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Abstract

In this paper, we investigate the energy landscape of the two-component

spin systems, known as the Curie–Weiss–Potts model, which is a general-

ization of the Curie–Weiss model consisting of q ≥ 3 spins. In the energy

landscape of a multi-component model, the most important element is the

relative strength between the inter-component interaction strength and the

component-wise interaction strength. If the inter-component interaction is

stronger than the component-wise interaction, we can expect all the compo-

nents to be synchronized in the course of metastable transition. However, if

the inter-component interaction is relatively weaker, then the components

will be desynchronized in the course of metastable transition. For the two-

component Curie–Weiss model, the phase transition from synchronization

to desynchronization has been precisely characterized in studies owing to

its mean-field nature. The purpose of this paper is to extend this result

to the Curie–Weiss–Potts model with three spins. We observe that the

nature of the phase transition for the three-spin case is entirely different

from the two-spin case of the Curie–Weiss model, and the proof as well

as the resulting phase diagram is fundamentally different and exceedingly

complicated.

Key words: Phase transition, Spin system, Curie–Weiss–Potts model,

Energy landscape, Multi-component model
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Chapter 1

Introduction

The Ising model is a ferromagnetic spin system consisting of two spins and

plays a vital role in the mathematical study of stochastic interacting sys-

tems. In particular, its rich phase transition behaviors have been rigorously

studied over the last century. One of the simplest Ising model is the Curie–

Weiss model, which is an Ising model defined on a complete graph. Owing

to its mean-field feature, it is possible to completely characterize the energy

landscape of the Curie–Weiss model; essentially, everything is known for

this model. We refer the reader to a monograph [18] for a comprehensive

discussion of these classic results.

The Potts model is a ferromagnetic spin system consisting of q ≥ 3 spins

and hence, can be regarded as a simple extension of the Ising model. A

surprising fact is that in most cases, the Potts model exhibits qualitatively

different and more complex behaviors than the Ising model. For example,

the characterization of the critical temperature for the Potts model on a

lattice requires a non-trivial argument and is obtained in [1], and the phase

transition at this temperature is known to be continuous as in the Ising

model if q ≤ 4 (cf. [5]). For q > 4, the phase transition is discontinuous

(cf. [6]).

The Potts model on a complete graph is called the Curie–Weiss–Potts

model, and it has been investigated in [11, 19, 20]. Even if it is a mean-
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CHAPTER 1. INTRODUCTION

field model, allowing us to perform dimension reduction on q variables

representing the empirical magnetization vector, the analysis of the energy

landscape is not a simple task. The phase transition of the scaling limit of

the mean-field free energy of the Curie–Weiss–Potts model has been stud-

ied in [9]. The energy landscape was first studied in [3] from the viewpoint

of equivalent and nonequivalent ensembles of phase transitions. For q = 3,

the complete analysis of the energy landscape is carried out in [13,14] and

the metastability of the Glauber dynamics has been studied based on it

in [14]. The cut-off phenomenon for the high-temperature regime has been

proved in [4] for all q ≥ 3. Extending the computation for a model with

q ≥ 4 is far more complicated and has been carried out recently in [15]. It

has been observed in that study that the structure of the energy landscape

for the model with q ≥ 5 differs from that of the model with q = 3, 4.

Recently, investigations on multi-component Curie–Weiss or Curie–

Weiss–Potts models have garnered much interest. These models are de-

fined on a complete graph; however, the vertices are divided into several

groups of macroscopically non-negligible sizes . The interaction strength

between two sites depends on the groups to which these sites belong. Then,

the empirical magnetization for each component interacts with the other

components, and therefore rich behaviors according to the temperature

and interaction parameters are expected. This has been investigated in re-

cent literature. For example, [12] presented the law of large numbers and

large deviation principle for the empirical magnetizations for the multi-

component Curie–Weiss–Potts model. The corresponding central limit the-

orem and moderate deviation principle have been investigated in [10], and

the central limit theorem for the joint distribution for empirical magneti-

zation in the two-component Curie–Weiss–Potts model has been analyzed

in [16] by inspecting the limiting behavior of the free energy. As observed

in these studies, the Curie–Weiss–Potts model maintains the mean-field

feature; however, the structure of the energy landscape might be qual-

itatively different from that of the one-component model provided that

the inter-component interaction parameters are considerably different from

2



CHAPTER 1. INTRODUCTION

the component-wise interaction. The present study seeks to quantitatively

characterize the borderline for this behavior in terms of the relative inter-

action strengths between the component, and this is done by analyzing the

energy landscape of the simplest possible multi-component Curie–Weiss–

Potts model, namely the two-component model with three spins. We will

verify that even in this simplest possible case, with a mean-field struc-

ture, the energy landscape is unbelievably complicated and therefore its

complete characterization is a highly demanding task. We remark that

this investigation has been carried out for the two-component Curie–Weiss

model in [2], but our work shows that not only the proof but also the

results for the Curie–Weiss–Potts model are fundamentally different.

3



Chapter 2

Main Results

2.1 Two-component Curie–Weiss–Potts Mod-

els

We first define the two-component Curie–Weiss–Potts model. For the sim-

plicity of notation, we assume that two components Λ
(1)
N = {1, . . . , N}

and Λ
(2)
N = {1, . . . , N} are of the same size. We consider a spin system on

ΛN = Λ
(1)
N ∪ Λ

(2)
N .We denote the set of spins by S = {1, . . . , q} and define

Ω = SΛ
(1)
N × SΛ

(2)
N

to be the set of spin configurations. Each configuration σ in Ω is denoted

by σ = (σ(1), σ(2)) where

σ(k) = (σ
(k)
1 , . . . , σ

(k)
N ) ; k = 1, 2,

and where σ
(k)
i denotes the spin assigned at site i of the k-th component

Λ
(k)
N .

Now we define the Curie–Weiss–Potts (CWP) measure on Ω. We fix

4



CHAPTER 2. MAIN RESULTS

J11, J22, J12 ≥ 0 and define the CWP Hamiltonian HN : Ω → R by

HN(σ) = − 1

N

∑
k=1, 2

∑
1≤i<j≤N

Jkk ·1{σ(k)
i = σ

(k)
j }− 1

N

N∑
i, j=1

J12 ·1{σ(1)
i = σ

(2)
j }.

(2.1.1)

We denote the Gibbs measure on Ω associated with the Hamiltonian HN

at the inverse temperature β > 0 by µN, β:

µN, β(σ) =
1

ZN, β

e−βHN (σ),

where ZN, β is the partition function defined by

ZN, β =
∑
σ∈Ω

e−βHN (σ).

The measure µN, β is called the CWP measure, and its energy landscape is

what we seek to determine.

In order to simplify the question of the phase transition according to

the relative interaction strength, we assume that

J11 = J22 =
1

1 + J
and J12 =

J

1 + J

for some J > 0, where J denotes the relative strength of the inter-component

interaction with respect to the component-wise interaction. With this no-

tation, (2.1.1) can be rewritten as

HN(σ) = − 1

N

∑
k=1, 2

∑
1≤i<j≤N

1

1 + J
·1{σ(k)

i = σ
(k)
j }− 1

N

N∑
i, j=1

J

1 + J
·1{σ(1)

i = σ
(2)
j }.

5



CHAPTER 2. MAIN RESULTS

2.2 Distribution of Empirical Magnetization

For σ ∈ Ω, we denote by1 r(k)(σ) = (r
(k)
1 (σ), . . . , r

(k)
q (σ)), k = 1, 2, the

empirical magnetization of the component Λ
(k)
N , i.e.,

r(k)u (σ) =
1

N

N∑
i=1

1{σ(k)
i = u} ; u ∈ S.

We write r(σ) = (r(1)(σ), r(2)(σ)). Our main concern in this paper is the

distribution of the empirical magnetization r(σ) under the CWP measure

µN, β and we shall analyze its qualitative and quantitative behavior as J

and β vary.

The main feature of the mean-field type model as in the CWP model

is the dimension reduction. To explain this in more detail, let Ξ be the

(q − 1)-dimensional simplex defined by

Ξ =

{
x = (xu)1≤u≤q ∈ [0, 1]q :

q∑
u=1

xu = 1

}

and let ΞN = Ξ ∩ (N−1Z)q. Then, we have r(σ) ∈ Ξ2
N ⊂ Ξ2 for all σ ∈ Ω.

Notation 2.2.1. Since r
(k)
q (σ) = 1 −

∑q−1
u=1 r

(k)
u (σ), there is no risk of con-

fusion in regarding

r(k)(σ) = (r
(k)
1 (σ), . . . , r

(k)
q−1(σ)).

Similarly, we can regard

Ξ =

{
x = (xu)1≤u≤q−1 ∈ [0, 1]q−1 :

q−1∑
u=1

xu ≤ 1

}
.

Hence, we shall use these two alternative expressions of the coordinate

1For notational simplicity, we do not stress the dependency of this object to N ; the
same convention will be used throughout this paper.

6



CHAPTER 2. MAIN RESULTS

vectors interchangeably depending on the context.

Owing to the symmetry among the sites of the same component, we can

reduce the complicated spin spaces Ω into Ξ2
N by looking at the empirical

magnetization. To rigorously explain this, we denote by νN, β(·) the measure

on Ξ2
N representing the distribution of empirical magnetization r(σ) under

µN, β, i.e., for x = (x(1), x(2)) ∈ Ξ2
N ,

νN, β(x) =
∑

σ∈Ω:r(σ)=x

µN, β(σ) =
∑

σ∈Ω:r(σ)=x

1

ZN, β

e−βHN (σ).

Then, we have the following expression for νN, β(·).

Proposition 2.2.2. We can write

νN, β(x) =
1

ẐN, β, J

exp

{
−N β

1 + J

(
Fβ, J(x) +

1

N
GN, β(x)

)}

for some constant ẐN, β, J > 0 where

Fβ, J(x) = H(x) +
1 + J

β
S(x) and

GN, β, J(x) =
1 + J

2β
log

( ∏
k=1, 2

q∏
j=1

x
(k)
i

)
+O

(
N−(q−1)

)
, .

where

H(x) = −
∑
k=1, 2

q∑
i=1

1

2
(x

(k)
i )2 − J

q∑
i=1

x
(1)
i x

(2)
i and

S(x) =
∑
k=1, 2

q∑
i=1

x
(k)
i log x

(k)
i .

We give a proof in Appendix A. We note that Fβ, J indeed corresponds

to the free-energy of the spin system and dominate the energy landscape

7



CHAPTER 2. MAIN RESULTS

associated with the empirical magnetization. The role of GN, β, J is limited

to the sub-exponential factor, and hence will be neglected in the remainder

of this paper. Our primary concern is the analysis of the function Fβ, J .

2.3 Two Extreme Cases

In this section, we first discuss two extreme cases for q = 3 to explain the

main objective of this paper.

1. J = ∞ (i.e., J11 = J22 = 0 and J12 = 1) ; no component-wise

interaction,

2. J = 0 (i.e., J12 = 0 and J11 = J22 = 1) ; no inter-component interac-

tion.

In both cases, the calculations are similar. However, there is a considerable

difference between the two cases. To introduce these results, we define a

function ξ :
(
0, 1

2

)
→ [0,∞) by

ξ(x) :=
1

1− 3x
log

1− 2x

x
. (2.3.1)

The function ξ(x) has a unique global minimum; thus, we denote this value

by β1 > 0. We also define

β2 :=
2(q − 1)

q − 2
log(q − 1) = 4 log 2 and β3 := 3,

which will be used later. Note that the β2 is introduced in [3, 7, 8, 15] and

β1 ≈ 2.7465 < β2 ≈ 2.7726 < β3. For a given β > β1, the equation

β = ξ(x) has two solutions because ξ(x) is convex. In this case, we denote

the smaller solution by xs = xs(β) and the larger one by xl = xl(β). Then,

we define sets

S = S(β) = {permutations of (xs, xs, 1− 2xs)} ,

8



CHAPTER 2. MAIN RESULTS

L = L(β) = {permutations of (xl, xl, 1− 2xl)} .

Furthermore, we define the set of this kind for the two-component case as

S2 = S2(β) :=
{(

xs,2,xs,2

)
∈ Ξ2

N : xs,2 ∈ S
}
,

L2 = L2(β) :=
{(

xl,2,xl,2

)
∈ Ξ2

N : xl,2 ∈ L
}
.

We denote the point
(
xs,2,xs,2

)
∈ S2 by xs, and the point

(
xl,2,xl,2

)
∈ L2

by xl. Now, we can define the following definitions.

Definition 2.3.1. The two components are said to be synchronized if all

the local minima and lowest saddles of Fβ, J belong to either S2 or L2.

Otherwise, the two components are said to be desynchronized.

Therefore, under the synchronization regime, the two components are

synchronized in the course of metastable transition from a local minima

to a global minima. More precisely, it is well known that the metastable

transition from a local minima m to another on m′ passing through a

lowest saddle σ between them follows (in the macroscopic scale) the so-

called instanton path defined by

ẋt = ∇Fβ, J(xt) ; lim
x→−∞

xt = σ and lim
x→+∞

xt = m ( or m′),

especially when we consider heat-bath Glauber dynamics. One can notice

that, if the starting configuration σ is synchronized in the sense that its

two coordinates are same, then the same property holds for xt for all

t > 0 by the symmetry of the potential Fβ, J . Rigorous verification of

this fact follows from elementary computations and therefore we omit the

detail. This implies that the synchonization property persists along the

course of entire metastable transition. Of course, on the other hand, the

two components are desynchronized in the course of metastable transition

if we are in the desynchronization regime. Then, we have the following

results for the extreme cases.

Theorem 2.3.2. Suppose that q = 3.

9



CHAPTER 2. MAIN RESULTS

1. If there is no component-wise interaction in each component, then

the two components are synchronized.

2. If there is no inter-component interaction between the two compo-

nents, then the two components are desynchronized.

2.4 Synchronization–Desynchronization Phase

Transition

In the previous section, we defined synchronization between the compo-

nents and stated the results of the two extreme cases. Naturally, it can

be expected that synchronization occurs when J is sufficiently large. How-

ever, when J is sufficiently small, one expected that synchronization to

be broken. In this section, we introduce results on the boundaries of the

synchronization when q = 2 and q = 3, respectively. The Ising case (i.e.,

q = 2) can be handled as in [2] and it can be restated as the following

theorem, and more comprehensive results are stated in Theorem 3.0.4.

Theorem 2.4.1. Suppose that q = 2. Define a function ζ1 : [2,∞) →
[0,∞) by

ζ1(β) :=
β − 2

β + 2
. (2.4.1)

If J > ζ1(β), then the two components are synchronized. However, if J <

ζ1(β), then the two components are desynchronized.

Nevertheless, for q ≥ 3, the synchronization–desynchronization phase

transition is very complicated to analyze. We explain this for the case

q = 3. We define functions ψ1, ψ2, ψ3 : [0,∞) → [0,∞) by

ψ1(β) =
β − 1

xl

β + 1
xl

· 1{β ≥ β3}, ψ2(β) =
β − 1

3xl(1−2xl)

β + 1
3xl(1−2xl)

· 1{β1 ≤ β ≤ β3}, and

(2.4.2)

10
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Figure 2.4.1: These are diagrams of functions of the inverse temperature
β, and the β-value of A ≈ 3.1255 and B ≈ 3.8290. The purple curve
represents the overlapping of functions ψs and ψd.

ψ3(β) =
β − 3 +

√
25β2 − 50β + 1

2(1 + 6β)
.

A constant Jc ≈ 0.2419 will be specified later in Theorem 4.3.5. Then, we

have the following main results.

Theorem 2.4.2 (Main Theorem). We define functions ψs, ψd : [0,∞) →
[0,∞) by

ψs(β) =

{
0 β ≤ β1,

max[ψ1(β),min{Jc, ψ3(β)}] β > β1,
and ψd(β) = ψ1(β)+ψ2(β).

If J > ψs(β), then the two components are synchronized. However, if J <

ψd(β) , then the two components are desynchronized.

We conjecture that there exists ψ : [0, ∞) → [0, ∞) such that the syn-

chronization happens if and only if J > ψ(β). We proved this by verifying

that ψ(β) = 0 for β ≤ β1 and ψ(β) = ψ1(β) for β > βc where βc ≈ 3.8290.

This type of behavior might hold for any multi-component Curie–Weiss–

11
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Potts model, but conditioned on the analysis and results of this paper, it

will not be easy to characterize it. This question will be pursued future

studies.

12



Chapter 3

Ising Model on Bipartite

Graph

In this section, we deal with the Ising case. We do this because we present

a more comprehensive proof and provide simplified versions of the calcu-

lations when q = 3. This emphasizes that there is a significant difference

between q = 2 and q = 3.

From Proposition 2.2.2, the function Fβ, J for q = 2 is given by

Fβ, J(x, y) = −1

2

{
x2 + (1− x)2 + y2 + (1− y)2} − J{xy + (1− x)(1− y)

}

+
1 + J

β
{x log x+ (1− x) log(1− x) + y log y + (1− y) log(1− y)} .

Here, we used the notation x for x
(1)
1 and y for x

(2)
1 to simplify the expres-

sion. To investigate the critical points of Fβ, J(x), computing the partial

derivatives of the function yields

∂Fβ, J

∂x
(x, y) = (1− 2x) + J(1− 2y) +

1 + J

β
log

(
x

1− x

)
= 0,(3.0.1)

13



CHAPTER 3. ISING MODEL ON BIPARTITE GRAPH

∂Fβ, J

∂y
(x, y) = (1− 2y) + J(1− 2x) +

1 + J

β
log

(
y

1− y

)
= 0.

An elementary computation shows that the Hessian matrix of the function

Fβ, J is

∇2Fβ, J(x, y) =

(
1+J

βx(1−x)
− 2 −2J

−2J 1+J
βy(1−y)

− 2

)
. (3.0.2)

Since the function (1−2x)+J(1−2y)+ 1+J
β

log
(

x
1−x

)
is point symmetric at(

1
2
, 1
2

)
, substituting x = s+1

2
and y = t+1

2
for −1 ≤ s, t ≤ 1 into equations

in (3.0.1) yields

Θ(s) = t and Θ(t) = s, (3.0.3)

where

Θ(s) =
1

J

(
−s+ 1 + J

β
log

1 + s

1− s

)
.

Now, we define a function ζ2, : [2,∞) → [0,∞) by

ζ2(β) =

√
β(β − 2)− 2 log{(

√
β +

√
β − 2)/

√
2}√

β(β − 2) + 2 log{(
√
β +

√
β − 2)/

√
2}
. (3.0.4)

Recall that ζ1 was defined in (2.4.1). By elementary computations, we

obtain that

ζ1(2) = ζ2(2) = 0, ζ1(β) > ζ2(β) for all β > 2,

and

lim
β→∞

ζ1(β) = lim
β→∞

ζ2(β) = 1.

Then, we have the following proposition.

Proposition 3.0.1. Consider the system of equations (3.0.3).

1. If Θ′(0) > 1, then (3.0.3) has only one solution at the origin.

2. If −1 < Θ′(0) < 1, then (3.0.3) has three intersections.

14
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3. If Θ′(0) < −1, then (3.0.3) has at least five intersections. Moreover,

if

Θ(γ) < −γ, where γ :=

√
β − 2

β
, (3.0.5)

then (3.0.3) has nine intersections.

Proof. The graphs in (3.0.3) is plotted similarly to Figure 3 in [2] depending

on the value of Θ′(0). Note that Θ(s) is point symmetric at (0,0) and Θ′(s)

has a unique minimum at s = 0.

(1) and (2) are straightforward.

(3) If Θ′(0) < −1, then (3.0.3) begin to intersect the line t = −s at two
points, except the origin. Note that Θ′(γ) = 1. If we denote the positive

solution of Θ(s) = −s by s+, then the condition (3.0.5) means that γ < s+.

Thus, (3.0.3) has two more intersections in the fourth quadrant, and by

symmetry, there are two more intersections in the second quadrant. This

completes the proof.

From the definitions of functions ζ1 and ζ2, and the properties of func-

tion Θ, we have the following lemma.

Lemma 3.0.2. Consider the functions ζ1, ζ2, and Θ. Then, we have the

following equivalence conditions.

1. β < 2 if and only if Θ′(0) > 1.

Suppose that β > 2.

(2) J > ζ1(β) if and only if −1 < Θ′(0) < 1. However, J < ζ1(β) if and

only if Θ′(0) < −1

(3) J < ζ2(β) if and only if the inequality (3.0.5) holds.

Proof. The results can be obtained from straightforward computations.

15



CHAPTER 3. ISING MODEL ON BIPARTITE GRAPH

Lemma 3.0.3. Suppose that (a, b) is a critical point of Fβ, J(x, y) and let

λ1, λ2 be the eigenvalues of the Hessian matrix ∇2Fβ, J(a, b). Then,

1. λ1 + λ2 > 0 if and only if Θ′(2a− 1) + Θ′(2b− 1) > 0.

2. λ1λ2 > 0 if and only if Θ′(2a− 1)Θ′(2b− 1) > 1.

Proof. The derivative of the Θ(s) is

Θ′(s) =
1

J

(
1 + J

β

2

1− s2
− 1

)
.

By basic concepts in linear algebra and (3.0.2), we can derive the following.

(1) The first result is calculated as

λ1 + λ2 = tr
(
∇2Fβ, J(a, b)

)
=

1 + J

βa(1− a)
+

1 + J

βb(1− b)
− 4

= 2J(Θ′(2a− 1) + Θ′(2b− 1)),

(2) The second result is calculated as

λ1λ2 = det
(
∇2Fβ, J(a, b)

)
=

(
1 + J

βa(1− a)
− 2

)(
1 + J

βb(1− b)
− 2

)
− 4J2

= 4J2(Θ′(2a− 1)Θ′(2b− 1)− 1).

This completes the proof.

Now, we can categorize all the critical points of Fβ, J as done in [2].

We have further found the function (3.0.4), which is the boundary of the

phase transition, and compared the value of the local minima.

Theorem 3.0.4 (Classifications of the critical points of Fβ, J).

The critical points of Fβ, J can be classified as follows.

1. If β < 2, then Fβ, J has unique local minimum at
(
1
2
, 1
2

)
.

Now, suppose that β > 2.

16
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(2) If J > ζ1(β), then Fβ, J has two global minima and a saddle point at(
1
2
, 1
2

)
.

(3) If ζ2(β) < J < ζ1(β), then Fβ, J has two global minima, two saddle

points, and a local maximum at
(
1
2
, 1
2

)
.

(4) If J < ζ2(β), then Fβ, J has two global minima, two local minima,

four saddle points, and a local maximum at
(
1
2
, 1
2

)
.

Proof. (1), (2) and (3) are straightforward by Proposition 3.0.1, Lemma

3.0.2 and 3.0.3.

(4) By the aforementioned proposition and lemmas, there are four local

minima, four saddle points and a local maximum at
(
1
2
, 1
2

)
. Thus, it re-

mains only to compare the values of the four local minima. We denote the

intersections of Θ(s) and t = s by (s1, s1) and (−s1,−s1). Moreover, we

denote the intersections of Θ(s) and t = −s by (s2,−s2) and (−s2, s2). It
is obvious that s1 > s2. If we set x1 =

1+s1
2

and x2 =
1+s2
2

, then by Lemma

3.0.3, Fβ, J has local minima at (x1, x1), (1− x1, 1− x1), (x2, 1− x2), and

(1− x2, x2). By symmetry, we have

Fβ, J(x1, x1) = Fβ, J(1−x1, 1−x1) and Fβ, J(x2, 1−x2) = Fβ, J(1−x2, x2).

In this case, we claim that

Fβ, J(x1, x1) < Fβ, J(x2, 1− x2). (3.0.6)

From the definitions of s1 and s2, we obtain

Js1 =
1 + J

β
log

1 + s1
1− s1

− s1 and − Js2 =
1 + J

β
log

1 + s2
1− s2

− s2.(3.0.7)

An elementary calculation using the equations in (3.0.7) shows that

Fβ, J(x2, 1− x2)− Fβ, J(x1, x1) =
1 + J

β
(f(s1)− f(s2)),

17
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where f(x) = x
2
log 1+x

1−x
− 2

{(
1+x
2

)
log
(
1+x
2

)
+
(
1−x
2

)
log
(
1−x
2

)}
. Since the

function f(x) is increasing on x > 0, and since s1 > s2, we conclude that

(3.0.6) holds. Therefore, Fβ, J has global minima at (x1, x1) and (1−x1, 1−
x1), and has local minima at (x2, 1− x2) and (1− x2, x2). This completes

the proof.
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Chapter 4

Potts Model on Bipartite

Graph with Three Spins

In this section, we prove Theorem 2.4.2, which is the main result. In sec-

tion 4.1, we deduce the necessary conditions for the critical points of the

function Fβ, J and calculate the eigenvalues of its corresponding Hessian

matrix. In section 4.2, we prove Theorem 2.3.2 by considering the two

extreme cases, respectively, in Theorem 4.2.2 and Theorem 4.2.1. In sec-

tion 4.3, 4.4, and 4.5, we find the synchronization and desynchronization

boundaries in low, medium, and high temperatures, respectively.

4.1 Critical Points of Fβ, J

In this section, we will find the necessary conditions for the critical points

of Fβ, J and define two functions, Φ and Ψ, which are derived from them.

Then, we will present the relationships between the functions Φ,Ψ and the

eigenvalues of the Hessian matrix of Fβ, J in Lemma 4.1.2. From Proposi-
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tion 2.2.2, the function Fβ, J for q = 3 is given by

Fβ, J(x,y) = −1

2

3∑
i=1

(x2i + y2i )− J

3∑
i=1

xiyi +
1 + J

β

3∑
i=1

(xi log xi + yi log yi)

(4.1.1)

Here, we used the notations xi for x
(1)
i and yi for x

(2)
i to simplify the

expression. To find critical points, the first order derivatives of Fβ, J must

be zero:

∂Fβ, J

∂xk
(x,y) = −(xk − x3)− J(yk − y3) +

1 + J

β
(log xk − log x3) = 0,

∂Fβ, J

∂yk
(x,y) = −(yk − y3)− J(xk − x3) +

1 + J

β
(log yk − log y3) = 0.

for 1 ≤ k, l ≤ 3. Thus, we can obtain the equations

−xk − Jyk +
1 + J

β
log xk = −xl − Jyl +

1 + J

β
log xl,

−yk − Jxk +
1 + J

β
log yk = −yl − Jxl +

1 + J

β
log yl,

for 1 ≤ k, l ≤ 3. Since each side of the above equations are symmetric and

negative, consider the following equations:

y = Φ(x) + u and x = Φ(y) + v, (4.1.2)

where u, v are real positive numbers and the function Φ is defined by

Φ(x) :=
1

J

(
−x+ 1 + J

β
log x

)
.

We need to analyze the solutions of (4.1.2) according to the values of

u and v, because they are the candidates for the coordinates of critical

points. Assume first that u = v. When u = v = 0, the graphs in (4.1.2) do

not intersect since the graph y = Φ(x) is under the x-axis and the graph

x = Φ(y) is to the left of the y-axis. If we increase u gradually, y = Φ(x)+u
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will be tangent to y = x at x = 1
β
before intersecting with x = Φ(y)+ u at

two points on the line y = x. We denote these points by P = (P, P ) and

Q = (Q,Q). It is important to check whether these intersections are in

the area [0, 1]× [0, 1], otherwise these points are meaningless, because they

represent the ratio of each spin. In addition, the sum of three of them has

to be equal to one, that is, P + 2Q = 1 or 2P + Q = 1. There is no need

to consider the case when u ̸= v and there are two intersections because

the sum of the x-coordinates and the sum of the y-coordinates cannot be

equal to one at the same time.

Note that the smaller the J > 0, the sharper is the graph of y =

Φ(x) + u. Since the function y = Φ(x) + u is concave, (4.1.2) can have at

most four intersections. We denote these intersections by P = (P, P ), R =

(R, S), S = (S,R), and Q = (Q,Q) with P ≤ R ≤ Q ≤ S. See Fig-

ure 4.1.1. The critical points must satisfy that both the sum of their x-

coordinates and the sum of their y-coordinates should be equal to one, re-

spectively. For example, if we choose P , R and S, then P +R+S = 1. In

general, if u ̸= v, then we denote these intersections by P = (P1, P2), R =

(R1, R2), S = (S1, S2), and Q = (Q1, Q2), with P1 ≤ R1 ≤ Q1 ≤ S1. In

this case, if we choose P ,R and S, then the coordinates should satisfy

P1 +R1 + S1 = P2 +R2 + S2 = 1.

Remark 4.1.1. The points Pk, Qk, Rk and Sk for k = 1, 2 are functions of

the variables u, v, J and β.

For now, we assume that the critical points of Fβ, J are of the form

(s, s, 1− 2s, t, t, 1− 2t) up to permutations. Such critical points satisfy the

following equations:

y = Φ(x) + u and 1− 2y = Φ(1− 2x) + u,

x = Φ(y) + u and 1− 2x = Φ(1− 2y) + u.

Subtracting the second equation from the first equation yields

y = Ψ(x) and x = Ψ(y), (4.1.3)
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Figure 4.1.1: The graphs of y = Φ(x) + u (blue curve) and x = Φ(y) + u
(red curve)

where

Ψ(x) :=
1

3
(Φ(x)− Φ(1− 2x) + 1) =

1

3J

(
1− 3x+

1 + J

β
log

x

1− 2x
+ J

)
.

Note that the function Ψ(x) always passes through (1
3
, 1
3
). From the equa-

tion Ψ(x) = x, we obtain the inverse temperature

β = ξ(x). (4.1.4)

Recall that ξ(x) was defined in (2.3.1). The derivative of ξ(x) is

dξ(x)

dx
=

1− 3x+ 3x(1− 2x) log x
1−2x

x(2x− 1)(3x− 1)2
, (4.1.5)

(4.1.5) has a unique solution and we denote this by m1 ≈ 0.2076. Then,
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ξ(x) has a global minimum at m1 and by the definition of β1, we obtain

β1 =
1

1− 3m1

log
1− 2m1

m1

.

Recall that given β > β1, we denoted the smaller solution of (4.1.4) by

xs = xs(β) and the larger one by xl = xl(β). Then, we can derive the

relationships between the functions Φ,Ψ and the eigenvalues of the Hessian

matrix.

Lemma 4.1.2. Suppose that the critical points of Fβ, J are of the form

(s, s, 1−2s, t, t, 1−2t) up to permutations, where 0 ≤ s, t ≤ 1. Let λ1, λ2, λ3,

and λ4 be the eigenvalues of the Hessian matrix of Fβ, J . After reordering

the eigenvalues, we have

1. λ1 + λ2 > 0 if and only if Φ′(s) +Φ′(t) > 0 and λ1λ2 > 0 if and only

if Φ′(s)Φ′(t) > 1,

2. λ3 +λ4 > 0 if and only if Ψ′(s)+Ψ′(t) > 0 and λ3λ4 > 0 if and only

if Ψ′(s)Ψ′(t) > 1.

Proof. Note that

Φ′(x) =
1

J

(
1 + J

βx
− 1

)
and Ψ′(x) =

1

J

(
1 + J

β

1

3x(1− 2x)
− 1

)
.

Before giving the proof, we first find the characteristic polynomial of the

Hessian matrix of Fβ, J . Then, we compute the determinant of the following

matrix:

∇2(Fβ, J)− λI =

(
Ax B

B Ay

)
,

where

Ax =

 1+J
β

(
1
x1

+ 1
x3

)
− 2− λ 1+J

β
1
x3

− 1

1+J
β

1
x3

− 1 1+J
β

(
1
x2

+ 1
x3

)
− 2− λ

 ,
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Ay =

 1+J
β

(
1
y1

+ 1
y3

)
− 2− λ 1+J

β
1
y3

− 1

1+J
β

1
y3

− 1 1+J
β

(
1
y2

+ 1
y3

)
− 2− λ

 ,

and B =

(
−2J −J
−J −2J

)
. By the assumption that x1 = x2 = s, y1 = y2 =

t, x3 = 1− 2s and y3 = 1− 2t, Ax and Ay become symmetric matrices. In

this case, BAy = AyB and hence the determinant of the Hessian matrix

becomes det(AxAy −B2). An elementary computation shows that

det
(
∇2 (Fβ, J(s, s, 1− 2s, t, t, 1− 2t))− λI

)
= {λ2 + (2− S1 − T1)λ+ S1T1 − S1 − T1 + 1− J2}

× {λ2 + (6− S1 − T1 − 2S2 − 2T2)λ+ S1T1 + 2S1T2

+ 2S2T1 + 4S2T2 − 3S1 − 3T1 − 6S2 − 6T2 + 9− 9J2},

where S1 =
1+J
βs
, S2 =

1+J
β(1−2s)

and T1 =
1+J
βt
, T2 =

1+J
β(1−2t)

. We denote the

solutions of the first factor by λ1, λ2 and the solutions of the second factor

by λ3, λ4. Then, we may derive the following.

(1) The first result is calculated as

λ1 + λ2 = S1 + T1 − 2 = J (Φ′(s) + Φ′(t)) ,

λ1λ2 = S1T1 − S1 − T1 + 1− J2 = J2 (Φ′(s)Φ′(t)− 1) ,

(2) The second result is calculated as

λ3 + λ4 = S1 + T1 + 2S2 + 2T2 − 6 = 3J (Ψ′(s) + Ψ′(t)) ,

λ3λ4 = S1T1 + 2S1T2 + 2S2T1 + 4S2T2 − 3S1 − 3T1 − 6S2 − 6T2 + 9− 9J2,

= 9J2 (Ψ′(s)Ψ′(t)− 1) .

This completes the proof.
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4.2 Two Extreme Cases: J = ∞ and J = 0

In this section, we prove Theorem 2.3.2 by categorizing all the critical

points of Fβ, J according to the value of the inverse temperature β in both

cases J = ∞ (i.e., J11 = J22 = 0 and J12 = 1), a case without component-

wise interaction and J = 0 (i.e., J12 = 0 and J11 = J22 = 1), a case

without inter-component interaction. For convenience, we denote the point(
1
3
, 1
3
, 1
3
, 1
3
, 1
3
, 1
3

)
by q3. First, we consider the case when J = ∞.

Theorem 4.2.1. Suppose that J = ∞. (i.e., J11 = J22 = 0 and J12 = 1),

that is, there is no component-wise interaction in each block. Then, we

have the following.

1. If 0 < β < β1, then there is only one local minimum at q3.

2. If β1 < β < β2, then there is a global minimum at q3, three local

minima, and three saddle points.

3. If β2 < β < β3, then there is a local minimum at q3, three global

minima, and three saddle points.

4. If β > β3, then there are three global minima and three saddle points.

Proof. The function (4.1.1) becomes

Fβ(x,y) = −
3∑

i=1

xiyi +
1

β

(
3∑

i=1

xi log xi + yi log yi

)
. (4.2.1)

The critical points must satisfy the following equations:

∂Fβ

∂xk
(x,y) = −(yk − y3) +

1

β
(log xk − log x3) = 0, (4.2.2)

∂Fβ

∂yk
(x,y) = −(xk − x3) +

1

β
(log yk − log y3) = 0,
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for 1 ≤ k ≤ 3. Since the equations in (4.2.2) are symmetric, we consider

the following system of equations:

y =
1

β
log x+ u and x =

1

β
log y + v, (4.2.3)

where u, v are real positive numbers. The function 1
β
log x is concave and

increases; thus (4.2.3) has at most two solutions. Moreover, if xk = xl, then

by (4.2.2), we have yk = yl, for 1 ≤ k, l ≤ 3. Thus, all the critical points

are of the form (s, s, 1− 2s, t, t, 1− 2t) up to permutations. In fact, all of

them are of the form (s, s, 1 − 2s, s, s, 1 − 2s). This is because, from the

equations

s =
1

β
log t+ u and 1− 2s =

1

β
log(1− 2t) + u,

t =
1

β
log s+ v and 1− 2t =

1

β
log(1− 2s) + v,

we obtain

1− 3s =
1

β
log

1− 2t

t
and 1− 3t =

1

β
log

1− 2s

s
. (4.2.4)

By subtracting the equations in (4.2.4), we have

1− 3s+
1

β
log

1− 2s

s
= 1− 3t+

1

β
log

1− 2t

t
.

Since the function 1− 3x+ 1
β
log 1−2x

x
is decreasing, we have s = t.

Thus, all the critical points are of the form (s, s, 1−2s, s, s, 1−2s) and

from (4.2.4), we obtain the inverse temperature β > 0 :

β =
1

1− 3s
log

1− 2s

s
. (4.2.5)

Hence, if β > β1, then there are two types of critical points up to permu-
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tations, except q3:

p1 = (xs, xs, 1−2xs, xs, xs, 1−2xs) and p2 = (xl, xl, 1−2xl, xl, xl, 1−2xl),

A straightforward calculation gives the eigenvalues of the Hessian of (4.2.1)

that

λ1 =
1

βs
− 1, λ2 =

1

βs
+ 1, (4.2.6)

λ3 =
1

βs(1− 2s)
− 3, and λ4 =

1

βs(1− 2s)
+ 3 (4.2.7)

Since λ2 and λ4 are always positive, we only need to know when λ1 > 0

and λ3 > 0. By substituting (4.2.5) into (4.2.6) and (4.2.7), we obtain that

λ1 > 0 if and only if 0 < s < 1
3
, and λ3 > 0 if and only if 0 < s < m1 or

1
3
< s < 1

2
. Therefore, regardless of the value of β > β1, we can conclude

that p1 is a local minimum, and p2 is a saddle point. The point q3 is a

local minimum if β < β3, but it is neither a local minimum nor a saddle

point if β > β3.

It remains to compare the local minima when β1 < β < β2 and β2 <

β < β3. By symmetry, the function values at p1 up to permutations are

the same. A straightforward computation yields

Fβ, J(p1)− Fβ, J(q3) = F̃ (xs),

where

F̃ (x) = −6x2 + 4x− 2

3
+

2

β
(2x log x+ (1− 2x) log(1− 2x) + log 3) ,

(4.2.8)

and β = ξ(x). The function F̃ (x) is positive on
(
1
6
, 1
3

)
and is negative on(

0, 1
6

)
and

(
1
3
, 1
2

)
. If β1 < β < β2, then xs ∈

(
1
6
, 1
3

)
; hence Fβ, J(p1) >

Fβ, J(q3). However, if β2 < β < β3, then xs ∈
(
0, 1

6

)
; thus Fβ, J(p1) <

Fβ, J(q3). This completes the proof.

Next, we prove the other extreme case when J = 0.
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Theorem 4.2.2. Suppose that J = 0. (i.e., J11 = J22 = 1 and J12 = 0),

that is, there is no inter-component interaction between the two blocks.

Then, we have the followings.

1. If 0 < β < β1, then there is only one local minimum at q3.

2. If β1 < β < β2, then there is a global minimum at q3, nine local

minima and 18 saddle points.

3. If β2 < β < β3, then there is a local minimum at q3, nine global

minima and 18 saddle points

4. If β > β3, then there is a local maximum at q3, nine global minima,

and 18 saddle points.

Proof. The function (4.1.1) becomes a function of β:

Fβ(x,y) = −1

2

3∑
i=1

(x2i + y2i ) +
1

β

3∑
i=1

(xi log xi + yi log yi).

The critical points must satisfy the following equations:

∂Fβ

∂xk
(x,y) = −(xk − x3) +

1

β
(log xk − log x3) = 0, (4.2.9)

∂Fβ

∂yk
(x,y) = −(yk − y3) +

1

β
(log yk − log y3) = 0,

for 1 ≤ k ≤ 3. Clearly, q3 is a critical point of Fβ. First, we determine

the form of all the critical points of Fβ. Since the equations in (4.2.9) are

symmetric, we consider the equation

x− 1

β
log x = u, and y − 1

β
log y = v (4.2.10)

where u, v > 0. The function x − 1
β
log x is convex; thus (4.2.10) each of

x and y has at most two solutions. Thus, all the critical points are of the
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form (s, s, 1−2s, t, t, 1−2t) up to permutations and from (4.2.9), we obtain

the inverse temperature

β = ξ(s) = ξ(t). (4.2.11)

The function ξ(x) has a unique minimum at x = m1 and its value is β1.

Hence, there is no critical point of the form (s, s, 1 − 2s, t, t, 1 − 2t) when

β < β1. However, when β > β1, from (4.2.11), s can be either xs(β) or

xl(β); the same is true for t. Hence, if β > β1, then there are four types of

critical points up to permutations, except q3:

p1 = (xs, xs, 1− 2xs, xs, xs, 1− 2xs), p2 = (xl, xl, 1− 2xl, xl, xl, 1− 2xl),

p3 = (xs, xs, 1− 2xs, xl, xl, 1− 2xl), p4 = (xl, xl, 1− 2xl, xs, xs, 1− 2xs).

Since both the first and the last three coordinates of the aforementioned

critical points behave independently, there are nine permutations for each.

By substituting J = 0 in the proof of Lemma (4.1.2), we have

λ1 =
1

βs
− 1, λ2 =

1

βt
− 1,

λ3 =
1

βs(1− 2s)
− 3, and λ4 =

1

βt(1− 2t)
− 3.

From the proof of Theorem 4.2.1, we know that λ1 > 0 if and only if

0 < s < 1
3
, and λ3 > 0 if and only if 0 < s < m1 or

1
3
< s < 1

2
. The same is

true for λ2 and λ4. Therefore, regardless of the value of β, we can conclude

that p1 is a local minimum, p2 is neither a local minimum nor a saddle

point, and p3 and p4 are saddle points. The point q3 is a local minimum if

β < β3, but is a local maximum if β > β3. The comparison of local minima

is the same as the proof of Theorem 4.2.1. This completes the proof.

Remark 4.2.3. For any q ≥ 3, the CWP model has a first-order phase

transition at the critical temperature β = β2, which was covered in [3,7,8,

15,17]. We remark that the set of global minima is replaced at β = β2 for
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the two-component case, and this critical temperature β2 is independent

of variable J . The third statement in Theorem 4.4.2 cover the general case

of J .

4.3 General Case: Low-Temperature Regime

(β > β3)

In this section, we will find all the local minima and lowest saddles of

Fβ, J which belong to either S2 or L2, and the phase transition boundary

for the low-temperature part of Theorem 2.4.2. Recall that we defined the

function ψ1 in (2.4.2). Then, the function ψ1 has the following properties.

Proposition 4.3.1. The function ψ1 is a continuous function such that

0 < ψ1(β) < 1, ψ1(β3) = 0, and lim
β→∞

ψ1(β) = 1.

Proof. Note that xl is a continuous function of β, and xl ∈
(
1
3
, 1
2

)
if β > β3.

Since ψ1(β) is a composition of continuous functions, it is continuous. It

is obvious that ψ1(β) < 1. Since xl >
1
3
, we have β = 1

1−3xl
log 1−2xl

xl
> 1

xl
,

which means that ψ1(β) > 0. Note that limβ→β3 xl =
1
3
and limβ→∞ xl =

1
2
.

This implies that ψ1(β3) = limβ→β3 ψ1(β) = 0 and limβ→∞ ψ1(β) = 1. This

completes the proof.

Proposition 4.3.2. Suppose that u = v in (4.1.2) and there are two in-

tersections: P = (P, P ) and Q = (Q,Q) with P < Q. Suppose further that

Φ′(Q) = −1. Then, J > ψ1(β) if and only if P + 2Q > 1. In particular,

J = ψ1(β) if and only if P + 2Q = 1.

Proof. Suppose that P + 2Q > 1. SinceP < Q, we have Q > 1
3
. The

condition Φ′(Q) = −1 is equivalent to Q = 1+J
β(1−J)

. By the definitions of P

and Q, we have

P − 1

β
logP = Q− 1

β
logQ. (4.3.1)
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The function x − 1
β
log x is convex and has a minimum at x = 1

β
; hence

P < 1
β
< Q. Since x− 1

β
log x is decreasing on

(
0, 1

β

)
, from the inequality

1− 2Q < P and (4.3.1), we obtain

β <
1

1− 3Q
log

1− 2Q

Q
. (4.3.2)

Thus, Q > xl = xl(β), or equivalently, we obtain

J > ψ1(β) =
β − 1

xl

β + 1
xl

.

On the other hand, we assume that J > ψ1(β), which is equivalent to

Q > xl. Since xl ∈
(
1
3
, 1
2

)
for β > β3, we have

ψ1(β)−
β − 3

β + 3
=

2β(3− 1/xl)

(β + 1/xl)(β + 3)
≥ 0 for all β > 0.

Hence, J > β−3
β+3

and this implies that Q > 1
3
. Since Q > xl, (4.3.2) holds.

By (4.3.1), the inequality (4.3.2) becomes

1− 2Q− 1

β
log(1− 2Q) < Q− 1

β
logQ = P − 1

β
logP.

This implies that 1− 2Q < P . This completes the proof.

Note that by symmetry, the function values at xs or xl up to permuta-

tions are the same, respectively. Then, we have the following theorem for

the low-temperature regime.

Theorem 4.3.3. Suppose that β > β3. Then, we have the following results.

1. If J > ψ1(β), then Fβ, J has three local minima at xs ∈ S2 and three

saddle points at xl ∈ L2.

2. If J < ψ1(β), then there must be a lowest saddle of Fβ, J that does

not belong to either S2 or L2.
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Proof. (1) From the definitions of xs and xl, we have

β =
1

1− 3xs
log

1− 2xs
xs

=
1

1− 3xl
log

1− 2xl
xl

.

Note that the function 1
x
− 1

1−3x
log 1−2x

x
is positive on 0 < x < 1

3
. Since

xs <
1
3
and since xl >

1
3
, we obtain the inequality

xs <
1

β
< xl. (4.3.3)

To analyze the critical points, we need to investigate the slopes of Φ and Ψ

at x = xs and x = xl. When we look at the graph Ψ(x) = x, it has solutions

in the order of xs,
1
3
and xl. It follows that Ψ

′(xs) > 1 and Ψ′(xl) > 1. Since

Φ′( 1
β
) = 1, the inequality (4.3.3) implies that Φ′(xs) > 1 and Φ′(xl) < 1.

Fβ, J The assumption J > ψ1(β) is equivalent to

xl <
1 + J

β(1− J)
. (4.3.4)

The right hand side of (4.3.4) is the point where the function Φ has a slope

of −1. Thus, we have −1 < Φ′(xl) < 1 and by Lemma 4.1.2, Fβ, J has local

minima at xs and saddle points at xl. This proves (1).

(2) The condition J < ψ1(β) is equivalent to xl >
1+J

β(1−J)
. This means

that Φ′(xl) < −1. Thus, by Lemma 4.1.2, xl is no longer a saddle point,

and hence, there is no saddle point belonging to either S2 or L2. However,

according to Morse’s theory, when there are two or more local minima,

there must be a saddle point with the lowest level connecting them. Thus,

there must be a saddle point that does not belong to either S2 or L2. This

completes the proof.

Lemma 4.3.4. Suppose that u = v in (4.1.2) and suppose that (4.1.2)

intersects only two points at P = (P, P ) and Q = (Q,Q) with P < Q.

Then 2P +Q and P + 2Q are increasing functions with respect to u.

Proof. Note that Q is increasing but P is decreasing with respect to u.
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Thus, it suffices to show that 2P +Q is increasing with respect to u. From

the definitions of P and Q, we have

P = Φ(P ) + u =
1

J

(
−P +

1 + J

β
logP

)
+ u,

Q = Φ(Q) + u =
1

J

(
−Q+

1 + J

β
logQ

)
+ u. (4.3.5)

We can replace u with 1+J
J
u and P,Q with βP, βQ, respectively. Hence,

the equations in (4.3.5) become

βP − log βP = βu− log β and βQ− log βQ = βu− log β. (4.3.6)

After scaling and translating the equations in (4.3.6), it suffices to consider

the system of equations

P − logP = u and Q− logQ = u, (4.3.7)

By differentiating (4.3.7) with respect to u, the sum of the derivatives of

P and Q is

2
∂P

∂u
+
∂Q

∂u
=

2P

P − 1
+

Q

Q− 1
=

3PQ− 2P −Q

(P − 1)(Q− 1)
.

Since P is decreasing and Q is increasing with respect to u, we have P−1 <

0 and Q − 1 > 0. Since 0 ≤ P,Q ≤ 1, we have 2P + Q − 3PQ ≥ 0. This

completes the proof.

Theorem 4.3.5. Suppose that u = v in (4.1.2) and suppose that the graphs

in (4.1.2) intersects at four points at P = (P, P ), R = (R, S), S = (S,R),

and Q = (Q,Q) with P ≤ R ≤ Q ≤ S. Let Jc be the positive root of the

function (1 + x)
(

1
1−x

− 1
2+x

)
− log 2+x

1−x
.

1. If J ≥ Jc, then P +R + S increases with respect to u.

2. The derivative ∂(P+R+S)
∂u

increases with respect to u. That is, the func-
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tion (P +R + S)(u) is convex.

Proof. (1) Since

Φ

(
(1 + J)x

β

)
+ u =

1 + J

β

(
1

J
(−x+ log x) + log

1 + J

β
+

βu

1 + J

)
,

by scaling and translating the function Φ(x) and the variable u, it suffices

to consider the system of equations:

Φ̃(P ) +
w

J
= P, Φ̃(R) +

w

J
= S and Φ̃(S) +

w

J
= R,

where

Φ̃(x) =
1

J
(−x+ log x) . (4.3.8)

An elementary computation shows that ∂(P+R+S)
∂w

> 0 is equivalent to

(P̃ − J)(R̃ + S̃ + 2J)− (J2 − R̃S̃) > 0, (4.3.9)

where P̃ := −1 + 1
P
, R̃ := −1 + 1

R
and S̃ := −1 + 1

S
. We denote the

geometric mean of R and S by ΓRS :=
√
RS , and Γ̃RS := −1+ 1

ΓRS
. Then,

we can rearrange (4.3.9) as

(P̃ − J){2(J + Γ̃RS) + (R̃− Γ̃RS) + (S̃ − Γ̃RS)} (4.3.10)

+ {(R̃− Γ̃RS) + Γ̃RS}{(S̃ − Γ̃RS) + Γ̃RS} − J2 > 0.

Note that

R̃− Γ̃RS =

(
−1 +

1

R

)
−
(
−1 +

1

ΓRS

)
=

1√
R

(
1√
R

− 1√
S

)
,

S̃ − Γ̃RS =

(
−1 +

1

S

)
−
(
−1 +

1

ΓRS

)
=

1√
S

(
1√
S
− 1√

R

)
.
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Substituting the aforementioned equations in (4.3.10), we obtain

(J + Γ̃RS)(2P̃ + Γ̃RS − 3J) + (P̃ − J − 1)

(
1√
R

− 1√
S

)2

> 0. (4.3.11)

Then, by Lemma 4.3.6, we acquire the desired results.

(2) We claim that (4.3.11) increases with respect to u. Since R and S

are getting farther as u increases, it suffices to prove that both P̃ and Γ̃RS

are increasing. P̃ is increasing since P is decreasing. If we show that RS

is decreasing, then Γ̃RS increases with respect to u, achieving the required

result. An elementary computation shows that

∂(RS)

∂u
=
∂R

∂u
S +

∂S

∂u
R =

1

J2 − R̃S̃
(2− (1− J)(R + S)) .

By considering the graphs in (4.1.2), we observe R + S increasing with

respect to u. Since R+S has a unique minimum at R = S = Q = 1
1−J

, we

have ∂(RS)
∂u

< 0. This completes the proof.

Lemma 4.3.6. Under the notations introduced in Theorem 4.3.5, we have

1. J + Γ̃RS ≥ 0,

2. P̃ > 3J ,

3. P̃ − J − 1 ≥ 0 if J ≥ Jc.

Proof. (1) From the definitions of R and S, we have

S = Φ̃(R) +
w

J
and R = Φ̃(S) +

w

J
.

Subtracting the first equation from the second equation yields

(1− J)(S −R) = log S − logR =

∫ S

R

1

t
dt.
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Since the sum of the area of the trapezoid with vertices (R, 0), (ΓRS, 0),
(
R, 1

R

)
,(

ΓRS,
1

ΓRS

)
, and the other one with vertices (ΓRS, 0), (S, 0),

(
ΓRS,

1
ΓRS

)
,
(
S, 1

S

)
is greater than the definite integral

∫ S

R
1
t
dt , we obtain

(1− J)(S −R) =

∫ S

R

1

t
dt ≤ 1

2

(
1

R
+

1

ΓRS

)
(ΓRS −R)

+
1

2

(
1

ΓRS

+
1

S

)
(S − ΓRS)

=
1

ΓRS

(S −R).

This proves (1).

(2) Similar to aforementioned proof, by comparing the area of the trape-

zoid and the definite integral, we have

(1 + J)(Q− P ) = logQ− logP =

∫ Q

P

1

t
dt ≤ 1

2

(
1

P
+

1

Q

)
(Q− P ).

Thus, P̃ + Q̃ ≥ 2J. However, Q̃/J = Φ̃′(Q) < −1, which is equivalent to

Q̃ < −J . This proves (2).
(3) Define a function h : [0,∞) → R by h(x) = (1+J)x− log x. By the

definitions of P and Q, we have h(P ) = h(Q). The condition A−J−1 ≥ 0

is equivalent to P ≤ 1
2+J

. Note that the function h(x) is decreasing on[
0, 1

1+J

)
and is increasing on

[
1

1+J
,∞
)
. Thus, we need to show that

h(P ) ≥ h

(
1

2 + J

)
.

We know thatQ ≥ 1
1−J

; hence, we obtain h(P ) = h(Q) ≥ h
(

1
1−J

)
. Consider

the following function:

h

(
1

1− J

)
−h
(

1

2 + J

)
= (1+J)

(
1

1− J
− 1

2 + J

)
−log

2 + J

1− J
. (4.3.12)

36



CHAPTER 4. POTTS MODEL ON BIPARTITE GRAPH WITH
THREE SPINS

The right-hand side of (4.3.12) is nonnegative if J ≥ Jc, where Jc is the

positive root of (4.3.12). This implies that h(P ) = h(Q) ≥ h
(

1
1−J

)
≥

h
(

1
2+J

)
if J ≥ Jc. This completes the proof.

Theorem 4.3.7. Suppose that u ̸= v in (4.1.2) and there are four inter-

sections at P = (P1, P2), R = (R1, R2), S = (S1, S2), and Q = (Q1, Q2),

with P1 ≤ R1 ≤ Q1 ≤ S1. Then, for a fixed v,

1. P2 +R2 + S2 increases with respect to u.

2. R1 + S1 +Q1 increases with respect to u.

3. P1 + S1 +Q1 increases with respect to u.

4. P2 +R2 +Q2 > P2 +R2 + S2.

Proof. Without loss of generality, we may assume that u > v. By setting

u := v + w, for w > 0, the equations in (4.1.2) become

y = Φ(x) + v + w and x = Φ(y) + v,

where v, w > 0. As in the proof of Theorem 4.3.5, by scaling and translating

the function Φ, it suffices to consider

y = Φ̃(x) +
v + w

J
and x = Φ̃(y) +

v

J
,

where Φ̃ was defined in (4.3.8). We will use the notation P̃i = −1 + 1
Pi

for

i = 1, 2, and the same applies to the other functions.

(1) Since R2 is increasing with respect to w, it suffices to show that

P2+S2 is increasing with respect to w. By the definitions of P1, P2, S1, and

S2, we have

P2 = Φ̃(P1) +
v + w

J
and P1 = Φ̃(P2) +

v

J
, (4.3.13)

S2 = Φ̃(S1) +
v + w

J
and S1 = Φ̃(S2) +

v

J
. (4.3.14)
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Differentiating (4.3.13) with respect to w, we obtain

∂P1

∂w
=

P̃2

J2 − P̃1P̃2

, and
∂P2

∂w
=

1

J2 − P̃1P̃2

.

Similar equations can be obtained for functions S1 and S2 by differentiating

(4.3.14). Since P2 is decreasing and S2 is increasing with respect to w, we

have J2 − P̃1P̃2 < 0 and J2 − S̃1S̃2 > 0. Thus, we have to show that

∂P2

∂w
+
∂S2

∂w
≥ 0, or equivalently, P̃1P̃2 + S̃1S̃2 − 2J2 ≥ 0.

From (4.3.13) and (4.3.14), we obtain the following:

J(S2 − P2) = −S1 + logS1 + P1 − logP1 =

∫ S1

P1

(
−1 +

1

t

)
dt,

J(S1 − P1) = −S2 + logS2 + P2 − logP2 =

∫ S2

P2

(
−1 +

1

t

)
dt.

Since the area of the trapezoid with vertices (P1, 0), (S1, 0),
(
P1,

1
P1

)
, and(

S1,
1
S1

)
is greater than the definite integral

∫ S1

P1

1
t
dt, we have∫ S1

P1

(
−1 +

1

t

)
dt

≤ 1

2

(
1

P1

+
1

S1

)
(S1 − P1)− (S1 − P1)

=
1

2
(P̃1 + S̃1)(S1 − P1).

Thus, we obtain

J(S2 − P2) ≤
1

2
(P̃1 + S̃1)(S1 − P1). (4.3.15)
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Similarly, we have

J(S1 − P1) ≤
1

2
(P̃2 + S̃2)(S2 − P2). (4.3.16)

Multiplying (4.3.15) and (4.3.16), we obtain the inequality

J2 ≤ 1

4
(P̃1 + S̃1)(P̃2 + S̃2). (4.3.17)

Using (4.3.17), we have the following estimation:

2(P̃1P̃2 + S̃1S̃2 − 2J2) = 2(P̃1P̃2 + S̃1S̃2 − 2J2)

− (P̃1 + S̃1)(P̃2 + S̃2) + (P̃1 + S̃1)(P̃2 + S̃2)

= (P̃1 − S̃1)(P̃2 − S̃2)

+ (P̃1 + S̃1)(P̃2 + S̃2)− 4J2

=

(
1

P1

− 1

S1

)(
1

P2

− 1

S2

)
+ (P̃1 + S̃1)(P̃2 + S̃2)− 4J2 ≥ 0,

since P1 < P2 < S2 < S1. This proves (1).

(2) Since S1 is increasing with respect to w, it suffices to show that

R1 +Q1 is increasing with respect to w. Hence, we need to show that

∂R1

∂w
+
∂Q1

∂w
≥ 0, or equivalently, J2(R̃2 + Q̃2)− R̃2Q̃2(R̃1 + Q̃1) ≤ 0.

(4.3.18)

Since R2 > 1 and Q2 > 1, we have R̃2 < 0, Q̃2 < 0. Hence, if R̃1+ Q̃1 ≥ 0,

then (4.3.18) holds. Now, we assume that R̃1 + Q̃1 < 0. By the same

argument in the proof of (1), we have

J(R2 −Q2) =

∫ R1

Q1

(
−1 +

1

t

)
dt ≥ −1

2
(R̃1 + Q̃1)(Q1 −R1),
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J(Q1 −R1) =

∫ Q2

R2

(
−1 +

1

t

)
dt ≥ −1

2
(R̃2 + Q̃2)(R2 −Q2).

Since Q1 − R1 > 0 and R2 − Q2 > 0, multiplying the aforementioned

inequalities, we obtain

J2 ≥ 1

4
(R̃1 + Q̃1)(R̃2 + Q̃2). (4.3.19)

By (4.3.19), an elementary computation yields

J2
(
R̃2 + Q̃2

)
− R̃2Q̃2(R̃1 + Q̃1) ≤

1

4
(R̃2 − Q̃2)

2(R̃1 + Q̃1) ≤ 0.

This proves (2).

(3) It suffices to verify that P1 + Q1 is increasing with respect to u.

Thus, we have to show that

∂P1

∂w
+
∂Q1

∂w
≥ 0 or equivalently, J2(P̃2 + Q̃2)− P̃2Q̃2(P̃1 + Q̃1) ≥ 0.

(4.3.20)

Since P1 < P2 < 1 < Q2 < Q1, we have P̃1, P̃2 > 0 and Q̃1, Q̃2 < 0. By the

same argument in the proof of (2), we obtain

J(Q2 − P2) =

∫ Q1

P1

(
−1 +

1

t

)
dt ≤ 1

2
(P̃1 + Q̃1)(Q1 − P1),

J(Q1 − P1) =

∫ Q2

P2

(
−1 +

1

t

)
dt ≤ 1

2
(P̃2 + Q̃2)(Q2 − P2).

Each left-hand side of the aforementioned equations is positive; thus, we

obtain P̃1+ Q̃1 > 0 and P̃2+ Q̃2 > 0. Therefore, (4.3.20) holds. This proves

(3).

(4) This is obviously true. This completes the proof.
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4.4 General Case: Middle-Temperature Regime

(β1 < β < β3)

In this section, we investigate all the local minima and lowest saddles of

Fβ, J belonging to either S2 or L2 for the middle-temperature and compare

the values of the local minima according to the temperature. Further-

more, we specify the synchronization boundary and the desynchronization

boundary, respectively. Recall the definition of the function ψ2 is in (2.4.2).

Then, the function ψ2 has the following properties.

Proposition 4.4.1. The function ψ2 is a continuous function such that

0 < ψ2(β) <
1

10
and ψ2(β1) = ψ2(β3) = 0.

Proof. Note that xl is a continuous function of β and xl ∈
(
m1,

1
3

)
if

β1 < β < β3. Since ψ2 is a composition of continuous functions, it is

continuous. Since m1 < xl <
1
3
, we have

β − 1

3xl(1− 2xl)
=

1

1− 3xl
log

1− 2xl
xl

− 1

3xl(1− 2xl)
> 0.

Thus, ψ2(β) > 0 for β1 < β < β3. By the definition of β, the inequality

ψ2(β) <
1
10

is equivalent to

9

1− 3xl
log

1− 2xl
xl

<
11

3xl(1− 2xl)
. (4.4.1)

An elementary calculation shows that (4.4.1) holds when 0 < xl <
1
3
; hence,

ψ2(β) <
1
10
. From the numerator of (4.1.5), m1 satisfies the equation

1− 3m1 + 3m1(1− 2m1) log
m1

1− 2m1

= 0.
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By the definition of β1, 4.4 becomes

β1 =
1

1− 3m1

log
1− 2m1

m1

=
1

3m1(1− 2m1)
.

Since limβ→β1 xl = m1, we have ψ2(β1) = limβ→β1 ψ2(β) = 0. In addition,

limβ→β3 xl =
1
3
implies that ψ2(β3) = limβ→β3 ψ2(β) = 0. This completes

the proof.

Theorem 4.4.2. Suppose that β1 < β < β3. Then, we have the following

results.

1. If J > ψ2(β), then there is a local minimum at q3, three local minima

at xs ∈ S2 and three saddle points at xl ∈ L2.

2. If J < ψ2(β), then there is a local minimum at q3, three local minima

at xs ∈ S2 and six saddle points of the form (s, s, 1− 2s, t, t, 1− 2t)

and (t, t, 1− 2t, s, s, 1− 2s) with s < t up to permutations

3. (Comparison of local minima) If β1 < β < β2, then Fβ, J(q3) <

Fβ, J(xs), and if β2 < β < β3, then Fβ, J(q3) > Fβ, J(xs).

Proof. Note that the assumption β1 < β < β3 implies that Ψ′(xl) < 1 and

xs < xl <
1
3
< 1

β
.

(1) If J > ψ2(β), which is equivalent to Ψ′(xl) > −1, then the function

y = Ψ(x) intersects only at (xs, xs), (xl, xl), and (1
3
, 1
3
) with x = Ψ(y). By

observing the graphs in (4.1.3), it follows that Ψ′(1
3
) > 1, and Ψ′(xs) > 1.

Moreover, we know that −1 < Ψ′(xl) < 1. Since Φ′
(

1
β

)
= 1 and since

xs < xl <
1
3
< 1

β
, it follows that Φ′(1

3
) > 1, Φ′(xs) > 1, and Φ′(xl) > 1.

Therefore, Fβ, J has local minima at q3 and xs ∈ S2, and it has saddle

points at xl ∈ L2 by Lemma 4.1.2. This proves (1).

(2) If J < ψ2(β), which is equivalent to Ψ′(xl) < −1, then y = Ψ(x) and

x = Ψ(y) intersect not only at the original three points, but also at (s, t)

and (t, s) with s < xl < t < 1
3
. Since Ψ′(xl) < −1, xl is no longer a saddle

point of Fβ, J by Lemma 4.1.2. We claim that (s, s, 1− 2s, t, t, 1− 2t) and
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(t, t, 1−2t, s, s, 1−2s) are six new saddle points of Fβ, J up to permutations.

Since s < 1
β
and t < 1

β
, we have Φ′(s) > 1 and Φ′(t) > 1. By the inverse

function theorem, we obtain Ψ′(s)Ψ′(t) < 1. Therefore, Fβ, J has saddle

points at (s, s, 1 − 2s, t, t, 1 − 2t) and (t, t, 1 − 2t, s, s, 1 − 2s) by Lemma

4.1.2. The arguments for q3 and xs are the same as (1). This proves (2).

(3) A straightforward computation yields

Fβ, J(xs)− Fβ, J(q3) = (1 + J)F̃ (xs),

where F̃ (x) was defined in (4.2.8). The rest of the argument is the same

as the proof of Theorem 4.2.1. This completes the proof.

Recall that we defined the function ψ3 in (2.4.2). Then, we have the

following theorem.

Theorem 4.4.3. Under the assumptions in Theorem 4.3.5, if J > ψ3(β),

then the function (P +R + S)(u) > 1 for all u > 0.

Proof. By Theorem 4.3.5, we know that (P +R+ S)(u) is convex; thus it

has a unique minimum. We claim that the minimum value is greater than

one when J > ψ3(β). For convenience, we set P̃β,J := −1 + 1+J
βP
, and the

same applies to the other functions. A straightforward calculation shows

that

P ′(u) =
J

J − P̃β,J

, R′(u) =
J(J + S̃β,J)

J2 − R̃β,J S̃β,J

, and S ′(u) =
J(J + R̃β,J)

J2 − R̃β,J S̃β,J

;

hence,

(P +R + S)′(u) = 0 is equivalent to

(P̃β,J − J)(R̃β,J + S̃β,J + 2J)− (J2 − R̃β,J S̃β,J) = 0.

Applying the method of Lagrange multipliers to

G(P,R, S) = P +R + S,
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H(P,R, S) = (P̃β,J − J)(R̃β,J + S̃β,J + 2J)− (J2 − R̃β,J S̃β,J) = 0,

yields the following equations:

1

P 2
(2J+R̃β,J+S̃β,J) =

1

R2
(P̃β,J+S̃β,J−J) =

1

S2
(P̃β,J+R̃β,J−J). (4.4.2)

Calculating the equation of the second and the third in (4.4.2), we obtain

R + S =

1+J
β

J + 2− 1+J
βP

.

Therefore, G becomes a function of P :

G(P,R, S) = P +R + S =
(J + 2)1+J

β(
J + 2− 1+J

βP

)
1+J
βP

. (4.4.3)

The denominator of (4.4.3) is a quadratic function of 1+J
βP

; hence it has a

maximum value at 1+J
βP

= J+2
2
. However, if we apply the argument in the

proof of (2) in Lemma 4.3.6 without scaling and translating Φ(x), then we

obtain P̃β,J > 3J . This implies that 1+J
βP

≥ 3J + 1. Since 3J + 1 ≥ J+2
2
,

(4.4.3) has a minimum at 1+J
βP

= 3J +1, and its value of G is (1+J)(2+J)
β(1−2J)(1+3J)

.

Therefore, if
(1 + J)(2 + J)

β(1− 2J)(1 + 3J)
> 1, (4.4.4)

then (P +R+ S)(u) > 1 for all u. Solving the inequality (4.4.4) for J , we

obtain J > ψ3(β). This completes the proof.

4.5 General Case: High-Temperature Regime

(β < β1)

In this section, we show that the two components are synchronized in

high-temperature by proving that there is only one local minimum at q3.
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Theorem 4.5.1. If 0 < β < β1, then there is only one global minimum at

q3.

Proof. The fact that q3 is a local minimum is straightforward by Lemma

4.1.2. Since β < β1, by the definitions of S2 and L2, there is no critical

point belonging to either S2 or L2. We claim that there is no other kind of

critical points other than q3. First, we assume that u = v in (4.1.2). When

(4.1.2) has only one solution at x = 1
β
, the value 1

β
> 1

3
. After increasing

u minutely, which allows (4.1.2) to have two intersections at P = (P, P )

and Q = (Q,Q), by Lemma 4.3.4, 2P + Q increases with respect to u.

We increase u a little more so that (4.1.2) have four intersections at P =

(P, P ), R = (R, S), S = (S,R), and Q = (Q,Q) with P < R < Q < S. In

this case, P +R+S > 2P +Q > 3
β
> 1. Moreover, R+S+Q > 1. That is,

there is no critical point of the form (P,R, S, P, S,R) or (Q,R, S,Q, S,R)

up to permutations. Now, without loss of generality, we may assume that

u > v. In this case, by Theorem 4.3.7, each sum of the coordinates of all

possible combinations of the three intersections in (4.1.2) is greater than

one. This completes the proof.

Finally, we prove the main theorem which is Theorem 2.4.2.

Proof of Theorem 2.4.2.

We prove the synchronization part first. By Theorem 4.5.1, the two

components are synchronized in high-temperature (β < β1). Proposition

4.3.2, and Theorems 4.3.5 and 4.3.7 imply that if J > max(ψ1(β), Jc), then

there are no local minima and lowest saddles of Fβ, J that does not belong to

either S2 or L2, that is, the two components are synchronized. In addition,

Theorem 4.3.7 and 4.4.3 imply that if J > ψ3(β), then there are no local

minima and lowest saddles of Fβ, J other than S2 or L2. Therefore, the two

components are synchronized when J > ψs(β). However, if J < ψd(β), then

by the second statement of Theorems 4.3.3 and 4.4.2, the two components

are desynchronized. This completes the proof.
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Appendix A

Proof of Proposition 2.2.2

Here, we present a proof of Proposition 2.2.2.

Proof of Proposition 2.2.2. For x ∈ Ξ2
N , from the definition of HN ,∑

σ∈Ω:r(σ)=x

1

ZN, β

e−βHN (σ),

=
N !

(Nx
(1)
1 )! · · · (Nx(1)q )!

· N !

(Nx
(2)
1 )! · · · (Nx(2)q )!

× 1

ZN, β

exp

[
β

N(1 + J)

{∑
k=1, 2

q∑
i=1

1

2

{
(Nx

(k)
i )(Nx

(k)
i − 1)

}
+ J

q∑
i=1

Nx
(1)
i Nx

(2)
i

}]
,

and by Stirling’s formula, we have

≈ exp {−β/(1 + J)}

(
√
2πN)2(q−1)

√∏
k=1, 2

∏q
i=1 x

(k)
i ZN, β

× exp

[
N

β

1 + J

{∑
k=1, 2

q∑
i=1

1

2
(x

(k)
i )2 + J

q∑
i=1

x
(1)
i x

(2)
i − 1 + J

β

(∑
k=1, 2

q∑
i=1

x
(k)
i log x

(k)
i

)}]
,

=
1

ẐN, β, J

exp

{
−N β

1 + J

(
Fβ, J(x) +

1

N
GN, β(x)

)}
,
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where

Fβ, J(x) = −
∑
k=1, 2

q∑
i=1

1

2
(x

(k)
i )2 − J

q∑
i=1

x
(1)
i x

(2)
i +

1 + J

β

(∑
k=1, 2

q∑
i=1

x
(k)
i log x

(k)
i

)
,

GN, β, J(x) =
1 + J

2β
log

( ∏
k=1, 2

q∏
j=1

x
(k)
i

)
+O

(
N−(q−1)

)
.

We decompose the function Fβ, J into an energy part H and entropy

part S. That is,

Fβ, J(x) = H(x) +
1 + J

β
S(x),

where

H(x) = −
∑
k=1, 2

q∑
i=1

1

2
(x

(k)
i )2−J

q∑
i=1

x
(1)
i x

(2)
i and S(x) =

∑
k=1, 2

q∑
i=1

x
(k)
i log x

(k)
i .
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국문초록

이 논문에서 3개 이상의 스핀으로 구성된 Curie–Weiss 모델의 일반화인

Curie–Weiss–Potts 모델로 알려진 두 개의 구성 요소를 가지는 스핀 시스

템의 에너지 경관을 조사합니다. 다중 구성 요소 모델의 에너지 환경에서

가장 중요한 요소는 구성 요소 간 상호 작용 강도와 구성 요소별 상호 작

용 강도 간의 상대적 강도입니다. 구성 요소 간의 상호 작용이 구성 요소별

상호 작용보다 강하면 준안정 전환 과정에서 모든 구성 요소가 동기화될

것으로 기대할 수 있습니다. 그러나 구성 요소 간 상호 작용이 상대적으로

약하면 준 안정 전환 과정에서 구성 요소가 동기화되지 않습니다. 두 개의

구성 요소를 가지는 Curie–Weiss 모델의 경우 동기화에서 비동기화로의 위

상 전이는 평균 필드 특성으로 인해 연구에서 정확하게 특성화되었습니다.

이 논문의 목적은 이 결과를 3개의 스핀이 있는 Curie–Weiss–Potts 모델로

확장하는 것입니다. 우리는 3-스핀의 경우에 대한 상전이의 특성이 Curie–

Weiss 모델의 2-스핀 경우와 완전히 다르며 결과 위상 다이어그램과 함께

증명이 근본적으로 다르고 매우 복잡하다는 것을 관찰했습니다.

주요어휘: 상전이, 스핀 체계, Curie-Weiss-Potts 모델, 에너지 경관, 다중

구성 요소 모델

학번: 2019-27865
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