creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

9,
of
X,

2
of

./
0

d

Energy Landscape of the
Two-component

Curie—Weiss—Potts Model
with Three Spins

(£Ad™o] 379 Curie—Weiss—Potts Hd 9]
gz 7 )

2022y¢ 8¢



Energy Landscape of the
Two-component

Curie—Weiss—Potts Model
with Three Spins

(£Ad™o] 3791 Curie—Weiss—Potts Hd 2]
NI AR)

AEwS A

o] =< 9

o

A% AeRos Az

2022¢ 49




Energy Landscape of the
Two-component

Curie—Weiss—Potts Model
with Three Spins

A dissertation
submitted in partial fulfillment
of the requirements for the degree of
Master of Science

to the faculty of the Graduate School of
Seoul National University

by

Daecheol Kim

Dissertation Director : Professor Insuk Seo

Department of Mathematical Sciences
Seoul National University

August 2022



(©) 2022 Daecheol Kim

All rights reserved.



Abstract

In this paper, we investigate the energy landscape of the two-component
spin systems, known as the Curie-Weiss—Potts model, which is a general-
ization of the Curie-Weiss model consisting of ¢ > 3 spins. In the energy
landscape of a multi-component model, the most important element is the
relative strength between the inter-component interaction strength and the
component-wise interaction strength. If the inter-component interaction is
stronger than the component-wise interaction, we can expect all the compo-
nents to be synchronized in the course of metastable transition. However, if
the inter-component interaction is relatively weaker, then the components
will be desynchronized in the course of metastable transition. For the two-
component Curie-Weiss model, the phase transition from synchronization
to desynchronization has been precisely characterized in studies owing to
its mean-field nature. The purpose of this paper is to extend this result
to the Curie-Weiss—Potts model with three spins. We observe that the
nature of the phase transition for the three-spin case is entirely different
from the two-spin case of the Curie-Weiss model, and the proof as well
as the resulting phase diagram is fundamentally different and exceedingly
complicated.

Key words: Phase transition, Spin system, Curie-~Weiss—Potts model,
Energy landscape, Multi-component model
Student Number: 2019-27865
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Chapter 1

Introduction

The Ising model is a ferromagnetic spin system consisting of two spins and
plays a vital role in the mathematical study of stochastic interacting sys-
tems. In particular, its rich phase transition behaviors have been rigorously
studied over the last century. One of the simplest Ising model is the Curie—
Weiss model, which is an Ising model defined on a complete graph. Owing
to its mean-field feature, it is possible to completely characterize the energy
landscape of the Curie-Weiss model; essentially, everything is known for
this model. We refer the reader to a monograph [18] for a comprehensive
discussion of these classic results.

The Potts model is a ferromagnetic spin system consisting of ¢ > 3 spins
and hence, can be regarded as a simple extension of the Ising model. A
surprising fact is that in most cases, the Potts model exhibits qualitatively
different and more complex behaviors than the Ising model. For example,
the characterization of the critical temperature for the Potts model on a
lattice requires a non-trivial argument and is obtained in [1], and the phase
transition at this temperature is known to be continuous as in the Ising
model if ¢ < 4 (cf. [5]). For ¢ > 4, the phase transition is discontinuous
(cf. [6]).

The Potts model on a complete graph is called the Curie-Weiss—Potts
model, and it has been investigated in [11,19,20]. Even if it is a mean-
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field model, allowing us to perform dimension reduction on ¢ variables
representing the empirical magnetization vector, the analysis of the energy
landscape is not a simple task. The phase transition of the scaling limit of
the mean-field free energy of the Curie-Weiss—Potts model has been stud-
ied in [9]. The energy landscape was first studied in [3] from the viewpoint
of equivalent and nonequivalent ensembles of phase transitions. For ¢ = 3,
the complete analysis of the energy landscape is carried out in [13,14] and
the metastability of the Glauber dynamics has been studied based on it
in [14]. The cut-off phenomenon for the high-temperature regime has been
proved in [4] for all ¢ > 3. Extending the computation for a model with
q > 4 is far more complicated and has been carried out recently in [15]. It
has been observed in that study that the structure of the energy landscape
for the model with ¢ > 5 differs from that of the model with ¢ = 3, 4.
Recently, investigations on multi-component Curie-Weiss or Curie—
Weiss—Potts models have garnered much interest. These models are de-
fined on a complete graph; however, the vertices are divided into several
groups of macroscopically non-negligible sizes . The interaction strength
between two sites depends on the groups to which these sites belong. Then,
the empirical magnetization for each component interacts with the other
components, and therefore rich behaviors according to the temperature
and interaction parameters are expected. This has been investigated in re-
cent literature. For example, [12] presented the law of large numbers and
large deviation principle for the empirical magnetizations for the multi-
component Curie-Weiss—Potts model. The corresponding central limit the-
orem and moderate deviation principle have been investigated in [10], and
the central limit theorem for the joint distribution for empirical magneti-
zation in the two-component Curie-Weiss—Potts model has been analyzed
in [16] by inspecting the limiting behavior of the free energy. As observed
in these studies, the Curie-Weiss—Potts model maintains the mean-field
feature; however, the structure of the energy landscape might be qual-
itatively different from that of the one-component model provided that
the inter-component interaction parameters are considerably different from



CHAPTER 1. INTRODUCTION

the component-wise interaction. The present study seeks to quantitatively
characterize the borderline for this behavior in terms of the relative inter-
action strengths between the component, and this is done by analyzing the
energy landscape of the simplest possible multi-component Curie—Weiss—
Potts model, namely the two-component model with three spins. We will
verify that even in this simplest possible case, with a mean-field struc-
ture, the energy landscape is unbelievably complicated and therefore its
complete characterization is a highly demanding task. We remark that
this investigation has been carried out for the two-component Curie-Weiss
model in [2], but our work shows that not only the proof but also the
results for the Curie-Weiss—Potts model are fundamentally different.



Chapter 2

Main Results

2.1 Two-component Curie—Weiss—Potts Mod-

els

We first define the two-component Curie—~Weiss—Potts model. For the sim-
plicity of notation, we assume that two components AE\}) ={1,...,N}
and Ag\%) ={1,..., N} are of the same size. We consider a spin system on
Ay = A%) U AE\Q,).We denote the set of spins by § = {1, ..., ¢} and define

1 2
0 = SA x SAV

to be the set of spin configurations. Each configuration o in €2 is denoted
by o = (o), 0@) where

o = (aik), e 0%)) k=1, 2,
and where O'Z(k) denotes the spin assigned at site ¢ of the k-th component

A,
Now we define the Curie-Weiss—Potts (CWP) measure on 2. We fix
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JH, JQQ, J12 >0 and define the CWP Hamiltonian HN Q—R by
1 w_ oy 1y 1) _ (2
Hy(o) = -~ Z Z Jer- o =0, }_N Z Jio- o, =07}
k=1,2 1<i<j<N i j=1
(2.1.1)

We denote the Gibbs measure on {2 associated with the Hamiltonian Hy
at the inverse temperature 8 > 0 by py s

1 a0
ZN 3

g, p(o) =

I

where Zy s is the partition function defined by

Inp=3 e PN,

o)

The measure py, 5 is called the CWP measure, and its energy landscape is
what we seek to determine.

In order to simplify the question of the phase transition according to
the relative interaction strength, we assume that

1 J
= Jyp=— and Jp= —
JH JQQ 1 7 an J12 1 7

for some J > 0, where .J denotes the relative strength of the inter-component
interaction with respect to the component-wise interaction. With this no-
tation, (2.1.1) can be rewritten as

N

B ® _ ® 1 J M _ @

k 1 21<z<]<N i,5=1
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2.2 Distribution of Empirical Magnetization

For o € €, we denote by! »*) (o) = (Tgk)(a), e T(gk)(a)), k=1, 2, the
empirical magnetization of the component A%), ie.,

N

1
o) =52 ol =u} sues.

=1

We write 7(a) = (r(a), 7®(a)). Our main concern in this paper is the
distribution of the empirical magnetization r(o) under the CWP measure
i, 3 and we shall analyze its qualitative and quantitative behavior as J
and [ vary.

The main feature of the mean-field type model as in the CWP model
is the dimension reduction. To explain this in more detail, let = be the
(¢ — 1)-dimensional simplex defined by

q
E = {m = (:L‘u)lgugq - [0, 1]q . Zl’u = 1}
u=1

and let =y = =N (N7'Z)%. Then, we have r(o) € Z3 C Z2 for all o € Q.

Notation 2.2.1. Since ri" (o) =1-9"1 n(f)(a), there is no risk of con-
fusion in regarding

(@) = ((0). ... rh(e)).

Similarly, we can regard

== {:v—(xu)1<u<q 1 €0, 1)° qug 1}

Hence, we shall use these two alternative expressions of the coordinate

'For notational simplicity, we do not stress the dependency of this object to IN; the
same convention will be used throughout this paper.
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vectors interchangeably depending on the context.

Owing to the symmetry among the sites of the same component, we can
reduce the complicated spin spaces €2 into =%, by looking at the empirical
magnetization. To rigorously explain this, we denote by v s(-) the measure
on Z% representing the distribution of empirical magnetization r (o) under
i, g, ie., for z = (xV, @) € 2%

1 - o
vnple) = Y pnalo)= Y e~ PHN(e),

oceQur(o)=x ceQur(o)=x ZN’ A

Then, we have the following expression for vy s(-).

Proposition 2.2.2. We can write

1 1
VN”g(.’E) = Z\ exXp {_NH—LJ (Fb7 J(CC) -+ NGN’B(ZE))}
N, B, J

for some constant Zy, g ;> 0 where

1+J

Fs j(x) = H(z) + Tg(w) and
q

G, 5.0(@) = L Jlog ( H sz(k)> +O (N~
28 k=1, 2 j=1

where

We give a proof in Appendix A. We note that Fj ; indeed corresponds
to the free-energy of the spin system and dominate the energy landscape
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associated with the empirical magnetization. The role of Gy s ;s is limited
to the sub-exponential factor, and hence will be neglected in the remainder
of this paper. Our primary concern is the analysis of the function Fj ;.

2.3 Two Extreme Cases

In this section, we first discuss two extreme cases for ¢ = 3 to explain the
main objective of this paper.

1. J = oo (ie, Jig = Jog = 0 and Ji2 = 1) ; no component-wise
interaction,

2. J =0 (i.e., J12 =0 and Jj; = Joy = 1) ; no inter-component interac-
tion.

In both cases, the calculations are similar. However, there is a considerable
difference between the two cases. To introduce these results, we define a
function & : (O, %) — [0, 00) by

1 1—2x

Sla) = 1—-3z log x

(2.3.1)

The function £(z) has a unique global minimum; thus, we denote this value
by 51 > 0. We also define

2(g—1

By = (q—2) log(q — 1) =4log2 and f5:= 3,

which will be used later. Note that the f, is introduced in [3,7,8,15] and
b1 &~ 2.7465 < [y =~ 2.7726 < (5. For a given § > [3;, the equation
B = £(z) has two solutions because £(x) is convex. In this case, we denote
the smaller solution by z; = x4(3) and the larger one by x; = x;(). Then,
we define sets

S = S(B) = {permutations of (z,,zs, 1 — 2z4)},
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L = L(5) = {permutations of (z;,z;,1 —2z;)}.
Furthermore, we define the set of this kind for the two-component case as

52 = 82<ﬂ) = {(.’L’s,g,wsg) < E?V tLs2 < S} y
L? = LQ(B) = {(mhz,whz) € E?\/ 1Ty € L}

We denote the point (iBs,z, .’1;572) € S? by x,, and the point (.’13572, :vl,g) € L?
by x;. Now, we can define the following definitions.

Definition 2.3.1. The two components are said to be synchronized if all
the local minima and lowest saddles of Fj ; belong to either S* or L2
Otherwise, the two components are said to be desynchronized.

Therefore, under the synchronization regime, the two components are
synchronized in the course of metastable transition from a local minima
to a global minima. More precisely, it is well known that the metastable
transition from a local minima m to another on m’ passing through a
lowest saddle o between them follows (in the macroscopic scale) the so-
called instanton path defined by

x, =VEs j(x;) ; lim ;=0 and lim x, =m (or m’),
T—r—00 T—+00

especially when we consider heat-bath Glauber dynamics. One can notice
that, if the starting configuration o is synchronized in the sense that its
two coordinates are same, then the same property holds for @, for all
t > 0 by the symmetry of the potential Fj ;. Rigorous verification of
this fact follows from elementary computations and therefore we omit the
detail. This implies that the synchonization property persists along the
course of entire metastable transition. Of course, on the other hand, the
two components are desynchronized in the course of metastable transition
if we are in the desynchronization regime. Then, we have the following
results for the extreme cases.

Theorem 2.3.2. Suppose that ¢ = 3.
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1. If there is no component-wise interaction in each component, then
the two components are synchronized.

2. If there is no inter-component interaction between the two compo-
nents, then the two components are desynchronized.

2.4 Synchronization—Desynchronization Phase

Transition

In the previous section, we defined synchronization between the compo-
nents and stated the results of the two extreme cases. Naturally, it can
be expected that synchronization occurs when J is sufficiently large. How-
ever, when J is sufficiently small, one expected that synchronization to
be broken. In this section, we introduce results on the boundaries of the
synchronization when ¢ = 2 and ¢ = 3, respectively. The Ising case (i.e.,
q = 2) can be handled as in [2] and it can be restated as the following
theorem, and more comprehensive results are stated in Theorem 3.0.4.

Theorem 2.4.1. Suppose that ¢ = 2. Define a function (; : [2,00) —
[0,00) by

=
[\]

G(B) = pY (2.4.1)

If J > (1(B), then the two components are synchronized. However, if J <
(1(B), then the two components are desynchronized.

=
\G]

Nevertheless, for ¢ > 3, the synchronization—desynchronization phase
transition is very complicated to analyze. We explain this for the case
q = 3. We define functions ¢y, 1g, 13 : [0,00) — [0,00) by

B2 B~ sz
i (B) = m% 1{B> B3},  (B) = MS—E; 1{f < B < B}, and
(2.4.2)
10
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1.0 T T T T T T 10
- 7//'1 (ﬁ) wsymt
/ / n
sk WZ(B) | 084 w(lesym
—we | T 5=
J =, A= h
e - B=70 0.6
e =y
04F B 0.44
02t A B i 0.2 A B
0.0 : L n L L 0.0

T T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 L5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 2.4.1: These are diagrams of functions of the inverse temperature
5, and the [-value of A ~ 3.1255 and B ~ 3.8290. The purple curve
represents the overlapping of functions v, and 1)g.

_ B—3+/250%—508+1

A constant J. =~ 0.2419 will be specified later in Theorem 4.3.5. Then, we
have the following main results.

Theorem 2.4.2 (Main Theorem). We define functions v, 14 : [0,00) —
[0,00) by

0 B < B, an
max|[¢1(3), min{J., ¥3(8)} B> B,

If J > s(B), then the two components are synchronized. However, if J <

Vs(B) = { d Yq(B) = ¥1(B)+2(B).

y(B) , then the two components are desynchronized.

We conjecture that there exists 1 : [0, co) — [0, co) such that the syn-
chronization happens if and only if J > (). We proved this by verifying

that ¢(5) =0 for < By and ¢¥(B) = ¥1(B) for § > . where (. ~ 3.8290.
This type of behavior might hold for any multi-component Curie—Weiss—

11
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Potts model, but conditioned on the analysis and results of this paper, it
will not be easy to characterize it. This question will be pursued future
studies.

12



Chapter 3

Ising Model on Bipartite
Graph

In this section, we deal with the Ising case. We do this because we present
a more comprehensive proof and provide simplified versions of the calcu-
lations when ¢ = 3. This emphasizes that there is a significant difference
between ¢ = 2 and ¢ = 3.

From Proposition 2.2.2, the function Fj ; for ¢ = 2 is given by

Fs j(z,y) = —% {x2 + (1= 4+ + (1 —y)?* - JHay+ (1 —-2)(1 —y)}

1+J
B

{zlogz + (1 —z)log(1 —z) +ylogy + (1 —y)log(l —y)}.

Here, we used the notation x for a:gl) and y for x§2) to simplify the expres-
sion. To investigate the critical points of Fj ;(x), computing the partial

derivatives of the function yields

OF 1+ J
—ai‘](x,y):(1—2$)+<](1—2y)+ ; log(lxx) = 0(3.0.1)

13
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8F/3 J 14 J Yy
Bl ey =1 =2y +J(1 - 22 +—log(— =0
5. () = (L=20) 4 J(1 = 20) + " log 12—

An elementary computation shows that the Hessian matrix of the function
F B8, J is

14J 9 —9]
V2F s(z,y) = ( 5””(1:3] " ) : (3.0.2)

Since the function (1—2z)+J(1—2y)+ % log (1) is point symmetric at
(1,1), substituting z = 1 and y = & for —1 < 5,¢ < 1 into equations

in (3.0.1) yields

O(s) =t and O(t) = s, (3.0.3)
where . L .
+ + 5
@(s)-;(—s—i— 5 logl_s).

Now, we define a function (s, : [2,00) — [0, 00) by

_ VBB -2) —2log{(vB+VB-2)/v2}
VBB =2) +2log{(vVB+VB—2)/V2}

Recall that (; was defined in (2.4.1). By elementary computations, we
obtain that

G(B) (3.0.4)

(1(2) = (2(2) =0, G(B) > (2(B) for all B > 2,

and

B—00 B—00
Then, we have the following proposition.
Proposition 3.0.1. Consider the system of equations (3.0.3).
1. If ©'(0) > 1, then (3.0.3) has only one solution at the origin.

2. If =1 < ©'(0) < 1, then (3.0.3) has three intersections.

14

M E ) 8k o
¥ — I
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3. If ©'(0) < —1, then (3.0.3) has at least five intersections. Moreover,
if
-2
O (v) < —v, where v := BT, (3.0.5)

then (3.0.3) has nine intersections.

Proof. The graphs in (3.0.3) is plotted similarly to Figure 3 in [2] depending
on the value of ©(0). Note that ©(s) is point symmetric at (0,0) and ©’(s)
has a unique minimum at s = 0.

(1) and (2) are straightforward.

(3) If ©(0) < —1, then (3.0.3) begin to intersect the line t = —s at two
points, except the origin. Note that ©’(y) = 1. If we denote the positive
solution of O(s) = —s by s, then the condition (3.0.5) means that v < s,.
Thus, (3.0.3) has two more intersections in the fourth quadrant, and by
symmetry, there are two more intersections in the second quadrant. This
completes the proof. O

From the definitions of functions (; and (5, and the properties of func-
tion ©, we have the following lemma.

Lemma 3.0.2. Consider the functions (1, (s, and ©. Then, we have the
following equivalence conditions.

1. B <2 if and only if ©'(0) > 1.
Suppose that 5 > 2.

(2) J > (Gi(P) if and only if —1 < ©'(0) < 1. However, J < (1(B) if and
only if ©'(0) < —1

(3) J < G(B) if and only if the inequality (3.0.5) holds.

Proof. The results can be obtained from straightforward computations.
]

15
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Lemma 3.0.3. Suppose that (a,b) is a critical point of Fz j(x,y) and let
A1, Ao be the eigenvalues of the Hessian matriz V*Fs j(a,b). Then,

1. A1+ A2 > 0 if and only if ©'(2a — 1) + ©'(2b — 1) > 0.
2. M2 > 0 if and only if ©'(2a —1)0'(2b— 1) > 1.

Proof. The derivative of the O(s) is

1/1+J 2
@/(3):3(%1_52—1>.

By basic concepts in linear algebra and (3.0.2), we can derive the following.
(1) The first result is calculated as

1+ N 1+J
~ Ba(l—a)  Bb(1—0D)
=2J(0'(2a — 1) + ©'(2b — 1)),

—4

)\1 + )\2 = tr (V2F157 J(a, b))

(2) The second result is calculated as

Mo = det (V2F, s(a,b)) = (% - 2> (L‘]) = 2) — 47

=4J%(0'(2a — 1)0'(2b — 1) — 1).
This completes the proof. O

Now, we can categorize all the critical points of Fj ; as done in [2].
We have further found the function (3.0.4), which is the boundary of the
phase transition, and compared the value of the local minima.

Theorem 3.0.4 (Classifications of the critical points of Fj ;).
The critical points of F ; can be classified as follows.

1. If B < 2, then Fja_; has unique local minimum at (%, %) .

Now, suppose that 5 > 2.

16
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(2) If J > C1(B), then Fs, ; has two global minima and a saddle point at
(3) If Go(B) < J < Gi(B), then Fz j has two global minima, two saddle

points, and a local maximum at (%, %)

(4) If J < G(B), then Fp ; has two global minima, two local minima,

11

four saddle points, and a local mazimum at (5, 5).

Proof. (1), (2) and (3) are straightforward by Proposition 3.0.1, Lemma
3.0.2 and 3.0.3.

(4) By the aforementioned proposition and lemmas, there are four local
minima, four saddle points and a local maximum at (%, %) Thus, it re-
mains only to compare the values of the four local minima. We denote the
intersections of O(s) and t = s by (s1,s1) and (—s1, —s1). Moreover, we
denote the intersections of O(s) and t = —s by (s, —s2) and (—s2, $2). It
is obvious that s; > sq. If we set ;1 = H% and x93 = H%, then by Lemma
3.0.3, Fj5_; has local minima at (zy,z1), (1 —x1,1 — 21), (22,1 — 22), and
(1 — x5, x9). By symmetry, we have

Fﬁ7j($17l'1) = F@J(l—xl,l—l‘l) and F/ByJ(l‘Q,l—:Eg) = F@J(l—l‘g,xg).
In this case, we claim that
F/37 J(l’l,xl) < F@ J(sz, 1-— ZL’Q). (306)

From the definitions of s; and ss, we obtain

1+J 1+ s 1+J 1+ s
Js1 = 1 — d —Jsy = 1 — 423.0.7
1 5 Og1—31 s1 an So 5 Ogl—52 43.0.7)

An elementary calculation using the equations in (3.0.7) shows that

J
Fo sz, 1= 20) = Fa ) = 52 (7o) = f(s0)

17
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where f(z) = £log £ — 2 { (}42%) log ($%) + (15%) log (5%) } . Since the
function f(z) is increasing on = > 0, and since s; > so, we conclude that
(3.0.6) holds. Therefore, Fj3_; has global minima at (z1,2) and (1 —xq,1—
x1), and has local minima at (22,1 — x2) and (1 — x, 23). This completes
the proof. ]

18



Chapter 4

Potts Model on Bipartite
Graph with Three Spins

In this section, we prove Theorem 2.4.2, which is the main result. In sec-
tion 4.1, we deduce the necessary conditions for the critical points of the
function Fj ; and calculate the eigenvalues of its corresponding Hessian
matrix. In section 4.2, we prove Theorem 2.3.2 by considering the two
extreme cases, respectively, in Theorem 4.2.2 and Theorem 4.2.1. In sec-
tion 4.3, 4.4, and 4.5, we find the synchronization and desynchronization
boundaries in low, medium, and high temperatures, respectively.

4.1 Critical Points of Fj ;

In this section, we will find the necessary conditions for the critical points
of I3 ; and define two functions, ® and ¥, which are derived from them.
Then, we will present the relationships between the functions ®, ¥ and the
eigenvalues of the Hessian matrix of Fj ; in Lemma 4.1.2. From Proposi-
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tion 2.2.2, the function Fj ; for ¢ = 3 is given by

3 3
1 1+J
Fp y(z,y) = — 2290 +y7) szzyz TZ xilog z; + y;logy;)
i=1 i=1

(4.1.1)
1) to simplify the

Here, we used the notations z; for z; @

and y; for z;
expression. To find critical points, the first order derivatives of Fjg ; must

be zero:
8:2:'(33, y) = —(zr —23) — J(ye — y3) + (log ), —loga3) = 0,
OF 14+J
0§;J<way) = —(yp —y3) — J(2p — x3) + (log yx — logys) = 0.

for 1 < k,l < 3. Thus, we can obtain the equations

1+J 1+

-z — Jyp + 5 logxy = —x; — Jy + 5 log x;,
1+J 1+J

—yr — Jap + logyr = —y1 — Jao1 + log yi,

for 1 < k,1 < 3. Since each side of the above equations are symmetric and
negative, consider the following equations:

y=®(x)+u and z=(y)+o, (4.1.2)

where u, v are real positive numbers and the function ® is defined by

O(x) := % <—x+ 1—;Jlogx> :

We need to analyze the solutions of (4.1.2) according to the values of
u and v, because they are the candidates for the coordinates of critical
points. Assume first that v = v. When u = v = 0, the graphs in (4.1.2) do
not intersect since the graph y = ®(z) is under the z-axis and the graph

x = ®(y) is to the left of the y-axis. If we increase u gradually, y = ®(z)+u

20



CHAPTER 4. POTTS MODEL ON BIPARTITE GRAPH WITH
THREE SPINS

will be tangent to y = z at x = % before intersecting with z = ®(y) +u at
two points on the line y = z. We denote these points by P = (P, P) and
Q = (Q,Q). Tt is important to check whether these intersections are in
the area [0, 1] x [0, 1], otherwise these points are meaningless, because they
represent the ratio of each spin. In addition, the sum of three of them has
to be equal to one, that is, P +2@Q = 1 or 2P + () = 1. There is no need
to consider the case when u # v and there are two intersections because
the sum of the z-coordinates and the sum of the y-coordinates cannot be
equal to one at the same time.

Note that the smaller the J > 0, the sharper is the graph of y =
®(x) + u. Since the function y = ®(z) + u is concave, (4.1.2) can have at
most four intersections. We denote these intersections by P = (P, P), R =
(R,S), S = (S,R), and Q = (Q,Q) with P < R < @ < S. See Fig-
ure 4.1.1. The critical points must satisfy that both the sum of their x-
coordinates and the sum of their y-coordinates should be equal to one, re-
spectively. For example, if we choose P, R and S, then P+ R+S =1.In
general, if u # v, then we denote these intersections by P = (P, P»), R =
(R1,Rs), S = (51,52), and Q = (@Q1,Q2), with P, < Ry < 1 < S1. In
this case, if we choose P, R and S, then the coordinates should satisfy
Po+Ri+S =P+R+5=1.

Remark 4.1.1. The points Py, Qk, R, and Sy for k£ = 1,2 are functions of
the variables u, v, J and f.

For now, we assume that the critical points of Fj ; are of the form
(s,s,1—2s,t,t,1—2t) up to permutations. Such critical points satisfy the
following equations:

y=®(x)+u and 1—2y=P(1—2z)+u,
r=®(y)+u and 1-—2x=>(1—2y)+u.

Subtracting the second equation from the first equation yields

y=V(zr) and x=U(y), (4.1.3)

21



CHAPTER 4. POTTS MODEL ON BIPARTITE GRAPH WITH
THREE SPINS

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1.1: The graphs of y = ®(x) + u (blue curve) and x = ®(y) + u
(red curve)

where

U(x):= - (P(x) — (1 —22) +1) i<1—331:+1—i_t]log ° +J).

3 T 3J 3 1— 2z

Note that the function W(xz) always passes through (3, 3). From the equa-
tion W(z) = x, we obtain the inverse temperature

3 = €(x). (4.1.4)

Recall that £(z) was defined in (2.3.1). The derivative of £(z) is

d¢(z) 1—3z+3z(1—2z)log 75
de z(2x — 1)(3x — 1)? ’ (4.1.5)

(4.1.5) has a unique solution and we denote this by m; ~ 0.2076. Then,
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£(z) has a global minimum at m; and by the definition of f;, we obtain

1 1—2my
= log .
1-— 3m1 my

A

Recall that given 8 > f;, we denoted the smaller solution of (4.1.4) by
xrs = x4(8) and the larger one by z; = x;(f). Then, we can derive the
relationships between the functions ®, ¥ and the eigenvalues of the Hessian
matrix.

Lemma 4.1.2. Suppose that the critical points of Fa ; are of the form
(s,s,1=2s,t,t,1—2t) up to permutations, where 0 < s,t < 1. Let A1, \a, A3,
and Ay be the eigenvalues of the Hessian matrixz of Fp ;. After reordering
the eigenvalues, we have

1. M+ X2 > 0 if and only if '(s) + P'(t) > 0 and A\; A2 > 0 if and only
if ®'(s)®'(t) > 1,

2. A3+ Ay > 0 if and only if V' (s) +V'(t) > 0 and A\3\y > 0 if and only
if W(s)W'(t) > 1.

Proof. Note that

J J
(I)/(x):§<1;—x —1) and \I/'(x):%<1—; 33:(11—255)_1)'

Before giving the proof, we first find the characteristic polynomial of the

Hessian matrix of Fg ;. Then, we compute the determinant of the following

matrix:
A B
2 X
F — A =
ison=(§ 2)
where
HJ (1 4 1) _9__ 4+J1
A — B (1+x> 2-A B z3 1
x 14+J 1 1+J [ 1 1 ’
5w 1 T(EJ%—)—Q—)‘
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+J (1 4, 1) _9__ +J1
Ao — B <y1+y3) 2-A B ys 1
vy 1+J 1 14 (1, 1\ o ’
i 5 (y2+ ) 2-A
-2J —J .
and B = 7 o7 . By the assumption that 1 = x5 = s, y; = Yo =

t,r3=1—2sand y3 = 1 —2¢, A, and Ay become symmetric matrices. In
this case, BA, = AyB and hence the determinant of the Hessian matrix
becomes det(AxAy, — B?). An elementary computation shows that

det (V* (Fp, 4(s,s,1 —2s,t,t,1—2t)) — X)
={N+R2-8 -T)A+ ST - S —Ty +1—J*}
X AN+ (6 —S) — Ty — 2S5 — 2T5)\ + Si Ty + 25T
+28,Ty + 4S8,Ty — 3S) — 311 — 6Sy — 6T, +9 — 9J°},

where S; = 1/3%], Sy = ﬁ and T} = 127;] , Ty = (1;“;5 We denote the

solutions of the first factor by A1, A2 and the solutions of the second factor
by Az, As. Then, we may derive the following.
(1) The first result is calculated as

MF+X=5+T—-2= J((I),(S) + (I),(t)),
M =8T —S —Ti+1—-J>=J? (P'(s)@'(t) = 1),

(2) The second result is calculated as

)\3 + /\4 == Sl + T1 + 252 + 2T2 —6=3J (\I/,(S) + \I//(t)) s
Ay = S1Ty + 28,1y + 25,Ty + 4851y — 35y — 3Ty — 65, — 615 +9 — 9.2,
= 9J% (W' (s)W'(t) — 1).

This completes the proof. ]
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4.2 Two Extreme Cases: J =00 and J =0

In this section, we prove Theorem 2.3.2 by categorizing all the critical
points of F ; according to the value of the inverse temperature 3 in both
cases J = o0 (i.e., Jj3 = Jog = 0 and Jy3 = 1), a case without component-
wise interaction and J = 0 (i.e.,, J12 = 0 and Ji; = Jos = 1), a case
without inter-component interaction. For convenience, we denote the point
(1 11111

3131303 3 5) by qs. First, we consider the case when J = oo.

Theorem 4.2.1. Suppose that J = co. (i.e., Ji1 = Jog =0 and Jio = 1),
that s, there is no component-wise interaction in each block. Then, we
have the following.

1. If 0 < B < (1, then there is only one local minimum at qs.

2. If B1 < B < [Bo, then there is a global minimum at qs, three local
minima, and three saddle points.

3. If B < B < B3, then there is a local minimum at qs, three global
minima, and three saddle points.

4. If B > B3, then there are three global minima and three saddle points.

Proof. The function (4.1.1) becomes

zxzyz (z S m) w2

The critical points must satisfy the following equations:

oF, 1
e i(w y)=—(yx —y3) + 3 (log x, — logz3) =0, (4.2.2)
@) = (o — )+ (08— log ) = 0
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for 1 < k < 3. Since the equations in (4.2.2) are symmetric, we consider
the following system of equations:

y:llogx—l—u and x:llogy+v, (4.2.3)
5 g

where u, v are real positive numbers. The function %logx is concave and

increases; thus (4.2.3) has at most two solutions. Moreover, if x; = z;, then

by (4.2.2), we have y, = y;, for 1 < k,l < 3. Thus, all the critical points

are of the form (s,s,1 — 2s,t,¢,1 — 2t) up to permutations. In fact, all of

them are of the form (s,s,1 — 2s,s,s,1 — 2s). This is because, from the

equations
1 1
s=—logt+u and 1—2s=—log(l—2t)+u,
g g
1 1
t=—logs+v and 1-—2t=—log(l—2s)+w,
g G
we obtain
1 1—-2t 1 1-2
1—-3s=—log and 1—3t=—log i (4.2.4)
5 ¢ g S
By subtracting the equations in (4.2.4), we have
1 1—2s 1 1-2t
1-3 —1 =1-3t+ —-log——.
s+ 3 og S + 3 og ;

Since the function 1 — 3z + % log % is decreasing, we have s = t.

Thus, all the critical points are of the form (s, s,1—2s,s,s,1—2s) and
from (4.2.4), we obtain the inverse temperature § > 0 :
1 1—2s

log

621—33 S

(4.2.5)

Hence, if § > (1, then there are two types of critical points up to permu-
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tations, except qs:
P11 = (l’s, Ts, 1—21'5,33'371'37 1—2.1'3) and D2 = (xlawla 1—21'[, Ty, Ly, 1—233'[),

A straightforward calculation gives the eigenvalues of the Hessian of (4.2.1)

that 1 1
=——-1 X=—+1 4.2.6
Bs ’ 2 Bs ’ ( )

1 1
=3 d y=————+3 4.2.7
Bs(l—2s) and A Bs(1 —2s) * ( )
Since Ay and A4 are always positive, we only need to know when \; > 0
and A3 > 0. By substituting (4.2.5) into (4.2.6) and (4.2.7), we obtain that
)\1>Oifandon1yif0<s<%, and A3 > 0 if and only if 0 < s < my or
% < s < % Therefore, regardless of the value of 8 > 1, we can conclude

At

Az

that p; is a local minimum, and p, is a saddle point. The point g3 is a
local minimum if 5 < (3, but it is neither a local minimum nor a saddle
point if 5 > fs.

It remains to compare the local minima when 6, < 8 < (5 and (5 <
B < B3. By symmetry, the function values at p; up to permutations are
the same. A straightforward computation yields

Fs 5(p1) — Fp, 5(qs) = F(x,),

where

2 2
Flz) = —62% + v — o + 7 (2rloge + (1 — 2x) log(1 — 2z) + log 3),
(4.2.8)

and 8 = £(z). The function F(z) is positive on (3.3) and is negative on
(O,%) and (%,%) If B < B < [y, then z, € (%,%); hence Fj j(p1) >
Fs ;(qgs). However, if By < § < B3, then z, € (O,%); thus Fp ;(p1) <
Fj3. ;(gs). This completes the proof. O

Next, we prove the other extreme case when J = 0.
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Theorem 4.2.2. Suppose that J = 0. (i.e., Ji3 = Jog = 1 and J15 = 0),
that is, there is no inter-component interaction between the two blocks.
Then, we have the followings.

1. If 0 < B < By, then there is only one local minimum at qs.

2. If B1 < B < [, then there is a global minimum at qz, nine local
mimima and 18 saddle points.

3. If By < B < B3, then there is a local minimum at qs, nine global
mimima and 18 saddle points

4. If B > B3, then there is a local maximum at qsz, nine global minima,
and 18 saddle points.

Proof. The function (4.1.1) becomes a function of g:

3
1
Fo(m.y) =—5 > («f +v7) +

i=1

3
Z(ﬂfz log z; + y; log y;).
i=1

|

The critical points must satisfy the following equations:

oF 1

3—335(%@/) = —(zp —x3) + 3 (log zj, — logxs) =0, (4.2.9)
OF; 1

—(x,y) = —(yr —y3) + = (lo —lo =0,

9y, B ) = (o —ys) + 5 (logye — logys)

for 1 < k < 3. Clearly, gs is a critical point of Fj. First, we determine
the form of all the critical points of Fj. Since the equations in (4.2.9) are
symmetric, we consider the equation

1 1
x—Blogx:u, and y—Blogy:v (4.2.10)

where w,v > 0. The function z — %logx is convex; thus (4.2.10) each of
x and y has at most two solutions. Thus, all the critical points are of the
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form (s, s,1—2s,t,t,1—2t) up to permutations and from (4.2.9), we obtain
the inverse temperature

B =£&(s) =&(1). (4.2.11)

The function £(x) has a unique minimum at z = m; and its value is ;.
Hence, there is no critical point of the form (s,s,1 — 2s,¢,¢,1 — 2t) when
B < Bi. However, when § > i, from (4.2.11), s can be either x4(3) or
x;(B); the same is true for t. Hence, if § > /31, then there are four types of
critical points up to permutations, except gqs:

P1 = ('Z‘S?xS? 1-— 2IS7IS7'I871 - 21:8)7 D2 = (xlwrl; 1 - 21’[,.%’[,1‘[, 1 - 23:[)7

D3 = (xsaxsa 1- 2-775)-7717-7:[7 1 - 2$l)a P4 = (xlaxla - 2$lax8axsa 1- 23:5)

Since both the first and the last three coordinates of the aforementioned
critical points behave independently, there are nine permutations for each.
By substituting J = 0 in the proof of Lemma (4.1.2), we have

1 1

M=o 1, dg=——1
1 BS ) 2 ﬁt )

1 1
— =3 d y=———7—-3.
Bs(l—2s) ane Bt(1 — 2t)
From the proof of Theorem 4.2.1, we know that A\; > 0 if and only if
0<s< %,and)\g>Oifand0n1yif0<s<m1 or%<s< %.Thesameis
true for A\ and A\4. Therefore, regardless of the value of 3, we can conclude

)\3:

that p; is a local minimum, p, is neither a local minimum nor a saddle
point, and p3 and p4 are saddle points. The point g3 is a local minimum if
£ < (3, but is a local maximum if 5 > f3. The comparison of local minima
is the same as the proof of Theorem 4.2.1. This completes the proof. [

Remark 4.2.3. For any ¢ > 3, the CWP model has a first-order phase
transition at the critical temperature 5 = (35, which was covered in [3,7,8,
15,17]. We remark that the set of global minima is replaced at 8 = (5 for
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the two-component case, and this critical temperature 5, is independent
of variable J. The third statement in Theorem 4.4.2 cover the general case
of J.

4.3 General Case: Low-Temperature Regime

(B> B3)

In this section, we will find all the local minima and lowest saddles of
Fjs 7 which belong to either S? or L?, and the phase transition boundary
for the low-temperature part of Theorem 2.4.2. Recall that we defined the
function % in (2.4.2). Then, the function 1; has the following properties.

Proposition 4.3.1. The function 1, is a continuous function such that
0<1(B) <1, ¥i(B3) =0, and 611_{20%(5) =1

Proof. Note that z; is a continuous function of 3, and z; € (%, %) if 8> [s.

Since 11(B) is a composition of continuous functions, it is continuous. It

is obvious that () < 1. Since x; > %7 we have § = 1_133” log 1;—2;” > mil?

which means that ¢;(8) > 0. Note that limg_,, 2; = 3 and limg_,oc 2; = 3.

This implies that 1, (fs) = limg_,, ¥1(8) = 0 and limg_,o, ¥1(8) = 1. This
completes the proof. O

Proposition 4.3.2. Suppose that w = v in (4.1.2) and there are two in-
tersections: P = (P, P) and Q = (Q, Q) with P < Q. Suppose further that
'(Q) = —1. Then, J > 1(B) if and only if P+ 2Q > 1. In particular,
J =Y (B) if and only if P+ 20Q = 1.

Proof. Suppose that P + 2Q) > 1. SinceP < @, we have @) > % The

condition ®(Q) = —1 is equivalent to Q = -/~ By the definitions of P

p1-J)"
and (), we have
1 1
P glogP = Q- ZlogQ. (4.3.1)
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1.
ﬁ Y
), from the inequality

1
B

P <1 <@ Since r — %logq: is decreasing on <0

The function x — - logx is convex and has a minimum at x = =; hence

1
B "B
1 —2@ < P and (4.3.1), we obtain

1 1-2Q

5<1_3Q10g 0

(4.3.2)

Thus, @ > x; = x;(f), or equivalently, we obtain

B—
B+

8-

J > (B) =

8-

On the other hand, we assume that J > (), which is equivalent to

@ > x;. Since x; € (%, %) for > P3, we have

_B-3_ 28(3-1/m;)
B+3  (B+1/m)(B+3)

Hence, J > % and this implies that ) > % Since @ > z;, (4.3.2) holds.

By (4.3.1), the inequality (4.3.2) becomes

U1 (B)

>0 forall g>0.

1—2@—%10g(1—2@)<Q—%logQ:P—%logP.

This implies that 1 — 2¢Q) < P. This completes the proof. ]

Note that by symmetry, the function values at x5 or &; up to permuta-
tions are the same, respectively. Then, we have the following theorem for
the low-temperature regime.

Theorem 4.3.3. Suppose that B > (3. Then, we have the following results.

1. If J > 41(B), then Fg, ; has three local minima at x5 € S* and three
saddle points at x; € L.

2. If J < 1(B), then there must be a lowest saddle of Fjs ; that does
not belong to either S? or L?.
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Proof. (1) From the definitions of x; and x;, we have

1 1— 2z, 1 1— 2z
b= log = log )
1 — 3z, T 1 -3z x
Note that the function 1 — ——1log 1=2% is positive on 0 < = < . Since

Ts < % and since x; > %, we obtain the inequality

Ts < S < . (4.3.3)
g
To analyze the critical points, we need to investigate the slopes of & and ¥
at x = x5 and x = ;. When we look at the graph ¥(z) = z, it has solutions
in the order of x, 5 and ;. It follows that ¥'(x,) > 1 and ¥'(z;) > 1. Since
®'(3) = 1, the inequality (4.3.3) implies that ®'(z,) > 1 and ®'(2;) < 1.
Fs. ; The assumption J > (/) is equivalent to

14+J
BL—J)

The right hand side of (4.3.4) is the point where the function ® has a slope
of —1. Thus, we have —1 < ®'(x;) < 1 and by Lemma 4.1.2, Fj3 ; has local
minima at s and saddle points at x;. This proves (1).

(2) The condition J < v¥4(B) is equivalent to x; > 1%{,) This means

Bl
that ®'(z;) < —1. Thus, by Lemma 4.1.2, x; is no longer a saddle point,

T < (434)

and hence, there is no saddle point belonging to either S? or L?. However,
according to Morse’s theory, when there are two or more local minima,
there must be a saddle point with the lowest level connecting them. Thus,
there must be a saddle point that does not belong to either S? or L?. This
completes the proof. O

Lemma 4.3.4. Suppose that u = v in (4.1.2) and suppose that (4.1.2)
intersects only two points at P = (P, P) and Q = (Q,Q) with P < Q.
Then 2P 4+ @) and P + 2Q) are increasing functions with respect to u.

Proof. Note that () is increasing but P is decreasing with respect to wu.
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Thus, it suffices to show that 2P + @) is increasing with respect to u. From
the definitions of P and (), we have

1 1
P:(ID(P)+u:j<—P—|— —;JlogP)—l—u,
1 14+J
Q=o(Q)+u= i (—Q + 3 log Q) + u. (4.3.5)
We can replace u with #u and P,(Q with SP, 5(Q), respectively. Hence,

the equations in (4.3.5) become

BP —log P = fu—log and [Q —logpQ = pu—logB. (4.3.6)

After scaling and translating the equations in (4.3.6), it suffices to consider
the system of equations

P—logP=u and Q —logQ = u, (4.3.7)

By differentiating (4.3.7) with respect to u, the sum of the derivatives of
P and Q is

oP 0Q _ 2P Q  3PQ-2P-Q

“wtow TPt PO

Since P is decreasing and () is increasing with respect to u, we have P—1 <
0Oand @ —1 > 0. Since 0 < P,Q < 1, we have 2P + ) — 3PQ > 0. This
completes the proof. ]

Theorem 4.3.5. Suppose that u = v in (4.1.2) and suppose that the graphs
in (4.1.2) intersects at four points at P = (P, P), R=(R,S), S = (S, R),
and Q = (Q,Q) with P < R < Q < S. Let J. be the positive root of the

function (14 z) (= — 2%) — log 22,

1. If J > J., then P+ R+ S increases with respect to u.

2. The derivative W increases with respect to u. That is, the func-
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tion (P + R+ S)(u) is conve.

Proof. (1) Since

1+J 1+J /1 1+J
<I><( *‘B)w)+u:—; (F(—x—l—logx)—l—log ; _I_lé—uj)’

by scaling and translating the function ®(x) and the variable w, it suffices

to consider the system of equations:
wm+%zp,@m+%=szm1@$+%:3

where

d(z) = % (—x +logx). (4.3.8)

An elementary computation shows that W > ( is equivalent to
(P—J)R+S+2J)—(J>—RS) >0, (4.3.9)

where P = —1 + %,R = -1+ % and S = —1 + % We denote the
geometric mean of R and S by I'grg := VRS , and I'gg := —1—|—$. Then,
we can rearrange (4.3.9) as

(P = D{2(J +Trs) + (R—Tps) + (S —Try)} (4.3.10)
+ {(E - fRS) + fRS}{(g - fRS) + fRs} —J*>0.

Note that
ot () (o) )
~ o~ 1 1 1 1 1
S‘FRSZ(‘”§>‘(‘”FRS) :\/E(\/?_\/ﬁ>'
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Substituting the aforementioned equations in (4.3.10), we obtain

(J+fRS)(213+fRS—3J)+(ﬁ—J—1)< ! ! >2>o. (4.3.11)

VR VS
Then, by Lemma 4.3.6, we acquire the desired results.

(2) We claim that (4.3.11) increases with respect to u. Since R and S
are getting farther as u increases, it suffices to prove that both Pand T RS
are increasing. P is increasing since P is decreasing. If we show that RS
is decreasing, then r Rrs increases with respect to u, achieving the required
result. An elementary computation shows that

O(RS) 0OR_ 0S 1
= St = s @ = DR+ S).

By considering the graphs in (4.1.2), we observe R + S increasing with

respect to u. Since R+ S has a unique minimum at R =5 = @Q = we

- J’
have (RS) < 0. This completes the proof. ]

Lemma 4.3.6. Under the notations introduced in Theorem 4.3.5, we have
1. J+Tgs >0,
2. P>3J,
3. P—J—1>0ifJ>J.

Proof. (1) From the definitions of R and S, we have

5:213(3)+§ and R:5(5)+§.

Subtracting the first equation from the second equation yields
s

1
(1-J)(S - R) zlogS—logR:/ S
R
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Since the sum of the area of the trapezoid with vertices (R, 0), (Ugs, 0), (R, %),
(FRS, ﬁ), and the other one with vertices (I'gg, 0), (S, 0), (FRS, ﬁ), (S, %)

1

Ldt , we obtain

is greater than the definite integral [ 5

S
<1—J><S—R>=/R%dtsg(%+ri%)<r35—z~z>
+§(FLRS+§)<S—FRS>
1

This proves (1).
(2) Similar to aforementioned proof, by comparing the area of the trape-
zoid and the definite integral, we have

@1 1/1 1
1 —P)=1 —log P = —dt< - | =+ —= — P).
1+ 0@-P)=logQ-toeP= [ ar<3 (4 5)@-P)
Thus, P+ @ > 2J. However, @/J = &)’(Q) < —1, which is equivalent to
Q) < —J. This proves (2).
(3) Define a function h : [0,00) — R by h(z) = (1+ J)z —log x. By the
definitions of P and @, we have h(P) = h(Q). The condition A—J—1> 0

1

is equivalent to P < Note that the function h(z) is decreasing on

247
[O, HLJ) and is increasing on [14%1’ oo) Thus, we need to show that
h(P) > h !
- \2+J)
We know that ) > %; hence, we obtain h(P) = h(Q) > h(ﬁ) Consider

the following function:

| 1 | 1 24 J
LI VAN (S S R - - (4312
h(l—J) h<2+J) (+J>(1—J 2+J) g1y 4312
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The right-hand side of (4.3.12) is nonnegative if J > J., where J. is the
positive root of (4.3.12). This implies that A(P) = h(Q) > h () >
h(515) if J > J.. This completes the proof. O

Theorem 4.3.7. Suppose that u # v in (4.1.2) and there are four inter-
sections at P = (P, Py), R = (Ry, Ry), S = (51,52), and Q = (Q1,Q2),
with Py < Ry < Q1 < 5. Then, for a fized v,

1. Py + Ry + S5 increases with respect to u.
2. Ry + 51+ Q1 increases with respect to u.
3. Py 4+ 51 4 Q1 increases with respect to u.
4. Po+ Ry 4+ Q2> P+ Ry + 55.

Proof. Without loss of generality, we may assume that v > v. By setting
u:= v+ w, for w > 0, the equations in (4.1.2) become

y=®(z)+v+w and z=>I(y)+ v,

where v, w > 0. As in the proof of Theorem 4.3.5, by scaling and translating
the function @, it suffices to consider

~ v+ w
— 3
y = ®(z)+ 7

~ (%
d 2= Z
and == B(y) + 2.

where ® was defined in (4.3.8). We will use the notation P, = —1 + P%- for
1 = 1,2, and the same applies to the other functions.

(1) Since Ry is increasing with respect to w, it suffices to show that
P+ S5 is increasing with respect to w. By the definitions of P, P, S1, and

Sy, we have

P=3(P)+ Y and P =3(P) + % (4.3.13)
S = (5 + LY and Sy = B(S,) + Z (4.3.14)
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Differentiating (4.3.13) with respect to w, we obtain

oP, P, L o 1
= ——=, an = —.
w  J2— PP, w  J2— PP,

Similar equations can be obtained for functions S; and S5 by differentiating
(4.3.14). Since P, is decreasing and S, is increasing with respect to w, we
have J2 — PP, < 0 and J? — S;55 > 0. Thus, we have to show that

or, 05,
ow ow —

From (4.3.13) and (4.3.14), we obtain the following:

> 0, or equivalently, P1P2 + 5152 —2J2>0.

S1 1
J(Sy — Py) = =51 +1logS1 + P, —log P, = / (_1 + f) dt,

Py

S
? 1
J(Sl_Pl):—SQ+IOgSQ+P2—IOgP2:/ (_1+¥)dt

Py

Since the area of the trapezoid with vertices (P;,0), (S1,0), (Pl, P%)’ and
(Sl, Sil) is greater than the definite integral f}fll %dt, we have

S1 1
[ (e
Py t

<5(ptg)E-ro-Gi-n

1 ~
2(P1 + 51)(51 — P).
Thus, we obtain
1
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Similarly, we have

J(S1 — P)) < =(Py + 8,)(Sy — Py). (4.3.16)

l\')l»—l

Multiplying (4.3.15) and (4.3.16), we obtain the inequality
1 ~ ~ ~
ﬂgZ@ﬁGME+&) (4.3.17)

Using (4.3.17), we have the following estimation:

2(PPy+ 5155 — 2J%) = 2(P Py + 5,55 — 2J%)
_(f)l+§1)(ﬁ2+§2)+(ﬁ1+§1)(ﬁ2+§2)
= (P = 81)(P, — S)
+ (P + 51)(Py 4 So) — 4

1 1\ /1 1
P S )\P 5
+ (P + S))(Py+ Sy) — 4% >0,

since P, < Py < Sy < Sy. This proves (1).

(2) Since S; is increasing with respect to w, it suffices to show that
Ry + @ is increasing with respect to w. Hence, we need to show that

% + % >0, or equivalently, J2(Ry + Q5) — RoQa(Ry + Q1) < 0.
(4.3.18)

Since Ry > 1 and Q3 > 1, we have Rg <0, Qg < 0. Hence, 1fR1+Q1 >0,
then (4.3.18) holds. Now, we assume that Ry + Q; < 0. By the same
argument in the proof of (1), we have

R L
J(Ry — Q) = /1 (—1 + %) dt > _%(Rl + Q1)(Q1 — Ry),
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ﬂ@—an/@(4+§)ﬁz—gﬁ+@mm—Q»

Ro
Since Q1 — Ry > 0 and Ry — 2 > 0, multiplying the aforementioned

inequalities, we obtain

T > (R + Q1)(Rz + Qo). (4.3.19)

.-bl'—‘

By (4.3.19), an elementary computation yields

1

4(R2 — Qo)X (R, + Q1) <0

J? <§2 + éz) RQQz(Rl + Ql)

This proves (2).

(3) It suffices to verify that P, 4+ )y is increasing with respect to u.
Thus, we have to show that

orP, 0 ~  ~ ~~~

it & >0 or equlvalently, Jz(Pz + QQ) — PQQQ(P:[ + Ql) > 0.
aw ow
(4.3.20)

Since P, < P, <1< Qs < Qq, we have P, P, > 0 and @)1, Q> < 0. By the
same argument in the proof of (2), we obtain

s@-ry= [ (10 })ar< A @@ P,

Py

=N

J(Ql—Pl):/Q2 (—1+%)dt §(P2+Q2)(Q2 B).

Py

Each left-hand side of the aforementioned equations is positive; thus, we
obtain P+ Q7 > 0 and P+ ()3 > 0. Therefore, (4.3.20) holds. This proves

(3).

(4) This is obviously true. This completes the proof. ]
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4.4 General Case: Middle-Temperature Regime

(81 < B < Bs)

In this section, we investigate all the local minima and lowest saddles of
F.; belonging to either S? or L? for the middle-temperature and compare
the values of the local minima according to the temperature. Further-
more, we specify the synchronization boundary and the desynchronization
boundary, respectively. Recall the definition of the function 5 is in (2.4.2).
Then, the function 5 has the following properties.

Proposition 4.4.1. The function s is a continuous function such that

1
0 < p(B) < T and Pa(f1) = ¥2(Bs) = 0.
Proof. Note that z; is a continuous function of § and z; € (ml, %) if
b1 < B < p3. Since 1) is a composition of continuous functions, it is
continuous. Since m; < x; < %, we have
1 1 1—2x 1

log

— = — > 0.
ﬁ 35(7[(1 - 21‘1) 1-— 3.731 ] 313[(1 - 2.751)

Thus, ¥5(5) > 0 for 51 < B < Ps. By the definition of /3, the inequality
¥2(B) < 55 is equivalent to

9 1 — 2 11
log

< . 4.4.1
1-— 31’[ Iy 3%’1(1 - 2Il) ( )

An elementary calculation shows that (4.4.1) holds when 0 < z; < %; hence,
¥5(B) < 15. From the numerator of (4.1.5), m; satisfies the equation

™y,

1— 37711 + 3m1(1 — 2m1) logm =
- 1
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By the definition of 31, 4.4 becomes

1 1—2m, 1
= log = .
1-— 3m1 my 3m1(1 - 2m1)

A

Since limg_,5, 7; = my, we have ¢9(51) = limg_, 5, 12(8) = 0. In addition,
limg_,g, 7, = 3 implies that 15(83) = limg_,g, 12(8) = 0. This completes
the proof. O

Theorem 4.4.2. Suppose that 5y < B < P3. Then, we have the following
results.

1. If J > 9(B), then there is a local minimum at qs, three local minima
at T, € S? and three saddle points at ¢ € L?.

2. If J < 1o(B), then there is a local minimum at qs, three local minima
at ¢, € S? and siz saddle points of the form (s,s,1 —2s,t,t,1 — 2t)
and (t,t,1 —2t,s,s,1 —2s) with s <t up to permutations

3. (Comparison of local minima) If B; < B < [a, then Fz ;(qs) <
Fg,J(ms), and ’Lfﬁg < 6 < /63, then F@J(qg) > FB’J(:US).

Proof. Note that the assumption 5; < 8 < f5 implies that ¥'(x;) < 1 and
T, <a < 3<%

(1) If J > 4(f3), which is equivalent to ¥'(x;) > —1, then the function
y = U(z) intersects only at (z, z), (21, 2;), and (3, 5) with 2 = ¥(y). By
observing the graphs in (4.1.3), it follows that \I/’(é) > 1, and V' (xg) > 1.
Moreover, we know that —1 < ¥'(z;) < 1. Since ¢’ (%) = 1 and since
T, <1 < 3 < %, it follows that ®'(3) > 1, ®'(z,) > 1, and @'(z;) > 1.
Therefore, Fj ; has local minima at gz and x5 € S?, and it has saddle
points at x; € L? by Lemma 4.1.2. This proves (1).

(2) If J < 15(5), which is equivalent to ¥'(z;) < —1, then y = ¥(z) and
x = ¥(y) intersect not only at the original three points, but also at (s, )
and (t,s) with s < z; <t < 3. Since ¥'(z;) < —1, @; is no longer a saddle
point of Fj3 ; by Lemma 4.1.2. We claim that (s,s,1 —2s,t,¢,1 — 2¢) and
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(t,t,1-2t,s,s,1—2s) are six new saddle points of Fj_; up to permutations.

Since s < % and t < %, we have ®(s) > 1 and ®'(t) > 1. By the inverse

function theorem, we obtain W'(s)¥’'(¢f) < 1. Therefore, Fj ; has saddle

points at (s,s,1 — 2s,t,¢t,1 — 2t) and (¢,¢,1 — 2t,s,s,1 — 2s) by Lemma

4.1.2. The arguments for gz and x, are the same as (1). This proves (2).
(3) A straightforward computation yields

Fp, j(xs) — Fs, 5(qs) = (1 + J)F(xy),

where F(z) was defined in (4.2.8). The rest of the argument is the same
as the proof of Theorem 4.2.1. This completes the proof. O

Recall that we defined the function 3 in (2.4.2). Then, we have the
following theorem.

Theorem 4.4.3. Under the assumptions in Theorem 4.3.5, if J > 13(B),
then the function (P + R+ S)(u) > 1 for all u > 0.

Proof. By Theorem 4.3.5, we know that (P + R+ .5)(u) is convex; thus it
has a unique minimum. We claim that the minimum value is greater than

one when J > 13(/3). For convenience, we set ]55, g =—-1+ 1;—1.5], and the

same applies to the other functions. A straightforward calculation shows
that

T Ry = U8 g sy = TR

Pl(u) = =~ 2 2 ~
J — Psy J* — Rg ;S8,7 J? — Ry 1Ss,
hence,

(P+ R+ S)(u) =0 is equivalent to
(ﬁﬁﬂ] - J)(Egﬂ] + gﬁ’J +2J)— (J2 - E@’Jgﬁ“]) = 0.

Applying the method of Lagrange multipliers to
G(P,R,S)=P+ R+ S,
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H(P,R,S) = (Ps; — J) (R + Sg,s +2J) — (J* = Rg,4S5,5) =0,

yields the following equations:

1 ~ ~ 1 ~ - 1~ ~
E(QJ‘FR@J‘FS@J) - ﬁ(Pﬁ,J‘I‘Sﬂ,J—J) = ﬁ(PB,J‘f‘Rg,J—J). (442)

Calculating the equation of the second and the third in (4.4.2), we obtain

1+J
Re§=— T
J+2-
Therefore, G becomes a function of P:
(J +2)17
G(P,R,S)=P+R+ S = TN (4.4.3)
+J ) 1+

The denominator of (4.4.3) is a quadratic function of IBLI;]; hence it has a

J+2
=
proof of (2) in Lemma 4.3.6 without scaling and translating ®(x), then we

obtain Pg ; > 3.J. This implies that % > 3J + 1. Since 3J +1 > %,

o S . (D) (24))
r(;l}.lél.?))f has .z} minimum at 5+_P =3J +1, and its value of G is B 5137
erefore, i

maximum value at 1/3%] = However, if we apply the argument in the

(1+J)2+J)
B(1—2J)(1+3J)
then (P + R+ S)(u) > 1 for all u. Solving the inequality (4.4.4) for J, we
obtain J > 3(f). This completes the proof. ]

> 1, (4.4.4)

4.5 General Case: High-Temperature Regime

(B < pB)

In this section, we show that the two components are synchronized in
high-temperature by proving that there is only one local minimum at gqs.
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Theorem 4.5.1. If0 < § < (1, then there is only one global minimum at
qs.

Proof. The fact that g3 is a local minimum is straightforward by Lemma
4.1.2. Since < Bi, by the definitions of S? and L?, there is no critical
point belonging to either S? or L?. We claim that there is no other kind of
critical points other than gs. First, we assume that u = v in (4.1.2). When
(4.1.2) has only one solution at x = %, the value % > % After increasing
u minutely, which allows (4.1.2) to have two intersections at P = (P, P)
and Q = (Q,Q), by Lemma 4.3.4, 2P + @ increases with respect to w.
We increase u a little more so that (4.1.2) have four intersections at P =
(P,P), R=(R,5), S=(S,R),and Q = (Q,Q)withP< R< @ < S.In
this case, P+ R+ S5 > 2P+ (@ > % > 1. Moreover, R+S5+Q > 1. That is,
there is no critical point of the form (P, R, S, P,S,R) or (Q, R, S,Q, S, R)
up to permutations. Now, without loss of generality, we may assume that
u > v. In this case, by Theorem 4.3.7, each sum of the coordinates of all
possible combinations of the three intersections in (4.1.2) is greater than
one. This completes the proof. O

Finally, we prove the main theorem which is Theorem 2.4.2.

Proof of Theorem 2.4.2.

We prove the synchronization part first. By Theorem 4.5.1, the two
components are synchronized in high-temperature (5 < (31). Proposition
4.3.2, and Theorems 4.3.5 and 4.3.7 imply that if J > max(¢;(8), J.), then
there are no local minima and lowest saddles of F3 ; that does not belong to
either S? or L?, that is, the two components are synchronized. In addition,
Theorem 4.3.7 and 4.4.3 imply that if J > 13(f3), then there are no local
minima and lowest saddles of Fjs ; other than S? or L?. Therefore, the two
components are synchronized when J > 1,(3). However, if J < ¢4(8), then
by the second statement of Theorems 4.3.3 and 4.4.2, the two components
are desynchronized. This completes the proof. ]
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Proof of Proposition 2.2.2

Here, we present a proof of Proposition 2.2.2.

Proof of Proposition 2.2.2. For x € 2%, from the definition of Hy,

3 ZLe—ﬁHW),

oceQur(o)=x N, B
N! N!
C(Na) e (Ve (VP (Ve
X ! exp L Z zq:l{(]\[x(k))(]\fx(.k)—1)}+qu:Nx(1)Nx(2)
ZN, 8 N +J) k=1, 2 i=1 2 ' ' = Z

and by Stirling’s formula, we have

exp{-3/(1+J)}
(V2rN 2(q_l)\/Hkﬂ 2 [l Iz(‘k)ZN B

~
~

X exp

Q

k=1,2 1=1

p
= — N (F —G ,
ZN,B,JeXp{ 1+J( @) N’ﬁ(“’))}
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APPENDIX A. PROOF OF PROPOSITION ?7?

where
1, (ke ~ @, 1+J ~ k) (k)
Fp y(x) = — 25(% ) =T 5 >0 4 logay
k=1,2 i=1 =1 k=1, 2 i=1
1+J g o
Gy s s(z) = 5 log ( I1 H:c?“)) +0 (N
k=1, 2 j=1

We decompose the function Fj ; into an energy part H and entropy
part S. That is,

1+J
Fp j(z) = H(z) + TS(:B),
where
~1 ~ 1)@ ~ (k)
H(x) =— — (22— T T, and S(x) = z; log ;.
() gl:z“Q(z) z; ()k;wz;z gz
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