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Abstract

Estimates of heat kernels for jump processes
with degeneracy and critical killing

Soobin Cho
Department of Mathematical Sciences
The Graduate School

Seoul National University

Transition densities of Markov processes are of significant interest in both
probability and analysis. The transition density p(t,z,y) of a Markov pro-
cess with generator £ is the fundamental solution of the equation d;u = Lu.
Hence the transition density p(t,z,y) is also called as the heat kernel of L.
However, an explicit expression of the heat kernel is rarely known. Due to
the importance of heat kernels, there is a huge body of literature on the
heat kernel estimates. The thesis consists of six parts concerning heat ker-
nel estimates for Markov jump processes. The first part devotes to estimates
for subordinators, namely, nondecreasing Lévy processes on R. The second
part considers heat kernels for non-local operators with critical killings. The
third part studies subordinate killed Markov processes with help from the
previous two parts. Motivated by the third part, in the fourth part, we study
heat kernel estimates for jump processes with degeneracy and critical killing
using Dirichlet form theory. The fifth part is concerned with the fundamental
solution of general time fractional equations with Dirichlet boundary condi-
tion. In the last part, we study Dirichlet heat kernel estimates for isotropic

unimodal Lévy processes with low intensity of small jumps.

Key words: Markov process, heat kernel estimate, nonlocal operator, Dirich-
let form
Student Number: 2016-27319
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Chapter 1
Introduction

Transition densities of Markov processes are of significant interest in both
probability and analysis. The transition density p(¢, z,y) of a Markov process
with generator £ is the fundamental solution of the equation d;u = Lu. To
be precise, let X = {X;,t > 0;P*, x € M} be a strong Markov process on
a locally compact separable Hausdorff space M whose transition semigroup
(Pt)>0 is a uniformly bounded strong continuous semigroup in some Banach
space (B, ||-||). Typically, B = LP(M;m) for some Radon measure m on M
and p > 1. Denote by (£, D(L)) the infinitesimal generator of the semigroup
(P,)i>0 in B. Then it is well known that for any f € D(L), the function
u(t, z) := E*[f(X;)] is the unique solution in B to the equation

Owu(t,z) = Lu(t,z), =€ M, t>0,
u(0,z) = f(x), reM

(1.0.1)

in the following sense:
(i) x = u(t,z) isin D(L) for each t > 0, sup;sq(||u(t, -)[|+]|Lu(t, -)[]) < oo,
and t — Lu(t,-) is continuous in B;

(ii) t — wu(t,-) is absolutely continuous and dyu(t,-) = Lu(t,-) in B.

Suppose that the process X has a transition density function p(¢, x,y) with

respect to a reference measure m. Then, for any f € D(L), the unique solu-
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tion to the equation (1.0.1) is given by

ult, z) = EP[f(X)] = /M plt, 2. 9) f (g)m(dy).

Hence, the transition density p(t, z,y) is also known as the heat kernel of L.
An explicit expression of the heat kernel is rarely known. Instead, there is
a long history on the heat kernel estimates. In the thesis, we are concerned
with heat kernel estimates for Markov jump processes. We note that, when
X is a jump process, its generator L is a non-local operator.

In a celebrated paper [45], Z.-Q. Chen and T. Kumagai proved that when
M is a Ahlfors d-set and X is a pure jump process with the jump kernel
J(z,y) such that

Ol’x - y’—d—a S J(I’,y) S CZ‘x - y‘—d—a’ T,y € Mv (102)

for some constants a € (0,2) and Cy,Cy > 0, the heat kernel satisfies the
following two-sided estimates for all 0 <t < 1 and x,y € M:

S —dja t
p(t,x,y) ~ min {t df s W} . (103)

Here, f ~ g means that there exist constants c;,cs > 0 such that ¢;g(x) <
f(z) < cag(x). (See also the earlier work [11] by R. F. Bass and D. A. Levin
for random walks on the lattice Z<.) Later, this result has been extended to
mixed stable-like processes in [46] by the same authors, where M is a metric
measure space whose volume function V' (z,r) := m(B(z,r)) satisfies a uni-
form volume doubling assumption, and the jump kernel J(z, y) is comparable
to (V(x,d(z,y)¢(d(x,y))~", under some growth condition and weak scaling
property on the weight function ¢ (see [46, (1.11)-(1.14)]).

For jump processes with killing potential, R. Song proved in [120] that
when X is a symmetric a-stable-like-process (0 < o < 2) and the killing
potential is in a suitable Kato class, the small time heat kernel estimates

(1.0.3) still hold true. This result has been extended to some nonsymmetric
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processes in [125] by C. Wang. When X has a critical killing potential, the
situation becomes more complicated. In [40], Z.-Q. Chen, P. Kim and R.
Song proved in that the heat kernel p(¢,x,y) of a killed a-stable process
(0 < a < 2)in a CY! open subset D of R? satisfies the following estimates
forall0 <t <1and z,y € D:

[ o@ M e e
p(t,x,y) ~ mln{l, e min < 1, e min { ¢4, gl
(1.0.4)

where 0p(z) denotes the distance between x € D and the complement D°.
(See also the work [19] by K. Bogdan, T. Grzywny and M. Ryznar for Dirich-
let heat kernel estimates when D is a k-fat open subset of R%.) The authors
also proved in [36] that the heat kernel p(t, z, y) of a censored a-stable process

(1 < a<2)ina Ch open subset D of R? satisfies that

a—1 a—1
p(t,z,y) :min{l, i[i—sz)} min{l, (Sﬁ—say)} min {td/a, m}
(1.0.5)
forall 0 <t <1 and =,y € D. Hence, the Dirichlet condition and censoring
are examples of critical killings in the sense that heat kernel estimates take
different form from ones for the free process (without killing) given in (1.0.3).
We note that, the condition (1.0.2) can be regarded as a non-local coun-
terpart of the usual uniform ellipticity condition. For jump processes with
degenerate jump kernel, only a few results exist in the literature. See the
works [119] by R. Song for subordinate killed Brownian motions and [28] by
X. Chen, T. Kumagai and J. Wang for random conductance models with
long range jumps.

In the thesis, we study heat kernel estimates for jump processes with
critical killings whose jump kernel may be degenerate. The thesis is divided
into this introduction and six chapters. In Chapter 2, we study distributional
properties of a large class of subordinators. In particular, we get heat kernel
estimates for subordinators with Lévy density decaying in mixed polynomial

orders. In Chapter 3, we prove factorization of heat kernels p(¢,x,y) in a
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subset D of M for a class of non-local operators. As a consequence, we
obtain sharp two-sided heat kernel estimates for a-stable processes (0 < a <
2) with critical killings in a C%' open subset D of R In particular, we
give an alternative and unified proof for (1.0.4) and (1.0.5). In Chapter 4,
we obtain sharp estimates for the jump kernel, heat kernel and the Green
function of subordinate killed Markov processes by using results in Chapters
2 and 3. We then give important examples of heat kernel estimates for jump
processes with degeneracy and critical killing. In Chapter 5, we study heat
kernel estimates for Hunt processes with degenerate jump kernel and critical
killing potential. The objects therein are motivated by Chapter 4 in the spirit
of stability theorems for heat kernel estimates initiated by D. G. Aronson
[4] for local operators (see, e.g. [48] and [72] for non-local operators). In
Chapter 6, we obtain estimates on the fundamental solution of general time
fractional equation with Dirichlet boundary condition by using probabilistic
representation introduced by Z.-Q. Chen [30]. In Chapter 7, we give Dirichlet
heat kernel estimates for isotropic unimodal Lévy processes with low intensity
of small jumps. In particular, we show that factorization of the Dirichlet heat

kernel in a C'*!' open subset D of R? holds true for such processes.

1.1 Preliminary and notation

For the most part of this thesis, we will play with functions satisfying (weak)
scaling property. A nonnegative function f defined on an interval I C [0, c0)
is said to be satisfying (weak) scaling property if there exist constants py > p;

and ¢y, co > 0 such that

P p

cl<r—2> 1 < f(r2) < @(2) ’ for all ri,ro €I, 0 <1 <7y, (1.1.1)
1 f(r1) L

The constant p; (resp. ps) is called the lower scaling index (resp. upper scaling

index) of f. We give integral estimates for functions with scaling property.

The following lemma will be used frequently throughout the thesis.
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Lemma 1.1.1. [59, Lemma 5.1] Let f : I — [0,00) be a function defined on
an interval I C [0,00). Suppose that f satisfies (1.1.1) with py,ps € R. Then
for any a > 1, there exists ¢y > 0 such that for allv,R € I, ar < R,

/ S (s)ds > e (f(r) + F(R)). (112)

(i) If we assume p; > 0, then, for any a > 1, there exists ca > 0 such that
forallr,Re I, ar <R,

R
af(R) < / s f(s)ds < cof (R).

(i1) If we assume py < 0, then, for any a > 1, there exists c3 > 0 such that
forallr,Re I, ar <R,

af(r) < / sTHf(s)ds < esf(r).

Notation: We will use the symbol “:=" to denote a definition, which is
read as “is defined to be.” We deonte by R? the d-dimensional Euclidean
space and Ri = {x = (T,zq) €RY | zg > 0} the upper half plane. We write
ey = (6, 1) € RL For a,b € R, we set a A b:=min{a, b}, aVb:=max{a,b},
ay :=aV0and [a] :=max{n € Z:n <a}.

The constants C;, «; and f; for ¢ > 0, dy, dy will retain throughout the
section, whereas ¢, A, C, €, §, n and k represent constants having insignificant
values that may be changed from one appearance to another. The labeling
of the constants ag, aq,as, ... and ¢y, 1, ca, ... begins anew in the proof of
each result. C' = C(a, b, ...) denotes a generic constant depending on a, b, . . ..
All these constants are positive finite. Recall that we write f(z) ~ g(z) if
there exist constants c¢;,co > 0 such that c;g(x) < f(x) < cag(x) for the
specified range of the argument z. Similarly, we write f(z) < g(cz) if there
exist constants ¢; > 0,4 =1,--- ,4 such that c;g9(cor) < f(x) < c39(cyz) for

the specified range of x.
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For a given metric space (M, p), we denote the open ball in M with
center x € M and radius r > 0 by B(x,r). For any subset D of (M, p), we
write diam(D) = sup, ,ep p(z,y) and dp(z) = inf{p(x,y) : y € M \ D}.
We define dr(x,y) = dp(x) A dp(y) and dy(x,y) = dp(x) V dp(y). For a
function space H(U) on an open set U in M, we let H.(U) := {f € H(U) :
f has compact support} and Hy(U) := {f € H(U) : f vanishes at infinity}.



Chapter 2
Estimates for subordinators

This chapter is concerned with distributional properties of subordinators.
The results in this chapter are mainly based on [54, 55]. We first give basic
estimates for subordinators whose tail of the Lévy measure is locally decaying
in polynomial orders. We next establish tail probability estimates for three
classes of subordinators: (1) ones with polynomially decaying tail, (2) ones
with subexponentially decaying tail, and (3) truncated subordinators. Lastly,
we study two-sided sharp estimates and the exact asymptotic behaviors of
the transition density function for a large class of subordinators.

Let us begin with the definition of subordinator. Let (€2, F,P) be a prob-
ability space. A stochastic process S = (S; : ¢ > 0) with values in [0, 00) is
called a subordinator if

(1) Sp = 0 and t — S; is nondecreasing and right-continuous a.s.,

(2) for every t,s > 0, the increment Sy, — Sy has the same law as S, and

is independent of (S, : 0 < u <),

(3) limy_o P(]S¢| > €) =0 for all € > 0.

Consider an arbitrary subordinator S. For any rational number p/q > 0,

since S has stationary independent increments, using the decomposition

Sp/q = Sl/q + (SQ/q - Sl/q) et (Sp/q - S(p—l)/q)a
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we see that the laws of S/, and (p/q)S; are equal. Therefore, there exists a

function ¢ : [0, 00) — [0, 00) such that for any rational number ¢ > 0,
Ee 5 = 71N X >0. (2.0.1)

Moreover, by the right-continuity of S, (2.0.1) holds for all ¢ > 0. The function
¢ is called the Laplace exponent of the subordinator S, and it characterizes
the law of S in the sense that two subordinators with the same Laplace
exponent have the same law. It is well known that ¢ is a Bernstein function,
that is, a nonnegative C* function such that (—1)*"1¢*) > 0 for all k > 1,
with ¢(0) = 0 and there exist a unique constant a > 0 and a Borel measure

v on (0,00) satisfying [;7(1 A s)v(ds) < oo such that

d(N) = aX + /000(1 — e ) u(ds). (2.0.2)

The constant a is called the drift and v the Lévy measure of the subordinator
S. Conversely, for any a > 0 and a Borel measure v on (0,00) satisfying
JoS(L A s)v(ds) < oo, there exists a subordinator S = (S;);>0 such that
(2.0.1) and (2.0.2) hold so that v is the Lévy measure of S. We write w(\) =
v((\, 00)) for the tail of the Lévy measure v.

Throughout this chapter, we suppose that S is a subordinator having the
Laplace exponent ¢ with

w(0+) = oo.

Moreover, by considering the subordinator S = (Sy —at : t > 0), we always
assume that
the drift a = 0.

We introduce some auxiliary functions which will be used in the study of
subordinators. Let H : (0,00) — (0,00) be defined by

H\) = 6(\) = AF(\), A > 0.
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The function H plays an important role in estimates for the distributions
of subordinators. See, e.g. [81, 109]. Because ¢ is a Bernstein function, H is
increasing and H(0+) = 0. Moreover, using the representation (2.0.2) and

integration by parts formula, we observe that for all A > 0,
P(N) = )\/ w(s)e ds and H(\) = )\2/ sw(s)e Mds.  (2.0.3)
0 0

Hence, it holds that for all A > 0,

w(1/\)

o (2.0.4)

1/X
d(N) > H(N) > )\Qw(l//\)/o se Mds >

In particular, since we have assumed w(04) = 0, it holds that limy_, ¢(N) =
limy o, H(A) = c0. We also get from (2.0.3) that

d(Ar) <rp(N) and H(Ar) <r*H(X\) forall A>0,r>1 (2.0.5)
and since w is nonincreasing,
1/2 1/2
d(N) ~ )\/ w(s)ds and H(\) ~ >\2/ sw(s)ds, A>0. (2.0.6)
0 0
Next, we introduce the function b : (0,00) — (0,00) defined by
b(t) == (¢ o H M) (1/t) = / se T Dsy(ds), > 0.
0

The function b also appears naturally in the study of subordinators, especially
when describe the displacement with the highest probability of the given
subordinator S at time ¢ (see, e.g. Proposition 2.2.1 below). The function b is
increasing, b(0+) = 0, and lim;_,, b(t) = ¢'(0+). This implies that ¢ — tb(t)
is also increasing and lim;_,, tb(t) = +00. Moreover, according to [54, Lemma
2.4(ii)], cf. also [55, (2.14)], it holds that

1 1 e?

m < tb(t) < m, Cy = r_;, for all ¢t > 0. (2.0.7)
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Moreover, we have general estimates for differences of the function b. The

following result is particularly important when ¢ is not comparable to H.

Lemma 2.0.1. [55, Lemma 2.7] For any as > a; > 0, it holds that
2eas e Mtw(H M ax/t)™")
tb(t — tb(t <

(/) =00 002) < gyt H

- 2e? —4e+1 as
- e—2  H(ay/t)

and
(4a1/t)2{( ¢" o H™")(4ay /1)]
H~'(4a1 /1)

l\DI»—

to(t/ar) — tb(t/(4a1)) >

for allt > 0.

Finally, we introduce the function o = o(t,7) : (0,00) % (0,00) — [0, 00)
defined by

=o(t,r) == (¢) " (r/)Low4+)(r/t), rt>0.

Because ¢’ is decreasing, for each fixed ¢ > 0, the map r — o(t,r) is de-
creasing with lim, oo (t,7) = oo and lim, ;. o(t,r) = 0, while for each
fixed r > 0, the map ¢t — o(t,r) is increasing with lim, ,oo(¢,r) = 0 and
lim; o o(t,7) = oo. Further, by using the former and the fact that H is

increasing, we conclude that
t(Hoo)(t,th(t)) =1 and t(Hoo)(t,r)>1 forr <tb(t). (2.0.8)

The function ¢ plays a crucial role in estimating the left tail of .S.

For the most part of this chapter, we assume the following (local) weak

scaling property for the tail measure w.

Definition 2.0.2. Let Ry € (0,00], Ry > 0 and S5 > 51 > 0 be constants.

10
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(i) We say that Polyg, (51, f2) holds if there are ¢1,co > 0 such that

8 8
cl(f> Lol 02(f> " forall 0<s<r <Ry (2.0.9)
s w(r) s

We say that Polyg, <(f2) (resp. Polyg, >(5:1)) holds if the upper bound
(resp. lower bound) in (2.0.9) holds.

(ii) We say that Poly$ (1, 2) holds if (2.0.9) holds for all » > s > Ry. We
say that Poly%, _(82) (resp. Poly%, - (1)) holds if the upper bound (resp.
lower bound) in (2.0.9) holds for all » > s > Rs.

Remark 2.0.3. Since w is nonincreasing, if Poly% (31, 32) holds with some

Ry > 0, then it holds with every Ry > 0. The same is true for Polyf, -(52)
and Poly% - (51).

When S is a S-stable subordinator with Laplace exponent A% (0 < 3 < 1),
we see that w(r) = c;r=# for r > 0 so that Poly (81, 82) holds.
We sometimes consider the following conditions to cover cases when the

subordinator has exceedingly small tail.

Definition 2.0.4. (i) We say that Sub® (v, #) holds if there exist constants
v € (0,1] and 6, ¢; > 0 such that

w(r) < cpexp(—6r7) forall r > 1.

(ii) We say that Trun%, holds if there exist constants Ry, 3, > 0 and K > 1
such that w(Ry) = 0, Polyg, 2 <(f2) holds and

K r—s| <w(s)—w(r) < Klr—s| forall Ry/4<s<r< Ry

2.1 Preliminary results

In this section, we give some consequences of conditions Polyg, (51, 2) and
POlyCE@OQ (81, B2).

11
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Using (2.0.6), we get relations between these conditions and weak scaling
properties of the functions ¢ and H. The proof of the next lemma can be
found in [54, Lemma 2.1} and [55, Lemmas 2.3 and 2.4].

Lemma 2.1.1. (i) If Polyg, <(52) holds, then for every ro > 0, there is
c1 > 0 such that for all rg < s <,

G =) e gigea () e

Conversely, if there is ro > 0 such that the first inequality in (2.1.1) holds
with By < 1 (resp. the second with Py < 2), then there is Ry € (0, 00| such
that Poly g, <(B2) holds true and

o(1/r) ~w(r) (resp. H(1/r) ~w(r)) for 0 <r < Rj. (2.1.2)

(i1) If Polyg, > (1) holds, then for every ro > 0, there is co > 0 such that
forallrg < s <,

B1A(1/2) B1A(3/2)
MZCQ<Z>1 / and H(T)ZCQ(T>1( .

o05) Hs) - (2.1.3)

Conversely, if there is ro > 0 such that the first inequality or the second in
(2.1.3) holds true, then Polyg, >(581) holds with some R; € (0, c0].

(ii) If Poly%, (B2) holds, then for every ro > 0, there is ¢y > 0 such
that (2.1.1) holds for all 0 < s < r < ro. Conversely, if there is ro > 0 such
that the first inequality in (2.1.1) holds with By < 1 (resp. the second with
Pa < 2), then for any Ry > 0, the comparability (2.1.2) holds with the range
7 > Ry and Polyg, _(52) holds.

(iv) If Poly% - (B1) holds, then for every ro > 0, there is c; > 0 such
that (2.1.3) holds. Conversely, if there is ro > 0 such that the first inequality
or the second in (2.1.3) holds, then Poly$, _(82) holds with any Ry > 0.

Note that the constant S5 in (2.1.1) can be arbitrarily large, but upper
scaling indices of ¢ and H can not be larger than 2 by (2.0.5).

12
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Recall that ¢(\) > H(X) > (2¢)'w(1/)) for all A > 0. In the following

two lemmas, we give upper bounds for H and ¢ under Polyg, <(f2) and
POIY%OQ,S(@)-

Lemma 2.1.2. If Polyg, <(52) holds, then there exists ¢; > 0 such that for
all 0 <r < Ry,
H(r 1P < cro(r=1)P2w(r). (2.1.4)

Similarly, if Poly%, -(82) holds, then for any ro > 0, there exists ¢; > 0 such
that (2.1.4) holds for all r > 1q.

Proof. Suppose that Polyg, <(/52) holds. If 8y < 2, then by Lemma 2.1.1(i),
using the fact ¢ > H, we get that for all 0 < r < Ry,

H(r= )%t < ey H(r H)2w(t) < cip(r™")?w(r).

Assume that fy > 2. Using (2.0.6) in the first and the third inequalities
below, Holder inequality in the second and Lemma 1.1.1(i) in the third, we
get that for all 0 < r < Ry,

H(r ") < 027’2/ sw(s)ds
0

r B2/ (B2+1) r 1/(B2+1)
< cor? (/ w(s)ds) (/ 352+1w(s)ds)
0 0

< C37“_2 (T¢(T_1))B2/(62+1) (T62+2w(r))1/(52+1) _ 03(;5(7“_1)B2/(52+1)w(7”)1/(ﬁ2+1).

Next, suppose that Poly®, -(32) holds. When £, < 2, the result follows
from Lemma 2.1.1(iii) similar to the above situation. Assume that Sy > 2
and let 79 > 0. Set ¢4 := fOTO/Q sw(s)ds/ f;;oﬂ sw(s)ds. Then, using (2.0.6),
Hélder inequality and Lemma 1.1.1(i) with help from Remark 2.0.3, we get
that for all r > rg,

H(ir )< c57"_2/ sw(s)ds < (1 + 04)657"_2/ sw(s)ds
0 T

0/2

13
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7 B2/(B2+1) r 1/(B2+1)
< (1 +cq)esr™? (/ w(s)ds) (/ 3’32+1w(s)d3)
0 ro/2

< cﬁgb(r‘l)f’?/(ﬂﬁl)w(r)1/“2“).
The proof is complete. O

Lemma 2.1.3. If Poly%, _(532) holds, then for anyry > 0, there exists c; > 0
such that

o(r~N2 < cyw(r)  for all v > 1.

Proof. Let ro > 0. We first suppose that [~ w(s)ds < co. Then by (2.0.6)
and Poly®, (532), it holds that for all 7 > ry,

oo B2+1
_ _ Co C3
¢r152+1§c<7’1/ w3d5> < < w(r).
) ' 0 (5) rhatl = Bty () )

Now, suppose that [;* w(s)ds = co. Then we see from (2.0.6) that there
are comparison constants depend on ry such that ¢(r=!) ~ r~! f;; /o w(s)ds
for r > ry. Besides, since Polyf, (2) holds, we see from Lemma 1.1.1(i)
that w(r) < r—2-1 f:;ﬂ s%w(s)ds for r > 1. Using these two comparabilities

and ["Hospital’s rule, since w is nonincreasing, we deduce that

" sPw(s)ds
lim sup % < ¢y lim sup —2/2 5
r—00 T r—00 <fT w(s)ds) 2
ro/2
B2
< ¢4 lim sup rrw(r) 5
r—00 (ﬁz + 1)w(r> (f;;/z w(s)d5>
< eyli e “
¢4 lim su = )
= L Bt Drw(re/2)% ~ (B + Du(ro/2)
We have finished the proof. O

Using Lemma 2.1.2 and the inequality z% ™" < a%~® for z,a > 0, we get

the following result.

14
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Lemma 2.1.4. [59, Lemma 2.5] Suppose that Polyg, <(82) holds. Then, for

any k > 0, there exists a constant ¢; = ¢1(k) > 0 such that
exp (— rrH™'(1/1)) < citw(r)  for all ¢~'(1/t)"" <r < Ry.

Below, we give some consequences of Polyg, ~(81). The proofs can be
found in [59, Section 2].

Lemma 2.1.5. Suppose that Polyg, >(51) holds. Then for any a > 0, there
exists c; = c¢1(a) € (0,1) such that

c1d(X) < X' (A) < o(N\)  for all X > a. (2.1.5)

Moreover, if Poly.. >(51) holds, then (2.1.5) holds true for all A > 0.

Lemma 2.1.6. Suppose Polyg, >(01) holds. Then, for any a > 0, there
exists 0 = 6(a) > 0 such that

O'(t,S) /T 1 /
o) = 5(5) for all 0 <'s <7 < t¢'(a). (2.1.6)

Moreover, if Poly. >(01) holds, then there exists § > 0 such that (2.1.6)
holds true for all 0 < s < r < t¢'(0+).

Lemma 2.1.7. Suppose that Polyg, >(51) holds. Then, for all k, N > 0 and
T > 0, there exists a constant C' = C(T,k, N) > 0 such that for all0 <t <T
and 0 <r < ¢~ 1(1/t)71,

exp (— wt(Hoo)(t,r)) < C(ro(1/1)N. (2.1.7)

Moreover, if Poly . > (1) holds, then for all K, N > 0, there exists a constant
C = C(k,N) > 0 such that (2.1.7) holds true for all 0 <r < ¢~ 1(1/t)7".

15
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2.2 Tail probability estimates

In this section, we give estimates for left and right tails of the subordinator
S. Concerning the left tail of S, the following general result is obtained in

[59] (see [81] for the original version).

Proposition 2.2.1. [59, Proposition 2.3] There exist constants Cy,Cy > 0
independent of S such that for all t,r > 0,

Ciexp (= Cot(Hoo)(t,r)) <P(S; <r) <eexp(—t(Hoo)(t,r)). (22.1)
Moreover, there exist comparability constants independent of S such that
P(S; <tb(t)) ~P(S; > tb(t)) ~1, t>0.

See Theorems 2.3.4 and 2.3.6 below for left tail estimates on the transition
density function, and Corollary 2.3.18 for its exact asymptotic behavior under
some mild conditions.

As a consequence of Proposition 2.2.1, we get from (2.0.7) the following

corollary.

Corollary 2.2.2. Suppose that Polyg, >(81) holds. Then for any T > 0,
there exist constants 6 € (0,1) independent of T and € = ¢(T) € (0,1) such
that

Plep ' (1/t) " < S, <o ' (1/t)") =46, te(0,T). (2.2.2)

Moreover, if Poly.. (1) holds, then there exist €,6 € (0,1) such that (2.2.2)
holds with T' = oo.

Using Lemmas 2.1.7 and 1.1.1(i), we also deduce from Proposition 2.2.1

the following result.

Corollary 2.2.3. [59, Lemma 2.6] Let f: (0,00) — (0,00) be a given func-
tion. Assume that Polyg, > (1) holds and there exist constants c1,p > 0 such
that sPf(s) < e1t? f(t) for all 0 < s < t. Then for every T > 0, there ezists a

16
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constant C' = C(T, c1,p) > 0 such that for any t € (0,71,
t _ _
—5(Hoo) ), 0<r<oT(1/nh
(2.2.3)
Moreover, if Poly.. > (1) holds, then there exists C = C(cy,p) > 0 such that
(2.2.3) holds for all t > 0.

E[f(S,): S; <] < Cf(r)exp (

The following general right tail estimates are obtained in [109]. The lower
estimate for the right tail comes from an observation that if a jump of size
larger than r occurs before time ¢, then S; > r by the monotone property of

subordinators and the upper estimate comes from Dynkin’s formula.

Proposition 2.2.4. For any a > 0 and all t,r > 0 satisfying to(r—1) < a,
it holds that
P(S; > 1) > e *“tw(r). (2.2.4)

On the other hand, there exists a constant C's > 0 independent of S such that
for all t,r > 0 satisfying to(r=') < 1/(2e),

P(S, > r) < CstH(1/r). (2.2.5)

Proof. (2.2.5) follows from [109, Proposition 2.3|. By (2.0.4), we see that for
all t,7 > 0 satisfying to(r=') < a, tw(r) < 2etg(r=!) < 2ea. Thus, using
[109, Proposition 2.5] and the inequality 1 — e™® > xe™® for z > 0, we get
that for all £,r > 0 satisfying t¢(r—1) < a,

P(S; > 1) >1—e ™0 > tw(r)e ™™ > e 2ep(r).
U

Unlike the left tail estimates (2.2.1), lower and upper estimates for the
right tail given in (2.2.4) and (2.2.5) take different forms. In [109], the author
proved that if H satisfies weak upper scaling property with index § < 2
(see the condition (U) therein), then for small » > 0, H(r) and w(1/r) are

17
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comparable so that the estimates (2.2.4) and (2.2.5) are sharp. Below, we
get sharp estimates for the right tail in more general situations by imposing
scaling condition on the tail measure w. To do this, we need the following

lemma which comes from the analytic continuation of the Laplace exponent.

Lemma 2.2.5. [54, Lemma 2.5] Assume that w is finitely supported, that is,
there exists a constant R > 0 such that w(R) = 0. Then, for every A\ € R,
t >0 andn € {0} UN, we have that

E[(S,)"e*] = %exp (t /( G 1)u(ds)) |

Theorem 2.2.6. Assume that Polyg, <(082) holds. Then, there exists C' > 1
such that for allt >0, 0 < r < Ry satisfying to(r=') < 1/2,

C~Htw(r) <P(S; > r) < Ctw(r).

Moreover, if Polyg, >(51) also holds, then there exist constants C', K > 1
such that for allt >0, 0 <r < Ry/K satisfying to(r~1) < 1/2,

C" tw(r) <P(S; € [r, Kr]) < C'tw(r). (2.2.6)

Proof. By Proposition 2.2.4, we only need to prove the upper bound.
Fix t > 0 and 0 < r < Ry satisfying té¢(r~1) < 1/2. Let € := log(5/4) /2.
We set

't (ds) = Lo /m—rymy v(ds),  p?(ds) == Liym-10170 v(ds),

and 3 (ds) := 1(;.00) ¥(ds). Denote by S*, S? and S? the independent driftless
subordinators with Lévy measures p!, u? and p3, respectively. Then, we have
S; < S+ S2+ 52 (note that it may happen that r < ¢/H~*(1/t)). Hence, it
holds that

P(S; > 1) <P(S! > 3r/4) + P(S? > r/4) + P(S? > 0).

18
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Note that P(S} > 0) = 1 — e ™) < tw(r). Set fo(s) = w(s)l,(s) +

w(r)r?s ?1(;00)(s). Then, fy is nonincreasing and for every Borel set A C R,
1 (A) < w(dist(0, A))L(,(dist(0, A)) < fo(dist(0, 4)),

where dist(0,A) := inf{]y| : v € A}. Moreover, using Polyg, <(52) and
(2.0.4), we get that for all u,s > 0,

[ ol vy = D) < fls/2tw) < i) H ),

Therefore, by [83, Proposition 1 and Lemma 9] and Polyg, <(52), it holds
that for every = > 0 and p € (0,2/3],

]P)(SE S [I’ —p, T+ p]) < Cgtf0($/3) < Cgtfo(4£lj’).

It follows that

o0

P(SP >r/4) <) P(S7 e [272r,2- 277 <c3th0 6-27%r)

=0

= cstw(r) Z 6224 = ¢ tw(r).

Lastly, by using Markov’s inequality, Lemma 2.2.5 and Lemma 2.1.4, since
r > 2tb(t) due to (2.0.7), we have that

P(S} > 3r/4) <E[exp (—(3r/4)H'(1/t) + H'(1/t)S})]
qHY
—ep (= @rpE e [ 1>u<ds>)

e/H-1(1/t)
< exp ( — (3r/4)H(1/t) + eZetH_l(l/t)/O se~H 1 (1/1s (ds))
exp (— (3r/4)H ' (1/t) + (5/4)H " (1/t)tb(t)) < exp ( — 8 'rH ' (1/t)).

IN

We used the fact that e? — 1 < ye Ye? for all y > 0 in the third line. Hence,
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we deduce from Lemma 2.1.4 that P(S} > 3r/4) < cstw(r) and hence the
first assertion holds.

The second assertion follows from the first one and Polyg, >(8;). O

By a similar argument, we get the following result for large time t¢.

Theorem 2.2.7. Assume that Polyf, -(82) holds. Then, for every ro > 0,
there exists C' > 1 such that for all t > 0, r > rq satisfying to(r~1) < 1/2,

C~tw(r) <P(S; > 1) < Ctw(r).

Moreover, if Poly% - (51) also holds, then for every ro > 0, there ewists a
constant C' > 1 such that for all t > 0, r > 1o satisfying to(r=1) < 1/2,

C" tw(r) <P(S; € [r, kr]) < C'tw(r).

Next, we study right tail estimates for subordinators with extremely small
tails. Observe that under Sub*(vy,6) or Trunf, for every ry > 0, there are

comparison constants such that ¢(r=!) ~ r=! for r > ry because of (2.0.6).

Theorem 2.2.8. Assume that Sub™(~,0) holds. Then, for every ro > 0,
there exist constants C, L > 0 such that for allr > ry and 0 <t < Lr,

P(S, > r) < Ctexp ( — gﬂ).

Proof. Fix r > ry and 0 < t < Lr where the constant L > 0 will be chosen
later. Set

it (ds) == 1 v(ds) and [*(ds) = L(e0) v(ds).

We denote by St and S? the independent driftless subordinators with Lévy

measures 1 and %, respectively. Then, we have S; = §t1 + §t2 and hence

P(S, > r) < P(S} > 1) +P(5? > 0).
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Because §t2 is a compound Poisson process, we get from Sub® (v, #) that
P(gf >0)=1—e " < tw(r) < cte™™.
Next, using Markov’s inequality and Lemma 2.2.5, we get that for

[P(§t1 >r) < r_le_MIE[gtl exp()\gtl)}

- rle”t[ /( . seAsy(ds)] exp <t /( Oﬂ(eAS — 1)y(ds)). (2.2.7)

By integration by parts and Sub® (v, ), we see that
/ sev(ds) = —rew(r) +/ (1+ As)w(s)e ds
(0,r] 0
1 T
< 2)\6’\/ w(s)ds + ¢ / (L+As)exp (—0s" + As)ds  (2.2.8)
0 1
and
/ (e — 1v(ds) = — (e — Dw(r) + )\/ w(s)eMds
(0,7] 0
1 T
< )\e)‘/ w(s)ds + cl)\/ sexp (— 057 + Xs)ds. (2.2.9)
0 1
Take A\ = 20r7~1 /3. Then, because v < 1, we obtain that
T T 9
/ s exp ( —0s" + )\s)ds < / s exp ( — gs'y)ds < ¢o.
1 1
Thus, since A < 20r]~"/3 and fol w(s)ds < oo, we deduce from (2.2.7) that
a1l -1 A -1 20 -1
P(S; > 1) < cqtr™ " exp ( — Ar + csthe ) < cgtr™" exp ( — 37” + cqtr? )
Set L :=60/(6¢7). Then, because t < Lr, we conclude that

a 20 0
P(S; > 1) < cstexp (- S+ erLr”) < cstexp (= 5r7).
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The proof is complete. (|

When Sub®(+, #) holds with v < 1, we get upper bounds for P(S; > r)

which decrease with exactly the same rate as the bounds for w as r — oo.

Theorem 2.2.9. Assume that Sub® (v, 0) holds with v < 1. Then, for every
ro > 0, there exist constants A > 0 independent of o and C' = C(rg) > 0
such that for allr > rg and 0 <t <,

P(S; > r) < Ctexp ( — Or" + Atr”‘l).

Proof. Fix r > ry and 0 < ¢ < r. We define fi'(ds) = 1(,/9 v(ds) and
[2(ds) = 12,00 ¥(ds), and denote by S and 5?2 the independent driftless
subordinators with Lévy measures it and fi%, respectively. Then since S; =
S 4+ 82 we obtain that

r—ro/2 . " "
P(S; >r) < / P(S? > r —u)P(S} € du) + P(S} > 1 —1y/2).(2.2.10)
0
Let A :=0r"~' € (0,0r]""). Then we see that
r/2 00
/ exp (— 05" + As)ds < / exp (—0s7(1 —277"))ds < oo.
1 1
Hence, by (2.2.8) and (2.2.9) (with /2 instead of r), we get that

/ seMv(ds) < ¢ and / (e —1)v(ds) < 1.
(0,r/2] (0,r/2]

Using the above inequalities, Markov’s inequality and Lemma 2.2.5, we de-

duce that for all u > 0,

P(S} > u) < e_’\“E[eXp()\gtl)] = e Mexp (t/ (e — 1)y(d3))
(0,r/2]

<exp (— 0w+ ¢ 6tr7Y) (2.2.11)
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and

IP’(gt1 >u) <ule™E [gtl eXp()\gtl)}

= tu e {/ se’\sz/(ds)] exp (t/ (et — 1)1/(ds)>
(0,r/2] (0,r/2]

< cqtut exp ( — O+ 010757”_1).
In particular, since r — /2 > ro/2 and r7~'ry < r], it holds that
P(gtl > —r/2) < cstexp (—O0r7 + 6t Y). (2.2.12)

We note that, the above constant ¢; can be chosen independent of ry.

On the other hand, we observe that 52 = Zi]\;(f) D; where N (t) is a Poisson
random variable with mean tw(r/2) and D; are i.i.d. random variables with
distribution P(D; > u) = w(u V (r/2))/w(r/2). Thus, for all u > 0, since
t <7 and sup,.oze” @ T < 00 we get from Sub™(,6) that

P(S? > u) < P(N(t) = 1)P(Dy > u) + P(N(t) > 2)
<tw(uV(r/2))+(t (/2)

)
< ¢yt exp ( 0(u 7) + cqtrexp ( — 21’797”)
( ))")

\/
§c4texp( O(uV (r/2)7) + cstexp(—6r7).

Hence, by integration by parts and (2.2.11), since 7 < 1, we obtain that
r—ro/2 N "
/ P(S? > r — u)P(S} € du)
0
r/2 _
< c4t/ exp (— 0(r —u)")P(S} € du)
0
r—ro/2 . 00 "
+ C4t/ exp (— 0(r/2)")P(S} € du) + cst exp(—0r”) / P(S} € du)
r/2 0
r/2 »
< 0476’75/ (r—u)"exp (—0(r —u)")P(S; > u)du+ cst exp(—6r7)
0

+ cat exp ( — Q(T/Q)V)P(gtl > 1/2) 4 cstexp(—0r7)
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r/2
< cgyftexp (c10tr’ )7 / exp (— O(r —u)” — 0r""u)du
0
+ crtexp (— Or7 + c10tr7 ). (2.2.13)
Define f : (0,7/2) — (0,00) by f(u) := (r —u)? + " lu — (2177 — 1)r7 1.
Then there exists 7. € (0,7/2) such that f is increasing on (0,r,) and de-

creasing on (7, 7/2). Hence, inf,c(o,/2) f(u) = f(0)A f(r/2) = 7. Therefore,

by using the change of variables " ~lu = s, we get that
r/2
Pt / exp (—0(r —u)?” — 0r"'u)du
0
r/2
<" lexp(—0r7) / exp (— (277 = 1)r" ') du
0
< exp(—@r”)/ e~ Dsgg = ¢ exp(—0r7).
0

In the end, we get the desired result from (2.2.10), (2.2.12) and (2.2.13). O

Theorem 2.2.10. Assume that Trunf, holds.
(1) It holds that for all 0 <t <1 and 0 < r < Ry/2 satisfying top(r—') <1,

P(S; > r) ~ tw(r).
(11) It holds that for all0 <t <1 andr > Ry/2,
P(S; > r) < (t+ (nRy —r)")t" exp (—crlogr), n:=|r/Ry]+1.
(11i) There exists a constant L > 0 such that for allr > Ry/2 and 1 <t < Lr,
P(S; > r) < exp ( — crlog %)

Proof. (i) Since Trung, implies Polyr, /2 <(2), the result follows from The-
orem 2.2.6.
(ii) Fix 0 <t < 1 and r > Ry/2. Then we set n := [r/Rs] + 1.
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(Lower bound) Let U' and U? be the driftless subordinators with Lévy
measures vi(ds) = 1 m+1),00) Y(ds) and va(ds) 1= 1(/n00) V(ds), Tespec-
tively. Note that v1((0,00)) < 15((0,00)) < w(Ry/2). Since P(S; > r) >
P(U? > r) > P(U} > r), it holds that

2P(S, > 1) 2 P(U; > r) +P(U} > 1)
>P({0<s<t:AU; >r/(n+ 1)} >n+1)
+P({0<s<t:AUZ>r/n}| >n)

Ry (T w(r/(n 4 1) w(r /o)
o (gt e

Since r/n > r/(n+1) > Ry/4 and nRy > r, we see from Trunf that

(n+1)R2—7’> RQ
Kn+1) — Kn+1)

w(r/(n+1)) = w(r/(n+1)) —w(Ry) >

and w(r/n) = w(r/n) — w(Ry) > (nRy — r)/(Kn). Then using Stirling’s

formula, since n >~ r, t < 1 and r > ry, we deduce that

n+1 pn+1 n "
P(S; > r) > e (/2 ( "R t"(nRy — ) >

2K (n + )"t (n + 1)! 2K"nmn!
> ¢i(t+ (nRy — 7)")t" exp (— carlogr).

(Upper bound) Let U? and U? be the driftless subordinators with Lévy
measures v3(ds) := 1(o,r,/9 V(ds) and v4(ds) := 1(r,/9,00) ¥(ds), respectively.
Then, S; = U} + U} and U} = ZZP:(? J; where P(t) is a Poisson random vari-

able with mean tw(Ry/9) and J; are i.i.d. random variables with distribution
Fu) =Py > u) =w(uV (Re/9))/w(R2/9). (2.2.14)

Hence, it holds that

P(S, > r) = iP(UE + U >, P(t) = j)

J=0
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<PU}>r)+ En:JP(UE + U} >r|P(t)=j)P(P@t) = j) +P(P(t) > n).

=1

By Stirling’s formula, since P(t) is a Poisson random variable and 1 <n ~r,

we see that

P(P(t) >n) <

(tw(f2/9))" "
!

< et exp (= eqrlogr).
(n+1) > C3 p( 4 g)

Next, using Markov’s inequality and Lemma 2.2.5, we get that for all u, A > 0,

B(U? > u) < e E [ exp (UF)] = e exp (t /(0 (e — 1)u(ds)>

< e Mexp ()\e’\Rz/gt/ su(ds)) = e Mexp (C5)\€AR2/9t).
(0,R2/9]

,R2/9]

Hence, by taking A = 9R; ' log(u/(9cst)), we deduce that
P(U? > u) < (9est/u)*™ ™ for all u> 0. (2.2.15)
In particular, since t <1, n~r and n+ 1 < 2+1r/Ry < 8/Ry, we get that
P(U} >r) < (90575/7’)870/]%2 < gt (90t—)/7“)8r/R2 < ct™ M exp (— crrlogr).

Moreover, when n > 3, since r > (n — 1)Ry and n ~ r, using the fact that
the jump sizes of U* are at most R, by Trunf, and Stirling’s formula, we

deduce that

n—2

ST P(UF+ UL = v | P(t) = §)P(P(t) = )

j=1

V]

n—

tiw(Ry/9) , <= thw(Ry/9)
< TP(UE >r—jRy) <) ——

< tjw(R2/9)j< 9cst )8(n_1_j) 2 e
B J! (n—j—1)Ry
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n—2

1
< et ero" ‘ ; .
]Z_; jli(n —j — 1)8n=i=D)
n—2
< eqqt"tlecrer Zexp ( —c3jlogg —8(n—j—1)log(n —j — 1))
j=1

< cpt" e nexp (— cis(n — 1) log(n — 1)) < e16t™ " exp (= cirlogr).

The seventh inequality holds by the fact that 4(aloga + blogh) > 2(a V
b)log(2(a Vb)) > (a+ b)log(a+b) for all a,b > 1 satisfying a V b > 2.

It remains to bound probabilities P(U2 + U} > r, P(t) = j) for j=n —1
(when n > 2) and j = n. Observe that by Stirling’s formula, we have

PU+ U >7r|Pt)=n—1)P(P(t)=n—1)

" Lw(R n—1 (n—1)R2 n—1
Zf_?{? /0 PP = r—u)d,P(3 J; < u)
’ i=1

S ClStn—le—cwrlogr(Al +P(UE > R2/4)),

where

(n—1)R2 n—1
Ay = —/ P(U} >r — u)duIP’(Z Ji > u).
(r—Rz/4)A((n—1)Rz) i=1

Similarly, we also have that
P(UP+ U} > r|P(t) =n)P(P(t) = n) < cyt"e 78" (Ay + P(UP > Ry /4)),

where

nR2 n
Ay = —/ PU} > r —uw)d,P(>_ J; > u).

—Ra/4 i=1

By (2.2.15), since t < 1, we have P(U? > Ry/4) < coot®.

Now, we bound A; and Aj. Since limy_,o, ¢(A)/A = 0, there exists ¢y €
(0, Ry/4) such that s¢(s™!) < 1/2for all 0 < s < ty. I[f t > tg, then A; <1<
t62t2 and 4, <1< talt and hence we are done. Suppose that t < t,.
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To bound A; and A,, we set K’ := K + 2w(R3/9)/Ry with the constant
K >1in Trun%, and claim that

o Ku \™
P Ji>mRy —u) < | —————= for allm € N, u > 0. 2.2.16
(2 SR ey (22.16)
Indeed, (2.2.16) clearly holds for all u € N and u > Ry /2 since IP( Yo di >
mRy — u) < 1. When m = 1, by (2.2.14) and Trun%,, we see that for all
u € (Oa R2/2)7

~w(Ry —u)  w(Ry—u) —w(Ry) K'u

P(J, > Ry — u) = o)~ S TaT0) < ST (2.2.17)

Suppose that (2.2.16) holds for m. Then, by using (2.2.17) and the induction
hypothesis, we get that for all u € (0, R2/2),

m+1

P(> J; > (m+1)Ry — u)

i=1

= / P(Jmp1 > Ro—u+ Y 3)dy, F(Ry — tyy) -+ - dyyy F(Ry — uy)
{27 wilu} =1
K’ / -
S— u — U; dumF(RQ—Um)duF(Rz—ul)
w(Ra/9) Jis, iy ( ; ) 1
K'u /
S —_— dumF(RQ—Um)"'dulF(Rg—Ul)
w(R2/9) Jism wi<uy

K'u " K'u mt1
(2 h i) < (otmm)

Therefore, (2.2.16) holds by induction.

We consider the following two cases separately.
Case 1. (n —3/4)Ry < r < nR;.
In this case, we have A; < P(U? > Ry/4) < coot? by (2.2.15). Besides, by
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Theorem 2.2.6, since t¢(t~) < 1/2, it holds that

r—t n nRo n
Ay < —/ PUP > r —u)d P> J; > u) - / d P i > u)
T i=1 T

—Ra2/4 —t i=1

r—t n n
< _623t/ w(r — U)duP(Z Ji > u) + P(Z J;>r—t).
" i=1 i=1

—Ry/4

Using integration by parts in the second line below, (2.2.16) in the third, the
inequality (a + b)" < 2"(a™ 4 b") for a,b > 0 in the fourth, and (2.0.4) and
the facts that n ~ r and t¢(1/t) < 1/2 in the last, we get that

n n

r—t R2/4
_ t/7~R2/4w<r — u)dup(; Ji > u) = t/t w(u)duP(; Ji > — )
= tw(RQ/ZL)P(En: Jizr— Ry fd) +t /R2/4 P(zn: Ji > r —uw)v(du)

i=1 i=1

Ra/4
< tw(Ry/4) + 026756627"/ (u+nRy —1r)"v(du)
¢
R2/4 R2/4
< tw(Ry/4) + CQGteC”"Q"/ u"v(du) + coste™"2" (nRy — 7“)"/ v(du)
¢ ¢
< tw(Ry/4) + coste™ 2" (Ry/4)" / uv(du) + cogtw(t)e™2" (nRy — )"
0
< Coge® " (E+1O(1/1) (nhly — 1)") < o™ (E + (nfty —7)").

Using (2.2.16), the inequality (a+ )" < 2™(a™ 4 b") for a,b > 0 and the fact

n =~ r again, we also get that
P( Z Ji>r— t) < g0 (t+nRy — 1) < 30 (t+ (nRy — 1)),
i=1

The proof is complete in this case.
Case 2. (n —1)Ry <71 < (n —3/4)R;.
Note that (nRy — r) ~ 1 in this case. By Theorem 2.2.6 and (2.2.16),
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since tp(1/t) < 1/2, n~r and t < 1, we see that when n > 2,

—
—

n—

(n—1)Ra—t n—
Alg—/ PUP > 7 — w)duP(S" i > w) + P(S i > (n— 1) Ry — #)

—Rap/4-t i=1 i=1
(n—1)Ra—t n—1
< —03275/ w(r — u)duIP’(Z Ji > u) + c30et

Using similar arguments to the ones for Case 1, we obtain from integration
by parts, (2.2.16) and the fact n ~ r that

(n—1)Ra—t n—1 Ro/4+t n—1
/ w(r — u)duIP’(Z Ji >u) = / w(u)du]P’(Z Ji > —u)
r—Ra/4—t i=1 r—(n—1)Ra+t i=1
Ro/4+t

< w(Ry/4+1) —|—/ ]P’(nz J; > 1 —u)v(du)

r—(n—1)Ra+t i—1
Ry /4+t
< w(Ry/4+1) + g™ / u"w(du) < w(Ra/d+t) + ez
r—(n—1)Ro+t

Since Ay < 1, we can also conclude the desired result in this case.

(iii) Pick any L € (0,1 A (R2/2)) such that w(L) > 1. Since w(0+) = oo,
we can always find such constant L. Fix r > Ry/2 and 0 < t < Lr. Let
k := |r/L] + 1 and U® be the driftless subordinator with Lévy measure
1(L,00) v(ds). Since Sy > Uy and the jump sizes of U® are at least L, using

Stirling’s formula and the inequality z'/2 < e® for x > 0, we get
P(S; > r) > P(U? > r) > P(U® jumps k times before time t)
_ k k
_ otwlD) (tw(L))* —) et > o toriw() (L
k! - EV2\Ek) — k)~

Since r/L+ 1>k >r/L>tand r > Ry/2 > L, we have

k
t L
e 2] > exp ( —rLw(L) — (1+r/L)log I >
k Lt
2r 2r T
> exp ( —rLw(L) — T log L_t) > exp < — 367 log Z)
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and deduce the lower bound.
Next, we set c37 1= fOR2 sv(ds) and X := Ry 'log(t/(2cs;7)). By Markov’s

inequality and Lemma 2.2.5, since t < Lr < r, we obtain that

P(S; > r) < e VE[e'] = e Mexp (t /0 RZ(eAS — 1)y(ds))

Ro
< e Mexp ()\e)‘R2t/ sy(ds)> = exp ( — Ar + czrAet)
0

(5 o) o) =0 (- gz
=ex - — 0 exp| —=—=1o

P Rg QTRQ & 20377’ - P 2R2 & 20377"
and hence the upper bound holds. We have finished the proof. U

2.3 Transition density estimates

Recall that S is a driftless subordinator with Laplace exponent ¢ whose
tail measure w satisfies that w(0+) = oo. Throughout this section, we also
assume that the Lévy measure v has a density function v(x) and the following

condition holds: There exists a constant Ty € [0, 00) such that

liminfzv(x) = 1/Ty with the convention 1/0 = co. (2.3.1)

z—0

(2.3.1) implies that

lim infM > l (2.3.2)

gl=o0 log(1 4 [€]) — To
Hence, under (2.3.1), by [79, (64) and (74)] (see also [99, (HW;,)]), we get

the existence of a continuous bounded transition desity of S; for ¢ > Tj.

Proposition 2.3.1. For allt > Ty, the transition density p(t,z) of S; exists

and is a continuous bounded function on (0,00) as a function of x.

In this section, we establish two-sided estimates and the exact asymp-
totic behaviors of the transition density p(¢,x). We consider the following

conditions for the Lévy measure v.
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Definition 2.3.2. Let R; € (0,00], Ry > 0 and 8y > 1 > 0 be constants.
(i) We say that Poly?}, (31, 2) holds if there are ¢y, c; > 0 such that

146 148

c1<f> ' < @ gcg(f> ’ forall 0<s<r< R;. (2.3.3)
s v(r) s

We say that Polyg, ~(B2) (resp. Polyg, - (81)) holds if the upper bound

(resp. lower bound) in (2.3.3) holds.

(ii) We say that Regg, holds, if there are constants ¢1,9 > 0 such that

-5
ﬁzc;g(t) forall 0 <s<r <R;.
v(r) s

(iii) We say that Douf, holds, if there are c1,cy > 0 such that

crsupv(u) < v(r) and cv(r/2) <wv(r) forall r > R;.
u>r
(iv) We say that Poly;° (51, f2) holds if (2.3.3) holds for all 7 > s > R;. We
say that Polyy > (82) (resp. Polyy % (1)) holds if the upper bound (resp.

lower bound) in (2.3.3) holds for all r > s > R,.

Remark 2.3.3. (i) If Poly} - (5:) holds, then Regg, holds and the condi-
tion (2.3.1) holds with Ty = 0.
(ii) The constant 1 in Polyy, - (B1) should be less than 1. Indeed, since

Ry/2 r
00 > / sv(s)ds > cl(Rl/Q)_l_Blv(Rl/Z)/ s Pds,
0 0

it must hold that 5, < 1.

(iii) The condition Regg, is very mild. For instance, if the Lévy density is al-
most decreasing, then it holds trivially. Therefore, every subordinator whose
Laplace exponent is a complete Bernstein function satisfies this assumption
since its Lévy measure has a completely monotone density. (See [116, Chapter

16] for examples of complete Bernstein functions.)
Recall that 2e H()\) > w(1/A) for all A > 0. Thus, H = 1(1/t)* > w=*(2¢/t)
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for all t > 0. We define for t > 0 and y > 0,

D(t) =t max sH(s™ ! 2.3.4
(*) s€fw=1(2e/t),H-1(1/t)~1] (s7) ( )

and

HY(1/t)7! ify < H1(1/t)7
O(t,y) == ¢ min{s > w ' (2e/t) : tsH(s™ ") <y} ifye[H(1/t)"",D(t)],

w1 (2e/t) if y > D(t).
(2.3.5)

Note that the minimum in the definition of § attained at some s € [w™(2e/t), H~(1/t)71].

We observe that for each fixed ¢t > 0, the map y — (¢, y) is nonincreasing
and for each fixed y > 0, lim;_,0 0(¢,y) = 0 and lim;_,, 0(t,y) = oo.

Recall that b(t) = (¢'ocH~')(1/t) and o = o (t,7) = (¢')(r/t) Li0,¢(04)) (1/1).

The following theorems are the main results of this section. See Figure 2.1.

Theorem 2.3.4. Assume that Poly% (51, 82) holds. Then, for every T > 0,
there exist constants cy,co,c3,¢5 > 1 and ¢4 > 0 such that the following
estimates hold for all t € (0,T].

(i) (Left tail estimates) It holds that for all x € (0,tb(t)],

N (—tH(0)) < p(t,z) < N eo (—tH(0)). (2.3.6)

In particular, it holds that for all x € (0,tb(t)],
t
¢y ' H ' (1/t)exp (—2tH(0)) < p(t,z) < coH™'(1/t) exp (—§H(0)). (2.3.7)

(ii) (Right tail estimates) Assume also that sup,>p, v(r) < oo. Then it holds
that for all y € [0, Ry/2),

Cngl(l/t)min{l, inﬁ-exp(— o CaY )}
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< plt,tb(t) +y) < csH~1(1/t) min {1, % +exp (- m)} ,
(2.3.8)
where 0(t,y) is defined as (2.3.5). In particular, for all y € (D(t), R1/2),
cs v (y) < p(t, th(t) +y) < cstv(y). (2.3.9)
Moreover, if Douf, also holds, then (2.3.8) holds for all y € [0,00), and

(2.3.9) holds for all y € (D(t), c0).

H (1)

H’l(l/t)exp(ftH(U)) H(1/1) exp(—ﬁ) +tr(y)

tbl(t) tb(tl) +H Y1/ D(t)

Figure 2.1: Dominant terms in estimates

Corollary 2.3.5. Assume that Poly}, (81, 32) holds with (; < 2. Then, for
every T > 0, there exists ¢; > 1 such that for allt € (0,T] and y € [0, R1/2),

it (HH(1/t) Atv(y)) < plt,tb(t) +y) <o (H'(1/t) Ate(y)) . (2.3.10)

Therefore, there exists co > 1 such that for allt € (0,T] and x € (0, Ry/2),

1 [oxp (—tH(0)) Sl
ez min { =2 (o - 0. }
exp (— tH(0))

t(—¢"(0))

34
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and

¢;'H™(1/t) min { exp (— 2tH()), tv((z — th(t).) }

H-1(1/t)
tv (@ —tb(t)))

< p(t,x) < coH *(1/t) min { exp (— %H(a)), T } (2.3.12)

Moreover, if Douy, also holds, then (2.3.10) holds for all t € (0,T] and
y € 10,00), and (2.3.12)~(2.3.11) hold for all t € (0,T] and z € (0, c0).

Below, we give large time transition density estimates. Recall that we
have assumed (2.3.1) with the constant T € [0, 00).

Theorem 2.3.6. Assume that Regg, and Poly};>* (51, 82) hold.
(i) There exist constants Ty > Ty, c¢1,c2,¢3,¢5 > 1 and ¢y > 0 such that
for all t € [Ty,00), (2.3.6) holds for all x € (0,tb(t)], (2.3.7) holds for all
x € [th(Ty),tb(t)], (2.3.8) holds for all y € [0,00) and (2.3.9) holds for all
y € (D(t),00).
(i) If Ty = 0, then for every T > 0, there are comparison constants such
that for all t € [T,00), (2.3.6) holds for all x € (0,tb(t)], (2.3.7) holds for
all x € [th(T), th(t)], (2.3.8) holds for all y € [0,00) and (2.3.9) holds for all
y € (D(t),00).
Corollary 2.3.7. Assume that Regg, and Poly (51, f2) holds with 3, <
2. Then, there exist constants Ty > Ty and ¢; > 1 such that (2.3.10) holds
for allt € [T1,00) and y € [0,00), and that (2.3.11) ((2.3.12), respectively)
holds for all t € [T7,00) and x € [tb(1}),00) (and x € (0,00), respectively).
Moreover, if Ty = 0, then for every T > 0, there are comparison constants
such that (2.3.10) holds for allt € [T,00) and y € [0,00), and that (2.3.11)
((2.3.12), respectively) holds for all t € [T,00) and x € (0,00) (and = €
[tb(T), 00), respectively).

When Poly3; >, (51) holds with 3, > 1, we can find a monotone function

which is easy to compute and can play the same role as the function 6. Define

H(r) ;= inf !

2 SH(s ) and A u) :=sup{r e R: H#(r) < u}.
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Using the above function 7, the large time right tail estimates in Theorem
2.3.6 can be simplified as follows. See Figure 2.2 also.
Note that ¢'(0) is finite if Polyy % (81) holds with 8, > 1. See (2.3.59)

and the line below.

Corollary 2.3.8. Assume that Regg, and Polyy (51, f2) holds with 3, >
1. Then, there exist constants Ty > Ty, ¢1 > 1 and co,c3 > 0 such that for all
t € [T1,00) and y € [0,00),

< p(t,1¢/(0) +y) < et H'(1/t) min {1’ Ht—yl((?ﬁt) e (- ff‘cfzf/y)> } ’

Moreover, if Ty = 0, then for every T > 0, there are comparison constants

such that the above estimates hold for all t € [T, 00) and y € [0,00).

The above corollary may be considered as a counterpart of [5, Theorem
1.5(2)] where a similar result was obtained for symmetric jump processes.
Since Poly%, (51, 52) can not holds with 3; > 1 by Remark 2.3.3(ii), there is

no analogous result to Corollary 2.3.8 concerning small times estimates.

p(t, ‘T) H—l(l/t)

- y
HY1/t)exp ( — i) )

H™'(1/t)exp (— tH(0))

————exp(—tH(o
ey e

wl’(:s) 0

)
th(t) = ¢~ (1/t)" H'1/t)™ < cHY1/t)  ogt

/(0)

Figure 2.2: Large time estimates when 5 > 1
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In Figure 2.2, p(t, ) satisfies (2.3.7) for all x € (0,tb(t)] if Poly}y, »(51)
also holds. We also note that in Figure 2.2, the exponential term in right tail
can be the dominant term in estimates only in an interval whose length is
smaller than a constant multiple of H~*(1/t)~!logt. This fact can be proved
by using Lemma 2.3.14.

Our main theorems also cover the cases when 5; < 1 and 8, > 2. In such
cases, the exponential term in the right tail estimates may have an effect

on the estimates at specific times but no effect at other time values. (See,
Section 4.2.)

2.3.1 Some consequences of Poly}, (51, 52)

Recall that H(A) := ¢(A) — A@/(\) for A > 0. Using the inequality 1 —e™* —
re ™ > x%/(2e) for 0 < x < 1, we see that for every A > 0,

1/ A2 [N
H(\) > / (1 —e — Xse ™)v(s)ds > =— s*v(s)ds.  (2.3.13)
0

2e Jo

Denote by ¢ the n-th derivative of the Laplace exponent ¢. Using the

expression (2.0.2), we get the following lemma.

Lemma 2.3.9. Suppose that Reggr, holds.
(i) For every Ao > 0, there are constants ¢, >0, n =1,2,... such that

1 1

e ! /A s"v(s)ds < |o™(N)] < cn/ s"v(s)ds  for all X > Ao andn > 1.
0 0
(i1) For every \g > 0, there are constants ¢, > 1, n = 1,2, ... such that
M E2N)| < 0™ (V)| < o™ (2N)|  for all X > Ng and n > 1.
(i1i) For every \g > 0, there are constants ¢ >0, n = 1,2, ... such that

MG < G| for all A > Do andn > 1.
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Since Poly}, - (B1) implies Regg,, the results of Lemma 2.3.9 hold true
under Polyy, - (81). We get analogous results under Poly}f2 (51).

Lemma 2.3.10. Suppose that Poly;> (B1) holds.
(i) For every Ao > 0, there are constants ¢, >0, n =1,2,... such that

1 1
et /A s"v(s)ds < |p™M(N)| < cn/A s"v(s)ds for all 0 < A < Ao andn > 1.
0 0

(ii) For every \g > 0, there are constants ¢, > 1, n=1,2,... such that
M E2N)| < o™ (V)| < ™ (2N)| for all 0 < X < \g andn > 1.
(i1i) For every \g > 0, there are constants ¢ > 0, n =1,2,... such that
AUV < o™ (V)| for all 0 < A< Ng andn > 1.

From the definition of the tail measure w, we deduce the following result

from Lemma 2.1.1.

Lemma 2.3.11. Suppose that Polyy, - (51) holds.

(i) There are constants ¢y, co > 0 such that
crv(2r) <w(r) < cgrv(r)  for all 0 <r < Ry/2.

Therefore, if Polyg, (81, B2) holds, then w(r) ~rv(r) forr € (0, R1/2).
(i1) There is a constant cz > 0 such that

w(s) 7\ A1
> — <
w(r)_c3 (s> forall 0 <r < R < Ry/2.

(iii) For every ro > 0, there is a constant ¢4 > 0 such that

N B1
H(s) >y (g> forall ro < s <.
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In particular,

" 1/p1
< 021/51 (—) for all H(rg) <u<t.

u

(iv) For every A\g > 0, there are comparison constants such that
1/A
H(\) ~ )\2/ s*v(s)ds ~ N2 (—¢"(N))  for A > ).
0

Lemma 2.3.12. Suppose that Poly;> (B1) holds.

(i) There are constants ¢y, co > 0 such that
crv(2r) < w(r) < corv(r)  for all r > Rs.

Therefore, if Poly;° (81, B2) holds, then w(r) ~ rv(r) for r € [Ry, 00).
(i1) There is a constant cz > 0 such that

B1
> c3 <£> forall r > s> R,.

(iii) For every ro > 0, there is a constant c3 > 0 such that

H B1A(3/2)
23263<£) forall 0 <s<r<R<r,.

=

In particular,

forall 0 <u <t < H(rg).

: 1/B1)V(2/3
H 1(t) < C—((1/51)\/(2/3))<t)( /B1)V(2/3)
u

H-Y(u) = 7 u
(iv) For every A\g > 0, there are comparison constants such that
/A
H(\) ~ )\2/ s (s)ds ~ N2(—¢"(N))  for 0 < X < ).
0

Since the Lévy density v(z) (locally) decays in polynomial orders, using

the fact sup,.,z¥e™* < 0 for all k > 0, we get the following two lemmas. See
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[55, Lemmas 2.5 and 2.6] for the proofs.

Lemma 2.3.13. (i) Suppose that Poly}, (81, B2) hold. Then, for everya,T >
0, there exists ¢y > 0 such that for allt € (0,T] andy € [H *(1/t)", Ry /2),

ay tv(y)
exp ( - wl(%/tQ < g (2.3.14)

Moreover, if Douy also holds, then (2.3.14) holds true for all t € (0,T]
and y € [H™1(1/t)71, 00).
(i) Suppose that Poly > (b1, B2) hold. Then, for every a,T > 0, there exists
c1 > 0 such that (2.3.14) holds for all t € [T,00) and y € [H*(1/t)"' Vv
Ry, 00).
Lemma 2.3.14. Suppose that Poly;* (81, 82) hold. Then, for every a,T >

0, there exist ¢ > 0, co > 1 such that

exp<_#)g _tly)

Jorallt € [T,00) and y > (coH*(1/t) " log(e + t)) V Ro.

2.3.2 Left tail estimates

In this subsection, we study left tail estimates on p(t,x). We first present a
result established in [75] which holds under Poly}, - (/51).
Recall that o = o(t,7) := (¢ 1) (r/t) 10,0 (04)) (/1)-

Proposition 2.3.15. Suppose that Polyy, - (51) holds. Then, for every T >
0, there exist constants My > 0 and C > 1 such that for all t € (0,7,

C’_leXp ( — tH(a)) < plt.z) < Cexp ( — tH(o))

t(=¢"(0)) Vi(=¢"(0))

€ (0, tb(t/Mp)].
(2.3.15)

Proof. By Lemma 2.3.11(iii, iv), we see that for every x, > 0, the condition
—¢" € WLSC(ay — 2,¢,20) in [75, Theorem 3.3] is satisfied with some con-

stant ¢ > 0. Since x — o (¢, x) decreases for each fixed ¢, we have that, for all
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t € (0,7] and x € (0,tb(t/My)],
o(t,x) > ((¢') ™ 0 b)(t/Mo) = H ' (My/t) > H™' (Mp/T).
Also, by the above inequality and Lemma 2.3.11(iv), it holds that
to*(—¢"(0)) > citH (o) > eyt H(H *(My/t)) = 1. M.

Therefore, we obtain the result from [75, Theorem 3.3]. g

Now, we establish left tail probabilities under Regg, and Poly}}’;’j’2 (51)-
Define a function M : (0, 00) x (0,00) X (—00,00) — C by
i , i

M(s, z,u) = ¢(z + s(—gb”(z))) o(z) — ¢'(2) EETE (2.3.16)

In the setting of [75], the Laplace exponent ¢ should satisfy a lower weak

scaling condition at infinity (i.e., the lower Matuszewska index (at infinity)

of the function ¢(A)1 >1y should be strictly bigger than 0) so that the map

u — e tME) for each fixed ¢t > 0 decreases at least subexponentially. This

property plays an important role in the proof of [75, Theorem 3.3]. Unlike

[75], in our setting, the Laplace exponent ¢ can be slowly varying at infinity

so that the map u +— e *M&%% can decay only in polynomial orders. Thus,

we need significant modifications in the proof of the next proposition.

Proposition 2.3.16. Suppose that Regg, and Poly; % (51) hold. Then,
there exist constants Ty > Ty, My > 0 and C' > 1, where T} is the constant
in (2.3.1), such that (2.3.15) holds for all t € [T}, 00) and x € (0,tb(t/My)].
Moreover, if Ty = 0, then for every T' > 0, there exist constants My > 0
and C > 1 such that (2.3.15) holds for all t € [T1,00) and = € (0,tb(t/My)].

We need the following lemma in the proof of Proposition 2.3.16.

Lemma 2.3.17. For every constants a > 0 and 6 € (0,1), there exists a
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constant & > 0 such that
. ds
/ (1— cos(¢s) ™ > (1= 0)log(14+€) for all € > &.
0 s

Proof. Let U be a Gamma subordinator whose Laplace exponent is log(1+\).
It is known that the Lévy measure of U has the density function s~te™*. By
the analytic continuation of Bernstein functions (see, e.g. [116, Proposition
3.6]), it holds that for all £ € R,

log /1 + &2 = Re log(1 + i€) = /00(1 — e %) s e s
0
= /Oo(l — cos(€s))s e ds.
0
For any constant a > 0, we see that
/oo(l —cos(€s))s e *ds < 2/00 sTteds < 00

and hence

1 — tm log /1 +¢&* o Jo (1 —cos(&s))ste*ds
= im

1m =
o0 log(1+E) €0 log(1+¢)
< lim INCE cos(gs))s_lds'
£—00 log(1+¢)
This yields the desired result. U

Proof of Proposition 2.3.16. Recall that M is defined in (2.3.16). By the

Fourier-Mellin inversion formula and a change of variables, we get that

€—t¢(0)+crx 00 ' |

p(t,x) = Tor /OO exp < —t(¢(o +iu) — ¢(0)) + w:zc) du

e—td(o)—0d' (o)) oo ' »

- /_oo exp ( — t(¢(o + iu) — ¢(0) — iud (U)))du
_tH( : = t./\/[(t )
T d, 2.3.17
QWW ( )
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whenever the last integral above converges. Note that the complex conjugate
of M(t,0,u) is M(t, o, —u) so that e~ MEow) L e=tMto—u) ¢ R for allt, o > 0

tM(tou)| is integrable on R with respect to

and u € R. Hence, whenever |e~
u, using the equality [*0 e "Mt dy = [*(e7tMbou) 4 e tMEomw)) gy we
deduce that p(t,x) is a positive real number.

Let 11 € (Tp, 00) be a constant which will be chosen later. Pick a constant
e € (0,1) such that (1 —¢€)T7 > Ty. By (2.3.1) and Lemma 2.3.17, there exist

constants o, & > 0 such that

v(s) > %ﬂsl for all s € (0,0, |log(1 — €¢/2)]) (2.3.18)
0
and
[log(1—/2)| d 1
/0 (1— COS(fS))?S > @ log(1+¢&) forall &> &.

Using (2.3.18), (2.3.18) and a change of the variables, we get that for all

t>T, 0>0and |u| > &(og Vo)/t(—¢"(0)),

us

Re tM(t, o,u) = t /0 e (1 — cos m) v(s)ds

[log(1—e/2)]|

2(1_76;)/2)%/0 (l_cosx/it(—u;"(a)))%

(et st us ds
B Ty /o (1 (0o V o)y t(—fﬁ"(U))) §
€)t U
Ty o (1 i (o0 V 0)\/t(—¢”(0’)))' (2319

Since (1 — €)t/Ty > (1 — €)Ty /Ty > 1, we see from (2.3.19) that |e~*Mtow)|
is integrable on R with respect to u. Therefore, (2.3.17) holds true for all
t > Ty and z € (0,t¢'(0)).

Define for t,0 > 0,

To = Tolt, o) == (00 V O)VE(=0"(0)) and T =T(t,0) == o/i{~9/ (o).
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Clearly, 7o > T. For allt > 0, M > 0 and = € (0,tb(t/M)), if 0 > 09, then
1/0’ 1/0’ Clt
T > 0275/ s’ v(s)ds > 010275/ s’stds = -5 (2.3.20)
0 0
by (2.3.1), and if o < gg, then
T2 > ot H(o) > cot(H o ¢/t 0 b)(t/M) = ;M (2.3.21)

by Lemma 2.3.12(iv) and the monotone property of 0. We will prove that

lim e~ M) gy — / e 3% du = v/2r. (2.3.22)

T—oo J_ o oo

Assuming (2.3.22) for the moment. By (2.3.17), there exists ¢3 > 0 such
that (2.3.15) holds if 7 > ¢3. Then by taking T} = 2c¢3/c; and My = c¢3/ca,
we deduce from (2.3.20) and (2.3.21) that (2.3.15) holds for all ¢ > T} and

x € (0,tb(t/My), and conclude that the first assertion holds true.
Now, we prove (2.3.22). First, we see from (2.3.19) that

o0 u\ ~(=9T/To
‘ / e tMtow) gy, | < 2/ (1 + _) du < co.  (2.3.23)
|u|>&0To §

070 0
Next, by Taylor’s theorem, it holds that

1
‘ tM(t, o,u) — §u2

(oo + 70 - 600 - H() F0) - 307

2 |
(6ot 22) - 1’

u?
2

sup
z€[—|ul,|ul]
u2
= ———— sup

2(=¢"(0)) zel—fulul

— o+ 22 + (o)

Note that, since |sinz| < |z| for all z € R, we get that for all |z| < |ul,
S / 826—0'8
0
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00
— 2/ 526705
0

Thus, we deduce that

oz

27—)‘ U|u|/ 3,-05,, _ %m¢///(g)‘

sin(

0d"(0)

L,
’t./\/l(t,a,u)——u < mu

2

Combining with the fact that |e* — 1| < |z|el*! for z € C, we obtain that for
all u € R,

e—t/\/l(t,a,u) =Ly 2

1
e 2 — e 24

exp (%uQ — tM(t, o, u)) -1 ‘

1 "
e (- ot ).

Below, we consider the cases 0 > (¢ and o < oy, separately.

0_¢/1/(0_)

< T (2.3.24)

(Case 1) Assume that o > 0y. By Lemma 2.3.9(iii), there exists ¢4 > 0
such that 0¢" (o) < cy(—¢"(0)). Let & = (2¢4) ' A&. Using (2.3.24), we get
that

1 c
emtMtow) _ )du <5 u exp(— (———4 >u2>du
‘/|;<€1T T 0 2 2T
&aT 1
<2 [T (- (3- ) )
& 1
< 0_5/0 u?’exp<— Z—luz)du < ;—?. (2.3.25)

On the other hand, note that o|u|/T > 00& for |u| > & T. Hence, by Lemma
2.3.9(i), since 1 —cosr > <472 for all |r| < 1, we have that for all |u| > &T

T/(olul) s
Re tM(t,o,u) > t/ (1 — cos T)ef"sy(s)ds
0

cos 1 o?u? T/(elul)
>t — e T/ / s*v(s)ds
2 77 0

T2 ‘¢”(‘7’u‘/7-)’ (2.3.26)
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It follows that

’ / e—tM (t,o,u) du
& T <[ul<0To

o?u?
<9 < . —1/$1t 1 )
< 2T max exp (= ere VSt |¢" (ou/T)|

< 26T exp (— cre” V9t 0”|¢" (o))

< 26T exp (= esto’o"(0)]) = 26T exp (=~ 7). (23.27)

We used the fact that 7o = 7 under the assumption o > o0¢ in the first
inequality and Lemma 2.3.9(ii) in the third.

Eventually, by the triangle inequality and inequalities (2.3.23), (2.3.25)
and (2.3.27), we obtain

/(6—t./\/l(t,a,u) . e—%zﬂ)du
R

6 0 u\ ~(-OT/To S
< —+2§oTexp(—cST2) +2/ (1+—) du+2/ e 2" du
T &T T ot

— 0 as T — oo. (2.3.28)

(Case 2) Assume that o < gy. We follow the proof for (Case 1). First,
using Lemma 2.3.10(iii) instead of Lemma 2.3.9(iii), (2.3.25) still hold with
possibly different constants &; and ¢g. Next, note that o|u|/T < oy for |u] <
oo in this case. Hence, by Lemma 2.3.10(i), (2.3.26) holds for all |u| < &7
with some ¢; > 0. Also, by Lemma 2.3.12(iv), we see that 72 ~ tH (o) and
o?u*T 2 ¢" (o|u|/T)| =~ H(c|u|/T) for |u| < &/To. Using these comparisons
and (2.3.26) in the first line below, Lemma 2.3.12(iii) and a change of the
variables in the second, the fact that sup,.¢, 2%/%1e"*/% < oo in the third,
and Lemma 2.3.12(iv) in the last, we get that for 5] := 1 A (3/2),

' / e—tM(t,U,u) du
&7 <ul<&7To

&07To
< 2/ exp (= cotH(ou/T))du
&aT
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&7o , , §To/T )
< 2/ exp (— ciptH(o)u T P1)du = 2T exp (— ciptH(o)u™)du
3

1T &1

<enTexp (- DiH (o)) /5 (tH (o)) /5% du

< cnT " Pexp (= esT?). (2.3.29)

Using (2.3.29) instead of (2.3.27), we can see that (2.3.28) is still valid. This
finishes the proof for (2.3.22).

Now, we further assume that T, = 0 and prove the second assertion.
Choose any T' > 0. By (2.3.17), since the first assertion holds true, it suffices
to show that there exist constants ¢4 > 1 and My > c§ /ca such that for all
t € [T,2c3/cq] and x € (0, tb(t/My)],

e < /OO e~ Mo gy < ey, (2.3.30)
Note that (2.3.19) is still valid with possibly different constants €, oy and
&. Hence, we have [~ e ™Moudy € R for all ¢ € [T,2¢;"¢cs3] and o > 0.
Also, since inequalities (2.3.23), (2.3.25), (2.3.27) and (2.3.29) still work, by
a similar argument to (2.3.28), we see that there exists ¢;5 > 0 such that if
T = o+/t(—¢"(0)) > 15, then (2.3.30) holds. Therefore, it remains to prove
that for the set A :={(t,0): t € [T,2¢c3/c1], 0 >0,0<T <ci5},

o) [e.e]

inf / e MBS gy~ sup / e Mt gy ~ 1. (2.3.31)
(t,o)eA J _ o (t,o)eA J —0

Recall that T2 > ¢, M, if 0 < 0¢. By taking M larger than c,'c2;, we

obtain A C [T, 2¢c3/c1] X [0¢,00). Besides, since Ty = 0, we see that

1/o
lim o?(—¢"(0)) > lim 6_102/ s(sv(s))ds
0

T—00 g—r00

> (2¢) 'liminf inf (sv(s)) =oo.  (2.3.32)

oc—00 0<s<l/o
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for all 0 > o7 and hence A C [T, 2¢c3/c1] X [09,01] =: Ay. Clearly, (t,0) —
foo e—t./\/l(t,a,u

—00

)du is a continuous function on Ay. Therefore, we obtain (2.3.31)

from the extreme value theorem. O

Using (2.3.17) and (2.3.22), we obtain the following corollary.

Corollary 2.3.18. Suppose that Regg, holds. Then, for every N > 0,
tlirilop(t,x) t(—¢"(c)) exp (tH(0)) = (27)~Y%  uniformly in = € (0, N].

If we also assume that (2.3.1) holds with Ty = 0, then for every N > 0,
iig(l)p(t,:v) t(—¢"(c)) exp (tH (o)) = (27)"Y2 wniformly in t € [N, c0).

Proof. Let N > 0. Fix a constant o so that (2.3.18) is satisfied with e = 1/2.
Write T = T (t,0) := 0/t(—=¢"(c)) as in the proof of Proposition 2.3.16.
Similar to (2.3.20), we see from (2.3.1) that 72 > ¢;t/2 if ¢ > 0y. Since
Lemma 2.3.9 holds under Regg, only, we can use it and follow (Case 1) in
the proof of Proposition 2.3.16 to see that (2.3.28) holds if o > oy.

By the monotone property of o, we see that o(t,z) — oo as t — oo
uniformly in = € (0, N]. Hence, there exists a constant ¢y > 27} such that
for all t > ¢y and x € (0, N], it holds o > ¢ so that T2 > ¢;t/2 and (2.3.28)
holds. Therefore, by (2.3.17) and (2.3.22), the first assertion holds true.

Now, we further assume that T; = 0. Using the monotone property of
o again, we see that there exists a constant xy > 0 such that ¢ > o( for
all t > N and z € (0,zy). Hence, (2.3.28) holds for all t > N if z < zy.
Moreover, by (2.3.32), we get that lim, o7 = oo uniformly in ¢ € [V, 00)
since t — o is increasing. Therefore, the second assertion also holds true by
(2.3.17) and (2.3.22). O

A similar result to Corollary 2.3.18 is obtained in [75, Section 3]. Note
that since condition Regpg, is very mild, our result covers geometric stable
subordinators and Gamma subordinators (see, [55, Example 3.4]), which are

not covered in [75, Corollary 3.6].
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2.3.3 Estimates on the transition density near the max-
imum value
Lemma 2.3.19. [55, Lemma 3.5] Let f : I — [0,00) be a nondecreasing

function defined on an interval I C [0,00). Assume that there exist constants

a € [0,00), B,¢c1 > 0 such that

f(r2)
f(r)

B

,

> (—2> forall a<ry <ry (resp. 0 <1 <71y <a).
]

Then, for every co > 0, there exists a constant c3 > 0 such that

/00 exp (— et f(€))dE < csf 71 (1/t)  for all t € (0,1/f(a)),
(resp. /Oa exp (— cat f(€))dE < csf~H(1/t)  for all t € [1/f(a),oo),)

where f~1(s) :==inf{r > 0: f(r) > s} with the convention that inf () = co.

Proposition 2.3.20. (i) Suppose that Poly}, - (81) holds. Then, for every
T > 0, there exists a constant C > 0 such that for all t € (0,71,

supp(t,x) < CH '(1/t). (2.3.33)
r€R
(i1) Suppose that Poly}f;ézf’Z (B1) holds. Then, for every T > Ty, where Tj is
the constant in (2.3.1), there exists a constant C' > 0 such that (2.3.33) holds
for allt € [T, 0).

Proof. Since the proofs are similar, we only give the proof for (ii) which is
more delicate.

(i) Fix Tp < 7" < T. By (2.3.1), there exists a constant sy > 0 such that
v(s) > 1/(2Tps) for all s € (0, s¢]. By the Fourier inversion theorem, we get
that for every t > T and z € R,

1
2

plta) = oo [ e
R
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<t et gg + 1 / e~ (=T")o(=i6)|| ~T"0(~i6)| g
21 Jie1<1/s0 27 Jie1>1/50
= ]1 + Ig.

By Lemma 2.3.12(iv), using the facts that cosy < 1 for all y € R and
1 —coss > s%/4 for all |s| <1, we get that for all [£] < 1/s,

e~ 10| = exp ( — t/ooo(l - cos(&s))u(s)ds)
< exp ( - t/ol/g(l — cos(ﬁs))v(s)ds)

1/¢
< exp ( - clt§2/ 821/(s)d3)
0

< e 2tH(§)

Hence, by Lemma 2.3.19,
1/soVH~1(1/T)
L <= / e 2O de < csH7Y(1/1).
0

On the other hand, since 7" > Ty, we see from (2.3.2) that |e~7"¢(=¥)| =
e~ T'Red(=i8) ig integrable on R with respect to &. Therefore, using the facts
that cosy < 1 for all y € R and 1 — coss > s?/4 for all |s| < 1 again, and
(2.3.1), we get

IQSL( sup |6—(t—T/)¢(—i£)|>/ |6—T’¢(—i£)|d§
27\ lel>1/50 1>1/50

< ¢4 sup exp < — (=T /oo(l - cos(fs))y(s)ds>

[€]>1/s0

0
1/¢
<¢4 sup exp < —c(t— T’){Q/ SQI/(S)CZS>
0

|€1>1/s0

1/¢
<c¢4 sup exp < —c5(1 — T’/T)t§2/ 323_1ds>
0

|€1>1/s0

= c e C0t,
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Lemma 2.3.12(iii) implies that H~(1/t) > cgt=((/AOVE/A) for all ¢ > T

Since sup,p t/AVE/B el < o0, the desired result holds true. O

Now, we find a range of x which achieves the maximum value of p(¢, x).
A similar result to the following proposition was established in [77, Theorem
5.3] which considers a class of Lévy processes whose Lévy measure dominates
some symmetric measure. Note that since subordinators are nondecreasing,
we can only push the y-variable to the positive direction in the following
result, unlike [77, Theorem 5.3].

In the following proposition, we let My > 0 be the constant in Proposition
2.3.15 in the first assertion, and the constant in Proposition 2.3.16 in the

second.

Proposition 2.3.21. (i) Suppose that Polyy, - (81) holds. Then, for every
N, T >0, there exists a constant C' > 1 such that

CTH Y (1/t) < p(t, th(t/(2My)) +y) < CH'(1/1), (2.3.34)

forallt € (0,T] and 0 <y < NH'(1/t)~%.

(i) Suppose that Regr, and Polyy . (81) hold. Then, for every N > 0,

there exists a constant C' > 1 such that (2.3.34) holds for all t € [2T},00)

and 0 <y < NH-Y(1/t)~ with the constant Ty in Proposition 2.3.16.
Moreover, if Ty = 0 in (2.3.1), then for every N,T > 0, there ezists a

constant C' > 1 such that (2.3.34) holds for all t € [T,00) and 0 < y <

NH-Y1/t)~1.

Proof. By Proposition 2.3.20, it remains to prove the lower bound. Since the
proofs are similar, we only give the proof for (i).

Let T > 0. For p € [1,4], we observe that for all ¢ > 0,

b(t/(pMp)) < b(t/Mo) and  ((¢/)" o b)(t/(pMo)) = H ' (pMy/1).

Hence, using Proposition 2.3.15 and Lemma 2.3.11, we get for all ¢ € (0,7
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and p € [1,4],
S cre PMo
~ V(97 0 H71)(pMo/t))]

coe Mo
H Y (pMy/t) > csH*(1/t).  (2.3.35)
pMy

p(t, th(t/(pM)))

>
By Lemma 2.0.1 and 2.3.11(iii),
th(t/My) — tb(t/(4My)) > caH 1 (1/t)™1 for all t € (0,T]

Thus, for all ¢ € (0,7] and u € [0,c,H(1/t)!], there is p € [1,4] such that
th(t/My) — u = tb(t/(pMpy)) by the intermediate value theorem. By (2.3.35),
it follows that

p(t, tb(t/My) —u) > csH '(1/t) for all t € (0,T], u € [0,caH 1 (1/t)7"].
By the semigroup property, we deduce that for all ¢ € (0,7 and y > 0,

p(26, 200t/ My) + y) — / p(t, th(t/Mo) — w)p(t, th(t/Mo) + y + u)du

R
caH-1(1/6)~1
> | p(t, th{t/Mo) — wyplt, 1h(t/My) + y + u)du
0
> chfl(l/t)P@ < Sy —th(t/My) <y + c4H’1(1/t)’1>.
Therefore, since H'(1/t) ~ H~*(1/(2t)) for t € (0,T] by Lemma 2.3.11(iii),

to get the desired lower bound, it suffices to show that for each fixed N > 0,
the following inequality holds true:

inf inf P( < S, —tb(t/M,) < H_llt_1>>()_
telg%,T] yE[O,Nér—ll(l/t)—l] Yy=>mwn ( / 0) <y+cy ( / )
(2.3.36)

Let (t, : n > 1) be a sequence of time variables realizing the infimum
in (2.3.36). Since T is finite, after taking a subsequence, we can assume

that ¢, converges to t, € [0,T]. If t,. € (0,7, then since the support of the
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distribution of Sy, is (0, 00), we obtain (2.3.36). Hence, we assume that ¢, = 0
and all ¢,, are sufficiently small.

Define v,,(s) := 1(o.g-1(1/1,)-1 ¥(s) and let S, be a driftless subordinator,
whose Lévy measure is given by v,(s)ds. Then, for all u > 0, S, = Su + P,,
P-a.s. where P is a compounded Poisson process, whose Lévy measure is
given by 1(g-1(1/1,)-1,00) ¥(5)ds. By (2.0.4), we have

IP’(S’tn =5;,)=P(P, =0) =exp ( — tnw(Hfl(l/tn)’l))
> exp (— 2et,(Ho H ') (1/t,)) = e

Hence, to prove (2.3.36), it is enough to show that

lim inf inf IP( < Sy —tab(t,/ M) < H‘lltn‘l) 0.
oo yG[O,NHl_nl(l/tn)_l] Y=ot (ta/Mo) <y +cy (1/t) g
(2.3.37)

Define Z,, = Hil(l/tn)(gtn — t,b(t,/Mp)). Then, for £ € R,

E[exp(i{Zn)} = exp ( — i{th_l(l/tn)b(tn/Mo)>E[GXP (ifH_l(l/tn)gtn)]

— exp (—igth‘l(l/tn)b(tn/Mo) tt, / h (eifH”(l/tn)s - 1>un(s)ds) .
0

Therefore, by a change of variables, we get E[exp(i£Z,)]| = exp(V¥,(£)) for
all £ € R and n > 1 where

w9 - [ ) (6 SRS, ) M(s)ds — i€,

1442
An(s) =t H ' (1/t,) v (HH(1/t0) '),

o =t H (L t)b(t /My) — / N

s
e An(s)ds.

We claim that the family of random variables {Z,, : n > 1} is tight. Indeed,
according to [81, (3.2)], it holds that for all n > 1 and R > 1,

00 2
P(Z, > R) < 05/ (% A 1) An(s)ds
0
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+ C5R71

+/Oo ® \(s)d /R ol An(s)d
Tn . 1—|—s2ns S ; 1+s2n8 S

= 05([1 + [2)

By a change of variables and (2.3.13), we see that
o0 H—l 1 tn 2U2
IL = tn/ <% A 1) vn(u)du
0
H=Y(1/tn) ™
= R_2th_1(1/tn)2/ w?v, (u)du
0

< 2eR*t,H(H '(1/t,)) = 2R 2.

Besides, by a change of variables, using the fact that the support of v, is

contained in (0, H'(1/t,)"'] in the first inequality below, the facts that for

every a > 0, 1 — e < a and sup,.qze * = e 'a~! in the second, and

Lemmas 2.3.11 and (2.0.4) in the last, we get that

RIy = | t,H (1/t,)b(t,/Mo) — / Rs)\n(s)ds

o0 . RH=Y(1/tn)~"
/ Sesz (Mo/tn)l/(s)ds _ / SVn(S>dS
0 0
H=H(1/tn) 1
0

o0
+ / se_SHl(MO/t”)V(s)ds)

H=1(1/tn) !

=t H Y (1/t,)

H=Y(1/tn) ™
<t,H '(1/t,) (H_l(Mo/tn)/O s*v(s)ds
+ +H1(M0/tn)1w(H1(1/tn)1))
<t H ' (1/t,) (H ' (1/t,) " "(H o H')(1/t,)) = cs.

Hence, P(Z, > R) < ¢;R™ ! foralln > 1 and R > 1. By Prokhorov’s theorem,
this yields that there is a subsequence Z,, of Z,, which is weakly convergent

to some random variable Z,. Now, we can prove (2.3.37) by showing the
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following inequality:

inf P(z<Z,<z4¢) >0. (2.3.38)
z€[0,N]
According to [115, Theorem 8.7], Z, is a infinitely divisible random vari-
able with the characteristic function
1€s

1 . > €S
\I’*(f):_ﬁA*gz_lf'V*—i—/o (Gg —1—m

/\*(s)ds) :

where the triplet (A, 7., \i) is characterized by
(1) lime_yo lim sup,,_,o | f5 s*An(s)ds — A, = 0;
(2) 7 = limy o0 Y
(3) J5T f(s)A(s)ds = limy, o0 [y~ f(5)An(s)ds for any bounded continuous

function f vanishing in a neighborhood of 0.

If A, > 0, then the support of Z, is R and hence (2.3.38) holds. Suppose that
A, = 0. Then, by using (1) and (3) in the above characterization, Lemma

2.3.11(iv), since H is nondecreasing, we get that for every n € (0, 1),

1 0 1
/ s’ (s)ds = lim s’ (s)ds = lim lim </ szAn(s)ds)
0 €

e—0+ ¢ e—0+ n—o0
n nH = (1/tn) !
= lim s*\,(s)ds = lim th_l(l/tn)Q/ w?v(u)du

> lim cgn’t, H(n "H™'(1/t,)) > esn® > 0.
n—oo

Thus, by [113, Lemma 2.5], if fol sA«(s)ds = oo, then the support of Z, is R
so that (2.3.38) holds. Assume that fol sA«(8)ds < oco. Then we see from (3)
in the characterization that limsup,,_, fol sA\n(s)ds < oco. Hence, by using
[113, Lemma 2.5] again, we see that the support of Z, is [—x,00) where
X = lim, oot H Y(1/t,)b(t,/My) > 0. Since the support of Z, includes
(0,00) in any cases, we see that (2.3.38) holds. This finishes the proof. [

Now, we can omit the constant M, in Propositions 2.3.15 and 2.3.16.

95



CHAPTER 2. ESTIMATES FOR SUBORDINATORS

Corollary 2.3.22. (i) Suppose that Poly% - (81) holds. Then, for every
N, T >0, there are comparison constants such that for all t € (0,71,

exp (—tH(0))

or x ,tb(t)], 3.
9" 0)) f € (0,tb(t)] (2.3.39)

p(t,x) ~

p(t,r) ~ H Y (1/t) for x € [th(t), th(t) + NH ' (1/t)']. (2.3.40)

(i) Suppose that Regg, and Polyp* (61) hold. Then, for every N > 0,
there are comparison constants such that for all t € [2T1,00), (2.3.39) and
(2.3.40) hold with the constant Ty in Proposition 2.3.16.

Moreover, if Ty = 0 in (2.3.1), then for every N,T > 0, there are com-
parison constants such that (2.3.39) and (2.3.40) hold for all t € [T, c0).

2.3.4 Right tail estimates

In this subsection, we get estimates on the transition density p(¢,x) when
x > tb(t). Recall the definitions of D(t) and 0(t,y) from (2.3.4) and (2.3.5),

respectively. From the definitions, we obtain

Lemma 2.3.23. For allt >0 and y > 0, it holds that
to(t,y) H(O(t,y) ™) <y Vv H(1/t)
In particular, we have
t0(t, ) HOt,y)™ ) =y forallt>0, yec[H(1/t)"', D(t)].

The following theorem is the main result of this subsection.

Theorem 2.3.24. (i) Suppose that Poly}, (51, 52) holds and sup,s p, v(r) <
oo. Then, for every T > 0, there exist constants ¢c; > 0, C' > 1 such that for
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allt € (0,T] and y € [0, Ry/2),

Ht—zg)/t) e~ g7 ;/1?5862»)}

< p(t, tb(t) +y) < CH™'(1/t) min {1, tw(y)

C~'H™*(1/t) min {1,

(2.3.41)

Moreover, if Doug, also holds, then (2.3.41) holds for all t € (0,T] and
y € [0,00).
(i1) Suppose that Regpr, and Poly (51, 82) hold. Then, there exist con-
stants ¢, > 0, C' > 1 such that (2.3.41) holds for all t € [21},00) and
y € [0,00) with the constant Ty in Proposition 2.3.16.

Moreover, if To = 0 in (2.3.1), then for every T > 0, there are constants
c1 >0, C > 1 such that (2.3.41) holds for allt € [T, 00) and y € [0, 00).

Proof. The result follows from Propositions 2.3.25 and 2.3.27 below. U

Proposition 2.3.25. Under the setting of Theorem 2.3.24, the upper bound
in (2.3.41) holds true.

Proof. For convenience of notation, we let ¢ := 1/(8¢?).

(i) We first assume that Poly} (81, 2) holds and sup,-p, v(r) < oo only.

Let T >0,t € (0,7 and y > 0. If 6y < H-'(1/t)7!, then exp(—y/0(t, dy)) >

e~'/% and hence the upper bound in (2.3.41) follows from Proposition 2.3.20.

Hence, for the remainder part of the proof of (i), we assume dy > H~'(1/t)"!.
Set

vi(s) = Logusy ¥(s) and  1n(s) :=v(s) — vi(s).

Denote by S* and H; the corresponding driftless subordinator and H-function
with respect to the Lévy measure v; for ¢ = 1, 2, respectively. We suppose that
S and S? are independent. By Proposition 2.3.1, for every u > Ty, S} has a
transition density function p'(u, -). Recall that Ty = 0 under Poly%, (51, 52).

o7
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CHAPTER 2. ESTIMATES FOR SUBORDINATORS

Since S; = S} + 57, it holds that

p(t, th(t) + y) = /pl (t, th(t) +y — 2)P(S? € dz)

— (/Z<y/4+/>j4) pr(t, th(t) +y — 2)P(S? € dz)

P(S? cd
< sup p'(t,tb(t) + z) + sup HCA
2>3y/4 z>y/4 dz

Step 1. First, we estimate A;. By the semigroup property, for all z > 3y/4,
p'(t,tb(t) + 2)
= (/ +/ > p'(t/2,tb(t)/2 + u)p' (£/2,tb(t) /2 + z — u)du
u<z/2 u>z/2

3
< 28 (S 2 50000+ 2 ) supp'(1/2.0).

Using [48, Lemma 7.2], Proposition 2.3.20 and Lemma 2.3.11(iii), we get that

sup p*(t/2,u) < 2 tw(0(t,0y)) sup p(t/2,u)
u€eR u€R

< ceH 1 (2/t) < coH H(1/t). (2.3.43)

On the other hand, by Markov’s inequality and Lemma 2.2.5, it holds that
for every A > 0,

3y At 3y
(SW > b(0) + g) <E [ p (ASh — (1) - Tﬂ
t O(t,dy) t
= e W/ exp (—/ (e™ — 1Du(s)ds — —/ Ase T /D5y )ds)
2 Jo 2 Jo
)\t H(t,éy) 1
< e 3M/8 exp (—/ (e —e (1/t)3)31/(s)d5)
0
>\t 9(t75y)
< e W/ exp (?(A%—H_l(l/t))/ e)‘ss21/(s)ds>.
0
We used the mean value theorem in the second and third inequalities. Thus,
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by letting A = 0(¢,d0y)~* > H~(1/t), using Lemma 2.3.23, we get that

1/X
(St/Q > b( )+ 38y) < exp ( - % + 6)\2t/0 sz(s)ds)

3\
< exp ( - ?y + QthH()\)>

(3y — 16€*tA~ 1H(>\))>

[\
0]
>
o}
/—\
oo|>z oo|>~

(3y — 166253/))

— exp ( - m) (2.3.44)

We used (2.3.13) in the second inequality. Consequently, we deduce that

Ay < 20, HY(1/1) exp ( - m> (2.3.45)

Note that (2.3.42) and (2.3.45) hold for all y > 6 ' H~1(1/t)~! and we have
not assumed y < Ry/2 yet.
Step 2. Next, we assume y € [0, R;/2) and estimate Ay. Since S? is a

compounded Poisson process, for every z > 0 and p > 0, we have that

thus* Zz+ Oot””*zz—l—
P(SE/Q e (Z,Z+p Zeftw (t,0y))/2 2 p Z p)

n=1 n=1

?

(2.3.46)

where v}* is the n-fold convolution of the measure v,. Define a function
f:(0,00) = (0, 00) by

su v(u if r< Ry/2,
flry = 7P ) / (2.3.47)
SUDy> g, /2 V(1) it r>Ry/2.

Then f is nonincreasing and v(r) < f(r) for all » > 0. Moreover, by
Poly}, (81, 3:) and the assumption that sup,.p v(r) < oo, we see that
f(r) < csv(r) for r € (0, Ry/2) and that sup,., f(r)/f(2r) = ¢4 < 00.
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Now, we prove that for every n > 1,
V(2,2 + p) < (decy)"t " f(2)p for all z,p > 0. (2.3.48)

Cf. [83, Lemma 9 and Corollary 10]. Since v(r) < f(r) for all » > 0, it holds
that v5(z, 2 4+ p) < f(2)p. Assume that (2.3.48) is true for n > 1. Using the
induction hypothesis and Fubini’s theorem in the first inequality below, the
facts that f is nonincreasing and v(r) < f(r) for all » > 0 in the second, and
the fact that 1,(R) = w(0(t, oy)) < w(w=1(2e/t)) = 2¢/t in the last, we get

A (2 2 4 p) = (/ / ) (2 —u, 2z — u+ p)ro(du)
u<z/2 u>z/2
z/24+p pz—v+tp
< / (decy)™t' " f(z — u) pra(du) + / / vo(du)vy™ (dv)
u<z/2

(z—v)V(z/2)
< (dec)"t' 7" f(2/2) pra(R) + f(2/2)pra(R)"
< (2e(decy)™ + (2€)")eat ™" f(2)p < (deca)™ 7" f(2)p.

Hence, we conclude that (2.3.48) holds by induction.
By (2.3.46), (2.3.48) and the monotone property and doubling property
of f, since y € [0, R1/2), we deduce that

Az = sup limp~ IP)(515/2 € (2,24 p))

Z>y/aP—0
- (4604)n decy
< suI/) tf(2) g o < et f(y/4) < estf(y) < esestr(y). (2.3.49)
z>y/4 n—1 :

Finally, we get the desired upper bound from (2.3.42), (2.3.45) and (2.3.49).

Now, we further assume that Dou%, holds and assume that y > (R;/2)V
(67*H=Y(1/t)7!). Recall that (2.3.42) and (2.3.45) still hold for those values
of y. Define f,(r) := sup,, v(u). By Poly} (51, 32) and Douf , it holds that
v(r) >~ f.(r) for r > 0, and sup, f(r)/f(2r) = c¢ < co. Then, by following
the above proof given in Step 2., we get Ay < e“stf,(y/4) < czv(y). Thus,
(2.3.49) still holds for those values of y and this completes the proof.
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(ii) We follow the proof of (i). Since T} > Ty, we see that S} has a transition
density function p'(u,-) for all u > T} by Proposition 2.3.1. Hence, (2.3.42)
still holds. Also, by using Proposition 2.3.20 and Lemma 2.3.12(iii), we get
that (2.3.43) holds for all ¢ € [27}, 00). We can prove (2.3.44) by exactly the
same way. Moreover, by using Lemma 2.3.12 instead of Lemma 2.3.11, and
the function f.(r) := sup,, v(u) instead of the function f given in (2.3.47),
we can follow the proof in Step 2. This proves the proposition under the
conditions Regg, and Poly ;> (51, 32).

Furthermore, if Ty = 0, then for every fixed T > 0, by Proposition 2.3.16,
(2.3.42) holds for all £ > T'. Then, there is no difference in the proof for the

last assertion. O

Now, we begin to prove the lower bound in Theorem 2.3.24. We first

establish a preliminary jump type estimates for p(t, ).

Proposition 2.3.26. (i) Suppose that Polyy, - (51) holds and sup,s g, v(r) <
00. Then, for every T' > 0, there exists a constant ¢; > 0 such that for all
t€(0,7] and y € [0, Ry/2),

p(t,tb(t) +y) > c; H~'(1/t) min {1, %} : (2.3.50)

Moreover, if Doug, also holds, then (2.3.50) holds true for all t € (0,7
and y € [0, 00).
(i1) Suppose that Reggr, and Poly}‘%’;)f’2 (B1) hold. Then, there exists a constant
c1 > 0 such that (2.3.50) holds for all t € [2T1,00) and y € [0,00) with the
constant Ty in Proposition 2.3.16.

Moreover, if Ty = 0 in (2.3.1), then for every T' > 0, there exists ¢; > 0
such that (2.3.50) holds for allt € [T, 00) and y € [0,00).

Proof. (i) Let T > 0,t € (0,7] and y > 0. If y < 2H~*(1/t)~!, then (2.3.50)
follows from Corollary 2.3.22. Hence, we assume y > 2H *(1/t)~".
With a constant e € (0,1/2) which will be chosen later, we define
pa(s) = Loy ¥(s) + (1 = €)Lig1(1/6)1,00) ¥(5)
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and po(s) := v(s) — p1(s). We denote by T* the corresponding driftless sub-
ordinator with respect to the Lévy measure p; for ©+ = 1,2, respectively. We
suppose that 7" and 7?2 are independent.

By Proposition 2.3.1, for all u > Ty, T'' has a transition density function
q'(u,-). Using Poly}, - (1) and the condition that sup, g, v(r) < oo in the
second inequality below, Lemma 2.3.11(i) in the third, (2.0.4) in the fourth
and (2.0.5) in the fifth, since t/*H~*(1/t) > T-*H~(1/T), we get that

sup pa(s) < e sup v(s) + sup v(s))
50 H-1(1/t)~1<s<Rs s> Ro
<eciv(HH(1/H)™) + ey
<eco H Y1/ )w(H 1 (1/t)71/2) + ecy
< 2eeco H ' (1/)H(2H ' (1/t)) + ecy
< 8eecot T H H1/t) + ecy < ecst "H(1/1).

Therefore, by [10, Lemma 3.1(c)] and Corollary 2.3.22, we see that for all
z € [0, H(1/t)71],

q' (£, tb(t) + 2) = p(t,tb(t) + 2) — tsup Jpia(s)] = (ea = ecs)H™'(1/1).

By taking € = ¢4/(2c3), we arrive at
¢ (t,th(t) + 2) > 27 ey H 1 (1/t) for all z € [0, H(1/t)7Y.

Since S; = T}+T7, T? is a compounded Poisson process and y > 2H ~1(1/t)~1,
using (2.0.4), it follows that

plt, th(t) + ) = / G (1, (1) + y — 2)P(T? € dz)
> 27 e H W (1/0)P(TE € [y — H(1/t) ", y))

> 27 e HO (1) etv(fy — H'(1/8) 7 y])e e 0/070

> 2 leee 2 tH Y (1 /) H 1 (1/8)~! inf v(u
> 27, SV GO R S )
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>cst Inf viu).
= u€ly/2,y] (w)

By Poly?}, - (1), we can see that for z € (2H'(1/t)7", Ry /2),

inf v(u) ~v(z). (2.3.51)
u€(z/2,z]
Moreover, if Doug, also holds, then (2.3.51) holds for all z > 2H~'(1/t)~".
Hence, we get the results.
(ii) Let N > 2 be such that NH~(1/T)~! > R,. By Corollary 2.3.22, it suf-
fices to prove (2.3.50) for y > NH~'(1/T)~!. This can be done by repeating

the proof for (i). The proof for the second assertion is exactly the same. [J

Proposition 2.3.27. Under the setting of Theorem 2.3.2/, the lower bound
in (2.3.41) holds true.

Proof. We prove (ii) first. Since the proof for the case when Ty = 0 is easier,
we only give the proof for the case when 7 > 0.

Let p := (16e*TyH(w™(e/T)™ 1)) A (4€?)~1 with the constant T} in
Proposition 2.3.16. Then, since the map t — H(w™*(2¢/t)™!) is decreasing,
it holds that

1
8e2pH (w=1(2¢/t)~1)

> 2T, forall t > 2T}, (2.3.52)

By Lemma 2.3.13, Corollary 2.3.22 and Proposition 2.3.26, it remains to
prove that there are constants ci,co > 0 such that for all ¢ € [277,00) and
y € [2p7 H 1 (1/t)71,8¢2D(t)),

p(t tb(t) +y) > et H Y (1/t) exp ( - W)

Fix t € [2T1,00), y € [2p7'H1(1/t)71,8¢*D(t)) and we simply denote
0 := 0(t,y/(8¢?)). Then, since 2p~' > 8¢?, by Lemma 2.3.23, we have

8*t0H (07) = y. (2.3.53)
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Let n = |py/6]. Since § < H-'(1/t)"!, we have n > pyH '(1/t) — 1 > 1.
We claim that there exist constants x; € (0,1) and ko € (1, 00) independent

of t and y such that
pH 7 (/)T < y/n < ke H 7 (n/t)7 (2.3.54)

Indeed, first note that (2.3.54) is equivalent to H(kin/y) < n/t < H(kan/y).
Since p/8 < pw=(e/T7)~!, by Lemma 2.3.12(iii), (2.0.5) and (2.3.53), there
exists ¢3 € (0,1) independent of ¢ and y such that for every x € [2,y/n],

H(kn/y) > csP H(2n/y) > e3P H(p/0) > sk p> H(O7)
PPy eskPipn
C o 8extf T 8e?t

where 3, = B A (3/2). Hence, if y/n > (8e*c;'p1)/A1, then the upper
bound in (2.3.54) holds with any xy > (8e%cz'p~!)/f1. Otherwise, if y/n <

(8e2cz ' p~1)/P1 then we obtain

w1 (2e/t) S wl(e/T)
pr P

(862051/)71)1”1 > ¥ > Q >
no.p

This implies that ¢t ~ 1 so that y ~ 8 ~ n ~ 1. Hence, by choosing ks large
enough, we deduce that the upper bound in (2.3.54) holds true. On the other
hand, we see from Lemma 2.3.12(iii) and (2.3.53) that for every x € (0, 1),

H(rn/y) < cas” H(n/y) < cas” H(p/0) < csr”i p" H(O7)
oskPiphy  eskPipfitin
S 8eth 4e?t

Therefore, we also deduce that the lower bound in (2.3.54) holds true.
Set z 1= y + tb(t) — tb(t/n). For j € {1,...,n — 1}, define z; = jz/n
and A; = (z; — 2/(2n),z; + z/(2n)). By Lemma 2.0.1, (2.3.54) and Lemma
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2.3.12(ii), since y > 2p ' H~1(1/t)7}, it holds that

2en e Ytw(H Y (n/t)™h)

y<z<y+

H_l(n/t) B H_l(l/t)
cGtw(Q)

< (1+42e/kry)y + < (14 2e/k1 + cgpe)y.

H1(1/t)

We used the definition that 6§ > w~*(2e/t) in the last inequality. Then, by
(2.3.54), we get that for any j € {1,..,n —2}, u € A; and v € Aj 4,

2z
n

CrRg

cry
< —=< — .
~ n — HY(n/t)

z
’U—U’§5+|Za‘+1—zj’:

Note that by (2.3.52) and (2.3.53),

o 1 1
> 2 =

t
2 > > 2T17.
n = oy Se2pH(0-1) T 8e2pH(w—(2¢/t)"1) T~ 7!

Therefore, by Corollary 2.3.22, there exists cg > 0 independent of ¢ and y
such that for every j € {1,....n — 2},

p(t/n, (t/n)b(t/n) + v —u) > cgH '(n/t) forall u € Aj, v e Aj.
Then, by the semigroup property and (2.3.54), we deduce that

(L, () +y)

n—2

-/ ol efpte /) T, (00 /) + s = )

k=1
x p(t/n, (t/n)b(t/n) + 2z — wp_1)dus...du,

> (esH ' (n/t))"(2/n)" ™" = (esH ' (n/1))" (y/n)"~"
> (egrn)" T HH(n/t) > (egrn) TH™H(1/t) exp (= nlog(cgkn) ™).

Since n < py/0, we have finished the proof for (ii).
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(i) We follow the proof for (ii). In this case, welet p = (4e?)~'. Since
6=t > H1(1/t)"' > H*(1/T)7", by using Lemma 2.3.11 instead of Lemma
2.3.12, we obtain (2.3.54). Then, we get the result by exactly the same proof.
We can also conclude that the second assertion in (i) is true in view of the

second statement in Proposition 2.3.26. U

2.3.5 Proofs of Theorems 2.3.4, 2.3.6 and Corollaries
2.3.5, 2.3.7 and 2.3.8

In this subsection, we give the proofs for our main theorems of this section.

Lemma 2.3.28. (i) Suppose that Polyp, - (81) holds. Then, for every fized
T >0, there exist c1,co > 0 such that for allt € (0,T] and x € (0,tb(t)],
e—tH(a)
Clel(l/t)efﬂH(a) D —
Vi(=¢"(0))
Moreover, if Poly%, (B1) holds, then (2.3.55) holds for all t € (0,00) and
x € (0,tb(t)].
(i1) Suppose that Poly}};’?2 (B1) holds. Then, for every fized T > 0, there exist
c1,ce > 0 such that (2.3.55) holds for all t € [T, 00) and x € [tb(T"),tb(t)].

< eH Y (1/t)e 2 @) (2.3.55)

Proof. (i) Note that for all ¢ € (0,7] and = € (0,tb(t)], we have o >
H7'(1/t) > H™'(1/T) and tH (o) > 1. Hence, by Lemma 2.3.11(iii & iv),

—tH (o) —tH (o)

oe

<= ~ <
Vi(=¢"(0))  \/tH(o)

Using Lemma 2.3.11(iii) and the fact that z¥e™® < kFe™* for all 2,k > 0, we
get that

ey HH(1/t)e (@) oe ), (2.3.56)

H(o) 1/B1
—tH(o) _ -1(1/¢ g —tH(0) < o F-1(1/t —tH (o)
oe ( /)H_l(l/t)e >0 ( /) 1/t €

< esH N (1/t)e? tH(), (2.3.57)
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This proves the first assertion. If we further assume that R; = oo, then by
combining Lemmas 2.3.11 and 2.3.12, we can see that (2.3.56) and (2.3.57)
hold for all ¢ € (0,00) and = € (0, tb(t)] since tH (o) > 1 for those values of ¢
and x. We have finished the proof for (i).

(ii) For all t € [T,00) and x € [tb(T),tb(t)], we have 0 < H *(1/T) and
tH(o) > 1. Hence, by using Lemma 2.3.12 instead of Lemma 2.3.11, we can
follow the proof for (i) and conclude that (ii) also holds. O

Proof of Theorems 2.3.4 and 2.3.6. The results follow from Corollary
2.3.22, Theorem 2.3.24 and Lemmas 2.3.13 and 2.3.28. O

Proof of Corollaries 2.3.5 and 2.3.7. Since the proofs are similar, we
only give the proof for Corollary 2.3.5. By [54, Lemma 2.1(iii)], since 5 < 2,
it holds that w=*(2e/t) ~ H='(1/t)~! for t € (0,T]. It follows that D(t) ~
H=Y(1/t)7! for t € (0,T]. Thus, by Theorem 2.3.4(ii), (2.3.9) and Corollary
2.3.22, we obtain (2.3.10).

On the other hand, note that by (2.3.1), we have v((z—tb(t))4) = v(0) =
oo for all z < tb(t). Thus, by joining (2.3.10) and (2.3.7) together, we also
deduce (2.3.12). O

Proof of Corollary 2.3.8. Since the proofs for the case Ty = 0 and the case
Ty > 0 are similar, we give the proof for the case Ty > 0 only.

Let T} > 0 be the constant in Theorem 2.3.6(i) and 3] := 8, A(3/2). Note
that 5] > 1. By Lemma 2.3.12(iii), there exists ¢; € (0, 1) such that

H(kX) > e TH(N\) forall K >1, 0< A< kL (2.3.58)

Moreover, by Lemma 2.3.12(ii & iv), we see that for every ¢ > T,

H~(1/t)
0 < t¢'(0) — th(t) =t /0 (=" (N))dA

H-1(1/t) H )\)
<C/ 1))
“Jo H(H(1
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o pH ,
<csH Y (1/t)™4 / AP
0

<ec H'1/t)7 (2.3.59)
Write y; = y + t¢/(0) — tb(t). Define

Hél/l%)/t) e ( A ‘iy(t/y)> } ’
tv(y; ClYy
_H‘l((yi}_t) +ep (- o(t, yi@e?))) } ‘

F(t,y) = min {1,
G(t,y,c) = min {1,

By Theorem 2.3.6(i), since t¢'(0) + y = tb(t) + y;, it remains to prove that
F(t,y) < G(t,y,c) for t >1Ty, y>0. (2.3.60)

We prove (2.3.60) by considering several cases. We use the following notations

below.
1 := (c1/ 8V €(0,1), Ky = 01—1/(51—1) >1, 0:=0(ty/(8%).

(1) Suppose that 0 < y; < 8?H*(1/t)"'. Then, we have § = H~*(1/t)"' >
y:/(8¢?) and hence G(t,y,1) ~ 1. We claim that it also holds that F'(¢,y) < 1
which yields the desired result in this case. To prove this claim, we consider
the following two cases separately.

(a) Suppose that t > 1/H (e;). Then we get from (2.3.58) that

AlaH (1)) < HWO TG Y
erH(ey H='(1/t)) 016} & 8e? Y Y
Thus, 227 (t/y) > eeH 1 (1/t)71 > €1y/(8€?) so that F(t,y) ~ 1.
(b) Suppose that Ty < t < 1/H(e;). Then y < y; < 8*H Y(1/t)7! <
8¢? /1. Hence from the monotonicity, we get 7 (t/y) > (111 /(8€*)) >
a1 e1T1/(8€?))y/(8€e*) which yields that F(t,y) ~ 1.

(2) Suppose that 8¢2H(1/t)~! <y, < 8e2D(t). By Lemma 2.3.23, we have
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v, = 8e*tOH(071). Denote by €3 = e(t,y) = 0H (1/t) € (0,1] so that
6 — e H1(1/1)".

(a) Suppose that y < c¢sH~*(1/t)~!. Then by (2.3.58) and (2.3.59), we
see that if # > 1, then

2, P+l
8e“crey

H=Y(1/t)

264

e S > 8 2 9 _ﬁi —
H-1(1/1) = 8¢ 16

H(O™!
=S
Hence, if > 1, then e, > (4€%c;/cy)V/%17Y and hence y;, ~ 6 ~ H~'(1/t)7".
From this, we can deduce that F'(t,y) ~ G(t,y,1) ~ 1 in this case. Otherwise,
if < 1, then w™(2e/t) < 6 < 1 and hence ¢ < 2¢/w(1). Then by a similar
argument to the one given in (1-b), we can also deduce that F(t,y) =~
G(t,y,1) ~ 1.

(b) Assume that y > ¢, H(1/t)~1. By the proof given in (1-b), we may
assume that H1(1/t)™* > R, and w(2¢/t) > €. Note that by (2.3.59),
we have y < gy < 2y in this case. Then we get from Poly};*(81, f2) that
v(y) ~ v(y:). Hence, it remains to prove that 52 ~1(t/y) ~ 6. Using (2.3.58),

since K = cl_l/(ﬁi_l), we see that
1 1 1 t t
H(e10) < < : = -~ <z
(@f) < e 0H (e '0-1) — cie BOH(O-Y)  8e0H(0TY) oy Ty
and 5
1 v tt
H(510) = inf s am 8

L ROH( 0~ OHO) Y
Therefore, we obtain €0 < 77 (t/y) < k10.
(3) Suppose that y; > 8¢2D(t). If y < c4H*(1/t)~!, then by the proof given
in (2-a), we get the result. Hence, we assume y > ¢, H*(1/t)~! so that y, <
2y. By the proof given in (2-b), it suffices to prove for ¢, H~1(1/t)~! > Ry and
v(y) ~ v(y;). By Lemma 2.3.12(i) and (2.0.4), we see that t H ' (1/t)'v(y;) <
estyv(y,) < cgtw(y,) < ertH(y;') < cs. Moreover, by Lemma 2.3.13 and
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Polyp;* (), for each fixed a > 0, it holds that

( ayt ) < acscy'y > cotv(y/ca) crotv(y)
exp| ———"F—— ) <exp| - ——~—~) < < )

0(t, yi/(8¢e?)) w(2e/t) H-'(1/t) = H-'(1/t)
Thus, G(t,y,1) ~ tv(y)/H'(1/t) in this case. Hence, it remains to prove
that there exists ¢;; > 0 such that

- )< _trly) 2.3.61
> (= ) < 2300
If w™(2e/t) > 1, then since § = w™'(2e/t) in this case, by (2.3.58) and
Lemma 2.3.23,
1 kATt 8ert

“1(9¢/1)) = inf > > -
H (k1w (2e/t)) o KOH (k10-1) = OH(0-1) = g Yy’

which implies that 52~ (t/y) < kjw™'(2e/t). Hence, we get (2.3.61) from
Lemma 2.3.13. On the other hand, if w™!(2e/t) < 1, then ¢t ~ 1. Since 7 is
increasing, it follows that J#71(t/y) < cio. Let c13 1= sup,.,ulTP2e /a2,
By Poly; > (8,), since y > ¢H '(1/t)"" > Ry, it holds that v(y) >
RSP U(Ry)y =P > ey3e14RY P u(Ry)e ¥/912. This proves (2.3.61) and
ends the proof. O

2.3.6 An example to varying transition density esti-

mates

In this subsection, we give an example of subordinator whose transition den-
sity has the estimates given in Theorem 2.3.6 and the exponential term in

the estimates only appears at specific time ranges.

Define an increasing sequence (ay,),>o as follows:

ap:=0, a;:=3, any =exp(a?) for n>1. (2.3.62)
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Using this (ay)n>0, we define an increasing function ¢ : (0,00) — (0,00) by

(4/3)r'/2 for r € (0, a4],
Y(r) =t + (agn_y) — dd,_, for 7 € (asn_1,as,], (2.3.63)
(4/3)r12 + p(as,) — (4/3)as?  for r € (asm, asnsi].

One can easily check that there exist co > ¢; > 0 such that

1/2 4
c1 <§> < Z:;((f; < ¢y (?) forall 0 <r < R. (2.3.64)

Let
2

(r) = 2[5 sv(s)~lds

By [5, Lemma 2.4] and (2.3.64), there exists a constant ¢z > 0 such that

1/2 2
)
C3 (E) < (7) < (g) forall 0 <r < R. (2.3.65)

Lemma 2.3.29. For every e € (0,1), there exists N € N such that for every
n > N, the following estimates hold:

(i) For every r € [ag, 1, aant1],

4
grl/Q <Y(r)<2Y?  and V2 < d(r) < 20Y2

(ii) For every r € [ay, , asn],

)2 2
2(1 —¢)r <a(r) < 2r

1
57‘4 <(r)y<rt and

3logr logr’

Proof. From the definition (2.3.62) of the sequence (a,,), by choosing NV large

1—e 1—e
enough, we can assume that [a3,%, Gont1] C (a2n, Gons1] and [az, 5, Gong1] C

(agn, G2n+1] for all n 2 N.
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CHAPTER 2. ESTIMATES FOR SUBORDINATORS

First, we prove the assertions for 1. From the construction, we have

;M2§¢U)§r4 for all 7> 1. (2.3.66)

Moreover, for all n large enough and r € [a3,;, az,11], by (2.3.62),

1
Aoy, 4 10 < 4 -1 3/2 > 4 1
r)< |\ 1+ ——F—5)sr'" "< (l+ayexp(—2" (1 —¢€)ay, )| 5r'"
vl < ( (4/3) 224:1/2) 3 on 3P ( ) 3

Similarly, for all n large enough and r € [a3, ¢, ag,],

al
n— 3
P(r) > (1 — a42(1 2)) rt > (1 — a5, | exp ( —4(1 — e)azé 1)) r.
2n

Since lim,_, o ple—41-9*? — lim, o phe=2 (1= 0, we deduce the
results for 1.

Now, we prove the assertions for ®. Fix ¢ € (0,1—¢). By using the results
for ¢ and (2.3.66), we can see that for all n large enough, it holds that for

S [a%r_:kla A2pt1),

3/2(1 _ (aglnffa)/r)?’/z) _ ;(r?’/z . agggfe')/z)

s'2ds < 2/ S¢(S)_1ds < ;/ s12d0s — p3/2.
1 e—e! 0 0

2n+1

§r3/2(1 . a736//2)

2n+1

\wlw

Since lim,, OL_S6 2 = = 0, it follows that for all n large enough and r €
2n+1

[a2n+17 agnt1],
1 s
57“3/2 < 2/ s(s)'ds < r*? and hence /2 < ®(r) < 2rY2. (2.3.67)
0
Next, by (2.3.67), for all n large enough and r € [ay,, as,], we get

1 a2n—1 r
iag{f , < 2/ sw(s)_lds < 2/ sw(s)_lds
0 0
:2/‘_3M@1%+2/ S ds. (2.3.68)
0 a

2n—1 st + ¢(a2n_1) — Qop1
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Note that for all n large enough, by (2.3.66),

/r s o< /r s ]
§ s

azn—1 s+ ¢<a2n—1> - agnfl  Jao s (5 — a2n71)83 i w(a%il)

= 1 /a2" . sds + /r s™ds < §a_1/2 (agn—1+1)+1< al?

> w(Ganl) aon—_1 o141 — 49 2n—1 n— = Yon-—1

Thus, by combining the above inequality with (2.3.67) and (2.3.68), we de-

duce that for all n large enough and r € [ay, ¢, as,)],

log?" 1 3/2 3/9 3 3/2 310g7"
T§§ 21/11_ ¢ d8<<1+a2n 1)a2{z1§2a2£1§2(1_6)

and hence

2(1 — e)r? < 272
3logr — ~ logr’
The proof is completed. O

Let to, = a3, /(log as,) and tg, 1 = a;,/irl for n > 1. Since exp(z%/?) > 42!
for x > 10, we have that ¢, > 4t, for all n > 2. As a corollary to Lemma
2.3.29, we obtain the following estimates for the inverse functions of ® and

1, respectively.

Lemma 2.3.30. (i) There are comparison constants such that
()~ (t) ~t* forall t € [tans1/2,tona], 7 > 1.
(ii) There are comparison constants such that
Ot) ~ tY2(logt)Y? and 7Ht) ~ Yt for all t € [tyn/2,to], n > 1.

Proof. (i) For each fixed T > 0, since ®(t) ~ o '(t) =~ t* ~ 1 for t €
[t3/2,T], it suffices to prove the desired comparisons only for n large enough.

For all large enough n and t € [to,11/2, tont1], by (2.3.64), (2.3.65) and
Lemma 2.3.29(i), we have ®(t?) ~ ®(ag,41) =~ ¥ (t?) =~ Y(agns1) = tons1 = L.
Then, we get the result from (2.3.64) and (2.3.65).
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(i) Similar to (i), it suffices to prove for n large enough. For all n large
enough and t € [ty,/2,ts,], we see that t'/%(logt)'/? ~ ay, and t'/* ~
ay/*(log az,) V4. Since ®(as,) ~ ¥(ay*(logas,) 4) ~ ta, ~ t by Lemma

2.3.29(ii) with e = 2/3, we obtain the results. O

Construction of subordinator and its transition density estimates

With the function ¢ defined by (2.3.63), we let S be a driftless subordinator

whose Lévy measure v(dr) is given by

v(dr) =

1
dr,
ri(r)
i.e., the Laplace exponent is given by ¢(X) = [77(1 — e **)v(ds). Since v
satisfies the condition (2.3.1) with Ty = 0, S; has a transition density function

p(t, z) for all t > 0. The following theorem is the main result in this example.
Recall that b(t) = (¢' o H')(1/t) for ¢ > 0.

Theorem 2.3.31. (i) There are comparison constants such that

t
p(t, th(t) +y) =t 2 N ——
&, 15(8) +9) y(y)
for allt € [tony1/2,tons1], n>1 and y > 0.
(ii) There are comparison constants such that
p(t, th(t) +y) < t72(logt) "2 A (L + 1712 (logt) "% exp ( _ oy ))
’ yib(y) tlog t

for allt € [ton/2,t9,], n > 1 and y > 0.

Remark 2.3.32. For all t € [ty,/2,t2,], n > 1 and y € [ag,, az,(log az,)*/?],

since lim,,_,o, a2, = 00, we have

2 2
t=Y2(logt) % exp ( - tclloygt> > o0y, exp < - %)
2n

—1 -1/3 _ —1—cs(log azn) /3 -2
> CoQy, €Xp ( — c3(log asy) 3 log a2n> = Coly,, " > cyaq,”,
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while
t csas,

y’l/}<y> N a%;tll log Aon

Hence, we see that the exponential term is the dominating factor in heat

= c5a2’7::’(log agn)’l.

kernel estimates at those intervals. Therefore, we deduce that the exponential
term in (2.3.8) is indispensable in heat kernel estimates, although it does not

appear in some other time ranges.

Proof of Theorem 2.3.31. By Lemmas 2.3.11 and 2.3.12, we have
H(r ) ~®(r)™t and w(r) =)™t forall r >0 (2.3.69)
and
H ' (1/t) ~® ' (#)™" and w '(2e/t) =~ () forall t>0. (2.3.70)

We simply denote 6 for 6(t,y/(8¢?)).
(i) By Lemma 2.3.30(i) and (2.3.70), it holds that

H ' (1/t) P ~w 1 (2e/t) ~t* forall t € [tani1/2,tansa], n > 1.

Hence, for all t € [tany1/2,tans1) and y € [0, H-1(1/t)7Y], we get 6 ~ * so
that e=¥/? =< 1. Moreover, by Lemma 2.3.13, for each fixed ¢ > 0 and all
te [t2n+1/2,t2n+1], it holds that

ay ) < citv(y)

(20 /0) 1010 fory > H'(1/t)"".

exp ( — ay/@) < exp ( —

Therefore, we get the result from Theorem 2.3.6.

(ii) By Lemma 2.3.30(ii) and (2.3.70), we see that for all ¢t € [ta,/2,t2,],
n>1,

HY1/)7 ~tY2(logt)Y? and w™'(2e/t) ~ t'/*. (2.3.71)
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Then, by (2.3.69) and Lemma 2.3.29(ii), we obtain that for all ¢ € [ts,/2, t2,],

1
D(t) ~t max "~y 085

max ~ t3/*]ogt.
s€fw=1(2e/t),H-1(1/t)~1] CI)(S) se[t/4t1/2(logt)1/2] S &

From (2.3.66), for fixed a > 0, we see that for all t € [ta,/2,t2,] and y > D(t),

1 ay? _ tlogt '/
P - < cy(tlogt) ™2 [ ==
t1/2(log t)1/2 eXP ( tlogt) < oot logt) y?

ot t! log® t cst
vooys T yd(y)

Hence, in view of Theorem 2.3.6 and Lemma 2.3.13, it remains to show that
y/0 ~y?/(tlogt) forall t € [tr,/2,t,], y € [H 1 (1/t)"1, D(t)]. (2.3.72)

Let t € [tan/2,t0,]) and y € [H1(1/¢)~", D(¢)]. By (2.3.71), there are ¢4, c5 >
0 such that cst'/* < 6 < cs5t'/?(logt)'/?. Since tOH(/~') = y by Lemma
2.3.23, using (2.3.69) and Lemma 2.3.29(ii), (as before, it suffices to consider
large t only,) we get that

v = t0°H(0~) ~ 16>/ ®(0) ~ tlogh ~ tlogt.

This completes the proof for (2.3.72). O
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Chapter 3

Estimates on heat kernels for
non-local operators with

critical killings

In this chapter, we study sharp two-sided heat kernel estimates for critical
killing type perturbations of non-local operators in a smooth domain D. The
results in this chapter is based on [58].

Stability of Dirichlet heat kernel estimates under certain Feynman-Kac
transforms was studied in the recent paper [42]. To be precise, let X be a
Hunt process on a Borel set D C R? with the L2-infinitesimal generator L.

Consider the following Feynman-Kac transform:

Tpf(x) = E" [exp (= A¢) f(X)],

where A is a continuous additive functional of X with Revuz measure p.
Informally, the semigroup (7;) has the L*infinitesimal generator Af(z) :=
(L —p)f(x). Let @ € (0,2) and v € [0, A d), and define

@)\ [ oW\ [ —a/e t

Suppose that X admits a jointly continuous transition density pp(t,z,y)
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with respect to the Lebesgue measure and that pp(¢,z,y) is comparable to
¢,(t,z,y) for (t,z,y) € (0,1] x D x D. Examples of processes satisfying this
assumption include killed symmetric stable processes in C'' open sets D
(with v = /2, cf. [35]), and, when « € (1,2), censored a-stable processes in
any C'! open sets D (with v = a — 1, cf. [36]).

Under the assumption that p belongs to some Kato class, it is established
in [42] that the semigroup (7}) admits a continuous density ¢ (¢, z, y) which is
comparable to ¢,(t, z,y) for all (¢,z,y) € (0,1] x D x D. Hence a Kato class
perturbation preserves the (Dirichlet) heat kernel estimates and is in this
sense subcritical. We also refer to earlier results (without boundary condition)
[23, 120, 125].

Kato class perturbations of the Laplacian have been studied earlier and
more thoroughly, e.g. [3, 14, 89, 118], with the same conclusion that Kato
class perturbations preserve the (Dirichlet) heat kernel estimates. Since [7],
it is known that for the Laplacian in R¢, d > 3, the inverse square potential
k(x) = c|z|™2, ¢ > —((d—2)/2)?% is critical, and, for the Dirichlet Laplacian in
a domain D, the potential x(z) = cdp(x)~2, ¢ > —1/4, is critical. Criticality
of the potentials above can be explained by Hardy’s inequality. In both cases
above, when ¢ < 0, the potential k above can be interpreted as creation,
and, when ¢ > 0, the potential x can be interpreted as killing. Note that
in both cases, the potential £ does not belong to the Kato class. The heat
kernel estimates of critical perturbations of the (Dirichlet) Laplacian have
been studied extensively, e.g., [8, 66, 80, 107, 108, 111].

In this chapter, we use probabilistic methods to study sharp two-sided
heat kernel estimates for critical perturbations of the fractional Laplacian in
a smooth domain D, as well as the fractional Laplacian in R¢. When the
potential involves both killing and creation, there is no Markov process asso-
ciated with the corresponding Schrodinger type operator. Since our argument
depends crucially on properties of Markov processes, we will only deal with

killing type potentials.

This chapter is divided into two major parts. The first part is Section 3.1
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and the setup is quite general there. We consider a Hunt process X on a lo-
cally compact separable metric space (X, p). The process X is not necessarily
symmetric and may not be conservative. Let X be the killed subprocess of
X in an open subset D of X. Using the positive additive functional (A}) of
XP with Revuz measure p, which is possibly critical, we define the Feynman-

Kac semigroup of X? associated with y:
177 f(w) = E* [exp(-AN) f(X)], t>0,2€D.

The main result of the first part is a factorization formula involving tails
of lifetimes for the transition density of the semigroup T} D (see Theorem
3.1.21). The form of this factorization formula can be traced back to [18, 19,
123]. If one can get explicit two-sided estimates on the survival probabilities,
then one can combine them with the approximate factorization to get explicit
two-sided estimates on the heat kernel. This is the strategy employed in
[19, 41]. We will also use this strategy in Section 3.2, and as a by-product,
give an alternative and unified proof of the main results of [35, 36, 40].

The second part is Section 3.2. In this section we assume that X is either
the closure of a C'' open subset D of R? or R? itself, d > 2, and we assume
that the underlying process X is either a reflected a-stable(-like) process
on D (or a non-local perturbation of it), or an a-stable process in R? (or a
drift perturbation of it). The critical potentials have been already described

~® or c|z|~®. The goal

above and are essentially of the form either ¢dp(z)
of this section is to estimate the tail of the lifetime P*(¢ > t) in terms of
dp(z) and |z| respectively. Then, as was done in [19, 41], together with the
factorization obtained in Theorem 3.1.20, this gives sharp two-sided estimates
of the transition density of the Feynman-Kac semigroup. Section 3.2 also

provides an alternative and unified proof of the main results of [35, 36, 40].
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3.1 Factorization of Dirichlet heat kernels in

metric measure spaces

3.1.1 Setup

Let (X, p) be a locally compact separable metric space such that all bounded
closed sets are compact and m is a Radon measure on X with full support.
Let Ry € (0,00] be the largest number such that X\ B(xz,2r) # 0 for all
x € X and all » < Ry. We call Ry the localization radius of (X, p).

Let V(x,r) := m(B(z,r)). We assume that there exist constants dy >
dy > 0 such that for every M > 1, there exists Cy > 1 with the property
that

d d
- Ly ~ 2
Cif <E> < (z, ) < Cuy <E) forallz € X and 0 <r < R < MR,.

r V(z,r) r
(3.1.1)
Note that the lower inequality in (3.1.1) implies
V(xz,ner) > 2V (xz,r) forallz € X and r € (0, Ry/no), (3.1.2)

where ng := (2C;)Y4.

Now we spell out the assumptions on the processes we are going to work
with. We assume that X = (X;,P”) is a Hunt process admitting a (strong)
dual Hunt process X = ()A(t,EA’””) with respect to the measure m. For the
definition of (strong) duality, see [15, Section VI.1]. We further assume that
the transition semigroups (P;) and (P,) of X and X are both Feller and
strongly Feller, and that all semipolar sets are polar. The condition that
semipolar sets are polar is known as Hunt’s hypothesis (H). This guarantees
the duality between the killed processes when the original processes are duals
(since X mever hits irregular points). See [25, p.481] and the end of [60,
Section 13.6].

In the sequel, all objects related to the dual process X will be denoted by

a hat. We also assume that X admits a strictly positive and jointly continuous
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transition density p(¢, x,y) with respect to m so that

Bf@waému%wﬂwmuw and Eﬂm=iéma%wﬂwmmw.

We will make some assumptions on the transition density p(¢,x,y). To do
this, we first introduce some notation.

Let @ : (0,00) — (0,00) be a strictly increasing function with ®(0+) =0
and lim, ., ®(r) = oo satisfying the following scaling condition: there exist

constants 0y, 6, € (0,00), a; € (0,1], a,, € [1,00) such that

o (§>6l < 2((1;)) <a (g)éu . r<R<R (3.1.3)

Remark 3.1.1. Since the function ® is strictly increasing, for every R €

(0,00), there exist a; € (0,1] and a, € [1,00) such that

a (g)él < 2(5)) < a, (?)% , 0<r<R<R (3.1.4)

We will use (3.1.4) instead of (3.1.3) whenever necessary. From (3.1.3) we

can also get the scaling condition for the inverse of ®:

v T

R 1/6u (D_l R _ R 1/5l
g1/ <_> < q)l((r)) <a 1/, (?) , 0<r < R<P(Ry). (3.1.5)

Define for t > 0 and z,y € X,

_ ! '
129 = vt Ve O

Remark 3.1.2. Since (3.1.1) holds true, it is easy to see that

qt,z,y) ~q(t,y,x) = 1 A t '
» T g4 Vi(z,®71(t))  V(y, p(z,y))®(p(z,y))

See [48, Remark 1.12]. Moreover, by integrating q(t,x,y) over the set {y :
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p(z,y) < ®71(t))}, one easily gets that for allt > 0 and v € X,

/x'qv(t,x,y)m(dy) >1. (3.1.7)

We will assume that there exists a constant Cy > 1 such that
Cy gt w,y) < p(t,x,y) < Codlt,z,y),  (fa,y) € (0,T) x Ex X (3.1.8)
for some T € (0, 0c]. Then (3.1.7) and the lower bound in (3.1.8) yield that

1< /Ef(t,x,y)m(dy) <, forall (t,z) € (0,T) x X.
x

The processes X and X may not be conservative so the lifetimes may be
finite. We add an extra point 0 (which is called the cemetery point) to X
and assume our processes stay at the cemetery point after their lifetimes.
When T = oo, we assume Ry = m(X) = oo. Note that, if T = oo and both
X and X admit no killing inside X, then it follows that Ry = m(X) = oo,
and X and X are conservative (see the proof of [86, Proposition 2.5, which
still works under the non-symmetric setting). All functions A on X will be

automatically extended to X U {0} by setting h(9) = 0.

Remark 3.1.3. When T € (0,00), the value off 18 not important. That is,
when T € (0,00), for every T > 0 there exists a constant Cy = Co(T) > 1
such that

Co qt,z,y) < p(t,2,y) < Cod(t,z,y), (t,,y) € (0,T) x X x X. (3.1.9)

This is a consequence of the semigroup property of p(t,x,y), (3.1.1), (3.1.5)
and (3.1.8).

Let (£,D(£)) and (£, D(L)) be the generators of (P,) and () in Cy(X)

respectively. We assume the following Urysohn-type condition.

~

Assumption A: There is a linear subspace D of D(L£) N'D(L) satisfying the
following condition: For any compact K and open U with K C U C X, there
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is a nonempty collection D(K, U) of functions f € D satisfying the conditions
(i) f(x) =1forz € K; (ii) f(z) =0 for x € X\ U; (iii) 0 < f(x) < 1 for
x € X, and (iv) the boundary of the set {x : f(z) > 0} has zero m measure.

Assumption A implies that there exists a kernel J(z, dy) = J(z,y)m(dy),
satisfying J(z,{z}) = 0 for all x € X, such that X satisfies the following Lévy
system formula (see [25, p.482]): for every stopping time 7" and function
f: X x X —[0,00] with the property that f(x,z) =0 for all z € X,

E" Y f(X, X)) / /sz,z (X,,dz)ds.

s€(0,T]

The kernel J(z,dy) = J(z,y)m(dy) is called the jump kernel of X. For all
bounded continuous function f on X and x € X \ supp(f), it is known that

J satisfies E* F(X))
dy) = lim ———%
/ f(y)J(z, dy) im —=

Therefore, we have from (3.1.8) that

Cy! Co

Vom0l =Y S Vi oo ) wlpay)

(3.1.10)

~

Similarly, X has a jump kernel j(x, dy) = J(z,y)m(dy) with J(z,y) =
J(y, ).

There are plenty of examples of processes satisfying the assumptions of
this subsection. Reflected stable-like processes in a closed d-set D C RY sat-
isfy the assumptions of this subsection, see [25, 42]. Unimodal Lévy processes
in R? with Lévy exponents satisfying weak upper and lower scaling conditions
at infinity, in particular, isotropic stable processes, satisfy the assumptions of
this subsection, see, for example, [20, 41]. Another typical example is given

at the end of this section.

83



CHAPTER 3. ESTIMATES ON HEAT KERNELS FOR NON-LOCAL
OPERATORS WITH CRITICAL KILLINGS

3.1.2 Interior estimates and scale-invariant parabolic

Harnack inequality for X

Let 77 == inf{t > 0: X; ¢ U} be the first exit time from U for X. For an
open subset D of X, the killed process X7 is defined by X = X, if t < 75
and XP =0 ift > 75, where O is the cemetery point added to X. Similarly,
we define the killed process X 2. It is well known that X and X are strong
duals of each other with respect to mp, the restriction of m to D (see [25,
p.481] and the end of [60, Section 13.6]).

For t > 0 and z,y € D, define

pp(t,z,y) = p(t,x,y) — E” [p(t — Tg,XTg, )iTh <t< QX}, (3.1.11)

where (X is the lifetime of X. By the strong Markov property, pp(t, z,y) is
the transition density of X” and, by the continuity of p(¢,z,v), (3.1.9), the
Feller and the strong Feller properties of X and X , it is easy to see that
pp(t, x,y) is jointly continuous (see [61, pp.34-35] and [96, Lemma 2.2 and
Proposition 2.3]).

The following lemma is basically [9, Lemma 3.8|, except that we require

neither symmetry nor conservativeness.

Lemma 3.1.4. Suppose that there exist positive constants r,t and p such
that
P* (X, ¢ B(z,r),s < (%) <p, re X sel0t.

Then
IP’I( sup p(Xs, Xo) > 2rt < CX) < 2p, x e X.

0<s<t

Combining this lemma with (3.1.9) and (3.1.11), we can repeat the proof
of [32, Proposition 2.3] word for word to get the following result. Note that

conservativeness is not needed.

Proposition 3.1.5. For every a > 0, there exist constants ¢ > 0 and € €
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(0,1/2) such that for all xo € X and r € (0,aRy),

Cc

Vo) for z,y € B(xo,e® (1)) and t € (0, P(er)].

PB(xo,r) (t, x, y) 2

Let Z5 := (Vs, X;) be the time-space process of X, where Vy = Vj — s.
The law of the time-space process s — = starting from (¢, x) will be denoted
as Pt

Definition 3.1.6. A non-negative Borel function h(t,z) on R x X is said
to be parabolic on (a,b] x B(xg,r) with respect to X if for every relatively
compact open subset U of (a,b] x B(xzo,7),

h(t,z) = E®® [h(Ez) : 5 < ]

for every (t,z) € U N ([0,00) x X), where 75 :==inf{s >0: Z, ¢ U}.

Theorem 3.1.7. For every a > 0, there exist constants ¢ > 0 and cy,cy €
(0,1) depending on d, T and a such that for all xzy € RY, ty > 0, R €
(0,aRy) and every non-negative function u on [0,00) x R? that is parabolic
on (to, to + 4c1P(R)] x B(xo, R) with respect to X or X,

sup  u(ty,y1) <c inf wu(ty, y9),
(t1,y1)€Q - (t2,y2)€Q+

where Q_ = (to + a1®(R),to + 2c1P(R)] x B(wo,c2R) and Q4 = [to +
3c1P(R), to + 41 P(R)] X B(xo, c2R).

Proof. By (3.1.10), (3.1.1) and (3.1.3), we see that there exist ¢, co > 0 such
that for all x # y € X with r < p(z,vy)/2 < Ry,

Co

Vi) /B(m) J(z,y)m(dz).

Using this, Proposition 3.1.5 and (3.1.8), we see that the proof of Theorem

J(y,x) <eid(w,y) and J(z,y) <

3.1.7 is almost identical to the proof for the symmetric case in [47, Theorem
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4.3]. We emphasize that the conservativeness is not used in the proofs of [47,
Lemmas 3.7, 4.1, 4.2 and Theorem 4.3]. We omit the details. .

Theorem 3.1.7 clearly implies the elliptic Harnack inequality. Using The-
orem 3.1.7, we have the following result. In the remainder of this section, D

will always stand for an open subset of X.

Proposition 3.1.8. For all a,b > 0, there exists ¢ = c(a,b) > 0 such that for
every open set D C X, pp(t,x,y) > cq(t,z,y) for allt € (0,aRy),x,y € D
with 6p(z) A dp(y) > b®1(t).

3.1.3 3P inequality and Feynman-Kac perturbations

The following 3P inequality holds true.

Lemma 3.1.9. For every a € (0,00), there exists ¢ > 0 such that for all
0<s<t<aRy,

5(87 xz, Z)a(t — 5,z y)
qt,x,y)

< cqls, z,2) +q(t = 5,2,9), xyz€X

For an open set D C X, a measure p on D is said to be a smooth
measure of X with respect to the reference measure mp if there is a positive
continuous additive functional (PCAF) A of X such that for any bounded

non-negative Borel function f on D,

/f u(dx) —hmEm[ /fXDdAs],

cf. [114]. The additive functional A is called the PCAF of X” with Revuz
measure y with respect to the reference measure mp.
It is known (see [68]) that for any z € D, o > 0 and bounded nonnegative

Borel function f on D,

E” / "o f(XP)dA, = / e /D polt, z.y) F@)u(dy)dt,
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and we have for any x € D, t > 0 and non-negative Borel function f on D,

g [ roeiin= [ [ ots e st

We first introduce our class of possibly critical perturbations. For an open

set D C X, a smooth Radon measure p of XP, ¢ > 0 and a > 0, we define

t
NPH(t) = SUP/ / q(s,x, z)u(dz)ds.
z€X JO J2€D:0p(2)>a®1(¢)

Definition 3.1.10. Let p be a smooth measure for both XP and XD with
respect to the reference measure mp and let T € (0,00]. The measure p is
said to be in the class K (D) if
(1) sup NP#(t) < oo for all a € (0,1];

t<T
(2) PH(]) Ng’“(t) = 0 for every relatively compact open set U of D.

—

For i € Kr(D), using condition (2) in the definition above, one can show
that, for any relatively compact open subset U of D, AMT? is a PCAF of

XY with Revuz measure p7, where py is the measure yu restricted to U. See

Proposition 3.3.3 in Appendix for the proof.

Remark 3.1.11. By the semigroup property, it is easy to check that
NP#(t) < NPH(s) + Co(T) NPH(t —5), 0<s<t<T,

where Co(T) is the constant in (3.1.9). Thus, if i is in the class Ky (D), then

sup;.p NPH(t) < oo for alla > 0 and T € (0, 00).

For 1 € Ky(D), we denote by A}’ the positive continuous additive func-
tional of X with Revuz measure p and denote by ﬁf the positive continuous
additive functional of X? with Revuz measure 1. For any non-negative Borel
function f on D, we define for t > 0, x € D,

T f(2) = B [exp(- AN f(XP)], T1P flw) = B [exp(~ A1) F(XP)] .
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The semigroup (T/*” : t > 0) (respectively (TP : ¢t > 0)) is called the
Feynman-Kac semigroup of XP (respectively e ) associated with p. By
[127, Theorem 6.10(2)], T/*P and T/*” are duals of cach other with respect

to the measure mp so that
[ 1P @gamidn) = [ )T gemidn). (3112
D D

Let YV (?, respectively) be a Hunt process on D corresponding to the
transition semigroup (T¥P) ((TP"), respectively). For an open subset U C
D, we denote by YV (?U, respectively) the process Y’ (EA/, respectively) killed
upon exiting U.

Suppose that U C D is a relatively compact open subset of D. Since for
any relatively compact open set U, A*Y = Al S is a positive continuous
additive functional of XV with Revuz measure g, the transition semigroup
of YV is (T}*""). For simplicity, in the sequel we denote this semigroup as
(Tt’"U). Moreover, for any ¢t > 0,z € U,

11 f(a) = B [F(Y7)] = E7 |exp (= AL, ) F(X])]
and
e [ F(XU)dAR / t [ s fwtaas

It follows from Definition 3.1.10(2) that, for all relatively compact open
subset U of D, puy is in the standard Kato class of XY, that is,

t
fimsup [ [ pu(s. 2. putdy)ds = 0.
0 U

=0 ey

Thus, according to the discussion in [42, Section 1.2], we have for any non-
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negative bounded Borel function f on U,

TV f(z) = E* [f(X])] +E

FXD) Y (-1 / dARY .. AR
n=1 0

<s1< <5 <t

Define p?(t, z,y) := py(t,z,y) and, for k > 1,

v (t,x,y) / /pU 8,1, 2)pi(t — s, 2,y)p(dz)ds.

Then we set ¢V (t,z,y) := > pe o P (t, 7, y). By Lemma 3.1.9, we have that for
any p in Ky(D), any relatively compact open set U of D and any (t,z,y) €
(0,1] x U x U,

// —s,2,2)q(s, z,y)u(dz)ds

< cq(t,z,y sug/ / s,u, z)pu(dz)ds ca(t,x,y)Ng’“(t). (3.1.13)
ue

Using (3.1.13), (3.1.8) and the semigroup property, one can show that pf; (¢, z,y)
is continuous in (¢,y) for each fixed x, continuous in (¢, x) for each fixed y,
and Y 7o, pi(t, x, y) converges absolutely and uniformly so that ¢ (¢, z,y) is
continuous in (¢,y) for each fixed z, and also continuous in (¢,z) for each
fixed y (for example, see [42]). Moreover, by repeating the discussion in [42,

Section 1.2], one can conclude that

T f(z) = / & (o) [()mldy), () € (0,00) x U.

Define ¢ (t,z,y) = lim, . ¢”"(t,2,y), where D, C D are bounded
increasing open sets such that D,, C D, ., and U, D, = D. Then, using

the monotone convergence theorem and

¢ (t,x,y) < pp,(t,2,y) < p(t,x,y) < Co(T)q(t,,y), t<T,
we see that ¢” (¢, z, y) is the transition density of the process Y and ¢ (¢, z,y) <
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Co(T)q(t, x,y) for t < T. Therefore, we obtain the following

Proposition 3.1.12. Suppose that D is an open set in X and p € Ky(D).
Then the Hunt process Y on D corresponding to the transition semigroup
(TP has a transition density ¢ (t,z,y) with respect to m such that for
each T € (0,00), ¢°(t,z,y) < Co(T)q(t,x,y) for t < T. Furthermore, if D
is relatively compact, then qP(t,x,y) is continuous in (t,y) for each fived x,
and continuous in (t,z) for each fized y. If p € Koo(D) and T = 0o, then
the estimate ¢P(t,z,y) < cq(t, z,y) holds for every t > 0.

3.1.4 Interior estimates for Y

In this subsection, we prove some interior estimates for the transition density
qY(t,z,y), where U is an open subset of D. Recall that we assume Ry =
m(X) = oo when T = co.

Theorem 3.1.13. Suppose that € Ki(D). Then for every T € (0,00) and
a € (0,1], there erists a constant c := c(a,®,Co, M,sup,p NEP# (t)) >0

2-1q

such that for every open U C D,
q¢"(t,x,y) > cq(t, z,y) (3.1.14)

forallt € (0,T),z,y € U with éy(z) A oy(y) > a® 1 (t). Moreover, if u €
Ko(D) and T = oo, then (3.1.14) holds for all t > 0.

Proof. Fix t € (0,T), z,y € U with dy(z) A dy(y) > a®(t). Let V be a
bounded open subset of U defined by

Vi={z€U:dy(z) >2"ad ' (t)} N B(z, p(z,y) + a® ' (¢)).

Then, one can check that z,y € V and dy(z) A dy(y) > 272a®~1(¢). Note
that ¢V (¢, z,w) > ¢"(t,z,w) for allw € V and w + ¢ (¢, ,w) is continuous.
For w e V| let

Py (t,x,w) = /Ot (/va(t - 3,$72)pv(8,2,w)u(dz)> ds.
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Then for any bounded Borel function f on V', by the Markov property of

XV, we have

e [ )] =& | [ e giaa| = [ e auftomiao)

: (3.1.15)

Since 0p(z) > dp(z) > 27 ta® 1 (¢) for 2 € V, by (3.1.11), (3.1.8), Lemma
3.1.9 and Proposition 3.1.8, we have that for w € B(y,2 3a®(t)),

¢
py(t,z,w) < 6(2)/ /a(t—s,x,z)@(s,z,w)u(dz)ds
o Jv

t

<c [ [ (t — 5,2, 2)i(s, 2, w)p(dz)ds
0 J2€D:p(2)>2"1a®1(t)

< 636 (Sup Nﬁ’f‘a(s)) q(t,z,w) < 650 <sup Nf_’{;(s)) C lhpy (¢, m,w)

s<T s<T

=: (k/2)pv(t,z,w).

Hence, for w € B(y,273a®7(t)), we have py(t,z,w) — k7'pi (¢, z,w) >
27'py (¢, 2, w), which implies that for any r < 273a®~1(#),

%Em[lsw) (X)) <ET[(1— AP k) 1pn(X))] - (3.1.16)

Using the fact that 1 — AYY /k < exp (—A}"Y/k), we get that for any r <
273a®~1(t),

1 - v v 1
V(y,T)E [(1 A /k)lB(y»r)(Xt )] < V(y,r)

E” [exp(—ALY /k)1pyn (X)) .

Thus, by (3.1.16), (3.1.15) and Holder’s inequality, we have

1 1 1
- E" 1, X)] <
2V (y,r) LX) < V(y,r)

< (V(;,T)Ew [eXp(—Afv)lB@,r)(XtV)])l/k (@Ex [1B(y,r)(XtV)])

E” [exp(— A" /k)1p(yn (X))

1-1/k
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Therefore,

1
28V (y,7)

E* [1B(y,r)(XtV)} < E” [eXp(_Agv)lB(y,r)(Xtv)} :

V(y,7)

Since w — ¢ (t,z,w) is continuous by Proposition 3.1.12, we conclude
by sending r | 0 and applying Proposition 3.1.8 again that for every t €
(0,T),z,y € U with 6y (z) A dp(y) > a®1(t),

¢tz y) > q" (ta,y) > 2 pu(t,a,y) > 275Gt z,y).
[

Let 7y :=inf{s > 0: Y, ¢ U} and 7y := inf{s > 0 : Y, ¢ U}. Using

Theorem 3.1.13, we have the following result.

Corollary 3.1.14. (i) Suppose that u € Ki(D). For any positive constants
R, T and a, there exists ¢ = ¢1(a,T) > 0 such that for all t € (0,T) and
B(xz,®71(t)) C D,

nf P z,ad~! >t) A inf IE\DZA:L"UL—l >t) >
ceneiibin E TBearwy > 0N il B e > ) 2 a
(3.1.17)
and
B [75m) AE Fo@n] > a®(r), (3.1.18)

Moreover, there exist ri,co > 0 such that for all r € (0,r1] and B(x,r) C D,
B [75e)] V E Fo@n] < c2®(r), (3.1.19)

(ii) If p € Koo(D) and T = oo (and Ry = o0), then (3.1.17)~(3.1.19) hold
for all r;t > 0.

3.1.5 Examples of critical potentials

In this subsection, we give two examples of critical potentials.
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Example 3.1.15. Suppose p(dz) = q(z)m(dz) with 0 < q(z) ~ 1/®(0p(z) A
1). Since q is bounded on every relatively compact open set U C D, NJ*(t) <
Cot||q|| ey = 0 as t — 0. Moreover, for v € D, a € (0,1] and t <1,

¢
/ / q(s,x, 2)q(z)m(dz)ds
0 J2€D:6p(z)>a®—1(¢)

t
§ct—|—c// O(5p(2)) (s, 2, 2)m(dz)ds

0 Jz€D:1>6p(z)>a®~1(¢)
<ct + ! /t/~( ym(dz)ds < ct + ! <ec< oo
<c C(D(CLCI)—l(t)) i Dq s,x, z)m(dz)ds < ¢ Cq)(a(b—l(t)) c .

Thus sup,.; NP#(t) < oo for all a € (0,1] and so p is in the class Ki(D).

Example 3.1.16. Suppose T = co and p(dz) = q(z)m(dz) with 0 < q(z) ~
1/®(0p(2)). Then Ry = oo and for all a € (0,1] and t < o,

1 ct

NPHO) < gy, T midehs < gt < o< o

Thus  is in the class Koo (D).

3.1.6 Factorization of heat kernel in x-fat open set

Recall that D(K,U) is the subset of D in Assumption A. Let

A(z0,p,q) ={x € X:p < p(x,20) < q},
A(z0,p,q) ={z € X :p < p(z,2) < q}.

Note that, due to our assumption that all bounded closed sets are compact,
A(20,p,q) is compact. Thus by Assumption A, for any 1/2 < b < a < 1, the
set D(A(zo, br,ar), A(zo,7/2,7)) is nonempty. We now add the final assump-
tion saying that there exist proper bump functions in each nonempty set

D(A(zg,br,ar), A(zo,7/2,7)) providing scale-invariant control on the action

of the generator.

Assumption U: There exists 1y € (0, oo] such that for any 1/2 < b < a < 1,
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there exists ¢ = ¢(a, b) such that for every zop € X and r < 1y,

. inf sup max(Lf(z), Lf(x)) < —.
FE€D(A(z0,br,ar),A(z0,r/2,r)) x€X @(7")

This assumption is used in connection with Dynkin’s formula in Lemma

3.1.18 to get a scale-invariant estimate of the exit probability.

Definition 3.1.17. Let 0 < k < 1/2. We say that an open set D is k-fat if
there is Ry € (0,00] such that for all x € D and all v € (0, Ry), there is a
ball B(A,(x),kr) C DN B(xz,1). The pair (Ry, k) is called the characteristics
of the k-fat open set D.

In the remainder of this subsection, 7" > 0 is a fixed constant and D is a
fixed k-fat open set with characteristics (Ry, k). Without loss of generality,
we can assume that Ry < Ry Arg A1y, where rq is the constant in Corollary
3.1.14(i). For (t,z) € (0,T) x D, set 7, = &~ 1(t) R, /(39" 1(T)) < Ry/3. An
open neighborhood U(z,t) of € D and an open ball W(x,t) C D\ U(z,t)

are defined as follows:

Figure 1. p(x, z) < 3kry/2. Figure 2. p(x, z) > 3kr;/2.

By the definition of s-fat open set, we can find 2 = 2,; € D such that
B(z,3kr:) C B(z,3r:) N D.

(i) If p(z,2) < 3kry/2, we choose y; € X such that kr/ng < p(x,y;) <
kry, where ng > 1 is the constant in (3.1.2). Then we define U(x,t) =
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B(z, kry/(4ng)) and W(z,t) = B(yi, kri/(4ng)). We can easily check that
U(x, t)UW(x,t) C B(z,3kr:/2) C B(2,3kr:) C D and U(z,t)NW(z,t) = 0.

(i) If p(z, z) > 3kry/2, we define U(x,t) = B(x,kry) N D and W(x,t) =
B(z, kry/(4ng)).

Note that in either case, we have,
kre/(2ng) < p(u,v) < 4r, for all uwelU(x,t) and v € W(z,t). (3.1.20)

See Figures 1 and 2 for some illustration of the sets U(x,t) and W(x,t).
It follows from [127, Theorem 1.3.4] that the Lévy system of Y is the
same as that of X, hence the following Lévy system formula is valid: for any

f: D x D — |0, 0] vanishing on the diagonal and every stopping time S,

S
E* Z f(Yt_,Y})IEm/O /Df(Y%,Z)J(Y},z)m(dz)dt. (3.1.21)

t€(0,9]

Recall that 7y = inf{s > 0: Y, ¢ U} and 7y = inf{s > 0 : Y, ¢ U}.
Note that P*(Yz,,, , € D) = P*(y(zr) < (), where ( is the lifetime of Y.

Since the proofs for the dual processes are same, throughout this section,

we give the proofs for Y only.

Lemma 3.1.18. Suppose that p € Ki(D). For all (t,z) € (0,T) x D and
2=z, € D with B(z,3kr;) C B(z,3r;) N D and p(z, z) > 3kr¢/2, we have

P (Y,

Tu(,t)

€ W(x, 1)) ~ P2(Y,

TU (x,t)

€ D) ~ t_lEx[Tu(x’t)}

and

~

P*(Yz,,., € W(z,t) ~P*(Y,

TU(z,t TU(z,t)

€ D) ~ ¢~lE* [?u(z,t)],

where U(x,t) and W(x,t) are the open sets defined in the beginning of this
subsection and the comparison constants depend only on dy, d, d;, 0y, T, M, Ry
and k.

Proof. Fix (¢t,x) € (0,7) x D and assume that B(z,3kr;) C B(z,3r;) N D
and p(x,z) > 3kry/2. Recall that U(x,t) = B(z,kr) N D and W(x,t) =
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B(z, kri/(4ng)). Define Dy := B(x,9xr,/8) N D and Dy := D\ D;. Take any
f € D(A(z, kre, 9514 /8), Az, 5kr /8, 511 /4)) .

Then, by Dynkin’s formula for X (see [25, (2.11)] and the proof of [25, (4.6)]),

we have

P (Y,

TU(,t)

EDl):Ex[eXp(—Afx )ZXX €D1:|

U(z,t) TU(x,t)

<E” [f(XTff(z,t)) exp (— Ay ’t))] — f(y)

TZ/{(ZE

_Re { / D e rX) exp(—A‘s‘)ds} +E { / e f(Xs)deXp(—A’;)]
0 0

Tt
exp(—AL)ds
0

_ (sup Lf (Z)) E* [(a.0)]-

zeX

< (sup Lf (2)) E*

zeX

By Assumption U and (3.1.3), taking infimum over f on both sides gives

1

®(ry)

P (Y,

TU(x,t)

€ D) < EY [Ty (wn] < szlEy[Tu(z,t)]-

On the other hand, by (3.1.21), (3.1.10), (3.1.20), (3.1.1) and (3.1.3), we
have that

TU(x,t)
(Y, € W(z,1)) = E° l / / (Y, w)m(dwms]
' 0 W(z,t)
1
~ E*14(x / — m(dw) ~ T E¥
[T )] i V@ )3 (dw) [Tut(a)]

and

TU (x,t)
IP’I(YTMW) €D, =E° {/ / J(Ys,w)m(dw)ds]
0 Do

1
< 3B [y (a, /
ol [ o) Vsl @) 8o, w))

S C4t_1Em [Tu(a;,t)] .

m(dw)
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We used [48, Lemma 2.1] in the last inequality. Therefore, using the fact

P(Yo, ., € D) =P*(Ye,,, € D1) +P*(Yy,,, € D), we get the desired
result. O

Recall that ( is the lifetime of Y. We denote by Z the lifetime of Y.

Lemma 3.1.19. Suppose that p € Ky(D). For all M,T > 1, we have that,
forallt € (0,T) and x € D,

PP(¢ > t) = P*(C > t/M) =~ P*(Ty(apy > t) =t E* )
~ P*(Y, € D) ~ P*(Y, e W(x,t))

TU (x,t) TU(z,t)

and

P(C > t) = PP(C > t/M) ~ P (o > £) =t E Ry
~ P (Y., € D) =P (Y., € W(,t),

U (x,t) TUu(x,

where U(z,t) and W(x,t) are the open sets defined in the beginning of this
subsection and the comparison constants depend only on dy, d, d;, 0., T, M, Ry

and K.

Proof. Fix t € (0,T), x € D and set r :=r, = &7 (t)R, /30~ 1(T).
Case (1): p(x, z) < 3kr/2. By (3.1.17), we have

1> ]P)m<€ > t/M) > Px(c > t) > Px(Tu(%t) > t) = PI(TB(m,Hr/(ALno)) > t) >c
On the other hand, by (3.1.20), (3.1.21), (3.1.1), (3.1.3) and (3.1.18),

Tb{(:c t) > Pm(}/ﬁ/{(m t) € W(x t))

TU(x,t)
{/ / J(Ys,v)m(dv)ds
W(:L" t)

‘CE t [Tl/l(x t)] E* [TU(:E t)] 1
> > t Ew XT,RT 12 Z .
V(w73r)¢’(37’) =233y = (B (@ sr/(4n0)] 2 €4

_01
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Therefore, we arrive at the assertion of the lemma in this case.

Case (2): p(x, z) > 3kr/2. Using the Markov inequality, we get

PI(C > t/M) = Pr(< > Tu(z,t) > i/M) +Px(c > t/M > TM(w,t))
S Px(Tu(%t) > t/M) + P‘T(C > Tu(%t))
< Mt "B [y ) + P* (Yo, € D).

TU(x,t

Then by Lemma 3.1.18 we have

PP(¢ > t/M) < st "E [myan)] ~ P*(Y,

TU(x,t

L€ W(a,t) = P(Y,

TU (x,t)

€ D).

Note that B(z, (3—2k)r)ND D U(x,t)UW(x,t) for every (t,z) € (0,T] x D.
Thus by (3.1.17),

P(¢ > t/M) > P*(C > t) > P*(Tpannp > t)

> [E* inf P¥ 2.3r >t):Y,

, € W(m,t)]

> E* [we%l{%t) ]P)w<TB(w,m") > t) : }/Tu(x,t) S W(l‘, t):|

> CGPz<Y ) S W(x,t))

TU(z,t

The proof is now complete. U

Theorem 3.1.20. Let D be a k-fat set with characteristics (Ry, k). Suppose
that p € Ky(D). Then for all T > 0, there exists ¢ > 1 such that for all
(t,,9) € (0,T) x D x D,

. q°(t,z,y)

= == — <ec.
Pe(C > 1)PY(C > t)q(t, x, y)

Proof. Fix t € (0,T), z,y € D and set r := &~ (¢)R, /(39 1(T)).
(1) We first prove the upper bound. By (3.1.8) and Lemma 3.1.19, if
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p(x,y) < 4r, then we have

(4/2..9) = [ 4P (t/400)0"0/4, 0. m(dw)
< C’o/DqD(t/4,x,w)Z]V(t/Zl,w,y)m(dw)

< aP' (¢ > t/4V(y, @71 (1) T < P (¢ > p(t/2,2,y).

Suppose that p(x,y) > 4r. Let Uy := U(x,t) be the set defined before,
Us:={ueD:plx,u)>plx,y)/2}, and Uy := D\ (U; UUs). Since x € Uy,
y € Uz and U; N Uz = ), by the strong Markov property, we have

q°(t)2,x,y) = E°[¢"(t/2 — Ty Yoy 5 Y) 2 Ty < /2, Y5, € U
+Ex[qD(t/2 _TU1>Y;'U1>y) < Ty < t/Q?Y;'Ul € Ug] =: [—i—[[

Note that for every u € Us, p(u,y) > p(x,y) — p(x,u) > p(x,y)/2 and hence

VY, p(z,y)) < V(u, p(z,y) + plu,y)) < V(u,3p(u,y)).

Then, using (3.1.8), (3.1.1) and (3.1.3), we get that for all (s, u) € (0,t/2]xUs,

c3S cyt
V(300 9) @ 200, 9)) — Vi, ol 0) 802, )
< C5p<t/27 xz, y)

q”(s,u,y) <

Now it follows from Lemma 3.1.19 that
I <esp(t)2,2,y)P" (Yo, € D) ~P"(C>t)p(t/2,z,y).
On the other hand, for all u € U; and w € Us, we have p(u,z) < r < p(z,y)/4

and p(uaw) > p(:c,w) o ,O(SL’,’U/) > p($>y>/2 —r = p(‘ray)/47 which lmphes
that

Vi(z, p(z,y)) < V(u,p(u,z) + p(z,y)) < V(u,2p(z,y)) < V(u,8p(u, w)).
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Thus, by (3.1.21), (3.1.1), (3.1.4) and Lemma 3.1.19, using the assumption
p(x,y) > 4r, we get

”_/t/z/m/yg U (s, 2 1) T (u, w) g2 (/2 — 5,0, y)m(duw)m(du)ds

1 vr_ : .
S Ve ol )@ <<x,y>>/o B(rw, > s)BY(C> /2 = s)ds

1 - o s)ds
< Ve, o)) (o, >>/o i, > s)d

t/2 —1lpz ~ PT T
= 2 G pa By ) = EC > OplE/2 xy).

Eventually, we deduce that whether p(x,y) < 4r or not, there exists
c; > 0 independent of ¢, z,y such that ¢ (¢/2,z,y) < c7P*(¢ > t)p(t/2,x,v),
and, similarly, ¢ (¢/2, z,y) < 07@9(2 > t)p(t/2, z,y). Then, by the semigroup
property and (3.1.8), we obtain that

qD(t,x,y):/DqD(t/Q,x,w)qD(t/Q,w,y)m(dw)
< EP(C> OBUC> 1) [ plt/2m,0)plt/2, 0 )mldw)

x
< ECP*(¢ > t)IP’y(C > t)q(t, z,y).

(2) For the lower bound, we use the notation W as before. By the semi-

group property, we see that

qD(W,y):/D/DqD(t/3>x:u)qD(t/3,u,w)qD(t/&w,y)m(dw)m(dU)
> P(t/3, 2, u)¢P(t/3,u, w)q" (t/3,w, y)m(dw)m(du).
2 [ Lo €3 073 ) 3,y
Observe that for all (u,w) € W(z,t/3) x W(y,t/3),

Sp(u) Aop(w) > 47 k(ar/3)Y%r,  |plu, w) —p(z,y)| < 6(3a,)%r. (3.1.22)

Here is an explanation of the last inequality above, the others being similar.
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By the triangle inequality and symmetry, it suffices to show that p(u,z) <
3(3a,)"%r. Since W(z,t/3) C B(x,3ry3), this will be so provided that
i3 < (3a,)Y%+r. But this immediately follows from (3.1.5) by estimating
®~1(t/3)/®~1(t). By considering cases p(z,y) > 12(3a,)%r and p(z,y) <
12(3a,,)"/%r separately, we get from Theorem 3.1.13, (3.1.6) and (3.1.22) that
for all (u,w) € W(x,t/3) x W(y,t/3),

D ~ 7 ~ L !
q”(t/3,u,w) = q(t/3,u,w) ~ (V(% d-1(1)) A V(u,p(w,U))CP(,O(wau)))

~ q(t,z,y).

Let cg := 8 'k(a;/3)'/%. By Theorem 3.1.13, (3.1.6) and (3.1.22), for all
(s,u) € (/6,t/3) x W(x,t/3) and w € B(u,cgr), we have ¢”(s,w,u) ~
q(s,w,u) ~ 1/V(u,r). Besides, by (3.1.20), (3.1.10), (3.1.1) and (3.1.3), we
see that for all u € W(x,t/3) and (v,w) € U(x,t/3) x B(u,csr),

1 1

I (v, w) = V(v,7)®(r) = Vi(z,r)®(r)

Therefore, by (3.1.21) and Lemma 3.1.19, we get that for all u € W(x,t/3),

q"(t/3,z,u)

> Ex[qD(t/3 = Tu(z,t/3)> Y:Fu(z,t/swu) D Tu(a,t)3) < t/6, YTu(z,t/3> € B(u,cgr)]

t/6
> / / / @ (s, x,0) T (v,w)gP (t/3 — s, w, w)m(dw)m(dv)ds
0 U(z,t/3) J B(u,csr)

t/6
Co
> P*(Ty(z.t/3) > s)m(dw)ds
v<u,r>v<x,r><b<r>/o /B(u,cm (uteas > syml

coV (u, csT) /t/6
P t d
= ViV e e = WO J

C10t
P* (724 ( >1/6) ~
— V(x,r)t (Tua1/3) /6)

V(x7T)IP””(C > 1).

Similarly for w € W(y,t/3), ¢®(t/3,w,y) > cnﬁﬁy(2> t).
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Finally, using (3.1.1) and (3.1.3), we conclude that

5 .
txy)> e inf
q ( y) = 1 weW(z,t/3), weW(y,t/3)

X / m(du) / m(dw)
W(z,t/3) Wi(y,t/3)
> e3P (¢ > O)PY(C > t)qlt, z,y).

(qD(t/3, Z, u)qD(t/?), u, w)qD(t/?)» w, y))

We have finished the proof. Il

Using Theorem 3.1.13 and Corollary 3.1.14(ii), the following global esti-

mates can be proved by the same argument. We omit the proof.

Theorem 3.1.21. Let D be a k-fat set with characteristics (0o, k). Suppose
that € Ky(D) and Ry = m(X) = T = ry = oo, where rq is the constant
in Assumption U. Then there exists ¢1(k) > 1 such that for all (t,z,y) €
(0,00) x D x D,

Jy q"(t,z,y)
LT e > P > )Gt 7, y)

< C1.
Example 3.1.22. Suppose that (X, p,m) is an unbounded Ahlfors reqular n-
space for some n € (0,00), that is, for allz € X and r € (0,1], m(B(z,r)) ~
r’. Assume that p is uniformly equivalent to the shortest-path metric in X.
Suppose that there is a diffusion process & with a symmetric, continuous tran-

sition density p*(t,x,y) satisfying the following sub-Gaussian bounds

dy \ 1/ (dw=1)
¢ p(z,y)%
tn/dw exp (_02 (%) ) < pf(t,x,y)

1/(dw—1
R 7 S
_tn/dw p 4 n )

for all x,y € X and t € (0,00). Here d,, > 2 is the walk dimension of the

space X. Examples of € include Brownian motions on unbounded Rieman-

nian manifolds, Brownian motions on Sierpinski gaskets, Sierpinski carpets
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or more general fractals. Let o € (0,dy,) and T be an («/d,)-stable subor-
dinator independent of €. We define a process X by X; = &r,. Then X is a

symmetric Feller process. It is easy to check that X has a transition density

p(t, x,y) satisfying

—n/a t
p(t,x,y) ~ (t / A W) 5 (3123)

for all xz,y € X and t € (0,00). It follows from [25, Appendixz A] that As-
sumptions A and U above are also satisfied with ®(r) = r*. Therefore, by
Theorem 3.1.20 and (3.1.23), if D is a k-fat open set in X and p € K;(D),
then for all (t,x,y) € (0,79) X D x D,

T —n/a t
q"(t,z,y) 2 P*(¢C > t)PY(( > t) (t ) W) :

3.2 Heat kernel estimates of regional frac-

tional Laplacian with critical killing

An open subset D C R? (d > 2) is said to be a C™! open set if there
exist a localization radius Ry > 0 and a constant A > 0 such that for every
z € 0D, there is a CV! function I' : R¥™1 — R satisfying I'(0) = 0, VI'(0) =
(0,0), I0||lsc < A, |VI'(y)—VT(2)| < Aly— 2| and an orthonormal coordinate

system CS, : x = (Z,z4) := (x1, ..., x4_1, Tq) With origin at z such that
DN B(z,Ry) ={x € B(0,Ry) in CS,:xz4>T1(2)}.

A O open set in R is the union of disjoint intervals so that the minimum
of their lengths and the distances between them is positive.

In this section we assume that d > 2, X is either the closure of a C%!
open subset D of R? or R? itself, and the underlying process is either a
reflected a-stable process in D (or a non-local perturbation of it), or an a-

stable process in R? (or a drift perturbation of it). We investigate heat kernel
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estimates under critical killing. We first recall the definition of reflected a-
stable processes.

Let 0 < o <2 and Ag, = a2 '7~20((d + ) /2)T(1 — a/2)"L. Here T
is the gamma function defined by T'(A) := [ t*'e~'dt, A > 0. For a C*!
open subset D of R?, let (£, F) be the Dirichlet space on L?(D, dz) defined
by

> o fuerion [ [ O 4y ),
T(u0) = %A(d’ _a)/D/D (u(z) — uly))(v(z) —v(y)) dedy. uveF

|x _ y|d+a

It is well known that W/22(D) = F and the Sobolev norm || - [|a/22.p is
equivalent to /&, where &; := & + (-, *)r2(p)- As noted in [16], (&, F) is
a regular Dirichlet form on D and its associated Hunt process X lives on
D. We call the process X a reflected a-stable process in D. When D is the
whole R?, X is simply an a-stable process.

It follows from [45] that X admits a strictly positive and jointly continuous

transition density p(¢, x, y) with respect to the Lebesgue measure dzx and that

p(t, z,y) ~ (t_d/a A m) , (t,z,y) € (0,1) x D x D.

When a € (1,2), the killed process X? is the censored stable process in
D. When « € (0, 1], it follows from [16, Section 2| that, starting from inside
D, the process X neither hits nor approaches 0D at any finite time. Thus,
the killed process X? is simply X restricted to D (without killing).

We will see that, for all a € (0,2), the killed isotropic a-stable process
ZP can be obtained from X? through a Feynman-Kac perturbation of the
form (3.2.6) with r satisfying (3.2.5).

It follows from [36] that, when o € (1,2), the transition density p3 (¢, z,y)
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of XP has the following estimates:

Op(2) "™ o)\ (- t
X ~ D D d/a
pD(t,as,y)_(l/\ tl/a> <1/\ a = A P
(3.2.1)

for (t,z,y) € (0,1) x D x D.
It follows from [35] that the transition density p% (¢, z,y) of ZP has the

following estimates:

o)\ ([, p(y) " t
Z ~ D D —d/a
pD(t,a;,y)_(l/\ o > 1A 1/a t /\]a:—y]‘“a

(3.2.2)

for (t,z,y) € (0,1) x D x D.

In Subsection 3.2.1, we will establish explicit (Dirichlet) heat kernel es-
timates under critical killing, which also provides an alternative and unified
proof of (3.2.1) and (3.2.2). In Subsection 3.2.2, we consider non-local per-
turbations of (£, F) when D is a bounded C'! open set. Subsection 3.2.3
covers the case D = R4\ {0} and drift perturbations.

3.2.1 (" open set

In this subsection, we assume that D is a C*! open set in R? with character-
istics (Ry, A), and that X is a reflected a-stable process in D. Without loss
of generality, we will always assume that A > 1. It is easy to check that the
process X satisfies the assumptions in Subsection 3.1.1 and Assumption U.

Recall that R? := {y = (J,yq) € R?: yq > 0}. For d > 2 and p € R, we
define wy,(y) = (ya)f. for y € R According to [16, (5.4)], we have for z € R?,

. wp(y) — wp(2) —a
Ageo lim L P dy = O(d, a, p)2h 7, (3.2.3)
el0 R‘_i“\yfz|>e |y - Z|d+a I

where C(d, o, p) = Aga~%" (QT“, %)’y(a,p), B(+,-) is the beta function,

wq_1 is the (d — 2)-dimensional Lebesgue measure of the unit sphere in R%¢!
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and

Yo, p) = /0 - _(11>(_1t;1iz_p_ )dt'

Observe that

dy(a,p) _ /1 (t*1 — ")[logt] |
dp 0 (1 —t)tte

is positive for p > (a — 1)/2 and thus p — v(a, p) is strictly increasing on
((a = 1)/2, ). Moreover, we have

Cld,a,a—1)=0C(d,a,0) =0 and limC(d,a,p)=o00. (3.2.4)

pTa

Let H,, be the collection of non-negative functions x on D with the prop-
erty that there exist constants C1,Cy > 0 and n € [0, «) such that x(z) < Cy
for all x € D with dp(z) > 1 and

|/{($) — Cl(SD(ZL')_a| S Cg(SD(JT)_n, (325)

for all x € D with dp(z) < 1. If @ < 1, then we further assume that C; > 0.
It follows from (3.2.4) that we can find a unique p € [ — 1, ) N (0, ) such
that C; = C(d, «, p). For each p € [a — 1,) N (0, @), we define

Hao(p) :={Kk € Ho : the constant C; in (3.2.5) is C(d, o, p)}.

Note that Ho = Upeja—1,a)n(0,0) Ha(p). We fix & € Ho(p) and let Y be a Hunt
process on D corresponding to the Feynman-Kac semigroup of X through

the multiplicative functional e~ Jo #(X2)ds That s,

E” [f(Y;)] = E* |e  JorCXDds p(xPY| | t>0,2€D.  (3.2.6)
Since, by Example 3.1.15, k(x)dx € K;(D), it follows from Theorem 3.1.20
that Y has a transition density ¢” (¢, z,y) with the following estimate:

t

qD(t,ZL‘,y) ~ Px(g > t)Py(C > t) (t_d/a A m

) . (3.2.7)
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for (t,z,y) € (0,1] x D x D. To get explicit estimate of P*({ > t), we will
estimate P*(Y,,, , € D) and use Lemma 3.1.19.

TU(z,t

For f € C?(D), define

Lof(x) == Ay lim Md

€l0 D,|ly—=x|>€ ’y_x’d+a

Lf(x) := L f(x) — r(z)f ().

bl

The above operator L coincides with the restriction to C?(D) of the generator

of the transition semigroup of Y in Cy(D).
For ¢ € R, define h, : R? — [0, 00) by

Lemma 3.2.1. Let p € [a — 1,a) N (0, ) and suppose k € Ho(p). Then for
any q € [p, «), there exist constants A; > 0 and As € (0,1/4) depending only
onp,q,d,a, N, Cy,n, Ry such that the following inequalities hold:

(i) If ¢ > p, then
Al_l(SD(ZE)q_a S th(l') S A15D($)q_a

for every x € D with 0 < ép(z) < As.
(i) If ¢ = p, then

| Lhy(2)| < A1(0p(2)"™" + |log dp(2)])

for every x € D with 0 < ép(x) < As.

Proof. Without loss of generality, we assume R, = 1. Let x € D with
dp(z) < A where the constant Ay € (0,1/4) will be chosen later. Let z € 0D
be a point such that dp(z) = |r — z|. Then there exist a C™' function
¥ : R¥™! — R such that ¢(z) = Vi(2) = 0 and an orthonormal coordinate
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system C'S, such that z =0 and z = (7, z4) = (0,24) in C'S., and that
DN B(z,1)={y = (y,y4) in CS. :ya > ¥(y)} N B(z,1).
Observe that

LhQ(x) = Lahq(x) - O(d7 a>p)x(cll_a - (K'('T) - C(dv a,p)mgo‘)hq(aj)
=1—-11—-1I1I.

By (3.2.5), it holds that |[I1I| < Coxl™".
For any open subset U C R?, define

dy

— zeU.
Y — Z‘dJra’

ky(z) = Ad,a/

c

Recall that w,(y) = (y4)? for y € R% and w,(y) = 0 otherwise. Since hy(z) =
wy(z) =z, by (3.2.3), we have

= Ao lim / Mdy] + wp(@)hy(2)
a0 | Re |y—z|>e¢

R
| O ),
T el L/ RA |y—2|>e¢ |y - $|d+a Re |y—z|>e¢ |y - Z'|d+0[

+ rp(2)wy(z)

.| hq(y) — wy(y) -
= Ay, lim / 2L DTyl +C(d, o, q)xd
* 0 | Re |y—z|>e¢ |y - x|d+a ( ) ¢

T (kp(x) — s (2)y (@)

According to [16, Lemma 5.6], if 1 < o < 2, then there is ¢ = ¢(d, a, A) > 0
such that |rp(z) —rga ()] < czh™®. By a similar calculation as in [16, Lemma
5.6], one can show that for a < 1, |kp(z) — /ﬁRi(x)| < c(|log x4|1{a=1y + 1).
Thus, for any 0 < a < 2, since ¢ > p > (. — 1), we get

(5 (7) = Fge (2))wy(2)| < exf(zg ™ +[logza) <. (32.8)
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Now, we bound I. := [g, > %du Since D is a CY' open set,
there is a constant rqg = ro(d,A) € (0,1) such that By := B(reeq,70) C D

and By := B(—rgey4,m9) C D¢ where e; := (0,1). We define

E:={y = (U,va) : [yl <ro/4, lyal <10/2},
Ei={yeE:y;> 2’?7\2}, Ey={ye Ly < —2@’2}-

It is easy to check that £y C BiNE C D and Fy C Bo N E C D¢ Thus,
since h,(y) = w,(y) =0 for y € Esy, we get

I = / hfI(y) - wq(y) dy +/ hq(y) - wq(y) dy
Ec,|ly—z|>€ E1,ly—x|>e€

ly— al™ jy—ale

hq(y) - wq(y)d

+/ Yy = J1,6+J2,6+J3,e~
E\(ErUB) Jy—a|>e Y — x|

Recall that © = (0,24) and x4 = dp(z) < Ay. We take A, smaller than
ro/4. Then we see that for every y = (y,yq) with |ya| > r0/2 > 22,

ly — = = [91* + (lyal — lzal)* > [y[*/4

and for every y = (7, yq) with |y] > ro/4 > x4,

1 3, 3 4 1 3, 1
ly —xf” — Z|y’2 = Z|yl2 + 1|yd - gﬂch? - gx?i > Zlyl2 - gxfl > 0.

Therefore, for every y € E°, |y — x| > |y|/2. Since |h,(y) — wq(y)| < 2|y|9, it
follows that for all € € (0, 1),

[T <2t [ fylededy < 21+d+"/ [yl dy = c.
o8 lyl>ro/4

Next, for every y € D, using the inequality (a + b)'/? < a'/? + b/(2a'/?)
for a,b > 0, we get that

dp(y) < dist(y, Ba) = ((ya + 7”0)2 + ‘§|2)1/2 —T0SYs+Tr0+——<—T0
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- 27‘0 4T0

Thus, by the mean value theorem and a change of the variables, it holds that
for all € € (0,1),

~12 q _ .4
). s/ (ya + [9]°/(2r0)) Ya g,
E1,|y—l">e

< 4 [ R VIO A
~ 21 Ey,ly—z|>€ |y - x|d+a
~ 1 - 1
< C/ |y|2yg dy — Cqurla/ |U|2Ug du.
N Ey,ly—x|>€ |y - x|d+a d B(0,1/24) |U — ed|d+a

Besides, since 6p(y) > 05, (y) > ro — ((ro — ya)? + |9]?)'/? for every y € Ei,
using the mean value theorem and a change of the variables again, we get
that for all € € (0,1),

q_

EN I~ T 7))
Eq|ly—z|>e

dy
|y — a|dte
7|? _ — )2 4\ /21
> _g/ Lﬂa( sup (ro — ((ro ydg + 2/2 ) )dy
2y lyel>e Iy = AE[0,[312] ((ro = ya)* + A)
MR ~12, q-1
== gy - —ifffzﬂ_a/ e
T0 J By ly—a|>e |y - l'| @ To B(0,1/zq4) |u - ed| a

Using the inequality |u — eq| > |u|/4 for u € R?\ B(0,2), since (a — 1), <
q < a, we see that

~ —1 ~ —1 ~ —1
[ R, apa
B(01/zy) [t — €a|?T B0,2) U — €4l BO01/z\B(0,2) [t — €q]*T

< 2(11/ ’U . ed|27dfadu + 4d+a/ ‘u|q+1fdfadu
B(0,2) B(0,1/x4)\B(0,2)

1

2 T
gc(/ ll‘“dl+/ ' zq-adz) < (1 + | log z4]).
0 2

Therefore, we deduce that |Jo | < ¢(1 + |logz4|) for all € € (0,1).
It remains to bound |J3|. Denote by m,_i(dx) the (d — 1)-dimensional
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Hausdorff measure. We observe that there is ¢; > 0 such that
ma_1({y: [y =1, =2|7)* <ya <207*}) < 1l forall 0 <l <1.

For every y € E \ (E1 U Es), by (3.2.9), we see that |hy(v)], |w,(y)| < (ya +
1712/ (2r0))? < (2+1/(2r0))?|y|*. Therefore, since ¢ > (a— 1), it holds that

1 1
| S5 < c / / PP, (dy)dl < ¢ / 27 dl < c.
0 J|y|=l,yeE\(FE1UE?) 0

Combining the above estimates, we conclude that || < ¢(1 + log |z4]).
We have proved that

|Lhy(x)] < (C(d, 0, q) — C(d, a, p))zd™* + ¢(1 + log |z4|) + Coxd ™. (3.2.10)

When ¢ > p, we note that C(d,a,q) > C(d,a,p) and ¢ — a < 0 A (¢ — n).
Hence, the desired result follows by taking As small enough. When ¢ = p, we
get the result immediately from (3.2.10). O

Fix ¢ € (p, ) such that ¢ < p —n+ «a. Then define A3 := A;(p) V Ai(q),
Ay = As(p) AN Aa(q), where Ay and A, are the constants in Lemma 3.2.1, and

v1(z) = hy(x) + hy(x).
By Lemma 3.2.1, for any x € D with dp(z) < A4, we have
Lvy(z) > A1 0p(2)7* — A3(0p(x)P" + | log 6p(z)|).
Thus, there exist A € (0, A4) and Ag > 0 such that
Lvy(z) > 2A60p(2)T™* for all z € D with dp(z) < As. (3.2.11)

Define vo(x) := hy(z) — 3he(x). By the same argument, we can find A; €
(0, Ag) and Ag > 0 such that Lvg(z) < —2Agdp ()7 for all z € D with
5D<l’) < A7.
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Now, we are ready to estimate P*(Y, € D). We continue to assume

TU(w,t
R, = 1. Note that D is a s-fat open set(with characteristics (1, ). Recall
that r; is defined as r, = ®~1(¢)R;/(3®~(T)) in Subsection 3.1.6. Since in
the current setting ®(t) = '/, we can take r, = t'/%/3 in the definition of
U(z,t). Let Ag € (0, A5/2] be a constant which will be chosen later. Without
loss of generality we assume k < A7 A Ag.

Fix (t,r) € (0,1] x D. If 6p(x) > xt'/*/3, then we have P*(Yo,on €
D) ~ 1 in view of Lemma 3.1.19 and (3.1.18). Recall that z,; € D is a
point such that B(z,3kr;) C B(z,3r,) N D. Assume that dp(z) < xt'/*/3. In
this case, we have |z — 24| > 0p(2.4) — Op(x) > KtY/* — Kt/ /3 > Kt/ )2
and hence we should choose the second definition of U(z,t) so that U(x,t) =

B(z,kt"*/3)ND. Let w € AD be the point such that |z —w| = §p(x). Define
DY)y :={yeD:|ly—w| <1}, D™():={ye D™ (2):p(y) > I}.

Note that U(x,t) C DP¥ (k) C DPIY(Ag) by the triangle inequality and the
assumption that k < Ag.

Let o € C%°(RY) be a non-negative radial function such that o(y) = 0 for
ly| > 1 and [p. (y)dy = 1. For k > 1, we set ¢ (y) := 6*p(6"y) and

Je(y) = @r * (Vi1 pines-k))(y) = / or(y — wvy (u)du, y e R

Dint (5= k)N B(y,6-*)

Since fi(y) = 0if y ¢ D™ (5% — 67%), we see that f, € C>°(D) and hence
L fy. is well-defined everywhere. Pick any z € U(x,t) (hence dp(z) < Ag) such
that 6p(z) > max{27*/(a=p) 2-Pk/(d+a)} —: q; and observe that

Lfi(2) = L(pr * v1)(2) — L(px * v1 — fi)(2)
= L(pr * v1)(2) + £(2) (pr * 01 — fr)(2)

+ Agolim Fi(y) = (or* v1)(y) — filz) + e+ DIOM
€l0 D,|y—z|>€ |y — Z| +a

= Ml(Z) + MQ(Z) + Mg(Z) = M1 + MQ + Mg‘
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Define D —u := {y —u: y € D} for u € R%. Using Fubini’s theorem and

a change of the variables, we see that

v (y —v1(z —u)
My = lim A / d ’y Lt o u)dudy — () ) )
U1

D,ly—z|>¢

e W -wn-w, N
B IE‘LO R4 (Ad@ /D—u,|y—(z—u)|>e ‘y - (Z - u)|d+a dy) SOk( )d
_ /Rd k(z —u)vi(z — u)pp(u)du + /Rd(/i(z —u) — Kk(2)v1(z — u)pr(u)du

= lim g L, (u)pp(u)du + /Rd(ka(z —u) — k(2))v1(z — u)pr(u)du, (3.2.12)

el0

o L) = ey e B~ )
To bound [, I . (u)@r(u)du, we need some preparation. For |u| < 67F,
let w, € 0D be a point such that 0p(z —u) = |z — u — w,|. By the triangle

inequality and the assumption that dp(2) > ap > 27%, we have
(3F—1D)ju| < 5p(2)—|u| < dp(z—u) < 6p(2)+|u| < (1+37%)5p(2). (3.2.13)

Let ¢, : R™1 — R be a O! function and CS,,, an orthonormal coordinate
system with origin at w, such that ©,(0) = 0, Vi), (0) = 0, ||[Vtbu|le < A,
the coordinate of z — u in CS,, is (0,0p(z — u)) and D N B(w,,1) = {y* =
(7", yy) in CS,, = yy > ¥u(y*)} N B(w,, 1). Using the coordinate system

CS,,, we have that for all ¢y € [p, ), € € (0,1) and |u| < 67*,

/ h(IO (y) — h%('zd: u) dy‘
D—u,|ly—(z—u)|>e |y - (Z - U)‘ “

he (") — op(z —w)®
u d+a dy
B(z—wu,e) ’y - (Z - 'LL)|

c|f lm-ur,
B(z—u,e)

e [y = (2 —u)|dte

q0 +6 zZ—Uu q0
+/ |y | D( d+)a dyu
B(z—u,0p(2))° ‘y - (Z - U)’

= N1<Z7u76) + NZ(Zaua 6) + Ng(Z,U) = Nl + N2 + N3-

<

Ny BRI
(D—u)e

|y = (z = w)| e

f b,
B(z—wu,e)°

ly = (z = w)|te
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By the proof of Lemma 3.2.1 and (3.2.13), we see that for all |u| < 67% and
e € (0,1), Ny < ¢1(1+ |logop(z —u)]) < e1(2+ |logdp(z)]). Moreover, by
[16, p.120-121] and (3.2.13), we obtain Ny < c20p(z — u)®~* < ¢30p(2)0~°
uniformly in € € (0, 1). Lastly, using the triangle inequality |y*| < |y* — (z —

w)" + [(z —w)"] = |y* — (2 —w)"| + dp(z — u), we also have

N3 < c4/ (L4 0p(z —w)® + dp(z —w)®)l~*"'dl
5

p(2)

S 04/ ((l +25D<Z))QO +2q05D(Z)qo)lfa71dl S C5(5D(Z)q07a_
0

p(2)

Thus, we conclude that for all gy € [p, ) there exists ¢g = cg(qo) > 0 such
that for all |u| < 67% and € € (0, 1),

h‘IO (y) — hQO (Z — u) ‘ -
dy| < cgdp(z)P7. (3.2.14)
/;—u,|y—(z—u)|>e |y - (Z - u)|d+a ’

Therefore, I, .(u) converges as € | 0 uniformly in |u| < 67%, and by (3.2.11),
it holds that for all large k such that 67% < A5/2 and all |u| < 67%,

dy
lim 7, (u) = Lvi(z —u) — Ag v z—u/
cl0 () 3 ) ol ) (D-u\D |y — (2 — u)|¥*

4 Ad,a/ vi(z —u) — v (y)dy
D\(

p—w |y —(z—u)[*e

dy
> 2A60p(z —u)T — Az v z—u/ .
e P v e
The inequality above is valid since for all |u| < 6% and y € D\ (D — u), by
(3.2.13), it holds that dp(y) < |u| < dp(z — u), implying vi(z — u) > v1(y).
Observe that by (3.2.13), for all |u| < 67F,

/ =
(D—up\D [y — (2 —u)|d+e

dy dy
S d+a + d+a
((D—u)\D)NB(wy,1) ly — (2 — u)| B(wy,1)¢ ly — (2 — u)|
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/ /?ﬁu(ﬂ“) 1
< ———dyydy"
70 1<6p (z—u)/ (@A) Jpu @)l (OD(2 — u) —yg) e

+ / / ey + 20 / —
50 (z—u)/(2N) < 71 <1 J () —Ju] [T"] B0, Y]

2d+a U dut
< 4 + Jul e

Op (2 = u) ™ Jizu)<op (s—w)20) 5p(=—w)/ 20 <lgul<1 [5"]
S A10(6_k5D(2 — u)_o‘_l + ].),

+c

for some constant A;g > 0. We used the facts that the coordinates of z — u
in CS,, are (0,0p(z — u)), and dp(z — u) < 1/2 by (3.2.13) so that for
all y* € Blwy,1)% [y" — (z —u)| = [y —wu| = [(z —u) —wa| = [y"| -
dp(z —u) > |y*|/2 in the second inequality above, and the fact that for
all [y < dp(z —u)/(2A), [Yu(@)] < [[VYulloly”] < dp(z —u)/2 in the
third inequality. Hence, since limy o 6 %a? ' = 0, p —¢—1 < 0 and
p+a>a > q, by taking Ag < (Ag/(6Aq0A10))Y P77 we get that for all
sufficiently large k and all |u| < 67F,

hlfl I (u) > 2A60p(z —u)T* — AgaAio (6”“6,3(2 — )" 4 1)1}1(,2 —u)
> 2A60p (2 — u)T* — 2444 A10(6 7 Fp(z — w)P" 7 + p(z — u)P)
> (245 — 4AqaAio (67" a7 + ALY Yo p (2 — )t
> Aop(z —u)T™* > Ag(0p(2) + |ul) .
We used the fact that v1(z — u) < 2dp(z — u)? in the second, and (3.2.13)
and the fact that a; < 0p(2) < Ag in the third inequality above.
Now, since the support of ¢y is contained in B(0,67%), using the domi-

nated convergence theorem (which is applicable due to (3.2.14)), (3.2.5) and
(3.2.13), we get from (3.2.12) that for all sufficiently large k,

M, > Ag /Rd(ép(z) + Ju|) " %pr(u)du + /Rd(/i(z —u) — K(2))v1(z — u)pr(u)du

> 4a [ (60 + )™ u(u)da
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+ C /Rd((SD(z —u) = dp(2)"")v1(z — u)r(u)du

— Oy /Rd(ép(z —u) T+ 0p(2) v (z — u)pr(u)du
> A(1+ 3777 %0p(2)7" = CL(1 = (14 37)7)dp(2) ™ (10 * v1)(2)
— Cy(1+ (1 =37)")dp(2) "(ior * v1)(2).
Since (g * v1)(2) < 2(1 +37F)6p(2)?, ¢ < p—n+ a and 27¥/@P) < g, <

6p(2) < Ay, by taking Ay < (Ag/(4320,))YP=nte=a) it follows that for all
sufficiently large k,

M, > gAﬁéD(z)qa — 3(06013%%(2);;7(1 + 3C0p(2)P ") 6p(2) 1"

> (gAG — 3aCy3Fal 1 — 902Ag"+aq> Sp(2)1* > 2A65D(z)qa.

Next, we calculate M,. Note that for every k > 2, u € B(0,67%) andy € D
such that dp(y) > 47% and |y —w| < 1, we have dp(y —u) > 4*—67% > 57k
and |y —u —w| < |y — w| + |u] < 2, and therefore

1— 1Dint(5—k)(y — u) =0. (3215)

In particular, since ¢y is supported in B(0,67%), §p(z) > 27Pk/(d+0) » 4=k
and |z —w| < |z — 2| + |z — w| < 2t/%/3 < 1, for all k > 2, we have

My = k(2) /Rd (1 = 1pme(z-r)(z — u))vi(z — w)pp(w)du = 0.

Finally, using (3.2.15), by taking Ag sufficiently smaller than Ag, for all

k large enough, we have

. 1 — 1 pine(s—r)(y — U))Ul(y —u)
Ml < Aga hm/ / U ( dud
| 3’ = el0 D,|ly—z|>e JRY wk( ) |y - Z|d+a Y

5D(y — u)p
= 67/ / () T dudy
D,5p(y)<4—k JRd ( ) |y — Z|d+a
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) —u)+1)¢
+er / / PR A RPN
Dly—w|>1 JRd ly — 2|
(6p(y) + |u])?
= 07/ / or(u)——"———dudy
D,6p(y)<a—Fk ly — z|dte
+ |lul 4+ 1
+c7/ / |y 1wl |l dm) dudy
ly—w|>1 J R4 ly — w|)
4Pk 0
SR
D,6p(y)<4—F ly — z|¢te ly—w|>1 |y — w|dta—a

< 4orh ] (
< cg / Y+ / oy + C)
DAB(=1),0p (y)<d—+ (0p(2) — dp(y))+Te e T

S Cg (47pk(5D(Z)7dia + 1) S C3 (47pk2pk -+ Ag_q)ép( )q @ < éﬁ 5D<Z)qia.

In the second inequality above, we have used the facts that dp(y)? < dp(y)?
for dp(y) < 1 and 0p(y)?+ 1 > dp(y)? for all y, since ¢ > p. In the third
inequality, we first estimate |z —w| < |z — 2| + |z — w| < 2/3 < (2/3)|y — w|
by using that |y — w| > 1, which implies that |y — z| > |y — w| — |z — w| >
(1/3)|y — w|. The estimate dp(y — u) < op(y) + |u| < |y — w| + |ul, follows
by the choice of w € 9D. In the fourth inequality, we have used the facts
that the support of ¢ is contained in B(0,67%) and [, ¢x(u)du = 1. The
sixth and seventh inequalities are valid since 5D( ) < |z —w| < Ag and
6p(z) > aj, > 27Pk/(d+a),

Now we conclude that, for all sufficiently large k, Lfi(z) > 371 Agdp ()7
for all z € U(x,t) such that dp(z) > ag. Recall that fr € C2°(D) and hence
contained in the domain of the generator of Y. Thus, by Dynkin’s formula,
it holds that for all sufficiently large k,

Tu(a,t)nDint (ay,)

) = BV )] < | LAy

<E” [fk‘(y;'u(z’tm[,int(%))] :

Since fr = @p*(v11pine(5-+)) —> V11 prary(9) < vy pointwise and Y oDt 2oy

Yo (using U(z,t) C DP4v(2)), it follows from the bounded convergence
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theorem,

op(x)’ <wi(r) = ;}520 fu(x) < klggo £ [fk(YTM(m,t)ﬁDi“t(aw)}

T . bdr T
=B [01(Yryo ) * Youy € D"V (2)] < E7 {1 (Yoo
Recall that we have assumed k < A; A Ag < A5 A A7. Set r = r(t) :=
(As A A7)tYe > gt/ Note that for every n > 1 and u € DP¥(2"r), we have
vi(u) < (Op(x) +2"r)P + (5p(z) + 27r)? < 200H0Pypp 4 9t Dapa < gt liatlyp,
Thus, we have

E* |:’Ul (Y

TU(z,t)

)] < E° [Ul(y Y,

Tb{(x,t)> C T TU(a,t)

€ Dbdry(r)]
+ 3 B [0 (Yage)  Yagew € D2 (27 1r) \ DY (277)]
n=0

< P (Y, , € D" (r))

TU(x,t
+ ¢y Z 2(n+1)q+17,p]P>:Jc (}/:’—Z/{(z,t) € Dbdry(2n+17,) \ Dbdry<2n7,))
n=0

and that for every n > 0,

P (Y,

TU(z,t

TU (x,t) d
< 5 E” Yy — 2|7 “dzds
0 Dbdry(2n+lr)\Dbdry(2nr))

< 06(2”+1r)d(2”7“)_d_°‘Ex [Tu(m)} = 327" OE” [Tu(m)}.

: c Dbdry(2n+17,) \ Dbdry(znr»

Since

TU (x,t)
P* (Yo, € D*(r)) 2 B { / / |V, — 2|7 dzds
’ 0 Dbdry ()

> csr B [ry@n),
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and ¢ < a, we deduce that

€ D).

op(x)? -
el opr (Ynyy € D" (r)) (1 +) 2”@“)) < c10P* (Yo
n=0
By applying the similar argument to the function gy, := @ * (v21 pine(5-) ),
we also have that

Op(x)? > vy(x) = lim gx(x) > klim E” g (Y,
— 00

k—oco TU(x,t)NDINt () )]

1
= Ew[(/UQ]_Dbdry(Q))(Y )] Z _TPIEDI(Y

TU(z,t) 2 TU(x,t)

€ W(z,t)).

The last inequality holds since W(x,t) C DPIv(2).
Therefore, in view of Lemma 3.1.19, we get P*(¢ > t) ~ (dp(z)/r)P.
Finally, from (3.2.7) we conclude that

Theorem 3.2.2. Suppose that D is a C' open set in R, d > 2, with
characteristics (Ra, A). For allT >0,p € [aa—1,a)N(0,a) and n € [0, ),
there exists a constant ¢ = ¢(Cy,Ca,p, o, d,n, T, Ry, A) > 1 such that for all
k € Ha(p), the transition density q”(t,z,y) of the Hunt process Y on D
corresponding to the Feynman-Kac semigroup of X wia the multiplicative

functional e~ Jo K(XD)ds satisfies that

_ dp(@)\" o) \" [, t
1 d/a -
‘ (1/\ t/a ) A B L P
dp(x)\” dp(y)\" [ - ¢
I D D d/a .
<q (t,z,y) < c(l/\ /a > (1/\ /o t A |z — yldto

for all (t,z,y) € (0,T) x D x D.

In the case D = R% and k(z) = C(d, o, p)z;®, one can use the scaling
property to get that the two-sided heat estimates in Theorem 3.2.2 is valid
for all t > 0.

Remark 3.2.3. Theorem 3.2.2 also holds in d = 1. In fact, let D C R

be a union of open intervals with a localization radius ro and C(1,a,p) =
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A(1, —a)y(a,p). The first difference of the proof appears in the bound of
|I11|in Lemma 3.2.1. We use the following calculation instead of [16, Lemma
5.6]: for every x € D with dp(z) < ro/2,

[5p (%) — KR ()] < [K(Crp,0)e(T) = K(0,0) (T

([

:T(o—x) Y+ (ro+z) Y <ec

Moreover, the bound for || is easy in Lemma 3.2.1: Since h,(y) = w,(y) for
y € (—o0,19), I < cfrzo yi~17%dy = c.

Remark 3.2.4. It follows from [16, pp.94-95] that ZP can be obtained
from XP via a Feynman-Kac perturbation of the form e~ Jo k0 (XP)ds Ty view
of (3.2.8), kp satisfies condition (3.2.5) with C} = %“%B(QT“, 1), By
direct calculation, we can see that (o, a/2) = 1/c. This means that C; =
C(d,a,«/2). Thus Theorem 3.2.2 recovers (3.2.2). When a € (1,2), C}, =
0= C(d,a, e — 1) is allowed. Thus, by taking x = 0, Theorem 3.2.2 recovers
(3.2.1) as well.

We also remark here that Theorem 3.2.2 provides examples of processes

studied in [42] (see (3.2.5) and [42, Proposition 4.1(ii)]).

3.2.2 Non-local perturbation in bounded C'! open set

Recall that A(d, o) = a2°7'a~%20(42)0(1 — 2)~1. We also recall that we
write y = (7,yq) for y € RY, and for p € R, the function w, : RY — [0, 00) is
defined by w,(y) = (ya)%- For u: R — [0,00), A € (0,00) and 8 € (—o0, 2),

we define

dy

LiAu(x) = lim (u(y) — U(iﬂ))m ;

T € Ri .
€l0 {yeRL: e<|y—x|<A}

Lemma 3.2.5. For all positive p,\ and € (—00,2), there exist ¢; =
ci(p,d, B,\) > 0 and c3 = ca(p, d, B, \) € (0,1/4) such that, for every x € RE

120



CHAPTER 3. ESTIMATES ON HEAT KERNELS FOR NON-LOCAL
OPERATORS WITH CRITICAL KILLINGS

with 0 < xq < co, the following inequalities hold:

1 if p>p;
|L§,Awp(37)| <caq|logxy if p=p;
&7 ifp<s

Proof. When 8 < 0, then clearly for z € R?,

|yq — =4 d *
/ T as Hiy—al<xy dy < c/ 2|7 PPdy < c/ s = PP,
R ly — x| B(0,)) 0

We now assume 3 > 0. For simplicity, take x = (6, z4) and denote e; =

(0,1). Then by the change of variables z = y/x4, we have

8 Yo — Ty
Ly ywy(x) =p.v. /d ml{\y—xm} dy

Zd -1 ~ -5
=P /R / T2 agpns Hieme<yza dzadZ = 2y

Using the change of variables z = |z; — 1|u, we get

I :/Rdl et D@ (p.v./o Wl{\zd <A ([af2+1)~ 1/2/$d}dzd) du

1
/ (e + e 2
Fix @ and let M := (]u|? + 1)%/2. Then
1—e y Mzgtr p
2 —1 Mag zn—1
I, =1i S — | e E—— | . 3.2.16
T (/(1 L zg = 1P 2d+/1+e |2g — 1|17 Zd) ( )

JW

By using the change of variables w = 1/z4, we get that, for € < \/(Mx,),
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the second integral in (3.2.16) is equal to

dw + dw .
[, St [

]V[zd+)\

—€

Note that from [16, p.121], we see that

1

1+e wﬁ_l_p — wﬁ_l
/ dw
1 (1 —w)t*s

< ce? P,

—€

By writing the first integral in (3.2.16) as

Mz g

1-e wP —1 d Mag+X 1 —wP p
Moy (1 — w)lHB w—/( Ay, (1 —w)tHs “

Mzd+/\ Mzd

and by using

(w? — 1) + (w177 — ™) = (1 —w?)(1 — w177 (3.2.17)

we have
(1w (1 — D) Megts 1 — P
I, = lim w“dw—/ ———dw
0 e (1 —w)h+s (-5, (L= W)
= [21 - 122 . (3218)

First, it is easy to see that

May 1 if 5 € (0,1);
Megtx 1 —wP .
0<Ixn< ; mdwgc log(14+ Mxg/X) if 5 =1;
(14 Mzg/N)P7L if B € (1,2).

Next, since 8 < 2, the fraction in I5; is integrable near 1. Thus,

1 (1 —wP)(1 —wP=F-D)

z _ 1+
ey (1 —w)

121 = wﬁilip dw.

122



CHAPTER 3. ESTIMATES ON HEAT KERNELS FOR NON-LOCAL
OPERATORS WITH CRITICAL KILLINGS

Note that, if Mj\gxd > 1/4, then clearly, Iy < ¢ < oo. If Mj\gmd < 1/4, then

a+A at+A
V2 (1 —wp)(1 — wp=(F-1) 1
B—1-p B—1-p
I <c+ rie (1= w)i+? w dw <c—+c re w dw.
Mzg+x JYEFESY
Thus

(L+ X/ (Mzg))P=? if p > B;
log(1+ A/ (Mzg)) if p=p.

I <c
Therefore, if p > (3, then for small x4,
71

-8
< cxg_ﬁ/ — 1 X 1+ — A ’
- ra—1 (|u|? + 1)d+p)/2 (|a]2 + 1)1/224

12 4 1)1/2 p-1 12 4 1)1/2 _
s (1 DY ()

A A

< / 1 + /\ p—ﬁ
X e —
sl TEr @ = |\t EEene

A2+ 1)1/2 p-1 42 + 1)1/2 _
+1geng) | 1+ (u+ 1~ log | €+ (el du
A A
1 log (e + ([ul*+1)%)7 ._
< (A 1 d
> C( )/Rd—l |:(|a|2 + 1)(d+6)/2 + BE(1,2) (|a|2_’_ 1)(d+1)/2

= c(\, ) < 0.

If p=p >0, then for small x4,

1 A
|| < C/ — x |log [ 1+ —=
ra—1 ([u]? + 1)d+5)/2 (|Jal? + 1)122y

~12 1/2 B-1 ~12 1/2
|[ul +)\1) asd) log <e+ (|ul —i—)\l) xd)]dﬂ

< / 1 I 1+ A du
C — O — u
=€ Jeu (@R + D@d2 8 7y

1 ~12 1/2\ g~
+ (M) 1gep 2 /Rd_1 (il 1)@ log (e + (Jul” + 1) ) du

+ Lgepn ) (1 + (
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< ce(N)(|logzg| + 1).

We now assume that 0 < p < (. Note that by (3.2.18), (3.2.17) and
simple algebra, the limit 75 in (3.2.16) is equal to

Mz gy

1 —(B— —d _ —1— _

1 — wP)(1 — P~ (B-1) Magtx P 17P — b1

/ ( 1)(_ BT )wﬁ—l—pdw_/ ’ T w) dw.
-2 (-w (-2 w

Since w — w”~17P is integrable near 0,

1 Pl —wh) (L= ) _
flS/Rd_l (A £ 1)@ (/0 1= w) P w dw | du < 0.

On the other hand, —I; < ¢(d)I; 2, where

(u2+1)1/21d
; /°° 1 g WP —wP) g
1,2 = 5 (d+8)/2 — 158 w U U.
o (u*+1) (l_m” (1—-w)
Note that
v/(v+A) wﬂ—l—p<1 _ wp) v/(v+A) 1
su dw < ¢ sup / ——dw
2 /I—A/v (1 —w)*h w1y (I—w)f
v 1 1

:csup/ t7Pdt < csup(v+N)P(=— ) < csup v’ 2 < oo,

v>2) A/ (012 v>2) voov+A v>2)

and, for zg < A,

sup
Ta<v<2A

v/(v+A) , . B—1—p 1 — wP 2/3
/ o ( - w?) dw < c¢ sup / w1 Pdw < .
0 (1—w) +h zq<v<2A J0

Thus for x4 < A,
(W24+1)1/ 22

> 1 2. 1)1/2 5*1*17(1 _ P)
(u2+1)1/2z4<2\ /(u +1)1/ 22440 W w d—2
0< i, < dwu®“du
1,2 —/0 (w2 + 1)@+8)/2 |, (1 —w)l*h

124



CHAPTER 3. ESTIMATES ON HEAT KERNELS FOR NON-LOCAL
OPERATORS WITH CRITICAL KILLINGS

(u2+1)1/2xd
/OO Lweyn)zagzan [@2enZagin w? TP (1 — w?) dwu®2du
d
o WENEIR Sy A0

00 ud—2
<
_/0 (u2+1)(d+,3)/2d“<00'

The proof is complete. O

Throughout the remainder of this subsection we assume that D is a
bounded C'! open subset of RY o € (0,2) and 8 € (—oo0,a). We also
assume that b(z,y) is a symmetric Borel function on D x D such that

Chy1 1= sup, ,ep |b(x,y)| < oo and the function
B(z,y) == Ao + |z = y|*"b(z,y), w,y€ D,

is bounded below by a positive constant, that is, Cyo < B(x,y) for some

Cyo > 0. Clearly, B(x,y) is bounded above by A, + (diam(D))*?C;,. We

further assume that the first partials of B(z,y) are bounded on D x D. Note

that, § and b can be negative, as long as the condition above is satisfied.
Let (£ F) be the Dirichlet form on L?(D, dx) defined by

EB (u,v) = %/D/D(U(x) —u(y))(v(z) —v(y) —

By [45], (£(®), F) is a regular Dirichlet form on D and its associated Hunt
process X (P) is conservative and lives on D. Moreover, since B(z, ) is bounded
on D x D between two strictly positive constants, the form (€ (B) F) satis-
fies the assumptions of [16, Remark 2.4], so we can freely use results of [16,
Section 2]. Further, X(®) admits a strictly positive and jointly continuous
transition density p(t,z,y) with respect to the Lebesgue measure dx such

that

ot (ren ) st s e (roma )

z — ylite |z — y|Tte
for (t,z,y) € (0,1) x D x D.
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Let L) be the generator of X(#) in the L? sense. Similar to [121, Section
4], cf. also [101], we can show that C?(D) is contained in the domain of L(%)
and give an explicit expression for L(®) f when f € C?(D). Using these, one

(B) satisfies Assumptions A and U.

can check that the process X
If m > 0, by taking 8 = a — 2 and b(z,y) = Aga(@(m*|z —y|) — 1)|z —

y| ™% with

d _1 > (o3 S 7‘2
p(r) =27 (elT ( J;O‘) / s LemiT T s,
0

we cover the reflected relativistic a-stable process X™ with weight m > 0

in D. When a € (1,2), the killed process X™® is the censored relativistic

a-stable process in D. When « € (0, 1], it follows from [16, Section 2] that,

starting from inside D, the process X" neither hits nor approaches 0D at

any finite time. Thus, the killed process X" is simply X™ restricted to D.
Recall that for u : D — [0, 00),

dy
LPu(z) = Agplim (u(y) —u(z)————=, x€D.
’ €l0 {yeD: e<|y—z|} ’[L’ - y’d+’8
We define
. b(z,y)
Llu(x) = lim (u(y) — u(z)) ——==dy, reD.
’ el0 {yeD: e<|y—=x|} |:L‘ - y|d+5

Let p € [a —1,a)N(0,), k € Ho(p). If B > p, then we always assume that,
there exist Cy3 > 0 and 4, > 8 — p such that

lb(z,y) — b(x,z)| < Cypslz —y|™, x,ye€D. (3.2.19)

Note that, under (3.2.19), for any bounded Borel function u satisfying |u(z)—
u(y)| < clz —y|” on D,

b —b b
B < [ bl.y) —Me.a)l @ )
{yeDiecly—aly 1T — ylTHPP Aag
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< 1 + co| LPu(z)]. (3.2.20)

Recall that for an open set D and ¢ > 0, hy(x) = dp(x).

Lemma 3.2.6. Let D be a bounded C*! open set with characteristics (Ra, ).
For any q > p, there ezist constants ¢; > 0 and co € (0, (RyA1)/4) depending
only onp,q,d, B, Ry, A, diam(D), Cp1, Cpa, Ch3, b1 such that for every x € D
with 0 < 0p(x) < cq, the following inequalities hold:

1 if ¢ > 5;

[Liha(@)| < e1 9 [logdp(a)|  if g = 5

op(2)?™ ifg<B.
Proof. Without loss of generality we assume diam(D) < 1 and let z € D
with 0p(x) < Ry/4. Choose a point z € 9D such that 0p(z) = |z — z|. Then,
there exists a Cb! function I' : R4 +— R such that I'(z) = VI'(z) = 0 and

an orthonormal coordinate system C'S, with origin at z such that
Dn B(Zu R2) = {y = (ga yd) in OSZ Y Yd > F(@} N B(Z7 R2>7

and z = 0 and z = (%,24) = (0,24) in CS.. For any open subset U C
R?, define Ry (2) = Agp fUcﬂB(x,l) ly — 2|74 "Pdy. Recall that w,(y) = (ya)%.

Since h,(z) = w,(z) = zd, using (3.2.20), we have

LPhy(x) = Ags lim [ /1 e haly) = () ) -0 Ep(x)hq(x)]

10 |y — @[
h —
= Adﬂ lim {/ —q(y) 75_35}) dy
el0 1>|y—z|>e |y - LE|

wq(y) —we(x) ,
" /1>|y—x>5 ly — [P W RD(x)wq(x)l

= 1wy (@) + Aas(Fp () — g (2)),(2)
he(y) — wq(y)d

+ Ad,g lim
1>|y—z|>e ly — |¢+F

€l0
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By a similar calculation as in [16, Lemma 5.6], since ¢ > (a—1); > (8—1)4,
we get

|(Rp(2) — R (2))wy ()] < cxfag "+ logaa]) < c.

haW=welw) gy) for € € (0,1/2). When ¢ < 8,

- f1>\y—:v|>e ly—x|d+F

by the proof of Lemma 3.2.1,

Next, we bound I, :

sup || < sup

e<1/2 e<1/2 ly — a|d+?

h -
/ Mdy < ¢(1 +log |x4]).
Rd’|y71">6

When g > 3, by [44, (3.13)], we get sup.y 2 |Ic| < c¢. The lemma now follows
from these bounds, Lemma 3.2.5 and (3.2.20). O

Define
Lf(x) := Lof(z) + L} f(z) — r(z) f ().

Combining Lemmas 3.2.1 and 3.2.6, we get the following lemma.

Lemma 3.2.7. Let p € [a — 1,a) N (0,), B < « and suppose k € Hq(p).
Then for any q € [p, «), there exist ¢y > 0 and co € (0,1/4) depending only on
D, ¢, d, o, B, N, Ca,m, Ro, Cy 1, Cha, Co3, B1 such that the following inequalities
hold:

(i) If ¢ > p,
ey 'op(x)™ < Lhy(z) < e16p(x)T®

for every x € D with 0 < ép(x) < ca.
(i) If ¢ = p,

|Lhy ()] < e1(8p(2)P =PV + | log dp()])

for every x € D with 0 < ép(z) < cs.

Recall that X )P denote the process X killed upon exiting D. Note
that the operator L coincides with the restriction to C?(D) of the generator

of of the Feynman-Kac semigroup of X )P via the multiplicative functional
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—ft N(X<B)’D)ds . :
e~ JoFiAs in Cy(D). We now follow the argument of the previous subsec-

tion (choosing ¢ € (p, (p— (nV ) + @) A«)) and can conclude the following.

Theorem 3.2.8. Suppose that D is a bounded C*' open set in RY, d > 2,
with characteristics (Rg, A). For allT >0, p € [a—1,a)N(0,q), f < « and
n € [0,a), there exists ¢ = ¢(Cy,Cy,p,, B,d,n, diam(D), T, R, A, Cy 1, Cpa,
Cha,01) > 1 such that for all k € Ha(p), the transition density ¢P(t,z,y) of
the Hunt process Y on D corresponding to the Feynman-Kac semigroup of

PP)as satisfies that

() (o ) [t
<q¢"(t,z,y) <c (1 A 5D—(x)>p (1 A 6D—(y))p {t‘d/a At ]

tl/a tl/a |ZE _y|d+a

XB)D yiq the multiplicative functional e~ o w(X

for (t,z,y) € (0,T) x D x D.

We remark here that Theorem 3.2.8 recovers [42, Theorem 4.8]. Let k7
be the killing function of the killed relativistic a-stable process Z™" in D. It
follows from [16, pp.94-95] that the killed relativistic a-stable process 2™
can be obtained from X" via a Feynman-Kac perturbation of the form
e~ Jo FBOXEP)ds Tt follows [51, p. 278] that 0 < kp(z) — k(z) < cdp(x)>®
for all € D. Combining this with (3.2.8), we get

(5D (2) = ke (2))wg(2)] < exf(wy® + [logzd|) < c.

Now by the same argument as in Remark 3.2.4, we see that Theorem 3.2.8

recovers the main result of [40] for bounded C'*! open set D.

3.2.3 R\ {0}

In this subsection we assume that X = R? d > 2, X is an isotropic a-stable
process on R and D = R\ {0}. Obviously, D is a (1/2)-fat open set with
characteristics (00, 1/2) and X satisfies Assumptions A and U. Since X does
not hit {0}, the killed process XP? is simply the restriction of X to D.
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Recall that Ay, = a2° 7= 42T((d + ) /2)[(1 — a/2)7L. Let p € (0, )
and define

4-3 ™ /2 — sin2 6 g1+
H(s) = 271'%/ sind_28< s* — sin"6 + cos ) do, s>1,
F(T) 0 82 — sin2 0
and

Cla,d,p) == Aga /1 Oo(sp —1)(1 — 574 P)5(s? — 1)1 H(s)ds.

Note that p — C(a, d, p) is strictly increasing on (0, a). The function H(s)
is positive and continuous on [1, +o00) with H(s) ~ s* for large s and
s(s = 1) H(s) ~ (s — 1) s>1

Y

(see the paragraph after [65, Theorem 1.1]). Thus
lim 5(a,d,p) =0 and limC(a, d,p) = o0. (3.2.21)
pd0 pla

Applying [65, Theorem 1.1] to u, := |x|P, we get that

—(=A)*?u,(z) = Cla,d,p) |z, |z| >0,z € RL.  (3.2.22)

Let G, be the collection of non-negative functions on D such that for
each k € G, there exist constants C; > 0, C, > 0 and 1 € [0, ) such that
k(z) < Cy for all x with |z| > 1 and

|k(z) = Cilz|| < Calz|™, (3.2.23)

for all z € D with |z| < 1. By (3.2.21) we can find a unique p € (0, «) such

that C; = C(a, d, p). Define

Ga(p) := {k € G, : the constant C; in (3.2.23) is C(a, d, p)}.
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Note that G, = Upcp<aGa(p). We fix a K € G,(p) and let Y be a Hunt
process on D corresponding to the Feynman-Kac semigroup of X via the

multiplicative functional e~ Jo #(X2)ds that is,

B [f(Y})] = E* e—féﬂ<XsD>de(XtD)} . t>0,x€D.
Since, by Example 3.1.15, k(z)dx € K;(D), it follows from Theorem 3.1.20
that Y has a transition density ¢” (¢, x,y) with the following estimate

t

Pt =P OP(C > 1) | n

] . (3.2.24)

for (t,z,y) € (0,1) x D x D, where ( is the lifetime of Y. Moreover, when
Cy = 0, k(z)dr € Koo(D) by Example 3.1.16. Thus, by Theorem 3.1.21,
(3.2.24) holds for all t > 0.

Define

Lf(z) = —(=A)*2f(x) — w(2) f(2).

Fix ¢ € (p,«) such that ¢ < p—n+a and let A = é(a,d, q)—é(a,d,p) >
0. Define

() == up(z) + ug(x), va(x) := up(z) — éuq(x).
Since, for |z| < Cy*, in view of (3.2.22) and (3.2.23),
Loy () = Al = 2C(|2[P™" + []*7)
and
Luy(z) < =27"Az|% 4 (3/2) (|~ + [|*™"),
there exists ¢; > 0 such that Lv;(z) > 0 and Lvy(z) < 0 whenever 0 < |z| <

c1. Pick any (t,x) € (0,1) x D and set r = r(t) = c;t*/* for t < 1. Now

we can follow the argument before the statement of Theorem 3.2.2 and get

131



CHAPTER 3. ESTIMATES ON HEAT KERNELS FOR NON-LOCAL
OPERATORS WITH CRITICAL KILLINGS

P*(¢ > t) ~ (1A |z|/r)? for t < 1.

Moreover, if x(z) = C(a, d, p)|z|~®, we can simply take vi(z) = vy(z) =
u,(x) and r(t) =t/ for all ¢ > 0 and get P*(¢ > t) =~ (1 A |z|/r(t))? for all
t>0.

Therefore, we conclude that

Theorem 3.2.9. For all positive T > 0, p € (0,«) and n € [0,«), there
exists ¢ = ¢(Cy,Co,p,a,d,n, T) > 1 such that for all Kk € G,(p), the tran-
sition density q(t,xz,y) of Y, the Hunt process on R%\ {0} associated with
the Feynman-Kac semigroup of the isotropic a-stable process Z via the mul-

tiplicative functional e~ I wZs)ds - satisfies that

1 21 \" Y1\’ [,-da t
(i Y (1 Y ot

21 \" 91\ [,/ t
§q(t,m,y)§c<1/\m 1/\m t /\m y

for (t,2,) € (0, T)x (RN\{0}) x (R\{0}). Moreover, if x(z) = Cla, d, p)|e| -,
then the above estimates holds for all t > 0.

The last claim in Theorem 3.2.9 can be proved using the scaling property
and the finite time estimates in Theorem 3.2.9. This was proved indepen-
dently in [82] using a different method.

Let a € (1,2) and g be an R%-valued C' function with ||g||ec + ||Vglleo <
0. Let X9 be an a-stable process with drift g, that is, a non-symmetric Hunt
process with generator —(—A)*2f(z) + g - Vf(z), see [24]. Let X9 be the
Hunt process obtained from X9 by killing with rate ||div g||. The generator
of X9 is —(=A)¥2f(z) + g - Vf(x) — ||divg|leof(z). By [24], the transition
density p(t,x,y) of XY satisfies

t

7= ylFe’ (t,z,y) € (0,1] x R x R”. (3.2.25)

pt,z,y) =t A

The dual of —(—=A)*2f(x)+g-Vf(z)—||divg|lef(z) is —(=A)¥2f(x) -
g-Vf(z) —divg(z)f(x) — ||divg|ef(x), which is the generator of a Hunt
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process X9 which can be obtained from an a-stable process with drift via
the killing potential —div g(z) — ||divg||s. It is easy to check that X9 and
X9 are strong duals of each other with respect to the Lebesgue measure. It
is also easy to check that X9 and X satisfy the sector condition, thus, by
[67, Theorem 4.17], all semipolar sets are polar. Moreover, since a € (1,2),
Assumption U holds true.

Fix k € G,(p) and let Y9 be a Hunt process on D corresponding to the
Feynman-Kac semigroup of X9 defined by

B [f(V)] = E7 [ ¥ D0 p(xpP)| |t 0,0 € D.
Note that x(z)dr € K;(D) by (3.2.25). With u, = |z|P, we get that
g - Vu,(z)] + [|divg||co|uy ()] < Cla,d,p)|zlP~", 0<|z|<1. (3.2.26)

From (3.2.22), (3.2.26) and the assumption o € (1,2), we see that terms
g VF(x) — |divlloe f(z) and —g - V £(z) — div g(2)f(z) — |divg]lef (z) can
be treated as lower order terms. Thus, using (3.2.26) and the assumption
a € (1,2), by repeating the argument of the first part of this subsection, we
can easily get the following result from (3.2.25) and Theorem 3.1.20.

Theorem 3.2.10. Suppose that o € (1,2). For all positive T > 0, p € (0, «)
and n € [0, ), there ezists ¢ = ¢(Cy, Co, p, ||glloos @, dy 0, T, ||V glloo) = 1 such
that for all k € G,(p), the transition semigroup ¢9(t, z,y) of Y9 satisfies that

o KR I\ [,—d/a t
¢ (1 A tl/a) (1 A tl/a t A |l’ _ y|d+a
KR Wl \* [,-a ¢
g /o _
Sq(t,w,y)§c<1Atl/a vy B A e B

for (t,z,y) € (0,T) x (R*\ {0}) x (R?\ {0}).

Note that, Theorem 3.2.10 also holds for the fundamental solution to
O =—(-A)2+g- V— k().
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3.3 Appendix: Continuous additive function-

als for killed non-symmetric processes

We keep the assumptions and the notations in Sections 3.1.1-3.1.3. In this

section, D is an open subset of X and U is a relatively compact subset of D.

Lemma 3.3.1. Ifh € D(Z) 15 nonnegative, bounded and has compact support
contained in U, then for anyt > 0,

1 ~
lim sup —/ PYh(z)P* (15 < €)m(dx) < oo
U

e—0 €

~

Proof. Noticing h(X,x) = 0, we get

BU(w) = B MR cny] = BoR(R pnx) = h(x) + B /0 " (R s,
Using this and the duality, we have
| Pnap s < omias) - / PYh(2)(1 = PV 1(2))m(dx)
= [ '@ - PL@ymide) = - [ & / EW(R)1, cry dsm(da)
¢ (sup 0t ) mw)

zelU

from which the conclusion follows immediately. O

Lemma 3.3.2. Let u € Kp(D) for some T > 0. If A is the continuous ad-
ditive functional of XP associated with u, h € D(Z) s nonnegative, bounded
and has compact support contained in U, then for any bounded Borel function
fonUandt >0,

lim = PUn(x) <Ew / L, f(XSD)dAS) m(dz) = 0.
U 0

e—0 €
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Proof. Using the strong Markov property, we get

D

X
x e~
E® |E Tgf/ f(XSD)dAS:7'5(<e]
0

e / Lx o f(XP)dA,
0

< (supEy /6 |f(XSD)|dAS) ]P)x(Té( <e).
0

yeX

The assertion now follows from Lemma 3.3.1 and condition (2) in Definition
3.1.10. 0

Proposition 3.3.3. Let u € Kp(D) for some T > 0. If A is the continuous
additive functional of X associated with , then (AtATff) is the continuous

additive functional of XY associated with ju.

Proof. Let Af := A, x. Then A" is a continuous additive functional of X"
Let h € D(L) be non-negative, bounded and have compact support contained
in U, and let f be a bounded Borel function supported in U. Define

t
gr = / h(x)Ew/ F(XVYdAYm(dz).
U 0
Since
Jt+e — Gt =

e | " HXY)dA m(da)

h(x) P (E: / " F(XY)AA) (2)m(dx)

)

|
ST~

U () EF / 1o f(XY)dAm(dz),
0

it follows from Lemma 3.3.2 that

lim 4 =90 _ iy L [ pUp(pyEe / F(XP)dA,m(dz)

e—0 € e—0 € U 0

- / PV h(a) f(@)u(de).
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Thus, we obtain that

/ / F(XV)dAYm(dx) / / PUnh(z)f(z)pu(dz)ds

- [ hw) / PY f(x)dsp(dz).

Using the dominated convergence theorem and the monotone convergence
theorem, one can show that the equality above is valid for all bounded non-

negative Borel functions h and f supported in U. Therefore,

/f p(dr) —hmEmU{ /fXU dAU}
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Chapter 4

Heat kernel estimates for

subordinate Markov processes

In this chapter, we study heat kernel estimates for subordinate Markov pro-
cesses on spaces with boundary. The main motivation comes from [97], where
it was established that the jump kernels of subordinate killed Lévy processes
have an unusual form not observed before. The results of this chapter is
based on [59]. We begin with the following motivating and also the simplest
example covered by our results.

Let D C R% d > 1, be a bounded C!' open set. Let Y be an isotropic
a-stable process in RY, a € (0,2] and let Y denote the part process of Y
killed upon exiting D. When o = 2, we further assume that D is connected.
The following global two-sided estimates of the heat kernel pp(t, z,y) of Y?
were obtained in [63, 128] (for @ = 2) and [35] (for a < 2): there exist
positive constants ¢;, © = 1,...,8, such that following estimates hold true.
For (t,z,y) € (0,1] x D x D,

t

t
—_ —d/a
|J;_y|d+a) Spp(t,a:,y) < Czha(t,x,y)<t /\—>7

—d/a
Clha<t7‘r7y) (t A ’m_y’d+a

for a < 2, and
caha(t, @, y) t~ e ale =V < p (b, @, y) < esho(t, w,y) Y 2ecole=v/
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for o = 2, where the boundary function h,(t,z,y) is given by

= (10 52 10 52

For (t,z,y) € [1,00) x D x D,
creMop(2)20p(y)% < pp(t,x.y) < cse ™ op()2dp(y)?,

where \; is the smallest eigenvalue of the Dirichlet (fractional) Laplacian
(—A)/ 2} D

Let S = (S)i>0 be a B-stable subordinator, 3 € (0, 1), independent of Y7
and let X = (X;);>o be the subordinate process: X; := YS[: . The generator of
X is equal to (the negative of) ((—A)O‘/2|D)’B — the fractional power of the
Dirichlet fractional Laplacian. The heat kernel ¢(¢, x,y) of the subordinate

process X is given by

q(t,z,y) = / pp(s,z,y)P(S, €ds), t>0, z,y€ D.
0

With a help from the results in Chapter 2, we can obtain sharp two-sided
estimates of ¢(¢,z,y). Recall that éy(x,y) = dp(z) V dp(y) and dx(z,y) =
dp(z) A dp(y) for z,y € D.

Theorem 4.0.1. (i) For all (t,z,y) € (0,1] x D x D,

5D(l‘) % (SD(y) % 7d/(aﬁ) tBa’B(t7$,y)
att.oy) = (100 )" (1a s ) (0 N s ) (40)

where

1/(28) 1/(28)

|z — y|

and for a < 2,

B“’B(t,x,y) =

138



CHAPTER 4. HEAT KERNEL ESTIMATES FOR SUBORDINATE
MARKOV PROCESSES

p

(11) For all (t,x,y) € [1,00) x D x D,
alt, z.y) = oM op(a)*5p (y).

Remark 4.0.2. From the forms of the heat kernel estimates (4.0.1), one can
easily see the following: (1) For x,y away from the boundary (in the sense
that 6, (x,y) > |z —y| v /@), and for all 3 € (0,1), it holds that

t

~ (@B A T
q(t,:c,y) ~1 A ’l’—y"“‘aﬁ.

(4.0.2)
(2) Dividing (4.0.1) by ¢ and letting ¢ — 0, we can deduce that the jump

kernel is comparable with
B*(0,z,y)
| T — y|d+a6 )

Thus, in view of the definition of B*?(¢, z,y), one can rewrite the estimates
(4.0.1) as follows:

attz.0) = (1nGE) (B B) (9emn s )

lo—w|,ly—z|<t1/ (@B

Recall that the two-sided estimates of the form (4.0.2) are valid for the
heat kernel of the isotropic a3-stable process in the whole space. The novelty
of the estimates for ¢(t, z,y) is in the boundary term, which is quite unusual
and involves interplays among oy (x,y), 0(z,y) and time ¢ itself. In this
respect, the form of the boundary term is very different from the boundary

function h(t,z,y) for the underlying process Y2.
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In this chapter, we obtain sharp two-sided estimates on the jump kernel,
heat kernel and Green function for subordinate Markov processes in a set-
ting which is more general, in several directions, than that of the example
above. We allow (i) quite general subordinators, (ii) Markov processes with
state space D that is either a bounded or an unbounded subset of a locally
compact separable metric space, and (iii) very general form of two-sided es-
timates of the heat kernel pp(t, z,y) of the underlying process. We also show
that parabolic functions with respect to X satisfy Holder regularity and the

parabolic Harnack inequality in Section 4.4.

4.1 Setup and main assumptions

Let (M, p) be a locally compact separable metric space such that all bounded
closed sets are compact, and let m a positive Radon measure on M with full
support. For simplicity, we write dy instead of m(dy).

Let V(z,r) := m(B(x,r)). We assume that there exist a localization
radius Ry € (0,00] and constants dy > d; > 0 such that, for every a > 1,

there exists a constant Cy = Cy(a) > 1 satisfying

Rydt _ V(z,R R\
C‘f(?) < V((a:,r)> < CV<?> forallz € M and 0<r < R < aRy.
(4.1.1)

As a consequence of (4.1.1), we see that for all Rg,e,n > 0, there exists a
constant C' = C'(Ry, €,n) > 0 such that

V(z,r) <CV(y,nr) forallz,y e M and ep(z,y) <r < Ry. (4.1.2)

If the localization radius Ry is infinite, then the above constant C is inde-
pendent of Ry and (4.1.2) holds for ep(z,y) < r < co.
Let D be a proper open subset of M, and Y = (Y,?P*) be a Hunt pro-

cess in D. We assume that the semigroup of Y2 admits a density pp(t, z,y).
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Thus, for any non-negative Borel function f on D,
EAS0P) = [ fpoltoy) dy.
D

Let S = (Si)i>0 be a driftless subordinator with Laplace exponent ¢ and
tail measure w, independent of Y. We will be interested in the subordinate
process X, := Y& It is well known (cf. [26, p.67, pp. 73-75] and [122]) that
X is also a Hunt process and admits a heat kernel ¢(t, z,y) which is given

by the formula
q@%@ZM%@WMMZ/ po(s, 2,y)B(S; € ds).
0

On the subordinator we will impose the assumption Polyg, (51, f2) (see
Definition 2.0.2 in Chapter 2). Now we explain the assumptions we impose
on pp(t,z,y). These assumptions are motivated by various examples from
the literature.

We first introduce two functions @, ¥ : [0,00) — [0, 00), both strictly
increasing and satisfying W(r) > ®(r) for all » > 0. Moreover, we always
assume that there exist constants oy, as, ag, ay > 0 and ¢y, ¢o, c3, ¢4 > 0 such

that for all R > r > 0,

a(1)" =50 =a()” ma o) = 50 =)
(4.1.3)

Note that for every a > 1, there exist constants ¢;(a) > 0 and ¢y(a) > 0 such
that, for all », R > 0 satisfying 0 < r < aR, it holds that

cﬂa)(%)al < Z<(]j)) < @(a)(?)w. (4.1.4)

Using [33, Lemmas 3.1 and 3.2], we may replace ¢ by a nicer function.

Lemma 4.1.1. There exists a strictly increasing differentiable function o
satisfying the following two properties:
(P1) ®(r) ~ &(r) for r >0 and ® satisfies (4.1.4);
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(P2) &' (r) ~ r='®(r) and (1) (t) ~ tL®~L(t) for r,t > 0.

Using the fact that sup,.,u*e™ < oo for every k > 0, we get the following

lemma from the scaling property of ®.

Lemma 4.1.2. Let f : (0,00) — (0,00) be a given function. Assume that
there exist constants c1,p > 0 such that sPf(s) < c1t? f(t) for all 0 < s < t.

Then there exists a constant ca = co(c1,p) > 0 such that for all v,k > 0,

4 K2 corPTHf(r
/0 f(s)exp ( — @1—@)2>d8 < W)s).

Definition 4.1.3. We say that a function h : (0,00) x D x D — [0,1] is a
boundary function if it satisfies the following two properties:

(H1) For each fixed (z,y) € D x D, s — h(s,z,y) is nonincreasing.

(H2) There exist constants ¢; > 0, v > 0 such that for all z,y € D,

sSTh(s,z,y) < cait’h(t,z,y), 0<s<t<4d(diam(D)) + 1,

with 4®(diam(D)) + 1 interpreted as co when D is unbounded.
A boundary function h is said to be regular if there exists co > 0 such
that for any 0 < t < 4®(diam(D)) + 1,

h(t,z,y) > co for all ,y € D with d.(z,y) > @ *(t).

A boundary function h is said to be of Harnack-type if it is regular and

there exists ¢3 > 0 such that for all z,y € D and 0 < t < ®(p(z,y)),
h(t,x,y) < csh(t,z,y) forall z € D, 2p(x,z) < p(z,y) Adp(x). (4.1.5)

From now on, h(t,z,y) always denotes a boundary function.

Remark 4.1.4. If h is a regular boundary function, then for every e € (0, 1),
there exists ¢ = ¢(e) > 0 such that for any 0 < ¢t < 4®(diam(D)) + 1,

h(t,z,y) > c forall z,y € D with dx(z,y) > e®~'(¢).
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Example 4.1.5. (a) Let p,q > 0. For t > 0 and x,y € D, define

hpg(t, T, y) == <1 A\ M)p(l A MY

hy(t,x,y) == hy,(t, 2, y). (4.1.6)

Y

Then h, (¢, x,y) is a typical example of a regular boundary function which is
also of Harnack-type. The boundary function h,(¢,x,y) is very typical when
D is a bounded smooth open subset of R.
(b) Let hy(t,z,y) be the function defined in (4.1.6). Then h,(t A 1,z,y) is
also a regular boundary function of Harnack-type. This is a typical boundary
function for smooth exterior open sets.
(c) A quite general example of a boundary function is obtained as follows.
Suppose that Y admits a dual process YD, Let ¢ and Zbe the lifetimes of
YL and YP respectively. Assume that the survival probabilities P*(¢ > t) and
IP’y(Z > t) satisfy the following doubling property: P*(¢ > t/2) ~ P*({ > t)
and P¥(C > t/2) ~ PY(C > ) for all 0 < ¢ < 4®(diam(D)) + 1 and z,y € D.
Then h(t,z,y) := P*(¢ > t)P¥(C > t) is a boundary function. Moreover, the
above h(t,z,y) is of Harnack-type if, in addition, (1) it is regular; (2) Y?
satisfies the (interior elliptic) Harnack inequality and (3) there is ¢; > 0 such
that for all x € D and ®(ip(x)) < t < &(diam(D)),

P*(( > t) 2 P*(( > To@y) = P*(Y,Y €D),

TU (z,t)

where U(x,t) := B(z,c;®'(¢)) N D and 7y = inf{t >0:Y,” ¢ V}.

In particular, under the setting and Assumptions A and U in Section 3.1,
for the Hunt process Y defined right below (3.1.12) on a x-fat open set D with
a critical killing potential p € K;(D), by [58, Lemma 2.21], we know that
the boundary function h(t,z,y) = P*(¢ > t)IP’y(Z > t) is of Harnack-type.
See [19, 22, 41] for related work.

For later use, we record the following consequence of (H1) and (H2): Let
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k> 1 and s,t > 0 satisfy k7's < ¢ < ks < 4®(diam(D)). Then
ek h(s,z,y) < h(t,z,y) < alk"h(s,z,y) forall z,y € D.  (4.1.7)
Define

[a(ta z,Y, CO) =

o ot L ety
V(z, ®71(t)) : <V($,p(x,y))‘1’(p(x,y)) X0 p( O-1(¢)? >) '

Definition 4.1.6. Let h(t,z,y) be a boundary function.

(a) We say that HKY holds, if D is bounded and the following estimates
hold: (i) there exist constants Cy € {0,1} and ¢, 2, ¢3,c4 > 0 such that for
all (t,z,y) € (0,1] x D x D,

Clh(ta €, y)[CQ <t> Ty Y, CO) < pD<t7 €, y) < C3h(t? Z, y)[C4 (ta T, Y, OO)a (418)

and (ii) there exists a constant Ap > 0 such that for all (¢,z,y) € [1,00) X
D x D,

po(t, z,y) ~ e *P'h(1, z,y). (4.1.9)

(b) We say that HK® holds, if the constant Ry in (4.1.1) is infinite and
(4.1.8) holds for all (¢,z,y) € (0,00) x D x D.

By using the function (1 A ®(r) instead of ®(r), we may and

10<I>(dli?m(D)) )
do assume that ®(diam(D)) < R;/8 whenever Polyg, (51, 32) and HKY

hold.

Remark 4.1.7. One can easily see that if HKJ holds, then for every T > 0,
there exist constants ¢y, ¢a, ¢3, ¢4 > 0 such that (4.1.8) holds for all (¢, z,y) €
(0,7) x D x D, and (4.1.9) holds for all (t,z,y) € [T,00) x D x D.

144



CHAPTER 4. HEAT KERNEL ESTIMATES FOR SUBORDINATE
MARKOV PROCESSES

Example 4.1.8. Here are several examples of processes satisfying HKS or
HKY. We will not try to give the most general examples but the reader will
see from examples below that our setup is general enough to cover almost all
known cases. In all examples below, the boundary functions are of Harnack
type.

(a) Suppose that D is a bounded C!' open subset of R%.

(1) If D is connected and Y? is the killed Brownian motion in D, then
HK} is satisfied with Cp = 0, ®(r) = r? and boundary function hy . See
[56] for a more general example.

(2) If a € (0,2) and Y is a killed isotropic a-stable process in D, then
HK}, is satisfied with ®(r) = ¥(r) = r* and boundary function hy s, cf.
[35]. More generally, suppose x is a complete Bernstein function satisfying
global weak scaling conditions with indices £y, 82 € (0,1), Y is a subordi-
nate Brownian motion in R? via an independent subordinator with Laplace
exponent y, YP is the part process of Y in D. Then HKJ is satisfied with
®(r) = ¥(r) = 1/x(r~?) and boundary function hy s, cf. [41]. See 21, 73, 85]
for more general examples.

(3) If D is connected and Y is the independent sum of isotropic a-
stable process and Brownian motion, then its part process Y? in D sat-
isfies HKR with ®(r) = 72 Ar®, U(r) = r* and boundary function hy s,
cf. [37]. More generally, suppose x is a complete Bernstein function satis-
fying the conditions in the paragraph above and Y is the independent sum
of Brownian motion and a subordinate Brownian motion via a subordinator
with Laplace exponent , then its part process Y in D satisfies HKE with
O(r) = &,(r) :=r* A (1/x(r™2?)), ¥(r) = 1/x(r~?) and boundary function
hi s, cf. [43].

(4) Suppose that x is a complete Bernstein function such that the func-
tion A — x(A\) — AX/(\) satisfies weak scaling conditions for A > a > 0 with
upper index § < 2 and lower index v > 2_11{521}. Suppose that Y is a subor-
dinate Brownian motion in R? via an independent subordinator with Laplace

exponent y, Y is the part process of Y in D. Then HKJ is satisfied with
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O(r) = 1/x(r™2), ¥(r) = 1/(x(r~?) — r2x/(r?)) and boundary function
hi 2, cf. [88].

(5) Let @ € (1,2) and Y? be a censored a-stable process in D. Then it
follows from [36] that HKR is satisfied with ®(r) = ¥(r) = r* and boundary
function h—1)/a-

(6) Let o € (0,2) and ZP be the part process, in D, of a reflected isotropic
a-stable process in D. For any q € [a—1,a)N(0, @), let Y be the process on
D corresponding to the Feynman-Kac semigroup of Z” via the multiplicative
functional exp(— fot C(d, o, q)dist(ZP,0D)~*ds), where the positive constant
C(d, a, q) is defined in section 3.2.1. It follows from Theorem 3.2.2 that the
small time estimates (4.1.8) holds with ®(r) = ¥(r) = r* and hg/,. Using
the small time estimates and the argument in [50, Section 4], one can easily
show that the large time estimates in Definition 4.1.6(a)(ii) also holds. Thus
HKY holds.

(7) Suppose that D is connected, d > 3 and k > —}1. Let Y be the
process corresponding to A|p — kdp(z) 2, the Dirichlet Laplacian in D with
critical potential kdp(x)~2. It follows from [64, (6)] and [66, Corollary 1.8]
that the heat kernel of Y7 satisfies HKR with Cy = 0, ®(r) = r? and
boundary function h,, where p = 3(3 + /3 + k).

(8) Suppose that a € (1,2) and d > 2. Let b : R? — R? such that |b|
is in the Kato class Ky,—1 (see [38, Definition 1.1] for definition). Let Y
be an a-stable process with drift b in R, that is, a process with generator
—(=A)*24b-V, and let Y'P be the part process of Y in D. By [38, Theorem
1.3], HKJ holds with ®(r) = ¥(r) = r* and hy /2. See also [90].

(9) For general setups in which HKD is satisfied, see [58, Section 2] and
78]

(b) Suppose that D is an unbounded C*! open subset of R?.

(1) If D is the domain above the graph of a bounded Lipschitz function
in R4, then the killed Brownian motion in D satisfies HKY with Cy = 0,
®(r) = r? and a boundary function defined in terms of survival probabilities
like in Example 4.1.5(b), which is of Harnack type, cf. [123].
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(2) Suppose that D is a half-space-like C™' open set in R? and a €
(0,2). Let YP be the part process in D of an isotropic a-stable process.
Then by [52, Theorem 1.2], HKY is satisfied with ®(r) = ¥(r) = r® and
boundary function hy/,. More generally, let Y P be the part process in D of the
independent sum of Brownian motion and an isotropic a-stable process. By
[39, Theorem 1.4 and Remark 1.5(ii)], HKY is satisfied with ®(r) = 72 Ar?,
U(r) = r* and boundary function h; /2. When D is an exterior C'*'! open set in
R? with d > o and Y'? is part process in D of an isotropic a-stable process, it
follows from [52, Theorem 1.2] that HKY, is satisfied with ®(r) = U(r) = r®
and boundary function hy/o(t A1, 2,y). See [84] for a more general example.

(3) Suppose D = R?. Let x be a complete Bernstein function satisfying
global weak scaling conditions with indices a1,y € (0,1), Y be a subordi-
nate Brownian motion in R? via an independent subordinator with Laplace
exponent x, Y be the part process of Y in D. It follows from [95, Theorem
5.10] that HKY is satisfied with ®(r) = W¥(r) = 1/x(r~2?) and boundary
function hq /5. See [31] for a more general example.

(4) Suppose that D = R and « € (0,2). Let Z” be the part process, in
D, of a reflected isotropic a-stable process in D. For any ¢ € [a—1,a)N(0, @),
let Y2 be the process on D corresponding to the Feynman-Kac semigroup of
ZP via the multiplicative functional exp(— fo (d,c, q)0p(ZP)~ds), where
C(d, o, q) is defined in subsection 3.2.1. It follows from Theorem 3.2.2 that
HKY, is satisfied with ®(r) = ¥(r) = r* and boundary function h/q,.

(5) Suppose that D = R?\ {0} and a € (0,2). Let Z be an isotropic
a-stable process in R%. For any ¢ € (0,a), let YP be the process on D
corresponding to the Feynman Kac semigroup of Z” via the multiplicative
functional exp(— fo (d, v, q)|ZP|~2ds), where C(d, v, q) is defined in sub-
section 3.2.3. It follows from Theorem 3.2.9 and [82, Theorem 1.1] that HK®
is satisfied with ®(r) = ¥(r) = r* and boundary function hg/q.

(6) Suppose that D = R4\ {0}, d > 2 or D = (0,0). Let Y'? be a process
d

with generator A + (a — 1)|z|72 ¢

i i1 2ii0y + K|z 72 - V — blz[ 7 for some
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a >0, k,b € R such that

A= 1\/9 + (TN s (@ 1hwa)v (20— 1)d 41— 5 30))

Note that when a = 1 and k,b > 0, the above inequality is always true. It
follows from [106, Proposition 4.14, Theorem 6.2, Corollary 6.4] that HK®
is satisfied with Cyp = 0, ®(r) = r? and boundary function h,, where p =
A—(d—1+k—a)/(4a) and g =A — ((2a —1)d+ 1 — k — 3a)/(4a).

(7) Suppose that o € (1,2) and D = R4\ {0}, d > 3. Let Y'? be a process
with generator —(—A)~%/2 4 k|z|~*x -V for some « € (0, 00). It follows from
[98, Theorems 4 and 5] that HKY is satisfied with ®(r) = ¥(r) = r* and
boundary function h = hg g/ for B € (0, ) determined by the equation at
the beginning of [98, Section 3.2].

We briefly discuss the term 1,(¢, z,y, Cy) appearing in (4.1.8). If Cy = 0,

then clearly

I(t,x,y,0) = (4.1.10)

1
Vi, o 1(t) P ( T2 )
Suppose now that Cy =1 and a > 0.

Lemma 4.1.9. For any K > 1, there are comparability constants depending
on K such that when t > K—'®(p(z,y)),

I(t,z,y,1) ~ m

and when t < K®(p(z,vy)),

¢ 1
I(t,z,y,1) ~ Vi p@ )o@ g)) + V(z, o-1(1)) exp ( - d1(¢)? )
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In particular, if Y(r) ~ ®(r) for r € (0,diam(D)), then for each fixed a > 0,

1 t
el 20 ) = Y0 55m) " Vi w00y ””’y(j 1Dﬁ>

4.2 Jump kernel and heat kernel estimates

With the tail measure w of the subordinator .S, for a given boundary function
h, we define for (¢,z,y) € [0,00) X D x D,

®(p(z,y))
B (x,y) == / h(s,z,y)w(s)ds (4.2.1)
0

and if ¢~ (1/t)"! < ®(p(z,y)),

49 (p(z,y))

Bn(t,x,y) == / h(s,z,y)w(s)ds. (4.2.2)
2¢71(1/t)71

Since [; w(s)ds < oo forallr > 0 and h < 1, the integral in (4.2.1) converges.

Note that, by (H1), B;(z,y) ~ B, (0, z,y) for all (x,y) € D x D.

4.2.1 Jump kernel estimates

The jump kernel of the subordinate process X is given by

J(z,y) = /Ooopp(s,x,y)y(ds), z,y € D. (4.2.3)

See [26, p.74] and also [110].

Theorem 4.2.1. Suppose that either (1) Polyg, (81, 52) and HKY hold, or
(2) Poly (51, 32) and HKY hold. Then, for (x,y) € D x D with x # v,

C()B;;(flf,y)
Vi, p(z,y))¥(p(z,y))

w(®(p(z,y)))
Vi(x,p(z,y))

J(z,y) = +h(®(p(z,y)), z,y) - (4.2.4)
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Proof. Since the proofs are similar, we only give the proof of the case (1),
which is more complicated. Fix z,y € D with x # y and let r := p(x,y) > 0.
By Remark 4.1.7, (4.1.8) and (4.1.9) hold with 7" := ®(2diam(D)). Then by
(4.2.3) and Lemma 4.1.9,

Cy @(r)
V@90 /o sh(s,z,y)v(ds)

(r) s, x, cr?
+/0 VZ(E @—1?11)) P ( N @—1(3)2>”<d8)
)

' —h(s,x,y v(ds x ooe_’\DSV s
o Tl @ ) [ (e

T
= C()Jl + JQ + J3 + J4.

J(z,y) =<

By Polyg, (01, 82), there exists a > 1 such that w(s/a) > 2w(s) for all
s < Ry. Therefore, by (4.1.7), since we assumed ®(diam (D)) < R1/8,

a” T (r)

V(z,r)V(r)J; = Z/ sh(s,z,y)v(ds)

ien JaTie(r)

~ Z a ' ®(r)h(a”'®(r), z, y) (wla ' ®(r)) — w(a ' ®(r)))

1€EN

~ Z a " ®(r)h(a”"®(r), z, y)w(a " ®(r)) ~ Bi(x,y).

1€EN

Next, by (H1), the scaling and monotonicity of ®, we get that

Jy >

r),x, ®(r) cir?
Mi((zi g y) L e ( -3 (S)2>u(ds)

ah(D(r), z,y) [0 Ch(P(r), z, y)w(P(r))
& V(I7 T) [I’(r)/a V<d8) & V(l‘, T) '

Hence, we obtain the lower bound in (4.2.4).
Now, we prove the upper bound in (4.2.4). Let ® be the function in
Lemma 4.1.1. Since s — V(z, ®1(s)) "' and s — h(s, z,y) are nonincreasing,

using the Leibniz rule for product, integration by parts and the property (P2)
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of &~ in Lemma 4.1.1, we obtain

®(r) h(sx ) Cc3r
el i@)“p(_%lwﬁ)<_

") h(s, @ y)w(S)
<c —_——
- /0 Viz, ®1(s)) (
*0) p(s, y)w(s) r?
<c
- /0 V(w, @71(s)) so!(s)?

In the second inequality above, we used the following: Since h < 1, e™* <

<0

4
ds
2

(D—l(s)?

exp ( — )ds (4.2.5)

k*z=F for all x, k > 0 and lim,_,o sw(s) = 0 (because w is the tail of the Lévy
mesure v), by using (4.1.1) and the scaling of ®*, we have that

(s, z,y)w(s) car? w(s) [ D7Y(s)P) BT
Iim ———————~ex — = <c lm
520 V(z, ~1(s)) p< @1(5)2> T 0V (2, (s ))< r? )

¢ i 1 (s5) e 1O imsw(s) =
= rdetez/ (3, $-1(1)) 151—I>%w(5>® ()% = rda+ez (g, d=1(1)) l—m (5)=0.

By Polyg, (81, 52), (H2), (4.1.1), (4.1.4) and the fact that ® ~ &, we can
use Lemma 4.1.2 with f(s) = h(s, z,y)w(s) V (z, 6*1(3))*13*15*1(5))*2 and
p=7+ P2+ 14 (d2+2)/ay to deduce from (4.2.5) that

ch(®(r), z,y)w(P(r))
= V(z,r) )

(4.2.6)

For J3 and Jy, since s +— V(z, ®71(s))7!, s = h(s,z,y) and s — w(s) are

nonincreasing, we have by the boundedness of D that

oy < MO (@)

ch(®(r), z, y)w(®(r))
V(z,r) '

V(z,r)

+ h(1,z,y)w(T) <

This completes the proof. Il

Suppose that ¥ ~ ® and Cy = 1. Then the first term in (4.2.4) dominates
the second in view of (1.1.2). Moreover, if Polyg, (81, 52) holds with 5y < 1,
then according to [109, Lemma 2.6, Proposition 2.9], we get that w(s) =~
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¢(1/s) for all 0 < s < Ry/2 and hence

1

I y) = V(z,p(z,y)

‘1>(p(m7y))h Do
)‘I’(p(w,y))/o (s,2,y)p(1/s) ds.

In case the boundary function is equal to h;/s, the integral above can be
estimated in the same way as in [97, Lemma 8.1], cf. [97, (8.4)].
Suppose that Cy = 0. Then

w(h(®(p(z,y)),z,y)
Viz,p(z,y))

J(z,y) = h(®(p(z,y)) (4.2.7)
In particular, in the context of Example 4.1.8(b-1), and assuming fs < 1, the
above formula reduces to [96, Theorem 4.4.(1)]. Similarly, if D is an exterior
C*! domain in R? the boundary function is equal to hy(t A 1,2,y) and
Py < 1, then (4.2.7) reduces to [96, Theorem 4.4.(2)].

4.2.2 Heat kernel estimates

Let
1

U(r) = ———-——, r>0. (4.2.8)
¢(1/(r))

Since ¢ and ® are strictly increasing, v is also strictly increasing. Moreover, it

follows from Polyg, (01, B2), Lemma 2.1.1 and (4.1.3) that, for every Ry > 0,

there exist ¢, ca > 0 such that

r

c1<R>a151 < v(R) < 02<R)a2(ﬁ2m), 0<r < R<R,. (4.2.9)

= Y(r) T

r
In case when Poly.. (1, 52) holds, (4.2.9) is valid with Ry = co. Note that
i) = (o7 (1/t)7Y), t>0. (4.2.10)

Recall the definition of the function By (¢, z,y) from (4.2.2).

Theorem 4.2.2. Suppose that Polyg, (51, 32) and HKY hold. Then for ev-
ery T > 0, the following estimates are valid for all (t,z,y) € (0,T] x D x D:
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(i) If ¥(p(x,y)) <t, then

Mo (10, y)

ZERT=I (4.2.11)

q(t,z,y) ~

(ii) If ¥(p(z,y)) > t, then

Co
V(z, oo 0) (0 (e.9)) (“3 wlh20) +
o'/ . y) exp ( B cp(:v,y)Q)
Vo 1) ()

(ot ) ) ),

q(t,z,y) <

ho ' (/1) =, y))
¢~1(1/1)

Proof. Take z,y € D and let r := p(x,y). We start by establishing some
relations valid for all ¢ € (0,7]. By Corollary 2.2.2, there exist constants
d,¢ € (0,1) such that

t,x,y) >0 inf s,x,y), te (0,7 (4.2.12
q(t, z,y) se[e¢—1(1/t)—1,¢—1<1/t)—1]pD( y) (0,77. ( )

On the other hand, by Remark 4.1.7 (with 7" = &(diam(D))), (4.1.10),
Lemma 4.1.9, (4.1.9) and the fact that exp(—cr?/®7!(s)?) ~ 1 when s >
d(r), we see that

d(r) h
g(t, z,y) xCo/ ST Y) pog e g
0

V(z,r)¥(r)
P (diam(D)) h(S T y) or?
_ s LY T \p d
“ 7 5 ° (o) P €
+ h(1,z, y)/ e P P(S, € ds)
d(diam(D))
= 00[1 + IQ + 13. (4213)

(i) Assume that ¢(r) < ¢. By Remark 4.1.7, (H1), (4.1.1), the scaling of
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&1 and (4.2.10), there exists ¢; > 0 such that

N ) a2

, te(0,T].
s€legp=1(1/t) 1,671 (1/8)1] Vi(z,y=L(t)) (0.7]

Hence, the lower bound in (4.2.11) follows from (4.2.12).

Now, we prove the upper bound in (4.2.11). First, using Corollary 2.2.3
in the first inequality below, the assumption ¥ > & and Lemma 2.1.7 with
N = 74+ dy/ay in the second, (H2), (4.2.10) and (4.1.3) in the third, and
(4.1.1) in the last, we get that

(D) wy)
h< T g e (- H e o) (1.00) )

h((‘};(g;b)::; y) (@(T‘)Qﬁ_l(l/t))v(@(T)gﬁ_l(l/t))dZ/al
h(é‘l(l/t)_laﬁy)( r >d2 < C4h(¢‘1(1/t)_17$,y)
Viz,r) i)y T Ve, v=1(t))

>~ (2

>~ C3

Next, we observe that

AT h(s,a,y) °° h(s, =, y)
I < — 7 _P(S,ed —— % _P(S,ed
2= /0 Vv (Sr € ds) + /¢1(1/t)1 V(z, ®71(s)) (5t € ds)

=:Ir1 + Izs.

By (H2), (4.1.1) and (4.1.3), we can apply Corollary 2.2.3 with p = v+ds /o
to get that

ho™'(1/0) 7" 2, y)
Ve, o=1 ()

I, <cs

Moreover, we see from (H1), (4.2.10) and the monotonicity of /! that

Mo~ (/0 )

h(o'(1/t)" x,y)
Viz, v=1(1)) '

Vi, v1(1))

ha < (S 2671/ <

Lastly, by using (H1) and (H2), since ¢ and ¢ are increasing and ¢ < 7', we
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have that

(o™ (1/1) " 2, y)
Iy < h(1,2,y) < c Ve, p72(t)

Hence, we obtain the upper bound in (4.2.11) from (4.2.13).

(ii) Assume that ¢(r) > t. First we establish the lower bound. From
(4.2.12), Remark 4.1.7, Lemma 4.1.9, (4.2.10), (H1), and the scaling and

monotonicity of ¢~!, we get that

q(t,z,y) = erh(6 (1) 2, y)

CopH(1/t)71 csT
Sty v e (- ) ) a2

We also see from Remark 4.1.7 that

o> 9 [ e B(s e ds). (42.15)
q(t,z,y 2—/ sh(s,z,y)P(S; € ds). (4.2.15
Vi, 7)U(r) Jag100-1 !

Let K > 1 be the constant in (2.2.6). If ®(r) > K¢~'(1/t)7!, then by (H1),
(H2) and (2.2.6), since we assumed ®(diam(D)) < R;/8,

4®(r)
/ sh(s,x,y)P(S; € ds)

o=/t~
2K 1(1/t)~
=y shis, z, y)P(S, € ds)
ieN 2K et 1/
Ki<20(r)¢— 1 (1/1)

2K 1 (1/t) 7t

Clot 1
LIS QKL (1 /1) / ds
K S “l ) 2Ki=19-1(1/0)1
Ki<20(r)6=1(1/2)

crot 40(r) /K

v

4P(r)

h(s,z,y)w(s)ds ~ t/2¢ h(s,z,y)w(s)ds.

- K 2¢—1(1/t)~1 Y

The last comparison is valid due to (1.1.2). Hence, we deduce from (4.2.15)

that
CotBh (tu X, y)

V(z,r)¥(r)
In case when ®(r) < K¢ '(1/t)7!, we see from (H1), (2.0.4) and (4.2.14)

q(t,z,y) > cn
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that

‘B (1 " 4K (1/t)7
CotBi(t, z,y) < Co / h(s,z,y)w(s)ds
2

Vi, r)(r) = V(e,r)U(r) Jop-1(1p-1
to— (1/)"
V(z,r)¥(r)
< 2 q(t, x,y).

< 4K Gy (¢~ (1/) 7", 2, y) 2e0 (¢ (1/1))

By using (2.2.6), Lemma 4.1.9, (H1), (4.1.1) and the scaling of ®, we get
that, if 4®(r)/K > 2¢~1(1/t)~!, then

tw(®(r))

40(r) h(s,x,y
q(t,x,y) > 013/ ( ) m

——— (5, € ds) > c14h(P(r), z,y
418(r) /K V(z,®-1(s)) (5 ) uh(2(r) )

If 49 (r)/K <2671 (1/t)7, then ¢ < (r) < ¢15t for some c;5 > 0. Moreover,
by (4.2.10) and (2.0.4),

tw(®(r)) < tw(o™'(1/t)7") < 2etp(¢"(1/t)) = 2e.
Therefore, by (H1), (4.2.14) (neglecting the first term) and (4.1.3), we obtain

cgeis ()3 tw(®(r))

h
qt,x,y) > cq o1 (t)?

exp < - ) > c16h(2(r), . y)

This completes the proof of the lower bound.
Now we prove the upper bound. Recall (4.2.13). Observe that

Vx,r)U(r)l

o=/t 2071 (1/1)1
< / sh(s,x,y)P(S; € ds) +/ sh(s,x,y)P(S; € ds)
0 =1/t

49(r)
+/ sh(s,z,y)P(S; € ds) =: K1 + Ky + K.
2071 (1/8) 7

By Corollary 2.2.3, K1 < c7¢ 1 (1/t) " h(¢~(1/t)~!, x,y). Moreover, by
(H1), we have Ky < 2¢71(1/t)"! h(¢~1(1/t)"', z,y). To bound K3, we use
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integration by parts and Theorem 2.2.6 to obtain

4P(r) d
K3 = / sh(s,z,y)—( = P(S, > s))
20-1(1/t)~1 ds

4P(r)

<2071/ TR 1/t 2, y) + /2¢—1(1/t)—1 h(s,z,y)P(S; > s)ds

4P(r) dh
N / P(S, > 5) DY)
26-1(1/6)! ds

< 18 (¢_1(1/t)_1h(¢_1(1/t)_17 €, y) + tBh(tv Z, y))

In the second inequality above, we used the fact that s +— h(s,z,y) is non-
increasing (so that s — Lh(s,z,y) <0 a.e.).

Now, we estimate I,. We have

20711/~ h(s,x,y) cr?
< _ s TY) o
[2 ~ /0 v ) exp ( P )P(St S dS)

(x, @ 1(s) ~1(s)2
49(r) M o ( cr? .
' /2<z>1<1/t>1 Ve, @(s) ( <I>1(s)2>P(St € ds)

o0 h(s,z,y) .
! /@m Ve, o(s) ok € 99)

=:Li+ Lo+ Ls.

By applying Corollary 2.2.3, we get from (H1), (H2), (4.1.1), the scaling of
® and (4.2.10) that

26707 sz, y)

L < exb (= gorigg iy i) / Vi, o i(s) 0 €8
Mo WO ey [ e

<o g P )

Let ® be the function in Lemma 4.1.1. By using integration by parts and

similar calculations to (4.2.5), we get that

2

49 (r) h d
Logen [ MBI (L )L )
2011/~ V(z, @71(s)) Oi(s)?
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<[RS (- )
Vi, @1 (2071(1/t)1)) O-1(2071(1/t)71)?

e —h(s,x,y) P(S S—T2 exp | — et ds
+/2¢1<1/t>1 V(z, ®1(s)) (5 2 )s&rl(sy p< 61(5)2> }

=: Co3 (Lo + Lo2).

By (H1), (4.1.1), the scaling of ® and (4.2.10), since ¢ ~ ®, we see that

Loy < co

h(gbil(l/t)ilaxvy) . 6257“2
Ve, (1)) exp w—1<t>2>‘

Also, by using Theorem 2.2.6 and repeating the arguments for obtaining
(4.2.6), we get that

ot [ Mool ety
22 = Cog B » 213—1 &)_1 5 p =~
2611/~ V(x, ®71(s)) sP~1(s)

_ cnth(®(r). 7. )uw(®()
- Vi(z,r) '

By (H1) and Theorem 2.2.6, we obtain

tw(®(r))

h(®(r), 2, y)
BE Ve Vi)

S Ve P(S; > 4®(r)) < cogh(P(r), x,y)

Finally, we estimate I3. Using Theorem 2.2.6, (H1) and (H2), since D is

bounded, we see that
Is < cogth(1, 2z, y)w(®(diam(D))) < csoh(®(r), z, y)—F——>

The proof is complete. O

By following the above proof, we obtain global estimates on ¢(¢,x,y)
under Poly, (81, 32) and HKY.

Theorem 4.2.3. Suppose that Poly.. (81, 52) and HKY hold. Then the as-
sertions in Theorem 4.2.2(i)—(i1) hold for all (t,z,y) € (0,00) x D x D.
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Recall from Lemma 2.1.1(i) that if Polyg, (51, 82) holds with £y < 1,
then w(s) ~ ¢(1/s) for s < Ry. Using this fact together with (4.1.11), we

obatin the following simpler form of off-diagonal estimates.

Corollary 4.2.4. Suppose that Polyg, (51, f2) holds with 5y < 1 and ®(r) ~
U(r) forr e (0,Ry).
(i) If HKY holds, then for every T > 0, the following estimates hold for all
(t,x,y) € (0,T] x D x D:

(1) If Y(p(z,y)) < t, then (4.2.11) holds.

(2) If (p(x,y)) > t, then

h(®(p(x,y)),2,y)

when Cy = 0,
- t U(p(z,y))
q(t,z,y) ~ Vo) By(t..v) o (4.2.16)
®(p(x,y)) o

(ii) If Ry = oo and HKY holds, then (1) and (2) above hold for all (t,x,y) €
(0,00) x D x D.

In the case when D is a bounded C*! domain, Y? is a killed Brownian
motion in D and S is an (a/2)-stable subordinator, part (i) of the corollary
above is equivalent to [119, Theorem 4.7]. In the case when D is an exterior
C™! domain, Y is a killed Brownian motion in D and S is an (a/2)-stable
subordinator, part (ii) of the corollary above corrects [119, Theorem 4.6].

For future use, we note the following rough upper estimates on ¢(¢, x, y).

Corollary 4.2.5. (i) Suppose that Polyg, (81, 2) and HKY hold. Then for
every T > 0, there exists a constant C' > 0 such that for all (t,z,y) €
(0,T) x D x D,

1 t
t,z,y) < Chlo ' (1/t)71, x, ( A )
) = CHEZA 2\ VG5 ) " Vi o )l 1)
(4.217)
(i1) Suppose that Poly (51, B2) and HKY, hold. Then, there exists a constant

C > 0 such that (4.2.17) holds for all (t,x,y) € (0,00) x D X D.
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As another corollary to Theorems 4.2.2 and 4.2.3, we obtain the following

interior estimates on ¢(t,z,y) in case of a regular boundary function.

Corollary 4.2.6. Suppose that h(t,z,y) is a reqular boundary function.
(i) If Polyg, (81, 52) and HKEY hold, then for every T > 0, the following
estimates hold for all (t,z,y) € (0,T] x D x D satisfying ox(x,y) > p(x,y) V
7).
(1) If p(p(z,y)) < t, then  q(t,2,y) ~
(2) If ¥(p(x,y)) = ¢, then

o 4@ (p(x,y))
alt, z,y) = Vi(x, p(z,9))¥(p(r,y)) (t /2¢1(1/t) vl 9 1(1/t))

L cpl@yPy | tw(® ((x,y)))
V(e 0) P ( w—1<t>2)+

Vi, p=1(t))

(ii) If Poly(B1,32) and HKY hold, then (1) and (2) above hold for all
(t,2,y) € (0,00) x D x D satisfying on(z,y) > p(z,y) VY~ (t).

Now we give the large time estimates for ¢(¢, x,y) under HKES.

Theorem 4.2.7. Suppose that Polyg, (51, 32) and HKY hold. Then for ev-

ery T > 0, there are comparison constants such that
q(t,z,y) ~ e PODIN(1 xy),  (t,z,y) € [T,00) x D x D.

Proof. Fix z,y € D and T > 0. Since lim;_,o(H o 0)(7, s) = 0o and the map
t — (H o o)(t,s) is nondecreasing for each fixed s > 0, there is a constant
so € (0, 1) such that

(H o 0)(t, s0) > 20(A\p) + 1/T for all t > T. (4.2.18)

By (H2), (4.1.1) and (4.1.3), we can apply Corollary 2.2.3 with f(s) =
h(s,z,y)V(z,® !(s))"!. Using Remark 4.1.7 (with T' = s;), Corollary 2.2.3
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and (4.2.18), since ¢ is the Laplace exponent of S, we get that, for all t > T,

o h(s,z,y) / —Aps
< D
q(t,z,y) < ¢ /0 Ve, o-1(s)) @_1<S))P(St € ds) + c1h(1,x,y) ; e P(S; € ds)

h(so, 2, y)
V(x,®1(sp))

< esh(1, x,y)e 0n),

(H o o)(t, 30)> + c1h(1, z, y)E[e 5]

t
S G exp<—§

Next, we also see from Remark 4.1.7 that

q(t,z,y) > csh(1,2,y) (/ e (S, € ds) — / e PEP(S; € ds)>
0 0

> csh(1, 2, y) (e PP —P(S, < 50)).
According to Proposition 2.2.1 and (4.2.18), it holds that for all ¢ > T,

P(S; < s9) < exp (—t(H o 0)(t,s0)) < e 2¢0n) < o7 T00D)e~16(An),

Therefore, the lower bound holds true and we finish the proof. U

4.3 Green function estimates

In this section, we always assume that either (1) Polyg, (61, 32) and HKE
hold, or (2) Poly (51, 32) and HK® hold. The Green function Gp of X is
given by

o0
Goey) = [ttt zyeD.
0
As an application of the heat kernel estimates obtained in the previous
section, we can obtain two-sided estimates on the Green function.

The following proposition provides the first and most general estimate of

the Green function.
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Proposition 4.3.1. There are comparison constants such that for x,y € D,

GD(x7 y) =

CO /'q)(p(x7y)) h(s’ I7 y)
0

V(. p(.9) ¥ (o)) o(1)s) ©

2®(diam(D))
+/ Mezy) g, (4.3.1)
o(p(zy) SV (2, P7(s))g(1/s)

Proof. Since the proofs are similar, we only give the proof when HKY holds,
which is more complicated.
Take z,y € D and let r := p(z,y). Set T := 1/¢(1/(2®(diam(D)))). By

a change of variables and Lemma 2.1.5, we have that

[ L) [0 e 01 [ Moz,
0 0 B 0

¢~ (1/t) sp(1/s)? o(1/s)
(4.3.2)
and
(e (1)) ay) PO h(s xy)  @(1)s) .
/¢(r) V(z,=1(1)) = /@(T) V(x, ®71(s)) 52¢(1/3)2d
N 2®(diam(D)) h(S, z, y) )
. /w) Vi, o1 (s)o(1/s) > Y

Combining with Theorem 4.2.2 (with T' = T)p), we arrive at the lower bound
in (4.3.1).
By Theorems 4.2.2 and 4.2.7 (with 7' = Tp), we have that

c0Co ¥(r)
Vo ), o

coCo ¥(r) h(¢*1(1/t)*1, z,y)
Ve / o1 (1/T)

P(r) - -
N A CR U REY Jy R
0

GD(‘ray> S

dt
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o B(G 1/, 2, y) S
+c / L 20 dt + coh(1, 2,y / e~ toO0) gy
" ) Vi o 1) oh(L,,y) |

=: Co(CoGl + C()GQ + G'g, + G4 + G5 + G6)

By (4.3.2) and (4.3.3), we obtain the desired upper bound for CyGs+ G5.

Note that, thanks to (4.2.9), the result of Lemma 4.1.2 remains true even
if we replace ® by . Applying Lemma 4.1.2 with p := ~v/5 + da /(a1 51), we
get from (H2), Lemma 2.1.1(1&ii), (4.1.1) and (4.2.9) that

h(®(r), z,y) p(r)"*!
Vie,r) ()

For G4, we see from (2.0.4) that G4 < eh(®(r), z,y)Y(r)/V (z, 7).

For (G1, we use Fubini’s theorem to get that

Gy < = cth(®(r), =, y)

V(z, )V (r)G,
2%(r) o(2/s)7" 49(r) ¥(r)
:/ h(s,x,y)w(s)/ tdtd8+/ h(s,w,y)w(s)/ tdtds
0 0 2 0

d(r)
= G171 + GLQ.

By (2.0.4), a change of variables and (H2), we get
2®(r) 2 @(r) 2
G < 26/ h(s, z,y)¢( /8)d824€/ h2s,2,y) .
’ 0 ¢(2/s)? o o(1/s)

&(r) h(s,x,y)
< 02/0 st.

Besides, we get from (2.0.4), (H1) and (1.1.2) that

(r)

Clearly, Gg < ¢(Ap)~th(1,2,y).
It follows from (1.1.2) and the upper bounds above on G3, G4, G that G5
dominates G5 + G4 + Gg. Since Gy dominates G, the proof is complete. [J
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In the remainder of this section, under some additional assumptions on
the boundary function, we obtain Green function estimates in simpler forms.
Lemma 1.1.1 will be a useful tool in all simplifications.

We start with the following condition which is a counterpart of (H2).

(H2*) There exist constants ¢y, . > 0 such that for all z,y € D,
ST h(s,x,y) > c1t™h(t,z,y), P(ov(z,y)) <s <t <2d(diam(D)).

Note that the v, above is less than or equal to the constant v in (H2).

Remark 4.3.2. Suppose that the boundary function h(t, z,y) satisfies (H2*).
Then for every € € (0, 1), there exists co = c2(€) > 0 such that for all z,y € D
and s,t > 0 with e®(dy(z,y)) < s <t < 2®(diam(D)),

s™h(s,z,y) > cot™h(t, z,y).

Example 4.3.3. Let p,q > 0, p+ ¢ > 0. Recall that the boundary function
hpq(t,z,y) defined in (4.1.6) satisfies (H2) with v = p + ¢. We claim that
hy4(t, z,y) also satisfies (H2*) with v, = v = p+ ¢. Indeed, for all z,y € D
and ®(dy(x,y)) < s < t,

"y (s, 2,y) = ©(6p(2))P(6p(y))" = " hyq(t, 2, y).

In the remainder of this section, we let dy, ds, 7, 7+, 81, B2 and oy, as be
the constants in (4.1.1), (H2), (H2*), Polyg, (51, 52) and the scaling indices
of ® in (4.1.3), respectively.

Let
2®(diam(D)) h(s,z,y)

Cnlzy) = /{;(p(m,y)) sV (z, @71 (s))p(1/s

)ds

denote the second term on the right-hand side of the estimate (4.3.1).

Lemma 4.3.4. The following estimates hold for all x,y € D.
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(i) If di > as(Ba A 1), then

Y(p(z,y))

Colr.y) = h(@{p(a.y).2.9) o= L2

(i1) If dy < c1(B1 — ), then

- h(1,z,y), when HKY holds,
GD(Z'? y) =
00, when HKY holds.

Below, we also assume that h(t,z,y) is reqular and (H2*) holds.
(ZZZ) [f Oélﬁl >dy > dy > 042((62 VAN 1) — ’}/*), then

V(o (z,y) V p(z,9))
V(x,oy(z,y) Vv p(z,y))

(ZU) ]fOél = (O, 51 = 52 and dl = d2 = Oélﬂl, then

GD(ZL‘, y) = h(é(p(l‘7 y))v T, y)

Gio(z.9) = h(@(p(a.). ) log (¢ S THE),

(U) If oy = g, B1 = B2, v =7 and d; = dy = al(ﬂl - ’Y); then

diam(D)
h(1,z,y)log <€ T dv(z,y) Vv p(z,y)

00, when HKY holds.

- ), when HKY holds,
C"YD (ZE, y) =

Proof. Take z,y € D. Let d, := 05(z,y) and oy := dy(x,y). Define

h(s,z,y)
g(s) := , s>0.
)= T e )a(s)
Then
» 2®(diam(D))
Gp(z,y) :/ ﬁds.
@(p(z,y)) §
Set p1 = —dy/a; + 1 and py := —di/as + (B2 A 1). By the scaling
165
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properties of h(-,z,y), V(z,-), ® and ¢, there exist ¢;, o > 0 such that

¢ <t)pl_7 < 9(r) < CQ(C>Z)2, 0<s<r<2®(diam(D)). (4.3.4)
s g(s) s
If h(t,z,y) is regular, then by Remark 4.1.4, for every a > 0, there exists
c3 = cz(a) > 0 such that
r\P _ g(r) 7\ P2 .
03<—> <) < 02<—> . 0<s<r<®ady) A20(diam(D)); (4.3.5)
s 9(s) s
if furthermore (H2*) further holds, then by Remark 4.3.2, there exists ¢4 > 0
such that

a(t)" = % <a(D)" 7 @6,/2) <5 <7 < 20(diam(D)).
(4.3.6)

(i) By (4.3.4), since ps < 0, the result follows from Lemma 1.1.1(ii).

(ii) If D is bounded, then by (4.3.4) and Lemma 1.1.1(i), since p; — > 0,
it holds that éD(:r,y) ~ g(®(diam(D))). By (4.1.2), there exists ¢5 > 1 such
that c;' < V(z,diam(D)) < ¢s for all 2 € D. Hence, by using (H1), (H2)
and the definition of g, we get that Gp(x,y) ~ h(1,z,y). If D is unbounded,
then we see from (4.3.4) and Lemma 1.1.1(i) that

Gp(z,y) ~ lim ' ﬁds ~ lim g(r) > ¢19(1) lim 777 = 0.

e e(pay)) S oo e

(iii) Suppose that §y < 2p(z,y). Since py — 7. < 0, by (4.3.6) and Lemma

1.1.1(i),

h(®(p(x,y)), 7, y)P(p(x,y)) _

Gp(z,y) = g(®(p(z,y))) = V(z, p(z,y))

Hence, in this case, the result follows from (4.1.1) and (4.2.9).

Suppose now that dy > 2p(x,y). Then 0, > oy —p(z,y) > oy /2 > p(x,y).
Since h is regular, h(®(dy),x,y) ~ h(P(p(x,y)),z,y) ~ 1. Further, since
p1 > 0 and py — v« < 0, by the scaling of ®, (4.3.5), (4.3.6) and Lemma

166



CHAPTER 4. HEAT KERNEL ESTIMATES FOR SUBORDINATE
MARKOV PROCESSES

1.1.1(i)-(ii), we get

~ ®(6n) d(diam(D))
Gotag)= [ By / o Mo @) + o@(6)

(z,y))

Q(0v), x,y)Y(dy) R/’lﬂb(P(wyy))axyy)¢(5v)
~ 9(2(0v)) Vio) V(z, 60) ‘

This finishes the proof for (iii).
(iv) Since d; = dy, by (4.1.1) and (4.1.2), we see that for every a > 0,
there are comparability constants depending on a such that for all w,z € D

and 0 < r < adiam(D),
V(w,r)~V(z,r) ~r1V(z1). (4.3.7)
Moreover, since 1 = (5 and a; = ag, we get that

d(1/s) '~ 5% 0<s<2®(diam(D)) and D7(s) ~ sV >0,
(4.3.8)
so that g(s) ~ h(s,z,y) for all 0 < s < 2®(diam(D)). In particular, since h

is regular, we see from Remark 4.1.4 that
g(s) =1, 0<s<2P(dp). (4.3.9)

If 6y < 2p(z,y), then by (4.3.6) and Lemma 1.1.1(ii),

&Vp@w»_

ol 1) = 9(lpla, ) = h(lpta, )z, ) o (¢4 2

If oy > 2p(z,y), then we get 5 > dy/2 > p(z,y) asin (iii), and by (4.3.9),
(4.3.6) and Lemma 1.1.1(ii),

. 2P (57) 2®(diam(D)) 2P (5n) d
Gotr) = [ Mass [ Mg [T 2 y@(5),
@ (p( @ (p(

zy) S B(dv) § plzy) S
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Note that since ®(s) ~ s** for s > 0, we have

5/\ 22(3n) ds
g(P(oy)) ~ h(P(oy),xz,y) <1<log(e+ 2/ —.
(2(0,)) = h(®(3)), 7,y) (o) = oo 5

Therefore, since d, ~ oy > 2p(x,y) and h(P(p(x,y)),z,y) ~ 1 in this case,
we get that

dy \/P(l’ay))

Gp(z,y) ~ log (e b0 ) ~ h(®(p(x,y)), z,y) log <€ T oy

p(e,y)
(v) By (4.3.7), (4.3.8), the regularity of h, (H2), Remark 4.3.2 and (4.1.7),

we have
g(s) ~s7, 0<s<P(n) (4.3.10)

and

g(s) ~ sTh(s,x,y) ~t"h(t,z,y), P(6y/2) <s <t <2P(diam(D)) + 1.
(4.3.11)
If 6y < 2p(z,y), then since ®(s) ~ s* for s > 0 in this case, we get from
(4.3.11) that

2®(diam(D)) d

=~ s diam(D)
G <x,y>:h<1,m,y>/ 5 h(1,2,) log (e + BUL)Y
7 ®(p(x,y)) s ( p(x,y) >

If 6y > 2p(x,y), then 6, > 0y /2 > p(x,y) as in (iii) and hence by (4.3.10)
and (4.3.11),

20(6) 2®(diam(D)) ds

s s + h(1,7,y) / —.
2(dv) o

Goler) = |

@(p(z,y))

Since ®(s) ~ s* for s > 0, 5 < dy < 25, and h is regular, by (4.3.11),

2®(diam(D)) d di D
h(l’x’y)/ o~ h(1,2,y)log <e+%<)>
o(5y) s y
26(5,)
> h(L,2,y) = ©(3,) h(D(3n), 2, y) = ©(3,)" 277" / (pla9)) e
D (p(z,y
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This completes the proof. U

In the next lemma we show that under the additional assumption that
v < B1 + 1, the first term on the right-hand side of (4.3.1) is dominated by
éD (‘T7 y)

Lemma 4.3.5. If either Cy =0 or vy < 1 + 1, then
Gp(z,y) ~ éD(:U,y) on D x D.

Proof. When Cy = 0, the assertion follows from Proposition 4.3.1. So we

now assume Cy = 1 and v < 1 + 1. By the scaling of ¢ and (H2), we have

h(t7$7y)/¢(1/t) f Bi— or a . -
(s, z,y) /(1)) ZC( ) for all 0 <s <t < ®(diam(D)).

s
Thus, since ¥ > ® by Lemma 1.1.1(i), we get

1 /‘I’(” his,z,y) , o P0), 2, y)p()2(r) - AO(r) z,y)y(r)

V(a,r)U(r) o(1/s) = V(e r)u(r) =T V()

By (1.1.2), the second term in (4.3.1) dominates the last term above. Hence,

by Proposition 4.3.1, we get the assertion. O
Define
( U(p(z,y)) :
—_ fdy > Al
Ve, ple,y))’ iz Rl
ov(x,y) V p(x, .
go(z,y) = q log (6 + V(@ %) V pl y))) if di =dy = a1 = s,
p(z,y)
, if dy < ayf1.
V(e bu(e,9) v e ) P

(4.3.12)
By combining Proposition 4.3.1, Lemma 4.3.4 and Lemma 4.3.5 we arrive

at the following result.

Theorem 4.3.6. Suppose that Cy =0 ory < 1 +1, h(t,z,y) is reqular and
(H2%*) holds.
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(i) Suppose also that one of the following holds: (1) di > as(f2 A1) or
(2) di = dy = 181 = aaflg or (3) dy < ay3y. Then it holds that

Gp(r,y) = h(®(p(z,y)), T, y)go(T, y).

(i) If dy < a1 (1 — ), then

h(1,z,y), when HKY holds,
GD($, y) =
00, when HKY holds.

(111) If oy = g, By = P, ¥ =7« and dy = dy = oy (1 — ), then

diam(D)
h(l,z,y)log | e +
ualos (¢4 50 0

00, when HKY holds.

), when HKEY holds,
Gp(,y) ~ )

When Cy = 1, Theorem 4.3.6 only deals with the case v < 8, + 1. To

cover the case when ~ is large, we assume the following condition.

(H2**) There exist constants ¢; > 0, 74 € (0,14 3;) such that for all
z,y €D,

sTh(s,z,y) < et h(t,z,y),  POA(r,y)) < s <t < B(dv(x,y)).

Example 4.3.7. For p,q > 0, let h,,(t,z,y) be the boundary function de-
fined in (4.1.6). If pV ¢ < 1 + By, then h, (¢, z,y) satisfies (H2**). Indeed,
we see that for all z,y € D and ®(dx(x,y)) < s <t < D(dy(x,y)),

O(dp(x))PsPVer,  if dp(x) < d
Sp\/th7q<s’$,y> — ( D( )) D( ) D(y> S tpvth,q(t,x,y).

®(0p(y))?s™ 7, if dp(x) > dp(y)
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For a given boundary function h, we define for x,y € D,

(e, ) = (@G p)pto o)) (11
In particular, one can check that for all p,q > 0,

[l (2, y) = (1 A M)p<1 A M)q

D(p(x,y)) P(p(z,y))
Do (e, )\t (S ()
(N o) Aoy ) 4319)

Recall that go(z,y) is defined in (4.3.12).

Theorem 4.3.8. Suppose that Cy = 1, h(t,x,y) is reqular, (H2*) holds with
Yo > (B2 A1)+ 1 and (H2**) holds. Suppose also that one of the following
holds: (1) dy > as(Pa A1) or (2) dy = dy = ayffy = aafs or (8) de < ay[3y.
Then it holds that

Gole.y) = [1](r.) A" Z» b(p(z.y)

) + h(@(p(z,9)), 2, y)go(z,Y)-

U(p(x,y) V(z, p(z,y)
(4.3.14)
In particular, if U~ ®, then

Proof. Take z,y € D and let r := p(x,y) and &y := dy(x,y). Observe that
by the scaling of ¢, (H1), (H2**) and the regularity of h,

t\Pri—r= _ h(t,z,y)/o(1/t) { BNl
Cl<g) < h(s,7,1)/6(1/3) < Cz(g) , 0<s<t<®(dy). (4.3.16)

Note also that by the scaling of ¢, (H2), (H2*) and Remark 4.3.2,

BB b y) oL _ iy D) -
(0 Saeeeam <G s SS“@(Z&‘;(S”'

Then by using Lemma 1.1.1 several times as in the proof of Lemma 4.3.4, we
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can conclude that the first assertion holds true.

Now we also assume that W ~ &. If §, > r, then [h|(x,y) = h(P(r), z,y).
Hence, we see from (1.1.2) that in (4.3.14), the second term dominates the
first one so that (4.3.15) holds. If §, < r, then using Lemma 1.1.1(ii), (4.3.17)
and the condition that #5 A1 —~, < —1 in the second inequality below, the
scaling property of ¢ and (4.1.7) in the third, and (4.3.16) in the fourth, we
get

2®(diam(D)) h(S, z, y) 1 2% (diam(D)) h(S, z, y)
d — 22 d
Lm sV@Ar%@M@h)SSxKLM@wLLm o(17s)
W@(), z.9)e(r) _ ¢ /‘I’(” h(s,z,y)

SOV S VR0 S o075 = Y

Note that go(z,y) ~ ¥(r)/V(z,r) when 6, < r. Thus by Proposition 4.3.1
and (4.3.16), we get Gp(z,y) ~ [h|(x,y)go(z,y) when §, < r. This completes
the proof for (4.3.15). O

For completeness, we record the Green function estimates when Cy = 1,

Bi1=Prand v, =7 =B + 1.

Theorem 4.3.9. Suppose that Cy = 1, 1 = o, h(t,x,y) is regular and
(H2%) holds with v, = v = 1 + 1 and (H2**) holds. Suppose also that one
of the following holds: (1) dy > as(Ba A1) or (2) di = dy = 151 = azfy or
(8) dy < a1 1. Then it holds that

GD($7y) = h(q)(p(l’,y)),l’,y)
o [ 2ol y) Slp(z, ) o Sv(zy) Vop(z,y) .
U(p(x,y) V(z,p(r,y)) ! g< T @) > + ool ’y)} '

In particular, if ¥ ~ ®, then

ov(z,y)V p(x,y))

Gp(z,y) = M®(p(x,y)), z,y)go(z,y) log (e T @)

172



CHAPTER 4. HEAT KERNEL ESTIMATES FOR SUBORDINATE
MARKOV PROCESSES

4.4 Parabolic Harnack inequality and Holder
regularity

Throughout this section, we assume that h(t, x, y) is a regular boundary func-
tion and that either (1) Polyg, (51, 32) and HK. hold, or (2) Poly.. (531, 52)
and HK hold.

For zyp € D and r > 0, let Tp(g,,) = inf{s > 0 : X, ¢ B(xo,r)} and
XB@or) he the part process of X in B(xg,r). Denote by 4B(zor)(t, z,y) the
heat kernel of X2 By the strong Markov property, one can see that

B (2, y) = q(t,,y) = B [q(t = TBwow) Xrpyryr ¥); TBGor) < 1] -
(4.4.1)
Recall the definition of 1 in (4.2.8). Using the rough upper estimates and
near diagonal interior estimates on the heat kernel that obtained in Corollary

4.2.5 and Corollary 4.2.6, respectively, we deduce the following lemma from
(4.4.1).

Lemma 4.4.1. There exist constants C' > 0 and € € (0,1/4) such that for

all zg € D and r € (0,0p(x0)),

B0, (T, T,Y) = for all't € (0,4 (er)], x,y € B(xo, ™ (t)).

B
V (o, =1(1))

Remark 4.4.2. By using (4.2.9) we may replace 1(er) and ep~!(r) in the
statement of Lemma 4.4.1 with €t (r) and 1~ (er) respectively, cf. [47, p.3758].

Lemma 4.4.3. There exists C' > 1 such that for allx € D andr € (0,0p(z)),
C_lw(r) < Ex[TB(x,r)] < C@D(T‘) (442)

Proof. Fix x € D and r € (0,6p(x)). Let € € (0,1/4) be as in the statement
of Lemma 4.4.1. Then by Lemma 4.4.1, we have that

y € B(x,€r).

&1
>
qB(z,r) (w(@"), xz, y) = V(l’, ET) )
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By (4.1.1), this implies that

2
P (Tp(@r) > Y(er)) > / B ((er), z,y) dy > caiV(z,er)

B(z,€2r) V(ZE, ET) =

Hence, by Markov inequality and (4.2.9), we get that

E“ B = Y(er)P(Tp@yy > (er)) > catp(er) > cztp(r).

To obtain the upper bound in (4.4.2), we first assume that HKY holds.
We claim that there exists a constant A > 1 such that

sup P*(7p(wr) > ¢(Ar)) <

1
e (4.4.3)
z€B(z,r) 2

Indeed, according to Corollary 4.2.5(i) and Theorem 4.2.7, since h < 1, there

exists ¢4 > 1 such that
q(t, z,y) < e (V(z, 071 () Lp<ry + 6_¢(AD)t1{t>1}) , 2,y € B(z,r).
Further, by (4.1.1), there is ¢5 > 1 such that for all z € B(x,r),
Viz,esm) > V(z, (c5 — 1)r) > 2¢4V (2, 7).
Let A > ¢5 be a constant such that
exp (6(\p)(Ac; (1)) = 2m(D).

In case when r < c;'9~%(1), we get that for all z € B(x,r),
P (T > (A7) <P (Tp@r > P(csr)) < PH(Xy(esr) € Bl 7))
caV(x,r) 7“) 1
_ duy < -

On the other hand, if r > ¢5 ' ~(1), then since B(z,r) C B(x,dp(x)) C D,
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we get that for all z € B(z,r),

P* (7w, > Y(Ar)) < P*(Xyn € B(x,r)) < V(x, r)e_‘b()‘DW(Ar)

< m(D)e P <

DN | —

Hence, (4.4.3) holds true.
Now, using (4.4.3) and the Markov’s property, we get that for all n > 2,
Su(p )]P)Z(TB(I,T) > np(Ar)) = SU(P )]PZ (TB(ar) > N(Ar), Th) > Y(Ar))
zeB(x,r zeB(z,r

S sup P* (PXWAT) (TB(:cn”) > (7’L - 1)¢(AT))a TB(z,r) > ¢(AT))

z€B(z,r)

< sup P(7By) > (n—1)Y(Ar)) sup P*(7py > (Ar))

z€B(z,r) 2€B(z,r)
<. < < sup IPDZ(TB(LT) > Q/J(AT))) <27

z€B(z,r)

Therefore, we conclude from (4.2.9) that

E*[TB(n] < ZMU(AT)W (TB(2r) € ((n — 1)Y(Ar), nap(Ar)))

< cgA22(B2NDq) () Z n2” Y = 4cg A%y ().

n=1

Similarly, by using Corollary 4.2.5(ii), we can obtain the upper bound in
(4.4.2) when Poly. (81, f2) and HKY hold. O

Recall that the jump kernel J(z,y) is given in (4.2.3). Using Theorem
4.2.1 and the fact that h < 1, we get the following result.

Lemma 4.4.4. There exists C' > 1 such that for allx € D andr € (0,0p(x)),

J d .
/;\B(a:ﬂ’) (x’y) v ¢(T)

Let Z := (V;, X)s>0 be the time-space process corresponding to X, where
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Vs, = Vo — s. The augmented filtration of Z will be denoted by (}:3)820. The
law of the time-space process s — Z, starting from (¢, z) will be denoted by
P®). For every open subset B of [0, 00) x D, define 74 = inf{s > 0: Z, ¢ B}
and 0% = 7&..

Recall that a Borel measurable function u : [0, 00) x D — R is parabolic on
(a,b) x B(xg,r) with respect to the process X if for every relatively compact
open set U C (a,b) x B(zg,r) it holds that u(t,x) = E(tvx)u(ZTg) for all
(t,x) e U.

We denote by dt @ m the product of the Lebesgue measure on [0, c0) and

m on F.

Lemma 4.4.5. Let € € (0,1/4) be the constant from Lemma 4.4.1. For every
d € (0,¢€], there exists C' > 0 such that for all x € D, r € (0 dp(z)), t >
81 (r), and any compact set A C [t—0(r), t—(r) /2] x B(z, ¢~ (edb(r)/2)),

. dt @ m(A)
P(tv )(O‘i < T[tZ—(Sw(r),t]XB(:v,r)) Z CW (444)

Proof. Write 7, = T[tZ—éw(r),t]XB(x,r) and A; = {y € D : (s,y) € A}. For any
t,r >0 and z € D such that B(z,r) C D,

5(r) 7
SY(r)PE (o4 < 1) > / P2 ( / 14(t — s, X,)ds > o> du
0 0

o(r) T T
> / Pp(2) (/ 1a(t — s, X,)ds > u) du = B¢ [/ 1a(t - Sst)dS:| :
0 0 0

(4.4.5)

For any ¢t > dv¢(r),

. 5u(r)
o) [/ 1a(t — s,XS)dS} > / P ((t — S,XSB(:C,T)) c A) ds
0 o(r)/2

o(r) aP(r
— / P‘T(XSB(QC’T) € At,s)ds = / dS/ QB(x,r)(Saaja y) dy
50(r)/2 6 Aus

Let s € [09(r)/2,0¢(r)] and y € B(x,¢"'(edp(r)/2)). Then s < e(r)
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and ¢~ (edvp(r)/2) < 71 (es) so that y € B(z,1 " (es)). Hence, by (4.1.1),
(4.2.9), Lemma 4.4.1 and Remark 4.4.2,

A (s, 2,y) = aV(z, v (s) " = eV (z,r)~"

Therefore
T’” () dt A
R U 14(t — s,XS)ds] > @ / ds/ dy = 02®—m<)_
0 V(,r) Jspeye  Jan. Vi(z,r)
Combining with (4.4.5), we arrive at (4.4.4). O

Using (4.1.1), (4.2.9) and Lemmas 4.4.3, 4.4.4 and 4.4.5, by following argu-
ments in the proof of [45, Theorem 4.14] (see also the proof of [47, Proposition
3.8]), we get the following Holder regularity for parabolic functions.

Theorem 4.4.6. There exists a constant n € (0,1] such that for all § €
(0,1), there exists a constant C = C(§) > 0 so that for every xy € D,
r € (0,0p(xg)), to > 0, and any function u on (0,00) X D which is parabolic
in (to,to + (1)) x B(xo,r) and bounded in (to,to + ¥ (r)) x D, we have

P (|s — ) +p(x7y))”
[

esssup  |ul,

r to,to+(r)]x D

(s, 2) — u(t,y)| < c(

for every s, t € (to+ ¥(r) —¥(dr),to + (1)) and x,y € B(xo,Ir).
As a consequence of Lemma 4.4.1, we get the following lemma.

Lemma 4.4.7. Let € € (0,1/4) be the constant from Lemma 4.4.1 and let
d € (0,€e/4) be such that 45v(2r) < e(r) for all r > 0. Then there exists
C > 0 such that for all zg € D, R € (0,dp(x0)), r € (0,9~ (edp(R)/2)/2],
v € Blog 4 (60(R)/2)/2), = € Blao, - eS0(R)/2)), and SU(R)/2 <
t— s < A0Y(2R).

V(x,r)
t,z Z Z ‘
]P( )(U{S}XB(:E,T) < T[S;t]XB(xO’R)> =z CV(J;, R) '
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In the remainder of this section, we further assume that the boundary
function h is of Harnack-type and show that parabolic Harnack inequality
for X holds true.

Suppose that x,y, z € D are such that p(z, z) < p(x,y)/2. Then

) 3
gp(w,y) < p(z,y) < §p(x,y)-

As a consequence, by the scalings of ® and W, there exists a > 1 such that

a ' ®(p(x,y)) < B(p(z,y)) < a®(p(z,y)),
a ' W(p(z,y) < V(p(z,y) < a¥(p(x,y)). (4.4.6)

Proposition 4.4.8. Suppose that h is of Harnack-type. Then there exists
C > 0 such that for all x,y,z € D satisfying p(z, z) < (p(z,y) A dp(x))/2,

J(z,y) < CJ(z,y).

Proof. The result follows from Theorem 4.2.1, (4.1.5), Poly g, (51, 52), (4.1.7)
and (4.4.6). 0

Corollary 4.4.9. Suppose that h is of Harnack-type. Then there exists C' > 0
such that for all x,y € D and 0 < r < (p(z,y) A op(x))/2, it holds that

C
J(z,y) < / J(z,y)dz.
( ) V(ZE,T’) B(z,r) ( )

Proof. If z € B(z,r), then p(z, z) < r < p(z,y)/2. Therefore, by Proposition

4.4.8, J(z,y) < c1J(2,y), whence the claim immediately follows. O

Using (4.1.1), (4.2.9), Lemmas 4.4.1, 4.4.3, 4.4.5, 4.4.7, and Corollaries
4.2.5 and 4.4.9, the following result can be proved using the same arguments
as in the proofs of [32, Theorem 5.2 and Lemma 5.3] (see also the proofs of
[47, Lemma 4.1 and Theorem 4.3]).
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Theorem 4.4.10. Suppose that h is of Harnack-type. Then there exist con-
stants 6 > 0, C' > 1 and K > 1 such that for all to > 0, zg € D and
R € (0,Ry) with B(xy,CR) C D, and any non-negative function u on
(0,00) X D which is parabolic on Q = (tg,to + 401(CR)) x B(xo, CR), we
have

sup  u(ty,y) <K inf  u(ty, ya),
(t1,91)€Q— (t2,y2)€EQ+

where Q_ = [ty + 0Y(CR),ty + 200 (CR)] x B(xg,R) and Q. = [to +
30U(CR),ty + 40Y(CR)] X B(xg, R).

4.5 Examples

Recall the definitions of hy, 4(t, z,y) from (4.1.6), and By, (¢, z,y) from (4.2.2).
We remind the reader that h,,(t,z,y) is quite typical and it is the most
important boundary function. Recall that ¢ (r) = 1/¢(1/®(r)), ov(x,y) =
dp(z) Vop(y) and dx(z,y) = op(x) A dp(y). For simplicity, we will use d(x)
and d(y) instead of 0p(x) and dp(y), respectively.

We let

(x) = bp(x) V (1),
8 (x,y) = 8"(x) V 6" (y) = dy(a,y) V(1)
Op(x,y) = 6"(x) A6 (y) = oa(w,y) V(1)

The following lemma, provides a list of estimates of By, (¢, z,y) depending
on the relationship between the parameters p, g, 51, 2. The list is not exhaus-
tive, but it suffices for our purpose. The proof of the lemma is rather tech-
nical and consists of carefully estimating the integral defining By, (¢, z,y).
The factorization (4.5.1) below is inspired by (4.2.11) and (4.2.16). See also
(4.5.7) below.

Lemma 4.5.1. Let ¢ > p >0, p+q > 0. Suppose that Polyg, (1, f2) holds
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with By < 1. Then

¥ole.0) (@) vy, ()

Bhp,q(t7x’ y) - ¢(p(x7y)) gb_l(l/t)_l ¢_1(1/t)_1

) Apalt, ),

(4.5.1)
where A, ,(t,z,y) satisfies the following estimates for all x,y € D and 0 <
t < (p(x,y)) such that ®(p(x,y)) < Ry/8.

(i) If o < 1 —p —q, then

A, (tx,y) ~ (1 A q)qZ(p‘ZU(’ygi))q—p(l A Z(&(I,y)))p(l A <I>(5f/(x,y)))p'

(it) If 1 —p—q < f1 < B2 <1—gq, then

Apq(t,z,y) ~ <1 N 2 (y)) )qip (1 A M)p

(o, y)) 3(p(z.y))
" (6L (x,y))\ 11 V(04 (x,y))\ !
(A Soes) N i)

(i) If 1 —q < 1 < Pa < 1 —p, then

= 00 ) Y o S

(i) If 1 —p < By < Py < 1, then

o (z S (x ~1
Ayt 2, y) ~ (1/\ c{;)( Al ’y)))(l/\ Y (I ( aﬁU))) .
(v) If pp =P2=1—p—q and p >0, then

o (1 20 W) Yy 2 p)y
AP#](tam?y) - (1 A (I)(p(x’y))> <1 " @(p(l‘,y)) )

(S ) 1o (o wt st
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(vi) If By =Po=1—p—q and p =0, then

5 (3t (y)) \¢ P(p(z,y))
Apgltsny) = (10 el B0s) log ( "By Ap(x,y») |

(vii) If By = B2 =1 —q and q = p, then

- PN YN o (o r 2OV Y) Ap(e,y))
Apalt.z.9) = (10 o) lg( +¢<6a<x,yw<x,y>>)‘

(viii) If B1 = Bo =1 —q and q > p > 0, then

Apo(t,z,y) = (M (0" (y)) )H(M @(5}(:&@/)))1’

P(p(z,y)) P(p(z,y))
B8 () A pl |

p y)))
(6 (y) A p(z,y))
(iz) If py = P2 =1 —p and q > p, then

N (o) (7,y))\? oo [ e (0" (y) A p(,y))
Apaltsz,y) = (1/\ @(p(w,y))) 1g( T B0 ) A pla, )

Proof. Fix z,y € D such that r := p(z,y) < ®1(R;/8), and t € (0,(r)].
Write 0, = 0n(z,y), Oy = ov(z,y), 6% = 84 (x,y) and &, = & (z,y). We note
that since 5 < 1, by Lemma 2.1.1(i), w(s) =~ ¢(1/s) for s € (0, Ry) and

hence

xz,
z,

X log (e +

w(®(u)) ~Y(u)™t for ue (0,01 (R/2)). (4.5.2)

Define
ZD(T) Bhp,q (ta €, y)

O(r) hpg(o'(1/1) 2, y)
Then from the definition, we get that

_wlr) [ (31)\?
Apﬂ(t’xay) - (I)(T) /2¢1(1/t)1 (1 N s >

Atz y) =
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If oy > 2r, then d5 > 6, —r > r and hence we get from Lemma 1.1.1(i),
Polyg, (51, f2) (by using fs < 1) and (4.5.2) that

12

w(r) 4P(r)
A, (t o y) ~ <I> / w(s)ds ~ P(r)w(4d(r)) ~ 1.
(r) d—1(1/t)~1

On the other hand, we see that in every of the cases (i)-(ix), the right-hand
side of comparability relation for A, ,(,z,y) is comparable to 1. Hence the
assertion of the lemma is valid when §, > 2r.

Suppose now that &, < 2r. Since 1~1(t) < r, we get 0!, < 2r, hence by
the scaling property (4.1.3) of ®, we have

3®(a) AN4®(r) = ®(a) for a € {0'(y), ok, &%} (4.5.3)

(i) The desired comparability follows from Lemma 1.1.1(i), Polyg, (51, £52)
and (4.5.2).

(ii) By Lemma 1.1.1(i)-(ii), Polyg, (51, 52) and (4.5.2), since g —p+p+ B2 <
1 <p+q+p,

Aot z,y) gg; j 1/:T )p(m )_pw(s)ds
+ gggé((ﬁ PO (87D (5 (y /3 s 5 +q
] %E; 5;?6%;)}) <<1><r> gq :Dr) "
= SR (sy) 0 v (454

We used (4.5.3) in the second comparability above. Since ® and ¢ are in-
creasing and satisfy scaling properties, the desired comparability holds.

(iii) If 8!, = 6'(y), then (4.5.4) holds by Lemma 1.1.1(i)-(ii), Polyg, (51, 52),
(4.5.2) and (4.5.3) since p+ B3 < 1 < p+ ¢+ B1. The desired comparability
then follows from (4.5.4). If §% = §'(y), then we get, by Lemma 1.1.1(i)-(ii),
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Polyg, (51, f2), (4.5.2), (4.5.3) and the assumption ¢ + £, > 1, that

30(6% (y)) AdD(r)
Atz y) ~ v(r) / w(s)ds
2

d(r) d—1(1/t)~
00) gugime [0 [ O YPE(S)
" ®(r) T /cp((st( ))/\4<I>(r)( A s ) 51

- 20(y)) ¥(r) ( (o' (y ))) (‘P(&))p o(r)
— P(0%(y)) @(r) o(r) O(r) /7 Y(8'(y))

(iv) Since p+ 1 > 1, we get from Lemma 1.1.1(i)-(ii), Polyg, (51, £2), (4.5.2)
and (4.5.3) that

30 (5t )AdD(r)
Atz y) ~ ¥(r) / w(s)ds

o(r) 20— 1(1/t)~1
00 sty [0 B(3,) P, B )y ruls)
+<I>(r)(1)(6A> 30(64 ) A4D(r) (1/\ s )(1/\ s ) sP d
P04 ¥(r)
— (0h) (r)

(v) Note that w(s) ~ sPT471 and (s) ~ ®(s)!7777 for s € (0, R;) in this
case. Thus, we get from Lemma 1.1.1(i) and (4.5.3) that

woa) 3D (6L )AAP(r)
A, .tz y) (s A

8] Jos- i
r 49 (r) s
+®§T§ e reeeyr [ 8

308t )M D(r) S
~ 2001)7 (5,)P 2(5(y)*™" |

(64))" (s A D(8"(y)))* s Mds

®(r)
P(r)rta g(e+ cI>(5tv/\r))'

(vi) Note that w(s) ~ s~ and 1(s) ~ ®(s)'74 for s € (0, R;/2) in this case.
We get from (4.5.3) that

b(r) 30(5t (y)) A4 () B W(r) . 49(r) ds
A ~ =*d 018 q -
pa(t:7,9) cb(r)/ e ) ) /m(sf(y))m(r) §
(' (y) O(r)
=au (a7
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(vii) Note that w(s) ~ sP~! and ¥(s) ~ ®(s)!7P for s € (0, R;) in this case.
By (4.5.3), we obtain

3D (8% )AAD(r) 3B (8% )AAD(r)
1/}<T) / Spflds 4 ¢(r>q)(§£\)p/ @

Apq(t,z,y
pa = d(r) e d(r) 30(5L)Add(r) S
Qﬂ(r) ¢ ¢ /@(T) —1-
+ 2 p (5D (S s~ Pds
d(r) (o) @(3,)" 30(6%,)AAD(r)
L)

= o og e+ ).

(viii) Note that w(s) ~ s77! and 1(s) ~ ®(s)'7¢ for s € (0, R;) in this case.
If 6!, = 6*(y), then we get from Lemma 1.1.1(i) and (4.5.3) that

b(r) 30(6% (y)) AdD(r)
Atz y) ~ / (s A (I)((St(:r)))psq_p_lds
2

00 Jagrapm
vir) Ha))Pd(8 (y))? e s P s
Ry [
PO ()P (S () _ P(5L)P @ (8" (y)
a CI)(r)q CID(r)q

If 6% = 0*(y), then we get from (4.5.3) that

3001 (2)MD(r) g

30 (6" (y))A4D(r)
Ayt y) ~ L) / si-1ds + L0 g5t ()1 / ds

D(r) Jop-1(1/0)-1 D(r) Bt (y)AD(r) S
4P(r)
+ 2o e ) | s
®(r) 30 (5t (x)) AAD(r)

( (
QR ) () A
R TR g( " <I><6t<y>m>)'

(ix) Note that w(s) ~ sP~1 and 9(s) ~ ®(s)17? for s € (0, R;) in this case.
If 8¢, = 6'(y), then by (4.5.3), it holds that

30 (5t () AAB(r) 305 (y)) M (r) g
Q/J(r)/ sP~1ds + M@(dt x p/ &
3

Apq(t iz, y) =~
pal ) D(r) Jog-1(1/1)- O(r) o(5t(x))\D(r) S
4P(r)
+ W g1 >>p<1><6t<y>>Q/ s
®(r) 35 (y))AB(r)
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26" O(d'(y) Ar)
= )

If 6% (z,y) = §'(y), then we get from Lemma 1.1.1(ii) and (4.5.3) that

w(r) [HREENEE)
Apalt,zy) = D(r) Jap-1(1/6)- s

)
P(r) oo e (0" () \P g1
5 @(5())/ —>s ds

n (1 A
7) 306 ()AL (r) s

(@) B8
oy B

g

Example 4.5.2. Let d,a > 0, § € (0,1) and p,q > 0 such that p+ ¢ > 0.

Suppose that for every rq > 1, there are comparability constants such that
V(e,r)~r?, ze€D,0<r<r. (4.5.5)

Let YP be a Hunt process in D and S = (S;);>0 be an independent driftless
subordinator with Laplace exponent ¢. Suppose that the tail w of the Lévy

measure of S satisfies
w(r)~rP, 0<r<r, (4.5.6)

for some r; > 0. Suppose that the heat kernel pp(t, x,y) of Y'P satisfies either
HKE"’q or HK}{]‘”q with ®(r) = ¥(r) = r* where the boundary function h,,,
is defined as (4.1.6). When HK%"’q is satisfied, we also assume that (4.5.5)
and (4.5.6) hold for all » > 0. See Example 4.1.8 for concrete examples of
YP. By switching the roles of z and y if needed, without loss of generality,
we assume that ¢ > p.

Let q(t,z,y), J(z,y) and Gp(x,y) be the heat kernel, the jump kernel
and the Green function of the subordinate process X; := YS? respectively.

Using our theorems in Sections 4.2 and 4.3, and Lemma 4.5.1, we get explicit
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estimates on ¢(t,z,y), J(z,y) and Gp(x,y). We list them in terms of the
range of p + ¢, similar to the format of the Green function estimates for
Dirichlet forms degenerate at the boundary in [91].

In particular, by putting p = ¢ = 1/2, we get Theorem 4.0.1.

We define By : (0,00) x D x D — (0,1] by
oz y)\or . 0y(x, y)\op 0'(y) \olap)
BY (t,m,y) = (1AL (A 20 ) T A — L .
palls ) ( p(z,y) ) ( p(z,y) ) ( p(fv,y)>

We also define B}, : (0,00) x D x D — (0,1] as follows: if ¢ > 1 — 3, then

( ! a(1-4)
<1A5A(x,y)) | b1 8.

p(z,y)
! _ 5 (2, y)\e=P) o' (y) A p(z,y) B
e =g (0 St e (e R ) v
Oy (2, y)\or &' (y) \e(-s-p) B
<1/\ p(z,y) ) <1/\ p(x,y>> ’ pi=p

B, (t,z,y) =
O
) S St
\( : Pitﬂiy?j)yq o (6 " 5t(y§)(/f’py(1c, y))’ p=0

and if ¢ < 1 — 3, then

t o(g—p)
5(y)) P

B (t,z,y) = <1/\
palli 28] plz,y)
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(14 j(g 3)% A %ﬁ’ 3)““‘”, p>1-f-q

{ (1 6p<(:c,5>)) 1 %(f}}y))) o ( ! 6@<:c,2<>xkyp)<x,y>)’ p=l-0-a
ok (x, ap A ap

(1 p(;’yy;) (1 p(;’yy))) | p<1-6-4q

We first give heat kernel estimates which are consequences of Lemma
4.5.1, Corollary 4.2.4 and Theorem 4.2.7.
(a) It holds that for all (¢,z,y) € (0,1] x D x D,

N 3(x) Ner [ Oly) \oT e ~d/(aB) t
q(t,%y)—(l/\tl/( )> (1/\t1/( 5)) Bugt: e ) |1 N oy
)

E
0(z) oy —d/(aB) B (t, ,y)
(1 N e > (1 A tl/(am) t N )R ) (4.5.7)

where the function BS%(t, x,y) is defined as above.
(b) If HK}P holds, then for all (¢,z,y) € [1,00) X D x D,

qlt,z,y) = e POP)§(2) 5 (y)

and if HK{? holds, then (4.5.7) holds for all (¢, z,y) € (0,00) X D x D.

Next, we give estimates on the jump kernel J(z,y). By Theorem 4.2.1
and the fact that B (x,y) ~ B, (0, z,y) for z,y € D, we deduce from (4.5.7)
that for any ¢ > p > 0,

Bys(0,2,y)

J ok
(l'yy) p(.%,y)‘”o‘ﬁ )

x,y € D.

Lastly, we give the Green function estimates. Define

;

p(x,y)*"~4, d> ap,

) — o(x) \* o(y) \™ oe (o Ov(®9) W
9(z.0) (Mp(w,y)) (Mp(%y)) . lg< +p(x,y))’ d=ab
| (Ov(@,y) v plz,y)™ ™, d<ap.
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When Cy = 0, by Theorem 4.3.6 and Example 4.3.3, for all x,y € D,

(

9(z,y), d>a(f—p—q),

Gp(z,y) = { 6(x)*6(y)* log <e + 5 (xdzni/(f()x y>> , d=a(f-p—q),
| diam(D){@#-ap=aa=d/ag(z)ors(y)d, d<a(B—p-—q).

(4.5.8)

In particular, when HKI[}""El holds, if d < a(f — p — q), then Gp(z,y) = oc.

Now assume that Cy = 1. If p+ ¢ < 8 + 1, then using Theorem 4.3.6
and Example 4.3.3 again, we see that (4.5.8) also hold. If p+ ¢ = 5+ 1 and
q < B+ 1 (so that (H2**) holds, cf. Example 4.3.7), then by Theorem 4.3.9,
for all z,y € D,

Gp(z,y) ~ g(z,y)log (e + §V(x,z()x/7\yp)(x,y)) (4.5.9)

Ifp+qg>pF+1and g <f+1 (so, again, (H2**) holds), then by Theorem
4.3.8 and (4.3.13), for all z,y € D,

) —a(p+q—B-1)
v(m,y)> T ). (4.5.10)

Gp(x,y) ~ (1 A (1)

The unusual form of the estimates in (4.5.9)-(4.5.10) should be compared
with similar estimates of the Green function obtained in a different context
in [91, Theorem 1.1 (2),(3)]. Such estimates lead to anomalous boundary

behavior of the corresponding Green potential, cf. [1].
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Chapter 5

Heat kernel estimates for
Dirichlet forms degenerate at

the boundary

In this chapter, we consider symmetric Markov processes in R‘i with degener-
ate jump kernels and critical killing potentials. The results of this chapter is
based on the ongoing project [57]. The main result of this chapter is Theorem
5.6.1.

5.1 Setup

Let d > 1 and 0 < a < 2. Recall that e; := (0,1) € R? and R? := {(T,24) €
R?: 24 > 0}. We write Ri = {(%,z4) € RY: 24 > 0} for the closure of R%.

We consider the following assumptions:
(A1) B(z,y) = B(y,z) for all z,y € RY.
(A2) If @ > 1, then there exist # > a — 1 and C} > 0 such that

0
|B(z,x) — B(z,y)| < Cy (M> , wz,y€RL

(A3-I) There exist Cy > 1 and parameters (1, B2, 83, 4 > 0, with 5, > 0
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if 53 > 0, and B, > 0 if 54 > 0, such that
Cy ' By oy (1,y) < Bla,y) < Co,  m,y €RY,

where

B1 B2
~ Tq N\ Yq Ta V Yd
Bevtusupa(5:8) = (\x —y" 1) <|ﬂc —o " 1)

(l‘d\/yd)MI—M)
(x4 Nya) N |z —y|

xlogﬁ4<1+( =yl ) (5.1.1)

TV ya) N =yl

x log™ (1 +

(A3-II) There exists C5 > 0 such that

B(:v,y) < O3Bﬁlﬁzﬁ3ﬁ4(x>y)a T,y € Rflf—'

(A4) For all z,y € R% and a > 0, B(az,ay) = B(x,y). In case d > 2, for
all z,y € RY and 2 € R, Bz + (2,0),y + (2,0)) = B(z,y).

Throughout the chapter, we always assume that B(x,y) satisfies (A1),
(A3-I) and (A4).

The definition of the function Bg, g, s, 4, (2,y) is motivated by Theorem
4.2.1 and Lemma 4.5.1.

Consider the following symmetric form

| =4~ can degenerate at {z € R? : 24 = 0}.

: : , ~ g
Since B(x,y) is bounded, by Fatou’s lemma, (€%, C2°(R%)) and (£°, C>(R,))
are closable in L?(R%,dz). Let 7° and F be the closures of C2°(R%) and
Cso(@i) in L*(R%, dz) under the norm &Y := €%+ (-, )12 (Rd ) TeSPectively.
Then (€% F°) and (E° F) are regular Dirichlet forms on L?(R%,dx). Let
(Y))¢o0, (PI)Ri\No) and ((Y;)>o0, <Px)ﬁi\f\/é) be the Hunt processes associ-

where the jump kernel B(z, y)|z—y
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ated with (9, F°) and (£°, F) respectively, where Ny and A}, are exceptional
sets.

For k € (0,00), define

EF(u,v) = E%(u,v) + Ii/ w(x)v(z)r,; “d, u,v € F,

d
R+

Fri=F'n L*(RY, ko “dr),

where F0 is the family of all £%-quasi-continuous functions in F°. Then
(€%, F*) is also a regular Dirichlet form on L*(R%, dz) with C>°(R%) as a spe-
cial standard core by [71, Theorems 6.1.1 and 6.1.2]. Let ((Y}*):>o, (Px)xeRi\M)
be the Hunt process associated with (€%, F*), where N, is an exceptional set.

For k € [0,00), we denote by (* the lifetime of Y*. Define Y} = 0 for
t > (", where 0 is a cemetery point added to the state space Ri. We write
(Py)¢>0 and (PF);>o for the semigroups of Y and Y* respectively.

5.2 Preliminaries
Note that for any € > 0,

logle +7) < (2+ ¢ Hre forallr > 1, (5.2.1)

log(e + ar)

m < (1 + 671>7”E for all r > 1 and a > 0. (522)

For any aq, as, az,as > 0, we define for t > 0 and z,y € ]R‘fr

tl/a al tl/a a2
(fEd A yd) V A 1) ((l‘d V yd) V A 1)

Aaaaa t; ) =
vezess(2:0) ( |z —y] E

751/01 _
Xlogas (1+<<Id\/yd)\/ : )/\’l’ y’)
(@a Ny VT Az =y
|z — 9| >
X log® [ 1+ . 52.3
g ( (@i ne—g ) &%

We note that Ag, s, 5,5,(0,2,y) = Bg, g,.4,.6 (€, y). It is clear that for any
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e €0, a4],
Auyasasas(t2,Y) < A —easteasas(t, z,y)  foralt >0, z,y€ Ri.
Note that for any a > 0, there exists ¢ > 0 such that
Ay azazas(t,,y) > cla A1)MTe2, (5.2.4)

for all t > 0 and z,y € RY with (z4 A yg) + Y% > alaz — y).

We give some elementary properties of Ay, 45 45,00 (t, 2, Y).

Lemma 5.2.1. Let ay, a9, a3, a4 > 0.

(i) For any € € (0,a; A a3), there exists ¢; > 0 such that
Auyasasas(t2,y) < 1A —can0as(t,z,y)  forallt > 0,2,y € Ri.

(ii) For any € € (0,a3 A a4), there exists ¢ > 0 such that
Avasasas(t2,y) < 2Au as—easol(t,z,y)  forallt > 0,2,y € Ri.

Lemma 5.2.2. Let ay,as,as,aqs > 0. Suppose that ay > 0 if ag > 0.
(i) For any a' € [0, as] with a’ < ay, there exists C > 0 such that

Aal,ag,ag,a4 (t7 x? y)

vV /e “ v /e o VY Az —
<c <xd .\ 1) (yd N\ 1) log® <e+ (ya . ) A |z y|)
lz — | |z — 9 (g Vo) Ao —y

|z —y )
x log™ | e + ,
s ( (2a V ya) V E/2) Az —

forallt > 0,2,y € RL.
(i1) Assume that a; > as. Then there exists C > 0 such that

A(1171127a3,a4 (t,z, y)
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vV /e “ vV i/ “ Vo)A | —
S C (xd— A 1) (yd— A 1) logas (6 + (yd o ) ‘ZC y‘)
[z — | |z — 9| (g Vo) Ao —y

|z — y| )
x log™ | e + ,
& ( (2 V ya) V E72) Az —

forallt>0,x,y E]Rﬂlr.

For any r > 0, define processes Y™ and Y% by V,") := r¥, o, and
Ytn’(T) = rY",,. We recall the scaling property of Y from [92, Lemma 5.1]
and [93, Lemma 2.1]. By the same proof, Y also has the following scaling

property.

Lemma 5.2.3. Foranyr > 0,7 >0 andxz € RL, (Y, P*/") and (Y=, /")
have the same laws as (Y ,P%) and (Y*,P*) respectively.

By (A4), we get the following horizontal translation invariance property
of Y and Y*.

Lemma 5.2.4. For any £ > 0, Z € R and x € RY, (Y + (Z,0),P*~Z0)
and (Y4 (Z,0),P*=0G0) have the same laws as (Y ,P*) and (Y*,P*) respec-
tively.

Lemma 5.2.5. Suppose o < 1. Then F° = F.

Proof. Define

GOy gy g CCEUO U R P

’.17 — y’d+o¢

D(C) := closure of C’é’o(@i) in L*(R%, dr) under C+(, ')LQ(Ri,dx)'

Then (C,D(C)) is a regular Dirichlet form associated with the reflected a-
stable process in Ei in the sense of [16]. Since B is bounded, there exists ¢; >
0 such that £°(u, u) < ¢1C(u, u) for all u € C’é’o(@i) and hence D(C) C F. By
[16, Theorem 2.5(i) and Remark 2.2(1)], since o < 1, Ei\Ri is (C, F¢)-polar
and hence is also (£°, F)-polar. Therefore, Tra o= inf{t >0 Y, ¢ R1} = oo,

P*-a.s. for all z € RZ and we conclude the result from [93, Section 2]. O
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5.3 Nash inequality and existence of the heat
kernel

For all v > 0, denote by I, the modified Bessel function of the first kind
which is defined by

= 1 7\ 2mty
I == <_> )
() mz::omlf('y+1+m) 2
where I'(r) := [~ u" ‘e “du is the Gamma function. It is known that (see,

e.g. (2, (9.6.7) and (9.7.1)])
L(r) =~ (LAr) 207127 for v > 0. (5.3.1)

Define for ¢ > 0 and z,y € R?,

d—1
VZdYd <$dyd) xd+yd 1’[
2 —
q (t,:r:,y) 2t I’Y 2t eX Pl

Note that by (5.3.1),

’Y+1/2 'y+1/2 2
Tq Ya a2 |z —y )
Yt z,y) =< (1A 1A 2L 2 ex = 2.
7(67y) ( \/¥> ( \/¥> p( t

By [106, Lemma 4.1 and Theorem 4.9], ¢”(¢, x,y) is the transition density of
the Feller process W7 = (W;);50 on R? associated with the following regular
Dirichlet form (QY,D(Q")):

Q' (u,v) = / (Vu(x) -Vo(z) + (72 - i) u(x)v(a:)de) de,
R
D(Q") = closure of O (RY) in L*(RY, dr) under QF = Q"+ (-, ) p2(u o).

Let S = (S¢)i>0 be an «/2-stable subordinator independent of W7, and
let X7 = (X/)i>0 be the subordinate process X' := Wg . Then X7 is a Hunt
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process with no diffusion part. The transition density p?(t, z,y) of X exists

and is given by

Pt = [ oS <)
0 S

Also, the jump kernel J7(dx,dy) and the killing measure x”(dz) of X7 have

densities J?(x,y) and x7(z) that are given by the following formulas:

JW%y%=/)QWt%yﬁwﬂﬂﬁ,
0
,{Y(g;):/ (1—/ q”(t,x,y)dy)ua/g(t)dt,
0 RE
a/2

T(1—a/2)
Using the scaling property and horizontal translation invariance of the

where v, /5(t) = t=172/2 is the Lévy density of the subordinator S.
function ¢7(t, z,y), Theorem 4.2.1 and Corollary 4.2.5, we obtain the follow-

ing lemma.

Lemma 5.3.1. (i) There exists a constant ¢ o > 0 such that K7 (x) = ¢, 00,
for every x € RY.
(i) It holds that

Ty y+1/2 Ya y+1/2 1
J(z,y) ~ (1 A ) (1 A ) ‘— for z,y € RYL.
T

_ y‘d—l-a

|z —y| |z —y|

(iii) There ezists a constant C > 0 such that
—d/o d
pl(t,z,y) < Ct le >0, z,y € RY.

Denote by (C?,D(C")) the regular Dirichlet form associated with the sub-
ordinate process X7. Then since X7 has no diffusion part, we see from Lemma
5.3.1(i) that

C'(u,u) = /]Rd /]Rd (u(x) — uw(y))* T (z,y)dydx + ¢, o /Rd u(z)?z;*dx.

+
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Also, we have C°(R%) C D(C?) since D(Q?) C D(C7). (See [112].)

Lemma 5.3.2. There exists a constant C > 0 such that

|lu |’i(21£3/d30 < CC'(u,u)  for every u € Cfo(Ri) with HuHLl(Ri,dx) < 1.

Proof. By [27, Theorem 2.1] (see also [34, Theorem 3.4] and [62, Theorem
I1.5]), the result follows from Lemma 5.3.1(iii). O

Proposition 5.3.3. There exists a constant C' > 0 such that

|u ||L21£‘j/3) < CE%u,u) for every u € F with H“HLl(Ri,dx) <1. (5.3.2)

Proof. We first assume that o < 1. Let v = (81 V 5. Using Lemmas 5.3.2
and 5.3.1(1)—(ii), the Hardy inequality in [93, Proposition 3.2] and (A3-I),
we get that for any u € C2°(R%) be such that HuHLl(Ri’dm) <1,

B (z, )
21+ d +1/24+1/2,0,0\T, Y

S;CQS (U,U),

where §7+1/277+1/270,0 is defined in (5.1.1). By Lemma 5.2.5, F is the closure
of C2°(R%) under &Y. Therefore, we conclude that (5.3.2) is true when o < 1.
Now, we assume that o > 1. Since (5.3.2) is valid when o < 1, we get

that for every u € C’go(@i) with [|u| L@ g0y < 1,

B(z,y)
2
/Rd /Rd ulw) ~uly | yld1/2 o gl

B(x,y
- §/Rd /Rd (u() —u(y))Q%mw yl>1ydyde

(1+1/(2d
> callull 2t 2 = cullull aqus oy

Then since F is the closure of O (Ei) under &Y, we get from [27, Theo-
rem 2.1] that || P15 < ¢5 for all t > 0. By Lemma 5.2.3, it follows that
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I Pillisoo = 74| Py|l1s00 < cst=#« for t > 0. Using [27, Theorem 2.1] again,
we conclude that (5.3.2) holds for ae > 1. O

As a consequence of the Nash-type inequality (5.3.2), by following the
arguments given in [34, Example 5.5] (see also [45]), we get the existence and
a priori upper bounds of the heat kernels p(t,z,y) and p*(t,z,y) of Y and
Y'" respectively.

Proposition 5.3.4. The processes Y and Y" have heat kernels p(t,z,y) and
p"(t,x,y) defined on (0,00) x (Ei \WN) x (@i \N) and (0, 00) x (R%\ N) x
(R‘i \ N) respectively, where N' C Ei 1s a properly exceptional set for for
both Y and Y*. Moreover, there exists a constant C' > 0 such that

Pitx,y) <pltzy), x,y€ERL\N
and

t
p(t,z,y) <C (t—d/a A |
i

W), t>0,l’,y€@j_\/\/

By using the regularization argument given in [92, Subsection 3.1] and

Theorem 3.1.13, we obtain the following interior lower bounds.

Proposition 5.3.5. For every a € (0,1], there ezists a constant C' = C(a) >
0 such that

= K —d/a t
p(t,z,y) = p*(t,z,y) = C (f YN W> (5.3.3)

forallt >0, z € RI\N and a.e. y € RE\N with x4 Ayq > a(t/*V |z —y)).
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5.4 Parabolic Holder regularity and conse-

quences

For k > 0 and an open set D C R‘i, we denote by Y and Pf’D the part of

the process Y killed upon exiting D and its semigroup. Let 7p := inf{t >
0:Y; ¢ D}, 75 :=inf{t > 0:Y" ¢ D} and

ﬁD<t,ZE,y) = P(t,x,y) —E* [ﬁ(t - 77—D7}_/:rpay); 7tD < t};
PPt wy) = p (L, y) —E° [t — 75, YE y); 5 < t]. (5.4.1)

By the strong Markov property, p? (¢, z,y) and p*™P (¢, z,y) are the transition
densities of YP and Y*®P respectively.

By standard arguments, we obtain the following two results from (5.4.1),
and Propositions 5.3.4 and 5.3.5. (Cf. Lemas 4.4.1 and 4.4.3.)

Lemma 5.4.1. There exist constants C' > 0 and n € (0,1/4) such that for
allz € RE\N, r € (0,24), t € (0, (nr)*] and z € B(z,nt'/*) \ N,

PPN (8, 2,y) 2 PPNt 2,y) 2 CEY for ae. y € Bla,nt'*) \ N

Lemma 5.4.2. There exists a constant C > 1 such that for all x € RT \ N
and r € (0,z4),

Clre < IE‘”[T;;( | < sup  EF[Tpeam] < Ore.

= )l =

z€B(z,r)\N

Let X := (V,,Y,)s>0 and X* := (V4, Y5),>0 be time-space processes where
Vi, = Vo — 5. The law of the time-space process s — X, or s — X starting
from (t,z) will be denoted by P*?®). For every open subset U of [0, c0)R?,
define 7y = inf{s >0: X, ¢ U} and 7§ = inf{s > 0: X* & U}.

Recall that a Borel measurable function u : [0, 00) X Ri — R is said to
be parabolic in (a,b) x B(z,r) C (0,00) x R% with respect to ¥ (or Y*)
if for every relatively compact open set U C (a,b) x B(x,r) it holds that
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u(t, z) = E®?u(X5,) (or = E(t’z)u(X%)) for all (¢,2) € U with z ¢ N.
We denote by |A| the Lebesgue measure on Riﬂ. By repeating the proof

of Lemma 4.4.5, we obtain the following lemma from Lemma 5.4.1.

Lemma 5.4.3. Let n € (0,1/4) be the constant from Lemma 5.4.1. For
every 6 € (0,n], there exists a constant Cy > 0 such that for all x € RL '\
N, r e (0,z4), t > or®, and any compact set A C [t — or®,t — or* /2] x
B(z, (16/2)"/*r),

|A]

IP’(t’“””)(O,'Z < T['t{—arﬂ,t]xB(w)) =G rdta’

With help from Lemma 5.4.3, by repeating the proof of Theorem 4.4.6,
one can obtain the following parabolic Holder regularity from Lemmas 5.4.1
and 5.4.2.

Theorem 5.4.4. For any 6 € (0,1), there exists a € (0,1} and C > 0 such
that for every x € RE\N, r € (0,z4), to > 0, and any function u on
(0,00) x R% which is parabolic in (tg, to + r*) x B(z,r) with respect to Y or

Y*, and bounded in (to,to + r*) x Ri, we have

[s =t + |y — 2]\
T

u(s,y) — u(t, 2)| < C (

esssup  |ul,
[to,to+7*]xRE

Jor every s,t € (to + (1 —6*)r*, to +r*) and y,z € B(z,or) \ N.

By Theorem 4.4.6, since heat kernels p(¢, z,y) and p" (¢, x, y) are parabolic
with respect to Y and Y* respectively, they can be chosen to be joint con-
tinuous in (0,00) x R x R% by a standard argument (see, e.g. [72, Lemma
5.13]). In the remainder of this paper, we always choose the joint continuous
versions of p(t, x,y) and p*(¢, z,y). Then we can assume that the exceptional
set A in Proposition 5.3.4 is a subset of @i \R% and the lower bound (5.3.3)
holds for all ¢t > 0, z,y € RL with 24 A yq > a(t'/*V |z — y|). Moreover, by
Lemmas 5.2.3 and 5.2.4, we get that

ﬁ(t,x, y) = T_dﬁ(t/Ta,l‘/T, y/T’) = ﬁ(tv T+ <E7 0)7 y+ (va’ O)),
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itz y) = rpt(t)r®, x)ry/r) = p"(t,x + (Z,0),y + (Z,0)),  (5.4.2)

for any (t,z,y) € (0,00) x R x RY, 7 > 0 and z € R4
Corollary 5.4.5. Y" is a strong Feller process in Rﬁlr,

Let
G“(fc,y)Z/ p"(t,z,y)dt and G(x,y)Z/ p(t,z, y)dt
0 0

be Green functions of Y* and Y, respectively.

From the upper bound in Proposition 5.3.4, we obtain

Corollary 5.4.6. If d > «, then there exists C' > 0 such that

G (x,y) < G(z,y) < ¢

d
< —]az—yyd*a’ z,y € RY.

Remark 5.4.7. The assumption d > (o + £ + 52) A 2 in [91, 93] is only
used to show G*(z,y) < clx — y|~%"*. Thus, by Corollary 5.4.6, all results
in [91, 93] with the assumption d > (a + 1 + B2) A 2 hold under the weaker

assumption d > a.

5.5 Parabolic Harnack inequality and prelim-

inary lower bounds of heat kernels

In this section we prove that the parabolic Harnack inequality holds for
(Y" P*) and get some preliminary lower bounds of heat kernels of (Y~ P*).
All first hotting times and first exit times are with respect to (Y, P*), and
we will omit the superscript x from the notation for these stopping times.
Using Lemma 5.4.1, by following the proof of Lemma 4.4.7, we get the

next lemma.

Lemma 5.5.1. Letn € (0,1/4) be the constant from Lemma 5.4.1 and let d €
(0,n/4) be such that 46(2r)* < er® for all r > 0. Then there exists a constant
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C > 0 such that for ally € R%, R € (0,yq), r € (0,(nd/2)Y*R/2], §R*/2 <
t—s <40(2R)*, x € B(y, (n6/2)Y*R/2), and = € B(wy, (n6/2)"*R),

P04y xBla) < TlsixBmm) = C(r/R)%

In the remainder of this section, we assume that B(z,y) satisfies the

following:

(B) There exists a constant C' > 0 such that

B(z,y) < CB(z,y) for all z,y,z € RY satisfying |z — 2| < (|Jz — y| A 24)/2.

Since we always assume (A3-I), if (A3-II) also holds true, then one can
easily check that condition (B) is satisfied.
Clearly, (B) implies that there exists a constant ¢ > 0 such that

J(z,y) < cJ(z,y) forall z,y,z € RL satisfying |z — 2| < (|z — y| A z4)/2.
(5.5.1)

Moreover, (B) also implies the following UJS type condition: there exists a

constant ¢ > 0 such that

J(z,y) < £/ J(z,y)dz for all z,y € RL and 0 < r < (|z — y| A zg)/2.
B(z,r)

(5.5.2)

Now, using Proposition 5.3.4, (5.5.1)—(5.5.2), Lemmas 5.4.1, 5.4.2, 5.4.3,
5.5.1, we can follow the arguments in the proofs of [32, Theorem 5.2 and
Lemma 5.3] (see also the proof of [47, Lemma 4.1 and Theorem 4.3]), and

obtain the following (interior) parabolic Harnack inequality. (Cf. Theorem
4.4.10.)

Theorem 5.5.2. There exist constants 6 > 0 and C,M > 1 such that for

all ty > 0, xz € Ri and R € (0,z4), and any nonnegative function u on
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0,00) x RL which is parabolic on Q = (ty,ty + 40R*) x B(z, R), we have
+

sup  u(ty,y1) <C inf  u(ty,ys),
(t1,91)€Q- (t2,y2)€Q+

where Q_ = [ty + ORY, ty + 20R*] x B(x, R/M) and Q4 = [to + 30R*, to +
46R°] % B(z, R/M).

Using Lemma 5.4.1 and Theorem 4.4.10, we obtain

Lemma 5.5.3. For any positive constants a,b, there exists ¢ = c(a,b, k) > 0
such that for all z € RL and r > 0 with B(z,2br) C RY,

inf Y (TB(Z’(,',«) > ara) > c.
yEB(z,br/2)

Now, we can follow the proof of [31, Proposition 3.5] to obtain the fol-

lowing preliminary lower bound.

Proposition 5.5.4. For every a > 0, there ezists a constant ¢ = c¢(a, k) > 0
such that

pi(t,z,y) > ctJ(z,y)

for every (t,x,y) € (0,00) xR xRL with x4Ayq > at’/® and at'/® < 4|z —y|.

5.6 Sharp heat kernel estimates with explicit

boundary decays

In this section, we additionally assume that (A2) and (A3-II) hold. Note
that, since (B) holds true under (A3-I) and (A3-II), all results in Section
5.5 are valid under the current setting.

For ¢ € (—1,a + (1), we define a constant C(«, g, B) by
Cla,q,B) =
1 D(s?—1)(1 — 527071 ~ _
/Rdl D GRE /0 q—syra Bl =9), 1), sea)ds dii.
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In case d = 1, C(a, q, B) is defined by

1 a—g—1
Cla,q,B) = /0 (57 _é)(_ls;ia B, s)ds.

According to [92, Lemma 5.4 and Remark 5.5], the above constant C(«, ¢, B) €
(—00, 00) is well-defined for every ¢ € (=1, a+ 1), C(«, g, B) = 0 if and only
if ¢ € {0, — 1}, and lim,,_ C(«, q, B) = lim, 044, C(a, ¢, B) = co. Note
that for every s € (0,1), ¢ — (s — 1)(1 — s*971) is strictly decreasing on
(=1, (a«—1)/2) and strictly increasing on ((av—1)/2, a4+ ;). Thus, the shape
of the map ¢ — C(a, g, B) is given as follows.

q —1 |- [(a—=1)AO0]--- %(a—l) ol (a=1Dg| - la+ B

Cla,q,B)|| oo | ¢ 0 ¢ | minimum <0 | 7 0 ya 00

Consequently, for every k > 0, there exists a unique p, € [(a — 1)4, a0+ (1)
such that
k= C(a,py, B), (5.6.1)

In the remainder of this paper, unless explicitly mentioned otherwise, we
fix k € [0,00), assume o > 1 if kK = 0, and omit the superscript x from the
notation, i.e., write Y2 Pr. PP, ™, po(t,z,y), pPP(t,z,y) and (¥ as YD,
Py, PP, mp, p(t,z,y), pP(t,z,y) and ( respectively. Also, we denote by p the
constant p, in (5.6.1).

The goal of this section is to prove the following theorem. We will prove
the upper bound in Proposition 5.6.16 and the lower bound in Proposition
5.6.18 below. (Cf. Corollary 4.2.4 and Lemma 4.5.1.)

Theorem 5.6.1. Suppose that By < oo+ B1. Then it holds that for allt > 0
and z,y € R,

N Tg \P Ya \P R —d/a t
p(t,z,y) ~ (1 A tm) (1 A tm) A G (t 4 |z — y|dte )
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5.6.1 Preliminary upper bounds of heat kernels

Lemma 5.6.2. There exists C > 0 such that
p(t,z,y) < CP*(C > t/3)PY(C > t/3), te[l,00), z,y € RL.

Proof. By the semigroup property, the symmetry of p(t, -, -) and Proposition
5.3.4, we obtain

p(t,x,y) = /Rd /Rd p(t/3,x,2)p(t/3, z,w)p(t/3,y, w)dzdw
< C/Rd p(t/3,x,z)dz/d p(t/3,y,w)dw = cP*(¢ > t/3)PY(¢ > t/3).

+ RY

g

Lemma 5.6.3. Let V| and V3 be open subsets of Ri with dist(Vy, V3) > 0.
Set Vy := Ri \ (ViUV3). For any x € Vi, y € V3 and t > 0, it holds that

pt,z,y) <P*(my, <t <) sup p(s,z,y)

s<t,zeVa

t
—i—dist(Vl,Vg)_d_a///pvl(t—s,x,u)B(u,w)p(s,y,w)dudwds.
Vs J V1

Proof. Let x € V| and y € V5. By the strong Markov property, the Lévy

system and symmetry, we get

p(t,:c,y) =[E” [p(t - TVNYTvlvy) CTv, < t< C]
= [E* [p(t—Tvl,Y;Vl,y) % <t<C, ™V G‘/z}
+EI [p(t_TV17}/:Fvl7y) Ty, < t< C? % € ‘/E)’}

<P (ry, <t <) sup p(s,zy)
s<t,zeVa

/ / / Vi(t —s,m, u)| B_(w|dl p(s, w,y)dudwds
Vs /W1

<Py, <t <) sup p(s,zy)

s<t,z€Vs
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t
+dist(V1,V3)d”‘///pvl(t—s,x,u)B(u,w)p(s,y,w)dudwds.
0 Vs J Vi

g

For any a,b > 0 and w € R?!, we define
Dg(a,b) :=={z = (T,14) ER*: |T — @] < a, 0 < x4 < b}

and U(r) := Dg(r/2,r/2) for r > 0. In dimension 1, we abuse notation and
use Dg(a,b) = (0,b) and U(r) := (0,r/2).

Lemma 5.6.4. There exists C > 0 such that for allr >0 and x € U(27*r),

P (Y,

TU(r

T\ P
JeRD <C(1n20)"

Proof. The result follows from [91, Lemma 3.4] if k > 0 and [93, Theorem
1.1] if x = 0. O

Lemma 5.6.5. If p < «, then there exists C' > 0 such that for all v > 0 and
reU(27%),
Ew[TU(T)] S C (ﬁ>p

,
Proof. The result follows from scaling (Lemma 5.2.3), and [92, Lemma 5.13]
if kK > 0 and [93, Lemma 4.5] if k = 0. O

For ¢t > 0 and open set D C Ri, denote by Y;? and Y;D’d the last coordi-

nates of ¥; and Y,” respectively.

Lemma 5.6.6. For all v,t >0 and x € U(1), it holds that

/)p@¢sz1Az@th§Ex(1A}fxm%7:nm)>t«+P%Y5m<§Ri)
7
(5.6.2)
In particular, it holds that
P*(¢ > t) < t7'E [rp)] + P* (Yo, € RY). (5.6.3)
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Proof. Since YtU(l) =Y, for t < 7y(1), we have

/ p(t,x, 2) (LA z0)dz =E* [(LAY) 1t < (]
RS

—E° [(LAYH > 1] + B [(LAYH ) <t < (]
<E* [(1 A YtU“LdV STu@) > t] +E* [1 CTu) < C]

=B [ AY DY 1y > 1] + PV, €RY).

TU(1)

By taking v = 0 in (5.6.2) and using Markov’s inequality, we get

PI(C > t) < PZ(TU(l) > t) —pr(Y

TU(1)

e RY) <t'Er [y +PH(Y,

TU(1)

e RY).
U

Using (5.4.2), (5.6.3), and Lemmas 5.6.2, 5.6.4 and 5.6.5, we get the fol-

lowing near diagonal upper estimates when p < a.

Lemma 5.6.7. If p < «, then there exists a constant C' > 0 such that

T4 \P Ya \? ,—d/a d
p(t,x,y)ﬁC(l/\m> (1/\m>t , t>0,2,yeRY.

Lemma 5.6.8. If p < «, then there exists a constant C' > 0 such that

LAV TRV R ’
p(t,x,y)ﬁC(l/\ ) <1/\ ) (t /\\:c , t>0, 2,y R

tl/a tl/e — y|d+e

Proof. We claim that there exists a constant ¢; > 0 such that

g \P —d/a t
p(t,l‘,y) S C1 (]_ N m) (t d/ N m) . (564)

By (5.4.2) we can assume & = 0 and ¢ = to = (1/2)°. If z4 > 27%)/* or

lz —y| < 42?(1)/&, then (5.6.4) follows from Proposition 5.3.4 or Lemma 5.6.7.
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Hence, we assume x4 < 2-%/* and |z — y| > 4t}/*, and will show that
&

p(to, z,y) < Cl(io)m‘

(5.6.5)
Let Vi = Uty/™), Vs = {w € RY : |lw—y| < |z —y[/2} and V; =
RY \ (Vi U V). By Lemma 5.6.4, we have P*(1y, < to < () < P*(Yy,, €
R%) < cz(t(;l/a:vd)p. Also, we get from Proposition 5.3.4 that
S d+a to

sup  p(s,z,y) < o sup — =2y ——————,
_ qyld+a _ ayld+a
s<to, z€V2 s<to, z€RY | z—y|>|z—yl|/2 |Z y‘ ‘QZ’ y‘

Next, we note that by the triangle inequality, for any v € Vi and w € V3,

u—w] > oy~ — y—u] > oy -ty - VS L e
(5.6.6)

In particular, we see that (1+ 1j,>1(log |w])?)[u—w|™ < ¢ for u € V; and
w € Vi, so by [92, Lemma 5.2(a)], we have that for any v € V; and w € V3,

B(u,w) < cul(] log 4|? V1) (1411 (log [w])?) ju—w| 7 < cul| log ugl®.

(5.6.7)
Thus, by [92, Lemma 5.7], (A3-II), [93, Lemma 5.3], (5.6.6) and (5.6.7) we
get that

t
///le(t—s,x,u)B(u,w)p(&y,w)dudwds
0 Vs J Vi

t
< C3/ </ pV1(t - S7x7u)ugl| logud|ﬁ3du> </ p(37y7w)dw) ds
0 1% Vs
t
<o f ( [ P s logudmu) is
0 1%
< 03/ (/ pV1 (S,.%‘,U)Ugl‘ logud’ﬁSdU> ds
0 1%

TV,
= Cg]Ex/ (YN log Y|P ds < eyl

Therefore, we conclude (5.6.5) (and so (5.6.4)) from (5.6.6) and Lemma 5.6.3.
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Now, by the semigroup property, symmetry and (5.6.4), since t~%« A

W is comparable to the transition density of the isotropic a-stable pro-

cess in R?, we get

) = [ plt/2 o020

+

Ta \P Ya \P —dfa ¢ —d/a ¢
ca(n LY a2y [ (roen L) (ra Y
=G a 172) Jou |z — z|dte ly — 2|dre ) ©°

5.6.2 Sharp upper bounds of heat kernels

Lemma 5.6.9. Let v > p — «. For any U(R) C D C U(2R) and any
z = (0,2q) with q < R/10, it holds that

/ / pP(t, @, 2)2)dzdt < CRYTPalh,
o Jp

Proof. When d > «, the result follows from [91, Proposition 6.10] if £ > 0,
and from Remark 5.4.7 and [93, Proposition 6.8] if k = 0. When d =1 < «,
the result follows from [57, Section 3.2]. O

We now remove the assumption p < a in Lemma 5.6.7.

Lemma 5.6.10. There exists a constant C' > 0 such that

p p
p(t,x,y) <C <1 A %) <1 A %) VY >0, z,y € ]Ri. (5.6.8)

Proof. In view of (5.4.2), it suffices to prove (5.6.8) when ¢ = 1.

The lemma holds when p < o by Lemma 5.6.7. Now, assume that (5.6.8)
holds for p < ka for some k € N. We now show (5.6.8) also holds for p €
[ka, (k + 1)a) and hence (5.6.8) always holds by induction.
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Fix € > 0 such that p—a+¢€ < ka. Note that € < a. Thus, p—a+¢€ < p so
that C'(a,p—a+¢,B) < C(a, p, B). Hence, p(1,z,y) < pCl@r=eteB) (1 2 1),
By (5.4.2) and the induction hypothesis, it holds that for any s,u € [0,1/4]

and z,w € Ri,

p(l—s—uz,w)=1—s—u)"Yp1,(1—s—u) Y% (1—s—u)"Yw)
< 2d/apC(a,pfa+e,B)<1, (1 —5— u)fl/az’ (1 —5— u)fl/aw)

S 03(1 A Zd)piaJrE(l A wd)p7a+e'

Therefore, by the semigroup property and symmetry, we get
1.1
4 4
p(1e) =16 [ [ p(1nydsdu
0o Jo

11
= 16/4/ / / p(s,x,2)p(1 — s — u, z, w)p(u, y, w)dzdwdsdu
o Jo JRLJRY

1
< 1603</4/ p(s,z, z)(1 /\Zd)p_a+€d2d8>

0 JRY

X (/4/ p(u,y,w)(l/\wd)pa“dwdu)
0 JRY

Thus, to conclude (5.6.8) by induction, it suffices to show that there exists a

constant ¢4 > 0 such that

1
i
/ / p(s,v,2) (1A 2g)P T dzds < cy(1 Avg)?, v eRL
0 JRY

By (5.4.2), we can assume v = 0. If v ¢ U(27%), then we get

1
1
(LAvg)P >27% > 2_57’/ /d p(s,v,2) (1A 24)P~*dzds.
0o Jri

Otherwise, if v € U(27%), then by (5.6.2), Fubini’s theorem, Lemmas 5.6.4
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and 5.6.9

1/4
/ / p(s,v,2) (1A 24)P~*dzds
0 RY
1/4 1/4

< / EY [(1 AYYWDdypmate. ) > s] ds + / P'(Yy,,, € RY)ds
0 0

TU(1) 1
<R { / (1A YSU(U’d)pa*ﬁds] + P (Yr,,, € R}) < 50
0

4 TU(1)

The proof is complete. O

Now using Lemma 5.6.10 instead of Lemma 5.6.7 in the proof of Lemma

5.6.8, we can remove the assumption p < « in Lemma 5.6.8.

Lemma 5.6.11. There exists a constant C' > 0 such that

1/

Tq \P Ya \P [ ,—d/a t d
p(t,a:,y)ﬁC(l/\—) <1/\t17) (t N———], t>0,2,ycRL.

‘l‘ _y‘dJra

Since P*(¢ > t) = fR‘i p(t,z,y)dy for all z € R% and ¢t > 0, as a conse-

quence fo the above lemma, we get the following result.

Corollary 5.6.12. There exists a constant C' > 0 such that

z Td \P
P((>t)§6’<1/\m> . t>0, 7R

Recall the definition of the function Ag, 4y a4.0,(t, 2, y) from (5.2.3).

Lemma 5.6.13. Let ay,as,as > 0 be constants with a1 > 0 if as > 0. Suppose
that there exists a constant C' > 0 such that for allt > 0 and z,y € Ri,

Zd \P —d/a t
p(t,z,y) <C (1 A W) Aay 003,00 (t: 2, Y) (t YN m) . (5.6.9)

Then there exists a constant C' > 0 such that for anyt > 0 and x = (0, z4) €
RY with x4 < 277,

p 1
PI(TU(I) <t< C) <Ct (1 A %) (xd\/tl/oz)al loga3+a4 (e—i—m). (5.6.10)
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Proof. By Proposition 5.3.4, we have

sup PY(|Ys —y| > 1/4, s < ()

sgt,yERi
S
<c¢ sup / T——dz < oot (5.6.11)
d Z — ta
sgt,yGRi z€RY, [z—y|>1/4 | y‘

If cot > 1/2, then (5.6.10) follows from Corollary 5.6.12.
Let cot < 1/2. By the strong Markov property and (5.6.11), it holds that

P vy <t < ¢ Vi = Yo [ 2 1/4)
=E” [PYTU(U (|Yt_TU(1) - Y| > 1/4) CTu) <t < (¢

<P*(rpay <t<(¢) sup PY(JYs—y|>1/4, s < ()
sgt,yeRi

< ]P)x(TU(l) <t < (). (5.6.12)

DN —

Note that by the triangle inequality, for any y € R1\U(1) and z € B(y, 1/4),
we have |z — 2| > |y — x| — |y — 2| > 7/32. Thus by (5.6.12), we have

P (tyqy <t < () <2P"(1yqy <t < ¢, |Y; — Ymm| < 1/4)

<Yy — 2| > 7/32, £ < () = 2/ p(t,z, 2)d>

7
z€RY, |z—z|> 35

Zda \P 1/a\a / az+a |‘T — Zl dz
<ct<1/\—) xq Vit ! log™™ [ e 4
= tt/o ( I ) zGRi,|z—x|>3l2 & th/e |Z - x‘d—l—a—l—al
< eyt (1 A ﬁy (2q V 1) log T ( ¢ + 1 / 4z
= tl/a tl/a ZGRi,|Z*$‘>3lQ ’Z _ x|d+a

Td \P 1/a\a asz+a 1
§C5t<1/\m) (Id\/t )110g3 4 6+m y

where in the third line above we used (5.6.9) and Lemma 5.2.2(ii), and in
the fourth we used (5.2.2). O
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Note that for any ¢, k,r > 0,

r p r p—k
(1 A tm) (r v /oyl =k (1 A m) . (5.6.13)

Lemma 5.6.14. There exists a constant C > 0 such that

Ta N\ Ya\P —d/a t
p(t,x,y) <C (1 A 1/ ) A51,0,33,ﬂ4(t7x7y) (t N m) )

forallt >0 and z,y € RL.

Proof. Since Ag 4.4, 15 bounded from below by a positive constant, by
Lemma 5.6.11, the lemma hold for 5; = 0.

We assume 31 > 0 and set b, = 1 A % for n > 0. Below, we prove by
induction that for any n > 0, there exists a constant C' > 0 such that for all

t>0and:c,yERi,

plt) < € (1A T5IY gt (0 ).
(5.6.14)
The lemma is a direct consequence of (5.6.14).

(5.6.14) holds for n = 0. Suppose (5.6.14) holds for n — 1. By symmetry
and (5.4.2), we can assume z4 < y4, ¢ = 0 and |z — y| = 4 without loss of
generality. If ¢ > 1 or x4 > 277, then (5.6.14) follows from Lemma 5.6.11 and
(5.2.4).

Let t < 1 and 24 < 27° Then yg < xq+ |r — y| < 4+ 27° by the

triangle inequality. Our goal is to show that there exists a constant ¢; > 0

independent of ¢, x,y such that

p(t,z,y)

/o
ﬁ P 1/04 bn 63 M 64 ;
§01t<1/\t1/a) (xq V") log €+xd\/t1/°‘ log 6+yd\/t1/°‘ :

(5.6.15)
Set Vi = U(1), V3 = B(y,2) NRL and Vo = R% \ (V; U V3). Using
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Proposition 5.3.4 and the triangle inequality, we get that

sup p(s,z,9) < e sup <oy (5.6.16)
s<t, z€V2 sgt,zeRiszy\zZ ’Z - y’dJra
and
dist(V4,V3) > sup (4—|z—u|—|y—w|) > 1. (5.6.17)
uGVl,'wGV3

We consider the following two cases separately.

(Case 1) p > o+ by, and 10z4 < t'/°.

By Lemma 5.6.4, we have P*(1y, < t < () < P*(1, < () < cgzhy. Pick
e > 0 such that 0 < e < 81 and p < a + 1 — €. By (A3-II), (5.6.17), and
Lemmas 5.2.1(i) and 5.6.9,

t
/ / / p i (t — 5,2, u)B(u, w)p(s, y, w)dudwds
0 Vs J Vi
t
< C4/ / / le (t - 57m?U)B(ﬁ1—€)+,0,0,0(u7w)p(sava)dwadS
0o JvsJwn

t
< 05/ / le(t—s,m,u)ugl_edu/ p(s,y, w)dwds
0 JV; Vs

[oe)
< 05/ / PV (s, x,u)ugl_gduds < ceah.
0 1

Therefore, since x4 < t/% < 1 and 1+ (b, — p)/a < 0, we get from Lemma
5.6.3 and (5.6.16) that

plt,z,y) < cr(t 4 1)l < 2epttPlambn/ogh — o t(xy [t )P (xq v /)P0,

(Case 2) p < o+ b, or 10zg >t/

By the induction hypothesis, (5.6.9) holds with a; = b,_1, a3 = f3 and
ay = B4. Thus, since b, —b,_1 < /2, we get from Lemma 5.6.13 and (5.6.16)
that

P(ry, <t <) sup p(s,2,9)

s<t,z€Vs
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xd b « — a\«x 1
< cgt <1 A W) (g V1)t (g @)a/2 /2 |ogPs i <e + tm)
Za \? 1/a\bn
< cot <1At17> (g V /)0 (5.6.18)
On the other hand, using (A3-II), (5.6.17) and Lemma 5.2.2(i), we get
for 5 := (bn/2) A B2 A p,

t
///le(t—s,x,u)B(u,w)p(s,y,w)dudwds
0o JwJn

t
/ 1
< CIO/ / p(s,y, w)w’ log™ (e—l— —)
0 JVv; Wq

X / p(t — s,z u)ul log? (e + %) dudwds. (5.6.19)
Vi Ud
By (5.2.2) and Corollary 5.6.12, since 8; > 0 and b,, < 1, we get that for
any 0 < s <t and w € Vs,

w
/ p(s, x, u)ug1 log™ (6 + —d> du
wEVug<tq Uq

w
< / p(s, z, u)us log™ <e + —d> du
weVyug<azgVsi/e Uq
Wq

<en(zgV s/ logh (e + —2— / s, x,u)du
< c11(xa ) g zq V si/a e Vi sug<agvsl/a p( )

Xd

p
d

Next, using the induction hypothesis and Lemma 5.7.3, since b, < (; and
b, < a+b,_1, we get that for any 0 < s < t and w € V3,

w
/ p(s,z, u)ug1 log™ <e + —d>du
ueViiug>xyg Uq

p l/a bn—1
x rqV s S
< ci3 (1 A —ja) / (—d A 1) (S_d/o‘ A —d+a)
S ueViug>rg |£E - u’ ’.’E - 'LL‘

x logP3tPs [ 1 |£B—U| bn 15oP3 Wd d
og ( +(xd\/31/0‘)/\|x—u| uy" log™ ( e+ u
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< ra \" 1/a\bn 1003 Wd
= C14 1/\811 (ZL’d\/S ) IOg €+W .

Similarly, again spliting the integration into two parts wg > y, and wy <
yq, and using the induction hypothesis and Lemma 5.7.3 again, since ' <

b, < a+b,_i,and 5 > 0if 5, > 0, we also get that for any 0 < s < t,
/ p(s,y w)wﬁ/ log™ ( e+ L log® ( e+ il dw
v d Wy gV (t — s)V/
<es1a 2 p(y Vv st/
< C15 S1/a d
1 yq \V st/
logP4 logP3 )
X log <e+ ydel/a) og (e+ T4\ (t—5)1/
Therefore, by (5.6.13) and (5.6.19),
t
/ / / p i (t — 5,2, u)B(u, w)p(s, y, w)dudwds
0 V3 J Vi
t p—bn p—p'
b T .
<ewtr] [ (1ngtm) (10 385)

yq \V sl 1
log™ log™ ——)ds. (5.6.20
x log (e+xd\/(t—s)1/a) og (e—l—ydvsl/a s. )

By Lemma 5.7.1, since 8’ < p, it holds that

/t/2 (1 N 7y )p—bn (1 . ﬂ)p—ﬁl
! (t—s)/e sife
x log™ (e + o \y/d(\;ilgl/a) log™ <e + m) ds
< ¢y (1 A %)P—bn logﬁ3 (e + %)
y /Ot/2 (1 . ﬁ%)(pﬁ’)A(aﬂ) 10g54 (e+ yd vlsl/a)ds

g p—bn Ya (p—B")N\(a/2)
< Clgt<1 A m) (1 VAN m)
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1/« 1
B3 Ya Vi Ba
x log (6 Ry tl/a> log (6 v tl/a)
p—bn 1/«
d_ Bs Ya Vi s 1
: 019t<1 4 tl/a> o8 (6 T g )8\t )
When p < o + b, we get from Lemma 5.7.1 that
by, _g’
[ (gt Y (a3
t/2 (t —s)l/e st/e
yq \V st/ 1
x log™ log™ ————)d
og (e+ xdv(t—s)l/a) og <e+ RVERYE S
1 t/2 T p—bn V, tl/a
Ba d Bs Ya Vi
< ¢99log <e+yd\/tl/°‘)/0 (1/\81/a> log <e+l‘d\/81/o‘)d8
p—bn 1/a
a_ s ya V't N
< 021t<1/\ tl/a) log <€+ za V t1/e log™ { e+ ya vt )
When 10z4 > t/*, we also get from Lemma 5.7.1 that
—by, Yy
/t A 7 P " Ya p—p
o\ s s
yq \V s/ 1
% logP? logP4 d
o <e+ zq V(¢ — 3)”“) o (6+ ya v st )

t (p=B")NG 1/a
Yd 8 Ya V'S 8 1
<ec 1A= log {e+—— |log™ e+ ——— |ds
= /t/z ( 51/“) & < Tq ) & ( Ya V st/

vl 1
< cost log? (e + yd—) log™ <e + —)

Zq yq V tH/e
p—bn 1/
:L'd /33 yd \/t 64 1
< 02475(1 A —tl/a) log (e + e v ia log™ | e + v i ) (5.6.21)

Now (5.6.15) follows from (5.6.13), (5.6.18), (5.6.20)-(5.6.21) and Lemma
5.6.3. The proof is complete. O

Using Lemmas 5.6.14 and 5.2.2(ii), we get the following result from Lemma
5.7.3 and (5.6.13).

Lemma 5.6.15. Let 11,12 > 0 and 0 < B < a+ Bi. Assume that B >0
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if ;> 0. There exists a constant C' > 0 such that for any x € Ri and
s, k.0 >0,

B k
/ p(s,z,2)z log™" (e + —) log™ (e + ﬁ) dz
R Zd l

d
+

—~ p—B 1/a
Tq k TqV S
< ng (1 N SIW) lognl <€ + m) 1()g772 <€ + f) )

Proposition 5.6.16. Let ¢ € (0,a/2] and set By := o A (v + By — €). There
exists a constant C' = C(€) > 0 such that

Tg \P Yd \P R —d/a t
p<t7x7 y) S C (1 /\ m) (1 /\ m) A617627/83764<t’x7 y) (t /\ |l‘ - y|d+06 9

forallt >0 and z,y € RL.

Proof. As in the proof of Lemma 5.6.14, by symmetry, Lemma 5.6.11 and
(5.2.4), we can assume x4 < yqA27° and |x—y| = 4 without loss of generality,

and it is enough to show that there exists ¢; > 0 such that for any ¢ < 1,

p p
p(t,.f[,', y) S Clt (1 VAN ﬁ) (1 AN ﬂ) (xd \V tl/a)ﬁl (yd Vi tl/a)/g’g

tl/a tl/a
1/a 1
B3 Ya V't Ba
x log (e + Y tl/a) log (e + v tl/a) . (5.6.22)

Let t <1.Set V; =U(1), V},:B(y,Q)ﬂ]Ri and V5 :Ri\(VlUV},). By
Lemma 5.6.14,

Za N\ Ya\P S
sup p(s,z,9) < e sup (1 A ) Ap, 0.85.8.(8, 2, y) ————.
s<t,z€Va s<t, zeRi,|z—y\22 si/a P ‘Z - y|d+a
(5.6.23)

Note that yg < 24+ |z —y| <4+27° and z4 < yq + |z — y| for any z € RZ
by the triangle inequality. Thus, by Lemma 5.7.2(i), we have that for any
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0<s<tandz€ R with |z —y| > 2,

24 N\ Yq S
(1/\ /o > A61,0,53,54(8727y)m

Yd_\? 1/oyB1 B3+0Ba |Z_y| S
(1/\ /> (ya V s/ log e+ eyl Ay

2
> (yq \V s1/%)Prsloghs s (e + Sl/a). (5.6.24)

§C3 (1/\ :ll//a

Since
Ya \P 1/a\8 Bs+8 2
(1/\ l/a) (yd\/S )1810g3 4 €+81W

2
(s logP P (e + —/)) yfi’(sl/a vV yd)ﬁl’p for 8, > p;

2 _
( (Brta=p)/ooghstis <€+ 1/ )) ygt (s Aya)” " for p1 < p,
S [0

using the fact that 8, +a —p > 0, we get from (5.6.23)-(5.6.24) that

2
sup p(s,z,y) < cq (1 A %) (yq V t/*) Pt 1ogPs+h (e—l— t_/> (5.6.25)

s<t,z€Va

Note that (5.6.9) holds with a; = f;, a3 = f3 and a4y = f4 by Lemma
5.6.14. Thus, by Lemma 5.6.13, (5.6.25) and (5.2.1), since yq V t¥/* < 5 and
(Bg — B1)+ < a, we obtain

P(ry, <t <) sup p(s,2,9)

s<t,zeVa

p yd p 2
<ot (1A 57 ) (VA0 ) (@a v e/ (ya v /%) plog2 ) <€+tm>
< cot (1/\t/ ) (1Aﬁ7) (2 V 1Y) (g v /)2, (5.6.26)

Next, we show that there exists c; > 0 such that

t
///pvl(t—s,x,u)B(u,w)p(s,y,w)dudwds
0o JwJn
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3 T p—p1 p—PB2
< ety <1 A tl—;la) (1 A %)

1/a 1
B3 Ya Vi Ba
x log (e + Y tl/a> log (e + =y tl/a). (5.6.27)
Once we get (5.6.27), by (5.6.13) and (5.6.26), we can apply Lemma 5.6.3 to

get (5.6.22) and finish the proof. We consider the cases 51 > (2 and ) < (s

separately.

(Case 1) 3y > Bs.

Since |u —w| ~ 1 and wy < 4 for u € V; and w € V3, we have from

Lemma 5.2.2(ii) and (5.6.17) that for any 0 < s1 < s9 <*¢,

s2
/ //pvl(t—s,x,u)B(u,w)p(s,y,w)dudwds
s1 JV3 IV

82 1
< Cs/ / p(s, y,w)wg2 logﬁ4 (e + —)
s1 Vs Wq

X {/ p(t — s, x,u)ugl log” (e + %) du} dwds.
Vi

Uq

Since p < a + 1, using Lemma 5.6.15 twice and Lemma 5.7.1, we get that

¢ 1
/ / p(s,y,w)wg2 log™ (e + —)
t/2 J Vs Wq
X [/ p(t — s, x, u)ugl log? <e + %) du} dwds
Vi Ug
t p—P1
Zq
chxﬁl/ <1/\—)
¢ i (t—s)te
X / p(s,y, w)w? logh (e + S log™ ( e + W dwds
v d Wy xq V (t —s)l/
t p—PB1 p—PB2
B1, B2 Ld Ya_
.
v sl/e 1
x log™ (e + Ya ¥ 5 ) log™ (e + —) ds
Y

xq V (t —s)l/ gV st/

yd P*ﬁz 1
< C11$§1952 (1 A m) log™* (6 + VI t1/a>
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t/2 p—51 V. 11/
X - log™ (e + Y4 ) gs
0 gl/a gV gl/a
p—51 p—PB2
B, B Ld Ya
S Clgt$dlyd2 (1 VAN m) (1 VAN m)
1/« 1
B3 Ya Vi Ba
% log <€+xd\/t1/a>10g (€+yd\/t1/a)'
Similarly, when y4 > /%, we obtain from Lemma 5.6.15 that
t/2 1
/ / p(s,v, w)w52 log™ (e + —>
0 Vs Wq
X {/ p(t — s, x,u)u) log™ (e + %> du} dwds
Vi Uq

t/2 p—51 p—PB2
B1, B2 Td Yd
< 1IN ——-r 1IN —
> C13T; Yy /0 ( (t - S)l/a) < Sl/o‘)

yq \V st/ 1
x log™ log™ (e + ——— )ds
o (4 o )1 (4 g
T p—p1 y p—P2
S Cl4t$§1yg2 (]_ N tl%) (1 N tl%)

1/a 1
B3 Ya Vi Ba
x log (e+det1/a)IOg <e+yd\/t1/a)‘

Therefore, it remains to bound

t/2
/ //le(t—s,x,u)B(u,w)p(s,y,w)dudwds
0 V3 J Vi

when x4 < yq < t'/°.

Assume that x4 < yq < t'/®. Using 3, > [, we have from (5.2.1) and

Lemma 5.6.15 that for any 0 < s < t/2 and w € V5,

w
/ p(t — s, x, u)ug1 log” (e + —d) du
ueV1ug<wyg Uq

< cl5wgrﬂ2 / p(t — s, x, u)ucﬁfdu
ueViug<wg
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B
< 01615(52*51)/0411)51*52 (1 A 2517)]) ! _

Hence, we get from Lemmas 5.6.15 and 5.7.1 that

t/2
/ / / p i (t — s, 2, u)B(u, w)p(s, y, w)dudwds
V3 J Viug<wgy
t/2

< 017/ / ERTR; 52 log™ (e + —)

Vs

wd
[/ p(t — s,z u)ul log? ( —) du] dwds
Vl ud<wd

p B 1
< eyt PP gl 1 N —— 1 p(s,y, w)w log™ (e + — ) dwds
tl/a V3 Wy

B [t/2 p—51 1
(B2— Br)/a . b1, A1 Ld >p ( Ya ) Ba
S Cth d Ya (1 A tl/a o A Sl/a log e+ —yd v Sl/a ds

p—p1 Ya \P P2 B4 1
CQOta:d yd (1 A W) (1 A m) log™ | e + i )

On the other hand, we pick any € € (0,8; — 32) such that p < a+ 51 — ¢
and get from (5.2.1) and Lemmas 5.6.15 and 5.7.1 that

£/2
/ / / PV (t — s, 2, u)B(u, w)p(s, y, w)dudwds
0 V3 J Viug>wy
t/2 , 1
< 021/ / p(s,y,w)wgl_e log™ (6 + —)
0 Vs Wq

X [/ p(t—s,x u)udzJ“E log” (6+ ) du} dwds
Vitug>wq Wq

p—Bo—¢ t/2 p—B1+e 1
< 022x52+6 ygl ¢ (1 A %) i / (1 A j%) 1 log™ (e + —) ds
0

ya V st/e
p=h1 Ya \P P2 3 1
<623t$d yd <1/\m) <1/\m> 10g4 (€+—yd\/t1/a>.

The proof for (Case 1) is complete.

(Case 2) By < [s.

221



CHAPTER 5. HEAT KERNEL ESTIMATES FOR DIRICHLET FORMS
DEGENERATE AT THE BOUNDARY

By (A3-II) and (5.6.17), we have

t
/ / / PV (t — s, 2, u)B(u, w)p(s, y, w)dudwds
Vs V1

A2 /3 1

< cou p(s,y,w log™ (e + —

Vs Wq
{/ p(t — s,z u)ul log? (e+ —)du] dwds

Uq
+024/ / S, Yy, w
V3

Since p — //8\2 <p-—[0; <aand //8\2 < a+ 1, we see from Lemmas 5.6.15 and
5.7.1 that

p—p1 Yd p—Ps
Il <C25t£l?d yd (1/\m> (1/\m>

1/a 1
B3 Ya Vi Ba
x log <€+$d\/t1/0‘> log <€+yd\/tl/0‘)'

Let ¢’ > 0 be such that pV 3y < a+ 8, — €. Using (5.2.2) twice and (5.6.13),

since x4 < yq4, we also get from Lemmas 5.6.15 and 5.7.1 that

I2<029// pls,y, wywy
V3
1
X [/ p(t—s,x u)ugfr6 log™ (e + —) log™ ( —) du] dwds
Vi wag<uq d Ud

p Yd p an\ Bo e o et
< cait (1 " tl/a) (1 " 1517) (2 V /)2 (yg v £ )

1/a 1
B3 T V1t Ba
x log (6 LRy tl/a) log (6 LY tl/a)

P Ya \P a arB.
= el (1 N iia ) (1 N iia ) (q V") (yg v 1)

g Ve 1
x log™ ———— ) log™ — .
og (6+yd\/tl/a) og (6+ydvt1/a)
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The proof is complete. O

5.6.3 Lower bound estimates

Recall that Dg(a,b) = {x = (Z,24) € R? : |T —w| < a,0 < x4 < b} for
a,b>0and w € R and, in dimension 1, Dg(a,b) = (0,b).

For = (Z,24) € R, we define

D:(2,2)  ifzg<1
Vx = and Wx = D5(2, 8+ Qfd) \ D5(2, o+ .Cl?d).
B(z,1/2) ifaxg>1,

Lemma 5.6.17. There exist constants M > 1 and ¢ > 0 such that for all
z€RY,

1 > P,
zlerllxlf/z p(M,x,2) > c(zqg A1)

Proof. By Proposition 5.3.5,

inf p(s,w,z) > (M) >0 forallz e RL.  (5.6.28)

w,z€EW,,1<s<M

If z4 > 1, then the result follows from Proposition 5.3.5. Suppose x4 < 1.
Then by the strong Markov property and (5.6.28), for all M > 1 and z € W,

p(M,z,2) > E*[p(M —1v,,Yr, ,2) 7y, <M —1,Y,, € W,]

I TVy

> ( inf p(s,w,z)) P*(ry, <M -1,Y,, € W,)

WEW,,1<s<M A
> o1 (P*(Yr, € W) = P*(ry, > M —1)).

By [92, Lemma 5.10] for £ > 0 and [93, Theorem 1.1] for x = 0, we have

P*(YS € W,) = P(YS, € Di(2,8)\ Di(2,6)) > 2c27,

TVz
Moreover, by Corollary 5.6.12, we also have
Py, > M —1)) <P((>M—-1) < cz(xq/(M — 1)1/a)p'
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Thus, we can choose M = 1+ (c3/c3)®/P so that 2cy — c3(M — 1)7P/% = ¢y,
which implies p(M, z, z) > coah. O

Recall the definition of Ag, s, s, (t, ,y) from (5.2.3).

Proposition 5.6.18. There exists a constant ¢ > 0 such that

Tq \? Ya \P —d/a t
p(t, €, y) >c (1 A m) (1 N m) A517/327/33,,34(t7 .’B,y) (t A m )

forallt >0 and z,y € RL.

Proof. Without loss of generality, we assume x4 < 4. Let M > 1 be the
constant in Lemma 5.6.17. By the semigroup property and Lemma 5.6.17,

pM +1ny) 2 [ [ M 2)p1, 2 w)p( ) ded
x Wy

o (s r009) (s p050) i 009)

> A 1)P A 1)P inf 1 . 5.6.29
> co(wg AN1)P(yg N 1) ((sz)ért}vzxwyp( ,z,w)> ( )

We see from Propositions 5.3.5 and 5.5.4 that

inf 1, z,w
(z,w)EWL x Wy p( )

1 if |z —y| <3,
>c |x _ y|—d—a Ioﬁ/l Al A yd_Vl Al &
lz—y| lz—y|

DA|z— T— .
x log™ <1 + —Eijil))ﬁl\x_ﬂ) log™* <1 + WM) if |z —y|>3.

Combining the above with (5.6.29), and using scaling property (5.4.2), we

arrive at the reuslt. O
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5.7 Appendix: Some calculations

In this section, we give some technical lemmas which are used in the proofs
of main results. The following three lemmas can be proved by using (5.2.1),
(5.2.2) and Lemma 1.1.1(i).

Lemma 5.7.1. Let v < a and b > 0. There exists C > 1 such that for any
t,k,l>0,

t1Ak71b b d<(]t1/\k71b L
S\ ) o\t e )9S e ) 08\t e )

For v,m1,m2 > 0 and k,l > 0, define

k
f%mﬂ?z,k,l(r) =17 logm (e + ;) logm <6 + ;)

Lemma 5.7.2. Let v,n1,m2 > 0 and k,1 > 0.
(i) For any € > 0, there exists C > 0 independent of k and | such that

ar
M < Ca"™ foralla>1 andr > 0.
f7777177]27k7l (T)

(i1) Assume that v > 0 if i > 0. Then there exists C' > 0 independent of k
and | such that

f%mmz,k,l(ar)

>C foralla>1 andr > 0.
f%m,ng,k,l(T)

Lemma 5.7.3. Let by, ba,n1,m2 >0 and 0 < v < o+ by. Assume that v > 0
if m > 0. There exists C > 0 such that for any x € R% and s,k,1 > 0,

\/ 1/a b1 _
/ <1/\—xd : ) log” <1+ ik )
R |z — 2| (xg V sY) N |z — 2|

—d/a 5 ) k ) 24
X (S d/ A m) ZZ! log" (6 + Z_d) log" (6 + 7) dz

k x4V st
< Czq V sY%) log™ ———— | log™ )
< C(xqVs') log (e—l—xdvsl/a) 0g (e—i— l
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Chapter 6

Estimates on the fundamental
solution of general time

fractional equation

In this chapter, we give estimates for the fundamental solution of general time
fractional equation. The results in this chapter are based on [54]. By adapting
the notion of boundary function introduced in Chapter 4, we generalize some
results in [54].

The time fractional diffusion equation 8u = Au (0 < § < 1) has been
used in various fields to model the diffusions on sticky and trapping environ-

ment. Here, (9,@3 is the Caputo derivative of order [ which is defined as

Ofult) = ﬁ% / (t — ) (u(s) — u(0))ds,

where I'(2) := [~ 2*'e *dx is the gamma function. Motivated by the above
definition of the Caputo derivative, in [30], the author introduced generalized
time fractional derivatives. Let w be a nonnegative function satisfying the

following condition:
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(Ker) w is a right continuous nonincreasing function on (0, co) with

Sl_1>%1+w(s) = 00, Slgrolo w(s) =0 and /0 (LA s)(—dw(s)) < 0.
Definition 6.0.1. For a function u : [0,00) — R, the generalized time frac-

tional derivative 0;° with respect to the kernel w is given by

O u(t) == %/0 w(t — s)(u(s) —u(0))ds, (6.0.1)

whenever the above integral makes sense.

We note that, the kernel w(t) = t=#/T'(1 — ) for the Caputo derivative of
order (0 < 8 < 1) satisfies condition (Ker).

Let (M, p) be a locally compact separable metric space and m is a Radon
measure on M. Let D be a Borel subset of M, and (7;);>0 be a uniformly
bounded strongly continuous semigroup with infinitesimal generator (£, D(L))
in some Banach space (B, ||-||). For a given kernel w satisfying (Ker), consider

the following time fractional equation with Dirichlet boundary condition:

Ou(t,x) = Lu(t,z), x€ D, t>0,

u(0,z) = f(x), r €D,

u(t,x) =0, vanishes continuously on 0D for all ¢ > 0.

(6.0.2)

Examples and topics related to the problem (6.0.2) can be found in [6, 49, 100,
103, 104, 105, 124]. See also [69, 70] for examples of time fractional equations
with non-linear noises. In [30], the author established the probabilistic rep-
resentation for the fundamental solution of time fractional equation (6.0.2)
(without Dirichlet boundary condition). This procedure can be described as
follows: For a given w satisfying condition (Ker), let v(ds) be a measure on
(0, 00) such that w(s) = v((s,o0)) for all s > 0. Define a function ¢ by

d(N\) = /000(1 — e ™)u(ds) for A > 0. (6.0.3)
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Then, since |1 —e™| < (1 + A)(1 As) for s > 0 and (Ker) holds true, ¢
is a Bernstein function. Let S = (S,),>0 be a subordinator whose Laplace
exponent is given by ¢, and write its inverse by E; := inf{r > 0 : S, > t}.
Then, if we overlook the boundary condition, it is established in [30, Theorem
2.3] that for all f € D(L), u(t,z) := E[TE, f(x)] is a unique solution to (6.0.2)

in the following sense:

(1) sup;sollult, )|l < oo, x — wu(t,x) is in D(L) for each ¢ > 0 with
sup;so||[Lu(t, -)|| < oo, and both ¢ +— w(t,-) and t = Lu(t, -) are continuous
in (B, [|-[]);

(2) for every t > 0, I}’[u] := fo w(t — s)(u(s,x) — f(z))ds is absolutely

convergent in (B, [|-]|) and

lin < (12, [o] — 17 [u]) = Cu(t, ) in (B )

We will see that if {T},t > 0} admits a transition density enjoying certain
types of estimates, then the solution u(t, z) satisfies the following boundary

condition (see Corollary 6.1.8 for a precise statement).

(3) if f is bounded, then for all ¢ > 0, z — u(t, z) vanishes continuously
on 0D.

Conversely, for any driftless subordinator S with an infinite Lévy measure
v(ds), its tail measure w(s) := v((s, 00)) satisfies condition (Ker). Therefore,
S is in one-to-one correspondence with generalized time fractional derivative
0}’ defined by (6.0.1).

Suppose that the semigroup (7}):>o has a heat kernel ¢(t, z,y) with re-

spect to the reference measure m. Then for f € D(L),

u(t.a) = BT f(0)) = [ TA@PE <) = [ TI@ARS, 2 1)

0 0

= /Mf(y) (/Ooo q(r, z,y)d,P(S, > t)) m(dy).
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Therefore, it is natural to say that

p(t,z,y) = /000 q(r,z,y)d,P(S, >t) (6.0.4)

is the fundamental solution to the equation (6.0.2).

In this chapter, using the expression (6.0.4), with helps from the results
obtained in Chapter 2, we establish two-sided estimates for the fundamental
solution of general time fractional equation 9;"u = Lu including the ones with
the Dirichlet boundary condition. Throughout the chapter, we always assume
that w satisfies condition (Ker), and denote by S and E the associated
subordinator (via (6.0.3)) and its inverse, respectively. We note that, since
w(0+) = oo, S is not a compound Poisson process. Therefore, a.s., r — S,

is strictly increasing and ¢ — F; is continuous.

6.1 Setup and main results

Let (M, p) be a locall compact separable metric space, and m a positive
Radon measure on M with full support. As in Section 4.1, we assume that the
volume function V(z,7) := m(B(x,r)) satisfies the uniform volume doubling
condition (4.1.1), and D be a subset of M. We also let ®, ¥ : [0,00) —
[0,00) be strictly increasing functions satisfying scaling properties (4.1.3)
with constants oy, ag, az, ay > 0, and V(r) > ®(r) for all r > 0.

Let h(t,z,y) be a boundary function in the sense of Definition 4.1.3.

Throughout the chapter, we always assume that
h satisfies (H2) with v < 2. (6.1.1)
Recall that the boundary function h,(t, z,y) defined by (4.1.6) satisfies (H2)

with v = 2p.
With the Laplace exponent ¢ of the subordinator S, we define for (¢, x,y) €
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(0,00) x D x D satisfying 4®(p(z,y)) < ¢(t71)7,

1/(2¢(t71))
ny [ M0
D(p(z,y)) V(ZIZ', P (T))

Recall the definitions of conditions for w, Polyg, <(82), Poly%, ~(52),
Sub>(v,0) and Trunf, from the begining of Chapter 2, and HKJ and
HKY from Definition 4.1.6. Throughout the chapter, we regard HKJ and
HKY as conditions for ¢(t,z,y), that is, we say that HKE holds if (4.1.8)
and (4.1.9) hold with ¢(t, z, y) instead of pp(t, z, y), and HK% holds if (4.1.8)
holds for all (¢, z,y) € (0,00) x D x D with ¢(¢, z,y) instead of pp(t, z,y).

Now, we state our main results which are modifications of [54, Theorems
1.15, 1.16 and 1.18] by allowing the boundary function h(t,x,y) to be more
general form. The proofs will be given in Section 6.2. Let p(t,z,y) be the
function defined by (6.0.4).

Theorem 6.1.1. Suppose that Polyg, <(52) and HKY hold. Then the fol-
lowing estimates are valid for all (t,x,y) € (0,Ry) x D X D:

(i) Suppose that ®(p(z,y))d(t™1) < 1/4. Then we have

h(1/¢(t™), z,y)
V(z, @ 1(1/6(t71)))

In particular, if Polyg, <(82) holds with By < 1, then

p(t, z,y) =~ +w(t)Ly(t, x,y). (6.1.2)

p(t, 2, y) ~ ¢t Tt z,y). (6.1.3)
(i) If D(p(z,y))p(t™") > 1/4, then

p(t,x,y) < h(1/o(t™), 2,y)

Co exp (— cN(t, p(z,y)))
) (cb(t‘l)‘l’(p(w,y))‘/(%p(w,y)) " V(z, @ 1(1/p(t71))) )
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where N (t,1) is the solution to the following equation:

N/t 1/ /N(t1))
l .

S(N(t.1)/1) t

Remark 6.1.2. Since A — ¢(A)/A is decreasing with limy_,o ¢(A)/A =
w(0+) = oo and limy . ¢(A)/A = 0, and @ is increasing with ®(0) = 0

and lim;_,., ®(1) = oo, the equation (6.1.4) always have a unique solution.

(6.1.4)

Theorem 6.1.3. Suppose that Poly., <(32) and HKY hold. Then the as-
sertions in Theorem 6.1.1(i)-(ii) hold for all (t,x,y) € (0,00) x D x D.

Now, we give large time estimtates for p(¢,x,y) under HKE..

Theorem 6.1.4. Suppose that Polyg, _(3:) and HKY hold. Then for every
T > 0, there are comparability constants depending on T such that for all
(t,2,3) € [T,00) x D x D,

20(diam(D)) ey
p(t,z,y) ~ w(t)/ ( )

_WB5Y g
spey) V(@ 27H(r))

When condition Sub® (7, §) holds, the bounds for fundamental solution
decrease subexponentially as t — co. Moreover, when 0 < § < 1 and D is
bounded, we obtain the sharp upper bounds that decrease with exactly the

same rate as the upper bound for w as t — co.

Theorem 6.1.5. Suppose that Sub® (v, 0) holds. Then for every T > 0, the
following estimates are valid for all (t,z,y) € [T,00) x D x D.

(i) Assume that HKY holds. Then, there exist constants Ly, Ly > 0 indepen-
dent of 0, and ¢ > 1 such that in the case when v € (0,1), we have

2P (diam(D)) h
c_lw(t)/ iz 1) (T&)x_,ly) dr
B(p(z9)) (z, @71(r))

20(diam(D))  ,
< p(t,z,y) < cexp (- 60t7) / (r,z,y) ar.

s(pey) V(@ 27(r))
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and in the case when v =1, we have
2P (diam(D)) h
¢! (w(t) / L_’Iy)dr + h(1,z, y)eL1t>
oy V(@ 7))

2

] 2®(diam(D)) h
< p(t,x,y) < C(exp ( — —t) / Mdr + h(l’w,y)eLQt).

ooy V(2 ®7(r))

(ii) Assume that HKY holds.
(1) If ®(p(z,y))p(t™') < 1/4, then there exists ¢ > 1 such that

Mty D h(ray)
(V( ) 1( )) " (t) /D(p(x,y)) V(']’U(I)il(r))d )

h(t,z,y) 0 [ h(ray)
<p(t,z,y) < c(— +exp(— =t" / ————=—dr ).
V(z, ®1(t)) ( 2 ) oy YV (z, @7(r))

(2) If ©(p(z,y))p(t™") > 1/4, then

p(t,z,y) < q(ct, z,y)

it Cot exp (— cp(z,y)?/271(t)?)
= hit, ’y)<V($,P(x7y))‘I’(P(fB>y)) Vi, ®1(1)) )

Our last main theorem deals with finitely supported w. Let h,(t, z,y) be
the boundary function defined in (4.1.6).

Theorem 6.1.6. Suppose that Trunf, holds. Then the following estimates
hold for all (t,z,y) € [Ra/2,00) x D x D. Let ny :== |t/Ry| +1 € N.
(i) Assume that HKY holds with h = h,,.

(1) If t < |dy/ay + 2p| Ry, then

2®(diam(D)) mh LT,y
e = | T,
(o)) (z, ®~1(r))

2®(diam(D)) Tnt_lh (7” T y)
ng P\’
+ (nth - If) / V(Q? q)*l(r)) dr.
@(p(z,y)) )
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(2) If t > [da/on + 2p] Ry, then

p(tv Z, y) = @(5D($))pq)(5D(y))pe—ct = q(Ct> Z, y)

(ii) Assume that HKY holds with h = h,,.
(1) If ®(p(x,y)) <t < |da/oq + 2p|Ro, then

2t

o) o 2t ™ hy(r, 2, y) b (R f) ™ thy,(r, 2, y) .
Pz _/q>(p<a:,y>> Vi, a1 TR0 [b(p(x,y)) Vo)
(2) If ®(p(z,y)) >t ort > |da/as + 2p| Ry, then
p(t @,y) < qlct,z,y) < hy(t, z,y)
1 Oyt exp (— cp(x,y)? /@71 (1)?)
Ve )" (V(w,p(x,y))‘l’(p(%y)) i V(z, ®71(1)) >] ‘

Remark 6.1.7. Note that under settings of Theorem 6.1.6, we can apply
Theorem 6.1.1 to obtain the estimates of p(t, x,y) for (¢,x,y) € (0, Ry/2] x
D x D. Hence, we have the global estimates for p(¢, z, y) under those settings.

As a consequence of the estimates for the fundamental solution, we have
that the solution to the Dirichlet problem (6.0.2) vanishes continuously on the
boundary of D. Indeed, under mild conditions, the solution u(t,z) vanishes

exactly the same rate as a transition density q(t, z,y).

Corollary 6.1.8. Suppose that Polyg, <(2), and one among Polyf, (52),
Sub™(v,0) and Trun$ hold true. We also assume that either HKJ or
HKY holds with h = h,. Then, for all bounded measurable function f on D,
u(t,z) := E[TE f(x)] satisfies the following boundary condition:

For any fixed t > 0, there exists C' > 0 such that for every x € D,

u(t, 2)| < Cll flloe®(dp(x))".

Recall the definition of h, from (4.1.6). In the end of this section, we give
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a list of estimates for Z(t,z,y) when h = h,. See [54, Appendix] for the

proof of the following lemma.

Lemma 6.1.9. Let p € [0,1). The following estimates are valid for all

(t,2,y) € (0,00) x D x D satisfying ®(p(z,y))(t!) < 1/4.
(i) If dy/o; < 1 —2p, then

AR LN R A N C 7)) AN VL G
mien = (0 ) (7)) 7
(

(i) If oy = ag = a0, dy = dy = (1 — 2p)c and p > 0, then

= (1 g55) (07t

« Gt log <e L He) )

(ov(z,y) V p(z,y))"

(111) If 1 — 2p < di /g < do/ay < 1 —p, then

)Y [ B ))
:%ﬁ”””‘OA uwr1> @A uwrw)
B0, (1, 9) 7V (1, 5,2, y) 1/o(t)
X(“\@@@w»wﬂ/%mL>>>v@ﬁmawA¢4uw@4m'

(w) If oy = ag =a, dy =dy = (1 —p)a and p > 0, then

e = (i) ()
S G )

~— =

|

(v) If 1 —p < dy/as < dy/ay < 1, then

(12 B0 [, 2Oy
Iy, (t, x,y) ~ (1 A W) <1 : W)

(0 (z, )"~V (@, n (2, y)) 1/o(™")
: (1 " (o, y) V(@ ol y)) ) V(@ 0n(z,y) A @H(1/6(t)))
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(vi) If oy = ap = dy = dy = «, then

Tt ,y) <1/\ M)p (1 A M)p

p(z,y)° p(z,y)”
O, y)™ A (1/¢(t‘1)))'

on(z, y)™ A p(w,y)>

x log (e+

(vii) If 1 < dy /g, then

D(0n(2,y))\" D(ov(z,y)\" @(p(z,y))
<I><p<x,y>>) (M @(p(x,y») V. pl. )

T, (t,z,y) ~ (1 A

6.2 Proofs of Main results

In this section, we give the proof for Theorems 6.1.1-6.1.6. Throughout the
section, we assume that (¢, z,y) satisfies either HKE or HKY,.

Recall that the fundamental solution p(t, z,y) is defined by (6.0.4). Using
Proposition 2.2.1 and Theorems 2.2.6-2.2.8, we get the following a prior lower
bound for p(t, z,y).

Lemma 6.2.1. (i) Suppose that Polyg, <(B2) holds. Then, there exist con-
stants N > €1 > 0 and ¢ > 0 such that for all t € (0, Ry),

t,x,y) > c inf X, Y). 6.2.1
o v) 7“6(61/¢(t’1)7N/¢(t’1))q( 2 ( )

(i4) Suppose that one among Poly%, (52), Sub®(v,0) and Trunf, holds
true. Then for every T > 0, there exist constants N > e, > 0 such that
(6.2.1) holds for all t € [T, 00).

Using [33, Lemmas 3.1 and 3.2], similar to Lemma 4.1.1, we may replace

the volume function V' by a nicer function.

Lemma 6.2.2. For every a > 1, there exists a strictly increasing differen-
tiable functions V(x, \) satisfying the following two properties:

(P1) V(z,r) =~V (x,r) for allz € M and 0 < r < aRy;
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(P2) d,V(z,7) ~ "V (z,r) and d,V "z, t) ~ t-'V"(z,t) for all x € M,
0<r<aRyand0<t<V(x,aRy).

Here, we give near diagonal lower estimates for p(t,z,y) when the tail
measure decays in mixed polynomial orders. The next result is a modification
of [54, Proposition 4.1].

Proposition 6.2.3. (i) Suppose Polyr, <(52) holds. Then there exists a
constant C° > 0 such that for all (t,x,y) € (0,R1) X D x D satisfying

O(p(z, y))o(t™") < 1/4,

h(1/¢(t™), z,y)
V(z, @71 (1/6(t™))

p(t,z,y) > C ( ) —|—w(t)Ih(t,x,y)> (6.2.2)
(it) Suppose PolyF, (02) and HKY hold. Then for every T > 0, there
are comparability constants depending on T such that (6.2.2) holds for all
(t,z,y) € [T,0) x D x D satisfying ®(p(z,y))p(t™) < 1/4.

Proof. Since the proofs are similar, we only give the proof for (i).

Fix (t,x,y) € (0,Ry) X D x D satisfying ®(p(z,y))p(t™') < 1/4 and
set [ := p(z,y). By Theorem 2.2.6 and (2.0.4), there exsits a constant e; €
(0,1/2] such that for all ¢ € (0, Ry), P(Se,0) > t) < 1/2. Then, using the
Markov property and the inequality 1 — (1 — )% > 3x/2 for z € (0,1/2], we
get that

P(Sse0) > t) 2> P(Sacy0() — Sexa) =t 0r S,y > t)

3
>1—(1=P(Sqaq >1)* > 5]P>(SEQ<I>U) > ).

It follows from the scaling properties of V' and ®, and (H2) that

2e2®(1) h(r T y>
ta,y) > c e d (S, > t
plt,7y) > /W) o oy (S 2 )
h(d(1), z,
> ¢ (V((j:, ) v) (P(S2ep0() > t) — P(Seyo0) > 1))
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ca h(®(1), 7, y)

> 2 )
2 V()

P(Se,00) > t). (6.2.3)

On the other hand, by Lemmas 4.1.1 and 6.2.2, using integrtion by parts
in the second inequality below and the scaling properties of V' and &, (H1)
and Theorem 2.2.6 in the third, we obtain

V@)
ptoy) z e [ M) g, s
e20(1) V(z,®=1(r))
> 3= h‘<€iq)(l)> z, y) ]P)(SEQ(I)(I) > t)

Vi, 21 (e2®(1)))

1/(26(¢1))
_@/‘ m&zw¢@i&£@_>
29 () V(x,®=1(r))
h(®(1), 7,y)
> —C4WP<S@¢(Z) > t)

1@ ) 1
— cqw(t) / rh(r,z,y)d, (#>

29(1)
o),z y)
= N V()

V@ED)  p(r, 3, y)
+ eswl(t) / UGLI . (6.2.4)
° e2®(1) V(x,qu(r))

P(Se,00) > t)

Now, we conclude from Lemma 6.2.1, (6.2.3) and (6.2.4) that

h(1/¢(t™), 2, y)
V(w, @71 (1/6(t71)))

(14 2¢4 + co)p(t, z,y) > ¢ + cocsw () (t, x,y).

g

Now, we prove our main theorems by following arguments in the proofs
given in [54, Subsections 4.1-4.3]. Although only boundary functions h,, (¢, z,y)
and h,(t A 1,z,y) for some p € [0,1) are considered in [54], with help from

(6.1.1), one can repeat their arguments and get the desired results.

Proof of Theorem 6.1.1. We fix (¢,z,y) € (0, Ry) x D x D and then write
1= p(z,y), V(s) :=V(z,s) and V(s) := V(z, s).
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Case 1. Suppose that ®(1)¢(t~') < 1/4. By Proposition 6.2.3, it remains
to prove the upper bound. Using (4.1.10) and Lemma 4.1.9, we get that

) et [ o G, >0
/@o rxy (—5%€?>¢P®%Zﬂ
ol . v<(<71; TRz
vo f M: T TR 2
+ (1, z,y) /1 . e 0" d P(S, > 1)

= ol + L+ I3+ I, + I5).

Since (H2) holds with v < 2, using integration by parts, Theorem 2.2.6
and the fact that ¥ > &, we get that

(6.2.5)

—z2

Next, using (H2), the inequality sup,.,z°?t®2e™*" < oo and the scaling
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properties of V' and @, we get that for all 0 < r < &(1),

hray) (el \ _ SUTR(@0),2y) (M)
RO Rl G =rr By ( z )
O()"h(P(l),x,y) T

= CEEI0)

<

rY

Therefore, by repeating the calculations for I, we obtain

@(Z)V_lh((l)(l)’;L"y) >0 1— (I)(l) h((I)(l)axay)
IQ S Ce V(l) /0 r dTP(Sr Z t) S C7w<t> V(l) :

Thirdly, using the scaling properties of V,®, (H1), (H2) and Theorem
2.2.6, we get that

21 D()AL/(26(t~ 1)) h
I < 3 / (T—“’id P(S, > 1)
2t P

>0
2e()<1/(20(t™1)

< st Z a2 0(0) < cou (0T, 0,2.).

2e(1)<1/(2¢(t71))

Lastly, by the monotone properties of V', ® and (H1), it holds that

ety MO, 2)
+ h(1,x,y)e /o(R )S 10V(¢—1<1/¢(t—1)))'

I+ 15 <

h(1/¢(t™), ,y)
V(@1 (1/g(t1)))

By (1.1.2) and the upper bounds above on [y, I5, we see that w(t)Z,(t, x,y)
dominates I; + I5. The proof for (6.1.2) is complete.

Now, we further assume that Polyg, <(52) holds with 55 < 1. Then by
Lemma 2.1.1(i), w(t) ~ ¢(t™') for ¢t € (0, R;). Hence, using (1.1.2), we can
deduce that the second term in (6.1.2) dominates the first term which yields
that (6.1.3) holds true.

Case 2. Suppose that ®(1)¢(t~') > 1/4. By (4.1.10) and Lemmas 4.1.9,
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4.1.1 and 6.2.2, it holds that

Cy 1/(2¢(t™))
p(t,r,y) < CW /0 rh(r, z,y)d,P(S,. > t)

Co ™ e (- 4B, <)
+c—/ rh(r,z,y)( — d,P(S, <t
VIO Jiyeew)

42(0) h(r,x,y) a,l?
) Tangy (CgheE) (-aRe 0

YD Wy o pe o,
+ /4(1’(” ‘7(&31(7”))< T ( r ))

o0

—I—ch(l,x,y)/

1/¢(Ry )
= C(Jl + Jg + Jg + J4 + J5)

e (= d,P(S, > t))

By (H1) and the monotone properties of V and ®, we deduce that J,
dominates J5.

By following arguments in (6.2.5) and using (2.0.4), we see that

&) 1/(26(71))
Ji < W/o T h(r, @, y)d, P(S, > t)

Cod(t™) " R(1/(t™"), 2, y) [/
= V(i) /O =, P(S, > 1)
Coh(1/p(t™"), x,y)

VTR e 2 1)

Ty — 112200 Vzgfp/ggt Y. 7.9) /01“““ " iB(S, > tdr
Coh(1/¢(t™), .y)
AV D)
, Cow®o(t™) 7 h(1/o(t ), 2.y) /1/<2¢<“” = dr
vne() 0
Coh(1/6(t™),2.y) Cow®h(1/6(t) x.y) _ Coh(1/6(t™),z.y)
OV T e REVOR) T etV OR()

> (2

> (2

> (2
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Next, by (H1), (H2) and integration by parts, it holds that

Coh(1/p(t7Y),z,y) [**0
d,P(S, <
fs - V()w( //(w(tl))r (5 =%)

< El/gb)(t (l)) P(S1/@2¢-1)) < 1)

(1/¢(t RN /4‘1’(”

1/(2¢(t~1))

P(S, < t)dr. (6.2.6)

Define b=1(t) = sup{s > 0 : sb(s) < t} for ¢ > 0. By (2.0.7), it holds that

1 - Ca e? —

e
< Cy 1= for all ¢t > 0. (6.2.7)
¢( )’

e—2"

Using Proposition 2.2.1 in the second inequality below, the change of the
variables r = b~ (t)u and (6.2.7) in the third, the fact that u — (H o o) (u,t)
is increasing in the fourth, (2.0.8) in the first equality and (6.2.7) in the last

inequality, we obtain that

- er /() -
/ (S, < t)dr < / dr + / P(S, < #)dr

1/(2¢(t=1)) 1/(2¢(t~1)) /P(t1)

< tn [ een(=rH oo t)dr
ex /()

gzﬁ(t*—l) + b7 (t) /1 eexp (= b (t)u(H oo) (b~ (t)u,t))du

et Z_)‘l(t)/l eoxp (— ub\(8) (H 0 o) (57 (t), £)) du
2¢,

+b71(t) /looeexp e “du = qb(?_l) +b71(t) <

Hence, we get from (6.2.6) that Jo < (csCoh(1/0(t™1), x,v))/ (ot V(1) ¥(1)).
Define the map ¢ : (0,1/¢(R;")) — (0,00) by

1 a,l?
0= @ Fen)
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Then we see from Lemmas 4.1.1 and 6.2.2 that
g (r) > (—cy + PO (r) " H)rtg(r).

Thus, there exists ¢y € (0,1) such that g(r) is increasing in (0, cg®([)). Hence,
since ®(1)p(t7!) > 1/4, by (H1), (H2) and the scalings of V and ®, we obtain
that

/W) By g agl?
L Tasyr (g s
eo/(460™D) 1V h(r, 2, y) < a, I )
= _/ — " exp( — = d,P(S, <t)
0 rV(®-1(r)) O-1(r)2
.. h(1/o(t™1), 2, y) o ( - 12 ) /cg/(4¢(tl)) 0,P(S, > 1)
= V@6 ) TN (/e )2 B
h(1/6(t™), ,y) G
< w7t ) P S (025

Note that, with the constant ¢, in (6.2.7), by (H1), (H2) and the scalings of
V and ?,

ex /(1) h 12
_/ hlray) s (= =2 B(s, <)

o/ (-1 V(271(r)) d1(r)?
c (1/¢(t l)axay) ox 13l
<eapaon) O emeeE) 029

Moreover, using (H1), (H2), integration by parts, Proposition 2.2.1, Lemmas
4.1.1 and 6.2.2

49(1) 2
_/ h(r,x,y) p( afll ) TP(SrSt)

o V@ (1) -1 (r)?
h(1/e(t™"),ay) [0 al?
< - ( 1(1/¢ = 1))) / o(t-1) exp ( - &)1<T)2>dr]p(8r < t)
h(1/g(t™),

z,y)
= )

exp < _ cl5a1l )
V(@ (1/e(t)) O-1(1/®(t71))?
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_ 4P(1
h(1/o(t™Y), 2, y) / VO aametg, (6.2.10)

oy T®TH(r)? ’

where ¢ (r) = 2/®7!(r)? and ey(r) = r(H o o)(r,t). Observe that e; is
decreasing and ¢;(®(l)) = 1, while e, is increasing and ey (b71(t)) = 1. It
follows that there exist unique r, € (b=1(¢), ®(l)) such that e;(r,) = ex(r.)
and ¢ (1) + ea(r) > ey(r,) for all v € (b71(t),4®(l)). Therefore, using the
inequality sup,.qz*e™* < oo for all k > 0, the scaling of ® and (6.2.7), we

get that

/ o 2 () —es(r)
6—C1821 T)—e2(T dr
() Tq)fl(T)Q

_ 241/
o /4‘1:'([) l2 CID 1(T) +/ 16—2*1518e1(7‘)—92(7')dr
B-1(¢) r®—1(r)? !

IA
o

43(1)
< C20 e—(zlclg/\l)el(r*)/ dr < 46206_(271018/\1)“(”)- (6211)
(1) b1(t)

By the definition of r,, we see that

l2
(1/o(t=1))

(7)< e 1/80™nea@0) = (5
(6.2.12)
Hence, we deduce from (6.2.8), (6.2.9), (6.2.10) and (6.2.11) that

WA/, 2,9) —caperr)
V(@1 (1/e(t1))) '

Also, using (H1), the scalings of V' and @, and (6.2.12), since the subor-

dinator S is increasing, we get that

J3 < cig
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Now, we estimates the value of M(t,1) 1= ey(rs). Set s, = r./es(rs) =
1/(H oo)(rs,t). Then, b(s.) = t/r.. Hence, we get from (2.0.7) that

]. *
e <) = G

which yields that

M(t, 1)/t s M)

oM n/t) — ot
On the other hand, by the definition, it holds that

Ol MED) _ 2(/v/0r(r)) _ e
t t t

Therefore, by the scaling of ¢ and ®, we conclude that M(t,1) is comparable
with the function N (¢,1) defined by (6.1.4) and get the desired upper bound.

For the lower bound, since ¢(t~!)~! < 4®(I), by Lemmas 4.1.9 and 6.2.1,

we see that

Coh(1/9(t™1), 2, y)

otV (OW{I)
Besides, we observe that by Proposition 2.2.1, there exist constants A > 1
and € > 0 independent of ¢ and [ such that P(S,, <t) > (14 ¢)P(Sa,, <1).
Using (H1), (H2), the scalings of V' and ®, and Proposition 2.2.1, we get that

p(tv z, y) > Co2

Ar, 2
h z
plt,,y) > —ca / hrzy) ( . GZ—)dT]P’(ST <)

V(7)) d1(r)?
> o hA/O), 2,9) —caier(ra)—casestar)
- V(@ (/e(th))
> Ca3 h(l/gb(til)’x’y) —c26e1(7x)

- V(@A) '

The proof is complete. Il

Proof of Theorem 6.1.3. By repeating arguments in the proof of Theorem
6.1.1, since the integrals of e™*P" are not the dominant term in all cases, we

can conclude the result. We omit details here. O
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Proof of Theorem 6.1.4. By repeating arguments in the proof of Theorem
6.1.1, we can deduce that for all (¢,z,y) € [T,00) x D x D,

B 2®(diam(D)) A
p(t,z,y) < h(l,x’y)e—cxpw(t 1 +w(t)/ (r,x,y) dr.

oy V(@ 27Hr)
Since h(r,z,y)/V(z,® (r)) > c for r < 2®(diam(D)) by (H1), (H2) and
the scaling of V and @, and limy_,. w(t)e®/?¢™) = oo for every a > 0
by Poly%gé(ﬁQ), we conclude that the second term in the above equation

dominates the first term. Thus, we get the desired result. U

Proof of Theorem 6.1.5. Since [;~ w(s)ds < oo under Sub™(v,0), by
(2.0.6), for every T' > 0, there are comparability constants depend on 7" such
that ¢(t7') ~ t=! for t > T. Using this fact, by following arguments in the
proof of Theorem 6.1.1, using Theorem 2.2.8 (when v = 1) and Theorem
2.2.9 (when v < 1), we arrive at the result. We omit details here. d

To get Theorem 6.1.6, we first prove large time estimates for p(¢,x,y)

under 'I‘runoRo2 )

Lemma 6.2.4. Suppose that Trung, holds, and either HK} or HKY holds
with h = hy, p € [0,1). If t > ((1/2) V |d2/oq + 2p]|) Ry, then

p(t,z,y) < q(ct, v, y) forz,y € D.

Proof. Since the proofs are similar, we only give the proof when HK¥ holds,
which is more complicated.

We fix t > ((1/2) V |d2/a1 + 2p])Re and x,y € D, and then write [ :=
p(x,y). Since Sub™(1,1) is satisfied under Truny , by Theorem 6.1.5, if
D(1)p(t') > 1/4, then we arrive at the result.

Now, we assume that ®(I)¢(t™!) < 1/4. Since [~ w(s)ds < oo under
Truny , as in the proof of Theorem 6.1.5, we see that ¢(s™') ~ s7' for
s > ((1/2) V |da/aq + 2p|)Rs. Therefore, we get the desired lower bound
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from Lemma 6.2.1. Moreover, since we assumed ®(1)@(t7!) < 1/4, it holds
that ®(1) < t/c;. Then by HKY, we get q(t,z,y) ~ h,(t,x,y)/V (z, ®71(t)).

Let L > 0 be the constant in Theorem 2.2.10(iii). By (4.1.10) and Lemma
4.1.9, since ¥ > &, we get that

(c1®(1)/L)AL)
plt,z,y) < o / rhy(r:Y) ) pig. > 4
0 Vi(z,)®(l)
t/L
_|_02/ Mdrp(s > 1)
(c1®(1)/L)AL) V(z, 7))

t
* hy(r,x,y)
+Cg/t/Lm P( ) (K1+K2+K3)

By the scalings of V and @, we have that K3 < h,(t/L,z,y)/V (x,®"(t/L)) <

c3q(t, x, ). Besides, using the fact that r — r?Ph(r,x,y) is increasing, inte-
gration by parts and Theorem 2.2.10(i)-(ii), since |t/Rs| > |d2/c1 +2p], we
see that

(I)(l)Qph (‘P(l) T y) /’(01‘1’(1)/14)/\1) B
K, < P s by 1 2pd7«P i >t
YTV E D0 RS2y
h,(®(1), x,
< C5WP(S(C@(Z)@)A1 >t)
O hy(2(1), 2, y) / (cre@/bn
+ec r—PP(S, > t)dr
V0o Jy (520
S CGCI)( )dg/a1+2p p(CI)( ) ) —C7tlogt
V(z,l)
+C6 ()2ph ( (l),%y) ewtlogt/(qq)(l)/L)AD 7’72p7’d2/a1+2pd7"
Vi(z,)@() 0
< ng)( )dg/a1+2p hp(q)( ) ) 7C7tlogt'
- V(z,1)

Using the fact that 7 — r?h(r,z,y) is increasing again, and the scalings of

V and ®, we see that

O(1)%/ 20 h,(0(1), 7, y)
V(x, 1)

P()d2/n

< t2php(t,$,y)m
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(B(1)1 )/

S C9t2php(t’ z, y) ldQV(l’ 1)

- ClOtQPhp(t7 T, y)
By the scalings of V' and ®, we also see that for every a > 0,

lim s%Pe~ (M) (1 d1(s)) < ¢ lim s2PHd/a1gmas(NB )y (1 H=1(1)) = 0.
§—00 §—00

(6.2.13)
In the end, we deduce that

h,(t
Kl < Cllhp(t,l',y)t2pefc7“‘)gt <c P( 7%1/)

Lastly, using the fact that r — r?Ph(r, z,y) is increasing, Lemmas 4.1.1 and
6.2.2, integration by parts, Theorem 2.2.10(i)-(iii), the scalings of V' and @,
Lemma 1.1.1(i) and (6.2.13), we obtain that

t/L 1

Ky < c14t™h (t%?ﬂ/ ~ =
! (cr@(t)/L)AY) T2V (2, ®=1(r))

L*h,(t/L,x,y)
V(o 1(t/1))

+ethytay) [ _ L
' (1®()/L)A) TPV (2, &1 (r))

1 rld2/a1+2p]+1

< 16q(t,x,y) + ciptPecirtlosty (t, x,y)/ — dr
P (o) pya1) TPV (2, @71 (r))
1

t/L
+016t2ph (taxvy)/ ~ = e~Crtlogt/r) gy
: LY (2, 1 (r))

d,P(S, > 1)

t/L 1

P(S, > t)dr

< cieq(t, x,y) + Clstgpe_c”t(mlogt)hp(ta z,Y) < cioq(t, z,y).

V(z, @71(1))
The proof is complete. (|

Proof of Theorem 6.1.6. By Lemma 6.2.4, it remains to prove for t <
|da/aq 4+ 2p] Rs. For that case, by repeating arguments in the proof of Theo-
rem 6.1.1, using Theorem 2.2.10 instead of Theorem 2.2.6, and the fact that
d(t71) ~ ¢! for t < |da/cy +2p] Ry, we arrive at the result. We omit details
here. U
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Chapter 7

Dirichlet heat kernel estimates
for Lévy processes with low

intensity of small jumps

This chapter is concerned with Dirichlet heat kernel estimates for a isotropic
unimodal Lévy process Y with low intensity of small jumps. Typical examples
of such processes are geometric stable processes and iterated geometric stable
processes. (See, e.g., [17, Page 112] for the definitions of these processes.) The
results in this chapter are based on [53].

In this capter, we first derive small heat kernel estimates in R? by using
the results and methods from [76]. Next, we study behaviours of the process
near the boundary of a C''! open subset D of R%. Under a set of conditions
that give the boundary Harnack principle (see condition (B) below), we
obtain two-sided estimates on the survival probability in D with explicit
boundary decay. Using heat kernel estimates in the whole space and boundary
behaviours of the process, we establish small time two-sided Dirichlet heat
kernel estimates for isotropic unimodal Lévy processes in C'! open sets. In

particular, we prove the following factorization formula: For every 7" > 0,
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there are comparability constants such that for all (¢,z,y) € [T, 00) x D x D,
pp(t,x,y) < P°(mp > t)PY(1p > t) p(ct, z,y), (7.0.1)

where pp(t, z,y) is Dirichlet heat kernel in D, p(t, z,y) the heat kernel of the
free process, and 7p := inf{t > 0:Y; ¢ D} the first exit time (see Theorem
7.1.1 below). Cf. Theorem 3.1.20. Since the heat kernel p(t, z,y) may not be
bounded, in the proof of (7.0.1), we need different arguments from ones for
the proof of Theorem 3.1.20.

When D is a bounded C*! open subset of R, we also obtain large time
estimates for pp(t,x,y), and two-sided estimates on the Green function in
D. Since the killed semigroup (PP );>o may not be compact operators for all
t > 0 even for bounded D, our method is different from ones for obtaining

large time Dirichlet heat kernel estimates of stable processes.

7.1 Setup and main results

Let Y = (Y})¢>0 be a Lévy process in R? with the Lévy-Khintchine exponent
1, that is,

E| exp (i(¢, Y1) = / e Clp(t,dz) = e, L E R,
R4

where p(t,dz) = p(t,0,dx) is the transition probability of Y. If YV is a pure

jump symmetric Lévy process with Lévy measure v, then v is of the form

w(©) = [ (1 cos(ga)pldo). € R

where [o.(1 A [z]*)v(dz) < oo.

A measure p(dr) is isotropic unimodal if it is absolutely continuous on
R?\ {0} with a radial and radially nonincreasing density. A Lévy process Y
is isotropic unimodal if p(¢, dx) is isotropic unimodal for all £ > 0. When Y

is a pure jump Lévy process, Y is isotropic unimodal if and only if the Lévy
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measure v(dx) of Y is isotropic unimodal. See, [126].

Throughout the chapter, we always assume that Y is a pure jump isotropic
unimodal Lévy process with the Lévy-Khintchine exponent ¢). With a slight
abuse of notation, we will use the notations ¢ (|z|) = ¥(z), v(dz) = v(z)dx =
v(|z|)dz and p(t,dz) = p(t,z)dz = p(t,|z|)dz for x € R? and ¢ > 0. Then,
throughout the chapter, we also assume that the following condition (A)

holds true:

(A) v(R?) = oo and there exist constants —d < oy < ap < 2, ¢1, €2, Ky, Ko >

0, and a continuous function ¢ : (0,00) — (0, 00) satisfying

1 E < ((R) < ¢y E forall 1<r <R (7.1.1)
r 0(r) r

such that
rir~U(r™Y) < v(r) < kor~U(r~Y)  for all r > 0. (7.1.2)

If d > 1, then we assume further that either oy > —1 or ¥(&) = ¢(|£|?) for

a Bernstein function .

Note that, since we allow the constant a; to be negative, the map r
£(r~1) can be increasing near zero.

Here, we enumerate other main conditions which we will assume later.
We say that a given function f is almost increasing if there exists ¢; > 0
such that f(z) =~ supyeiy, . f(y) for z > ¢;, and f is almost decreasing if
there exists co > 0 such that f(z) ~ inf,c(s 4 f(y) for x > c,.

(B) v(r) is absolutely continuous such that r — —2/(r)/r is nonincreasing

on (0, 00) and there exists ¢ > 1 such that v(r) < cv(r + 1) for all r > 1.

(C) There exist constants v < 2 and ¢; > 0 such that

5
aR)Scl E forall 0 <r < R<1.
0(r) T
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(S-1) limsup, . ¢
(S-2) limsup,_, . ¢

(r) < oo;

(r) = oo and ¢(r) is almost increasing;
(L-1) liminf, . ¢(r) = 0 and £(r) is almost decreasing;
(L-2) 0 < liminf, , ¢(r) < limsup,_, . ¢(r) < oo;

(D) If d =1, then as < 1 where s is the constant in (A).

We define for r > 0,

K(r):=r"2 /OT sl(s~1)ds, L(r) = /00 s (s )ds,
h(r) = K(r) + L(r). (7.1.3)

Then we see from (A) that

K(r) :r‘2/| ly|?v(y)dy and L(r) :/ v(y)dy for r > 0.
y|<r

ly|>r

We also define

(r) := sup L(u) for r>1, £7Yt):=inf{r > 1:0*(r) >t} for t>0
u€e(l,r]

and for a > 0,
Ou(r,t) ;=7 V[ (a/t)]" for rt>0.

Now, we state our main results. For a Borel subset D of R?, denote by
pp(t,z,y) the Dirichlet heat kernel of Y in D.

Theorem 7.1.1. Suppose thatY is a pure jump isotropic unimodal Lévy pro-
cess satisfying (A) and (B). Let D be a CY* open set in RY with characteris-
tics (Ro, A). If D is unbounded, we further assume that (C) holds. Then for
every T > 0, the following estimates are valid for all (t,x,y) € [T, 00)xDxD.
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(i) If (S-1) holds, then

1/2

ot = (i) () e
1/2 1/2
“(rame) (aman) e

(11) If (S-2) holds, then there exist constants ay = aop(d,v) > 0 and ¢1,c3 > 0
such that

otz y) < (1/\ m>m (1 . m)uz

X (0 (|2 — yl, 1)) exp (= cath(ba, (Jz — yl,1))).

Also, for every n > 0, there exist constants cs,cqy > 0 such that

po(t,x,y) > c3 <1 A m)w (1 . m)m

x tv(0y(|lz —yl|,t)) exp ( — cath(0,(|z — y\,t)))

Moreover, the following factorization formula holds true:

ot oY) = (1 A m) v (1 A m)m plct, 2. y).

Below, we assume that D is bounded and obtain the large time estimates
for the Dirichlet heat kernel and the Green function estimates under some

mild assumptions.

Definition 7.1.2. A bounded set D in R? is said to be of scale (rq,ry) if
there exist o1, 25 € R? such that B(xy,7) C D C B(xg,79).

Theorem 7.1.3. Suppose that Y is a pure jump isotropic unimodal Lévy
process satisfying (A) and (B). Let D be a bounded C*' open set in R? with
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characteristics (Ro, A) of scale (r1,72). Then, the following estimates hold:

(i) If (L-1) holds, then for every T > 0, there exist constants ay,as > 0
which only depend on the dimension d, constants ¢y, co > 0 independent of T
and c3 = c3(T) > 1 such that

-1
C3 —cith(|z— —aykath(r
L(9p ()2 L(dp(y))'/> (vl — ylyeermhlie=ab o gmamtitn/2))

S pD(thay)

< T L e~ e

I

—cath(|lz—yl) + e—agn1th(7“2)>

for all (t,z,y) € [T,00) x D x D, where k1 and ko are the constants in (A).

(11) If (L-2) holds, then there exist Ty > 0 and Ay = A\ (¢, D) > 0 such that
for every T > T, there exists ¢4 > 1 such that

6—)\1t e—/\lt

L) L) = PP Y) S s R L G ()

for all (t,z,y) € [T,o0) x D x D. Moreover, we have

H1C5

h(?”g) S )\1 S /1204h(7’1/2).

(111) If (S-2) holds, then the estimates in (ii) holds with Ty = 0. Moreover,

the constant —\; < 0 is the largest eigenvalue of the generator of Y.

For a Borel subset D of R? the Green function Gp(z,y) of Y in D is
defined by

GD(«T,Z/> = / pD(tuxvy)dt
0

Theorem 7.1.4. Suppose that Y is a pure jump isotropic unimodal Lévy
process satisfying (A), (B) and (D). Let D be a bounded C*' open subset

in RY with characteristics (Rg, A) of scale (r1,13). Then, the Green function
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Gpl(x,y) in D satisfies the following two-sided estimates: for x,y € D,

o Lz — ) (e —y)
Gotaw) = (11 ¢L<5D<x>>L<5D<y>>) ey La—gp? Y

with comparability constants depend only on d, v, Ry, A and ry.

Remark 7.1.5. One can obtain (7.1.4) just by integrating the estimates for
pp(t,x,y) given in Theorems 7.1.1 and 7.1.3. However, to use both Theorems
7.1.1 and 7.1.3, we need conditions more than (A), (B) and (D). By adopt-
ing arguments from [87] instead of integrating the Dirichlet heat kernel, we

obtained the Green function estimates in more general situations.

7.2 Heat kernel estimates in R

Recall the definitions of the functions K, L and h from (7.1.3). Clearly, L

and h are nonincreasing. Since v(r) is nonincreasing, it holds that

K(r)> cy(r)r_Q/ s ds = cyriv(r)  for all > 0.
0

Moreover, using Lemma 1.1.1(i), since we assumed that condition (A) holds

true, we see that
K(r)~riv(r) ~Lr~") for 0<r <1, (7.2.1)
and if condition (C) also holds, then
K(r) ~rv(r) ~{(r~") for r>1. (7.2.2)

By applying (1.1.2) to the function L, we see from (7.2.1) that L(r) > c¢K(r)
for 0 < r < 1. Since h(r) = K(r) + L(r), it follows that

Lemma 7.2.1. There exists a constant ¢; > 0 such that

L(r) < h(r) <cL(r) forall 0<r<1.
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By [20, (6) and (7)], there exist positive constants C and C} which only

depend on the dimension d, and the constants k1, ko in (7.1.2) such that
Coh(r) < ¢(r™') < Cih(r) for all r > 0. (7.2.3)

To make some computations easier, we define @ : [0,00) — [0, 00) by

®(r) = L(r ' = /OT s1(s)ds.

Then we get the following lemma from (7.1.1), (7.2.3) and Lemma 7.2.1.

Lemma 7.2.2. (i) There exist constants c1,co > 0 such that

aq @ azV(1/2)
c1 E < <R)§02 —R forall 1 <r <R.
r O (r) r

(11) With the constant Cy in (7.2.3), Co®(r) < (r

) for all r > 0. Moreover,
there exists a constant Cy > 0 such that Co®(r) > h(r

) for allr > 1.

In [79], Hartman and Wintner proved sufficient conditions in terms of the
Lévy exponent 1) under which the transition density p(t,-) of Y is in Cy(R?).
Then, in [99], Knopova and Schilling improve that result and they also give
some necessary conditions. Using Lemma 7.2.2(ii), we can formulate these
conditions in terms of ®. Since Y is isotropic unimodal, these conditions

determine whether p(t,0) < oo or p(t,0) = oc.
Proposition 7.2.3. Let

o o
by := liminf (r) €[0,00] and by :=limsup (r)

_ —— €0 .
7—00 lOg(l —I—T) r—00 log(l +T) © [ ’OO]

(i) If by = oo, then p(t,0) < oo for allt > 0.

(i1) If by = 0, then p(t,0) = oo for all t > 0.

(111) If 0 < by < by < 00, then there exist constants Ty > Ty > 0 such that
p(t,0) = 00 for 0 <t <T) and p(t,0) < oo fort > Ts.

In particular, by I’Hospital’s rule, the following are true.
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(i’) If liminf, . ¢(r) = oo, then p(t,0) < oo for all t > 0.

(12°) If limsup,_,. ¢(r) =0, then p(t,0) = oo for all t > 0.

(117°) If 0 < liminf, . ¢(r) < limsup,_ . ¢(r) < oo, then there exist Ty >
Ty > 0 such that p(t,0) = oo for 0 <t < T and p(t,0) < oo fort > T.

Here, we introduce some general estimates which are established in [76].

Note that the following estimates hold no matter p(¢,0) < oo or p(t,0) = co.

Proposition 7.2.4 ([76, Proposition 5.3]). There are constants by,co > 0,
which only depend on the dimension d and the constant ko in (7.1.2) such
that for all t > 0 and x € RY,

p(t,z) > cotv(|z]) exp (= both(|z])).

Proposition 7.2.5 ([76, Theorem 5.4]). There is a constant ¢; > 0, which
only depends on the dimension d and ko in (7.1.2) such that for allt > 0 and
z € R4\ {0},

p(t,z) < extfa| K (Jz]).

The following lemma will be used several times to obtain heat kernel

upper bounds for the whole space. (Cf. [76, Lemma 4.1 and Corollary 4.4].)

Lemma 7.2.6. For every A > 1, there exists a constant ¢ = ¢(\) > 0 such
that
sup |¢Y(kr) —(r)| <cl(r)  forall r> 1. (7.2.4)

1<k<A

Proof. Recall condition (A). We first assume that either d =1 or ag > —1.
For y > 0, set v1(y) = v(y) if d = 1, and

n(y) = /Rd1 v((y? + 121 dz it d> 2.

We claim that there exists a constant ¢; > 0 such that

vi(y) <y H(y™Y) forall ye(0,1]. (7.2.5)
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If d =1, then (7.2.5) follows from (7.1.2). Suppose that a; > —1 and d > 2.
Using (7.1.1) and a change of the variables, we get from (7.1.2) that for any
y € (0,1],

1 1 ) 1/y Ld—2 E(yil(l +k2)71/2)
B — EAY2) k42 4k ~ / dk
i ) . e iy

1y ka2 1 o0 c2(2 + aq)
< dk < dk Erongp = 22 T
= C2/o (1 + k2)feara ™ = 62/0 " 62/1 1+ o

Besides, since v is nonincreasing, we also have that, for any y € (0, 1],

1 - 2 2\1/2\ 7.d—2 1 /oo d-1
S v + kK K odk < ———— v(K YK dk
PRV / (" + #5) iy ), YW

3 Cy ((1) 1+
=2 v(ldé = ———— <¢ A< ex.
Ty ) /&Rd,w ©de =gy <= <%

Therefore, we obtain (7.2.5) with ¢; = c2(2 4+ a1)/(1 4+ 1) + ¢s.
By Fubini’s theorem, it holds that for r > 0,

W(r) = 2/000 (1 — cos(ry))z/l(y)dy.

Hence, using a change of the variables, we see that for any 1 < £ < A and
r>1,

k) = )] =2| [ (costry) = costhrn)mio)is
< 27”_1/0 | cos(y) — cos(ky)|vi(y/r)dy

/ " cos(ky)in (y/r)dy

1

+2r7t

/100 COS(y)Vl(y/T)dy‘ Lot

= Il +[2—|—[3

By Taylor expansion of the cosine function, (7.2.5) and the assumption
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that (7.1.1) holds with oy < 2, we get from Lemma 1.1.1(i) that

1 1
n= 20t [y < 20te) [ o5y < o)
0 0 r

Next, to bound I and I3, we use a trick from the proof of [76, Theorem

3.5]. Since y — v4(y) is nonincreasing, there exists a measure —dv; on (0, 0o)
such that v(y) = fyoo(—dul(z)) for y > 0. Then by Fubini theorem and
(7.2.5), we obtain

/ / cos(y)(—dvy(2) dy‘-?r
y/r 1r

( dvy(z ))‘ = 4r ' (1/7) < 4esl(r).

_ —1

cos(y)dy(—duvy(z))

< 4yt

1/r

Similarly, we also have that I3 < col(r). Thus, we get (7.2.4) in this case.

For the case ¥(£) = ¢(|€]?) for a Bernstein function ¢, we use [76, Lemma
5.13], (7.2.1) and (7.1.1), and obtain that for any 1 < k£ < X and r > 1,

(kr)?

1 [On)?
olhn) =)l = [ Pldus 5 [ a0
< e AU(r) < cgATTO2((r).
The proof is complete. Il

Now, we first consider the case when (S-2) holds. Recall that ¢*(r) :=
SUp,ep1,1 £(u) and £7" is the right continuous inverse of £*. Under (S-2), we

see that lim,_, £*(r) = 0o and there exists a constant C3 > 1 such that
0(r) < 05(r) < Csl(r) for all r > 2.

Hence, in this case, by Proposition 7.2.3, p(t,0) < oo for all ¢ > 0. We give
the small time estimates for p(t,0) under (S-2).

258



CHAPTER 7. DIRICHLET HEAT KERNEL ESTIMATES FOR LEVY
PROCESSES WITH LOW INTENSITY OF SMALL JUMPS

Lemma 7.2.7. Assume that (S-2) holds. Then, there exists C' > 0 such that

p(t,x) < p(t,0) < C[ (al/t)} exp ( — bith(¢™ (a1 /t)~ ))

for all 0 < t < t; and x € RY where a; := 2dC3/Cy, by := Cy/(4C,C3) and
tl = al/f*(B)

Proof. Let a; := 2dC5/Cy and t; := a1/¢*(3). Then, £~ (a;/t) > 3 for all
€ (0,t1]. By Fourier inversion theorem, (2.3.23), integration by parts and
the change of variables s = ®(r), we have that for all ¢ € (0, ],

p(t,z) = (27r)—d/ e i{Em) o=t (€ dﬁ < 01/ o~ Cot®(r),.d=1 .
R4 0
< CQt/ rde= MY/ (r)dr = c2t/ o (5) e C0b s
0 0

o(~(a1/1)) -
< cot + Cgt/ Q)_l(s)de_cotsds + Czt/ (I)_1<S)d6_cotsd5
o(1) ®(¢=(a1/1))

=: Cgt + [1 + IQ.

Observe that for ®(2) < v < u, we have

®~ 1 (u)
u—v =@ (u) -0 (v)) = /¢1( | k=Y (k)dk
' (u)
1 (I)_I(U)'

~(u)
> / L (k) dk > 0 (071 () log
(v)

Thus, for all ®(2) < v < u, we have that (cf. Section 3.10 in [13])

< exp (Cgu;vv) . (7.2.6)

Then, by (7.2.6) and the definition of a;, we get

C ) ~ >1(s) defcots s
I = est [ (/1) /q>(e1<a1/t)>< Ml 1(al/ﬁ)))) !
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00 - —1
<3 [E_l(al/t)}d/ texp < dCy® (¢ (a1/t) + dCys Cots) ds
(e (ar/0) a /t
1 d C’0 -1 > C10
< ca[0 a1 /t)] exp (= —t@ (¢ (a1 /1))) texp (— —ts)ds
2 (1 (a1 /1) 2

< 5[ (ar/6)] " exp (= Cot®(E (a1 /1))).
To bound I, we define g(r) = rexp ( — 2%75@(7’)) for r > 1. Then

g(r)= (d — %tﬁ(r))rdl exp < — %t@(r)),

and hence g is strictly increasing on [1,¢7!(a;/t)). Hence, by the scaling of

®, we obtain

(£~ (ar /1) (¢~ (a1 /1))

L < c6t/ g(®(s))ds < 20675/ g(®1(s))ds
®(1) (L1 (ar/1))/2

(L (a1/1))

t exp ( - &Ls) ds

<ol /0] [ 0

(6= (a1/t))/2

< [ a/0] e (= e /).

We also have that

©(3)
I, > cgt/ d(5)% exp(—Cots)ds > cyot.
(1)

Finally, we deduce the result from (2.3.25). O

By a similar proof to the one for Lemma 7.2.7, we get the following lemma.

Lemma 7.2.8. Assume that (S-2) holds. Let ay,b; and ty be the positive
constants in Lemma 7.2.7. Then, there exists C' > 0 such that

p(t,x) < Ctla| =0 (|2|7") exp (= buth(|z])),

for all 0 <t <ty and v € R? satisfying [(~ (a1 /t)] 7! < |2 < 1/2.
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In view of Lemmas 7.2.7 and 7.2.8, we define for a,r,t > 0,
Ou(r,t) =7V [ (a/t)] " (7.2.7)

Note that both r — 0,(r,t) and t — 0,(r,t) are increasing, while a +— 6,(r, t)
is decreasing.
Combining Lemmas 7.2.7 and 7.2.8, and Proposition 7.2.5, we arrive at

the following result.

Proposition 7.2.9. Assume that (S-2) holds. For every T > 0, there exists
C > 0 such that for all (t,z) € (0,T] x R,

K (0, (|2, 1))
[0, (|2, )]

where a; and b; are the constants in Lemma 7.2.7.

p(t,z) < Ct exp ( — blth(ﬁal(]:c\,t))),

Using the fact that p(t, ) is radially nonincreasing, we obtain the following
two-sided heat kernel estimates under (S-2) from Propositions 7.2.4 and

7.2.9.

Corollary 7.2.10. Assume that (S-2) holds. For every T > 0, there exists
C > 1 such that for every fized n > 0, we have that for all (t,x) € (0,T] x R?,

C 't (0, (|z], 1)) exp ( — both(8,(|z],1)))
K (0o, (|2], 7))

< plt,z) < Ct £
Y [0, (|2, )]

exp ( — byth(0q, (|x|, t))), (7.2.8)
where by is the constant in Proposition 7.2.4, and a; and by are the constants
m Lemma 7.2.7.

In the rest of this section, we assume that (S-1) holds and obtain heat
kernel estimates in analogous form to (7.2.8). Note that, under (S-1), by
Proposition 7.2.3, it holds that p(¢,0) = oo for small ¢.
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Proposition 7.2.11. Assume that (S-1) holds. Then, there exist constants
to, C > 0 such that for all (t,x) € (0,to] x R,

plt.x) < Cile| 'K (|z]) exp ( — tu(lz| ™). (7.2.9)

Proof. Let w(r) = K(1)1jp<r<13(r) + K(r )11y (r) for r > 0. By (7.2.1),
Lemma 7.2.6, (A) and (S-1), there exists ¢; > 0 such that c;w(r) satisfies
the assumptions (5.7) and (5.8) in [76]. Therefore, by [76, Proposition 5.6],
there exist ¢y, C' > 0 such that for all £ € (0,tp] and 0 < |z| < 1, the estimate
(7.2.9) holds. Moreover, for t € (0,t,] and |z| > 1, we see that e ®#(#™) ~ 1
and get (7.2.9) from Proposition 7.2.5. O

Combining the above proposition with Proposition 7.2.4, using the semi-

group property, we deduce the following result.

Corollary 7.2.12. Assume that (S-1) holds. For every T > 0, there exist
constants by > 0, C' > 1 such that for all (t,z) € (0,T] x R4,

C™tw(|z]) exp (= both(|a)) < p(t,z) < Ctla| ™K (|2]) exp ( — bath(|z])),

where by is the constant in Proposition 7.2.4.

7.3 Survival probability estimates with ex-
plicit decay

For an open subset D of RY, we denote 7p = inf{t > 0: Y; ¢ D}. In this
section, we obtain two-sided estimates for the survival probability P*(rp > t)
which play a crucial role in factorization of the Dirichlet heat kernel. We first
state the general two-sided estimates for the survival probability in balls

which are established in [76, Proposition 5.2].

Proposition 7.3.1. There exist positive constants ci,co, Cy and Cs which

262



CHAPTER 7. DIRICHLET HEAT KERNEL ESTIMATES FOR LEVY
PROCESSES WITH LOW INTENSITY OF SMALL JUMPS

only depend on the dimension d such that for all t,r > 0,

1 exp ( — 5204th(7")) <P.(mB@r > 1)
< sup P*(Tp(ay) >t) < caexp (— k1 Csth(r)), (7.3.1)
z€B(z,r)

where k1 and ko are the constants in (A). Consequently, it holds that
E*[TB(zm] = / P* (TR > 8)ds = h(r)™"  for r > 0.
0

In the rest of this section, we assume that condition (B) holds true.

Let V¢ be the last coordinate of Y, M; = sup,, Y? and %, be the local
time at 0 for M; — Y, the last coordinate of Y reflected at the supremum.
Define the ascending ladder-height process as H, = Y%_l = My where
£~ is the right continuous inverse of .. Then, the renewal function V of

Y is defined by
V(s) = / P(H, < s)dt, seR.
0

Since the process Y is isotropic unimodal, there are several known properties
for the renewal function. (See, [117, Theorem 1.2], [12, p.74] and [21, Section
1.2].)

Recall that a function u : R? — R is said to be harmonic in D C R¢ if for
every open set B whose closure is a compact subset of D, u(z) = E*[u(Y;,)]

for all z € B.

Lemma 7.3.2. (i) V(s) = 0 for s < 0 and V' is strictly increasing and
unbounded.

(11) V' is subadditive; that is, V(s +1) < V(s)+ V(r) for all s,r € R.

(iii) V is absolutely continuous and harmonic on (0,00) for the process Y,2.

Also, V' is a positive harmonic function for Y2 on (0,00).

According to [22, Proposition 2.4], the relation (7.2.3) can be extended
to include the renewal function. Precisely, there exist comparison constants

which are only depend on the dimension d and the constant x; and ko in
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(7.1.2) such that h(r) ~ ¢ (r~') ~ V(r)~2 for r > 0. Then, by Lemmas 7.2.1
and 7.2.2, we get that

L(r) ~ h(r) ~ () ~d(r 1) ~ V(r)? for 0 <r<1. (7.3.2)

By (7.3.2), we get from Lemma 7.2.2 that there are 1, co, c3, ¢4 > 0 such that

a1v(1/2)
2

‘XTI
c1 <$> < “//((f)) < (§> forall 0 <r<R<1. (7.3.3)

A

and

R\ ™ Lir R azV(1/2)
Cs (?) < L((R>) < ¢y (?> forall 0 <r < R<1. (7.34)

Proposition 7.3.3. The renewal function V' is twice-differentiable on (0, c0),

and there exists ¢c; > 0 such that

V'(r)
rAl

V(r)
rAl’

V"(r)| < e and V'(r)<¢ r > 0.

Proof. Since (A) and (B) hold, the scale-invariant Harnack inequality holds
for Y. (See, [74, Theorem 1.9].) Then, the results follows from [102, Theorem
1.1] and Lemma 7.3.2(iii). O

Define w(zx) := V((z4)") for z € R? Since the renewal function V is
harmonic on (0, c0) for Y, by the strong Markov property, w is harmonic in
R¢ with respect to Y.

Lemma 7.3.4. For all A > 0, there exists ¢; = c1(d,\) > 0 such that for
any r > 0,

sup / W)z — yl)dy < e V().
B(z,r)°

{zeR?: 0<zg<Ar}

Proof. See, the proof of [73, Proposition 3.2]. O
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We define an operator Ly as follows: for € > 0 and x € RY,

cof)= [ ()= Sl = v

Lefla) = PV. [ (1)~ F@)wla = )y =lim L5 (0),

R4

D(Ly) = {f c C3(RY) : P.V. /Rd(f(y) — f(x))v(|z — y|)dy exists in ]R} :

Proposition 7.3.5. For all x € R%, Lyw(z) = 0.

Proof. By Proposition 7.3.3 and Lemma 7.3.4, using [29, Lemma 2.3 and
Theorem 2.11], the proof is essentially the same as the one given in [73,
Theorem 3.3]. We omit details here. O

Using Proposition 7.3.5, by following arguments in the proof of Lemma

3.2.1, we get the following lemma. See [53, Lemma 3.6] for the proof.

Lemma 7.3.6. Let D be a CY' open set in R? with characteristics (Rg, \).
For any Q € 0D and r > 0, we define

he(y) = hrq(y) == V(0p(y))1pnB(Q.r) (Y)-

Then, there exist constants Ry = Ry(Ro, A,¢,d) € (0,(Ry A 1)/2] and ¢; =
c1(Ro, Ay, d) > 1 independent of Q@ such that for every r € (0, Ry), Lyh, is
well defined in D N B(Q,r/4) and

&

V(r)

|Lyh,(z)] < for allx € DN B(Q,r/4).

For [ > 0, we define D;,;(1) :={y € D : dp(y) > 1}
Using Dynkin’s formula with an approximation argument, the Lévy sys-
tem, and (7.3.2), one can follow the arguments given in the below of Lemma

3.2.1 to deduce the following lemma.

Lemma 7.3.7. Let D be a CY' open set in R with characteristics (R, \)

and Ry be the constant in Lemma 7.3.6. Then, there exist constants Ry =
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Ry(Ro, Ay, d) € (0, Ry/16] and ¢y = ¢1(Ro, A,¢,d) > 1 such that for every
r € (0, Re] and x € D with op(x) <r/2,

01_1 1

L(6p(x))2L(r)1/2 < E:[mpnBin)] < L) L2 (7.3.5)
and
, 1/2
P, (YTDmB(z,m € Dint(T/4)> >cp! (%) , (7.3.6)

where z € 0D 1is the point satisfying ép(z) = |z — z|.

Fix T > 0 and D a C%! open set in R? with characteristics (Ro, A). Let
Ry be the constant in Lemma 7.3.7. For t € (0,77, we set

L7H(1/1)

7)™

Ty = Tt(Ta R07 A> ¢7 d) =
For x € D with dp(z) < r;/2, we define an open neighborhood U (z,t) of
x and an open ball W(z,t) C D\ U(z,t) as follows:
Find z, € 0D satisfying dp(x) = |v — z,| and let v, := z, + 2r(z —
zz)/|x — zz|. Then, we have 0p(v,) > 1/ 1+ A2 We define

Tt

Ul t) i= DO B ) and W (et) i= Blor, e

) C D. (7.3.7)
By the construction, one can see that
re/2 < |u—w| <4r, forall ue U(z,t) and w e W(x,t). (7.3.8)

Proposition 7.3.8. Let D be a C'' open set in R? with characteristics
(Ro,A). Let ry and U(x,t) be defined above. For every T >0 and M > 1, it
holds that for allt € (0,T] and v € D with op(x) < ry/2,

P*(tp > t) >~ P*(1p > Mt) ~ P*(Y,

TU (z,t

)eD)

~ ¢ B [Ty ()] (tL(5D($)))71/2>
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where the comparability constants depend only on T, M, 1, Ry, A and d.

Proof. Recall that z, € 0D is the point satisfying dp(z) = | — 2,|. Let

r(r — 2;)
2|z — 2z,

0y = 24 + eD.

Indeed, we have r;/(2v/1 4+ A?) < d6p(o,) < /2. Since we assumed (A) and
(B), the assumptions in [74, Theorem 1.9] are satisfied and hence by that
theorem, the (scale-invariant) boundary Harnack principle for Y holds true.

Therefore, we get

P*(Yey, (. €D) Pr(Yry . € Wi, 1))
P* (Y, , € D) < e <¢ e ,(7.3.9)
v Poz (}/;U(z,t) € D) ]P)oz (}/TU(z,t) € W(a:7 t))

where W (z,t) is the subset of D defined as in just before the proposition.
By the Lévy system, the scaling of v, (7.3.8) and Lemma 7.3.7, we get

TU (z,t)
P*(Yryoy €W {/ / v(|Ys — w|)dwds
(z,t)

~ B[]0 (re)rf = L) "2 L(0p(x)) 2w (r)rf.

Similarly, we also get that P (Y,

TU (z,t)

€ W(z,t) = B [ry@ylv(ror] ~
L(r¢)tv(ry)r?. Then, using the strong Markov property, Chebyshev’s in-
equality, (7.3.9) and Lemma 7.3.7, since L(r;) < ¢!, we obtain

]P"T(TD > t) < IP)x(TU(ac,t) > t) + PI(}/TU(I,t) S D)
<tErun] + o L(re) 2 L(6p(x)) '/
<t () P L(Op(2) P 4 eaL(ry) P L(0p (x)) 2

< st V2 L(6p(x)) Y2

On the other hand, for any a > 0, using the strong Markov property,
(7.3.1), (7.3.2), Lemma 7.3.7 and Markov inequality, we get that

P*(tp > at) > P* (TU(M) < at,y, Dine(r¢/4),

) T TU (z,t)
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Yrows = Yrupa sl < 7i/4 forall 0 < s < at)

> P (TU(m) < at, YTU(z,t) < Dint(rt/4>)PO(7—B(0,n/4) > at)

2 ¢y (PI(YTU(N) € Dint(rt/4)) - IP)‘(]0(7'U(:c,1t) > Clt))

> et (CsEI [TU(@n] — aflEx[TU(r,t)])'

Take a = (2c5') V M. Then by Lemma 7.3.7 and the third inequality in the

above inequalities, we obtain

P*(rp > Mt) > P*(1p > at)

C4
§P (YT_U(;L’,t)

v

€ Dini(ri/4)) > ct_l/QL(ég(a:))_l/Q.

The proof is complete. O

Using Proposition 7.3.8 when dp(z) < /2, and (7.3.1) and (7.3.2) when

dp(x) > r;/2, we arrive at the following result.

Corollary 7.3.9. Let D be a C* open set in R? with characteristics (Ro, A).
For all T > 0, there exists a constant ¢y = c1(d, T, Ry, A) > 1 such that
for everyt € (0,T] and x € D,

et (1 A myﬂ <P'(rp >t) < ¢ (1 A m)m.

Corollary 7.3.10. Let D be a bounded CY* open subset in RY with charac-
teristics (R, \) of scale (r1,79). Then, there exists ¢; = ¢1(Ro, A, 10, d) > 1
such that for allt >0 and x € D,

. 1 1/2
c (1 A w0 2)L(5D(x))) exp ( — /~£204th(r1/2))
1 1/2
(t A Z)L(fSD(’L’)))

<P(rp>t)<ac (1 A exp (= k1 Csth(ra)),

where K1, ky are the constants in (A) and Cy, Cs are the ones in (7.3.1).

Proof. Fix (t,z) € (0,00) x D. If t < 2, then the assertion follows from

268



CHAPTER 7. DIRICHLET HEAT KERNEL ESTIMATES FOR LEVY
PROCESSES WITH LOW INTENSITY OF SMALL JUMPS

Corollary 7.3.9.

Suppose that t > 2. Let 1,2, € R? be the points satisfying B(xy,7r1) C
D C B(zy,73). By the semigroup property, (7.3.1) and Corollary 7.3.9, we
get that

]P)x(TD > t) = / pD(t7x>y)dy S / / pD(lvxaz)pB(zz,m)(t - ]_,Z,y)dZdy
D D JD

< P*(mp > 1)sup P*(T(zy,m) >t — 1)
zeD

exp (— k1Csth(rs)).

C1

= L)

To prove the lower bound, we first assume that dp(z) < Ry/2 with the
constant Ry in Lemma 7.3.7. Without loss of generality, we may assume that
Ry < r1/2. Let z € 0D be the point satisfying dp(z) = |z — z| and 0 be the
shift operator defined as Y; o 5 = Y, ;. Using the strong Markov property,
(7.3.6), the Lévy system and (7.3.1), we have

P (rp > t) > E° [Y

TDOB(Z,RQ)

€ Dii(R2/4), Y,

TB(Yp,Ra/4) ©

9 S B(ZEI,—>,

TDﬁB(z,RQ)

™D © Orpyy mysa) © Orons e ny) > t}

LRQ)W inf P (Y
B L<5D(ZE))1/2 WED;nt(R2/4) TB(w,Rq/4)

> Wé))m exp ( — koCuth(r1/2)).

1 .
€ B(xy, — inf P71, >t
( 1 9 )) yeB(z1,m/2) (TB( 1,71) )

Similarly, if dp(z) > R2/2, then we have

P*(rp > t) > E°[Y,

TB(z,Ry/4)

S B(ZEl,Tl/2>,TD of

>c¢y inf PY(Tp ) > 1) = csexp ((— koCath(r1/2)).
yEB(xl,rl/Z)

> ]

TB(z,Ry/4)

g
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7.4 Small time Dirichlet heat kernel estimates
in C''! open set

In this section, we provide the proof of Theorem 7.1.1. Let T" > 0 be a fixed
constant and D be a fixed C'! open set in R? with characteristics (Rp, A).
Throughout the section, we assume that condition (B) holds, and (C) further
holds if D is unbounded. Then by (A) and (C), we obtain

V(e —y|) ~v(2lz —y|) for z,y € D. (7.4.1)

By (7.2.1), (7.2.2), Corollary 7.2.10 and Corollary 7.2.12, for every 7" > 0,
the following heat kernel estimates hold true for all (¢,2) € (0,7] x R? with

the constant by in Proposition 7.2.4:

(1) If (S-1) holds, then there exist constants ¢; > 1 and by > 0 such that
c; tv(|z|) exp (= both(|z])) < p(t, z) < ertv(|z]) exp ( — bath(|z])). (7.4.2)
(2) If (S-2) holds, then there exist a constant ¢y > 1 such that for all n > 0,

¢y tv(0y(|z], 1)) exp (= both(6,(|z],1)))
< p(t, 1’) < CZtV(eal(’x‘> t)) eXp ( - blth(em(‘x’a t)))? (7'4'3)

where ay, by are the constants in Lemma 7.2.7, and 0,(r,t) = r V [(~(a/t)] !

is defined by (7.2.7).

Before giving the proof of Theorem 7.1.1, we obtain a lower bound of
pp(t, z,y) without (S-1) and (S-2). This result will be used later to obtain

Green function estimates.

Proposition 7.4.1. For every T' > 0, there exist cy,co > 0 depend only on
d,, T, Ry, A such that for all (t,z,y) € (0,T] x D x D,
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x tv(|lz —y|) exp (— erith(|z — y])).

Proof. Let Ry be the constant in Lemma 7.3.7. Fix (¢, z,y) € (0,7] x D x D

and set

Ty = %RQ and  ly(w,y) =71 A Iz ; y| (7.4.4)

Note that, by (7.3.2), (7.3.3) and (7.3.4), we have V (r;) ~ t'/2 and L(r,) ~
h(ry) < t='

Let 2,2, € 0D be the points satisfying dp(z) = |z — 2| and dp(y) =
|y — z,|. By (7.3.3), there exists a constant m > 1 such that

mV (5k) > 6V (k) forall 0<5<1, 0<Fk<1. (7.4.5)

Case 1. Suppose that |z — y| < Ry. Define open neighborhoods of x and

y as follows:

Oz) = B(z, V&V (z —y))]), if 8mV(dp(x)) > V(lz—y|);
D0 Bz, 5lz = yl), it 8mV (6 () < V(e —y)),

and
o) = By, V' &V (e —yD), if 8mV(3p(y) > V(jz - yl);
DN B(zy 5lr —yl), it 8mV (dp(y)) < V(|x —y|).

Then, we see that v € O(z) C D, y € O(y) C D and |u—w| =~ |x —y| for all
u € O(x) and w € O(y). Thus, by the strong Markov property and (7.4.1),

t,x,y) > tP(tow) > t)PY(T >t inf v(lu —w
ot .9) > 1P (o) > O (10 > 1) inf_ - v(ju—wl)

> ctv(|z —y|) Px(T@(m) > t)Py(T@(y) > 1), (7.4.6)
If 8mV (dp(x)) > V(|x — y|), then we see from (7.3.1) and (7.3.2) that

P*(To@) > t) > cexp (— eith(|z — y|)). (7.4.7)
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Next, we assume that 8mV (dp(z)) < V(|2 —y|). Then by the monotonic-
ity of V and (7.4.5), we get |z — y| > 8dp(z). Let p := VeV (li(z,v)))
where ¢ € (0, (8m)~') will be chosen later. Then, by (7.3.2) and (7.3.3), it
holds that that

Vip) = V(i(z,y) ~t"> AV (lz—yl),
h(p) = h(l(z,y)) ~ =V h(|lz - y]). (7.4.8)

Note that we can not expect that p ~ [;(x,y) in general.
If 89p(x) > p, then by (7.3.1) and (7.4.8), we have

IED”"(T@(I) >t) > IP’”””(TB(M,/g) > t) > cexp ( — coth(|x — y|)) (7.4.9)

Indeed, by Lemma 7.2.2(i) and (7.3.2), we see that h(p/8) =< h(4p). Thus,
if l;(z,y) = |x — y|/4, then we get (7.4.9). Otherwise, if l;(z,y) = 7, then
P (To@) > t) 2 1 ~ exp ( — csth(|z — y|)) and hence (7.4.9) holds.

If 89p(x) < p, then there is a piece of annulus A(z) C {w € O(z) : p <
lw — z,| < |x —y|/4} such that dist(A(z),00(x)) > p/8. Recall that 6 is
shift operator. Using the strong Markov property, the Lévy system, (7.3.1),
(7.3.5), (7.3.2) and (7.3.3), we obtain

P*(Tow) > t) > P*(Y, € A(x), To@) 00

TB(zg.p/2)ND

> 1)

TB(za,p/2)ND

> P*(Y,

TB(zz,p/2)ND

c A(I)) zeiﬂfx) PZ(T@(I) > t)

TB<ZIYP/2)HD 0
> CE* [/ / v(|Y; — wl|)dwds| P° (150,58 > t)
0 A(z)

lz—yl/4
> B [reprn) [ (LR)dkep (~ cathilz ~ o)
P

> c(e;'V(p)? = eV (|l = yl)*) Lo (2)) 2V (p) exp (= esth(lz — y])),

where the constant ¢4 > 1 is independent of e. Now, we choose € = (2¢4) ™' A
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(16m)~". Then, we get from (7.4.8) that
P*(To@) > t) > et 2L(5p(x) " exp (= csth(jz — yl)).

Finally, by combining the above inequality with (7.4.7) and (7.4.9), we
deduce that

exp (— cath(|z — y|)).

1/2
P (to@ >1t) > ¢ <1 A m)

By the same way, we get PY(roq,) > t) > ¢(1 A m)l/z exp ( — cath(|z —

y|)). Therefore we get the desired lower bound from (7.4.6).

Case 2. Suppose that |x — y| > Rsy. In this case, we let D, := DN
B(z,Ry/4) and D, := D N B(y, R2/4). By the same argument as (7.4.6),
(7.4.1) and Corollary 7.3.9, we get

po(t,z,y) > tP*(rp, > t)PY(rp, > 1) inf  v(|lu—w|)

UE Dz, weED,

> (1 A myﬂ (1 A my? t(lz — y).

The proof is complete O

Now, we are ready to prove Theorem 7.1.1.

Proof of Theorem 7.1.1. Fix (t,z,y) € (0,7] x D x D and continue using
the notation r; and l;(z,y) in (7.4.4).

(i) By Proposition 7.4.1, it remains to show that there exist ¢; > 0, b3 € (0, b
such that

1 1/2
pp(t,z,y) < ¢ (1 A m) tv(|lz—y|) exp (—bsth(lz—yl)), (7.4.10)

where by is the constant in Proposition 7.2.4. Indeed, if (7.4.10) holds, then
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by the semigroup property and (7.4.2), we get

pD<t7 z, y) = /;pD(t/Z z, Z)pD(t/Qv Y, Z)dZ

<e (1 A m> (1 A m)%p(%t,x, (gt )z

1 2 1 bybs
SCOAZHE@$> @A;aggﬁ)twm—mmm(—@;mm»wm,

which yields the desired upper bound.

o=

Now, we prove (7.4.10). If dp(z) > r/2, then (7.4.10) is a consequence of
(7.4.2) and the trivial bound that pp(t, x,y) < p(t,z —y). Hence, we assume
that dp(x) < r;/2. By (7.3.4), there exists a constant M > 1 such that

ML(16k) > L(k) for all k <1/16. (7.4.11)
By the semigroup property, monotonicity of p(t, -) and Proposition 7.3.8,

pD(tv xz, y)

s(/ +/ )mﬁﬂmdmﬁﬂ%wﬁ
{z€D:|y—z|>|z—y|/2} {z€D:|z—z|>|z—y|/2}
< p(t/2, ]2 — yl/2) (B (rp > 1/2) + BY(rp > 1/2))

< Cp(t/2, |$ — y|/2) (t_1/2L(5D(IE))_1/2 + t_1/2L(5D(y))_1/2).

Thus, if ML(6p(y)) > L(ép(x)), then (7.4.10) holds true. Therefore, we
assume that M L(6p(y)) < L(dp(zx)). Since L is decreasing, it follows from
(7.4.11) that 6p(y) > 166p(z) and hence |z —y| > |y—z.| — |2z — x| > 0p(y) —
dp(z) > 150p(x) where z, € 0D is the point satisfying dp(z) = |z — z|.
Define

Wi =DN Bz l(z,y), Ws={weD:|lw—y| <|r—yl/2}

and Wy := D\ W1 UW3) ={w e D\ W : |w—y| > |z —y|/2}. Then, for
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u € Wi and w € W3, we obtain

ng_ (7.4.12)

lu—w| =z -yl =z -] = |u—z]-ly—w] =
Using the strong Markov property, we get that

pp(t,z,y) = Ex[pp(t — Twy, Yo Y) D Ty < t}
=E"[pp(t — 1wy, Yoy y) 1 Ty < t, Yo, € Wi
+E*[pp(t — 7wy, Yoy, y) : 7wy € (0,2¢/3], Y7, € W
+E*[pp(t — 1wy, Yo, ¥) : Twy € (2¢/3,1), Yr, € Wh
=1 + 1)+ Is. (7.4.13)

First, by the Lévy system and (7.4.12), we get

t
= [ [ (= uhpp(t - s, y)dududs
0 Ws J Wy
t
<v(z - y]/G)/ P* (1w, > 3)/ p(t — s,y —w)dwds. (7.4.14)
0 W3
By (7.4.2) and Lemma 7.2.1, for all s € (0,7] and [ € (0, 2r], we have

/B( l)p(s, y—w)dw < C/o —sL/'(k) exp ( — cgsL(k))dk < cexp ( — CgSh(l)).

(7.4.15)

Since h(r;) ~ 1, it follows that for all s € (0,¢],

cexp (= esshl|z —y))), if |z —y| < 2r;

/‘M&y—wﬂwé
W3

1, if |z —y|>2r

< cexp (— egsh(|z — yl)). (7.4.16)

Using the semigroup property and Proposition 7.3.8, we get from (7.4.15)
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that

P* (7w, >2t/3):/ / pw, (t/3, 2,0)pw, (t/3, v, u)dvdu
wy Jw,

< P¥(rp > t/3)/ p(t/3,u)du
B(0,2l¢(z,y))
<t V2L(5p(x)) e xp (= 37 esth(2(z, y)))
<t V2L(5p(x)) 72 exp (— 37 esth(|z — yl)). (7.4.17)

Then, using (7.4.14), (7.4.1), (7.4.15), (7.4.17) and Proposition 7.3.8, we ob-

tain
t
L <cv(|z— y|)/ P* (1w, > s)/ p(t — s,y —w)dwds
0 Wa
20/3
< av(|lz —y|) exp ( — csth(|z —y])/3) / P*(rp > s)ds
0

t/3
+ cv(|x — y|)P* (Tw, > 2t/3)/0 exp (— essh(|z — y|))ds

< et V2L(6p () V2w (jx — y|) exp (=37 'esth(lz —y|)). (7.4.18)

Secondly, by (7.4.2), (7.4.1), (7.3.2) and Proposition 7.3.8, since p(t, -) is

radially nonincreasing, we get

I, < cP*(Yy, € Wa) sup p(s, |z —yl|/2)
s€[t/3,t)

< P (Vi € Waw(lo — y)( sup sexp (= bosh(lo ~ 1))
sE s

L(r:)' 2 L(0p(x)) " Ptv(|lz — yl) exp (= 37 bath(|z — y]))
if |z —y| > 4ry;
L(lx — y)/*L(6p()) " tv(|lz — y|) exp (= 37 bath(|z — y]))

if |z —y| < 4ry

\

< ct 2 L(0p () Ptu(|lz — y|) exp (— 47 bath (|7 — y])). (7.4.19)

276



CHAPTER 7. DIRICHLET HEAT KERNEL ESTIMATES FOR LEVY
PROCESSES WITH LOW INTENSITY OF SMALL JUMPS

In the last inequality, we used the facts that e > 2e/z for x > 0 and
h(r) > L(r) for r > 0.

Lastly, we note that ¢ — te™ is increasing on (0,1/a) and decreasing
on (1/a,00). Thus, using similar calculation as the one given in (7.4.17), by
monotonicity of p(t, -), (7.4.2), (7.4.1), Proposition 7.3.8 and (7.3.2), we have

I3 < cP* (1w, > 2t/3)v(|x — y\)( sup sexp (— bash(|z — yl)))
5€(0,4/3)
(B0, > 20/3)u([ — yh(fz — ) i bothlz — ) > 3
< ¢ P(rp > 2t/3)v(|lz — y|)texp (— 37 bath(|z — yl))
if both(|z —y|) < 3

\
(

VLG @) 2t — yl) exp (— 3 cath(]z — )

if both(|x —y|) > 3;
VLG () 2t — yl)exp (— 2 bath(]z — )

if both(|z — y|) < 3.

\

Combining the above inequality with (7.4.18), (7.4.19) and (7.4.13), we arrive
at (7.4.10).

(ii) We use the same notations as in the proof of (i) and follow that proof.

(Upper bound) By the semigroup property and (7.4.3), it suffices to

show that there exist positive constants ¢; and by such that

1 1 1/2
e <a(in L)
poltz) = e\ s, )

X tv(0sq0, (|2 — yl, ) exp ( — bath(b34, (|z — yl,t))). (7.4.20)
By the similar argument to the one given in the proof of (i), we may assume
dp(z) < ri/2 and dp(y) > 16dp(z).

To prove (7.4.20), we first assume that |z — y| < [(7'(3a;/t)]~*. In this
case, we have that 0,,(|z —y|,t/3) = [(~'(3a1/t)]*. Then, by the semigroup
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property, (7.4.3) and Proposition 7.3.8, we get

pp(t,z,y) = /DpD(Qt/B,x,z)pD(t/?), z,y)dz < cP*(tp > 2t/3)p(t/3,0)

< Ct_1/2L(5D(x))_l/Qtlj(e&ll(|x - y|7 t)) €xp ( - ?’_lblth(93a1<|'r - y|7 t)))

Now, suppose that |z — y| > [(71(3a;/t)]"!. In this case, we use (7.4.13)
and find upper bounds for I, I and I5. Observe that for all s € (0,7 and
[ € (0,2r], by (7.4.3) and the similar calculation to the one given in (7.4.15),

[ (a1 /s)) exp (= bish([€ (ar/5)]71)),

/B( Py —whd < o i 1< [0 an/s)]
exp ( — cash(l)), if 1 > [0 (a/s)]?
< cexp ( — czsh(0,,(1,9))). (7.4.21)

Then, by using (7.4.21) instead of (7.4.15), we have that for all 0 < s < T,
P* (1w, > s) :/ / pw, (8/3, z,u)pw, (25/3, u, v)dudv
wy Jwy
< es Y2L(6p(x)) V2 exp (= cash(Oa,(Jz — yl, 25/3))).
Hence, by the similar arguments to the ones for (7.4.16) and (7.4.18), we get
I < et ™ YV2L(6p(x) YVt (|z — y|) exp (= csth(lz — yl)).

Next, by (7.4.3), (7.4.1), monotonicity of A and the assumption that |z —
y| > [(71(3a,/t)]7t, we have

sup p(s, |z —yl/2)
selt/3,t)

<t sup [v(bu(z — ul, ) exp (— 37 th(B (2 — 9], 5)))]

selt/3.,t)

< ctv(fe — yl) exp (- erth(le — y)).
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Therefore, by following argument in the proof for (7.4.19), we get
L <t Y2L(6p(x) Y2 tw(|x — y|) exp (— csth(|z —yl)).

Lastly, we note that since |z — y| > [(71(3a; /)] 7},

sup 500y (| = yl. 8)) exp (= brsh(bu (2 = . 5)))|

s€(0,t/3)

= sup [sz/(\a: —y|)exp (= bish(|z — y\))} :
s€(0,t/3)

From this, by the same proof for estimating I3 given in (i), we obtain
Is < et 7 Y2L(6p(2) "Vt (|2 — y|) exp (— coth(|z —yl)).

The proof for the desired upper bound is complete.

(Lower bound) Fix > 0. By Proposition 7.4.1, it remains to prove the
lower bound when |z — y| < [(7'(n/t)]"! A Ry, where Ry is the constant in
Lemma 7.3.7. Let ¢, := [(1(n/t)]"' A Ry and define open neighborhoods of
x and y as follows. Recall that z,, z, € D are the points satisfying dp(x) =
|z — 2| and 0p(y) = |y — 2,|. We define

iy - {BE VTGV smV (ot 2 V(G
B(zs,35G) N D, if 8mV (dp(z)) < V()

and

By, V=V (¢)) if 8mV(6p(y)) = V(&);

B(z,,3¢)ND if 8mV (dp(y)) < V(G),

where m is the constants in (7.4.5). Then x € U(z) C D and y € U(y) C D.
By considering the cases 8mV (6p(x)) > V() and 8mV (0p(z)) > V()

separately, one can see that there exist ¢; > 0 independent of 1, and ¢y =

c2(n) > 0 such that

Uy) =

P (Ty(zy > t) > 02(1 A mf/z exp ( — clth(Q)). (7.4.22)
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Let w, := z, + 4G(x — z;) /| — 2,| € D and define

Gt Gt
Wy = B(w,, —F—— d W:=Bw,, —— D
i= Blun o mg) an (w \/1+A2)C

Then, for all v € U(x) and v € W, we have |u — v| ~ ;. Moreover, since
|z —y| < , we also have |u' —v| ~ ¢, for all v’ € U(y) and v € W. Thus, for
every v € W, by following arguments in the proofs for (7.4.6), (7.3.1) and
(7.4.22), we get

pp(t/2,z,v) > ctv(G)P* (Tue) > t/2)P° (TB(U?Q/@\/W)) > 1/2)

> c<1 A m> 1/2ty(g}) exp (— cath(()).

Similarly, we also have that

1

pp(t/2,v,y) > C(l N m)lmt’/(é}) exp (— cath(()).

By the semigroup property and (A), it follows that

polt,z,y) > / po(t/2. 2, 0)pp (12,0, y)dv
w

1/2 1/2
1/2 1/2
> (1 TAORE) 511) (x))) (11 T 5]1) @))) UG exp (- 26sth(G)).

If ¢, = [¢~'(n/t)]7", then since ¢ is almost increasing, we get £((; 1) ~ t71.
Hence, we are done. If (; = Ry, then ¢ ~ 1 so that t*((¢;")v(¢)exp ( —
209t () =~ ([0 (n/t)] ) exp ( — cth([¢"(n/t)]")) =~ 1. The proof is
complete. O
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7.5 Large time estimates

In this section, we give the proof of Theorem 7.1.3. Let D be a fixed bounded
C1! open subset in R? of scale (ry,73) and 1,7, € R? be the fixed points
satisfying B(xq1,7m1) C D C B(z2,72).

We mention that under condition (L-1), the semigroup (PP);>q of Y,”
may not be compact operators in L?(D), though D is bounded. (See, Propo-
sition 7.2.3.) Hence, in that case, we need some lemmas to obtain the large

time estimates instead of spectral theory.

Lemma 7.5.1. There exists a constant C' > 0 which only depend on the
dimension d such that for all (t,z,y) € (0,00) x D x D,

pp(t,xz,y) < Cp(t/2,|z —y|/2) exp ( — 2’1r§105th(7“2)).

Proof. By the semigroup property, we have

PbD (ta xz, y)
<(/ - )pott/2.5. 2 p0(e/2. 2 )
{zeD:ly—z|>|z—y|/2} {zeD:|z—z|>|z—y|/2}
< p(t/2, |CL’ - y|/2> (Pm(TB(xQJ’Q) > t/2) + ]P)y(TB(Z’z,T’z) > t/2))'
Hence, we get the result from (7.3.1). 0

Define for » > 1,

~ 1 ~ "1
£(r) = sup —— and d(r ::/ ——dk
)= 2 1) =

If (L-1) holds, then by following the proof of Lemma 7.2.2, we see that there
exist positive constants (s and C; which only depend on the dimension d,

and the constants k1 and k5 in (7.1.2) such that

@\(7“)’1 ~{(r) for r>2 (7.5.1)
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and
Ce®(r) <v(r) and h(r~Y) < C:®(r) forall r>2. (7.5.2)

Lemma 7.5.2. Assume that (L-1) holds. Then, there exists a constant by =
bs(d, v, re) > 0 such that for every T > 0, there exist ¢y, ¢y > 0 such that for
allt € [T, 00) and |z| < 21y,

p(t,x) < c1 + cov(|z]) exp ( — bsth(]z])). (7.5.3)

Proof. Fix t € [T,00) and = € R? satisfying |z| < 27y, and let r := |z|.
By [76, (5.4)], the mean value theorem, Lemma 7.2.6, (7.5.1) and (7.5.2), we
have that

po(t, x) < c/ (eftw(\ZI/r) _ e—tw(2\z|/r)) o2,
Rd

<cf dewet| sup e OD|p(alalfr) - (el fr)le
|z|<2r |

z|>2r |2|<y<2|2|

4rg . udfl 00 . udfl )
< crd + ct/ e~ ot/ _—__ qy + ct/ e~ Coteu/r)_—___ o= /Ay
or (u/r) dry O(u/r)
= cr® 4+ I + L. (7.5.4)

Using scaling properties of 7 and EI\D, and (7.5.1), since 7 and ® are increas-

ing, we get that

I, < < ct 6—2*1061&(/13(47’2/7‘)6—2710615‘3(47“2/7') /oo Ud_le_u2/4du
= 5(47“2/7”) Ar
< _ L 2 1C5td(ars/(2r2) y—ertB(1/r) < 65(1/7“)6_‘3175&’(1/”, (7.5.5)
1) =
In the last inequality above, we used the fact that sup,., se=271C6s2(2) ~ o

Next, we set g x(u) == u” exp(—kt®(u)) for u > 2 and v,k > 0. Then
for any v,k > 0, Lq, 1 (u) = (v — ktl?(u)*l)qv_lvk(u). Since ¢ is increasing, it

follows that there exists ug € [2,00) such that ¢ is decreasing on [2, ] and
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increasing on [ug, 00). Thus, for any [a,b] C [2,00) and v, k > 0, it holds that

Slflpb] Gy (1) = gy p(a) V gy i (D). (7.5.6)
u€la,

Note that d + a; > 0 since we assumed (A). Let

_d—i—Oél

d4+a;—p
= €
2

g
e(—V0,d+ d e:
( a;) and € i)

5 (0,1).  (7.5.7)

p:

If @t p, 5 (2) > Qatp,cs(4r2/7), then using a change of the variables, (7.5.6)

—Ce5P(

and the fact that sup,. se 2) < o0, since lis increasing, we get

dra /7 'Ll,d R drg /7 u
I = ctrd/ e W gy = ctrd/ —qd+p’0f< >du
2 u 2

O(u) ultrl(u)
4ray 1 R
(2 Joo outtr Cs®(2)

Hence, we obtain (7.5.3) from (7.5.4), (7.5.5), (7.1.2) and (7.5.2) in this case.
If Qasp,c6(2) < Qa+p,cs(4r2/7), then by a change of the variables, (7.5.1),
(7.5.6), (7.5.7) and scaling properties of ¢ and CT), since € € (0,1), we get that

I 2 /47"2/7“ Qd+on—p, Ce (u) du < ctr /47“2/7" it —p.cCo (u) "
2 ul=Puerl(u) (4o r)l(dry /1) J2 ul=r

du

ul=r

dro 1
< et (L)) (G —pecn(2) V dasenp.ccs (4r2/7)) /
2

a— d+oq— d
< ctr™ 011 (Qasp. 6 (2) V Qasp, ¢y (dra fr)) TP @)

= ctr™ UL/ 1) Qg oy —p, 6 (472/7) = ctl(1)r) exp (— 606t$(4r2/r))

< cl(1/r)exp (— 2’15061521\)(4702/7”)) < cl(1/r)exp (— cthI\D(l/'r)).
Then we get (7.5.3) by using (7.5.4), (7.5.5), (7.1.2) and (7.5.2) again. O

Proof of Theorem 7.1.3. Choose any z,y € D and denote a(zx,y) =
L(0p(x)) "2 L(dp(y))~">.
(i) Let &y € D be a point such that B(xy,7) C D. Using the semigroup
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property, Theorem 7.1.1(i), (7.4.2) and (7.3.1), we get that for all t > T,

T T
t X y / / 7U)PD<t - —,u,v) pD(—,’U’y)dUdU
7”1 (1‘ 3r1) 2 4

T
> cta(z,y / / p(caT, 215)? pp(t — E,u,v)dvdu
B(:):l 4

T
>cga.7cy/ (7’ >t — —)du
( ) B(zl m B(z1 4) 9

T
> cya(x,y) inf  PY(7, >t — §> > csalx,y)e 2Cath(r/2) (7.5.8)

uEB(:c1 L ( 1’3%)

Moreover, since D is a bounded set and L is decreasing, one can follow

the proof of Proposition 7.4.1, after changing the definition of /;(z, y) therein
from r; A (|z — y|/4) to |z — y|/4, and see that for all t > T,

pD(tv z, y)

L(lz —y)\"? [, Lz —y)\"? erth((o—y
= (“ L(%(w))) (“ L<6D<x>>) (fe —yhem 7

L(2ry) \'? L(2ry) \'? erth(le—y
>ot (10 gty) (10 i) e

> cya(z, y)v(jx —y|)e e, (7.5.9)

By combining (7.5.8) with (7.5.9), we get the desired lower bound.
On the other hand, using the semigroup property, Theorem 7.1.1(i), Corol-
lary 7.2.12, Lemma 7.5.1 and Lemma 7.5.2, we get that

T T T
D(tax>y)://pD(Zv$7u)pD(t_Eauav)pD(Zﬂvay)dUdv
D JD

< CgCL(.I, y)€—2_15105th(7“2)

0T |z —ul, 2t=T |u—v|, 0T |v—vy|
x dud
2t — (1 _ 2010)T |(L’ — yl ) 672_1K1C5th(r2)
4 9
< cma(x, y) (1 + l/(|ZL‘ — y|)6_271b5th(‘$—y|)) 6—27151Csth(r2)‘

< cna(z,y) p(
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The proof for (i) is complete.

(ii)-(iii) Since the proof for (iii) is similar and easier, we only give the proof
for (ii).

By Proposition 7.2.3, there exist Ty > 0 such that the semigroup (PP);>1,
consists of compact operators. Let 0 < p; < 1 be the largest eigenvalue
of the operator Pf} and ¢; € L?(D) be the corresponding eigenfunction
with unit L?-norm. For each n > 1, we denote by (i, )r>1 the discrete
spectrum of PT?TO, arranged in decreasing order and repeated according to
their multiplicity and (¢, x)r>1 be the corresponding eigenfunctions with unit
L?*-norm. Then, by the semigroup property, we have y, ; = pu} and ¢, 1 = ¢
for all n > 1. From the eigenfunction expansion of pp(nTp,u,-), Parseval’s

identity and Cauchy inequality, we see that for all n > 1,

o) 2
/ pp(nTh, u, v)dudv = Z“mk (/ ¢n7k(v)dv)
DxD e D

< Sl}ipﬂn,ku%,kué(p)\|1D\|i2(p) = py|DI. (7.5.10)

Besides, for all s > 0 and u € D, using the fact that p(75,0) < oo and
Cauchy inequality, we get that

o) < [ [ polsu2po(Toz 0on(whdzde < @B > ) [ an(w)ae

< ciP(7p > )|l 2(m) 11 L2(D) = crs| D[VA P (1 > ).
Thus, we obtain for all 0 < s < Ty and n > 1,
/ / P“(7p > s)pp(nTy, u,v)P’(1p > s)dudv
pJp

2 2
> py (/D P*(rp > 3)¢1(2)dz> > pf (/D cig |DI7? ¢1(2)2d2)

> cr2uplD) . (7.5.11)

Let t > 4Ty. We set n := | (t —3Ty)/To] > 1 and s := (t — (n+2)Ty)/2 €
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[To/2,Ty). Recall a(z,y) = L(dp(z))"2L(0p(y))~ /2. From the semigroup
property, (7.5.10) and Corollary 7.3.9, using the fact that p(7p,0) < oo, we
deduce that

po(t,z,y) :/ (s, z, 21)pp(To, 21, 22)pp (N, 22, 23)
DxDxDxD
X pp(To, 23, 24)Pp (S, 24, y)d21d2od z3d 2y

< C?4</ pD(*S’val)le) (/ pD(S,Z4,y)dZ4>/ pp(nTy, 22, 23)dzadzs
D D DxD

< 0%4 | DI P (1p > s/2)PY(mp > s/2) < cl5a(:v,y)e_)‘1t,

where A, := T5'log(u;"). Moreover, using Theorem 7.1.1, Corollary 7.3.9
and (7.5.11), we also get that

pD(t, z, y) = / pD(57 xz, Zl)pD((n + 2)T07 21, Zz)PD(S, 22, y)d21d22
DxD

> chG(x,y)/ P> (1p > s/2)pp((n + 2)Ty, 21, 22) P2 (1p > 5/2)dz1dzy

DxD

> cira(z,y)e M.

The proof is complete. O

7.6 Green function estimates

In this section, we give the proof of Theorem 7.1.4. Throughout this section,
we assume that (D) further holds, and D is a Borel subset of R
Using the subadditivity of the renewal function V' and (7.3.2), we get the

following lemma.

Lemma 7.6.1. [53, Lemma 7.1] It holds that for all x,y € D,

(rvmin) (o vein) * (o)
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In particular, if D is bounded then for all x,y € D

L(lz—yD\'"? (, . Lz —yD\"* _ Lz —y))
(“ L(«b(x») (“ L<5D<y>>) = (“ ¢L<5D<x>>L<aD<y>>>'
Since we assumed (A) and (D) hold true, (7.1.1) holds with ap < 2 A d.

Using this fact, we get the following lemma.

Lemma 7.6.2. [53, Lemma 7.2] It holds that

) )
111?1_)1(.‘][1f L(r) = h{an_)lglf ()2 =

Recall that the Green function Gp(z,y) is defined by

GD(I7y> = / PD(ta%y)dt
0

Since the process Y may be recurrent, we can not expect to obtain upper
estimates for Gra(z,y) in general. However, when D is bounded, we can
establish a prior upper estimates for Gp(z,y) regardless of transience of Y

using Lemma 7.5.1.

Lemma 7.6.3. [53, Lemma 7.3] Suppose that D is bounded. Then, there
exists a constant ¢, = c1(d, v, diam(D)) > 0 such that for all z,y € D,

aflle—y ) vz -y
Ol S Gy — 7 ™ Tl — P

Now, we prove Theorem 7.1.4.
Proof of Theorem 7.1.4. By (7.1.2) and Lemma 7.2.1, it suffices to prove
that for all z,y € D,

vz —yl)

Golwy) = (14 folw )Ll = o] ) 1= s

where a(x,y) := L(6p(x))"2L(5p(y)) /2.
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(Lower bound) Using Proposition 7.4.1 in the second line below, the
change of the variables s = th(|x — y|) in the third line, the fact that h(r) >
L(r) for all r > 0 in the fourth line, and Lemma 7.6.1 and (7.3.2) in the fifth
line, we get that

1
GD(x7y) 2/ pD(t7x7y>dt
0

> ev(|x —yl) /01 (1 A m) v (1 A m) v te~erthlle=yvD) gt
RA(CE) /Oh“x—y” (1 Bl y|>>”2 (1 il yD)” .

~ “hllz—yl)? sL(Gp(x)) SL(o(y))

vlle—l) (Bl =uDY"? () Bz =g\ e
2z —))? (M L<5D<x>>> (“ L<5D<y>>) / !
> c(l A [a(z,y)L(|z —y\)])% (7.6.1)

(Upper bound) Using boundary Harnack principle and Lemma 7.6.3,
one can prove the upper bound following the proofs of [87, Theorem 1.2 and
Theorem 6.4] and [94, Theorem 4.6] line by line. Below, we give the main
steps of the proof only.

By the boundary Harnack principle (which holds true under (A) and (B)
by [74, Theorem 1.9]), Lemma 7.6.3 and (7.6.1), we can follow the proof of
[87, Theorem 6.4] to obtain

go(z)gp(y) v(lz —y|)
gp(A)?  h(lx —y[)?’

Gp(z,y) <c (7.6.2)

where gp(2) := Gp(z, z0) Acy for some fixed constant ¢; > 0, zp € D is a fixed
point in D and A € B(x,y), where B(x,y) is given by [87, (6.7)]. Moreover,
we can also follow the proof of [94, Theorem 4.6] to show that for all z € D,

gp(2) ~ L(6p(2)) V2 (7.6.3)

Indeed, let R3 := 0p(z9) A Ry where Ry is the constant in Lemma 7.3.7. If
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6p(z) > Rs/8, then L(0p(2))~ Y2 ~ 1 ~ gp(z) by (7.6.1) and Lemma 7.6.2.
Hence, (7.6.3) holds in this case.

Next, we assume that dp(z) < R3/8. Then |z — zo| > dp(20) — 0p(2) >
7R3/8. Thus, by Lemma 7.6.2, gp(2) ~ Gp(z, 20). Choose w, € 0D satisfying
dp(2) = |z—w,|. Let 2* := w,+ R3(z—w,)/(4|z—w,|) € D and define U(z, 1)
as (7.3.7). Then, by the boundary Harnack principle, (7.3.6), Lemma 7.6.3,
(7.6.1) and Proposition 7.3.8, we get

P*(Yyy,.,, € D)

TU(2,1)
P* (Y, € D)

TU(z,1)

€ D) ~ L(dp(z))~ Y2

gp(z) =~ Gp(z,20) ~ Gp(z", 20)

= IP)Z (YT-U(z,l)
Hence, (7.6.3) is valid.

We see from the definition of B(x,y) that 6p(A) > co|z — y|. Thus, by
combining (7.6.2) and (7.6.3), we get from (7.3.4) that

v(lz —yl) v(lz —yl)
G < L(6p(A)———== < L(|x —
D(ff,y) _c;;a(x,y) ( D( ))h(’Qf—y’)Q _c4a(x,y) <|aj y|)h(|x—y|)2
This together with Lemma 7.6.3 complete the proof. U
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