
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학 박사 학위논문

Estimates of heat kernels for
jump processes with

degeneracy and critical killing
(퇴화와 임계 킬링이 있는 도약과정의 열핵에 대한

추정)

2022년 8월

서울대학교 대학원

수리과학부

조수빈



Estimates of heat kernels for
jump processes with

degeneracy and critical killing
(퇴화와 임계 킬링이 있는 도약과정의 열핵에 대한

추정)

지도교수 김판기

이 논문을 이학 박사 학위논문으로 제출함

2022년 4월

서울대학교 대학원

수리과학부

조수빈

조수빈의 이학 박사 학위논문을 인준함

2022년 6월

위 원 장 (인)

부 위 원 장 (인)

위 원 (인)

위 원 (인)

위 원 (인)



Estimates of heat kernels for
jump processes with

degeneracy and critical killing

A dissertation

submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

to the faculty of the Graduate School of

Seoul National University

by

Soobin Cho

Dissertation Director : Professor Panki Kim

Department of Mathematical Sciences

Seoul National University

August 2022



c© 2022 Soobin Cho

All rights reserved.



Abstract

Estimates of heat kernels for jump processes

with degeneracy and critical killing

Soobin Cho

Department of Mathematical Sciences

The Graduate School

Seoul National University

Transition densities of Markov processes are of significant interest in both

probability and analysis. The transition density p(t, x, y) of a Markov pro-

cess with generator L is the fundamental solution of the equation ∂tu = Lu.

Hence the transition density p(t, x, y) is also called as the heat kernel of L.

However, an explicit expression of the heat kernel is rarely known. Due to

the importance of heat kernels, there is a huge body of literature on the

heat kernel estimates. The thesis consists of six parts concerning heat ker-

nel estimates for Markov jump processes. The first part devotes to estimates

for subordinators, namely, nondecreasing Lévy processes on R. The second

part considers heat kernels for non-local operators with critical killings. The

third part studies subordinate killed Markov processes with help from the

previous two parts. Motivated by the third part, in the fourth part, we study

heat kernel estimates for jump processes with degeneracy and critical killing

using Dirichlet form theory. The fifth part is concerned with the fundamental

solution of general time fractional equations with Dirichlet boundary condi-

tion. In the last part, we study Dirichlet heat kernel estimates for isotropic

unimodal Lévy processes with low intensity of small jumps.

Key words: Markov process, heat kernel estimate, nonlocal operator, Dirich-

let form

Student Number: 2016-27319
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Chapter 1

Introduction

Transition densities of Markov processes are of significant interest in both

probability and analysis. The transition density p(t, x, y) of a Markov process

with generator L is the fundamental solution of the equation ∂tu = Lu. To

be precise, let X = {Xt, t ≥ 0;Px, x ∈ M} be a strong Markov process on

a locally compact separable Hausdorff space M whose transition semigroup

(Pt)t≥0 is a uniformly bounded strong continuous semigroup in some Banach

space (B, ‖·‖). Typically, B = Lp(M ;m) for some Radon measure m on M

and p ≥ 1. Denote by (L,D(L)) the infinitesimal generator of the semigroup

(Pt)t≥0 in B. Then it is well known that for any f ∈ D(L), the function

u(t, x) := Ex[f(Xt)] is the unique solution in B to the equation∂tu(t, x) = Lu(t, x), x ∈M, t > 0,

u(0, x) = f(x), x ∈M
(1.0.1)

in the following sense:

(i) x 7→ u(t, x) is inD(L) for each t ≥ 0, supt≥0(‖u(t, ·)‖+‖Lu(t, ·)‖) <∞,

and t 7→ Lu(t, ·) is continuous in B;

(ii) t 7→ u(t, ·) is absolutely continuous and ∂tu(t, ·) = Lu(t, ·) in B.

Suppose that the process X has a transition density function p(t, x, y) with

respect to a reference measure m. Then, for any f ∈ D(L), the unique solu-

1



CHAPTER 1. INTRODUCTION

tion to the equation (1.0.1) is given by

u(t, x) = Ex[f(Xt)] =

ˆ
M

p(t, x, y)f(y)m(dy).

Hence, the transition density p(t, x, y) is also known as the heat kernel of L.

An explicit expression of the heat kernel is rarely known. Instead, there is

a long history on the heat kernel estimates. In the thesis, we are concerned

with heat kernel estimates for Markov jump processes. We note that, when

X is a jump process, its generator L is a non-local operator.

In a celebrated paper [45], Z.-Q. Chen and T. Kumagai proved that when

M is a Ahlfors d-set and X is a pure jump process with the jump kernel

J(x, y) such that

C1|x− y|−d−α ≤ J(x, y) ≤ C2|x− y|−d−α, x, y ∈M, (1.0.2)

for some constants α ∈ (0, 2) and C1, C2 > 0, the heat kernel satisfies the

following two-sided estimates for all 0 < t < 1 and x, y ∈M :

p(t, x, y) ' min

{
t−d/α,

t

|x− y|d+α

}
. (1.0.3)

Here, f ' g means that there exist constants c1, c2 > 0 such that c1g(x) ≤
f(x) ≤ c2g(x). (See also the earlier work [11] by R. F. Bass and D. A. Levin

for random walks on the lattice Zd.) Later, this result has been extended to

mixed stable-like processes in [46] by the same authors, where M is a metric

measure space whose volume function V (x, r) := m(B(x, r)) satisfies a uni-

form volume doubling assumption, and the jump kernel J(x, y) is comparable

to (V (x, d(x, y)φ(d(x, y))−1, under some growth condition and weak scaling

property on the weight function φ (see [46, (1.11)-(1.14)]).

For jump processes with killing potential, R. Song proved in [120] that

when X is a symmetric α-stable-like-process (0 < α < 2) and the killing

potential is in a suitable Kato class, the small time heat kernel estimates

(1.0.3) still hold true. This result has been extended to some nonsymmetric

2



CHAPTER 1. INTRODUCTION

processes in [125] by C. Wang. When X has a critical killing potential, the

situation becomes more complicated. In [40], Z.-Q. Chen, P. Kim and R.

Song proved in that the heat kernel p(t, x, y) of a killed α-stable process

(0 < α < 2) in a C1,1 open subset D of Rd satisfies the following estimates

for all 0 < t < 1 and x, y ∈ D:

p(t, x, y) ' min

{
1,
δD(x)

t1/α

}α/2
min

{
1,
δD(y)

t1/α

}α/2
min

{
t−d/α,

t

|x− y|d+α

}
,

(1.0.4)

where δD(x) denotes the distance between x ∈ D and the complement Dc.

(See also the work [19] by K. Bogdan, T. Grzywny and M. Ryznar for Dirich-

let heat kernel estimates when D is a κ-fat open subset of Rd.) The authors

also proved in [36] that the heat kernel p(t, x, y) of a censored α-stable process

(1 < α < 2) in a C1,1 open subset D of Rd satisfies that

p(t, x, y) ' min

{
1,
δD(x)

t1/α

}α−1

min

{
1,
δD(y)

t1/α

}α−1

min

{
t−d/α,

t

|x− y|d+α

}
(1.0.5)

for all 0 < t < 1 and x, y ∈ D. Hence, the Dirichlet condition and censoring

are examples of critical killings in the sense that heat kernel estimates take

different form from ones for the free process (without killing) given in (1.0.3).

We note that, the condition (1.0.2) can be regarded as a non-local coun-

terpart of the usual uniform ellipticity condition. For jump processes with

degenerate jump kernel, only a few results exist in the literature. See the

works [119] by R. Song for subordinate killed Brownian motions and [28] by

X. Chen, T. Kumagai and J. Wang for random conductance models with

long range jumps.

In the thesis, we study heat kernel estimates for jump processes with

critical killings whose jump kernel may be degenerate. The thesis is divided

into this introduction and six chapters. In Chapter 2, we study distributional

properties of a large class of subordinators. In particular, we get heat kernel

estimates for subordinators with Lévy density decaying in mixed polynomial

orders. In Chapter 3, we prove factorization of heat kernels p(t, x, y) in a

3



CHAPTER 1. INTRODUCTION

subset D of M for a class of non-local operators. As a consequence, we

obtain sharp two-sided heat kernel estimates for α-stable processes (0 < α <

2) with critical killings in a C1,1 open subset D of Rd. In particular, we

give an alternative and unified proof for (1.0.4) and (1.0.5). In Chapter 4,

we obtain sharp estimates for the jump kernel, heat kernel and the Green

function of subordinate killed Markov processes by using results in Chapters

2 and 3. We then give important examples of heat kernel estimates for jump

processes with degeneracy and critical killing. In Chapter 5, we study heat

kernel estimates for Hunt processes with degenerate jump kernel and critical

killing potential. The objects therein are motivated by Chapter 4 in the spirit

of stability theorems for heat kernel estimates initiated by D. G. Aronson

[4] for local operators (see, e.g. [48] and [72] for non-local operators). In

Chapter 6, we obtain estimates on the fundamental solution of general time

fractional equation with Dirichlet boundary condition by using probabilistic

representation introduced by Z.-Q. Chen [30]. In Chapter 7, we give Dirichlet

heat kernel estimates for isotropic unimodal Lévy processes with low intensity

of small jumps. In particular, we show that factorization of the Dirichlet heat

kernel in a C1,1 open subset D of Rd holds true for such processes.

1.1 Preliminary and notation

For the most part of this thesis, we will play with functions satisfying (weak)

scaling property. A nonnegative function f defined on an interval I ⊂ [0,∞)

is said to be satisfying (weak) scaling property if there exist constants p2 ≥ p1

and c1, c2 > 0 such that

c1

(r2

r1

)p1

≤ f(r2)

f(r1)
≤ c2

(r2

r1

)p2

for all r1, r2 ∈ I, 0 < r1 ≤ r2. (1.1.1)

The constant p1 (resp. p2) is called the lower scaling index (resp. upper scaling

index) of f . We give integral estimates for functions with scaling property.

The following lemma will be used frequently throughout the thesis.

4



CHAPTER 1. INTRODUCTION

Lemma 1.1.1. [59, Lemma 5.1] Let f : I → [0,∞) be a function defined on

an interval I ⊂ [0,∞). Suppose that f satisfies (1.1.1) with p1, p2 ∈ R. Then

for any a > 1, there exists c1 > 0 such that for all r, R ∈ I, ar ≤ R,

ˆ R

r

s−1f(s)ds ≥ c1

(
f(r) + f(R)

)
. (1.1.2)

(i) If we assume p1 > 0, then, for any a > 1, there exists c2 > 0 such that

for all r, R ∈ I, ar ≤ R,

c1f(R) ≤
ˆ R

r

s−1f(s)ds ≤ c2f(R).

(ii) If we assume p2 < 0, then, for any a > 1, there exists c3 > 0 such that

for all r, R ∈ I, ar ≤ R,

c1f(r) ≤
ˆ R

r

s−1f(s)ds ≤ c3f(r).

Notation: We will use the symbol “:=” to denote a definition, which is

read as “is defined to be.” We deonte by Rd the d-dimensional Euclidean

space and Rd
+ :=

{
x = (x̃, xd) ∈ Rd | xd > 0

}
the upper half plane. We write

ed := (0̃, 1) ∈ Rd. For a, b ∈ R, we set a ∧ b := min{a, b}, a ∨ b := max{a, b},
a+ := a ∨ 0 and bac := max {n ∈ Z : n ≤ a}.

The constants Ci, αi and βi for i ≥ 0, d1, d2 will retain throughout the

section, whereas c, A, C, ε, δ, η and κ represent constants having insignificant

values that may be changed from one appearance to another. The labeling

of the constants a0, a1, a2, . . . and c0, c1, c2, . . . begins anew in the proof of

each result. C = C(a, b, . . .) denotes a generic constant depending on a, b, . . ..

All these constants are positive finite. Recall that we write f(x) ' g(x) if

there exist constants c1, c2 > 0 such that c1g(x) ≤ f(x) ≤ c2g(x) for the

specified range of the argument x. Similarly, we write f(x) � g(cx) if there

exist constants ci > 0, i = 1, · · · , 4 such that c1g(c2x) ≤ f(x) ≤ c3g(c4x) for

the specified range of x.

5



CHAPTER 1. INTRODUCTION

For a given metric space (M,ρ), we denote the open ball in M with

center x ∈ M and radius r > 0 by B(x, r). For any subset D of (M,ρ), we

write diam(D) = supx,y∈D ρ(x, y) and δD(x) = inf{ρ(x, y) : y ∈ M \ D}.
We define δ∧(x, y) = δD(x) ∧ δD(y) and δ∨(x, y) = δD(x) ∨ δD(y). For a

function space H(U) on an open set U in M , we let Hc(U) := {f ∈ H(U) :

f has compact support} and H0(U) := {f ∈ H(U) : f vanishes at infinity}.

6



Chapter 2

Estimates for subordinators

This chapter is concerned with distributional properties of subordinators.

The results in this chapter are mainly based on [54, 55]. We first give basic

estimates for subordinators whose tail of the Lévy measure is locally decaying

in polynomial orders. We next establish tail probability estimates for three

classes of subordinators: (1) ones with polynomially decaying tail, (2) ones

with subexponentially decaying tail, and (3) truncated subordinators. Lastly,

we study two-sided sharp estimates and the exact asymptotic behaviors of

the transition density function for a large class of subordinators.

Let us begin with the definition of subordinator. Let (Ω,F ,P) be a prob-

ability space. A stochastic process S = (St : t ≥ 0) with values in [0,∞) is

called a subordinator if

(1) S0 = 0 and t 7→ St is nondecreasing and right-continuous a.s.,

(2) for every t, s ≥ 0, the increment St+s−St has the same law as Ss and

is independent of (Su : 0 ≤ u ≤ t),

(3) limt→0 P(|St| > ε) = 0 for all ε > 0.

Consider an arbitrary subordinator S. For any rational number p/q ≥ 0,

since S has stationary independent increments, using the decomposition

Sp/q = S1/q + (S2/q − S1/q) + · · ·+ (Sp/q − S(p−1)/q),

7



CHAPTER 2. ESTIMATES FOR SUBORDINATORS

we see that the laws of Sp/q and (p/q)S1 are equal. Therefore, there exists a

function φ : [0,∞)→ [0,∞) such that for any rational number t ≥ 0,

Ee−λSt = e−tφ(λ), λ ≥ 0. (2.0.1)

Moreover, by the right-continuity of S, (2.0.1) holds for all t ≥ 0. The function

φ is called the Laplace exponent of the subordinator S, and it characterizes

the law of S in the sense that two subordinators with the same Laplace

exponent have the same law. It is well known that φ is a Bernstein function,

that is, a nonnegative C∞ function such that (−1)k−1φ(k) ≥ 0 for all k ≥ 1,

with φ(0) = 0 and there exist a unique constant a ≥ 0 and a Borel measure

ν on (0,∞) satisfying
´∞

0
(1 ∧ s)ν(ds) <∞ such that

φ(λ) = aλ+

ˆ ∞
0

(1− e−λs)ν(ds). (2.0.2)

The constant a is called the drift and ν the Lévy measure of the subordinator

S. Conversely, for any a ≥ 0 and a Borel measure ν on (0,∞) satisfying´∞
0

(1 ∧ s)ν(ds) < ∞, there exists a subordinator S = (St)t≥0 such that

(2.0.1) and (2.0.2) hold so that ν is the Lévy measure of S. We write w(λ) =

ν((λ,∞)) for the tail of the Lévy measure ν.

Throughout this chapter, we suppose that S is a subordinator having the

Laplace exponent φ with

w(0+) =∞.

Moreover, by considering the subordinator S̃ = (St − at : t ≥ 0), we always

assume that

the drift a = 0.

We introduce some auxiliary functions which will be used in the study of

subordinators. Let H : (0,∞)→ (0,∞) be defined by

H(λ) := φ(λ)− λφ′(λ), λ > 0.

8



CHAPTER 2. ESTIMATES FOR SUBORDINATORS

The function H plays an important role in estimates for the distributions

of subordinators. See, e.g. [81, 109]. Because φ is a Bernstein function, H is

increasing and H(0+) = 0. Moreover, using the representation (2.0.2) and

integration by parts formula, we observe that for all λ > 0,

φ(λ) = λ

ˆ ∞
0

w(s)e−λsds and H(λ) = λ2

ˆ ∞
0

sw(s)e−λsds. (2.0.3)

Hence, it holds that for all λ > 0,

φ(λ) ≥ H(λ) ≥ λ2w(1/λ)

ˆ 1/λ

0

se−λsds ≥ w(1/λ)

2e
. (2.0.4)

In particular, since we have assumed w(0+) = 0, it holds that limλ→∞ φ(λ) =

limλ→∞H(λ) =∞. We also get from (2.0.3) that

φ(λr) ≤ rφ(λ) and H(λr) ≤ r2H(λ) for all λ > 0, r ≥ 1 (2.0.5)

and since w is nonincreasing,

φ(λ) ' λ

ˆ 1/λ

0

w(s)ds and H(λ) ' λ2

ˆ 1/λ

0

sw(s)ds, λ > 0. (2.0.6)

Next, we introduce the function b : (0,∞)→ (0,∞) defined by

b(t) := (φ′ ◦H−1)(1/t) =

ˆ ∞
0

se−H
−1(1/t)sν(ds), t > 0.

The function b also appears naturally in the study of subordinators, especially

when describe the displacement with the highest probability of the given

subordinator S at time t (see, e.g. Proposition 2.2.1 below). The function b is

increasing, b(0+) = 0, and limt→∞ b(t) = φ′(0+). This implies that t 7→ tb(t)

is also increasing and limt→∞ tb(t) = +∞. Moreover, according to [54, Lemma

2.4(ii)], cf. also [55, (2.14)], it holds that

1

φ−1(c∗/t)
≤ tb(t) ≤ 1

φ−1(1/t)
, c∗ :=

e2 − e
e− 2

, for all t > 0. (2.0.7)

9
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Moreover, we have general estimates for differences of the function b. The

following result is particularly important when φ is not comparable to H.

Lemma 2.0.1. [55, Lemma 2.7] For any a2 ≥ a1 > 0, it holds that

tb(t/a1)− tb(t/a2) ≤ 2ea2

H−1(a2/t)
+
e−1tw

(
H−1(a2/t)

−1
)

H−1(a1/t)

≤ 2e2 − 4e+ 1

e− 2

a2

H−1(a1/t)

and

tb(t/a1)− tb(t/(4a1)) ≥ 1

2

tH−1(4a1/t)
2
∣∣(φ′′ ◦H−1)(4a1/t)

∣∣
H−1(4a1/t)

for all t ≥ 0.

Finally, we introduce the function σ = σ(t, r) : (0,∞)× (0,∞)→ [0,∞)

defined by

σ = σ(t, r) := (φ′)−1(r/t)1(0,φ′(0+))(r/t), r, t > 0.

Because φ′ is decreasing, for each fixed t > 0, the map r 7→ σ(t, r) is de-

creasing with limr→0 σ(t, r) = ∞ and limr→∞ σ(t, r) = 0, while for each

fixed r > 0, the map t 7→ σ(t, r) is increasing with limt→0 σ(t, r) = 0 and

limt→∞ σ(t, r) = ∞. Further, by using the former and the fact that H is

increasing, we conclude that

t(H ◦ σ)(t, tb(t)) = 1 and t(H ◦ σ)(t, r) > 1 for r < tb(t). (2.0.8)

The function σ plays a crucial role in estimating the left tail of S.

For the most part of this chapter, we assume the following (local) weak

scaling property for the tail measure w.

Definition 2.0.2. Let R1 ∈ (0,∞], R2 > 0 and β2 ≥ β1 > 0 be constants.

10
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(i) We say that PolyR1(β1, β2) holds if there are c1, c2 > 0 such that

c1

(r
s

)β1

≤ w(s)

w(r)
≤ c2

(r
s

)β2

for all 0 < s ≤ r < R1. (2.0.9)

We say that PolyR1,≤(β2) (resp. PolyR1,≥(β1)) holds if the upper bound

(resp. lower bound) in (2.0.9) holds.

(ii) We say that Poly∞R2
(β1, β2) holds if (2.0.9) holds for all r ≥ s ≥ R2. We

say that Poly∞R2,≤(β2) (resp. Poly∞R2,≥(β1)) holds if the upper bound (resp.

lower bound) in (2.0.9) holds for all r ≥ s ≥ R2.

Remark 2.0.3. Since w is nonincreasing, if Poly∞R2
(β1, β2) holds with some

R2 > 0, then it holds with every R2 > 0. The same is true for Poly∞R2,≤(β2)

and Poly∞R2,≥(β1).

When S is a β-stable subordinator with Laplace exponent λβ (0 < β < 1),

we see that w(r) = c1r
−β for r > 0 so that Poly∞(β1, β2) holds.

We sometimes consider the following conditions to cover cases when the

subordinator has exceedingly small tail.

Definition 2.0.4. (i) We say that Sub∞(γ, θ) holds if there exist constants

γ ∈ (0, 1] and θ, c1 > 0 such that

w(r) ≤ c1 exp(−θrγ) for all r ≥ 1.

(ii) We say that Trun∞R2
holds if there exist constants R2, β2 > 0 and K ≥ 1

such that w(R2) = 0, PolyR2/2,≤(β2) holds and

K−1|r − s| ≤ w(s)− w(r) ≤ K|r − s| for all R2/4 ≤ s ≤ r ≤ R2.

2.1 Preliminary results

In this section, we give some consequences of conditions PolyR1(β1, β2) and

Poly∞R2
(β1, β2).

11
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Using (2.0.6), we get relations between these conditions and weak scaling

properties of the functions φ and H. The proof of the next lemma can be

found in [54, Lemma 2.1] and [55, Lemmas 2.3 and 2.4].

Lemma 2.1.1. (i) If PolyR1,≤(β2) holds, then for every r0 > 0, there is

c1 > 0 such that for all r0 ≤ s ≤ r,

φ(r)

φ(s)
≤ c1

(r
s

)β2∧1

and
H(r)

H(s)
≤ c1

(r
s

)β2∧2

. (2.1.1)

Conversely, if there is r0 > 0 such that the first inequality in (2.1.1) holds

with β2 < 1 (resp. the second with β2 < 2), then there is R1 ∈ (0,∞] such

that PolyR1,≤(β2) holds true and

φ(1/r) ' w(r) (resp. H(1/r) ' w(r)) for 0 < r < R1. (2.1.2)

(ii) If PolyR1,≥(β1) holds, then for every r0 > 0, there is c2 > 0 such that

for all r0 ≤ s ≤ r,

φ(r)

φ(s)
≥ c2

(r
s

)β1∧(1/2)

and
H(r)

H(s)
≥ c2

(r
s

)β1∧(3/2)

. (2.1.3)

Conversely, if there is r0 > 0 such that the first inequality or the second in

(2.1.3) holds true, then PolyR1,≥(β1) holds with some R1 ∈ (0,∞].

(iii) If Poly∞R2,≤(β2) holds, then for every r0 > 0, there is c1 > 0 such

that (2.1.1) holds for all 0 < s ≤ r ≤ r0. Conversely, if there is r0 > 0 such

that the first inequality in (2.1.1) holds with β2 < 1 (resp. the second with

β2 < 2), then for any R2 > 0, the comparability (2.1.2) holds with the range

r ≥ R2 and Poly∞R2,≤(β2) holds.

(iv) If Poly∞R2,≥(β1) holds, then for every r0 > 0, there is c2 > 0 such

that (2.1.3) holds. Conversely, if there is r0 > 0 such that the first inequality

or the second in (2.1.3) holds, then Poly∞R2,≤(β2) holds with any R2 > 0.

Note that the constant β2 in (2.1.1) can be arbitrarily large, but upper

scaling indices of φ and H can not be larger than 2 by (2.0.5).

12
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Recall that φ(λ) ≥ H(λ) ≥ (2e)−1w(1/λ) for all λ > 0. In the following

two lemmas, we give upper bounds for H and φ under PolyR1,≤(β2) and

Poly∞R2,≤(β2).

Lemma 2.1.2. If PolyR1,≤(β2) holds, then there exists c1 > 0 such that for

all 0 < r < R1,

H(r−1)β2+1 ≤ c1φ(r−1)β2w(r). (2.1.4)

Similarly, if Poly∞R2,≤(β2) holds, then for any r0 > 0, there exists c1 > 0 such

that (2.1.4) holds for all r > r0.

Proof. Suppose that PolyR1,≤(β2) holds. If β2 < 2, then by Lemma 2.1.1(i),

using the fact φ ≥ H, we get that for all 0 < r < R1,

H(r−1)β2+1 ≤ c1H(r−1)β2w(t) ≤ c1φ(r−1)β2w(r).

Assume that β2 ≥ 2. Using (2.0.6) in the first and the third inequalities

below, Hölder inequality in the second and Lemma 1.1.1(i) in the third, we

get that for all 0 < r < R1,

H(r−1) ≤ c2r
−2

ˆ r

0

sw(s)ds

≤ c2r
−2

(ˆ r

0

w(s)ds

)β2/(β2+1)(ˆ r

0

sβ2+1w(s)ds

)1/(β2+1)

≤ c3r
−2
(
rφ(r−1)

)β2/(β2+1)(
rβ2+2w(r)

)1/(β2+1)
= c3φ(r−1)β2/(β2+1)w(r)1/(β2+1).

Next, suppose that Poly∞R2,≤(β2) holds. When β2 < 2, the result follows

from Lemma 2.1.1(iii) similar to the above situation. Assume that β2 ≥ 2

and let r0 > 0. Set c4 :=
´ r0/2

0
sw(s)ds/

´ r0
r0/2

sw(s)ds. Then, using (2.0.6),

Hölder inequality and Lemma 1.1.1(i) with help from Remark 2.0.3, we get

that for all r > r0,

H(r−1) ≤ c5r
−2

ˆ ∞
0

sw(s)ds ≤ (1 + c4)c5r
−2

ˆ r

r0/2

sw(s)ds

13
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≤ (1 + c4)c5r
−2

(ˆ r

0

w(s)ds

)β2/(β2+1)(ˆ r

r0/2

sβ2+1w(s)ds

)1/(β2+1)

≤ c6φ(r−1)β2/(β2+1)w(r)1/(β2+1).

The proof is complete. �

Lemma 2.1.3. If Poly∞R2,≤(β2) holds, then for any r0 > 0, there exists c1 > 0

such that

φ(r−1)β2+1 ≤ c1w(r) for all r ≥ r0.

Proof. Let r0 > 0. We first suppose that
´∞

0
w(s)ds < ∞. Then by (2.0.6)

and Poly∞R2,≤(β2), it holds that for all r ≥ r0,

φ(r−1)β2+1 ≤ c1

(
r−1

ˆ ∞
0

w(s)ds

)β2+1

≤ c2

rβ2+1
≤ c3

rβ2+1
0 w(r0)

w(r).

Now, suppose that
´∞

0
w(s)ds =∞. Then we see from (2.0.6) that there

are comparison constants depend on r0 such that φ(r−1) ' r−1
´ r
r0/2

w(s)ds

for r > r0. Besides, since Poly∞R2,≤(β2) holds, we see from Lemma 1.1.1(i)

that w(r) � r−β2−1
´ r
r0/2

sβ2w(s)ds for r > r0. Using these two comparabilities

and l’Hospital’s rule, since w is nonincreasing, we deduce that

lim sup
r→∞

w(r)

φ(r−1)β2+1
≤ c4 lim sup

r→∞

´ r
r0/2

sβ2w(s)ds(´ r
r0/2

w(s)ds
)β2+1

≤ c4 lim sup
r→∞

rβ2w(r)

(β2 + 1)w(r)
(´ r

r0/2
w(s)ds

)β2

≤ c4 lim sup
r→∞

rβ2

(β2 + 1)(rw(r0/2))β2
=

c4

(β2 + 1)w(r0/2)β2
.

We have finished the proof. �

Using Lemma 2.1.2 and the inequality xae−x ≤ aae−a for x, a > 0, we get

the following result.

14
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Lemma 2.1.4. [59, Lemma 2.5] Suppose that PolyR1,≤(β2) holds. Then, for

any κ > 0, there exists a constant c1 = c1(κ) > 0 such that

exp
(
− κrH−1(1/t)

)
≤ c1tw(r) for all φ−1(1/t)−1 ≤ r < R1.

Below, we give some consequences of PolyR1,≥(β1). The proofs can be

found in [59, Section 2].

Lemma 2.1.5. Suppose that PolyR1,≥(β1) holds. Then for any a > 0, there

exists c1 = c1(a) ∈ (0, 1) such that

c1φ(λ) ≤ λφ′(λ) ≤ φ(λ) for all λ > a. (2.1.5)

Moreover, if Poly∞,≥(β1) holds, then (2.1.5) holds true for all λ > 0.

Lemma 2.1.6. Suppose PolyR1,≥(β1) holds. Then, for any a > 0, there

exists δ = δ(a) > 0 such that

σ(t, s)

σ(t, r)
≥ 2−δ

(r
s

)δ
for all 0 < s ≤ r ≤ tφ′(a). (2.1.6)

Moreover, if Poly∞,≥(β1) holds, then there exists δ > 0 such that (2.1.6)

holds true for all 0 < s ≤ r < tφ′(0+).

Lemma 2.1.7. Suppose that PolyR1,≥(β1) holds. Then, for all κ,N > 0 and

T > 0, there exists a constant C = C(T, κ,N) > 0 such that for all 0 < t ≤ T

and 0 < r ≤ φ−1(1/t)−1,

exp
(
− κt(H ◦ σ)(t, r)

)
≤ C(rφ−1(1/t))N . (2.1.7)

Moreover, if Poly∞,≥(β1) holds, then for all κ,N > 0, there exists a constant

C = C(κ,N) > 0 such that (2.1.7) holds true for all 0 < r ≤ φ−1(1/t)−1.
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2.2 Tail probability estimates

In this section, we give estimates for left and right tails of the subordinator

S. Concerning the left tail of S, the following general result is obtained in

[59] (see [81] for the original version).

Proposition 2.2.1. [59, Proposition 2.3] There exist constants C1, C2 > 0

independent of S such that for all t, r > 0,

C1 exp
(
− C2t(H ◦ σ)(t, r)

)
≤ P(St ≤ r) ≤ e exp

(
− t(H ◦ σ)(t, r)

)
. (2.2.1)

Moreover, there exist comparability constants independent of S such that

P(St ≤ tb(t)) ' P(St ≥ tb(t)) ' 1, t > 0.

See Theorems 2.3.4 and 2.3.6 below for left tail estimates on the transition

density function, and Corollary 2.3.18 for its exact asymptotic behavior under

some mild conditions.

As a consequence of Proposition 2.2.1, we get from (2.0.7) the following

corollary.

Corollary 2.2.2. Suppose that PolyR1,≥(β1) holds. Then for any T > 0,

there exist constants δ ∈ (0, 1) independent of T and ε = ε(T ) ∈ (0, 1) such

that

P
(
εφ−1(1/t)−1 ≤ St ≤ φ−1(1/t)−1

)
≥ δ, t ∈ (0, T ). (2.2.2)

Moreover, if Poly∞,≥(β1) holds, then there exist ε, δ ∈ (0, 1) such that (2.2.2)

holds with T =∞.

Using Lemmas 2.1.7 and 1.1.1(i), we also deduce from Proposition 2.2.1

the following result.

Corollary 2.2.3. [59, Lemma 2.6] Let f : (0,∞)→ (0,∞) be a given func-

tion. Assume that PolyR1,≥(β1) holds and there exist constants c1, p > 0 such

that spf(s) ≤ c1t
pf(t) for all 0 < s ≤ t. Then for every T > 0, there exists a
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constant C = C(T, c1, p) > 0 such that for any t ∈ (0, T ],

E[f(St) : St ≤ r] ≤ Cf(r) exp
(
− t

2
(H ◦ σ)(t, r)

)
, 0 < r ≤ φ−1(1/t)−1.

(2.2.3)

Moreover, if Poly∞,≥(β1) holds, then there exists C = C(c1, p) > 0 such that

(2.2.3) holds for all t > 0.

The following general right tail estimates are obtained in [109]. The lower

estimate for the right tail comes from an observation that if a jump of size

larger than r occurs before time t, then St ≥ r by the monotone property of

subordinators and the upper estimate comes from Dynkin’s formula.

Proposition 2.2.4. For any a > 0 and all t, r > 0 satisfying tφ(r−1) ≤ a,

it holds that

P(St ≥ r) ≥ e−2eatw(r). (2.2.4)

On the other hand, there exists a constant C3 > 0 independent of S such that

for all t, r > 0 satisfying tφ(r−1) ≤ 1/(2e),

P(St ≥ r) ≤ C3tH(1/r). (2.2.5)

Proof. (2.2.5) follows from [109, Proposition 2.3]. By (2.0.4), we see that for

all t, r > 0 satisfying tφ(r−1) ≤ a, tw(r) ≤ 2etφ(r−1) ≤ 2ea. Thus, using

[109, Proposition 2.5] and the inequality 1 − e−x ≥ xe−x for x > 0, we get

that for all t, r > 0 satisfying tφ(r−1) ≤ a,

P(St ≥ r) ≥ 1− e−tw(r) ≥ tw(r)e−tw(r) ≥ e−2eatw(r).

�

Unlike the left tail estimates (2.2.1), lower and upper estimates for the

right tail given in (2.2.4) and (2.2.5) take different forms. In [109], the author

proved that if H satisfies weak upper scaling property with index δ < 2

(see the condition (U) therein), then for small r > 0, H(r) and w(1/r) are
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comparable so that the estimates (2.2.4) and (2.2.5) are sharp. Below, we

get sharp estimates for the right tail in more general situations by imposing

scaling condition on the tail measure w. To do this, we need the following

lemma which comes from the analytic continuation of the Laplace exponent.

Lemma 2.2.5. [54, Lemma 2.5] Assume that w is finitely supported, that is,

there exists a constant R > 0 such that w(R) = 0. Then, for every λ ∈ R,

t > 0 and n ∈ {0} ∪ N, we have that

E[(St)
neλSt ] =

dn

dλn
exp

(
t

ˆ
(0,R]

(eλs − 1)ν(ds)

)
.

Theorem 2.2.6. Assume that PolyR1,≤(β2) holds. Then, there exists C > 1

such that for all t > 0, 0 < r < R1 satisfying tφ(r−1) ≤ 1/2,

C−1tw(r) ≤ P(St ≥ r) ≤ Ctw(r).

Moreover, if PolyR1,≥(β1) also holds, then there exist constants C ′, K > 1

such that for all t > 0, 0 < r < R1/K satisfying tφ(r−1) ≤ 1/2,

C ′−1tw(r) ≤ P(St ∈ [r,Kr]) ≤ C ′tw(r). (2.2.6)

Proof. By Proposition 2.2.4, we only need to prove the upper bound.

Fix t > 0 and 0 < r < R1 satisfying tφ(r−1) ≤ 1/2. Let ε := log(5/4)/2.

We set

µ1(ds) := 1(0,ε/H−1(1/t)] ν(ds), µ2(ds) := 1(ε/H−1(1/t),r] ν(ds),

and µ3(ds) := 1(r,∞) ν(ds). Denote by S1, S2 and S3 the independent driftless

subordinators with Lévy measures µ1, µ2 and µ3, respectively. Then, we have

St ≤ S1
t +S2

t +S3
t (note that it may happen that r < ε/H−1(1/t)). Hence, it

holds that

P(St ≥ r) ≤ P(S1
t ≥ 3r/4) + P(S2

t ≥ r/4) + P(S3
t > 0).

18
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Note that P(S3
t > 0) = 1 − e−tw(r) ≤ tw(r). Set f0(s) := w(s)1(0,r](s) +

w(r)r2s−21(r,∞)(s). Then, f0 is nonincreasing and for every Borel set A ⊂ R,

µ2(A) ≤ w(dist(0, A))1(0,r](dist(0, A)) ≤ f0(dist(0, A)),

where dist(0, A) := inf{|y| : y ∈ A}. Moreover, using PolyR1,≤(β2) and

(2.0.4), we get that for all u, s > 0,

ˆ ∞
u

f0

(
s ∨ y − y

2

)
µ2(dy) ≤ f0(s/2)w(u) ≤ c1f0(s)H(1/u).

Therefore, by [83, Proposition 1 and Lemma 9] and PolyR1,≤(β2), it holds

that for every x > 0 and ρ ∈ (0, x/3],

P(S2
t ∈ [x− ρ, x+ ρ]) ≤ c2tf0(x/3) ≤ c3tf0(4x).

It follows that

P(S2
t ≥ r/4) ≤

∞∑
i=0

P
(
S2
t ∈ [2i−2r, 2 · 2i−2r]

)
≤ c3t

∞∑
i=0

f0(6 · 2i−2r)

= c3tw(r)
∞∑
i=0

6−224−2i = c4tw(r).

Lastly, by using Markov’s inequality, Lemma 2.2.5 and Lemma 2.1.4, since

r > 2tb(t) due to (2.0.7), we have that

P(S1
t ≥ 3r/4) ≤ E

[
exp

(
−(3r/4)H−1(1/t) +H−1(1/t)S1

t

)]
= exp

(
− (3r/4)H−1(1/t) + t

ˆ ε/H−1(1/t)

0

(eH
−1(1/t)s − 1)ν(ds)

)
≤ exp

(
− (3r/4)H−1(1/t) + e2εtH−1(1/t)

ˆ ε/H−1(1/t)

0

se−H
−1(1/t)sν(ds)

)
≤ exp

(
− (3r/4)H−1(1/t) + (5/4)H−1(1/t)tb(t)

)
≤ exp

(
− 8−1rH−1(1/t)

)
.

We used the fact that ey − 1 ≤ ye−ye2y for all y ≥ 0 in the third line. Hence,
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we deduce from Lemma 2.1.4 that P(S1
t ≥ 3r/4) ≤ c5tw(r) and hence the

first assertion holds.

The second assertion follows from the first one and PolyR1,≥(β1). �

By a similar argument, we get the following result for large time t.

Theorem 2.2.7. Assume that Poly∞R2,≤(β2) holds. Then, for every r0 > 0,

there exists C > 1 such that for all t > 0, r > r0 satisfying tφ(r−1) ≤ 1/2,

C−1tw(r) ≤ P(St ≥ r) ≤ Ctw(r).

Moreover, if Poly∞R2,≥(β1) also holds, then for every r0 > 0, there exists a

constant C ′ > 1 such that for all t > 0, r > r0 satisfying tφ(r−1) ≤ 1/2,

C ′−1tw(r) ≤ P(St ∈ [r, kr]) ≤ C ′tw(r).

Next, we study right tail estimates for subordinators with extremely small

tails. Observe that under Sub∞(γ, θ) or Trun∞R2
, for every r0 > 0, there are

comparison constants such that φ(r−1) ' r−1 for r > r0 because of (2.0.6).

Theorem 2.2.8. Assume that Sub∞(γ, θ) holds. Then, for every r0 > 0,

there exist constants C,L > 0 such that for all r > r0 and 0 < t ≤ Lr,

P(St ≥ r) ≤ Ct exp
(
− θ

2
rγ
)
.

Proof. Fix r > r0 and 0 < t ≤ Lr where the constant L > 0 will be chosen

later. Set

µ̂1(ds) := 1(0,r] ν(ds) and µ̂2(ds) := 1(r,∞) ν(ds).

We denote by Ŝ1 and Ŝ2 the independent driftless subordinators with Lévy

measures µ̂1 and µ̂2, respectively. Then, we have St = Ŝ1
t + Ŝ2

t and hence

P(St ≥ r) ≤ P(Ŝ1
t ≥ r) + P(Ŝ2

t > 0).
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Because Ŝ2
t is a compound Poisson process, we get from Sub∞(γ, θ) that

P(Ŝ2
t > 0) = 1− e−tw(r) ≤ tw(r) ≤ c1te

−θrγ .

Next, using Markov’s inequality and Lemma 2.2.5, we get that for

P(Ŝ1
t ≥ r) ≤ r−1e−λrE

[
Ŝ1
t exp(λŜ1

t )
]

= r−1e−λrt

[ˆ
(0,r]

seλsν(ds)

]
exp

(
t

ˆ
(0,r]

(eλs − 1)ν(ds)

)
. (2.2.7)

By integration by parts and Sub∞(γ, θ), we see that

ˆ
(0,r]

seλsν(ds) = −reλrw(r) +

ˆ r

0

(1 + λs)w(s)eλsds

≤ 2λeλ
ˆ 1

0

w(s)ds+ c1

ˆ r

1

(1 + λs) exp
(
− θsγ + λs

)
ds (2.2.8)

and

ˆ
(0,r]

(eλs − 1)ν(ds) = −(eλr − 1)w(r) + λ

ˆ r

0

w(s)eλsds

≤ λeλ
ˆ 1

0

w(s)ds+ c1λ

ˆ r

1

s exp
(
− θsγ + λs

)
ds. (2.2.9)

Take λ = 2θrγ−1/3. Then, because γ ≤ 1, we obtain that

ˆ r

1

s exp
(
− θsγ + λs

)
ds ≤

ˆ r

1

s exp
(
− θ

3
sγ
)
ds ≤ c2.

Thus, since λ ≤ 2θrγ−1
0 /3 and

´ 1

0
w(s)ds <∞, we deduce from (2.2.7) that

P(Ŝ1
t ≥ r) ≤ c4tr

−1 exp
(
− λr + c5tλe

λ
)
≤ c6tr

−1 exp
(
− 2θ

3
rγ + c7tr

γ−1
)
.

Set L := θ/(6c7). Then, because t ≤ Lr, we conclude that

P(Ŝ1
t ≥ r) ≤ c8t exp

(
− 2θ

3
rγ + c7Lr

γ
)
≤ c8t exp

(
− θ

2
rγ
)
.
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The proof is complete. �

When Sub∞(γ, θ) holds with γ < 1, we get upper bounds for P(St ≥ r)

which decrease with exactly the same rate as the bounds for w as r →∞.

Theorem 2.2.9. Assume that Sub∞(γ, θ) holds with γ < 1. Then, for every

r0 > 0, there exist constants A > 0 independent of r0 and C = C(r0) > 0

such that for all r > r0 and 0 < t ≤ r,

P(St ≥ r) ≤ Ct exp
(
− θrγ + Atrγ−1

)
.

Proof. Fix r > r0 and 0 < t ≤ r. We define µ̃1(ds) = 1(0,r/2] ν(ds) and

µ̃2(ds) = 1(r/2,∞) ν(ds), and denote by S̃1 and S̃2 the independent driftless

subordinators with Lévy measures µ̃1 and µ̃2, respectively. Then since St =

S̃1
t + S̃2

t , we obtain that

P(St ≥ r) ≤
ˆ r−r0/2

0

P(S̃2
t ≥ r − u)P(S̃1

t ∈ du) + P(S̃1
t ≥ r − r0/2). (2.2.10)

Let λ := θrγ−1 ∈ (0, θrγ−1
0 ). Then we see that

ˆ r/2

1

exp
(
− θsγ + λs

)
ds ≤

ˆ ∞
1

exp
(
− θsγ(1− 2γ−1)

)
ds <∞.

Hence, by (2.2.8) and (2.2.9) (with r/2 instead of r), we get that

ˆ
(0,r/2]

seλsν(ds) ≤ c1 and

ˆ
(0,r/2]

(eλs − 1)ν(ds) ≤ c1λ.

Using the above inequalities, Markov’s inequality and Lemma 2.2.5, we de-

duce that for all u > 0,

P(S̃1
t ≥ u) ≤ e−λuE

[
exp(λS̃1

t )
]

= e−λu exp

(
t

ˆ
(0,r/2]

(eλs − 1)ν(ds)

)
≤ exp

(
− θrγ−1u+ c1θtr

γ−1
)

(2.2.11)
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and

P(S̃1
t ≥ u) ≤ u−1e−λuE

[
S̃1
t exp(λS̃1

t )
]

= tu−1e−λu
[ˆ

(0,r/2]

seλsν(ds)

]
exp

(
t

ˆ
(0,r/2]

(eλs − 1)ν(ds)

)
≤ c1tu

−1 exp
(
− θrγ−1u+ c1θtr

γ−1
)
.

In particular, since r − r0/2 > r0/2 and rγ−1r0 < rγ0 , it holds that

P(S̃1
t ≥ r − r0/2) ≤ c3t exp

(
− θrγ + c1θtr

γ−1
)
. (2.2.12)

We note that, the above constant c1 can be chosen independent of r0.

On the other hand, we observe that S̃2
t =

∑N(t)
i=1 Di whereN(t) is a Poisson

random variable with mean tw(r/2) and Di are i.i.d. random variables with

distribution P(Di > u) = w(u ∨ (r/2))/w(r/2). Thus, for all u > 0, since

t < r and supx>0 xe
−(21−γ−1)θxγ <∞, we get from Sub∞(γ, θ) that

P(S̃2
t ≥ u) ≤ P(N(t) = 1)P(D1 ≥ u) + P(N(t) ≥ 2)

≤ tw(u ∨ (r/2)) + (tw(r/2))2

≤ c4t exp
(
− θ(u ∨ (r/2))γ

)
+ c4tr exp

(
− 21−γθrγ

)
≤ c4t exp

(
− θ(u ∨ (r/2))γ

)
+ c5t exp(−θrγ).

Hence, by integration by parts and (2.2.11), since γ < 1, we obtain that

ˆ r−r0/2

0

P(S̃2
t ≥ r − u)P(S̃1

t ∈ du)

≤ c4t

ˆ r/2

0

exp
(
− θ(r − u)γ

)
P(S̃1

t ∈ du)

+ c4t

ˆ r−r0/2

r/2

exp
(
− θ(r/2)γ

)
P(S̃1

t ∈ du) + c5t exp(−θrγ)
ˆ ∞

0

P(S̃1
t ∈ du)

≤ c4γθt

ˆ r/2

0

(r − u)γ−1 exp
(
− θ(r − u)γ

)
P(S̃1

t ≥ u)du+ c4t exp(−θrγ)

+ c4t exp
(
− θ(r/2)γ

)
P(S̃1

t ≥ r/2) + c5t exp(−θrγ)
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≤ c6γθt exp
(
c1θtr

γ−1
)
rγ−1

ˆ r/2

0

exp
(
− θ(r − u)γ − θrγ−1u

)
du

+ c7t exp
(
− θrγ + c1θtr

γ−1
)
. (2.2.13)

Define f : (0, r/2) → (0,∞) by f(u) := (r − u)γ + rγ−1u− (21−γ − 1)rγ−1u.

Then there exists r∗ ∈ (0, r/2) such that f is increasing on (0, r∗) and de-

creasing on (r∗, r/2). Hence, infu∈(0,r/2) f(u) = f(0)∧f(r/2) = rγ. Therefore,

by using the change of variables rγ−1u = s, we get that

rγ−1

ˆ r/2

0

exp
(
− θ(r − u)γ − θrγ−1u

)
du

≤ rγ−1 exp(−θrγ)
ˆ r/2

0

exp
(
− (21−γ − 1)rγ−1u

)
du

≤ exp(−θrγ)
ˆ ∞

0

e−(21−γ−1)sds = c8 exp(−θrγ).

In the end, we get the desired result from (2.2.10), (2.2.12) and (2.2.13). �

Theorem 2.2.10. Assume that Trun∞R2
holds.

(i) It holds that for all 0 < t < 1 and 0 < r < R2/2 satisfying tφ(r−1) ≤ 1,

P(St ≥ r) ' tw(r).

(ii) It holds that for all 0 < t < 1 and r ≥ R2/2,

P(St ≥ r) � (t+ (nR2 − r)n)tn exp
(
− cr log r

)
, n := br/R2c+ 1.

(iii) There exists a constant L > 0 such that for all r ≥ R2/2 and 1 ≤ t ≤ Lr,

P(St ≥ r) � exp
(
− cr log

r

t

)
.

Proof. (i) Since Trun∞R2
implies PolyR2/2,≤(β2), the result follows from The-

orem 2.2.6.

(ii) Fix 0 < t < 1 and r ≥ R2/2. Then we set n := br/R2c+ 1.
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(Lower bound) Let U1 and U2 be the driftless subordinators with Lévy

measures ν1(ds) := 1(r/(n+1),∞) ν(ds) and ν2(ds) := 1(r/n,∞) ν(ds), respec-

tively. Note that ν1((0,∞)) ≤ ν2((0,∞)) ≤ w(R2/2). Since P(St ≥ r) ≥
P(U2

t ≥ r) ≥ P(U1
t ≥ r), it holds that

2P(St ≥ r) ≥ P(U1
t ≥ r) + P(U2

t ≥ r)

≥ P
(
|{0 ≤ s ≤ t : ∆U1

s > r/(n+ 1)}| ≥ n+ 1
)

+ P
(
|{0 ≤ s ≤ t : ∆U2

s > r/n}| ≥ n
)

≥ e−tw(R2/2)

(
tn+1w(r/(n+ 1))n+1

(n+ 1)!
+
tnw(r/n)n

n!

)
.

Since r/n ≥ r/(n+ 1) ≥ R2/4 and nR2 ≥ r, we see from Trun∞R2
that

w(r/(n+ 1)) = w(r/(n+ 1))− w(R2) ≥ (n+ 1)R2 − r
K(n+ 1)

≥ R2

K(n+ 1)

and w(r/n) = w(r/n) − w(R2) ≥ (nR2 − r)/(Kn). Then using Stirling’s

formula, since n ' r, t < 1 and r > r0, we deduce that

P(St ≥ r) ≥ e−tw(R2/2)

(
tn+1Rn+1

2

2Kn+1(n+ 1)n+1(n+ 1)!
+
tn(nR2 − r)n

2Knnnn!

)
≥ c1(t+ (nR2 − r)n)tn exp

(
− c2r log r

)
.

(Upper bound) Let U3 and U4 be the driftless subordinators with Lévy

measures ν3(ds) := 1(0,R2/9] ν(ds) and ν4(ds) := 1(R2/9,∞) ν(ds), respectively.

Then, St = U3
t +U4

t and U4
t =

∑P (t)
i=1 Ji where P (t) is a Poisson random vari-

able with mean tw(R2/9) and Ji are i.i.d. random variables with distribution

F (u) := P(J1 ≥ u) = w(u ∨ (R2/9))/w(R2/9). (2.2.14)

Hence, it holds that

P(St ≥ r) =
∞∑
j=0

P
(
U3
t + U4

t ≥ r, P (t) = j
)
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≤ P(U3
t ≥ r) +

n∑
j=1

P
(
U3
t + U4

t ≥ r |P (t) = j
)
P
(
P (t) = j

)
+ P(P (t) > n).

By Stirling’s formula, since P (t) is a Poisson random variable and 1 ≤ n ' r,

we see that

P(P (t) > n) ≤ (tw(R2/9))n+1

(n+ 1)!
≤ c3t

n+1 exp
(
− c4r log r

)
.

Next, using Markov’s inequality and Lemma 2.2.5, we get that for all u, λ > 0,

P(U3
t ≥ u) ≤ e−λuE

[
exp

(
λU3

t

)]
= e−λu exp

(
t

ˆ
(0,R2/9]

(eλs − 1)ν(ds)

)
≤ e−λu exp

(
λeλR2/9t

ˆ
(0,R2/9]

sν(ds)

)
= e−λu exp

(
c5λe

λR2/9t
)
.

Hence, by taking λ = 9R−1
2 log(u/(9c5t)), we deduce that

P(U3
t ≥ u) ≤

(
9c5t/u

)8u/R2 for all u > 0. (2.2.15)

In particular, since t < 1, n ' r and n+ 1 < 2 + r/R2 < 8r/R2, we get that

P(U3
t ≥ r) ≤

(
9c5t/r

)8r/R2 ≤ tn+1
(
9c5/r

)8r/R2 ≤ c6t
n+1 exp

(
− c7r log r

)
.

Moreover, when n ≥ 3, since r ≥ (n − 1)R2 and n ' r, using the fact that

the jump sizes of U4 are at most R2 by Trun∞R2
, and Stirling’s formula, we

deduce that

n−2∑
j=1

P
(
U3
t + U4

t ≥ r |P (t) = j
)
P
(
P (t) = j

)
≤

n−2∑
j=1

tjw(R2/9)j

j!
P
(
U3
t ≥ r − jR2

)
≤

n−2∑
j=1

tjw(R2/9)j

j!
P
(
U3
t ≥ (n− 1− j)R2

)
≤

n−2∑
j=1

tjw(R2/9)j

j!

(
9c5t

(n− j − 1)R2

)8(n−1−j)

≤ ec8n
n−2∑
j=1

t8(n−1)−7j

j!(n− j − 1)8(n−j−1)
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≤ c9t
n+1ec10r

n−2∑
j=1

1

j!(n− j − 1)8(n−j−1)

≤ c11t
n+1ec12r

n−2∑
j=1

exp
(
− c13j log j − 8(n− j − 1) log(n− j − 1)

)
≤ c14t

n+1ec11rn exp
(
− c15(n− 1) log(n− 1)

)
≤ c16t

n+1 exp
(
− c17r log r

)
.

The seventh inequality holds by the fact that 4(a log a + b log b) ≥ 2(a ∨
b) log(2(a ∨ b)) ≥ (a+ b) log(a+ b) for all a, b ≥ 1 satisfying a ∨ b ≥ 2.

It remains to bound probabilities P(U3
t + U4

t ≥ r, P (t) = j) for j = n− 1

(when n ≥ 2) and j = n. Observe that by Stirling’s formula, we have

P(U3
t + U4

t ≥ r |P (t) = n− 1)P(P (t) = n− 1)

≤ tn−1w(R2/9)n−1

(n− 1)!

ˆ (n−1)R2

0

P(U3
t ≥ r − u)duP

( n−1∑
i=1

Ji ≤ u
)

≤ c18t
n−1e−c19r log r

(
A1 + P(U3

t ≥ R2/4)
)
,

where

A1 := −
ˆ (n−1)R2

(r−R2/4)∧((n−1)R2)

P(U3
t ≥ r − u)duP(

n−1∑
i=1

Ji ≥ u).

Similarly, we also have that

P
(
U3
t + U4

t ≥ r |P (t) = n
)
P
(
P (t) = n

)
≤ c20t

ne−c21r log r
(
A2 + P(U3

t ≥ R2/4)
)
,

where

A2 := −
ˆ nR2

r−R2/4

P(U3
t ≥ r − u)duP(

n∑
i=1

Ji ≥ u).

By (2.2.15), since t < 1, we have P(U3
t ≥ R2/4) ≤ c22t

2.

Now, we bound A1 and A2. Since limλ→∞ φ(λ)/λ = 0, there exists t0 ∈
(0, R2/4) such that sφ(s−1) ≤ 1/2 for all 0 < s < t0. If t ≥ t0, then A1 ≤ 1 ≤
t−2
0 t2 and A2 ≤ 1 ≤ t−1

0 t and hence we are done. Suppose that t < t0.
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To bound A1 and A2, we set K ′ := K + 2w(R2/9)/R2 with the constant

K ≥ 1 in Trun∞R2
and claim that

P
( m∑
i=1

Ji ≥ mR2 − u
)
≤
(

K ′u

w(R2/9)

)m
for all m ∈ N, u > 0. (2.2.16)

Indeed, (2.2.16) clearly holds for all u ∈ N and u ≥ R2/2 since P
(∑m

i=1 Ji ≥
mR2 − u

)
≤ 1. When m = 1, by (2.2.14) and Trun∞R2

, we see that for all

u ∈ (0, R2/2),

P(J1 ≥ R2 − u) =
w(R2 − u)

w(R2/9)
=
w(R2 − u)− w(R2)

w(R2/9)
≤ K ′u

w(R2/9)
. (2.2.17)

Suppose that (2.2.16) holds for m. Then, by using (2.2.17) and the induction

hypothesis, we get that for all u ∈ (0, R2/2),

P
(m+1∑
i=1

Ji ≥ (m+ 1)R2 − u
)

=

ˆ
{
∑m
i=1 ui≤u}

P
(
Jm+1 ≥ R2 − u+

m∑
i=1

ui
)
dumF (R2 − um) · · · du1F (R2 − u1)

≤ K ′

w(R2/9)

ˆ
{
∑m
i=1 ui≤u}

(
u−

m∑
i=1

ui
)
dumF (R2 − um) · · · du1F (R2 − u1)

≤ K ′u

w(R2/9)

ˆ
{
∑m
i=1 ui≤u}

dumF (R2 − um) · · · du1F (R2 − u1)

=
K ′u

w(R2/9)
P
( m∑
i=1

Ji ≥ mR2 − u
)
≤
(

K ′u

w(R2/9)

)m+1

.

Therefore, (2.2.16) holds by induction.

We consider the following two cases separately.

Case 1. (n− 3/4)R2 ≤ r < nR2.

In this case, we have A1 ≤ P(U3
t ≥ R2/4) ≤ c22t

2 by (2.2.15). Besides, by
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Theorem 2.2.6, since tφ(t−1) ≤ 1/2, it holds that

A2 ≤ −
ˆ r−t

r−R2/4

P(U3
t ≥ r − u)duP(

n∑
i=1

Ji ≥ u)−
ˆ nR2

r−t
duP(

n∑
i=1

Ji ≥ u)

≤ −c23t

ˆ r−t

r−R2/4

w(r − u)duP(
n∑
i=1

Ji ≥ u) + P(
n∑
i=1

Ji ≥ r − t).

Using integration by parts in the second line below, (2.2.16) in the third, the

inequality (a + b)n ≤ 2n(an + bn) for a, b > 0 in the fourth, and (2.0.4) and

the facts that n ' r and tφ(1/t) ≤ 1/2 in the last, we get that

− t
ˆ r−t

r−R2/4

w(r − u)duP(
n∑
i=1

Ji ≥ u) = t

ˆ R2/4

t

w(u)duP(
n∑
i=1

Ji ≥ r − u)

≤ tw(R2/4)P(
n∑
i=1

Ji ≥ r −R2/4) + t

ˆ R2/4

t

P(
n∑
i=1

Ji ≥ r − u)ν(du)

≤ tw(R2/4) + c26te
c27n

ˆ R2/4

t

(u+ nR2 − r)nν(du)

≤ tw(R2/4) + c26te
c27n2n

ˆ R2/4

t

unν(du) + c26te
c27n2n(nR2 − r)n

ˆ R2/4

t

ν(du)

≤ tw(R2/4) + c26te
c27n2n(R2/4)n−1

ˆ ∞
0

uν(du) + c26tw(t)ec27n2n(nR2 − r)n

≤ c28e
c29r(t+ tφ(1/t)(nR2 − r)n) ≤ c28e

c29r(t+ (nR2 − r)n).

Using (2.2.16), the inequality (a+ b)n ≤ 2n(an + bn) for a, b > 0 and the fact

n ' r again, we also get that

P
( n∑
i=1

Ji ≥ r − t
)
≤ c30e

c31n(t+ nR2 − r)n ≤ c30e
c31r(t+ (nR2 − r)n).

The proof is complete in this case.

Case 2. (n− 1)R2 ≤ r < (n− 3/4)R2.

Note that (nR2 − r) ' 1 in this case. By Theorem 2.2.6 and (2.2.16),
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since tφ(1/t) ≤ 1/2, n ' r and t < 1, we see that when n ≥ 2,

A1 ≤ −
ˆ (n−1)R2−t

r−R2/4−t
P(U3

t ≥ r − u)duP(
n−1∑
i=1

Ji ≥ u) + P(
n−1∑
i=1

Ji ≥ (n− 1)R2 − t)

≤ −c32t

ˆ (n−1)R2−t

r−R2/4−t
w(r − u)duP(

n−1∑
i=1

Ji ≥ u) + c32e
c33rt.

Using similar arguments to the ones for Case 1, we obtain from integration

by parts, (2.2.16) and the fact n ' r that

ˆ (n−1)R2−t

r−R2/4−t
w(r − u)duP(

n−1∑
i=1

Ji ≥ u) =

ˆ R2/4+t

r−(n−1)R2+t

w(u)duP(
n−1∑
i=1

Ji ≥ r − u)

≤ w(R2/4 + t) +

ˆ R2/4+t

r−(n−1)R2+t

P(
n−1∑
i=1

Ji ≥ r − u)ν(du)

≤ w(R2/4 + t) + c32e
c33r

ˆ R2/4+t

r−(n−1)R2+t

un−1ν(du) ≤ w(R2/4 + t) + c34e
c35r.

Since A2 ≤ 1, we can also conclude the desired result in this case.

(iii) Pick any L ∈ (0, 1 ∧ (R2/2)) such that w(L) ≥ 1. Since w(0+) =∞,

we can always find such constant L. Fix r ≥ R2/2 and 0 < t ≤ Lr. Let

k := br/Lc + 1 and U5 be the driftless subordinator with Lévy measure

1(L,∞) ν(ds). Since St ≥ U5
t and the jump sizes of U5 are at least L, using

Stirling’s formula and the inequality x1/2 ≤ ex for x > 0, we get

P(St ≥ r) ≥ P(U5
t ≥ r) ≥ P(U5 jumps k times before time t)

= e−tw(L) (tw(L))k

k!
≥ e−tw(L) e

k−1

k1/2

(
t

k

)k
≥ e−1−rLw(L)

(
t

k

)k
.

Since r/L+ 1 ≥ k > r/L ≥ t and r ≥ R2/2 > L, we have

e−rLw(L)

(
t

k

)k
≥ exp

(
− rLw(L)− (1 + r/L) log

r + L

Lt

)
≥ exp

(
− rLw(L)− 2r

L
log

2r

Lt

)
≥ exp

(
− c36r log

r

t

)
.
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and deduce the lower bound.

Next, we set c37 :=
´ R2

0
sν(ds) and λ := R−1

2 log(t/(2c37r)). By Markov’s

inequality and Lemma 2.2.5, since t ≤ Lr ≤ r, we obtain that

P(St ≥ r) ≤ e−λrE
[
eλSt

]
= e−λr exp

(
t

ˆ R2

0

(eλs − 1)ν(ds)

)
≤ e−λr exp

(
λeλR2t

ˆ R2

0

sν(ds)

)
= exp

(
− λr + c37λe

λR2t
)

= exp
((
− r

R2

+
t2

2rR2

)
log

t

2c37r

)
≤ exp

(
− r

2R2

log
t

2c37r

)
and hence the upper bound holds. We have finished the proof. �

2.3 Transition density estimates

Recall that S is a driftless subordinator with Laplace exponent φ whose

tail measure w satisfies that w(0+) = ∞. Throughout this section, we also

assume that the Lévy measure ν has a density function ν(x) and the following

condition holds: There exists a constant T0 ∈ [0,∞) such that

lim inf
x→0

xν(x) = 1/T0 with the convention 1/0 =∞. (2.3.1)

(2.3.1) implies that

lim inf
|ξ|→∞

Reφ(iξ)

log(1 + |ξ|)
≥ 1

T0

. (2.3.2)

Hence, under (2.3.1), by [79, (64) and (74)] (see also [99, (HW1/t)]), we get

the existence of a continuous bounded transition desity of St for t > T0.

Proposition 2.3.1. For all t > T0, the transition density p(t, x) of St exists

and is a continuous bounded function on (0,∞) as a function of x.

In this section, we establish two-sided estimates and the exact asymp-

totic behaviors of the transition density p(t, x). We consider the following

conditions for the Lévy measure ν.
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Definition 2.3.2. Let R1 ∈ (0,∞], R2 > 0 and β2 ≥ β1 > 0 be constants.

(i) We say that Poly∗R1
(β1, β2) holds if there are c1, c2 > 0 such that

c1

(r
s

)1+β1

≤ ν(s)

ν(r)
≤ c2

(r
s

)1+β2

for all 0 < s ≤ r < R1. (2.3.3)

We say that Poly∗R1,≤(β2) (resp. Poly∗R1,≥(β1)) holds if the upper bound

(resp. lower bound) in (2.3.3) holds.

(ii) We say that RegR1 holds, if there are constants c1, δ > 0 such that

ν(s)

ν(r)
≥ c3

(r
s

)−δ
for all 0 < s ≤ r ≤ R1.

(iii) We say that Dou∞R1
holds, if there are c1, c2 > 0 such that

c1 sup
u≥r

ν(u) ≤ ν(r) and c2ν(r/2) ≤ ν(r) for all r ≥ R1.

(iv) We say that Poly∗,∞R2
(β1, β2) holds if (2.3.3) holds for all r ≥ s ≥ R2. We

say that Poly∗,∞R2,≤(β2) (resp. Poly∗,∞R2,≥(β1)) holds if the upper bound (resp.

lower bound) in (2.3.3) holds for all r ≥ s ≥ R2.

Remark 2.3.3. (i) If Poly∗R1,≥(β1) holds, then RegR1 holds and the condi-

tion (2.3.1) holds with T0 = 0.

(ii) The constant β1 in Poly∗R1,≥(β1) should be less than 1. Indeed, since

∞ >

ˆ R1/2

0

sν(s)ds ≥ c1(R1/2)−1−β1ν(R1/2)

ˆ r

0

s−β1ds,

it must hold that β1 < 1.

(iii) The condition RegR1 is very mild. For instance, if the Lévy density is al-

most decreasing, then it holds trivially. Therefore, every subordinator whose

Laplace exponent is a complete Bernstein function satisfies this assumption

since its Lévy measure has a completely monotone density. (See [116, Chapter

16] for examples of complete Bernstein functions.)

Recall that 2eH(λ) ≥ w(1/λ) for all λ > 0. Thus,H−1(1/t)−1 ≥ w−1(2e/t)
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for all t > 0. We define for t > 0 and y ≥ 0,

D(t) := t max
s∈[w−1(2e/t),H−1(1/t)−1]

sH(s−1) (2.3.4)

and

θ(t, y) :=


H−1(1/t)−1 if y < H−1(1/t)−1,

min {s ≥ w−1(2e/t) : tsH(s−1) ≤ y} if y ∈ [H−1 (1/t)−1 , D(t)],

w−1(2e/t) if y > D(t).

(2.3.5)

Note that the minimum in the definition of θ attained at some s ∈ [w−1(2e/t), H−1(1/t)−1].

We observe that for each fixed t > 0, the map y 7→ θ(t, y) is nonincreasing

and for each fixed y ≥ 0, limt→0 θ(t, y) = 0 and limt→∞ θ(t, y) =∞.

Recall that b(t) = (φ′◦H−1)(1/t) and σ = σ(t, r) = (φ′−1)(r/t)1(0,φ′(0+))(r/t).

The following theorems are the main results of this section. See Figure 2.1.

Theorem 2.3.4. Assume that Poly∗R1
(β1, β2) holds. Then, for every T > 0,

there exist constants c1, c2, c3, c5 > 1 and c4 > 0 such that the following

estimates hold for all t ∈ (0, T ].

(i) (Left tail estimates) It holds that for all x ∈ (0, tb(t)],

c−1
1√

t(−φ′′(σ))
exp

(
−tH(σ)

)
≤ p(t, x) ≤ c1√

t(−φ′′(σ))
exp

(
−tH(σ)

)
. (2.3.6)

In particular, it holds that for all x ∈ (0, tb(t)],

c−1
2 H−1(1/t) exp

(
−2tH(σ)

)
≤ p(t, x) ≤ c2H

−1(1/t) exp
(
− t

2
H(σ)

)
. (2.3.7)

(ii) (Right tail estimates) Assume also that supr≥R1
ν(r) <∞. Then it holds

that for all y ∈ [0, R1/2),

c−1
3 H−1(1/t) min

{
1,

tν(y)

H−1(1/t)
+ exp

(
− c4y

θ(t, y/(8e2))

)}
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≤ p(t, tb(t) + y) ≤ c3H
−1(1/t) min

{
1,

tν(y)

H−1(1/t)
+ exp

(
− y

8θ(t, y/(8e2))

)}
,

(2.3.8)

where θ(t, y) is defined as (2.3.5). In particular, for all y ∈ (D(t), R1/2),

c−1
5 tν(y) ≤ p(t, tb(t) + y) ≤ c5tν(y). (2.3.9)

Moreover, if Dou∞R1
also holds, then (2.3.8) holds for all y ∈ [0,∞), and

(2.3.9) holds for all y ∈ (D(t),∞).

Figure 2.1: Dominant terms in estimates

Corollary 2.3.5. Assume that Poly∗R1
(β1, β2) holds with β2 < 2. Then, for

every T > 0, there exists c1 > 1 such that for all t ∈ (0, T ] and y ∈ [0, R1/2),

c−1
1

(
H−1(1/t) ∧ tν(y)

)
≤ p(t, tb(t) + y) ≤ c1

(
H−1(1/t) ∧ tν(y)

)
. (2.3.10)

Therefore, there exists c2 > 1 such that for all t ∈ (0, T ] and x ∈ (0, R1/2),

c−1
2 min

{
exp

(
− tH(σ)

)√
t(−φ′′(σ))

, tν
(
(x− tb(t))+

)}
≤ p(t, x) ≤ c2 min

{
exp

(
− tH(σ)

)√
t(−φ′′(σ))

, tν
(
(x− tb(t))+

)}
. (2.3.11)
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and

c−1
2 H−1(1/t) min

{
exp

(
− 2tH(σ)

)
,
tν
(
(x− tb(t))+

)
H−1(1/t)

}
≤ p(t, x) ≤ c2H

−1(1/t) min

{
exp

(
− t

2
H(σ)

)
,
tν
(
(x− tb(t))+

)
H−1(1/t)

}
. (2.3.12)

Moreover, if Dou∞R1
also holds, then (2.3.10) holds for all t ∈ (0, T ] and

y ∈ [0,∞), and (2.3.12)–(2.3.11) hold for all t ∈ (0, T ] and x ∈ (0,∞).

Below, we give large time transition density estimates. Recall that we

have assumed (2.3.1) with the constant T0 ∈ [0,∞).

Theorem 2.3.6. Assume that RegR1 and Poly∗,∞R2
(β1, β2) hold.

(i) There exist constants T1 > T0, c1, c2, c3, c5 > 1 and c4 > 0 such that

for all t ∈ [T1,∞), (2.3.6) holds for all x ∈ (0, tb(t)], (2.3.7) holds for all

x ∈ [tb(T1), tb(t)], (2.3.8) holds for all y ∈ [0,∞) and (2.3.9) holds for all

y ∈ (D(t),∞).

(ii) If T0 = 0, then for every T > 0, there are comparison constants such

that for all t ∈ [T,∞), (2.3.6) holds for all x ∈ (0, tb(t)], (2.3.7) holds for

all x ∈ [tb(T ), tb(t)], (2.3.8) holds for all y ∈ [0,∞) and (2.3.9) holds for all

y ∈ (D(t),∞).

Corollary 2.3.7. Assume that RegR1 and Poly∗,∞R2
(β1, β2) holds with β2 <

2. Then, there exist constants T1 > T0 and c1 > 1 such that (2.3.10) holds

for all t ∈ [T1,∞) and y ∈ [0,∞), and that (2.3.11) ((2.3.12), respectively)

holds for all t ∈ [T1,∞) and x ∈ [tb(T1),∞) (and x ∈ (0,∞), respectively).

Moreover, if T0 = 0, then for every T > 0, there are comparison constants

such that (2.3.10) holds for all t ∈ [T,∞) and y ∈ [0,∞), and that (2.3.11)

((2.3.12), respectively) holds for all t ∈ [T,∞) and x ∈ (0,∞) (and x ∈
[tb(T ),∞), respectively).

When Poly∗,∞R2,≥(β1) holds with β1 > 1, we can find a monotone function

which is easy to compute and can play the same role as the function θ. Define

H (r) := inf
s≥r

1

sH(s−1)
and H −1(u) := sup{r ∈ R : H (r) ≤ u}.
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Using the above function H , the large time right tail estimates in Theorem

2.3.6 can be simplified as follows. See Figure 2.2 also.

Note that φ′(0) is finite if Poly∗,∞R2,≥(β1) holds with β1 > 1. See (2.3.59)

and the line below.

Corollary 2.3.8. Assume that RegR1 and Poly∗,∞R2
(β1, β2) holds with β1 >

1. Then, there exist constants T1 > T0, c1 > 1 and c2, c3 > 0 such that for all

t ∈ [T1,∞) and y ∈ [0,∞),

c−1
1 H−1(1/t) min

{
1,

tν(y)

H−1(1/t)
+ exp

(
− c2y

H −1(t/y)

)}
≤ p(t, tφ′(0) + y) ≤ c1H

−1(1/t) min

{
1,

tν(y)

H−1(1/t)
+ exp

(
− c3y

H −1(t/y)

)}
.

Moreover, if T0 = 0, then for every T > 0, there are comparison constants

such that the above estimates hold for all t ∈ [T,∞) and y ∈ [0,∞).

The above corollary may be considered as a counterpart of [5, Theorem

1.5(2)] where a similar result was obtained for symmetric jump processes.

Since Poly∗R1
(β1, β2) can not holds with β1 > 1 by Remark 2.3.3(ii), there is

no analogous result to Corollary 2.3.8 concerning small times estimates.

Figure 2.2: Large time estimates when β1 > 1
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In Figure 2.2, p(t, x) satisfies (2.3.7) for all x ∈ (0, tb(t)] if Poly∗R1,≥(β1)

also holds. We also note that in Figure 2.2, the exponential term in right tail

can be the dominant term in estimates only in an interval whose length is

smaller than a constant multiple of H−1(1/t)−1 log t. This fact can be proved

by using Lemma 2.3.14.

Our main theorems also cover the cases when β1 ≤ 1 and β2 ≥ 2. In such

cases, the exponential term in the right tail estimates may have an effect

on the estimates at specific times but no effect at other time values. (See,

Section 4.2.)

2.3.1 Some consequences of Poly∗R1
(β1, β2)

Recall that H(λ) := φ(λ)− λφ′(λ) for λ > 0. Using the inequality 1− e−x −
xe−x ≥ x2/(2e) for 0 ≤ x ≤ 1, we see that for every λ > 0,

H(λ) ≥
ˆ 1/λ

0

(1− e−λs − λse−λs)ν(s)ds ≥ λ2

2e

ˆ 1/λ

0

s2ν(s)ds. (2.3.13)

Denote by φ(n) the n-th derivative of the Laplace exponent φ. Using the

expression (2.0.2), we get the following lemma.

Lemma 2.3.9. Suppose that RegR1 holds.

(i) For every λ0 > 0, there are constants cn > 0, n = 1, 2, ... such that

e−1

ˆ 1
λ

0

snν(s)ds ≤ |φ(n)(λ)| ≤ cn

ˆ 1
λ

0

snν(s)ds for all λ ≥ λ0 and n ≥ 1.

(ii) For every λ0 > 0, there are constants c′n > 1, n = 1, 2, ... such that

c′−1
n |φ(n)(2λ)| ≤ |φ(n)(λ)| ≤ c′n|φ(n)(2λ)| for all λ ≥ λ0 and n ≥ 1.

(iii) For every λ0 > 0, there are constants c′′n > 0, n = 1, 2, ... such that

|λφ(n+1)(λ)| ≤ c′′n|φ(n)(λ)| for all λ ≥ λ0 and n ≥ 1.
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Since Poly∗R1,≥(β1) implies RegR1 , the results of Lemma 2.3.9 hold true

under Poly∗R1,≥(β1). We get analogous results under Poly∗,∞R2,≥(β1).

Lemma 2.3.10. Suppose that Poly∗,∞R2,≥(β1) holds.

(i) For every λ0 > 0, there are constants cn > 0, n = 1, 2, ... such that

e−1

ˆ 1
λ

0

snν(s)ds ≤ |φ(n)(λ)| ≤ cn

ˆ 1
λ

0

snν(s)ds for all 0 < λ ≤ λ0 and n ≥ 1.

(ii) For every λ0 > 0, there are constants c′n > 1, n = 1, 2, ... such that

c′−1
n |φ(n)(2λ)| ≤ |φ(n)(λ)| ≤ c′n|φ(n)(2λ)| for all 0 < λ ≤ λ0 and n ≥ 1.

(iii) For every λ0 > 0, there are constants c′′n > 0, n = 1, 2, ... such that

|λφ(n+1)(λ)| ≤ c′′n|φ(n)(λ)| for all 0 < λ ≤ λ0 and n ≥ 1.

From the definition of the tail measure w, we deduce the following result

from Lemma 2.1.1.

Lemma 2.3.11. Suppose that Poly∗R1,≥(β1) holds.

(i) There are constants c1, c2 > 0 such that

c1rν(2r) ≤ w(r) ≤ c2rν(r) for all 0 < r < R1/2.

Therefore, if Poly∗R1
(β1, β2) holds, then w(r) ' rν(r) for r ∈ (0, R1/2).

(ii) There is a constant c3 > 0 such that

w(s)

w(r)
≥ c3

(r
s

)β1

for all 0 < r ≤ R < R1/2.

(iii) For every r0 > 0, there is a constant c4 > 0 such that

H(r)

H(s)
≥ c4

(
r

s

)β1

for all r0 ≤ s ≤ r.
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In particular,

H−1(t)

H−1(u)
≤ c

−1/β1

4

(
t

u

)1/β1

for all H(r0) ≤ u ≤ t.

(iv) For every λ0 > 0, there are comparison constants such that

H(λ) ' λ2

ˆ 1/λ

0

s2ν(s)ds ' λ2(−φ′′(λ)) for λ ≥ λ0.

Lemma 2.3.12. Suppose that Poly∗,∞R2,≥(β1) holds.

(i) There are constants c1, c2 > 0 such that

c1rν(2r) ≤ w(r) ≤ c2rν(r) for all r ≥ R2.

Therefore, if Poly∗,∞R2
(β1, β2) holds, then w(r) ' rν(r) for r ∈ [R2,∞).

(ii) There is a constant c3 > 0 such that

w(s)

w(r)
≥ c3

(r
s

)β1

for all r ≥ s ≥ R2.

(iii) For every r0 > 0, there is a constant c3 > 0 such that

H(r)

H(s)
≥ c3

(
r

s

)β1∧(3/2)

for all 0 < s ≤ r ≤ R ≤ r0.

In particular,

H−1(t)

H−1(u)
≤ c

−((1/β1)∨(2/3))
3

(
t

u

)(1/β1)∨(2/3)

for all 0 < u ≤ t ≤ H(r0).

(iv) For every λ0 > 0, there are comparison constants such that

H(λ) ' λ2

ˆ 1/λ

0

s2ν(s)ds ' λ2(−φ′′(λ)) for 0 < λ ≤ λ0.

Since the Lévy density ν(x) (locally) decays in polynomial orders, using

the fact supx>0 x
ke−x < 0 for all k > 0, we get the following two lemmas. See
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[55, Lemmas 2.5 and 2.6] for the proofs.

Lemma 2.3.13. (i) Suppose that Poly∗R1
(β1, β2) hold. Then, for every a, T >

0, there exists c1 > 0 such that for all t ∈ (0, T ] and y ∈ [H−1(1/t)−1, R1/2),

exp
(
− ay

w−1(2e/t)

)
≤ c1

tν(y)

H−1(1/t)
. (2.3.14)

Moreover, if Dou∞R1
also holds, then (2.3.14) holds true for all t ∈ (0, T ]

and y ∈ [H−1(1/t)−1,∞).

(ii) Suppose that Poly∗,∞R2
(β1, β2) hold. Then, for every a, T > 0, there exists

c1 > 0 such that (2.3.14) holds for all t ∈ [T,∞) and y ∈ [H−1(1/t)−1 ∨
R2,∞).

Lemma 2.3.14. Suppose that Poly∗,∞R2
(β1, β2) hold. Then, for every a, T >

0, there exist c1 > 0, c2 ≥ 1 such that

exp
(
− ay

H−1(1/t)−1

)
≤ c1

tν(y)

H−1(1/t)

for all t ∈ [T,∞) and y ≥
(
c2H

−1(1/t)−1 log(e+ t)
)
∨R2.

2.3.2 Left tail estimates

In this subsection, we study left tail estimates on p(t, x). We first present a

result established in [75] which holds under Poly∗R1,≥(β1).

Recall that σ = σ(t, r) := (φ′−1)(r/t)1(0,φ′(0+))(r/t).

Proposition 2.3.15. Suppose that Poly∗R1,≥(β1) holds. Then, for every T >

0, there exist constants M0 > 0 and C > 1 such that for all t ∈ (0, T ],

C−1 exp
(
− tH(σ)

)√
t(−φ′′(σ))

≤ p(t, x) ≤ C
exp

(
− tH(σ)

)√
t(−φ′′(σ))

, x ∈ (0, tb(t/M0)].

(2.3.15)

Proof. By Lemma 2.3.11(iii, iv), we see that for every x0 > 0, the condition

−φ′′ ∈ WLSC(α1 − 2, c, x0) in [75, Theorem 3.3] is satisfied with some con-

stant c > 0. Since x 7→ σ(t, x) decreases for each fixed t, we have that, for all
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t ∈ (0, T ] and x ∈ (0, tb(t/M0)],

σ(t, x) ≥ ((φ′)−1 ◦ b)(t/M0) = H−1(M0/t) ≥ H−1(M0/T ).

Also, by the above inequality and Lemma 2.3.11(iv), it holds that

tσ2(−φ′′(σ)) ≥ c1tH(σ) ≥ c1tH(H−1(M0/t)) = c1M0.

Therefore, we obtain the result from [75, Theorem 3.3]. �

Now, we establish left tail probabilities under RegR1 and Poly∗,∞R2,≥(β1).

Define a function M : (0,∞)× (0,∞)× (−∞,∞)→ C by

M(s, z, u) := φ(z +
iu√

s(−φ′′(z))
)− φ(z)− φ′(z)

iu√
s(−φ′′(z))

. (2.3.16)

In the setting of [75], the Laplace exponent φ should satisfy a lower weak

scaling condition at infinity (i.e., the lower Matuszewska index (at infinity)

of the function φ(λ)1{λ≥1} should be strictly bigger than 0) so that the map

u 7→ e−tM(t,σ,u) for each fixed t > 0 decreases at least subexponentially. This

property plays an important role in the proof of [75, Theorem 3.3]. Unlike

[75], in our setting, the Laplace exponent φ can be slowly varying at infinity

so that the map u 7→ e−tM(t,σ,u) can decay only in polynomial orders. Thus,

we need significant modifications in the proof of the next proposition.

Proposition 2.3.16. Suppose that RegR1 and Poly∗,∞R2,≥(β1) hold. Then,

there exist constants T1 > T0, M0 > 0 and C > 1, where T0 is the constant

in (2.3.1), such that (2.3.15) holds for all t ∈ [T1,∞) and x ∈ (0, tb(t/M0)].

Moreover, if T0 = 0, then for every T > 0, there exist constants M0 > 0

and C > 1 such that (2.3.15) holds for all t ∈ [T1,∞) and x ∈ (0, tb(t/M0)].

We need the following lemma in the proof of Proposition 2.3.16.

Lemma 2.3.17. For every constants a > 0 and δ ∈ (0, 1), there exists a
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constant ξ0 > 0 such that

ˆ a

0

(1− cos(ξs))
ds

s
≥ (1− δ) log(1 + ξ) for all ξ ≥ ξ0.

Proof. Let U be a Gamma subordinator whose Laplace exponent is log(1+λ).

It is known that the Lévy measure of U has the density function s−1e−s. By

the analytic continuation of Bernstein functions (see, e.g. [116, Proposition

3.6]), it holds that for all ξ ∈ R,

log
√

1 + ξ2 = Re log(1 + iξ) = Re

ˆ ∞
0

(1− e−iξs)s−1e−sds

=

ˆ ∞
0

(1− cos(ξs))s−1e−sds.

For any constant a > 0, we see that

ˆ ∞
a

(1− cos(ξs))s−1e−sds ≤ 2

ˆ ∞
a

s−1e−sds <∞

and hence

1 = lim
ξ→∞

log
√

1 + ξ2

log(1 + ξ)
= lim

ξ→∞

´ a
0

(1− cos(ξs))s−1e−sds

log(1 + ξ)

≤ lim
ξ→∞

´ a
0

(1− cos(ξs))s−1ds

log(1 + ξ)
.

This yields the desired result. �

Proof of Proposition 2.3.16. Recall thatM is defined in (2.3.16). By the

Fourier-Mellin inversion formula and a change of variables, we get that

p(t, x) =
e−tφ(σ)+σx

2π

ˆ ∞
−∞

exp
(
− t
(
φ(σ + iu)− φ(σ)

)
+ iux

)
du

=
e−t(φ(σ)−σφ′(σ))

2π

ˆ ∞
−∞

exp
(
− t
(
φ(σ + iu)− φ(σ)− iuφ′(σ)

))
du

=
e−tH(σ)

2π
√
t(−φ′′(σ))

ˆ ∞
−∞

e−tM(t,σ,u)du, (2.3.17)
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whenever the last integral above converges. Note that the complex conjugate

ofM(t, σ, u) isM(t, σ,−u) so that e−tM(t,σ,u)+e−tM(t,σ,−u) ∈ R for all t, σ > 0

and u ∈ R. Hence, whenever |e−tM(t,σ,u)| is integrable on R with respect to

u, using the equality
´∞
−∞ e

−tM(t,σ,u)du =
´∞

0
(e−tM(t,σ,u) + e−tM(t,σ,−u))du, we

deduce that p(t, x) is a positive real number.

Let T1 ∈ (T0,∞) be a constant which will be chosen later. Pick a constant

ε ∈ (0, 1) such that (1− ε)T1 > T0. By (2.3.1) and Lemma 2.3.17, there exist

constants σ0, ξ0 > 0 such that

ν(s) ≥ (1− ε/2)

T0

s−1 for all s ∈ (0, σ−1
0 | log(1− ε/2)|) (2.3.18)

and

ˆ | log(1−ε/2)|

0

(1− cos(ξs))
ds

s
≥ 1− ε

(1− ε/2)2
log(1 + ξ) for all ξ ≥ ξ0.

Using (2.3.18), (2.3.18) and a change of the variables, we get that for all

t ≥ T1, σ > 0 and |u| > ξ0(σ0 ∨ σ)
√
t(−φ′′(σ)),

Re tM(t, σ, u) = t

ˆ ∞
0

e−σs
(

1− cos
us√

t(−φ′′(σ))

)
ν(s)ds

≥ (1− ε/2)2t

T0

ˆ | log(1−ε/2)|
σ0∨σ

0

(
1− cos

us√
t(−φ′′(σ))

)
ds

s

=
(1− ε/2)2t

T0

ˆ | log(1−ε/2)|

0

(
1− cos

us

(σ0 ∨ σ)
√
t(−φ′′(σ))

)
ds

s

≥ (1− ε)t
T0

log

(
1 +

u

(σ0 ∨ σ)
√
t(−φ′′(σ))

)
. (2.3.19)

Since (1 − ε)t/T0 ≥ (1 − ε)T1/T0 > 1, we see from (2.3.19) that |e−tM(t,σ,u)|
is integrable on R with respect to u. Therefore, (2.3.17) holds true for all

t ≥ T1 and x ∈ (0, tφ′(0)).

Define for t, σ > 0,

T0 = T0(t, σ) := (σ0 ∨ σ)
√
t(−φ′′(σ)) and T = T (t, σ) := σ

√
t(−φ′′(σ)).
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Clearly, T0 ≥ T . For all t > 0, M > 0 and x ∈ (0, tb(t/M)), if σ > σ0, then

T 2 ≥ σ2t

ˆ 1/σ

0

s2e−σsν(s)ds ≥ c1σ
2t

ˆ 1/σ

0

s2s−1ds =
c1t

2
(2.3.20)

by (2.3.1), and if σ ≤ σ0, then

T 2 ≥ c2tH(σ) ≥ c2t(H ◦ φ′−1 ◦ b)(t/M) = c2M (2.3.21)

by Lemma 2.3.12(iv) and the monotone property of σ. We will prove that

lim
T →∞

ˆ ∞
−∞

e−tM(t,σ,u)du =

ˆ ∞
−∞

e−
1
2
u2

du =
√

2π. (2.3.22)

Assuming (2.3.22) for the moment. By (2.3.17), there exists c3 > 0 such

that (2.3.15) holds if T ≥ c3. Then by taking T1 = 2c3/c1 and M0 = c3/c2,

we deduce from (2.3.20) and (2.3.21) that (2.3.15) holds for all t ≥ T1 and

x ∈ (0, tb(t/M0), and conclude that the first assertion holds true.

Now, we prove (2.3.22). First, we see from (2.3.19) that

∣∣∣∣ˆ
|u|>ξ0T0

e−tM(t,σ,u)du

∣∣∣∣ ≤ 2

ˆ ∞
ξ0T0

(
1 +

u

T0

)−(1−ε)T1/T0

du <∞. (2.3.23)

Next, by Taylor’s theorem, it holds that∣∣∣∣ tM(t, σ, u)− 1

2
u2

∣∣∣∣ =

∣∣∣∣ t(φ(σ +
iσ

T
u)− φ(σ)− φ′(σ)

iσ

T
u

)
− 1

2
u2

∣∣∣∣
≤ u2

2
sup

z∈[−|u|,|u|]

∣∣∣∣ tσ2

T 2

(
− φ′′(σ +

iσ

T
z)
)
− 1

∣∣∣∣
=

u2

2(−φ′′(σ))
sup

z∈[−|u|,|u|]

∣∣∣∣− φ′′(σ +
iσ

T
z) + φ′′(σ)

∣∣∣∣.
Note that, since | sinx| ≤ |x| for all x ∈ R, we get that for all |z| ≤ |u|,∣∣∣∣− φ′′(σ +

iσ

T
z) + φ′′(σ)

∣∣∣∣ ≤ ˆ ∞
0

s2e−σs
∣∣∣∣ cos(

σzs

T
)− 1− i sin(

σzs

T
)

∣∣∣∣ν(s)ds
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= 2

ˆ ∞
0

s2e−σs
∣∣∣ sin(

σzs

2T
)
∣∣∣ν(s)ds ≤ σ|u|

T

ˆ ∞
0

s3e−σsν(s)ds =
σ|u|
T

φ′′′(σ).

Thus, we deduce that∣∣∣∣ tM(t, σ, u)− 1

2
u2

∣∣∣∣ ≤ σφ′′′(σ)

2T (−φ′′(σ))
|u|3.

Combining with the fact that |ez − 1| ≤ |z|e|z| for z ∈ C, we obtain that for

all u ∈ R,

∣∣∣ e−tM(t,σ,u) − e−
1
2
u2
∣∣∣ = e−

1
2
u2

∣∣∣∣ exp
( 1

2
u2 − tM(t, σ, u)

)
− 1

∣∣∣∣
≤ σφ′′′(σ)

2T (−φ′′(σ))
|u|3 exp

(
− 1

2
u2 +

σφ′′′(σ)

2T (−φ′′(σ))
|u|3
)
. (2.3.24)

Below, we consider the cases σ > σ0 and σ ≤ σ0, separately.

(Case 1) Assume that σ > σ0. By Lemma 2.3.9(iii), there exists c4 > 0

such that σφ′′′(σ) ≤ c4(−φ′′(σ)). Let ξ1 = (2c4)−1∧ ξ0. Using (2.3.24), we get

that∣∣∣∣ˆ
|u|≤ξ1T

(e−tM(t,σ,u) − e−
1
2
u2

)du

∣∣∣∣ ≤ c5

T

ˆ ξ1T

0

u3 exp
(
−
( 1

2
− c4

2T
u
)
u2
)
du

≤ c5

T

ˆ ξ1T

0

u3 exp
(
−
( 1

2
− c4ξ1

2

)
u2
)
du

≤ c5

T

ˆ ∞
0

u3 exp
(
− 1

4
u2
)
du ≤ c6

T
. (2.3.25)

On the other hand, note that σ|u|/T > σ0ξ1 for |u| > ξ1T . Hence, by Lemma

2.3.9(i), since 1− cos r ≥ cos 1
2
r2 for all |r| ≤ 1, we have that for all |u| > ξ1T ,

Re tM(t, σ, u) ≥ t

ˆ T /(σ|u|)
0

(
1− cos

σus

T
)
e−σsν(s)ds

≥ t
cos 1

2

σ2u2

T 2
e−T /|u|

ˆ T /(σ|u|)
0

s2ν(s)ds

≥ c7e
−1/ξ1t

σ2u2

T 2

∣∣φ′′(σ|u|/T )
∣∣. (2.3.26)
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It follows that∣∣∣∣ˆ
ξ1T <|u|≤ξ0T0

e−tM(t,σ,u)du

∣∣∣∣
≤ 2ξ0T max

ξ1T <u≤ξ0T
exp

(
− c7e

−1/ξ1t
σ2u2

T 2

∣∣φ′′(σu/T )
∣∣ )

≤ 2ξ0T exp
(
− c7e

−1/ξ1tξ2
1σ

2|φ′′(σξ0)|
)

≤ 2ξ0T exp
(
− c8tσ

2|φ′′(σ)|
)

= 2ξ0T exp
(
− c8T 2

)
. (2.3.27)

We used the fact that T0 = T under the assumption σ > σ0 in the first

inequality and Lemma 2.3.9(ii) in the third.

Eventually, by the triangle inequality and inequalities (2.3.23), (2.3.25)

and (2.3.27), we obtain∣∣∣∣ ˆ
R
(e−tM(t,σ,u) − e−

1
2
u2

)du

∣∣∣∣
≤ c6

T
+ 2ξ0T exp

(
− c8T 2

)
+ 2

ˆ ∞
ξ0T

(
1 +

u

T

)−(1−ε)T1/T0

du+ 2

ˆ ∞
ξ1T

e−
1
2
u2

du

→ 0 as T → ∞. (2.3.28)

(Case 2) Assume that σ ≤ σ0. We follow the proof for (Case 1). First,

using Lemma 2.3.10(iii) instead of Lemma 2.3.9(iii), (2.3.25) still hold with

possibly different constants ξ1 and c6. Next, note that σ|u|/T ≤ ξ0σ0 for |u| ≤
ξ0T0 in this case. Hence, by Lemma 2.3.10(i), (2.3.26) holds for all |u| ≤ ξ0T0

with some c7 > 0. Also, by Lemma 2.3.12(iv), we see that T 2 ' tH(σ) and

σ2u2T −2|φ′′(σ|u|/T )| ' H(σ|u|/T ) for |u| ≤ ξ0/T0. Using these comparisons

and (2.3.26) in the first line below, Lemma 2.3.12(iii) and a change of the

variables in the second, the fact that supx>ξ1 x
2/β′1e−x/2 < ∞ in the third,

and Lemma 2.3.12(iv) in the last, we get that for β′1 := β1 ∧ (3/2),∣∣∣∣ ˆ
ξ1T <|u|≤ξ0T0

e−tM(t,σ,u)du

∣∣∣∣ ≤ 2

ˆ ξ0T0

ξ1T
exp

(
− c9tH(σu/T )

)
du
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≤ 2

ˆ ξ0T0

ξ1T
exp

(
− c10tH(σ)uβ

′
1T −β′1

)
du = 2T

ˆ ξ0T0/T

ξ1

exp
(
− c10tH(σ)uβ

′
1
)
du

≤ c11T exp
(
− c10

2
tH(σ)ξ

β′1
1

) ˆ ∞
ξ1

(tH(σ)uβ
′
1)−2/β′1du

≤ c12T 1−4/β′1 exp
(
− c13T 2

)
. (2.3.29)

Using (2.3.29) instead of (2.3.27), we can see that (2.3.28) is still valid. This

finishes the proof for (2.3.22).

Now, we further assume that T0 = 0 and prove the second assertion.

Choose any T > 0. By (2.3.17), since the first assertion holds true, it suffices

to show that there exist constants c14 > 1 and M0 ≥ c2
3/c2 such that for all

t ∈ [T, 2c3/c1] and x ∈ (0, tb(t/M0)],

c−1
14 ≤

ˆ ∞
−∞

e−tM(t,σ,u)du ≤ c14. (2.3.30)

Note that (2.3.19) is still valid with possibly different constants ε, σ0 and

ξ0. Hence, we have
´∞
−∞ e

−tM(t,σ,u)du ∈ R for all t ∈ [T, 2c−1
1 c3] and σ > 0.

Also, since inequalities (2.3.23), (2.3.25), (2.3.27) and (2.3.29) still work, by

a similar argument to (2.3.28), we see that there exists c15 > 0 such that if

T = σ
√
t(−φ′′(σ)) ≥ c15, then (2.3.30) holds. Therefore, it remains to prove

that for the set A := {(t, σ) : t ∈ [T, 2c3/c1], σ > 0, 0 < T < c15},

inf
(t,σ)∈A

ˆ ∞
−∞

e−tM(t,σ,u)du ' sup
(t,σ)∈A

ˆ ∞
−∞

e−tM(t,σ,u)du ' 1. (2.3.31)

Recall that T 2 ≥ c2M0 if σ ≤ σ0. By taking M0 larger than c−1
2 c2

15, we

obtain A ⊂ [T, 2c3/c1]× [σ0,∞). Besides, since T0 = 0, we see that

lim
σ→∞

σ2(−φ′′(σ)) ≥ lim
σ→∞

e−1σ2

ˆ 1/σ

0

s(sν(s))ds

≥ (2e)−1 lim inf
σ→∞

inf
0<s<1/σ

(sν(s)) =∞. (2.3.32)

Thus, there exists a constant σ1 > 0 such that T 2 ≥ Tσ2(−φ′′(σ)) ≥ c2
15
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for all σ > σ1 and hence A ⊂ [T, 2c3/c1] × [σ0, σ1] =: A0. Clearly, (t, σ) 7→´∞
−∞ e

−tM(t,σ,u)du is a continuous function onA0. Therefore, we obtain (2.3.31)

from the extreme value theorem. �

Using (2.3.17) and (2.3.22), we obtain the following corollary.

Corollary 2.3.18. Suppose that RegR1 holds. Then, for every N > 0,

lim
t→∞

p(t, x)
√
t(−φ′′(σ)) exp

(
tH(σ)

)
= (2π)−1/2 uniformly in x ∈ (0, N ].

If we also assume that (2.3.1) holds with T0 = 0, then for every N > 0,

lim
x→0

p(t, x)
√
t(−φ′′(σ)) exp

(
tH(σ)

)
= (2π)−1/2 uniformly in t ∈ [N,∞).

Proof. Let N > 0. Fix a constant σ0 so that (2.3.18) is satisfied with ε = 1/2.

Write T = T (t, σ) := σ
√
t(−φ′′(σ)) as in the proof of Proposition 2.3.16.

Similar to (2.3.20), we see from (2.3.1) that T 2 ≥ c1t/2 if σ > σ0. Since

Lemma 2.3.9 holds under RegR1 only, we can use it and follow (Case 1) in

the proof of Proposition 2.3.16 to see that (2.3.28) holds if σ > σ0.

By the monotone property of σ, we see that σ(t, x) → ∞ as t → ∞
uniformly in x ∈ (0, N ]. Hence, there exists a constant tN > 2T0 such that

for all t > tN and x ∈ (0, N ], it holds σ > σ0 so that T 2 ≥ c1t/2 and (2.3.28)

holds. Therefore, by (2.3.17) and (2.3.22), the first assertion holds true.

Now, we further assume that T0 = 0. Using the monotone property of

σ again, we see that there exists a constant xN > 0 such that σ > σ0 for

all t ≥ N and x ∈ (0, xN). Hence, (2.3.28) holds for all t ≥ N if x < xN .

Moreover, by (2.3.32), we get that limx→0 T = ∞ uniformly in t ∈ [N,∞)

since t 7→ σ is increasing. Therefore, the second assertion also holds true by

(2.3.17) and (2.3.22). �

A similar result to Corollary 2.3.18 is obtained in [75, Section 3]. Note

that since condition RegR1 is very mild, our result covers geometric stable

subordinators and Gamma subordinators (see, [55, Example 3.4]), which are

not covered in [75, Corollary 3.6].
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2.3.3 Estimates on the transition density near the max-

imum value

Lemma 2.3.19. [55, Lemma 3.5] Let f : I → [0,∞) be a nondecreasing

function defined on an interval I ⊂ [0,∞). Assume that there exist constants

a ∈ [0,∞), β, c1 > 0 such that

f(r2)

f(r1)
≥ c1

(
r2

r1

)β
for all a < r1 ≤ r2 (resp. 0 < r1 ≤ r2 ≤ a).

Then, for every c2 > 0, there exists a constant c3 > 0 such that

ˆ ∞
a

exp
(
− c2tf(ξ)

)
dξ ≤ c3f

−1(1/t) for all t ∈ (0, 1/f(a)),(
resp.

ˆ a

0

exp
(
− c2tf(ξ)

)
dξ ≤ c3f

−1(1/t) for all t ∈ [1/f(a),∞),

)
where f−1(s) := inf{r ≥ 0 : f(r) > s} with the convention that inf ∅ =∞.

Proposition 2.3.20. (i) Suppose that Poly∗R1,≥(β1) holds. Then, for every

T > 0, there exists a constant C > 0 such that for all t ∈ (0, T ],

sup
x∈R

p(t, x) ≤ CH−1(1/t). (2.3.33)

(ii) Suppose that Poly∗,∞R2,≥(β1) holds. Then, for every T > T0, where T0 is

the constant in (2.3.1), there exists a constant C > 0 such that (2.3.33) holds

for all t ∈ [T,∞).

Proof. Since the proofs are similar, we only give the proof for (ii) which is

more delicate.

(ii) Fix T0 < T ′ < T . By (2.3.1), there exists a constant s0 > 0 such that

ν(s) ≥ 1/(2T0s) for all s ∈ (0, s0]. By the Fourier inversion theorem, we get

that for every t ≥ T and x ∈ R,

p(t, x) =
1

2π

ˆ
R
e−iξxe−tφ(−iξ)dξ
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≤ 1

2π

ˆ
|ξ|≤1/s0

|e−tφ(−iξ)|dξ +
1

2π

ˆ
|ξ|>1/s0

|e−(t−T ′)φ(−iξ)||e−T ′φ(−iξ)|dξ

=: I1 + I2.

By Lemma 2.3.12(iv), using the facts that cos y ≤ 1 for all y ∈ R and

1− cos s ≥ s2/4 for all |s| ≤ 1, we get that for all |ξ| ≤ 1/s0,

|e−tφ(−iξ)| = exp
(
− t
ˆ ∞

0

(1− cos(ξs))ν(s)ds
)

≤ exp
(
− t
ˆ 1/ξ

0

(1− cos(ξs))ν(s)ds
)

≤ exp
(
− c1tξ

2

ˆ 1/ξ

0

s2ν(s)ds
)

≤ e−c2tH(ξ).

Hence, by Lemma 2.3.19,

I1 ≤
1

π

ˆ 1/s0∨H−1(1/T )

0

e−c2tH(ξ)dξ ≤ c3H
−1(1/t).

On the other hand, since T ′ > T0, we see from (2.3.2) that |e−T ′φ(−iξ)| =
e−T

′Reφ(−iξ) is integrable on R with respect to ξ. Therefore, using the facts

that cos y ≤ 1 for all y ∈ R and 1 − cos s ≥ s2/4 for all |s| ≤ 1 again, and

(2.3.1), we get

I2 ≤
1

2π

(
sup
|ξ|>1/s0

|e−(t−T ′)φ(−iξ)|
) ˆ

|ξ|>1/s0

|e−T ′φ(−iξ)|dξ

≤ c4 sup
|ξ|>1/s0

exp
(
− (t− T ′)

ˆ ∞
0

(1− cos(ξs))ν(s)ds
)

≤ c4 sup
|ξ|>1/s0

exp
(
− c1(t− T ′)ξ2

ˆ 1/ξ

0

s2ν(s)ds
)

≤ c4 sup
|ξ|>1/s0

exp
(
− c5(1− T ′/T )tξ2

ˆ 1/ξ

0

s2s−1ds
)

= c4e
−c6t.
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Lemma 2.3.12(iii) implies that H−1(1/t) ≥ c8t
−((1/β1)∨(2/3)) for all t ≥ T .

Since supt≥T t
(1/β1)∨(2/3)e−c6t <∞, the desired result holds true. �

Now, we find a range of x which achieves the maximum value of p(t, x).

A similar result to the following proposition was established in [77, Theorem

5.3] which considers a class of Lévy processes whose Lévy measure dominates

some symmetric measure. Note that since subordinators are nondecreasing,

we can only push the y-variable to the positive direction in the following

result, unlike [77, Theorem 5.3].

In the following proposition, we let M0 > 0 be the constant in Proposition

2.3.15 in the first assertion, and the constant in Proposition 2.3.16 in the

second.

Proposition 2.3.21. (i) Suppose that Poly∗R1,≥(β1) holds. Then, for every

N, T > 0, there exists a constant C > 1 such that

C−1H−1(1/t) ≤ p(t, tb(t/(2M0)) + y) ≤ CH−1(1/t), (2.3.34)

for all t ∈ (0, T ] and 0 ≤ y ≤ NH−1(1/t)−1.

(ii) Suppose that RegR1 and Poly∗,∞R2,≥(β1) hold. Then, for every N > 0,

there exists a constant C > 1 such that (2.3.34) holds for all t ∈ [2T1,∞)

and 0 ≤ y ≤ NH−1(1/t)−1 with the constant T1 in Proposition 2.3.16.

Moreover, if T0 = 0 in (2.3.1), then for every N, T > 0, there exists a

constant C > 1 such that (2.3.34) holds for all t ∈ [T,∞) and 0 ≤ y ≤
NH−1(1/t)−1.

Proof. By Proposition 2.3.20, it remains to prove the lower bound. Since the

proofs are similar, we only give the proof for (i).

Let T > 0. For p ∈ [1, 4], we observe that for all t > 0,

b(t/(pM0)) ≤ b(t/M0) and
(
(φ′)−1 ◦ b

)
(t/(pM0)) = H−1(pM0/t).

Hence, using Proposition 2.3.15 and Lemma 2.3.11, we get for all t ∈ (0, T ]
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and p ∈ [1, 4],

p
(
t, tb(t/(pM0))

)
≥ c1e

−pM0√
t |(φ′′ ◦H−1)(pM0/t)|

≥ c2e
−4M0

√
pM0

H−1(pM0/t) ≥ c3H
−1(1/t). (2.3.35)

By Lemma 2.0.1 and 2.3.11(iii),

tb(t/M0)− tb(t/(4M0)) ≥ c4H
−1(1/t)−1 for all t ∈ (0, T ]

Thus, for all t ∈ (0, T ] and u ∈ [0, c4H
−1(1/t)−1], there is p ∈ [1, 4] such that

tb(t/M0)− u = tb(t/(pM0)) by the intermediate value theorem. By (2.3.35),

it follows that

p(t, tb(t/M0)− u) ≥ c3H
−1(1/t) for all t ∈ (0, T ], u ∈ [0, c4H

−1(1/t)−1].

By the semigroup property, we deduce that for all t ∈ (0, T ] and y ≥ 0,

p(2t, 2tb(t/M0) + y) =

ˆ
R
p(t, tb(t/M0)− u)p(t, tb(t/M0) + y + u)du

≥
ˆ c4H−1(1/t)−1

0

p(t, tb(t/M0)− u)p(t, tb(t/M0) + y + u)du

≥ c3H
−1(1/t)P

(
y ≤ St − tb(t/M0) ≤ y + c4H

−1(1/t)−1
)
.

Therefore, since H−1(1/t) ' H−1(1/(2t)) for t ∈ (0, T ] by Lemma 2.3.11(iii),

to get the desired lower bound, it suffices to show that for each fixed N > 0,

the following inequality holds true:

inf
t∈(0,T ]

inf
y∈[0,NH−1(1/t)−1]

P
(
y ≤ St − tb(t/M0) ≤ y + c4H

−1(1/t)−1
)
> 0.

(2.3.36)

Let (tn : n ≥ 1) be a sequence of time variables realizing the infimum

in (2.3.36). Since T is finite, after taking a subsequence, we can assume

that tn converges to t∗ ∈ [0, T ]. If t∗ ∈ (0, T ], then since the support of the
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distribution of St∗ is (0,∞), we obtain (2.3.36). Hence, we assume that t∗ = 0

and all tn are sufficiently small.

Define νn(s) := 1(0,H−1(1/tn)−1] ν(s) and let S̃u be a driftless subordinator,

whose Lévy measure is given by νn(s)ds. Then, for all u > 0, Su = S̃u + Pu,

P-a.s. where P is a compounded Poisson process, whose Lévy measure is

given by 1(H−1(1/tn)−1,∞) ν(s)ds. By (2.0.4), we have

P(S̃tn = Stn) = P(Ptn = 0) = exp
(
− tnw

(
H−1(1/tn)−1

))
≥ exp

(
− 2etn(H ◦H−1)(1/tn)

)
= e−2e.

Hence, to prove (2.3.36), it is enough to show that

lim inf
n→∞

inf
y∈[0,NH−1(1/tn)−1]

P
(
y ≤ S̃tn − tnb(tn/M0) ≤ y + c4H

−1(1/tn)−1
)
> 0.

(2.3.37)

Define Zn = H−1(1/tn)
(
S̃tn − tnb(tn/M0)

)
. Then, for ξ ∈ R,

E
[

exp(iξZn)
]

= exp
(
− iξtnH−1(1/tn)b(tn/M0)

)
E
[

exp
(
iξH−1(1/tn)S̃tn

)]
= exp

(
−iξtnH−1(1/tn)b(tn/M0) + tn

ˆ ∞
0

(
eiξH

−1(1/tn)s − 1
)
νn(s)ds

)
.

Therefore, by a change of variables, we get E[ exp(iξZn) ] = exp(Ψn(ξ)) for

all ξ ∈ R and n ≥ 1 where

Ψn(ξ) =

ˆ ∞
0

(
eiξs − 1− iξs

1 + s2

)
λn(s)ds− iξγn,

λn(s) = tnH
−1(1/tn)−1νn

(
H−1(1/tn)−1s

)
,

γn = tnH
−1(1/tn)b(tn/M0)−

ˆ ∞
0

s

1 + s2
λn(s)ds.

We claim that the family of random variables {Zn : n ≥ 1} is tight. Indeed,

according to [81, (3.2)], it holds that for all n ≥ 1 and R > 1,

P(Zn ≥ R) ≤ c5

ˆ ∞
0

(
s2

R2
∧ 1

)
λn(s)ds
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+ c5R
−1

∣∣∣∣γn +

ˆ ∞
R

s

1 + s2
λn(s)ds−

ˆ R

0

s3

1 + s2
λn(s)ds

∣∣∣∣
=: c5(I1 + I2).

By a change of variables and (2.3.13), we see that

I1 = tn

ˆ ∞
0

(
H−1(1/tn)2u2

R2
∧ 1

)
νn(u)du

= R−2tnH
−1(1/tn)2

ˆ H−1(1/tn)−1

0

u2νn(u)du

≤ 2eR−2tnH(H−1(1/tn)) = 2eR−2.

Besides, by a change of variables, using the fact that the support of νn is

contained in (0, H−1(1/tn)−1] in the first inequality below, the facts that for

every a > 0, 1 − e−a ≤ a and supx>0 xe
−ax = e−1a−1 in the second, and

Lemmas 2.3.11 and (2.0.4) in the last, we get that

RI2 =

∣∣∣∣ tnH−1(1/tn)b(tn/M0)−
ˆ R

0

sλn(s)ds

∣∣∣∣
= tnH

−1(1/tn)

∣∣∣∣ ˆ ∞
0

se−sH
−1(M0/tn)ν(s)ds−

ˆ RH−1(1/tn)−1

0

sνn(s)ds

∣∣∣∣
≤ tnH

−1(1/tn)

(ˆ H−1(1/tn)−1

0

s
(

1− e−sH−1(M0/tn)
)
ν(s)ds

+

ˆ ∞
H−1(1/tn)−1

se−sH
−1(M0/tn)ν(s)ds

)
≤ tnH

−1(1/tn)

(
H−1(M0/tn)

ˆ H−1(1/tn)−1

0

s2ν(s)ds

+ +H−1(M0/tn)−1w
(
H−1(1/tn)−1

))
≤ c6tnH

−1(1/tn)
(
H−1(1/tn)−1(H ◦H−1)(1/tn)

)
= c6.

Hence, P(Zn ≥ R) ≤ c7R
−1 for all n ≥ 1 and R > 1. By Prokhorov’s theorem,

this yields that there is a subsequence Zan of Zn which is weakly convergent

to some random variable Z∗. Now, we can prove (2.3.37) by showing the
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following inequality:

inf
z∈[0,N ]

P(z ≤ Z∗ ≤ z + c4) > 0. (2.3.38)

According to [115, Theorem 8.7], Z∗ is a infinitely divisible random vari-

able with the characteristic function

Ψ∗(ξ) = −1

2
A∗ξ

2 − iξγ∗ +

ˆ ∞
0

(
eiξs − 1− iξs

1 + s2
λ∗(s)ds

)
,

where the triplet (A∗, γ∗, λ∗) is characterized by

(1) limε→0 lim supn→∞
∣∣´ ε

0
s2λn(s)ds− A∗

∣∣ = 0;

(2) γ∗ = limn→∞ γn;

(3)
´∞

0
f(s)λ∗(s)ds = limn→∞

´∞
0
f(s)λn(s)ds for any bounded continuous

function f vanishing in a neighborhood of 0.

If A∗ > 0, then the support of Z∗ is R and hence (2.3.38) holds. Suppose that

A∗ = 0. Then, by using (1) and (3) in the above characterization, Lemma

2.3.11(iv), since H is nondecreasing, we get that for every η ∈ (0, 1),

ˆ η

0

s2λ∗(s)ds = lim
ε→0+

ˆ η

ε

s2λ∗(s)ds = lim
ε→0+

lim
n→∞

(ˆ η

ε

s2λn(s)ds

)
= lim

n→∞

ˆ η

0

s2λn(s)ds = lim
n→∞

tnH
−1(1/tn)2

ˆ ηH−1(1/tn)−1

0

u2ν(u)du

≥ lim
n→∞

c8η
2tnH(η−1H−1(1/tn)) ≥ c8η

2 > 0.

Thus, by [113, Lemma 2.5], if
´ 1

0
sλ∗(s)ds =∞, then the support of Z∗ is R

so that (2.3.38) holds. Assume that
´ 1

0
sλ∗(s)ds <∞. Then we see from (3)

in the characterization that lim supn→∞
´ 1

0
sλn(s)ds < ∞. Hence, by using

[113, Lemma 2.5] again, we see that the support of Z∗ is [−χ,∞) where

χ = limn→∞ tnH
−1(1/tn)b(tn/M0) ≥ 0. Since the support of Z∗ includes

(0,∞) in any cases, we see that (2.3.38) holds. This finishes the proof. �

Now, we can omit the constant M0 in Propositions 2.3.15 and 2.3.16.
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Corollary 2.3.22. (i) Suppose that Poly∗R1,≥(β1) holds. Then, for every

N, T > 0, there are comparison constants such that for all t ∈ (0, T ],

p(t, x) '
exp

(
− tH(σ)

)√
t(−φ′′(σ))

for x ∈ (0, tb(t)], (2.3.39)

p(t, x) ' H−1(1/t) for x ∈ [tb(t), tb(t) +NH−1(1/t)−1]. (2.3.40)

(ii) Suppose that RegR1 and Poly∗,∞R2,≥(β1) hold. Then, for every N > 0,

there are comparison constants such that for all t ∈ [2T1,∞), (2.3.39) and

(2.3.40) hold with the constant T1 in Proposition 2.3.16.

Moreover, if T0 = 0 in (2.3.1), then for every N, T > 0, there are com-

parison constants such that (2.3.39) and (2.3.40) hold for all t ∈ [T,∞).

2.3.4 Right tail estimates

In this subsection, we get estimates on the transition density p(t, x) when

x ≥ tb(t). Recall the definitions of D(t) and θ(t, y) from (2.3.4) and (2.3.5),

respectively. From the definitions, we obtain

Lemma 2.3.23. For all t > 0 and y ≥ 0, it holds that

tθ(t, y)H(θ(t, y)−1) ≤ y ∨H−1(1/t)−1.

In particular, we have

tθ(t, y)H(θ(t, y)−1) = y for all t > 0, y ∈ [H−1(1/t)−1, D(t)].

The following theorem is the main result of this subsection.

Theorem 2.3.24. (i) Suppose that Poly∗R1
(β1, β2) holds and supr≥R1

ν(r) <

∞. Then, for every T > 0, there exist constants c1 > 0, C > 1 such that for
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all t ∈ (0, T ] and y ∈ [0, R1/2),

C−1H−1(1/t) min

{
1,

tν(y)

H−1(1/t)
+ exp

(
− c1y

θ(t, y/(8e2))

)}
≤ p(t, tb(t) + y) ≤ CH−1(1/t) min

{
1,

tν(y)

H−1(1/t)
+ exp

(
− y

8θ(t, y/(8e2))

)}
.

(2.3.41)

Moreover, if Dou∞R1
also holds, then (2.3.41) holds for all t ∈ (0, T ] and

y ∈ [0,∞).

(ii) Suppose that RegR1 and Poly∗,∞R2
(β1, β2) hold. Then, there exist con-

stants c1 > 0, C > 1 such that (2.3.41) holds for all t ∈ [2T1,∞) and

y ∈ [0,∞) with the constant T1 in Proposition 2.3.16.

Moreover, if T0 = 0 in (2.3.1), then for every T > 0, there are constants

c1 > 0, C > 1 such that (2.3.41) holds for all t ∈ [T,∞) and y ∈ [0,∞).

Proof. The result follows from Propositions 2.3.25 and 2.3.27 below. �

Proposition 2.3.25. Under the setting of Theorem 2.3.24, the upper bound

in (2.3.41) holds true.

Proof. For convenience of notation, we let δ := 1/(8e2).

(i) We first assume that Poly∗R1
(β1, β2) holds and supr≥R1

ν(r) < ∞ only.

Let T > 0, t ∈ (0, T ] and y ≥ 0. If δy ≤ H−1(1/t)−1, then exp(−y/θ(t, δy)) ≥
e−1/δ and hence the upper bound in (2.3.41) follows from Proposition 2.3.20.

Hence, for the remainder part of the proof of (i), we assume δy > H−1(1/t)−1.

Set

ν1(s) := 1(0,θ(t,δy)] ν(s) and ν2(s) := ν(s)− ν1(s).

Denote by Si and Hi the corresponding driftless subordinator and H-function

with respect to the Lévy measure νi for i = 1, 2, respectively. We suppose that

S1 and S2 are independent. By Proposition 2.3.1, for every u > T0, S1
u has a

transition density function p1(u, ·). Recall that T0 = 0 under Poly∗R1
(β1, β2).
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Since St = S1
t + S2

t , it holds that

p(t, tb(t) + y) =

ˆ
R
p1(t, tb(t) + y − z)P(S2

t ∈ dz)

=

( ˆ
z≤y/4

+

ˆ
z>y/4

)
p1(t, tb(t) + y − z)P(S2

t ∈ dz)

≤ sup
z≥3y/4

p1(t, tb(t) + z) + sup
z>y/4

P(S2
t ∈ dz)

dz
=: A1 + A2. (2.3.42)

Step 1. First, we estimate A1. By the semigroup property, for all z ≥ 3y/4,

p1(t, tb(t) + z)

=

(ˆ
u<z/2

+

ˆ
u≥z/2

)
p1
(
t/2, tb(t)/2 + u

)
p1
(
t/2, tb(t)/2 + z − u

)
du

≤ 2P
(
S1
t/2 ≥

t

2
b(t) +

3y

8

)
sup
u∈R

p1(t/2, u).

Using [48, Lemma 7.2], Proposition 2.3.20 and Lemma 2.3.11(iii), we get that

sup
u∈R

p1(t/2, u) ≤ e2−1tw(θ(t,δy)) sup
u∈R

p(t/2, u)

≤ c1e
eH−1(2/t) ≤ c2H

−1(1/t). (2.3.43)

On the other hand, by Markov’s inequality and Lemma 2.2.5, it holds that

for every λ > 0,

P
(
S1
t/2 ≥

t

2
b(t) +

3y

8

)
≤ E

[
exp

(
λS1

t/2 −
λt

2
b(t)− 3λy

8

)]
= e−3λy/8 exp

(
t

2

ˆ θ(t,δy)

0

(eλs − 1)ν(s)ds− t

2

ˆ ∞
0

λse−H
−1(1/t)sν(s)ds

)
≤ e−3λy/8 exp

(
λt

2

ˆ θ(t,δy)

0

(eλs − e−H−1(1/t)s)sν(s)ds

)
≤ e−3λy/8 exp

(
λt

2
(λ+H−1(1/t))

ˆ θ(t,δy)

0

eλss2ν(s)ds

)
.

We used the mean value theorem in the second and third inequalities. Thus,
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by letting λ = θ(t, δy)−1 ≥ H−1(1/t), using Lemma 2.3.23, we get that

P
(
S1
t/2 ≥

t

2
b(t) +

3y

8

)
≤ exp

(
− 3λy

8
+ eλ2t

ˆ 1/λ

0

s2ν(s)ds

)
≤ exp

(
− 3λy

8
+ 2e2tH(λ)

)
= exp

(
− λ

8

(
3y − 16e2tλ−1H(λ)

))
≤ exp

(
− λ

8

(
3y − 16e2δy

))
= exp

(
− y

8θ(t, δy)

)
. (2.3.44)

We used (2.3.13) in the second inequality. Consequently, we deduce that

A1 ≤ 2c2H
−1(1/t) exp

(
− y

8θ(t, δy)

)
. (2.3.45)

Note that (2.3.42) and (2.3.45) hold for all y > δ−1H−1(1/t)−1 and we have

not assumed y < R1/2 yet.

Step 2. Next, we assume y ∈ [0, R1/2) and estimate A2. Since S2 is a

compounded Poisson process, for every z > 0 and ρ > 0, we have that

P(S2
t/2 ∈ (z, z + ρ)) =

∞∑
n=1

e−tw(θ(t,δy))/2 t
nνn∗2 (z, z + ρ)

n!
≤

∞∑
n=1

tnνn∗2 (z, z + ρ)

n!
,

(2.3.46)

where νn∗2 is the n-fold convolution of the measure ν2. Define a function

f : (0,∞)→ (0,∞) by

f(r) :=

supu≥r ν(u) if r < R1/2,

supu≥R1/2 ν(u) if r ≥ R1/2.
(2.3.47)

Then f is nonincreasing and ν(r) ≤ f(r) for all r > 0. Moreover, by

Poly∗R1
(β1, β2) and the assumption that supr≥R1

ν(r) < ∞, we see that

f(r) ≤ c3ν(r) for r ∈ (0, R1/2) and that supr>0 f(r)/f(2r) = c4 <∞.
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Now, we prove that for every n ≥ 1,

νn∗2 (z, z + ρ) ≤ (4ec4)nt1−nf(z)ρ for all z, ρ > 0. (2.3.48)

Cf. [83, Lemma 9 and Corollary 10]. Since ν(r) ≤ f(r) for all r > 0, it holds

that ν2(z, z + ρ) ≤ f(z)ρ. Assume that (2.3.48) is true for n ≥ 1. Using the

induction hypothesis and Fubini’s theorem in the first inequality below, the

facts that f is nonincreasing and ν(r) ≤ f(r) for all r > 0 in the second, and

the fact that ν2(R) = w(θ(t, δy)) ≤ w(w−1(2e/t)) = 2e/t in the last, we get

ν
(n+1)∗
2 (z, z + ρ) =

( ˆ
u<z/2

+

ˆ
u≥z/2

)
νn∗2 (z − u, z − u+ ρ)ν2(du)

≤
ˆ
u<z/2

(4ec4)nt1−nf(z − u)ρν2(du) +

ˆ z/2+ρ

0

ˆ z−v+ρ

(z−v)∨(z/2)

ν2(du)νn∗2 (dv)

≤ (4ec4)nt1−nf(z/2)ρν2(R) + f(z/2)ρν2(R)n

≤
(
2e(4ec4)n + (2e)n

)
c4t
−nf(z)ρ ≤ (4ec4)n+1t−nf(z)ρ.

Hence, we conclude that (2.3.48) holds by induction.

By (2.3.46), (2.3.48) and the monotone property and doubling property

of f , since y ∈ [0, R1/2), we deduce that

A2 = sup
z>y/4

lim
ρ→0

ρ−1P(S2
t/2 ∈ (z, z + ρ))

≤ sup
z>y/4

tf(z)
∞∑
n=1

(4ec4)n

n!
≤ e4ec4tf(y/4) ≤ c5tf(y) ≤ c3c5tν(y). (2.3.49)

Finally, we get the desired upper bound from (2.3.42), (2.3.45) and (2.3.49).

Now, we further assume that Dou∞R1
holds and assume that y > (R1/2)∨

(δ−1H−1(1/t)−1). Recall that (2.3.42) and (2.3.45) still hold for those values

of y. Define f∗(r) := supu≥r ν(u). By Poly∗R1
(β1, β2) and Dou∞R1

, it holds that

ν(r) ' f∗(r) for r > 0, and supr>0 f∗(r)/f∗(2r) = c6 <∞. Then, by following

the above proof given in Step 2., we get A2 ≤ e4ec6tf∗(y/4) ≤ c7ν(y). Thus,

(2.3.49) still holds for those values of y and this completes the proof.
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(ii) We follow the proof of (i). Since T1 > T0, we see that S1
u has a transition

density function p1(u, ·) for all u ≥ T1 by Proposition 2.3.1. Hence, (2.3.42)

still holds. Also, by using Proposition 2.3.20 and Lemma 2.3.12(iii), we get

that (2.3.43) holds for all t ∈ [2T1,∞). We can prove (2.3.44) by exactly the

same way. Moreover, by using Lemma 2.3.12 instead of Lemma 2.3.11, and

the function f∗(r) := supu≥r ν(u) instead of the function f given in (2.3.47),

we can follow the proof in Step 2. This proves the proposition under the

conditions RegR1 and Poly∗,∞R2
(β1, β2).

Furthermore, if T0 = 0, then for every fixed T > 0, by Proposition 2.3.16,

(2.3.42) holds for all t ≥ T . Then, there is no difference in the proof for the

last assertion. �

Now, we begin to prove the lower bound in Theorem 2.3.24. We first

establish a preliminary jump type estimates for p(t, x).

Proposition 2.3.26. (i) Suppose that Poly∗R1,≥(β1) holds and supr≥R1
ν(r) <

∞. Then, for every T > 0, there exists a constant c1 > 0 such that for all

t ∈ (0, T ] and y ∈ [0, R1/2),

p(t, tb(t) + y) ≥ c1H
−1(1/t) min

{
1,

tν(y)

H−1(1/t)

}
. (2.3.50)

Moreover, if Dou∞R1
also holds, then (2.3.50) holds true for all t ∈ (0, T ]

and y ∈ [0,∞).

(ii) Suppose that RegR1 and Poly∗,∞R2,≥(β1) hold. Then, there exists a constant

c1 > 0 such that (2.3.50) holds for all t ∈ [2T1,∞) and y ∈ [0,∞) with the

constant T1 in Proposition 2.3.16.

Moreover, if T0 = 0 in (2.3.1), then for every T > 0, there exists c1 > 0

such that (2.3.50) holds for all t ∈ [T,∞) and y ∈ [0,∞).

Proof. (i) Let T > 0, t ∈ (0, T ] and y ≥ 0. If y ≤ 2H−1(1/t)−1, then (2.3.50)

follows from Corollary 2.3.22. Hence, we assume y > 2H−1(1/t)−1.

With a constant ε ∈ (0, 1/2) which will be chosen later, we define

µ1(s) := 1(0,H−1(1/t))−1 ν(s) + (1− ε)1[H−1(1/t)−1,∞) ν(s)
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and µ2(s) := ν(s)− µ1(s). We denote by T i the corresponding driftless sub-

ordinator with respect to the Lévy measure µi for i = 1, 2, respectively. We

suppose that T 1 and T 2 are independent.

By Proposition 2.3.1, for all u > T0, T 1
u has a transition density function

q1(u, ·). Using Poly∗R1,≥(β1) and the condition that supr≥R1
ν(r) <∞ in the

second inequality below, Lemma 2.3.11(i) in the third, (2.0.4) in the fourth

and (2.0.5) in the fifth, since t−1H−1(1/t) ≥ T−1H−1(1/T ), we get that

sup
s>0

µ2(s) ≤ ε
(

sup
H−1(1/t)−1≤s<R2

ν(s) + sup
s≥R2

ν(s)
)

≤ εc1ν(H−1(1/t)−1) + εc1

≤ εc2H
−1(1/t)w(H−1(1/t)−1/2) + εc1

≤ 2eεc2H
−1(1/t)H(2H−1(1/t)) + εc1

≤ 8eεc2t
−1H−1(1/t) + εc1 ≤ εc3t

−1H−1(1/t).

Therefore, by [10, Lemma 3.1(c)] and Corollary 2.3.22, we see that for all

z ∈ [0, H−1(1/t)−1],

q1(t, tb(t) + z) ≥ p(t, tb(t) + z)− t sup
s>0
|µ2(s)| ≥ (c4 − εc3)H−1(1/t).

By taking ε = c4/(2c3), we arrive at

q1(t, tb(t) + z) ≥ 2−1c4H
−1(1/t) for all z ∈ [0, H−1(1/t)−1].

Since St = T 1
t +T 2

t , T 2 is a compounded Poisson process and y > 2H−1(1/t)−1,

using (2.0.4), it follows that

p(t, tb(t) + y) =

ˆ
R
q1(t, tb(t) + y − z)P(T 2

t ∈ dz)

≥ 2−1c4H
−1(1/t)P

(
T 2
t ∈ [y −H−1(1/t)−1, y]

)
≥ 2−1c4H

−1(1/t) εtν
(
[y −H−1(1/t)−1, y])e−εtw(H−1(1/t)−1)

≥ 2−1c4εe
−2eεtH−1(1/t)H−1(1/t)−1 inf

u∈[y−H−1(1/t)−1,y]
ν(u)
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≥ c5t inf
u∈[y/2,y]

ν(u).

By Poly∗R1,≥(β1), we can see that for z ∈ (2H−1(1/t)−1, R1/2),

inf
u∈[z/2,z]

ν(u) ' ν(z). (2.3.51)

Moreover, if Dou∞R1
also holds, then (2.3.51) holds for all z > 2H−1(1/t)−1.

Hence, we get the results.

(ii) Let N > 2 be such that NH−1(1/T )−1 ≥ R2. By Corollary 2.3.22, it suf-

fices to prove (2.3.50) for y > NH−1(1/T )−1. This can be done by repeating

the proof for (i). The proof for the second assertion is exactly the same. �

Proposition 2.3.27. Under the setting of Theorem 2.3.24, the lower bound

in (2.3.41) holds true.

Proof. We prove (ii) first. Since the proof for the case when T0 = 0 is easier,

we only give the proof for the case when T0 > 0.

Let ρ := (16e2T1H(w−1(e/T1)−1))−1 ∧ (4e2)−1 with the constant T1 in

Proposition 2.3.16. Then, since the map t 7→ H(w−1(2e/t)−1) is decreasing,

it holds that

1

8e2ρH(w−1(2e/t)−1)
≥ 2T1 for all t ≥ 2T1. (2.3.52)

By Lemma 2.3.13, Corollary 2.3.22 and Proposition 2.3.26, it remains to

prove that there are constants c1, c2 > 0 such that for all t ∈ [2T1,∞) and

y ∈ [2ρ−1H−1(1/t)−1, 8e2D(t)),

p(t, tb(t) + y) ≥ c1H
−1(1/t) exp

(
− c2y

θ(t, y/(8e2))

)
.

Fix t ∈ [2T1,∞), y ∈ [2ρ−1H−1(1/t)−1, 8e2D(t)) and we simply denote

θ := θ(t, y/(8e2)). Then, since 2ρ−1 ≥ 8e2, by Lemma 2.3.23, we have

8e2tθH(θ−1) = y. (2.3.53)
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Let n = bρy/θc. Since θ ≤ H−1(1/t)−1, we have n ≥ ρyH−1(1/t) − 1 ≥ 1.

We claim that there exist constants κ1 ∈ (0, 1) and κ2 ∈ (1,∞) independent

of t and y such that

κ1H
−1(n/t)−1 ≤ y/n ≤ κ2H

−1(n/t)−1. (2.3.54)

Indeed, first note that (2.3.54) is equivalent to H(κ1n/y) ≤ n/t ≤ H(κ2n/y).

Since ρ/θ ≤ ρw−1(e/T1)−1, by Lemma 2.3.12(iii), (2.0.5) and (2.3.53), there

exists c3 ∈ (0, 1) independent of t and y such that for every κ ∈ [2, y/n],

H(κn/y) ≥ c3κ
β′1H(2n/y) ≥ c3κ

β′1H(ρ/θ) ≥ c3κ
β′1ρ2H(θ−1)

=
c3κ

β′1ρ2y

8e2tθ
≥ c3κ

β′1ρn

8e2t
,

where β′1 = β1 ∧ (3/2). Hence, if y/n ≥ (8e2c−1
3 ρ−1)1/β′1 , then the upper

bound in (2.3.54) holds with any κ2 > (8e2c−1
3 ρ−1)1/β′1 . Otherwise, if y/n <

(8e2c−1
3 ρ−1)1/β′1 , then we obtain

(8e2c−1
3 ρ−1)1/β′1 ≥ y

n
≥ θ

ρ
≥ w−1(2e/t)

ρ
≥ w−1(e/T1)

ρ
.

This implies that t ' 1 so that y ' θ ' n ' 1. Hence, by choosing κ2 large

enough, we deduce that the upper bound in (2.3.54) holds true. On the other

hand, we see from Lemma 2.3.12(iii) and (2.3.53) that for every κ ∈ (0, 1),

H(κn/y) ≤ c4κ
β′1H(n/y) ≤ c4κ

β′1H(ρ/θ) ≤ c5κ
β′1ρβ

′
1H(θ−1)

=
c5κ

β′1ρβ
′
1y

8e2tθ
≤ c5κ

β′1ρβ
′
1−1n

4e2t
.

Therefore, we also deduce that the lower bound in (2.3.54) holds true.

Set z := y + tb(t) − tb(t/n). For j ∈ {1, ..., n − 1}, define zj = jz/n

and Aj = (zj − z/(2n), zj + z/(2n)). By Lemma 2.0.1, (2.3.54) and Lemma
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2.3.12(ii), since y ≥ 2ρ−1H−1(1/t)−1, it holds that

y ≤ z ≤ y +
2en

H−1(n/t)
+
e−1tw(H−1(n/t)−1)

H−1(1/t)

≤ (1 + 2e/κ1)y +
e−1tw(y/(κ2n))

H−1(1/t)

≤ (1 + 2e/κ1)y +
c6tw(θ)

H−1(1/t)
≤ (1 + 2e/κ1 + c6ρe)y.

We used the definition that θ ≥ w−1(2e/t) in the last inequality. Then, by

(2.3.54), we get that for any j ∈ {1, .., n− 2}, u ∈ Aj and v ∈ Aj+1,

|u− v| ≤ z

n
+ |zj+1 − zj| =

2z

n
≤ c7y

n
≤ c7κ2

H−1(n/t)
.

Note that by (2.3.52) and (2.3.53),

t

n
≥ tθ

ρy
=

1

8e2ρH(θ−1)
≥ 1

8e2ρH(w−1(2e/t)−1)
≥ 2T1.

Therefore, by Corollary 2.3.22, there exists c8 > 0 independent of t and y

such that for every j ∈ {1, ..., n− 2},

p (t/n, (t/n)b(t/n) + v − u) ≥ c8H
−1(n/t) for all u ∈ Aj, v ∈ Aj+1.

Then, by the semigroup property and (2.3.54), we deduce that

p(t, tb(t) + y)

≥
ˆ
A1×···×Ak

p
(
t/n, (t/n)b(t/n) + u1

) n−2∏
k=1

p
(
t/n, (t/n)b(t/n) + uk+1 − uk

)
× p
(
t/n, (t/n)b(t/n) + z − un−1

)
du1...dun−1

≥ (c8H
−1(n/t))n(z/n)n−1 ≥ (c8H

−1(n/t))n(y/n)n−1

≥ (c8κ1)n−1H−1(n/t) ≥ (c8κ1)−1H−1(1/t) exp
(
− n log(c8κ1)−1

)
.

Since n ≤ ρy/θ, we have finished the proof for (ii).
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(i) We follow the proof for (ii). In this case, welet ρ = (4e2)−1. Since

θ−1 ≥ H−1(1/t)−1 ≥ H−1(1/T )−1, by using Lemma 2.3.11 instead of Lemma

2.3.12, we obtain (2.3.54). Then, we get the result by exactly the same proof.

We can also conclude that the second assertion in (i) is true in view of the

second statement in Proposition 2.3.26. �

2.3.5 Proofs of Theorems 2.3.4, 2.3.6 and Corollaries

2.3.5, 2.3.7 and 2.3.8

In this subsection, we give the proofs for our main theorems of this section.

Lemma 2.3.28. (i) Suppose that Poly∗R1,≥(β1) holds. Then, for every fixed

T > 0, there exist c1, c2 > 0 such that for all t ∈ (0, T ] and x ∈ (0, tb(t)],

c1H
−1(1/t)e−2tH(σ) ≤ e−tH(σ)√

t(−φ′′(σ))
≤ c2H

−1(1/t)e−2−1tH(σ). (2.3.55)

Moreover, if Poly∗∞,≥(β1) holds, then (2.3.55) holds for all t ∈ (0,∞) and

x ∈ (0, tb(t)].

(ii) Suppose that Poly∗,∞R2,≥(β1) holds. Then, for every fixed T > 0, there exist

c1, c2 > 0 such that (2.3.55) holds for all t ∈ [T,∞) and x ∈ [tb(T ), tb(t)].

Proof. (i) Note that for all t ∈ (0, T ] and x ∈ (0, tb(t)], we have σ ≥
H−1(1/t) ≥ H−1(1/T ) and tH(σ) ≥ 1. Hence, by Lemma 2.3.11(iii & iv),

c1H
−1(1/t)e−2tH(σ) ≤ e−tH(σ)√

t(−φ′′(σ))
' σe−tH(σ)√

tH(σ)
≤ σe−tH(σ). (2.3.56)

Using Lemma 2.3.11(iii) and the fact that xke−x ≤ kke−k for all x, k > 0, we

get that

σe−tH(σ) = H−1(1/t)
σ

H−1(1/t)
e−tH(σ) ≤ c2H

−1(1/t)

(
H(σ)

1/t

)1/β1

e−tH(σ)

≤ c3H
−1(1/t)e−2−1tH(σ). (2.3.57)
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This proves the first assertion. If we further assume that R1 = ∞, then by

combining Lemmas 2.3.11 and 2.3.12, we can see that (2.3.56) and (2.3.57)

hold for all t ∈ (0,∞) and x ∈ (0, tb(t)] since tH(σ) ≥ 1 for those values of t

and x. We have finished the proof for (i).

(ii) For all t ∈ [T,∞) and x ∈ [tb(T ), tb(t)], we have σ ≤ H−1(1/T ) and

tH(σ) ≥ 1. Hence, by using Lemma 2.3.12 instead of Lemma 2.3.11, we can

follow the proof for (i) and conclude that (ii) also holds. �

Proof of Theorems 2.3.4 and 2.3.6. The results follow from Corollary

2.3.22, Theorem 2.3.24 and Lemmas 2.3.13 and 2.3.28. �

Proof of Corollaries 2.3.5 and 2.3.7. Since the proofs are similar, we

only give the proof for Corollary 2.3.5. By [54, Lemma 2.1(iii)], since β2 < 2,

it holds that w−1(2e/t) ' H−1(1/t)−1 for t ∈ (0, T ]. It follows that D(t) '
H−1(1/t)−1 for t ∈ (0, T ]. Thus, by Theorem 2.3.4(ii), (2.3.9) and Corollary

2.3.22, we obtain (2.3.10).

On the other hand, note that by (2.3.1), we have ν
(
(x−tb(t))+

)
= ν(0) =

∞ for all x ≤ tb(t). Thus, by joining (2.3.10) and (2.3.7) together, we also

deduce (2.3.12). �

Proof of Corollary 2.3.8. Since the proofs for the case T0 = 0 and the case

T0 > 0 are similar, we give the proof for the case T0 > 0 only.

Let T1 > 0 be the constant in Theorem 2.3.6(i) and β′1 := β1∧(3/2). Note

that β′1 > 1. By Lemma 2.3.12(iii), there exists c1 ∈ (0, 1) such that

H(κλ) ≥ c1κ
β′1H(λ) for all κ ≥ 1, 0 < λ ≤ κ−1. (2.3.58)

Moreover, by Lemma 2.3.12(ii & iv), we see that for every t ≥ T1,

0 ≤ tφ′(0)− tb(t) = t

ˆ H−1(1/t)

0

(−φ′′(λ))dλ

≤ c2

ˆ H−1(1/t)

0

λ−2 H(λ)

H(H−1(1/t))
dλ
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≤ c3H
−1(1/t)−β

′
1

ˆ H−1(1/t)

0

λ−2+β′1dλ

≤ c4H
−1(1/t)−1. (2.3.59)

Write yt = y + tφ′(0)− tb(t). Define

F (t, y) = min

{
1,

tν(y)

H−1(1/t)
+ exp

(
− y

H −1(t/y)

)}
,

G(t, y, c) = min

{
1,

tν(yt)

H−1(1/t)
+ exp

(
− cyt
θ(t, yt/(8e2))

)}
.

By Theorem 2.3.6(i), since tφ′(0) + y = tb(t) + yt, it remains to prove that

F (t, y) � G(t, y, c) for t ≥ T1, y ≥ 0. (2.3.60)

We prove (2.3.60) by considering several cases. We use the following notations

below.

ε1 := (c1/(8e
2))1/(β′1−1) ∈ (0, 1), κ1 := c

−1/(β′1−1)
1 > 1, θ := θ(t, yt/(8e

2)).

(1) Suppose that 0 ≤ yt < 8e2H−1(1/t)−1. Then, we have θ = H−1(1/t)−1 ≥
yt/(8e

2) and hence G(t, y, 1) ' 1. We claim that it also holds that F (t, y) � 1

which yields the desired result in this case. To prove this claim, we consider

the following two cases separately.

(a) Suppose that t ≥ 1/H(ε1). Then we get from (2.3.58) that

H (ε1H
−1(1/t)−1) ≤ H−1(1/t)

ε1H(ε−1
1 H−1(1/t))

≤ tH−1(1/t)

c1ε
1−β′1
1

=
tH−1(1/t)

8e2
≤ t

yt
≤ t

y
.

Thus, H −1(t/y) ≥ ε1H
−1(1/t)−1 ≥ ε1y/(8e

2) so that F (t, y) ' 1.

(b) Suppose that T1 ≤ t ≤ 1/H(ε1). Then y ≤ yt < 8e2H−1(1/t)−1 ≤
8e2/ε1. Hence from the monotonicity, we get H −1(t/y) ≥H −1(ε1T1/(8e

2)) ≥
ε1H −1(ε1T1/(8e

2))y/(8e2) which yields that F (t, y) ' 1.

(2) Suppose that 8e2H−1(1/t)−1 ≤ yt < 8e2D(t). By Lemma 2.3.23, we have
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yt = 8e2tθH(θ−1). Denote by ε2 = ε2(t, y) = θH−1(1/t) ∈ (0, 1] so that

θ = ε2H
−1(1/t)−1.

(a) Suppose that y < c4H
−1(1/t)−1. Then by (2.3.58) and (2.3.59), we

see that if θ ≥ 1, then

2c4

H−1(1/t)
> yt = 8e2θ

H(θ−1)

H(H−1(1/t))
≥ 8e2c1θε

−β′1
2 =

8e2c1ε
−β′1+1
2

H−1(1/t)
.

Hence, if θ ≥ 1, then ε2 ≥ (4e2c1/c4)1/(β′1−1) and hence yt ' θ ' H−1(1/t)−1.

From this, we can deduce that F (t, y) ' G(t, y, 1) ' 1 in this case. Otherwise,

if θ < 1, then w−1(2e/t) ≤ θ < 1 and hence t < 2e/w(1). Then by a similar

argument to the one given in (1 - b), we can also deduce that F (t, y) '
G(t, y, 1) ' 1.

(b) Assume that y ≥ c4H
−1(1/t)−1. By the proof given in (1 - b), we may

assume that H−1(1/t)−1 ≥ R2 and w−1(2e/t) ≥ ε−1
1 . Note that by (2.3.59),

we have y ≤ yt ≤ 2y in this case. Then we get from Poly∗,∞R2
(β1, β2) that

ν(y) ' ν(yt). Hence, it remains to prove that H −1(t/y) ' θ. Using (2.3.58),

since κ1 = c
−1/(β′1−1)
1 , we see that

H (ε1θ) ≤
1

ε1θH(ε−1
1 θ−1)

≤ 1

c1ε
1−β′3
1 θH(θ−1)

=
1

8e2θH(θ−1)
=

t

yt
≤ t

y

and

H (κ1θ) = inf
κ≥κ1

1

κθH(κ−1θ−1)
≥ c1κ

β′1−1
1

θH(θ−1)
=

8e2t

yt
>
t

y
.

Therefore, we obtain ε1θ ≤H −1(t/y) ≤ κ1θ.

(3) Suppose that yt > 8e2D(t). If y < c4H
−1(1/t)−1, then by the proof given

in (2 - a), we get the result. Hence, we assume y ≥ c4H
−1(1/t)−1 so that yt ≤

2y. By the proof given in (2 - b), it suffices to prove for c4H
−1(1/t)−1 ≥ R2 and

ν(y) ' ν(yt). By Lemma 2.3.12(i) and (2.0.4), we see that tH−1(1/t)−1ν(yt) ≤
c5tytν(yt) ≤ c6tw(yt) ≤ c7tH(y−1

t ) ≤ c8. Moreover, by Lemma 2.3.13 and
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Poly∗,∞R2,≤(β2), for each fixed a > 0, it holds that

exp
(
− ayt
θ(t, yt/(8e2))

)
≤ exp

(
− ac4c

−1
4 y

w−1(2e/t)

)
≤ c9tν(y/c4)

H−1(1/t)
≤ c10tν(y)

H−1(1/t)
.

Thus, G(t, y, 1) ' tν(y)/H−1(1/t) in this case. Hence, it remains to prove

that there exists c11 > 0 such that

exp
(
− y

H −1(t/y)

)
≤ c11

tν(y)

H−1(1/t)
. (2.3.61)

If w−1(2e/t) ≥ 1, then since θ = w−1(2e/t) in this case, by (2.3.58) and

Lemma 2.3.23,

H (κ1w
−1(2e/t)) = inf

κ≥κ1

1

κθH(κ−1θ−1)
≥ c1κ

β′1−1
1

θH(θ−1)
≥ 8e2t

yt
>
t

y
,

which implies that H −1(t/y) ≤ κ1w
−1(2e/t). Hence, we get (2.3.61) from

Lemma 2.3.13. On the other hand, if w−1(2e/t) < 1, then t ' 1. Since H is

increasing, it follows that H −1(t/y) ≤ c12. Let c13 := supu>0 u
1+β2e−u/c12 .

By Poly∗,∞R2,≤(β2), since y ≥ c4H
−1(1/t)−1 ≥ R2, it holds that ν(y) ≥

c14R
1+β2

2 ν(R2)y−1−β2 ≥ c13c14R
1+β2

2 ν(R2)e−y/c12 . This proves (2.3.61) and

ends the proof. �

2.3.6 An example to varying transition density esti-

mates

In this subsection, we give an example of subordinator whose transition den-

sity has the estimates given in Theorem 2.3.6 and the exponential term in

the estimates only appears at specific time ranges.

Define an increasing sequence (an)n≥0 as follows:

a0 := 0, a1 := 3, an+1 := exp(a3/2
n ) for n ≥ 1. (2.3.62)
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Using this (an)n≥0, we define an increasing function ψ : (0,∞)→ (0,∞) by

ψ(r) =


(4/3)r1/2 for r ∈ (0, a1],

r4 + ψ(a2n−1)− a4
2n−1 for r ∈ (a2n−1, a2n],

(4/3)r1/2 + ψ(a2n)− (4/3)a
1/2
2n for r ∈ (a2n, a2n+1].

(2.3.63)

One can easily check that there exist c2 ≥ c1 > 0 such that

c1

(
R

r

)1/2

≤ ψ(R)

ψ(r)
≤ c2

(
R

r

)4

for all 0 < r ≤ R. (2.3.64)

Let

Φ(r) :=
r2

2
´ r

0
sψ(s)−1ds

.

By [5, Lemma 2.4] and (2.3.64), there exists a constant c3 > 0 such that

c3

(
R

r

)1/2

≤ Φ(R)

Φ(r)
≤
(
R

r

)2

for all 0 < r ≤ R. (2.3.65)

Lemma 2.3.29. For every ε ∈ (0, 1), there exists N ∈ N such that for every

n ≥ N , the following estimates hold:

(i) For every r ∈ [a1−ε
2n+1, a2n+1],

4

3
r1/2 ≤ ψ(r) ≤ 2r1/2 and r1/2 ≤ Φ(r) ≤ 2r1/2.

(ii) For every r ∈ [a1−ε
2n , a2n],

1

2
r4 ≤ ψ(r) ≤ r4 and

2(1− ε)r2

3 log r
≤ Φ(r) ≤ 2r2

log r
.

Proof. From the definition (2.3.62) of the sequence (an), by choosing N large

enough, we can assume that [a1−ε
2n+1, a2n+1] ⊂ (a2n, a2n+1] and [a1−ε

2n+1, a2n+1] ⊂
(a2n, a2n+1] for all n ≥ N .
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First, we prove the assertions for ψ. From the construction, we have

4

3
r1/2 ≤ ψ(r) ≤ r4 for all r ≥ 1. (2.3.66)

Moreover, for all n large enough and r ∈ [a1−ε
2n+1, a2n+1], by (2.3.62),

ψ(r) ≤
(

1 +
a4

2n

(4/3)a
(1−ε)/2
2n+1

)
4

3
r1/2 ≤

(
1 + a4

2n exp
(
− 2−1(1− ε)a3/2

2n

)) 4

3
r1/2.

Similarly, for all n large enough and r ∈ [a1−ε
2n , a2n],

ψ(r) ≥
(

1−
a4

2n−1

a
4(1−ε)
2n

)
r4 ≥

(
1− a4

2n−1 exp
(
− 4(1− ε)a3/2

2n−1

))
r4.

Since limx→∞ x
4e−4(1−ε)x3/2

= limx→∞ x
4e−2−1(1−ε)x3/2

= 0, we deduce the

results for ψ.

Now, we prove the assertions for Φ. Fix ε′ ∈ (0, 1−ε). By using the results

for ψ and (2.3.66), we can see that for all n large enough, it holds that for

r ∈ [a1−ε
2n+1, a2n+1],

2

3
r3/2(1− a−3ε′/2

2n+1 ) ≤ 2

3
r3/2
(
1− (a

(1−ε−ε′)
2n+1 /r)3/2

)
=

2

3

(
r3/2 − a3(1−ε−ε′)/2

2n+1

)
=

ˆ r

a1−ε−ε′
2n+1

s1/2ds ≤ 2

ˆ r

0

sψ(s)−1ds ≤ 3

2

ˆ r

0

s1/2ds = r3/2.

Since limn→∞ a
−3ε′/2
2n+1 = 0, it follows that for all n large enough and r ∈

[a1−ε
2n+1, a2n+1],

1

2
r3/2 ≤ 2

ˆ r

0

sψ(s)−1ds ≤ r3/2 and hence r1/2 ≤ Φ(r) ≤ 2r1/2. (2.3.67)

Next, by (2.3.67), for all n large enough and r ∈ [a1−ε
2n , a2n], we get

1

2
a

3/2
2n−1 ≤ 2

ˆ a2n−1

0

sψ(s)−1ds ≤ 2

ˆ r

0

sψ(s)−1ds

= 2

ˆ a2n−1

0

sψ(s)−1ds+ 2

ˆ r

a2n−1

s

s4 + ψ(a2n−1)− a4
2n−1

ds. (2.3.68)
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Note that for all n large enough, by (2.3.66),

ˆ r

a2n−1

s

s4 + ψ(a2n−1)− a4
2n−1

ds ≤
ˆ r

a2n−1

s

(s− a2n−1)s3 + ψ(a2n−1)
ds

≤ 1

ψ(a2n−1)

ˆ a2n−1+1

a2n−1

sds+

ˆ r

a2n−1+1

s−2ds ≤ 3

4
a
−1/2
2n−1(a2n−1 + 1) + 1 ≤ a

1/2
2n−1.

Thus, by combining the above inequality with (2.3.67) and (2.3.68), we de-

duce that for all n large enough and r ∈ [a1−ε
2n , a2n],

log r

2
≤ 1

2
a

3/2
2n−1 ≤ 2

ˆ r

0

s

ψ(s)
ds ≤ (1 + a−1

2n−1)a
3/2
2n−1 ≤

3

2
a

3/2
2n−1 ≤

3 log r

2(1− ε)

and hence
2(1− ε)r2

3 log r
≤ Φ(r) ≤ 2r2

log r
.

The proof is completed. �

Let t2n = a2
2n/(log a2n) and t2n+1 = a

1/2
2n+1 for n ≥ 1. Since exp(x3/2) ≥ 4x4

for x ≥ 10, we have that tn+1 ≥ 4tn for all n ≥ 2. As a corollary to Lemma

2.3.29, we obtain the following estimates for the inverse functions of Φ and

ψ, respectively.

Lemma 2.3.30. (i) There are comparison constants such that

Φ−1(t) ' ψ−1(t) ' t2 for all t ∈ [t2n+1/2, t2n+1], n ≥ 1.

(ii) There are comparison constants such that

Φ−1(t) ' t1/2(log t)1/2 and ψ−1(t) ' t1/4 for all t ∈ [t2n/2, t2n], n ≥ 1.

Proof. (i) For each fixed T > 0, since Φ−1(t) ' ψ−1(t) ' t2 ' 1 for t ∈
[t3/2, T ], it suffices to prove the desired comparisons only for n large enough.

For all large enough n and t ∈ [t2n+1/2, t2n+1], by (2.3.64), (2.3.65) and

Lemma 2.3.29(i), we have Φ(t2) ' Φ(a2n+1) ' ψ(t2) ' ψ(a2n+1) ' t2n+1 ' t.

Then, we get the result from (2.3.64) and (2.3.65).
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(ii) Similar to (i), it suffices to prove for n large enough. For all n large

enough and t ∈ [t2n/2, t2n], we see that t1/2(log t)1/2 ' a2n and t1/4 '
a

1/2
2n (log a2n)−1/4. Since Φ(a2n) ' ψ(a

1/2
2n (log a2n)−1/4) ' t2n ' t by Lemma

2.3.29(ii) with ε = 2/3, we obtain the results. �

Construction of subordinator and its transition density estimates

With the function ψ defined by (2.3.63), we let S be a driftless subordinator

whose Lévy measure ν(dr) is given by

ν(dr) =
1

rψ(r)
dr,

i.e., the Laplace exponent is given by φ(λ) =
´∞

0
(1 − e−λs)ν(ds). Since ν

satisfies the condition (2.3.1) with T0 = 0, St has a transition density function

p(t, x) for all t > 0. The following theorem is the main result in this example.

Recall that b(t) = (φ′ ◦H−1)(1/t) for t > 0.

Theorem 2.3.31. (i) There are comparison constants such that

p(t, tb(t) + y) ' t−2 ∧ t

yψ(y)

for all t ∈ [t2n+1/2, t2n+1], n ≥ 1 and y ≥ 0.

(ii) There are comparison constants such that

p(t, tb(t) + y) � t−1/2(log t)−1/2 ∧
(

t

yψ(y)
+ t−1/2(log t)−1/2 exp

(
− c y2

t log t

))
for all t ∈ [t2n/2, t2n], n ≥ 1 and y ≥ 0.

Remark 2.3.32. For all t ∈ [t2n/2, t2n], n ≥ 1 and y ∈ [a2n, a2n(log a2n)1/3],

since limn→∞ a2n =∞, we have

t−1/2(log t)−1/2 exp
(
− c1y

2

t log t

)
≥ c2a

−1
2n exp

(
− c3y

2

a2
2n

)
≥ c2a

−1
2n exp

(
− c3(log a2n)−1/3 log a2n

)
= c2a

−1−c3(log a2n)−1/3

2n ≥ c4a
−2

2n ,
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while
t

yψ(y)
≤ c5a

2
2n

a1+4
2n log a2n

= c5a
−3
2n (log a2n)−1.

Hence, we see that the exponential term is the dominating factor in heat

kernel estimates at those intervals. Therefore, we deduce that the exponential

term in (2.3.8) is indispensable in heat kernel estimates, although it does not

appear in some other time ranges.

Proof of Theorem 2.3.31. By Lemmas 2.3.11 and 2.3.12, we have

H(r−1) ' Φ(r)−1 and w(r) ' ψ(r)−1 for all r > 0 (2.3.69)

and

H−1(1/t) ' Φ−1(t)−1 and w−1(2e/t) ' ψ−1(t) for all t > 0. (2.3.70)

We simply denote θ for θ(t, y/(8e2)).

(i) By Lemma 2.3.30(i) and (2.3.70), it holds that

H−1(1/t)−1 ' w−1(2e/t) ' t2 for all t ∈ [t2n+1/2, t2n+1], n ≥ 1.

Hence, for all t ∈ [t2n+1/2, t2n+1] and y ∈ [0, H−1(1/t)−1], we get θ ' t2 so

that e−cy/θ � 1. Moreover, by Lemma 2.3.13, for each fixed a > 0 and all

t ∈ [t2n+1/2, t2n+1], it holds that

exp
(
− ay/θ

)
≤ exp

(
− ay

w−1(2e/t)

)
≤ c1tν(y)

H−1(1/t)
for y > H−1(1/t)−1.

Therefore, we get the result from Theorem 2.3.6.

(ii) By Lemma 2.3.30(ii) and (2.3.70), we see that for all t ∈ [t2n/2, t2n],

n ≥ 1,

H−1(1/t)−1 ' t1/2(log t)1/2 and w−1(2e/t) ' t1/4. (2.3.71)
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Then, by (2.3.69) and Lemma 2.3.29(ii), we obtain that for all t ∈ [t2n/2, t2n],

D(t) ' t max
s∈[w−1(2e/t),H−1(1/t)−1]

s

Φ(s)
' t max

s∈[t1/4,t1/2(log t)1/2]

log s

s
' t3/4 log t.

From (2.3.66), for fixed a > 0, we see that for all t ∈ [t2n/2, t2n] and y ≥ D(t),

1

t1/2(log t)1/2
exp

(
− ay2

t log t

)
≤ c2(t log t)−1/2

(
t log t

y2

)11/2

=
c2t

y5

t4 log5 t

y6
≤ c3t

yψ(y)
.

Hence, in view of Theorem 2.3.6 and Lemma 2.3.13, it remains to show that

y/θ ' y2/(t log t) for all t ∈ [t2n/2, t2n], y ∈ [H−1(1/t)−1, D(t)]. (2.3.72)

Let t ∈ [t2n/2, t2n] and y ∈ [H−1(1/t)−1, D(t)]. By (2.3.71), there are c4, c5 >

0 such that c4t
1/4 ≤ θ ≤ c5t

1/2(log t)1/2. Since tθH(θ−1) = y by Lemma

2.3.23, using (2.3.69) and Lemma 2.3.29(ii), (as before, it suffices to consider

large t only,) we get that

yθ = tθ2H(θ−1) ' tθ2/Φ(θ) ' t log θ ' t log t.

This completes the proof for (2.3.72). �
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Chapter 3

Estimates on heat kernels for

non-local operators with

critical killings

In this chapter, we study sharp two-sided heat kernel estimates for critical

killing type perturbations of non-local operators in a smooth domain D. The

results in this chapter is based on [58].

Stability of Dirichlet heat kernel estimates under certain Feynman-Kac

transforms was studied in the recent paper [42]. To be precise, let X be a

Hunt process on a Borel set D ⊂ Rd with the L2-infinitesimal generator L.

Consider the following Feynman-Kac transform:

Ttf(x) = Ex [exp (−At) f(Xt)] ,

where A is a continuous additive functional of X with Revuz measure µ.

Informally, the semigroup (Tt) has the L2-infinitesimal generator Af(x) :=

(L − µ)f(x). Let α ∈ (0, 2) and γ ∈ [0, α ∧ d), and define

qγ(t, x, y) :=

(
1 ∧ δD(x)

t1/α

)γ (
1 ∧ δD(y)

t1/α

)γ (
t−d/α ∧ t

|x− y|d+α

)
.

Suppose that X admits a jointly continuous transition density pD(t, x, y)
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with respect to the Lebesgue measure and that pD(t, x, y) is comparable to

qγ(t, x, y) for (t, x, y) ∈ (0, 1]×D ×D. Examples of processes satisfying this

assumption include killed symmetric stable processes in C1,1 open sets D

(with γ = α/2, cf. [35]), and, when α ∈ (1, 2), censored α-stable processes in

any C1,1 open sets D (with γ = α− 1, cf. [36]).

Under the assumption that µ belongs to some Kato class, it is established

in [42] that the semigroup (Tt) admits a continuous density qD(t, x, y) which is

comparable to qγ(t, x, y) for all (t, x, y) ∈ (0, 1]×D×D. Hence a Kato class

perturbation preserves the (Dirichlet) heat kernel estimates and is in this

sense subcritical. We also refer to earlier results (without boundary condition)

[23, 120, 125].

Kato class perturbations of the Laplacian have been studied earlier and

more thoroughly, e.g. [3, 14, 89, 118], with the same conclusion that Kato

class perturbations preserve the (Dirichlet) heat kernel estimates. Since [7],

it is known that for the Laplacian in Rd, d ≥ 3, the inverse square potential

κ(x) = c|x|−2, c ≥ −((d−2)/2)2 is critical, and, for the Dirichlet Laplacian in

a domain D, the potential κ(x) = cδD(x)−2, c ≥ −1/4, is critical. Criticality

of the potentials above can be explained by Hardy’s inequality. In both cases

above, when c < 0, the potential κ above can be interpreted as creation,

and, when c > 0, the potential κ can be interpreted as killing. Note that

in both cases, the potential κ does not belong to the Kato class. The heat

kernel estimates of critical perturbations of the (Dirichlet) Laplacian have

been studied extensively, e.g., [8, 66, 80, 107, 108, 111].

In this chapter, we use probabilistic methods to study sharp two-sided

heat kernel estimates for critical perturbations of the fractional Laplacian in

a smooth domain D, as well as the fractional Laplacian in Rd. When the

potential involves both killing and creation, there is no Markov process asso-

ciated with the corresponding Schrödinger type operator. Since our argument

depends crucially on properties of Markov processes, we will only deal with

killing type potentials.

This chapter is divided into two major parts. The first part is Section 3.1
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and the setup is quite general there. We consider a Hunt process X on a lo-

cally compact separable metric space (X, ρ). The process X is not necessarily

symmetric and may not be conservative. Let XD be the killed subprocess of

X in an open subset D of X. Using the positive additive functional (Aµt ) of

XD with Revuz measure µ, which is possibly critical, we define the Feynman-

Kac semigroup of XD associated with µ:

T µ,Dt f(x) = Ex
[
exp(−Aµt )f(XD

t )
]
, t ≥ 0, x ∈ D .

The main result of the first part is a factorization formula involving tails

of lifetimes for the transition density of the semigroup T µ,Dt (see Theorem

3.1.21). The form of this factorization formula can be traced back to [18, 19,

123]. If one can get explicit two-sided estimates on the survival probabilities,

then one can combine them with the approximate factorization to get explicit

two-sided estimates on the heat kernel. This is the strategy employed in

[19, 41]. We will also use this strategy in Section 3.2, and as a by-product,

give an alternative and unified proof of the main results of [35, 36, 40].

The second part is Section 3.2. In this section we assume that X is either

the closure of a C1,1 open subset D of Rd or Rd itself, d ≥ 2, and we assume

that the underlying process X is either a reflected α-stable(-like) process

on D (or a non-local perturbation of it), or an α-stable process in Rd (or a

drift perturbation of it). The critical potentials have been already described

above and are essentially of the form either cδD(x)−α or c|x|−α. The goal

of this section is to estimate the tail of the lifetime Px(ζ > t) in terms of

δD(x) and |x| respectively. Then, as was done in [19, 41], together with the

factorization obtained in Theorem 3.1.20, this gives sharp two-sided estimates

of the transition density of the Feynman-Kac semigroup. Section 3.2 also

provides an alternative and unified proof of the main results of [35, 36, 40].
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3.1 Factorization of Dirichlet heat kernels in

metric measure spaces

3.1.1 Setup

Let (X, ρ) be a locally compact separable metric space such that all bounded

closed sets are compact and m is a Radon measure on X with full support.

Let R0 ∈ (0,∞] be the largest number such that X \ B(x, 2r) 6= ∅ for all

x ∈ X and all r < R0. We call R0 the localization radius of (X, ρ).

Let V (x, r) := m(B(x, r)). We assume that there exist constants d2 ≥
d1 > 0 such that for every M ≥ 1, there exists C̃M ≥ 1 with the property

that

C̃−1
M

(
R

r

)d1

≤ V (x,R)

V (x, r)
≤ C̃M

(
R

r

)d2

for all x ∈ X and 0 < r ≤ R < MR0.

(3.1.1)

Note that the lower inequality in (3.1.1) implies

V (x, n0r) ≥ 2V (x, r) for all x ∈ X and r ∈ (0, R0/n0), (3.1.2)

where n0 := (2C̃1)1/d1 .

Now we spell out the assumptions on the processes we are going to work

with. We assume that X = (Xt,Px) is a Hunt process admitting a (strong)

dual Hunt process X̂ = (X̂t, P̂x) with respect to the measure m. For the

definition of (strong) duality, see [15, Section VI.1]. We further assume that

the transition semigroups (Pt) and (P̂t) of X and X̂ are both Feller and

strongly Feller, and that all semipolar sets are polar. The condition that

semipolar sets are polar is known as Hunt’s hypothesis (H). This guarantees

the duality between the killed processes when the original processes are duals

(since X never hits irregular points). See [25, p.481] and the end of [60,

Section 13.6].

In the sequel, all objects related to the dual process X̂ will be denoted by

a hat. We also assume that X admits a strictly positive and jointly continuous
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transition density p(t, x, y) with respect to m so that

Ptf(x) =

ˆ
X

p(t, x, y)f(y)m(dy) and P̂tf(x) =

ˆ
X

p(t, y, x)f(y)m(dy).

We will make some assumptions on the transition density p(t, x, y). To do

this, we first introduce some notation.

Let Φ : (0,∞)→ (0,∞) be a strictly increasing function with Φ(0+) = 0

and limr→∞Φ(r) = ∞ satisfying the following scaling condition: there exist

constants δl, δu ∈ (0,∞), al ∈ (0, 1], au ∈ [1,∞) such that

al

(
R

r

)δl
≤ Φ(R)

Φ(r)
≤ au

(
R

r

)δu
, r ≤ R < R0. (3.1.3)

Remark 3.1.1. Since the function Φ is strictly increasing, for every R̃ ∈
(0,∞), there exist ãl ∈ (0, 1] and ãu ∈ [1,∞) such that

ãl

(
R

r

)δl
≤ Φ(R)

Φ(r)
≤ ãu

(
R

r

)δu
, 0 < r ≤ R ≤ R̃. (3.1.4)

We will use (3.1.4) instead of (3.1.3) whenever necessary. From (3.1.3) we

can also get the scaling condition for the inverse of Φ:

a−1/δu
u

(
R

r

)1/δu

≤ Φ−1(R)

Φ−1(r)
≤ a

−1/δl
l

(
R

r

)1/δl

, 0 < r ≤ R < Φ(R0). (3.1.5)

Define for t > 0 and x, y ∈ X,

q̃(t, x, y) :=
1

V (x,Φ−1(t))
∧ t

V (x, ρ(x, y))Φ(ρ(x, y))
. (3.1.6)

Remark 3.1.2. Since (3.1.1) holds true, it is easy to see that

q̃(t, x, y) ' q̃(t, y, x) ' 1

V (x,Φ−1(t))
∧ t

V (y, ρ(x, y))Φ(ρ(x, y))
.

See [48, Remark 1.12]. Moreover, by integrating q̃(t, x, y) over the set {y :
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ρ(x, y) ≤ Φ−1(t))}, one easily gets that for all t > 0 and x ∈ X,

ˆ
X

q̃(t, x, y)m(dy) ≥ 1 . (3.1.7)

We will assume that there exists a constant C0 ≥ 1 such that

C−1
0 q̃(t, x, y) ≤ p(t, x, y) ≤ C0q̃(t, x, y), (t, x, y) ∈ (0, T̃ )× X× X (3.1.8)

for some T̃ ∈ (0,∞]. Then (3.1.7) and the lower bound in (3.1.8) yield that

1 ≤
ˆ
X

q̃(t, x, y)m(dy) ≤ C0 for all (t, x) ∈ (0, T̃ )× X.

The processes X and X̂ may not be conservative so the lifetimes may be

finite. We add an extra point ∂ (which is called the cemetery point) to X

and assume our processes stay at the cemetery point after their lifetimes.

When T̃ = ∞, we assume R0 = m(X) = ∞. Note that, if T̃ = ∞ and both

X and X̂ admit no killing inside X, then it follows that R0 = m(X) = ∞,

and X and X̂ are conservative (see the proof of [86, Proposition 2.5], which

still works under the non-symmetric setting). All functions h on X will be

automatically extended to X ∪ {∂} by setting h(∂) = 0.

Remark 3.1.3. When T̃ ∈ (0,∞), the value of T̃ is not important. That is,

when T̃ ∈ (0,∞), for every T > 0 there exists a constant C0 = C0(T ) ≥ 1

such that

C
−1

0 q̃(t, x, y) ≤ p(t, x, y) ≤ C0q̃(t, x, y), (t, x, y) ∈ (0, T )× X× X. (3.1.9)

This is a consequence of the semigroup property of p(t, x, y), (3.1.1), (3.1.5)

and (3.1.8).

Let (L,D(L)) and (L̂,D(L̂)) be the generators of (Pt) and (P̂t) in C0(X)

respectively. We assume the following Urysohn-type condition.

Assumption A: There is a linear subspace D of D(L)∩D(L̂) satisfying the

following condition: For any compact K and open U with K ⊂ U ⊂ X, there
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is a nonempty collection D(K,U) of functions f ∈ D satisfying the conditions

(i) f(x) = 1 for x ∈ K; (ii) f(x) = 0 for x ∈ X \ U ; (iii) 0 ≤ f(x) ≤ 1 for

x ∈ X, and (iv) the boundary of the set {x : f(x) > 0} has zero m measure.

Assumption A implies that there exists a kernel J(x, dy) = J(x, y)m(dy),

satisfying J(x, {x}) = 0 for all x ∈ X, such that X satisfies the following Lévy

system formula (see [25, p.482]): for every stopping time T and function

f : X× X→ [0,∞] with the property that f(x, x) = 0 for all x ∈ X,

Ex
∑
s∈(0,T ]

f(Xs−, Xs) = Ex
ˆ T

0

ˆ
X

f(Xs, z)J(Xs, dz)ds.

The kernel J(x, dy) = J(x, y)m(dy) is called the jump kernel of X. For all

bounded continuous function f on X and x ∈ X \ supp(f), it is known that

J satisfies ˆ
X

f(y)J(x, dy) = lim
t↓0

Exf(Xt)

t
.

Therefore, we have from (3.1.8) that

C−1
0

V (x, ρ(x, y))Φ(ρ(x, y))
≤ J(x, y) ≤ C0

V (x, ρ(x, y))Φ(ρ(x, y))
. (3.1.10)

Similarly, X̂ has a jump kernel Ĵ(x, dy) = Ĵ(x, y)m(dy) with Ĵ(x, y) =

J(y, x).

There are plenty of examples of processes satisfying the assumptions of

this subsection. Reflected stable-like processes in a closed d-set D ⊂ Rd sat-

isfy the assumptions of this subsection, see [25, 42]. Unimodal Lévy processes

in Rd with Lévy exponents satisfying weak upper and lower scaling conditions

at infinity, in particular, isotropic stable processes, satisfy the assumptions of

this subsection, see, for example, [20, 41]. Another typical example is given

at the end of this section.
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3.1.2 Interior estimates and scale-invariant parabolic

Harnack inequality for X

Let τXU := inf{t > 0 : Xt /∈ U} be the first exit time from U for X. For an

open subset D of X, the killed process XD is defined by XD
t = Xt if t < τXD

and XD
t = ∂ if t ≥ τXD , where ∂ is the cemetery point added to X. Similarly,

we define the killed process X̂D. It is well known that XD and X̂D are strong

duals of each other with respect to mD, the restriction of m to D (see [25,

p.481] and the end of [60, Section 13.6]).

For t > 0 and x, y ∈ D, define

pD(t, x, y) = p(t, x, y)− Ex
[
p(t− τXD , XτXD

, y) : τXD < t < ζX
]
, (3.1.11)

where ζX is the lifetime of X. By the strong Markov property, pD(t, x, y) is

the transition density of XD and, by the continuity of p(t, x, y), (3.1.9), the

Feller and the strong Feller properties of X and X̂, it is easy to see that

pD(t, x, y) is jointly continuous (see [61, pp.34–35] and [96, Lemma 2.2 and

Proposition 2.3]).

The following lemma is basically [9, Lemma 3.8], except that we require

neither symmetry nor conservativeness.

Lemma 3.1.4. Suppose that there exist positive constants r, t and p such

that

Px
(
Xs /∈ B(x, r), s < ζX

)
≤ p, x ∈ X, s ∈ [0, t].

Then

Px
(

sup
0≤s≤t

ρ(Xs, X0) > 2r, t < ζX
)
≤ 2p, x ∈ X.

Combining this lemma with (3.1.9) and (3.1.11), we can repeat the proof

of [32, Proposition 2.3] word for word to get the following result. Note that

conservativeness is not needed.

Proposition 3.1.5. For every a > 0, there exist constants c > 0 and ε ∈
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(0, 1/2) such that for all x0 ∈ X and r ∈ (0, aR0),

pB(x0,r)(t, x, y) ≥ c

V (x,Φ−1(t))
for x, y ∈ B(x0, εΦ

−1(t)) and t ∈ (0,Φ(εr)].

Let Ξs := (Vs, Xs) be the time-space process of X, where Vs = V0 − s.
The law of the time-space process s 7→ Ξs starting from (t, x) will be denoted

as P(t,x).

Definition 3.1.6. A non-negative Borel function h(t, x) on R × X is said

to be parabolic on (a, b] × B(x0, r) with respect to X if for every relatively

compact open subset U of (a, b]×B(x0, r),

h(t, x) = E(t,x)[h(ΞτΞ
U

) : τΞ
U < ζX ]

for every (t, x) ∈ U ∩ ([0,∞)× X), where τΞ
U := inf{s > 0 : Ξs /∈ U}.

Theorem 3.1.7. For every a > 0, there exist constants c > 0 and c1, c2 ∈
(0, 1) depending on d, T̃ and a such that for all x0 ∈ Rd, t0 ≥ 0, R ∈
(0, aR0) and every non-negative function u on [0,∞) × Rd that is parabolic

on (t0, t0 + 4c1Φ(R)]×B(x0, R) with respect to X or X̂,

sup
(t1,y1)∈Q−

u(t1, y1) ≤ c inf
(t2,y2)∈Q+

u(t2, y2),

where Q− = (t0 + c1Φ(R), t0 + 2c1Φ(R)] × B(x0, c2R) and Q+ = [t0 +

3c1Φ(R), t0 + 4c1Φ(R)]×B(x0, c2R).

Proof. By (3.1.10), (3.1.1) and (3.1.3), we see that there exist c1, c2 > 0 such

that for all x 6= y ∈ X with r ≤ ρ(x, y)/2 < R0,

J(y, x) ≤ c1J(x, y) and J(x, y) ≤ c2

V (x, r)

ˆ
B(x,r)

J(z, y)m(dz).

Using this, Proposition 3.1.5 and (3.1.8), we see that the proof of Theorem

3.1.7 is almost identical to the proof for the symmetric case in [47, Theorem
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4.3]. We emphasize that the conservativeness is not used in the proofs of [47,

Lemmas 3.7, 4.1, 4.2 and Theorem 4.3]. We omit the details. � .

Theorem 3.1.7 clearly implies the elliptic Harnack inequality. Using The-

orem 3.1.7, we have the following result. In the remainder of this section, D

will always stand for an open subset of X.

Proposition 3.1.8. For all a, b > 0, there exists c = c(a, b) > 0 such that for

every open set D ⊂ X, pD(t, x, y) ≥ cq̃(t, x, y) for all t ∈ (0, aR0), x, y ∈ D
with δD(x) ∧ δD(y) ≥ bΦ−1(t).

3.1.3 3P inequality and Feynman-Kac perturbations

The following 3P inequality holds true.

Lemma 3.1.9. For every a ∈ (0,∞), there exists c > 0 such that for all

0 < s < t < aR0,

q̃(s, x, z)q̃(t− s, z, y)

q̃(t, x, y)
≤ c(q̃(s, x, z) + q̃(t− s, z, y)), x, y, z ∈ X.

For an open set D ⊂ X, a measure µ on D is said to be a smooth

measure of XD with respect to the reference measure mD if there is a positive

continuous additive functional (PCAF) A of XD such that for any bounded

non-negative Borel function f on D,

ˆ
D

f(x)µ(dx) = lim
t↓0

Em
[

1

t

ˆ t

0

f(XD
s )dAs

]
,

cf. [114]. The additive functional A is called the PCAF of XD with Revuz

measure µ with respect to the reference measure mD.

It is known (see [68]) that for any x ∈ D, α ≥ 0 and bounded nonnegative

Borel function f on D,

Ex
ˆ ∞

0

e−αtf(XD
t )dAt =

ˆ ∞
0

e−αt
ˆ
D

pD(t, x, y)f(y)µ(dy)dt,
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and we have for any x ∈ D, t > 0 and non-negative Borel function f on D,

Ex
ˆ t

0

f(XD
s )dAs =

ˆ t

0

ˆ
D

pD(s, x, y)f(y)µ(dy)ds.

We first introduce our class of possibly critical perturbations. For an open

set D ⊂ X, a smooth Radon measure µ of XD, t > 0 and a ≥ 0, we define

ND,µ
a (t) := sup

x∈X

ˆ t

0

ˆ
z∈D:δD(z)>aΦ−1(t)

q̃(s, x, z)µ(dz)ds.

Definition 3.1.10. Let µ be a smooth measure for both XD and X̂D with

respect to the reference measure mD and let T ∈ (0,∞]. The measure µ is

said to be in the class KT (D) if

(1) sup
t<T

ND,µ
a (t) <∞ for all a ∈ (0, 1];

(2) lim
t→0

NU,µ
0 (t) = 0 for every relatively compact open set U of D.

For µ ∈ KT (D), using condition (2) in the definition above, one can show

that, for any relatively compact open subset U of D, At∧τXU is a PCAF of

XU with Revuz measure µU , where µU is the measure µ restricted to U . See

Proposition 3.3.3 in Appendix for the proof.

Remark 3.1.11. By the semigroup property, it is easy to check that

ND,µ
a (t) ≤ ND,µ

a (s) + C0(T )2ND,µ
a (t− s), 0 < s < t ≤ T,

where C0(T ) is the constant in (3.1.9). Thus, if µ is in the class K1(D), then

supt<T N
D,µ
a (t) <∞ for all a > 0 and T ∈ (0,∞).

For µ ∈ K1(D), we denote by Aµt the positive continuous additive func-

tional of XD with Revuz measure µ and denote by Âµt the positive continuous

additive functional of X̂D with Revuz measure µ. For any non-negative Borel

function f on D, we define for t ≥ 0, x ∈ D,

T µ,Dt f(x) = Ex
[
exp(−Aµt )f(XD

t )
]
, T̂ µ,Dt f(x) = Êx

[
exp(−Âµt )f(X̂D

t )
]
.
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The semigroup (T µ,Dt : t ≥ 0) (respectively (T̂ µ,Dt : t ≥ 0)) is called the

Feynman-Kac semigroup of XD (respectively X̂D) associated with µ. By

[127, Theorem 6.10(2)], T µ,Dt and T̂ µ,Dt are duals of each other with respect

to the measure mD so that

ˆ
D

T µ,Dt f(x)g(x)m(dx) =

ˆ
D

f(x)T̂ µ,Dt g(x)m(dx). (3.1.12)

Let Y (Ŷ , respectively) be a Hunt process on D corresponding to the

transition semigroup (T µ,Dt ) ((T̂ µ,Dt ), respectively). For an open subset U ⊂
D, we denote by Y U (Ŷ U , respectively) the process Y (Ŷ , respectively) killed

upon exiting U .

Suppose that U ⊂ D is a relatively compact open subset of D. Since for

any relatively compact open set U , Aµ,Ut := Aµ
t∧τXU

is a positive continuous

additive functional of XU with Revuz measure µU , the transition semigroup

of Y U is (T µU ,Ut ). For simplicity, in the sequel we denote this semigroup as

(T µ,Ut ). Moreover, for any t ≥ 0, x ∈ U ,

T µ,Ut f(x) = Ex
[
f(Y U

t )
]

= Ex
[
exp

(
− Aµ

t∧τXU

)
f(XU

t )
]

and

Ex
ˆ t

0

f(XU
s )dAµ,Us =

ˆ t

0

ˆ
U

pU(s, x, y)f(y)µ(dy)ds.

It follows from Definition 3.1.10(2) that, for all relatively compact open

subset U of D, µU is in the standard Kato class of XU , that is,

lim
t→0

sup
x∈U

ˆ t

0

ˆ
U

pU(s, x, y)µ(dy)ds = 0.

Thus, according to the discussion in [42, Section 1.2], we have for any non-
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negative bounded Borel function f on U ,

T µ,Ut f(x) = Ex
[
f(XU

t )
]

+ Ex
[
f(XU

t )
∞∑
n=1

(−1)n
ˆ

0<s1<···<sn<t
dAµ,Us1 · · · dA

µ,U
sn

]
.

Define p0
U(t, x, y) := pU(t, x, y) and, for k ≥ 1,

pkU(t, x, y) =−
ˆ t

0

ˆ
U

pU(s, x, z)pk−1
U (t− s, z, y)µ(dz)ds.

Then we set qU(t, x, y) :=
∑∞

k=0 p
k
U(t, x, y). By Lemma 3.1.9, we have that for

any µ in K1(D), any relatively compact open set U of D and any (t, x, y) ∈
(0, 1]× U × U ,

ˆ t

0

ˆ
U

q̃(t− s, x, z)q̃(s, z, y)µ(dz)ds

≤ cq̃(t, x, y) sup
u∈X

ˆ t

0

ˆ
U

q̃(s, u, z)µ(dz)ds = cq̃(t, x, y)NU,µ
0 (t). (3.1.13)

Using (3.1.13), (3.1.8) and the semigroup property, one can show that pkU(t, x, y)

is continuous in (t, y) for each fixed x, continuous in (t, x) for each fixed y,

and
∑∞

k=0 p
k
U(t, x, y) converges absolutely and uniformly so that qU(t, x, y) is

continuous in (t, y) for each fixed x, and also continuous in (t, x) for each

fixed y (for example, see [42]). Moreover, by repeating the discussion in [42,

Section 1.2], one can conclude that

T µ,Ut f(x) =

ˆ
U

qU(t, x, y)f(y)m(dy), (t, x) ∈ (0,∞)× U.

Define qD(t, x, y) := limn→∞ q
Dn(t, x, y), where Dn ⊂ D are bounded

increasing open sets such that Dn ⊂ Dn+1 and ∪∞n=1Dn = D. Then, using

the monotone convergence theorem and

qDn(t, x, y) ≤ pDn(t, x, y) ≤ p(t, x, y) ≤ C0(T )q̃(t, x, y), t < T,

we see that qD(t, x, y) is the transition density of the process Y and qD(t, x, y) ≤
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C0(T )q̃(t, x, y) for t < T . Therefore, we obtain the following

Proposition 3.1.12. Suppose that D is an open set in X and µ ∈ K1(D).

Then the Hunt process Y on D corresponding to the transition semigroup

(T µ,Dt ) has a transition density qD(t, x, y) with respect to m such that for

each T ∈ (0,∞), qD(t, x, y) ≤ C0(T )q̃(t, x, y) for t < T . Furthermore, if D

is relatively compact, then qD(t, x, y) is continuous in (t, y) for each fixed x,

and continuous in (t, x) for each fixed y. If µ ∈ K∞(D) and T̃ = ∞, then

the estimate qD(t, x, y) ≤ cq̃(t, x, y) holds for every t > 0.

3.1.4 Interior estimates for Y

In this subsection, we prove some interior estimates for the transition density

qU(t, x, y), where U is an open subset of D. Recall that we assume R0 =

m(X) =∞ when T̃ =∞.

Theorem 3.1.13. Suppose that µ ∈ K1(D). Then for every T ∈ (0,∞) and

a ∈ (0, 1], there exists a constant c := c(a,Φ, C0,M, supt≤T N
D,µ
2−1a(t)) > 0

such that for every open U ⊂ D,

qU(t, x, y) ≥ cq̃(t, x, y) (3.1.14)

for all t ∈ (0, T ), x, y ∈ U with δU(x) ∧ δU(y) ≥ aΦ−1(t). Moreover, if µ ∈
K∞(D) and T̃ =∞, then (3.1.14) holds for all t > 0.

Proof. Fix t ∈ (0, T ), x, y ∈ U with δU(x) ∧ δU(y) ≥ aΦ−1(t). Let V be a

bounded open subset of U defined by

V := {z ∈ U : δU(z) > 2−1aΦ−1(t)} ∩B
(
x, ρ(x, y) + aΦ−1(t)

)
.

Then, one can check that x, y ∈ V and δV (x) ∧ δV (y) ≥ 2−2aΦ−1(t). Note

that qU(t, x, w) ≥ qV (t, x, w) for all w ∈ V and w 7→ qV (t, x, w) is continuous.

For w ∈ V , let

p̃1
V (t, x, w) :=

ˆ t

0

(ˆ
V

pV (t− s, x, z)pV (s, z, w)µ(dz)

)
ds.
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Then for any bounded Borel function f on V , by the Markov property of

XV , we have

Ex
[
AµVt f(XV

t )
]

= Ex
[ˆ t

0

EXV
s [f(XV

t−s)]dA
µV
s

]
=

ˆ
V

p̃1
V (t, x, w)f(w)m(dw).

(3.1.15)

Since δD(z) ≥ δU(z) > 2−1aΦ−1(t) for z ∈ V , by (3.1.11), (3.1.8), Lemma

3.1.9 and Proposition 3.1.8, we have that for w ∈ B(y, 2−3aΦ−1(t)),

p̃1
V (t, x, w) ≤ C

2

0

ˆ t

0

ˆ
V

q̃(t− s, x, z)q̃(s, z, w)µ(dz)ds

≤ C
2

0

ˆ t

0

ˆ
z∈D:δD(z)>2−1aΦ−1(t)

q̃(t− s, x, z)q̃(s, z, w)µ(dz)ds

≤ C
2

0c

(
sup
s≤T

ND,µ
2−1a(s)

)
q̃(t, x, w) ≤ C

2

0c

(
sup
s≤T

ND,µ
2−1a(s)

)
C−1
∗ pV (t, x, w)

=: (k/2)pV (t, x, w).

Hence, for w ∈ B(y, 2−3aΦ−1(t)), we have pV (t, x, w) − k−1p̃1
V (t, x, w) ≥

2−1pV (t, x, w), which implies that for any r < 2−3aΦ−1(t),

1

2
Ex[1B(y,r)(X

V
t )] ≤ Ex

[(
1− AµVt /k

)
1B(y,r)(X

V
t )
]
. (3.1.16)

Using the fact that 1 − AµVt /k ≤ exp (−AµVt /k) , we get that for any r <

2−3aΦ−1(t),

1

V (y, r)
Ex
[(

1− AµVt /k
)
1B(y,r)(X

V
t )
]
≤ 1

V (y, r)
Ex
[
exp(−AµVt /k)1B(y,r)(X

V
t )
]
.

Thus, by (3.1.16), (3.1.15) and Hölder’s inequality, we have

1

2

1

V (y, r)
Ex
[
1B(y,r)(X

V
t )
]
≤ 1

V (y, r)
Ex
[
exp(−AµVt /k)1B(y,r)(X

V
t )
]

≤
(

1

V (y, r)
Ex
[
exp(−AµVt )1B(y,r)(X

V
t )
])1/k (

1

V (y, r)
Ex
[
1B(y,r)(X

V
t )
])1−1/k

.
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Therefore,

1

2k
1

V (y, r)
Ex
[
1B(y,r)(X

V
t )
]
≤ 1

V (y, r)
Ex
[
exp(−AµVt )1B(y,r)(X

V
t )
]
.

Since w → qV (t, x, w) is continuous by Proposition 3.1.12, we conclude

by sending r ↓ 0 and applying Proposition 3.1.8 again that for every t ∈
(0, T ], x, y ∈ U with δU(x) ∧ δU(y) ≥ aΦ−1(t),

qU(t, x, y) ≥ qV (t, x, y) ≥ 2−kpV (t, x, y) ≥ c2−kq̃(t, x, y).

�

Let τU := inf{s > 0 : Ys /∈ U} and τ̂U := inf{s > 0 : Ŷs /∈ U}. Using

Theorem 3.1.13, we have the following result.

Corollary 3.1.14. (i) Suppose that µ ∈ K1(D). For any positive constants

R, T and a, there exists c1 = c1(a, T ) > 0 such that for all t ∈ (0, T ) and

B(x,Φ−1(t)) ⊂ D,

inf
z∈B(x,aΦ−1(t)/2)

Pz(τB(x,aΦ−1(t)) > t) ∧ inf
z∈B(x,aΦ−1(t)/2)

P̂z(τ̂B(x,aΦ−1(t)) > t) ≥ c1

(3.1.17)

and

Ex[τB(x,r)] ∧ Êx[τ̂B(x,r)] ≥ c1Φ(r). (3.1.18)

Moreover, there exist r1, c2 > 0 such that for all r ∈ (0, r1] and B(x, r) ⊂ D,

Ex[τB(x,r)] ∨ Êx[τ̂B(x,r)] ≤ c2Φ(r). (3.1.19)

(ii) If µ ∈ K∞(D) and T̃ = ∞ (and R0 = ∞), then (3.1.17)–(3.1.19) hold

for all r, t > 0.

3.1.5 Examples of critical potentials

In this subsection, we give two examples of critical potentials.
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Example 3.1.15. Suppose µ(dz) = q(z)m(dz) with 0 ≤ q(z) ' 1/Φ(δD(z)∧
1). Since q is bounded on every relatively compact open set U ⊂ D, NU,µ

0 (t) ≤
C0t‖q‖L∞(U) → 0 as t→ 0. Moreover, for x ∈ D, a ∈ (0, 1] and t < 1,

ˆ t

0

ˆ
z∈D:δD(z)>aΦ−1(t)

q̃(s, x, z)q(z)m(dz)ds

≤ct+ c

ˆ t

0

ˆ
z∈D:1>δD(z)>aΦ−1(t)

Φ(δD(z))−1q̃(s, x, z)m(dz)ds

≤ct+ c
1

Φ(aΦ−1(t))

ˆ t

0

ˆ
D

q̃(s, x, z)m(dz)ds ≤ ct+ c
t

Φ(aΦ−1(t))
< c <∞.

Thus supt<1N
D,µ
a (t) <∞ for all a ∈ (0, 1] and so µ is in the class K1(D).

Example 3.1.16. Suppose T̃ =∞ and µ(dz) = q(z)m(dz) with 0 ≤ q(z) '
1/Φ(δD(z)). Then R0 =∞ and for all a ∈ (0, 1] and t <∞,

ND,µ
a (t) ≤ c

1

Φ(aΦ−1(t))
sup
x∈X

ˆ t

0

ˆ
D

q̃(s, x, z)m(dz)ds ≤ ct

Φ(aΦ−1(t))
< c <∞.

Thus µ is in the class K∞(D).

3.1.6 Factorization of heat kernel in κ-fat open set

Recall that D(K,U) is the subset of D in Assumption A. Let

A(z0, p, q) := {x ∈ X : p < ρ(x, z0) < q},

A(z0, p, q) := {x ∈ X : p ≤ ρ(x, z0) ≤ q}.

Note that, due to our assumption that all bounded closed sets are compact,

A(z0, p, q) is compact. Thus by Assumption A, for any 1/2 < b < a < 1, the

set D(A(z0, br, ar), A(z0, r/2, r)) is nonempty. We now add the final assump-

tion saying that there exist proper bump functions in each nonempty set

D(A(z0, br, ar), A(z0, r/2, r)) providing scale-invariant control on the action

of the generator.

Assumption U: There exists r0 ∈ (0,∞] such that for any 1/2 < b < a < 1,
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there exists c = c(a, b) such that for every z0 ∈ X and r < r0,

inf
f∈D(A(z0,br,ar),A(z0,r/2,r))

sup
x∈X

max(Lf(x), L̂f(x)) ≤ c

Φ(r)
.

This assumption is used in connection with Dynkin’s formula in Lemma

3.1.18 to get a scale-invariant estimate of the exit probability.

Definition 3.1.17. Let 0 < κ ≤ 1/2. We say that an open set D is κ-fat if

there is R1 ∈ (0,∞] such that for all x ∈ D and all r ∈ (0, R1), there is a

ball B(Ar(x), κr) ⊂ D∩B(x, r). The pair (R1, κ) is called the characteristics

of the κ-fat open set D.

In the remainder of this subsection, T > 0 is a fixed constant and D is a

fixed κ-fat open set with characteristics (R1, κ). Without loss of generality,

we can assume that R1 ≤ R0 ∧ r0 ∧ r1, where r1 is the constant in Corollary

3.1.14(i). For (t, x) ∈ (0, T ) ×D, set rt = Φ−1(t)R1/(3Φ−1(T )) ≤ R1/3. An

open neighborhood U(x, t) of x ∈ D and an open ball W(x, t) ⊂ D \ U(x, t)

are defined as follows:

Figure 1. ρ(x, z) ≤ 3κrt/2. Figure 2. ρ(x, z) > 3κrt/2.

By the definition of κ-fat open set, we can find z = zx,t ∈ D such that

B(z, 3κrt) ⊂ B(x, 3rt) ∩D.

(i) If ρ(x, z) ≤ 3κrt/2, we choose y1 ∈ X such that κrt/n0 ≤ ρ(x, y1) ≤
κrt, where n0 > 1 is the constant in (3.1.2). Then we define U(x, t) =
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B(x, κrt/(4n0)) and W(x, t) = B(y1, κrt/(4n0)). We can easily check that

U(x, t)∪W(x, t) ⊂ B(x, 3κrt/2) ⊂ B(z, 3κrt) ⊂ D and U(x, t)∩W(x, t) = ∅.
(ii) If ρ(x, z) > 3κrt/2, we define U(x, t) = B(x, κrt) ∩D and W(x, t) =

B(z, κrt/(4n0)).

Note that in either case, we have,

κrt/(2n0) ≤ ρ(u, v) ≤ 4rt for all u ∈ U(x, t) and v ∈ W(x, t). (3.1.20)

See Figures 1 and 2 for some illustration of the sets U(x, t) and W(x, t).

It follows from [127, Theorem I.3.4] that the Lévy system of Y is the

same as that of X, hence the following Lévy system formula is valid: for any

f : D ×D → [0,∞] vanishing on the diagonal and every stopping time S,

Ex
∑
t∈(0,S]

f(Yt−, Yt) = Ex
ˆ S

0

ˆ
D

f(Yt, z)J(Yt, z)m(dz)dt. (3.1.21)

Recall that τU = inf{s > 0 : Ys /∈ U} and τ̂U = inf{s > 0 : Ŷs /∈ U}.
Note that Px(YτU(x,t)

∈ D) = Px(τU(x,t) < ζ), where ζ is the lifetime of Y .

Since the proofs for the dual processes are same, throughout this section,

we give the proofs for Y only.

Lemma 3.1.18. Suppose that µ ∈ K1(D). For all (t, x) ∈ (0, T ) × D and

z = zx,t ∈ D with B(z, 3κrt) ⊂ B(x, 3rt) ∩D and ρ(x, z) > 3κrt/2, we have

Px(YτU(x,t)
∈ W(x, t)) ' Px(YτU(x,t)

∈ D) ' t−1Ex[τU(x,t)]

and

P̂x(Ŷτ̂U(x,t)
∈ W(x, t)) ' P̂x(Ŷτ̂U(x,t)

∈ D) ' t−1Ex[τ̂U(x,t)],

where U(x, t) and W(x, t) are the open sets defined in the beginning of this

subsection and the comparison constants depend only on d0, d, δl, δu, T,M,R1

and κ.

Proof. Fix (t, x) ∈ (0, T ) × D and assume that B(z, 3κrt) ⊂ B(x, 3rt) ∩ D
and ρ(x, z) > 3κrt/2. Recall that U(x, t) = B(x, κrt) ∩ D and W(x, t) =
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B(z, κrt/(4n0)). Define D1 := B(x, 9κrt/8)∩D and D2 := D \D1. Take any

f ∈ D
(
A(z, κrt, 9κrt/8), A(z, 5κrt/8, 5κrt/4)

)
.

Then, by Dynkin’s formula for X (see [25, (2.11)] and the proof of [25, (4.6)]),

we have

Px(YτU(x,t)
∈ D1) = Ex

[
exp

(
− Aµ

τXU(x,t)

)
: XτXU(x,t)

∈ D1

]
≤ Ex

[
f
(
XτXU(x,t)

)
exp

(
− Aµ

τXU(x,t)

)]
− f(y)

= Ex
[ˆ τXU(x,t)

0

Lf(Xs) exp(−Aµs )ds

]
+ Ex

[ˆ τXU(x,t)

0

f(Xs)d exp(−Aµs )

]
≤
(

sup
z∈X
Lf(z)

)
Ex
[ˆ τXU(x,t)

0

exp(−Aµs )ds

]
=

(
sup
z∈X
Lf(z)

)
Ex[τU(x,t)].

By Assumption U and (3.1.3), taking infimum over f on both sides gives

Px(YτU(x,t)
∈ D1) ≤ c1

Φ(rt)
Ey[τU(x,t)] ≤ c2t

−1Ey[τU(x,t)].

On the other hand, by (3.1.21), (3.1.10), (3.1.20), (3.1.1) and (3.1.3), we

have that

Px(YτU(x,t)
∈ W(x, t)) = Ex

[ˆ τU(x,t)

0

ˆ
W(x,t)

J(Ys, w)m(dw)ds

]
' Ex[τU(x,t)]

ˆ
W(x,t)

1

V (x, rt)Φ(rt)
m(dw) ' t−1Ex[τU(x,t)]

and

Px(YτU(x,t)
∈ D2) = Ex

[ˆ τU(x,t)

0

ˆ
D2

J(Ys, w)m(dw)ds

]
≤ c3Ex[τU(x,t)]

ˆ
D\B(x,9κrt/8)

1

V (x, ρ(x,w))Φ(ρ(x,w))
m(dw)

≤ c4t
−1Ex[τU(x,t)].
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We used [48, Lemma 2.1] in the last inequality. Therefore, using the fact

Px(YτU(x,t)
∈ D) = Px(YτU(x,t)

∈ D1) + Px(YτU(x,t)
∈ D), we get the desired

result. �

Recall that ζ is the lifetime of Y . We denote by ζ̂ the lifetime of Ŷ .

Lemma 3.1.19. Suppose that µ ∈ K1(D). For all M,T ≥ 1, we have that,

for all t ∈ (0, T ) and x ∈ D,

Px(ζ > t) ' Px(ζ > t/M) ' Px(τU(x,t) > t) ' t−1Ex[τU(x,t)]

' Px(YτU(x,t)
∈ D) ' Px(YτU(x,t)

∈ W(x, t))

and

P̂x(ζ̂ > t) ' P̂x(ζ̂ > t/M) ' P̂x(τ̂U(x,t) > t) ' t−1Êx[τ̂U(x,t)]

' Px(ŶτU(x,t)
∈ D) ' Px(ŶτU(x,t)

∈ W(x, t)),

where U(x, t) and W(x, t) are the open sets defined in the beginning of this

subsection and the comparison constants depend only on d0, d, δl, δu, T,M,R1

and κ.

Proof. Fix t ∈ (0, T ), x ∈ D and set r := rt = Φ−1(t)R1/3Φ−1(T ).

Case (1): ρ(x, z) ≤ 3κr/2. By (3.1.17), we have

1 ≥ Px(ζ > t/M) ≥ Px(ζ > t) ≥ Px(τU(x,t) > t) = Px(τB(x,κr/(4n0)) > t) ≥ c.

On the other hand, by (3.1.20), (3.1.21), (3.1.1), (3.1.3) and (3.1.18),

1 ≥ Px(YτU(x,t)
∈ D) ≥ Px(YτU(x,t)

∈ W(x, t))

= Ex
[ˆ τU(x,t)

0

ˆ
W(x,t)

J(Ys, v)m(dv)ds

]
≥ c1

m(W(x, t))Ex[τU(x,t)]

V (x, 3r)Φ(3r)
≥ c2

Ex[τU(x,t)]

Φ(3r)
≥ c3t

−1Ex[τB(x,κr/(4n0)] ≥ c4.
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Therefore, we arrive at the assertion of the lemma in this case.

Case (2): ρ(x, z) > 3κr/2. Using the Markov inequality, we get

Px(ζ > t/M) = Px(ζ ≥ τU(x,t) > t/M) + Px(ζ > t/M ≥ τU(x,t))

≤ Px(τU(x,t) > t/M) + Px(ζ > τU(x,t))

≤Mt−1Ex[τU(x,t)] + Px(YτU(x,t)
∈ D).

Then by Lemma 3.1.18 we have

Px(ζ > t/M) ≤ c5t
−1Ex[τU(x,t)] ' Px(YτU(x,t)

∈ W(x, t)) ' Px(YτU(x,t)
∈ D).

Note that B(x, (3−2κ)r)∩D ⊃ U(x, t)∪W(x, t) for every (t, x) ∈ (0, T ]×D.

Thus by (3.1.17),

Px(ζ > t/M) ≥ Px(ζ > t) ≥ Px(τB(x,3r)∩D > t)

≥ Ex
[

inf
w∈W(x,t)

Pw(τB(x,3r)∩D > t) : YτU(x,t)
∈ W(x, t)

]
≥ Ex

[
inf

w∈W(x,t)
Pw(τB(w,κr) > t) : YτU(x,t)

∈ W(x, t)

]
≥ c6Px(YτU(x,t)

∈ W(x, t)).

The proof is now complete. �

Theorem 3.1.20. Let D be a κ-fat set with characteristics (R1, κ). Suppose

that µ ∈ K1(D). Then for all T > 0, there exists c ≥ 1 such that for all

(t, x, y) ∈ (0, T )×D ×D,

c−1 ≤ qD(t, x, y)

Px(ζ > t)P̂y(ζ̂ > t)q̃(t, x, y)
≤ c.

Proof. Fix t ∈ (0, T ), x, y ∈ D and set r := Φ−1(t)R1/(3Φ−1(T )).

(1) We first prove the upper bound. By (3.1.8) and Lemma 3.1.19, if
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ρ(x, y) ≤ 4r, then we have

qD(t/2, x, y) =

ˆ
D

qD(t/4, x, w)qD(t/4, w, y)m(dw)

≤ C0

ˆ
D

qD(t/4, x, w)q̃(t/4, w, y)m(dw)

≤ c1Px(ζ > t/4)V (y,Φ−1(t))−1 ≤ c2Px(ζ > t)p(t/2, x, y).

Suppose that ρ(x, y) > 4r. Let U1 := U(x, t) be the set defined before,

U3 := {u ∈ D : ρ(x, u) > ρ(x, y)/2}, and U2 := D \ (U1 ∪ U3). Since x ∈ U1,

y ∈ U3 and U1 ∩ U3 = ∅, by the strong Markov property, we have

qD(t/2, x, y) = Ex[qD(t/2− τU1 , YτU1
, y) : τU1 < t/2, YτU1

∈ U2]

+ Ex[qD(t/2− τU1 , YτU1
, y) : τU1 < t/2, YτU1

∈ U3] =: I + II.

Note that for every u ∈ U2, ρ(u, y) ≥ ρ(x, y)− ρ(x, u) ≥ ρ(x, y)/2 and hence

V (y, ρ(x, y)) ≤ V (u, ρ(x, y) + ρ(u, y)) ≤ V (u, 3ρ(u, y)).

Then, using (3.1.8), (3.1.1) and (3.1.3), we get that for all (s, u) ∈ (0, t/2]×U2,

qD(s, u, y) ≤ c3s

V (u, 3ρ(u, y))Φ(2ρ(u, y))
≤ c4t

V (y, ρ(x, y))Φ(ρ(x, y))

≤ c5p(t/2, x, y).

Now it follows from Lemma 3.1.19 that

I ≤ c5p(t/2, x, y)Px(YτU1
∈ D) ' Px(ζ > t)p(t/2, x, y).

On the other hand, for all u ∈ U1 and w ∈ U3, we have ρ(u, x) ≤ r < ρ(x, y)/4

and ρ(u,w) ≥ ρ(x,w) − ρ(x, u) ≥ ρ(x, y)/2 − r ≥ ρ(x, y)/4, which implies

that

V (x, ρ(x, y)) ≤ V (u, ρ(u, x) + ρ(x, y)) ≤ V (u, 2ρ(x, y)) ≤ V (u, 8ρ(u,w)).
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Thus, by (3.1.21), (3.1.1), (3.1.4) and Lemma 3.1.19, using the assumption

ρ(x, y) > 4r, we get

II =

ˆ t/2

0

ˆ
U1

ˆ
U3

qU1(s, x, u)J(u,w)qD(t/2− s, w, y)m(dw)m(du)ds

≤ c6
1

V (x, ρ(x, y))Φ(ρ(x, y))

ˆ t/2

0

Px(τU1 > s)P̂y(ζ̂ > t/2− s)ds

≤ c6
1

V (x, ρ(x, y))Φ(ρ(x, y))

ˆ ∞
0

Px(τU1 > s)ds

= 2c6
t/2

V (x, ρ(x, y))Φ(ρ(x, y))
t−1Ex[τU1 ] ' Px(ζ > t)p(t/2, x, y).

Eventually, we deduce that whether ρ(x, y) ≤ 4r or not, there exists

c7 > 0 independent of t, x, y such that qD(t/2, x, y) ≤ c7Px(ζ > t)p(t/2, x, y),

and, similarly, qD(t/2, x, y) ≤ c7P̂y(ζ̂ > t)p(t/2, x, y). Then, by the semigroup

property and (3.1.8), we obtain that

qD(t, x, y) =

ˆ
D

qD(t/2, x, w)qD(t/2, w, y)m(dw)

≤ c2
7Px(ζ > t)P̂y(ζ̂ > t)

ˆ
X

p(t/2, x, w)p(t/2, w, y)m(dw)

≤ c2
7C0Px(ζ > t)P̂y(ζ̂ > t)q̃(t, x, y).

(2) For the lower bound, we use the notation W as before. By the semi-

group property, we see that

qD(t, x, y) =

ˆ
D

ˆ
D

qD(t/3, x, u)qD(t/3, u, w)qD(t/3, w, y)m(dw)m(du)

≥
ˆ
W(x,t/3)

ˆ
W(y,t/3)

qD(t/3, x, u)qD(t/3, u, w)qD(t/3, w, y)m(dw)m(du).

Observe that for all (u,w) ∈ W(x, t/3)×W(y, t/3),

δD(u)∧δD(w) ≥ 4−1κ(al/3)1/δlr, |ρ(u,w)−ρ(x, y)| ≤ 6(3au)
1/δur. (3.1.22)

Here is an explanation of the last inequality above, the others being similar.
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By the triangle inequality and symmetry, it suffices to show that ρ(u, x) ≤
3(3au)

1/δur. Since W(x, t/3) ⊂ B(x, 3rt/3), this will be so provided that

rt/3 ≤ (3au)
1/δur. But this immediately follows from (3.1.5) by estimating

Φ−1(t/3)/Φ−1(t). By considering cases ρ(x, y) > 12(3au)
1/δur and ρ(x, y) ≤

12(3au)
1/δur separately, we get from Theorem 3.1.13, (3.1.6) and (3.1.22) that

for all (u,w) ∈ W(x, t/3)×W(y, t/3),

qD(t/3, u, w) ' q̃(t/3, u, w) '
(

1

V (u,Φ−1(t))
∧ t

V (u, ρ(w, u))Φ(ρ(w, u))

)
' q̃(t, x, y).

Let c8 := 8−1κ(al/3)1/δl . By Theorem 3.1.13, (3.1.6) and (3.1.22), for all

(s, u) ∈ (t/6, t/3) × W(x, t/3) and w ∈ B(u, c8r), we have qD(s, w, u) '
q̃(s, w, u) ' 1/V (u, r). Besides, by (3.1.20), (3.1.10), (3.1.1) and (3.1.3), we

see that for all u ∈ W(x, t/3) and (v, w) ∈ U(x, t/3)×B(u, c8r),

J(v, w) ' 1

V (v, r)Φ(r)
' 1

V (x, r)Φ(r)
.

Therefore, by (3.1.21) and Lemma 3.1.19, we get that for all u ∈ W(x, t/3),

qD(t/3, x, u)

≥ Ex[qD(t/3− τU(x,t/3), YτU(x,t/3)
, u) : τU(x,t/3) < t/6, YτU(x,t/3)

∈ B(u, c8r)]

≥
ˆ t/6

0

ˆ
U(x,t/3)

ˆ
B(u,c8r)

qU(x,t/3)(s, x, v)J(v, w)qD(t/3− s, w, u)m(dw)m(dv)ds

≥ c9

V (u, r)V (x, r)Φ(r)

ˆ t/6

0

ˆ
B(u,c8r)

Px(τU(x,t/3) > s)m(dw)ds

≥ c9V (u, c8r)

V (u, r)V (x, r)Φ(r)
Px(τU(x,t/3) > t/6)

ˆ t/6

0

ds

≥ c10t

V (x, r)t
Px(τU(x,t/3) > t/6) ' 1

V (x, r)
Px(ζ > t).

Similarly for w ∈ W(y, t/3), qD(t/3, w, y) ≥ c11
1

V (y,r)
P̂y(ζ̂ > t).
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Finally, using (3.1.1) and (3.1.3), we conclude that

qD(t, x, y) ≥ c12 inf
u∈W(x,t/3), w∈W(y,t/3)

(
qD(t/3, x, u)qD(t/3, u, w)qD(t/3, w, y)

)
×
ˆ
W(x,t/3)

m(du)

ˆ
W(y,t/3)

m(dw)

≥ c13Px(ζ > t)P̂y(ζ̂ > t)q̃(t, x, y).

We have finished the proof. �

Using Theorem 3.1.13 and Corollary 3.1.14(ii), the following global esti-

mates can be proved by the same argument. We omit the proof.

Theorem 3.1.21. Let D be a κ-fat set with characteristics (∞, κ). Suppose

that µ ∈ K1(D) and R0 = m(X) = T̃ = r0 = ∞, where r0 is the constant

in Assumption U. Then there exists c1(κ) ≥ 1 such that for all (t, x, y) ∈
(0,∞)×D ×D,

c−1
1 ≤

qD(t, x, y)

Px(ζ > t)P̂y(ζ̂ > t)q̃(t, x, y)
≤ c1.

Example 3.1.22. Suppose that (X, ρ,m) is an unbounded Ahlfors regular n-

space for some n ∈ (0,∞), that is, for all x ∈ X and r ∈ (0, 1], m(B(x, r)) '
rn. Assume that ρ is uniformly equivalent to the shortest-path metric in X.

Suppose that there is a diffusion process ξ with a symmetric, continuous tran-

sition density pξ(t, x, y) satisfying the following sub-Gaussian bounds

c1

tn/dw
exp

(
−c2

(
ρ(x, y)dw

t

)1/(dw−1)
)
≤ pξ(t, x, y)

≤ c3

tn/dw
exp

(
−c4

(
ρ(x, y)dw

t

)1/(dw−1)
)
,

for all x, y ∈ X and t ∈ (0,∞). Here dw ≥ 2 is the walk dimension of the

space X. Examples of ξ include Brownian motions on unbounded Rieman-

nian manifolds, Brownian motions on Sierpinski gaskets, Sierpinski carpets
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or more general fractals. Let α ∈ (0, dw) and T be an (α/dw)-stable subor-

dinator independent of ξ. We define a process X by Xt = ξTt. Then X is a

symmetric Feller process. It is easy to check that X has a transition density

p(t, x, y) satisfying

p(t, x, y) '
(
t−n/α ∧ t

ρ(x, y)n+α

)
, (3.1.23)

for all x, y ∈ X and t ∈ (0,∞). It follows from [25, Appendix A] that As-

sumptions A and U above are also satisfied with Φ(r) = rα. Therefore, by

Theorem 3.1.20 and (3.1.23), if D is a κ-fat open set in X and µ ∈ K1(D),

then for all (t, x, y) ∈ (0, r0)×D ×D,

qD(t, x, y) ' Px(ζ > t)Py(ζ > t)

(
t−n/α ∧ t

ρ(x, y)n+α

)
.

3.2 Heat kernel estimates of regional frac-

tional Laplacian with critical killing

An open subset D ⊂ Rd (d ≥ 2) is said to be a C1,1 open set if there

exist a localization radius R2 > 0 and a constant Λ > 0 such that for every

z ∈ ∂D, there is a C1,1 function Γ : Rd−1 → R satisfying Γ(0) = 0,∇Γ(0) =

(0̃, 0), ‖Γ‖∞ ≤ Λ, |∇Γ(y)−∇Γ(z)| ≤ Λ|y−z| and an orthonormal coordinate

system CSz : x = (x̃, xd) := (x1, ..., xd−1, xd) with origin at z such that

D ∩B(z, R0) = {x ∈ B(0, R0) in CSz : xd > Γ(x̃)}.

A C1,1 open set in R is the union of disjoint intervals so that the minimum

of their lengths and the distances between them is positive.

In this section we assume that d ≥ 2, X is either the closure of a C1,1

open subset D of Rd or Rd itself, and the underlying process is either a

reflected α-stable process in D (or a non-local perturbation of it), or an α-

stable process in Rd (or a drift perturbation of it). We investigate heat kernel
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estimates under critical killing. We first recall the definition of reflected α-

stable processes.

Let 0 < α < 2 and Ad,α = α2α−1π−d/2Γ((d + α)/2)Γ(1− α/2)−1. Here Γ

is the gamma function defined by Γ(λ) :=
´∞

0
tλ−1e−tdt, λ > 0. For a C1,1

open subset D of Rd, let (E ,F) be the Dirichlet space on L2(D, dx) defined

by

F :=

{
u ∈ L2(D);

ˆ
D

ˆ
D

(u(x)− u(y))2

|x− y|d+α
dxdy <∞

}
,

E(u, v) :=
1

2
A(d, −α)

ˆ
D

ˆ
D

(u(x)− u(y))(v(x)− v(y))

|x− y|d+α
dxdy, u, v ∈ F .

It is well known that Wα/2,2(D) = F and the Sobolev norm ‖ · ‖α/2,2;D is

equivalent to
√
E1 where E1 := E + ( · , · )L2(D). As noted in [16], ( E , F ) is

a regular Dirichlet form on D and its associated Hunt process X lives on

D. We call the process X a reflected α-stable process in D. When D is the

whole Rd, X is simply an α-stable process.

It follows from [45] thatX admits a strictly positive and jointly continuous

transition density p(t, x, y) with respect to the Lebesgue measure dx and that

p(t, x, y) '
(
t−d/α ∧ t

|x− y|d+α

)
, (t, x, y) ∈ (0, 1)×D ×D.

When α ∈ (1, 2), the killed process XD is the censored stable process in

D. When α ∈ (0, 1], it follows from [16, Section 2] that, starting from inside

D, the process X neither hits nor approaches ∂D at any finite time. Thus,

the killed process XD is simply X restricted to D (without killing).

We will see that, for all α ∈ (0, 2), the killed isotropic α-stable process

ZD can be obtained from XD through a Feynman-Kac perturbation of the

form (3.2.6) with κ satisfying (3.2.5).

It follows from [36] that, when α ∈ (1, 2), the transition density pXD(t, x, y)
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of XD has the following estimates:

pXD(t, x, y) '
(

1 ∧ δD(x)

t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1(
t−d/α ∧ t

|x− y|d+α

)
(3.2.1)

for (t, x, y) ∈ (0, 1)×D ×D.

It follows from [35] that the transition density pZD(t, x, y) of ZD has the

following estimates:

pZD(t, x, y) '
(

1 ∧ δD(x)

t1/α

)α/2(
1 ∧ δD(y)

t1/α

)α/2(
t−d/α ∧ t

|x− y|d+α

)
(3.2.2)

for (t, x, y) ∈ (0, 1)×D ×D.

In Subsection 3.2.1, we will establish explicit (Dirichlet) heat kernel es-

timates under critical killing, which also provides an alternative and unified

proof of (3.2.1) and (3.2.2). In Subsection 3.2.2, we consider non-local per-

turbations of ( E , F ) when D is a bounded C1,1 open set. Subsection 3.2.3

covers the case D = Rd \ {0} and drift perturbations.

3.2.1 C1,1 open set

In this subsection, we assume that D is a C1,1 open set in Rd with character-

istics (R2, Λ), and that X is a reflected α-stable process in D. Without loss

of generality, we will always assume that Λ ≥ 1. It is easy to check that the

process X satisfies the assumptions in Subsection 3.1.1 and Assumption U.

Recall that Rd
+ := {y = (ỹ, yd) ∈ Rd : yd > 0}. For d ≥ 2 and p ∈ R, we

define wp(y) = (yd)
p
+ for y ∈ Rd. According to [16, (5.4)], we have for z ∈ Rd

+,

Ad,α lim
ε↓0

ˆ
Rd+,|y−z|>ε

wp(y)− wp(z)

|y − z|d+α
dy = C(d, α, p)zp−αd , (3.2.3)

where C(d, α, p) := Ad,α ωd−1

2
β(α+1

2
, d−1

2
)γ(α, p), β(·, ·) is the beta function,

ωd−1 is the (d− 2)-dimensional Lebesgue measure of the unit sphere in Rd−1
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and

γ(α, p) =

ˆ 1

0

(tp − 1)(1− tα−p−1)

(1− t)1+α
dt.

Observe that
dγ(α, p)

dp
=

ˆ 1

0

(tα−p−1 − tp)| log t|
(1− t)1+α

dt

is positive for p > (α − 1)/2 and thus p 7→ γ(α, p) is strictly increasing on

((α− 1)/2, α). Moreover, we have

C(d, α, α− 1) = C(d, α, 0) = 0 and lim
p↑α

C(d, α, p) =∞. (3.2.4)

Let Hα be the collection of non-negative functions κ on D with the prop-

erty that there exist constants C1, C2 ≥ 0 and η ∈ [0, α) such that κ(x) ≤ C2

for all x ∈ D with δD(x) ≥ 1 and

|κ(x)− C1δD(x)−α| ≤ C2δD(x)−η, (3.2.5)

for all x ∈ D with δD(x) < 1. If α ≤ 1, then we further assume that C1 > 0.

It follows from (3.2.4) that we can find a unique p ∈ [α− 1, α) ∩ (0, α) such

that C1 = C(d, α, p). For each p ∈ [α− 1, α) ∩ (0, α), we define

Hα(p) := {κ ∈ Hα : the constant C1 in (3.2.5) is C(d, α, p)}.

Note that Hα = ∪p∈[α−1,α)∩(0,α)Hα(p). We fix κ ∈ Hα(p) and let Y be a Hunt

process on D corresponding to the Feynman-Kac semigroup of XD through

the multiplicative functional e−
´ t
0 κ(XD

s )ds. That is,

Ex [f(Yt)] = Ex
[
e−
´ t
0 κ(XD

s )dsf(XD
t )
]
, t ≥ 0, x ∈ D. (3.2.6)

Since, by Example 3.1.15, κ(x)dx ∈ K1(D), it follows from Theorem 3.1.20

that Y has a transition density qD(t, x, y) with the following estimate:

qD(t, x, y) ' Px(ζ > t)Py(ζ > t)

(
t−d/α ∧ t

|x− y|d+α

)
, (3.2.7)
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for (t, x, y) ∈ (0, 1] × D × D. To get explicit estimate of Px(ζ > t), we will

estimate Px(YτU(x,t)
∈ D) and use Lemma 3.1.19.

For f ∈ C2
c (D), define

Lαf(x) := Ad,α lim
ε↓0

ˆ
D,|y−x|>ε

f(y)− f(x)

|y − x|d+α
dy,

Lf(x) := Lαf(x)− κ(x)f(x).

The above operator L coincides with the restriction to C2
c (D) of the generator

of the transition semigroup of Y in C0(D).

For q ∈ R, define hq : Rd → [0,∞) by

hq(x) = δD(x)q.

Lemma 3.2.1. Let p ∈ [α− 1, α) ∩ (0, α) and suppose κ ∈ Hα(p). Then for

any q ∈ [p, α), there exist constants A1 > 0 and A2 ∈ (0, 1/4) depending only

on p, q, d, α,Λ, C2, η, R2 such that the following inequalities hold:

(i) If q > p, then

A−1
1 δD(x)q−α ≤ Lhq(x) ≤ A1δD(x)q−α

for every x ∈ D with 0 < δD(x) < A2.

(ii) If q = p, then

|Lhp(x)| ≤ A1(δD(x)p−η + | log δD(x)|)

for every x ∈ D with 0 < δD(x) < A2.

Proof. Without loss of generality, we assume R2 = 1. Let x ∈ D with

δD(x) < A2 where the constant A2 ∈ (0, 1/4) will be chosen later. Let z ∈ ∂D
be a point such that δD(x) = |x − z|. Then there exist a C1,1 function

ψ : Rd−1 → R such that ψ(z) = ∇ψ(z) = 0 and an orthonormal coordinate
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system CSz such that z = 0 and x = (x̃, xd) = (0, xd) in CSz, and that

D ∩B(z, 1) = {y = (ỹ, yd) in CSz : yd > ψ(ỹ)} ∩B(z, 1).

Observe that

Lhq(x) = Lαhq(x)− C(d, α, p)xq−αd − (κ(x)− C(d, α, p)x−αd )hq(x)

=: I − II − III.

By (3.2.5), it holds that |III| ≤ C2x
q−η
d .

For any open subset U ⊂ Rd, define

κU(z) = Ad,α
ˆ
Uc

dy

|y − z|d+α
, z ∈ U.

Recall that wq(y) = (yd)
q for y ∈ Rd

+ and wq(y) = 0 otherwise. Since hq(x) =

wq(x) = xqd, by (3.2.3), we have

I = Ad,α lim
ε↓0

[ˆ
Rd,|y−x|>ε

hq(y)− hq(x)

|y − x|d+α
dy

]
+ κD(x)hq(x)

= Ad,α lim
ε↓0

[ˆ
Rd,|y−x|>ε

hq(y)− wq(y)

|y − x|d+α
dy +

ˆ
Rd,|y−x|>ε

wq(y)− wq(x)

|y − x|d+α
dy

]
+ κD(x)wq(x)

= Ad,α lim
ε↓0

[ˆ
Rd,|y−x|>ε

hq(y)− wq(y)

|y − x|d+α
dy

]
+ C(d, α, q)xq−αd

+ (κD(x)− κRd+(x))wq(x).

According to [16, Lemma 5.6], if 1 < α < 2, then there is c = c(d, α,Λ) > 0

such that |κD(x)−κRd+(x)| ≤ cx1−α
d . By a similar calculation as in [16, Lemma

5.6], one can show that for α ≤ 1, |κD(x)− κRd+(x)| ≤ c(| log xd|1{α=1} + 1).

Thus, for any 0 < α < 2, since q ≥ p ≥ (α− 1)+, we get

|(κD(x)− κRd+(x))wq(x)| ≤ cxqd(x
1−α
d + | log xd|) ≤ c. (3.2.8)
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Now, we bound Iε :=
´
Rd,|y−x|>ε

hq(y)−wq(y)

|y−x|d+α dy. Since D is a C1,1 open set,

there is a constant r0 = r0(d,Λ) ∈ (0, 1) such that B1 := B(r0ed, r0) ⊂ D

and B2 := B(−r0ed, r0) ⊂ Dc where ed := (0̃, 1). We define

E := {y = (ỹ, yd) : |ỹ| < r0/4, |yd| < r0/2},

E1 := {y ∈ E : yd > 2|ỹ|2}, E2 := {y ∈ E : yd < −2|ỹ|2}.

It is easy to check that E1 ⊂ B1 ∩ E ⊂ D and E2 ⊂ B2 ∩ E ⊂ Dc. Thus,

since hq(y) = wq(y) = 0 for y ∈ E2, we get

Iε =

ˆ
Ec,|y−x|>ε

hq(y)− wq(y)

|y − x|d+α
dy +

ˆ
E1,|y−x|>ε

hq(y)− wq(y)

|y − x|d+α
dy

+

ˆ
E\(E1∪E2),|y−x|>ε

hq(y)− wq(y)

|y − x|d+α
dy =: J1,ε + J2,ε + J3,ε.

Recall that x = (0̃, xd) and xd = δD(x) < A2. We take A2 smaller than

r0/4. Then we see that for every y = (ỹ, yd) with |yd| ≥ r0/2 > 2xd,

|y − x|2 ≥ |ỹ|2 + (|yd| − |xd|)2 ≥ |y|2/4

and for every y = (ỹ, yd) with |ỹ| ≥ r0/4 > xd,

|y − x|2 − 1

4
|y|2 =

3

4
|ỹ|2 +

3

4
|yd −

4

3
xd|2 −

1

3
x2
d ≥

3

4
|ỹ|2 − 1

3
x2
d > 0.

Therefore, for every y ∈ Ec, |y − x| ≥ |y|/2. Since |hq(y)− wq(y)| ≤ 2|y|q, it

follows that for all ε ∈ (0, 1),

|J1,ε| ≤ 21+d+α

ˆ
Ec
|y|q−d−αdy ≤ 21+d+α

ˆ
|y|>r0/4

|y|q−d−αdy = c.

Next, for every y ∈ D, using the inequality (a + b)1/2 ≤ a1/2 + b/(2a1/2)

for a, b > 0, we get that

δD(y) ≤ dist(y,B2) = ((yd + r0)2 + |ỹ|2)1/2 − r0 ≤ yd + r0 +
|ỹ|2

2(yd + r0)
− r0
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≤ yd +
|ỹ|2

2r0

<

(
1 +

1

4r0

)
yd. (3.2.9)

Thus, by the mean value theorem and a change of the variables, it holds that

for all ε ∈ (0, 1),

J2,ε ≤
ˆ
E1,|y−x|>ε

(yd + |ỹ|2/(2r0))q − yqd
|y − x|d+α

dy

≤ q

2r0

ˆ
E1,|y−x|>ε

|ỹ|2 supyd≤s≤(1+1/(4r0))yd
sq−1

|y − x|d+α
dy

≤ c

ˆ
E1,|y−x|>ε

|ỹ|2yq−1
d

|y − x|d+α
dy = cxq+1−α

d

ˆ
B(0,1/xd)

|ũ|2uq−1
d

|u− ed|d+α
du.

Besides, since δD(y) ≥ δB1(y) ≥ r0 − ((r0 − yd)2 + |ỹ|2)1/2 for every y ∈ E1,

using the mean value theorem and a change of the variables again, we get

that for all ε ∈ (0, 1),

J2,ε ≥ −
ˆ
E1,|y−x|>ε

yqd − (r0 − ((r0 − yd)2 + |ỹ|2)1/2)q

|y − x|d+α
dy

≥ −q
2

ˆ
E1,|y−x|>ε

|ỹ|2

|y − x|d+α

(
sup

λ∈[0,|ỹ|2]

(r0 − ((r0 − yd)2 + λ)1/2)q−1

((r0 − yd)2 + λ)1/2

)
dy

≥ − q

r0

ˆ
E1,|y−x|>ε

|ỹ|2yq−1
d

|y − x|d+α
dy = − q

r0

xq+1−α
d

ˆ
B(0,1/xd)

|ũ|2uq−1
d

|u− ed|d+α
du

Using the inequality |u − ed| ≥ |u|/4 for u ∈ Rd \ B(0, 2), since (α − 1)+ ≤
q < α, we see that

ˆ
B(0,1/xd)

|ũ|2uq−1
d

|u− ed|d+α
du =

ˆ
B(0,2)

|ũ|2uq−1
d

|u− ed|d+α
du+

ˆ
B(0,1/xd)\B(0,2)

|ũ|2uq−1
d

|u− ed|d+α
du

≤ 2q−1

ˆ
B(0,2)

|u− ed|2−d−αdu+ 4d+α

ˆ
B(0,1/xd)\B(0,2)

|u|q+1−d−αdu

≤ c

( ˆ 2

0

l1−αdl +

ˆ x−1
d

2

lq−αdl

)
≤ c(1 + | log xd|).

Therefore, we deduce that |J2,ε| ≤ c(1 + | log xd|) for all ε ∈ (0, 1).

It remains to bound |J3,ε|. Denote by md−1(dx) the (d − 1)-dimensional
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Hausdorff measure. We observe that there is c1 > 0 such that

md−1({y : |ỹ| = l,−2|ỹ|2 ≤ yd ≤ 2|ỹ|2}) ≤ c1l
d for all 0 < l < 1.

For every y ∈ E \ (E1 ∪ E2), by (3.2.9), we see that |hq(y)|, |wq(y)| ≤ (yd +

|ỹ|2/(2r0))q ≤ (2 + 1/(2r0))q|ỹ|2q. Therefore, since q ≥ (α− 1)+, it holds that

|J3,ε| ≤ c

ˆ 1

0

ˆ
|ỹ|=l,y∈E\(E1∪E2)

l2q−d−αmd−1(dy)dl ≤ c

ˆ 1

0

l2q−αdl ≤ c.

Combining the above estimates, we conclude that |Iε| ≤ c(1 + log |xd|).
We have proved that

|Lhq(x)| ≤ (C(d, α, q)− C(d, α, p))xq−αd + c(1 + log |xd|) + C2x
q−η
d . (3.2.10)

When q > p, we note that C(d, α, q) > C(d, α, p) and q − α < 0 ∧ (q − η).

Hence, the desired result follows by taking A2 small enough. When q = p, we

get the result immediately from (3.2.10). �

Fix q ∈ (p, α) such that q < p− η + α. Then define A3 := A1(p) ∨A1(q),

A4 := A2(p)∧A2(q), where A1 and A2 are the constants in Lemma 3.2.1, and

v1(x) := hp(x) + hq(x).

By Lemma 3.2.1, for any x ∈ D with δD(x) < A4, we have

Lv1(x) ≥ A−1
3 δD(x)q−α − A3(δD(x)p−η + | log δD(x)|).

Thus, there exist A5 ∈ (0, A4) and A6 > 0 such that

Lv1(x) ≥ 2A6δD(x)q−α for all x ∈ D with δD(x) < A5. (3.2.11)

Define v2(x) := hp(x) − 1
2
hq(x). By the same argument, we can find A7 ∈

(0, A4) and A8 > 0 such that Lv2(x) ≤ −2A8δD(x)q−α for all x ∈ D with

δD(x) < A7.
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Now, we are ready to estimate Px(YτU(x,t)
∈ D). We continue to assume

R2 = 1. Note that D is a κ-fat open set with characteristics (1, κ). Recall

that rt is defined as rt = Φ−1(t)R1/(3Φ−1(T )) in Subsection 3.1.6. Since in

the current setting Φ(t) = t1/α, we can take rt = t1/α/3 in the definition of

U(x, t). Let A9 ∈ (0, A5/2] be a constant which will be chosen later. Without

loss of generality we assume κ < A7 ∧ A9.

Fix (t, x) ∈ (0, 1] × D. If δD(x) ≥ κt1/α/3, then we have Px(YτU(x,t)
∈

D) ' 1 in view of Lemma 3.1.19 and (3.1.18). Recall that zx,t ∈ D is a

point such that B(z, 3κrt) ⊂ B(x, 3rt)∩D. Assume that δD(x) < κt1/α/3. In

this case, we have |x − zx,t| ≥ δD(zx,t) − δD(x) > κt1/α − κt1/α/3 > κt1/α/2

and hence we should choose the second definition of U(x, t) so that U(x, t) =

B(x, κt1/α/3)∩D. Let w ∈ ∂D be the point such that |x−w| = δD(x). Define

Dbdry(l) := {y ∈ D : |y − w| < l}, Dint(l) := {y ∈ Dbdry(2) : δD(y) > l}.

Note that U(x, t) ⊂ Dbdry(κ) ⊂ Dbdry(A9) by the triangle inequality and the

assumption that κ < A9.

Let ϕ ∈ C∞c (Rd) be a non-negative radial function such that ϕ(y) = 0 for

|y| > 1 and
´
Rd ϕ(y)dy = 1. For k ≥ 1, we set ϕk(y) := 6kdϕ(6ky) and

fk(y) := ϕk ∗ (v11Dint(5−k))(y) =

ˆ
Dint(5−k)∩B(y,6−k)

ϕk(y − u)v1(u)du, y ∈ Rd.

Since fk(y) = 0 if y /∈ Dint(5−k − 6−k), we see that fk ∈ C∞c (D) and hence

Lfk is well-defined everywhere. Pick any z ∈ U(x, t) (hence δD(z) < A9) such

that δD(z) > max{2−k/(q−p), 2−pk/(d+q)} =: ak and observe that

Lfk(z) = L(ϕk ∗ v1)(z)− L(ϕk ∗ v1 − fk)(z)

= L(ϕk ∗ v1)(z) + κ(z)(ϕk ∗ v1 − fk)(z)

+Ad,α lim
ε↓0

ˆ
D,|y−z|>ε

fk(y)− (ϕk ∗ v1)(y)− fk(z) + (ϕk ∗ v1)(z)

|y − z|d+α
dy

=: M1(z) +M2(z) +M3(z) = M1 +M2 +M3.
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Define D − u := {y − u : y ∈ D} for u ∈ Rd. Using Fubini’s theorem and

a change of the variables, we see that

M1 = lim
ε↓0
Ad,α

ˆ
D,|y−z|>ε

ˆ
Rd

v1(y − u)− v1(z − u)

|y − z|d+α
ϕk(u)dudy − κ(z)(ϕk ∗ v1)(z)

= lim
ε↓0

ˆ
Rd

(
Ad,α

ˆ
D−u,|y−(z−u)|>ε

v1(y)− v1(z − u)

|y − (z − u)|d+α
dy

)
ϕk(u)du

−
ˆ
Rd
κ(z − u)v1(z − u)ϕk(u)du+

ˆ
Rd

(κ(z − u)− κ(z))v1(z − u)ϕk(u)du

= lim
ε↓0

ˆ
Rd
Iz,ε(u)ϕk(u)du+

ˆ
Rd

(κ(z − u)− κ(z))v1(z − u)ϕk(u)du, (3.2.12)

where Iz,ε(u) := Ad,α
´
D−u,|y−(z−u)|>ε

v1(y)−v1(z−u)
|y−(z−u)|d+α dy − κ(z − u)v1(z − u).

To bound
´
Rd Iz,ε(u)ϕk(u)du, we need some preparation. For |u| < 6−k,

let wu ∈ ∂D be a point such that δD(z − u) = |z − u− wu|. By the triangle

inequality and the assumption that δD(z) > ak ≥ 2−k, we have

(3k−1)|u| < δD(z)−|u| ≤ δD(z−u) ≤ δD(z)+|u| ≤ (1+3−k)δD(z). (3.2.13)

Let ψu : Rd−1 → R be a C1,1 function and CSwu an orthonormal coordinate

system with origin at wu such that ψu(0̃) = 0, ∇ψu(0̃) = 0̃, ‖∇ψu‖∞ ≤ Λ,

the coordinate of z − u in CSwu is (0̃, δD(z − u)) and D ∩ B(wu, 1) = {yu =

(ỹu, yud ) in CSwu : yud > ψu(ỹ
u)} ∩ B(wu, 1). Using the coordinate system

CSwu , we have that for all q0 ∈ [p, α), ε ∈ (0, 1) and |u| < 6−k,∣∣∣∣ˆ
D−u,|y−(z−u)|>ε

hq0(y)− hq0(z − u)

|y − (z − u)|d+α
dy

∣∣∣∣
≤
∣∣∣∣ˆ
B(z−u,ε)c

hq0(yu)− δD(z − u)q0

|yu − (z − u)|d+α
dyu
∣∣∣∣+

ˆ
(D−u)c

|hq0(yu)− δD(z − u)q0|
|yu − (z − u)|d+α

dyu

≤
∣∣∣∣ˆ
B(z−u,ε)c

hq0(yu)− (yud )q0+

|yu − (z − u)|d+α
dyu
∣∣∣∣+

∣∣∣∣ˆ
B(z−u,ε)c

(yud )q0+ − δD(z − u)q0

|yu − (z − u)|d+α
dyu
∣∣∣∣

+

ˆ
B(z−u,δD(z))c

|yu|q0 + δD(z − u)q0

|yu − (z − u)|d+α
dyu

=: N1(z, u, ε) +N2(z, u, ε) +N3(z, u) = N1 +N2 +N3.
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By the proof of Lemma 3.2.1 and (3.2.13), we see that for all |u| < 6−k and

ε ∈ (0, 1), N1 ≤ c1(1 + | log δD(z − u)|) ≤ c1(2 + | log δD(z)|). Moreover, by

[16, p.120-121] and (3.2.13), we obtain N2 ≤ c2δD(z − u)q0−α ≤ c3δD(z)q0−α

uniformly in ε ∈ (0, 1). Lastly, using the triangle inequality |yu| ≤ |yu− (z−
u)u|+ |(z − u)u| = |yu − (z − u)u|+ δD(z − u), we also have

N3 ≤ c4

ˆ ∞
δD(z)

(
(l + δD(z − u))q0 + δD(z − u)q0

)
l−α−1dl

≤ c4

ˆ ∞
δD(z)

(
(l + 2δD(z))q0 + 2q0δD(z)q0

)
l−α−1dl ≤ c5δD(z)q0−α.

Thus, we conclude that for all q0 ∈ [p, α) there exists c6 = c6(q0) > 0 such

that for all |u| < 6−k and ε ∈ (0, 1),∣∣∣∣ˆ
D−u,|y−(z−u)|>ε

hq0(y)− hq0(z − u)

|y − (z − u)|d+α
dy

∣∣∣∣ ≤ c6δD(z)q0−α. (3.2.14)

Therefore, Iz,ε(u) converges as ε ↓ 0 uniformly in |u| < 6−k, and by (3.2.11),

it holds that for all large k such that 6−k < A5/2 and all |u| < 6−k,

lim
ε↓0

Iz,ε(u) = Lv1(z − u)−Ad,αv1(z − u)

ˆ
(D−u)\D

dy

|y − (z − u)|d+α

+Ad,α
ˆ
D\(D−u)

v1(z − u)− v1(y)

|y − (z − u)|d+α
dy

≥ 2A6δD(z − u)q−α −Ad,αv1(z − u)

ˆ
(D−u)\D

dy

|y − (z − u)|d+α
.

The inequality above is valid since for all |u| < 6−k and y ∈ D \ (D − u), by

(3.2.13), it holds that δD(y) ≤ |u| ≤ δD(z − u), implying v1(z − u) ≥ v1(y).

Observe that by (3.2.13), for all |u| < 6−k,

ˆ
(D−u)\D

dy

|y − (z − u)|d+α

≤
ˆ

((D−u)\D)∩B(wu,1)

dy

|y − (z − u)|d+α
+

ˆ
B(wu,1)c

dy

|y − (z − u)|d+α
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≤
ˆ
|ỹu|<δD(z−u)/(2Λ)

ˆ ψu(ỹu)

ψu(ỹu)−|u|

1

(δD(z − u)− yud )d+α
dyuddỹ

u

+

ˆ
δD(z−u)/(2Λ)≤|ỹu|≤1

ˆ ψu(ỹu)

ψu(ỹu)−|u|

1

|ỹu|d+α
dyuddỹ

u + 2d+α

ˆ
B(0,1)c

dy

|y|d+α

≤ 2d+α|u|
δD(z − u)d+α

ˆ
|ỹu|<δD(z−u)/(2Λ)

dỹu + |u|
ˆ
δD(z−u)/(2Λ)≤|ỹu|≤1

dỹu

|ỹu|d+α
+ c

≤ A10(6−kδD(z − u)−α−1 + 1),

for some constant A10 > 0. We used the facts that the coordinates of z − u
in CSwu are (0̃, δD(z − u)), and δD(z − u) < 1/2 by (3.2.13) so that for

all yu ∈ B(wu, 1)c, |yu − (z − u)| ≥ |yu − wu| − |(z − u) − wu| ≥ |yu| −
δD(z − u) ≥ |yu|/2 in the second inequality above, and the fact that for

all |ỹu| < δD(z − u)/(2Λ), |ψu(ỹu)| ≤ ‖∇ψu‖∞|ỹu| ≤ δD(z − u)/2 in the

third inequality. Hence, since limk→∞ 6−kap−q−1
k = 0, p − q − 1 < 0 and

p + α > α > q, by taking A9 < (A6/(6Ad,αA10))1/(p−q+α), we get that for all

sufficiently large k and all |u| < 6−k,

lim
ε↓
Iz,ε(u) ≥ 2A6δD(z − u)q−α −Ad,αA10

(
6−kδD(z − u)−α−1 + 1

)
v1(z − u)

≥ 2A6δD(z − u)q−α − 2Ad,αA10

(
6−kδD(z − u)p−α−1 + δD(z − u)p

)
≥
(
2A6 − 4Ad,αA10

(
6−kap−q−1

k + Ap−q+α9

))
δD(z − u)q−α

≥ A6δD(z − u)q−α ≥ A6(δD(z) + |u|)q−α.

We used the fact that v1(z − u) ≤ 2δD(z − u)p in the second, and (3.2.13)

and the fact that ak < δD(z) < A9 in the third inequality above.

Now, since the support of ϕk is contained in B(0, 6−k), using the domi-

nated convergence theorem (which is applicable due to (3.2.14)), (3.2.5) and

(3.2.13), we get from (3.2.12) that for all sufficiently large k,

M1 ≥ A6

ˆ
Rd

(δD(z) + |u|)q−αϕk(u)du+

ˆ
Rd

(κ(z − u)− κ(z))v1(z − u)ϕk(u)du

≥ A6

ˆ
Rd

(δD(z) + |u|)q−αϕk(u)du
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+ C1

ˆ
Rd

(δD(z − u)−α − δD(z)−α)v1(z − u)ϕk(u)du

− C2

ˆ
Rd

(δD(z − u)−η + δD(z)−η)v1(z − u)ϕk(u)du

≥ A6(1 + 3−k)q−αδD(z)q−α − C1(1− (1 + 3−k)−α)δD(z)−α(ϕk ∗ v1)(z)

− C2(1 + (1− 3−k)−η)δD(z)−η(ϕk ∗ v1)(z).

Since (ϕk ∗ v1)(z) ≤ 2(1 + 3−k)qδD(z)p, q < p − η + α and 2−k/(q−p) ≤ ak <

δD(z) < A9, by taking A9 < (A6/(432C2))1/(p−η+α−q), it follows that for all

sufficiently large k,

M1 ≥
7

8
A6δD(z)q−α − 3

(
αC13−kδD(z)p−q + 3C2δD(z)p−η+α−q)δD(z)q−α

≥
(

7

8
A6 − 3αC13−kap−qk − 9C2A

p−η+α−q
9

)
δD(z)q−α ≥ 5

6
A6δD(z)q−α.

Next, we calculateM2. Note that for every k ≥ 2, u ∈ B(0, 6−k) and y ∈ D
such that δD(y) > 4−k and |y−w| ≤ 1, we have δD(y−u) ≥ 4−k−6−k > 5−k

and |y − u− w| ≤ |y − w|+ |u| < 2, and therefore

1− 1Dint(5−k)(y − u) = 0. (3.2.15)

In particular, since ϕk is supported in B(0, 6−k), δD(z) > 2−pk/(d+q) > 4−k

and |z − w| ≤ |z − x|+ |x− w| < 2t1/α/3 < 1, for all k ≥ 2, we have

M2 = κ(z)

ˆ
Rd

(
1− 1Dint(5−k)(z − u)

)
v1(z − u)ϕk(u)du = 0.

Finally, using (3.2.15), by taking A9 sufficiently smaller than A6, for all

k large enough, we have

|M3| ≤ Ad,α lim
ε↓0

ˆ
D,|y−z|>ε

ˆ
Rd
ϕk(u)

(
1− 1Dint(5−k)(y − u)

)
v1(y − u)

|y − z|d+α
dudy

≤ c7

ˆ
D,δD(y)≤4−k

ˆ
Rd
ϕk(u)

δD(y − u)p

|y − z|d+α
dudy
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+ c7

ˆ
D,|y−w|>1

ˆ
Rd
ϕk(u)

(δD(y − u) + 1)q

|y − z|d+α
dudy

≤ c7

ˆ
D,δD(y)≤4−k

ˆ
Rd
ϕk(u)

(δD(y) + |u|)p

|y − z|d+α
dudy

+ c7

ˆ
|y−w|>1

ˆ
Rd
ϕk(u)

(|y − w|+ |u|+ 1)q

(3−1|y − w|)d+α
dudy

≤ c8

(ˆ
D,δD(y)≤4−k

4−pk

|y − z|d+α
dy +

ˆ
|y−w|>1

dy

|y − w|d+α−q

)
≤ c8

(ˆ
D∩B(z,1),δD(y)≤4−k

4−pk

(δD(z)− δD(y))d+α
dy +

ˆ
|y−z|≥1

4−pk

|y − z|d+α
dy + c

)
≤ c9

(
4−pkδD(z)−d−α + 1

)
≤ c3

(
4−pk2pk + Aα−q9

)
δD(z)q−α ≤ A6

2
δD(z)q−α.

In the second inequality above, we have used the facts that δD(y)q ≤ δD(y)p

for δD(y) < 1 and δD(y)q + 1 ≥ δD(y)p for all y, since q > p. In the third

inequality, we first estimate |z−w| ≤ |z− x|+ |x−w| < 2/3 < (2/3)|y−w|
by using that |y − w| > 1, which implies that |y − z| ≥ |y − w| − |z − w| ≥
(1/3)|y − w|. The estimate δD(y − u) ≤ δD(y) + |u| ≤ |y − w| + |u|, follows

by the choice of w ∈ ∂D. In the fourth inequality, we have used the facts

that the support of ϕk is contained in B(0, 6−k) and
´
Rd ϕk(u)du = 1. The

sixth and seventh inequalities are valid since δD(z) ≤ |z − w| < A9 and

δD(z) > ak ≥ 2−pk/(d+q).

Now we conclude that, for all sufficiently large k, Lfk(z) ≥ 3−1A6δD(z)q−α

for all z ∈ U(x, t) such that δD(z) > ak. Recall that fk ∈ C∞c (D) and hence

contained in the domain of the generator of Y . Thus, by Dynkin’s formula,

it holds that for all sufficiently large k,

fk(x) = Ex
[
fk(YτU(x,t)∩Dint(ak)

)
]
− Ex

[ˆ τU(x,t)∩Dint(ak)

0

Lfk(Yt)dt

]
≤ Ex

[
fk(YτU(x,t)∩Dint(ak)

)
]
.

Since fk = ϕk∗(v11Dint(5−k))→ v11Dbdry(2) ≤ v1 pointwise and YτU(x,t)∩Dint,2(ak)
→

YτU(x,t)
(using U(x, t) ⊂ Dbdry(2)), it follows from the bounded convergence
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theorem,

δD(x)p ≤ v1(x) = lim
k→∞

fk(x) ≤ lim
k→∞

Ex
[
fk(YτU(x,t)∩Dint(ak)

)
]

= Ex
[
v1(YτU(x,t)

) : YτU(x,t)
∈ Dbdry(2)

]
≤ Ex

[
v1(YτU(x,t)

)
]
.

Recall that we have assumed κ < A7 ∧ A9 < A5 ∧ A7. Set r = r(t) :=

(A5∧A7)t1/α > κt1/α. Note that for every n ≥ 1 and u ∈ Dbdry(2nr), we have

v1(u) ≤ (δD(x) + 2nr)p + (δD(x) + 2nr)q ≤ 2(n+1)prp + 2(n+1)qrq ≤ 2(n+1)q+1rp.

Thus, we have

Ex
[
v1(YτU(x,t)

)
]
≤ Ex

[
v1(YτU(x,t)

) : YτU(x,t)
∈ Dbdry(r)

]
+
∞∑
n=0

Ex
[
v1(YτU(x,t)

) : YτU(x,t)
∈ Dbdry(2n+1r) \Dbdry(2nr)

]
≤ c4r

pPx
(
YτU(x,t)

∈ Dbdry(r)
)

+ c4

∞∑
n=0

2(n+1)q+1rpPx
(
YτU(x,t)

∈ Dbdry(2n+1r) \Dbdry(2nr)
)

and that for every n ≥ 0,

Px
(
YτU(x,t)

∈ Dbdry(2n+1r) \Dbdry(2nr)
)

≤ c5Ex
ˆ τU(x,t)

0

ˆ
Dbdry(2n+1r)\Dbdry(2nr))

|Ys − z|−d−αdzds

≤ c6(2n+1r)d(2nr)−d−αEx
[
τU(x,t)

]
= c32−nαr−αEx

[
τU(x,t)

]
.

Since

Px
(
YτU(x,t)

∈ Dbdry(r)
)
≥ c7Ex

[ˆ τU(x,t)

0

ˆ
Dbdry(r)

|Ys − z|−d−αdzds
]

≥ c8r
−αEx[τU(x,t)],
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and q < α, we deduce that

δD(x)p

rp
≤ c9Px

(
YτU(x,t)

∈ Dbdry(r)
)(

1 +
∞∑
n=0

2n(q−α)

)
≤ c10Px

(
YτU(x,t)

∈ D
)
.

By applying the similar argument to the function gk := ϕk ∗(v21Dint(5−k)),

we also have that

δD(x)p ≥ v2(x) = lim
k→∞

gk(x) ≥ lim
k→∞

Ex
[
gk(YτU(x,t)∩Dint(ak)

)
]

= Ex[(v21Dbdry(2))(YτU(x,t)
)] ≥ 1

2
rpPx(YτU(x,t)

∈ W(x, t)).

The last inequality holds since W(x, t) ⊂ Dbdry(2).

Therefore, in view of Lemma 3.1.19, we get Px
(
ζ > t

)
' (δD(x)/r)p.

Finally, from (3.2.7) we conclude that

Theorem 3.2.2. Suppose that D is a C1,1 open set in Rd, d ≥ 2, with

characteristics (R2, Λ). For all T > 0, p ∈ [α− 1, α) ∩ (0, α) and η ∈ [0, α),

there exists a constant c = c(C1, C2, p, α, d, η, T, R2,Λ) ≥ 1 such that for all

κ ∈ Hα(p), the transition density qD(t, x, y) of the Hunt process Y on D

corresponding to the Feynman-Kac semigroup of XD via the multiplicative

functional e−
´ t
0 κ(XD

s )ds satisfies that

c−1

(
1 ∧ δD(x)

t1/α

)p(
1 ∧ δD(y)

t1/α

)p [
t−d/α ∧ t

|x− y|d+α

]
≤ qD(t, x, y) ≤ c

(
1 ∧ δD(x)

t1/α

)p(
1 ∧ δD(y)

t1/α

)p [
t−d/α ∧ t

|x− y|d+α

]
for all (t, x, y) ∈ (0, T )×D ×D.

In the case D = Rd
+ and κ(x) = C(d, α, p)x−αd , one can use the scaling

property to get that the two-sided heat estimates in Theorem 3.2.2 is valid

for all t > 0.

Remark 3.2.3. Theorem 3.2.2 also holds in d = 1. In fact, let D ⊂ R
be a union of open intervals with a localization radius r0 and C(1, α, p) =
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A(1,−α)γ(α, p). The first difference of the proof appears in the bound of

|III| in Lemma 3.2.1. We use the following calculation instead of [16, Lemma

5.6]: for every x ∈ D with δD(x) < r0/2,

|κD(x)− κR+(x)| ≤ |κ(−r0,0)c(x)− κ(0,r0)(x)|

= A(1,−α)

(ˆ −r0
−∞

+

ˆ ∞
r0

dy

|y − x|1+α

)
=
A(1,−α)

α
((r0 − x)−α + (r0 + x)−α) ≤ c.

Moreover, the bound for |Iε| is easy in Lemma 3.2.1: Since hq(y) = wq(y) for

y ∈ (−∞, r0), Iε ≤ c
´∞
r0
yq−1−αdy = c.

Remark 3.2.4. It follows from [16, pp.94–95] that ZD can be obtained

from XD via a Feynman-Kac perturbation of the form e−
´ t
0 κD(XD

s )ds. In view

of (3.2.8), κD satisfies condition (3.2.5) with C1 =
Ad,α
α

ωd−1

2
β(α+1

2
, d−1

2
). By

direct calculation, we can see that γ(α, α/2) = 1/α. This means that C1 =

C(d, α, α/2). Thus Theorem 3.2.2 recovers (3.2.2). When α ∈ (1, 2), C1 =

0 = C(d, α, α− 1) is allowed. Thus, by taking κ = 0, Theorem 3.2.2 recovers

(3.2.1) as well.

We also remark here that Theorem 3.2.2 provides examples of processes

studied in [42] (see (3.2.5) and [42, Proposition 4.1(ii)]).

3.2.2 Non-local perturbation in bounded C1,1 open set

Recall that A(d, α) = α2α−1π−d/2Γ(d+α
2

)Γ(1 − α
2
)−1. We also recall that we

write y = (ỹ, yd) for y ∈ Rd, and for p ∈ R, the function wp : Rd → [0,∞) is

defined by wp(y) = (yd)
p
+. For u : Rd

+ → [0,∞), λ ∈ (0,∞) and β ∈ (−∞, 2),

we define

Lβd,λu(x) := lim
ε↓0

ˆ
{y∈Rd+: ε<|y−x|<λ}

(u(y)− u(x))
dy

|x− y|d+β
, x ∈ Rd

+ .

Lemma 3.2.5. For all positive p, λ and β ∈ (−∞, 2), there exist c1 =

c1(p, d, β, λ) > 0 and c2 = c2(p, d, β, λ) ∈ (0, 1/4) such that, for every x ∈ Rd
+
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with 0 < xd < c2, the following inequalities hold:

|Lβd,λwp(x)| ≤ c1


1 if p > β;

| log xd| if p = β;

xp−βd if p < β.

Proof. When β ≤ 0, then clearly for x ∈ Rd
+,

ˆ
Rd+

|ypd − x
p
d|

|y − x|d+β
1{|y−x|<λ} dy ≤ c

ˆ
B(0,λ)

|z|−d−β+pdz ≤ c

ˆ λ

0

s−1−β+pds = cλp−β.

We now assume β > 0. For simplicity, take x = (0̃, xd) and denote ed =

(0̃, 1). Then by the change of variables z = y/xd, we have

Lβd,λwp(x) =p.v.

ˆ
Rd+

ypd − x
p
d

|y − x|d+β
1{|y−x|<λ} dy

=xp−βd p.v.

ˆ
Rd−1

ˆ ∞
0

zpd − 1

|z − ed|d+β
1{|z−ed|<λ/xd}dzddz̃ =: xp−βd I1 .

Using the change of variables z̃ = |zd − 1|ũ, we get

I1 =

ˆ
Rd−1

1

(|ũ|2 + 1)(d+β)/2

(
p.v.

ˆ ∞
0

zpd − 1

|zd − 1|1+β
1{|zd−1|<λ(|ũ|2+1)−1/2/xd}dzd

)
dũ

=:

ˆ
Rd−1

1

(|ũ|2 + 1)(d+β)/2
I2dũ .

Fix ũ and let M := (|ũ|2 + 1)1/2. Then

I2 = lim
ε→0

(ˆ 1−ε

(1− λ
Mxd

)+

zpd − 1

|zd − 1|1+β
dzd +

ˆ Mxd+λ

Mxd

1+ε

zpd − 1

|zd − 1|1+β
dzd

)
. (3.2.16)

By using the change of variables w = 1/zd, we get that, for ε < λ/(Mxd),
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the second integral in (3.2.16) is equal to

ˆ 1−ε

Mxd
Mxd+λ

wβ−1−p − wβ−1

(1− w)1+β
dw +

ˆ 1
1+ε

1−ε

wβ−1−p − wβ−1

(1− w)1+β
dw .

Note that from [16, p.121], we see that∣∣∣∣∣
ˆ 1

1+ε

1−ε

wβ−1−p − wβ−1

(1− w)1+β
dw

∣∣∣∣∣ ≤ cε2−β .

By writing the first integral in (3.2.16) as

ˆ 1−ε

Mxd
Mxd+λ

wp − 1

(1− w)1+β
dw −

ˆ Mxd
Mxd+λ

(1− λ
Mxd

)+

1− wp

(1− w)1+β
dw,

and by using

(wp − 1) + (wβ−1−p − wβ−1) = (1− wp)(1− wp−(β−1))wβ−1−p, (3.2.17)

we have

I2 = lim
ε→0

ˆ 1−ε

Mxd
Mxd+λ

(1− wp)(1− wp−(β−1))

(1− w)1+β
wβ−1−p dw −

ˆ Mxd
Mxd+λ

(1− λ
Mxd

)+

1− wp

(1− w)1+β
dw

=: I21 − I22 . (3.2.18)

First, it is easy to see that

0 < I22 ≤
ˆ Mxd

Mxd+λ

0

1− wp

(1− w)1+β
dw ≤ c


1 if β ∈ (0, 1);

log(1 +Mxd/λ) if β = 1;

(1 +Mxd/λ)β−1 if β ∈ (1, 2).

Next, since β < 2, the fraction in I21 is integrable near 1. Thus,

I21 =

ˆ 1

Mxd
Mxd+λ

(1− wp)(1− wp−(β−1))

(1− w)1+β
wβ−1−p dw.
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Note that, if Mxd
Mxd+λ

≥ 1/4, then clearly, I21 ≤ c <∞. If Mxd
Mxd+λ

< 1/4, then

I21 ≤c+

ˆ 1/2

Mxd
Mxd+λ

(1− wp)(1− wp−(β−1))

(1− w)1+β
wβ−1−p dw ≤ c+ c

ˆ 1

Mxd
Mxd+λ

wβ−1−p dw.

Thus

I21 ≤ c

(1 + λ/(Mxd))
p−β if p > β;

log(1 + λ/(Mxd)) if p = β.

Therefore, if p > β, then for small xd,

|xp−βd I1|

≤ cxp−βd

ˆ
Rd−1

1

(|ũ|2 + 1)(d+β)/2
×
[(

1 +
λ

(|ũ|2 + 1)1/2xd

)p−β
+ 1β∈[1,2)

(
1 +

(|ũ|2 + 1)1/2xd
λ

)β−1

log

(
e+

(|ũ|2 + 1)1/2xd
λ

)]
dũ

≤ c

ˆ
Rd−1

1

(|ũ|2 + 1)(d+β)/2
×
[(

xd +
λ

(|ũ|2 + 1)1/2

)p−β
+ 1β∈[1,2)

(
1 +

(|ũ|2 + 1)1/2

λ

)β−1

log

(
e+

(|ũ|2 + 1)1/2

λ

)]
dũ

≤ c(λ)

ˆ
Rd−1

[
1

(|ũ|2 + 1)(d+β)/2
+ 1β∈[1,2)

log
(
e+ (|ũ|2 + 1)1/2

)
(|ũ|2 + 1)(d+1)/2

]
dũ

= c(λ, β) <∞.

If p = β > 0, then for small xd,

|I1| ≤ c

ˆ
Rd−1

1

(|ũ|2 + 1)(d+β)/2
×
[

log

(
1 +

λ

(|ũ|2 + 1)1/2xd

)
+ 1β∈[1,2)

(
1 +

(|ũ|2 + 1)1/2xd
λ

)β−1

log

(
e+

(|ũ|2 + 1)1/2xd
λ

)]
dũ

≤ c

ˆ
Rd−1

1

(|ũ|2 + 1)(d+β)/2
log

(
1 +

λ

xd

)
dũ

+ c(λ)1β∈[1,2)

ˆ
Rd−1

1

(|ũ|2 + 1)(d+1)/2
log
(
e+ (|ũ|2 + 1)1/2

)
dũ
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≤ c(λ)(| log xd|+ 1).

We now assume that 0 < p < β. Note that by (3.2.18), (3.2.17) and

simple algebra, the limit I2 in (3.2.16) is equal to

ˆ 1

(1− λ
Mxd

)+

(1− wp)(1− wp−(β−1))

(1− w)1+β
wβ−1−p dw −

ˆ Mxd
Mxd+λ

(1− λ
Mxd

)+

wβ−1−p − wβ−1

(1− w)1+β
dw.

Since w 7→ wβ−1−p is integrable near 0,

I1 ≤
ˆ
Rd−1

1

(|ũ|2 + 1)(d+β)/2

(ˆ 1

0

(1− wp)(1− wp−(β−1))

(1− w)1+β
wβ−1−p dw

)
dũ <∞.

On the other hand, −I1 ≤ c(d)I1,2, where

I1,2 :=

ˆ ∞
0

1

(u2 + 1)(d+β)/2

ˆ (u2+1)1/2xd

(u2+1)1/2xd+λ

(1− λ

(u2+1)1/2xd
)+

wβ−1−p(1− wp)
(1− w)1+β

dw ud−2du.

Note that

sup
v≥2λ

ˆ v/(v+λ)

1−λ/v

wβ−1−p(1− wp)
(1− w)1+β

dw ≤ c sup
v≥2λ

ˆ v/(v+λ)

1−λ/v

1

(1− w)β
dw

= c sup
v≥2λ

ˆ λ/v

λ/(v+λ)

t−βdt ≤ c sup
v≥2λ

(v + λ)β(
1

v
− 1

v + λ
) ≤ c sup

v≥2λ
vβ−2 <∞,

and, for xd < λ,

sup
xd≤v<2λ

ˆ v/(v+λ)

0

wβ−1−p(1− wp)
(1− w)1+β

dw ≤ c sup
xd≤v<2λ

ˆ 2/3

0

wβ−1−pdw <∞.

Thus for xd < λ,

0 < I1,2 ≤
ˆ ∞

0

1(u2+1)1/2xd<2λ

(u2 + 1)(d+β)/2

ˆ (u2+1)1/2xd

(u2+1)1/2xd+λ

0

wβ−1−p(1− wp)
(1− w)1+β

dwud−2du
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+

ˆ ∞
0

1(u2+1)1/2xd≥2λ

(u2 + 1)(d+β)/2

ˆ (u2+1)1/2xd

(u2+1)1/2xd+λ

(1− λ

(u2+1)1/2xd
)+

wβ−1−p(1− wp)
(1− w)1+β

dwud−2du

≤
ˆ ∞

0

ud−2

(u2 + 1)(d+β)/2
du <∞.

The proof is complete. �

Throughout the remainder of this subsection we assume that D is a

bounded C1,1 open subset of Rd, α ∈ (0, 2) and β ∈ (−∞, α). We also

assume that b(x, y) is a symmetric Borel function on D × D such that

Cb,1 := supx,y∈D |b(x, y)| <∞ and the function

B(x, y) := Ad,α + |x− y|α−βb(x, y), x, y ∈ D,

is bounded below by a positive constant, that is, Cb,2 ≤ B(x, y) for some

Cb,2 > 0. Clearly, B(x, y) is bounded above by Ad,α + (diam(D))α−βCb,1. We

further assume that the first partials of B(x, y) are bounded on D×D. Note

that, β and b can be negative, as long as the condition above is satisfied.

Let (E (B),F) be the Dirichlet form on L2(D, dx) defined by

E (B)(u, v) :=
1

2

ˆ
D

ˆ
D

(u(x)− u(y))(v(x)− v(y))
B(x, y)

|x− y|d+α
dxdy, u, v ∈ F .

By [45], (E (B), F ) is a regular Dirichlet form on D and its associated Hunt

processX(B) is conservative and lives onD. Moreover, sinceB(x, y) is bounded

on D ×D between two strictly positive constants, the form (E (B), F ) satis-

fies the assumptions of [16, Remark 2.4], so we can freely use results of [16,

Section 2]. Further, X(B) admits a strictly positive and jointly continuous

transition density p(t, x, y) with respect to the Lebesgue measure dx such

that

C−1

(
t−d/α ∧ t

|x− y|d+α

)
≤ p(t, x, y) ≤ C

(
t−d/α ∧ t

|x− y|d+α

)
,

for (t, x, y) ∈ (0, 1)×D ×D.
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Let L(B) be the generator of X(B) in the L2 sense. Similar to [121, Section

4], cf. also [101], we can show that C2
c (D) is contained in the domain of L(B)

and give an explicit expression for L(B)f when f ∈ C2
c (D). Using these, one

can check that the process X(B) satisfies Assumptions A and U.

If m > 0, by taking β = α− 2 and b(x, y) = Ad,α(ϕ(m1/α|x− y|)− 1)|x−
y|−2 with

ϕ(r) := 2−(d+α) Γ

(
d+ α

2

)−1 ˆ ∞
0

s
d+α

2
−1e−

s
4
− r

2

s ds,

we cover the reflected relativistic α-stable process Xm with weight m > 0

in D. When α ∈ (1, 2), the killed process Xm,D is the censored relativistic

α-stable process in D. When α ∈ (0, 1], it follows from [16, Section 2] that,

starting from inside D, the process Xm neither hits nor approaches ∂D at

any finite time. Thus, the killed process Xm,D is simply Xm restricted to D.

Recall that for u : D → [0,∞),

Lβu(x) = Ad,β lim
ε↓0

ˆ
{y∈D: ε<|y−x|}

(u(y)− u(x))
dy

|x− y|d+β
, x ∈ D .

We define

Lβb u(x) := lim
ε↓0

ˆ
{y∈D: ε<|y−x|}

(u(y)− u(x))
b(x, y)

|x− y|d+β
dy , x ∈ D .

Let p ∈ [α− 1, α)∩ (0, α), κ ∈ Hα(p). If β ≥ p, then we always assume that,

there exist Cb,3 > 0 and β1 > β − p such that

|b(x, y)− b(x, x)| ≤ Cb,3|x− y|β1 , x, y ∈ D. (3.2.19)

Note that, under (3.2.19), for any bounded Borel function u satisfying |u(x)−
u(y)| ≤ c|x− y|p on D,

|Lβb u(x)| ≤ c

ˆ
{y∈D: ε<|y−x|}

|b(x, y)− b(x, x)|
|x− y|d+β−p dy +

|b(x, x)|
Ad,β

|Lβu(x)|
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≤ c1 + c2|Lβu(x)|. (3.2.20)

Recall that for an open set D and q ≥ 0, hq(x) = δD(x)q.

Lemma 3.2.6. Let D be a bounded C1,1 open set with characteristics (R2,Λ).

For any q ≥ p, there exist constants c1 > 0 and c2 ∈ (0, (R2∧1)/4) depending

only on p, q, d, β, R2,Λ, diam(D), Cb,1, Cb,2, Cb,3, β1 such that for every x ∈ D
with 0 < δD(x) < c2, the following inequalities hold:

|Lβb hq(x)| ≤ c1


1 if q > β;

| log δD(x)| if q = β;

δD(x)q−β if q < β.

Proof. Without loss of generality we assume diam(D) ≤ 1 and let x ∈ D

with δD(x) < R2/4. Choose a point z ∈ ∂D such that δD(x) = |x− z|. Then,

there exists a C1,1 function Γ : Rd−1 7→ R such that Γ(z) = ∇Γ(z) = 0 and

an orthonormal coordinate system CSz with origin at z such that

D ∩B(z,R2) = {y = (ỹ, yd) in CSz : yd > Γ(ỹ)} ∩B(z, R2),

and z = 0 and x = (x̃, xd) = (0̃, xd) in CSz. For any open subset U ⊂
Rd, define κ̂U(x) := Ad,β

´
Uc∩B(x,1)

|y − x|−d−βdy. Recall that wq(y) = (yd)
q
+.

Since hq(x) = wq(x) = xqd, using (3.2.20), we have

Lβhq(x) = Ad,β lim
ε↓0

[ˆ
1>|y−x|>ε

hq(y)− hq(x)

|y − x|d+β
dy + κ̂D(x)hq(x)

]
= Ad,β lim

ε↓0

[ˆ
1>|y−x|>ε

hq(y)− wq(y)

|y − x|d+β
dy

+

ˆ
1>|y−x|>ε

wq(y)− wq(x)

|y − x|d+β
dy + κ̂D(x)wq(x)

]
= Lβd,1wq(x) +Ad,β(κ̂D(x)− κ̂Rd+(x))wq(x)

+Ad,β lim
ε↓0

ˆ
1>|y−x|>ε

hq(y)− wq(y)

|y − x|d+β
dy.
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By a similar calculation as in [16, Lemma 5.6], since q ≥ (α−1)+ ≥ (β−1)+,

we get

|(κ̂D(x)− κ̂Rd+(x))wq(x)| ≤ cxqd(x
1−β
d + | log xd|) ≤ c.

Next, we bound Iε :=
´

1>|y−x|>ε
hq(y)−wq(y)

|y−x|d+β dy for ε ∈ (0, 1/2). When q < β,

by the proof of Lemma 3.2.1,

sup
ε<1/2

|Iε| ≤ sup
ε<1/2

∣∣∣∣ˆ
Rd,|y−x|>ε

hq(y)− wq(y)

|y − x|d+β
dy

∣∣∣∣ ≤ c(1 + log |xd|).

When q ≥ β, by [44, (3.13)], we get supε<1/2 |Iε| ≤ c. The lemma now follows

from these bounds, Lemma 3.2.5 and (3.2.20). �

Define

L̃f(x) := Lαf(x) + Lβb f(x)− κ(x)f(x).

Combining Lemmas 3.2.1 and 3.2.6, we get the following lemma.

Lemma 3.2.7. Let p ∈ [α − 1, α) ∩ (0, α), β < α and suppose κ ∈ Hα(p).

Then for any q ∈ [p, α), there exist c1 > 0 and c2 ∈ (0, 1/4) depending only on

p, q, d, α, β,Λ, C2, η, R2, Cb,1, Cb,2, Cb,3, β1 such that the following inequalities

hold:

(i) If q > p,

c−1
1 δD(x)q−α ≤ L̃hq(x) ≤ c1δD(x)q−α

for every x ∈ D with 0 < δD(x) < c2.

(ii) If q = p,

|L̃hp(x)| ≤ c1(δD(x)p−(β∨η) + | log δD(x)|)

for every x ∈ D with 0 < δD(x) < c2.

Recall that X(B),D denote the process X(B) killed upon exiting D. Note

that the operator L̃ coincides with the restriction to C2
c (D) of the generator

of of the Feynman-Kac semigroup of X(B),D via the multiplicative functional
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e−
´ t
0 κ(X

(B),D
s )ds in C0(D). We now follow the argument of the previous subsec-

tion (choosing q ∈ (p, (p− (η ∨ β) +α)∧α)) and can conclude the following.

Theorem 3.2.8. Suppose that D is a bounded C1,1 open set in Rd, d ≥ 2,

with characteristics (R2, Λ). For all T > 0, p ∈ [α−1, α)∩ (0, α), β < α and

η ∈ [0, α), there exists c = c(C1, C2, p, α, β, d, η, diam(D), T, R2,Λ, Cb,1, Cb,2,

Cb,3, β1) ≥ 1 such that for all κ ∈ Hα(p), the transition density qD(t, x, y) of

the Hunt process Y on D corresponding to the Feynman-Kac semigroup of

X(B),D via the multiplicative functional e−
´ t
0 κ(X

(B),D
s )ds satisfies that

c−1

(
1 ∧ δD(x)

t1/α

)p(
1 ∧ δD(y)

t1/α

)p [
t−d/α ∧ t

|x− y|d+α

]
≤ qD(t, x, y) ≤ c

(
1 ∧ δD(x)

t1/α

)p(
1 ∧ δD(y)

t1/α

)p [
t−d/α ∧ t

|x− y|d+α

]
for (t, x, y) ∈ (0, T )×D ×D.

We remark here that Theorem 3.2.8 recovers [42, Theorem 4.8]. Let κmD

be the killing function of the killed relativistic α-stable process Zm,D in D. It

follows from [16, pp.94–95] that the killed relativistic α-stable process Zm,D

can be obtained from Xm,D via a Feynman-Kac perturbation of the form

e−
´ t
0 κ

m
D (Xm,D

s )ds. It follows [51, p. 278] that 0 ≤ κD(x) − κmD(x) ≤ cδD(x)2−α

for all x ∈ D. Combining this with (3.2.8), we get

|(κmD(x)− κRd+(x))wq(x)| ≤ cxqd(x
1−α
d + | log xd|) ≤ c.

Now by the same argument as in Remark 3.2.4, we see that Theorem 3.2.8

recovers the main result of [40] for bounded C1,1 open set D.

3.2.3 Rd \ {0}

In this subsection we assume that X = Rd, d ≥ 2, X is an isotropic α-stable

process on Rd and D = Rd \ {0}. Obviously, D is a (1/2)-fat open set with

characteristics (∞, 1/2) and X satisfies Assumptions A and U. Since X does

not hit {0}, the killed process XD is simply the restriction of X to D.
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Recall that Ad,α = α2α−1π−d/2Γ((d + α)/2)Γ(1 − α/2)−1. Let p ∈ (0, α)

and define

H(s) = 2π
π
d−3

2

Γ(d−1
2

)

ˆ π

0

sind−2θ
(
√
s2 − sin2 θ + cos θ)1+α√

s2 − sin2 θ
dθ, s ≥ 1,

and

C̃(α, d, p) := Ad,α
ˆ +∞

1

(sp − 1)(1− s−d+α−p)s(s2 − 1)−1−αH(s)ds.

Note that p → C̃(α, d, p) is strictly increasing on (0, α). The function H(s)

is positive and continuous on [1,+∞) with H(s) ' sα for large s and

s(s2 − 1)−1−αH(s) ' (s− 1)−1−α, s ≥ 1,

(see the paragraph after [65, Theorem 1.1]). Thus

lim
p↓0

C̃(α, d, p) = 0 and lim
p↑α

C̃(α, d, p) =∞. (3.2.21)

Applying [65, Theorem 1.1] to up := |x|p, we get that

−(−∆)α/2up(x) = C̃(α, d, p) |x|p−α, |x| > 0, x ∈ Rd. (3.2.22)

Let Gα be the collection of non-negative functions on D such that for

each κ ∈ Gα there exist constants C1 > 0, C2 ≥ 0 and η ∈ [0, α) such that

κ(x) ≤ C2 for all x with |x| ≥ 1 and

∣∣κ(x)− C1|x|−α
∣∣ ≤ C2|x|−η, (3.2.23)

for all x ∈ D with |x| < 1. By (3.2.21) we can find a unique p ∈ (0, α) such

that C1 = C̃(α, d, p). Define

Gα(p) := {κ ∈ Gα : the constant C1 in (3.2.23) is C̃(α, d, p)}.
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Note that Gα = ∪0<p<αGα(p). We fix a κ ∈ Gα(p) and let Y be a Hunt

process on D corresponding to the Feynman-Kac semigroup of XD via the

multiplicative functional e−
´ t
0 κ(XD

s )ds, that is,

Ex [f(Yt)] = Ex
[
e−
´ t
0 κ(XD

s )dsf(XD
t )
]
, t ≥ 0, x ∈ D.

Since, by Example 3.1.15, κ(x)dx ∈ K1(D), it follows from Theorem 3.1.20

that Y has a transition density qD(t, x, y) with the following estimate

qD(t, x, y) ' Px(ζ > t)Py(ζ > t)

[
t−d/α ∧ t

|x− y|d+α

]
, (3.2.24)

for (t, x, y) ∈ (0, 1) × D × D, where ζ is the lifetime of Y . Moreover, when

C2 = 0, κ(x)dx ∈ K∞(D) by Example 3.1.16. Thus, by Theorem 3.1.21,

(3.2.24) holds for all t > 0.

Define

Lf(x) := −(−∆)α/2f(x)− κ(x)f(x).

Fix q ∈ (p, α) such that q < p−η+α and let A = C̃(α, d, q)−C̃(α, d, p) >

0. Define

v1(x) := up(x) + uq(x), v2(x) := up(x)− 1

2
uq(x).

Since, for |x| < C−1
2 , in view of (3.2.22) and (3.2.23),

Lv1(x) ≥ A|x|q−α − 2C2(|x|p−η + |x|q−η)

and

Lv2(x) ≤ −2−1A|x|q−α + (3/2)C2(|x|p−η + |x|q−η),

there exists c1 > 0 such that Lv1(x) ≥ 0 and Lv2(x) ≤ 0 whenever 0 < |x| <
c1. Pick any (t, x) ∈ (0, 1) × D and set r = r(t) = c1t

1/α for t < 1. Now

we can follow the argument before the statement of Theorem 3.2.2 and get
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Px(ζ > t) ' (1 ∧ |x|/r)p for t < 1.

Moreover, if κ(x) = C̃(α, d, p)|x|−α, we can simply take v1(x) = v2(x) =

up(x) and r(t) = t1/α for all t > 0 and get Px(ζ > t) ' (1 ∧ |x|/r(t))p for all

t > 0.

Therefore, we conclude that

Theorem 3.2.9. For all positive T > 0, p ∈ (0, α) and η ∈ [0, α), there

exists c = c(C1, C2, p, α, d, η, T ) ≥ 1 such that for all κ ∈ Gα(p), the tran-

sition density q(t, x, y) of Y , the Hunt process on Rd \ {0} associated with

the Feynman-Kac semigroup of the isotropic α-stable process Z via the mul-

tiplicative functional e−
´ t
0 κ(Zs)ds, satisfies that

c−1

(
1 ∧ |x|

t1/α

)p(
1 ∧ |y|

t1/α

)p [
t−d/α ∧ t

|x− y|d+α

]
≤ q(t, x, y) ≤ c

(
1 ∧ |x|

t1/α

)p(
1 ∧ |y|

t1/α

)p [
t−d/α ∧ t

|x− y|d+α

]
,

for (t, x, y) ∈ (0, T )×(Rd\{0})×(Rd\{0}). Moreover, if κ(x) = C̃(α, d, p)|x|−α,

then the above estimates holds for all t > 0.

The last claim in Theorem 3.2.9 can be proved using the scaling property

and the finite time estimates in Theorem 3.2.9. This was proved indepen-

dently in [82] using a different method.

Let α ∈ (1, 2) and g be an Rd-valued C1 function with ‖g‖∞ + ‖∇g‖∞ <

∞. Let X̃g be an α-stable process with drift g, that is, a non-symmetric Hunt

process with generator −(−∆)α/2f(x) + g · ∇f(x), see [24]. Let Xg be the

Hunt process obtained from X̃g by killing with rate ‖div g‖. The generator

of Xg is −(−∆)α/2f(x) + g · ∇f(x) − ‖divg‖∞f(x). By [24], the transition

density p(t, x, y) of Xg satisfies

p(t, x, y) ' t−d/α ∧ t

|x− y|d+α
, (t, x, y) ∈ (0, 1]× Rd × Rd. (3.2.25)

The dual of −(−∆)α/2f(x)+g ·∇f(x)−‖divg‖∞f(x) is −(−∆)α/2f(x)−
g · ∇f(x) − div g(x)f(x) − ‖divg‖∞f(x), which is the generator of a Hunt
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process X̂g which can be obtained from an α-stable process with drift via

the killing potential −div g(x) − ‖divg‖∞. It is easy to check that Xg and

X̂g are strong duals of each other with respect to the Lebesgue measure. It

is also easy to check that Xg and X̂g satisfy the sector condition, thus, by

[67, Theorem 4.17], all semipolar sets are polar. Moreover, since α ∈ (1, 2),

Assumption U holds true.

Fix κ ∈ Gα(p) and let Y g be a Hunt process on D corresponding to the

Feynman-Kac semigroup of Xg,D defined by

Ex [f(Y g
t )] = Ex

[
e−
´ t
0 κ(Xg,D

s )dsf(Xg,D
t )

]
, t ≥ 0, x ∈ D.

Note that κ(x)dx ∈ K1(D) by (3.2.25). With up = |x|p, we get that

|g · ∇up(x)|+ ‖divg‖∞|up(x)| ≤ C̃(α, d, p) |x|p−1, 0 < |x| < 1. (3.2.26)

From (3.2.22), (3.2.26) and the assumption α ∈ (1, 2), we see that terms

g · ∇f(x)− ‖divg‖∞f(x) and −g · ∇f(x)− div g(x)f(x)− ‖divg‖∞f(x) can

be treated as lower order terms. Thus, using (3.2.26) and the assumption

α ∈ (1, 2), by repeating the argument of the first part of this subsection, we

can easily get the following result from (3.2.25) and Theorem 3.1.20.

Theorem 3.2.10. Suppose that α ∈ (1, 2). For all positive T > 0, p ∈ (0, α)

and η ∈ [0, α), there exists c = c(C1, C2, p, ‖g‖∞, α, d, η, T, ‖∇g‖∞) ≥ 1 such

that for all κ ∈ Gα(p), the transition semigroup qg(t, x, y) of Y g satisfies that

c−1

(
1 ∧ |x|

t1/α

)p(
1 ∧ |y|

t1/α

)p [
t−d/α ∧ t

|x− y|d+α

]
≤ qg(t, x, y) ≤ c

(
1 ∧ |x|

t1/α

)p(
1 ∧ |y|

t1/α

)p [
t−d/α ∧ t

|x− y|d+α

]
,

for (t, x, y) ∈ (0, T )× (Rd \ {0})× (Rd \ {0}).

Note that, Theorem 3.2.10 also holds for the fundamental solution to

∂t = −(−∆)α/2 + g · ∇ − κ(x).
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3.3 Appendix: Continuous additive function-

als for killed non-symmetric processes

We keep the assumptions and the notations in Sections 3.1.1–3.1.3. In this

section, D is an open subset of X and U is a relatively compact subset of D.

Lemma 3.3.1. If h ∈ D(L̂) is nonnegative, bounded and has compact support

contained in U , then for any t ≥ 0,

lim sup
ε→0

1

ε

ˆ
U

P̂U
t h(x)Px(τXU ≤ ε)m(dx) <∞.

Proof. Noticing h(X̂τXU
) = 0, we get

P̂U
t h(x) = Êx[h(X̂t)1t<τ̂XU ] = Êxh(X̂t∧τ̂XU

) = h(x) + Êx
ˆ t∧τ̂XU

0

L̂h(X̂s)ds.

Using this and the duality, we have

ˆ
U

P̂U
t h(x)Px(τXU ≤ ε)m(dx) =

ˆ
U

P̂U
t h(x)(1− PU

ε 1(x))m(dx)

=

ˆ
U

(P̂U
t h(x)− P̂U

t+εh(x))m(dx) = −
ˆ
U

Êx
ˆ t+ε

t

L̂h(X̂s)1s<τ̂XU dsm(dx)

≤ ε

(
sup
x∈U
|L̂h(x)|

)
m(U),

from which the conclusion follows immediately. �

Lemma 3.3.2. Let µ ∈ KT (D) for some T > 0. If A is the continuous ad-

ditive functional of XD associated with µ, h ∈ D(L̂) is nonnegative, bounded

and has compact support contained in U , then for any bounded Borel function

f on U and t ≥ 0,

lim
ε→0

1

ε

ˆ
U

P̂U
t h(x)

(
Ex
ˆ ε

0

1τXU ≤sf(XD
s )dAs

)
m(dx) = 0.
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Proof. Using the strong Markov property, we get

∣∣∣∣Ex ˆ ε

0

1τXU ≤sf(XD
s )dAs

∣∣∣∣ =

∣∣∣∣∣Ex
[
E
XD

τX
U

ˆ ε−τXU

0

f(XD
s )dAs : τXU < ε

]∣∣∣∣∣
≤
(

sup
y∈X

Ey
ˆ ε

0

|f(XD
s )|dAs

)
Px(τXU ≤ ε).

The assertion now follows from Lemma 3.3.1 and condition (2) in Definition

3.1.10. �

Proposition 3.3.3. Let µ ∈ KT (D) for some T > 0. If A is the continuous

additive functional of X associated with µ, then (At∧τXU ) is the continuous

additive functional of XU associated with µU .

Proof. Let AUt := At∧τXU . Then AU is a continuous additive functional of XU .

Let h ∈ D(L) be non-negative, bounded and have compact support contained

in U , and let f be a bounded Borel function supported in U . Define

gt :=

ˆ
U

h(x)Ex
ˆ t

0

f(XU
s )dAUs m(dx).

Since

gt+ε − gt =

ˆ
U

h(x)Ex
ˆ t+ε

t

f(XU
s )dAUs m(dx)

=

ˆ
U

h(x)PU
t (E·

ˆ ε

0

f(XU
s )dAs)(x)m(dx)

=

ˆ
U

P̂U
t h(x)Ex

ˆ ε

0

1τXU >sf(XU
s )dAsm(dx),

it follows from Lemma 3.3.2 that

lim
ε→0

gt+ε − gt
ε

= lim
ε→0

1

ε

ˆ
U

P̂U
t h(x)Ex

ˆ ε

0

f(XD
s )dAsm(dx)

=

ˆ
U

P̂U
t h(x)f(x)µ(dx).
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Thus, we obtain that

ˆ
U

h(x)Ex
ˆ t

0

f(XU
s )dAUs m(dx) =

ˆ t

0

ˆ
U

P̂U
s h(x)f(x)µ(dx)ds

=

ˆ
U

h(x)

ˆ t

0

PU
s f(x)dsµ(dx).

Using the dominated convergence theorem and the monotone convergence

theorem, one can show that the equality above is valid for all bounded non-

negative Borel functions h and f supported in U . Therefore,

ˆ
U

f(x)µ(dx) = lim
t↓0

EmU
[

1

t

ˆ t

0

f(XU
s )dAUs

]
.

�
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Chapter 4

Heat kernel estimates for

subordinate Markov processes

In this chapter, we study heat kernel estimates for subordinate Markov pro-

cesses on spaces with boundary. The main motivation comes from [97], where

it was established that the jump kernels of subordinate killed Lévy processes

have an unusual form not observed before. The results of this chapter is

based on [59]. We begin with the following motivating and also the simplest

example covered by our results.

Let D ⊂ Rd, d ≥ 1, be a bounded C1,1 open set. Let Y be an isotropic

α-stable process in Rd, α ∈ (0, 2] and let Y D denote the part process of Y

killed upon exiting D. When α = 2, we further assume that D is connected.

The following global two-sided estimates of the heat kernel pD(t, x, y) of Y D

were obtained in [63, 128] (for α = 2) and [35] (for α < 2): there exist

positive constants ci, i = 1, . . . , 8, such that following estimates hold true.

For (t, x, y) ∈ (0, 1]×D ×D,

c1hα(t, x, y)
(
t−d/α∧ t

|x− y|d+α

)
≤ pD(t, x, y) ≤ c2hα(t, x, y)

(
t−d/α∧ t

|x− y|d+α

)
,

for α < 2, and

c3h2(t, x, y) t−d/2e−c4|x−y|
2/t ≤ pD(t, x, y) ≤ c5h2(t, x, y) t−d/2e−c6|x−y|

2/t,
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for α = 2, where the boundary function hα(t, x, y) is given by

hα(t, x, y) =
(

1 ∧ δD(x)

t1/α

)α
2
(

1 ∧ δD(y)

t1/α

)α
2
.

For (t, x, y) ∈ [1,∞)×D ×D,

c7e
−λ1tδD(x)

α
2 δD(y)

α
2 ≤ pD(t, x, y) ≤ c8e

−λ1tδD(x)
α
2 δD(y)

α
2 ,

where λ1 is the smallest eigenvalue of the Dirichlet (fractional) Laplacian

(−∆)α/2
∣∣
D

.

Let S = (St)t≥0 be a β-stable subordinator, β ∈ (0, 1), independent of Y D,

and let X = (Xt)t≥0 be the subordinate process: Xt := Y D
St

. The generator of

X is equal to (the negative of)
(
(−∆)α/2

∣∣
D

)β
– the fractional power of the

Dirichlet fractional Laplacian. The heat kernel q(t, x, y) of the subordinate

process X is given by

q(t, x, y) =

ˆ ∞
0

pD(s, x, y)P(St ∈ ds), t > 0, x, y ∈ D.

With a help from the results in Chapter 2, we can obtain sharp two-sided

estimates of q(t, x, y). Recall that δ∨(x, y) = δD(x) ∨ δD(y) and δ∧(x, y) =

δD(x) ∧ δD(y) for x, y ∈ D.

Theorem 4.0.1. (i) For all (t, x, y) ∈ (0, 1]×D ×D,

q(t, x, y) '
(

1∧ δD(x)

t1/(αβ)

)α
2
(

1∧ δD(y)

t1/(αβ)

)α
2

(
t−d/(αβ) ∧ tB

α,β(t, x, y)

|x− y|d+αβ

)
, (4.0.1)

where

B2,β(t, x, y) :=

(
1 ∧ δD(x) ∨ t1/(2β)

|x− y|

)(
1 ∧ δD(y) ∨ t1/(2β)

|x− y|

)
and for α < 2,

Bα,β(t, x, y) :=
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

(
1 ∧ δ∧(x, y) ∨ t1/(αβ)

|x− y|

)α−αβ
, if β >

1

2
,(

1 ∧ δ∧(x, y) ∨ t1/(αβ)

|x− y|

)α
2
(

1 ∧ δ∨(x, y) ∨ t1/(αβ)

|x− y|

)α( 1
2
−β)

, if β <
1

2
,(

1 ∧ δ∧(x, y) ∨ t1/(αβ)

|x− y|

)α
2

log

(
e+

(δ∨(x, y) ∨ t1/(αβ)) ∧ |x− y|
(δ∧(x, y) ∨ t1/(αβ)) ∧ |x− y|

)
, if β =

1

2
.

(ii) For all (t, x, y) ∈ [1,∞)×D ×D,

q(t, x, y) ' e−tλ
β
1 δD(x)α/2δD(y)α/2.

Remark 4.0.2. From the forms of the heat kernel estimates (4.0.1), one can

easily see the following: (1) For x, y away from the boundary (in the sense

that δ∧(x, y) ≥ |x− y| ∨ t1/(αβ)), and for all β ∈ (0, 1), it holds that

q(t, x, y) ' t−d/(αβ) ∧ t

|x− y|d+αβ
. (4.0.2)

(2) Dividing (4.0.1) by t and letting t → 0, we can deduce that the jump

kernel is comparable with
Bα,β(0, x, y)

|x− y|d+αβ
.

Thus, in view of the definition of Bα,β(t, x, y), one can rewrite the estimates

(4.0.1) as follows:

q(t, x, y) '
(

1∧ δD(x)

t1/(αβ)

)α
2
(

1∧ δD(y)

t1/(αβ)

)α
2

(
t−d/(αβ)∧ sup

|x−w|,|y−z|<t1/(αβ)

(tJ(w, z))

)
.

Recall that the two-sided estimates of the form (4.0.2) are valid for the

heat kernel of the isotropic αβ-stable process in the whole space. The novelty

of the estimates for q(t, x, y) is in the boundary term, which is quite unusual

and involves interplays among δ∨(x, y), δ∧(x, y) and time t itself. In this

respect, the form of the boundary term is very different from the boundary

function h(t, x, y) for the underlying process Y D.
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In this chapter, we obtain sharp two-sided estimates on the jump kernel,

heat kernel and Green function for subordinate Markov processes in a set-

ting which is more general, in several directions, than that of the example

above. We allow (i) quite general subordinators, (ii) Markov processes with

state space D that is either a bounded or an unbounded subset of a locally

compact separable metric space, and (iii) very general form of two-sided es-

timates of the heat kernel pD(t, x, y) of the underlying process. We also show

that parabolic functions with respect to X satisfy Hölder regularity and the

parabolic Harnack inequality in Section 4.4.

4.1 Setup and main assumptions

Let (M,ρ) be a locally compact separable metric space such that all bounded

closed sets are compact, and let m a positive Radon measure on M with full

support. For simplicity, we write dy instead of m(dy).

Let V (x, r) := m(B(x, r)). We assume that there exist a localization

radius R0 ∈ (0,∞] and constants d2 ≥ d1 > 0 such that, for every a ≥ 1,

there exists a constant CV = CV (a) ≥ 1 satisfying

C−1
V

(R
r

)d1

≤ V (x,R)

V (x, r)
≤ CV

(R
r

)d2

for all x ∈M and 0 < r ≤ R < aR0.

(4.1.1)

As a consequence of (4.1.1), we see that for all R0, ε, η > 0, there exists a

constant C = C(R0, ε, η) > 0 such that

V (x, r) ≤ CV (y, ηr) for all x, y ∈M and ερ(x, y) < r ≤ R0. (4.1.2)

If the localization radius R0 is infinite, then the above constant C is inde-

pendent of R0 and (4.1.2) holds for ερ(x, y) < r <∞.

Let D be a proper open subset of M , and Y D = (Y D
t ,Px) be a Hunt pro-

cess in D. We assume that the semigroup of Y D admits a density pD(t, x, y).
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Thus, for any non-negative Borel function f on D,

Ex[f(Y D
t )] =

ˆ
D

f(y)pD(t, x, y) dy.

Let S = (St)t≥0 be a driftless subordinator with Laplace exponent φ and

tail measure w, independent of Y D. We will be interested in the subordinate

process Xt := Y D
St

. It is well known (cf. [26, p.67, pp. 73–75] and [122]) that

X is also a Hunt process and admits a heat kernel q(t, x, y) which is given

by the formula

q(t, x, y) = E[pD(St, x, y)] =

ˆ ∞
0

pD(s, x, y)P(St ∈ ds).

On the subordinator we will impose the assumption PolyR1(β1, β2) (see

Definition 2.0.2 in Chapter 2). Now we explain the assumptions we impose

on pD(t, x, y). These assumptions are motivated by various examples from

the literature.

We first introduce two functions Φ,Ψ : [0,∞) → [0,∞), both strictly

increasing and satisfying Ψ(r) ≥ Φ(r) for all r ≥ 0. Moreover, we always

assume that there exist constants α1, α2, α3, α4 > 0 and c1, c2, c3, c4 > 0 such

that for all R ≥ r > 0,

c1

(R
r

)α1

≤ Φ(R)

Φ(r)
≤ c2

(R
r

)α2

and c3

(R
r

)α3

≤ Ψ(R)

Ψ(r)
≤ c4

(R
r

)α4

.

(4.1.3)

Note that for every a ≥ 1, there exist constants c1(a) > 0 and c2(a) > 0 such

that, for all r, R > 0 satisfying 0 < r ≤ aR, it holds that

c1(a)
(R
r

)α1

≤ Φ(R)

Φ(r)
≤ c2(a)

(R
r

)α2

. (4.1.4)

Using [33, Lemmas 3.1 and 3.2], we may replace Φ by a nicer function.

Lemma 4.1.1. There exists a strictly increasing differentiable function Φ̃

satisfying the following two properties:

(P1) Φ(r) ' Φ̃(r) for r > 0 and Φ̃ satisfies (4.1.4);
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(P2) Φ̃′(r) ' r−1Φ̃(r) and (Φ̃−1)′(t) ' t−1Φ̃−1(t) for r, t > 0.

Using the fact that supu>0 u
ke−u <∞ for every k > 0, we get the following

lemma from the scaling property of Φ.

Lemma 4.1.2. Let f : (0,∞) → (0,∞) be a given function. Assume that

there exist constants c1, p > 0 such that spf(s) ≤ c1t
pf(t) for all 0 < s ≤ t.

Then there exists a constant c2 = c2(c1, p) > 0 such that for all r, κ > 0,

ˆ r

0

f(s) exp
(
− κ2

Φ−1(s)2

)
ds ≤ c2r

p+1f(r)

Φ(κ)p
.

Definition 4.1.3. We say that a function h : (0,∞) ×D ×D → [0, 1] is a

boundary function if it satisfies the following two properties:

(H1) For each fixed (x, y) ∈ D ×D, s 7→ h(s, x, y) is nonincreasing.

(H2) There exist constants c1 > 0, γ ≥ 0 such that for all x, y ∈ D,

sγh(s, x, y) ≤ c1t
γh(t, x, y), 0 < s ≤ t < 4Φ(diam(D)) + 1,

with 4Φ(diam(D)) + 1 interpreted as ∞ when D is unbounded.

A boundary function h is said to be regular if there exists c2 > 0 such

that for any 0 < t < 4Φ(diam(D)) + 1,

h(t, x, y) ≥ c2 for all x, y ∈ D with δ∧(x, y) ≥ Φ−1(t).

A boundary function h is said to be of Harnack-type if it is regular and

there exists c3 > 0 such that for all x, y ∈ D and 0 < t < Φ(ρ(x, y)),

h(t, x, y) ≤ c3h(t, z, y) for all z ∈ D, 2ρ(x, z) ≤ ρ(x, y) ∧ δD(x). (4.1.5)

From now on, h(t, x, y) always denotes a boundary function.

Remark 4.1.4. If h is a regular boundary function, then for every ε ∈ (0, 1),

there exists c = c(ε) > 0 such that for any 0 < t < 4Φ(diam(D)) + 1,

h(t, x, y) ≥ c for all x, y ∈ D with δ∧(x, y) ≥ εΦ−1(t).
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Example 4.1.5. (a) Let p, q ≥ 0. For t > 0 and x, y ∈ D, define

hp,q(t, x, y) :=
(

1 ∧ Φ(δD(x))

t

)p(
1 ∧ Φ(δD(y))

t

)q
,

hp(t, x, y) := hp,p(t, x, y). (4.1.6)

Then hp,q(t, x, y) is a typical example of a regular boundary function which is

also of Harnack-type. The boundary function hp(t, x, y) is very typical when

D is a bounded smooth open subset of Rd.

(b) Let hp(t, x, y) be the function defined in (4.1.6). Then hp(t ∧ 1, x, y) is

also a regular boundary function of Harnack-type. This is a typical boundary

function for smooth exterior open sets.

(c) A quite general example of a boundary function is obtained as follows.

Suppose that Y D admits a dual process Ŷ D. Let ζ and ζ̂ be the lifetimes of

Y D and Ŷ D respectively. Assume that the survival probabilities Px(ζ > t) and

Py(ζ̂ > t) satisfy the following doubling property: Px(ζ > t/2) ' Px(ζ > t)

and Py(ζ̂ > t/2) ' Py(ζ̂ > t) for all 0 < t < 4Φ(diam(D)) + 1 and x, y ∈ D.

Then h(t, x, y) := Px(ζ > t)Py(ζ̂ > t) is a boundary function. Moreover, the

above h(t, x, y) is of Harnack-type if, in addition, (1) it is regular; (2) Y D

satisfies the (interior elliptic) Harnack inequality and (3) there is c1 > 0 such

that for all x ∈ D and Φ(δD(x)) < t < Φ(diam(D)),

Px(ζ > t) ' Px(ζ > τU(x,t)) = Px(Y D
τU(x,t)

∈ D),

where U(x, t) := B(x, c1Φ−1(t)) ∩D and τV = inf{t > 0 : Y D
t /∈ V }.

In particular, under the setting and Assumptions A and U in Section 3.1,

for the Hunt process Y defined right below (3.1.12) on a κ-fat open set D with

a critical killing potential µ ∈ K1(D), by [58, Lemma 2.21], we know that

the boundary function h(t, x, y) = Px(ζ > t)Py(ζ̂ > t) is of Harnack-type.

See [19, 22, 41] for related work.

For later use, we record the following consequence of (H1) and (H2): Let
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k > 1 and s, t > 0 satisfy k−1s ≤ t ≤ ks ≤ 4Φ(diam(D)). Then

c−1
1 k−γh(s, x, y) ≤ h(t, x, y) ≤ c1k

γh(s, x, y) for all x, y ∈ D. (4.1.7)

Define

Ia(t, x, y, C0) :=

1

V (x,Φ−1(t))
∧
(

C0t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

1

V (x,Φ−1(t))
exp

(
− aρ(x, y)2

Φ−1(t)2

))
.

Definition 4.1.6. Let h(t, x, y) be a boundary function.

(a) We say that HKh
B holds, if D is bounded and the following estimates

hold: (i) there exist constants C0 ∈ {0, 1} and c1, c2, c3, c4 > 0 such that for

all (t, x, y) ∈ (0, 1]×D ×D,

c1h(t, x, y)Ic2(t, x, y, C0) ≤ pD(t, x, y) ≤ c3h(t, x, y)Ic4(t, x, y, C0), (4.1.8)

and (ii) there exists a constant λD > 0 such that for all (t, x, y) ∈ [1,∞) ×
D ×D,

pD(t, x, y) ' e−λDth(1, x, y). (4.1.9)

(b) We say that HKh
U holds, if the constant R0 in (4.1.1) is infinite and

(4.1.8) holds for all (t, x, y) ∈ (0,∞)×D ×D.

By using the function (1 ∧ R1

10Φ(diam(D))
)Φ(r) instead of Φ(r), we may and

do assume that Φ(diam(D)) < R1/8 whenever PolyR1(β1, β2) and HKh
B

hold.

Remark 4.1.7. One can easily see that if HKh
B holds, then for every T > 0,

there exist constants c1, c2, c3, c4 > 0 such that (4.1.8) holds for all (t, x, y) ∈
(0, T ]×D ×D, and (4.1.9) holds for all (t, x, y) ∈ [T,∞)×D ×D.
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Example 4.1.8. Here are several examples of processes satisfying HKh
B or

HKh
U. We will not try to give the most general examples but the reader will

see from examples below that our setup is general enough to cover almost all

known cases. In all examples below, the boundary functions are of Harnack

type.

(a) Suppose that D is a bounded C1,1 open subset of Rd.

(1) If D is connected and Y D is the killed Brownian motion in D, then

HKh
B is satisfied with C0 = 0, Φ(r) = r2 and boundary function h1/2. See

[56] for a more general example.

(2) If α ∈ (0, 2) and Y D is a killed isotropic α-stable process in D, then

HKh
B is satisfied with Φ(r) = Ψ(r) = rα and boundary function h1/2, cf.

[35]. More generally, suppose χ is a complete Bernstein function satisfying

global weak scaling conditions with indices β1, β2 ∈ (0, 1), Y is a subordi-

nate Brownian motion in Rd via an independent subordinator with Laplace

exponent χ, Y D is the part process of Y in D. Then HKh
B is satisfied with

Φ(r) = Ψ(r) = 1/χ(r−2) and boundary function h1/2, cf. [41]. See [21, 73, 85]

for more general examples.

(3) If D is connected and Y is the independent sum of isotropic α-

stable process and Brownian motion, then its part process Y D in D sat-

isfies HKh
B with Φ(r) = r2 ∧ rα, Ψ(r) = rα and boundary function h1/2,

cf. [37]. More generally, suppose χ is a complete Bernstein function satis-

fying the conditions in the paragraph above and Y is the independent sum

of Brownian motion and a subordinate Brownian motion via a subordinator

with Laplace exponent χ, then its part process Y D in D satisfies HKh
B with

Φ(r) = Φχ(r) := r2 ∧ (1/χ(r−2)), Ψ(r) = 1/χ(r−2) and boundary function

h1/2, cf. [43].

(4) Suppose that χ is a complete Bernstein function such that the func-

tion λ 7→ χ(λ)− λχ′(λ) satisfies weak scaling conditions for λ ≥ a > 0 with

upper index δ < 2 and lower index γ > 2−11{δ≥1}. Suppose that Y is a subor-

dinate Brownian motion in Rd via an independent subordinator with Laplace

exponent χ, Y D is the part process of Y in D. Then HKh
B is satisfied with
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Φ(r) = 1/χ(r−2), Ψ(r) = 1/(χ(r−2) − r−2χ′(r−2)) and boundary function

h1/2, cf. [88].

(5) Let α ∈ (1, 2) and Y D be a censored α-stable process in D. Then it

follows from [36] that HKh
B is satisfied with Φ(r) = Ψ(r) = rα and boundary

function h(α−1)/α.

(6) Let α ∈ (0, 2) and ZD be the part process, in D, of a reflected isotropic

α-stable process in D. For any q ∈ [α−1, α)∩(0, α), let Y D be the process on

D corresponding to the Feynman-Kac semigroup of ZD via the multiplicative

functional exp(−
´ t

0
C(d, α, q)dist(ZD

s , ∂D)−αds), where the positive constant

C(d, α, q) is defined in section 3.2.1. It follows from Theorem 3.2.2 that the

small time estimates (4.1.8) holds with Φ(r) = Ψ(r) = rα and hq/α. Using

the small time estimates and the argument in [50, Section 4], one can easily

show that the large time estimates in Definition 4.1.6(a)(ii) also holds. Thus

HKh
B holds.

(7) Suppose that D is connected, d ≥ 3 and κ ≥ −1
4
. Let Y D be the

process corresponding to ∆|D − κδD(x)−2, the Dirichlet Laplacian in D with

critical potential κδD(x)−2. It follows from [64, (6)] and [66, Corollary 1.8]

that the heat kernel of Y D satisfies HKh
B with C0 = 0, Φ(r) = r2 and

boundary function hp, where p = 1
2
(1

2
+
√

1
4

+ κ).

(8) Suppose that α ∈ (1, 2) and d ≥ 2. Let b : Rd → Rd such that |b|
is in the Kato class Kd,α−1 (see [38, Definition 1.1] for definition). Let Y

be an α-stable process with drift b in Rd, that is, a process with generator

−(−∆)α/2 +b ·∇, and let Y D be the part process of Y in D. By [38, Theorem

1.3], HKh
B holds with Φ(r) = Ψ(r) = rα and h1/2. See also [90].

(9) For general setups in which HKh
B is satisfied, see [58, Section 2] and

[78].

(b) Suppose that D is an unbounded C1,1 open subset of Rd.

(1) If D is the domain above the graph of a bounded Lipschitz function

in Rd−1, then the killed Brownian motion in D satisfies HKh
U with C0 = 0,

Φ(r) = r2 and a boundary function defined in terms of survival probabilities

like in Example 4.1.5(b), which is of Harnack type, cf. [123].
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(2) Suppose that D is a half-space-like C1,1 open set in Rd and α ∈
(0, 2). Let Y D be the part process in D of an isotropic α-stable process.

Then by [52, Theorem 1.2], HKh
U is satisfied with Φ(r) = Ψ(r) = rα and

boundary function h1/2. More generally, let Y D be the part process inD of the

independent sum of Brownian motion and an isotropic α-stable process. By

[39, Theorem 1.4 and Remark 1.5(ii)], HKh
U is satisfied with Φ(r) = r2 ∧ rα,

Ψ(r) = rα and boundary function h1/2. When D is an exterior C1,1 open set in

Rd with d > α and Y D is part process in D of an isotropic α-stable process, it

follows from [52, Theorem 1.2] that HKh
U is satisfied with Φ(r) = Ψ(r) = rα

and boundary function h1/2(t ∧ 1, x, y). See [84] for a more general example.

(3) Suppose D = Rd
+. Let χ be a complete Bernstein function satisfying

global weak scaling conditions with indices α1, α2 ∈ (0, 1), Y be a subordi-

nate Brownian motion in Rd via an independent subordinator with Laplace

exponent χ, Y D be the part process of Y in D. It follows from [95, Theorem

5.10] that HKh
U is satisfied with Φ(r) = Ψ(r) = 1/χ(r−2) and boundary

function h1/2. See [31] for a more general example.

(4) Suppose that D = Rd
+ and α ∈ (0, 2). Let ZD be the part process, in

D, of a reflected isotropic α-stable process in D. For any q ∈ [α−1, α)∩(0, α),

let Y D be the process on D corresponding to the Feynman-Kac semigroup of

ZD via the multiplicative functional exp(−
´ t

0
C(d, α, q)δD(ZD

s )−αds), where

C(d, α, q) is defined in subsection 3.2.1. It follows from Theorem 3.2.2 that

HKh
U is satisfied with Φ(r) = Ψ(r) = rα and boundary function hq/α.

(5) Suppose that D = Rd \ {0} and α ∈ (0, 2). Let Z be an isotropic

α-stable process in Rd. For any q ∈ (0, α), let Y D be the process on D

corresponding to the Feynman-Kac semigroup of ZD via the multiplicative

functional exp(−
´ t

0
C̃(d, α, q)|ZD

s |−αds), where C̃(d, α, q) is defined in sub-

section 3.2.3. It follows from Theorem 3.2.9 and [82, Theorem 1.1] that HKh
U

is satisfied with Φ(r) = Ψ(r) = rα and boundary function hq/α.

(6) Suppose that D = Rd\{0}, d ≥ 2 or D = (0,∞). Let Y D be a process

with generator ∆ + (a− 1)|x|−2
∑d

i,j=1 xixj∂ij + κ|x|−2 · ∇ − b|x|−2 for some
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a > 0, κ, b ∈ R such that

Λ :=
1

2

√
b

a
+
(d− 1 + κ− a

2a

)2

≥ 1

4a

(
(d−1+κ−a)∨((2a−1)d+1−κ−3a)

)
.

Note that when a = 1 and κ, b ≥ 0, the above inequality is always true. It

follows from [106, Proposition 4.14, Theorem 6.2, Corollary 6.4] that HKh
U

is satisfied with C0 = 0, Φ(r) = r2 and boundary function hp,q where p =

Λ− (d− 1 + κ− a)/(4a) and q = Λ− ((2a− 1)d+ 1− κ− 3a)/(4a).

(7) Suppose that α ∈ (1, 2) and D = Rd \{0}, d ≥ 3. Let Y D be a process

with generator −(−∆)−α/2 +κ|x|−αx ·∇ for some κ ∈ (0,∞). It follows from

[98, Theorems 4 and 5] that HKh
U is satisfied with Φ(r) = Ψ(r) = rα and

boundary function h = h0,β/α for β ∈ (0, α) determined by the equation at

the beginning of [98, Section 3.2].

We briefly discuss the term Ia(t, x, y, C0) appearing in (4.1.8). If C0 = 0,

then clearly

Ia(t, x, y, 0) =
1

V (x,Φ−1(t))
exp

(
− aρ(x, y)2

Φ−1(t)2

)
. (4.1.10)

Suppose now that C0 = 1 and a > 0.

Lemma 4.1.9. For any K ≥ 1, there are comparability constants depending

on K such that when t ≥ K−1Φ(ρ(x, y)),

Ia(t, x, y, 1) ' 1

V (x,Φ−1(t))

and when t ≤ KΦ(ρ(x, y)),

Ia(t, x, y, 1) ' t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

1

V (x,Φ−1(t))
exp

(
− aρ(x, y)2

Φ−1(t)2

)
.
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In particular, if Ψ(r) ' Φ(r) for r ∈ (0, diam(D)), then for each fixed a > 0,

Ia(t, x, y, 1) ' 1

V (x,Φ−1(t))
∧ t

V (x, ρ(x, y))Φ(ρ(x, y))
, t > 0, x, y ∈ D.

(4.1.11)

4.2 Jump kernel and heat kernel estimates

With the tail measure w of the subordinator S, for a given boundary function

h, we define for (t, x, y) ∈ [0,∞)×D ×D,

B∗h(x, y) :=

ˆ Φ(ρ(x,y))

0

h(s, x, y)w(s)ds (4.2.1)

and if φ−1(1/t)−1 ≤ Φ(ρ(x, y)),

Bh(t, x, y) :=

ˆ 4Φ(ρ(x,y))

2φ−1(1/t)−1

h(s, x, y)w(s)ds. (4.2.2)

Since
´ r

0
w(s)ds <∞ for all r > 0 and h ≤ 1, the integral in (4.2.1) converges.

Note that, by (H1), B∗h(x, y) ' Bh(0, x, y) for all (x, y) ∈ D ×D.

4.2.1 Jump kernel estimates

The jump kernel of the subordinate process X is given by

J(x, y) =

ˆ ∞
0

pD(s, x, y)ν(ds) , x, y ∈ D. (4.2.3)

See [26, p.74] and also [110].

Theorem 4.2.1. Suppose that either (1) PolyR1(β1, β2) and HKh
B hold, or

(2) Poly∞(β1, β2) and HKh
U hold. Then, for (x, y) ∈ D ×D with x 6= y,

J(x, y) ' C0B∗h(x, y)

V (x, ρ(x, y))Ψ(ρ(x, y))
+h(Φ(ρ(x, y)), x, y)

w
(
Φ(ρ(x, y))

)
V (x, ρ(x, y))

. (4.2.4)
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Proof. Since the proofs are similar, we only give the proof of the case (1),

which is more complicated. Fix x, y ∈ D with x 6= y and let r := ρ(x, y) > 0.

By Remark 4.1.7, (4.1.8) and (4.1.9) hold with T := Φ(2diam(D)). Then by

(4.2.3) and Lemma 4.1.9,

J(x, y) � C0

V (x, r)Ψ(r)

ˆ Φ(r)

0

sh(s, x, y)ν(ds)

+

ˆ Φ(r)

0

h(s, x, y)

V (x,Φ−1(s))
exp

(
− cr2

Φ−1(s)2

)
ν(ds)

+

ˆ T

Φ(r)

h(s, x, y)

V (x,Φ−1(s))
ν(ds) + h(1, x, y)

ˆ ∞
T

e−λDsν(ds)

=: C0J1 + J2 + J3 + J4.

By PolyR1(β1, β2), there exists a > 1 such that w(s/a) ≥ 2w(s) for all

s < R1. Therefore, by (4.1.7), since we assumed Φ(diam(D)) < R1/8,

V (x, r)Ψ(r)J1 =
∑
i∈N

ˆ a−i+1Φ(r)

a−iΦ(r)

sh(s, x, y)ν(ds)

'
∑
i∈N

a−iΦ(r)h(a−iΦ(r), x, y)
(
w(a−iΦ(r))− w(a−i+1Φ(r))

)
'
∑
i∈N

a−iΦ(r)h(a−iΦ(r), x, y)w(a−iΦ(r)) ' B∗h(x, y).

Next, by (H1), the scaling and monotonicity of Φ, we get that

J2 ≥
h(Φ(r), x, y)

V (x, r)

ˆ Φ(r)

Φ(r)/a

exp
(
− c1r

2

Φ−1(s)2

)
ν(ds)

≥ c2h(Φ(r), x, y)

V (x, r)

ˆ Φ(r)

Φ(r)/a

ν(ds) ≥ c2h(Φ(r), x, y)w(Φ(r))

V (x, r)
.

Hence, we obtain the lower bound in (4.2.4).

Now, we prove the upper bound in (4.2.4). Let Φ̃ be the function in

Lemma 4.1.1. Since s 7→ V (x, Φ̃−1(s))−1 and s 7→ h(s, x, y) are nonincreasing,

using the Leibniz rule for product, integration by parts and the property (P2)
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of Φ̃−1 in Lemma 4.1.1, we obtain

J2 ≤ c

ˆ Φ(r)

0

h(s, x, y)

V (x, Φ̃−1(s))
exp

(
− c3r

2

Φ̃−1(s)2

)(
− d

ds
w(s)

)
≤ c

ˆ Φ(r)

0

h(s, x, y)w(s)

V (x, Φ̃−1(s))

(
d

ds
exp

(
− c3r

2

Φ̃−1(s)2

))
ds

≤ c

ˆ Φ(r)

0

h(s, x, y)w(s)

V (x, Φ̃−1(s))

r2

sΦ̃−1(s)2
exp

(
− c3r

2

Φ̃−1(s)2

)
ds. (4.2.5)

In the second inequality above, we used the following: Since h ≤ 1, e−x ≤
kkx−k for all x, k > 0 and lims→0 sw(s) = 0 (because w is the tail of the Lévy

mesure ν), by using (4.1.1) and the scaling of Φ̃−1, we have that

lim
s→0

h(s, x, y)w(s)

V (x, Φ̃−1(s))
exp

(
− c3r

2

Φ̃−1(s)2

)
≤ c lim

s→0

w(s)

V (x, Φ̃−1(s))

(
Φ̃−1(s)2

r2

)(d2+α2)/2

≤ c

rd2+α2V (x, Φ̃−1(1))
lim
s→0

w(s)Φ̃−1(s)α2 ≤ c Φ̃−1(1)α2

rd2+α2V (x, Φ̃−1(1))
lim
s→0

sw(s) = 0.

By PolyR1(β1, β2), (H2), (4.1.1), (4.1.4) and the fact that Φ ' Φ̃, we can

use Lemma 4.1.2 with f(s) = h(s, x, y)w(s) V (x, Φ̃−1(s))−1s−1Φ̃−1(s))−2 and

p = γ + β2 + 1 + (d2 + 2)/α1 to deduce from (4.2.5) that

J2 ≤
ch(Φ(r), x, y)w(Φ(r))

V (x, r)
. (4.2.6)

For J3 and J4, since s 7→ V (x,Φ−1(s))−1, s 7→ h(s, x, y) and s 7→ w(s) are

nonincreasing, we have by the boundedness of D that

J3 + J4 ≤
h(Φ(r), x, y)w(Φ(r))

V (x, r)
+ h(1, x, y)w(T ) ≤ ch(Φ(r), x, y)w(Φ(r))

V (x, r)
.

This completes the proof. �

Suppose that Ψ ' Φ and C0 = 1. Then the first term in (4.2.4) dominates

the second in view of (1.1.2). Moreover, if PolyR1(β1, β2) holds with β2 < 1,

then according to [109, Lemma 2.6, Proposition 2.9], we get that w(s) '
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φ(1/s) for all 0 < s < R1/2 and hence

J(x, y) ' 1

V (x, ρ(x, y))Φ(ρ(x, y))

ˆ Φ(ρ(x,y))

0

h(s, x, y)φ(1/s) ds.

In case the boundary function is equal to h1/2, the integral above can be

estimated in the same way as in [97, Lemma 8.1], cf. [97, (8.4)].

Suppose that C0 = 0. Then

J(x, y) ' h(Φ(ρ(x, y))
w(h(Φ(ρ(x, y)), x, y)

V (x, ρ(x, y))
. (4.2.7)

In particular, in the context of Example 4.1.8(b-1), and assuming β2 < 1, the

above formula reduces to [96, Theorem 4.4.(1)]. Similarly, if D is an exterior

C1,1 domain in Rd, the boundary function is equal to h1/2(t ∧ 1, x, y) and

β2 < 1, then (4.2.7) reduces to [96, Theorem 4.4.(2)].

4.2.2 Heat kernel estimates

Let

ψ(r) :=
1

φ(1/Φ(r))
, r > 0. (4.2.8)

Since φ and Φ are strictly increasing, ψ is also strictly increasing. Moreover, it

follows from PolyR1(β1, β2), Lemma 2.1.1 and (4.1.3) that, for every R0 > 0,

there exist c1, c2 > 0 such that

c1

(R
r

)α1β1

≤ ψ(R)

ψ(r)
≤ c2

(R
r

)α2(β2∧1)

, 0 < r < R < R0. (4.2.9)

In case when Poly∞(β1, β2) holds, (4.2.9) is valid with R0 =∞. Note that

ψ−1(t) = Φ−1
(
φ−1(1/t)−1

)
, t > 0. (4.2.10)

Recall the definition of the function Bh(t, x, y) from (4.2.2).

Theorem 4.2.2. Suppose that PolyR1(β1, β2) and HKh
B hold. Then for ev-

ery T > 0, the following estimates are valid for all (t, x, y) ∈ (0, T ]×D×D:
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(i) If ψ(ρ(x, y)) ≤ t, then

q(t, x, y) ' h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
. (4.2.11)

(ii) If ψ(ρ(x, y)) ≥ t, then

q(t, x, y) � C0

V (x, ρ(x, y))Ψ(ρ(x, y))

(
tBh(t, x, y) +

h(φ−1(1/t)−1, x, y)

φ−1(1/t)

)
+
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
− c ρ(x, y)2

ψ−1(t)2

)
+ h(Φ(ρ(x, y)), x, y)

tw
(
Φ(ρ(x, y))

)
V (x, ρ(x, y))

.

Proof. Take x, y ∈ D and let r := ρ(x, y). We start by establishing some

relations valid for all t ∈ (0, T ]. By Corollary 2.2.2, there exist constants

δ, ε ∈ (0, 1) such that

q(t, x, y) ≥ δ inf
s∈[εφ−1(1/t)−1,φ−1(1/t)−1]

pD(s, x, y), t ∈ (0, T ]. (4.2.12)

On the other hand, by Remark 4.1.7 (with T = Φ(diam(D))), (4.1.10),

Lemma 4.1.9, (4.1.9) and the fact that exp(−cr2/Φ−1(s)2) ' 1 when s >

Φ(r), we see that

q(t, x, y) � C0

ˆ Φ(r)

0

sh(s, x, y)

V (x, r)Ψ(r)
P(St ∈ ds)

+

ˆ Φ(diam(D))

0

h(s, x, y)

V (x,Φ−1(s))
exp

(
− cr2

Φ−1(s)2

)
P(St ∈ ds)

+ h(1, x, y)

ˆ ∞
Φ(diam(D))

e−λDsP(St ∈ ds)

=: C0I1 + I2 + I3. (4.2.13)

(i) Assume that ψ(r) ≤ t. By Remark 4.1.7, (H1), (4.1.1), the scaling of
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Φ−1 and (4.2.10), there exists c1 > 0 such that

inf
s∈[εφ−1(1/t)−1,φ−1(1/t)−1]

pD(s, x, y) ≥ c1
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
, t ∈ (0, T ].

Hence, the lower bound in (4.2.11) follows from (4.2.12).

Now, we prove the upper bound in (4.2.11). First, using Corollary 2.2.3

in the first inequality below, the assumption Ψ ≥ Φ and Lemma 2.1.7 with

N = γ + d2/α1 in the second, (H2), (4.2.10) and (4.1.3) in the third, and

(4.1.1) in the last, we get that

I1 ≤
Φ(r)h(Φ(r), x, y)

V (x, r)Ψ(r)
exp

(
− t

2
(H ◦ σ)

(
t,Φ(r)

))
≤ c2

h(Φ(r), x, y)

V (x, r)

(
Φ(r)φ−1(1/t)

)γ(
Φ(r)φ−1(1/t)

)d2/α1

≤ c3
h(φ−1(1/t)−1, x, y)

V (x, r)

( r

ψ−1(t)

)d2

≤ c4
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
.

Next, we observe that

I2 ≤
ˆ φ−1(1/t)−1

0

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds) +

ˆ ∞
φ−1(1/t)−1

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds)

=: I2,1 + I2,2.

By (H2), (4.1.1) and (4.1.3), we can apply Corollary 2.2.3 with p = γ+d2/α1

to get that

I2,1 ≤ c5
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
.

Moreover, we see from (H1), (4.2.10) and the monotonicity of ψ−1 that

I2,2 ≤
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
P(St ≥ φ−1(1/t)−1) ≤ h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
.

Lastly, by using (H1) and (H2), since φ and ψ are increasing and t ≤ T , we
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have that

I3 ≤ h(1, x, y) ≤ c6
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
.

Hence, we obtain the upper bound in (4.2.11) from (4.2.13).

(ii) Assume that ψ(r) ≥ t. First we establish the lower bound. From

(4.2.12), Remark 4.1.7, Lemma 4.1.9, (4.2.10), (H1), and the scaling and

monotonicity of ψ−1, we get that

q(t, x, y) ≥ c7h(φ−1(1/t)−1, x, y)

×
[
C0φ

−1(1/t)−1

V (x, r)Ψ(r)
+

1

V (x, ψ−1(t))
exp

(
− c8r

2

ψ−1(t)2

)]
. (4.2.14)

We also see from Remark 4.1.7 that

q(t, x, y) ≥ c9C0

V (x, r)Ψ(r)

ˆ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds). (4.2.15)

Let K > 1 be the constant in (2.2.6). If Φ(r) > Kφ−1(1/t)−1, then by (H1),

(H2) and (2.2.6), since we assumed Φ(diam(D)) < R1/8,

ˆ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds)

≥
∑
i∈N

Ki≤2Φ(r)φ−1(1/t)

ˆ 2Kiφ−1(1/t)−1

2Ki−1φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds)

≥ c10t

K

∑
i∈N

Ki≤2Φ(r)φ−1(1/t)

w
(
2Ki−1φ−1(1/t)−1

) ˆ 2Kiφ−1(1/t)−1

2Ki−1φ−1(1/t)−1

ds

≥ c10t

K

ˆ 4Φ(r)/K

2φ−1(1/t)−1

h(s, x, y)w(s)ds ' t

ˆ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)w(s)ds.

The last comparison is valid due to (1.1.2). Hence, we deduce from (4.2.15)

that

q(t, x, y) ≥ c11
C0tBh(t, x, y)

V (x, r)Ψ(r)
.

In case when Φ(r) ≤ Kφ−1(1/t)−1, we see from (H1), (2.0.4) and (4.2.14)
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that

C0tBh(t, x, y)

V (x, r)Ψ(r)
≤ C0t

V (x, r)Ψ(r)

ˆ 4Kφ−1(1/t)−1

2φ−1(1/t)−1

h(s, x, y)w(s)ds

≤ 4KC0
tφ−1(1/t)−1

V (x, r)Ψ(r)
h(φ−1(1/t)−1, x, y) 2eφ

(
φ−1(1/t)

)
≤ c12 q(t, x, y).

By using (2.2.6), Lemma 4.1.9, (H1), (4.1.1) and the scaling of Φ, we get

that, if 4Φ(r)/K > 2φ−1(1/t)−1, then

q(t, x, y) ≥ c13

ˆ 4Φ(r)

4Φ(r)/K

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds) ≥ c14h(Φ(r), x, y)

tw(Φ(r))

V (x, r)
.

If 4Φ(r)/K ≤ 2φ−1(1/t)−1, then t ≤ ψ(r) ≤ c15t for some c15 > 0. Moreover,

by (4.2.10) and (2.0.4),

tw(Φ(r)) ≤ tw(φ−1(1/t)−1) ≤ 2etφ
(
φ−1(1/t)

)
= 2e.

Therefore, by (H1), (4.2.14) (neglecting the first term) and (4.1.3), we obtain

q(t, x, y) ≥ c7
h(Φ(r), x, y)

V (x, r)
exp

(
− c8c15ψ

−1(t)2

ψ−1(t)2

)
≥ c16h(Φ(r), x, y)

tw(Φ(r))

V (x, r)
.

This completes the proof of the lower bound.

Now we prove the upper bound. Recall (4.2.13). Observe that

V (x, r)Ψ(r)I1

≤
ˆ φ−1(1/t)−1

0

sh(s, x, y)P(St ∈ ds) +

ˆ 2φ−1(1/t)−1

φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds)

+

ˆ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)P(St ∈ ds) =: K1 +K2 +K3.

By Corollary 2.2.3, K1 ≤ c17φ
−1(1/t)−1h(φ−1(1/t)−1, x, y). Moreover, by

(H1), we have K2 ≤ 2φ−1(1/t)−1 h(φ−1(1/t)−1, x, y). To bound K3, we use
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integration by parts and Theorem 2.2.6 to obtain

K3 =

ˆ 4Φ(r)

2φ−1(1/t)−1

sh(s, x, y)
d

ds

(
− P(St ≥ s)

)
≤ 2φ−1(1/t)−1h(φ−1(1/t)−1, x, y) +

ˆ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)P(St ≥ s)ds

+

ˆ 4Φ(r)

2φ−1(1/t)−1

sP(St ≥ s)
dh(s, x, y)

ds

≤ c18

(
φ−1(1/t)−1h(φ−1(1/t)−1, x, y) + tBh(t, x, y)

)
.

In the second inequality above, we used the fact that s 7→ h(s, x, y) is non-

increasing (so that s 7→ d
ds
h(s, x, y) ≤ 0 a.e.).

Now, we estimate I2. We have

I2 ≤
ˆ 2φ−1(1/t)−1

0

h(s, x, y)

V (x,Φ−1(s))
exp

(
− cr2

Φ−1(s)2

)
P(St ∈ ds)

+

ˆ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)

V (x,Φ−1(s))
exp

(
− cr2

Φ−1(s)2

)
P(St ∈ ds)

+

ˆ ∞
4Φ(r)

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds)

=: L1 + L2 + L3.

By applying Corollary 2.2.3, we get from (H1), (H2), (4.1.1), the scaling of

Φ and (4.2.10) that

L1 ≤ exp
(
− cr2

Φ−1(2φ−1(1/t)−1)2

) ˆ 2φ−1(1/t)−1

0

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds)

≤ c19
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
− c20r

2

ψ−1(t)2

)
.

Let Φ̃ be the function in Lemma 4.1.1. By using integration by parts and

similar calculations to (4.2.5), we get that

L2 ≤ c21

ˆ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)

V (x, Φ̃−1(s))
exp

(
− c22r

2

Φ̃−1(s)2

) d
ds

(
− P(St ≥ s)

)
157



CHAPTER 4. HEAT KERNEL ESTIMATES FOR SUBORDINATE
MARKOV PROCESSES

≤ c23

[
h(2φ−1(1/t)−1, x, y)

V (x, Φ̃−1(2φ−1(1/t)−1))
exp

(
− c22r

2

Φ̃−1(2φ−1(1/t)−1)2

)
+

ˆ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)

V (x, Φ̃−1(s))
P(St ≥ s)

r2

sΦ̃−1(s)2
exp

(
− c22r

2

Φ̃−1(s)2

)
ds

]
=: c23 (L2,1 + L2,2).

By (H1), (4.1.1), the scaling of Φ and (4.2.10), since Φ ' Φ̃, we see that

L2,1 ≤ c24
h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
− c25r

2

ψ−1(t)2

)
.

Also, by using Theorem 2.2.6 and repeating the arguments for obtaining

(4.2.6), we get that

L2,2 ≤ c26t

ˆ 4Φ(r)

2φ−1(1/t)−1

h(s, x, y)w(s)

V (x, Φ̃−1(s))

r2

sΦ̃−1(s)2
exp

(
− c22r

2

Φ̃−1(s)2

)
ds

≤ c27th(Φ(r), x, y)w(Φ(r))

V (x, r)
.

By (H1) and Theorem 2.2.6, we obtain

L3 ≤
h(Φ(r), x, y)

V (x, r)
P(St ≥ 4Φ(r)) ≤ c28h(Φ(r), x, y)

tw(Φ(r))

V (x, r)
.

Finally, we estimate I3. Using Theorem 2.2.6, (H1) and (H2), since D is

bounded, we see that

I3 ≤ c29th(1, x, y)w
(
Φ(diam(D))

)
≤ c30h(Φ(r), x, y)

tw(Φ(r))

V (x, r)
.

The proof is complete. �

By following the above proof, we obtain global estimates on q(t, x, y)

under Poly∞(β1, β2) and HKh
U.

Theorem 4.2.3. Suppose that Poly∞(β1, β2) and HKh
U hold. Then the as-

sertions in Theorem 4.2.2(i)–(ii) hold for all (t, x, y) ∈ (0,∞)×D ×D.
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Recall from Lemma 2.1.1(i) that if PolyR1(β1, β2) holds with β2 < 1,

then w(s) ' φ(1/s) for s < R2. Using this fact together with (4.1.11), we

obatin the following simpler form of off-diagonal estimates.

Corollary 4.2.4. Suppose that PolyR1(β1, β2) holds with β2 < 1 and Φ(r) '
Ψ(r) for r ∈ (0, R1).

(i) If HKh
B holds, then for every T > 0, the following estimates hold for all

(t, x, y) ∈ (0, T ]×D ×D:

(1) If ψ(ρ(x, y)) ≤ t, then (4.2.11) holds.

(2) If ψ(ρ(x, y)) ≥ t, then

q(t, x, y) ' t

V (x, ρ(x, y))
×


h(Φ(ρ(x, y)), x, y)

ψ(ρ(x, y))
when C0 = 0,

Bh(t, x, y)

Φ(ρ(x, y))
when C0 = 1.

(4.2.16)

(ii) If R1 =∞ and HKh
U holds, then (1) and (2) above hold for all (t, x, y) ∈

(0,∞)×D ×D.

In the case when D is a bounded C1,1 domain, Y D is a killed Brownian

motion in D and S is an (α/2)-stable subordinator, part (i) of the corollary

above is equivalent to [119, Theorem 4.7]. In the case when D is an exterior

C1,1 domain, Y D is a killed Brownian motion in D and S is an (α/2)-stable

subordinator, part (ii) of the corollary above corrects [119, Theorem 4.6].

For future use, we note the following rough upper estimates on q(t, x, y).

Corollary 4.2.5. (i) Suppose that PolyR1(β1, β2) and HKh
B hold. Then for

every T > 0, there exists a constant C > 0 such that for all (t, x, y) ∈
(0, T ]×D ×D,

q(t, x, y) ≤ Ch(φ−1(1/t)−1, x, y)

(
1

V (x, ψ−1(t))
∧ t

V (x, ρ(x, y))ψ(ρ(x, y))

)
.

(4.2.17)

(ii) Suppose that Poly∞(β1, β2) and HKh
U hold. Then, there exists a constant

C > 0 such that (4.2.17) holds for all (t, x, y) ∈ (0,∞)×D ×D.
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As another corollary to Theorems 4.2.2 and 4.2.3, we obtain the following

interior estimates on q(t, x, y) in case of a regular boundary function.

Corollary 4.2.6. Suppose that h(t, x, y) is a regular boundary function.

(i) If PolyR1(β1, β2) and HKh
B hold, then for every T > 0, the following

estimates hold for all (t, x, y) ∈ (0, T ]×D×D satisfying δ∧(x, y) ≥ ρ(x, y)∨
ψ−1(t).

(1) If ψ(ρ(x, y)) ≤ t, then q(t, x, y) ' 1

V (x, ψ−1(t))
.

(2) If ψ(ρ(x, y)) ≥ t, then

q(t, x, y) � C0

V (x, ρ(x, y))Ψ(ρ(x, y))

(
t

ˆ 4Φ(ρ(x,y))

2φ−1(1/t)−1

w(s)ds+
1

φ−1(1/t)

)
+

1

V (x, ψ−1(t))
exp

(
− c ρ(x, y)2

ψ−1(t)2

)
+
tw
(
Φ(ρ(x, y))

)
V (x, ρ(x, y))

.

(ii) If Poly∞(β1, β2) and HKh
U hold, then (1) and (2) above hold for all

(t, x, y) ∈ (0,∞)×D ×D satisfying δ∧(x, y) ≥ ρ(x, y) ∨ ψ−1(t).

Now we give the large time estimates for q(t, x, y) under HKh
B.

Theorem 4.2.7. Suppose that PolyR1(β1, β2) and HKh
B hold. Then for ev-

ery T > 0, there are comparison constants such that

q(t, x, y) ' e−tφ(λD)h(1, x, y), (t, x, y) ∈ [T,∞)×D ×D.

Proof. Fix x, y ∈ D and T > 0. Since lims→0(H ◦σ)(T, s) =∞ and the map

t 7→ (H ◦ σ)(t, s) is nondecreasing for each fixed s > 0, there is a constant

s0 ∈ (0, 1) such that

(H ◦ σ)(t, s0) ≥ 2φ(λD) + 1/T for all t ≥ T. (4.2.18)

By (H2), (4.1.1) and (4.1.3), we can apply Corollary 2.2.3 with f(s) =

h(s, x, y)V (x,Φ−1(s))−1. Using Remark 4.1.7 (with T = s0), Corollary 2.2.3
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and (4.2.18), since φ is the Laplace exponent of S, we get that, for all t ≥ T ,

q(t, x, y) ≤ c1

ˆ s0

0

h(s, x, y)

V (x,Φ−1(s))
P(St ∈ ds) + c1h(1, x, y)

ˆ ∞
s0

e−λDsP(St ∈ ds)

≤ c2
h(s0, x, y)

V (x,Φ−1(s0))
exp

(
− t

2
(H ◦ σ)(t, s0)

)
+ c1h(1, x, y)E[e−λDSt ]

≤ c3h(1, x, y)e−tφ(λD).

Next, we also see from Remark 4.1.7 that

q(t, x, y) ≥ c4h(1, x, y)

( ˆ ∞
0

e−λDsP(St ∈ ds)−
ˆ s0

0

e−λDsP(St ∈ ds)
)

≥ c4h(1, x, y)(e−tφ(λD) − P(St ≤ s0)).

According to Proposition 2.2.1 and (4.2.18), it holds that for all t ≥ T ,

P(St ≤ s0) ≤ exp
(
− t(H ◦ σ)(t, s0)

)
≤ e−2tφ(λD) ≤ e−Tφ(λD)e−tφ(λD).

Therefore, the lower bound holds true and we finish the proof. �

4.3 Green function estimates

In this section, we always assume that either (1) PolyR1(β1, β2) and HKh
B

hold, or (2) Poly∞(β1, β2) and HKh
U hold. The Green function GD of X is

given by

GD(x, y) :=

ˆ ∞
0

q(t, x, y)dt, x, y ∈ D.

As an application of the heat kernel estimates obtained in the previous

section, we can obtain two-sided estimates on the Green function.

The following proposition provides the first and most general estimate of

the Green function.
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Proposition 4.3.1. There are comparison constants such that for x, y ∈ D,

GD(x, y) ' C0

V (x, ρ(x, y))Ψ(ρ(x, y))

ˆ Φ(ρ(x,y))

0

h(s, x, y)

φ(1/s)
ds

+

ˆ 2Φ(diam(D))

Φ(ρ(x,y))

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds. (4.3.1)

Proof. Since the proofs are similar, we only give the proof when HKh
B holds,

which is more complicated.

Take x, y ∈ D and let r := ρ(x, y). Set TD := 1/φ
(
1/(2Φ(diam(D)))

)
. By

a change of variables and Lemma 2.1.5, we have that

ˆ ψ(r)

0

h(φ−1(1/t)−1, x, y)

φ−1(1/t)
dt =

ˆ Φ(r)

0

h(s, x, y)φ′(1/s)

sφ(1/s)2
ds '

ˆ Φ(r)

0

h(s, x, y)

φ(1/s)
ds

(4.3.2)

and

ˆ TD

ψ(r)

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
dt =

ˆ 2Φ(diam(D))

Φ(r)

h(s, x, y)

V (x,Φ−1(s))

φ′(1/s)

s2φ(1/s)2
ds

'
ˆ 2Φ(diam(D))

Φ(r)

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds. (4.3.3)

Combining with Theorem 4.2.2 (with T = TD), we arrive at the lower bound

in (4.3.1).

By Theorems 4.2.2 and 4.2.7 (with T = TD), we have that

GD(x, y) ≤ c0C0

V (x, r)Ψ(r)

ˆ ψ(r)

0

tBh(t, x, y)dt

+
c0C0

V (x, r)Ψ(r)

ˆ ψ(r)

0

h(φ−1(1/t)−1, x, y)

φ−1(1/t)
dt

+ c0

ˆ ψ(r)

0

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
exp

(
− c1r

2

ψ−1(t)2

)
dt

+ c0h(Φ(r), x, y)
w(Φ(r))

V (x, r)

ˆ ψ(r)

0

tdt
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+ c0

ˆ TD

ψ(r)

h(φ−1(1/t)−1, x, y)

V (x, ψ−1(t))
dt+ c0h(1, x, y)

ˆ ∞
TD

e−tφ(λD)dt

=: c0(C0G1 + C0G2 +G3 +G4 +G5 +G6).

By (4.3.2) and (4.3.3), we obtain the desired upper bound for C0G2 +G5.

Note that, thanks to (4.2.9), the result of Lemma 4.1.2 remains true even

if we replace Φ by ψ. Applying Lemma 4.1.2 with p := γ/β1 + d2/(α1β1), we

get from (H2), Lemma 2.1.1(i & ii), (4.1.1) and (4.2.9) that

G3 ≤ c1
h(Φ(r), x, y)

V (x, r)

ψ(r)p+1

ψ(r)p
= c1h(Φ(r), x, y)

ψ(r)

V (x, r)
.

For G4, we see from (2.0.4) that G4 ≤ eh(Φ(r), x, y)ψ(r)/V (x, r).

For G1, we use Fubini’s theorem to get that

V (x, r)Ψ(r)G1

=

ˆ 2Φ(r)

0

h(s, x, y)w(s)

ˆ φ(2/s)−1

0

tdtds+

ˆ 4Φ(r)

2Φ(r)

h(s, x, y)w(s)

ˆ ψ(r)

0

tdtds

=: G1,1 +G1,2.

By (2.0.4), a change of variables and (H2), we get

G1,1 ≤ 2e

ˆ 2Φ(r)

0

h(s, x, y)φ(2/s)

φ(2/s)2
ds = 4e

ˆ Φ(r)

0

h(2s, x, y)

φ(1/s)
ds

≤ c2

ˆ Φ(r)

0

h(s, x, y)

φ(1/s)
ds.

Besides, we get from (2.0.4), (H1) and (1.1.2) that

G1,2 ≤ 2eh(2Φ(r), x, y)ψ(r)3 ≤ c3

ˆ Φ(r)

0

h(s, x, y)

φ(1/s)
ds.

Clearly, G6 ≤ φ(λD)−1h(1, x, y).

It follows from (1.1.2) and the upper bounds above on G3, G4, G6 that G5

dominates G3 +G4 +G6. Since G2 dominates G1, the proof is complete. �
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In the remainder of this section, under some additional assumptions on

the boundary function, we obtain Green function estimates in simpler forms.

Lemma 1.1.1 will be a useful tool in all simplifications.

We start with the following condition which is a counterpart of (H2).

(H2*) There exist constants c1, γ∗ > 0 such that for all x, y ∈ D,

sγ∗h(s, x, y) ≥ c1t
γ∗h(t, x, y), Φ(δ∨(x, y)) ≤ s ≤ t < 2Φ(diam(D)).

Note that the γ∗ above is less than or equal to the constant γ in (H2).

Remark 4.3.2. Suppose that the boundary function h(t, x, y) satisfies (H2*).

Then for every ε ∈ (0, 1), there exists c2 = c2(ε) > 0 such that for all x, y ∈ D
and s, t ≥ 0 with εΦ(δ∨(x, y)) ≤ s ≤ t < 2Φ(diam(D)),

sγ∗h(s, x, y) ≥ c2t
γ∗h(t, x, y).

Example 4.3.3. Let p, q ≥ 0, p+ q > 0. Recall that the boundary function

hp,q(t, x, y) defined in (4.1.6) satisfies (H2) with γ = p + q. We claim that

hp,q(t, x, y) also satisfies (H2*) with γ∗ = γ = p + q. Indeed, for all x, y ∈ D
and Φ(δ∨(x, y)) < s < t,

sp+qhp,q(s, x, y) = Φ(δD(x))pΦ(δD(y))q = tp+qhp,q(t, x, y).

In the remainder of this section, we let d1, d2, γ, γ∗, β1, β2 and α1, α2 be

the constants in (4.1.1), (H2), (H2*), PolyR1(β1, β2) and the scaling indices

of Φ in (4.1.3), respectively.

Let

G̃D(x, y) :=

ˆ 2Φ(diam(D))

Φ(ρ(x,y))

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds

denote the second term on the right-hand side of the estimate (4.3.1).

Lemma 4.3.4. The following estimates hold for all x, y ∈ D.
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(i) If d1 > α2(β2 ∧ 1), then

G̃D(x, y) ' h
(
Φ(ρ(x, y)), x, y

) ψ(ρ(x, y))

V (x, ρ(x, y))
.

(ii) If d2 < α1(β1 − γ), then

G̃D(x, y) '

h(1, x, y), when HKh
B holds,

∞, when HKh
U holds.

Below, we also assume that h(t, x, y) is regular and (H2*) holds.

(iii) If α1β1 > d2 ≥ d1 > α2((β2 ∧ 1)− γ∗), then

G̃D(x, y) ' h
(
Φ(ρ(x, y)), x, y

) ψ(δ∨(x, y) ∨ ρ(x, y))

V (x, δ∨(x, y) ∨ ρ(x, y))
.

(iv) If α1 = α2, β1 = β2 and d1 = d2 = α1β1, then

G̃D(x, y) ' h
(
Φ(ρ(x, y)), x, y

)
log
(
e+

δ∨(x, y) ∨ ρ(x, y)

ρ(x, y)

)
.

(v) If α1 = α2, β1 = β2, γ = γ∗ and d1 = d2 = α1(β1 − γ), then

G̃D(x, y) '


h(1, x, y) log

(
e+

diam(D)

δ∨(x, y) ∨ ρ(x, y)

)
, when HKh

B holds,

∞, when HKh
U holds.

Proof. Take x, y ∈ D. Let δ∧ := δ∧(x, y) and δ∨ := δ∨(x, y). Define

g(s) :=
h(s, x, y)

V (x,Φ−1(s))φ(1/s)
, s > 0.

Then

G̃D(x, y) =

ˆ 2Φ(diam(D))

Φ(ρ(x,y))

g(s)

s
ds.

Set p1 := −d2/α1 + β1 and p2 := −d1/α2 + (β2 ∧ 1). By the scaling
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properties of h(·, x, y), V (x, ·), Φ and φ, there exist c1, c2 > 0 such that

c1

(r
s

)p1−γ
≤ g(r)

g(s)
≤ c2

(r
s

)p2

, 0 < s ≤ r < 2Φ(diam(D)). (4.3.4)

If h(t, x, y) is regular, then by Remark 4.1.4, for every a > 0, there exists

c3 = c3(a) > 0 such that

c3

(r
s

)p1

≤ g(r)

g(s)
≤ c2

(r
s

)p2

, 0 < s ≤ r < Φ(aδ∧) ∧ 2Φ(diam(D)); (4.3.5)

if furthermore (H2*) further holds, then by Remark 4.3.2, there exists c4 > 0

such that

c1

(r
s

)p1−γ
≤ g(r)

g(s)
≤ c4

(r
s

)p2−γ∗
, Φ(δ∨/2) < s ≤ r < 2Φ(diam(D)).

(4.3.6)

(i) By (4.3.4), since p2 < 0, the result follows from Lemma 1.1.1(ii).

(ii) If D is bounded, then by (4.3.4) and Lemma 1.1.1(i), since p1−γ > 0,

it holds that G̃D(x, y) ' g(Φ(diam(D))). By (4.1.2), there exists c5 > 1 such

that c−1
5 ≤ V (z, diam(D)) ≤ c5 for all z ∈ D. Hence, by using (H1), (H2)

and the definition of g, we get that GD(x, y) ' h(1, x, y). If D is unbounded,

then we see from (4.3.4) and Lemma 1.1.1(i) that

G̃D(x, y) ' lim
r→∞

ˆ r

Φ(ρ(x,y))

g(s)

s
ds ' lim

r→∞
g(r) ≥ c1g(1) lim

r→∞
rp1−γ =∞.

(iii) Suppose that δ∨ ≤ 2ρ(x, y). Since p2−γ∗ < 0, by (4.3.6) and Lemma

1.1.1(ii),

G̃D(x, y) ' g(Φ(ρ(x, y))) =
h(Φ(ρ(x, y)), x, y)ψ(ρ(x, y))

V (x, ρ(x, y))
.

Hence, in this case, the result follows from (4.1.1) and (4.2.9).

Suppose now that δ∨ > 2ρ(x, y). Then δ∧ ≥ δ∨−ρ(x, y) > δ∨/2 > ρ(x, y).

Since h is regular, h(Φ(δ∨), x, y) ' h(Φ(ρ(x, y)), x, y) ' 1. Further, since

p1 > 0 and p2 − γ∗ < 0, by the scaling of Φ, (4.3.5), (4.3.6) and Lemma
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1.1.1(i)-(ii), we get

G̃D(x, y) '
ˆ 2Φ(δ∧)

Φ(ρ(x,y))

g(s)

s
ds+

ˆ 2Φ(diam(D))

Φ(δ∨)

g(s)

s
ds ' g(Φ(δ∧)) + g(Φ(δ∨))

' g(Φ(δ∨)) =
h(Φ(δ∨), x, y)ψ(δ∨)

V (x, δ∨)
' h(Φ(ρ(x, y)), x, y)ψ(δ∨)

V (x, δ∨)
.

This finishes the proof for (iii).

(iv) Since d1 = d2, by (4.1.1) and (4.1.2), we see that for every a > 0,

there are comparability constants depending on a such that for all w, z ∈ D
and 0 < r < a diam(D),

V (w, r) ' V (z, r) ' rd1V (z, 1). (4.3.7)

Moreover, since β1 = β2 and α1 = α2, we get that

φ(1/s)−1 ' sβ1 , 0 < s < 2Φ(diam(D)) and Φ−1(s) ' s1/α1 , s > 0,

(4.3.8)

so that g(s) ' h(s, x, y) for all 0 < s < 2Φ(diam(D)). In particular, since h

is regular, we see from Remark 4.1.4 that

g(s) ' 1, 0 < s < 2Φ(δ∧). (4.3.9)

If δ∨ ≤ 2ρ(x, y), then by (4.3.6) and Lemma 1.1.1(ii),

G̃D(x, y) ' g(Φ(ρ(x, y))) ' h(Φ(ρ(x, y)), x, y) log
(
e+

δ∨ ∨ ρ(x, y)

ρ(x, y)

)
.

If δ∨ > 2ρ(x, y), then we get δ∧ > δ∨/2 > ρ(x, y) as in (iii), and by (4.3.9),

(4.3.6) and Lemma 1.1.1(ii),

G̃D(x, y) '
ˆ 2Φ(δ∧)

Φ(ρ(x,y))

g(s)

s
ds+

ˆ 2Φ(diam(D))

Φ(δ∨)

g(s)

s
ds '

ˆ 2Φ(δ∧)

Φ(ρ(x,y))

ds

s
+ g(Φ(δ∨)).
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Note that since Φ(s) ' sα1 for s > 0, we have

g(Φ(δ∨)) ' h(Φ(δ∨), x, y) ≤ 1 ≤ log
(
e+

δ∧
ρ(x, y)

)
'
ˆ 2Φ(δ∧)

Φ(ρ(x,y))

ds

s
.

Therefore, since δ∧ ' δ∨ > 2ρ(x, y) and h(Φ(ρ(x, y)), x, y) ' 1 in this case,

we get that

G̃D(x, y) ' log
(
e+

δ∧
ρ(x, y)

)
' h(Φ(ρ(x, y)), x, y) log

(
e+

δ∨ ∨ ρ(x, y)

ρ(x, y)

)
.

(v) By (4.3.7), (4.3.8), the regularity of h, (H2), Remark 4.3.2 and (4.1.7),

we have

g(s) ' sγ, 0 < s < Φ(δ∧) (4.3.10)

and

g(s) ' sγh(s, x, y) ' tγh(t, x, y), Φ(δ∨/2) < s ≤ t < 2Φ(diam(D)) + 1.

(4.3.11)

If δ∨ ≤ 2ρ(x, y), then since Φ(s) ' sα1 for s > 0 in this case, we get from

(4.3.11) that

G̃D(x, y) ' h(1, x, y)

ˆ 2Φ(diam(D))

Φ(ρ(x,y))

ds

s
' h(1, x, y) log

(
e+

diam(D)

ρ(x, y)

)
.

If δ∨ > 2ρ(x, y), then δ∧ > δ∨/2 > ρ(x, y) as in (iii) and hence by (4.3.10)

and (4.3.11),

G̃D(x, y) '
ˆ 2Φ(δ∧)

Φ(ρ(x,y))

sγ−1ds+ h(1, x, y)

ˆ 2Φ(diam(D))

Φ(δ∨)

ds

s
.

Since Φ(s) ' sα1 for s > 0, δ∧ ≤ δ∨ ≤ 2δ∧ and h is regular, by (4.3.11),

h(1, x, y)

ˆ 2Φ(diam(D))

Φ(δ∨)

ds

s
' h(1, x, y) log

(
e+

diam(D)

δ∨

)
≥ h(1, x, y) ' Φ(δ∧)

γh(Φ(δ∧), x, y) ' Φ(δ∧)
γ ≥ γ−1

ˆ 2Φ(δ∧)

Φ(ρ(x,y))

sγ−1ds.
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This completes the proof. �

In the next lemma we show that under the additional assumption that

γ < β1 + 1, the first term on the right-hand side of (4.3.1) is dominated by

G̃D(x, y).

Lemma 4.3.5. If either C0 = 0 or γ < β1 + 1, then

GD(x, y) ' G̃D(x, y) on D ×D.

Proof. When C0 = 0, the assertion follows from Proposition 4.3.1. So we

now assume C0 = 1 and γ < β1 + 1. By the scaling of φ and (H2), we have

h(t, x, y)/φ(1/t)

h(s, x, y)/φ(1/s)
≥ c
( t
s

)β1−γ
for all 0 < s ≤ t < Φ(diam(D)).

Thus, since Ψ ≥ Φ, by Lemma 1.1.1(i), we get

1

V (x, r)Ψ(r)

ˆ Φ(r)

0

h(s, x, y)

φ(1/s)
ds ≤ c

h(Φ(r), x, y)ψ(r)Φ(r)

V (x, r)Ψ(r)
≤ c

h(Φ(r), x, y)ψ(r)

V (x, r)
.

By (1.1.2), the second term in (4.3.1) dominates the last term above. Hence,

by Proposition 4.3.1, we get the assertion. �

Define

g0(x, y) =



ψ(ρ(x, y))

V (x, ρ(x, y))
, if d1 > α2(β2 ∧ 1),

log
(
e+

δ∨(x, y) ∨ ρ(x, y)

ρ(x, y)

)
, if d1 = d2 = α1β1 = α2β2,

ψ(δ∨(x, y) ∨ ρ(x, y))

V (x, δ∨(x, y) ∨ ρ(x, y))
, if d2 < α1β1.

(4.3.12)

By combining Proposition 4.3.1, Lemma 4.3.4 and Lemma 4.3.5 we arrive

at the following result.

Theorem 4.3.6. Suppose that C0 = 0 or γ < β1 + 1, h(t, x, y) is regular and

(H2*) holds.
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(i) Suppose also that one of the following holds: (1) d1 > α2(β2 ∧ 1) or

(2) d1 = d2 = α1β1 = α2β2 or (3) d2 < α1β1. Then it holds that

GD(x, y) ' h(Φ(ρ(x, y)), x, y)g0(x, y).

(ii) If d2 < α1(β1 − γ), then

GD(x, y) '

h(1, x, y), when HKh
B holds,

∞, when HKh
U holds.

(iii) If α1 = α2, β1 = β2, γ = γ∗ and d1 = d2 = α1(β1 − γ), then

GD(x, y) '


h(1, x, y) log

(
e+

diam(D)

δ∨(x, y) ∨ ρ(x, y))

)
, when HKh

B holds,

∞, when HKh
U holds.

When C0 = 1, Theorem 4.3.6 only deals with the case γ < β1 + 1. To

cover the case when γ is large, we assume the following condition.

(H2**) There exist constants c1 > 0, γ∗∗ ∈ (0, 1 + β1) such that for all

x, y ∈ D,

sγ∗∗h(s, x, y) ≤ c1t
γ∗∗h(t, x, y), Φ(δ∧(x, y)) ≤ s ≤ t < Φ(δ∨(x, y)).

Example 4.3.7. For p, q ≥ 0, let hp,q(t, x, y) be the boundary function de-

fined in (4.1.6). If p ∨ q < 1 + β1, then hp,q(t, x, y) satisfies (H2**). Indeed,

we see that for all x, y ∈ D and Φ(δ∧(x, y)) ≤ s ≤ t < Φ(δ∨(x, y)),

sp∨qhp,q(s, x, y) =

Φ(δD(x))psp∨q−p, if δD(x) < δD(y)

Φ(δD(y))qsp∨q−q, if δD(x) > δD(y)
≤ tp∨qhp,q(t, x, y).
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For a given boundary function h, we define for x, y ∈ D,

[h](x, y) := h
(
Φ(δ∨(x, y)ρ(x, y)), x, y

)(
1 ∧ Φ(δ∨(x, y))ψ(δ∨(x, y))

Φ(ρ(x, y))ψ(ρ(x, y))

)
.

In particular, one can check that for all p, q ≥ 0,

[hp,q](x, y) '
(

1 ∧ Φ(δD(x))

Φ(ρ(x, y))

)p(
1 ∧ Φ(δD(y))

Φ(ρ(x, y))

)q
×
(

1 ∧ Φ(δ∨(x, y))

Φ(ρ(x, y))

)1−p−q(
1 ∧ ψ(δ∨(x, y))

ψ(ρ(x, y))

)
. (4.3.13)

Recall that g0(x, y) is defined in (4.3.12).

Theorem 4.3.8. Suppose that C0 = 1, h(t, x, y) is regular, (H2*) holds with

γ∗ > (β2 ∧ 1) + 1 and (H2**) holds. Suppose also that one of the following

holds: (1) d1 > α2(β2 ∧ 1) or (2) d1 = d2 = α1β1 = α2β2 or (3) d2 < α1β1.

Then it holds that

GD(x, y) ' [h](x, y)
Φ(ρ(x, y))

Ψ(ρ(x, y))

ψ(ρ(x, y))

V (x, ρ(x, y))
+ h(Φ(ρ(x, y)), x, y)g0(x, y).

(4.3.14)

In particular, if Ψ ' Φ, then

GD(x, y) ' [h](x, y)g0(x, y). (4.3.15)

Proof. Take x, y ∈ D and let r := ρ(x, y) and δ∨ := δ∨(x, y). Observe that

by the scaling of φ, (H1), (H2**) and the regularity of h,

c1

( t
s

)β1−γ∗∗
≤ h(t, x, y)/φ(1/t)

h(s, x, y)/φ(1/s)
≤ c2

( t
s

)β2∧1

, 0 < s ≤ t < Φ(δ∨). (4.3.16)

Note also that by the scaling of φ, (H2), (H2*) and Remark 4.3.2,

c3

( t
s

)β1−γ
≤ h(t, x, y)/φ(1/t)

h(s, x, y)/φ(1/s)
≤ c4

( t
s

)β2∧1−γ∗
,

Φ(δ∨)

2
≤ s ≤ t < Φ(diam(D)).

(4.3.17)

Then by using Lemma 1.1.1 several times as in the proof of Lemma 4.3.4, we
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can conclude that the first assertion holds true.

Now we also assume that Ψ ' Φ. If δ∨ > r, then [h](x, y) = h(Φ(r), x, y).

Hence, we see from (1.1.2) that in (4.3.14), the second term dominates the

first one so that (4.3.15) holds. If δ∨ ≤ r, then using Lemma 1.1.1(ii), (4.3.17)

and the condition that β2 ∧ 1− γ∗ < −1 in the second inequality below, the

scaling property of φ and (4.1.7) in the third, and (4.3.16) in the fourth, we

get

ˆ 2Φ(diam(D))

Φ(r)

h(s, x, y)

sV (x,Φ−1(s))φ(1/s)
ds ≤ 1

V (x, r)Φ(r)

ˆ 2Φ(diam(D))

Φ(r)

h(s, x, y)

φ(1/s)
ds

≤ c5
h(Φ(r), x, y)ψ(r)

V (x, r)
≤ c6

V (x, r)Φ(r)

ˆ Φ(r)

Φ(r)/2

h(s, x, y)

φ(1/s)
ds ≤ c7[h](x, y)

ψ(r)

V (x, r)
.

Note that g0(x, y) ' ψ(r)/V (x, r) when δ∨ ≤ r. Thus by Proposition 4.3.1

and (4.3.16), we get GD(x, y) ' [h](x, y)g0(x, y) when δ∨ ≤ r. This completes

the proof for (4.3.15). �

For completeness, we record the Green function estimates when C0 = 1,

β1 = β2 and γ∗ = γ = β1 + 1.

Theorem 4.3.9. Suppose that C0 = 1, β1 = β2, h(t, x, y) is regular and

(H2*) holds with γ∗ = γ = β1 + 1 and (H2**) holds. Suppose also that one

of the following holds: (1) d1 > α2(β2 ∧ 1) or (2) d1 = d2 = α1β1 = α2β2 or

(3) d2 < α1β1. Then it holds that

GD(x, y) ' h(Φ(ρ(x, y)), x, y)

×
[

Φ(ρ(x, y))

Ψ(ρ(x, y)

Φ(ρ(x, y))γ−1

V (x, ρ(x, y))
log
(
e+

δ∨(x, y) ∨ ρ(x, y)

δ∨(x, y)

)
+ g0(x, y)

]
.

In particular, if Ψ ' Φ, then

GD(x, y) ' h(Φ(ρ(x, y)), x, y)g0(x, y) log
(
e+

δ∨(x, y) ∨ ρ(x, y)

δ∨(x, y)

)
.
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4.4 Parabolic Harnack inequality and Hölder

regularity

Throughout this section, we assume that h(t, x, y) is a regular boundary func-

tion and that either (1) PolyR1(β1, β2) and HKh
B hold, or (2) Poly∞(β1, β2)

and HKh
U hold.

For x0 ∈ D and r > 0, let τB(x0,r) := inf{s > 0 : Xs /∈ B(x0, r)} and

XB(x0,r) be the part process of X in B(x0, r). Denote by qB(x0,r)(t, x, y) the

heat kernel of XB(x0,r). By the strong Markov property, one can see that

qB(x0,r)(t, x, y) = q(t, x, y)− Ex
[
q(t− τB(x0,r), XτB(x0,r)

, y); τB(x0,r) < t
]
.

(4.4.1)

Recall the definition of ψ in (4.2.8). Using the rough upper estimates and

near diagonal interior estimates on the heat kernel that obtained in Corollary

4.2.5 and Corollary 4.2.6, respectively, we deduce the following lemma from

(4.4.1).

Lemma 4.4.1. There exist constants C > 0 and ε ∈ (0, 1/4) such that for

all x0 ∈ D and r ∈ (0, δD(x0)),

qB(x0,r)(t, x, y) ≥ C

V (x0, ψ−1(t))
for all t ∈ (0, ψ(εr)], x, y ∈ B

(
x0, εψ

−1(t)
)
.

Remark 4.4.2. By using (4.2.9) we may replace ψ(εr) and εψ−1(r) in the

statement of Lemma 4.4.1 with εψ(r) and ψ−1(εr) respectively, cf. [47, p.3758].

Lemma 4.4.3. There exists C > 1 such that for all x ∈ D and r ∈ (0, δD(x)),

C−1ψ(r) ≤ Ex[τB(x,r)] ≤ Cψ(r). (4.4.2)

Proof. Fix x ∈ D and r ∈ (0, δD(x)). Let ε ∈ (0, 1/4) be as in the statement

of Lemma 4.4.1. Then by Lemma 4.4.1, we have that

qB(x,r)(ψ(εr), x, y) ≥ c1

V (x, εr)
, y ∈ B(x, ε2r).
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By (4.1.1), this implies that

Px(τB(x,r) > ψ(εr)) ≥
ˆ
B(x,ε2r)

qB(x,r)(ψ(εr), x, y) dy ≥ c1V (x, ε2r)

V (x, εr)
≥ c2.

Hence, by Markov inequality and (4.2.9), we get that

Ex[τB(x,r)] ≥ ψ(εr)Px(τB(x,r) > ψ(εr)) ≥ c2ψ(εr) ≥ c3ψ(r).

To obtain the upper bound in (4.4.2), we first assume that HKh
B holds.

We claim that there exists a constant A > 1 such that

sup
z∈B(x,r)

Pz(τB(x,r) > ψ(Ar)) ≤ 1

2
. (4.4.3)

Indeed, according to Corollary 4.2.5(i) and Theorem 4.2.7, since h ≤ 1, there

exists c4 > 1 such that

q(t, z, y) ≤ c4

(
V (z, ψ−1(t))−11{t≤1} + e−φ(λD)t1{t>1}

)
, z, y ∈ B(x, r).

Further, by (4.1.1), there is c5 > 1 such that for all z ∈ B(x, r),

V (z, c5r) ≥ V (x, (c5 − 1)r) ≥ 2c4V (x, r).

Let A > c5 be a constant such that

exp
(
φ(λD)ψ(Ac−1

5 ψ−1(1))
)
≥ 2m(D).

In case when r ≤ c−1
5 ψ−1(1), we get that for all z ∈ B(x, r),

Pz(τB(x,r) > ψ(Ar)) ≤ Pz(τB(x,r) > ψ(c5r)) ≤ Pz(Xψ(c5r) ∈ B(x, r))

=

ˆ
B(x,r)

q(ψ(c5r), z, y)dy ≤ c4V (x, r)

V (z, c5r)
≤ 1

2
.

On the other hand, if r > c−1
5 ψ−1(1), then since B(x, r) ⊂ B(x, δD(x)) ⊂ D,
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we get that for all z ∈ B(x, r),

Pz(τB(x,r) > ψ(Ar)) ≤ Pz(Xψ(Ar) ∈ B(x, r)) ≤ V (x, r)e−φ(λD)ψ(Ar)

≤ m(D)e−2m(D) ≤ 1

2
.

Hence, (4.4.3) holds true.

Now, using (4.4.3) and the Markov’s property, we get that for all n ≥ 2,

sup
z∈B(x,r)

Pz(τB(x,r) > nψ(Ar)) = sup
z∈B(x,r)

Pz
(
τB(x,r) > nψ(Ar), τB(x,r) > ψ(Ar)

)
≤ sup

z∈B(x,r)

Pz
(
PXψ(Ar)(τB(x,r) > (n− 1)ψ(Ar)), τB(x,r) > ψ(Ar)

)
≤ sup

z∈B(x,r)

Pz(τB(x,r) > (n− 1)ψ(Ar)) sup
z∈B(x,r)

Pz(τB(x,r) > ψ(Ar))

≤ · · · ≤
(

sup
z∈B(x,r)

Pz(τB(x,r) > ψ(Ar))
)n
≤ 2−n.

Therefore, we conclude from (4.2.9) that

Ex[τB(x,r)] ≤
∞∑
n=1

nψ(Ar)Px
(
τB(x,r) ∈ ((n− 1)ψ(Ar), nψ(Ar)]

)
≤ c6A

α2(β2∧1)ψ(r)
∞∑
n=1

n2−(n−1) = 4c6A
α2(β2∧1)ψ(r).

Similarly, by using Corollary 4.2.5(ii), we can obtain the upper bound in

(4.4.2) when Poly∞(β1, β2) and HKh
U hold. �

Recall that the jump kernel J(x, y) is given in (4.2.3). Using Theorem

4.2.1 and the fact that h ≤ 1, we get the following result.

Lemma 4.4.4. There exists C > 1 such that for all x ∈ D and r ∈ (0, δD(x)),

ˆ
D\B(x,r)

J(x, y)dy ≤ C

ψ(r)
.

Let Z := (Vs, Xs)s≥0 be the time-space process corresponding to X, where
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Vs = V0 − s. The augmented filtration of Z will be denoted by (F̃s)s≥0. The

law of the time-space process s 7→ Zs starting from (t, x) will be denoted by

P(t,x). For every open subset B of [0,∞)×D, define τZB = inf{s > 0 : Zs /∈ B}
and σZB = τZBc .

Recall that a Borel measurable function u : [0,∞)×D → R is parabolic on

(a, b)×B(x0, r) with respect to the process X if for every relatively compact

open set U ⊂ (a, b) × B(x0, r) it holds that u(t, x) = E(t,x)u(ZτZU ) for all

(t, x) ∈ U .

We denote by dt⊗m the product of the Lebesgue measure on [0,∞) and

m on E.

Lemma 4.4.5. Let ε ∈ (0, 1/4) be the constant from Lemma 4.4.1. For every

δ ∈ (0, ε], there exists C > 0 such that for all x ∈ D, r ∈ (0, δD(x)), t ≥
δψ(r), and any compact set A ⊂ [t−δψ(r), t−δψ(r)/2]×B(x, ψ−1(εδψ(r)/2)),

P(t,x)(σZA < τZ[t−δψ(r),t]×B(x,r)) ≥ C
dt⊗m(A)

V (x, r)ψ(r)
. (4.4.4)

Proof. Write τr = τZ[t−δψ(r),t]×B(x,r) and As = {y ∈ D : (s, y) ∈ A}. For any

t, r > 0 and x ∈ D such that B(x, r) ⊂ D,

δψ(r)P(t,x)(σA < τr) ≥
ˆ δψ(r)

0

P(t,x)

(ˆ τr

0

1A(t− s,Xs)ds > 0

)
du

≥
ˆ δψ(r)

0

P(t,x)

(ˆ τr

0

1A(t− s,Xs)ds > u

)
du = E(t,x)

[ˆ τr

0

1A(t− s,Xs)ds

]
.

(4.4.5)

For any t ≥ δψ(r),

E(t,x)

[ˆ τr

0

1A(t− s,Xs)ds

]
≥
ˆ δψ(r)

δψ(r)/2

P(t,x)
(
(t− s,XB(x,r)

s ) ∈ A
)
ds

=

ˆ δψ(r)

δψ(r)/2

Px(XB(x,r)
s ∈ At−s)ds =

ˆ δψ(r)

δψ(r)/2

ds

ˆ
At−s

qB(x,r)(s, x, y) dy.

Let s ∈ [δψ(r)/2, δψ(r)] and y ∈ B(x, ψ−1(εδψ(r)/2)). Then s ≤ εψ(r)
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and ψ−1(εδψ(r)/2) ≤ ψ−1(εs) so that y ∈ B(x, ψ−1(εs)). Hence, by (4.1.1),

(4.2.9), Lemma 4.4.1 and Remark 4.4.2,

qB(x,r)(s, x, y) ≥ c1V (x, ψ−1(s))−1 ≥ c2V (x, r)−1.

Therefore

E(t,x)

[ˆ τr

0

1A(t− s,Xs)ds

]
≥ c2

V (x, r)

ˆ δψ(r)

δψ(r)/2

ds

ˆ
At−s

dy = c2
dt⊗m(A)

V (x, r)
.

Combining with (4.4.5), we arrive at (4.4.4). �

Using (4.1.1), (4.2.9) and Lemmas 4.4.3, 4.4.4 and 4.4.5, by following argu-

ments in the proof of [45, Theorem 4.14] (see also the proof of [47, Proposition

3.8]), we get the following Hölder regularity for parabolic functions.

Theorem 4.4.6. There exists a constant η ∈ (0, 1] such that for all δ ∈
(0, 1), there exists a constant C = C(δ) > 0 so that for every x0 ∈ D,

r ∈ (0, δD(x0)), t0 ≥ 0, and any function u on (0,∞)×D which is parabolic

in (t0, t0 + ψ(r))×B(x0, r) and bounded in (t0, t0 + ψ(r))×D, we have

|u(s, x)− u(t, y)| ≤ C

(
ψ−1(|s− t|) + ρ(x, y)

r

)η
ess sup

[t0,t0+ψ(r)]×D
|u|,

for every s, t ∈ (t0 + ψ(r)− ψ(δr), t0 + ψ(r)) and x, y ∈ B(x0, δr).

As a consequence of Lemma 4.4.1, we get the following lemma.

Lemma 4.4.7. Let ε ∈ (0, 1/4) be the constant from Lemma 4.4.1 and let

δ ∈ (0, ε/4) be such that 4δψ(2r) ≤ εψ(r) for all r > 0. Then there exists

C > 0 such that for all x0 ∈ D, R ∈ (0, δD(x0)), r ∈ (0, ψ−1(εδψ(R)/2)/2],

x ∈ B(x0, ψ
−1(εδψ(R)/2)/2), z ∈ B(x0, ψ

−1(εδψ(R)/2)), and δψ(R)/2 ≤
t− s ≤ 4δψ(2R),

P(t,z)(σZ{s}×B(x,r) ≤ τZ[s,t]×B(x0,R)) ≥ C
V (x, r)

V (x,R)
.
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In the remainder of this section, we further assume that the boundary

function h is of Harnack-type and show that parabolic Harnack inequality

for X holds true.

Suppose that x, y, z ∈ D are such that ρ(x, z) ≤ ρ(x, y)/2. Then

2

3
ρ(x, y) ≤ ρ(z, y) ≤ 3

2
ρ(x, y).

As a consequence, by the scalings of Φ and Ψ, there exists a > 1 such that

a−1Φ(ρ(x, y)) ≤ Φ(ρ(z, y)) ≤ aΦ(ρ(x, y)),

a−1Ψ(ρ(x, y)) ≤ Ψ(ρ(z, y)) ≤ aΨ(ρ(x, y)). (4.4.6)

Proposition 4.4.8. Suppose that h is of Harnack-type. Then there exists

C > 0 such that for all x, y, z ∈ D satisfying ρ(x, z) ≤ (ρ(x, y) ∧ δD(x))/2,

J(x, y) ≤ CJ(z, y).

Proof. The result follows from Theorem 4.2.1, (4.1.5), PolyR1(β1, β2), (4.1.7)

and (4.4.6). �

Corollary 4.4.9. Suppose that h is of Harnack-type. Then there exists C > 0

such that for all x, y ∈ D and 0 < r ≤ (ρ(x, y) ∧ δD(x))/2, it holds that

J(x, y) ≤ C

V (x, r)

ˆ
B(x,r)

J(z, y)dz.

Proof. If z ∈ B(x, r), then ρ(x, z) < r ≤ ρ(x, y)/2. Therefore, by Proposition

4.4.8, J(x, y) ≤ c1J(z, y), whence the claim immediately follows. �

Using (4.1.1), (4.2.9), Lemmas 4.4.1, 4.4.3, 4.4.5, 4.4.7, and Corollaries

4.2.5 and 4.4.9, the following result can be proved using the same arguments

as in the proofs of [32, Theorem 5.2 and Lemma 5.3] (see also the proofs of

[47, Lemma 4.1 and Theorem 4.3]).
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Theorem 4.4.10. Suppose that h is of Harnack-type. Then there exist con-

stants δ > 0, C > 1 and K ≥ 1 such that for all t0 ≥ 0, x0 ∈ D and

R ∈ (0, R1) with B(x0, CR) ⊂ D, and any non-negative function u on

(0,∞) × D which is parabolic on Q := (t0, t0 + 4δψ(CR)) × B(x0, CR), we

have

sup
(t1,y1)∈Q−

u(t1, y1) ≤ K inf
(t2,y2)∈Q+

u(t2, y2),

where Q− = [t0 + δψ(CR), t0 + 2δψ(CR)] × B(x0, R) and Q+ = [t0 +

3δψ(CR), t0 + 4δψ(CR)]×B(x0, R).

4.5 Examples

Recall the definitions of hp,q(t, x, y) from (4.1.6), and Bh(t, x, y) from (4.2.2).

We remind the reader that hp,q(t, x, y) is quite typical and it is the most

important boundary function. Recall that ψ(r) = 1/φ(1/Φ(r)), δ∨(x, y) =

δD(x) ∨ δD(y) and δ∧(x, y) = δD(x) ∧ δD(y). For simplicity, we will use δ(x)

and δ(y) instead of δD(x) and δD(y), respectively.

We let

δt(x) := δD(x) ∨ ψ−1(t),

δt∨(x, y) := δt(x) ∨ δt(y) = δ∨(x, y) ∨ ψ−1(t),

δt∧(x, y) := δt(x) ∧ δt(y) = δ∧(x, y) ∨ ψ−1(t).

The following lemma provides a list of estimates of Bhp,q(t, x, y) depending

on the relationship between the parameters p, q, β1, β2. The list is not exhaus-

tive, but it suffices for our purpose. The proof of the lemma is rather tech-

nical and consists of carefully estimating the integral defining Bhp,q(t, x, y).

The factorization (4.5.1) below is inspired by (4.2.11) and (4.2.16). See also

(4.5.7) below.

Lemma 4.5.1. Let q ≥ p ≥ 0, p+ q > 0. Suppose that PolyR1(β1, β2) holds
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with β2 < 1. Then

Bhp,q(t, x, y) =
Φ(ρ(x, y))

ψ(ρ(x, y))

(
1 ∧ Φ(δD(x))

φ−1(1/t)−1

)p(
1 ∧ Φ(δD(y))

φ−1(1/t)−1

)q
Ap,q(t, x, y),

(4.5.1)

where Ap,q(t, x, y) satisfies the following estimates for all x, y ∈ D and 0 <

t ≤ ψ(ρ(x, y)) such that Φ(ρ(x, y)) < R1/8.

(i) If β2 < 1− p− q, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt(y))

Φ(ρ(x, y))

)q−p(
1 ∧ Φ(δt∧(x, y))

Φ(ρ(x, y))

)p(
1 ∧ Φ(δt∨(x, y))

Φ(ρ(x, y))

)p
.

(ii) If 1− p− q < β1 ≤ β2 < 1− q, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt(y))

Φ(ρ(x, y))

)q−p(
1 ∧ Φ(δt∧(x, y))

Φ(ρ(x, y))

)p
×
(

1 ∧ Φ(δt∨(x, y))

Φ(ρ(x, y))

)1−q(
1 ∧ ψ(δt∨(x, y))

ψ(ρ(x, y))

)−1

.

(iii) If 1− q < β1 ≤ β2 < 1− p, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt(y))

Φ(ρ(x, y))

)1−p(
1 ∧ ψ(δt(y))

ψ(ρ(x, y))

)−1(
1 ∧ Φ(δt∧(x, y))

Φ(ρ(x, y))

)p
.

(iv) If 1− p < β1 ≤ β2 < 1, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt∧(x, y))

Φ(ρ(x, y))

)(
1 ∧ ψ(δt∧(x, y))

ψ(ρ(x, y))

)−1

.

(v) If β1 = β2 = 1− p− q and p > 0, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt(y))

Φ(ρ(x, y))

)q−p(
1 ∧ Φ(δt∧(x, y))

Φ(ρ(x, y))

)p
×
(

1 ∧ Φ(δt∨(x, y))

Φ(ρ(x, y))

)p
log

(
e+

Φ(ρ(x, y))

Φ(δt∨(x, y) ∧ ρ(x, y))

)
.
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(vi) If β1 = β2 = 1− p− q and p = 0, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt(y))

Φ(ρ(x, y))

)q
log

(
e+

Φ(ρ(x, y))

Φ(δt(y) ∧ ρ(x, y))

)
.

(vii) If β1 = β2 = 1− q and q = p, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt∧(x, y))

Φ(ρ(x, y))

)p
log

(
e+

Φ(δt∨(x, y) ∧ ρ(x, y))

Φ(δt∧(x, y) ∧ ρ(x, y))

)
.

(viii) If β1 = β2 = 1− q and q > p > 0, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt(y))

Φ(ρ(x, y))

)q−p(
1 ∧ Φ(δt∧(x, y))

Φ(ρ(x, y))

)p
× log

(
e+

Φ(δt(x) ∧ ρ(x, y))

Φ(δt(y) ∧ ρ(x, y))

)
.

(ix) If β1 = β2 = 1− p and q > p, then

Ap,q(t, x, y) '
(

1 ∧ Φ(δt∧(x, y))

Φ(ρ(x, y))

)p
log

(
e+

Φ(δt(y) ∧ ρ(x, y))

Φ(δt(x) ∧ ρ(x, y))

)
.

Proof. Fix x, y ∈ D such that r := ρ(x, y) < Φ−1(R1/8), and t ∈ (0, ψ(r)].

Write δ∧ = δ∧(x, y), δ∨ = δ∨(x, y), δt∧ = δt∧(x, y) and δt∨ = δt∨(x, y). We note

that since β2 < 1, by Lemma 2.1.1(i), w(s) ' φ(1/s) for s ∈ (0, R1) and

hence

w(Φ(u)) ' ψ(u)−1 for u ∈ (0,Φ−1(R1/2)). (4.5.2)

Define

Ap,q(t, x, y) :=
ψ(r)

Φ(r)

Bhp,q(t, x, y)

hp,q(φ−1(1/t)−1, x, y)
.

Then from the definition, we get that

Ap,q(t, x, y) =
ψ(r)

Φ(r)

ˆ 4Φ(r)

2φ−1(1/t)−1

(
1 ∧ Φ(δt∧)

s

)p(
1 ∧ Φ(δt∨)

s

)p
×
(

1 ∧ Φ(δt(y))

s

)q−p
w(s)ds.
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If δ∨ ≥ 2r, then δ∧ ≥ δ∨ − r ≥ r and hence we get from Lemma 1.1.1(i),

PolyR1(β1, β2) (by using β2 < 1) and (4.5.2) that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 4Φ(r)

2φ−1(1/t)−1

w(s)ds ' ψ(r)w(4Φ(r)) ' 1.

On the other hand, we see that in every of the cases (i)-(ix), the right-hand

side of comparability relation for Ap,q(t, x, y) is comparable to 1. Hence the

assertion of the lemma is valid when δ∨ ≥ 2r.

Suppose now that δ∨ < 2r. Since ψ−1(t) < r, we get δt∨ < 2r, hence by

the scaling property (4.1.3) of Φ, we have

3Φ(a) ∧ 4Φ(r) ' Φ(a) for a ∈ {δt(y), δt∧, δ
t
∨}. (4.5.3)

(i) The desired comparability follows from Lemma 1.1.1(i), PolyR1(β1, β2)

and (4.5.2).

(ii) By Lemma 1.1.1(i)-(ii), PolyR1(β1, β2) and (4.5.2), since q−p+p+β2 <

1 < p+ q + β1,

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt∨)∧4Φ(r)

2φ−1(1/t)−1

(
1 ∧ Φ(δt∧)

s

)p(
1 ∧ Φ(δt(y))

s

)q−p
w(s)ds

+
ψ(r)

Φ(r)
Φ(δt∧)

pΦ(δt∨)
pΦ(δt(y))q−p

ˆ 4Φ(r)

3Φ(δt∨)∧4Φ(r)

w(s)

sp+q
ds

' ψ(r)

Φ(r)

(
1 ∧ Φ(δt∧)

Φ(δt∨)

)p(
1 ∧ Φ(δt(y))

Φ(δt∨)

)q−p
Φ(δt∨)w(Φ(δt∨))

' Φ(δt∧)
pΦ(δt(y))q−p

Φ(r)q

( Φ(r)

Φ(δt∨)

)q Φ(δt∨)

Φ(r)

ψ(r)

ψ(δt∨)
. (4.5.4)

We used (4.5.3) in the second comparability above. Since Φ and ψ are in-

creasing and satisfy scaling properties, the desired comparability holds.

(iii) If δt∨ = δt(y), then (4.5.4) holds by Lemma 1.1.1(i)-(ii), PolyR1(β1, β2),

(4.5.2) and (4.5.3) since p+ β2 < 1 < p+ q + β1. The desired comparability

then follows from (4.5.4). If δt∧ = δt(y), then we get, by Lemma 1.1.1(i)-(ii),
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PolyR1(β1, β2), (4.5.2), (4.5.3) and the assumption q + β1 > 1, that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt(y))∧4Φ(r)

2φ−1(1/t)−1

w(s)ds

+
ψ(r)

Φ(r)
Φ(δt(y))q

ˆ 4Φ(r)

3Φ(δt(y))∧4Φ(r)

(
1 ∧ Φ(δt∨)

s

)pw(s)

sq
ds

' Φ(δt(y))

ψ(δt(y))

ψ(r)

Φ(r)
=
(Φ(δt(y))

Φ(r)

)1−p(Φ(δt∧)

Φ(r)

)p ψ(r)

ψ(δt(y))
.

(iv) Since p+β1 > 1, we get from Lemma 1.1.1(i)-(ii), PolyR1(β1, β2), (4.5.2)

and (4.5.3) that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt∧)∧4Φ(r)

2φ−1(1/t)−1

w(s)ds

+
ψ(r)

Φ(r)
Φ(δt∧)

p

ˆ 4Φ(r)

3Φ(δt∧)∧4Φ(r)

(
1 ∧ Φ(δt∨)

s

)p(
1 ∧ Φ(δt(y))

s

)q−pw(s)

sp
ds

' Φ(δt∧)

ψ(δt∧)

ψ(r)

Φ(r)
.

(v) Note that w(s) ' sp+q−1 and ψ(s) ' Φ(s)1−p−q for s ∈ (0, R1) in this

case. Thus, we get from Lemma 1.1.1(i) and (4.5.3) that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt∨)∧4Φ(r)

2φ−1(1/t)−1

(
s ∧ Φ(δt∧)

)p(
s ∧ Φ(δt(y))

)q−p
sp−1ds

+
ψ(r)

Φ(r)
Φ(δt∧)

pΦ(δt∨)
pΦ(δt(y))q−p

ˆ 4Φ(r)

3Φ(δt∨)∧4Φ(r)

ds

s

' Φ(δt∧)
p Φ(δt∨)

p Φ(δt(y))q−p

Φ(r)p+q
log
(
e+

Φ(r)

Φ(δt∨ ∧ r)
)
.

(vi) Note that w(s) ' sq−1 and ψ(s) ' Φ(s)1−q for s ∈ (0, R1/2) in this case.

We get from (4.5.3) that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt(y))∧4Φ(r)

2φ−1(1/t)−1

sq−1ds+
ψ(r)

Φ(r)
Φ(δt(y))q

ˆ 4Φ(r)

3Φ(δt(y))∧4Φ(r)

ds

s

' Φ(δt(y))q

Φ(r)q
log

(
e+

Φ(r)

Φ(δt(y) ∧ r)

)
.
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(vii) Note that w(s) ' sp−1 and ψ(s) ' Φ(s)1−p for s ∈ (0, R1) in this case.

By (4.5.3), we obtain

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt∧)∧4Φ(r)

2φ−1(1/t)−1

sp−1ds+
ψ(r)

Φ(r)
Φ(δt∧)

p

ˆ 3Φ(δt∨)∧4Φ(r)

3Φ(δt∧)∧4Φ(r)

ds

s

+
ψ(r)

Φ(r)
Φ(δt∧)

pΦ(δt∨)
p

ˆ 4Φ(r)

3Φ(δt∨)∧4Φ(r)

s−1−pds

' Φ(δt∧)
p

Φ(r)p
log

(
e+

Φ(δt∨ ∧ r)
Φ(δt∧ ∧ r)

)
.

(viii) Note that w(s) ' sq−1 and ψ(s) ' Φ(s)1−q for s ∈ (0, R1) in this case.

If δt∨ = δt(y), then we get from Lemma 1.1.1(i) and (4.5.3) that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt(y))∧4Φ(r)

2φ−1(1/t)−1

(
s ∧ Φ(δt(x))

)p
sq−p−1ds

+
ψ(r)

Φ(r)
Φ(δt(x))pΦ(δt(y))q

ˆ 4Φ(r)

3Φ(δt(y))∧4Φ(r)

s−p−1ds

' Φ(δt(x))p Φ(δt(y))q−p

Φ(r)q
=

Φ(δt∧)
p Φ(δt(y))q−p

Φ(r)q
.

If δt∧ = δt(y), then we get from (4.5.3) that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt(y))∧4Φ(r)

2φ−1(1/t)−1

sq−1ds+
ψ(r)

Φ(r)
Φ(δt(y))q

ˆ 3Φ(δt(x))∧4Φ(r)

3Φ(δt(y))∧4Φ(r)

ds

s

+
ψ(r)

Φ(r)
Φ(δt(x))pΦ(δt(y))q

ˆ 4Φ(r)

3Φ(δt(x))∧4Φ(r)

s−1−pds

' Φ(δt∧)
p Φ(δt(y))q−p

Φ(r)q
log

(
e+

Φ(δt(x) ∧ r)
Φ(δt(y) ∧ r)

)
.

(ix) Note that w(s) ' sp−1 and ψ(s) ' Φ(s)1−p for s ∈ (0, R1) in this case.

If δt∨ = δt(y), then by (4.5.3), it holds that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt(x))∧4Φ(r)

2φ−1(1/t)−1

sp−1ds+
ψ(r)

Φ(r)
Φ(δt(x))p

ˆ 3Φ(δt(y))∧4Φ(r)

3Φ(δt(x))∧4Φ(r)

ds

s

+
ψ(r)

Φ(r)
Φ(δt(x))pΦ(δt(y))q

ˆ 4Φ(r)

3Φ(δt(y))∧4Φ(r)

s−1−qds
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' Φ(δt∧)
p

Φ(r)p
log
(
e+

Φ(δt(y) ∧ r)
Φ(δt(x) ∧ r)

)
.

If δt∧(x, y) = δt(y), then we get from Lemma 1.1.1(ii) and (4.5.3) that

Ap,q(t, x, y) ' ψ(r)

Φ(r)

ˆ 3Φ(δt(y))∧4Φ(r)

2φ−1(1/t)−1

sp−1ds

+
ψ(r)

Φ(r)
Φ(δt(y))q

ˆ 4Φ(r)

3Φ(δt(y))∧4Φ(r)

(
1 ∧ Φ(δt(x))

s

)p
sp−q−1ds

' Φ(δt(y))p

Φ(r)p
=

Φ(δt∧)
p

Φ(r)p
.

�

Example 4.5.2. Let d, α > 0, β ∈ (0, 1) and p, q ≥ 0 such that p + q > 0.

Suppose that for every r0 ≥ 1, there are comparability constants such that

V (x, r) ' rd, x ∈ D, 0 < r < r0. (4.5.5)

Let Y D be a Hunt process in D and S = (St)t≥0 be an independent driftless

subordinator with Laplace exponent φ. Suppose that the tail w of the Lévy

measure of S satisfies

w(r) ' r−β, 0 < r < r1, (4.5.6)

for some r1 > 0. Suppose that the heat kernel pD(t, x, y) of Y D satisfies either

HK
hp,q

B or HK
hp,q

U with Φ(r) = Ψ(r) = rα where the boundary function hp,q

is defined as (4.1.6). When HK
hp,q

U is satisfied, we also assume that (4.5.5)

and (4.5.6) hold for all r > 0. See Example 4.1.8 for concrete examples of

Y D. By switching the roles of x and y if needed, without loss of generality,

we assume that q ≥ p.

Let q(t, x, y), J(x, y) and GD(x, y) be the heat kernel, the jump kernel

and the Green function of the subordinate process Xt := Y D
St

respectively.

Using our theorems in Sections 4.2 and 4.3, and Lemma 4.5.1, we get explicit
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estimates on q(t, x, y), J(x, y) and GD(x, y). We list them in terms of the

range of p + q, similar to the format of the Green function estimates for

Dirichlet forms degenerate at the boundary in [91].

In particular, by putting p = q = 1/2, we get Theorem 4.0.1.

We define B0
p,q : (0,∞)×D ×D → (0, 1] by

B0
p,q(t, x, y) :=

(
1 ∧ δ

t
∧(x, y)

ρ(x, y)

)αp(
1 ∧ δ

t
∨(x, y)

ρ(x, y)

)αp(
1 ∧ δt(y)

ρ(x, y)

)α(q−p)
.

We also define B1
p,q : (0,∞)×D ×D → (0, 1] as follows: if q > 1− β, then

B1
p,q(t, x, y) :=



(
1 ∧ δ

t
∧(x, y)

ρ(x, y)

)α(1−β)

, p > 1− β,(
1 ∧ δ

t
∧(x, y)

ρ(x, y)

)α(1−β)

log

(
e+

δt(y) ∧ ρ(x, y)

δt(x) ∧ ρ(x, y)

)
, p = 1− β,(

1 ∧ δ
t
∧(x, y)

ρ(x, y)

)αp(
1 ∧ δt(y)

ρ(x, y)

)α(1−β−p)
, p < 1− β,

if q = 1− β, then

B1
p,q(t, x, y) :=

(
1 ∧ δ

t
∧(x, y)

ρ(x, y)

)α(1−β)

log

(
e+

δt∨(x, y) ∧ ρ(x, y)

δt∧(x, y) ∧ ρ(x, y)

)
, p = 1− β,(

1 ∧ δ
t
∧(x, y)

ρ(x, y)

)αp(
1 ∧ δt(y)

ρ(x, y)

)α(1−β−p)
log

(
e+

δt(x) ∧ ρ(x, y)

δt(y) ∧ ρ(x, y)

)
, 0 < p < 1− β,(

1 ∧ δt(y)

ρ(x, y)

)αq
log

(
e+

ρ(x, y)

δt(y) ∧ ρ(x, y)

)
, p = 0,

and if q < 1− β, then

B1
p,q(t, x, y) :=

(
1 ∧ δt(y)

ρ(x, y)

)α(q−p)
×
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

(
1 ∧ δ

t
∧(x, y)

ρ(x, y)

)αp(
1 ∧ δ

t
∨(x, y)

ρ(x, y)

)α(1−β−q)
, p > 1− β − q,(

1 ∧ δ
t
∧(x, y)

ρ(x, y)

)αp(
1 ∧ δ

t
∨(x, y)

ρ(x, y)

)αp
log

(
e+

ρ(x, y)

δt∨(x, y) ∧ ρ(x, y)

)
, p = 1− β − q,(

1 ∧ δ
t
∧(x, y)

ρ(x, y)

)αp(
1 ∧ δ

t
∨(x, y)

ρ(x, y)

)αp
, p < 1− β − q.

We first give heat kernel estimates which are consequences of Lemma

4.5.1, Corollary 4.2.4 and Theorem 4.2.7.

(a) It holds that for all (t, x, y) ∈ (0, 1]×D ×D,

q(t, x, y) '
(

1 ∧ δ(x)

t1/(αβ)

)αp(
1 ∧ δ(y)

t1/(αβ)

)αq
BC0
p,q(t, x, y)

(
t−d/(αβ) ∧ t

ρ(x, y)d+αβ

)
'
(

1 ∧ δ(x)

t1/(αβ)

)αp(
1 ∧ δ(y)

t1/(αβ)

)αq(
t−d/(αβ) ∧

tBC0
p,q(t, x, y)

ρ(x, y)d+αβ

)
, (4.5.7)

where the function BC0
p,q(t, x, y) is defined as above.

(b) If HK
hp,q

B holds, then for all (t, x, y) ∈ [1,∞)×D ×D,

q(t, x, y) ' e−tφ(λD)δ(x)αpδ(y)αq,

and if HK
hp,q

U holds, then (4.5.7) holds for all (t, x, y) ∈ (0,∞)×D ×D.

Next, we give estimates on the jump kernel J(x, y). By Theorem 4.2.1

and the fact that B∗h(x, y) ' Bh(0, x, y) for x, y ∈ D, we deduce from (4.5.7)

that for any q ≥ p ≥ 0,

J(x, y) '
BC0
p,q(0, x, y)

ρ(x, y)d+αβ
, x, y ∈ D.

Lastly, we give the Green function estimates. Define

g(x, y) =

(
1∧ δ(x)

ρ(x, y)

)αp(
1∧ δ(y)

ρ(x, y)

)αq
×


ρ(x, y)αβ−d, d > αβ,

log
(
e+

δ∨(x, y)

ρ(x, y)

)
, d = αβ,(

δ∨(x, y) ∨ ρ(x, y)
)αβ−d

, d < αβ.
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When C0 = 0, by Theorem 4.3.6 and Example 4.3.3, for all x, y ∈ D,

GD(x, y) '


g(x, y), d > α(β − p− q),

δ(x)αpδ(y)αq log

(
e+

diam(D)

δ∨(x, y) ∨ ρ(x, y)

)
, d = α(β − p− q),

diam(D)(αβ−αp−αq−d)/αδ(x)αpδ(y)αq, d < α(β − p− q).
(4.5.8)

In particular, when HK
hp,q

U holds, if d ≤ α(β − p− q), then GD(x, y) =∞.

Now assume that C0 = 1. If p + q < β + 1, then using Theorem 4.3.6

and Example 4.3.3 again, we see that (4.5.8) also hold. If p+ q = β + 1 and

q < β + 1 (so that (H2**) holds, cf. Example 4.3.7), then by Theorem 4.3.9,

for all x, y ∈ D,

GD(x, y) ' g(x, y) log

(
e+

ρ(x, y)

δ∨(x, y) ∧ ρ(x, y)

)
. (4.5.9)

If p + q > β + 1 and q < β + 1 (so, again, (H2**) holds), then by Theorem

4.3.8 and (4.3.13), for all x, y ∈ D,

GD(x, y) '
(

1 ∧ δ∨(x, y)

ρ(x, y)

)−α(p+q−β−1)

g(x, y). (4.5.10)

The unusual form of the estimates in (4.5.9)-(4.5.10) should be compared

with similar estimates of the Green function obtained in a different context

in [91, Theorem 1.1 (2),(3)]. Such estimates lead to anomalous boundary

behavior of the corresponding Green potential, cf. [1].
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Chapter 5

Heat kernel estimates for

Dirichlet forms degenerate at

the boundary

In this chapter, we consider symmetric Markov processes in Rd
+ with degener-

ate jump kernels and critical killing potentials. The results of this chapter is

based on the ongoing project [57]. The main result of this chapter is Theorem

5.6.1.

5.1 Setup

Let d ≥ 1 and 0 < α < 2. Recall that ed := (0̃, 1) ∈ Rd and Rd
+ := {(x̃, xd) ∈

Rd : xd > 0}. We write Rd

+ := {(x̃, xd) ∈ Rd : xd ≥ 0} for the closure of Rd
+.

We consider the following assumptions:

(A1) B(x, y) = B(y, x) for all x, y ∈ Rd
+.

(A2) If α ≥ 1, then there exist θ > α− 1 and C1 > 0 such that

|B(x, x)− B(x, y)| ≤ C1

(
|x− y|
xd ∧ yd

)θ
, x, y ∈ Rd

+.

(A3-I) There exist C2 ≥ 1 and parameters β1, β2, β3, β4 ≥ 0, with β1 > 0
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if β3 > 0, and β2 > 0 if β4 > 0, such that

C−1
2 B̃β1,β2,β3,β4(x, y) ≤ B(x, y) ≤ C2, x, y ∈ Rd

+,

where

B̃β1,β2,β3,β4(x, y) :=

(
xd ∧ yd
|x− y|

∧ 1

)β1
(
xd ∨ yd
|x− y|

∧ 1

)β2

× logβ3

(
1 +

(xd ∨ yd) ∧ |x− y|
(xd ∧ yd) ∧ |x− y|

)
× logβ4

(
1 +

|x− y|
(xd ∨ yd) ∧ |x− y|

)
. (5.1.1)

(A3-II) There exists C3 > 0 such that

B(x, y) ≤ C3B̃β1,β2,β3,β4(x, y), x, y ∈ Rd
+.

(A4) For all x, y ∈ Rd
+ and a > 0, B(ax, ay) = B(x, y). In case d ≥ 2, for

all x, y ∈ Rd
+ and z̃ ∈ Rd−1, B(x+ (z̃, 0), y + (z̃, 0)) = B(x, y).

Throughout the chapter, we always assume that B(x, y) satisfies (A1),

(A3-I) and (A4).

The definition of the function B̃β1,β2,β3,β4(x, y) is motivated by Theorem

4.2.1 and Lemma 4.5.1.

Consider the following symmetric form

E0(u, v) :=
1

2

ˆ
Rd+

ˆ
Rd+

(u(x)− u(y))(v(x)− v(y))
B(x, y)

|x− y|d+α
dydx.

where the jump kernel B(x, y)|x−y|−d−α can degenerate at {x ∈ Rd : xd = 0}.
Since B(x, y) is bounded, by Fatou’s lemma, (E0, C∞c (Rd

+)) and (E0, C∞c (Rd

+))

are closable in L2(Rd
+, dx). Let F0 and F̄ be the closures of C∞c (Rd

+) and

C∞c (Rd

+) in L2(Rd
+, dx) under the norm E0

1 := E0 + (·, ·)L2(Rd+,dx) respectively.

Then (E0,F0) and (E0, F̄) are regular Dirichlet forms on L2(Rd
+, dx). Let

((Y 0
t )t≥0, (Px)Rd+\N0

) and ((Ȳt)t≥0, (Px)Rd+\N ′0) be the Hunt processes associ-
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ated with (E0,F0) and (E0, F̄) respectively, where N0 and N ′0 are exceptional

sets.

For κ ∈ (0,∞), define

Eκ(u, v) := E0(u, v) + κ

ˆ
Rd+
u(x)v(x)x−αd dx, u, v ∈ F ,

Fκ := F̃0 ∩ L2(Rd
+, κx

−α
d dx),

where F̃0 is the family of all E0
1 -quasi-continuous functions in F0. Then

(Eκ,Fκ) is also a regular Dirichlet form on L2(Rd
+, dx) with C∞c (Rd

+) as a spe-

cial standard core by [71, Theorems 6.1.1 and 6.1.2]. Let ((Y κ
t )t≥0, (Px)x∈Rd+\Nκ)

be the Hunt process associated with (Eκ,Fκ), where Nκ is an exceptional set.

For κ ∈ [0,∞), we denote by ζκ the lifetime of Y κ. Define Y κ
t = ∂ for

t ≥ ζκ, where ∂ is a cemetery point added to the state space Rd
+. We write

(P̄t)t≥0 and (P κ
t )t≥0 for the semigroups of Ȳ and Y κ respectively.

5.2 Preliminaries

Note that for any ε > 0,

log(e+ r) < (2 + ε−1)rε for all r ≥ 1, (5.2.1)

log(e+ ar)

log(e+ a)
< (1 + ε−1)rε for all r ≥ 1 and a > 0. (5.2.2)

For any a1, a2, a3, a4 ≥ 0, we define for t ≥ 0 and x, y ∈ Rd
+

Aa1,a2,a3,a4(t, x, y) =

(
(xd ∧ yd) ∨ t1/α

|x− y|
∧ 1

)a1
(

(xd ∨ yd) ∨ t1/α

|x− y|
∧ 1

)a2

× loga3

(
1 +

((xd ∨ yd) ∨ t1/α) ∧ |x− y|
((xd ∧ yd) ∨ t1/α) ∧ |x− y|

)
× loga4

(
1 +

|x− y|
((xd ∨ yd) ∨ t1/α) ∧ |x− y|

)
. (5.2.3)

We note that Aβ1,β2,β3,β4(0, x, y) = B̃β1,β2,β3,β4(x, y). It is clear that for any
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ε ∈ [0, a1],

Aa1,a2,a3,a4(t, x, y) ≤ Aa1−ε,a2+ε,a3,a4(t, x, y) for all t ≥ 0, x, y ∈ Rd
+.

Note that for any a > 0, there exists c > 0 such that

Aa1,a2,a3,a4(t, x, y) ≥ c(a ∧ 1)a1+a2 , (5.2.4)

for all t > 0 and x, y ∈ Rd
+ with (xd ∧ yd) + t1/α ≥ a|x− y|.

We give some elementary properties of Aa1,a2,a3,a4(t, x, y).

Lemma 5.2.1. Let a1, a2, a3, a4 ≥ 0.

(i) For any ε ∈ (0, a1 ∧ a3), there exists c1 > 0 such that

Aa1,a2,a3,a4(t, x, y) ≤ c1Aa1−ε,a2,0,a4(t, x, y) for all t ≥ 0, x, y ∈ Rd
+.

(ii) For any ε ∈ (0, a2 ∧ a4), there exists c2 > 0 such that

Aa1,a2,a3,a4(t, x, y) ≤ c2Aa1,a2−ε,a3,0(t, x, y) for all t ≥ 0, x, y ∈ Rd
+.

Lemma 5.2.2. Let a1, a2, a3, a4 ≥ 0. Suppose that a1 > 0 if a3 > 0.

(i) For any a′ ∈ [0, a2] with a′ < a1, there exists C > 0 such that

Aa1,a2,a3,a4(t, x, y)

≤ C

(
xd ∨ t1/α

|x− y|
∧ 1

)a1 (
yd ∨ t1/α

|x− y|
∧ 1

)a′
loga3

(
e+

(yd ∨ t1/α) ∧ |x− y|
(xd ∨ t1/α) ∧ |x− y|

)
× loga4

(
e+

|x− y|
((xd ∨ yd) ∨ t1/α) ∧ |x− y|

)
,

for all t ≥ 0, x, y ∈ Rd
+.

(ii) Assume that a1 > a2. Then there exists C > 0 such that

Aa1,a2,a3,a4(t, x, y)
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≤ C

(
xd ∨ t1/α

|x− y|
∧ 1

)a1 (
yd ∨ t1/α

|x− y|
∧ 1

)a2

loga3

(
e+

(yd ∨ t1/α) ∧ |x− y|
(xd ∨ t1/α) ∧ |x− y|

)
× loga4

(
e+

|x− y|
((xd ∨ yd) ∨ t1/α) ∧ |x− y|

)
,

for all t ≥ 0, x, y ∈ Rd
+.

For any r > 0, define processes Ȳ (r) and Y κ,(r) by Ȳ
(r)
t := rȲr−αt and

Y
κ,(r)
t := rY κ

r−αt. We recall the scaling property of Y κ from [92, Lemma 5.1]

and [93, Lemma 2.1]. By the same proof, Ȳ also has the following scaling

property.

Lemma 5.2.3. For any κ ≥ 0, r > 0 and x ∈ Rd
+, (Ȳ (r),Px/r) and (Y κ,(r),Px/r)

have the same laws as (Ȳ ,Px) and (Y κ,Px) respectively.

By (A4), we get the following horizontal translation invariance property

of Ȳ and Y κ.

Lemma 5.2.4. For any κ ≥ 0, z̃ ∈ Rd−1 and x ∈ Rd
+, (Ȳ + (z̃, 0),Px−(z̃,0))

and (Y κ+(z̃, 0),Px−0(z̃,0)) have the same laws as (Ȳ ,Px) and (Y κ,Px) respec-

tively.

Lemma 5.2.5. Suppose α ≤ 1. Then F0 = F̄ .

Proof. Define

C̃(u, v) :=
1

2

ˆ
Rd+

ˆ
Rd+

(u(x)− u(y))(v(x)− v(y))

|x− y|d+α
dydx,

D(C̃) := closure of C∞c (Rd

+) in L2(Rd
+, dx) under C̃ + (·, ·)L2(Rd+,dx).

Then (C̃,D(C̃)) is a regular Dirichlet form associated with the reflected α-

stable process in Rd

+ in the sense of [16]. Since B is bounded, there exists c1 >

0 such that E0(u, u) ≤ c1C̃(u, u) for all u ∈ C∞c (Rd

+) and hence D(C̃) ⊂ F̄ . By

[16, Theorem 2.5(i) and Remark 2.2(1)], since α ≤ 1, Rd

+\Rd
+ is (C̃,FC)-polar

and hence is also (E0, F̄)-polar. Therefore, τRd+ := inf{t > 0 : Ȳt /∈ Rd
+} =∞,

Px-a.s. for all x ∈ Rd
+ and we conclude the result from [93, Section 2]. �
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5.3 Nash inequality and existence of the heat

kernel

For all γ ≥ 0, denote by Iγ the modified Bessel function of the first kind

which is defined by

Iγ(r) =
∞∑
m=0

1

m! Γ(γ + 1 +m)

(r
2

)2m+γ

,

where Γ(r) :=
´∞

0
ur−1e−udu is the Gamma function. It is known that (see,

e.g. [2, (9.6.7) and (9.7.1)])

Iγ(r) ' (1 ∧ r)γ+1/2r−1/2er for r > 0. (5.3.1)

Define for t > 0 and x, y ∈ Rd
+,

qγ(t, x, y) =

√
xdyd

2t
Iγ

(xdyd
2t

)
exp

(
−x

2
d + y2

d

4t

) d−1∏
i=1

(
1√
4πt

exp

(
−|xi − yi|

2

4t

))
.

Note that by (5.3.1),

qγ(t, x, y) �
(

1 ∧ xd√
t

)γ+1/2(
1 ∧ yd√

t

)γ+1/2

t−d/2 exp

(
−c |x− y|

2

t

)
.

By [106, Lemma 4.1 and Theorem 4.9], qγ(t, x, y) is the transition density of

the Feller process W γ = (W γ
t )t≥0 on Rd

+ associated with the following regular

Dirichlet form (Qγ,D(Qγ)):

Qγ(u, v) :=

ˆ
Rd+

(
∇u(x) · ∇v(x) +

(
γ2 − 1

4

)
u(x)v(x)x−2

d

)
dx,

D(Qγ) := closure of C∞c (Rd
+) in L2(Rd

+, dx) under Qγ1 = Qγ + (·, ·)L2(Rd+,dx).

Let S = (St)t≥0 be an α/2-stable subordinator independent of W γ, and

let Xγ = (Xγ
t )t≥0 be the subordinate process Xγ

t := W γ
St

. Then Xγ is a Hunt
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process with no diffusion part. The transition density pγ(t, x, y) of Xγ
t exists

and is given by

pγ(t, x, y) =

ˆ ∞
0

qγ(s, x, y)
d

ds
P(St ≤ s).

Also, the jump kernel Jγ(dx, dy) and the killing measure κγ(dx) of Xγ have

densities Jγ(x, y) and κγ(x) that are given by the following formulas:

Jγ(x, y) =

ˆ ∞
0

qγ(t, x, y) να/2(t)dt,

κγ(x) =

ˆ ∞
0

(
1−
ˆ
Rd+
qγ(t, x, y)dy

)
να/2(t)dt,

where να/2(t) = α/2
Γ(1−α/2)

t−1−α/2 is the Lévy density of the subordinator S.

Using the scaling property and horizontal translation invariance of the

function qγ(t, x, y), Theorem 4.2.1 and Corollary 4.2.5, we obtain the follow-

ing lemma.

Lemma 5.3.1. (i) There exists a constant cγ,α > 0 such that κγ(x) = cγ,αx
−α
d

for every x ∈ Rd
+.

(ii) It holds that

Jγ(x, y) '
(

1 ∧ xd
|x− y|

)γ+1/2(
1 ∧ yd
|x− y|

)γ+1/2
1

|x− y|d+α
for x, y ∈ Rd

+.

(iii) There exists a constant C > 0 such that

pγ(t, x, y) ≤ Ct−d/α, t > 0, x, y ∈ Rd
+.

Denote by (Cγ,D(Cγ)) the regular Dirichlet form associated with the sub-

ordinate process Xγ. Then since Xγ has no diffusion part, we see from Lemma

5.3.1(i) that

Cγ(u, u) =

ˆ
Rd+

ˆ
Rd+

(u(x)− u(y))2Jγ(x, y)dydx+ cγ,α

ˆ
Rd+
u(x)2x−αd dx.
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Also, we have C∞c (Rd
+) ⊂ D(Cγ) since D(Qγ) ⊂ D(Cγ). (See [112].)

Lemma 5.3.2. There exists a constant C > 0 such that

‖u‖2(1+α/d)

L2(Rd+,dx)
≤ CCγ(u, u) for every u ∈ C∞c (Rd

+) with ‖u‖L1(Rd+,dx) ≤ 1.

Proof. By [27, Theorem 2.1] (see also [34, Theorem 3.4] and [62, Theorem

II.5]), the result follows from Lemma 5.3.1(iii). �

Proposition 5.3.3. There exists a constant C > 0 such that

‖u‖2(1+α/d)

L2(Rd+,dx)
≤ CE0(u, u) for every u ∈ F̄ with ‖u‖L1(Rd+,dx) ≤ 1. (5.3.2)

Proof. We first assume that α < 1. Let γ = β1 ∨ β2. Using Lemmas 5.3.2

and 5.3.1(i)–(ii), the Hardy inequality in [93, Proposition 3.2] and (A3-I),

we get that for any u ∈ C∞c (Rd
+) be such that ‖u‖L1(Rd+,dx) ≤ 1,

‖u‖2(1+α/d)

L2(Rd+,dx)
≤ c1

ˆ
Rd+

ˆ
Rd+

(u(x)− u(y))2 B̃γ+1/2,γ+1/2,0,0(x, y)

|x− y|d+α
dydx

≤ c2E0(u, u),

where B̃γ+1/2,γ+1/2,0,0 is defined in (5.1.1). By Lemma 5.2.5, F̄ is the closure

of C∞c (Rd
+) under E0

1 . Therefore, we conclude that (5.3.2) is true when α < 1.

Now, we assume that α ≥ 1. Since (5.3.2) is valid when α < 1, we get

that for every u ∈ C∞c (Rd

+) with ‖u‖L1(Rd+,dx) ≤ 1,

E0(u, u) ≥ 1

2

ˆ
Rd+

ˆ
Rd+

(u(x)− u(y))2 B(x, y)

|x− y|d+1/2
dydx

− 1

2

ˆ
Rd+

ˆ
Rd+

(u(x)− u(y))2 B(x, y)

|x− y|d+1/2
1{|x−y|>1}dydx

≥ c3‖u‖2(1+1/(2d))

L2(Rd+,dx)
− c4‖u‖L2(Rd+,dx).

Then since F̄ is the closure of C∞c (Rd

+) under E0
1 , we get from [27, Theo-

rem 2.1] that ‖P̄1‖1→∞ ≤ c5 for all t > 0. By Lemma 5.2.3, it follows that
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‖P̄t‖1→∞ = t−d/α‖P̄1‖1→∞ ≤ c5t
−d/α for t > 0. Using [27, Theorem 2.1] again,

we conclude that (5.3.2) holds for α ≥ 1. �

As a consequence of the Nash-type inequality (5.3.2), by following the

arguments given in [34, Example 5.5] (see also [45]), we get the existence and

a priori upper bounds of the heat kernels p̄(t, x, y) and pκ(t, x, y) of Ȳ and

Y κ respectively.

Proposition 5.3.4. The processes Ȳ and Y κ have heat kernels p̄(t, x, y) and

pκ(t, x, y) defined on (0,∞)× (Rd

+ \N )× (Rd

+ \N ) and (0,∞)× (Rd
+ \N )×

(Rd
+ \ N ) respectively, where N ⊂ Rd

+ is a properly exceptional set for for

both Ȳ and Y κ. Moreover, there exists a constant C > 0 such that

pκ(t, x, y) ≤ p̄(t, x, y), x, y ∈ Rd
+ \ N

and

p̄(t, x, y) ≤ C

(
t−d/α ∧ t

|x− y|d+α

)
, t > 0, x, y ∈ Rd

+ \ N .

By using the regularization argument given in [92, Subsection 3.1] and

Theorem 3.1.13, we obtain the following interior lower bounds.

Proposition 5.3.5. For every a ∈ (0, 1], there exists a constant C = C(a) >

0 such that

p̄(t, x, y) ≥ pκ(t, x, y) ≥ C

(
t−d/α ∧ t

|x− y|d+α

)
(5.3.3)

for all t > 0, x ∈ Rd
+ \N and a.e. y ∈ Rd

+ \N with xd∧yd > a(t1/α∨|x−y|).
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5.4 Parabolic Hölder regularity and conse-

quences

For κ ≥ 0 and an open set D ⊂ Rd
+, we denote by Y κ,D and P κ,D

t the part of

the process Y κ killed upon exiting D and its semigroup. Let τ̄D := inf{t >
0 : Ȳt /∈ D}, τκD := inf{t > 0 : Y κ

t /∈ D} and

p̄D(t, x, y) := p̄(t, x, y)− Ex
[
p̄(t− τ̄D, ȲτD , y); τ̄D < t

]
,

pκ,D(t, x, y) := pκ(t, x, y)− Ex
[
pκ(t− τκD, Y κ

τD
, y); τκD < t

]
. (5.4.1)

By the strong Markov property, p̄D(t, x, y) and pκ,D(t, x, y) are the transition

densities of Ȳ D and Y κ,D respectively.

By standard arguments, we obtain the following two results from (5.4.1),

and Propositions 5.3.4 and 5.3.5. (Cf. Lemas 4.4.1 and 4.4.3.)

Lemma 5.4.1. There exist constants C > 0 and η ∈ (0, 1/4) such that for

all x ∈ Rd
+ \ N , r ∈ (0, xd), t ∈ (0, (ηr)α] and z ∈ B(x, ηt1/α) \ N ,

p̄B(x,r)(t, z, y) ≥ pκ,B(x,r)(t, z, y) ≥ Ct−d/α for a.e. y ∈ B(x, ηt1/α) \ N .

Lemma 5.4.2. There exists a constant C > 1 such that for all x ∈ Rd
+ \ N

and r ∈ (0, xd),

C−1rα ≤ Ex[τκB(x,r)] ≤ sup
z∈B(x,r)\N

Ez[τ̄B(x,r)] ≤ Crα.

Let X̄ := (Vs, Ȳs)s≥0 and Xκ := (Vs, Y
κ
s )s≥0 be time-space processes where

Vs = V0 − s. The law of the time-space process s 7→ X̄s or s 7→ Xκ
s starting

from (t, x) will be denoted by P(t,x). For every open subset U of [0,∞)Rd,

define τ̄U = inf{s > 0 : X̄s /∈ U} and τκU = inf{s > 0 : Xκ
s /∈ U}.

Recall that a Borel measurable function u : [0,∞) × Rd

+ → R is said to

be parabolic in (a, b) × B(x, r) ⊂ (0,∞) × Rd
+ with respect to Ȳ (or Y κ)

if for every relatively compact open set U ⊂ (a, b) × B(x, r) it holds that
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u(t, z) = E(t,z)u(X̄τ̄U ) (or = E(t,z)u(Xκ
τκU

)) for all (t, z) ∈ U with z /∈ N .

We denote by |A| the Lebesgue measure on Rd+1
+ . By repeating the proof

of Lemma 4.4.5, we obtain the following lemma from Lemma 5.4.1.

Lemma 5.4.3. Let η ∈ (0, 1/4) be the constant from Lemma 5.4.1. For

every δ ∈ (0, η], there exists a constant C1 > 0 such that for all x ∈ Rd
+ \

N , r ∈ (0, xd), t ≥ δrα, and any compact set A ⊂ [t − δrα, t − δrα/2] ×
B(x, (ηδ/2)1/αr),

P(t,x)(σκA < τκ[t−δrα,t]×B(x,r)) ≥ C1
|A|
rd+α

.

With help from Lemma 5.4.3, by repeating the proof of Theorem 4.4.6,

one can obtain the following parabolic Hölder regularity from Lemmas 5.4.1

and 5.4.2.

Theorem 5.4.4. For any δ ∈ (0, 1), there exists a ∈ (0, 1] and C > 0 such

that for every x ∈ Rd
+ \ N , r ∈ (0, xd), t0 ≥ 0, and any function u on

(0,∞)×Rd
+ which is parabolic in (t0, t0 + rα)×B(x, r) with respect to Ȳ or

Y κ, and bounded in (t0, t0 + rα)× Rd

+, we have

|u(s, y)− u(t, z)| ≤ C

(
|s− t|1/α + |y − z|

r

)a
ess sup

[t0,t0+rα]×Rd+

|u|,

for every s, t ∈ (t0 + (1− δα)rα, t0 + rα) and y, z ∈ B(x, δr) \ N .

By Theorem 4.4.6, since heat kernels p̄(t, x, y) and pκ(t, x, y) are parabolic

with respect to Ȳ and Y κ respectively, they can be chosen to be joint con-

tinuous in (0,∞)× Rd
+ × Rd

+ by a standard argument (see, e.g. [72, Lemma

5.13]). In the remainder of this paper, we always choose the joint continuous

versions of p̄(t, x, y) and pκ(t, x, y). Then we can assume that the exceptional

set N in Proposition 5.3.4 is a subset of Rd

+ \Rd
+ and the lower bound (5.3.3)

holds for all t > 0, x, y ∈ Rd
+ with xd ∧ yd > a(t1/α ∨ |x − y|). Moreover, by

Lemmas 5.2.3 and 5.2.4, we get that

p̄(t, x, y) = r−dp̄(t/rα, x/r, y/r) = p̄(t, x+ (z̃, 0), y + (z̃, 0)),
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pκ(t, x, y) = r−dpκ(t/rα, x/r, y/r) = pκ(t, x+ (z̃, 0), y + (z̃, 0)), (5.4.2)

for any (t, x, y) ∈ (0,∞)× Rd
+ × Rd

+, r > 0 and z̃ ∈ Rd−1.

Corollary 5.4.5. Y κ is a strong Feller process in Rd
+.

Let

Gκ(x, y) =

ˆ ∞
0

pκ(t, x, y)dt and Ḡ(x, y) =

ˆ ∞
0

p̄(t, x, y)dt

be Green functions of Y κ and Ȳ , respectively.

From the upper bound in Proposition 5.3.4, we obtain

Corollary 5.4.6. If d > α, then there exists C > 0 such that

Gκ(x, y) ≤ Ḡ(x, y) ≤ C

|x− y|d−α
, x, y ∈ Rd

+.

Remark 5.4.7. The assumption d > (α + β1 + β2) ∧ 2 in [91, 93] is only

used to show Gκ(x, y) ≤ c|x − y|−d+α. Thus, by Corollary 5.4.6, all results

in [91, 93] with the assumption d > (α+ β1 + β2) ∧ 2 hold under the weaker

assumption d > α.

5.5 Parabolic Harnack inequality and prelim-

inary lower bounds of heat kernels

In this section we prove that the parabolic Harnack inequality holds for

(Y κ,Px) and get some preliminary lower bounds of heat kernels of (Y κ,Px).
All first hotting times and first exit times are with respect to (Y κ,Px), and

we will omit the superscript κ from the notation for these stopping times.

Using Lemma 5.4.1, by following the proof of Lemma 4.4.7, we get the

next lemma.

Lemma 5.5.1. Let η ∈ (0, 1/4) be the constant from Lemma 5.4.1 and let δ ∈
(0, η/4) be such that 4δ(2r)α ≤ εrα for all r > 0. Then there exists a constant
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C > 0 such that for all y ∈ Rd
+, R ∈ (0, yd), r ∈ (0, (ηδ/2)1/αR/2], δRα/2 ≤

t− s ≤ 4δ(2R)α, x ∈ B(y, (ηδ/2)1/αR/2), and z ∈ B(x0, (ηδ/2)1/αR),

P(t,z)(σ{s}×B(x,r) ≤ τ[s,t]×B(y,R)) ≥ C(r/R)d.

In the remainder of this section, we assume that B(x, y) satisfies the

following:

(B) There exists a constant C > 0 such that

B(x, y) ≤ CB(z, y) for all x, y, z ∈ Rd
+ satisfying |x− z| ≤ (|x− y| ∧ xd)/2.

Since we always assume (A3-I), if (A3-II) also holds true, then one can

easily check that condition (B) is satisfied.

Clearly, (B) implies that there exists a constant c > 0 such that

J(x, y) ≤ cJ(z, y) for all x, y, z ∈ Rd
+ satisfying |x− z| ≤ (|x− y| ∧ xd)/2.

(5.5.1)

Moreover, (B) also implies the following UJS type condition: there exists a

constant c > 0 such that

J(x, y) ≤ c

rd

ˆ
B(x,r)

J(z, y)dz for all x, y ∈ Rd
+ and 0 < r ≤ (|x− y| ∧ xd)/2.

(5.5.2)

Now, using Proposition 5.3.4, (5.5.1)–(5.5.2), Lemmas 5.4.1, 5.4.2, 5.4.3,

5.5.1, we can follow the arguments in the proofs of [32, Theorem 5.2 and

Lemma 5.3] (see also the proof of [47, Lemma 4.1 and Theorem 4.3]), and

obtain the following (interior) parabolic Harnack inequality. (Cf. Theorem

4.4.10.)

Theorem 5.5.2. There exist constants δ > 0 and C,M ≥ 1 such that for

all t0 ≥ 0, x ∈ Rd
+ and R ∈ (0, xd), and any nonnegative function u on
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(0,∞)× Rd
+ which is parabolic on Q := (t0, t0 + 4δRα)×B(x,R), we have

sup
(t1,y1)∈Q−

u(t1, y1) ≤ C inf
(t2,y2)∈Q+

u(t2, y2),

where Q− = [t0 + δRα, t0 + 2δRα] × B(x,R/M) and Q+ = [t0 + 3δRα, t0 +

4δRα]×B(x,R/M).

Using Lemma 5.4.1 and Theorem 4.4.10, we obtain

Lemma 5.5.3. For any positive constants a, b, there exists c = c(a, b, κ) > 0

such that for all z ∈ Rd
+ and r > 0 with B(z, 2br) ⊂ Rd

+,

inf
y∈B(z,br/2)

Py
(
τB(z,br) > arα

)
≥ c.

Now, we can follow the proof of [31, Proposition 3.5] to obtain the fol-

lowing preliminary lower bound.

Proposition 5.5.4. For every a > 0, there exists a constant c = c(a, κ) > 0

such that

pκ(t, x, y) ≥ ctJ(x, y)

for every (t, x, y) ∈ (0,∞)×Rd
+×Rd

+ with xd∧yd ≥ at1/α and at1/α ≤ 4|x−y|.

5.6 Sharp heat kernel estimates with explicit

boundary decays

In this section, we additionally assume that (A2) and (A3-II) hold. Note

that, since (B) holds true under (A3-I) and (A3-II), all results in Section

5.5 are valid under the current setting.

For q ∈ (−1, α + β1), we define a constant C(α, q,B) by

C(α, q,B) :=ˆ
Rd−1

1

(|ũ|2 + 1)(d+α)/2

ˆ 1

0

(sq − 1)(1− sα−q−1)

(1− s)1+α
B
(
(1− s)ũ, 1), sed

)
ds dũ.
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In case d = 1, C(α, q,B) is defined by

C(α, q,B) =

ˆ 1

0

(sq − 1)(1− sα−q−1)

(1− s)1+α
B
(
1, s
)
ds.

According to [92, Lemma 5.4 and Remark 5.5], the above constant C(α, q,B) ∈
(−∞,∞) is well-defined for every q ∈ (−1, α+β1), C(α, q,B) = 0 if and only

if q ∈ {0, α − 1}, and limq→−1C(α, q,B) = limq→α+β1 C(α, q,B) = ∞. Note

that for every s ∈ (0, 1), q 7→ (sq − 1)(1 − sα−q−1) is strictly decreasing on

(−1, (α−1)/2) and strictly increasing on ((α−1)/2, α+β1). Thus, the shape

of the map q 7→ C(α, q,B) is given as follows.

q −1 · · · (α− 1) ∧ 0 · · · 1
2
(α− 1) · · · (α− 1)+ · · · α + β1

C(α, q,B) ∞ ↘ 0 ↘ minimum ≤ 0 ↗ 0 ↗ ∞

Consequently, for every κ ≥ 0, there exists a unique pκ ∈ [(α − 1)+, α + β1)

such that

κ = C(α, pκ,B), (5.6.1)

In the remainder of this paper, unless explicitly mentioned otherwise, we

fix κ ∈ [0,∞), assume α > 1 if κ = 0, and omit the superscript κ from the

notation, i.e., write Y κ,D, P κ
t , P κ,D

t , τκD, pκ(t, x, y), pκ,D(t, x, y) and ζκ as Y D,

Pt, P
D
t , τD, p(t, x, y), pD(t, x, y) and ζ respectively. Also, we denote by p the

constant pκ in (5.6.1).

The goal of this section is to prove the following theorem. We will prove

the upper bound in Proposition 5.6.16 and the lower bound in Proposition

5.6.18 below. (Cf. Corollary 4.2.4 and Lemma 4.5.1.)

Theorem 5.6.1. Suppose that β2 < α + β1. Then it holds that for all t > 0

and x, y ∈ Rd
+,

p(t, x, y) '
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p
Aβ1,β̂2,β3,β4

(t, x, y)

(
t−d/α ∧ t

|x− y|d+α

)
.

203



CHAPTER 5. HEAT KERNEL ESTIMATES FOR DIRICHLET FORMS
DEGENERATE AT THE BOUNDARY

5.6.1 Preliminary upper bounds of heat kernels

Lemma 5.6.2. There exists C > 0 such that

p(t, x, y) ≤ C Px(ζ > t/3)Py(ζ > t/3), t ∈ [1,∞), x, y ∈ Rd
+.

Proof. By the semigroup property, the symmetry of p(t, ·, ·) and Proposition

5.3.4, we obtain

p(t, x, y) =

ˆ
Rd+

ˆ
Rd+
p(t/3, x, z)p(t/3, z, w)p(t/3, y, w)dzdw

≤ c

ˆ
Rd+
p(t/3, x, z)dz

ˆ
Rd+
p(t/3, y, w)dw = cPx(ζ > t/3)Py(ζ > t/3).

�

Lemma 5.6.3. Let V1 and V3 be open subsets of Rd
+ with dist(V1, V3) > 0.

Set V2 := Rd
+ \ (V1 ∪ V3). For any x ∈ V1, y ∈ V3 and t > 0, it holds that

p(t, x, y) ≤ Px(τV1 < t < ζ) sup
s≤t, z∈V2

p(s, z, y)

+ dist(V1, V3)−d−α
ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds.

Proof. Let x ∈ V1 and y ∈ V3. By the strong Markov property, the Lévy

system and symmetry, we get

p(t, x, y) = Ex
[
p(t− τV1 , YτV1

, y) : τV1 < t < ζ
]

= Ex
[
p(t− τV1 , YτV1

, y) : τV1 < t < ζ, YτV1
∈ V2

]
+ Ex

[
p(t− τV1 , YτV1

, y) : τV1 < t < ζ, YτV1
∈ V3

]
≤ Px(τV1 < t < ζ) sup

s≤t, z∈V2

p(s, z, y)

+

ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)
B(u,w)

|u− w|d+α
p(s, w, y)dudwds

≤ Px(τV1 < t < ζ) sup
s≤t, z∈V2

p(s, z, y)
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+ dist(V1, V3)−d−α
ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds.

�

For any a, b > 0 and w̃ ∈ Rd−1, we define

Dw̃(a, b) := {x = (x̃, xd) ∈ Rd : |x̃− w̃| < a, 0 < xd < b}

and U(r) := D0̃(r/2, r/2) for r > 0. In dimension 1, we abuse notation and

use Dw̃(a, b) = (0, b) and U(r) := (0, r/2).

Lemma 5.6.4. There exists C > 0 such that for all r > 0 and x ∈ U(2−4r),

Px(YτU(r)
∈ Rd

+) ≤ C
(

1 ∧ xd
r

)p
.

Proof. The result follows from [91, Lemma 3.4] if κ > 0 and [93, Theorem

1.1] if κ = 0. �

Lemma 5.6.5. If p < α, then there exists C > 0 such that for all r > 0 and

x ∈ U(2−4r),

Ex[τU(r)] ≤ C
(xd
r

)p
.

Proof. The result follows from scaling (Lemma 5.2.3), and [92, Lemma 5.13]

if κ > 0 and [93, Lemma 4.5] if κ = 0. �

For t > 0 and open set D ⊂ Rd
+, denote by Y d

t and Y D,d
t the last coordi-

nates of Yt and Y D
t respectively.

Lemma 5.6.6. For all γ, t > 0 and x ∈ U(1), it holds that

ˆ
Rd+
p(t, x, z)(1 ∧ zd)γdz ≤ Ex

[
(1 ∧ Y U(1),d

t )γ : τU(1) > t
]

+ Px(YτU(1)
∈ Rd

+).

(5.6.2)

In particular, it holds that

Px(ζ > t) ≤ t−1Ex[τU(1)] + Px(YτU(1)
∈ Rd

+). (5.6.3)
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Proof. Since Y
U(1)
t = Yt for t < τU(1), we have

ˆ
Rd+
p(t, x, z)(1 ∧ zd)γdz = Ex

[
(1 ∧ Y d

t )γ : t < ζ
]

= Ex
[
(1 ∧ Y d

t )γ : τU(1) > t
]

+ Ex
[
(1 ∧ Y d

t )γ : τU(1) ≤ t < ζ
]

≤ Ex
[
(1 ∧ Y U(1),d

t )γ : τU(1) > t
]

+ Ex
[
1 : τU(1) < ζ

]
= Ex

[
(1 ∧ Y U(1),d

t )γ : τU(1) > t
]

+ Px(YτU(1)
∈ Rd

+).

By taking γ = 0 in (5.6.2) and using Markov’s inequality, we get

Px(ζ > t) ≤ Px(τU(1) > t) +Px(YτU(1)
∈ Rd

+) ≤ t−1Ex[τU(1)] +Px(YτU(1)
∈ Rd

+).

�

Using (5.4.2), (5.6.3), and Lemmas 5.6.2, 5.6.4 and 5.6.5, we get the fol-

lowing near diagonal upper estimates when p < α.

Lemma 5.6.7. If p < α, then there exists a constant C > 0 such that

p(t, x, y) ≤ C
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p
t−d/α, t > 0, x, y ∈ Rd

+.

Lemma 5.6.8. If p < α, then there exists a constant C > 0 such that

p(t, x, y) ≤ C
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p(
t−d/α ∧ t

|x− y|d+α

)
, t > 0, x, y ∈ Rd

+.

Proof. We claim that there exists a constant c1 > 0 such that

p(t, x, y) ≤ c1

(
1 ∧ xd

t1/α

)p(
t−d/α ∧ t

|x− y|d+α

)
. (5.6.4)

By (5.4.2) we can assume x̃ = 0 and t = t0 = (1/2)α. If xd ≥ 2−4t
1/α
0 or

|x − y| ≤ 4t
1/α
0 , then (5.6.4) follows from Proposition 5.3.4 or Lemma 5.6.7.
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Hence, we assume xd < 2−4t
1/α
0 and |x− y| > 4t

1/α
0 , and will show that

p(t0, x, y) ≤ c1(t0)
xpd

|x− y|d+α
. (5.6.5)

Let V1 = U(t
1/α
0 ), V3 = {w ∈ Rd

+ : |w − y| < |x − y|/2} and V2 =

Rd
+ \ (V1 ∪ V3). By Lemma 5.6.4, we have Px(τV1 < t0 < ζ) ≤ Px(YτV1

∈
Rd

+) ≤ c2(t
−1/α
0 xd)

p. Also, we get from Proposition 5.3.4 that

sup
s≤t0, z∈V2

p(s, z, y) ≤ c2 sup
s≤t0, z∈Rd+,|z−y|>|x−y|/2

s

|z − y|d+α
= 2d+αc2

t0
|x− y|d+α

.

Next, we note that by the triangle inequality, for any u ∈ V1 and w ∈ V3,

|u−w| ≥ |x−y|−|x−u|−|y−w| ≥ |x−y|− t1/α0 − |x− y|
2

≥ |x− y|
4

≥ t
1/α
0 .

(5.6.6)

In particular, we see that
(
1 + 1|w|≥1(log |w|)β3

)
|u−w|−β1 ≤ c for u ∈ V1 and

w ∈ V3, so by [92, Lemma 5.2(a)], we have that for any u ∈ V1 and w ∈ V3,

B(u,w) ≤ cuβ1

d (| log ud|β3∨1)
(
1+1|w|≥1(log |w|)β3

)
|u−w|−β1 ≤ cuβ1

d | log ud|β3 .

(5.6.7)

Thus, by [92, Lemma 5.7], (A3-II), [93, Lemma 5.3], (5.6.6) and (5.6.7) we

get that

ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

≤ c3

ˆ t

0

(ˆ
V1

pV1(t− s, x, u)uβ1

d | log ud|β3du

)(ˆ
V3

p(s, y, w)dw

)
ds

≤ c3

ˆ t

0

(ˆ
V1

pV1(t− s, x, u)uβ1

d | log ud|β3du

)
ds

≤ c3

ˆ ∞
0

(ˆ
V1

pV1(s, x, u)uβ1

d | log ud|β3du

)
ds

= c3Ex
ˆ τV1

(Y d
s )β1| log Y d

s |β3ds ≤ c4x
p
d.

Therefore, we conclude (5.6.5) (and so (5.6.4)) from (5.6.6) and Lemma 5.6.3.
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Now, by the semigroup property, symmetry and (5.6.4), since t−d/α ∧
t

|x−y|d+α is comparable to the transition density of the isotropic α-stable pro-

cess in Rd, we get

p(t, x, y) =

ˆ
Rd+
p(t/2, x, z)p(t/2, y, z)dz

≤ c2
1

(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p ˆ
Rd+

(
t−d/α ∧ t

|x− z|d+α

)(
t−d/α ∧ t

|y − z|d+α

)
dz

≤ c5

(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p(
t−d/α ∧ t

|x− y|d+α

)
.

�

5.6.2 Sharp upper bounds of heat kernels

Lemma 5.6.9. Let γ > p − α. For any U(R) ⊂ D ⊂ U(2R) and any

x = (0̃, xd) with xd ≤ R/10, it holds that

ˆ ∞
0

ˆ
D

pD(t, x, z)zγddzdt ≤ CRγ+α−pxpd.

Proof. When d > α, the result follows from [91, Proposition 6.10] if κ > 0,

and from Remark 5.4.7 and [93, Proposition 6.8] if κ = 0. When d = 1 ≤ α,

the result follows from [57, Section 3.2]. �

We now remove the assumption p < α in Lemma 5.6.7.

Lemma 5.6.10. There exists a constant C > 0 such that

p(t, x, y) ≤ C
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p
t−d/α, t > 0, x, y ∈ Rd

+. (5.6.8)

Proof. In view of (5.4.2), it suffices to prove (5.6.8) when t = 1.

The lemma holds when p < α by Lemma 5.6.7. Now, assume that (5.6.8)

holds for p < kα for some k ∈ N. We now show (5.6.8) also holds for p ∈
[kα, (k + 1)α) and hence (5.6.8) always holds by induction.
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Fix ε > 0 such that p−α+ε < kα. Note that ε < α. Thus, p−α+ε < p so

that C(α, p−α+ ε,B) < C(α, p,B). Hence, p(1, x, y) ≤ pC(α,p−α+ε,B)(1, x, y).

By (5.4.2) and the induction hypothesis, it holds that for any s, u ∈ [0, 1/4]

and z, w ∈ Rd
+,

p(1− s− u, z, w) = (1− s− u)−d/αp(1, (1− s− u)−1/αz, (1− s− u)−1/αw)

≤ 2d/αpC(α,p−α+ε,B)(1, (1− s− u)−1/αz, (1− s− u)−1/αw)

≤ c3(1 ∧ zd)p−α+ε(1 ∧ wd)p−α+ε.

Therefore, by the semigroup property and symmetry, we get

p(1, x, y) = 16

ˆ 1
4

0

ˆ 1
4

0

p(1, x, y)dsdu

= 16

ˆ 1
4

0

ˆ 1
4

0

ˆ
Rd+

ˆ
Rd+
p(s, x, z)p(1− s− u, z, w)p(u, y, w)dzdwdsdu

≤ 16c3

( ˆ 1
4

0

ˆ
Rd+
p(s, x, z)(1 ∧ zd)p−α+εdzds

)
×
( ˆ 1

4

0

ˆ
Rd+
p(u, y, w)(1 ∧ wd)p−α+εdwdu

)
.

Thus, to conclude (5.6.8) by induction, it suffices to show that there exists a

constant c4 > 0 such that

ˆ 1
4

0

ˆ
Rd+
p(s, v, z)(1 ∧ zd)p−α+εdzds ≤ c4(1 ∧ vd)p, v ∈ Rd

+.

By (5.4.2), we can assume ṽ = 0. If v /∈ U(2−4), then we get

(1 ∧ vd)p ≥ 2−5p ≥ 2−5p

ˆ 1
4

0

ˆ
Rd+
p(s, v, z)(1 ∧ zd)p−α+εdzds.

Otherwise, if v ∈ U(2−4), then by (5.6.2), Fubini’s theorem, Lemmas 5.6.4
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and 5.6.9

ˆ 1/4

0

ˆ
Rd+
p(s, v, z)(1 ∧ zd)p−α+εdzds

≤
ˆ 1/4

0

Ev
[
(1 ∧ Y U(1),d

s )p−α+ε : τU(1) > s
]
ds+

ˆ 1/4

0

Pv(YτU(1)
∈ Rd

+)ds

≤ Ev
[ˆ τU(1)

0

(1 ∧ Y U(1),d
s )p−α+εds

]
+

1

4
Pv(YτU(1)

∈ Rd
+) ≤ c5v

p
d.

The proof is complete. �

Now using Lemma 5.6.10 instead of Lemma 5.6.7 in the proof of Lemma

5.6.8, we can remove the assumption p < α in Lemma 5.6.8.

Lemma 5.6.11. There exists a constant C > 0 such that

p(t, x, y) ≤ C
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p(
t−d/α ∧ t

|x− y|d+α

)
, t > 0, x, y ∈ Rd

+.

Since Px(ζ > t) =
´
Rd+
p(t, x, y)dy for all x ∈ Rd

+ and t > 0, as a conse-

quence fo the above lemma, we get the following result.

Corollary 5.6.12. There exists a constant C > 0 such that

Px(ζ > t) ≤ C
(

1 ∧ xd
t1/α

)p
, t > 0, x ∈ Rd

+.

Recall the definition of the function Aa1,a2,a3,a4(t, x, y) from (5.2.3).

Lemma 5.6.13. Let a1, a3, a4 ≥ 0 be constants with a1 > 0 if a3 > 0. Suppose

that there exists a constant C > 0 such that for all t > 0 and z, y ∈ Rd
+,

p(t, z, y) ≤ C
(

1 ∧ zd
t1/α

)p
Aa1,0,a3,a4(t, z, y)

(
t−d/α ∧ t

|z − y|d+α

)
. (5.6.9)

Then there exists a constant C ′ > 0 such that for any t > 0 and x = (0̃, xd) ∈
Rd

+ with xd ≤ 2−5,

Px(τU(1) < t < ζ) ≤ Ct
(

1 ∧ xd
t1/α

)p
(xd∨t1/α)a1 loga3+a4

(
e+

1

t1/α

)
. (5.6.10)
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Proof. By Proposition 5.3.4, we have

sup
s≤t, y∈Rd+

Py(|Ys − y| ≥ 1/4, s < ζ)

≤ c1 sup
s≤t, y∈Rd+

ˆ
z∈Rd+, |z−y|≥1/4

s

|z − y|d+α
dz ≤ c2t. (5.6.11)

If c2t ≥ 1/2, then (5.6.10) follows from Corollary 5.6.12.

Let c2t < 1/2. By the strong Markov property and (5.6.11), it holds that

Px(τU(1) < t < ζ, |Yt − YτU(1)
| ≥ 1/4)

= Ex
[
PYτU(1)

(
|Yt−τU(1)

− Y0| ≥ 1/4
)

: τU(1) < t < ζ
]

≤ Px(τU(1) < t < ζ) sup
s≤t, y∈Rd+

Py(|Ys − y| ≥ 1/4, s < ζ)

≤ 1

2
Px(τU(1) < t < ζ). (5.6.12)

Note that by the triangle inequality, for any y ∈ Rd
+\U(1) and z ∈ B(y, 1/4),

we have |z − x| ≥ |y − x| − |y − z| > 7/32. Thus by (5.6.12), we have

Px(τU(1) < t < ζ) ≤ 2Px(τU(1) < t < ζ, |Yt − YτU(1)
| < 1/4)

≤ 2Px(|Yt − x| > 7/32, t < ζ) = 2

ˆ
z∈Rd+, |z−x|>

7
32

p(t, x, z)dz

≤ c3t
(

1 ∧ xd
t1/α

)p
(xd ∨ t1/α)a1

ˆ
z∈Rd+, |z−x|>

7
32

loga3+a4

(
e+
|x− z|
t1/α

)
dz

|z − x|d+α+a1

≤ c4t
(

1 ∧ xd
t1/α

)p
(xd ∨ t1/α)a1 loga3+a4

(
e+

1

t1/α

) ˆ
z∈Rd+, |z−x|>

7
32

dz

|z − x|d+α

≤ c5t
(

1 ∧ xd
t1/α

)p
(xd ∨ t1/α)a1 loga3+a4

(
e+

1

t1/α

)
,

where in the third line above we used (5.6.9) and Lemma 5.2.2(ii), and in

the fourth we used (5.2.2). �
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Note that for any t, k, r > 0,(
1 ∧ r

t1/α

)p
(r ∨ t1/α)k = rk

(
1 ∧ r

t1/α

)p−k
. (5.6.13)

Lemma 5.6.14. There exists a constant C > 0 such that

p(t, x, y) ≤ C
(

1 ∧ xd ∧ yd
t1/α

)p
Aβ1,0,β3,β4(t, x, y)

(
t−d/α ∧ t

|x− y|d+α

)
,

for all t > 0 and x, y ∈ Rd
+.

Proof. Since A0,0,a3,a4 is bounded from below by a positive constant, by

Lemma 5.6.11, the lemma hold for β1 = 0.

We assume β1 > 0 and set bn = β1 ∧ nα
2

for n ≥ 0. Below, we prove by

induction that for any n ≥ 0, there exists a constant C > 0 such that for all

t > 0 and x, y ∈ Rd
+,

p(t, x, y) ≤ C
(

1 ∧ xd ∧ yd
t1/α

)p
Abn,0,β3,β4(t, x, y)

(
t−d/α ∧ t

|x− y|d+α

)
.

(5.6.14)

The lemma is a direct consequence of (5.6.14).

(5.6.14) holds for n = 0. Suppose (5.6.14) holds for n− 1. By symmetry

and (5.4.2), we can assume xd ≤ yd, x̃ = 0 and |x − y| = 4 without loss of

generality. If t > 1 or xd > 2−5, then (5.6.14) follows from Lemma 5.6.11 and

(5.2.4).

Let t ≤ 1 and xd ≤ 2−5. Then yd ≤ xd + |x − y| ≤ 4 + 2−5 by the

triangle inequality. Our goal is to show that there exists a constant c1 > 0

independent of t, x, y such that

p(t, x, y)

≤ c1t
(

1 ∧ xd
t1/α

)p
(xd ∨ t1/α)bn logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
.

(5.6.15)

Set V1 = U(1), V3 = B(y, 2) ∩ Rd
+ and V2 = Rd

+ \ (V1 ∪ V3). Using
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Proposition 5.3.4 and the triangle inequality, we get that

sup
s≤t, z∈V2

p(s, z, y) ≤ c2 sup
s≤t, z∈Rd+,|z−y|≥2

s

|z − y|d+α
≤ 2−d−αc2t (5.6.16)

and

dist(V1, V3) ≥ sup
u∈V1, w∈V3

(4− |x− u| − |y − w|) ≥ 1. (5.6.17)

We consider the following two cases separately.

(Case 1) p ≥ α + bn and 10xd < t1/α.

By Lemma 5.6.4, we have Px(τV1 < t < ζ) ≤ Px(τV1 < ζ) ≤ c3x
p
d. Pick

ε > 0 such that 0 < ε < β1 and p < α + β1 − ε. By (A3-II), (5.6.17), and

Lemmas 5.2.1(i) and 5.6.9,

ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

≤ c4

ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B̃(β1−ε)+,0,0,0(u,w)p(s, y, w)dudwds

≤ c5

ˆ t

0

ˆ
V1

pV1(t− s, x, u)uβ1−ε
d du

ˆ
V3

p(s, y, w)dwds

≤ c5

ˆ ∞
0

ˆ
V1

pV1(s, x, u)uβ1−ε
d duds ≤ c6x

p
d.

Therefore, since xd < t1/α ≤ 1 and 1 + (bn − p)/α ≤ 0, we get from Lemma

5.6.3 and (5.6.16) that

p(t, x, y) ≤ c7(t+ 1)xpd ≤ 2c7t
1−p/α−bn/αxpd = 2c7t(xd/t

1/α)p(xd ∨ t1/α)bn .

(Case 2) p < α + bn or 10xd ≥ t1/α.

By the induction hypothesis, (5.6.9) holds with a1 = bn−1, a3 = β3 and

a4 = β4. Thus, since bn−bn−1 ≤ α/2, we get from Lemma 5.6.13 and (5.6.16)

that

Px(τV1 < t < ζ) sup
s≤t, z∈V2

p(s, z, y)
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≤ c8t
(

1 ∧ xd
t1/α

)p
(xd ∨ t1/α)bn−1(t1/α)α/2 t1/2 logβ3+β4

(
e+

1

t1/α

)
≤ c9t

(
1 ∧ xd

t1/α

)p
(xd ∨ t1/α)bn . (5.6.18)

On the other hand, using (A3-II), (5.6.17) and Lemma 5.2.2(i), we get

for β′ := (bn/2) ∧ β2 ∧ p,

ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

≤ c10

ˆ t

0

ˆ
V3

p(s, y, w)wβ
′

d logβ4

(
e+

1

wd

)
×
ˆ
V1

p(t− s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
dudwds. (5.6.19)

By (5.2.2) and Corollary 5.6.12, since β1 > 0 and bn ≤ β1, we get that for

any 0 < s < t and w ∈ V3,

ˆ
u∈V1:ud<xd

p(s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

≤
ˆ
u∈V1:ud<xd∨s1/α

p(s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

≤ c11(xd ∨ s1/α)β1 logβ3

(
e+

wd
xd ∨ s1/α

) ˆ
u∈V1:ud<xd∨s1/α

p(s, x, u)du

≤ c12

(
1 ∧ xd

s1/α

)p
(xd ∨ s1/α)bn logβ3

(
e+

wd
xd ∨ s1/α

)
.

Next, using the induction hypothesis and Lemma 5.7.3, since bn ≤ β1 and

bn < α + bn−1, we get that for any 0 < s < t and w ∈ V3,

ˆ
u∈V1:ud≥xd

p(s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

≤ c13

(
1 ∧ xd

s1/α

)p ˆ
u∈V1:ud≥xd

(
xd ∨ s1/α

|x− u|
∧ 1

)bn−1
(
s−d/α ∧ s

|x− u|d+α

)
× logβ3+β4

(
1 +

|x− u|
(xd ∨ s1/α) ∧ |x− u|

)
ubnd logβ3

(
e+

wd
ud

)
du
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≤ c14

(
1 ∧ xd

s1/α

)p
(xd ∨ s1/α)bn logβ3

(
e+

wd
xd ∨ s1/α

)
.

Similarly, again spliting the integration into two parts wd ≥ yd and wd <

yd, and using the induction hypothesis and Lemma 5.7.3 again, since β′ ≤
bn < α + bn−1, and β′ > 0 if β4 > 0, we also get that for any 0 < s < t,

ˆ
V3

p(s, y, w)wβ
′

d logβ4

(
e+

1

wd

)
logβ3

(
e+

wd
xd ∨ (t− s)1/α

)
dw

≤ c15

(
1 ∧ yd

s1/α

)p
(yd ∨ s1/α)β

′

× logβ4

(
e+

1

yd ∨ s1/α

)
logβ3

(
e+

yd ∨ s1/α

xd ∨ (t− s)1/α

)
.

Therefore, by (5.6.13) and (5.6.19),

ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

≤ c16x
bn
d y

β′

d

ˆ t

0

(
1 ∧ xd

(t− s)1/α

)p−bn(
1 ∧ yd

s1/α

)p−β′
× logβ3

(
e+

yd ∨ s1/α

xd ∨ (t− s)1/α

)
logβ4

(
e+

1

yd ∨ s1/α

)
ds. (5.6.20)

By Lemma 5.7.1, since β′ ≤ p, it holds that

ˆ t/2

0

(
1 ∧ xd

(t− s)1/α

)p−bn(
1 ∧ yd

s1/α

)p−β′
× logβ3

(
e+

yd ∨ s1/α

xd ∨ (t− s)1/α

)
logβ4

(
e+

1

yd ∨ s1/α

)
ds

≤ c17

(
1 ∧ xd

t1/α

)p−bn
logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
×
ˆ t/2

0

(
1 ∧ yd

s1/α

)(p−β′)∧(α/2)

logβ4

(
e+

1

yd ∨ s1/α

)
ds

≤ c18t

(
1 ∧ xd

t1/α

)p−bn(
1 ∧ yd

t1/α

)(p−β′)∧(α/2)
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× logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
≤ c19t

(
1 ∧ xd

t1/α

)p−bn
logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
.

When p < α + bn, we get from Lemma 5.7.1 that

ˆ t

t/2

(
1 ∧ xd

(t− s)1/α

)p−bn(
1 ∧ yd

s1/α

)p−β′
× logβ3

(
e+

yd ∨ s1/α

xd ∨ (t− s)1/α

)
logβ4

(
e+

1

yd ∨ s1/α

)
ds

≤ c20 logβ4

(
e+

1

yd ∨ t1/α

) ˆ t/2

0

(
1 ∧ xd

s1/α

)p−bn
logβ3

(
e+

yd ∨ t1/α

xd ∨ s1/α

)
ds

≤ c21t

(
1 ∧ xd

t1/α

)p−bn
logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
.

When 10xd ≥ t1/α, we also get from Lemma 5.7.1 that

ˆ t

t/2

(
1 ∧ xd

(t− s)1/α

)p−bn(
1 ∧ yd

s1/α

)p−β′
× logβ3

(
e+

yd ∨ s1/α

xd ∨ (t− s)1/α

)
logβ4

(
e+

1

yd ∨ s1/α

)
ds

≤ c22

ˆ t

t/2

(
1 ∧ yd

s1/α

)(p−β′)∧α
2

logβ3

(
e+

yd ∨ s1/α

xd

)
logβ4

(
e+

1

yd ∨ s1/α

)
ds

≤ c23t logβ3

(
e+

yd ∨ t1/α

xd

)
logβ4

(
e+

1

yd ∨ t1/α

)
≤ c24t

(
1 ∧ xd

t1/α

)p−bn
logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
. (5.6.21)

Now (5.6.15) follows from (5.6.13), (5.6.18), (5.6.20)-(5.6.21) and Lemma

5.6.3. The proof is complete. �

Using Lemmas 5.6.14 and 5.2.2(ii), we get the following result from Lemma

5.7.3 and (5.6.13).

Lemma 5.6.15. Let η1, η2 ≥ 0 and 0 ≤ β̂ < α + β1. Assume that β̂ > 0
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if η1 > 0. There exists a constant C > 0 such that for any x ∈ Rd
+ and

s, k, l > 0,

ˆ
Rd+
p(s, x, z)zβ̂d logη1

(
e+

k

zd

)
logη2

(
e+

zd
l

)
dz

≤ Cxβ̂d

(
1 ∧ xd

s1/α

)p−β̂
logη1

(
e+

k

xd ∨ s1/α

)
logη2

(
e+

xd ∨ s1/α

l

)
.

Proposition 5.6.16. Let ε ∈ (0, α/2] and set β̂2 := β2 ∧ (α+ β1− ε). There

exists a constant C = C(ε) > 0 such that

p(t, x, y) ≤ C
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p
Aβ1,β̂2,β3,β4

(t, x, y)

(
t−d/α ∧ t

|x− y|d+α

)
,

for all t > 0 and x, y ∈ Rd
+.

Proof. As in the proof of Lemma 5.6.14, by symmetry, Lemma 5.6.11 and

(5.2.4), we can assume xd ≤ yd∧2−5 and |x−y| = 4 without loss of generality,

and it is enough to show that there exists c1 > 0 such that for any t ≤ 1,

p(t, x, y) ≤ c1t
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p
(xd ∨ t1/α)β1(yd ∨ t1/α)β2

× logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
. (5.6.22)

Let t ≤ 1. Set V1 = U(1), V3 = B(y, 2) ∩Rd
+ and V2 = Rd

+ \ (V1 ∪ V3). By

Lemma 5.6.14,

sup
s≤t, z∈V2

p(s, z, y) ≤ c2 sup
s≤t, z∈Rd+,|z−y|≥2

(
1 ∧ zd ∧ yd

s1/α

)p
Aβ1,0,β3,β4(s, z, y)

s

|z − y|d+α
.

(5.6.23)

Note that yd ≤ xd + |x− y| ≤ 4 + 2−5 and zd ≤ yd + |z − y| for any z ∈ Rd
+

by the triangle inequality. Thus, by Lemma 5.7.2(i), we have that for any
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0 < s ≤ t and z ∈ Rd
+ with |z − y| ≥ 2,(

1 ∧ zd ∧ yd
s1/α

)p
Aβ1,0,β3,β4(s, z, y)

s

|z − y|d+α

≤
(

1 ∧ yd
s1/α

)p
(yd ∨ s1/α)β1 logβ3+β4

(
e+
|z − y|
s1/α

)
s

|z − y|d+α

≤ c3

(
1 ∧ yd

s1/α

)p
(yd ∨ s1/α)β1s logβ3+β4

(
e+

2

s1/α

)
. (5.6.24)

Since(
1 ∧ yd

s1/α

)p
(yd ∨ s1/α)β1s logβ3+β4

(
e+

2

s1/α

)

=


(
s logβ3+β4

(
e+

2

s1/α

))
ypd(s

1/α ∨ yd)β1−p for β1 > p;(
s(β1+α−p)/α logβ3+β4

(
e+

2

s1/α

))
yβ1

d

(
s1/α ∧ yd

)p−β1
for β1 ≤ p,

using the fact that β1 + α− p > 0, we get from (5.6.23)–(5.6.24) that

sup
s≤t, z∈V2

p(s, z, y) ≤ c4

(
1 ∧ yd

t1/α

)p
(yd∨ t1/α)β1t logβ3+β4

(
e+

2

t1/α

)
. (5.6.25)

Note that (5.6.9) holds with a1 = β1, a3 = β3 and a4 = β4 by Lemma

5.6.14. Thus, by Lemma 5.6.13, (5.6.25) and (5.2.1), since yd ∨ t1/α < 5 and

(β̂2 − β1)+ < α, we obtain

Px(τV1 < t < ζ) sup
s≤t, z∈V2

p(s, z, y)

≤ c5t
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p
(xd ∨ t1/α)β1(yd ∨ t1/α)β1t log2(β3+β4)

(
e+

2

t1/α

)
≤ c6t

(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p
(xd ∨ t1/α)β1(yd ∨ t1/α)β̂2 . (5.6.26)

Next, we show that there exists c7 > 0 such that

ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds
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≤ c7tx
β1

d y
β̂2

d

(
1 ∧ xd

t1/α

)p−β1
(

1 ∧ yd
t1/α

)p−β̂2

× logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
. (5.6.27)

Once we get (5.6.27), by (5.6.13) and (5.6.26), we can apply Lemma 5.6.3 to

get (5.6.22) and finish the proof. We consider the cases β1 > β2 and β1 ≤ β2

separately.

(Case 1) β1 > β2.

Since |u − w| ' 1 and wd ≤ 4 for u ∈ V1 and w ∈ V3, we have from

Lemma 5.2.2(ii) and (5.6.17) that for any 0 ≤ s1 < s2 ≤ t,

ˆ s2

s1

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

≤ c8

ˆ s2

s1

ˆ
V3

p(s, y, w)wβ2

d logβ4

(
e+

1

wd

)
×
[ˆ

V1

p(t− s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

]
dwds.

Since p < α + β1, using Lemma 5.6.15 twice and Lemma 5.7.1, we get that

ˆ t

t/2

ˆ
V3

p(s, y, w)wβ2

d logβ4

(
e+

1

wd

)
×
[ˆ

V1

p(t− s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

]
dwds

≤ c9x
β1

d

ˆ t

t/2

(
1 ∧ xd

(t− s)1/α

)p−β1

×
ˆ
V3

p(s, y, w)wβ2

d logβ4

(
e+

1

wd

)
logβ3

(
e+

wd
xd ∨ (t− s)1/α

)
dwds

≤ c10x
β1

d y
β2

d

ˆ t

t/2

(
1 ∧ xd

(t− s)1/α

)p−β1
(

1 ∧ yd
s1/α

)p−β2

× logβ3

(
e+

yd ∨ s1/α

xd ∨ (t− s)1/α

)
logβ4

(
e+

1

yd ∨ s1/α

)
ds

≤ c11x
β1

d y
β2

d

(
1 ∧ yd

t1/α

)p−β2

logβ4

(
e+

1

yd ∨ t1/α

)
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×
ˆ t/2

0

(
1 ∧ xd

s1/α

)p−β1

logβ3

(
e+

yd ∨ t1/α

xd ∨ s1/α

)
ds

≤ c12tx
β1

d y
β2

d

(
1 ∧ xd

t1/α

)p−β1
(

1 ∧ yd
t1/α

)p−β2

× logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
.

Similarly, when yd ≥ t1/α, we obtain from Lemma 5.6.15 that

ˆ t/2

0

ˆ
V3

p(s, y, w)wβ2

d logβ4

(
e+

1

wd

)
×
[ˆ

V1

p(t− s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

]
dwds

≤ c13x
β1

d y
β2

d

ˆ t/2

0

(
1 ∧ xd

(t− s)1/α

)p−β1
(

1 ∧ yd
s1/α

)p−β2

× logβ3

(
e+

yd ∨ s1/α

xd ∨ (t− s)1/α

)
logβ4

(
e+

1

yd ∨ s1/α

)
ds

≤ c14tx
β1

d y
β2

d

(
1 ∧ xd

t1/α

)p−β1
(

1 ∧ yd
t1/α

)p−β2

× logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
.

Therefore, it remains to bound

ˆ t/2

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

when xd ≤ yd < t1/α.

Assume that xd ≤ yd < t1/α. Using β1 > β2, we have from (5.2.1) and

Lemma 5.6.15 that for any 0 < s < t/2 and w ∈ V3,

ˆ
u∈V1:ud≤wd

p(t− s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

≤ c15w
β1−β2

d

ˆ
u∈V1:ud≤wd

p(t− s, x, u)uβ2

d du
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≤ c16t
(β2−β1)/αwβ1−β2

d xβ1

d

(
1 ∧ xd

t1/α

)p−β1

.

Hence, we get from Lemmas 5.6.15 and 5.7.1 that

ˆ t/2

0

ˆ
V3

ˆ
V1:ud≤wd

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

≤ c17

ˆ t/2

0

ˆ
V3

p(s, y, w)wβ2

d logβ4

(
e+

1

wd

)
×
[ˆ

V1:ud≤wd
p(t− s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

]
dwds

≤ c18t
(β2−β1)/αxβ1

d

(
1 ∧ xd

t1/α

)p−β1
ˆ t/2

0

ˆ
V3

p(s, y, w)wβ1

d logβ4

(
e+

1

wd

)
dwds

≤ c19t
(β2−β1)/αxβ1

d y
β1

d

(
1 ∧ xd

t1/α

)p−β1
ˆ t/2

0

(
1 ∧ yd

s1/α

)p−β1

logβ4

(
e+

1

yd ∨ s1/α

)
ds

= c20tx
β1

d y
β2

d

(
1 ∧ xd

t1/α

)p−β1
(

1 ∧ yd
t1/α

)p−β2

logβ4

(
e+

1

yd ∨ t1/α

)
.

On the other hand, we pick any ε′ ∈ (0, β1 − β2) such that p < α + β1 − ε′

and get from (5.2.1) and Lemmas 5.6.15 and 5.7.1 that

ˆ t/2

0

ˆ
V3

ˆ
V1:ud≥wd

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

≤ c21

ˆ t/2

0

ˆ
V3

p(s, y, w)wβ1−ε′
d logβ4

(
e+

1

wd

)
×
[ˆ

V1:ud≥wd
p(t− s, x, u)uβ2+ε′

d logβ3

(
e+

ud
wd

)
du

]
dwds

≤ c22x
β2+ε′

d yβ1−ε′
d

(
1 ∧ xd

t1/α

)p−β2−ε′
ˆ t/2

0

(
1 ∧ yd

s1/α

)p−β1+ε′

logβ4

(
e+

1

yd ∨ s1/α

)
ds

≤ c23tx
β1

d y
β2

d

(
1 ∧ xd

t1/α

)p−β1
(

1 ∧ yd
t1/α

)p−β2

logβ4

(
e+

1

yd ∨ t1/α

)
.

The proof for (Case 1) is complete.

(Case 2) β1 ≤ β2.
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By (A3-II) and (5.6.17), we have

ˆ t

0

ˆ
V3

ˆ
V1

pV1(t− s, x, u)B(u,w)p(s, y, w)dudwds

≤ c24

ˆ t

0

ˆ
V3

p(s, y, w)wβ̂2

d logβ4

(
e+

1

wd

)
×
[ˆ

V1

p(t− s, x, u)uβ1

d logβ3

(
e+

wd
ud

)
du

]
dwds

+ c24

ˆ t

0

ˆ
V3

p(s, y, w)wβ1

d

×
[ˆ

V1:wd<ud

p(t− s, x, u)uβ̂2

d logβ3

(
e+

ud
wd

)
logβ4

(
e+

1

ud

)
du

]
dwds

=: I1 + I2.

Since p− β̂2 ≤ p− β1 < α and β̂2 < α+ β1, we see from Lemmas 5.6.15 and

5.7.1 that

I1 ≤ c25tx
β1

d y
β̂2

d

(
1 ∧ xd

t1/α

)p−β1
(

1 ∧ yd
t1/α

)p−β̂2

× logβ3

(
e+

yd ∨ t1/α

xd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
.

Let ε′′ > 0 be such that p∨ β̂2 < α+β1− ε′′. Using (5.2.2) twice and (5.6.13),

since xd ≤ yd, we also get from Lemmas 5.6.15 and 5.7.1 that

I2 ≤ c29

ˆ t

0

ˆ
V3

p(s, y, w)wβ1−ε′′
d

×
[ˆ

V1:wd<ud

p(t− s, x, u)uβ̂2+ε′′

d logβ3

(
e+

ud
wd

)
logβ4

(
e+

1

ud

)
du

]
dwds

≤ c31t
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p
(xd ∨ t1/α)β̂2+ε′′(yd ∨ t1/α)β1−ε′′

× logβ3

(
e+

xd ∨ t1/α

yd ∨ t1/α

)
logβ4

(
e+

1

xd ∨ t1/α

)
≤ c32t

(
1 ∧ xd

t1/α

)p (
1 ∧ yd

t1/α

)p
(xd ∨ t1/α)β1(yd ∨ t1/α)β̂2

× logβ3

(
e+

xd ∨ t1/α

yd ∨ t1/α

)
logβ4

(
e+

1

yd ∨ t1/α

)
.
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The proof is complete. �

5.6.3 Lower bound estimates

Recall that Dw̃(a, b) = {x = (x̃, xd) ∈ Rd : |x̃ − w̃| < a, 0 < xd < b} for

a, b > 0 and w̃ ∈ Rd−1, and, in dimension 1, Dw̃(a, b) = (0, b).

For x = (x̃, xd) ∈ Rd
+, we define

Vx =

Dx̃(2, 2) if xd < 1

B(x, 1/2) if xd ≥ 1,
and Wx = Dx̃(2, 8 + xd) \Dx̃(2, 5 + xd).

Lemma 5.6.17. There exist constants M > 1 and c > 0 such that for all

x ∈ Rd
+,

inf
z∈Wx

p(M,x, z) ≥ c(xd ∧ 1)p.

Proof. By Proposition 5.3.5,

inf
w,z∈Wx,1≤s≤M

p(s, w, z) ≥ c1(M) > 0 for all x ∈ Rd
+. (5.6.28)

If xd ≥ 1, then the result follows from Proposition 5.3.5. Suppose xd < 1.

Then by the strong Markov property and (5.6.28), for all M > 1 and z ∈ Wx,

p(M,x, z) ≥ Ex[p(M − τVx , YτVx , z) : τVx ≤M − 1, YτVx ∈ Wx]

≥
(

inf
w∈Wx,1≤s≤M

p(s, w, z)

)
Px(τVx ≤M − 1, YτVx ∈ Wx)

≥ c1(Px(YτVx ∈ Wx)− Px(τVx > M − 1)).

By [92, Lemma 5.10] for κ > 0 and [93, Theorem 1.1] for κ = 0, we have

Px(Y κ
τVx
∈ Wx) ≥ Px(Y κ

τVx
∈ Dx̃(2, 8) \Dx̃(2, 6)) ≥ 2c2x

p
d

Moreover, by Corollary 5.6.12, we also have

Px(τVx > M − 1)) ≤ Px(ζ > M − 1) ≤ c3(xd/(M − 1)1/α)p.
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Thus, we can choose M = 1 + (c3/c2)α/p so that 2c2 − c3(M − 1)−p/α = c2,

which implies p(M,x, z) ≥ c2x
p
d. �

Recall the definition of Aβ1,β2,β3,β4(t, x, y) from (5.2.3).

Proposition 5.6.18. There exists a constant c > 0 such that

p(t, x, y) ≥ c
(

1 ∧ xd
t1/α

)p (
1 ∧ yd

t1/α

)p
Aβ1,β2,β3,β4(t, x, y)

(
t−d/α ∧ t

|x− y|d+α

)
,

for all t > 0 and x, y ∈ Rd
+.

Proof. Without loss of generality, we assume xd ≤ yd. Let M > 1 be the

constant in Lemma 5.6.17. By the semigroup property and Lemma 5.6.17,

p(2M + 1, x, y) ≥
ˆ
Wx

ˆ
Wy

p(M,x, z)p(1, z, w)p(M,w, y)dzdw

≥ c1

(
inf
z∈Wx

p(M,x, z)

)(
inf
w∈Wy

p(M, y,w)

)(
inf

(z,w)∈Wx×Wy

p(1, x, z)

)
≥ c2(xd ∧ 1)p(yd ∧ 1)p

(
inf

(z,w)∈Wx×Wy

p(1, z, w)

)
. (5.6.29)

We see from Propositions 5.3.5 and 5.5.4 that

inf
(z,w)∈Wx×Wy

p(1, z, w)

≥ c


1 if |x− y| ≤ 3,

|x− y|−d−α
(
xd∨1
|x−y| ∧ 1

)β1
(
yd∨1
|x−y| ∧ 1

)β2

× logβ3

(
1 + (yd∨1)∧|x−y|

(xd∨1)∧|x−y|

)
logβ4

(
1 + |x−y|

(yd∨1)∧|x−y|

)
if |x− y| > 3.

Combining the above with (5.6.29), and using scaling property (5.4.2), we

arrive at the reuslt. �
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5.7 Appendix: Some calculations

In this section, we give some technical lemmas which are used in the proofs

of main results. The following three lemmas can be proved by using (5.2.1),

(5.2.2) and Lemma 1.1.1(i).

Lemma 5.7.1. Let γ < α and b ≥ 0. There exists C ≥ 1 such that for any

t, k, l > 0,

ˆ t

0

(
1∧ k

s1/α

)γ
logb

(
e+

l

k ∨ s1/α

)
ds ≤ Ct

(
1∧ k

t1/α

)γ
logb

(
e+

l

k ∨ t1/α

)
.

For γ, η1, η2 ≥ 0 and k, l > 0, define

fγ,η1,η2,k,l(r) := rγ logη1

(
e+

k

r

)
logη2

(
e+

r

l

)
.

Lemma 5.7.2. Let γ, η1, η2 ≥ 0 and k, l > 0.

(i) For any ε > 0, there exists C > 0 independent of k and l such that

fγ,η1,η2,k,l(ar)

fγ,η1,η2,k,l(r)
≤ Caγ+ε for all a ≥ 1 and r > 0.

(ii) Assume that γ > 0 if η1 > 0. Then there exists C > 0 independent of k

and l such that

fγ,η1,η2,k,l(ar)

fγ,η1,η2,k,l(r)
≥ C for all a ≥ 1 and r > 0.

Lemma 5.7.3. Let b1, b2, η1, η2 ≥ 0 and 0 ≤ γ < α+ b1. Assume that γ > 0

if η1 > 0. There exists C > 0 such that for any x ∈ Rd
+ and s, k, l > 0,

ˆ
Rd+

(
1 ∧ xd ∨ s

1/α

|x− z|

)b1
logb2

(
1 +

|x− z|
(xd ∨ s1/α) ∧ |x− z|

)
×
(
s−d/α ∧ s

|x− z|d+α

)
zγd logη1

(
e+

k

zd

)
logη2

(
e+

zd
l

)
dz

≤ C(xd ∨ s1/α)γ logη1

(
e+

k

xd ∨ s1/α

)
logη2

(
e+

xd ∨ s1/α

l

)
.
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Chapter 6

Estimates on the fundamental

solution of general time

fractional equation

In this chapter, we give estimates for the fundamental solution of general time

fractional equation. The results in this chapter are based on [54]. By adapting

the notion of boundary function introduced in Chapter 4, we generalize some

results in [54].

The time fractional diffusion equation ∂βt u = ∆u (0 < β < 1) has been

used in various fields to model the diffusions on sticky and trapping environ-

ment. Here, ∂βt is the Caputo derivative of order β which is defined as

∂βt u(t) :=
1

Γ(1− β)

d

dt

ˆ t

0

(t− s)−β(u(s)− u(0))ds,

where Γ(z) :=
´∞

0
xz−1e−xdx is the gamma function. Motivated by the above

definition of the Caputo derivative, in [30], the author introduced generalized

time fractional derivatives. Let w be a nonnegative function satisfying the

following condition:
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(Ker) w is a right continuous nonincreasing function on (0,∞) with

lim
s→0+

w(s) =∞, lim
s→∞

w(s) = 0 and

ˆ ∞
0

(1 ∧ s)(−dw(s)) <∞.

Definition 6.0.1. For a function u : [0,∞)→ R, the generalized time frac-

tional derivative ∂wt with respect to the kernel w is given by

∂wt u(t) :=
d

dt

ˆ t

0

w(t− s)(u(s)− u(0))ds, (6.0.1)

whenever the above integral makes sense.

We note that, the kernel w(t) = t−β/Γ(1 − β) for the Caputo derivative of

order β (0 < β < 1) satisfies condition (Ker).

Let (M,ρ) be a locally compact separable metric space and m is a Radon

measure on M . Let D be a Borel subset of M , and (Tt)t≥0 be a uniformly

bounded strongly continuous semigroup with infinitesimal generator (L,D(L))

in some Banach space (B, ‖·‖). For a given kernel w satisfying (Ker), consider

the following time fractional equation with Dirichlet boundary condition:
∂wt u(t, x) = Lu(t, x), x ∈ D, t > 0,

u(0, x) = f(x), x ∈ D,

u(t, x) = 0, vanishes continuously on ∂D for all t > 0.

(6.0.2)

Examples and topics related to the problem (6.0.2) can be found in [6, 49, 100,

103, 104, 105, 124]. See also [69, 70] for examples of time fractional equations

with non-linear noises. In [30], the author established the probabilistic rep-

resentation for the fundamental solution of time fractional equation (6.0.2)

(without Dirichlet boundary condition). This procedure can be described as

follows: For a given w satisfying condition (Ker), let ν(ds) be a measure on

(0,∞) such that w(s) = ν((s,∞)) for all s > 0. Define a function φ by

φ(λ) =

ˆ ∞
0

(1− e−λs)ν(ds) for λ ≥ 0. (6.0.3)
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Then, since |1 − e−λs| ≤ (1 + λ)(1 ∧ s) for s > 0 and (Ker) holds true, φ

is a Bernstein function. Let S = (Sr)r≥0 be a subordinator whose Laplace

exponent is given by φ, and write its inverse by Et := inf{r > 0 : Sr > t}.
Then, if we overlook the boundary condition, it is established in [30, Theorem

2.3] that for all f ∈ D(L), u(t, x) := E[TEtf(x)] is a unique solution to (6.0.2)

in the following sense:

(1) supt>0‖u(t, ·)‖ < ∞, x 7→ u(t, x) is in D(L) for each t ≥ 0 with

supt≥0‖Lu(t, ·)‖ <∞, and both t 7→ u(t, ·) and t 7→ Lu(t, ·) are continuous

in (B, ‖·‖);
(2) for every t > 0, Iwt [u] :=

´ t
0
w(t − s)(u(s, x) − f(x))ds is absolutely

convergent in (B, ‖·‖) and

lim
δ→0

1

δ
(Iwt+δ[u]− Iwt [u]) = Lu(t, x) in (B, ‖·‖).

We will see that if {Tt, t ≥ 0} admits a transition density enjoying certain

types of estimates, then the solution u(t, x) satisfies the following boundary

condition (see Corollary 6.1.8 for a precise statement).

(3) if f is bounded, then for all t > 0, x 7→ u(t, x) vanishes continuously

on ∂D.

Conversely, for any driftless subordinator S with an infinite Lévy measure

ν(ds), its tail measure w(s) := ν((s,∞)) satisfies condition (Ker). Therefore,

S is in one-to-one correspondence with generalized time fractional derivative

∂wt defined by (6.0.1).

Suppose that the semigroup (Tt)t≥0 has a heat kernel q(t, x, y) with re-

spect to the reference measure m. Then for f ∈ D(L),

u(t, x) = E[TEtf(x)] =

ˆ ∞
0

Trf(x)drP(Et ≤ r) =

ˆ ∞
0

Trf(x)drP(Sr ≥ t)

=

ˆ
M

f(y)

(ˆ ∞
0

q(r, x, y)drP(Sr ≥ t)

)
m(dy).
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Therefore, it is natural to say that

p(t, x, y) :=

ˆ ∞
0

q(r, x, y)drP(Sr ≥ t) (6.0.4)

is the fundamental solution to the equation (6.0.2).

In this chapter, using the expression (6.0.4), with helps from the results

obtained in Chapter 2, we establish two-sided estimates for the fundamental

solution of general time fractional equation ∂wt u = Lu including the ones with

the Dirichlet boundary condition. Throughout the chapter, we always assume

that w satisfies condition (Ker), and denote by S and E the associated

subordinator (via (6.0.3)) and its inverse, respectively. We note that, since

w(0+) = ∞, S is not a compound Poisson process. Therefore, a.s., r 7→ Sr

is strictly increasing and t 7→ Et is continuous.

6.1 Setup and main results

Let (M,ρ) be a locall compact separable metric space, and m a positive

Radon measure on M with full support. As in Section 4.1, we assume that the

volume function V (x, r) := m(B(x, r)) satisfies the uniform volume doubling

condition (4.1.1), and D be a subset of M . We also let Φ,Ψ : [0,∞) →
[0,∞) be strictly increasing functions satisfying scaling properties (4.1.3)

with constants α1, α2, α3, α4 > 0, and Ψ(r) ≥ Φ(r) for all r ≥ 0.

Let h(t, x, y) be a boundary function in the sense of Definition 4.1.3.

Throughout the chapter, we always assume that

h satisfies (H2) with γ < 2. (6.1.1)

Recall that the boundary function hp(t, x, y) defined by (4.1.6) satisfies (H2)

with γ = 2p.

With the Laplace exponent φ of the subordinator S, we define for (t, x, y) ∈
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(0,∞)×D ×D satisfying 4Φ(ρ(x, y)) ≤ φ(t−1)−1,

Ih(t, x, y) :=

ˆ 1/(2φ(t−1))

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr.

Recall the definitions of conditions for w, PolyR1,≤(β2), Poly∞R2,≤(β2),

Sub∞(γ, θ) and Trun∞R2
from the begining of Chapter 2, and HKh

B and

HKh
U from Definition 4.1.6. Throughout the chapter, we regard HKh

B and

HKh
U as conditions for q(t, x, y), that is, we say that HKh

B holds if (4.1.8)

and (4.1.9) hold with q(t, x, y) instead of pD(t, x, y), and HKh
U holds if (4.1.8)

holds for all (t, x, y) ∈ (0,∞)×D ×D with q(t, x, y) instead of pD(t, x, y).

Now, we state our main results which are modifications of [54, Theorems

1.15, 1.16 and 1.18] by allowing the boundary function h(t, x, y) to be more

general form. The proofs will be given in Section 6.2. Let p(t, x, y) be the

function defined by (6.0.4).

Theorem 6.1.1. Suppose that PolyR1,≤(β2) and HKh
B hold. Then the fol-

lowing estimates are valid for all (t, x, y) ∈ (0, R1)×D ×D:

(i) Suppose that Φ(ρ(x, y))φ(t−1) ≤ 1/4. Then we have

p(t, x, y) ' h(1/φ(t−1), x, y)

V
(
x,Φ−1(1/φ(t−1))

) + w(t)Ih(t, x, y). (6.1.2)

In particular, if PolyR1,≤(β2) holds with β2 < 1, then

p(t, x, y) ' φ(t−1)Ih(t, x, y). (6.1.3)

(ii) If Φ(ρ(x, y))φ(t−1) > 1/4, then

p(t, x, y) � h(1/φ(t−1), x, y)

×
(

C0

φ(t−1)Ψ(ρ(x, y))V (x, ρ(x, y))
+

exp
(
− cN (t, ρ(x, y))

)
V
(
x,Φ−1(1/φ(t−1))

) ),
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where N (t, l) is the solution to the following equation:

N (t, l)/t

φ
(
N (t, l)/t

) =
Φ(l/

√
N (t, l))

t
. (6.1.4)

Remark 6.1.2. Since λ 7→ φ(λ)/λ is decreasing with limλ→0 φ(λ)/λ =

w(0+) = ∞ and limλ→∞ φ(λ)/λ = 0, and Φ is increasing with Φ(0) = 0

and liml→∞Φ(l) =∞, the equation (6.1.4) always have a unique solution.

Theorem 6.1.3. Suppose that Poly∞,≤(β2) and HKh
U hold. Then the as-

sertions in Theorem 6.1.1(i)-(ii) hold for all (t, x, y) ∈ (0,∞)×D ×D.

Now, we give large time estimtates for p(t, x, y) under HKh
B.

Theorem 6.1.4. Suppose that Poly∞R2,≤(β2) and HKh
B hold. Then for every

T > 0, there are comparability constants depending on T such that for all

(t, x, y) ∈ [T,∞)×D ×D,

p(t, x, y) ' w(t)

ˆ 2Φ(diam(D))

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr.

When condition Sub∞(γ, θ) holds, the bounds for fundamental solution

decrease subexponentially as t → ∞. Moreover, when 0 < β < 1 and D is

bounded, we obtain the sharp upper bounds that decrease with exactly the

same rate as the upper bound for w as t→∞.

Theorem 6.1.5. Suppose that Sub∞(γ, θ) holds. Then for every T > 0, the

following estimates are valid for all (t, x, y) ∈ [T,∞)×D ×D.

(i) Assume that HKh
B holds. Then, there exist constants L1, L2 > 0 indepen-

dent of θ, and c > 1 such that in the case when γ ∈ (0, 1), we have

c−1w(t)

ˆ 2Φ(diam(D))

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr

≤ p(t, x, y) ≤ c exp
(
− θtγ

) ˆ 2Φ(diam(D))

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr,
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and in the case when γ = 1, we have

c−1

(
w(t)

ˆ 2Φ(diam(D))

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr + h(1, x, y)e−L1t

)

≤ p(t, x, y) ≤ c

(
exp

(
− θ

2
t
) ˆ 2Φ(diam(D))

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr + h(1, x, y)e−L2t

)
.

(ii) Assume that HKh
U holds.

(1) If Φ(ρ(x, y))φ(t−1) ≤ 1/4, then there exists c > 1 such that

c−1

(
h(t, x, y)

V
(
x,Φ−1(t)

) + w(t)

ˆ 1/φ(t−1)

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr

)

≤ p(t, x, y) ≤ c

(
h(t, x, y)

V
(
x,Φ−1(t)

) + exp
(
− θ

2
tγ
) ˆ 1/(2φ(t−1))

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr

)
.

(2) If Φ(ρ(x, y))φ(t−1) > 1/4, then

p(t, x, y) � q(ct, x, y)

� h(t, x, y)

(
C0t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

exp
(
− cρ(x, y)2/Φ−1(t)2

)
V (x,Φ−1(t))

)
.

Our last main theorem deals with finitely supported w. Let hp(t, x, y) be

the boundary function defined in (4.1.6).

Theorem 6.1.6. Suppose that Trun∞R2
holds. Then the following estimates

hold for all (t, x, y) ∈ [R2/2,∞)×D ×D. Let nt := bt/R2c+ 1 ∈ N.

(i) Assume that HKh
B holds with h = hp.

(1) If t ≤ bd2/α1 + 2pcR2, then

p(t, x, y) '
ˆ 2Φ(diam(D))

Φ(ρ(x,y))

rnthp(r, x, y)

V (x,Φ−1(r))
dr

+ (ntR2 − t)nt
ˆ 2Φ(diam(D))

Φ(ρ(x,y))

rnt−1hp(r, x, y)

V (x,Φ−1(r))
dr.
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(2) If t ≥ bd2/α1 + 2pcR2, then

p(t, x, y) � Φ(δD(x))pΦ(δD(y))pe−ct � q(ct, x, y).

(ii) Assume that HKh
U holds with h = hp.

(1) If Φ(ρ(x, y)) ≤ t ≤ bd2/α1 + 2pcR2, then

p(t, x, y) '
ˆ 2t

Φ(ρ(x,y))

rnthp(r, x, y)

V (x,Φ−1(r))
dr + (ntR2 − t)nt

ˆ 2t

Φ(ρ(x,y))

rnt−1hp(r, x, y)

V (x,Φ−1(r))
dr.

(2) If Φ(ρ(x, y)) > t or t > bd2/α1 + 2pcR2, then

p(t, x, y) � q(ct, x, y) � hp(t, x, y)

×

[
1

V (x,Φ−1(t))
∧
(

C0t

V (x, ρ(x, y))Ψ(ρ(x, y))
+

exp
(
− cρ(x, y)2/Φ−1(t)2

)
V (x,Φ−1(t))

)]
.

Remark 6.1.7. Note that under settings of Theorem 6.1.6, we can apply

Theorem 6.1.1 to obtain the estimates of p(t, x, y) for (t, x, y) ∈ (0, R2/2] ×
D×D. Hence, we have the global estimates for p(t, x, y) under those settings.

As a consequence of the estimates for the fundamental solution, we have

that the solution to the Dirichlet problem (6.0.2) vanishes continuously on the

boundary of D. Indeed, under mild conditions, the solution u(t, x) vanishes

exactly the same rate as a transition density q(t, x, y).

Corollary 6.1.8. Suppose that PolyR1,≤(β2), and one among Poly∞R2,≤(β2),

Sub∞(γ, θ) and Trun∞R2
hold true. We also assume that either HKh

B or

HKh
U holds with h = hp. Then, for all bounded measurable function f on D,

u(t, x) := E[TDEtf(x)] satisfies the following boundary condition:

For any fixed t > 0, there exists C > 0 such that for every x ∈ D,

|u(t, x)| ≤ C‖f‖∞Φ(δD(x))p.

Recall the definition of hp from (4.1.6). In the end of this section, we give
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a list of estimates for Ih(t, x, y) when h = hp. See [54, Appendix] for the

proof of the following lemma.

Lemma 6.1.9. Let p ∈ [0, 1). The following estimates are valid for all

(t, x, y) ∈ (0,∞)×D ×D satisfying Φ(ρ(x, y))φ(t−1) ≤ 1/4.

(i) If d2/α1 < 1− 2p, then

Ihp(t, x, y) '
(

1 ∧ Φ(δ∧(x, y))

1/φ(t−1)

)p(
1 ∧ Φ(δ∨(x, y))

1/φ(t−1)

)p
1/φ(t−1)

V
(
x,Φ−1(1/φ(t−1))

) .
(ii) If α1 = α2 = α, d1 = d2 = (1− 2p)α and p > 0, then

Ihp(t, x, y) '
(

1 ∧ δ∧(x, y)α

1/φ(t−1)

)p(
1 ∧ δ∨(x, y)α

1/φ(t−1)

)p
× φ(t−1)−2p log

(
e+

1/φ(t−1)

(δ∨(x, y) ∨ ρ(x, y))α

)
.

(iii) If 1− 2p < d1/α2 ≤ d2/α1 < 1− p, then

Ihp(t, x, y) '
(

1 ∧ Φ(δ∧(x, y))

1/φ(t−1)

)p(
1 ∧ Φ(δ∨(x, y))

1/φ(t−1)

)1−p

×
(

1 ∧ Φ(δ∨(x, y))2p−1V (x, δ∨(x, y))

Φ(ρ(x, y))2p−1V (x, ρ(x, y))

)
1/φ(t−1)

V
(
x, δ∨(x, y) ∧ Φ−1(1/φ(t−1))

) .
(iv) If α1 = α2 = α, d1 = d2 = (1− p)α and p > 0, then

Ihp(t, x, y) '
(

1 ∧ δ∧(x, y)α

1/φ(t−1)

)p(
1 ∧ δ∨(x, y)α

ρ(x, y)α

)p
× φ(t−1)−p log

(
e+

δ∨(x, y) ∧ ρ(x, y)

δ∧(x, y) ∧ ρ(x, y)

)
.

(v) If 1− p < d1/α2 ≤ d2/α1 < 1, then

Ihp(t, x, y) '
(

1 ∧ Φ(δ∧(x, y))

1/φ(t−1)

)(
1 ∧ Φ(δ∨(x, y))

Φ(ρ(x, y))

)p
×
(

1 ∧ Φ(δ∧(x, y))p−1V (x, δ∧(x, y))

Φ(ρ(x, y))p−1V (x, ρ(x, y))

)
1/φ(t−1)

V
(
x, δ∧(x, y) ∧ Φ−1(1/φ(t−1))

) .
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(vi) If α1 = α2 = d1 = d2 = α, then

Ihp(t, x, y) '
(

1 ∧ δ∧(x, y)α

ρ(x, y)α

)p(
1 ∧ δ∨(x, y)α

ρ(x, y)α

)p
× log

(
e+

δ∧(x, y)α ∧ (1/φ(t−1))

δ∧(x, y)α ∧ ρ(x, y)α

)
.

(vii) If 1 < d1/α2, then

Ihp(t, x, y) '
(

1 ∧ Φ(δ∧(x, y))

Φ(ρ(x, y))

)p(
1 ∧ Φ(δ∨(x, y))

Φ(ρ(x, y))

)p
Φ(ρ(x, y))

V (x, ρ(x, y))
.

6.2 Proofs of Main results

In this section, we give the proof for Theorems 6.1.1-6.1.6. Throughout the

section, we assume that q(t, x, y) satisfies either HKh
B or HKh

U.

Recall that the fundamental solution p(t, x, y) is defined by (6.0.4). Using

Proposition 2.2.1 and Theorems 2.2.6-2.2.8, we get the following a prior lower

bound for p(t, x, y).

Lemma 6.2.1. (i) Suppose that PolyR1,≤(β2) holds. Then, there exist con-

stants N > ε1 > 0 and c > 0 such that for all t ∈ (0, R1),

p(t, x, y) ≥ c inf
r∈(ε1/φ(t−1),N/φ(t−1))

q(r, x, y). (6.2.1)

(ii) Suppose that one among Poly∞R2,≤(β2), Sub∞(γ, θ) and Trun∞R2
holds

true. Then for every T > 0, there exist constants N > ε1 > 0 such that

(6.2.1) holds for all t ∈ [T,∞).

Using [33, Lemmas 3.1 and 3.2], similar to Lemma 4.1.1, we may replace

the volume function V by a nicer function.

Lemma 6.2.2. For every a ≥ 1, there exists a strictly increasing differen-

tiable functions Ṽ (x, ·) satisfying the following two properties:

(P1) V (x, r) ' Ṽ (x, r) for all x ∈M and 0 < r < aR0;
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(P2) drṼ (x, r) ' r−1Ṽ (x, r) and dtṼ
−1(x, t) ' t−1Ṽ −1(x, t) for all x ∈ M ,

0 < r < aR0 and 0 < t < V (x, aR0).

Here, we give near diagonal lower estimates for p(t, x, y) when the tail

measure decays in mixed polynomial orders. The next result is a modification

of [54, Proposition 4.1].

Proposition 6.2.3. (i) Suppose PolyR1,≤(β2) holds. Then there exists a

constant C > 0 such that for all (t, x, y) ∈ (0, R1) × D × D satisfying

Φ(ρ(x, y))φ(t−1) ≤ 1/4,

p(t, x, y) ≥ C

(
h(1/φ(t−1), x, y)

V
(
x,Φ−1(1/φ(t−1))

) + w(t)Ih(t, x, y)

)
(6.2.2)

(ii) Suppose Poly∞R2,≤(β2) and HKh
U hold. Then for every T > 0, there

are comparability constants depending on T such that (6.2.2) holds for all

(t, x, y) ∈ [T,∞)×D ×D satisfying Φ(ρ(x, y))φ(t−1) ≤ 1/4.

Proof. Since the proofs are similar, we only give the proof for (i).

Fix (t, x, y) ∈ (0, R1) × D × D satisfying Φ(ρ(x, y))φ(t−1) ≤ 1/4 and

set l := ρ(x, y). By Theorem 2.2.6 and (2.0.4), there exsits a constant ε2 ∈
(0, 1/2] such that for all t ∈ (0, R1), P(Sε2Φ(l) ≥ t) ≤ 1/2. Then, using the

Markov property and the inequality 1− (1− x)2 ≥ 3x/2 for x ∈ (0, 1/2], we

get that

P(S2ε2Φ(l) ≥ t) ≥ P(S2ε2Φ(l) − Sε2Φ(l) ≥ t or Sε2Φ(l) ≥ t)

≥ 1− (1− P(Sε2Φ(l) ≥ t))2 ≥ 3

2
P(Sε2Φ(l) ≥ t).

It follows from the scaling properties of V and Φ, and (H2) that

p(t, x, y) ≥ c1

ˆ 2ε2Φ(l)

ε2Φ(l)

h(r, x, y)

V (x,Φ−1(r))
drP(Sr ≥ t)

≥ c2
h(Φ(l), x, y)

V (x, l)

(
P(S2ε2Φ(l) ≥ t)− P(Sε2Φ(l) ≥ t)

)
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≥ c2

2

h(Φ(l), x, y)

V (x, l)
P(Sε2Φ(l) ≥ t). (6.2.3)

On the other hand, by Lemmas 4.1.1 and 6.2.2, using integrtion by parts

in the second inequality below and the scaling properties of V and Φ, (H1)

and Theorem 2.2.6 in the third, we obtain

p(t, x, y) ≥ c3

ˆ 1/(2φ(t−1))

ε2Φ(l)

h(r, x, y)

Ṽ (x, Φ̃−1(r))
drP(Sr ≥ t)

≥ −c3
h(ε2Φ(l), x, y)

Ṽ (x, Φ̃−1(ε2Φ(l)))
P(Sε2Φ(l) ≥ t)

− c3

ˆ 1/(2φ(t−1))

ε2Φ(l)

P(Sr ≥ t)dr

(
h(r, x, y)

Ṽ (x, Φ̃−1(r))

)
≥ −c4

h(Φ(l), x, y)

V (x, l)
P(Sε2Φ(l) ≥ t)

− c4w(t)

ˆ 1/(2φ(t−1))

ε2Φ(l)

rh(r, x, y) dr

(
1

Ṽ (x, Φ̃−1(r))

)
≥ −c4

h(Φ(l), x, y)

V (x, l)
P(Sε2Φ(l) ≥ t)

+ c5w(t)

ˆ 1/(2φ(t−1))

ε2Φ(l)

h(r, x, y)

V (x,Φ−1(r))
dr. (6.2.4)

Now, we conclude from Lemma 6.2.1, (6.2.3) and (6.2.4) that

(1 + 2c4 + c2)p(t, x, y) ≥ c6
h(1/φ(t−1), x, y)

V
(
x,Φ−1(1/φ(t−1))

) + c2c5w(t)Ih(t, x, y).

�

Now, we prove our main theorems by following arguments in the proofs

given in [54, Subsections 4.1-4.3]. Although only boundary functions hp(t, x, y)

and hp(t ∧ 1, x, y) for some p ∈ [0, 1) are considered in [54], with help from

(6.1.1), one can repeat their arguments and get the desired results.

Proof of Theorem 6.1.1. We fix (t, x, y) ∈ (0, R1)×D×D and then write

l := ρ(x, y), V (s) := V (x, s) and Ṽ (s) := Ṽ (x, s).
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Case 1. Suppose that Φ(l)φ(t−1) ≤ 1/4. By Proposition 6.2.3, it remains

to prove the upper bound. Using (4.1.10) and Lemma 4.1.9, we get that

p(t, x, y) ≤ c1
C0

V (l)Ψ(l)

ˆ Φ(l)

0

rh(r, x, y)drP(Sr ≥ t)

+ c1

ˆ Φ(l)

0

h(r, x, y)

V (Φ−1(r))
exp

(
− c2l

2

Φ−1(r)2

)
drP(Sr ≥ t)

+ c1

ˆ 1/(2φ(t−1))

Φ(l)

h(r, x, y)

V (Φ−1(r))
drP(Sr ≥ t)

+ c1

ˆ 1/φ(R−1
1 )

1/(2φ(t−1))

h(r, x, y)

V (Φ−1(r))
drP(Sr ≥ t)

+ c1h(1, x, y)

ˆ ∞
1/φ(R−1

1 )

e−λDrdrP(Sr ≥ t)

=: c1(I1 + I2 + I3 + I4 + I5).

Since (H2) holds with γ < 2, using integration by parts, Theorem 2.2.6

and the fact that Ψ ≥ Φ, we get that

I1 ≤
C0

V (l)Ψ(l)

ˆ Φ(l)

0

r1−γrγh(r, x, y)drP(Sr ≥ t)

≤ c2
C0Φ(l)γh(Φ(l), x, y)

V (l)Ψ(l)

ˆ Φ(l)

0

r1−γdrP(Sr ≥ t)

≤ c2
C0Φ(l)h(Φ(l), x, y)

V (l)Ψ(l)
P(SΦ(l) ≥ t)

+ c2|γ − 1|C0Φ(l)γh(Φ(l), x, y)

V (l)Ψ(l)

ˆ Φ(l)

0

r−γP(Sr ≥ t)dr

≤ c3w(t)
C0Φ(l)2h(Φ(l), x, y)

V (l)Ψ(l)

+ c3w(t)|γ − 1|C0Φ(l)γh(Φ(l), x, y)

V (l)Ψ(l)

ˆ Φ(l)

0

r1−γdr

≤ c4w(t)
C0Φ(l)h(Φ(l), x, y)

V (l)
. (6.2.5)

Next, using (H2), the inequality supx>0 x
α2+d2e−x

2
< ∞ and the scaling
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properties of V and Φ, we get that for all 0 ≤ r ≤ Φ(l),

h(r, x, y)

V (Φ−1(r))
exp

(
− c2l

2

Φ−1(r)2

)
≤ c5

Φ(l)γh(Φ(l), x, y)

rγV (Φ−1(r))

(
Φ−1(r)

l

)α2+d2

≤ c6
Φ(l)γh(Φ(l), x, y)

rγV (l)

r

Φ(l)
.

Therefore, by repeating the calculations for I1, we obtain

I2 ≤ c6
Φ(l)γ−1h(Φ(l), x, y)

V (l)

ˆ Φ(l)

0

r1−γdrP(Sr ≥ t) ≤ c7w(t)
Φ(l)h(Φ(l), x, y)

V (l)
.

Thirdly, using the scaling properties of V,Φ, (H1), (H2) and Theorem

2.2.6, we get that

I3 ≤
∑
i≥0

2iΦ(l)≤1/(2φ(t−1))

ˆ (2i+1Φ(l))∧1/(2φ(t−1))

2iΦ(l)

h(r, x, y)

V (Φ−1(r))
drP(Sr ≥ t)

≤ c8w(t)
∑
i≥0

2iΦ(l)≤1/(2φ(t−1))

h(2i+1Φ(l), x, y)

V (Φ−1(2i+1Φ(l)))
2iΦ(l) ≤ c9w(t)Ih(t, x, y).

Lastly, by the monotone properties of V , Φ and (H1), it holds that

I4 + I5 ≤
h(1/φ(t−1), x, y)

V
(
Φ−1(1/φ(t−1))

) + h(1, x, y)e−λD/φ(R−1
1 ) ≤ c10

h(1/φ(t−1), x, y)

V
(
Φ−1(1/φ(t−1))

) .
By (1.1.2) and the upper bounds above on I1, I2, we see that w(t)Ih(t, x, y)

dominates I1 + I2. The proof for (6.1.2) is complete.

Now, we further assume that PolyR1,≤(β2) holds with β2 < 1. Then by

Lemma 2.1.1(i), w(t) ' φ(t−1) for t ∈ (0, R1). Hence, using (1.1.2), we can

deduce that the second term in (6.1.2) dominates the first term which yields

that (6.1.3) holds true.

Case 2. Suppose that Φ(l)φ(t−1) > 1/4. By (4.1.10) and Lemmas 4.1.9,
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4.1.1 and 6.2.2, it holds that

p(t, x, y) ≤ c
C0

V (l)Ψ(l)

ˆ 1/(2φ(t−1))

0

rh(r, x, y)drP(Sr ≥ t)

+ c
C0

V (l)Ψ(l)

ˆ 4Φ(l)

1/(2φ(t−1))

rh(r, x, y)
(
− drP(Sr ≤ t)

)
+ c

ˆ 4Φ(l)

0

h(r, x, y)

Ṽ (Φ̃−1(r))
exp

(
− a1l

2

Φ̃−1(r)2

)(
− drP(Sr ≤ t)

)
+ c

ˆ 1/φ(R−1
1 )

4Φ(l)

h(r, x, y)

Ṽ (Φ̃−1(r))

(
− drP(Sr ≤ t)

)
+ ch(1, x, y)

ˆ ∞
1/φ(R−1

1 )

e−λDr
(
− drP(Sr ≥ t)

)
=: c(J1 + J2 + J3 + J4 + J5).

By (H1) and the monotone properties of Ṽ and Φ̃, we deduce that J4

dominates J5.

By following arguments in (6.2.5) and using (2.0.4), we see that

J1 ≤
C0

V (l)Ψ(l)

ˆ 1/(2φ(t−1))

0

r1−γrγh(r, x, y)drP(Sr ≥ t)

≤ c1
C0φ(t−1)−γ h(1/φ(t−1), x, y)

V (l)Ψ(l)

ˆ 1/(2φ(t−1))

0

r1−γdrP(Sr ≥ t)

≤ c2
C0h(1/φ(t−1), x, y)

φ(t−1)V (l)Ψ(l)
P(S1/(2φ(t−1)) ≥ t)

+ c2|γ − 1|C0φ(t−1)−γ h(1/φ(t−1), x, y)

V (l)Ψ(l)

ˆ 1/(2φ(t−1))

0

r−γP(Sr ≥ t)dr

≤ c2
C0h(1/φ(t−1), x, y)

φ(t−1)V (l)Ψ(l)

+ c3
C0w(t)φ(t−1)−γ h(1/φ(t−1), x, y)

V (l)Ψ(l)

ˆ 1/(2φ(t−1))

0

r1−γdr

≤ c2
C0h(1/φ(t−1), x, y)

φ(t−1)V (l)Ψ(l)
+ c4

C0w(t)h(1/φ(t−1), x, y)

φ(t−1)2V (l)Ψ(l)
≤ c5

C0h(1/φ(t−1), x, y)

φ(t−1)V (l)Ψ(l)
.
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Next, by (H1), (H2) and integration by parts, it holds that

J2 ≤ −
C0h(1/φ(t−1), x, y)

V (l)Ψ(l)

ˆ 4Φ(l)

1/(2φ(t−1))

rdrP(Sr ≤ t)

≤ C0h(1/φ(t−1), x, y)

2φ(t−1)V (l)Ψ(l)
P(S1/(2φ(t−1)) ≤ t)

+
C0h(1/φ(t−1), x, y)

V (l)Ψ(l)

ˆ 4Φ(l)

1/(2φ(t−1))

P(Sr ≤ t)dr. (6.2.6)

Define b̄−1(t) = sup{s > 0 : sb(s) < t} for t > 0. By (2.0.7), it holds that

1

φ(t−1)
≤ b̄−1(t) ≤ c∗

φ(t−1)
, c∗ :=

e2 − e
e− 2

, for all t > 0. (6.2.7)

Using Proposition 2.2.1 in the second inequality below, the change of the

variables r = b̄−1(t)u and (6.2.7) in the third, the fact that u 7→ (H ◦σ)(u, t)

is increasing in the fourth, (2.0.8) in the first equality and (6.2.7) in the last

inequality, we obtain that

ˆ ∞
1/(2φ(t−1))

P(Sr ≤ t)dr ≤
ˆ c∗/φ(t−1)

1/(2φ(t−1))

dr +

ˆ ∞
c∗/φ(t−1)

P(Sr ≤ t)dr

≤ c∗
φ(t−1)

+

ˆ ∞
c∗/φ(t−1)

e exp
(
− r(H ◦ σ)(r, t)

)
dr

≤ c∗
φ(t−1)

+ b̄−1(t)

ˆ ∞
1

e exp
(
− b̄−1(t)u (H ◦ σ)(b̄−1(t)u, t)

)
du

≤ c∗
φ(t−1)

+ b̄−1(t)

ˆ ∞
1

e exp
(
− ub̄−1(t) (H ◦ σ)(b̄−1(t), t)

)
du

=
c∗

φ(t−1)
+ b̄−1(t)

ˆ ∞
1

e exp e−udu =
c∗

φ(t−1)
+ b̄−1(t) ≤ 2c∗

φ(t−1)
.

Hence, we get from (6.2.6) that J2 ≤ (c6C0h(1/φ(t−1), x, y))/(φ(t−1)V (l)Ψ(l)).

Define the map g : (0, 1/φ(R−1
1 ))→ (0,∞) by

g(r) =
1

r1+γṼ (Φ̃−1(r))
exp

(
− a1l

2

Φ̃−1(r)2

)
.
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Then we see from Lemmas 4.1.1 and 6.2.2 that

g′(r) ≥ (−c7 + c8l
2Φ−1(r)−2)r−1g(r).

Thus, there exists c9 ∈ (0, 1) such that g(r) is increasing in (0, c9Φ(l)). Hence,

since Φ(l)φ(t−1) > 1/4, by (H1), (H2) and the scalings of V and Φ, we obtain

that

−
ˆ c9/(4φ(t−1))

0

h(r, x, y)

Ṽ (Φ̃−1(r))
exp

(
− a1l

2

Φ̃−1(r)2

)
drP(Sr ≤ t)

= −
ˆ c9/(4φ(t−1))

0

rγh(r, x, y)

rγṼ (Φ̃−1(r))
exp

(
− a1l

2

Φ̃−1(r)2

)
drP(Sr ≤ t)

≤ c10
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
exp

(
− c11l

2

Φ−1(1/φ(t−1))2

)ˆ c9/(4φ(t−1))

0

drP(Sr ≥ t)

≤ c10
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
exp

(
− c11l

2

Φ−1(1/φ(t−1))2

)
. (6.2.8)

Note that, with the constant c∗ in (6.2.7), by (H1), (H2) and the scalings of

V and Φ,

−
ˆ c∗/φ(t−1)

c9/(4φ(t−1))

h(r, x, y)

Ṽ (Φ̃−1(r))
exp

(
− a1l

2

Φ̃−1(r)2

)
drP(Sr ≤ t)

≤ c12
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
exp

(
− c13l

2

Φ−1(1/φ(t−1))2

)
. (6.2.9)

Moreover, using (H1), (H2), integration by parts, Proposition 2.2.1, Lemmas

4.1.1 and 6.2.2

−
ˆ 4Φ(l)

c∗/φ(t−1)

h(r, x, y)

Ṽ (Φ̃−1(r))
exp

(
− a1l

2

Φ̃−1(r)2

)
drP(Sr ≤ t)

≤ −c14
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))

ˆ 4Φ(l)

c∗/φ(t−1)

exp
(
− a1l

2

Φ̃−1(r)2

)
drP(Sr ≤ t)

≤ c14
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
exp

(
− c15a1l

2

Φ−1(1/Φ(t−1))2

)
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+ c16
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))

ˆ 4Φ(l)

c∗/φ(t−1)

l2

rΦ−1(r)2
e−c18e1(r)−e2(r)dr, (6.2.10)

where e1(r) = l2/Φ−1(r)2 and e2(r) = r(H ◦ σ)(r, t). Observe that e1 is

decreasing and e1(Φ(l)) = 1, while e2 is increasing and e2(b̄−1(t)) = 1. It

follows that there exist unique r∗ ∈ (b̄−1(t),Φ(l)) such that e1(r∗) = e2(r∗)

and e1(r) + e2(r) > e1(r∗) for all r ∈ (b̄−1(t), 4Φ(l)). Therefore, using the

inequality supx>0 x
ke−x < ∞ for all k > 0, the scaling of Φ and (6.2.7), we

get that

ˆ 4Φ(l)

c∗/φ(t−1)

l2

rΦ−1(r)2
e−c18e1(r)−e2(r)dr

≤ c19

ˆ 4Φ(l)

b̄−1(t)

l2

rΦ−1(r)2

(
Φ−1(r)

l

)2+1/α1

e−2−1c18e1(r)−e2(r)dr

≤ c20

Φ(l)
e−(2−1c18∧1)e1(r∗)

ˆ 4Φ(l)

b̄−1(t)

dr ≤ 4c20e
−(2−1c18∧1)e1(r∗). (6.2.11)

By the definition of r∗, we see that

e1(r∗) ≤ e1(1/φ(t−1))∧e2(Φ(l)) =

(
l2

Φ−1(1/φ(t−1))2

)
∧
(

Φ(l)(H◦σ)(Φ(l), t))
)
.

(6.2.12)

Hence, we deduce from (6.2.8), (6.2.9), (6.2.10) and (6.2.11) that

J3 ≤ c19
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
e−c20e1(r∗).

Also, using (H1), the scalings of V and Φ, and (6.2.12), since the subor-

dinator S is increasing, we get that

J4 ≤ c21
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
P(S4Φ(l) ≤ t) ≤ c21

h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
P(SΦ(l) ≤ t)

≤ ec21
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
exp

(
− Φ(l) (H ◦ σ)(Φ(l), t)

)
≤ ec21

h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
e−e1(r∗).
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Now, we estimates the value of M(t, l) := e1(r∗). Set s∗ = r∗/e2(r∗) =

1/(H ◦ σ)(r∗, t). Then, b(s∗) = t/r∗. Hence, we get from (2.0.7) that

1

φ−1(c/s∗)
� s∗b(s∗) =

r∗
e2(r∗)

t

r∗
=

t

M(t, l)
,

which yields that
M(t, l)/t

φ(M(t, l)/t)
' s∗M(t, l)

t
=
r∗
t
.

On the other hand, by the definition, it holds that

Φ(l/
√
M(t, l))

t
=

Φ(l/
√

e1(r∗))

t
=
r∗
t
.

Therefore, by the scaling of φ and Φ, we conclude thatM(t, l) is comparable

with the function N (t, l) defined by (6.1.4) and get the desired upper bound.

For the lower bound, since φ(t−1)−1 < 4Φ(l), by Lemmas 4.1.9 and 6.2.1,

we see that

p(t, x, y) ≥ c22
C0h(1/φ(t−1), x, y)

φ(t−1)V (l)Ψ(l)
.

Besides, we observe that by Proposition 2.2.1, there exist constants A > 1

and ε > 0 independent of t and l such that P(Sr∗ ≤ t) ≥ (1 + ε)P(SAr∗ ≤ t).

Using (H1), (H2), the scalings of V and Φ, and Proposition 2.2.1, we get that

p(t, x, y) ≥ −c23

ˆ Ar∗

r∗

h(r, x, y)

V (Φ−1(r))
exp

(
− a2l

2

Φ−1(r)2

)
drP(Sr ≤ t)

≥ c23
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
e−c24e1(r∗)−c25e2(Ar∗)

≥ c23
h(1/φ(t−1), x, y)

V (Φ−1(1/φ(t−1)))
e−c26e1(r∗).

The proof is complete. �

Proof of Theorem 6.1.3. By repeating arguments in the proof of Theorem

6.1.1, since the integrals of e−λDr are not the dominant term in all cases, we

can conclude the result. We omit details here. �
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Proof of Theorem 6.1.4. By repeating arguments in the proof of Theorem

6.1.1, we can deduce that for all (t, x, y) ∈ [T,∞)×D ×D,

p(t, x, y) � h(1, x, y)e−cλD/φ(t−1) + w(t)

ˆ 2Φ(diam(D))

Φ(ρ(x,y))

h(r, x, y)

V (x,Φ−1(r))
dr.

Since h(r, x, y)/V (x,Φ−1(r)) ≥ c for r < 2Φ(diam(D)) by (H1), (H2) and

the scaling of V and Φ, and limt→∞w(t)eaλD/φ(t−1) = ∞ for every a > 0

by Poly∞R2,≤(β2), we conclude that the second term in the above equation

dominates the first term. Thus, we get the desired result. �

Proof of Theorem 6.1.5. Since
´∞

0
w(s)ds < ∞ under Sub∞(γ, θ), by

(2.0.6), for every T > 0, there are comparability constants depend on T such

that φ(t−1) ' t−1 for t ≥ T . Using this fact, by following arguments in the

proof of Theorem 6.1.1, using Theorem 2.2.8 (when γ = 1) and Theorem

2.2.9 (when γ < 1), we arrive at the result. We omit details here. �

To get Theorem 6.1.6, we first prove large time estimates for p(t, x, y)

under Trun∞R2
.

Lemma 6.2.4. Suppose that Trun∞R2
holds, and either HKh

B or HKh
U holds

with h = hp, p ∈ [0, 1). If t ≥ ((1/2) ∨ bd2/α1 + 2pc)R2, then

p(t, x, y) � q(ct, x, y) for x, y ∈ D.

Proof. Since the proofs are similar, we only give the proof when HKh
U holds,

which is more complicated.

We fix t ≥ ((1/2) ∨ bd2/α1 + 2pc)R2 and x, y ∈ D, and then write l :=

ρ(x, y). Since Sub∞(1, 1) is satisfied under Trun∞R2
, by Theorem 6.1.5, if

Φ(l)φ(t−1) > 1/4, then we arrive at the result.

Now, we assume that Φ(l)φ(t−1) < 1/4. Since
´∞

0
w(s)ds < ∞ under

Trun∞R2
, as in the proof of Theorem 6.1.5, we see that φ(s−1) ' s−1 for

s ≥ ((1/2) ∨ bd2/α1 + 2pc)R2. Therefore, we get the desired lower bound
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from Lemma 6.2.1. Moreover, since we assumed Φ(l)φ(t−1) < 1/4, it holds

that Φ(l) < t/c1. Then by HKh
U, we get q(t, x, y) ' hp(t, x, y)/V (x,Φ−1(t)).

Let L > 0 be the constant in Theorem 2.2.10(iii). By (4.1.10) and Lemma

4.1.9, since Ψ ≥ Φ, we get that

p(t, x, y) ≤ c2

ˆ (c1Φ(l)/L)∧1)

0

rhp(r, x, y)

V (x, l)Φ(l)
drP(Sr ≥ t)

+ c2

ˆ t/L

(c1Φ(l)/L)∧1)

hp(r, x, y)

V (x,Φ−1(r))
drP(Sr ≥ t)

+ c2

ˆ ∞
t/L

hp(r, x, y)

V (x,Φ−1(r))
drP(Sr ≥ t) =: c2(K1 +K2 +K3).

By the scalings of V and Φ, we have thatK3 ≤ hp(t/L, x, y)/V (x,Φ−1(t/L)) ≤
c3q(t, x, y). Besides, using the fact that r 7→ r2ph(r, x, y) is increasing, inte-

gration by parts and Theorem 2.2.10(i)-(ii), since bt/R2c ≥ bd2/α1 + 2pc, we

see that

K1 ≤ c4
Φ(l)2p hp(Φ(l), x, y)

V (x, l)Φ(l)

ˆ (c1Φ(l)/L)∧1)

0

r1−2pdrP(Sr ≥ t)

≤ c5
hp(Φ(l), x, y)

V (x, l)
P(S(c1Φ(l)/L)∧1 ≥ t)

+ c5
Φ(l)2p hp(Φ(l), x, y)

V (x, l)Φ(l)

ˆ (c1Φ(l)/L)∧1)

0

r−2pP(Sr ≥ t)dr

≤ c6
Φ(l)d2/α1+2p hp(Φ(l), x, y)

V (x, l)
e−c7t log t

+ c6
Φ(l)2p hp(Φ(l), x, y)

V (x, l)Φ(l)
e−c7t log t

ˆ (c1Φ(l)/L)∧1)

0

r−2prd2/α1+2pdr

≤ c8
Φ(l)d2/α1+2p hp(Φ(l), x, y)

V (x, l)
e−c7t log t.

Using the fact that r 7→ r2ph(r, x, y) is increasing again, and the scalings of

V and Φ, we see that

Φ(l)d2/α1+2p hp(Φ(l), x, y)

V (x, l)
≤ t2php(t, x, y)

Φ(l)d2/α1

V (x, l)
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≤ c9t
2php(t, x, y)

(Φ(1)lα1)d2/α1

ld2V (x, 1)
= c10t

2php(t, x, y).

By the scalings of V and Φ, we also see that for every a > 0,

lim
s→∞

s2pe−as(1∧log s)V (x,Φ−1(s)) ≤ c lim
s→∞

s2p+d2/α1e−as(1∧log s)V (x,Φ−1(1)) = 0.

(6.2.13)

In the end, we deduce that

K1 ≤ c11hp(t, x, y)t2pe−c7t log t ≤ c12
hp(t, x, y)

V (x,Φ−1(t))
≤ c13q(t, x, y).

Lastly, using the fact that r 7→ r2ph(r, x, y) is increasing, Lemmas 4.1.1 and

6.2.2, integration by parts, Theorem 2.2.10(i)-(iii), the scalings of V and Φ,

Lemma 1.1.1(i) and (6.2.13), we obtain that

K2 ≤ c14t
2php(t, x, y)

ˆ t/L

(c1Φ(l)/L)∧1)

1

r2pṼ (x, Φ̃−1(r))
drP(Sr ≥ t)

≤ c14
L2php(t/L, x, y)

Ṽ (x, Φ̃−1(t/L))

+ c15t
2php(t, x, y)

ˆ t/L

(c1Φ(l)/L)∧1)

1

r2p+1Ṽ (x, Φ̃−1(r))
P(Sr ≥ t)dr

≤ c16q(t, x, y) + c16t
2pe−c17t log thp(t, x, y)

ˆ 1

(c1Φ(l)/L)∧1)

rbd2/α1+2pc+1

r2p+1V (x,Φ−1(r))
dr

+ c16t
2php(t, x, y)

ˆ t/L

1

1

r2p+1Ṽ (x, Φ̃−1(r))
e−c17t log(t/r)dr

≤ c16q(t, x, y) + c18t
2pe−c17t(L∧log t)hp(t, x, y)

1

V (x,Φ−1(1))
≤ c19q(t, x, y).

The proof is complete. �

Proof of Theorem 6.1.6. By Lemma 6.2.4, it remains to prove for t ≤
bd2/α1 + 2pcR2. For that case, by repeating arguments in the proof of Theo-

rem 6.1.1, using Theorem 2.2.10 instead of Theorem 2.2.6, and the fact that

φ(t−1) ' t−1 for t ≤ bd2/α1 + 2pcR2, we arrive at the result. We omit details

here. �
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Chapter 7

Dirichlet heat kernel estimates

for Lévy processes with low

intensity of small jumps

This chapter is concerned with Dirichlet heat kernel estimates for a isotropic

unimodal Lévy process Y with low intensity of small jumps. Typical examples

of such processes are geometric stable processes and iterated geometric stable

processes. (See, e.g., [17, Page 112] for the definitions of these processes.) The

results in this chapter are based on [53].

In this capter, we first derive small heat kernel estimates in Rd by using

the results and methods from [76]. Next, we study behaviours of the process

near the boundary of a C1,1 open subset D of Rd. Under a set of conditions

that give the boundary Harnack principle (see condition (B) below), we

obtain two-sided estimates on the survival probability in D with explicit

boundary decay. Using heat kernel estimates in the whole space and boundary

behaviours of the process, we establish small time two-sided Dirichlet heat

kernel estimates for isotropic unimodal Lévy processes in C1,1 open sets. In

particular, we prove the following factorization formula: For every T > 0,
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there are comparability constants such that for all (t, x, y) ∈ [T,∞)×D×D,

pD(t, x, y) � Px(τD > t)Py(τD > t) p(ct, x, y), (7.0.1)

where pD(t, x, y) is Dirichlet heat kernel in D, p(t, x, y) the heat kernel of the

free process, and τD := inf{t > 0 : Yt /∈ D} the first exit time (see Theorem

7.1.1 below). Cf. Theorem 3.1.20. Since the heat kernel p(t, x, y) may not be

bounded, in the proof of (7.0.1), we need different arguments from ones for

the proof of Theorem 3.1.20.

When D is a bounded C1,1 open subset of Rd, we also obtain large time

estimates for pD(t, x, y), and two-sided estimates on the Green function in

D. Since the killed semigroup (PD
t )t≥0 may not be compact operators for all

t > 0 even for bounded D, our method is different from ones for obtaining

large time Dirichlet heat kernel estimates of stable processes.

7.1 Setup and main results

Let Y = (Yt)t≥0 be a Lévy process in Rd with the Lévy-Khintchine exponent

ψ, that is,

E
[

exp
(
i〈ξ, Yt〉

)]
=

ˆ
Rd
ei〈ξ,x〉p(t, dx) = e−tψ(ξ), ξ ∈ Rd,

where p(t, dx) = p(t, 0, dx) is the transition probability of Y . If Y is a pure

jump symmetric Lévy process with Lévy measure ν, then ψ is of the form

ψ(ξ) =

ˆ
Rd

(1− cos〈ξ, x〉)ν(dx), ξ ∈ Rd,

where
´
Rd(1 ∧ |x|

2)ν(dx) <∞.

A measure µ(dx) is isotropic unimodal if it is absolutely continuous on

Rd \ {0} with a radial and radially nonincreasing density. A Lévy process Y

is isotropic unimodal if p(t, dx) is isotropic unimodal for all t > 0. When Y

is a pure jump Lévy process, Y is isotropic unimodal if and only if the Lévy
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measure ν(dx) of Y is isotropic unimodal. See, [126].

Throughout the chapter, we always assume that Y is a pure jump isotropic

unimodal Lévy process with the Lévy-Khintchine exponent ψ. With a slight

abuse of notation, we will use the notations ψ(|x|) = ψ(x), ν(dx) = ν(x)dx =

ν(|x|)dx and p(t, dx) = p(t, x)dx = p(t, |x|)dx for x ∈ Rd and t > 0. Then,

throughout the chapter, we also assume that the following condition (A)

holds true:

(A) ν(Rd) =∞ and there exist constants−d < α1 ≤ α2 < 2, c1, c2, κ1, κ2 >

0, and a continuous function ` : (0,∞)→ (0,∞) satisfying

c1

(
R

r

)α1

≤ `(R)

`(r)
≤ c2

(
R

r

)α2

for all 1 ≤ r ≤ R (7.1.1)

such that

κ1r
−d`(r−1) ≤ ν(r) ≤ κ2r

−d`(r−1) for all r > 0. (7.1.2)

If d > 1, then we assume further that either α1 > −1 or ψ(ξ) = ϕ(|ξ|2) for

a Bernstein function ϕ.

Note that, since we allow the constant α1 to be negative, the map r 7→
`(r−1) can be increasing near zero.

Here, we enumerate other main conditions which we will assume later.

We say that a given function f is almost increasing if there exists c1 > 0

such that f(x) ' supy∈[c0,x] f(y) for x > c1, and f is almost decreasing if

there exists c2 > 0 such that f(x) ' infy∈[c0,x] f(y) for x > c2.

(B) ν(r) is absolutely continuous such that r 7→ −ν ′(r)/r is nonincreasing

on (0,∞) and there exists c > 1 such that ν(r) ≤ cν(r + 1) for all r ≥ 1.

(C) There exist constants γ < 2 and c1 > 0 such that

`(R)

`(r)
≤ c1

(
R

r

)γ
for all 0 < r ≤ R ≤ 1.
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(S-1) lim supr→∞ `(r) <∞;

(S-2) lim supr→∞ `(r) =∞ and `(r) is almost increasing;

(L-1) lim infr→∞ `(r) = 0 and `(r) is almost decreasing;

(L-2) 0 < lim infr→∞ `(r) ≤ lim supr→∞ `(r) <∞;

(D) If d = 1, then α2 < 1 where α2 is the constant in (A).

We define for r > 0,

K(r) := r−2

ˆ r

0

s`(s−1)ds, L(r) :=

ˆ ∞
r

s−1`(s−1)ds,

h(r) := K(r) + L(r). (7.1.3)

Then we see from (A) that

K(r) ' r−2

ˆ
|y|≤r
|y|2 ν(y)dy and L(r) '

ˆ
|y|>r

ν(y)dy for r > 0.

We also define

`∗(r) := sup
u∈[1,r]

`(u) for r ≥ 1, `−1(t) := inf{r ≥ 1 : `∗(r) > t} for t > 0

and for a > 0,

θa(r, t) := r ∨ [`−1(a/t)]−1 for r, t > 0.

Now, we state our main results. For a Borel subset D of Rd, denote by

pD(t, x, y) the Dirichlet heat kernel of Y in D.

Theorem 7.1.1. Suppose that Y is a pure jump isotropic unimodal Lévy pro-

cess satisfying (A) and (B). Let D be a C1,1 open set in Rd with characteris-

tics (R0,Λ). If D is unbounded, we further assume that (C) holds. Then for

every T > 0, the following estimates are valid for all (t, x, y) ∈ [T,∞)×D×D.
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(i) If (S-1) holds, then

pD(t, x, y) �
(

1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

p(ct, x, y)

�
(

1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

tν(|x− y|)e−cth(|x−y|).

(ii) If (S-2) holds, then there exist constants a0 = a0(d, ψ) > 0 and c1, c2 > 0

such that

pD(t, x, y) ≤ c1

(
1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

× tν(θa0(|x− y|, t)) exp
(
− c2th(θa0(|x− y|, t))

)
.

Also, for every η > 0, there exist constants c3, c4 > 0 such that

pD(t, x, y) ≥ c3

(
1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

× tν(θη(|x− y|, t)) exp
(
− c4th(θη(|x− y|, t))

)
.

Moreover, the following factorization formula holds true:

pD(t, x, y) �
(

1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

p(ct, x, y).

Below, we assume that D is bounded and obtain the large time estimates

for the Dirichlet heat kernel and the Green function estimates under some

mild assumptions.

Definition 7.1.2. A bounded set D in Rd is said to be of scale (r1, r2) if

there exist x1, x2 ∈ Rd such that B(x1, r1) ⊂ D ⊂ B(x2, r2).

Theorem 7.1.3. Suppose that Y is a pure jump isotropic unimodal Lévy

process satisfying (A) and (B). Let D be a bounded C1,1 open set in Rd with
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characteristics (R0,Λ) of scale (r1, r2). Then, the following estimates hold:

(i) If (L-1) holds, then for every T > 0, there exist constants a1, a2 > 0

which only depend on the dimension d, constants c1, c2 > 0 independent of T

and c3 = c3(T ) > 1 such that

c−1
3

L(δD(x))1/2L(δD(y))1/2

(
ν(|x− y|)e−c1th(|x−y|) + e−a1κ2th(r1/2)

)
≤ pD(t, x, y)

≤ c3

L(δD(x))1/2L(δD(y))1/2

(
ν(|x− y|)e−c2th(|x−y|) + e−a2κ1th(r2)

)
,

for all (t, x, y) ∈ [T,∞)×D×D, where κ1 and κ2 are the constants in (A).

(ii) If (L-2) holds, then there exist T1 ≥ 0 and λ1 = λ1(ψ,D) > 0 such that

for every T > T1, there exists c4 > 1 such that

c−1
4

e−λ1t

L(δD(x))1/2L(δD(y))1/2
≤ pD(t, x, y) ≤ c4

e−λ1t

L(δD(x))1/2L(δD(y))1/2
,

for all (t, x, y) ∈ [T,∞)×D ×D. Moreover, we have

κ1C5

2
h(r2) ≤ λ1 ≤ κ2C4h(r1/2).

(iii) If (S-2) holds, then the estimates in (ii) holds with T1 = 0. Moreover,

the constant −λ1 < 0 is the largest eigenvalue of the generator of Y D.

For a Borel subset D of Rd, the Green function GD(x, y) of Y in D is

defined by

GD(x, y) :=

ˆ ∞
0

pD(t, x, y)dt.

Theorem 7.1.4. Suppose that Y is a pure jump isotropic unimodal Lévy

process satisfying (A), (B) and (D). Let D be a bounded C1,1 open subset

in Rd with characteristics (R0,Λ) of scale (r1, r2). Then, the Green function
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GD(x, y) in D satisfies the following two-sided estimates: for x, y ∈ D,

GD(x, y) '
(

1 ∧ L(|x− y|)√
L(δD(x))L(δD(y))

)
`(|x− y|−1)

|x− y|dL(|x− y|)2
, (7.1.4)

with comparability constants depend only on d, ψ,R0,Λ and r2.

Remark 7.1.5. One can obtain (7.1.4) just by integrating the estimates for

pD(t, x, y) given in Theorems 7.1.1 and 7.1.3. However, to use both Theorems

7.1.1 and 7.1.3, we need conditions more than (A), (B) and (D). By adopt-

ing arguments from [87] instead of integrating the Dirichlet heat kernel, we

obtained the Green function estimates in more general situations.

7.2 Heat kernel estimates in Rd

Recall the definitions of the functions K, L and h from (7.1.3). Clearly, L

and h are nonincreasing. Since ν(r) is nonincreasing, it holds that

K(r) ≥ cν(r)r−2

ˆ r

0

sd+1ds = c1r
dν(r) for all r > 0.

Moreover, using Lemma 1.1.1(i), since we assumed that condition (A) holds

true, we see that

K(r) ' rdν(r) ' `(r−1) for 0 < r ≤ 1, (7.2.1)

and if condition (C) also holds, then

K(r) ' rdν(r) ' `(r−1) for r ≥ 1. (7.2.2)

By applying (1.1.2) to the function L, we see from (7.2.1) that L(r) ≥ cK(r)

for 0 < r ≤ 1. Since h(r) = K(r) + L(r), it follows that

Lemma 7.2.1. There exists a constant c1 > 0 such that

L(r) ≤ h(r) ≤ c1L(r) for all 0 < r ≤ 1.
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By [20, (6) and (7)], there exist positive constants C0 and C1 which only

depend on the dimension d, and the constants κ1, κ2 in (7.1.2) such that

C0h(r) ≤ ψ(r−1) ≤ C1h(r) for all r > 0. (7.2.3)

To make some computations easier, we define Φ : [0,∞)→ [0,∞) by

Φ(r) := L(r−1) =

ˆ r

0

s−1`(s)ds.

Then we get the following lemma from (7.1.1), (7.2.3) and Lemma 7.2.1.

Lemma 7.2.2. (i) There exist constants c1, c2 > 0 such that

c1

(
R

r

)α1

≤ Φ(R)

Φ(r)
≤ c2

(
R

r

)α2∨(1/2)

for all 1 ≤ r ≤ R.

(ii) With the constant C0 in (7.2.3), C0Φ(r) ≤ ψ(r) for all r ≥ 0. Moreover,

there exists a constant C2 > 0 such that C2Φ(r) ≥ h(r−1) for all r ≥ 1.

In [79], Hartman and Wintner proved sufficient conditions in terms of the

Lévy exponent ψ under which the transition density p(t, ·) of Y is in C0(Rd).

Then, in [99], Knopova and Schilling improve that result and they also give

some necessary conditions. Using Lemma 7.2.2(ii), we can formulate these

conditions in terms of Φ. Since Y is isotropic unimodal, these conditions

determine whether p(t, 0) <∞ or p(t, 0) =∞.

Proposition 7.2.3. Let

b1 := lim inf
r→∞

Φ(r)

log(1 + r)
∈ [0,∞] and b2 := lim sup

r→∞

Φ(r)

log(1 + r)
∈ [0,∞].

(i) If b1 =∞, then p(t, 0) <∞ for all t > 0.

(ii) If b2 = 0, then p(t, 0) =∞ for all t > 0.

(iii) If 0 < b1 ≤ b2 < ∞, then there exist constants T2 ≥ T1 > 0 such that

p(t, 0) =∞ for 0 < t ≤ T1 and p(t, 0) <∞ for t > T2.

In particular, by l’Hospital’s rule, the following are true.
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(i’) If lim infr→∞ `(r) =∞, then p(t, 0) <∞ for all t > 0.

(ii’) If lim supr→∞ `(r) = 0, then p(t, 0) =∞ for all t > 0.

(iii’) If 0 < lim infr→∞ `(r) ≤ lim supr→∞ `(r) < ∞, then there exist T2 ≥
T1 > 0 such that p(t, 0) =∞ for 0 < t ≤ T1 and p(t, 0) <∞ for t > T2.

Here, we introduce some general estimates which are established in [76].

Note that the following estimates hold no matter p(t, 0) <∞ or p(t, 0) =∞.

Proposition 7.2.4 ([76, Proposition 5.3]). There are constants b0, c0 > 0,

which only depend on the dimension d and the constant κ2 in (7.1.2) such

that for all t > 0 and x ∈ Rd,

p(t, x) ≥ c0tν(|x|) exp
(
− b0th(|x|)

)
.

Proposition 7.2.5 ([76, Theorem 5.4]). There is a constant c1 > 0, which

only depends on the dimension d and κ2 in (7.1.2) such that for all t > 0 and

x ∈ Rd \ {0},
p(t, x) ≤ c1t|x|−dK(|x|).

The following lemma will be used several times to obtain heat kernel

upper bounds for the whole space. (Cf. [76, Lemma 4.1 and Corollary 4.4].)

Lemma 7.2.6. For every λ > 1, there exists a constant c = c(λ) > 0 such

that

sup
1<k≤λ

|ψ(kr)− ψ(r)| ≤ c `(r) for all r ≥ 1. (7.2.4)

Proof. Recall condition (A). We first assume that either d = 1 or α1 > −1.

For y > 0, set ν1(y) = ν(y) if d = 1, and

ν1(y) :=

ˆ
Rd−1

ν
(
(y2 + |z|2)1/2

)
dz if d ≥ 2.

We claim that there exists a constant c1 > 0 such that

ν1(y) ≤ c1y
−1`(y−1) for all y ∈ (0, 1]. (7.2.5)
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If d = 1, then (7.2.5) follows from (7.1.2). Suppose that α1 > −1 and d ≥ 2.

Using (7.1.1) and a change of the variables, we get from (7.1.2) that for any

y ∈ (0, 1],

1

y−1`(y−1)

ˆ 1

0

ν
(
(y2 + k2)1/2

)
kd−2dk '

ˆ 1/y

0

kd−2

(1 + k2)d/2
`(y−1(1 + k2)−1/2)

`(y−1)
dk

≤ c2

ˆ 1/y

0

kd−2

(1 + k2)(α1+d)/2
dk ≤ c2

ˆ 1

0

dk + c2

ˆ ∞
1

k−2−α1dk =
c2(2 + α1)

1 + α1

.

Besides, since ν is nonincreasing, we also have that, for any y ∈ (0, 1],

1

y−1`(y−1)

ˆ ∞
1

ν
(
(y2 + k2)1/2

)
kd−2dk ≤ 1

y−1`(y−1)

ˆ ∞
1

ν(k)kd−1dk

=
c3

y−1`(y−1)

ˆ
ξ∈Rd, |ξ|>1

ν(ξ)dξ =
c4

`(1)

`(1)

y−1`(y−1)
≤ c5y

1+α1 ≤ c5.

Therefore, we obtain (7.2.5) with c1 = c2(2 + α1)/(1 + α1) + c5.

By Fubini’s theorem, it holds that for r > 0,

ψ(r) = 2

ˆ ∞
0

(
1− cos(ry)

)
ν1(y)dy.

Hence, using a change of the variables, we see that for any 1 < k ≤ λ and

r ≥ 1,

|ψ(kr)− ψ(r)| = 2

∣∣∣∣ ˆ ∞
0

(
cos(ry)− cos(kry)

)
ν1(y)dy

∣∣∣∣
≤ 2r−1

ˆ 1

0

∣∣ cos(y)− cos(ky)
∣∣ν1(y/r)dy

+ 2r−1

∣∣∣∣ˆ ∞
1

cos(y)ν1(y/r)dy

∣∣∣∣+ 2r−1

∣∣∣∣ˆ ∞
1

cos(ky)ν1(y/r)dy

∣∣∣∣
=: I1 + I2 + I3.

By Taylor expansion of the cosine function, (7.2.5) and the assumption
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that (7.1.1) holds with α2 < 2, we get from Lemma 1.1.1(i) that

I1 ≤ 2λ2r−1

ˆ 1

0

y2ν1(y/r)dy ≤ 2c6λ
2`(r)

ˆ 1

0

y
`(r/y)

`(r)
dy ≤ c7λ

2`(r).

Next, to bound I2 and I3, we use a trick from the proof of [76, Theorem

3.5]. Since y 7→ ν1(y) is nonincreasing, there exists a measure −dν1 on (0,∞)

such that ν1(y) =
´∞
y

(−dν1(z)) for y > 0. Then by Fubini theorem and

(7.2.5), we obtain

I2 = 2r−1

∣∣∣∣ˆ ∞
1

ˆ ∞
y/r

cos(y)(−dν1(z))dy

∣∣∣∣ = 2r−1

∣∣∣∣ˆ ∞
1/r

ˆ rz

1

cos(y)dy(−dν1(z))

∣∣∣∣
≤ 4r−1

∣∣∣∣ˆ ∞
1/r

(−dν1(z))

∣∣∣∣ = 4r−1ν1(1/r) ≤ 4c8`(r).

Similarly, we also have that I3 ≤ c9`(r). Thus, we get (7.2.4) in this case.

For the case ψ(ξ) = ϕ(|ξ|2) for a Bernstein function ϕ, we use [76, Lemma

5.13], (7.2.1) and (7.1.1), and obtain that for any 1 < k ≤ λ and r ≥ 1,

|ψ(kr)− ψ(r)| =
ˆ (kr)2

r2

ϕ′(u)du ≤ 1

rd

ˆ (λr)2

0

ud/2ϕ′(u)du

≤ c7λ
d`(λr) ≤ c9λ

d+α2`(r).

The proof is complete. �

Now, we first consider the case when (S-2) holds. Recall that `∗(r) :=

supu∈[1,r] `(u) and `−1 is the right continuous inverse of `∗. Under (S-2), we

see that limr→∞ `
∗(r) =∞ and there exists a constant C3 ≥ 1 such that

`(r) ≤ `∗(r) ≤ C3`(r) for all r > 2.

Hence, in this case, by Proposition 7.2.3, p(t, 0) < ∞ for all t > 0. We give

the small time estimates for p(t, 0) under (S-2).
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Lemma 7.2.7. Assume that (S-2) holds. Then, there exists C > 0 such that

p(t, x) ≤ p(t, 0) ≤ C
[
`−1(a1/t)

]d
exp

(
− b1th(`−1(a1/t)

−1)
)
,

for all 0 < t ≤ t1 and x ∈ Rd where a1 := 2dC3/C0, b1 := C0/(4C2C3) and

t1 := a1/`
∗(3).

Proof. Let a1 := 2dC3/C0 and t1 := a1/`
∗(3). Then, `−1(a1/t) ≥ 3 for all

t ∈ (0, t1]. By Fourier inversion theorem, (2.3.23), integration by parts and

the change of variables s = Φ(r), we have that for all t ∈ (0, t1],

p(t, x) = (2π)−d
ˆ
Rd
e−i〈ξ,x〉e−tψ(ξ)dξ ≤ c1

ˆ ∞
0

e−C0tΦ(r)rd−1dr

≤ c2t

ˆ ∞
0

rde−C0tΦ(r)Φ′(r)dr = c2t

ˆ ∞
0

Φ−1(s)de−C0tsds

≤ c2t+ c2t

ˆ Φ(`−1(a1/t))

Φ(1)

Φ−1(s)de−C0tsds+ c2t

ˆ ∞
Φ(`−1(a1/t))

Φ−1(s)de−C0tsds

=: c2t+ I1 + I2.

Observe that for Φ(2) < v ≤ u, we have

u− v = Φ(Φ−1(u))− Φ(Φ−1(v)) =

ˆ Φ−1(u)

Φ−1(v)

k−1`(k)dk

≥ C−1
3

ˆ Φ−1(u)

Φ−1(v)

k−1`∗(k)dk ≥ C−1
3 `∗(Φ−1(v)) log

Φ−1(u)

Φ−1(v)
.

Thus, for all Φ(2) < v ≤ u, we have that (cf. Section 3.10 in [13])

Φ−1(u)

Φ−1(v)
≤ exp

(
C3

u− v
`∗(Φ−1(v))

)
. (7.2.6)

Then, by (7.2.6) and the definition of a1, we get

I2 = c2t
[
`−1(a1/t)

]d ˆ ∞
Φ(`−1(a1/t))

(
Φ−1(s)

Φ−1(Φ(`−1(a1/t)))

)d
e−C0tsds
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≤ c3

[
`−1(a1/t)

]d ˆ ∞
Φ(`−1(a1/t))

t exp

(
−dC3Φ(`−1(a1/t)) + dC3s

a1/t
− C0ts

)
ds

≤ c4

[
`−1(a1/t)

]d
exp

(
− C0

2
tΦ(`−1(a1/t))

) ˆ ∞
Φ(`−1(a1/t))

t exp
(
− C0

2
ts
)
ds

≤ c5

[
`−1(a1/t)

]d
exp

(
− C0tΦ(`−1(a1/t))

)
.

To bound I1, we define g(r) = rd exp
(
− C0

2C3
tΦ(r)

)
for r ≥ 1. Then

g′(r) =
(
d− C0

2C3

t`(r)
)
rd−1 exp

(
− C0

2C3

tΦ(r)
)
,

and hence g is strictly increasing on [1, `−1(a1/t)). Hence, by the scaling of

Φ, we obtain

I1 ≤ c6t

ˆ Φ(`−1(a1/t))

Φ(1)

g(Φ−1(s))ds ≤ 2c6t

ˆ Φ(`−1(a1/t))

Φ(`−1(a1/t))/2

g(Φ−1(s))ds

≤ c7

[
`−1(a1/t)

]d ˆ Φ(`−1(a1/t))

Φ(`−1(a1/t))/2

t exp
(
− C0

2C3

ts
)
ds

≤ c8

[
`−1(a1/t)

]d
exp

(
− C0

4C3

tΦ(`−1(a1/t))
)
.

We also have that

I1 ≥ c9t

ˆ Φ(3)

Φ(1)

Φ−1(s)d exp(−C0ts)ds ≥ c10t.

Finally, we deduce the result from (2.3.25). �

By a similar proof to the one for Lemma 7.2.7, we get the following lemma.

Lemma 7.2.8. Assume that (S-2) holds. Let a1, b1 and t1 be the positive

constants in Lemma 7.2.7. Then, there exists C > 0 such that

p(t, x) ≤ Ct|x|−d`∗(|x|−1) exp
(
− b1th(|x|)

)
,

for all 0 < t ≤ t1 and x ∈ Rd satisfying [`−1(a1/t)]
−1 ≤ |x| ≤ 1/2.
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In view of Lemmas 7.2.7 and 7.2.8, we define for a, r, t > 0,

θa(r, t) := r ∨ [`−1(a/t)]−1. (7.2.7)

Note that both r 7→ θa(r, t) and t 7→ θa(r, t) are increasing, while a 7→ θa(r, t)

is decreasing.

Combining Lemmas 7.2.7 and 7.2.8, and Proposition 7.2.5, we arrive at

the following result.

Proposition 7.2.9. Assume that (S-2) holds. For every T > 0, there exists

C > 0 such that for all (t, x) ∈ (0, T ]× Rd,

p(t, x) ≤ Ct
K(θa1(|x|, t))[
θa1(|x|, t)

]d exp
(
− b1th(θa1(|x|, t))

)
,

where a1 and b1 are the constants in Lemma 7.2.7.

Using the fact that p(t, ) is radially nonincreasing, we obtain the following

two-sided heat kernel estimates under (S-2) from Propositions 7.2.4 and

7.2.9.

Corollary 7.2.10. Assume that (S-2) holds. For every T > 0, there exists

C > 1 such that for every fixed η > 0, we have that for all (t, x) ∈ (0, T ]×Rd,

C−1tν(θη(|x|, t)) exp
(
− b0th(θη(|x|, t))

)
≤ p(t, x) ≤ Ct

K(θa1(|x|, t))[
θa1(|x|, t)

]d exp
(
− b1th(θa1(|x|, t))

)
, (7.2.8)

where b0 is the constant in Proposition 7.2.4, and a1 and b1 are the constants

in Lemma 7.2.7.

In the rest of this section, we assume that (S-1) holds and obtain heat

kernel estimates in analogous form to (7.2.8). Note that, under (S-1), by

Proposition 7.2.3, it holds that p(t, 0) =∞ for small t.
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PROCESSES WITH LOW INTENSITY OF SMALL JUMPS

Proposition 7.2.11. Assume that (S-1) holds. Then, there exist constants

t0, C > 0 such that for all (t, x) ∈ (0, t0]× Rd,

p(t, x) ≤ Ct|x|−dK(|x|) exp
(
− tψ(|x|−1)

)
. (7.2.9)

Proof. Let ω(r) = K(1)1{0<r≤1}(r) +K(r−1)1{r>1}(r) for r > 0. By (7.2.1),

Lemma 7.2.6, (A) and (S-1), there exists c1 > 0 such that c1ω(r) satisfies

the assumptions (5.7) and (5.8) in [76]. Therefore, by [76, Proposition 5.6],

there exist t0, C > 0 such that for all t ∈ (0, t0] and 0 < |x| < 1, the estimate

(7.2.9) holds. Moreover, for t ∈ (0, t0] and |x| ≥ 1, we see that e−tψ(|x|−1) ' 1

and get (7.2.9) from Proposition 7.2.5. �

Combining the above proposition with Proposition 7.2.4, using the semi-

group property, we deduce the following result.

Corollary 7.2.12. Assume that (S-1) holds. For every T > 0, there exist

constants b2 > 0, C > 1 such that for all (t, x) ∈ (0, T ]× Rd,

C−1tν(|x|) exp
(
− b0th(|x|)

)
≤ p(t, x) ≤ Ct|x|−dK(|x|) exp

(
− b2th(|x|)

)
,

where b0 is the constant in Proposition 7.2.4.

7.3 Survival probability estimates with ex-

plicit decay

For an open subset D of Rd, we denote τD = inf{t > 0 : Yt /∈ D}. In this

section, we obtain two-sided estimates for the survival probability Px(τD > t)

which play a crucial role in factorization of the Dirichlet heat kernel. We first

state the general two-sided estimates for the survival probability in balls

which are established in [76, Proposition 5.2].

Proposition 7.3.1. There exist positive constants c1, c2, C4 and C5 which
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only depend on the dimension d such that for all t, r > 0,

c1 exp
(
− κ2C4th(r)

)
≤ Px(τB(x,r) > t)

≤ sup
z∈B(x,r)

Pz(τB(x,r) > t) ≤ c2 exp
(
− κ1C5th(r)

)
, (7.3.1)

where κ1 and κ2 are the constants in (A). Consequently, it holds that

Ex[τB(x,r)] =

ˆ ∞
0

Px(τB(x,r) > s)ds ' h(r)−1 for r > 0.

In the rest of this section, we assume that condition (B) holds true.

Let Y d be the last coordinate of Y , Mt = sups≤t Y
d
s and Lt be the local

time at 0 for Mt − Y d
t , the last coordinate of Y reflected at the supremum.

Define the ascending ladder-height process as Ht = Y d
L−1
t

= ML−1
t

where

L −1 is the right continuous inverse of L . Then, the renewal function V of

Y is defined by

V (s) =

ˆ ∞
0

P(Ht ≤ s)dt, s ∈ R.

Since the process Y is isotropic unimodal, there are several known properties

for the renewal function. (See, [117, Theorem 1.2], [12, p.74] and [21, Section

1.2].)

Recall that a function u : Rd → R is said to be harmonic in D ⊂ Rd if for

every open set B whose closure is a compact subset of D, u(x) = Ex[u(YτB)]

for all x ∈ B.

Lemma 7.3.2. (i) V (s) = 0 for s < 0 and V is strictly increasing and

unbounded.

(ii) V is subadditive; that is, V (s+ r) ≤ V (s) + V (r) for all s, r ∈ R.

(iii) V is absolutely continuous and harmonic on (0,∞) for the process Y d
t .

Also, V ′ is a positive harmonic function for Y d
t on (0,∞).

According to [22, Proposition 2.4], the relation (7.2.3) can be extended

to include the renewal function. Precisely, there exist comparison constants

which are only depend on the dimension d and the constant κ1 and κ2 in
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(7.1.2) such that h(r) ' ψ(r−1) ' V (r)−2 for r > 0. Then, by Lemmas 7.2.1

and 7.2.2, we get that

L(r) ' h(r) ' ψ(r−1) ' Φ(r−1) ' V (r)−2 for 0 < r ≤ 1. (7.3.2)

By (7.3.2), we get from Lemma 7.2.2 that there are c1, c2, c3, c4 > 0 such that

c1

(
R

r

)α1
2

≤ V (R)

V (r)
≤ c2

(
R

r

)α1∨(1/2)
2

for all 0 < r ≤ R ≤ 1. (7.3.3)

and

c3

(
R

r

)α1

≤ L(r)

L(R)
≤ c4

(
R

r

)α2∨(1/2)

for all 0 < r ≤ R ≤ 1. (7.3.4)

Proposition 7.3.3. The renewal function V is twice-differentiable on (0,∞),

and there exists c1 > 0 such that

|V ′′(r)| ≤ c1
V ′(r)

r ∧ 1
and V ′(r) ≤ c1

V (r)

r ∧ 1
, r > 0.

Proof. Since (A) and (B) hold, the scale-invariant Harnack inequality holds

for Y . (See, [74, Theorem 1.9].) Then, the results follows from [102, Theorem

1.1] and Lemma 7.3.2(iii). �

Define w(x) := V ((xd)
+) for x ∈ Rd. Since the renewal function V is

harmonic on (0,∞) for Y d, by the strong Markov property, w is harmonic in

Rd
+ with respect to Y .

Lemma 7.3.4. For all λ > 0, there exists c1 = c1(d, λ) > 0 such that for

any r > 0,

sup
{x∈Rd : 0<xd≤λr}

ˆ
B(x,r)c

w(y)ν(|x− y|)dy ≤ c1V (r)−1.

Proof. See, the proof of [73, Proposition 3.2]. �
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We define an operator LY as follows: for ε > 0 and x ∈ Rd,

LεY f(x) :=

ˆ
B(x,ε)c

(f(y)− f(x))ν(|x− y|)dy,

LY f(x) := P.V.

ˆ
Rd

(f(y)− f(x))ν(|x− y|)dy = lim
ε↓0
LεY f(x),

D(LY ) :=

{
f ∈ C2

0(Rd) : P.V.

ˆ
Rd

(f(y)− f(x))ν(|x− y|)dy exists in R
}
.

Proposition 7.3.5. For all x ∈ Rd
+, LYw(x) = 0.

Proof. By Proposition 7.3.3 and Lemma 7.3.4, using [29, Lemma 2.3 and

Theorem 2.11], the proof is essentially the same as the one given in [73,

Theorem 3.3]. We omit details here. �

Using Proposition 7.3.5, by following arguments in the proof of Lemma

3.2.1, we get the following lemma. See [53, Lemma 3.6] for the proof.

Lemma 7.3.6. Let D be a C1,1 open set in Rd with characteristics (R0,Λ).

For any Q ∈ ∂D and r > 0, we define

hr(y) = hr,Q(y) := V (δD(y))1D∩B(Q,r)(y).

Then, there exist constants R1 = R1(R0,Λ, ψ, d) ∈ (0, (R0 ∧ 1)/2] and c1 =

c1(R0,Λ, ψ, d) > 1 independent of Q such that for every r ∈ (0, R1), LY hr is

well defined in D ∩B(Q, r/4) and

|LY hr(x)| ≤ c1

V (r)
for all x ∈ D ∩B(Q, r/4) .

For l > 0, we define Dint(l) := {y ∈ D : δD(y) > l}.
Using Dynkin’s formula with an approximation argument, the Lévy sys-

tem, and (7.3.2), one can follow the arguments given in the below of Lemma

3.2.1 to deduce the following lemma.

Lemma 7.3.7. Let D be a C1,1 open set in Rd with characteristics (R0,Λ)

and R1 be the constant in Lemma 7.3.6. Then, there exist constants R2 =
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R2(R0,Λ, ψ, d) ∈ (0, R1/16] and c1 = c1(R0,Λ, ψ, d) > 1 such that for every

r ∈ (0, R2] and x ∈ D with δD(x) < r/2,

c−1
1

L(δD(x))1/2L(r)1/2
≤ Ex[τD∩B(z,r)] ≤

c1

L(δD(x))1/2L(r)1/2
. (7.3.5)

and

Px
(
YτD∩B(z,r)

∈ Dint(r/4)
)
≥ c−1

1

(
L(r)

L(δD(x))

)1/2

, (7.3.6)

where z ∈ ∂D is the point satisfying δD(x) = |x− z|.

Fix T > 0 and D a C1,1 open set in Rd with characteristics (R0,Λ). Let

R2 be the constant in Lemma 7.3.7. For t ∈ (0, T ], we set

rt = rt(T,R0,Λ, ψ, d) :=
L−1(1/t)

L−1(1/T )
R2.

For x ∈ D with δD(x) < rt/2, we define an open neighborhood U(x, t) of

x and an open ball W (x, t) ⊂ D \ U(x, t) as follows:

Find zx ∈ ∂D satisfying δD(x) = |x − zx| and let vx := zx + 2rt(x −
zx)/|x− zx|. Then, we have δD(vx) ≥ rt/

√
1 + Λ2. We define

U(x, t) := D ∩B(zx, rt) and W (x, t) := B
(
vx,

rt

2
√

1 + Λ2

)
⊂ D. (7.3.7)

By the construction, one can see that

rt/2 ≤ |u− w| ≤ 4rt for all u ∈ U(x, t) and w ∈ W (x, t). (7.3.8)

Proposition 7.3.8. Let D be a C1,1 open set in Rd with characteristics

(R0,Λ). Let rt and U(x, t) be defined above. For every T > 0 and M ≥ 1, it

holds that for all t ∈ (0, T ] and x ∈ D with δD(x) < rt/2,

Px(τD > t) ' Px(τD > Mt) ' Px(YτU(x,t)
∈ D)

' t−1Ex[τU(x,t)] '
(
tL(δD(x))

)−1/2
,
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where the comparability constants depend only on T,M,ψ,R0,Λ and d.

Proof. Recall that zx ∈ ∂D is the point satisfying δD(x) = |x− zx|. Let

ox = zx +
rt(x− zx)
2|x− zx|

∈ D.

Indeed, we have rt/(2
√

1 + Λ2) ≤ δD(ox) ≤ rt/2. Since we assumed (A) and

(B), the assumptions in [74, Theorem 1.9] are satisfied and hence by that

theorem, the (scale-invariant) boundary Harnack principle for Y holds true.

Therefore, we get

Px(YτU(x,t)
∈ D) ≤

Px(YτU(x,t)
∈ D)

Pox(YτU(x,t)
∈ D)

≤ c1

Px(YτU(x,t)
∈ W (x, t))

Pox(YτU(x,t)
∈ W (x, t))

,(7.3.9)

where W (x, t) is the subset of D defined as in just before the proposition.

By the Lévy system, the scaling of ν, (7.3.8) and Lemma 7.3.7, we get

Px(YτU(x,t)
∈ W (x, t)) = Ex

[ˆ τU(x,t)

0

ˆ
W (x,t)

ν(|Ys − w|)dwds
]

' Ex[τU(x,t)]ν(rt)r
d
t ' L(rt)

−1/2L(δD(x))−1/2ν(rt)r
d
t .

Similarly, we also get that Pox(YτU(x,t)
∈ W (x, t)) ' Eox [τU(x,t)]ν(rt)r

d
t '

L(rt)
−1ν(rt)r

d
t . Then, using the strong Markov property, Chebyshev’s in-

equality, (7.3.9) and Lemma 7.3.7, since L(rt) � t−1, we obtain

Px(τD > t) ≤ Px(τU(x,t) > t) + Px(YτU(x,t)
∈ D)

≤ t−1Ex[τU(x,t)] + c2L(rt)
1/2L(δD(x))−1/2

≤ t−1L(rt)
−1/2L(δD(x))−1/2 + c2L(rt)

1/2L(δD(x))−1/2

≤ c3t
−1/2L(δD(x))−1/2.

On the other hand, for any a > 0, using the strong Markov property,

(7.3.1), (7.3.2), Lemma 7.3.7 and Markov inequality, we get that

Px(τD > at) ≥ Px
(
τU(x,t) < at, YτU(x,t)

∈ Dint(rt/4),
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|YτU(x,t)
− YτU(x,t)+s| ≤ rt/4 for all 0 < s < at

)
≥ Px

(
τU(x,t) < at, YτU(x,t)

∈ Dint(rt/4)
)
P0(τB(0,rt/4) > at)

≥ c4

(
Px(YτU(x,t)

∈ Dint(rt/4))− Px(τU(x,t) ≥ at)
)

≥ c4t
−1
(
c5Ex[τU(x,t)]− a−1Ex[τU(x,t)]

)
.

Take a = (2c−1
5 ) ∨M . Then by Lemma 7.3.7 and the third inequality in the

above inequalities, we obtain

Px(τD > Mt) ≥ Px(τD > at)

≥ c4

2
Px(YτU(x,t)

∈ Dint(rt/4)) ≥ ct−1/2L(δD(x))−1/2.

The proof is complete. �

Using Proposition 7.3.8 when δD(x) < rt/2, and (7.3.1) and (7.3.2) when

δD(x) ≥ rt/2, we arrive at the following result.

Corollary 7.3.9. Let D be a C1,1 open set in Rd with characteristics (R0,Λ).

For all T > 0, there exists a constant c1 = c1(d, T, ψ,R0,Λ) > 1 such that

for every t ∈ (0, T ] and x ∈ D,

c−1
1

(
1 ∧ 1

tL(δD(x))

)1/2

≤ Px(τD > t) ≤ c1

(
1 ∧ 1

tL(δD(x))

)1/2

.

Corollary 7.3.10. Let D be a bounded C1,1 open subset in Rd with charac-

teristics (R0,Λ) of scale (r1, r2). Then, there exists c1 = c1(R0,Λ, ψ, d) > 1

such that for all t > 0 and x ∈ D,

c−1
1

(
1 ∧ 1

(t ∧ 2)L(δD(x))

)1/2

exp
(
− κ2C4th(r1/2)

)
≤ Px(τD > t) ≤ c1

(
1 ∧ 1

(t ∧ 2)L(δD(x))

)1/2

exp
(
− κ1C5th(r2)

)
,

where κ1, κ2 are the constants in (A) and C4, C5 are the ones in (7.3.1).

Proof. Fix (t, x) ∈ (0,∞) × D. If t ≤ 2, then the assertion follows from
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Corollary 7.3.9.

Suppose that t > 2. Let x1, x2 ∈ Rd be the points satisfying B(x1, r1) ⊂
D ⊂ B(x2, r2). By the semigroup property, (7.3.1) and Corollary 7.3.9, we

get that

Px(τD > t) =

ˆ
D

pD(t, x, y)dy ≤
ˆ
D

ˆ
D

pD(1, x, z)pB(x2,r2)(t− 1, z, y)dzdy

≤ Px(τD > 1) sup
z∈D

Pz(τB(x2,r2) > t− 1)

≤ c1

L(δD(x))1/2
exp

(
− κ1C5th(r2)

)
.

To prove the lower bound, we first assume that δD(x) < R2/2 with the

constant R2 in Lemma 7.3.7. Without loss of generality, we may assume that

R2 ≤ r1/2. Let z ∈ ∂D be the point satisfying δD(x) = |x− z| and θ be the

shift operator defined as Yt ◦ θs = Ys+t. Using the strong Markov property,

(7.3.6), the Lévy system and (7.3.1), we have

Px(τD > t) ≥ Ex
[
YτD∩B(z,R2)

∈ Dint(R2/4), YτB(Y0,R2/4)
◦ θτD∩B(z,R2)

∈ B(x1,
r1

2
),

τD ◦ θτB(Y0,R2/4)
◦ θτD∩B(z,R2)

> t
]

≥ c2L(R2)1/2

L(δD(x))1/2
inf

w∈Dint(R2/4)
Pw
(
YτB(w,R2/4)

∈ B(x1,
r1

2
)
)

inf
y∈B(x1,r1/2)

Py(τB(x1,r1) > t)

≥ c3

L(δD(x))1/2
exp

(
− κ2C4th(r1/2)

)
.

Similarly, if δD(x) ≥ R2/2, then we have

Px(τD > t) ≥ Ex[YτB(x,R2/4)
∈ B(x1, r1/2), τD ◦ θτB(x,R2/4)

> t]

≥ c4 inf
y∈B(x1,r1/2)

Py(τB(x1,r1) > t) ≥ c5 exp
(
− κ2C4th(r1/2)

)
.

�
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7.4 Small time Dirichlet heat kernel estimates

in C1,1 open set

In this section, we provide the proof of Theorem 7.1.1. Let T > 0 be a fixed

constant and D be a fixed C1,1 open set in Rd with characteristics (R0,Λ).

Throughout the section, we assume that condition (B) holds, and (C) further

holds if D is unbounded. Then by (A) and (C), we obtain

ν(|x− y|) ' ν(2|x− y|) for x, y ∈ D. (7.4.1)

By (7.2.1), (7.2.2), Corollary 7.2.10 and Corollary 7.2.12, for every T > 0,

the following heat kernel estimates hold true for all (t, x) ∈ (0, T ]× Rd with

the constant b0 in Proposition 7.2.4:

(1) If (S-1) holds, then there exist constants c1 > 1 and b2 > 0 such that

c−1
1 tν(|x|) exp

(
− b0th(|x|)

)
≤ p(t, x) ≤ c1tν(|x|) exp

(
− b2th(|x|)

)
. (7.4.2)

(2) If (S-2) holds, then there exist a constant c2 > 1 such that for all η > 0,

c−1
2 tν(θη(|x|, t)) exp

(
− b0th(θη(|x|, t))

)
≤ p(t, x) ≤ c2tν(θa1(|x|, t)) exp

(
− b1th(θa1(|x|, t))

)
, (7.4.3)

where a1, b1 are the constants in Lemma 7.2.7, and θa(r, t) = r∨ [`−1(a/t)]−1

is defined by (7.2.7).

Before giving the proof of Theorem 7.1.1, we obtain a lower bound of

pD(t, x, y) without (S-1) and (S-2). This result will be used later to obtain

Green function estimates.

Proposition 7.4.1. For every T > 0, there exist c1, c2 > 0 depend only on

d, ψ, T,R0,Λ such that for all (t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y) ≥ c2

(
1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2
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× tν(|x− y|) exp
(
− c1th(|x− y|)

)
.

Proof. Let R2 be the constant in Lemma 7.3.7. Fix (t, x, y) ∈ (0, T ]×D×D
and set

rt =
L−1(1/t)

L−1(1/T )
R2 and lt(x, y) = rt ∧

|x− y|
4

. (7.4.4)

Note that, by (7.3.2), (7.3.3) and (7.3.4), we have V (rt) ' t1/2 and L(rt) '
h(rt) � t−1.

Let zx, zy ∈ ∂D be the points satisfying δD(x) = |x − zx| and δD(y) =

|y − zy|. By (7.3.3), there exists a constant m > 1 such that

mV (δk) ≥ δV (k) for all 0 < δ ≤ 1, 0 < k ≤ 1. (7.4.5)

Case 1. Suppose that |x− y| ≤ R2. Define open neighborhoods of x and

y as follows:

O(x) =

B
(
x, V −1[ 1

8m
V (|x− y|)]

)
, if 8mV (δD(x)) ≥ V (|x− y|);

D ∩B(zx,
1
3
|x− y|), if 8mV (δD(x)) < V (|x− y|),

and

O(y) =

B
(
y, V −1[ 1

8m
V (|x− y|)]

)
, if 8mV (δD(y)) ≥ V (|x− y|);

D ∩B
(
zy,

1
3
|x− y|

)
, if 8mV (δD(y)) < V (|x− y|).

Then, we see that x ∈ O(x) ⊂ D, y ∈ O(y) ⊂ D and |u−w| ' |x− y| for all

u ∈ O(x) and w ∈ O(y). Thus, by the strong Markov property and (7.4.1),

pD(t, x, y) ≥ tPx(τO(x) > t)Py(τO(y) > t) inf
u∈O(x),w∈O(y)

ν(|u− w|)

≥ ctν(|x− y|)Px(τO(x) > t)Py(τO(y) > t). (7.4.6)

If 8mV (δD(x)) ≥ V (|x− y|), then we see from (7.3.1) and (7.3.2) that

Px(τO(x) > t) ≥ c exp
(
− c1th(|x− y|)

)
. (7.4.7)
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Next, we assume that 8mV (δD(x)) < V (|x−y|). Then by the monotonic-

ity of V and (7.4.5), we get |x − y| > 8δD(x). Let ρ := V −1(εV (lt(x, y)))

where ε ∈ (0, (8m)−1) will be chosen later. Then, by (7.3.2) and (7.3.3), it

holds that that

V (ρ) ' V (lt(x, y)) ' t1/2 ∧ V (|x− y|),

h(ρ) ' h(lt(x, y)) ' t−1 ∨ h(|x− y|). (7.4.8)

Note that we can not expect that ρ ' lt(x, y) in general.

If 8δD(x) ≥ ρ, then by (7.3.1) and (7.4.8), we have

Px(τO(x) > t) ≥ Px(τB(x,ρ/8) > t) ≥ c exp
(
− c2th(|x− y|)

)
. (7.4.9)

Indeed, by Lemma 7.2.2(i) and (7.3.2), we see that h(ρ/8) � h(4ρ). Thus,

if lt(x, y) = |x − y|/4, then we get (7.4.9). Otherwise, if lt(x, y) = rt, then

Px(τO(x) > t) ' 1 ' exp
(
− c3th(|x− y|)

)
and hence (7.4.9) holds.

If 8δD(x) < ρ, then there is a piece of annulus A(x) ⊂ {w ∈ O(x) : ρ <

|w − zx| < |x − y|/4} such that dist(A(x), ∂O(x)) > ρ/8. Recall that θ is

shift operator. Using the strong Markov property, the Lévy system, (7.3.1),

(7.3.5), (7.3.2) and (7.3.3), we obtain

Px(τO(x) > t) ≥ Px
(
YτB(zx,ρ/2)∩D ∈ A(x), τO(x) ◦ θτB(zx,ρ/2)∩D > t

)
≥ Px

(
YτB(zx,ρ/2)∩D ∈ A(x)

)
inf

z∈A(x)
Pz(τO(x) > t)

≥ cEx
[ˆ τB(zx,ρ/2)∩D

0

ˆ
A(x)

ν(|Ys − w|)dwds
]
P0(τB(0,ρ/8) > t)

≥ cEx
[
τB(zx,ρ/2)∩D

]ˆ |x−y|/4
ρ

(−L′(k))dk exp
(
− c3th(|x− y|)

)
≥ c
(
c−1

4 V (ρ)−2 − c4V (|x− y|)−2
)
L(δD(x))−1/2V (ρ) exp

(
− c3th(|x− y|)

)
,

where the constant c4 > 1 is independent of ε. Now, we choose ε = (2c4)−1 ∧
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(16m)−1. Then, we get from (7.4.8) that

Px(τO(x) > t) ≥ ct−1/2L(δD(x))−1/2 exp
(
− c3th(|x− y|)

)
.

Finally, by combining the above inequality with (7.4.7) and (7.4.9), we

deduce that

Px(τO(x) > t) ≥ c

(
1 ∧ 1

tL(δD(x))

)1/2

exp
(
− c4th(|x− y|)

)
.

By the same way, we get Py(τO(y) > t) ≥ c
(
1 ∧ 1

tL(δD(y))

)1/2
exp

(
− c4th(|x−

y|)
)
. Therefore we get the desired lower bound from (7.4.6).

Case 2. Suppose that |x − y| > R2. In this case, we let Dx := D ∩
B(x,R2/4) and Dy := D ∩ B(y,R2/4). By the same argument as (7.4.6),

(7.4.1) and Corollary 7.3.9, we get

pD(t, x, y) ≥ tPx(τDx > t)Py(τDy > t) inf
u∈Dx,w∈Dy

ν(|u− w|)

≥ c

(
1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

tν(|x− y|).

The proof is complete �

Now, we are ready to prove Theorem 7.1.1.

Proof of Theorem 7.1.1. Fix (t, x, y) ∈ (0, T ]×D×D and continue using

the notation rt and lt(x, y) in (7.4.4).

(i) By Proposition 7.4.1, it remains to show that there exist c1 > 0, b3 ∈ (0, b0]

such that

pD(t, x, y) ≤ c1

(
1 ∧ 1

tL(δD(x))

)1/2

tν(|x−y|) exp
(
−b3th(|x−y|)

)
, (7.4.10)

where b0 is the constant in Proposition 7.2.4. Indeed, if (7.4.10) holds, then
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by the semigroup property and (7.4.2), we get

pD(t, x, y) =

ˆ
D

pD(t/2, x, z)pD(t/2, y, z)dz

≤ c

(
1 ∧ 1

tL(δD(x))

) 1
2
(

1 ∧ 1

tL(δD(y))

) 1
2
ˆ
D

p
( b3

2b0

t, x, z
)
p
( b3

2b0

t, y, z
)
dz

≤ c

(
1 ∧ 1

tL(δD(x))

) 1
2
(

1 ∧ 1

tL(δD(y))

) 1
2

tν(|x− y|) exp
(
− b2b3

b0

th(|x− y|)
)
,

which yields the desired upper bound.

Now, we prove (7.4.10). If δD(x) ≥ rt/2, then (7.4.10) is a consequence of

(7.4.2) and the trivial bound that pD(t, x, y) ≤ p(t, x− y). Hence, we assume

that δD(x) < rt/2. By (7.3.4), there exists a constant M > 1 such that

ML(16k) ≥ L(k) for all k ≤ 1/16. (7.4.11)

By the semigroup property, monotonicity of p(t, ·) and Proposition 7.3.8,

pD(t, x, y)

≤
(ˆ
{z∈D:|y−z|>|x−y|/2}

+

ˆ
{z∈D:|x−z|>|x−y|/2}

)
pD(t/2, x, z)pD(t/2, z, y)dz

≤ p(t/2, |x− y|/2)
(
Px(τD > t/2) + Py(τD > t/2)

)
≤ cp(t/2, |x− y|/2)

(
t−1/2L(δD(x))−1/2 + t−1/2L(δD(y))−1/2

)
.

Thus, if ML(δD(y)) ≥ L(δD(x)), then (7.4.10) holds true. Therefore, we

assume that ML(δD(y)) < L(δD(x)). Since L is decreasing, it follows from

(7.4.11) that δD(y) > 16δD(x) and hence |x−y| ≥ |y−zx|−|zx−x| ≥ δD(y)−
δD(x) > 15δD(x) where zx ∈ ∂D is the point satisfying δD(x) = |x − zx|.
Define

W1 := D ∩B(zx, lt(x, y)), W3 :=
{
w ∈ D : |w − y| ≤ |x− y|/2

}
and W2 := D \ (W1 ∪W3) = {w ∈ D \W1 : |w − y| > |x− y|/2}. Then, for
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u ∈ W1 and w ∈ W3, we obtain

|u− w| ≥ |x− y| − |zx − x| − |u− zx| − |y − w| ≥
|x− y|

6
. (7.4.12)

Using the strong Markov property, we get that

pD(t, x, y) = Ex
[
pD(t− τW1 , YτW1

, y) : τW1 < t
]

= Ex[ pD(t− τW1 , YτW1
, y) : τW1 < t, YτW1

∈ W3]

+ Ex[ pD(t− τW1 , YτW1
, y) : τW1 ∈ (0, 2t/3], YτW1

∈ W2]

+ Ex[ pD(t− τW1 , YτW1
, y) : τW1 ∈ (2t/3, t), YτW1

∈ W2]

=: I1 + I2 + I3. (7.4.13)

First, by the Lévy system and (7.4.12), we get

I1 =

ˆ t

0

ˆ
W3

ˆ
W1

pW1(s, x, u)ν(|w − u|)pD(t− s, w, y)dudwds

≤ ν(|x− y|/6)

ˆ t

0

Px(τW1 > s)

ˆ
W3

p(t− s, y − w)dwds. (7.4.14)

By (7.4.2) and Lemma 7.2.1, for all s ∈ (0, T ] and l ∈ (0, 2rt], we have

ˆ
B(y,l)

p(s, y − w)dw ≤ c

ˆ l

0

−sL′(k) exp
(
− c2sL(k)

)
dk ≤ c exp

(
− c3sh(l)

)
.

(7.4.15)

Since h(rt) ' 1, it follows that for all s ∈ (0, t],

ˆ
W3

p(s, y − w)dw ≤

c exp
(
− c3sh(|x− y|)

)
, if |x− y| ≤ 2rt;

1, if |x− y| > 2rt

≤ c exp
(
− c3sh(|x− y|)

)
. (7.4.16)

Using the semigroup property and Proposition 7.3.8, we get from (7.4.15)
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that

Px(τW1 > 2t/3) =

ˆ
W1

ˆ
W1

pW1(t/3, x, v)pW1(t/3, v, u)dvdu

≤ Px(τD > t/3)

ˆ
B(0,2lt(x,y))

p(t/3, u)du

≤ ct−1/2L(δD(x))−1/2 exp
(
− 3−1c3th(2lt(x, y))

)
≤ ct−1/2L(δD(x))−1/2 exp

(
− 3−1c3th(|x− y|)

)
. (7.4.17)

Then, using (7.4.14), (7.4.1), (7.4.15), (7.4.17) and Proposition 7.3.8, we ob-

tain

I1 ≤ cν(|x− y|)
ˆ t

0

Px(τW1 > s)

ˆ
W3

p(t− s, y − w)dwds

≤ cν(|x− y|) exp
(
− c3th(|x− y|)/3

) ˆ 2t/3

0

Px(τD > s)ds

+ cν(|x− y|)Px(τW1 > 2t/3)

ˆ t/3

0

exp
(
− c3sh(|x− y|)

)
ds

≤ ct−1/2L(δD(x))−1/2tν(|x− y|) exp
(
− 3−1c3th(|x− y|)

)
. (7.4.18)

Secondly, by (7.4.2), (7.4.1), (7.3.2) and Proposition 7.3.8, since p(t, ·) is

radially nonincreasing, we get

I2 ≤ cPx(YτW1
∈ W2) sup

s∈[t/3,t)

p(s, |x− y|/2)

≤ cPx(YτW1
∈ W2)ν(|x− y|)

(
sup

s∈[t/3,t)

s exp
(
− b2sh(|x− y|)

))

≤ c



L(rt)
1/2L(δD(x))−1/2tν(|x− y|) exp

(
− 3−1b2th(|x− y|)

)
if |x− y| ≥ 4rt;

L(|x− y|)1/2L(δD(x))−1/2tν(|x− y|) exp
(
− 3−1b2th(|x− y|)

)
if |x− y| < 4rt

≤ c t−1/2L(δD(x))−1/2tν(|x− y|) exp
(
− 4−1b2th(|x− y|)

)
. (7.4.19)
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In the last inequality, we used the facts that ex ≥ 2e
√
x for x > 0 and

h(r) ≥ L(r) for r > 0.

Lastly, we note that t 7→ te−at is increasing on (0, 1/a) and decreasing

on (1/a,∞). Thus, using similar calculation as the one given in (7.4.17), by

monotonicity of p(t, ·), (7.4.2), (7.4.1), Proposition 7.3.8 and (7.3.2), we have

I3 ≤ cPx(τW1 > 2t/3)ν(|x− y|)
(

sup
s∈(0,t/3)

s exp
(
− b2sh(|x− y|)

))

≤ c


Px(τW1 > 2t/3)ν(|x− y|)h(|x− y|)−1 if b2th(|x− y|) ≥ 3;

Px(τD > 2t/3)ν(|x− y|)t exp
(
− 3−1b2th(|x− y|)

)
if b2th(|x− y|) < 3

≤ c



t−1/2L(δD(x))−1/2tν(|x− y|) exp
(
− 3−1c3th(|x− y|)

)
if b2th(|x− y|) ≥ 3;

t−1/2L(δD(x))−1/2tν(|x− y|) exp
(
− 2−1b2th(|x− y|)

)
if b2th(|x− y|) < 3.

Combining the above inequality with (7.4.18), (7.4.19) and (7.4.13), we arrive

at (7.4.10).

(ii) We use the same notations as in the proof of (i) and follow that proof.

(Upper bound) By the semigroup property and (7.4.3), it suffices to

show that there exist positive constants c1 and b4 such that

pD(t, x, y) ≤ c1

(
1 ∧ 1

tL(δD(x))

)1/2

× tν(θ3a1(|x− y|, t)) exp
(
− b4th(θ3a1(|x− y|, t))

)
. (7.4.20)

By the similar argument to the one given in the proof of (i), we may assume

δD(x) < rt/2 and δD(y) > 16δD(x).

To prove (7.4.20), we first assume that |x − y| ≤ [`−1(3a1/t)]
−1. In this

case, we have that θa1(|x− y|, t/3) = [`−1(3a1/t)]
−1. Then, by the semigroup
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property, (7.4.3) and Proposition 7.3.8, we get

pD(t, x, y) =

ˆ
D

pD(2t/3, x, z)pD(t/3, z, y)dz ≤ cPx(τD > 2t/3)p(t/3, 0)

≤ ct−1/2L(δD(x))−1/2tν(θ3a1(|x− y|, t)) exp
(
− 3−1b1th(θ3a1(|x− y|, t))

)
.

Now, suppose that |x − y| > [`−1(3a1/t)]
−1. In this case, we use (7.4.13)

and find upper bounds for I1, I2 and I3. Observe that for all s ∈ (0, T ] and

l ∈ (0, 2rt], by (7.4.3) and the similar calculation to the one given in (7.4.15),

ˆ
B(y,l)

p(s, y − w)dw ≤ c


ld[`−1(a1/s)]

d exp
(
− b1sh([`−1(a1/s)]

−1)
)
,

if l ≤ [`−1(a1/s)]
−1;

exp
(
− c2sh(l)

)
, if l > [`−1(a1/s)]

−1

≤ c exp
(
− c3sh(θa1(l, s))

)
. (7.4.21)

Then, by using (7.4.21) instead of (7.4.15), we have that for all 0 < s ≤ T ,

Px(τW1 > s) =

ˆ
W1

ˆ
W1

pW1(s/3, x, u)pW1(2s/3, u, v)dudv

≤ cs−1/2L(δD(x))−1/2 exp
(
− c4sh(θa1(|x− y|, 2s/3))

)
.

Hence, by the similar arguments to the ones for (7.4.16) and (7.4.18), we get

I1 ≤ ct−1/2L(δD(x))−1/2tν(|x− y|) exp
(
− c5th(|x− y|)

)
.

Next, by (7.4.3), (7.4.1), monotonicity of h and the assumption that |x−
y| > [`−1(3a1/t)]

−1, we have

sup
s∈[t/3,t)

p(s, |x− y|/2)

≤ ct sup
s∈[t/3,t)

[
ν(θa1(|x− y|, s)) exp

(
− 3−1b1th(θa1(|x− y|, s))

)]
≤ ctν(|x− y|) exp

(
− c7th(|x− y|)

)
.
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Therefore, by following argument in the proof for (7.4.19), we get

I2 ≤ ct−1/2L(δD(x))−1/2tν(|x− y|) exp
(
− c8th(|x− y|)

)
.

Lastly, we note that since |x− y| > [`−1(3a1/t)]
−1,

sup
s∈(0,t/3)

[
sν(θa1(|x− y|, s)) exp

(
− b1sh(θa1(|x− y|, s))

)]
= sup

s∈(0,t/3)

[
sν(|x− y|) exp

(
− b1sh(|x− y|)

)]
.

From this, by the same proof for estimating I3 given in (i), we obtain

I3 ≤ ct−1/2L(δD(x))−1/2tν(|x− y|) exp
(
− c9th(|x− y|)

)
.

The proof for the desired upper bound is complete.

(Lower bound) Fix η > 0. By Proposition 7.4.1, it remains to prove the

lower bound when |x − y| < [`−1(η/t)]−1 ∧ R2, where R2 is the constant in

Lemma 7.3.7. Let ζt := [`−1(η/t)]−1 ∧ R2 and define open neighborhoods of

x and y as follows. Recall that zx, zy ∈ ∂D are the points satisfying δD(x) =

|x− zx| and δD(y) = |y − zy|. We define

U(x) =

B
(
x, V −1( 1

8m
V (ζt))

)
if 8mV (δD(x)) ≥ V (ζt);

B(zx,
1
3
ζt) ∩D, if 8mV (δD(x)) < V (ζt)

and

U(y) =

B
(
y, V −1( 1

8m
V (ζt))

)
if 8mV (δD(y)) ≥ V (ζt);

B(zy,
1
3
ζt) ∩D if 8mV (δD(y)) < V (ζt),

where m is the constants in (7.4.5). Then x ∈ U(x) ⊂ D and y ∈ U(y) ⊂ D.

By considering the cases 8mV (δD(x)) ≥ V (ζt) and 8mV (δD(x)) > V (ζt)

separately, one can see that there exist c1 > 0 independent of η, and c2 =

c2(η) > 0 such that

Px(τU(x) > t) ≥ c2

(
1 ∧ 1

tL(δD(x))

)1/2

exp
(
− c1th(ζt)

)
. (7.4.22)
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Let wx := zx + 4ζt(x− zx)/|x− zx| ∈ D and define

W0 := B
(
wx,

ζt

2
√

1 + Λ2

)
and W := B

(
wx,

ζt√
1 + Λ2

)
⊂ D.

Then, for all u ∈ U(x) and v ∈ W , we have |u − v| ' ζt. Moreover, since

|x− y| < ζt, we also have |u′− v| ' ζt for all u′ ∈ U(y) and v ∈ W . Thus, for

every v ∈ W0, by following arguments in the proofs for (7.4.6), (7.3.1) and

(7.4.22), we get

pD(t/2, x, v) ≥ ctν(ζt)Px(τU(x) > t/2)Pv
(
τB(v,ζt/(2

√
1+Λ2)) > t/2

)
≥ c
(

1 ∧ 1

tL(δD(x))

)1/2

tν(ζt) exp
(
− c2th(ζt)

)
.

Similarly, we also have that

pD(t/2, v, y) ≥ c
(

1 ∧ 1

tL(δD(y))

)1/2

tν(ζt) exp
(
− c2th(ζt)

)
.

By the semigroup property and (A), it follows that

pD(t, x, y) ≥
ˆ
W
pD(t/2, x, v)pD(t/2, v, y)dv

≥ c
(

1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

t2|W| ν(ζt)
2 exp

(
− 2c2th(ζt)

)
≥ c
(

1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

t2`(ζ−1
t )ν(ζt) exp

(
− 2c2th(ζt)

)
.

If ζt = [`−1(η/t)]−1, then since ` is almost increasing, we get `(ζ−1
t ) ' t−1.

Hence, we are done. If ζt = R2, then t ' 1 so that t2`(ζ−1
t )ν(ζt) exp

(
−

2c2th(ζt)
)
' tν([`−1(η/t)]−1) exp

(
− cth([`−1(η/t)]−1)

)
' 1. The proof is

complete. �
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7.5 Large time estimates

In this section, we give the proof of Theorem 7.1.3. Let D be a fixed bounded

C1,1 open subset in Rd of scale (r1, r2) and x1, x2 ∈ Rd be the fixed points

satisfying B(x1, r1) ⊂ D ⊂ B(x2, r2).

We mention that under condition (L-1), the semigroup (PD
t )t≥0 of Y D

t

may not be compact operators in L2(D), though D is bounded. (See, Propo-

sition 7.2.3.) Hence, in that case, we need some lemmas to obtain the large

time estimates instead of spectral theory.

Lemma 7.5.1. There exists a constant C > 0 which only depend on the

dimension d such that for all (t, x, y) ∈ (0,∞)×D ×D,

pD(t, x, y) ≤ Cp(t/2, |x− y|/2) exp
(
− 2−1κ1C5th(r2)

)
.

Proof. By the semigroup property, we have

pD(t, x, y)

≤
(ˆ
{z∈D:|y−z|>|x−y|/2}

+

ˆ
{z∈D:|x−z|>|x−y|/2}

)
pD(t/2, x, z)pD(t/2, z, y)dz

≤ p(t/2, |x− y|/2)
(
Px(τB(x2,r2) > t/2) + Py(τB(x2,r2) > t/2)

)
.

Hence, we get the result from (7.3.1). �

Define for r ≥ 1,

̂̀(r) := sup
s∈[1,r]

1

`(s)
and Φ̂(r) :=

ˆ r

1

1

k̂̀(k)
dk.

If (L-1) holds, then by following the proof of Lemma 7.2.2, we see that there

exist positive constants C6 and C7 which only depend on the dimension d,

and the constants κ1 and κ2 in (7.1.2) such that

̂̀(r)−1 ' `(r) for r ≥ 2 (7.5.1)
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and

C6Φ̂(r) ≤ ψ(r) and h(r−1) ≤ C7Φ̂(r) for all r ≥ 2. (7.5.2)

Lemma 7.5.2. Assume that (L-1) holds. Then, there exists a constant b5 =

b5(d, ψ, r2) > 0 such that for every T > 0, there exist c1, c2 > 0 such that for

all t ∈ [T,∞) and |x| ≤ 2r2,

p(t, x) ≤ c1 + c2ν(|x|) exp
(
− b5th(|x|)

)
. (7.5.3)

Proof. Fix t ∈ [T,∞) and x ∈ Rd satisfying |x| ≤ 2r2, and let r := |x|.
By [76, (5.4)], the mean value theorem, Lemma 7.2.6, (7.5.1) and (7.5.2), we

have that

rdp(t, x) ≤ c

ˆ
Rd

(
e−tψ(|z|/r) − e−tψ(2|z|/r)) e−|z|2/4dz

≤ c

ˆ
|z|≤2r

dz + ct

ˆ
|z|>2r

sup
|z|≤y≤2|z|

e−tψ(y/r)
∣∣ψ(2|z|/r)− ψ(|z|/r)

∣∣e−|z|2/4dz
≤ crd + ct

ˆ 4r2

2r

e−C6tΦ̂(u/r) u
d−1̂̀(u/r)du+ ct

ˆ ∞
4r2

e−C6tΦ̂(u/r) u
d−1̂̀(u/r)e−u2/4du

=: crd + I1 + I2. (7.5.4)

Using scaling properties of ̂̀and Φ̂, and (7.5.1), since ̂̀and Φ̂ are increas-

ing, we get that

I2 ≤
ct̂̀(4r2/r)

e−2−1C6tΦ̂(4r2/r)e−2−1C6tΦ̂(4r2/r)

ˆ ∞
4r2

ud−1e−u
2/4du

≤ ct̂̀(1/r)e−2−1C6tΦ̂(4r2/(2r2))e−c1tΦ̂(1/r) ≤ c`(1/r)e−c1tΦ̂(1/r). (7.5.5)

In the last inequality above, we used the fact that sups>0 se
−2−1C6sΦ̂(2) <∞.

Next, we set qγ,k(u) := uγ exp(−ktΦ̂(u)) for u ≥ 2 and γ, k > 0. Then

for any γ, k > 0, d
du
qγ,k(u) = (γ − kt̂̀(u)−1)qγ−1,k(u). Since ̂̀ is increasing, it

follows that there exists u0 ∈ [2,∞) such that q is decreasing on [2, u0] and
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increasing on [u0,∞). Thus, for any [a, b] ⊂ [2,∞) and γ, k > 0, it holds that

sup
u∈[a,b]

qγ,k(u) = qγ,k(a) ∨ qγ,k(b). (7.5.6)

Note that d+ α1 > 0 since we assumed (A). Let

ρ :=
d+ α1

2
∈ (

α1

2
∨ 0, d+ α1) and ε :=

d+ α1 − ρ
d+ ρ

∈ (0, 1). (7.5.7)

If qd+ρ, C6(2) ≥ qd+ρ, C6(4r2/r), then using a change of the variables, (7.5.6)

and the fact that sups>0 se
−C6sΦ̂(2) <∞, since ̂̀ is increasing, we get

I1 = ctrd
ˆ 4r2/r

2

ud

û̀(u)
e−C6tΦ̂(u)du = ctrd

ˆ 4r2/r

2

qd+ρ, C6(u)

u1+ρ̂̀(u)
du

≤ ctrd
qd+ρ, C6(2)̂̀(2)

ˆ 4r2/r

2

du

u1+ρ
≤ ctrde−C6tΦ̂(2) ≤ c

C6Φ̂(2)
(2r2)d.

Hence, we obtain (7.5.3) from (7.5.4), (7.5.5), (7.1.2) and (7.5.2) in this case.

If qd+ρ, C6(2) < qd+ρ, C6(4r2/r), then by a change of the variables, (7.5.1),

(7.5.6), (7.5.7) and scaling properties of ` and Φ̂, since ε ∈ (0, 1), we get that

I1 = ctrd
ˆ 4r2/r

2

qd+α1−ρ, C6(u)

u1−ρuα1 ̂̀(u)
du ≤ ctrd

(4r2/r)α1 ̂̀(4r2/r)

ˆ 4r2/r

2

qd+α1−ρ, εC6(u)

u1−ρ du

≤ ctrd+α1`(1/r)
(
qd+α1−ρ, εC6(2) ∨ qd+α1−ρ, εC6(4r2/r)

) ˆ 4r2/r

2

du

u1−ρ

≤ ctrd+α1−ρ`(1/r)
(
qd+ρ, C6(2) ∨ qd+ρ, C6(4r2/r)

)(d+α1−ρ)/(d+ρ)

= ctrd+α1−ρ`(1/r)qd+α1−ρ, εC6(4r2/r) = ct`(1/r) exp
(
− εC6tΦ̂(4r2/r)

)
≤ c`(1/r) exp

(
− 2−1εC6tΦ̂(4r2/r)

)
≤ c`(1/r) exp

(
− c2tΦ̂(1/r)

)
.

Then we get (7.5.3) by using (7.5.4), (7.5.5), (7.1.2) and (7.5.2) again. �

Proof of Theorem 7.1.3. Choose any x, y ∈ D and denote a(x, y) :=

L(δD(x))−1/2L(δD(y))−1/2.

(i) Let x1 ∈ D be a point such that B(x1, r1) ⊂ D. Using the semigroup
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PROCESSES WITH LOW INTENSITY OF SMALL JUMPS

property, Theorem 7.1.1(i), (7.4.2) and (7.3.1), we get that for all t ≥ T ,

pD(t, x, y) ≥
ˆ
B(x1,

r1
4

)

ˆ
B(x1,

3r1
4

)

pD(
T

4
, x, u) pD(t− T

2
, u, v) pD(

T

4
, v, y)dvdu

≥ c2
1a(x, y)

ˆ
B(x1,

r1
4

)

ˆ
B(x1,

3r1
4

)

p(c2T, 2r2)2 pD(t− T

2
, u, v)dvdu

≥ c3a(x, y)

ˆ
B(x1,

r1
4

)

Pu(τ
B(x1,

3r1
4

)
> t− T

2
)du

≥ c4a(x, y) inf
u∈B(x1,

r1
4

)
Pu(τ

B(x1,
3r1
4

)
> t− T

2
) ≥ c5a(x, y)e−κ2C4th(r1/2). (7.5.8)

Moreover, since D is a bounded set and L is decreasing, one can follow

the proof of Proposition 7.4.1, after changing the definition of lt(x, y) therein

from rt ∧ (|x− y|/4) to |x− y|/4, and see that for all t ≥ T ,

pD(t, x, y)

≥ c6

(
1 ∧ L(|x− y|)

L(δD(x))

)1/2(
1 ∧ L(|x− y|)

L(δD(x))

)1/2

tν(|x− y|)e−c7th(|x−y|)

≥ c6T

(
1 ∧ L(2r2)

L(δD(x))

)1/2(
1 ∧ L(2r2)

L(δD(x))

)1/2

ν(|x− y|)e−c7th(|x−y|)

≥ c8a(x, y)ν(|x− y|)e−c7th(|x−y|). (7.5.9)

By combining (7.5.8) with (7.5.9), we get the desired lower bound.

On the other hand, using the semigroup property, Theorem 7.1.1(i), Corol-

lary 7.2.12, Lemma 7.5.1 and Lemma 7.5.2, we get that

pD(t, x, y) =

ˆ
D

ˆ
D

pD(
T

4
, x, u) pD(t− T

2
, u, v) pD(

T

4
, v, y)dudv

≤ c9a(x, y)e−2−1κ1C5th(r2)

×
ˆ
D

ˆ
D

p(
c10T

4
,
|x− u|

2
) p(

2t− T
4

,
|u− v|

2
) p(

c10T

4
,
|v − y|

2
)dudv

≤ c11a(x, y) p(
2t− (1− 2c10)T

4
,
|x− y|

2
) e−2−1κ1C5th(r2)

≤ c12a(x, y)
(
1 + ν(|x− y|)e−2−1b5th(|x−y|)) e−2−1κ1C5th(r2).
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The proof for (i) is complete.

(ii)-(iii) Since the proof for (iii) is similar and easier, we only give the proof

for (ii).

By Proposition 7.2.3, there exist T0 > 0 such that the semigroup (PD
t )t≥T0

consists of compact operators. Let 0 < µ1 < 1 be the largest eigenvalue

of the operator PD
T0

and φ1 ∈ L2(D) be the corresponding eigenfunction

with unit L2-norm. For each n ≥ 1, we denote by (µn,k)k≥1 the discrete

spectrum of PD
nT0

, arranged in decreasing order and repeated according to

their multiplicity and (φn,k)k≥1 be the corresponding eigenfunctions with unit

L2-norm. Then, by the semigroup property, we have µn,1 = µn1 and φn,1 = φ1

for all n ≥ 1. From the eigenfunction expansion of pD(nT0, u, ·), Parseval’s

identity and Cauchy inequality, we see that for all n ≥ 1,

ˆ
D×D

pD(nT0, u, v)dudv =
∞∑
k=1

µn,k

(ˆ
D

φn,k(v)dv

)2

≤ sup
k
µn,k‖φn,k‖2

L2(D)‖1D‖2
L2(D) = µn1 |D|. (7.5.10)

Besides, for all s > 0 and u ∈ D, using the fact that p(T0, 0) < ∞ and

Cauchy inequality, we get that

φ1(u) ≤
ˆ
D

ˆ
D

pD(s, u, z)pD(T0, z, v)φ1(y)dzdv ≤ c0Pu(τD > s)

ˆ
D

φ1(v)dv

≤ c13Pu(τD > s)‖φ1‖L2(D)‖1D‖L2(D) = c13|D|1/2 Pu(τD > s).

Thus, we obtain for all 0 < s ≤ T0 and n ≥ 1,

ˆ
D

ˆ
D

Pu(τD > s)pD(nT0, u, v)Pv(τD > s)dudv

≥ µn1

(ˆ
D

Pz(τD > s)φ1(z)dz

)2

≥ µn1

(ˆ
D

c−1
13 |D|−1/2 φ1(z)2dz

)2

≥ c−2
13 µ

n
1 |D|−1. (7.5.11)

Let t ≥ 4T0. We set n := b(t− 3T0)/T0c ≥ 1 and s := (t− (n+ 2)T0)/2 ∈
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[T0/2, T0). Recall a(x, y) = L(δD(x))−1/2L(δD(y))−1/2. From the semigroup

property, (7.5.10) and Corollary 7.3.9, using the fact that p(T0, 0) < ∞, we

deduce that

pD(t, x, y) =

ˆ
D×D×D×D

pD(s, x, z1)pD(T0, z1, z2)pD(nT0, z2, z3)

× pD(T0, z3, z4)pD(s, z4, y)dz1dz2dz3dz4

≤ c2
14

( ˆ
D

pD(s, x, z1)dz1

)(ˆ
D

pD(s, z4, y)dz4

) ˆ
D×D

pD(nT0, z2, z3)dz2dz3

≤ c2
14 µ

n
1 |D|Px(τD > s/2)Py(τD > s/2) ≤ c15a(x, y)e−λ1t,

where λ1 := T−1
0 log(µ−1

1 ). Moreover, using Theorem 7.1.1, Corollary 7.3.9

and (7.5.11), we also get that

pD(t, x, y) =

ˆ
D×D

pD(s, x, z1)pD((n+ 2)T0, z1, z2)pD(s, z2, y)dz1dz2

≥ c16a(x, y)

ˆ
D×D

Pz1(τD > s/2)pD((n+ 2)T0, z1, z2)Pz2(τD > s/2)dz1dz2

≥ c17a(x, y)e−λ1t.

The proof is complete. �

7.6 Green function estimates

In this section, we give the proof of Theorem 7.1.4. Throughout this section,

we assume that (D) further holds, and D is a Borel subset of Rd.

Using the subadditivity of the renewal function V and (7.3.2), we get the

following lemma.

Lemma 7.6.1. [53, Lemma 7.1] It holds that for all x, y ∈ D,(
1 ∧ V (δD(x))

V (|x− y|)

)(
1 ∧ V (δD(y))

V (|x− y|)

)
'
(

1 ∧ V (δD(x))V (δD(y))

V (|x− y|)2

)
.
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In particular, if D is bounded then for all x, y ∈ D(
1 ∧ L(|x− y|)

L(δD(x))

)1/2(
1 ∧ L(|x− y|)

L(δD(y))

)1/2

'
(

1 ∧ L(|x− y|)√
L(δD(x))L(δD(y))

)
.

Since we assumed (A) and (D) hold true, (7.1.1) holds with α2 < 2 ∧ d.

Using this fact, we get the following lemma.

Lemma 7.6.2. [53, Lemma 7.2] It holds that

lim inf
r→0

ν(r)

L(r)
= lim inf

r→0

ν(r)

L(r)2
=∞.

Recall that the Green function GD(x, y) is defined by

GD(x, y) :=

ˆ ∞
0

pD(t, x, y)dt.

Since the process Y may be recurrent, we can not expect to obtain upper

estimates for GRd(x, y) in general. However, when D is bounded, we can

establish a prior upper estimates for GD(x, y) regardless of transience of Y

using Lemma 7.5.1.

Lemma 7.6.3. [53, Lemma 7.3] Suppose that D is bounded. Then, there

exists a constant c1 = c1(d, ψ, diam(D)) > 0 such that for all x, y ∈ D,

GD(x, y) ≤ c1`(|x− y|−1)

|x− y|dL(|x− y|)2
' ν(|x− y|)
L(|x− y|)2

.

Now, we prove Theorem 7.1.4.

Proof of Theorem 7.1.4. By (7.1.2) and Lemma 7.2.1, it suffices to prove

that for all x, y ∈ D,

GD(x, y) '
(

1 ∧
[
a(x, y)L(|x− y|)

]) ν(|x− y|)
h(|x− y|)2

,

where a(x, y) := L(δD(x))−1/2L(δD(y))−1/2.
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(Lower bound) Using Proposition 7.4.1 in the second line below, the

change of the variables s = th(|x− y|) in the third line, the fact that h(r) ≥
L(r) for all r > 0 in the fourth line, and Lemma 7.6.1 and (7.3.2) in the fifth

line, we get that

GD(x, y) ≥
ˆ 1

0

pD(t, x, y)dt

≥ cν(|x− y|)
ˆ 1

0

(
1 ∧ 1

tL(δD(x))

)1/2(
1 ∧ 1

tL(δD(y))

)1/2

te−c1th(|x−y|)dt

= c
ν(|x− y|)
h(|x− y|)2

ˆ h(|x−y|)

0

(
1 ∧ h(|x− y|)

sL(δD(x))

)1/2(
1 ∧ h(|x− y|)

sL(δD(y))

)1/2

se−c1sds

≥ c
ν(|x− y|)
h(|x− y|)2

(
1 ∧ L(|x− y|)

L(δD(x))

)1/2(
1 ∧ L(|x− y|)

L(δD(y))

)1/2 ˆ h(2r2)∧1

0

se−c1sds

≥ c

(
1 ∧

[
a(x, y)L(|x− y|)

]) ν(|x− y|)
h(|x− y|)2

. (7.6.1)

(Upper bound) Using boundary Harnack principle and Lemma 7.6.3,

one can prove the upper bound following the proofs of [87, Theorem 1.2 and

Theorem 6.4] and [94, Theorem 4.6] line by line. Below, we give the main

steps of the proof only.

By the boundary Harnack principle (which holds true under (A) and (B)

by [74, Theorem 1.9]), Lemma 7.6.3 and (7.6.1), we can follow the proof of

[87, Theorem 6.4] to obtain

GD(x, y) ≤ c
gD(x)gD(y)

gD(A)2

ν(|x− y|)
h(|x− y|)2

, (7.6.2)

where gD(z) := GD(z, z0)∧c1 for some fixed constant c1 > 0, z0 ∈ D is a fixed

point in D and A ∈ B(x, y), where B(x, y) is given by [87, (6.7)]. Moreover,

we can also follow the proof of [94, Theorem 4.6] to show that for all z ∈ D,

gD(z) ' L(δD(z))−1/2. (7.6.3)

Indeed, let R3 := δD(z0) ∧ R2 where R2 is the constant in Lemma 7.3.7. If
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δD(z) ≥ R3/8, then L(δD(z))−1/2 ' 1 ' gD(z) by (7.6.1) and Lemma 7.6.2.

Hence, (7.6.3) holds in this case.

Next, we assume that δD(z) < R3/8. Then |z − z0| ≥ δD(z0) − δD(z) ≥
7R3/8. Thus, by Lemma 7.6.2, gD(z) ' GD(z, z0). Choose wz ∈ ∂D satisfying

δD(z) = |z−wz|. Let z∗ := wz+R3(z−wz)/(4|z−wz|) ∈ D and define U(z, 1)

as (7.3.7). Then, by the boundary Harnack principle, (7.3.6), Lemma 7.6.3,

(7.6.1) and Proposition 7.3.8, we get

gD(z) ' GD(z, z0) ' GD(z∗, z0)
Pz
(
YτU(z,1)

∈ D
)

Pz∗
(
YτU(z,1)

∈ D
)

' Pz
(
YτU(z,1)

∈ D
)
' L(δD(z))−1/2.

Hence, (7.6.3) is valid.

We see from the definition of B(x, y) that δD(A) ≥ c2|x − y|. Thus, by

combining (7.6.2) and (7.6.3), we get from (7.3.4) that

GD(x, y) ≤ c3a(x, y)L(δD(A))
ν(|x− y|)
h(|x− y|)2

≤ c4a(x, y)L(|x− y|) ν(|x− y|)
h(|x− y|)2

.

This together with Lemma 7.6.3 complete the proof. �
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principle for ∆ + ∆α/2. Trans. Amer. Math. Soc., 364(8):4169–4205,

2012.

[45] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like

processes on d-sets. Stochastic Process. Appl., 108(1):27–62, 2003.

294



BIBLIOGRAPHY

[46] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for jump pro-

cesses of mixed types on metric measure spaces. Probab. Theory Related

Fields, 140(1-2):277–317, 2008.

[47] Z.-Q. Chen, T. Kumagai, and J. Wang. Stability of parabolic Harnack

inequalities for symmetric non-local Dirichlet forms. J. Eur. Math. Soc.

(JEMS), 22(11):3747–3803, 2020.

[48] Z.-Q. Chen, T. Kumagai, and J. Wang. Stability of heat kernel es-

timates for symmetric non-local Dirichlet forms. Mem. Amer. Math.

Soc., 271(1330):v+89, 2021.

[49] Z.-Q. Chen, M. M. Meerschaert, and E. Nane. Space-time fractional

diffusion on bounded domains. J. Math. Anal. Appl., 393(2):479–488,

2012.

[50] Z.-Q. Chen and R. Song. Intrinsic ultracontractivity and conditional

gauge for symmetric stable processes. J. Funct. Anal., 150(1):204–239,

1997.

[51] Z.-Q. Chen and R. Song. Drift transforms and Green function estimates

for discontinuous processes. J. Funct. Anal., 201(1):262–281, 2003.

[52] Z.-Q. Chen and J. Tokle. Global heat kernel estimates for fractional

Laplacians in unbounded open sets. Probab. Theory Related Fields,

149(3-4):373–395, 2011.

[53] S. Cho, J. Kang, and P. Kim. Estimates of Dirichlet heat kernels for
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ordinate killed Lévy processes. Potential Anal., 53(1):131–181, 2020.

[98] D. Kinzebulatov and Y. A. Semënov. Fractional kolmogorov operator
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국문초록

마르코프 확률과정의 추이확률밀도는 확률론과 해석학 모두에서 중요한 연구대상이

다. 무한소생성자가 L로 주어진 마르코프 확률과정의 추이확률밀도함수 p(t, x, y)는

편미분방정식 ∂tu = Lu의 기본해이다. 따라서 추이확률밀도 p(t, x, y)는 작용소 L

의 열핵으로도 알려져있다. 열핵의 중요성에도 불구하고, 열핵에 대한 정확한 표현은

극히 드문 경우에만 알려져있다. 대신에, 열핵에 대한 추정에 대해 많은 연구가 이

루어지고 있다. 본 학위논문은 마르코프 도약과정의 열핵 추정에 대한 것으로 크게

여섯 부분으로 이루어져 있다. 논문의 첫번째 부분에서는 종속자, 즉, 감소하지 않는

일차원 레비 과정을 다룬다. 두번째 부분에서는 임계 킬링이 있는 비국소적 작용소

의 열핵을 다룬다. 이를 통해 세번째 부분에서는 킬링이 있는 마르코프 확률과정의

종속과정에 대한 연구를 진행한다. 네번째 부분에서는, 열핵의 안정성 이론의 관점에

서 세번째 부분의 결과를 바탕으로, 디리클레 형식을 이용하여 정의된 퇴화와 임계

킬링이 있는 도약과정의 열핵에 대한 추정을 연구한다. 다섯번째 부분은 일반적인

시간분수적 디리클레 문제의 기본해에 대한 것이다. 마지막 부분에서는 작은 도약이

비교적 드물게 일어나는 등방성 단봉분포를 갖는 레비 과정의 디리클레 열핵에 대한

추정을 다룬다.

주요어휘: 마르코프 확률과정, 열핵 추정, 비국소적 작용소, 디리클레 형식

학번: 2016-27319
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