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Abstract

There is a well-known bijection called the Robinson-Schensted-Knuth correspondence,
which explains the Howe duality for a pair of general linear groups. It is given by a com-
binatorial algorithm for semistandard tableaux, which is closely related to irreducible rep-
resentations of general linear groups. In this thesis, we give a combinatorial interpretation
of a Howe duality associated with a pair of a symplectic group and a Lie (super)algebra.
We establish a symplectic analogue of the RSK correspondence via symplectic tableaux
models: spinor model and King tableaux, which are related to representations of sym-
plectic groups and Lie (super)algebras. We introduce a symplectic analogue of jeu de
taquin sliding for spinor model to define an insertion tableau in a uniform way that does
not depend on the set of letters for tableaux and assign a King tableau as its recording
tableau. We give new bijective proofs of well-known identities for irreducible symplectic

characters as a corollary.

Key words: crystal graph, Howe duality, Robinson-Schensted-Knuth correspondene, jeu
de taquin, spinor model
Student Number: 2015-20283
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Chapter 1
Introduction

Duality is one of the important themes in representation theory. While a duality in repre-
sentation theory often means a functor between some categories of modules, it can be also
given by the multiplicity-free decomposition of some spaces into irreducible bimodules.
For example, we have the following (G L, (C), Si)-bimodule decomposition, which is called
the Schur-Weyl duality [45]:

(C®* = P Var.o(N) ® Sp,
A

where C" is the vector representation of GL,(C), X is a partition of k with ¢(\) < n,
and Vi, (c)(A) is the highest weight G'L,(C)-module of highest weight corresponding to
A, and S} is the Specht module over Sy corresponding to A. Note that the decomposition
indeed yields a functor between the category of G L, (C)-modules and that of Si-modules
sending V1, (c)(A) to Sy, which is often referred to the Schur-Weyl duality functor.

1.1 Howe duality

Besides the Schur-Weyl duality, there are many dualities. One important method to
obtain a duality is the theory of reductive dual pairs due to Howe [10, 11], which we
often call Howe duality. In this section, we briefly describe some of its results, which are
motivations for this thesis.

For positive integers n and r, we have the (GL,(C), GL,.(C))-bimodule decomposition
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of a symmetric algebra

S(C"®C") @ Var.©(N) ® Var,©(N), (1.1)

where A is a partition with £(A\) < min{n,r}. It is generalized to the (g, GL,(C))-bimodule
decomposition, where g is a Lie (super)algebra of type A, with irreducible unitarizable
highest weight g-modules V() instead of Vgr,)(A) (see [4,6,10,14] and references
therein for more details).

There is also a duality associated to a pair (g, Spy,(C)), where g is a Lie (super)algebra
of classical type. For later use, let us explain more precisely. Let Z, be the set of
nonnegative integers. Let &2 be the set of partitions and &2, (n € Z.) be the subset of &
such that the length £(\) of A € &2 is less than or equal to n. Denote by X = (N[, A5, ...)
the transpose of A € &, where )} is the number of boxes in the ith column from the left,
and by |A] = Ay + Ay + - - - the size of .

Let A be a Zs-graded linearly ordered set and let &4 be the super exterior algebra
generated by the superspace with a linear basis indexed by A. Then F4 =& ® &4is a
semisimple module over a classical Lie (super)algebra gy, the type of which depends on
A, and the (-fold tensor power Z 7 (¢ > 1) is a (g, Spy(C))-bimodule with the following

multiplicity-free bimodule decomp081t10n.

TR EB Vau (A 0) @ Vap,, ) (M), (1.2)
(AMOEP(Sp) 4

where the direct sum is over a set Z(Sp)4 of pairs (A, ) € & x Z; with £(\) < L.
Here Vgp,,c)(A) is the irreducible Spy,(C)-module corresponding to A, and V, (A, /) is
the irreducible highest weight g4-module corresponding to Vs, e(C)()‘) appearing in ﬂfz
(see Remark 6.1.5). Note that every selection of A does not necessarily define the Lie

(super)algebra g4 and give the decomposition (1.2). Further known results are found in
[10-12, 29, 44).

1.2 Robinson-Schensted-Knuth correspondence

The decomposition (1.1) has a nice combinatorial interpretation known as the Robinson-

Schensted-Knuth (simply RSK) correspondence [21], which is given by a bijection between

3 y 1 |
2 "':I'H-_E _'H.I.- ok |I ;-
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combinatorial objects parameterizing the bases for both sides of (1.1).

The RSK correspondence is well-studied and generalized in many directions in com-
binatorics, but it still has fundamental significance in representation theory. Precisely
speaking, it is not only a bijection but also an isomorphism of bicrystals. A (bi-)crystal
is introduced by Kashiwara [16] to understand a combinatorial structure of irreducible
representations of quantum groups. It is shown in [30] that the RSK correspondence is an
isomorphism of (gl,,, gl,)-bicrystals. It is also possible to generalize (1.1) to a pair (g, gl,),
where g is a Lie (super)algebra of type A, and give a bicrystal isomorphism [3, 10,23, 24|
(It can be proved without difficulty).

The correspondence is also closely related to symmetric functions. Since a crystal has
a weight function, we can consider the weight generating function for crystals, i.e., the
formal power sum of monomials determined by the weight function. Then the Cauchy
type identity, one of the most important identities in the theory of symmetric functions,

is deduced as a corollary of the correspondence.

1.3 Main results

In this thesis, we construct the following bijection, which explains the Howe duality (1.2)

of symplectic type.

Fy — || Ta\0)xK(X0
AEP(Sp) 4 (1.3)
T — (P(T),Q(T))

The main combinatorial object is a spinor model, which is introduced by Kwon [25].
The set FY is the set of (2¢)-tuples of A-semistandard column tableaux. The spinor model
T 4(\, £) is the subset of FY satisfying certain configuration conditions associated with
(A, 0) € Z(Sp)a. It gives the character of the irreducible g4-module Vj, (A, ) appearing
in (1.2). In addition, when A is a finite set of degree 0, T 4(\, ¢) has a one-to-one cor-
respondence with the set of Kashiwara-Nakashima (simply KN) tableaux [18], which are
one of the well-known combinatorial objects describing irreducible characters for classi-
cal Lie algebras. In this sense, the spinor model is considered a super analogue of KN
tableaux. We remark that the spinor model has several applications including branching

multiplicities for classical groups [13,27], crystal bases of quantum superalgebras of or-

3 y 1 |
3 "':I'H-_E _'H.I.- ok |I ;-



CHAPTER 1. INTRODUCTION

thosymplectic type [25,26], and generalized exponents [13,32].

To obtain the insertion tableau P(T), we define a symplectic jeu de taquin for a
spinor model, which is a symplectic analogue of the usual jeu de taquin for semistandard
tableaux due to Schiitzenberger [40]. Since there is a bijection between KN tableaux and
the spinor model for a finite set A of even degree. We have a symplectic jeu de taquin for
the spinor model induced from the one for KN tableaux by Sheats [41]. A key observation
to define a symplectic jeu de taquin to the spinor model for arbitrary A is that the induced
symplectic jeu de taquin can be described as applying a sequence of Kashiwara operators
with respect to a gly-crystal structure on FY. In fact, applying the sequence to T is
described in terms of jeu de taquin sliding of type A [30]. This implies that the algorithm
(or sequence of Kashiwara operators) does not depend on the choice of A, and enables us
to define a symplectic analogue of jeu de taquin uniformly using the jeu de taquin of type
A (cf. [2,37]).

On the other hand, we use the symplectic RSK correspondence due to Lecouvey [31]
to give an oscillating tableau Q(T) as a recording tableau for P(T). Recently, Lee [33]
gave a bijection between oscillating tableaux and King tableaux [20], which are another
mostly used combinatorial objects for irreducible modules over symplectic Lie algebras.
Finally, using this bijection, we obtain a tableau Q(T) in K(\, ¢), the set of King tableaux
of shape A, which corresponds to the oscillating tableau Q(T).

1.4 Organization

The organization of the thesis is as follows.

e In Chapters 2, 3, and 4, we give preliminaries including crystals and combinatorics
of tableaux. Especially, combinatorics of (usual) semistandard tableaux is covered
in Chapter 3, and combinatorics of A-semistandard tableaux, a generalization of

semistandard tableaux, is covered in Chapter 4.

e In Chapters 5 and 6, we review two main combinatorial models for irreducible
characters of symplectic type and their properties. We consider KN tableaux in
Chapter 5 and the spinor model in Chapter 6 together with the relation between
them.

e In Chapter 7, we define a symplectic jeu de taquin for the spinor model. It is

3 y 1 |
4 "':I'H-_E _'H.I.- ok |I ;-



CHAPTER 1. INTRODUCTION

compatible with a symplectic jeu de taquin for KN tableaux when A is a finite set
with A = Ay and it is defined as a sequence of Kashiwara operators regardless of

choices of A, or as applying jeu de taquin sliding of type A.

e In Chapter 8, we introduce a set of oscillating tableaux which is a one-to-one corre-

spondence with the set of King tableaux of a given shape.

e In Chapter 9, we prove the main result and its character identity. We recover well-

known classical identities for irreducible characters of symplectic groups.

This thesis is based on the works in [8].

5 &

| &1



Chapter 2
Crystals

In this chapter, we review the notion of crystals and their properties. The theory of
crystal base introduced by Kashiwara is one of the fundamental tools to understand the
representations of the quantized universal enveloping algebras U,(g). The crystal base is
important in the sense that it reflects a combinatorial behavior of modules, and has many
applications including the irreducible character problem and the decomposition of tensor

products. This chapter is organized as follows.

e In Section 2.1, we define the quantum groups and their representations.
e In Section 2.2, we recall the notion of crystals and give examples.

e In Section 2.3, we briefly summarize the crystal base of an irreducible highest weight

module.

This chapter is based on [9,17] and references therein.

2.1 Quantum groups and their representation

Let g be the symmetrizable Kac-Moody algebra associated to a Cartan datum (A, P, P¥ T, 1Y)

(cf. [15]), where A = (a;;) is a generalized Cartan matrix indexed by a set I. Especially,
let IT = {o; € P :i € I} be the set of simple roots, and ITY = {h; € PY : i € I} be the set
of simple coroots. We have a canonical pairing (-, -) : P¥ x P — Q such that (h;, a;) = a;;
for i,j € I. Let Q = @, Ze; and QT = €@, Z;a; and Pt C P be the set of integral
dominant weights, i.e., A € P* if and only if (h, \) € Z, for all h € PY. Fix a diagonal
matrix D = diag(s; |7 € I) such that DA is symmetric.

¥ ty
6 -’:Ix_i 'ILI-' 1.!
¥ ]



CHAPTER 2. CRYSTALS

On the other hand, there exists a non-degenerate symmetric bilinear form (-, ) on the
Cartan subalgebra b of g. Let @; be the ith fundamental weight (i € I), i.e., (w;, o) = 0, ;
for i,j € I. Then we have (h;, o) = fori,jel.

2(a, aj
(0,05

For an indeterminate ¢, define the ¢- mteger by

qt—q"

[n]q = q— q_l

for n € N. Let [n],! = [n]4[n —1],---[1], for n € N and [0],! = 1. Define the ¢-binomial
coefficients by

for nonnegative integer m > n > 0.

Definition 2.1.1. The quantum group or quantized enveloping algebra U,(g) associated
with g is the associative Q(q)-algebra with 1 generated by ¢" (h € PV), ¢; and f; (i € I)

with the following relations:
(1) ¢° =1,4"¢" = ¢"*" for n, 1" € P,
(2) ¢"eigh = ¢ Me;, ¢ hf, =g Wf foriecl he PV,

(3) eif; — fiei = (5” — ,1 for i j e,

1—a;;

(4) Z (—D)F ! _kaij e, vt ejel =0 for i # j,
k=0 - - 4
1—ai; - 7

6) Y T A s =04,
k=0 L J4ai

where ¢; = ¢* and K; = qlhl

The quantum group U,(g) has the root space decomposition

= @ Uq(9)

a€@

where Uy(g)a = {u € Uy(g) | ¢"ug™ = ¢"*u for all h € P¥}. In addition, let UF be
the subalgebra of U,(g) generated by all e;, f;, respectively, and Ug be the subalgebra of

7 fx ! _ulll_ 1_]|



CHAPTER 2. CRYSTALS

U,(g) generated by ¢". Then
Uyfg)=U, @U@ U},

which is called the triangular decomposition of U,(g). Note that UF = Do+ Us(9)+a
and U = U,(g)o.
Now we consider representations of U,(g). A U,(g)-module V is called a weight module

if V' admits a weight space decomposition

V=V,

nePrP

where V,, = {v € V| ¢"v = ¢"v for all h € PV }. In this case, we call a nonzero vector
v € V, a weight vector of weight u. If V,, # 0, we say that p is a weight of V' and V), is
the u-weight space of V.

A weight module V' over U,(g) is integrable if all e; and f; (i € I) are locally nilpotent

on V, i.e., for any nonzero v € V, there exists N € Z, such that eNv = fNv = 0.

Definition 2.1.2. The category O consists of U,(g)-modules M satisfying the following

int

conditions:
(1) M is a weight module and integrable, and

(2) the set wt(M) of weights of M is finitely dominated, i.e., there exists a finite number
of elements A, ..., Ay € P such that

S

wt(M) C [\ — Q).

i=1
The morphisms are taken to be usual U,(g)-module homomorphisms.

Note that O

int

is closed under taking direct sums or tensor products of finitely many
U,(g)-modules. Also, it is known that O, is semisimple.

We say that a weight module M is a highest weight module of highest weight A € P if
there exists a vector v € M, such that M is generated by v and e;v =0 for all 2 € I. In
this case, we call v a highest weight vector of M, which is unique up to constant multiple.
By construction, M = U, v and wt(M) € A — Q*. For example, for A € P*, let V(A) be

3 o i
8 "':I'H-_E _'k.l_-. ; .I_._i |



CHAPTER 2. CRYSTALS

the U,(g)-module generated by the element v, with the relations

BNy ey =0, [N =0

"y =q ;

for h € PV and i € I. By its defining relations, it is clear that V(\) is in O

int-

2.2 Crystals

We assume the notation in Section 2.1.

Definition 2.2.1. A g-crystal is a set B endowed with the functions wt : B — P,
e, fi: B— BU{0Y, &, : B— ZU{—00} (i € I) satisfying the followings: for i € I,

(1) ¢i(b) = &;(b) + (h;, wt(b)) for b € B,

(2) wt(e;b) = wt(b) + i, i(€;0) = €;(b) — 1, and ¢;(e;b) = ¢;(b) + 1 if ;b € B,
(3) wt(fib) = wt(b) — c;, £i(fib) = &i(b) + 1, and ;(fib) = i(b) — 1 if fib € B,
(4) ¥ = fbif and only if b = &' for b,b/ € B, and

(5) if ¢;(b) = —o0, then €;b = fib=0.

Here, 0 is a formal symbol and —oo is the smallest element in Z U {—oco} with (—o0) +
(—o0) = —00 and (—o0) 4+ n = —oo for all n € Z. We call &, f; (i € I) crystal operators.

When there is no confusion, a g-crystal can be simply called a crystal.

For a crystal B, the crystal graph of B is an I-directed graph whose vertex set is B
and b = ¥ if and only if ¥ = ﬁb for i € I and b, € B. To describe crystals, we often
present their crystal graphs.

Example 2.2.2.

(1) For A € P, the singleton set T\ = {t,} is a crystal with
wt(ty) = A and g;(ty) = @i(t)) = —oc.
(2) Fori e I, B; = {bj(n) : n € Z} is a crystal whose crystal graph is

L by(1) —= b;(0) —= by(—1) ——> by(—2) - -
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with wt(b;(n)) = no, €i(bi(n)) = —n, ¢;(bi(n)) = n, and €;(b;(n)) = ¢;(b;i(n)) =
—oo for all j # 1.

For A € P*, let B()\) be a crystal basis of V() (cf. Section 2.3). For example, if
we take g = sly and m € Z, under the identification P* with Z., then B(m) has
the following crystal graph

v fu @y .. fmy

with wt(f®v) = m—2k, e;(fFv) = k, and o;(fFv) = m —k for 0 < k < m. Here,
v is the highest weight vector of B(\), i.e., e;u = 0 for all 7 € 1.

A crystal B is called semi-regular (or semi-normal) if for ¢ € I and b € B, we have

ei(b) = max{k € Z,| & (b) £ 0}, ¢i(b) = max{k € Z,| fF(b) # 0}

Note that the crystal B(A\) (A € P*) is semi-regular, but B; is not. A crystal B is called

regular (or normal) if B is isomorphic to a direct sum of B(\)’s for A € PT, explained in

the next paragraph.
Let By and Bs be crystals. The direct sum of By and B,, denoted by By @ Bs, is the

disjoint union of By and Bj, where ¢;, ﬁ-, €, i, and wt are naturally induced from those

on By and B;y. Note that the crystal graph of B; @ By is the union of two crystal graphs.
The tensor product of By and Bs, denoted by B; ® B, is the product B; x B, as a set

with the following maps:

(1)
(2)
(3)

(4)

(5)

wt(b1 ® by) = wt(by) 4+ wt(bs),
i(b1 ® by) = max{e;(b1),€i(ba) — (hi, wt(b1)) },
@i(b1 ® ba) = max{;(b1) + (hi, wt(b2), pi(b2)) },

€iby ® by if @;(by) > €;(ba),

€i(by ®by) =
bl & ’é;bg if @z(bl) < Ei<b2>,

Fibi @by if i(by) > £:(by),

filby @ by) = -
b1 @ fiba if @i(b1) < gi(ba).

Here, we write (by,by) € By ® By as by ® by and assume by ® 0 = 0 ® by = 0.

10 S k'_. 1_]| &
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Example 2.2.3. Let u,v be the highest weight vectors of sly-crystals B(3) and B(2),
respectively. Then the crystal graph of B(3) ® B(2) is given as follows.

f(S) ® v

|

f(z)u ® fv f(3) ® fu

| |

u ® f(2)/U_>fu ® f(2)'U f(2)u ® f(Q)/U f('?’) ® f(2)fU

URv fu®uv fAu®uv

u® fu

fu® fo

In general, there is a combinatorial rule called the i-signature, which describes the
action of crystal operators on a tensor product of more than two crystals. Let By,..., B,
be crystals and consider Z;(by ® --- ®b,) for by ® -+ ® b, € Bi®---® B, (x =e or f).

(1) Assign each b; to a sequence of + and — of the foorm — — --- — + + .- +

J/

—~~ ~~

ei(bj) wi(bj)
(2) Find a pair of + and — such that + is left to — and there is no sign between them.
(3) Replace the pairs in (2) by a symbol -, which is ignored when we count the sign.
(4) Repeat the steps (2) and (3) above until there is no + left to —.

Then the crystal operator €; (resp. ﬁ) acts on the component b;, which contains the
right-most — (resp. left-most +).

Example 2.2.4. For i = 1,2,3,4, let v; be the highest weight vector of sly-crystal B;
which is isomorphic to B(4), B(0), B(2), B(3), respectively, and consider the element b =
fr1®@v® fu3 @ fPuy € By ® By ® By ® By.

fu vy fug f(2)U4

-—4+++ - -+ -+

As we can observe, we obtain €(b) = v; @, ® fus® fPuy, f(b) = @y @u,® fus R fPuy,
and fz(b) =@ @0 fus@ G,

Definition 2.2.5. Let B; and B; be crystals.

11 d &-t}] &
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(1) A crystal morphism ¢ : By — By is amap ¢ : By U {0} — By U {0} such that

(a) ¢(0) =0,
(b) ifb € Byand f(b) € By, then wt(¢(b)) = wt(b), ;,(¢(b)) = £i(b), and ¢;(¢(b)) =
@i(b) for all 7 € I,

(c) if bt/ € By and ¢(b),¢(V) € By with b = fib, then ¢(fib) = fip(b) and
p(eit) = eip ().
(2) A crystal morphism ¢ : By — Bs is strict if it commutes with €; and ﬁ for all 7.
(3) A crystal morphism ¢ : By — By is an embedding if ¢ : B; U {0} — By U {0} is
injective.
(4) A crystal morphism ¢ : By — By is an isomorphism if ¢ : By U {0} — By U {0} is
bijective.

For b € B, denote by C(b) the connected component of B containing b. For g-crystals
By and B,y, we say that b; € By is g-crystal equivalent to by € By if there exists a crystal
isomorphism ¢ : C'(by) — C(by) sending by to be. In this case, we write by 2 bs.

2.3 Crystal bases

Let M be an integrable U,(g)-module. For each i € I, any weight vector u € M) can be

N

n=0

written in the form

where N € Z, and fi(n) = I and U, € kere; N Myipna, for 0 < n < N. Furthermore,

[n]qi!

each u, is uniquely determined by u and w,, # 0 only if A(h;) +n > 0. Then we define

N N
Gu=> f" Yy, fi=> ",
n=1 n=0

Note that e;u € My;,, and ﬁu € My_q, for u € M,. We call gi,f; the Kashiwara
operators.
Let

A {g‘f,ge@[q],h<0>¢0}.

<Ry .
12 =T} @
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Definition 2.3.1. An A-lattice £ of M is called a crystal lattice if
(1) L=&,cp Ly, where Ly = LN M), for all A € P,
(2) &L C L, iL CLforallie .

By (2), Kashiwara operators on M induces the Q-linear operators on £/qL, for which

we use same notations.
Definition 2.3.2. A crystal basis of M is a pair (£, B) such that
(1) L is a crystal lattice of M,
(2) B is a Q-basis of L/qL,
(3) B =LU,By, where By = BN Ly\/qL,,
(4) &B C BU{0}, B C BU{0} for all i € I, and
(5) for any b,/ € Band i € I, &b =1V if and only if f;b/ = b.
Here, 0 is the zero element of £/qL.

Set wt(b) = A for b € By and
ei(b) = max{k € Z,| & (b) £ 0}, i(b) = max{k € Z,| f}(b) # 0}

for i € I and b € B. It is obvious by definition that ¢;(e;b0) = ¢;(b) — 1, and ¢;(€;b) =
wi(b)+1if e;b € B, si(ﬁb) =¢;(b) +1, and gpi(ﬁb) = ;(b) — 1 if f;b € B. In addition, we
can check that ¢;(b) — e;(b) = (h;, A) for b € By by the theory of U,(sly)-modules. Thus,
B satisfies the conditions in Definition 2.2.1 and hence B is a crystal.

The existence of a crystal base of V/(\) for A € P* was proved by Kashiwara [16] as
follows. Take the highest weight vector vy of V() and let £(\) be the A-submodule of
V(A) spanned by the vectors of the form ﬁ-l e ﬁ-rv,\ for » > 0 and i, € I and set

B = {fi -+ fuvs + qL\) € LIV /gLON) |7 > 0,0y, € T}\ {0}

Theorem 2.3.3 ([16]). The pair (L(X),B(N)) is a crystal base of V().

- - TS
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CHAPTER 2. CRYSTALS

Suppose an integrable U,(g)-module M; has a crystal base (L;, B;) for i = 1,2. Then
it is clear that the direct product M; @ M, has a crystal base (L1 @& Lo, By U By). Tt is
also known that the tensor product M; ® M, has a crystal base (£1 ® Lo, By x By). In
this case, we use the notation B; ® By as crystals instead of By x By and its element is
denoted by by ® by = (b1, b2) € By ® By. We remark that the crystal B; ® B; satisfies the
conditions of tensor products of crystals, which means that our notation makes sense.

Now we consider the uniqueness of crystal bases. To do this, we define the notion of

isomorphism of crystal bases.

Definition 2.3.4. Let M be an integrable U,(g)-module and (£;, B;) be crystal bases for
i =1,2. We say that two crystal bases (L1, B1) and (L2, Bs) are isomorphic if there exists
an A-linear isomorphism v : £; — L, such that

(1) ¥ commutes with all & and f; for all i € I, and

(2) the induced Q-linear isomorphism v : £i/qL1 — L3/qLy defines a bijection v :
B, U {0} — B, U {0} that commutes with all &; and f; (i € I).

Then we have the following theorem.

Theorem 2.3.5 ([16]). Let M be an integrable U,(g)-module. Then there exists a unique
crystal base (L, B) of M. In particular, if M is isomorphic to @,V (X;) for some \; € P*,

then there exists an isomorphism of crystal bases

(L, B) —> (@mn, LIB(A») .

. -
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Chapter 3

Combinatorics of tableaux

In this chapter, we review combinatorics of semistandard tableaux and their crystal-
theoretical meaning, which is closely related to representation theory of general linear

groups. This chapter is organized as follows.

e In Section 3.1, we recall the notion of semistandard tableaux and its crystal struc-

ture.

e In Section 3.2, we review Schensted’s bumping (or insertion) algorithm [39] and

consider its relation with Knuth relations.

e In Section 3.3, we review the RSK correspondence and its crystal-theoretical mean-

ing.

This chapter is based on [7,38] and references therein.

3.1 Semistandard tableaux

A Young diagram for A € & is a collection of boxes, arranged in left-justified rows with
A; boxes in the ith row for ¢ > 1. We identify a partition with its Young diagram. A
tableau of shape A € &2 is a filling of the Young diagram for \ with numbers.

For a skew diagram A/u, a semistandard tableau is a tableau of shape A/ with entries

in N satisfying the following conditions:

(1) all entries in each row are weakly increasing from left to right,

15 2] & )] 8]



CHAPTER 3. COMBINATORICS OF TABLEAUX

(2) all entries in each column are strictly increasing from top to bottom.

In particular, when the shape of a semistandard tableau is single-columned, we call it
a column tableau and write ht(T) = ¢, the height of a column tableau T of shape (1°¢).
Denote by SST,(A\/u) be the set of semistandard tableaux of shape \/u with entries in
{1,...,n}.

We assume that all tableaux are placed on the plane P with a horizontal line L and
that some edges of tableaux are aligned with the line L. To emphasize the alignment, we

introduce some notations. Let Uy, ..., U, be column tableaux and denote by

\Uy,...,U.| (resp. [Uy,...,U,])

the tableau whose ith column from the left is U; and all bottom (resp. top) edges of Uj;
lie in L. For (uq,...,u,) € Z, denote by

AT A )

(11

the tableau obtained from LUl, e U,,J (resp. (Ul, cee UT-|) by shifting each U; by u;
positions up (resp. down). Note that these tableaux are not necessarily of skew shapes
nor semistandard. For example, the left tableau is not semistandard nor of skew shape,

whereas the right one is a semistandard tableau of skew shape.

— - L
3
316
BE 3(6]8
202]4](3 5|7
314 5] 819
4
. 5 9]
2,1,0
LU17 UQa U37 U4J (0,0,2,1) ’7‘/17 ‘/27 ‘/3-‘( :

For n > 2, consider the crystal B(w;) of the vector representation V(w;) of U,(gl,)
with the following crystal graph with wt(i) = ¢;. Here, we take P = @;_, Ze;.

1 1 9 2 “.nfl n
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CHAPTER 3. COMBINATORICS OF TABLEAUX

For n € Z., let W, be the set of words with letters in {1,...,n}, where Wy = {0} is a
singleton set. By identifying B(w;) as {1,...,n}, we also identify w; ® - - -@w, € B(w;)®"
with a word wy - - -w, € W,,. Under the identification, the set W), is a gl -crystal, where
the element () € W, satisfies wt(0)) = 0,&(0) = fi(0) = 0 and ,(0) = @;(#) = 0 for all
1€ I

For a semistandard tableau T, let w(T") be the word of T" obtained by reading entries
of T' column by column from right to left, and from top to bottom in each column (cf.
[7,9]). Then we give a gl ,-crystal structure on SST,(\) for A € & via their reading
words, i.e., for a semistandard tableau T', wt(T') = wt(w(T)), Z;(T) = Z;(w(T)) for x = e
or fand i € I, g(T) = g;(w(T)), pi(T) = ¢;(w(T)) for ¢ € I. In this case, it is proved
in [18] that the gl,-crystal SST,,(\) for A € & is isomorphic to the crystal base B(w,) of
highest weight gl,,-module of highest weight wy = >""" | \ie; € PT.

Note that one can define the character of a g-crystal as follows. Let Z[P] be the group
algebra of P with a basis {e* | u € P}, where the multiplication is given by ete” = e/
for p,v € P. For a crystal B and p € P, write B, = {b € B|wt(b) = u} and define the

character of B by
chB = Z |B,le! = Zem(b)

nepP beB

if all B, are finite. Note that ch B()) is well-defined for all A € P* since |[B(\),| =
dim V() is finite-dimensional for € wt V().
Now suppose that g = gl,, and write e = z; for 1 < ¢ < n, where z4,...,z, are

formal commuting variables. For T' € SST,(\), let x = [[i_, #]" = ") where m; is

the number of ¢ of 7. Then the character of SST,(\) or B(w,) is

Z x! = s\(11,...,7,),

TESST,(N)

the Schur polynomial in n variables corresponding to .

3.2 Insertion algorithm

For a semistandard tableau T and a letter a € N, define the column insertion of a into T,
denoted by a — T, to be the tableau obtained as follows :

(1) If @ is larger than all entries z in the first (or left-most) column of 7', then put a at

. -
17 -":IM_E 'kl-.' 1_..i



CHAPTER 3. COMBINATORICS OF TABLEAUX

the bottom of the first column and stop the algorithm.

(2) Otherwise, let a’ be the smallest entry in the first column of 7" such that o’ > a.

Then replace a’ by a in the first column of 7.

(3) Apply (1) and (2) to the next column of 7" with a’. Repeat the process until the
algorithm stops.

Note that a — T is again semistandard. In addition, if '€ SST,(\) and a € {1,...,n},
then (a — T') € SST,(u) for some p 2 A with |u] = |A] + 1.

Example 3.2.1.

3 5 1]2[3]4] —

1 1
2 2
3 3
4] 4

Here, the red-colored letters mean the letters a and @’ in the insertion algorithm.
In general, define (w — T) = (w, = (- = (wy = T)--+)) for a word w = wy ... w,
and (S - T) = (w(S) — T) for a semistandard tableau S. For a word w = w; ... w,, let

Plw) = (= (- = (wy = wy) )

and we call it the insertion tableau of w.
We can characterize the insertion tableau P(w) in another way using an equivalence
relation between words. Define the Knuth transformation on words by

(@)~ zxzy - — cezay--- ifr <y <z,

and define an equivalence relation on the set of words, called the Knuth equivalence, by
w = w' if and only if one is obtained from the other by applying a sequence of Knuth
transformations and their inverses. For a semistandard tableau T and a € N, we can
observe that w(a — T') = w(T")a and we obtain w(P(w)) = w by applying the above fact
repeatedly. The tableau P(w) is the unique semistandard tableau in terms of the Knuth

equivalence.

Theorem 3.2.2. The insertion tableau P(w) is the unique semistandard tableau whose

word 1s Knuth equivalent to w.

1 3 11 &L —
]_8 -"'H.E 'k|_|' 1_.]' "'l '|'|.



CHAPTER 3. COMBINATORICS OF TABLEAUX

gl

Remark 3.2.3. Tt is known in [34] that w = w’ if and only if w = w’ and these stories

are fundamentally connected to the crystal theory. In particular, there exists a gl,,-crystal
isomorphism between W,, and €@, SST,()) sending w to P(w).

3.3 Robinson-Schensted-Knuth correspondence

iy de e i
J1 o J2 o Uk
with 17 < ig < -+ < i and j; > jpyq if 4 = 4441 Let M be the set of biwords and

M., be the subset of biwords whose entries in the upper row are in {1, ..., r} and whose

A biword is a two-rowed array with positive integers of the form w =

entries in the lower row are in {1,...,n}. Note that when i, = ¢ for all ¢, a biword is just
the word obtained by reading its lower row.

For a biword w, define two tableaux P(w) and Q(w) as follows:
(1) P(w) = P(j1jo- - jr) with P, = P(jy -+ 7j¢) for 1 <t < k ={l(w),

(2) Q(w) is the tableau of same shape as P(w) such that a box sh(P;)/sh(P,_1) is filled
with i; for 1 <t < k, where P, = 0.

Then we can check that Q(w) is semistandard. We say that P(w) (resp. Q(w)) is the
insertion (resp. recording) tableau of w. It is known that the map sending w € M,y to

the pair (P(w), Q(w)) is a bijection, which is known as the RSK correspondence.

Theorem 3.3.1 ([21]). For n,r > 1, we have a bijection

M., — || SST.(\) x SST,())
reZ

sending w to (P(w), Q(w)).

Remark 3.3.2. For M € M,y let m(i,j) be the number of occurrences of <Z> for
J

1<i<r,1<7<nand assign a vector

vy = H(vj ® w;)®mE) e S(C" @ CT),

1,J

5 -
T J =11 7=
19 A =TH



CHAPTER 3. COMBINATORICS OF TABLEAUX

where {vy,...,v,} (resp. {wi,...,w,}) is a basis of C" (resp. C"). Then Theorem
3.3.1 is a combinatorial interpretation of the decomposition (1.1) since SST,,(\) = B(wa)

parametrizes a linear basis of Vi, (c)(A).

1122333444

Example 3.3.3. Let w =
4 3 5142 2 43 3

) € Mj5.4. Then we obtain

P(w) — |1 344|7
2(3]4]5
3]

Ow) = [L[1]2]3]4]
2[3[3]4
4]

Note that the following is the sequence of P(wy - - - w;).
[4] [3]4]

2]3]4

4

3l4] [1]3]4] [1]3[4] [1]2]3]4

i

Y

3 1
5] [
1[2]3]4
2|44
3]

|»J>l\3)—~
e~

t
|C»Ol\’>)—l
t

The RSK correspondence has a nice crystal-theoretic interpretation. A gl -crystal

structure on M,,, is obtained by applying e; and ﬁ to the lower row in biwords, in other

Ji o J2 ok
taking €;(j172 - - - Jx) as its lower low and rearranging columns if necessary. On the other
hand, a gl -crystal structure on SST,,(\) x SST,()\) is obtained by the restriction to the

first component, in other words, z;(P, Q) = (z; P, Q). By Remark 3.2.3, the map sending

WOI"dS,l"i<1 g F forx =cor fandi=1,...,n— 1 is the biword obtained by

w to P(w) is a gl,-crystal isomorphism and hence the correspondence is a gl -crystal
isomorphism.

There is also a dual RSK correspondence. We define dual biwords similarly except the
condition that j; < 7441 if 4y = 9;41. Let M* be the set of dual biwords and let M, be
the subset defined similarly. For a dual biword w, P(w) is defined in the same way while
the recording tableau is of the transposed shape. More precisely, Q(w) is a semistandard
tableau of shape shP(w)’ such that a box sh(P;) /sh(P;,_1)" is filled with ; for 1 <t <k,

where Py = (). Then we have the following bijection (and a gl,-crystal isomorphism),

20 ’;r“‘-'! 'C':l i ]-l



CHAPTER 3. COMBINATORICS OF TABLEAUX

which is called the dual RSK correspondence.

Theorem 3.3.4 ([21]). For n,r > 1, we have a bijection

*
MnXT‘

— || SSTu()) x SST,(X)
AP

sending w to (P(w), Q(w)). Moreover, this bijection is a gl,,-crystal isomorphism, whose

crystal structures on both sides are defined in a similar way as in the RSK correspondence.

Finally, we consider the character formulae obtained from two correspondences. We

assign a biword (or a dual biword) w to a monomial
mi, 1y
[+
,J

where m; (resp. n;) is the number of occurrences of ¢ (resp. j) in the second (resp. first)
row of w. Then two correspondences give the following identities, which are known as the
Cauchy identities [35].

Corollary 3.3.5 (Cauchy identity). We have

n r

<Ry .
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Chapter 4
Jeu de taquin and crystals

The word ‘jeu de taquin’ comes from French, which means the fifteen puzzle. As similar
to the puzzle, this algorithm switches (or slides) an empty box of semistandard tableaux
of skew shape with another box following certain rules. These slides explain the Knuth
transformations, which play a fundamental role in the theory of symmetric functions. In
this chapter, we generalize the notion of semistandard tableaux and discuss the relation
between the associated jeu de taquin sliding and gl -crystals. This chapter is organized

as follows.

e In Section 4.1, we introduce the notion of A-semistandard tableaux, which is a

generalization of semistandard tableaux.

e In Section 4.2, we recall the jeu de taquin (or sliding) algorithm due to Schiitzenberger

[40], and its generalization.

e In Section 4.3, we consider the relation between jeu de taquin algorithm and a gl,.-

crystal structure.

4.1 A-semistandard tableaux

Let A be a linearly ordered set with a Zs-grading A = Ag U A;. For n > 1, let

nj={1<2<---<n}, M=m<n-1<---<1},

22 M 2-1H ol



CHAPTER 4. JEU DE TAQUIN AND CRYSTALS

where we assume that all entries of these sets assumed to be of degree 0, and let

) ={1"<2' <. <0},

where we assume that all entries of this set are assumed to be of degree 1. For positive

integers m and n, let

with (Z,)o = Z,.

]Im|n

={l<---<m<1l <---<n}

[m] and (I, )1 = [n]". Define

I, ={l<---<n<mn<---<1}

(4.1)

For a skew diagram \/u, let SST4(A\/1) be the set of A-semistandard tableaux of
shape A\/u, that is, tableaux of shape A\/u with entries in A satisfying the following

conditions:

(1) all entries in each row (resp. column) are weakly increasing from left to right (resp.

from top to bottom),

(2) entries in A, (resp. A;) are strictly increasing in each column (resp. row).

In fact, we get SSTj,(A/pn) = SST,(A/p). If there is no confusion on A, we sometimes
call T € SST4(\/p) a semistandard tableau of shape A/u. Note that we use the same no-

tation LUl,...,UTJ(ul ) and [Ul,...
Ur,...,U, and (wy,...,u,) € Z'.
Example 4.1.1.
202
112
2131
171213
713

LUly U27 U3a U4J(
€ 5ST1,,((4,4,3,3,1)/(2))

0717173)

23

,,,,,

Wl <l CO|

DNOI[ W] O Lo

|)—HCOICJT w

(U, Uy, Ug] 1
€ SST1,((3,3,3,2,2,1)/(2,1))

&

| &1

1V
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The RSK or dual RSK correspondence can be generalized to the case of A-semistandard
tableaux. For this, we summarize an insertion algorithm to define insertion tableaux (cf.
[2,37]). For an A-semistandard tableau T" and a € Ay (resp. a € A;), define the column

insertion of a into 7', denoted by a — T', to be the tableau obtained as follows.

(1) If a > x (resp. a > x) for all entries z in the first (or left-most) column of 7', then
put a at the bottom of the first column and stop the algorithm.

(2) Otherwise, let a’ be the smallest entry in the first column of 7" such that o’ > a

(resp. a’ > a). Then replace a’ by a in the first column of 7T

(3) Apply two steps to the next column of 7" with a’. Repeat the process until the
algorithm stops.

For a A-semistandard tableau T', we define w(7T) to be the word with letters in A obtained
by the same way as semistandard tableaux and then we also similarly define w — T for

a word w = w; - - - w, with letters in A and S — T for an A-semistandard tableau S.

Example 4.1.2. Suppose that A = L.

3 a2y — 1fi]2[v]2
2[2]3] 2[2]3 ][5
41/2/3/ 341/2/
|3 UE
2 2

Here, the red-colored letters mean the letters a and @’ in the insertion algorithm.

We can generalize the RSK correspondences using the insertion above. Let us intro-

duce the dual RSK correspondence. For r» > 1, let

E, = || SSTa((1")) x -+ x SSTu((1™))

(Uryeeny u1)€Zf‘_

and define the insertion tableau P(U) and the recording tableau Q(U) for U = (U,.,...,U;) €
E’, as follows: for 1 <i <,

(1) P(U)=(U, = (--- = (Uy = Uy)---)) with P, = P(U,,...,Uy),
(2) Q(U) is an [r|-semistandard tableau such that sh(P;)'/sh(P;_1)" is filled with i.

24 .-':l:-. | 'kl:l' 1_-” [e],
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In this case, if P(U) € SST4(\) for some A € &, then N € &, and Q(U) € SST,.(N).
Then the map
ka By — || SSTa(A) x SST,(N) (4.2)

NeP,

sending U to (P(U),Q(U)) is a bijection.

Example 4.1.3. Suppose A = I3 and U € ES is given as follows.

2]
N
U= ]
EIREd
ElREl
Then
P(U) = 2 |12 Q(U) = [L]1]2]2]2
212 23 2121314
12 3141416
171213 4155
i 616

Note that the following is the sequence of P;’s.

o] 2 2| (2l [ufufefe] [1]u]2]y) [1]1]2]r]
2| (]2 (] 3|12 2|3 |v|2] [2]2]3]2]3
] UE UEIE alv]2|y] [3]4|r]Y
3 2/ UE UE UEIE

3 3 2 2 L

We also obtain the Cauchy-type identity corresponding to (4.2). Let {x, : a € A} be
a set of commuting formal variables indexed by A. For a € A and T' € SST4()), let

=] L

where m,, is the number of a in T'. Let s)(x4) = Z x’, be a super Schur function
TeSSTA(N)
corresponding to A € .

25 . _iﬂ _r 1_'_]'| o1 ]
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Corollary 4.1.4. We have

H H (1+ z4y;) H (1 —zay;) ™ = Z sx(xa)sx (y)-

j=1lacAp ac€A Nep

4.2 Jeu de taquin algorithm

In [40], Schiitzenberger introduced an algorithm called a sliding algorithm or jeu de taquin
on semistandard tableaux. One can easily generalize this to the case of A-semistandard
tableaux as follows (cf. [2,37]).

A tableau is said to be punctured if one of its boxes contains an empty box and we
say that a punctured tableau is A-semistandard if it is A-semistandard when we ignore
empty boxes. Let T be a punctured A-semistandard tableau with an empty box ¢ and
denote by a (resp. b) the letter right to (resp. below) c.

(1) When b is empty or a < b (the equality holds only when both are of degree 1), the
elementary sliding step applied to c¢ is the process of changing ¢ and a. In this case,

we say that a horizontal move occurs.

(2) When a is empty or a > b (the equality holds only when both are of degree 0), the
elementary sliding step applied to ¢ is the process of changing ¢ and b. In this case,

we say that a vertical move occurs.

Note that the tableau obtained by applying the elementary sliding step to T is again
A-semistandard. Take an inner corner ¢ of T" as the empty box and denote by jdt(7T c)
the A-semistandard tableau obtained by applying elementary sliding steps repeatedly to ¢
until ¢ becomes an outer corner of 7. For example, suppose A = I3 and a semistandard
tableau T' is given with an inner corner c. To keep track of positions of ¢, we mark e at

positions of ¢. Then we obtained jdt(7T,c) as follows.

elol2| oy Jafely] o ]2 o [1]2]2] o 1[2]2
|2 1e|1|Y 131 13]1] 1[3]|1]

23] 23] 2 |1 2[1 e 2|13

1/ 2/ 3/ 1/ 2/ 3/ 1/ 2/ 3/ 1/ 2/ 3/| 1/ 2/

3 3 3 3 3

Since the elementary sliding steps are reversible, a tableau jdt(7, ¢) for an outer corner

2 J'A! _CI:I_ 1_-_]5



CHAPTER 4. JEU DE TAQUIN AND CRYSTALS

of ¢ of T' can be defined as the semistandard tableau obtained by applying the inverse
algorithm.

By repeatedly applying jdt(-, c¢) for inner corners ¢, we obtain a semistandard tableau
of partition shape and denote it by jdt(7"). Then jdt(7") is independent of the order of

choices of inner corners and uniquely determined by 7.

Remark 4.2.1. The Knuth equivalence = can be described using the elementary sliding

steps. Here all letters are of degree 0.

(a) zzy=zayifr<y<z |zl
FE Y

(b) yze =yazifx <y<z v| — [z]y]
EE H

We can easily check that the tableau jdt(T') is the same as the insertion tableau of
w(T'). Thus, the jeu de taquin algorithm is another combinatorial tool to obtain insertion

tableaux.

4.3 Jeu de taquin and gl -crystals

The jeu de taquin algorithm introduced in Section 4.2 can be described in terms of gl .-
crystal operators.

We first investigate the case of tableaux with two columns. For a,b,c € Z,, let
Aa, b, c) = (2°7¢,1%)/(1%) be a skew partition with two columns and denote by TT (resp.
T*) the left (resp. right) column of T € SSTu(A(a,b,c)). For T = |T" T"| €
SST4(A(a,b,c)), let

(0,a)

vp = max{k € Z, : [T T € SSTa(Ma —k,b—k,c+k))}.

(070’

We remark that when we apply jeu de taquin to a corner of T, we have v > 0 if and
only if a vertical move occurs by [25, Lemma 6.2]. Thus, we have tjq¢(r,) = 0 whenever
tr = 0.

For T € SST4(\(a,b,c)) with vp = 0, set

(1) ET to be the tableau jdt(T,C) in SST4(A(a — 1,b+ 1,¢)), where C' is the empty
box below T® if a > 0,

¥ by
27 M =T
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(2) FT to be the tableau jdt(7,C") in SST4(Na+1,b—1,¢)), where C’ is the empty

box above T™ (or the inner corner of T) if b > 0.

Here ET = 0 and FT = 0 if a = 0 and b = 0, respectively. Note that tyr = 0 unless
XT =0 for X = & or F. Additionally, define

- &(T) = max{k € Z,| E*(b) # 0},
- o(T) = max{k € Z.| F*(b) # 0},
- wt(T) = o(T) — (7).

Then, for a given T' € SST4(A(a,b,c)), the set B={EFT|0 <k <e(T)}U{FT|0<
s < ¢(T)} forms a regular sly-crystal with respect to £ and F with ¢(T) = a and
©(T') = b. Here we assume that P = Z with identifying 2 € Z with the simple root of sl,.
In this case, the crystal B is isomorphic to the regular sly-crystal of highest weight a + b.

Remark 4.3.1.

(1) For T € SST(Ma,b,c)), we define XT = X |T", T*| (0.a_vp) TOr &' =& or F. Then
B is again a regular sly-crystal with e(T') = a — vz and ¢(T) = b — t7. Thus, we always
consider the case of vty = 0 when we apply &, F.

(2) If we take P = Zey @ Zes for the weight lattice of gl, with €; — €5 the simple root
and define wt(T") = mye; + maey for T € SSTy(A(a,b, c)), where m; (resp. my) is the

number of boxes of T® (resp. T"), then we may regard B as a gl,-crystal.

Example 4.3.2. Suppose that A = L.

2[2 2] 2]
vl & [v]2] &£ [2]
1/ F 12y F U2
3] 3 3

We can define a (regular) gl,-crystal structure on (U, V) € SST4((1%)) x SST4((1%))
by
XT)L, (XT)®) it XT 40,
x(u,v) =  (FDL TR it AT (X =€ F), (4.3)
0 if XT =0,
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where T" is the unique tableau in SST (A (u — k,v — k, k)) for some 0 < k < min{u,v}
such that (T, T*) = (U, V) and vy = 0. In general, we define a gl,-crystal structure on
E’, (r > 2) as follows: for (U,,...,U;) € EY},

U X(Usr, U, Uy i X Uiy, Us) #0,
XU, . U)) = ( (Uis1,Uy) 1) (Uis1, Uy) # (4.4)
0 it X(Usy,U;) = 0,

for ¥ =6 Fand1<i<r—1,and

(U, Uy) = max{k € Zy | EXB) £ 0} (= £(Uipn, Uy),

- @i(Ur, ..., Un) = max{k € Zy| FF(b) # 0} (= o(Uipr, Uy),

- wt(U,, ..., Uy) = >, mye; with m; = ht(U;) (cf. Remark 4.3.1 (2)).
Lemma 4.3.3. Under the above hypothesis, E'y is a regular gl,.-crystal.

Proof. Let M 44|y} be the set of matrices m = (m,;) with non-negative integral entries
(a € A, b € [r]) satisfying (1) ma € {0,1} if a € Ao, (2) > ,, mMap < 00. There is a
natural bijection from E” to M 4., where (U,,...,U;) € E is sent to m = (my,) such
that my, is the number of occurrences of a in U,,.

Suppose m = (mg) € Maxp is given. For a € A, we may identify the a-th row
of m with a unique tableau T'@ in SSTj, ((u)) (resp. SST((1%))) if a € Ay (resp.

a € Ay), where u = ), mg, and mg, is the number of occurrences of b in 7@, We

may define a regular gl -crystal structure on M 44, by regarding m as @ae AT(“). By
similar arguments as in [24,30], we can check that the associated operators ¢; and f; for
1 <7 <r—1 coincide with & and J;, and the gl -weight is equal to wt. Hence M 4, is
a regular gl -crystal since it is a disjoint union of tensor products of regular gl -crystals
SSTi((w)) and SSTy((1%)). O

Example 4.3.4. Suppose A = I3 and U € ES is the tableau given in Example 4.1.3.

Then we have

Q&U) =&QU) = 1] 1[2]2]2]
2121314
3141415
4155
616

3 by
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We consider the dual RSK correspondence k4 in (4.2) in connection with the gl, -
crystal structure on E’y. By the argument in the proof of Lemma 4.3.3, k4 is a morphism

of (regular) gl -crystals, which implies the following.

Lemma 4.3.5. The bijection k4 is an isomorphism of gl.-crystals, where the right-hand

side is a reqular gl.-crystal with respect to the second component.

Remark 4.3.6. (1) The set M

nxr

of dual biwords in Theorem 3.3.4 can be identified
with Efn] under the following rule.

1 ... 1 2 ... 9 ..y .y .
. . . . . . eMnxr
G e G20 dauy Gt g,
11,1 121 r1

o 0 1 - K RS '
Z.1,u1 i2,u2 ir,ur

Hence k) recovers the dual RSK correspondence in Theorem 3.3.4. Similarly, the set
M,,«, of biwords is identified with the set of r-tuples of row tableaux (semistandard
tableaux of single-rowed shape) with letters in [n] and we can recover the RSK correspon-
dence using this identification.

(2) The bijection kp, is an isomorphism of (gl,, gl,)-bicrystal, i.e., if E,-,ﬁ are the

gl,-crystal operators and €7, f7

r,y€{e, flandanyi=1,...,n—1,5=1,...,r—1. In general, it is shown in [22] that

are the gl -crystal operators, then r,y; = y;z; for any

the bijection k4 for A =1,,), is an isomorphism of (gl ,, gl )-bicrystals, where gl is a

general linear Lie superalgebra.

Finally, we describe the Weyl group action. The regularity of SST,.(\) results in a
well-defined Weyl group action on SST,.(\). In this case, the Weyl group is isomorphic
to &, and suppose

W= {(s1,...,81]57 =1, (8i8i41)> = 1). (4.5)

Note that the Weyl group action on a regular crystal B is given by

si(b) = ' . S
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forbe Bandi=1,...,r — 1. In our case, s; € W acts on T' € SST,(\) by

f;ﬂf*mm (T) if my > myy1,

~MjL1—Mm; .
€, i Z(T) if my; < mi+1,

where m; is the number of ¢ in 7" for 1 < ¢ <r, and acts on (U,,...,U;) € E'y by

]:’w_uH—l Ur,...,U if U; > Uit1,
Si(UT,‘..,Ul) = ; s ( 1) =
(c:- o Z(UT,...,Ul) if U; Squ,

7

where u; = ht(U;) for 1 < j <r.
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Chapter 5

Kashiwara—Nakashima tableaux

In [18], it is shown that the crystals of integrable highest weight representations of the
quantum group of classical types can be realized by a set of semistandard tableaux with
certain configurations, which are now known as Kashiwara-Nakashima tableaux. Since
KN tableaux of type A,_; are just [n|-semistandard tableaux, they can be considered
analogues for other classical types. In this chapter, we discuss KN tableaux of type C' and
their combinatorics. We deal with KN tableaux of type C' or symplectic KN tableaux.

This chapter is organized as follows.

e In Section 5.1, we recall the definition of KN tableaux of type C and its related

notations.

e In Section 5.2, we recall the symplectic analogues of Knuth equivalence and the

RSK correspondence due to Lecouvey [31].

e In Section 5.3, we review the jeu de taquin algorithm for KN tableaux of type C
introduced by Sheats [41].

This chapter is based on [31,41] and references therein.

5.1 Kashiwara-Nakashima tableaux

Suppose g = sp,, for n > 2 and take P = @, Z¢; to be the weight lattice of g,
a; =€ —¢€41 for 1 <i<n-—1, and o, = 2¢, as simple roots. Then we have the following

32 -':Ix'i 'I-::'.I.!E '-:!
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Dynkin diagram of g.

O—O0—0— - —0=—=0
2 3

1 n—1 n

Let Z, = {1l < -+ <n<7n<- <1} as given in (4.1). We call the letters 1,...,n
unbarred (or positive) and the letters 1,...,m barred (or negative). By convention, we
set 7 = 2.

We simply say that an Z,-semistandard tableau of single-columned shape is an Z,,-
column tableau. Let C' be an Z,-column tableau C' with A = ht(C') and suppose that

w(C) =wy - - wp.

Definition 5.1.1. We call C' admissible if there exists no z = 1,...,n such that w, = z
and w, =Z with 1 <p<g<hand (¢g—p)+2<h.

For z=1,...,n, let
Ne(z) ={z €Z,:xzisanentry of C, z < zora > Z}|.

Then the condition for C' to be admissible is equivalent to N(z) < z forall z =1,...,n
since {z:zx <z} =pand {z:2>Z}=h—q+ 1.
We also have another characterization of admissible columns. For an Z,-column
tableau C, let
{z1 > -+ >z} = {2z | C contains both z and z }. (5.1)

Then we have the (unique) set
{t1 > >t} C{1,...,n} (5.2)

for some s < r such that

(1) t; = max{t: ¢t < z;, C do not contain both ¢ and ¢},

(2) t; = max{t : t < min{z;,t;_1}, C do not contain both ¢ and ¢} for i > 2.
Definition 5.1.2. We say that C splits if s = 7.

Lemma 5.1.3 ([41]). An Z,-column tableau is admissible if and only if it splits.

3 by
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For an admissible Z,-column tableau C, let

- 1C' : the Z,-column tableau obtained from C' by replacing z; by ¢; (1 <i < r),

- rC : the Z,-column tableau obtained from C' by replacing z; by ¢; (1 <i <),
- spl(C) = UC’, rCL which we call the split form of C.

For a given Z,,-semistandard tableau T’ = (C’l, e C’r-‘ with admissible Z,,-column tableaux
O,’, let
spl(T) = [ICy,rCy, ..., 1C,, rC,].

Next, we introduce the notion of coadmissible column tableaux, which is necessary to

define a symplectic analogue of the jeu de taquin algorithm. For an Z,-tableau C, set
Ni(z) =|{z €Z,:xisanentry of C, z <z <Z}

for 2 =1,...,n. We call C' coadmissible if N}(z) < n — z+ 1 for all z. There exists a
bijection between the set of admissible Z,-column tableaux and coadmissible Z,-column
tableaux. In fact, if an Z,-column tableau C' is admissible, then the corresponding coad-
missible Z,-column tableau C* is obtained from C' by replacing z;,%; by t;,¢; (1 <i <),

respectively.

Example 5.1.4. For the Zs-column tableau C' with w(C) = 14542, we have z; = 4 and

t; = 3. Thus, the following tableaux are obtained.

C= «— spl(C) =

DOl W=l | QU Qo | —
DO I | QU v | —

[ro]ca]en] o[ ~]

EEEEE

Note that it is possible to recover C' and C* from spl(C') and vice versa.

Let C; and C5 be admissible Z,-column tableaux with ht(C;) = m; (i = 1,2) with
ms > my. Define
Co=<Cy if ’VTCQ, lCﬂ is Z,,-semistandard. (5.3)

Note that Cy < C] if and only if spl (Cg, CJ is Z,,-semistandard since HC’i, rCﬂ is semis-
tandard for i = 1, 2.
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Definition 5.1.5. For A € 2, let KN,,()\) be the set of T = [C,,...,C1| € SSTr,())
such that all columns of T are admissible and spl(T") is Z,-semistandard, equivalently,
Cizp < Ciforall 1 <i<r-—1.

We call KN,,()) the set of KN tableaux of type C,,.

Remark 5.1.6. In [18], KN tableaux are defined as tableaux satisfying certain configu-
ration conditions referred to an (a, b)-configuration. It is shown in [41, Theorem A.4] that
the definition in [18] is equivalent to Definition 5.1.2.

Let B(w) be the crystal base of the vector representation V (w, ) of sp,,, whose crystal
graph is the following:

1—teo 2. . 2L o ogrl LT
where wt(i) = ¢, wt(i) = —¢;, and wt(0) = 0. As in the case of type A, we give an

sp,,-crystal structure on KN, (\) for A € &2, as a subcrystal of B, (w)®" for some 7.
Then KN,,(\) is isomorphic to B(wy) [18] as sp,,-crystals, where wy = > | \ie; € PT.

5.2 Symplectic RSK correspondence

In this section, we recall a symplectic analogue of the RSK correspondence [31]. To do
this, we introduce a symplectic analogue of the Knuth equivalence relation. Let PI(C),)

be the quotient of the free monoid generated by Z,, subject to following relations:

c c
(Ry) zzy =zay if o <y < zwith 2 47, yzo = yxz if © <y < z with z # 7,

)(x—l)%yxffor1<as§nandx§y
(x—1)(z—1yforl<z<nandz <y

(R2) v

IS l
|/\ |/\

xTY and

(R3) if w = w(C) for a non-admissible column C' such that every proper subword is an
admissible column word (the word of an admissible column), and z € {1,...,n} is
the smallest letter such that the pair (z, z) occurs in w with N(z) > z, then w £

where w is the column word obtained by removing the pair (z, z) in w.

<

Denote by W, the set of words with letters in Z,. For w,w’ € W, write w = w’ if

w =w"in PI(C,).
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Theorem 5.2.1 ([31]). For w € W,, there exists a unique KN tableau T such that
w = w(T), which we denote by P(w).

By definition, if w = w(T") for some KN tableau T', then P(w) =T,

Pan

Remark 5.2.2. We have w = ' if and only if w B for w,w €W, [31].

On the other hand, we can also construct P(w) by a symplectic analogue of the
insertion algorithm. For z € Z,, and T = (C’T, . ,Cﬂ € KN, (\), define x — T, the

insertion of x into 1" to be the tableau given as follows.

Case 1. Suppose that w(C,)z is the word of an admissible column C’. Then

(.CU — T) = (C;,,Crfl, . ,Cl—‘.

Case 2. Suppose that w(C,)z is not the word of a column tableau and then there exists a
letter 2’ such that w(C,)x gy w(C!) for some admissible column C!. We consider
the insertion of 2’ into 1" = (C’T_l, e CJ. If it belongs to Case 1, then we have
(' = T") and let

(x = T)=][C, (" = T)]. (5.4)

Otherwise, repeat the above step until we get to Case 1.

Case 3. Suppose that w(C,)x is the word of a non-admissible column whose proper subwords

—_—

are admissible. Suppose w(C,)x =y; - --ys. Then let
(@ =T):= (s = Ws-1 = (= (= T)--4))), (5.5)

where T = {C’T_l, ce Cﬂ.

Then this algorithm terminates in finite steps and x — T is again a KN tableau. In
addition, it does not occur that w(C,)x is the word of a non-admissible column such that
some proper subwords are non-admissible, and Case 3 does not occur during the insertion
on the right-hand side of (5.4) and (5.5).

Remark 5.2.3. It is also described in [1] that which letter is bumped out in each step

(or column).

3 by
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Next, we define a recording tableau associated to P(w) for w € W,. An oscillating
tableau is a sequence @ = (Q1,...,Q,) of partitions that @; and @, are different by
exactly one box for 1 < i < r, ie., either |Q;+1/Q;| = 1 or |Q;/Q;+1| = 1. Denote by
|Q| = r the length of @ and by sh(Q) = @, the shape of ). Note that an oscillating
tableau @ such that Q1 C Q2 C -+ C @, and |Q;/Q;_1] =1 for 1 <i <r with Qo =0 is
identified with a semistandard tableau of shape @, by filling Q;/Q;_1 with i.

Let w = wy - --w, € W, be given and let P, = P(w; ---w;) for 1 <7 < r. Define Q(w)
to be the sequence (@, ..., Q,) of partitions where Q; = sh(P;). For A € &, let OT,,()\)
be the set of oscillating tableaux @ = (@1, ...,Q,) such that Q; € &, forall 1 <i <r
with @, = A. Then Q(w) € OT,(\) where A = sh(P(w)). We get an analogue of the

Roninson-Schensted correspondence.

Theorem 5.2.4 ([31]). For n > 1, we have a bijection

ot Wao — || KN, (M) x OT,())
re

sending w to (P(w),Q(w)). Furthermore, it is an isomorphism of §p,,-crystals, where

the right-hand side is an sp,,,-crystal with respect to the first component.

Example 5.2.5. Let w = 35335423531 € W;. Then we have P(w) and Q(w) is given by

DI O

| KA KOS

)E) 2 I I R N R R A B

O
S
Il
/’K|w i ot | eo
U
C1]
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where the associated sequence of P;’s is as follows.

3] [3 3[5] [2]5] [2]5] [2]5
’7 1 |73§’3§’3§’
B 5 5 5
1 [T
BRE!
2[3]5] |2[3]|5] |1]3]5] [3]3]5
312 3|5(2] [3]5]2] [5]5]2
5 5 5|1 401
1 H 1 3
H H 3] o

5.3 Symplectic jeu de taquin for KN tableaux

The jeu de taquin algorithm is another combinatorial tool to describe the Knuth equiva-
lence and insertion tableaux in the case of type A. In this section, we review a symplectic
analogue of jeu de taquin algorithm [41], which we simply say symplectic jeu de taquin
(algorithm).

An Z,-semistandard tableau T' of shape A/pu is called admissible if all columns of T
are admissible and spl(7T') is Z,-semistandard, where

spl(T) = [ICy,rCh, ..., 1C,, rC, ] (u1,ut,ee o)

for T = [Cy,...,C,] (wiur) - ond (ug,...,u,) = /. Denote by KN, (A/p) the set of
admissible tableaux of shape A/pu.

To keep track of empty slots of skew shapes when we apply jeu de taquin, we put e
in each empty slot. When we consider the split form of admissible tableaux, marks e are
duplicated.

Step 1. For an admissible tableau T = [C’g, Cl](%q) of skew shape with two columns,
suppose that spl(T) is given as follow.

38 ,?—-! -Cfl- 1_'_“ r
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Note that the boxes filled with a,a’ and b,V may be empty. Let 7" = [C}, C1 | (2=1e1) he
the tableau defined as follows.

(1) Suppose that @’ < b or the boxes is empty. Then spl(7”) is obtained from
spl(T") by switching and two marked empty slots.

(2) Suppose that a’ > b or the boxes is empty.

(2-a) If b € [n], then C} is the column tableau obtained from Cy by replacing the
empty slot with lzl, and C] is the column tableau with an empty slot such
that (C])* is obtained from C} by replacing @ with the empty slot.

(2-a) If b € [n], then CY is the column tableau such that (C%)* is obtained from Cj
by replacing the empty slot with @, and C] is the column tableau with an
empty slot obtained from C by replacing @ with the empty slot.

It is proved in [41] that both C] and CY are admissible columns only except the column
CY in the case of (2-a). The case (2-a) with non-admissible C will be covered in Step 2.

Example 5.3.1.

o |3 e|le (2|3 21| e
35 13|55 305
Tn=[53 spl(Ty) =[5 (532 T =[5]2
1 1l 1
B 12 B
® |2 oo (1|2 o2
o3 2131313 313
T, =[3]5 spl(T2) =[5]5(5]5 ;=55
514 o|le|4|4 1] e
32 3[2(2]1 32
1] 1)1 1]

Note that unlike the case of type A, letters in admissible tableaux may change during

this step while the weight of the tableaux are invariant.

corner ¢ of T" and suppose c lies in the ¢-th column from the right. Mark e at ¢ to keep
track of c. Apply Step 1 to (C’i,C’i_J (=bei) and get (C{,C{_J(C"’C"’l) such that C/_,
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has the empty slot . Now, we repeat Step I until the mark is placed at the bottom of

the j-th column (or becomes an outer corner of T') to have
T'=1...,C41,C, ..., 5, Cja, - .w(""ci """ )

for some j <, Cj,...,Cf, and ¢;, ..., ¢j € Z, ignoring the mark e. It is shown in [41] that
if 7" has an non-admissible column, then it must be C!. Let C! be the unique admissible
column such that w(CY") = w(Ch), i.e., w(Cl') = w(C!). Put

T = [...,Cipr,ClCly, o Ol g, ),
Now we define

. T" if 7' is admissible,
jdtgy(T,c) = . o (5.7)
T" if T’ has a non-admissible column.

It is shown in [31, Theorem 6.3.8] that w(jdt (7)) = w(T'). Note that if sh(T) = A/ u,
then
a/p for some o C A if 7" is non-admissible,

sh(jatn(T,c)) = . . o
a/f  for some o C A\, B C pif T" is admissible.

By applying jdt, n(-,c) consecutively to inner corners, we obtain a KN tableau, say
jdt ey (7)), and then it is clear that w(jdt (7)) £ w(T). By Theorem 5.2.1, the unique
KN tableau T" such that w(T") L w(T) is P(w(T)) and we have P(w(T)) = jdtn(T).
We remark that jdt, (7') is independent of orders of choices of inner corners by the

uniqueness of P(w(T)).

Example 5.3.2. Let T be an admissible tableau with empty slots ¢, ¢s, c3 given below.

Then we have jdt, (7)) regardless of orders of choices of inner corners (cf. Example

. -
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5.2.5).
215
312
jatgn(he2) |35 jatgn (- c3)
- 5|1
1 C2| 3 312 215
3|35 1 31312 31315
31513 o 5|5 jadtgpn(he) | 5152
51 - 1|2 1T
312 3 3 3]
1] Bk T 581
T b15]3
jatgen(yes) 4] 2 jat g (- c2)
3
1]

1 5 o8



Chapter 6

Spinor model

In this chapter, we discuss a spinor model, which is the main object of this thesis. A spinor

model, which is introduced by Kwon [25,26], is a tableau model for irreducible characters

of classical type in (1.2). We give an explicit relation between the spinor model and KN

tableaux of type C', which is essential to develop a jeu de taquin sliding for the spinor

model with an arbitrary set of letters. This chapter is organized as follows.

In Section 6.1, we recall the definition of a spinor model T 4(\, ¢).
In Section 6.2, we give a Schur expansion of the character of T 4(\, £).

In Section 6.3, we give a weight-preserving bijection between T (A, ¢) and KN, (1)
corresponding to (A, £), which is the key ingredient to define a jeu de taquin for the

spinor model.

In Section 6.4, we discuss a gl,-crystal structure and the admissibility condition on

T,-column tableaux.

6.1 Spinor model

For a linearly ordered Zs-graded set A, let

Tula) = || SSTu(Ma,0,c))

cEZy

I )
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for a € Z;. For T' € T 4(a), we have E4T € SST4(A(0,a,c)) and set
M= (EUT), R = (E°T)M

Example 6.1.1. Suppose A = I3 and T" € SST4(\(2,0,2)) as below.

2] 9] 9] ]2
o V]2 £ [v]z] £ E3 1]
1 ]2 1|2 o
Ed 3 U Ed
L2 L2 L2 L
L R L R L R
[T T (g 5 |"T*T | [*T 5T | 1y )

Definition 6.1.2.

(1) For ay,ag € Z, with as < ay and (T3, T1) € T a(as) X T 4(ay), we define

Ty < Ty if [*, T7| and |15, T | are A-semistandard.

(az,a1)
(2) Let Z(Sp) ={(\,0) | t>1, A€ P }. For (A, ) € Z(Sp), we define
TANO={T=Ty,....,T0) | Ty < -+ <T1 } TT4(A\e) X+ xT4(N\).
We call T (), £) a spinor model of shape (A, ¢) with respect to A.

We put 2(Sp)a = { (\,0) € 2(Sp)| Ta(A.0) £ 0.

Remark 6.1.3. We use the definition of T 4(\, £) in [25]. There is another definition of
T 4(A, ¢) in [27], but almost the same result hold for this case.

Example 6.1.4. Let A = I3, and take S € T 4(1) and T" € T 4(2) as follows.

1 1
212 212 312 1
314 4 1 2/
] U] 2] 2]
LSL’ SRJ (0,1) \_LS’ RSJ (1,0) \_TL’ TRJ (0,2) \_LT’ RTJ (2,0)
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CHAPTER 6. SPINOR MODEL

Then S < T since |*S,T"| and |S®,T | are A-semistandard.

(1,2)

1] 1
213 2|1
4lr
1] o
S, T [S%MT 1)

Let t be a formal variable commuting with all x, (a € A). Define the character of
TA(\0) for (A,€) € P(Sp)a by

(T[ ..... TI)ETA(/\ve)

Remark 6.1.5. The character of T 4(\, ¢) has an important application in representation
theory. Indeed, the spinor model is motivated by the (g4, Spy,(C))-duality (1.2) for a Lie
(super)algebra g4.

Let us first recall the decomposition (1.2) for various choices of A. If A = [m], then
we have the (sp,,,, Spy,(C))-duality, where Vi, (A, ) is a finite-dimensional irreducible
sp,,,-module. If A = [n]’, then we have the (s0s,, Sp,,(C))-duality, where Vi, (A, ) is an
infinite-dimensional irreducible s09,-module. See [10-12] for these dualities. In general,
when A = I, we have the (5p0y,,,, Sy, (C))-duality [5], which includes both of the
above cases with n = 0 and m = 0, respectively. Here $po,,,, 5, is the orthosymplectic Lie

superalgebra whose Dynkin diagram is given by

o—0—0— " —O0—®—0— —0O
0 1 2 m—1 —m 1 (n—1)

Dualities for an infinite Zy-graded set A can be found in [29,44].

It is shown in [25] that Sy (x.4) is equal to the character of V;, (A, ¢) when A = L.
Indeed, this will also follow from comparing the character identities of (1.2) and (1.3) for
any (g4, Spy(C))-duality (see Theorem 9.3.1).

44 X ! _'k.l.'fl_ -I_-]i &
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6.2 Schur positivity

We can embed T € T 4(a) into (T, T*) € E2. In general, we have a natural embedding
of r-tuples of T 4(a)’s into E%. By composing x4 (4.2) and this embedding restricted to

T A(A, 0) for (N, £) € Z(Sp).a, we have the following

Py o TaN0)  — | | SSTa(p) x SSThaq (1)
I

T =(T,,...,T1) — (P(T),Q(T)),

where p is over all partitions with ¢(p') < 2¢.

Let us explicitly describe the image of ® 4. Recall the Weyl group action on SSTieg(1').
Let s; be the simple reflection given in (4.5) for 1 <1i <20 —1. For Q € SSTjy ('), define
the weight of @ to be the sequence (my,...,my), and the i-signature of @ to be the pair
(£:(Q), pi(Q)) for 1 <i <20 —1. For p € & with ¢(i') < 20 and (A, {) € P(Sp).a, let
K, (0 be the set of Q € SSTp (') satisfying the following conditions:

(1) mop — maog—1 = Ag for 1 <k </,

(2) mop > mapyp for 1 <k <01,

(3) the (2k — 1)-signature of @ is (A, 0) for 1 < k </,

(4) the (2k)-signature of sor1Q is (0, mor — Mmagyo) for 1 <k <€ —1,

(5) the (2k)-signature of so_1Q is (Mg — Agr1 — P, Ma — Maogr2 — p) for some p > 0 and
all 1 <k </¢—1.

Remark 6.2.1. Considering the action of s; on E%, we have
sop 1 (Tp, Ty, .., THTY) = (TF, 1) .o M, R, - T, T

for 1 < k < (. Indeed, it is related to the combinatorial R-matrix. For detailed explana-

tion, see [25, Section 6.

Theorem 6.2.2. |25, Theorem 6.12] For (A, () € P(Sp)a, Pa induces a bijection

O Ta(N ) — || SSTalp) x Ko
o

- - TS
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CHAPTER 6. SPINOR MODEL

where the union is over the partitions p such that ¢(p') < 2¢.

Example 6.2.3. Suppose A = I3 and (A, ¢) = ((3,2,1),3). Then for T € T4(A,¢)
below, ® 4(T) is given as follows (cf. Example 4.1.3).

2|
1] [1r]
T 2[2] [3]2] [V]
3|4l [v 3
1 o 3

]2l [i]1]2]2]2

ol 2323 [2]2]3]4

AT) = [3]a]r|2] » [3]4a]4]s
RP3E: 455
1] 66

6.3 Bijection between the spinor model and KN tableaux

Recall that S(»)(x.4) gives an irreducible character for sp,, when A = [n]. In this section,
we give a bijection between T 4(\, ¢) and the corresponding set of KN tableaux [28].

From now on, we assume A = [77] in this section and put
PSP = P(S) = L (00) € 2(Sp) |\ <),
- Tp(a) = Tr(a) for 0<a<n,
- Tp(N€) = Tr(A0) for (A €) € Z(Sp)a.
On the other hand, for (A, ¢) € Z(Sp),, we put

PN ) =(n—Xeyn— N1, ... ,m— Ap),

which is the conjugate of the rectangular complement of X in (nf). The diagram for
pn(A, ) is given as the follow, where p™ is the skew Young diagram obtained by 180°-

46 .-':l:-. | 'kl:l' 1_-” [e],
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rotating the Young diagram for yu € &.

For U € SSTi((1™)), let U¢ be the tableau in SSTj,((1"~™)) such that & is an entry
of U¢ if and only if k is not an entry of U for each k = 1,...,n. For T € T,(a) (0 < a < n),
we define 72 to be the column tableau obtained by putting *T" below (*T")¢. It is proved
in [28] that 7% is an admissible column of height n — a, and the map 7' +—— T2 is a
bijection from T, (a) to KN, ((1""*)) for 0 < a < n. We remark that the coadmissible
column (72%)* is obtained by putting T® below (T")¢. For simplicity, write (72%)* = T2,

Example 6.3.1. Suppose that n =5 and T' € T5(1) is given as follows. Then

(RT)C : Tad —

=1 Dol
1] wal

j| =] QoI Wl
FU| ] DO o
~

(TL)C : Tadx _

(=] ee] [=]eo]en]es]

Remark 6.3.2. The bijection (-)2* : T, (a) — KN, ((1""%)) is actually an isomorphism
of sp,,,-crystals.

For U € SSTrz,((1™)), let Uy and U- be the subtableau of U consisting of all positive
(or unbarred) and negative (or barred) letters, respectively. We can directly check the

following lemma, which plays a crucial role in this thesis.
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Lemma 6.3.3. Let T € T, (a) be given with 0 < a <n and let C = T*. Then

(10)y =C1 = (1), (rC)y =Cy = (*7)°,
(C)_.=C_ =T, (rC).=C*=T"

Lemma 6.3.4. Let T; € T, (m;) be given (i = 1,2) with 0 < mgy < my. Then we have
T2 < T2 if and only if Ty < T7.

Proof. 1t is straightforward that Definition 6.1.2 (1) is equivalent to (5.3) by using Lemma
6.3.3. -

Proposition 6.3.5. For (A, () € Z(Sp),, we have a bijection

T, (A 0)

KN, (p.(N,0)) . (6.2)

T=(Ty...,Th) —=T*:= [Tp4,..., T?4|

Proof. Suppose that T = (Ty,...,T;) € T,(\,¢) is given. Then T = [Tp4,... T
is a tableau of shape p,(\,¢) whose columns are admissible. By Definition 5.1.5, T?? €
KN, (pn(X, £)) if and only if T2 < T2 for all 1 <4 < ¢ —1. By applying Lemma 6.3.4
to all adjacent columns, we see that T € T,,(A,¢) if and only if T € KN, (pn(A,¢)). O

Note that ()24 : T, (A, £) = KN, (p, (A, ¢)) is also an isomorphism of sp,, -crystals.

6.4 Admissibility and gl,-strings

In this section, we investigate the admissibility of Z,-column tableaux and the gl,-crystal
structure in connection with & and F (4.3).
Let

F,= || S85T((1™) (6.3)
0<m<2n
be the set of Z,-column tableaux, where SSTr, ((1°)) is the singleton set of the empty
tableau. For C' € SSTz, ((1™)), we define £C to be the Z,,-column tableau C” of shape
(1™=2) such that
(€ (CL)) = E(C- (C1))

= -
T J =11 7=
48 A =TH
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if £(C_,(C4)°) # 0, and £C = 0 otherwise (see (4.3)). Also, we define FC to be the

Z,,-column tableau of shape (1"2) in a similar way as in £C. Then we have the following.
Lemma 6.4.1. Under the above hypothesis,

(1) ¥y, is a reqular gly-crystal with respect to € and F,

(2) C €F, is admissible if and only if EC =0, and

(8) we have a bijection

F,— || KN, ((1"™) xZ/(a+1)Z, (6.4)

0<a<n

C (T,&‘)

where ¢ = e(C), and T = E™>*C = E°C. Here, Z/(a + 1)Z is understood as the set
{0,1,...,a}.

Proof. (1) Tt follows from the regular gl,-crystal structure on E by Lemma 4.3.3.

(2) Suppose C' € SSTr, ((1™)) with € = ¢(C) and ¢ = ¢(C). As defined in (4.3),
we may identify (C_, (C4)¢) with the semistandard tableau U of skew shape A(e, ¢, ¢) for
some ¢ € Zy with vy = 0. Take two sets {z; > -+ > 2.} and {t; > --- > t;} from C as in
(5.1) and (5.2), respectively. By construction of these two sets, C' contains both z; and z;
for all 7, but does not contain neither ¢; nor ¢; for all j. By the definition of U, Z; lies in
C_ but not in (C})°. Suppose that Z is moved from the left to the right when we apply
& to U. Considering the jeu de taquin sliding, we can check that z = z; for some k with
N(z) > zp. Moreover, z is such that N(z) — zj is largest. If there are at least two such
elements, then z; is the smallest one among them. In turn, C is admissible if and only if
e=0.

(3) For given C' € F,,, let (T, ¢) be given in (6.4). By the argument in the proof of (2)
and Proposition 6.3.5, (T_, (7%)°) is a semistandard tableau of skew shape A(0,a,c) for
some a,c € Zy and hence T' € KN, ((1"%)). Note that 0 < a < n from the condition on
ht((7%)¢). On the other hand, since F,, is a regular gl,-crystal, we have ¢(C), ¢(C) > 0
and e(C) 4+ ¢(C) = &(T) + ¢(T) = a, which implies 0 < ¢ < a. Thus, the map (6.4) is

well-defined. Moreover, since the jeu de taquin is reversible, the map (6.4) is bijective. [

. - )
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Example 6.4.2. For C' € F5 below, we have

1]
i ——m
5 . 515 . 5
¢ = z ) (C_,(C+)) = i s S(C_,(C+)) = |5 1
5
4]
Then the pair corresponding to C' under (6.4) is
(T,e(C)) = , 1

Remark 6.4.3. Using the similar argument as the proof of Lemma 6.4.1(2), the crystal
operators £ and F on C' € F,, are calculated directly as follows:

(1) EC is the Z,-column tableau obtained by deleting z and Z from C, where z is such
that both z and Z appear in C' and the function N(z)—x (x = 1,...,n) has the maximum
at © = z with choosing the smallest z if there exists at least two such elements.

(2) FC is the Z,-column tableau obtained by adding ¢ and ¢ to C', where neither ¢ nor
t do not appear in C and the function N(z) —z (x = 1,...,n) has the maximum at x = ¢
with choosing the largest ¢ if there exists at least two such elements.

For example, suppose n = 8 and let T' be an Zg-column tableau given below. Then
we can check to check £T is obtained from T by deleting 3 and 3 and FT is obtained by
adding 7 and 7 to 7.

T =

ET = FT =

[o]a]a]a]e]~]

[olelalaalw ]~

ool a]efa]e]v]—]

Note that N(2) —2=1,N(3) —3 =2, N(6) — 6 = 2, where {2, 3,6} is the set of 2’s (cf.

50 . Jiﬂ k'_. 1_'_” &t 3
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(5.1)), and N(4) —4=1,N(7) —7=1,N(8) — 8 = 0, where {4,7,8} is the set of t’s (cf.
5.2)).

d s &)t



Chapter 7

Symplectic jeu de taquin for spinor

model

In this chapter, we define a symplectic jeu de taquin sliding for a spinor model. A key
observation is that the symplectic jeu de taquin jdt ., (-) on KN tableaux can be described
in terms of the gly,~crystal structure (4.4) on E%} under the bijection (-)®* in (7.1). This

A

chapter is organized as follows.
e In Section 7.1, we define a spinor model of a skew shape and its n-conjugate.

e In Section 7.2, we introduce a symplectic jeu de taquin sliding for the spinor model

of a skew shape.

7.1 Spinor model of a skew shape

Definition 7.1.1. Suppose T = (T},...,T1) € T a(a;) X --- x T 4(ay) is given for some
ai,...,ay € Z,. For a skew diagram \/u with A\, u € &, we say that

(1) T is of shape A\/p if for all 1 <i </,

a; =N — i, W(Ti) + pin < he(T7) + pus.

(2) T of shape A/ is A-admissible if for 1 <i < /¢ —1,

and |17, are A-semistandard.

[T, T7 | it \e)

Mt 1,044)
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Denote by T 4(A\/u, £) the set of A-admissible tableaux T of shape A/ p.

When g is the empty partition, the condition for T 4(A\/u, f) is exactly the same as
that of T 4(A,¢). In turn, we consider T 4(\/u, £) as a spinor model of skew shapes in this
manner. For T € T 4(\/u,¢), we put T in the plane P, and denote

LTJ(W p) LTE,-'leJ(W 77777 = LTJ‘,T},...,T{“,T{‘J

-----

(e, A5 p01,A1) 7

In general, T € T (N u,f) does not correspond to a KN tableau of skew shape
unless A = [n]. Furthermore, we may not use the algorithm jdt, y(-) since T?? is not
defined in general. To overcome this problem, we introduce the notion of the n-conjugate
of T. Recall that a gl -crystal morphism x4 (4.2) sends T € E’ to (P(T),Q(T)) €
SSTA(v) x SST,. (V') for some v € Z,.

Definition 7.1.2. For T = (7},...,T1) € T a(ag) x -+ x T 4(a1), suppose that k4(T) =
ka(Tp, TR, ..., TETE) = (P(T),Q(T)) with v = sh(P(T)).

For n > ((v), we define the n-conjugate T of T to be the unique tableau T =
(Tv, ..., T1) € Ti(ag) x - x Tp(ar) such that

k) (T) = (Hy, Q(T)),

where H, € SST (v) is the highest weight vector in SSTi (v), that is, the i-th row is
filled with n — 7 + 1 for 1 <4 < n. Note that it is well-defined by the bijectivity of K.

Remark 7.1.3. If we choose another m for some m > n, then the m-conjugate of T is

obtained from its n-conjugate by replacing @ with a +m —n for all 1 <a < n.

Example 7.1.4. Suppose A = I3 and take T = (73,75,T1) € T (1) x T4(1) x T 4(2)

below. Then we have the following data

5T 2 (v [1f1]2[2]4]
5Tl 2131 T2 2(2]3[2|3] |2]2]3]5
T=| 5 o , wa(M) = [3]afr]2] » [3]8]4]6
7 " =] ]2 |3 4]4]5
- ] 6|6
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and the 5-conjugate T is the below.

= <

T =

DI ol
QoI =1

|>~I oI =1 &
|l\’)||03\ = o

|l\3| = ot

The following two lemmas explains why we need the notion of n-conjugates.

Lemma 7.1.5. For T = (Ty,...,T1) € Ty(ag) x --- x T 4(ay), we have T € T g4(\/u,?)
if and only if T € Tm(\/p,0).

Proof. Tt follows from [25, Lemma 6.2] and Q(T) = Q(T). O

A key point is that whether a tableau (7}, ..., T}) of shape A/p is A-admissible depends
only on its gly,-crystal structure, not on the choice of A. On the other hand, we have a
bijection (-)** between Tz (A, ¢) and KN, (pn(A, £)). By applying (-)*® to each component,

we obtain the following.

Lemma 7.1.6. Let T be as above. We have T € Timy(N/p, €) if and only if [Tzd, . ,T;dwp“(”’é)/ €

KNn(pn+,LL1 (>‘> g)/p,ul (/Lv Z))

=S
~
o~

H1 pm (:uag) AN (:U’/)Tr

. -
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Proof. Suppose that T is [n]-admissible of shape A/u. Let us introduce additional letters

U, - .., Uy, for a sufficiently large m and set

X=A{up<---<uy<l<---<n},
X={n<--<I<w<--- <y},

T ={tm < <up <1< - <n<u<- <1< < <y}

with all entries of degree 0.

By attaching suitable boxes with entries in {uy,...,u,} below T;‘ for all 7, we may
obtain S = (S, ...,S1) € Tx(\, £). Then S* = (529,...,529) is a KN tableau of shape
Pmtn(A, £) with respect to Z,,,, by Proposition 6.3.5. In this case, S* does not contain
u; for all 1 < j < m. Moreover, ’TZd, e ,T?dw P19 5o obtained from S by ignoring
the letters uq,...,u,,. Since S® is a KN tableau, (Tzd, e ,T?dw P (1) 5 7Z,-admissible
of shape ppy (A, €)/pu, (11, €). Note that the admissibility is independent of the entries
below T? because we ignore them when it comes to T?d. The converse can be proved

similarly. O
Using Lemma 6.3.3, we have an analogue of Proposition 6.3.5 for skew shapes.

Corollary 7.1.7. We have a bijection

To(A/ 1, 1)

T=|T,.... T,

KN (0 (A0 i (1, 0)) - (7.1)

T2 .= [Tead, o ,Tlad—‘ (1)

Example 7.1.8. Let T = LTg, 15, le (012) € T5(\/p, 3) be given, where A = (4,2, 1) and
p=(2,1,0). Then T>* € KN4 5 3)/(2,1,0y is the follow.

DOl | O

wl (o CO|

|>—\|w\ | o

DO [ W] |l

DO| | =l [ ot | o

ol
|H\ 2l | vl [l

|r—*\ wl| ot w

|H\ ol [l

T = [T37T2,T1J(07172) Tad — (T;d’T;d’ Tfﬂ (2,1,0)

55 &
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7.2 Symplectic jeu de taquin for spinor model

In this section, we introduce an analogue of the jeu de taquin for T € T 4(\/u, £). We
first consider the case when ¢ = 2 which is a crucial step and then discuss the general

case.

7.2.1 The case when ¢/ =2

Suppose that T = (T5,T1) € T 4(az) x T 4(ay) is given for some ay,as € Z,. Let

d(Ty,T,) = min { d ‘ deZ,, [TQ, le is A-admissible (of a skew shape) } .

(0,d)

Note that we have Ty < T7 if and only if d(77,73) = 0.

We also regard T as an element (Ty, T8, T+, T}) € E%. Suppose that d = d(T1,Tz) > 0.
We define T to be the tableau obtained by applying a sequence of crystal operators to T
as follows: (recall that E5*T = ("1, *5, TT, TT) and EM'T = (T3, T3, *T1,*T1) by Remark
6.2.1.)

Case 1. Suppose that |*T,, 1T | is not A-semistandard. Then we put

(0,d-1)

Folg,802  if 4(£,E€2T) = 0,
T = (U, Us, Up, Uy) = ¢ 3 7373 3(£285°T) (7.2)
FREERT  if e5(5EPT) = 1.

Case 2. Suppose that [RTQ,TH

we put

) is A-semistandard, but | 75,7} | is not. Then

(0,d—1 (0,d—1)

T' = (Uy,Us, Uz, Uy) = FPH REMT. (7.3)
Lemma 7.2.1. Under the above hypothesis, T is well-defined.

Proof. In Case 1, the condition that |15, T} (0.d-1)
0. Then we apply & to £52T, which is non-zero, and let £&,E5*T = (Vy, Vi, Vo, V). By the

jeu de taquin sliding, we have

52 \_LT27RT27T1L7T1RJ ‘/217‘/:37‘/27‘/1J(

(0,0,d,d+a1) L 0,1,d—1,d+a1)

where |Vy, V3 is A-semistandard and hence £3(E,E3%T) = 0 or 1. Indeed, we have
( 3

0,1)

o . cmih
T J =11 7=
o6 A =TH

is not A-semistandard implies £5(£52T) >
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£3(&E82T) = 0if | V4, V3] is A-semistandard, and £3(£,E4°T) = 1 otherwise. Hence T is
well-defined. We can similarly check the well-definedness of T” in Case 2. [

Example 7.2.2. Suppose that A = 3.
(1) The following is an example of Case 1 with e3(E,E52T) = 0.

57 ; ,H *_ rl



CHAPTER 7. SYMPLECTIC JEU DE TAQUIN FOR SPINOR MODEL

11
2] [3]2

3la| |1

Al

T = |13, 7] o)

(3) The following is an example of Case 1 with e3(E,E5?T) = 1.

Proposition 7.2.3. Under the above hypothesis, there exists a unique pair T = (T4, T7)
such that

T = (TQ/,T{) S TA(CLQ + 2¢ — 1) X TA(al + 1),
d(Ty, 1) < d(Ty, T2) — 1,

where € = £3(E,E52T) in Case 1, and € = 0 otherwise.

Proof. First, suppose that A = [7] and let d = d(T,T5) > 0. Since T = LTQ,le(OVd) is
[n]-admissible, T = [T34, 77| (@9) 35 admissible by Lemma 7.1.6. For simplicity, write
T = [Cs, O] (c2e) (T34, T3] 9 and let ¢ be the inner corner of 7.

We claim that the algorithm (5.7) to have 7" = jdt, (7, c) corresponds to either
(7.2) or (7.3). First, we mark e at ¢ to keep track of sliding and apply Step 1.(1) as far as
possible to have (5.6). Since d = d(T3,T,) > 0, we should apply Step 1.(2) to (5.6) with
a >b.

Suppose that b € [17]. Then it is straightforward to see from Lemma 6.3.3 that applying
Step 1.(2-b) and sliding e to the bottom of the column corresponds to (7.3). This implies
that (Uy, Us) = ((T3)", (T5)F) for some Ty € T, (ay — 1) and (Uy, Uy) = ((T7)%, (T7)?) for

some T} € Ty, (a; + 1). Furthermore, since 7" = [C}, C’ﬂ(crl’cl), it follows from Lemma

58 . f,ﬂ k: 1_'_]| ©



CHAPTER 7. SYMPLECTIC JEU DE TAQUIN FOR SPINOR MODEL

7.1.6 that |73, 17| is A-admissible and

(0,d—1)
(T =1 = [Ch, ], (7.4)

where (T)2? is given in Corollary 7.1.7. This implies that d(T7],Ty) < d — 1.

Next, suppose that b € [n]. As similarly as above, exchanging e with b in Step
1.(2-a) to have (7 corresponds to £E52T. If Cf is admissible, which is equivalent to
£3(£,E82T) = 0, then the process to have C} corresponds to applying Fe> ' to £ELT.
As in the previous case, we have (Uy, U3) = ((T3)", (T3)*) and (Us, Uy) = ((T7)", (T7)?) for
some T € Ty (az — 1) and T} € T,,(ay + 1), and |T3, T} | (0.4_1) 18 A-admissible with (7.4),
which implies d(77,T3) < d(T1,T5) — 1. On the other hand, if C} is not admissible, which
is equivalent to €3(&:E5%T) = 1, then it is not difficult to see that the process to have
CY corresponds to applying F35? to .52 T. Hence, we have (Uy, Us) = ((T3)", (T3)*) for
some Ty € T\,(ax+1) and (Uy, Uy) = ((T))*, (T7)?) for some T} € T, (a; +1). In this case,
we have T" = {Cé’,C’ﬂ(CQ’Cl), and hence |73, T | 0.
shown that [C%,C1| (=1 i3 also admissible, hence | T3, T |
(7.4), which implies d(17,T3) < d(T},T,) — 1.

Finally, suppose that A is arbitrary. Take a sufficiently large n and let T be the

) is A-admissible. Moreover, it can be

(0.d-1) 18 A-admissible with

n-conjugate of T. Let X be the composite of operators & and F; in (7.2) or (7.3). By
definition of T and Lemma 4.3.5, we have
Q(XT) = XQ(T) = XQ(T) = Q(XT). (7.5)
By applying the previous arguments to T, there exists T = (T;, Tll) such that
XT=T € Ty,(ag+ 2 —1) x Tp(ay + 1).
By [25, Lemma 6.2] and (7.5), we have T" = (T3, 77) such that
XT =T € Talas+ 2 — 1) x Talas + 1)

and the n-conjugate of T/ is T:- for 1 = 1,2. Furthermore, it follows from the argument
for A = [n] and Lemma 7.1.5 that d(77,T3) < d(T1,T>) — 1. Note that our argument does

not depend on the choice of n. O

¥ by
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CHAPTER 7. SYMPLECTIC JEU DE TAQUIN FOR SPINOR MODEL

Now we introduce the following notation.

Definition 7.2.4. For T = (13,T) € T 4(ay) x T 4(ay) with d(T,T,) > 0, we define

jat, . (T) =T, (7.6)

spin
where T’ is given in (7.2) and (7.3).

By the arguments in the proof of Proposition 7.2.3, we have following, which shows

that jdt_,.(-) is a natural analogue of jdt (-, c).

spin

Corollary 7.2.5. Under the above hypothesis, we have

jdtspin(T) = Jdt T)’

(J dtspin(T>)ad - jdtKN <Tad7 C) )

spin(

where = denotes the n-conjugate for a sufficiently large n, (-)2® is given in (6.2) or (7.1),

. . ad
and c is the inner corner of T .

7.2.2 The when ¢ > 2

Take a skew diagram A\/p with A, € &y and T = (T},...,T1) € Ta(N p, ). For an
inner corner ¢ of \/p in the i-th row from the top, let us define symplectic the jeu de
taquin sliding on T with respect to c.

For a sufficiently large n, take the n-conjugate T of T. Then we consider
. —ad
Jdtgy (T ab) )

which is defined in (5.7), where b is the inner corner of T in the (7 + 1)-th column from
the right and (-)® is in (7.1). By (7.6) and Corollary 7.2.5, there exists a composite of
operators & and F;, say X, such that (X T) - jdt ey (Tad, b).
Definition 7.2.6. Under the above hypothesis, we define

jat, .. (T,c) = XT. (7.7)

spin(

o . cmih
T J =11 7=
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Note that jdt,_ . (T,c) is independent of the choice of X since

spin
T —— ad ————=\ ad —\ ad B —ad
(Jdtspm(T,c)> = (FT)™ = (XT)™ = jdt,ey (T ,b) ,

and = and (-)2® are injective on the connected component of T. Indeed, suppose that

we choose another sequence X’ such that (X'T)> = jdt (Tad, b

(-)*, XT = X'T and then

). By the injectivity of

Q(XT) = Q(XT) = Q(XT) = Q(X'T) = Q(X'T) = Q(X'T).

Since P(X'T) = P(T) holds, the bijection (4.2) gives XT = A'T.

Theorem 7.2.7. Let \/ju be a skew diagram with \,pn € Py and let T = (1y,...,T) €
TA(N 11, €) be given. There ezists a unique P(T) € T A(v,{) for some (v,{) € Z(Sp)a,
which can be obtained from T by applying jdt ;. (- ,¢) finitely many times with respect to

inner corners. In particular, if A= [n], then we have
P(T)™ = P (w (T*)),

where a tableau P(w) for w € W, is defined in Theorem 5.2.1.

Proof. We first show the existence of P(T). Take a sufficiently large n and let T be the
n-conjugate of T. Let U =T and V = ™ By applying (5.7), there exists a sequence
V =V,,...,V, of skew admissible tableaux such that

Vi+1 = jdtKN(Viubi) (1 S 7 S T — 1)7 (78)

for some inner corner b; in sh(V;), and V, € KNy for some § € &, with §; < ¢. By
applying (7.1), we get a sequence U = Uy, ..., U, such that U?* = V,. In this case, it
follows from Corollary 7.2.5 that

Ui+1 = jdt Ui, Ci) (1 S 1 S r— 1) (79)

spin (

for some inner corners ¢; in sh(U;). By (7.7) and Corollary 7.2.5, there exists a sequence
T =T,,..., T, such that

Tip1 = jdt,, (Ti,c;) (1<i<r—1)

- - TS
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and T; = U,. Since V, € KNy, we deduce from Lemmas 7.1.5 and 7.1.6 that T, €
T 4(v,¢) with p,(v,¢) = . We put P(T) = T,.

Now consider the uniqueness of such P(T). For this, suppose that there exists another
sequence T = T, ..., T} such that T}, = jdt,, (T, c}) for some ¢} (1 <i < s—1) and
T € T (£, 0) for some (£,0) € Z(Sp)a. Our claim is T, = T".

Put U} = T} and V/ = (U})* for 1 < i < s and then they also satisfy same relation
(7.8) and (7.9) by Corollary 7.2.5. By the same reason as V,, V, € KN, ¢, and
VL =P(w(Vy])) = P(w(Vy)) = V, since Vo = V| = V. It implies that £ = v. On the
other hand, let X and X’ be composites of & and F; (1 <i < 2¢ — 1) such that

XT=T, XT=T.

By (7.7), we have XU = U, and X'U = U/, respectively. Since V, = V. we have
XU=U,=U. = X'U, and

Q(XT) = XQ(T) = XQ(U) = Q(XV)
— Q(X'U) = X'Q(U) = XQ(T) = Q(X'T).

Recall that Q(T) = Q(U) by definition of the n-conjugate. We already know that
P(XT) = P(T) = P(X'T) and we have T, = T/ by Theorem 6.2.2. If we restrict
to the case for A =[], then the last statement follows from Corollary 7.2.5. O

Example 7.2.8. Let T = LTg, Ts, le 0.1.2) be the tableau given in Example 7.1.4. Then
P(T) can be obtained as follows (cf. Example 7.2.2).

212
212 12
V2] e, (mien L[1] |1
23] 1] —— 2[3] [3]

4] v |3 4] [v]2] |3
312 3 ] 312 Co
v ]

— / / /

T= LT37T2’T1J(0,1,2) T LT:”’T2’TJ(022)
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2|2
3t pin(T1, c2) 1|2 3t pin (T2, c3) 2|2
— 1[1] [r — 1] [v]
ol2] [3]2] [3] ol2] [3]2] [v
HINE] sla] ] [3]
V2] e T o 3

T, = |T¢,Ty, T} | P(T) = 13", 1y, T}"|

(0,1,1)

jdtspm(T, Cl) = gg(c:gT
3dt i (T1, c2) = F3 Ty
jdtspin(TQa 03) = 54T2

The corresponding jeu de taquin for the 5-conjugate U and V = U?! is given as follows.

5|5
5|5 4|4
5 5 1 1 jdtspin(U7 Cl) 5 g i
i1 3 —— 11 [2]
5|3 313] [2] 53 313] | 1]
ilz| [1] @ il2| ©
2] 2]
U U,
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5|5
jdtspin(Ul’CQ) — 1 Z jdtspin(UQ’C?)) g g
R 5[5 [3] —— 5[5] [1]a
514 413 i 5|4 413 i
i3 B [ i3 3] [2
2[2] @ 122 I v B S
U, P(U)
bl 1] 135 bs[ 115 1[1]3
215 by| 2|4 1124 5154
— é jdt g N (V,b1) 2 — 4 jat g n(V1,b2) — 4 jat g n(V2,b3) — ? 4
1{514| —m— 115 _ 515 _ 513
414 414 5|3 i
413 413 4|
2] 2] 2]
\% Vi Vs, P(V)
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Chapter 8

Oscillating tableaux and King

tableaux

In this chapter, we introduce a set of oscillating tableaux O (A, £) for (\,£) € Z(Sp)a. It
will be used in the next chapter to define a recording tableau for P(T) obtained in the
previous chapter. We also present a bijection in [33] from O(\, /) to K(\, /), the set of
King tableaux of shape A, which is a well-known combinatorial model for the symplectic

character of Vg,,,(A) [20]. This chapter is organized as follows.

e In Section 8.1, we define the set O(\,¢) of oscillating tableaux and discuss their

properties.

e In Section 8.2, we recall the bijection between the set of oscillating tableaux and
the set of King tableaux in [33].

8.1 Oscillating tableaux

Recall that oscillating tableau is a sequence @) = (Q1, . .., @, ) of partitions such that each
adjacent partitions differs by exactly one box (cf. Section 5.2). We say that an oscillating
tableau @ = (Q1,...,Q,) is vertical if Q1 € -+ C Qs 2 -+ 2 @, for some 1 < s <r and
Q,/0Q1 and Q,/Q; is a skew diagram of vertical strip.

Definition 8.1.1. Suppose (A, ¢) € Z(Sp) is given. For n > Ay, define O(X, ¢;n) to be
the set of a sequence of oscillating tableaux Q = (QW : ---: Q) such that
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CHAPTER 8. OSCILLATING TABLEAUX AND KING TABLEAUX

(1) @ is itself an oscillating tableau,

(2) QW = (Qi1,...,Qiy,) is a vertical oscillating tableau for 1 < i < ¢,
(3) Qi ) <nfor1<i</land1l<j<r; and

(4) Q11 =Lland Qur, = pu(N, 0).

Let us consider a relation between O(\, ¢;n) for different choices of n. More precisely,
for @ € O(\, ¢;n), define o(Q) = Q= (Q(l) D @\(ﬁ)) to be the sequence such that Q)
is a vertical oscillating tableau with |C§(i)| = QY| +1=r;+1and

QY = ((NUQi1p,, (N UQir,-. ., (HUQiy) (1<i<0).

Since QU) is vertical for 1 < j < i — 1, we have K(Q;k) <1 for 1 <k <r;, and denote by
(1)UQ; & the partition obtained by adding i to @, as its first part, which is well-defined. It
is straightforward to check that o(Q) € O\, {;n+1) and 0 : O(\,;n) — O(N, 4;n+1)

is injective for n > A;. For example, if

D,H,a: , : :

@ Q) =

D Y H ) E ) : Y Y Y Y
@V.Q%) = —

then

By using o, we can consider a stable limit of oscillating tableaux. Especially, we can
define an equivalence relation using o, which is defined on [ | ., O(A,f;n) x {n} with

the relation
(Q',m) ~ (Q,n) if and only if c™™(Q) = ' (8.1)

for Q" € O(\,¢;m) and @ € O(A, ¢;n) with m > n. Then we define
O\ €) ={[Q:n][Q € O\ Lin) (n= M)},

where [@, n] is the equivalence class of @ € O(\, ¢;n) with respect to (8.1). In this case,
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CHAPTER 8. OSCILLATING TABLEAUX AND KING TABLEAUX

we call [@,n] € O(A,¢) an oscillating tableau of shape (A,¢), which can be views as a
stable limit of @ € O(A, 4;n) as n — oc.

Remark 8.1.2. We identify Q¥ = (QW : --.: Q) € O(\, £;n) with a tableau U® ¢
SSTr, (1)) (r; = |QW|) for 1 <4 < ¢ such that a (vesp. @) appears in U® if and only
if a box is added (resp. removed) in the a-th row in Q. Under this identification, we
view Q¥ as an element of the regular crystal F,, (6.3). Note that £Q (resp. FQW) is
obtained by removing (resp. adding) two components in Q corresponding to the letters
described in Remark 6.4.3 if it is not O.

Next, we define the weight of an oscillating tableau in O(\, ¢). Let a = (aq,...,a) €
Zﬁ. Take a sufficiently large n so that n —a; > 0 for 1 < i < . Define O(\, ¢;n), to be
the subset of Q = (QW : ---: Q¥) € O(\, £;n) such that

QY= (n—a) +2:(QY) (1<i<), (8.2)

where Q) is considered as an element of F,, by Remark 8.1.2.

Lemma 8.1.3. Under the above hypothesis,
(1) QD) +e(QW) = a; for 1 <i <,
(2) (QD) =e(QW) for 1 <i < {, where o(Q) = (QW : - - Q®), and
(5) o (O(A, 6;n)a) C O(N, £in+ 1)a.

Proof. (1) If £Q¥ = 0, then the tableau U®) € SSTy, ((1"7%)) corresponding to Q)
is admissible by Lemma 6.4.1 (2) and it is the highest weight vector of the regular sl,-
crystal of highest weight a; by (8.2). In general, each Q) € F,, belongs to a regular
highest weight sly-crystal. By Remark 6.4.3 and (8.2), the highest weight is a;. By the
description for the regular crystal, we have o(Q®) 4 £(Q®W) = a; for 1 < i < /.

(2) Let U® correspond to Q) by Remark 8.1.2. Then it is obtained from U® by
replacing k (resp. k) with k& + 1 (resp. k+ 1) for k > 1, and adding the box |1] at the
top. Since (ﬁf))c and U are obtained by replacing k with k + 1 for all £ > 1 without
any change of shapes, it’s done.

(3) By the construction in (2), we have [Q®| = |[QW| +1 = (n+ 1 — a;) + 26(Q®) =
(n+1—a;)+ 25(@(i)) and so it’s done. O

. -
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CHAPTER 8. OSCILLATING TABLEAUX AND KING TABLEAUX

From Lemma 8.1.3, we have the following weight decomposition

O\ 0) = | | O\ 0)a, (8.3)

1
aczy

where O(, ), is the set of equivalence classes [@, n] of Q € O(\, ¢;n)a. We call [Q,n] €
O(\, 0), an oscillating tableau of shape (), ¢) with weight a.

Example 8.1.4. Consider an oscillating tableau Q = (QW : Q® : Q®) € O\, ¢;n)
with A = (3,2,1),¢ =3, and n = 5.

(CEREREEPBPE

If we consider each Q) as an element in F,,, then we see that ¢(QW) = 2,5(Q®) = 0,
and (Q®) =1 and hence the weight of [Q,n] is a = (2,1, 1).

For (A, 0) € Z(Sp) and n > Ay, let
0.(\, £;n) = {@)Q — QW QY e O in), (QD)=0(1<i<0) }

Set Oo(A, 6;n)a = Oo(A, £;n) N O(N, £;n),. By Lemma 8.1.3, we have 0 (Oo(\, ;n)a) C
O, (A, ;n+1),. Hence the decomposition (8.3) induces the following weight decomposition

0.(A,0) = | | Oc(A 0)a,

)i
aczy

where O, (A, £), is the set of equivalence classes [Q,n] of @ € Oo(\, ¢;n),. We call
[Q,n] € Os(\, £) an admissible oscillating tableau of shape (X, ().

Proposition 8.1.5 (cf. Lemma 6.4.1). For (\,{) € 2(Sp) and a = (a1,...,as) € Z,
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we have a bijection

O\, 0)a—— Ou(\0)a X Z/(a+1)Z , (8.4)

@, n] ([0, n],£(Q))
where Z/(a+ 1)Z =7Z/(ay + 1)Z X --- X Z/(ay + 1)Z, and

Qo = (gmaxQ(l) C gmaxQ(é))’ £(Q) = (5@(1))7 o ,e(Q“)))

fOT Q = (Q(l) e Q(Z)) < O()\,f, n)a~

Proof. Choose a sufficiently large n and then the map sending @ € O(A, £;n)a to (Q.,e(Q))
is a bijection by Lemma 6.4.1 (3). Moreover, Lemma 8.1.3 tells us that the above bijec-
tion sends o(Q) to (0(Q.),e(Q)) with 0(Q)s = 0(Q,). Thus, the bijection induces a
well-defined bijection (8.4). O

Example 8.1.6. Let [Q,5] € O(\, {) be given in Example 8.1.4. Then the image of [Q, 5]
under (8.4) is
[(gmaXQ(l) :gmaXQ(Q) . gmaXQ(S))’ (270’ 1)]7

gm Q) = - H E)

|
gmaXQ(Q) _ L L L

where

) ) bl

gmaxQ(fS) _

In addition, the weight of @, is (5 —3,5—4,5—4) = (2,1,1), which coincides with that
of Q.
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8.2 King tableaux

For ¢ > 2, let
Jo={1<1<2<2<---<l</l},

where we assume that all the entries are of degree 0. For (A, ¢) € Z(Sp), let K(A,¢) be
the set of T' € SST7,(\) such that all entries in the ith row are larger than or equal to ¢
for all @ > 1. It is known as the set of King tableaux of shape A [20]. For our notational
coherence, let K(X, ¢;n) for n > A\ denote the set K(A,¢), where the columns of the

tableaux are enumerated by n,n — 1,...,1 from the left.
Let K € K(\, ¢;n) be given. We define a sequence of vertical oscillating tableaux
QUK;n) = (QW : . : QW) as follows: for 1 <i</fand1<j<mn,

(1) the letter 4 is contained in the jth column of K if and only if there is no step in Q®
such that a box is added in the jth row,

(2) the letter 7 is contained in the jth column of K if and only if there is a step in Q®
such that a box is deleted in the jth row.

Theorem 8.2.1. [33, Theorem 2.7] For A C (n*), we have a bijection

K\ ¢;n)— O\, 4n) .
K—Q(K;n)
Remark 8.2.2. In [33], the bijection is described using a horizontal analogue of oscillating

tableaux. By taking conjugate partitions to each element in oscillating tableaux, we obtain

the bijection in Theorem 8.2.1.

Example 8.2.3. Let A = (3,2,1) C (5%) with n = 5 and ¢ = 3, and

2]

e K(\ 6n).

I
|oo\ W [
Wl |+l

- . .
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Then

094 4 H H H: S HH FH
Q(K;n) = HEE EEZ___

Corollary 8.2.4. For A C (n%), we have a bijection

K\ () ——= O\ () . (8.5)
Kr—— [Q(Kvn)an]

Proof. By the construction of Q(K;n), it is straightforward to check that o(Q(K;n)) =
Q(K;n+1) for K € K(\, ¢;n). By Theorem 8.2.1, it’s done. O
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Chapter 9

Combinatorial Howe duality of

symplectic type

Finally, we are ready to state our main result, which gives a combinatorial realization of

the duality (1.3). This chapter is organized as follows.
e In Section 9.1, we describe the Pieri rule for the spinor model.
e In Section 9.2, we give the RSK correspondence for the spinor model.

e In Section 9.3, we consider the character identity associated to the RSK correspon-

dence and its application.

9.1 Pieri rule for the spinor model

For a = (ai,...,ar) € Z, let Ta(a) = Ta(ar) X --+ X Ta(ar). Take T = (1y,...,Th) €
T 4(a) and then regard it as an element in T 4((/n, ) for some skew diagram (/n with
¢,n € Py by properly shifting T; up. By Theorem 7.2.7, there exists a unique P(T) €
T (A, £) for some (A, £) € P(Sp)a, which is obtained by applying jdt,,,(,c) finitely
many times with respect to inner corners c.

Now define a recording tableau Q(T) for P(T) in terms of oscillating tableaux as
follows. Choose a sufficiently large n and take the n-conjugate T = (T,...,T;) of T. By
Corollary 7.1.7, T ¢ KN, s for some skew diagram «/f. Let

—ad

Q(T;n) =Q(T),
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where the right-hand side means the oscillating tableau Q(w(Tad)) in Theorem 5.2.4.
Lemma 9.1.1. Under the above hypothesis, we have
(1) Q(T;n) € Os(A, l;n)a,

(2) o(Q(T;n)) = Q(T;n +1).

Proof. (1) Note that the Z,,-column tableau T?d has height n—a;. Let w® = w; 1 - w; o, =

w(T?d). For1<i</Zand1l<k<n-—a put
Qg = shP (wh - wl™ D -y (9.1)

where we assume that w©® is the empty word. By Lemma 6.4.1 and Theorem 5.2.4, we
have

- QU = (Qins- -, Qin—g) is a vertical oscillating tableau with 5(Q(i)) =0,
CQ(T:n) = Qw® - w®) = (QW : ... QW)),

which implies that Q(T;n) € Oo(\, £;n)a.

(2) By definition of o and (9.1), o(Q(T;n)) = Q(@W - -- @), where W™ is obtained
from w® by replacing k (resp. k) with k41 (resp. k + 1 for £ > 1 and adding 1 ahead of
the first letter of w®. By Remark 7.1.3 and Proposition 6.3.5, we can easily check that
o(Q(T;n)) = Q(T;n +1). O

Define
Qu(T) = [Q(T; n), 1] € OL(\, O)a, 9.2)

which is well-defined by Lemma 9.1.1.

Theorem 9.1.2. For a = (ay,...,a;) € Z ., we have a bijection
Tul@)—= ||  Ta ) x Os(A0)a. (9.3)
(AMOEP(Sp) 4
T (P(T), Q(T))

¥ by N
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Proof. Let T be given. Choose a sufficiently large n and let T be the n-conjugate of T.
Put U = T and V = U2, By Corollary 7.2.5, we have the following commuting diagram:

—Y _p(T) (9.4)

T
I]JI—>P(U)
|

where Y is a sequence of jdt,5’s (5.7), and ) is the corresponding sequence of jdt
(7.7). Recall Q,(T) = [Q(V),n].

To show that the map is injective, suppose (P(T), @.(T)) = (P(T'), Qo(T")) for T, T €
T 4(a). Assimilarly, U’ = T" and V' = U, Since P(T) = P(T'), we have P(V) = P(V').
In addition, since Q,(T) = [Q(V), n], we have Q(V) = Q(V’). We claim that

spm

KN(n_w) X X KN(n_al) —_— I_l KNPn(N@) X OO()\,& n)a (95)
(MO)eP(Sp)n

Vi (P(V),Q(V))

is a bijection. Theorem 5.2.4 states that (V) is constant on its connected component
and shows that the map is a morphism of sp,,-crystals. Using the combinatorial rule of
tensor product decomposition [36], we see that Q(V) uniquely determines a highest weight
element in the connected component and hence the map is injective. On the other hand,
for a given pair (H,, (¢, Q) on the right-hand side of (9.5), one can construct directly T
such that ¢;T = 0 for 1 <i <n and Q(T) = @ again by [36]. This implies the surjectivity
of (9.5). Hence, we have V.= V' and T =T’ by (9.4).

The surjectivity of the map follows from (9.4) and the bijection (9.5). O

Example 9.1.3. Let T = (T3,75,77) be given in Example 7.1.4. By Example 7.2.8, we
get

2 [
1] [z
P(T)=| [2]2]. [3]2]. [v
sla] ] ]3]
1/ 2/ 3/
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The bijection (7.1) gives

—=ad

= ot >—‘|

oI W= O DO

|l\.’)|»-l>\»-l> —

and we have (cf. Example 5.2.5)

D,H,E: l, , ; : ) ; )

Qo(T) =

9.2 RSK correspondence

We give an analogue of the RSK correspondence for the spinor model. Let FY = E¥ for
(> 1.

Lemma 9.2.1. We have a bijection
Fly— | | Tale) xZ/(a+1)Z,
Tr——— (F""T, o(T))

where F™(T) = FYTMT and the union is over a € Z,. such that T 4(a) # (.

Proof. Let T € Fl be given. Then F™>T € SST4(\(a,0,c)) for some a,c € Z; by
Lemma 4.3.3. It means that the connected component of T is a regular sly-crystal with
highest weight a. Then it is straightforward to check that the map is bijective by the fact

that £ and F are inverse to each other whenever they yield a nonzero element. O

Remark 9.2.2. Lemma 9.2.1 is essentially the same as Lemma 6.4.1 when A = [n].
The first components of the right-hand side of two bijection correspond to each other by
Proposition 6.3.5, and the second ones correspond to each other by the complement to a,
i.e., (T) + ¢(T) = a holds. Roughly speaking, the second component of the right-hand

side in both bijections means how far from being admissible.

We generalize Lemma 9.2.1 in the case of {-tuples of F¥,.
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Corollary 9.2.3. We have a bijection

|_|TA )X Z/(a+1)Z ,

T (F™T, ¢(T))

where

FHT = (F(Ugp, Ugg_1), - . ., F¥(Us, Uy)),
QO(T) = (90<U2e; U2ef1), . 7S0(U2, U1))7

for T = Uy, ..., Uy) € Ty(a) and the union is over a € Z' such that T 4(a) # 0.
+

Example 9.2.4. Suppose that A = 3. If

T ;
then we have
4 1 212
312 213 12
FaXT = , T) = (1,0,2).
= P(T) = (1,0,2)
o 3 3]

Now, consider the composition of the following sequence of bijections.

Fya—% | | Ta@) xZ/(a+1)Z

aEZZ
2 [ Ta 0 x 0.0 0. x Z/(a+ 1)Z
acZt (\OEP(Sp)a
7 . |_| T.A()Hg) X O<)\’€>
(AO)EP(Sp)a
. T.A()‘ag) X K<)\’£>
AOEP(Sp)a

76 . H _
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Let (P(T),Q(T)) denote the image of T € FY under the composition of (9.6), (9.3), and
(8.4). Let (P(T),Q(T)) denote the image of (P(T),Q(T)) under (8.5). Hence we obtain

the following correspondence, which is the main result in this thesis.

Theorem 9.2.5. For ¢ > 1, we have a bijection

FY || Tah0 x KO, 0).

(MDEP(Sp) a
T (P(T),Q(T))

Example 9.2.6. Let T € F? be the one given in Example 9.2.4. Combining Examples
9.2.4, 9.1.3, 7.2.2, 8.1.6, and 8.1.4, we have (P(T),Q(T)) € Ta(\,3) x O(),3) for A =
(3,2,1), where

2 [
1] ]2
2] [3]2] [1
P(T) =T (v I3
T 5% 3

The oscillating tableau Q(T) corresponds to a King tableau K in Example 8.2.3 under
(8.5). Hence Q(T) € K(A, 3), where

2],

QT) =

|oo\ W [
wl [l

Remark 9.2.7. When A =[], the right-hand side of the bijection in Theorem 9.2.5 has
an (sp,,, §pyy)-bicrystal structure. On the other hand, FY is an sp,,-crystal by (9.6), and

g B
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the bijection is an isomorphism of sp,, -crystals. However, we do not know yet how to
define an sp,,-crystal structure on F¢ directly so that the bijection is an isomorphism of

(8py,, 5Py )-bicrystals.

9.3 Symplectic Cauchy identity

Let z = zp = {21,...,2¢} be formal commuting variables, which commute with x =
x4 = {z,|a € A} (cf. Section 6.1). For A = [n], write x,, = x},) = {21,...,2, }. For
K € K(\ /) with (\,¢) € 2(Sp), let z&¥ = [Ticig z """ where m; (resp. mj) is the

number of occurrences of i (resp. 7) in K. Then put

spa(z) = Z 7

KeK(\0)

It is well-known that spy(z) is the character of the irreducible highest weight module of
Spo(C) with the highest weight corresponding to A.
Let U = (Uy,...,U;) € FY be given with u; = ht(U;). Let xV = [[-%, xY and

U _ Ui —U4—1
z- = [licig % . Then we have

-1
chFY, - ZXUZU HHaEA (1 22y )L+ 20 ).

e, (1 —2e2;)(1 — TaZj )

Theorem 9.3.1. We have the following identity.

¢ _
HaE.Ao(]' + zq25) (1 + TaZ o)

t* == Y Spu(xa)spa(z)
o7 o, (1= 2az;)(1 — 2az;7) (MO)EP(Sp) 4

j=1 J
Proof. Suppose U = (Uy, ..., U;) € FY; is mapped to (T, K) by Theorem 9.2.5 and then
it suffices to show that xYz U_ XT K Since xY = xT is clear, it remains to show that
U_ K
zY = zX.

Suppose that U is mapped to (T, @) by (9.6) where T = (Ty,...,T1) € T4(a) for
some a € Z{ and @ = (pr, ..., 1) €Z/(a+ 1)Z.

For a sufficiently large n, take the n-conjugate T = (Ty,...,T1) of T and ™ =
(T3, ..., T3%). Suppose T is mapped to (P(T), Qo(T)) by (9.3), where P(T) € T 4(\,¢)

s -
T J =11 7=
78 A =TH
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for some (A, ¢) € Z(Sp) and Qo(T) = [Q(T;n),n] € O.(A,{), with

Q(T;n) = (QW:---: Q")

as given in (9.1). Note that |[Q¥| = n —a; for 1 < i < ¢. If (Q(T;n), @) is mapped
to [Q',n] by (8.4), then Q' = (Q™ : ---: Q'¥) € O(\ £;n)a. In particular, we have
QD = QW] +2¢; =n —a; +2¢; for 1 <4 < (.

Let u; = ht(U;) for 1 < j < 20, and t = ht(T?d)i for 1 <4 < ¢. Suppose that (9.6)
sends (Us;, Us; 1) to (T}, ;) for some T; € T 4(a;). By (6.2), we have n — ¢t = ht(T}) and
t7 = ht(TF). Since T; = F¥i(Uy;, Ugi_1), we have ht(TF) = ug;+p; and ht(TF) = ug;_1— ;.
Then we have

a; = ht(TF) — ht(T}) = ug; — ugi_1 + 2.

On the other hand, it is straightforward to see from the bijection in Theorem 8.2.1 that
Q9| = (n —m;) +m;. Since |Q'®| =n — a; + 2¢;, we have

a; — 2¢0; = m; —m;

U_ K ]

for 1 <7 < /. Hence m; — m; = ug; — Ug;—1 and this proves z z".

Let us end this section with well-known identities that can be recovered from Theorem
9.3.1 under special choices of A. First, assume that A = [1]. Let P = @;_, Ze; be the
weight lattice for sp,,, in Section 5.1, and let Z[P] be its group ring with the formal linear
basis {e*|p € P}. Note that w, = €; + -+ + €,, the n-th fundamental weight. For
0<a<nandT € T,(a), define

wt(T') = w,, — Zmiei,
i=1

where m; is the number of occurrences of ¢ in 7. For a = (ay,...,a¢) € Zﬂ and T =
(Ty, ..., Th) € T,(a), define wt(T) = S0, wt(T).
For a tableau K with letters in Z,, let

n

wt(K) =) (m; —my)e;,

i=1

where m,, is the number of occurrences of a € Z,, in K. It is easy to check that wt(T) =

3 o i
79 M = TH
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wt(T24) for any T € T, (a), and hence (6.2) and (7.1) are weight-preserving bijections.
By identifying z; = 2;* = e~% € Z[P] fori € [n] and t = e =, ---x,, in (6.1),

Sooxa)= Y taxd= Y M@= Y T =g, (%),

TET, (A0 TET, (A0 T2eKN, (1)

The following identity follows immediately from Theorem 9.3.1 and the identity z; +x; ' +
zi+ a2 =l +a )L+ a7 2.

Corollary 9.3.2 ([19]). Forn,¢ > 1, we have

n £
T+ + 2427 = D sppunn(x0)spa(2).

i=1j=1 AC(n?)

Next, assume that A = [n]’. For £ > n, there exists a bijection in [27, Theorem 6.5]

Tu(\ ) — | | SSTa(X) x SSTu(B7),

B:even

which gives the identity

S (xa) = thsx(xa) Y sp(xa) = tsa(xa) Y spr(xn).

B:even B:even

Here we call a partition [ even if all of its parts are even. Also, note that we have

su(xa) = Z XZl = Z X[Tn] = s (Xn)

TEeSST () TESST (1)

for p € & by identifying xy = x; for i € [n]. By Theorem 9.3.1, we also recover the
well-known classical identity due to Littlewood [35] and Weyl [45].

Corollary 9.3.3 ([35,45]). For { >n > 1, we have

n £
H H(l —aiz) (L —mz ') = Z spa(z)sa(xn) H (1 —ax;)™"
i=1 j=1 ((N<n 1<i<j<n
= Z spa(z) s (%) Z $5(Xn)-
L(AN)<n B’:even

- . .
80 "':I'H-_E _'k.l_- o i | _..:.I |-
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Remark 9.3.4. The bijection in Theorem 9.2.5 even when reduced to the above cases is
completely different from the ones in [43] and [42] for the identities in Corollaries 9.3.2
and 9.3.3, respectively, where the insertion algorithm in terms of the King tableaux is

used.
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