + a(x,)H*(t) for every t > 0.

The existence of h is guaranteed by Lemma 3.5.17 since v € VV&’C\PS’”(BST). At

this stage, proofs of [12, Theorem 2.1] and [169] imply the following important
result.

Lemma 3.5.19. Under the assumptions of Lemma 3.5.18, for every ¢ €
(0,1) and © > 4, it holds that

sup Vs(zpm, Dh(x)) < cA

.’I?GBT

for some ¢ = c(data, |¥(z, F)||Lv@) > 0, and that

][ U, (x, Do — Dh)da < <€ +260(0)r + %) A=:S(e,r,©)\ (3.5.105)

r

holds, where the dependence of constants are as follows: sy = so(data) €
(0,1), co(©) = co(data, dist(, 0Q), ||V (z, F)|| L), ©) and
a1 =c1(n,s(G),s(H),v, L,my,).

Summarizing all the comparison estimates discussed in Lemmas 3.5.11-
3.5.19, we can conclude the following most important part of the present
section.

Lemma 3.5.20. Let A\ > 1 be a given number and Bss,(yo) € Qo € 2 be a
given ball. Then for every e > 0 and © > 4, there exists § = d(data,v,£) >0
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such that if

]{3 o) [9(141, Bs2r(3/0))(37) + 9(1427 B32T(y0))(x)] dx <0,

][ U(z, Du)dr < A, ][ U(z, F)dr <A,
Bs2r(yo) Bs2r(yo)

1
sup w(p)log— <6 and
0<p<64r P

w(6dr) < min{l’ GO+ DE ) nta Vno1 1}’

then there exist w € WY*(Bay,) and h € W'¥*(By,) such that

][ V(z, Du— Dw) dx < e, ][ U (x, Dw — Dh)dx < S(e,7,©)\

T T

and

sup Vy(zp, Dh(x)) < cA

x€B,

for some constant ¢ = c(data, ||V (x, F)| 1)), where S(e,r,0) is the same
one that has been defined in (3.5.105) and ¥, is the same one as in (3.5.55).

3.5.5 Proof of Theorem 3.5.4

In the present section we shall provide the proof of Theorem 3.5.4. Our proof
based on the so-called maximal function-free technique introduced in [3].
Suppose that ¥ (z, F') € L7(Q2) for some v > 1. Let B, = B,(zo) € Q be a
ball with r < R/64 for some R > 0 to be determined later in (3.5.109) and
(3.5.116). Choose radii 71,79 such that r/2 < r; < ry < r and consider the
super-level sets

E(s;\) :=={z € By(zo) : V(x,Du) > A} (r/2<s<r, A>0).
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For each ball B,(yo) C B,, we define

7(5,(m)) = f

(\If(x, Du) + 1\If(:zc, F)) dx
By(wo) 0

for some § € (0,1/8) to be determined later.
Then one can see that for almost every yo € F(s;\) and r/2 < s <,

Fl)l_r)% T(B,(yo)) > A.

On the other hand, for yy € B,, and p € [Tﬁggl Ty — 7"1} we have

160772 1o o
T(B, (1)) < m]{g (\I/(x,Du)—i— “u ,F)) dr = X, (3.5.106)

T2

From now on, we only consider
A > )\0.

Then in the view of last three displays, for almost every yg € E(ry; A), there

is a small radius py, € (0,2=+) such that

T(B,, (y)) =X and T(B,(y)) <A forall p € (py,, 2 —11]. (3.5.107)

Since (3.5.107) holds for almost every yo € E(r1; A), the set of balls {B,, (o)}
covers F(ri; A) up to a negligible set. Hence by the Vitali covering lemma,
there is a family of mutually disjoint countable balls {B,, (yx)};=; such that

E(ri;A) C U Bsp,, (Uk)
k=1

and

T(B,, ()= A and T(B,(y)) <A

(3.5.108)
for every p € (py,,r2 — 11|

for each k£ € N. From now on we denote

By = B, (yx) and pg = 5p,,.
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We notice that

32B, C B,, and py = 5p,, < %
Now we will employ Lemma 3.5.20. Before that, let us denote by
Vol 2) := GP*([2]) + a() H**(|2])

for every x € 2 and z € R", where

Psie = sup p(x) and ¢, = sup q(z)
€328y, €328y,

and let z,,; € 32B) be a point such that

a(Tmi) = sup a(x).
2€32By,

By (3.5.108), we have
][ U(z, Du)dr <\ and ][ U(z, F)dr < oA
32B;, 32By

Thus by Lemma 3.5.20, there exists a small 6 = §(data,~,¢) such that if
(p(+),q(+), A1, Ay) is (d, R)-vanishing and

v noy n

(s(G)+1)(s(H)+ 1) n+a’” \ n—

w(R) < min {1, - 1} (3.5.109)

holds, then there exist functions w;, € Wh¥#(By) and hy € W'*°(B;) such
that

][ U(z, Du— Dwy) dr < ),
B (3.5.110)

][ U, k(z, Dw, — Dhy) dx < S(e, R, ©)\
By

and

sup Vs x(Tm g, Dhi(x)) < A (3.5.111)

$€Bk
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for some constants ¢; = ¢;/(data, ||V(z, F)| rv(q)) > 0, where

2
S(z, R, ©) = 2¢ + 2c5(O) R + % (3.5.112)

for any numbers € € (0,1) and © > 4 to be chosen later, while the dependence
of the other constants are as follows: sy = sp(data) € (0,1/2), ¢(0) =
co(data, dist(Qo, 09), | ¥ (x, F)| 1v(a), ©) and
c1 =a(n,s(G),s(H),v, L,my,). We here notice that all constants appearing
in the last display are independent of k& and .

Let t; := 2-4™»a~ (¢, 42 @[ (o) +2) for the constant ¢; being determined
in (3.5.111). Since E(ry;t;\) C E(r1; A\), we have

/ U(x, Du)dx < (/ U(x, Du) d:v) . (3.5.113)
E(r1;ti0) =1 E(r1;t;A\)NBg

Therefore, for almost every = € E(ry; d;\) N By, by (3.5.111) and elementary
manipulations, it holds that

W(x, Du) < 4™ 1 [U(z, Du — Dwy,) + V(z, Dwy — Dhy) + ¥ (x, Dhy)]
< 4mpa—1 [\IJ(x, Du — Dwk) + \I/SJC(ZB, Dwy, — th)

+‘Ils,k($m,k7 th) +2 ||a||L°°(Q) +2

< 4mpa—1 (\Il(x, Du — Dwk) -+ \Ifsyk(.%’, Dwy, — th))
+ 477 o 4 2 |l oo gy + 20N

1
< 4mes 1 (U (2, Du — Dwy,) + W, i (z, Dwy — Dhy)) + 5@(9;, Du),

and so
U(x, Du) < 2- 4™ 1 (U(z, Du — Dwy) + Vi (z, Dwy — Dhy))  (3.5.114)

holds for almost every x € E(ry;d;A\) N Bg. Thus by (3.5.110) and (3.5.114),
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for any k£ € N, we obtain

/ U(z, Du) dx
E(T1 ;6 A)N By

< 2. 4meat (/ U(x, Du— Dwy,) dz
By,

(3.5.115)
—|—/ \Ifs7k(l‘, Dwy, — th) d$)
By
<2. 4mpq—15n|prk (yp)| (e + S(g, R,0)) A.
Clearly, we see
| Boy, (uk)|
1 1
< — / U(z, Du)dx + = U(z, F)dx
A E(rz;%)ﬁprlC (yx) 0 {xEprk(yk):‘l/(:c,F)>%‘}
2
and so
| By, (uk)]

2 1
<2 / W(z, Du) dz + ~ W(z, F)dz | .
A E(rg;%)ﬂprk (yx) 0 {:I:Eprk (yk):\lf(z,F)>%}

Merging the above inequality into (3.5.115) and absorbing € to S(¢, R, ©),
we get

/ U(z, Du) dx
E(Tl ;tl)\)ﬁBk

< 8M5"S(e, R, O) / U(z, Du) dx
E(r2;3)NBpy, (yk)

1
+—

/ U(z, F) dz) :
0 JiveB,,, (4)0(,P)>22)

Recalling that {B,, (yx)};—; is mutually disjoint, merging the last inequality
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into (3.5.113), we find

/ U (z, Du) dx
E(T‘l;tl/\)

1
< 85" S(e, R, O) U(z, Du)dr + = U(z, F)dx |,
)
E(rg'é) 5(7“2;%)

4

where we denote by
E(s;A) :={x € Bs(xg) : ¥(z, F) > A} forr/2<s<rand\>0.

In other words, we have

/ U(z, Du) dx
E(r1;0)

1
< 8™15"S(e, R, O) </ U(x, Du)dx + — 5 U(z, F) d:c)
E(ra;g)

E(raigs))
for any A > t;\g. To proceed further we define the truncated functions by
(U (z, Du)], := min {V(z, Du),t} (t>0).

For t > 2t;\y, we have

¢
/ T2 / U(z, Du) dzd\
ti Ao 7”1 >\

<cS(g,R,0) )\72/ U(z, Du) dzd\
t1 Ao E(ry; iy )

gR@/A”/ U(z, F) dzd).
ti Ao S(TQ 4t
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By change of variables and Fubini’s theorem, we see

/ \72 / (x, Du) dzdX
tiAo 7"1)\

=71 . [U(z, Du)]} " U(x, Du) dx

ti Ao
—/ )\7_2/ U(z, Du) dxd,
0 BE(ri;\)

/ A2 / (x, Du) dxd\
ti Ao E 7‘2 v )

< —— [ [¥(x,Du)]’; 'V (z, Du)dx
")/ - 1 B'r2 4t
1
< — [U(z, Du)])}”"U(x, Du) dx
v—1JB,

and

t
/ )\72/ \If :C F d:Cd)\</ AT 2/ :C F dxdA
ti Ao E(ra; ffA) E(r2; 3 4t

< c/ U (x, F)dx.
B

T2

Moreover, we also notice that

ti Ao ti Ao
/ )\7_2/ U (z, Du) dxdA S/ )\V_Qd)\/ U (z, Du) dx
0 E(ri;\) 0 B

T2
tidg) !
< ﬁ/ U(z, Du) dx.
y—=1 Jp

T2

Therefore, taking the estimates in last four displays into account, it follows
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that

]{9 W (z, D)) "0 (z, Du) dz

< ¢Sz, R, ©) ][ (O (z, D))~ "0 (x, Du) dz

Br,

-I—cw][ [\Il(:L‘,F)]de—i—t?_l/\O“’_l][ U(z, Du) dx
B

5 T2 BT2

with the constant ¢, = cy(data,y) > 1.
Choose e(data,y) = 1/(8¢2) € (0,1), and so we obtain § = §(data,vy) >0
from Lemma 3.5.20. Now select © > 4 and then 0 < R < 1 to satisfy

1
0< S R6) < 5, (3.5.116)

where S(e, R,0) is defined in (3.5.112). Then by (3.5.109) together with
the above display, we obtain R = R(data, dist(€,99Q),7, ||V(z, F)| L) >
0. In turn, recalling the definition of Ag in (3.5.106) and applying Young’s

inequality with conjugate exponents (ﬁ, 7), we have

]{3 0. Du)l} ¥, Du) d
<3 ]{3 (2, Du)]} Wz, Du) da + ¢ ][ O (2, F)] do

79 B’r

T,n(’y—l) 2
+c—— <][ U(z, Du) d:v+][ U(z, F) dx)

<r2 — rl)”(W—l)

for some constant ¢ = c(data, dist(£2, 9), 7, [[¥(x, F)| £+(a))- At this point,
we apply Lemma 2.0.1 with v; = n(y — 1), 79 = 0 for a function

h(s) ::][ [U(z, Du)]} " U(x, Du) dx

being non-negative and bounded on [r/2,r] in order to obtain the following
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estimate:

][ Wz, Du)) "0 (x, Du) dx
B;./2

<ec (][ U(z, Du) dx)7 + c][r[\ll(:v,F)]”dx

with again some constant ¢ = c(data, dist(€2, 9Q),7, |V(x, F)| L q)). Fi-
nally, taking ¢ — oo in the last display, we conclude with the desired Calderén-
Zygmund estimate (3.5.14). Clearly, (3.5.13) follows from a standard covering
argument. We finish the proof.
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Chapter 4

Global gradient estimates for
elliptic equations with
degenerate matrix weights

4.1 Global maximal regularity for equations
with degenerate weights

In this section, we are concerned with global maximal regularity estimates for
elliptic equations with degenerate weights. We consider both the linear case
and the non-linear case. We show that higher integrability of the gradients
can be obtained by imposing a local small oscillation condition on the weight
and a local small Lipschitz condition on the boundary of the domain. Our
results are new in the linear and non-linear case. We show by example that
the relation between the exponent of higher integrability and the smallness
parameters is sharp even in the linear or the unweighted case.

4.1.1 Hypothesis and main results
We study the following degenerate elliptic equation of the form

—div(A(z)Vu) = —div(A(z)F) in

(4.1.1)
u=20 on 0f),
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in the linear case, and of the form

—div(|M(z)Vu[P2M?(2)Vu) = —div(|M(2) F|P"*M?(2)F) in Q,

(4.1.2)
u=0 on 0f),

in the non-linear case. We often write M(x) to emphasize the dependence of
the weight on z.

Here, 2 C R" is a bounded domain with n > 2, 1 <p < oo, F: Q — R"
is a given vector-valued function, M : R™ — R™ " is a given symmetric and
positive definite matrix-valued weight satisfying

IM(z)| M (z)| <A (z €R") (4.1.3)

for some constant A > 1, where |-| is the spectral norm, and A(z) := M?(x).
This condition says that M has a uniformly bounded condition number. Note
that a right-hand side of the form —divG with G : 2 — R" can be immedi-
ately rewritten in the above form in terms of F'. Note that (4.1.1) is a special
case of (4.1.2) for p = 2. The condition (4.1.3) in this case reads as

|A(z)| A~ ()] < A* (z € RM). (4.1.4)
Let us define the scalar weight
w(z) = |M(z)| = V|A(x)]. (4.1.5)

Now, we introduce Lipschitz domains along with our optimal regularity
assumption for the boundary of the domain.

Definition 4.1.1. Let § € [0,5] and R > 0 be given. Then Q is called
(0, R)—Lipschitz if for each xo € OS2, there exists a coordinate system
{x1,...,2,} and Lipschitz map ¢ : R"' — R such that o = 0 in this
coordinate system, and there holds

QN Br(xg) = {x = (v1,...,2,) = (2',2,) € Br(xo) : ¥, > ¥(2")} (4.1.6)
and

VY]l < 0. (4.1.7)

Our optimal regularity assumption for M is a small BMO assumption on
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its logarithm. This condition is also used in [16] for the interior estimates.

Definition 4.1.2. We say that logM is (d, R)-vanishing if

llog Mlpyton) = sup sup ][ logM(z) — (log M) s, | do < 6. (4.1.8)
Br(y)

yER™ 0<r<R

Now, we state the main theorems.

Theorem 4.1.3 (Linear case). Define w as (4.1.5), and assume (4.1.3) and
F e L1(Q) for ¢ € (1,00) in (4.1.1). Then there exists a constant § =
5(n,A) € (0,%) such that if for some R,

2

1 1
log A is ((5 min {—, 1-— —} ,R) ~vanishing and (4.1.9a)
q q
: .1 1 : :
Q s ((5 min {5, 1- 5} ,R) ~Lipschitz, (4.1.9Db)

then the weak solution u € Wolﬁ(Q) of (4.1.1) satisfies Vu € LL(Q) and we
have the estimate

/Q(\vu|w)qd;c < C/Q(mw)qu (4.1.10)

for some ¢ = ¢(n, A\, Q, q).
For the non-linear case, we have the following result.

Theorem 4.1.4 (Non-linear case). Define w as (4.1.5), and assume (4.1.3)
and F € LL(Q) for g € [p,o0) in (4.1.2). Then there exists a constant § =
5(n,p,A) € (0,%) such that if for some R,

2

logM s <§,R) ~vanishing and € is (é, R) ~Lipschitz, (4.1.11)
q q

then the weak solution u € Wolff(Q) of (4.1.2) satisfies Vu € LL(Q2) and we
have the estimate

/Q(|Vu|w)q dor < C/Q(|F|w)qu (4.1.12)
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for some ¢ = c(n,p, A, Q, q).

4.1.2 Notation and preliminary results

Let Q be (d,4R)-Lipschitz and zq € 0). Then there exists a Lipschitz map
¥ : R"™! — R as in Definition 4.1.1. By translation, without loss of generality
we assume 2o = 0 and ¥ (0) = 0. We define ¥ : R" — R" as

V(x' x,) = (2, z, — () for (¢, x,) € R" (4.1.13)

and so there hold ¥(9Q N Byr(0)) C {(¥,4n) : ¥n = 0}, W(Q N Byr(0)) C
{(v';yn) : yn > 0} and ¥(0) = 0. The mapping V¥ is invertible, with a
Lipschitz continuous inverse U~'. We easily obtain

1 0 e 0
) I 0 0 :
v = (Lou 1)< Lo
=, (") .. =0y, () 1

(4.1.14)

for (z', x,) € R", where the right-hand side of (4.1.14) is an n X n matrix. In
particular, det(V¥(z)) = 1 and so |¥(B)| = |B| for each ball B C R". Note
that |id —(VV¥)(z)| < n||VY||co-

Now, we provide some geometric properties related to the maps ¢ and W
which will be used throughout the section.

Remark 4.1.5. From now on, we implicitly use the following properties. If
we assume

1
Q is (0,4R)-Lipschitz with § € [0, 2—} and R >0, (4.1.15)
n

Then for any induced map V¥ from the Lipschitz map ) assigned to given
zo € 00, we have |id —=Vy| < 3,

1B c W(B)C2B (4.1.16)
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for all ball B C R"™, and the following measure density properties also hold:

|B,(y)|
sup sup ————— < 4" 4.1.17
e e Iy (4.L.17)
and
g B WO (4.1.18)

0<r<4R yeoQ ‘Br(yﬂ B

We first consider a weighted Poincaré inequality with partial zero bound-
ary values. The corresponding mean value version is given in [16].

Proposition 4.1.6 (Weighted Poincaré inequality at boundary). Let

1 <p<ooandf € (0,1) be such that Op > max{l,#pp}. Moreover, let
B, = B,(x¢) with xy € Q and B%r(:vo) ¢ Q. Assume that Q is (0,3r)-
Lipschitz with 6 € [0, %] and that w is a weight on Bs, with

» AN
sup (][ wP dx) (][ w™P) d:v) <. (4.1.19)
Bch3’l‘ / /

Then for any v € WP (By, N Q) with v =0 on 0Q N By,,

% op
(][ ‘E TP dx) <c <][ (|Vv|w)? dx) (4.1.20)
Bo,nQ T BarN$

holds with ¢ = ¢(n,p,c1).

Proof. Since v € W(})’p(QQT) with v = 0 on 92 N B,y,, we can take the zero
extension of v on the set By, \ 2. Since B%(:co) Z Q, by (4.1.17) and (4.1.18)
in Remark 4.1.5, for A := By, \ Q, |A| = |Bs N Q] holds. Then (v), = 0
holds, and so by Remark 4.1.5, Proposition 3 in [16] and Jensen’s inequality,

207



CHAPTER 4. GLOBAL GRADIENT ESTIMATES FOR ELLIPTIC
EQUATIONS WITH DEGENERATE MATRIX WEIGHTS

we have
1
P P
(][ Y w? da:)
B2,-NN r
v (U>B2r (U>B2’I‘ — (U)A

<(f, pwf ) (£ "war) |
(e [ ([0 ) o]

,
Here, using |A| = | By, N Q| = | By, |, Holder’s inequality, (4.1.19) and Propo-
sition 3 in [16], it follows that

.0

r r

v(y) = (V)B,,

dy)p w(z)P do

< ]{ggr [<]{92 p w(y) dy) % (]i ; wiy)™ dy) ;/] p w(zx) da
(f = o) (f ) (0
< (]é (el dx)g.

Now, since v = |Vv| = 0 on By, \ and | By, NQ| < | Ba,|, we have (4.1.20). [

v(y) = (V)B,,

v — (’U)BQT‘
T

Let us collect a few auxiliary results from [16] that will be used later. It
follows from [16, (3.24)] with w = |[M] that

AT (MBS < (M) < (M),

, = . (4.1.21)
AT(AD S < A5 < (JADE"-

Moreover, by monotonicity of the scalar versions of exp and log we have
lo
(AN E* < (IA])5. (4.1.22)

Lemma 4.1.7. [16, Lemma 4] For a matriz-valued weight M and w = |M]|
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we have
][ llogw(x) — (logw) , | dz < 24 [log M(z) — (log M) , | da
B B

and so [logw|gmo(s) < 2|log Ml|gmo(s)-
The next results provides a qualitative John-Nirenberg type inequality.

Lemma 4.1.8. [16, Proposition 5] There exist constants k1 = r1(n,A) > 0
and ¢y = c3(n, A) > 0 such that the following holds: If t > 1 and M is a
matriz-valued weight with [log Ml|gyos) < %, then we have

IM(2) — (M) 58| tdl)t cotflog Mmo(s)-
(ﬁs( (M| ) Sl

The same holds with w instead of M.

The following results is a minor modification of [16, Proposition 6].

Lemma 4.1.9. Let k1 and cy be as in Lemma 4.1.8. Then with a constant
B = pB(n,A) =min{ky,1/co} > 0, the following holds for all weights w.

1. If |log w|pmo(s) < g with v > 1, then there holds

1

1 1
(][ W dx) ’ < 2(w)®  and (][ w? dm) ’ <2
B B (w)g®

2. If |logw|pmo(s) < ﬁmin{é,%} with 1 < p < oo, then W’ is an A,—
Muckenhoupt weight and

[wPh, = sup <][ wpdx>p <][ w™ dm) < 4.
P B'CB / ’

3. Let 1 < p < oo and @ € (0,1) be such that Op > 1. If [logw|pmos) <
ﬁmin{%, 1— %}, then

VTN
sup wP dx w P dx <4.
B'cB \UB B’
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Proof. The proof is the same as in [16, Proposition 6] with minimal changes
due to the localized versions. O

Remark 4.1.10. Using the relation log(M ') = —log(M) and log(w™') =
—log(w), we can apply Lemma 4.1.8 and Lemma 4.1.9 also to M and w™?.

We now define a specific N-function

1 P
o(t) == ];t .
Then we denote
a) = L Ee —epe

V(E) =y d’/fg'f') € = |

Let ¢* be the conjugate of an N-function ¢ as follows:

¢"(t) := sup(ts — ¢(s)), =0,

s>0

and so ¢*(t) = I%tpl.
We also need the shifted N-functions as introduced in [92, 96, 93, 16]. For
a > 0 we define ¢, as

t 1
¢'(aVs)
S = [ g 41.23
out) = [ S sas (1123
Here s1 V s := max{si, so} for s1,s2 € R. We call a the shift. So for t < a,

then function ¢,(t) is quadratic in ¢. One can see that ¢y = ¢ holds, and
a ~ b implies ¢,(t) =~ ¢p(t). Also, we have

Ga(t) = (a VP2t (4.1.24)
Fa(t) = (a V)72, (4.1.25)
(¢a)” = (0")g/(a); (4.1.26)
(1e)* = (") o (1e)) (4.1.27)

210



CHAPTER 4. GLOBAL GRADIENT ESTIMATES FOR ELLIPTIC
EQUATIONS WITH DEGENERATE MATRIX WEIGHTS

¢q and (¢,)" satisfy the Ay-condition with a As-constant independent of a.
We also have Young’s inequality. For every ¢ > 0 there exists c(e) =
c(€,p) > 1 such that for all s,t,a >0

st < c(€) (Ba)"(5) + €ult). (4.1.28)

Here, c(€) ~ max{e! 7%1}. Similarly, considering the relations ¢,(t) ~

,€ P
¢l (t)t and (pg)* = (td),(t)), we have

Pa(8)t < c(€)¢a(s) + €@alt),
Pa(8)t < €ga(s) + &(€)¢a(t)

for all s,t,a > 0, where ¢(¢) ~ max{e ', ¢! "P}. Moreover, the following rela-
tion holds for ¢ > 0:

I X%¢(a), for A < 1,
Palda) = {¢(Aa) for A > 1. (4.1.30)

(4.1.29)

We emphasize the relation between A,V and ¢, as in the following:

Lemma 4.1.11 ([93, Lemma 41]). For all P,Q) € R" we have

(A(P) = AQ)) - (P - Q) = [V(P) = V(Q)]?
~ o1Q(I1P = Q) = (¢")1a@(|A(P) — A(Q)]),

AQ)-Q=V(Q)I* = ¢a(1Q) = o(1Q))
and
|A(P) — A(Q)] = (¢1) (IP — Q) = ¢ pyig(|1P — Q)
where the implicit constants depend only on p.

We usually use the following change of shift:

Lemma 4.1.12 (Change of shift, [93, Corollary 44]). For e > 0, there exists
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ce = c(€,p) such that for all P,Q € R™ we have
Bpi(t) < cedigi(t) + elV(P) = V(Q)P,
(@1p)" (1) < e (D101)" (&) +€elV(P) = V(Q)P,
where c. = c(€,p).
Also, we need the following removal of shift.

Lemma 4.1.13 (Removal of shift, [16, Lemma 13]). For all a € R", t > 0
and € € (0,1], we have

a0 < 0 (1) v (e al) (4.131)
Plal(t) < €d(|al) + ced (E) , (4.1.32)
(@) (0) < collal) + ceo” (£ (1.1.33)

with ¢ = ¢(p).

4.1.3 Global maximal regularity estimates

We now provide global maximal regularity estimates for the weak solutions of
our weighted p-Laplace equation for the linear case p = 2 as well as the non-
linear case p € (1,00). Let 2 C R" be (6, R)-Lipschitz and M : R" — RZ" be
a degenerate elliptic matrix-valued weight with uniformly bounded condition
number (4.1.3). Recall, that w(x) := |M(x)|. Note, that (4.1.3) is equivalent
to

Aw(@)lg] < IM(2)¢] < w(2)l¢]  forall ¢ € R" (4.1.34)
and also

A w(2)Id < M(z) < w(x)ld for all x € Q. (4.1.35)
If we assume that log M has a small BMO-norm, i.e., assume

|log M[pmo(e) < . (4.1.36)
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we also have |10gw|BMO(Q) < 2k by Lemma 4.1.7. Suppose that k is so small
such that by Lemma 4.1.9, w” is an A,-Muckenhoupt weight. Then C§°(€2)
is dense in Wy(Q). Now, let u € W, 2(Q2) be the weak solution of (4.1.2)
with F' € LP(Q), i.e., if we denote

A(,€) = [M(2)¢[*M*(2)§ = M(x) A(M(2)¢),

then
/ Az, Vu) - VEdr = / Az, F) - VEdx (4.1.37)
Q Q

for all £ € Wolfj(Q) Since w” is an A,-Muckenhoupt weight, the existence
and uniqueness of u is guaranteed by standard arguments from the calculus
of variations.

We start with the standard Caccioppoli estimates associated with our
degenerate p-Laplacian problem. We fix a ball By := Br(zg) with zy € 0.
Then since 2 is (d,4R)-Lipschitz, there exists a coordinate system
{z1,...,x,} such that g = 0 in this coordinate system, and with the assigned
Lipschitz map 1 : R"' — R we have (4.1.6) with 4R instead of R. Let
u € W2P(4By N Q) be a weak solution of

—divA(z, Vu) = —divA(z, F) in 4B, N €,

4.1.38

u=0 on 002N (4By). ( )
From now on, let B, = B,(Z) denote an arbitrary ball with & € Q and
4B, C 2By. Denoting af2, = aB,N2ByN{2 for a € R, we have the following:

Proposition 4.1.14 (Caccioppoli inequality). Let u € W}?(4By N Q) be a
weak solution of (4.1.38) and B, = B,.(Z) denote an arbitrary ball with T €
and 4B, C 2B,.

(1) (Interior case) If 2B, C S0, then we have

U — (U)zm P
r

|Vul|PwP de < c][

29

WP dx + c][ |F|PwP dz. (4.1.39)
20,

Qr
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(2) (Boundary case) Assume (4.1.15). If 2B, ¢ ), then we have

|VulPwP de < c][

202

‘E‘pwp d$+c][ |F|Pw? dz. (4.1.40)
20,

Qr r

In both cases ¢ = c(n,p, \).

Proof. First, (4.1.39) follows from [16, Proposition 8. To show (4.1.40), let
n be a smooth cut-off function with x5, <7 < x2p, and |[Vn| < £, Testing

nfu € W&y’f(ZQT) in (4.1.38), we get

/ IMVulP~*MVu - MV (7°u) dx :/ IMF|P*MF - MV (nPu) dz.

20, 20,
Using (4.1.34) we have

/ np|Vu|pwpd:v§/ 77”_1|Vu|p_1‘g‘wpdx
r

2Q, 2Qy

—i—/ 77”|F|”_1|Vu|w”dx+/ P FPt
20, 20,

U
—‘wpdac.
r

By Young’s inequality, absorb the term 7”|Vu|Pw? into left-hand side, it fol-
lows that

|Vu|pwpda:§/ ‘?—L‘pw”dw—l—/ |F|Pw? dx.
20

Qr 20, ' T

Now, by (4.1.17), we have |Q,.| < |B,| = |2B,| = |29,|. Then (4.1.40) follows.
[l

Now, we can provide the reverse Holder’s inequality.

Lemma 4.1.15. Assume (4.1.15). There ezists ko = ko(n,p,A) > 0 and
0 € (0,1) such that if |log M|pnoss,) < ke, then

é
][ |Vul|PwP dx < ¢ <][ (|Vu|w)?? dx) + c][ |F|Pw? dx
Q. 20, 20,

holds with ¢ = ¢(n,p, A).
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Proof. If %BT C Q, then we can select small ko such that Lemma 4.1.9 (c)
holds true to use Proposition 3 in [16]. This and Proposition 4.1.14 proves
the claim.

If 3B, ¢ Q, using Proposition 4.1.6 instead of Proposition 3 in [16], we
again prove the claim. O]

Now, we have the following higher integrability.

Corollary 4.1.16 (Higher integrability). Assume (4.1.15). There ezist ko =
ko(n,p, A) > 0 and s = s(n,p,\) € (1,2) such that if [log M|gmois,) < ke,

then
(][ (|IVu|Pw?)? dx) 5 < c][ |Vu|Pw? dzx + ¢ (][ (|F|Pw?)® dm) S
Q. 20, 20,

holds with ¢ = ¢(n,p, \).

Proof. After extending Vu = F' =0 in 2B, \ ©, and considering |Q2,| = |B,|
and [2Q,| = |2B,|, Gehring’s lemma (e.g. [126, Theorem 6.6]) implies the
conclusion. N

In this section, we only prove boundary comparison estimates, since the
interior estimates are proved in [16]. Let us assume MF € L%(€2). Choose a
cut-off function n € C§°(By) with

X1, <1< XBo and  ||Vn|le < ¢/R. (4.1.41)

Define z on R" as follows: first let z on By N2 be such that

/

z = un? (4.1.42)

and take the zero extension for z on R™ \ (By N Q), if necessary. Also, we
denote

g =1"Vu—Vz=—uV(n¥) = —up'n” V. (4.1.43)
Then we have the following estimate:

u
< = 4.1.44
9l S % (11.44)
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For the convenience of notation, we write

Myzmmi

T

wp, ‘= <w>1§§7

and so

Ap, (&) := [Mp, £[P*M7, € = Mp, A(M,£),
V(z,§) = V(M(z)¢),
Vg, (§) == V(Mp,E).

Then we have the following relations for all £ € R™:

A, (€) - € = Vi, (9%, (4.1.46)
A, ()] S W, g7 (4.1.47)
and by [16, Section 3],
A" wp, [€] < Mg, &| < wp, [¢], (4.1.48)
A_ler S |MBT| S wa,.- (4149)

Summing up the above result, we have [16, Lemma 16| as follows: for all
¢ € R" and all x € B, there holds

M — M, ()|

|ABr (g) - A(J}, §)| 5 ‘MBT|

(Mz, ()| + [A(2,8)]) . (4.1.50)

Before introducing the reference problem, we provide the following lemma
for the well-posedness:

Lemma 4.1.17. Assuming (4.1.15), there exists k3 = r3(n,p,A) > 0 and
s = s(n,p,A) € (1,2) such that if [logM|gmowun,) < k3, then with 20, =
2B, N By N there holds

s

faviony s qviorars (f qrra)’ wis

2Q,
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Proof. Using Hoélder’s inequality, |€2,.| = |B,| and Lemma 4.1.9, we have

]{L(WMWBT)’J dw < (]{ZT(WUIQJ)PS dx)i (]{ZT(MBTW_I)W dx)slf
. (][T(WUMPS dx) <][r<wBrw1)ps’ dx)sl’
: (]{zr(wulw)’” d:c)s |

Then Corollary 4.1.16 yields the conclusion. O

® |=

=

Now, let h € Wiﬁ (€2.) be the weak solution of

—div (Ap,(Vh)) =0 in Q,,

4.1.52
h =2z on 09,. ( )

Then h is the unique minimizer of
w / ¢(|Mp, Vw|) dz (4.1.53)
Q.

with boundary data w = z on 0€2,.. Now, we provide the first comparison
estimate. Recall that B, = B,(%), By = Br(x¢), 4B, C 2By, & € Q and 2, h
are given by (4.1.42) and (4.1.52), respectively. Moreover, as [16, Eq. (3.25)],
we have

—div (Ap, (Vz) — Ap,(Vh))
= —div (Ap, (Vz) — A(-,Vz)) = div (A(-,Vz) — A(-,Vz + g))
—nPdiv (A, F) = V(") - A(, Vu)
(4.1.54)

on €, in the distributional sense.

Proposition 4.1.18 (First comparison at boundary). Assuming (4.1.15),
let h be as in (4.1.52) and z be as in (4.1.42). There exist s > 1 and Ky =
ka(n,p, A) € (0,1), such that if |logM|gmous,) < ka holds, then for every
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e € (0,1) we have

][ Vi, (Vh) = Vi (V2)[2 da

r

< ¢ (Jlog M[Brio(s,) +¢) (][ (\Vzlpwp)sdx) s (4.1.55)

r

et (f, () ) oo

for some ¢ = ¢(n,p,\), and C*(¢) = max {elfp, T }

(Fpary dc)

T

Proof. The proof is similar to the one of [16, Proposition 17]. Observe that
llog M|gnos,) < K4 implies that (4.1.52) is well-defined. Testing z — h to
(4.1.52) and (4.1.38), by (4.1.54) it follows that

Iy = ][ (Ap, (Vz) — Ap,(Vh)) - (Vz — Vh) dx
= ]{2 T (Ap,(Vz) — A(z,V2)) - (Vz — Vh)dx
+ ]{2 (A(2,V2) — A2, V= +g)) - (V= — Vh) da (4.1.56)
A Az, F) - (V(1°z) = V(nPh)) dx
+]£ V0P) - Alw, Vu)(z — hydo = I+ I + Iy + I,

By Lemma 4.1.11, we have

I = ][ Vi, (Vh) = Vi (V2)[2 de = ][ b (V2 — VR do. (4.157)
Q Q
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To estimate I, arguing as in the proof of [16, Proposition 17|, we have
L :][ (Ap,.(Vz) — A(x,Vz)) - (Vz —Vh)dx
<ot Ows(|Vz— Vh|)wp dx
Q’V‘

IM — Mp |>2 wh WP W
+ c(o = Vz =+ + — | WPdr
<%;(|Mm VDo g

=51+ 1>

(4.1.58)

for any o € (0,1). Now, I; 1 is absorbed to the left-hand side I, by choosing
o = o(n,p,A) sufficiently small, and so ¢(c) = ¢. For I 5, we first assume
llog M|gnmo(s,) < k1 = ki1(n,p, A) and then use Lemma 4.1.8, together with
1€2,| = |B,| (the measure density of 2, to B,) from (4.1.15) and (4.1.17), to
have

1

|M . MB ’ 4s’ 2s7
I3 := T
o (ﬁ( M ) ©

1

M- Mg [\ N
5(][ <W de | < Jlog Mo,

Also, assume [log M|gmos,) < ka4 for some small kg = K4(n,p, A) and then
use Lemma 4.1.9, together with Q.| = |B,| from (4.1.17) with the help of
(4.1.15) to have

(4.1.59)

(4.1.60)
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Then by Holder’s inequality and the above two displays, we obtain

1

1
I, < 01173[12734' (][ (|Vz|Pw?)? dx)
- (4.1.61)

1
< clog M|2BMO(BT) <][ (|V2[PwP)® dx)

T

From now on, we only specify the necessary tools to provide each resulting
estimates, since we mainly follow the proof of [16, Proposition 17], and when
we use the measure density property, we apply the similar manipulation as
above. First, by (4.1.44), Lemma 4.1.12 and Lemma 4.1.9 together with the

measure density property of €2, to B,., we estimate I as follows:

L <ot G(|Vz— Vh|)ub do
Qr

o 1 P s
+ co€ (][ (|VzPwP)? dx) + cpe P71 (][ (%w”) da:)

for any o, € € (0,1). To estimate I3, using Young’s inequality and 0 < n < 1,
we have

L (4.1.62)

1 WP’
I3 < epl][ — 1P| F|PwP dx
D
Qp B,
—hlP 4.1.63
+ef |Vz— VhPwy dr + e][ === wp, dx ( )
Q r
=:I31 + I32 + I33.

Extending z—h as 0 in B, \ €2, and using Proposition 3 in [16], we have I35 <
I3 5. We employ triangle inequality, minimizing property of h in (4.1.53),
(4.1.48), Hoélder’s inequality and Lemma 4.1.9 together with |Q,| = |B,|, to
obtain

1

L < ec (][ (|Vz|pwp)sdx)s | (4.1.64)
Q
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Using also Holder’s inequality and Lemma 4.1.9 with |Q,.| = |B,|, we have

1
s

Iy Sce vt (][ (|F|pwp)5dx) . (4.1.65)
QT

Finally, to estimate I4, instead of dividing the case into p > 2 and 1 <
p < 2 as in [16], we consider the cases in a unified way. By p’(p—2—|—]l0) =p—1

and ¥ Vu = Vz + g, we first see that

I, < |V (n")||A(z, Vu)||z — h|dx

Q.
§][ |V77\|np/Vu|p_2+%|Vu|1_%|z — h|wP dx
Q,

z—h

5]{) }%IW + g V| WP da (4.1.66)

Sef |Vz+g|Pwl da
Qr

+C'*e][ -\’ Vupwpdx+e][
o, G i f

for any € € (0, 1], where for the last step we have used Young’s inequality for

p
wP dx

z—h
T

the exponents (#, ;%’p) and 0 < n; < 1. Here, C*(t) : (0,1] — R is
P

such that

C*(t) = max {tH’, t‘ril} , (4.1.67)

which is a continuous function on (0, 1] for each fixed p € (1, 00). Recalling
(4.1.44), we have

Vz + g[Pw? dx 5][ |V z|Pw? da +][ ‘%‘pwp dx. (4.1.68)
Qr Qr

Qr
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Also, since ppT21 >ponpé€E (1,00) and r < R hold, there holds

r = pp . < (1 p][ D, P
]{2 <R> |Vu|Pw? dx < (R> N |Vul|Pw? dx
AP wlp
< (= — P d FlPwP d 4.1.69
N e MUC

p
§][ ‘E wpdx—i-][ |F|PwP dz.
20, | R 20,

Extending z — h as 0 in B, \ 2, and using Proposition 3 in [16], Holder’s
inequality, Lemma 4.1.9 together with |$2,| = | B,|, triangle inequality, mini-
mizing property of A in (4.1.53) and (4.1.48) yields

h

as in [16]. Note that the argument used in [16] for (4.1.70) can be applied in
all cases p € (1,00). Thus it follows that

z—hl|” s
wlde S ][ (|IVzPwP) dx | (4.1.70)

r

I;<e <][ (|VzPwP)? dw)
. (4.1.71)
p
—l—C’*(e)][ ] wpdx—l—C’*(e)][ PP da.
20 R 20,
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Summing up the above all estimates, we have

V5, (Vh) = Vi, (Vz)[* da

Q,

Sof Pvy(|Vz — Vh|)w%r dx
Qr

s

+ ¢(o)(|log M’2131\/10(&) +e) (]{sz‘pwp)s dx) (4.1.72)

1A o)

relo) (7T 00) (f arperrar)”

20

=1+ Ig+ I7 + Is.

By Lemma 4.1.11 and (4.1.34), ¢jv+(|V2—Vh|)wl ~ Vg, (Vh) =V, (V2)|*.
Then by choosing o € (0, 1) sufficiently small depending on n,p and A, I is

absorbed to the left-hand side. Finally, €rT < C*(€) holds when € € (0, 1),
and so the estimate (4.1.55) holds true. O

Now, we give the second comparison estimate. With y = ¥(x), we define
h(y) == h(T7(y)). (4.1.73)
Let 0 = 0(y) € W'P(¥(3Q,)) be the weak solution of

—div, (|Mp, V, 0P *Mp V,0) =0 in ¥(1Q,),

S (4.1.74)
v=nh ond(¥(Q,)).

Since W is a homeomorphism, together with (4.1.6) we have 9(¥(102,)) =

U(9(3%)). Denoting v(z) = 9(y) = 9(¥(z)), we have ’

Vo(z) = Vi(U(z)) = (V) (2)V,5(¥(2) = (V) (2)V,0(y).  (4.1.75)
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Denoting T'(z) = (V)" !(x), (4.1.74) transforms into

—div(T* ()M, T (z)VoP*Mp T(x)Vv) =0 in 39,

v(x) = h(x) on 9(3€2,), (4.1.76)

where T"(x) abbreviation stands for transpose. Or equivalently, denoting
Ay (2,€) = T"(2)|Mp, T (2)&["*Mp, T(2)¢, (4.1.77)

we have

—div(Ayg(z,Vv)) =0 in 10,
v(z) = h(z) on d(3%).

(4.1.78)

The problems (4.1.76) and (4.1.78) can be derived also from the weak for-
mulation of the equation. At this time we have also used that det(VV¥) = 1
for the change of coordinate in the integrals. The natural function space for
v is Wul)gl (3€,) and v is the unique minimizer of

w s / (M, () V) de (4.1.79)

subject to the boundary condition v = h on d(39,).
Now, we need the following lemma.

Lemma 4.1.19. Assume (4.1.15). For all ¢ € R" and x € 59, we have
T (z)] = [T H(x)| = ¢ (4.1.80)
and
[Ap(€) = Au(w, )| < | Villoowl min { |77 [T ()"} (4.1.81)
for some ¢ = ¢(n,p, ).

Proof. First, since (T'(x) —id)? = (V¥(z))™* —id)? = 0, we have T~ (z) —
id =id —T'(z). Then

T (@) — id| = |id~T(2)| < nl| Ve (4.1.82)
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holds, and so together with ||V o < 5=, it follows that

. 3
< id[ =2Vl < [T(2)] < [id ]+ 0]Vl < 5. (4.1.83)

| —

Hence we have |T(x)| =~ c. Similarly, we have |T~!(x)| = c.
On the other hand, observe that by (4.1.48),

|Ag(§) — Auw(z,8)]
= ‘|MB£|p_2M2B§ — IMpT (2)&P>T" (x)M5T f‘
< |Mp|MpEP*MpE — Mp|MpT (z)E[P~ 2MBT (z)¢]
+ [Mp — T"(x)Mp| - |[MpT ()¢ [P *MpT ()¢]
Swp - [AMpE) — AMBT (2)¢)] +wp - [id =T"(z)| - [MpT(x)¢[P~".

Here, by (4.1.80) and (4.1.48),

[Mp,£| = [Mp, T~ ()T ()¢
S M | T (@)] - |T(2)¢] S Mg, | - |T(2)¢] S Mg, T(x)¢]

and similarly [Mp, T(2)¢] < [Mp, T(2)T " (2)¢] = |[Mp,£| holds. Thus we
have |Mp T'(z)¢| = |[Mp,&|. Then together with (4.1.82) and Lemma 4.1.11,
there holds

|A(Mp,&) — AMp, T(2)E)| = By v, T(2)e) (IMB,€ — Mp, T(7)§])
~ (IMp,&| V Mg, T(2)é| V [Mp,& — Mp, T(z)¢])P |Mp,& — Mp, T(z)¢]
< wp, |id =T (2)[[¢] (Mp,&| V [Mp, T (2)E] V [Mp, & — Mg, T()¢])"
(Mg, &] + [Mp, T (x)&))"

Mg, £
S Ald =T (2)] (Mg, €| + [Mp, T(x)¢])P
SVl Mg, T ()€

S wa, [1d =T'(2)][¢]

Thus, together with |id —T"(z)| = |(id =T (z))!| = |id =T(z)| < n||Vt||w,

we have
|Ag,(§) — Aw(z,§)| Sw T'(x)

Finally, since wg, |T(x)¢| = |Mp,T(z)¢| =~ Mg £| =~ wp,

(z)ElP~.

, we get the con-
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clusion. O
Now, we can compute the comparison estimate.

Proposition 4.1.20 (Second comparison at boundary). Assuming (4.1.15),
let v be as in (4.1.76) and h be as in (4.1.52). There exists kg = ka(n,p, )
such that if [logM|gnmows,) < Ka, then for some ¢ = c(n,p, A), we have

1V (90) = Vo, (Vh)Pdo < VoIS (VAP ) dn (4180
0,

Qr

Proof. Test v — h to (4.1.52) and (4.1.76) to have

][1 (Ap,(Vv) — Ap,(Vh)) - (Vv — Vh)dx
2 (4.1.85)
2][1Q (Ap, (Vv) — Ag(z,Vv)) - (Vv — Vh) dz.

We apply Lemma 4.1.11, (4.1.81) and then use Young’s inequality to obtain

][ Vi, (Vo) — Vi (VH)|? da
1q,.

2

~ ][ brval([V0 — V)b da
0,

,s][ Ay (2, Vo) — A (V0)[|Vo — Vi| de
- (4.1.86)
S IVl VDIV — Vil d

~Y

10
<o Prvo|(|Vv = Vh|)wp dx
1

2

" c<a>]{ () IVt (Vo)) do = 1+ T

2

for any o € (0,1). Then I is absorbed to the left-hand side by choosing o
sufficiently small depending on n,p and A. To estimate [y, we use (4.1.30),
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(@ )¢ 1ap (@' (Jal)) = ¢(|a]) and then (4.1.80) to have
BEf @IV (Vo) i

<||wn][ oo (¢ (IV0]))u, da
(4.1.87)
< Hwnzo]{Q S(IVol)ut, de

SIVOILf (T Vel do.

Now, we use minimizing property of Vv together with (4.1.48), (4.1.80) and
Q| = |59, to have

AT (@)ol, do S f. (T (@) VI, da

(4.1.88)
< ][ (VR de.
Qr

Summing up the above estimates, we obtain (4.1.84). O]

Before providing decay estimates of V(-, Vz), we discuss some regularity
results and corresponding estimates related to © and v which are defined
n (4.1.74) and (4.1.78), respectively. First, we have the following estimates
which imply Lipschitz regularity and C* regularity of .

Proposition 4.1.21. Assuming (4.1.15), let © be the solution of (4.1.52).
Then there holds

sup  |Voffwh < c][ IVo|Pwl dy. (4.1.89)
1B,NR"

1
& BrNR™

Moreover, there exist « = a(n,p,A) € (0,1) and ¢ = ¢(n,p, \) > 0 such that

Fo V(90 = Va (V)
AB,-NR"Y
(4.1.90)
<o Va(VE) - (Vi (V) g, cne
1p NR? 8
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holds for all X € (0, 2).

7 80

Proof. We first show (4.1.90). Throughout the proof of (4.1.90), let us write
the center of the ball B, as yg, .

Step 1. If ¢B, C {y € R" : y, > 0}, then it directly follows from [16,
Proposition 15].

Step 2. Now, we consider zp, € {y € R" : y, = 0}. We have by (4.1.49) that

Ailer id S MBT S Wh, id .

Since the equation (4.1.74) and estimate (4.1.90) are invariant under normal-
ization, without loss of generality we let wp, = 1. Also, assume that B, is
centered at 0, i.e., zg. = 0.

Since M, is symmetric, there is an orthogonal matrix ) and a diagonal
matrix Dpg,_ such that Mg = QDp Q*. Then wy(y) := 9(Qy) is a solution of
(4.1.74) with Dp,_ instead of Mp,. Notice that the boundary of the domain
is also rotated, and for Dg_ we have

A'id < Dp, <id. (4.1.91)

Now, we apply an anisotropic scaling y ]Dgiy. This turns estimates on
half balls (with the rotated flat part) into estimates on half-ellipses (with the
rotated flat part) of uniformly bounded eccentricity depending on n and A.
Thus, after properly rotating the coordinate axis to make the rotated flat
part to the subset of {y € R" : y, = 0}, we can take the odd extension to
(4.1.74) to obtain (4.1.90).

In detail, let Q be an n x n orthogonal matrix which maps D5 Q" ({y €

R" : y,, = 0}) to {y € R" : y, = 0}. In other words, Q satisfies
QD5 Q" ({y €R" 1y =0}) = {y €R" 1y, = 0}. (4.1.92)
Now, using this n x n orthogonal matrix Q, define
w(y) == 5(QDp, Q). (4.1.93)
Then we have

(QDEH(Q)")' M5, (QD5H(Q)") = QD' Q"M QDL (Q)*

~ ~ 4.1.94
Gy DGy —ia
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and for t = QD,}i(Q)*y, we have

W(QDEHQ) ) = i(y) = w(t) (4.1.95)

and so
V,i(y) = V,i(t) = (QDEHQ)") V(). (4.1.96)
Therefore, (4.1.74) defined in ¥(3€,) C B, transforms into
div, (|Mp, Vi[P~2M2, V5) = div,((Mp, Vi, Mp, V)T M2 Vi)
_ div, ((QD;;i(@)*)* (M5, QD5 (Q)" Vi, Mip, QD Q) VoD )

M3, QD Q) Vi)

p—2

2

= div, (<(MBTQID>;;<©>*>*MBTQD;i(Q>*vtw, vtw>5 vtw)
= div,(|V,@|P2V,0) = 0

defined in ¢ € QD;H(Q)*({y € R" : y, = 0}). Note that since U(1Q,) C
{y € R :y, =0} and (4.1.92) hold, we can employ [174] and apply the
odd extension for div,(|V, 0[P 2Vb) = 0 and get the analogous estimate
to (4.1.90) for w with half-ellipses instead of half-balls. Using the relation
(4.1.94) and M, = QDp Q" for changing w to v, and then using the fact
that all balls can be covered by slightly enlarged ellipses and vice versa, the
estimate (4.1.90) is also true for half balls. Then we have (4.1.90).

Step 3. Now, we consider the general case, i.e., 1B, ¢ {y € R" : y,, > 0}
and z = zp, € {y € R" : y,, = 0} holds. We employ the argument of [152,
Lemma 3.7]. Denote z = (21,...,2n-1,2n), 2 = (21,...,2n-1,0), and recall
that 0 < A < % and z, > 0 since € {2, where 7 is the center of the ball B,
with 4B, C 2By. Let us specify the exact center of the balls in this step. In
particular, we write B, = B,(z).

Case 1. z, > {5. In this case we have

AB,(z) C +B,(z) C 2B.(z) C RY. (4.1.97)
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By the interior estimates in [100, Theorem 6.4], we obtain

][ |VBT(V1~’) - (VBT(Vf)))ABT(zﬂ2 dy
AB;(2)

—

A
1/10

)\ 2c 1 /
IS Vi, (V0) — Vs, (Vo)) 1g yre |* dy
1/10) <|1LOBT(Z>| iBr(z)mRi‘ 5. (V8) = (Vp.( ))4BT( )“R+| >

o Ve (99) = V(90 e
1B (2)NR%

<

~Y

2
)1 Y (99) = (V5 (90) o

A

/N 7 N

A
>

(4.1.98)
Thus we obtain (4.1.90) in this case.

Case 2. 0< 2z, < 75 We divide the proof into two subcases.
Subcase 1. 0 < A < Z—Z. In this subcase

AB,(z) C 2B,(z) C 22B(z2). (4.1.99)

By the interior estimates in [100, Theorem 6.4], we have

][ Vi, (V5) — (Vi (V) s, ) dy
AB;(2)

A\ 2a
< o e
- (Zn/47”) ][z';mz) Ve, (V0) = Ve, (V) o) [ dy

4A 2«
< v) — v Szn > 2 .
- (Zn/‘lr) ][E’Z”Bi(z) Ve (VD) (VBT(VU))?BWZ)‘ dy
(4.1.100)

Since z € {y € R" : 2, = 0}, by Step 2 above and then using 0 < z, < {7,
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we have

][szn

Vi, (V8) = (Vi (V8)) 20 |2y

4r B;r(z)
5Zn 2a . ) )
S|\ V5, (V0) = (VB,(V0)) 15+ 5" dy (4.1.101)
T lBJr(Z) 8T ( )
8 T
5Zn 2c 3 B )
. - Vi, (V0) = (V5,(V0))1p, (2)re | dy-
1Br(2)NRY

Combining the above two estimates, (4.1.100) and (4.1.101), we obtain (4.1.90)
in this subcase.

Subcase 2. \ > . Since A < ﬁ, we see that

AB,(z) "R} C 5AB(2) C B (2) C 1B, (2) NRY. (4.1.102)

Therefore, using the boundary estimate above in Step 2, we have
Fo o Va(90) = V(T8 s dy
ABy(2)NR?Y
SE VRV - Ve (VD)o
20AB; (%)

5\ 200
S|k U) — 7 2
N (1 /8) ][ o Vi, (V) — (VB,(V0)) 1545 |° dy

S /\Qa][lB . Vi, (V8) — Vi, (V) 1 5 oy .
abr(z n 1

Merging all cases Case 1—Case 2, we have (4.1.90) in Step 3. Therefore, by
Step 1-Step 3, we have (4.1.90).

To show (4.1.89), we employ the similar argument as above. If 1B, C
{y € R" : y, > 0}, then it follows from [16, Proposition 15]. Now, when
zp, € {y € R" : y, = 0}, by employing the same matrix Q, Dg,, Q° as
above, we can apply [167, Lemma 5] and we have (4.1.89) in this case. In the
general case, i.e., when 1B, ¢ {y € R" : y, > 0} and z5, & {y € R" : y, = 0}
holds, we divide the cases as same as above and apply the argument of [169]
instead of [100]. Now, (4.1.89) is obtained. O

Now, we transform the above estimates for © to the estimates for v.
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Proposition 4.1.22. Assuming (4.1.15), let v be the solution of (4.1.78).
Then there holds

sup |Volfwp < c][ |VolPwy, da. (4.1.104)

1
3580 76

Moreover, there exist « = a(n,p,A) € (0,1) and ¢ = ¢(n,p, \) > 0 such that
Ve (90) = U (To)aa, [ d
AQ,

< ckza][lﬂ Vi, (Vo) = (Vp,(Vv))10,|* do (4.1.105)

4

+ c||V@/)||§o)\_”][1 |VolPwh dx

4QT

holds for all X € (0, 2).

" 80
Proof. To obtain (4.1.105), using (4.1.16) with the help of (4.1.15), there
holds
F Ve (70) = (Vi (Ve P do
AQ,

:]{IJ(AQ ) Vi, (V®)VD) = (V5,(VE)VD))saa,)|* dy

S WUV - Ve (VE)uma [ dy (4.1.106)
(4N,

SE o eV - Ve (Vo)P dy
(40,

T ][ Vi, (V) — (Vo (V) acanay P dy = I + L.
W(4AQ,)
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For I, by Lemma 4.1.11 and Lemma 4.1.19, we obtain
L 5][ A(VU)VD) — Ap, (V)| - (VI)VD — V| dy
W(4AQ,)
St IV [Tl Vil dy
(4N,

< ||w||zo][ (V)T |(VT) | dy (4.1.107)
(4N,

< uwuio][ Vol de

40

snwnzox”]{ Vot dr.

78

On the other hand, for 5, we apply (4.1.16) from (4.1.15), and (4.1.90) to
have

RS Va(5) = (Ve (VO))sannng P dy
8AB,NR™
sl Ya (VD) (Ve (V9) g dy
1B,NR"

§A2a][ Vi, (VU)'V) — (Vp, (V)1 [*dx
\I/—l(éBrﬁRi)| 5 (VE)7V0) = V5, (Vo)) o (4.1.108)

< )\20“][ Ve, (V¥)"'Vo) = Vg (Vo) da
lQT

4

e f g (Vo) - (Vs (Vo) g, d
o, “
= )\20{([2,1 + 1272).

To obtain (4.1.105), we only have to estimate I5;. By the similar argument
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as (4.1.107), we have
Iy < f A(VE) Vo) — A (V0)] - [Vl |Vo| da
o,

< kuio]{ W |(VT) o[V de (4.1.109)

1

< ||vw||zo]{ Vot dr.

18

Summing up all estimates (4.1.106)—(4.1.109), we conclude (4.1.105).
To show (4.1.104), by using (4.1.80) and (4.1.16), there holds

sup |Vo(z)fPwp, < sup  [(VI)Vo(y)[fwp,
T€ 350 v (L0,
& et (4.1.110)
S sup [Vo(y)|Pwp,
ye 15 BrNRY

and by (4.1.89), we have

sup ]Vf)(y)|pwgr ,S][ yva\%gr dy
Y€ 1= BrNRY +B,NR"

<f (VO IVopud de (41100
U-1(£B-NRY)

§][ |Vo|Pwh de.
10, "

4
Summing up the above two inequalities, we have (4.1.104). m

With the help of the above estimates for v, we give the following decay
estimate of V(-,Vz). Recall that for By = Bg(zg) with 2o € 99, let B, =
B, (&) with Z € Q and 4B, C 2B,. Also, z on By N Q is such that z := un?”
and we take the zero extension for z on R" \ (By N §2), if necessary.

Proposition 4.1.23 (Decay estimate at boundary). Let z, u and F' be as in

(4.1.38) and (4.1.42). There exist A\ = A(n,p, A) € (0,55), s = s(n,p,A) > 1

and k5 = ks(n,p, A) € (0,1) such that the following holds: If |log M|gnmos,) <
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ks, and (4.1.15) hold, then for every e € (0,1) there holds

]fB WV, V2) — (V- V2))ss, [2 da

<1 V. V2) V(. Vo), P
B,

s

T e (llogMPaiogs, + VI +¢) (]{B Ve, V2)[> dx)

" xamralul? N7\
+cC*(e) (]é T (Twp> dx)

rec@ (f NameaVe, ) i)
(4.1.112)

with ¢ = ¢(n,p, ) and C*(€) defined in (4.1.67).

Proof. We first assume |log Ml|gmos,) < k4 with sy from Proposition 4.1.20.
Since z = |Vz| = 0 in AB, \ Q and [AQ,| = [AB,| hold from (4.1.17) because
of (4.1.15) and & € Q, we have

I ;:]{B Vi, V=) — (V- V2))an, [2 da
< ]{BT V(#, V2) = (V(, Vo))so [ da
S][)\QT Vi, V2) = V0, Vol)sa, [ do (4.1.113)

< ][ V(. Vo) — (V- Vo))a, [ di

+][ V(z,Vz2) = V(z, Vo) 2 do
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We start to estimate I5. There holds

I3 < )\_"][ V(z,Vz) - V(z, Vv)|* dz
10,

< A"][ Vi, (V2) — Vi, (Vo) de
o,

- )\‘”][ V(2,Vz) = Vg, (V2)[? dz (4.1.114)
3
+ )\"][ V(z,Vv) — Vg, (Vv)|* dx
3
=:I31 + I32+ I33.

For I3, and I33, since ¥ € Q and (4.1.15) holds, |Q,| = |B,| also holds.
Then we can apply the similar argument of the proof as in Proposition 18
in [16]. By (4.1.34), (4.1.48), (4.1.49), Lemma 4.1.11, (4.1.30), and Holder’s
inequality with exponents (2s', s,2s), we have

1

M M 4s' 2s7 %
Iso SAT" <][ (%) dx) <][ (|Vz[PwP)? dx)
Q, B, | Q
1
D 25’ 257
x |1+ (][ <%> d:c)
Q, \ WP

Together with z = |Vz] = 0in B, \ Q and |Q,| = |B,| due to (4.1.15), we
obtain

(4.1.115)

Lo SAT" (][ (|Vz|Pw?)? dx) - (4.1.116)
Q.

Note that by 4B, C 2By, x2p,na can be inserted in the integrand of the
above estimate. On the other hand, similar to I5,, we continue to estimate
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I3 5 as follows:

Lys = )\"][ V(MV) — V (M, Vo) da
LQ

ﬁ ”

M — Mg, |\?
< )\_"][ (|M—Br|) (|Vv]Pw? + [VolPwh, ) do
=0 M, |

_ M —MB | 2 wP
ST sup |VoPuk ][ <‘ T) ( —|—1)dm
(31292@’ | BT) ( 10, Mg, | wh,

-n
=A 13,3,1[3,3,2~

(4.1.117)
Here, (4.1.104) in Proposition 4.1.22, (4.1.80) and (4.1.48) imply
I3 := sup |Vo|Pwh
£
32°°T
5][19 [VolPwy da (4.1.118)
Z ™

< ][ M, T(2) Vol T ()P d < ][ M, T(2) Vol? da
o, :

Qr

and the minimizing property of v and h, together with (4.1.80) and (4.1.48)
give us that

I331 S][ |Mp, T'(x)Vh|P dx
1
- (4.1.119)
S ][ My V] dz < ][ V2Pt d.
Q, Q,

Then we use Holder’s inequality, || = | B,| from (4.1.15), Lemma 4.1.9 and
z=1|Vz|=0in B, \ Q to obtain

: WP\ T :
Is31 S (][ (|Vz|Pw?)? dx) ][ <ﬁ) dx
Q, Q, \ WP

<(f T<|Vz|pwp>8dx)i,
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provided |log M|gmo@s,) < k4 holds. On the other hand, by Holder’s inequal-
ity, Lemma 4.1.8 and Lemma 4.1.9 we obtain

1 1
‘M . MB | 4 2 ][ WP 2 2
Tysa < 2= s, | v |
332 5 (][ém ( M| dzx 1o, \ dr | +

2

S “OgM‘ZBMO(BT)'
(4.1.121)

Summing up, there holds

Ios < A" log Mo, (][ V(w, V) dw) | (41.122)
By

For I5,, we first apply Proposition 4.1.18 and Proposition 4.1.20, use z =
|IVz| = 0 in 2B, \ Q and |2€,| = |2B,| with the help of (4.1.15), and ar-
gue similarly to (4.1.119)-(4.1.120) for the integral of |[VA|Pw} term. The
resulting estimate is as follows:

I31 < /\_”][ Vs, (Vz) — Vg, (VR)|* do + )\_”][
1q,.

1
582

Vg, (Vh) — Vg (Vv)|* dx

2

< A" (llog MPrrogs,, +e>][ (IV=]Pu?) danuwuio]é (VP ) de

+ATCH(e) (]gﬂ (Z—‘:wp) S dx) % +ATCM(e) (iﬂ V(z, F)|* dm) !

< A (llog MPrioqs, + V1% + ) (]{9 Vo, Vo) dx)

_ X2Bon0|u[P ° g
+ A"C* (e (][ (O—wp) dm)
(€) - i

+ A7"C*(e) (][ IX2B.n0 V (2, F)]Qs dx)
2B,
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Consequently, we have

£ 07 (10 Miousy + V01 + ) (f W V2 o)
B,

P s 5
+ AT (e) (][ (Muﬂ’) dx) (4.1.123)
2B, Ry

+ A7"C*(e) (]éB IX2B.n0 V (2, F)]2S d:c> '
For 15, we have
B L 1V (90) = W (Vo) [ da
+]£Q V(x, V) — Vg, (Vv)|* da
SE Ve (90) = Va (T Pa (4.1.124)
+ )\_”][IQ V(z, Vv) — Vg, (Vv)|? dz

2

= 12’1 + 1272.
With the help of (4.1.105) in Proposition 4.1.22, it follows that
L €30 Vi (V0) = (Vi (Vo) o d
i (4.1.125)
+ ||V1/JH§O)\_”][ (Vo|Pwl dr.

79
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Triangle inequalities yield

I, S A2 V(z,Vz) — (V(, Vz))BT]2 dx

Qr

+ Aza][ Vi (V2) = Vi (Vo) 2 da
1q,.

2

+ AQa][ V(z,Vz) = Vg, (V2)|* dz
3 (4.1.126)
+ A?a][ V(z, Vo) — Vi, (Vo) 2 da
7
+IVOEA ", [Toput, do
i

=10+ loa1+1Ioi2+ Io13+ 174

To estimate I519, by 2 = |Vz| =01in B, \ Q and |Q,| = | B,| due to (4.1.15),
we have

Lo SN V(2,Vz2) — (V(2,V2))p, | do. (4.1.127)

By

Besides, using the similar argument for I3, I35 and I3 3, we estimate
I511, 1512 and Iy 3, respectively, with replacing the factor A" with 2% For
I5 1.4, by the same argument as in (4.1.118)-(4.1.120), we have

s

Las S|V IZA™ ( V(z, Vz)[* d:v) . (4.1.128)

By

On the other hand, for I, we apply the same estimate for I3 3. Finally, we
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have
L <Ih+13

<Xl Ve, Vz) = V(- V), P de

B
+eA™ (|10gM‘123MO(4BT) +[IVY[Z, + )

1

x ( V(z, V2)[ dx) S (4.1.129)
Br

s Xomgrolul? N\*\*
+cAT"C*(e) (]g T (—Rp wf ) dx
+cAT"C(e) (][ Ix2Byna V(x, F)[* dx) !

2B,

for some ¢ = ¢(n,p, A). We select a small A = \(n,p,A) € (0, %) such that

cA** < 1 holds, so that we get (4.1.112). O

We define the Hardy-Littlewood maximal function and the sharp maximal
function for f € L, . and p € [1,00) by

loc

3
][ flPdy )
r>0 B,r(x)

Mifte)=sup (£ 1r =P ar)’

Now, we employ Proposition 4.1.23 to show the pointwise sharp maximal
function estimate, which is more adaptable form to our gradient estimates.
Recall that for By = Bg(zo) with zq € 0f2.

M, f(z) :=sup <
(4.1.130)

Proposition 4.1.24. Let z, u and F' be as in (4.1.38) and (4.1.42). There
erists s = s(n,p,\) > 1 and k5 = k5(n,p, \) such that the following holds:
If [logM|gmous,) < ks and (4.1.15) hold, then for a.e. x € R" and any
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e € (0,1], there holds

M5 (V(,V2)) (x)
< ¢ ([log Mlpvo@n,) + [[V¥[leo + €) Mas (V(-,V2)) (z)

+ cC* () R™E (M, (Xapona|ulPwP) (1'))% (4.1.131)
+ CC*(€2)M23 (XaBonV(+, F)) (x)

R" 2 :
TR wl)y ( VA VN dy)

for ¢ =c(n,p,A) > 0.

Proof. Let ks and s be as in Proposition 4.1.23. Since V(-, Vz) € L*(R"),
V(-, F) € L*(4By N Q) and |ufPw? € L*(4By N ) by Proposition 4.1.6, all
terms in (4.1.131) are finite for a.e. 2. Choose x € R" and denote

I:= M(V(-,V2))(z)

, o\ ? (4.1.132)
—sup (f PRLCA SRR S )

r>0

We divide the case for r € (0, 00) as follows:

Ji:={r>0:B.(x)NBy,NQ =0}

(1)

(2) Jp:={r>0:3B(x) C 4B and z € Q}
(3) J3:={r>0:3B.(x) C4By and z & Q}
(4)

Jy={r>0:B,(z)NByNQ#0 and $B,(z) ¢ 4B,}.

For k =1,2,3,4 let us denote
Iy := sup][ V(y,Vz) = (V(-,V2))B, @) dy. (4.1.133)
r(z)

reJigJ B

We immediately find I; = 0 since z = 0 in R\ (BoN Q). For I5, we apply

242



CHAPTER 4. GLOBAL GRADIENT ESTIMATES FOR ELLIPTIC
EQUATIONS WITH DEGENERATE MATRIX WEIGHTS

Proposition 4.1.23 with B, = A\™'B,(x) and ¢ instead of € to have

1
]2 S Z_lj +c (|10gM|BMQ(4BO) + ||V'17Z)||oo + E) MQS(V(', Vz))(x)

+cC* () R™E (M, (Xapo|ulPwP) (x))%
+ ¢ C* () Mas(xaB, V (-, F)) ().

(4.1.134)

For I3, when r € Jy, then I3 = 0. If r € J3 \ Jy, then for x = (xq,...,2,),
denote & = (w1, ..., 7, +7) and consider 2B,(%)(D B,(z)). Then since & € Q
and %Br(f) C 4By, we can apply Proposition 4.1.23 similarly as above with
B = A"'B,(Z) and € instead of ¢ and obtain

1
[3 S Zl[ +c (|10gM‘BMO(4BO) + val‘oo + 6) M2S(V(', VZ))(SL’)

+eC(@)RE (M, (xag JulPw?) (2))? (4.1.135)

+ ¢ C*(€*) Moy (Xap, V(-, F)) ().

For I, since r € J, implies r > ¢R, and so together with suppz C By, we
have

R" 2 \?
I < C(R—i— P ( . V(y,Vz) — (V(-,V2))5,| dy) . (4.1.136)

Merging the above estimates, taking the supremum for all » > 0, and ab-
sorbing %LI in the estimates of I, and I3 to the left-hand side, the conclusion
holds. 0

Now, we prove Theorem 4.1.4, the non-linear case. To extract the sharp
dependency of ¢, we apply the following global Fefferman-Stein inequality.

Lemma 4.1.25. [16, Theorem 20] Let ¢ > 1. Then for all f € LY(R") and
g € LY (R"™), we have

11l oy < eql M fllLogny (4.1.137)
and
HMlgHLq'(R") < CQ||9||Lq’(Rn) (4.1.138)
for some ¢ = c(n).
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We also need the following lemma, which is from [95].

Lemma 4.1.26. Let B C R" be a ball and g,h : B — R be such that
g,h € L*(B). Suppose that for some 6 € (0,1), we have

]élgldeCO (][ |g|"d9:) ][ |h| da (4.1.139)

for any 2B C B. Then for any ~ € (0,1), there holds

][ gl dz < & ( |g|”fdx)” vt |hde (4.1.140)
B 2B 2B

for some constant ¢; = ¢1(co,,0). Here, ¢; is an increasing function on cy.

Now, we prove gradient estimate results for the local boundary case, when
there is a priori assumption u € W14(4B, N Q).

Proposition 4.1.27 (Local boundary estimate). Assume (4.1.15) and let
u € WH(Q) be a weak solution of (4.1.38) with F € L1 () for q € (p,c0).
Then there exists 6 = 6(n,p,\) such that for any balls B with xp € 0L,
rg < 4R and all q € [p, c0) with

=)

llog M|gmo@ss) + VY] < =, (4.1.141)

)

there holds

(fumers)

< c][ (IVulw)? dz + & (][ (|F|pwp)”d:v) ’
4BNQ 4BNQ

for some ¢ = ¢(n, A, q) which is continuous on q.

(4.1.142)

Proof. Define z = un? as in the previous subsection with |Vulw € LI().
Let By = Bgr(zo) with zy € 02 and

pi=-2>1

=R
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We first claim the following type of reverse Holder’s inequality:

(leom(]Vqup)” d:v) < cla) (]éBOnQ(NMPWP)ep dx) '

2

+e(q) (f;%mﬂufrvaf>ﬂdx)”

for some 6 € (0,1). If 1 < p < s where s is defined in Corollary 4.1.16, then
the conclusion directly follows from Corollary 4.1.16. Hence we only consider
the case p > s. To prevent constants blowing up as p close to 1, we change s
to s% so that 1 < s < s> < p holds.

Let ¢ < min{’%’, 1}, where k5 is as in Proposition 4.1.24. Under the
assumptions [log M|pyows,) < € and ||[Voo < €, taking L*”(By N §2) norm
|| - |l2p to Proposition 4.1.24, we have

1
P

(4.1.143)

= [|MOV(, V2)) o
< ¢ (Jlog Mlgvo(s,) + [[V¥leo + €) [Ma2s(V(-, V2))|l2,
+ cCH () R™E || M, (xaporolulPw?) % |2,
+ ¢ CH(€) [ Mas(xaonaV (- F))ll2p (4.1.144)
e
(R4 |- —mzo|)™
=L+ L+ 13+ 14

+c

2 ( V@ vz) = (VG V), | dx)

Since |Vul|Pw? € LP(By), it follows that V(-,Vz) € L*(R") and so I < oo.
First, using Lemma 4.1.25 together with Ma,(g) = (M(|g|**))? and 2 >
s > 1, we obtain

2p
2p—1
(2p)?
2p—1

2p)?
< cog L MV, )

[Mas(V(-, V2))ll2p < V(- V)2

IMEOV(C, V2)) (4.1.145)

< ¢4
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Thus for I, one can see that
]1 S C3q (|logM|BMO(4BO) + ||v¢||oo + 6) 1 (41146)

for some c3 = c3(n,p, A). Here, we choose

1
5:min{—,@,l} and e:é
6cs p n q
so that

L <=1 (4.1.147)

DN | —

holds. Then we are able to absorb I; to I. For the remaining term I, I3 and
Iy, by (4.1.138) one can see that

_Pb

I < e C*(H)R™H || My [(xamono ulPw?)?]

2p

1
2s

< cC*(q%)R_gﬁ [ M [(XaBonal|ulPw?)?] e

P 1 4.1.148
< O ()R xamralul?e?)| R

1

D P 2%

<cC*L (/ (@wp> dm)
() 1By \ P
with ¢ = ¢(n, p, A), and similarly,
%
I; < cC* (%) (/ V(z, F)|* dx) : (4.1.149)
a 4BoN

For I, if we assume (4.1.15), then |ByN Q| = | By| holds. Then together with
the fact that z = |Vz| =0 in By \ €2, we have

1
2

I < c|Bo| (][ |V(x,Vz)|2das) . (4.1.150)
BonN
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On the other hand, by Lemma 4.1.25 there holds

C
I = MEV(, V2)llap 2 el MIV(-, V2) 2y > 5||V('7VZ)H2/)- (4.1.151)

Summing up, we have

o 2\ 0)
V(-,Vz < cqC*(& (/ <—uﬂ’ du
1V(-, V2)ll2, (2) -

1

rac ) ([ penpe)t a1s)
oM

valml (f M vara)
BonQ

If we assume (4.1.15), then |By N Q| = |By| and the above estimate implies

(]im('vz'p“p)pdx)i <o (£, () da:>;
+elaC (@) (]EBOQQ(\Flpwp)p dg:> ’ (4.1.153)
raf vl

Since z = un” as in (4.1.42), it follows that

frmears) el (521 )

+elg) (]éBoquvw)pdx);

4 c<q>][ VulPu? dr,
BonNQ

|=

(4.1.154)

where ¢(q) = (q(?*(q%))2 which is a continuous and increasing function on g.
Then since |log M|gmoun,) < ks and (4.1.15) holds, together with Lemma
4.1.9, we can apply Proposition 4.1.6. Consequently, we have (4.1.143).

247



CHAPTER 4. GLOBAL GRADIENT ESTIMATES FOR ELLIPTIC
EQUATIONS WITH DEGENERATE MATRIX WEIGHTS

Now, using (4.1.143), we next claim that

(f B(mwmdx); <o) (f (alTurryvas) g

+elo) (£ (alFrryas)”

for all B C R". Indeed, if 4B C , then we employ [16, Proposition 22| to
obtain (4.1.155). If 4B C (R™\€2), then (4.1.155) becomes trivial since xq = 0
on R™\ 2. Finally, if 4B ¢ Q and 4B ¢ (R"™\ ), we use the similar argument
of Step 3 in the proof of Proposition 4.1.21 and so we have (4.1.155).

Now, Lemma 4.1.26 gives us that

(4.1.155)

(o sowers)

2

< o(q) (][ Vulods) + ) (]éBmuFPwP)ﬂdxf ,

where ¢(q) is still a continuous and increasing function on ¢. This proves
(4.1.142). O

(4.1.156)

Proof of Theorem 4.1.4. Applying the argument of the proof of [16, Theorem
2], we can eliminate the assumption u € W19(4By N ) in the statement of
Proposition 4.1.27. Note that here we used the fact that ¢(q) is continuous
and increasing function on q. Now, by considering Proposition 4.1.27 for the
boundary case and [16, Theorem 2] for the interior case, using the covering
argument, together with the assumption

) )
logM is (—, R) —vanishing and ) is (—, R) —Lipschitz, (4.1.157)
q q

we get

AS)

/(quP’wp)p dr < ¢* (/ |Vul|Pw? dx) T c*/(|F|pw”)p dr, (4.1.158)
Q 0 Q

where ¢ = ¢*(n,p,A,Q, R,q). Then the standard energy estimate as in
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(1.3.11) and Hoélder’s inequality imply (4.1.12). O
Here we prove Theorem 4.1.3 using the duality argument.

Proof of Theorem 4.1.3. We only show in the case 1 < ¢ < 2, since the case
q > 2 follows from Theorem 4.1.4 with p = 2. As the previous argument,
we first prove the local boundary case, and then employ the result of [16,
Theorem 1] as the interior case to use the standard covering argument. Recall
that

—div(A(z)Vu) = —div(A(x) F) (4.1.159)

and that By = Bg(z) with 2o € 9Q. Define H € L% (B,) with the following
property:

Q|

(]gBO(ymw)q/ dx) <1. (4.1.160)

Let aBy N := Bur(zo) NQ for a > 0 and w € Wol’f(QBo N Q) be the weak
solution of

—div(A(z)Vw) = —div(A(z)xep,H) in 4By N Q,

4.1.161
w=0 on 0(4By N Q). ( )

Under the assumption that
1 1
|10g M’BMO(4BO) S o011—— and HVIDHOO S o011—— s (41162)
q q

by (4.1.156) with the exponent ¢’ > 2 and Holder’s inequality, it follows that

<][ (|Vw|w)? dx) ’
2BoNQ
§c<][ (|vw\w)2dx) +c<][ (|H|w)” dx)q |
4BoN< 2BoNQ

(4.1.163)
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Here, testing w itself in (4.1.161), we have

][ (|Vw|w)? dr < c][ (|H|w)?*dr < ¢ (][ (|H|w)? dx)
4BpN$ 2BoN 2BoN
(4.1.164)

o

q

1 1

and so there holds

(]{BOQQ(W“J'“)(’/ dx) < (]éBm(|H|w)q' d:v) <c (4.1.165)

Let n € C3°(2By) be a smooth cut-off function with xp, < 7 < x25, and
IVl < ¢/R. From (4.1.161), we have

Q
Q

I ::]gB . A(x)V(n*u) - H dx
:]éB . A(2)V(n*u) - Vw dx
:]éB . A(z)Vu - V(n*w) dx (4.1.166)

—i—][ A(x)uV(n?) - Vw dx —][ A(r)wVu - V(n®) dx
2By 2BoNQ
=. Il + IQ + ]3.

To estimate 7, using the equation for u in (4.1.38), there holds
I :][ A(2)F - V(n*w) dx
2BoN

< c][ W F||V (n*w)| dz (4.1.167)
2BoNQ

1

< (]gBomwa da:); (]ém(w\vmzw)\)q’ w).

With the help of triangle inequality and Proposition 4.1.6, we have

Ll < (]£B0m<w|F|)qu>§ (]éBm(wwqu’ dx)q | (4.1.168)
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For I, by Holder’s inequality and Proposition 4.1.6, we have

s, () ) (v

Bon® N (4.1.169)
<c (][ (w] V) da:) ’ (][ (w]Vw])? dx) '
2BoNQ 2BoN

for some 0 € (é, 1). Similarly, for I3, there holds

Tap |w] (029)' oy
|I3] <c (][ (w|Vul|)?r d:v) ][ (w—) dx
2BoNQN 2BoNQ R

1
o

o .\
<c (][ (w|Vu|)92q dx) (][ (w|Vwl|)? dac) )
2BoNQ 2BoN

Now, without loss of generality we assume 6 = 6,. Consequently, with (4.1.165)
we have

1< [(]gmwwqu dm);q + (]ﬁBOmW‘F“”””);]

1

(4.1.170)

x <]£Bm(w|v@u|)q’ dw) ! (4.1.171)

7 .
<c (][ (w|Vul)? dx) +c <][ (w|F|)? dx) :
2BpNQ 2BoNQ

Since H was an arbitrary function with (4.1.160) and (L% )* = L?_, holds,
we obtain

<]£Bom (Vo) dx) | L (41172)

s(:(][ (w[Vu])aqu) ' +c(][ (w\F|)qu>q.
2BoNQ 2BoNQ
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Since AV (n*u) = AVu on 2By N Q and |AVu| = w?|Vu| hold, we conclude

)

which is analogous to (4.1.143). Now, by applying the argument of the proof
of Proposition 4.1.27, we can change the exponent fq to 1. Then similar to
the proof of Theorem 4.1.4, using the covering argument, together with the
assumptions

(4.1.173)

1 1
log A is ((5 min {—, 1— —} ,R) —vanishing and (4.1.174)
4q q
: .1 1 . :
Qis <(5 min {—, 1-— —} ,R> ~Lipschitz, (4.1.175)
q q
we get (4.1.10). This proves Theorem 4.1.3. O

4.1.4 Sharpness and smallness conditions

In this section we discuss the sharpness of our smallness condition. We have
shown in Theorem 4.1.3 and Theorem 4.1.4 that reciprocal of the expo-
nent ¢ of higher integrability is linearly connected to the smallness condition
on log A and 0f). In this section we show that this linear dependence is the
best possible. It has been shown already in [16, Section 4] that the smallness
on log A is necessary by means of analyzing the counterexample introduced
by Meyers [177]. Therefore, we concentrate in this article on the sharpness of
the condition on 2. Since the effect already occurs in the unweighted case,
we assume that M = id. We provide a two dimensional example, but the
principle generalizes to higher dimensions as well.

Example 4.1.28. For n = 2 and € € (0, 1), we consider the following type
of the domain:

Q= {x = (x1,22) € B1(0) : 23 > —¢|z1|}.
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Then Q2 is (e, 1)-Lipschitz. Moreover, the assigned Lipschitz map for the origin
is ¥ : R = R such that ¢(x1) = —€|z1| and so [|[VU|ls < €.

/2 . . . .
*/2rtan—Te W€ define in polar coordinates x = r(cos ¢, sin ¢)

u(x) = u(r, ¢) = cos (¢ — %)) 7.

Now, for a =

Then u is a solution of the equation

Au=0 1in €,
u=0 on {(z1,72) € R*: 15 = —€|71|} N B1(0).

Indeed, we have

0%*u 1% 1 9%u

M= an e T rae

= (a(a —1)r* 24 gra’I — 04_2> coS (a(¢ — %))7’0‘ = 0.

r 72

Moreover, with e, := (cos ¢,sin ¢) and ey := (—sin ¢, cos ¢) that

ar roo

= |acos (a(¢ — F))r* ‘e, — asin (¢ — 5))r* ey| = ar®"

Assume that ¢ > 2. Then Vu € L¥*(By(0)) (Lorentz space or weak Lebesgue
space) is equivalent to (o — 1)q > —2. This simplifies to

Vu € L*(B1(0)) < tan e <

Thus,

Vu e LY(B;(0)) < tanle<

Note that for small €, we have tan™' € ~ €. This implies that the smallness
assumptions (4.1.9b) and (4.1.11) are optimal.

From now on we compare our smallness condition to other type of condi-
tions as found in [61, 62]. Let us assume that A : R" — RZ§" with bounded
condition number with |A[|[A™!| < A2 In this section we compare our small-
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ness condition on the weight in terms of log M with the smallness condition
on M from Cao, Mengesha and Phan in [61, 62]. In [61], they introduced the
quantity’

Aoz = Sup< / IA( ) 12 (x)dx)% (4.1.176)

in order to measure the oscillations of A, where p(z) := |A(z)| and the
supremum is taken over all balls. In addition to the smallness conditions
Cao, Mengesha and Phan assume that p:= |A| € A,.

In [62] they use the simpler quantity

|Algwmo, Sup / |A(x A)p|dx. (4.1.177)
Note that by Holder’s inequality

|A|BMOH = ’A|BMOﬁ‘

In contrast our measure of oscillations is
llog Algyo = sup][ llog A — (log A) 5| dx. (4.1.178)
B JB
Due to 1 < |A||[A™!] < A? we have

) () < {IAD 5 (A7) < A% () (™) (4.1.179)

The following lemma shows that our smallness condition on |log A0
is weaker than the smallness condition on |A|gy;q: combined with the A,-
n

condition.

Lemma 4.1.29. Let A : R" — R":" be a weight with |A||A™'| < A* and

!Cao, Mengesha and Phan do not use pu(z) := |A(x)], but treat p as an independent
function that satisfies the equivalence p(z) =~ |A(z)|. However, choosing u(z) := |A(z)] is
always an equivalent valid choice.
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= |A| € Ay. Then for all balls B C R" there holds

][ llog A — (log A) 5| dx
B

RTINS ( < [ 60— (a0 P 1<x>dx>2.

Moreover, |log Algyo < 4A2[:U’]2’A|BMOQ'
m

Proof. We begin with

][ llog A — (log A) z| dx <2 inf ][ llog A — log Ag| dx
B AoeRZE"J B

<2 Jlog &~ log((4),)| d

It has been shown e.g. in [123, Example 1] that for all G,H € RZ§" there
holds

log G — log H] < max{|G~"], |H"}/G — H|.
This implies
§ Nog s~ {log ) | do < 2 maax{|A71] ()3 [HA ~ (4)]da
B B

24 JATH|A — (A) 5| dr + 2|(A |][ |A — (A) 5| dz
B
=1+ 1L

By Holder’s inequality we obtain

I—][|A A = (A) | de

(][ A 1\@) ( A — (A) 52|A " d:c) |
< (A1) 4~} (7 /|A DollIAl dz )
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On the other hand by Holder’s inequality

%
< ()5 18 - @)l de < @5 1wl f 18 - )Pl )

Due to [25, Exercise 1.5.10] the mappmg A — A~ is convex on R Thus
by Jensen’s inequality 0 < (A> < <A 1> p and as a consequence | )5 ‘ <
‘(A‘1>B} < (|A7']),- Using this fact, we obtain for II the same estimate as
for I. Combining all estimates proves the first claim. Taking the supremum
over all balls B and using (4.1.179) proves the second claim. O]

On the other hand we will show now that if |log Al is small enough,
then it controls |A|gy ;02 in a linear way.
;4

Lemma 4.1.30. Let A : R" — R™" be a weight such |A[|A™" < A%, Then
there exists 6 = 6(n, A) > 0 such that the following holds: If |log Algyo < 0,
then for all balls B C R"™

B - 3
(’ | ][| ) P a >dx) < c(n, M)log Algyogs,

In particular, \A|BMO,§(3) < c(n, A)[log Algyiop)-

Proof. Let |log A\BMO(B) < 0. We choose § > 0 so small such that we can ap-
ply Lemma 4.1.8 (for ¢ = 4) and Lemma 4.1.9 (for v = 2). By Lemma 4.1.9 2
we obtain pu = ]A\ € Ay with [p]a, = [|Al]4, < 16. Thus, with (4.1.179) we
have (|A[); (A7), < 16 A*>. Recall that

u(B) = [ o= [ [4ldz = |B] (a1},
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For all Ay € RZ3"™ we estimate with Jensen’s inequality in the third step

CrICE ][ o) dx)é
~ (e 140 = @), Plao) o)
(w

— Ao2lA()] dx)

(IAD 55

i (m]Q(A—A@BPM(x)FIdx) S T4IL

With Jensen’s inequality, Hélder’s inequality and p~! = [A|™' < |A™Y we

obtain
11 g]é |A(z) — Aol dx (%)f 1
< ( ] |A(z) — Ao2|A(z)| ™! dx) E <|A|>% (%> 5

= (0805 1470 0)" (-, 1400 ~ iAol o)

= ((AD (A, )% §4AI.

Jun

Overall, we obtain

1

(i [ 140 = @), Pty ) |

< (14+4A) inf (L][ |A(z) —A0|2|A(:Jc)|_ldx)2
noer?3™ \ (|A) 5/

J/
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Now, choosing Ag = (A)lgg and using Holder’s inequality we obtain

1 < ( T A — @l Plaa dx)%

o — o 1
1g|<rm 2>B( e L)
|A| log|

With Lemma 4.1.9 1 (with —y = —2), (4.1.21) and (4.1.22) we obtain

AFIIATS _ 20(A)s
GADE (ADE(IADEY:?

This and Lemma 4.1.8 (with ¢t = 2) gives

<2

I < 2¢(n, A) log Alpnvo(s)
Collecting the estimates proves the claim. O

Remark 4.1.31. We shown that if |log A|BMO(B) is small enough, then it con-
trols |A|BMOﬁ(B) and therefore also |Algyo, (5)- On the other hand we know
from Lemma 4.1.29 that \logA|BMO(B) is directly controlled by ’A’BMOi(B)'
Based on standard John-Nirenberg estimates, it is possible to show that suf-
ficient smallness of |A|BMOM(B) implies that |1OgA|BMo§(B) can be linearly
controlled by |Algyio, (5)-

So overall, once one of the three quantities [log Algyiop), [Algno, () and
1Al gyio2 (B) S small, then they are all comparable. This allows to tmnsfer re-

I

sults state in one language to the others. For example, smallness of
|logA|BMO(B) implies the validity of the estimates in [61] and we obtain
IVUll paguany S N paguany for @ > p = 2. However, the smallness of

llog A|BMO depends (negative) exponentially on q, see the discussion in [16,
Remark 23/
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4.2 Global estimates for equations with ma-
trix weights and measurable nonlineari-
ties

We study general elliptic equations with singular/degenerate matrix weights
and measurable nonlinearities on nonsmooth bounded domains to obtain a
global Calderon-Zygmund type estimate under possibly minimal assumptions
that the logarithm of the matrix weight has a small BMO norm, the non-
linearity is allowed to be merely measurable in one variable but has a small
BMO norm in the other variables and that the boundary of the domain is
sufficiently flat in Reifenberg sense.

4.2.1 Hypothesis and main results

We consider a general elliptic equation with singular/degenerate nonlinearity
in divergence form

{div(M(m)A(x,M(x)Du)) = dv(M(0)F) in g, (42.1)

v = 0 on 012,

where 2 C R", n > 2, is a bounded domain with nonsmooth boundary 0f).
The Carathéodory vector field A(z,€) : R™ x R" — R" is C*(R")-regular for
&-variable and satisfies

{|A(x,§)| +|0cA(, €)||€] < LI (4.2.2)

v[C* < (0A(2,€)¢. O)

for any ¢ € R", a.e. x € R" and some constants 0 < v < L < oco. A main
point in this section is that we are treating with a symmetric and positive
definite matrix-valued weight M(z) : R" — R™" satisfying

M (2)||M ™ ()] < A (4.2.3)

for some constant A > 0. With this basic structure on 2, A and M, through-
out this section we write

w(r) = |M(z)| and data={n,A,v, L,|Ql}. (4.2.4)
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The nonhomogeneous term F' = (fy,..., fn) : @ — R" is a given vector-
valued function with [MF| € L7(€2) for some v € [2,00). Then with (4.2.2)
and (4.2.3), we will see later in Section 4.2.2 that there is a unique weak so-
lution u of (4.2.1) in W,*(Q, dw?) and we have the standard energy estimate

/Q|M(x)Du|2dx < c/ﬂ M(2)F? da (4.2.5)

with ¢ = ¢(n, A, v, L) > 0, provided w(z)? belongs to Ay-Muckenhoupt class.
We will return to some issues including preliminaries of Muckenhoupt class
and weighted Sobolev spaces, and the existence and uniqueness of the prob-
lem (4.2.1) with the estimate (4.2.5). Assuming (1.3.2) and w?® being Aj-
Muckenhoupt weight, the purpose is to prove that the implication

IM(z)F| € L'(Q) = |M(z)Du| € L"(Q) (4.2.6)

is valid for every v > 2 with the global Calderén-Zygmund type estimate
/|MDu|7dx < c/ IMF" da (4.2.7)
Q Q

for some constant ¢ = c¢(data,y) > 0.
With the precise notation and assumptions to be presented in detail in
the next section, we now state our main theorem.

Theorem 4.2.1. Assume (4.2.2), (4.2.3), M? € Ay and let |MF| € L7()
for some ~y > 2. Then there exists 6 = 6(data,y) > 0 such that if (2, M, A) is
(6, R) ~vanishing of codimension 1, then the weak solution u € Wy>(Q, dw?)
of (4.2.1) satisfies |MDu| € L7(2) with the estimate (4.2.7).

More studies also need to be done to understand the measurability of the
matrix weight M(x) in one of the variables as well as a precise dependence
of the smallness parameter §, in particular in terms of v, though it seems
unclear as this smallness assumption in the other variables except one vari-
able is closely associated to both A and M as well as the choice of a point
near the very irregular boundary and a size of the localized domain under
consideration. We leave these issues to be investigated in the future.
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4.2.2 Preliminaries and basic definitions

For z = (z1,2") € R", yo = (vo0.1,Yy) € R" and p € (0, R], we define

O(M, Q,(y0))(x) := [log M(z) — (log M)q,(y0)|- (4.2.8)

Also, we write

A ’ /7 _A 4 (g )
0 Qo)) = sup o :E) ~ Apy (1,6

<2L,  (4.2.9)
£eR™\ {0} 9

where
ABg(yg)(th) 12][ A(xy, 2’ &) d’.
B, (y)
Then we introduce the following condition.

Definition 4.2.2. Let 0 € (0,%) and R € (0,1) be given. We say that
(Q,M, A) is (0, R)-vanishing of codimension 1, if for any y € Q and every
r € (0, R] together with

dist(y, 9Q) = min dist(y, z0) > V2r,

20€00

there is a coordinate system depending on y and r, whose variables are still
denoted by x = (x1,2"), such that in this coordinate system, y is the origin
and there holds

]{2 4, @y o)) 10010, @y o)) s <

for every  Q,(x) C Q.

(4.2.10)

Also, for any y € Q and every r € (0, R] together with
dist(y, 09) = |y — 2| < v2r

for some zy € OS2, there is a new coordinate system depending on y and r,
whose variables are still denoted by x = (xq, "), such that in this coordinate
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system, zo 1s the origin and there hold

Qs N{(z1,2") 1 21 > 36r} C Q3. C Q3 N{(x1,2") : 27 > —36r} (4.2.11)
and

]ép(xo)(W(A, Qp(0))(@)|* + [0(M, Qy(w0))(2)]*) dx < &7

for every  Q,(zo) C Q3.

(4.2.12)

If 2 satisfies (4.2.11) with § < 4, then it is well-known that the following
measure density conditions hold:

Q- (y)] e O y) N
sup sup —————— ~ inf inf —2~ <1 4.2.13
S S TN Q)] 0r e Q. ()] (42.13)

with the implicit constant ¢ = ¢(n). For further studies, we refer to [81, 145,
202].
We first introduce the weighted Sobolev-Poincaré inequality as in [16].

Lemma 4.2.3. Let n > 2. For any 6 € (;15,1], we have the following
lemmas:

(1) (Interior case) Let Qa.(xg) be a cylinder in R™. If u is a scalar weight
with

3 @7
sup ][ p? dx ][ = dx <cgp (4.2.14)
Qp(y)CQa2r (o) Qp(y) Qp(y)

for some cg, > 0, then for every v € W'(Q, (), du*) we have

][QT(IO)

for some ¢ = c(n, csp) > 0.

2
U= (/U)QT(‘TO)

r

1
G
prdr <c <][ (|Dv|p)* dx) (4.2.15)
Qr(zo0)

(2) (Boundary case) Let ) C R"™ be a domain satisfying

|Qur(20) \ Q| > a|Qur(20)| (4.2.16)

262



CHAPTER 4. GLOBAL GRADIENT ESTIMATES FOR ELLIPTIC
EQUATIONS WITH DEGENERATE MATRIX WEIGHTS

for some a > 0. If v is a scalar weight with

1 1
2 (20
sup ][ p? dx ][ 10 <cgp (4.2.17)
Qo(Y)CQsr(z0) \ Y Qp(y) Qn(y)

for some ¢y, > 0, then for every v € Wh?(Qy,(20), du?) with v = 0 on
00N Qyr () we have

1
| Q47" | Q4T (Io)

V12

r

1
1 G
p?dr <c <— (|Dv|p)? dx) (4.2.18)
|Q47'| Q4T(CC0)

for some ¢ = ¢(n, cgp, ) > 0.

Proof. First, (4.2.15) follows from [16, Proposition 3| together with [111].
To show (4.2.18), let us abbreviate Q4 = Qu-(zo) and Qy, = Qu(x0). We

extend v as zero on the set K := Q4. \ Q. Then we have (v)x = 0, thus
employing (4.2.17) and Proposition 3 of [16], there holds

1
|Q4r | Qyr

<.
4r

2

Y u? dx

r

U — (U)Qél'r
r

2

uw? d:c—l—][
5 T s
<c [][ (| Do) dx] —i—][ (]Z dy) p? dx
4ar Qar K

for some ¢ = ¢(n, c,p) > 0. For the last integral on the right-hand side, we
apply (4.2.16). Using Holder’s inequality, (4.2.17) and Proposition 3 in [16]

2
u?dx

(U>Q4r — (U)K

r

v(y) = (Weu,
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vields that
][ (][ v(y) — (v)qu
Quar K

2
dy) p? dx
r

1 2

2 2
quy> (][ ;ﬂd’y) p? dz

SIS
<o(f, [l a) (f wra) (, 0moe)

<e(f (Dol dac)é

for some ¢ = ¢(n,cqp, ) > 0. Then (4.2.18) follows, since |Dv| = 0 on
Qur \ Q. ]

Remark 4.2.4. We also deduce the following Poincaré type inequality on a
(0, R)-Reifenberg flat domain Q C R™ for § € (0, %) and R € (0,1). If uis a
scalar weight with

sup ][ p? da ][ p2dr | < cop (4.2.19)
Qp(y)CR™ Qp(y) Qp(y)

for some cqpo > 0, i.e., u* € Ay, then for every v € Wy (9, dp?) we have

[NIE

U<y) — (U)Q4r

v = (U)QM

/9\11\2/;2 dr < C/Q(’D’U’,u)? dx (4.2.20)

for some ¢ = c(n, cspa, [2]) > 0.

We next introduce the following lemmas related to the logarithm of a
matrix-valued weight L.

Lemma 4.2.5. [16, Proposition 5] Let Q,(yo) C R"™ be a cylinder and p > 1
be given. There exists a constant ¢, = c1(n) > 0 such that if L is a matriz-
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valued weight with [log Llsno(q, ) < %, then we have

- p
L—1L
][ | Qr(w0) | "
QT(ZJO)

1
p

ILq, (o)

< cgp[log L]BMO(Qr(yO))
with some ¢z = ca(n) > 0, where Lq, () := exp((log L)q, (40))-

Lemma 4.2.6. [16, Proposition 6] For any matriz-valued weight 1L, there
ezists a constant cs = c3(n) > 0 such that the followings hold.

(1) If log Llpmo(q, (voy) < < with p > 1, then we have

p — p L
L P
][ IL| i ][ Lowol Y 4| <4
Qr (o) Qo) \ L

P

+

|]T"Q'r(y0) | o
where H_A‘Qr(yo) := exp((log L)Qr(yo))'

(2) If [log Llgmo(@, (o)) < €3 min{%, I%} with 1 < p < oo, then [|L|p]ip <4
and so |L|P € A,.

(3) Let 0 € (3,1) be given. If |log L|pmo(@, (wo)) < ¢3(1 — 55), then we have

: @y
sup ][ IL|? dz ][ L[~ dx < 4.
Qr(¥)CQr(yo) \ Y Qu(y) Qo(y)

We now provide the existence of a solution to the problem (4.2.1). Before

that, we give useful inequalities. Under the assumptions (4.2.2) and (4.2.3),
we have the following inequalities. For the proof, see [11, 16, 18].

e For each &,& € R",

V|G — &I < (A3,&) — Az, 6), & — &) . (4.2.21)
e For any £ € R,

A~lwle] < [Mg] < wie,
where w = |M].

(4.2.22)
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We remark that the inequality (4.2.22) implies that w|f| € L if and only if
IMf| € L? for any vector valued function f:R" — R".

Lemma 4.2.7. Let Q@ C R" be a (6, R)-Reifenberg flat domain for § € (0, 5)
and R € (0,1). Suppose that M is a matriz-valued weight with w* = |M|* €
Ay and (4.2.3). Also, assume (4.2.2) and F € L*(Q, dw?). Then there exists a
unique weak solution u € Wol’Q(Q, dw?) of the problem (4.2.1) with the energy
estimate

/yMDude < 5/ IMF|* dz (4.2.23)
Q Q

with some ¢ = ¢(data) > 0.

Proof. Note that div(M?(z)F) € (W,*(Q,dw?))’, the dual space of
Wy?(Q, dw?). Moreover, since w? € Ay, (4.2.22) and (4.2.2) hold, by the
standard theory of monotone operators (see [200, I1.2.]), there exists a unique
solution u € Wy (9, dw?) satisfying (4.2.1).

We now show (4.2.23). Testing u € Wy*(2, dw?) to (4.2.1), there holds

/ A(x,MDu) - MDu dzx = / MF - MDu dx.
Q 0
Then by (4.2.21), and Young’s inequality,
/ IMDul|? dz < c/ A(x,MDu) - MDu dx
Q Q

< c/ |MF||MDu| dx
Q

1
< —/ |MDu|2dx+c/ IMF|? da.
2 Q Q

Then (4.2.23) follows. O

4.2.3 Proof of Theorem 4.2.1

In this section we derive comparison estimates with reference problems. Re-
call that M : R" — RZ;" is a matrix-valued weight with the assumption
(4.2.3) and that w := |M]|. Also (4.2.2) is enforced. Here we only compute
the boundary comparison estimates, as we can deduce the interior estimates
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in a similar way. According to our main assumption that (2, M A) is (9, R)-
vanishing of codimension 1, with the choice of a size 0 < 57 < R and a point
in €, we are now under the following setting:

Q7. C Q5. C Qs NA{(xy,2) : 1 > —1067}, (4.2.24)

£ <5
. (4.2.25)

and fBOLQ () @) dr £ 5 ¥y (a0) C Qs
Qp(z0)

Here, 6 € (0, 1) will be determined later. We also denote

AB’(xlvf) = ][ A(xl7$,7§) dl’/,
le’r‘
Mg := exp (logM(-)),, , and @q := exp (logw(-)),, -
Then we have the following properties from (4.2.2) and (4.2.3).

e There holds

|AB'(JJ1;§>| + ’351213/(%75)“& < LI¢| L990
{VICF < (0eAp (21,6)¢, ) (4.2.26)

for a.e. 1 € R and for all ¢ € R".
e (See [16]) We have

A"'Gole] < [Mot| < mol€|  for all € € R™. (4.2.27)
Let u € W2(Qy,, dw?) satisfy the problem

{div(M(:c)A(x,M(x)DU)) = div(M*(2)F) in Q. (4.2.28)

u = 0 on Oy,
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We then suppose that for some A > 1,
][ IM(2)Dul*dr < X\ and ][ IM(2)F|*dx < dA. (4.2.29)
Q4r Q4'r

Next, we sequentially consider the following problems:

div(M(z)A(z,M(z)Dh)) = 0 in Qy,,
{ h = u on o, (4.2.30)
and
div(MgAg (z1,MgDw)) = 0 in Qy,,
{ w = h on 0. (4.2.31)

We now show the following higher integrability results of MDA in the
problem (4.2.30).

Lemma 4.2.8. Let h € W'?(Qy,,dw?) be the weak solution of (4.2.30).
Then there exists 6 = 6(n) > 0 such that if (4.2.24) and (4.2.25), hold, then
there is a constant 0 = o(n,\,v, L) € (0,1) such that

1
1+to
(f mﬂmﬂ”®m> §cf IMDh|? dz (4.2.32)
QQT Q4r

holds with ¢ = ¢(n, A, v, L) > 0.

Proof. Let n be a smooth cut-off function with 0 < n < 1, n =1 in Qo
n=0inR"\ Qu, and |Dp| < <. Testing n°h € Wy (Q4y, dw?) in (4.2.30)
and using (4.2.2) and Young’s inequality, we have

/ n*IMDh|* dx < c/ n*A(x, MDh) - MDh dx
947‘ Q4r
< / n|h||A(z, MDh)| M| Dy| dx
Q4r

h
< c/ n|MDAh)| ‘— wdx
Q4r r

1
g-/ ﬁMmﬁm+g/
2 Jau, Qu,
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which follows the weighted Caccioppoli estimate

2

M2 da (4.2.33)

r

1 c
’Q2T| Qgr |Q47'| 947»

with some constant ¢ = ¢(n, A, v, L) > 0.

From (4.2.24) and § < &, we figure out |Q4, \ Q| > (15)"|Q4, . In addition,
using Lemma 4.2.6 (3), we choose 6 = d(n) > 0 sufficiently small so that the
condition (4.2.17) holds true with (4.2.25),. Now, we are under the assump-
tions in Lemma 4.2.3 (2). Then applying Lemma 4.2.3 (2), (4.2.33) deduces
the reverse Holder’s inequality

IMDR|? dv <

n+2

][ IMDh|? dz < ¢ <][ IMDh| 75 dx) o
QZT 947‘

Here, we also used (4.2.22) and (4.2.24). Then Gehring’s lemma, e.g. [126],
yields (4.2.32). O

We prove that the weak solution h to (4.2.30) is of W"?(Qy,, df)), which
guarantees that the problem (4.2.31) with the boundary value h is well-posed.

Lemma 4.2.9. Let h € W'?(Qy,, dw?) be the weak solution to (4.2.30). Then
there exists § = §(n, A, v, L) > 0 such that if (4.2.24) and (4.2.25), hold, then
h belongs to W'2(Qy,, diwyy) together with the estimate

][ Mg Dh|* dx < c][ IMDh/|? dx
Qo

Q47‘
for some ¢ = c¢(n,\,v, L) > 0.

Proof. We first choose § > 0 sufficiently small so that conclusions of Lemma
4.2.8 hold. For ¢ > 0 as in Lemma 4.2.8, Holder’s inequality implies

][ |I\\7JIQD}L‘2 dx
Q27‘

1 1
(=) — , oy
< ( ][ IMDp|>0+2) dw) (][ MM 120+ dx) :
QQT Q2'r

Meanwhile, using |Qa,| = |Q2,|, (4.2.3) and selecting § smaller, Lemma 4.2.6
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(1) implies

1 1
_ , Toy _ , (i+o)
<][ MM 121 +e) dx) <c <][ MM ! 20+ dx) <ec.
927« 2r

This and (4.2.32) follow that

_ T
][ Mg Dh|? dz < ¢ (][ IMDh|?(+) dx) < c][ IMDh|? dz.
QQ’” QQT Q4r

]

We next consider the problems (4.2.31). Let us define a map a(z,7) :
R x R™ — R" such that

MQZB/ ('Tla MQU)
Mg l?

a(w1,n) =

We also mention that M, is a symmetric and positive definite constant ma-
trix. Then we have

Mg
Oha(xy,n) = M - ¢ Ap (21, Mgn) - Mg

for a.e. 1 € R and for all n € R". By (4.2.26) and (4.2.27), it follows that

(Dyaler,m)¢.C) = ‘Ml 5 (00 (o1, Fgn) i, Floc)

> -~ alladl? 2 e

Then together with (4.2.26), one can see that

{Ia(fﬁh | + |0pazy, n)llnl < Lin|

2 < (Bya(z1,n)¢, ) . (4.2.34)

oreover, ’ o, AW = ’ 2 ). en the problem (4.2. 1S con-
M W2 (Qy,, doy)) = W'?(Qy,). Then the problem (4.2.31) i
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verted into

(4.2.35)

div a(zy, Dw) = 0 in Qy,,
w = h on 0Q,.

Now, investigating properties of the problem (4.2.35) with (4.2.34), we obtain
the following lemma for the weak solution w € W"?(Qy,, dig) to (4.2.31).

Lemma 4.2.10. Under the assumptions and conclusion of Lemma 4.2.9,
let w € W (Qy,, diyy) be the weak solution to (4.2.31). Then there exists

= 0(n,\,v,L) > 0 such that if (4.2.24) and (4.2.25), hold, then w belongs
to WH2(Qy,., dw?).

Proof. We first recall that [MDA| € L*19)(Q,,) for o € (0,1) as in
Lemma 4.2.8. By Holder’s inequality and Lemma 4.2.6 (1) with the selection
of 6 > 0 smaller, we obtain that

22+0)(40)  \ [TFe)@Fo)

_ Trop M g
<][ |MQDh|2(1+"1)dm) < ][ (M) dx
Q. 2, \ M
1
140
X <][ |MDhy2<1+0>dx>
QQT

1
140
§c<][ IMDp|>0+9) d:c) . (4.2.36)
QQT

where o1 := £. Since M is a positive definite constant matrix with (4.2.27),
this means that |Dh| € L* 17 (Q,,). We now remark that the domain s,
satisfies a uniform measure density condition from (4.2.24), and w is also
the weak solution of (4.2.35) satisfying (4.2.34) with the boundary value h.
Hence, the weak solution w has a global higher integrability for the gradient
such that |Dw| € L*37(Qy,) for some 0 < 7 < oy, see [147, 190] for the
proof. From (4.2.27), we get [MgDw| € L*3(Qy,). Again with Holder’s
inequality and Lemma 4.2.6 (1), we deduce |[MDw| € L*(€y,) provided that
0 > 0 is sufficiently small. Therefore, the conclusion holds. m

We also provide a useful lemma. Note that 0(A, Q4,) is defined in (4.2.9).
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Lemma 4.2.11. For x € Q4 and £ € R", we have
IMA(2, M§) — MoAp (21, Mg¢)|
< o|M — Mol(w + @) [¢] + @50(A, Qur) ()[E].
Proof. We compute by triangle inequality, (4.2.2), (4.2.9), and (4.2.27),

IMA(x, ME) — Mg Ap (21, Mg)|
< |M — M| |A(z, Mg))]
+ Wgl Az, ME) — A(x, Mgg)| + ol A(z, Mg€) — Ap (21, Mgé)|
< ¢|M — Mg|wl¢]
+ @olA(z, ME) — Az, Mgé)| + @5 0(A, Qur)(2)[€]. (4.2.37)

Meanwhile, we have from (4.2.2) that
|[A(, M§) — Az, Mgg)| < LIM — Mgl[¢].
Inserting this into (4.2.37) we obtain the conclusion. O

Now we derive the following comparison estimate.

Lemma 4.2.12. Assume that u € W*(Qy,, dw?) satisfies the problem (4.2.28).

Then for any € € (0,1) there is a constant 6 = 6(n,A,v,L,e) € (0,1) such
that if (4.2.29) holds for some X\ > 1 under (4.2.24) and (4.2.25), then there
is a function v € W2(Q,) having

][ MDu —MgDv[*dz <X and |[[MoDo||}.. o, <mid  (42.38)
Q "

for some my, = my(n, \,v, L) > 1.

Proof. We first compare u with the weak solution h € W?(Qy,, dw?) to the
problem (4.2.30). Testing u — h € Wy*(Quy, dw?) to (4.2.28) and (4.2.30), we
obtain that

][ (A(z,MDu),M(Du — Dh)) dx = ][ (MF,M(Du — Dh)) dx
Q4.r Q47‘
(4.2.39)
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and

][ (A(z, MDR), M(Du — Dh)) dz = 0, (4.2.40)

since M(x) is symmetric. According to (4.2.2), (4.2.21) and (4.2.29), (4.2.40)
deduces that

][ IMDA? dx < c][ IMDu|?dr < cA (4.2.41)
Q47‘

Qqrr

for some ¢ = ¢(n, A, v, L) > 0. Moreover, we subtract (4.2.40) from (4.2.39)
and then we apply (4.2.21), Young’s inequality and (4.2.29), to find

1
][ IM(Du — Dh)|* dw < 3 ][ IM(Du — Dh)|? dx + c][ IMF|? dz
Q4T 947« Q41"

1
<3 ][ IM(Du — Dh)|* dx + 6\
Q4’I’

with some ¢ = ¢(n, A, v, L) > 0. This follows

][ IM(Du — Dh)|? dz < cé. (4.2.42)
947"

We second compare h with the weak solution w € W?(Qy,, d@é) to the
problem (4.2.31). We observe ¢y := h —w € Wy*(Qay, dw?) N Wy (Qay, dwé)
from Lemma 4.2.9 and Lemma 4.2.10. Testing ¢; to (4.2.30) and (4.2.31), we
have

][ (A(x, MDh),M(Dh — Dw)) dx =0 (4.2.43)
Q27‘
and
(Ap/(z,MgDw),Mq(Dh — Dw)) dx = 0, (4.2.44)
Q27'
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since Mg is also symmetric. Then (4.2.44) and (4.2.26) induce

][ |MgDwl|? dx < c][ |MgDh|? dz,
Qo Qo
which implies by Lemma 4.2.9 and (4.2.41) that
][ Mo Dwl|? dz < eX (4.2.45)
QQT
for some ¢ = ¢(n, A, v, L) > 0. Moreover, with (4.2.43) and (4.2.44) we have
<AB/(.ZU17 MQD’U)) - AB/(ZL'l, MQDh), MQ(DU) — Dh)> dx
QQT

= (MA(z, MDh) — MgAp (z1,MgDh), Dw — Dh) dx.
QQT

Since (4.2.21) holds replacing A to A, this leads to

][ Mo(Dw — Dh)|? dz
Q2’V‘

<e ][ MA(z, MDR) — Mo Ay (21, Mo Dh)||[Dw — Dh] da
QZT

for some ¢ = ¢(n,A,v, L) > 0. We now apply Lemma 4.2.11, (4.2.27) and
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Young’s inequality, to see that

Mo (Dw — Dh)J? da

<c ]{2 ) (% (1 + %Q> + 224, QM)(Q;)) MDA| (4.2.46)

1 —
< —][ |I\\/JIQ(Dw—Dh)|2dx—|—c][
2 Q2r

927"

— _ 2
{% (1 + @)] IMDA|? dz
Q w

+ C]{z% [i—QQ(A, Q4T)(x)} 2 IMDh/|? dx. (4.2.47)

By the way, using Holder’s inequality with exponents (¢,2t',2t") with ¢ =
1+ o, we employ Lemma 4.2.5, Lemma 4.2.6, Lemma 4.2.8 and (4.2.25), to

have
M — M
][ (’_—Ql) (1 + “—Q) IMDH? dz
Qo M| w

1

— st 27

M — M
SC][ <—‘ — Q|) dx
Qar M|
1

o 4t 2 1

x][ (1+—Q> dx H |MDh|2tdx}
QQT w QQT‘

< 0(5][ IM.Dh|? dx, (4.2.48)
Q47‘

for some ¢ = ¢(n,A,v,L) > 0, provided § = §(n,A,v,L) > 0 sufficiently
small. Furthermore, again using Holder’s inequality with exponents (¢, 2t', 2t"),
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we employ Lemma 4.2.6, Lemma 4.2.8, (4.2.9) and (4.2.25), to have

]{zzr (w_Q)Q [0(A, Qu) (@) Mo Dh|* da

w
1
7

£ )7 of [ oo f o]

<cL* v [][ G(A,QM)(x)zdx} : [][ |MDh|2tda:}
QQT Q2'r

< o ][ IMDA|? da (4.2.49)
Q4r

o=

for some ¢ = ¢(n,A,v,L) > 0, provided § = d(n,A,v,L) > 0 sufficiently
small. Now, combining all estimates (4.2.46)—(4.2.49), we arrive from (4.2.41)

][ Mg (Dw — Dh)>dz < c675 )\ (4.2.50)
QQT

for some ¢ = ¢(n,A,v, L) > 0.

We next consider the problems (4.2.35) as a substitute of the problem
(4.2.31), since w € W?(Qy,) is the weak solution to (4.2.35). We also observe
from (4.2.45)

]{2 |Dw|* dx < |I\7JIQ|_2][ Mg Duw|*dz < ¢|Mg| ?A =:c¢*.  (4.2.51)

2r

Then employing the results of [36, Section 5|, there exists a function v €
W12(€,) such that

|||D,U|H2L°°(QT) <cc®  and g |Dw — Dv|?dx < e, (4.2.52)

with ¢ = ¢(n,A,v, L) > 0 for any &; > 0, selecting 6 = d(n, A, v, L,e1) > 0
sufficiently small. Then (4.2.51) and (4.2.52) give us that

M Dl[; oy < M [[[DV]][} .y < M (4.2.53)
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and

][ |Mg(Dw — Dv)|* dz < |I\\7JIQ|2][ |Dw — Dv*dx < ce;h (4.2.54)
Q Qr

for some constants my, = my(n, A,v,L) > 1 and ¢ = ¢(n,A,v, L) > 0.
We finally combine (4.2.42), (4.2.50) and (4.2.54), in order to have
IMDu — Mg Dv|? dx
Qp

Sc][ |M(Du—Dh)|2dx+c][ \(1\/J1—1\71Q)Dh|2 da
Qp Q

T

+c+ |Mg(Dh — Dw)|? dw+c][ |Mg(Dw — Dv)|? dx
Qp

Qp

< (0T + &)X+ c][ |(M — Mg) th dx. (4.2.55)
Qr

Meanwhile, we derive by Holder’s inequality, Lemma 4.2.5, Lemma 4.2.6 (1),
Lemma 4.2.8 and (4.2.41),

][ | (M — Mg) Dh|” dx
Q.
M _ T 4(1+0) 5050 i 4(1+0) 5050)
][ :_Q‘ i ][ <M) iz
o, Mg o, \ M|

T
X <][ IMDh|?(+) dx)

< 052][ IMDR|? dz < cb),
Q4'r

provided ¢ > 0 sufficiently small. With (4.2.55), this yields that

][ IMDu — Mg Dul? dz < ¢(57 + £1)A (4.2.56)

Q.

for some ¢ = ¢(n,A,v, L) > 0. Choosing §THe < g1, we eventually conclude

the result, since €; > 0 is an arbitrary number. ]
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We next provide the interior version of Lemma 4.2.12.

Lemma 4.2.13. Let p < & and Qu,(zo) C Q. Assume that

u € WH(Qu,(z0), dw?) satisfies the problem (4.2.28). Then for any ¢ € (0,1)
there is a constant § = d(n, A, v, L,e) € (0,1) such that if (2, M, A) is (J, R)-
vanishing of codimension 1, and it holds

][ M(z)Duf2dz < A and ][ M(z)FPPdz < 6A  (4.2.57)
Qap(z0) Qap(z0)
for some X\ > 1, then there is a function v € W'*(Q,(x0)) having

][ IMDu — Mg Dv|* dz < e
Qu(0) (4.2.58)

and H|1VJIQDU|HiOO( < me

Qp(z0)) —
for some my, = my(n, A, v, L) > 1.

In this section, we prove our main theorem. We first construct a suitable
collection of mutually disjoint countable cylinders by Vitali covering lemma,
to cover the upper level set of |MDu| with the enlarged cylinders of the
collection and derive our gradient estimate for the main theorem. With the
comparison estimates obtained previously, we control the measure of the
upper level sets of [IM.Du| in the cylinders and then finally deduce the gradient
estimate that we want. This technique was introduced in [3].

Proof of Theorem 4.2.1.. Suppose that (2, M, A) is (4, R)—vanishing of codi-
mension 1 for some ¢ € (0, §) which is to be determined later depending only
on data and . We define

MF?
Ao ;:][ (]MDu\z—i— | 5 | ) dz, (4.2.59)
Q

Q
Eu(\) :={z € Q:|MDu>>\} for \> <12000"||Q—|| + 1) Ao
R
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and
MF|?
Ly(p) = ][ <|1\/J1Du|2 + ‘T|) dr for yeQandp>0.
Q,(y)

Then Lebesgue differentiation theorem gives us that

M(y)F(y)]?
lim Iy(p) = |M(y) Du(y)|* + M >\ forae ye E,(N).
p
(4.2.60)
Besides, for any p € [ﬁ, %}, we have from (4.2.11)
Qp(y)| [ €
T,(p) < Ao < 120007 -1 A, (4.2.61)
! 2(y)] 1Q,(y)] Q|

Then we obtain from (4.2.60) and (4.2.61) that for a.e. y € E,()), there
exists p, € (O, W}éo) such that
Ty(py) =X and Ty(p) <X forany p € (p,, &I

By Vitali covering lemma, we know the existence of a collection of mutually

disjoint cylinders {Q,, (y;)}32, with y; € E,()) and p; € (0, 7555) such that

E.(\) C U Qs,, (1) U (negligible set),

i=1

MF|?
Ly (p;) = ][ <|MDu!2 + u) de =\ (4.2.62)
ij(yj) 0

and

[MF]*

MF
D, (0) = ][ ( )(|MDu|2+
p\Yj

) dr <X Vp e (p;, & (4.2.63)
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From the above display, one can see that

][ IMDu|*dz < A and ][ IME|? dx < . (4.2.64)
Q2oﬂj (yj) Q20F’j (y]')

Let € € (0,1) be given. If Q) (y;) C €2, then by (4.2.64) we have

][ IMDu|?dz < A and ][ IMF|? dz < 6.
QQOPJ' (yj) QQOP]‘ (yj)

Now we use Lemma 4.2.13 so that there is a constant 6 = §(n, A, v, L, ) €
(0,1) and a function v,; € W"*(Qs,,(y;)) such that we have

][ IMDu — MgDu,, |” dz < e
QSpj (yj)

B (4.2.65)
and sup  [MgDuvg, (z)]> < mgA
zeQSpj (yj)

with m, = mqe(n, A,v, L) > 1. Next, we consider the case of Q20,,(y;) Z .
By Definition 4.2.2, there is a coordinate system such that in this coordinate
system

Q8+00pj C QSUOpj C QSOOpj N {(l’l,l'/) txr > —1600(Spj}, (4266)

]{Qp(mO)W(A,Qp(ﬂfo))(flf)l + 10, Qp(0)) ()| dx < 07, (4.2.67)

VQ,(z0) C (Qz00p;

Q5p]. (Zj) - QlGOpj and QG40pj C Ql500pj(zj)7 (4268)

where we denote y; by z; in the new coordinate system. Here, we remark
that this new coordinate system is obtained by rotation and translation.
In view of (4.2.66)-(4.2.68) and (4.2.63), we are under the assumptions of
Lemma 4.2.12, replacing r by 160p,. Now, we apply Lemma 4.2.12, to find a
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function v, such that

][ IMDu — MgDu,,|* dz < eX
Q160p;

- (4.2.69)
and  sup |MgDuy, (z)]* < mp)

erlSOpj

with mp = my(n, A, v, L) > 1, by selecting 6 > 0 smaller. Observing (4.2.68)
and (4.2.69), we recover the original coordinate system, to get

][ IMDu — MgDu,,|* dz < eX
QS/J] (y5)

B (4.2.70)
and sup  [MqDuy, (2)]* < mp.
1'695/3]' (yj)

Let v; be either v,; or vy, and let ¢ := max{m,, my} > 1. We first see
from (4.2.65) and (4.2.70) that for a.e. z € Ey(4eA) N s, (y;),

IMDul* < 2[MDu — MqDu;|* + 2[MqDu,*
< 2[MDu — Mg Dv;|* + %|MDul2,
which implies
MDul? < 4[MDu — Mq D,

Then in light of (4.2.65) and (4.2.70), this follows

/ IMDul|? dz < 4/ IMDu — Mg D, |* dx
Ey (422825, . (y5) Qs (y5) (4.2.71)
< €y, (y;)]eA

for some ¢ > 0. Using (4.2.62), one can easily see that

]

IN

, MF2 4.2.72
z IMDu|? dz + / MFP dz |, ( )
A Eu (3N, () Ep(%)0%; (y;) 0
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where the following notation is used
Er(\) = {z € Q: |MF]> > A}

Plugging (4.2.72) to (4.2.71), since {B,,(y;) }i2, is mutually disjoint, we find
that

/ IMDul|? dz
Bu(42\)

< Z/ IM.Du|? dx

w (4CN) QQ5P yj

MF|?
< cez / IMDul|? d + / M| dx
= \JE.Cne, ) Br(2)nQ,; () O

MF|?
<ce / |MDu|2dx+/ !dx
Bu(3) Br(2) 0

4

for some constants ¢ = ¢(data). Using the similar argument as in [70] and
selecting € = ¢(data, ) € (0,1),

][ IMDu|” dzx < c)\é + c][ |MF|" dz,
Q Q

where ¢ = ¢(data) and ¢(y) = c¢(data, ). Then there exists § = d(data,y) >
0 from Lemma 4.2.12 and Lemma 4.2.13 . Now by Jensen’s inequality and
(4.2.23), we have

AG = (][ (IMDu|* + [MF|?) d:c) <c (][ ]MF\de) < c][ IMF|" dz.
Q Q Q

Then the proof is completed. 0

DR
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