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Abstract

Maximal and sharp regularity
bounds on averages over curves

Oh, Sewook

Department of Mathematical Sciences
The Graduate School

Seoul National University

In this thesis, we study the problems of characterizing maximal and smooth-
ing bounds on averages over curves in Rd. Maximal and sharp smoothing
estimates for integral transforms defined by averages over submanifolds are
fundamental subjects in harmonic analysis, which have been extensively stud-
ied since the 1970s. Despite the simple geometric structure of curves, max-
imal and smoothing bounds on averages over curves have remained largely
unknown except for those in low dimensions. We make breakthrough contri-
butions to the problems in every dimension. First of all, we prove the optimal
Lp Sobolev regularity estimate for averages over curves in every dimension
d ≥ 3 except for some endpoint cases. This settles the conjecture raised by
Beltran, Guo, Hickman, and Seeger. Secondly, we obtain the local smoothing
estimate of sharp order. As a consequence, we establish, for the first time,
nontrivial Lp boundedness of the maximal averages over curves when d ≥ 4.
Lastly, we prove the maximal bound on the optimal range when d = 3.

Key words: Averaging operator, Maximal bound, Sobolev regularity, Local
smoothing
Student Number: 2016-20240
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Chapter 1

Introduction

The maximal operators associated to averages over geometric objects are im-
portant topics in mathematical analysis. One of the most important examples
is the Hardy-Littlewood maximal function:

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

where B(x, r) is the ball of radius r centered at x in Rd. It is well-known
that M is bounded on Lp for 1 < p ≤ ∞ and M is bounded from L1 to weak
L1. The Maximal bounds imply pointwise convergence. More precisely, L1

to weak L1 boundedness of M proves the classical Lebesgue’s differentiation
theorem: If f ∈ L1

loc(Rd), then

lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y)dy = f(x), for a.e. x.

Let O ⊂ B(0, 1) be a measurable set such that |O| > 0. Then the same results
hold for the maximal operator MOf(x) := supr>0(1/|O|)

∫
O
|f(x − ry)|dy

since MOf . (1/|O|)Mf . This gives a rise to a natural question:

Is it possible to obtain Lp boundedness of the maximal function
when |O| = 0?

Such kind of maximal bounds and related convergence problems have received
much attention for the last half century(see [57]). For example, averaging and
maximal operators associated to hypersurfaces have been most extensively
studied.
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CHAPTER 1. INTRODUCTION

Let S ⊂ Rd be a compact submanifold. Define a measure mt supported
on tS by

〈mt, f〉 :=

∫
S

f(ty)dmS(y)

where mS is the induced Lebesgue measure on S. Now, we set

Atf(x) := f ∗mt(x)

and
Mf(x) := sup

t>0
|Atf(x)|.

The regularity property of At is a fundamental subject in harmonic anal-
ysis, which has been extensively studied since the 1970s. There is an immense
body of literature devoted to the subject (see, for example, [57, 40, 55, 16]
and references therein). However, numerous problems remain wide open. The
regularity property is typically addressed in the frameworks of Lp improving,
Lp Sobolev regularity, and local smoothing estimates, to which Lp bounded-
ness of the maximal average is also closely related(see [57],[53]).

First, we consider regularity property of At for a fixed t 6= 0. For the
purpose it is sufficient to consider A1. The followings are called Lp improving
and Lp Sobolev regularity problems.

Question 1 (Lp improving). What is the optimal q(p) ≥ p for which

‖A1f‖q(p) . ‖f‖p

holds for all f ∈ Lp?

Question 2 (Lp Sobolev regularity). What is the optimal α(p) for which

‖A1f‖Lp
α(p)

. ‖f‖p (1.0.1)

holds for all f ∈ Lp?

Secondly, we consider problems for At with varying t. The followings are
known as local smoothing and maximal estimate problems.

Question 3 (Local smoothing). What is the optimal α(p) for which

‖χ(t)Atf‖Lp
α(p)

(Rd+1) . ‖f‖p (1.0.2)

holds for all f ∈ Lp(Rd) where χ is smooth function defined on (1/2, 4)?

2



CHAPTER 1. INTRODUCTION

Question 4 (Maximal estimate). What is the optimal p for which

‖Mf‖p . ‖f‖p

holds for all f ∈ Lp?

Stein’s remarkable result [54] tells that the decay of m̂S implies optimal
maximal estimates when S is the sphere in Rd for d ≥ 3. After stein’s result,
numerous authors have studied regularity estimates when S is a hypersur-
face. In their result, the geometric property of S plays an important role in
deciding regularity properties of averages over S. The best possible results
are available when S is nondegenerate, that is to say, S has nonvanishing
Gaussian curvature.

When S is nondegenerate, Lp improving, Lp Sobolev, and maximal esti-
mates are well-understood. Littman proved Lp improving: ‖A1f‖q . ‖f‖p if
and only if (p−1, q−1) in the closed triangle with vertices (0, 0), (1, 1), (d/(d+
1), 1/(d+1))). By the works of Miyachi, Seeger, Sogge, and Stein, it is known
that: ‖A1f‖Lpα . ‖f‖p holds if and only if α ≤ min{d−1

p
, (d− 1)(1− 1

p
)}. The

optimal maximal estimates were shown by Stein [54] and Bourgain [10]: M
is bounded on Lp if and only if p > d/(d− 1). The key ingredient was the L2

estimate. By Plancherel’s Theorem, we have ‖A1f‖2 = ‖Â1f‖2. Note that

Â1f(ξ) = m̂S f̂(ξ). Hence, the decay of |m̂S| determines Sobolev regularity
for p = 2. The stationary phase method gives

|m̂S(ξ)| . |ξ|−(d−1)/2

if S is nondegenerate. So A1 maps L2 boundedly to L2
(d−1)/2, and it plays

an important role in proving regularity estimates and associated maximal
estimates.

Local smoothing is more involved. In fact, there is no local smoothing for
p = 2. A natural conjecture is, when S is nondegenerate hypersurface, (1.0.2)
holds for α < d/p when p ≥ 2d/(d−1), which is basically equivalent to Sogge’s
local smoothing conjecture for the wave equation [53] is S is strictly convex.
Recently, Guth, Wang, and Zhang [21] proved the sharp local smoothing
estimate when d = 2 using the sharp square function estimate. When d ≥ 3, it
is currently known that (1.0.2) holds for α < d/p when p ≥ 2(d+1)/(d−1) due
to Bourgain and Demeter’s decoupling theorem [11] and Beltran, Hickman,
and Sogge [5].
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CHAPTER 1. INTRODUCTION

When S is a degenerate hypersurface, regularity problems become more
complicated. The problem is better understood when S is a convex hyper-
surface of finite type. In this case, Bruna, Nagel, and Wainger [6] proved the
sharp decay of |m̂S| using nonisotropic balls associated to S. By obtaining a
variant of the decay estimate in [6], Nagel, Seeger, and Wainger [36] proved
maximal estimates for convex hypersurfaces under a certain assumption. In
R3, Iosevich, Sawyer, and Seeger [25] proved the sharp Lp improving, sharp
Lp Sobolev, and optimal maximal estimates. For general degenerate hyper-
surfaces, using Newton polyhedra, Ikromov, Kempe, and Muller [24] and
Buschenhenke, Dendrinos, Ikromov, and Muller [2] proved the sharp maxi-
mal bounds for averages over hypersurfaces of finite type in R3 where both
principal curvatures of S do simultaneously vanish.

When the dimension of S is less than d − 1, there is no general result
unless S is a curve. When S is a nondegenerate curve (i.e. S = γ satisfies
(1.1.1)), the Lp improving property of A1 now has a complete characteriza-
tion. However, Lp Sobolev and local smoothing estimates are far less well
understood. Recently, there has been progress in low dimensions d = 3, 4
([44, 4]), but it does not seem feasible to extend the approaches in recent
works to higher dimensions.

In this thesis, we undertake the study of Lp-Sobolev, local smoothing,
and Lp maximal bounds for the averaging operators defined by curves.

1.1 Main results

From now on, we assume that S is a smooth curve. Let I = [−1, 1] and γ be
a smooth curve from I to Rd. We have the explicit form of mt when S = γ:

〈mt, f〉 :=

∫
f(tγ(y))ψ(y)dy

where ψ ∈ C∞0 ((−1, 1)). And Atf is given by

Atf(x) =

∫
I

f(x− tγ(s))ψ(s)ds.

We study the above-mentioned problems on At under the assumption that
γ is nondegenerate, that is to say,

det(γ′(s), · · · , γ(d)(s)) & 1, ∀s ∈ I. (1.1.1)

4



CHAPTER 1. INTRODUCTION

If γ is nondegenerate, Van der corput’s lemma gives

|m̂1(ξ)| . |ξ|−1/d. (1.1.2)

The bound yields the optimal L2–L2
1/d estimate for A1. However, for the

sharp Lp smoothing estimate (p > 2) we need to exploit finer properties of
m̂t.

When d = 2, we have rather a precise asymptotic expansion of m̂t, which
makes it possible to relate At to other forms of operators. In fact, one can use
the estimate for the wave operator (e.g., [50, 59, 30]) to obtain local smooth-
ing estimate. However, in higher dimensions d ≥ 3, to compute m̂t explicitly
is not a simple matter. Even worse, this becomes much more complicated
as d increases since one has to take into account the derivatives γ(k)(s) · ξ,
k = 2, . . . , d. To overcome the difficulty, we prove regularity estimates under
the local nondegeneracy assumption (Theorem 3.1.2 and 4.0.1) and express
the averaging operator as a sum of adjoint restriction operators(Lemma 5.4.2
and 5.4.4).

The followings are the main results of this thesis.

� Optimal Sobolev regularity estimate

� Sharp local smoothing estimate

� Maximal estimate on the optimal range when d = 3

� Maximal estimate when d ≥ 4.

We close the introduction by summarizing our main results.

Lp Sobolev regularity. By the standard duality argument, (1.0.1) for p ≥ 2
implies Sobolev regularity estimate for 1 < p ≤ 2. Indeed, (1.0.1) for 1 < p <
∞ implies ‖A1f‖Lp′

α(p)

. ‖f‖p′ where p′ is the conjugate exponent of p.

Let p ≥ 2. When d = 2, (1.0.1) holds if and only if α ≤ 1/p (e.g., see [14]).
When d ≥ 3, the first positive result for sharp Sobolev regularity was proved
by Pramanik and Seeger. They proved for smooth nondegenerate curve γ in
R3, A1 maps Lp boundedly to Lp1/p for large p. The order 1/p is sharp in

that Lp Sobolev estimate fails if α > 1/p (see section 4.3). And Lp → Lp1/p
Sobolev estimate fails if p < 2d−2 (see [4]). Naturally, we have the following
conjecture:

5



CHAPTER 1. INTRODUCTION

Conjecture 1. Let d ≥ 2, p ≥ 2, and γ is a smooth nondegenerate curve in
Rd. Then A1 maps Lp boundedly to Lp1/p if p > 2d− 2.

When d = 3, the conjecture was verified by the conditional result of
Pramanik and Seeger [44] and the decoupling inequality due to Bourgain and
Demeter [11] (see [39, 59] for earlier results). The case d = 4 was recently
obtained by Beltran et al [4]. Our first result proves the conjecture for every
d ≥ 5.

Theorem 1.1.1. Let p ≥ 2, and γ is a smooth nondegenerate curve in Rd.
Then A1 maps Lp boundedly to Lp1/p if p > 2d− 2.

Interpolation with the L2 → L2
1/d estimate gives (1.0.1) for α < (p +

2)/(2dp) when 2 < p ≤ 2(d − 1). It is also known that (1.0.1) fails if α >
α(p) := min(1/p, (p + 2)/(2dp)) (see [4, Proposition 1.2]). Thus, only the
estimate (1.0.1) with α = α(p) remains open for 2 < p ≤ 2(d − 1). Those
endpoint estimates seem to be a subtle problem. Our argument provides
alternative proofs of the previous results for d = 3, 4. Theorem 1.1.1 remains
valid as long as γ ∈ C2d(I) (see Theorem 4.0.1). However, we do not try to
optimize the regularity assumption.

Local smoothing estimate. Compared with the Lp Sobolev estimate, the
additional integration in t is expected to yield extra smoothing. Such a phe-
nomenon is called local smoothing, which has been studied for the dispersive
equations to a great extent(e.g., see [52, 17]). However, the local smoothing
for the averaging operators exhibits considerably different nature.

In particular, there is no local smoothing when p = 2. Besides, a bump
function example shows α ≤ 1/d. As we shall see later, the estimate (1.0.2)
fails unless α ≤ 2/p (Proposition 3.7.1). So, it seems to be plausible to
conjecture following:

Conjecture 2. Let p ≥ 2. Suppose γ is a smooth nendegenerate curve in Rd.
Define Af(t, x) = χ(t)At(x) where χ is smooth function defined on (1/2, 4).
Then A maps Lp(Rd) boundedly to Lpα(Rd+1) if α < min{2/p, 1/d}.

If the conjecture holds, for p > d there exists α > 1/p such that A maps
Lp(Rd) boundedly to Lpα. Therefore, Conjecture 2 implies that M is bounded
in Lp for p > d. This gives maximal bound on the optimal range.

For d = 2, the conjecture follows by the recent result on Sogge’s local
smoothing conjecture for the wave operator ([53, 62, 31, 11]), which is due to

6



CHAPTER 1. INTRODUCTION

Guth, Wang, and Zhang [21]. When d = 3, some local smoothing estimates
were utilized by Pramanik and Seeger [44] and Beltran et al. [3] to prove
Lp maximal bound. Nevertheless, for d ≥ 3, no local smoothing estimate up
to the sharp order 2/p has been known previously. We prove following local
smoothing estimate with sharp order.

Theorem 1.1.2. Let d ≥ 3. Suppose γ is a smooth nendegenerate curve
in Rd. Define Af(t, x) = χ(t)At(x) where χ is smooth function defined on
(1/2, 4). Then A maps Lp(Rd) boundedly to Lpα(Rd+1) if p ≥ 4d − 2 and
α < 2/p.

Theorem 1.1.2 remains valid as long as γ ∈ C3d+1(I) (see Theorem 3.1.2).

Lp maximal bound. The local smoothing estimate (1.0.2) has been of par-
ticular interest in connection to Lp boundedness of the maximal operator
Mf(x) = sup0<t |Atf(x)| ([35, 50, 44, 3]) and problems in geometric mea-
sure theory (see, e.g., [62]). If the estimate (1.0.2) holds for some α > 1/p,
Lp boundedness of M follows by a standard argument relying on the Sobolev
embedding ([44]).

The circular maximal theorem was proved by Bourgain [10] (also, see
[53, 35, 48, 50, 30]). Afterwards, a natural question was whether the maximal
operator M under consideration in the current paper is bounded on Lp for
some p 6= ∞ when d ≥ 3. In view of an interpolation argument based on
L2 estimate ([54]), proving Lp boundedness of M becomes more challenging
as d increases since the decay of the Fourier transform of mt gets weaker
(see (1.1.2)). Though the question was raised as early as in the late 1980s,
it remained open for any d ≥ 3 until recently. In R3, the first positive result
was obtained by Pramanik and Seeger [44] and the range of p was further
extended to p > 4 thanks to the decoupling inequality for the cone [11].
The maximal estimate in [44] was shown by exploiting Lp local smoothing
phenomena of the averaging operator. However, being compared with the
average over hypersurfaces or curves in R2, the Lp local smoothing property
of At is not well understood.

We instead try to make use of Lp-Lq type smoothing estimate which
has a close connection to the adjoint restriction estimate. Usefulness of such
estimates has been manifested in the study of Lp improving property of the
localized circular and spherical maximal functions [50, 30] (also see [1, 46, 7]).
We prove Lp boundedness of M on the optimal range in R3:

7
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Theorem 1.1.3. Let d = 3 and γ is a smooth nondegenerate curve. Then
M is bounded on Lp if and only if p > 3.

The same result was independently obtained by Beltran et al. [3]. How-
ever, no nontrivial Lp boundedness of M has been known in higher dimen-
sions. The following establishes existence of such Lp maximal bound for every
d ≥ 4.

Theorem 1.1.4. Let d ≥ 4. Suppose γ is a smooth nondegenerate curve.
Then, for p > 2(d− 1) we have

‖Mf‖Lp(Rd) ≤ C‖f‖Lp(Rd). (1.1.3)

Theorem 1.1.4 is a consequence of Theorem 1.1.2. Since the estimate
(1.0.2) with p = 2 and α = 1/d holds true, interpolation gives (1.0.2) for
some α > 1/p when 2d − 2 < p < ∞. So, the maximal estimate (1.1.3)
follows, as mentioned before, by a standard argument. A natural conjecture
is that M is bounded on Lp if and only if p > d. M can not be bounded on
Lp if p ≤ d (see section 5.7).

Curves of maximal type. By the simple geometric feature of curve, we can
get regularity estimates for degenerate cases. We say a smooth curve γ from I
to Rd is of finite type if there is an ` such that span{γ(1)(s), . . . , γ(`)(s)} = Rd

for each s ∈ I. The type at s is defined to be the smallest of such ` and the
maximal type is the supremum over all s ∈ I of the type at s.

Assume that γ is a curve of maximal type n ≥ d. In a small neighborhood
for a fixed point s0, we can consider γ as a perturbation of (c1s

n1 , . . . , cds
nd)

for some constants ci and integers ni. Near a degenerate point, dyadic de-
composition in s and scaling make curve nondegenerate. Thus, regularity
estimates for nondegenerate curves imply similar results for curves of maxi-
mal type (see section 4.4). So we have following corollaries.

Corollary 1.1.5. Let d ≥ 3, ` > d and 2 ≤ p <∞. Suppose γ is a curve of
maximal type `. Then A1 maps Lp boundedly to Lpα for α ≤ min

(
α(p), 1/`

)
if p 6= ` when ` ≥ 2d − 2, and if p ∈ [2, 2`/(2d − `)) ∪ (2d − 2,∞) when
d < ` < 2d− 2.

By interpolation (1.0.1) holds for α < min
(
α(p), 1/`

)
if p = ` when ` ≥

2d−2, and if 2`/(2d− `) ≤ p ≤ 2d−2 when d < ` < 2d−2. These estimates
are sharp. Since a finite type curve contains a nondegenerate subcurve and

8



CHAPTER 1. INTRODUCTION

the L2 → L2
1/` estimate is optimal, (1.0.1) fails if α > min

(
α(p), 1/`

)
. When

` ≥ 2d − 2, Corollary 1.1.5 completely answers the problem of the Sobolev
regularity estimate (1.0.1). In fact, the failure of L` → L`1/` bound was shown

in [4] using Christ’s example [14]. By [51, Theorem 1.1] Corollary 1.1.5 also
gives H1(Rd) → L1,∞(Rd) bound on the lacunary maximal function f →
supk∈Z |f ∗m2k | whenever γ is of finite type.

Corollary 1.1.6. Let d = 3 and ` > d. Suppose γ is a curve of maximal
type `. Then M is bounded in Lp if and only if p > max(`, 3).

Corollary 1.1.7. Let d ≥ 4 and ` > d. Suppose γ is a curve of maximal
type `. Then M is bounded in Lp if p > max(`, 2(d− 1)).

This gives the optimal maximal estimate associated to averages over
smooth curves of maximal type ` when ` ≥ 2(d− 1).

9



Chapter 2

Preliminary

2.1 Decoupling inequality

By Plancherel’s theorem, if {fj}j have disjoint fourier support, then

‖
∑
j

fj‖2 ≤ (
∑
j

‖fj‖2
2)1/2.

Indeed, the above inequality is equality. Lp analogue of the above inequality
is a useful tool for Lp estimate. However, for Lp analogue, disjoint fourier
support condition doesn’t ensure that for some constant C independent of
]{j},

‖
∑
j

fj‖p ≤ C(
∑
j

‖fj‖2
p)

1/2.

We call this kind of inequality `2Lp decoupling inequality. The Littlewood-
Paley inequality and Minkowski inequality give a kind of example of decou-
pling inequality. In this section, we are concerned with decoupling inequality
which is needed for proving regularity estimates.

Decoupling inequality has various applications. One of the typical exam-
ples is the sharp local smoothing estimates. The study in this direction was
initiated by Wolff [62]. Wolff proved the sharp local smoothing estimate for
the wave equation by showing sharp decoupling inequality for light cone in
R3. Later, Bourgain and Demeter extended Wolff’s result on the optimal
range.

Let Γ = {(ξ1, ξ2, ξ3) : 1/2 ≤ ξn = |(ξ1, ξ2)| ≤ 1}. And define Γ(δ) as
a δ-neighborhood of Γ. Bourgain and Demeter proved the following sharp
decoupling inequality:

10
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Theorem 2.1.1 (Bourgain, Demeter). Let p ≥ 6 and supp f̂ ⊂ Γ(δ2). Then
for ε > 0, there exist C such that

‖f‖p ≤ Cδ−1+ 4
p
−ε(
∑

Θ

‖fΘ‖pp)1/p, (2.1.1)

where supp f̂Θ ⊂ Θ and {Θ} is a partition of Γ(δ2) satisfying angular length
of each Θ is δ.

Bourgain and Demeter also proved analogue of decoupling inequality for
nondegenerate hypersurfaces and cones in all dimensions. Later, Bourgain,
Demeter, and Guth obtained sharp decoupling inequality for nondegenerate
curve in optimal range of p. In this paper, we use variant version of decoupling
inequality in [12].

We denote rN◦ (s) = (s, s2/2!, . . . sN/N !), and consider a collection of
curves from I to RN which are small perturbations of rN◦ :

C(ε◦;N) := {r ∈ C2N+1(I) : ‖r− rN◦ ‖C2N+1(I) < ε◦}.

For r ∈ C(ε◦;N) and s ∈ I, we define

Nr(s, δ) =
{

r(s) +
∑

1≤j≤N

ujr
(j)(s) : |uj| ≤ δj, j = 1, . . . , N

}
.

Let s1, . . . , sl ∈ I be δ-separated points, i.e., |sn− sj| ≥ δ if n 6= j, such that⋃l
j=1(sj − δ, sj + δ) ⊃ I. Then, we set

θj = Nr(sj, δ), 1 ≤ j ≤ l.

The following is due to Bourgain, Demeter, and Guth [12] (also see [19]).

Theorem 2.1.2 (Bourgain, Demeter, Guth). Let 0 < δ � 1. Suppose r ∈
C(ε◦;N) for a small enough ε◦ > 0. Then, if 2 ≤ p ≤ N(N + 1), for ε > 0
we have ∥∥ ∑

1≤j≤l

fj
∥∥
Lp(RN )

≤ Cεδ
−ε( ∑

1≤j≤l

‖fj‖2
Lp(RN )

)1/2
(2.1.2)

whenever supp f̂j ⊂ θj for 1 ≤ j ≤ l.

11
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The constant Cε can be taken to be independent of particular choices of
the δ-separated points s1, . . . , sl. One can obtain a conical extension of the
inequality (2.1.2) by modifying the argument in [11] which deduces the decou-
pling inequality for the cone from that for the paraboloid (see [4, Proposition
7.7]). Let us consider conical sets

θj = {(η, ρ) ∈ RN × [1, 2] : η/ρ ∈ θj}, 1 ≤ j ≤ l.

Corollary 2.1.3. Let 0 < δ ≤ 1 and let r ∈ C(ε◦;N) with a small enough
ε◦ > 0. Then, if 2 ≤ p ≤ N(N + 1), for ε > 0 we have∥∥ ∑

1≤j≤l

Fj
∥∥
Lp(RN+1)

≤ Cεδ
−ε( ∑

1≤j≤l

‖Fj‖2
Lp(RN+1)

)1/2
(2.1.3)

whenever supp F̂j ⊂ θj for 1 ≤ j ≤ l.

Proof of Corollary 2.1.3. Let us set a = δε0 . We first consider the decoupling
inequality with a truncated conic covering of small height. For the purpose
we denote

N a

r (J, δ) = {(η, ρ) ∈ RN × [ρ0, ρ0 + a] : η/ρ ∈ Nr(J, δ)},

where J is a subinterval of I. Suppose supp F̂ ⊂N a

r (I, δ), then the projection

of supp F̂ to η-plane is contained in ρ0r + O(a) ⊂ Nρ0r(I, Ca
1
N ) for some

C > 0. Let C a(Ca 1
N ) denote a conic Ca

1
N -adapted covering of ρ0r with height

a. Since ρ0 ∈ [1, 2], by (2.1.16) and rescaling we have∥∥F∥∥
Lp(RN+1)

≤ Cεa
− ε
N

( ∑
θ∈Ca(Ca

1
N )

‖Fθ‖2
Lp(RN+1)

) 1
2 (2.1.4)

whenever F =
∑

θ∈Ca(Ca
1
N )
Fθ and F̂θ is supported in θ. The key observation

is that the set θ can be projected into a hypersurface P so that the projection
of θ is contained in a Ca

2
N -(anisotropic) neighborhood of a nondegenerate

curve contained in P. This allows us to decompose further Fθ into functions

which are Fourier supported in smaller sets belonging to a Ca
2
N -adapted

covering with height a.
To see this, we consider the conic set

N a

r ([s0, s0 + l], δ)

12
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with a ≤ l ≤ Ca
1
N and its projection to a hyperplane. Let us denote by

P0 the plane which contains ρ0(r(s0), 1) and is perpendicular to the vector
ρ0(r(s0), 1). Also, denote by Π0 the orthogonal projection to P0 and set

r0(s) = Π0ρ0(r(s), 1) (2.1.5)

for s0 ≤ s ≤ s0 + l. Then, it follows that r0(s0) = ρ0(r(s0), 1) = Π0(0, 0) and
r0 is a nondegenerate curve in P0 if l is small enough. We claim

Π0N
a

r ([s0, s0 + l], δ) ⊂ Nr0([s0, s0 + l], Ca
1
N l) (2.1.6)

for some constant C > 0 as long as δ ≤ a
1
N l. To see this, let ξ ∈ Π0N

a

r ([s0, s0+
l], δ). Since Π0 is an affine map, we may write Π0v = Mv+r0(s0) for a matrix
M. Thus, we have

ξ = Π0ρ(r(s) + v, 1) = Π0ρ(r(s), 1) + Π0ρ(v, 0)− r0(s0)

for some s ∈ [s0, s0 + l], ρ ∈ [ρ0, ρ0 + a], and v ∈ N 0
r (s, Cδ). We also note

that Π0ρ(v, 0)− r0(s0) ∈ N 0
r0

(s, Cδ) because v ∈ N 0
r (s, Cδ). So, ξ − r0(s) =

Π0ρ(r(s), 1) − Π0ρ0(r(s), 1) + u for some u ∈ N 0
r0

(s, Cδ). Using (2.1.5) and
Π0v = Mv + r0(s0), we have

ξ − r0(s) = ρ−1
0 (ρ0 − ρ)

(
r0(s)− r0(s0)

)
+ u.

Since r0(s0) = ρ0(r(s0), 1) and r0 is nondegenerate, using Taylor’s theorem
we see r0(s)− r0(s0) ∈ N 0

r0
(s, Cl) if s ∈ [s0, s0 + l]. Hence, it follows that

ρ−1
0 (ρ− ρ0)

(
r0(s)− r0(s0)

)
∈ N 0

r0
(s, Ca

1
N l)

since ρ ∈ [ρ0, ρ0 +a] ⊂ [1, 2]. Therefore, ξ−r0(s) ∈ N 0
r0

(s, Ca
1
N l). This proves

the claim (2.1.6).

In particular, if J is an interval of length l = a
1
N , the projection of the

set N a

r (J, a
1
N ) in an appropriate direction is contained in Nr0(J,Ca

2
N ) for

a nondegenerate curve r0. Putting this together with (2.1.16), we obtain

a decoupling inequality for each Fθ, θ ∈ C
a
(Ca

1
N ),* which decouples into

functions Fourier supported in a Ca
2
N -adapted covering. This observation

combined with (2.1.4) gives

‖F‖Lp(RN+1) ≤ C2
ε a
− 1+2

N
ε
( ∑
θ
′∈Ca(Ca

2
N )

‖F
θ
′‖2
Lp(RN+1)

) 1
2 .

*By finite decomposition and harmless affine transforms we may assume r0 ∈ C(ε◦) for
a sufficiently small ε◦ > 0.

13
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Using (2.1.6) and (2.1.16), we can continue this up to n-th stage as long as

a
n
N ≥ δ > a

n+1
N , that is to say, ε0n ≤ N < ε0(n+ 1). So, we get

‖F‖Lp(RN+1) ≤ Cn
ε a
− ε
N

(1+···+n)
( ∑
θ∈Ca(Ca

n
N )

‖Fθ‖2
Lp(RN+1)

) 1
2 ,

where F =
∑

θ∈Ca(Ca
n
N )
Fθ and supp F̂θ ⊂ θ. Since a = δε0 , further decom-

posing θ ∈ Ca(Ca n
N ) into as many as O(δ−Cε0) slabs contained in Ca(δ), we

obtain

‖F‖Lp(RN+1) ≤ CC/ε0
ε δ−Cεε

−1
0 −Cε0

( ∑
θ∈Ca(δ)

‖Fθ‖2
Lp(RN+1)

) 1
2 .

Finally, let C = {θ1, . . . , θk} be a δ-adapted covering of r ∈ C(ε◦) and
C = {θ1, . . . , θk} be the associated conic covering. Further decomposition of
the conic set θk into as many as O(a−1) truncated conic coverings of height a
yields the desired inequality at the expense of a δ−ε0 factor. This gives (2.1.3)
with ε = Cε0 if we take ε = ε20.

The decoupling inequality (2.1.3) dose not fit the symbols which appear
later when we decompose a (see Section 3.5.1 and Section 4.2). As to be seen
later, those symbols are related to the slabs of the following form.

Definition 2.1.4. Let N ≥ 2 and r̃ ∈ C(ε◦;N + 1). For s ∈ I, we denote by
s(s, δ, ρ; r̃) the set of (τ, η) ∈ R× RN which satisfies

ρ−1 ≤ |〈r̃(N+1)(s), (τ, η)〉| ≤ 2ρ,

|〈r̃(j)(s), (τ, η)〉| ≤ δN+1−j, j = N, . . . , 1,

The same form of decoupling inequality continues to be valid for the
slabs s(s1, δ, 1; r̃), . . . , s(sl, δ, 1; r̃). Beltran et al. [4, Theroem 4.4] showed,
using the Frenet–Serret formulas, that those slabs can be generated as conical
extensions of the slabs given by a nondegenerate curve in RN . Thus, the
following is a consequence of Corollary 2.1.3 and a simple manipulation using
decomposition and rescaling.

Corollary 2.1.5. Let 0 < δ ≤ 1, ρ ≥ 1, and r̃ ∈ C(ε◦;N + 1) for a small
enough ε◦ > 0. Denote sj = s(sj, δ, ρ; r̃) for 1 ≤ j ≤ l. Then, if 2 ≤ p ≤

14
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N(N + 1), for ε > 0 there is a constant Cε = Cε(ρ) such that∥∥ ∑
1≤j≤l

Fj
∥∥
Lp(RN+1)

≤ Cεδ
−ε( ∑

1≤j≤l

‖Fj‖2
Lp(RN+1)

)1/2
(2.1.7)

whenever supp F̂j ⊂ sj for 1 ≤ j ≤ l.

Proof of Corollary 2.1.5. In order to prove Corollary 2.1.5, it suffices to show
that for ρ = 1, s1, . . . , sl form a conic δ-adapted covering of a nondegenerate
curve r in RN . Then Corollary 2.1.5 immediately follows from Corollary 2.1.3.

By finite decomposition and translation, we may assume that r̃ is defined
on the interval [−c◦, c◦] for a small enough c◦ > 0. Let

(τ, ξ) = (τ, ξ1, . . . , ξN) ∈ s(s, δ, 1; r̃), (τ, ξ) ∈ R× RN

with [s − δ, s + δ] ⊂ [−c◦, c◦]. Since r̃ ∈ C(ε◦;N + 1), the second condition
in definition of s(s, δ, 1; r̃) guarantees |ξN | ∼ 1. We need only to show that
there exists a smooth nondegenerate curve r such that

ξ−1
N (τ, ξ1, . . . , ξN−1) ∈ r(s) +N 0

r (s, Cδ) (2.1.8)

for s ∈ [δ − c◦, c◦ − δ]. Let {e1(s), . . . eN+1(s)} be the Frenet (N + 1)-frame
given by the Gram-Schmidt process of the vectors {r̃(1)(s), . . . , r̃(N+1)(s)}.
Then, if ε◦ > 0 is small enough, by definition of s(s, δ, 1; r̃) we have

|〈ej(s), (τ, ξ)〉| ≤ 2δN+1−j, j = 1, . . . , N, 2−2 ≤ |〈eN+1(s), (τ, ξ)〉| ≤ 2.
(2.1.9)

Since r̃ ∈ C(ε◦;N + 1), ‖ej(s) − ej‖∞ ≤ C(ε◦ + c◦). We set eN+1(s) =
(a1(s), . . . , aN+1(s)), then we have |aN+1(s)| ∼ 1. Define a curve r : [−c◦, c◦]→
RN+1 by

r(s) = (aN+1)−1eN+1(s). (2.1.10)

Note that rN+1(s) = 1 and consider r ∈ RN which is given by

r(s) = (r(s), 1).

We now show (2.1.8) holds with r in the above. To this end we recall the
Frenet-Serret formula:

(ej)′(s) = −κj−1(s)ej−1(s) + κj(s)e
j+1(s), 1 ≤ j ≤ N + 1, (2.1.11)

15
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where κ0(s) = κN+1(s) = 0 and κj(s) = 〈(ej)′(s), ej+1(s)〉, j = 1, . . . , N .
We note r

′ ∈ span{eN , eN+1} and (e`)
′ ∈ span{e`−1, e`+1} for 2 ≤ ` ≤ N .

Using (2.1.10), we see r(j) ∈ span{eN+1−j, . . . , eN+1} and 〈r(j), eN+1−j〉 6= 0.
Thus, r(1), . . . , r(N) are linearly independent, so r(1), . . . , r(N) span RN × {0}
because r(j) = (r(j), 0) ∈ RN×{0}. Therefore, for some uj ∈ R, j = 1, . . . , N ,
we can write

ξ−1
N (τ, ξ)− r(s) =

N∑
j=1

uj r(j)(s). (2.1.12)

By (2.1.11), 〈r(1), eN〉 = −(aN+1)−1κN , 〈r(2), eN−1〉 = (aN+1)−1κNκN−1,
and so on. Since |aN+1| ∼ 1 and |κ`| ∼ 1 for 1 ≤ ` ≤ N , we have

|〈r(j), eN+1−j〉| ∼ 1, 0 ≤ j ≤ N. (2.1.13)

Since r(j) ∈ span{eN+1−j, . . . , eN+1}, taking inner product against e1(s) on
both sides of (2.1.12), we have |〈ξ−1

N (τ, ξ), e1(s)〉| = |uN〈r(N), e1(s)〉| ∼ |uN |
by (2.1.13). Therefore, (2.1.9) gives |uN | . δN . In the same manner we also
get |uj| . δj for j = N−1, . . . , 1. This therefore gives (2.1.12) with |uj| . δj,
j = N, . . . , 1, which proves (2.1.8).

For our purpose, we use a modified form. If p∗ ∈ [2, N(N + 1)], then we
have ∥∥ ∑

1≤j≤l

Fj
∥∥
Lp(RN+1)

≤ Cεδ
−1+ 2+p∗

2p
−ε( ∑

1≤j≤l

‖Fj‖pLp(RN+1)

)1/p

for p ≥ p∗. The case p = p∗ follows by (2.1.7) and Hölder’s inequality.
Interpolation with the trivial `∞L∞–L∞ estimate gives the estimate for p ≥
p∗. We choose different p∗ for the particular purposes. In fact, for the local
smoothing estimate we take p∗ = 4N − 2 to have∥∥ ∑

1≤j≤l

Fj
∥∥
Lp(RN+1)

≤ Cεδ
−1+ 2N

p
−ε( ∑

1≤j≤l

‖Fj‖pLp(RN+1)

)1/p
(2.1.14)

for p ≥ 4N − 2 (see Section 3.5.2). For the Lp Sobolev regularity estimate,
we observe∥∥ ∑

1≤j≤l

Fj
∥∥
Lp(RN+1)

≤ Cε0δ
−1+N+1

p
+ε0
( ∑

1≤j≤l

‖Fj‖pLp(RN+1)

)1/p
(2.1.15)
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holds for some ε0 = ε0(p) > 0 if 2N < p < ∞. Indeed, we need only to
take p∗ > 2N close enough to 2N . The presence ε0 in (2.1.15) is crucial for
proving the optimal Sobolev regularity estimate (see Proposition 4.1.4).

The inequalities (2.1.14) and (2.1.15) trivially extend to cylindrical forms
via the Minkowski inequality. For example, set s̃j =

{
(ξ, η) ∈ RN+1 × RM :

ξ ∈ sj
}

for 1 ≤ j ≤ l. Then, using (2.1.14), we have∥∥ ∑
1≤j≤l

Gj

∥∥
Lp(RN+M+1)

≤ Cεδ
−1+ 2N

p
−ε( ∑

1≤j≤l

‖Gj‖pLp(RN+M+1)

)1/p
(2.1.16)

whenever Ĝj is supported in s̃j. Clearly, we also have a similar extension of
(2.1.15).

2.2 Multilinear restriction estimate

The classical restriction conjecture is one of the most interesting problems
in harmonic analysis. For understanding the restriction operator, its adjoint,
extension operator has been studied intensively. Let U ⊂ Rd−1 be a compact
neighborhood of origin and Φ : U → R be smooth. Define extension operator
E by

Eg(x) :=

∫
U

g(ξ)eix·(ξ,−Φ(ξ)))dξ.

The classical restriction conjecture is:

Conjecture 3 (Linear Restriction). If Φ has nonvanishing determinant of
Hessian, q > 2d

d−1
and p′ ≤ d−1

d+1
q, then ‖Eg‖Lq(Rd) . ‖g‖Lp(U).

It is well-known that the restriction conjecture implies the Kakeya con-
jecture. Here, we describe the quantitative version of the Kakeya conjecture.
For 0 < δ � 1, we call T δ-tube if T is a rectangular box of dimensions about
1× δ× · · · × δ. We say that T1, T2 are δ-transversal if directions of T1, T2 are
δ-separated on Sd−1. And we say that T1, T2 are transversal if there exist c
independent of δ such that T1, T2 are c-transversal. Then the linear Kakeya
conjecture is:

Conjecture 4 (Linear Kakeya). Let 0 < δ � 1, and T be a collection of
δ-transversal δ-tubes. For d

d−1
< q ≤ ∞ there is a constant C independent of

δ,T such that

‖
∑
T∈T

χT‖q ≤ Cδ
d−1
q (]T)

1
q
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where χA is indicator function(χA(x) = 1 if x ∈ A, otherwise χA = 0).

For understanding the restriction problem, various techniques have been
developed. Multilinear restriction estimate is one of them. For 1 ≤ k ≤ d,
let Uk ⊂ Rd−1 be a compact subset of an open set U ′k ⊂ Bd−1(0, 22) and
Φk : U ′k → Rd be a smooth mapping and Ek is associated extension operator.
The multilinear variant of linear restriction is following:

Conjecture 5 (Multilinear Restriction). Let d ≥ 2, θ ∈ (0, 1], ‖Φk‖C2(U ′k) ≤
B and let Nk(ξ) = (∇Φk(ξ),1)

|(∇Φk(ξ),1)| . Suppose | det(N1(ξ1), . . . , Nd(ξd))| ≥ θ for

ξk ∈ Uk, k = 1, . . . , d, q ≥ 2d
d−1

, and p′ ≤ d−1
d
q. Then there exist C depending

only on B, θ, d, U1, . . . , Ud such that∥∥ d∏
k=1

Ekgk
∥∥
Lq/d
≤ C

d∏
k=1

‖gk‖Lp(Uk). (2.2.1)

The multilinear conjecture is reduced to the endpoint case p = 2, q = 2d
d−1

.
For multilinear restriction, a curvature condition is not needed. Instead of a
curvature condition, the transversality condition on normal vectors Nk be-
comes crucial. Bennett, Carbery, and Tao [9] proved near-optimal multilinear
restriction estimate:

Theorem 2.2.1 (Bennett, Carbery, Tao). Let d ≥ 2, θ ∈ (0, 1], ‖Φk‖C2(U ′k) ≤
B and let Nk(ξ) = (∇Φk(ξ),1)

|(∇Φk(ξ),1)| . Suppose | det(N1(ξ1), . . . , Nd(ξd))| ≥ θ for
ξk ∈ Uk, k = 1, . . . , d. Then, for any ε > 0∥∥ d∏

k=1

Ekgk
∥∥
L

2
d−1 (Bd(0,R))

≤ Cε(θ)R
ε

d∏
k=1

‖gk‖L2(Uk) (2.2.2)

whenever R ≥ 1. The constant Cε(θ) takes the form Cθ−Cε for a constant
Cε > 0.

They proved the above theorem by showing that multilinear restriction
is essentially equivalent to multilinear Kakeya estimate. They obtained fol-
lowing near-optimal multilinear Kakeya estimate:

Theorem 2.2.2 (Bennett, Carbery, Tao). Let 0 < δ � 1 and T1, . . . ,Td
be transversal familes of δ-tubes. For ε > 0, there exist C independent of
ε, δ,T1, . . . ,Td such that

‖
d∏
j=1

( ∑
Tj∈Tj

χTj
)
‖
L

1
d−1 (B(0,1))

≤ Cδ−ε
d∏
j=1

(δd−1]Tj).
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It is not difficult to see that the argument in [9] continues to work with
C1,α surface, α > 0. Using theorem 2.2.2, we can prove the following theorem.

Theorem 2.2.3. Let d ≥ 2, θ ∈ (0, 1], ‖Φk‖C1,α(U ′k) ≤ B and let Nk(ξ) =
(∇Φk(ξ),1)
|(∇Φk(ξ),1)| . Suppose | det(N1(ξ1), . . . , Nd(ξd))| ≥ θ for ξk ∈ Uk, k = 1, . . . , d.
Then, for any ε > 0

∥∥ d∏
k=1

Tkgk
∥∥
L

2
d−1 (Bd(0,R))

≤ Cε(θ)R
ε

d∏
k=1

‖gk‖L2(Uk) (2.2.3)

whenever R ≥ 1. The constant Cε(θ) takes the form Cθ−Cε for a constant
Cε > 0.

The theorem holds with C1 curve, even with Lipschitz curve when d = 2
but it is unknown whether the same continues to be true in higher dimensions.
Once one makes a couple of crucial observations concerning the C1,α surfaces,
it is not difficult to prove Theorem 2.2.3 through routine adaptation of the
arguments in [9, Proposition 2.1].

For the proof of Theorem 2.2.3, first of all, we note that

|Φk(ξ + h)− Φk(ξ)−∇Φk(ξ) · h| ≤ CB|h|α+1 (2.2.4)

whenever ξ+h, ξ ∈ Uk. If Φk is assumed to be in C1,α(Uk) instead of C1,α(U ′k),
this can not be completely clear. In such a case we need to impose an addi-
tional condition such that Uk has a C1,α boundary (e.g. see [18, pp. 136–137]).
On the other hand, if Uk is convex, (2.2.4) is a simple consequence of the mean
value theorem. Since Uk is compact, there is a positive number ρk such that
x, y are contained in a ball which is a subset of U ′k whenever x, y ∈ Uk and
|x− y| ≤ ρk. Therefore we get (2.2.4) for |h| ≤ ρk and this is enough to show
(2.2.4) for any ξ, ξ + h ∈ Uk because Uk is compact and ∇Φk is continuous.

Proof of Theorem 2.2.3. Let us denote Σk = {(ξ,−Φk(ξ)) : ξ ∈ Uk}. We
consider the estimate

∥∥ d∏
k=1

Ĝk

∥∥
L

2
d−1 (Bd(0,R))

≤ C0R
− d

2

d∏
k=1

‖Gk‖L2(Rd) (2.2.5)

for R ≥ 1 when Gk is supported in Σk(1/R) := {(ξ, τ) ∈ Rd−1 × R :
dist ((ξ, τ),Σk) < 1/R}. The estimate (2.2.3) is equivalent to (2.2.5) with
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C0 = CRε (see [9]). Let C(R) be the infimum of C0 with which (2.2.5) holds.
The key part of the proof is to establish the implication

C(R) ≤ Rb =⇒ C(R) ≤ C(θ, ε)R
b

1+α
+ε (2.2.6)

for any ε > 0 where b is a positive constant. Via iteration the exponent of
R can be suppressed to be arbitrary small and hence we get the estimate
(2.2.3).

Let φ be a real-valued bump function adapted to B(0, C), such that its
Fourier transform is non-negative on the unit ball. For each R ≥ 1 and x ∈
Rd, define φxR,α(ξ) := e2πix·ξRd/(1+α)φ(R1/(1+α)ξ). Then C(R) ≤ Rb implies

∥∥ d∏
k=1

φ̂xR,αĜk

∥∥
L

2
d−1 (Bd(x,R

1
1+α ))

. R
b

1+α
− d

2(1+α)

d∏
k=1

‖Gk ∗ φxR,α‖L2(Rd)

Applying (R−d/(1+α)
∫
x∈B(0,R)

| · |2/(d−1)dx)(d−1)/2,
∥∥∏d

k=1 Ĝk

∥∥
L

2
d−1 (Bd(0,R))

is

bounded by

R
b

1+α
− d

2(1+α)
(
R−

d
1+α

∫
B(0,R)

(
d∏

k=1

‖Gk ∗ φxR,α‖2
L2(Rd))

1
d−1dx

) d−1
2 . (2.2.7)

Using (2.2.4) we see that the set Σk(1/R)∩Bd((ξ, τ), R−1/(1+α)), (ξ, τ) ∈
Σk is contained in a C/R neighborhood of the tangent plane to Σk at (ξ, τ).
Thus Σk(1/R) can be covered with a collection {Rk

j} of finitely overlapping

rectangles of dimensions about R−1 × R−1/(1+α) × · · · × R−1/(1+α) which are
essentially tangential to Σk(1/R). These rectangles provide a decomposition
of Gk =

∑
j G

k
j while suppGk

j ⊂ Rk
j . Then (2.2.7) is bounded by

CR
b

1+α
− d

2(1+α)
(
R−

d
1+α

∫
B(0,R)

(
d∏

k=1

∑
j

‖Ĝk
j‖2

L2(B(x,R
1

1+α ))
)

1
d−1dx

) d−1
2 .

And note that

‖Ĝk
j‖2

L2(B(x,R
1

1+α ))
. R−

α
1+α |̂̄Gk

j |2 ∗ χRk,∗j
(x),

where Ḡk
j = Gk

j/g
k
j , gkj is a Schwartz function which satisfies gkj ∼ 1 on Rk

j

and |ĝkj (x+ y)| . R−(d+α)/(1+α)χRk,∗j
(x) for all x, y ∈ Rd with |y| ≤ R1/(1+α),
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and Rk,∗
j is dual of Rk

j . Here, Rk,∗
j is the rectangle centered at the origin of

dimensions about R1×R1/(1+α)×· · ·×R1/(1+α) which are essentially normal
to Σk(1/R).

Using change of variables x 7→ Rx and Theorem 2.2.2, we can get

∥∥ d∏
k=1

Ĝk

∥∥
L

2
d−1 (Bd(0,R))

. R
b

1+α
+ αε

2(α+1)
− d

2

d∏
k=1

(∑
j

‖̂̄Gk
j‖2

2

) 1
2 .

Then Plancherel’s theorem and the fact |Ḡk
j | ∼ |Gk

j | show (2.2.6).
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Chapter 3

Local smoothing estimate

In this chapter, we concern the local smoothing estimate:

‖χ(t)Atf‖Lpα(Rd+1) ≤ C‖f‖Lp(Rd), (3.0.1)

where χ is a smooth function supported in (1/2, 4). To prove Lp (p 6= 2)
smoothing properties of At, we need more than the decay of m̂t, i.e., (1.1.2).
The common approach in [44, 3, 4] to get around this difficulty was to use
detailed decompositions (of various scales) on the Fourier side away from
the conic sets where m̂t decays slowly. The consequent decompositions were
then combined with the decoupling or square function estimate [39, 43, 44,
45, 3, 4]. However, this type of approach based on fine scale decomposition
becomes exceedingly difficult to manage as the dimension d gets larger and,
consequently, does not seem to be tractable in higher dimensions.

To overcome the difficulty, we develop a new strategy which allows us to
dispense with such sophisticated decompositions. We briefly discuss the key
ingredients of our approach.

• The main novelty of the paper lies in an induction argument which we
build on the local nondegeneracy assumption:

L∑
`=1

|〈γ(`)(s), ξ〉| ≥ B−1|ξ| N(L,B)

for a constant B ≥ 1. To prove our results, we consider the operator At[γ, a]
(see (3.1.2) below for its definition). Clearly, N(d,B′) holds for a constant
B′ > 0 if γ satisfies (1.1.1). However, instead of considering the case L = d
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alone, we prove the estimate for all L = 2, . . . , d under the assumption that
N(L,B) holds on the support of a. See Theorem 3.1.2 and 4.0.1. A trivial
(yet, important) observation is that N(L− 1, B) implies N(L,B), so we may
think of At[γ, a] as being more degenerate as L gets larger. Thanks to this
hierarchical structure, we may use an inductive strategy along the number
L. See Proposition 3.1.3 and 4.1.1 below.

• We extend the rescaling [22, 26] and iteration [44] arguments. Roughly
speaking, we combine the first with the induction assumption in Proposition
3.1.3 (or 4.1.1) to handle the less degenerate parts, and use the latter to
deal with the remaining part. In order to generalize the arguments, we in-
troduce a class of symbols which are naturally adjusted to a small subcurve
(Definition 3.2.1). We also use the decoupling inequalities for the nondegen-
erate curves obtained by Beltran et al. [4] (Corollary 2.1.5). Their inequalities
were deduced from those due to Bourgain, Demeter, and Guth [12]. Instead
of applying the inequalities directly, we use modified forms which are ad-
justed to the sharp smoothing orders of the specific estimates (see (2.1.14)
and (2.1.15)). This makes it possible to obtain the sharp estimates on an
extended range.

3.1 Local smoothing with localized frequency

In this section, we consider an extension of Theorem 1.1.2 via microlocal-
ization (see Theorem 3.1.2 below) which we can prove inductively. We then
reduce the matter to proving Proposition 3.4.1, which we show by applying
Proposition 3.4.2. We also obtain some preparatory results.

Let 1 ≤ L ≤ d be a positive integer and B ≥ 1 be a large number. For
quantitative control of estimates we consider the following two conditions:

max
0≤j≤3d+1

|γ(j)(s)| ≤ B, s ∈ I, (3.1.1)

Vol
(
γ(1)(s), . . . , γ(L)(s)

)
≥ 1/B, s ∈ I, V(L,B)

where Vol(v1, . . . , vL) denotes the L-dimensional volume of the parallelepiped
generated by v1, . . . , vL. By finite decomposition, rescaling, and a change of
variables, the constant B can be taken to be close to 1 (see Section 3.3).

Notation. For nonnegative quantities A and D, we denote A . D if there ex-
ists an independent positive constant C such that A ≤ CD, but the constant
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C may differ at each occurrence depending on the context, andA .BD means
the inequality holds with an implicit constant depending on B. Throughout
the paper, the constant C mostly depends on B. However, we do not make
it explicit every time since it is clear in the context. By A = O(D) we denote
|A| . D.

Definition 3.1.1. For k ≥ 0, we denote Ak = {ξ ∈ Rd : 2k−1 ≤ |ξ| ≤ 2k+1}.
We say a ∈ Cd+L+2(Rd+2) is a symbol of type (k, L,B) relative to γ if supp a
⊂ I × [2−1, 4]×Ak, N(L,B) holds for γ whenever (s, t, ξ) ∈ supp a for some
t, and

|∂js∂lt∂αξ a(s, t, ξ)| ≤ B|ξ|−|α|

for (j, l, α) ∈ IL := {(j, l, α) : 0 ≤ j ≤ 1, 0 ≤ l ≤ 2L, |α| ≤ d+ L+ 2}.

We define an integral operator by

At[γ, a]f(x) = (2π)−d
∫∫

R
ei(x−tγ(s))·ξ a(s, t, ξ)ds f̂(ξ) dξ. (3.1.2)

Note Atf = At[γ, ψ]f . Theorem 1.1.2 is a consequence of the following.

Theorem 3.1.2. Let γ ∈ C3d+1(I) satisfy (3.1.1) and V(L,B) for some B ≥
1. Suppose a is a symbol of type (k, L,B) relative to γ. Then, if p ≥ 4L− 2,
for any ε > 0 there is a constant Cε = Cε(B) such that

‖At[γ, a]f‖Lp(Rd+1) ≤ Cε2
(− 2

p
+ε)k‖f‖Lp(Rd). (3.1.3)

Theorem 3.1.2 is trivial when L = 1. Indeed, (3.1.3) follows from the
estimate |At[γ, a]f(x)| .B

∫
I
K ∗ |f |(x− tγ(s)) ds where K(x) = 2(d−1)k(1 +

|2kx|)−d−3. To show this, note |γ′(s) · ξ| ∼ 2k if (s, t, ξ) ∈ supp a for some
t. By integration by parts in s, At[γ, a] = t−1At[γ, ã] where ã = i(γ′(s) ·
ξ ∂sa− γ′′(s) · ξ a)/(γ′(s) · ξ)2. Since |∂αξ ã| . |ξ|−|α|−1 for |α| ≤ d+ 3, routine
integration by parts in ξ gives the estimate (e.g., see Proof of Lemma 3.2.4).
When L = 2, Theorem 3.1.2 is already known by the result in [44, Theorem
4.1] and the decoupling inequality in [11].

Once we have Theorem 3.1.2, the proof of Theorem 1.1.2 is straightfor-
ward. By Littlewood-Paley decomposition it is sufficient to show (3.1.3) for
p ≥ 4d−2 with ak(s, t, ξ) = ψ(s)χ(t)β(2−k|ξ|), where β ∈ C∞c ((1/2, 2)). This
can be made rigorous using

∫∫
e−it(τ+γ(s)·ξ)ψ(s)χ(t)dsdt = O((1 + |τ |)−N) for
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any N if |τ | ≥ (1+maxs∈suppψ |γ(s)|)|ξ|. Since γ satisfies (1.1.1), ak is of type
(k, d, B) relative to γ for a large B. Therefore, Theorem 1.1.2 follows from
Theorem 3.1.2.

Theorem 3.1.2 is immediate from the next proposition, which places The-
orem 3.1.2 in an inductive framework.

Proposition 3.1.3. Let 2 ≤ N ≤ d. Suppose Theorem 3.1.2 holds for L =
N − 1. Then, Theorem 3.1.2 holds true with L = N .

To prove Proposition 3.1.3, from this section to Section 3.5 we fix N ∈
[2, d], γ satisfying V(N,B), and a symbol a of type (k,N,B) relative to γ.

One of the main ideas is that by a suitable decomposition of the symbol
we can separate from At[γ, a] the less degenerate part which corresponds to
L = N − 1. To this part we apply the assumption combined with a rescaling
argument. To do this, we introduce a class of symbols which are adjusted to
short subcurves of γ.

3.2 Symbols associated to subcurves

We begin with some notations. Let N ≥ 2, and let δ and B′ denote the
numbers such that

2−k/N ≤ δ ≤ 2−7dNB−6N , B ≤ B′ ≤ BC

for a large constant C ≥ 3d + 1. We note that V(N − 1, B′) holds for some
B′. In fact, V(N − 1, B2) follows by (3.1.1) and V(N,B).

For s ∈ I, we define a linear map L̃δs : Rd 7→ Rd as follows:

(L̃δs)ᵀγ(j)(s) = δN−jγ(j)(s), j = 1, . . . , N − 1,

(L̃δs)ᵀv = v, v ∈
(
Vγ,N−1
s

)⊥
,

(3.2.1)

where Vγ,`
s = span

{
γ(j)(s) : j = 1, . . . , `

}
. L̃δs is well-defined since V(N −

1, B2) holds for γ. The linear map L̃δs naturally appears when we rescale a
subcurve of length about δ (see the proofs of Lemma 3.2.4 and 3.3.1). We
denote

Lδs(τ, ξ) =
(
δNτ − γ(s) · L̃δsξ, L̃δsξ

)
, (τ, ξ) ∈ R× Rd. (3.2.2)
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We set G(s) = (1, γ(s)) and define

Λk(s, δ, B
′) =

⋂
0≤j≤N−1

{
(τ, ξ) ∈ R× Ak : |〈G(j)(s), (τ, ξ)〉| ≤ B′2k+5δN−j

}
.

Definition 3.2.1. Let (s0, δ) ∈ (−1, 1) × (0, 1) such that I(s0, δ) := [s0 −
δ, s0 + δ] ⊂ I. Then, by Ak(s0, δ) we denote the set of a ∈ Cd+N+2(Rd+3) such
that

supp a ⊂ I(s0, δ)× [2−1, 22]× Λk(s0, δ, B), (3.2.3)∣∣∂js∂lt∂ατ,ξa(s, t,Lδs0(τ, ξ)
)∣∣ ≤ Bδ−j|(τ, ξ)|−|α|, (j, l, α) ∈ IN . (3.2.4)

We define suppξ a =
⋃
s,t,τ supp a(s, t, τ, ·) and supps a is defined likewise.

And define supps,ξ a =
⋃
t,τ supp a(·, t, τ, ·), and suppτ,ξ a is defined likewise.

We note a statement S(s, ξ), depending on (s, ξ), holds on supps,ξ a if and
only if S(s, ξ) holds whenever (s, t, τ, ξ) ∈ supp a for some t, τ .

Denote VG,`
s = span{(1, 0), G′(s), . . . , G(`)(s)}. We take a close look at

the map Lδs. By (3.2.1) and (3.2.2) we have
(Lδs)ᵀG(s) = δN(1, 0),

(Lδs)ᵀG(j)(s) = δN−jG(j)(s), j = 1, . . . , N − 1,

(Lδs)ᵀv = v, v ∈ (VG,N−1
s )⊥.

(3.2.5)

The first identity is clear since (Lδs)ᵀ(τ, ξ) = (δNτ, (L̃δs)ᵀξ− τ(L̃δs)ᵀγ(s)). The
second and the third follow from (3.2.1) since G(j) ∈ {0}×Rd, 1 ≤ j ≤ N−1,(
VG,N−1
s

)⊥ ⊂ {0} × Rd, and (Lδs)ᵀ(0, ξ) = (0, (L̃δs)ᵀξ). Furthermore, there is
a constant C = C(B), independent of s and δ, such that

|Lδs(τ, ξ)| ≤ C|(τ, ξ)|. (3.2.6)

Note that (3.2.6) is equivalent to |(Lδs)ᵀ(τ, ξ)| ≤ C|(τ, ξ)|. The inequality is

clear from (3.2.1) because V(N−1, B2) holds and all the eigenvalues of (L̃δs)ᵀ
are contained in the interval (0, 1].

Lemma 3.2.2. Let Lδs(τ, ξ) ∈ Λk(s, δ, B
′) and V(N − 1, B′) holds for γ.

Then, there exists a constant C = C(B′) such that

C−1|(τ, ξ)| ≤ 2k ≤ C|ξ|. (3.2.7)
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Proof. Since Lδs(τ, ξ) ∈ Λk(s, δ, B
′), by (3.2.2) we have 2k−1 ≤ |L̃δsξ| ≤ 2k+1.

So, the second inequality in (3.2.7) is clear from (3.2.6) if we take τ = 0.
To show the first inequality, from (3.2.5) we have |〈(1, 0), (τ, ξ)〉| ≤ B′2k+5

and |〈G(j)(s), (τ, ξ)〉| ≤ B′2k+5, 1 ≤ j ≤ N−1, because Lδs(τ, ξ) ∈ Λk(s, δ, B
′).

Also, if v ∈ (VG,N−1
s )⊥ and |v| = 1, we see |〈v, (τ, ξ)〉| = |〈v,Lδs(τ, ξ)〉| ≤ 2k+1,

by (3.2.5). Since V(N −1, B′) holds and VG,N−1
s ⊕ (VG,N−1

s )⊥ = Rd+1, we get
|(τ, ξ)| ≤ C2k for some C = C(B′).

The following shows the matrices Lδs, Lδs0 are close to each other if so are
s, s0.

Lemma 3.2.3. Let s, s0 ∈ (−1, 1) and γ satisfy V(N−1, B′). If |s−s0| ≤ δ,
then there exists a constant C = C(B′) ≥ 1 such that

C−1|(τ, ξ)| ≤ |(Lδs0)−1Lδs(τ, ξ)| ≤ C|(τ, ξ)|. (3.2.8)

Proof. It suffices to prove that (3.2.8) holds if |s − s0| ≤ cδ for a constant
c > 0, independent of s and s0. Applying this finitely many times, we can
remove the additional assumption. Moreover, it is enough to show

‖(Lδs)ᵀ(Lδs0)−ᵀ − I‖ .B′ c (3.2.9)

when |s−s0| ≤ cδ. Here, ‖·‖ denotes a matrix norm. Taking c > 0 sufficiently
small, we get (3.2.8).

By (3.2.5), (Lδs)ᵀ(Lδs0)−ᵀG(j)(s0) =
(
Lδs
)ᵀ
δ−(N−j)G(j)(s0) for j = 1, . . . , N−

1. Let s0 = s + c′δ, |c′| ≤ c. Expanding G(j) in Taylor series at s, by (3.1.1)
we have

(Lδs)ᵀ(Lδs0)−ᵀG(j)(s0) =
(
Lδs
)ᵀ(N−1∑

`=j

δ−(N−j)G(`)(s)
(c′δ)`−j

(`− j)!
+O

(
cN−jB′

))
for j = 1, . . . , N − 1. By (3.2.5) and the mean value theorem, we get

(Lδs)ᵀ(Lδs0)−ᵀG(j)(s0) = G(j)(s0) +O(cB′), j = 1, . . . , N − 1.

From (3.2.5) we also have (Lδs)ᵀ(Lδs0)−ᵀ(1, 0) = δ−N(Lδs)ᵀG(s0). A similar
argument also shows (Lδs)ᵀ(Lδs0)−ᵀ(1, 0) = (1, 0) +O(cB′).

Let {vN , . . . , vd} denote an orthonormal basis of (VG,N−1
s0

)⊥. By V(N −
1, B′) and (3.1.1) it follows that |γ(j)(s0)| ≥ (B′)−1−N , j = 1, . . . , N−1. Since
|γ(j)(s)− γ(j)(s0)| ≤cB′δ, there is an orthonormal basis {vN(s), . . . , vd(s)} of
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(VG,N−1
s )⊥ such that |vj(s)− vj| .B′ cδ, j = N, . . . , d. So, we have |(Lδs)ᵀvj −

vj| .B′ cδ by (3.2.6). Since (Lδs0)−ᵀvj = vj, it follows that |(Lδs)ᵀ(Lδs0)−ᵀvj −
vj| .B′ cδ, j = N, . . . , d.

We denote by M the matrix [(1, 0), G′(s0), . . . , G
(N−1)(s0), vN , . . . , vd]. Com-

bining all together, we have ‖(Lδs)ᵀ(Lδs0)−ᵀM −M‖ .B′ c. Note that V(N −
1, B′) gives |M−1v| .B′ |v| for v ∈ Rd+1. Therefore, we obtain (3.2.9).

For a continuous function a supported in I × [1/2, 4]× R× Ak, we set

m[a](τ, ξ) =

∫∫
e−it

′(τ+γ(s)·ξ)a(s, t′, τ, ξ)dsdt′, (3.2.10)

T [a]f(x, t) = (2π)−d−1

∫∫
ei(x·ξ+tτ)m[a](τ, ξ)f̂(ξ) dξdτ. (3.2.11)

Lemma 3.2.4. Suppose a ∈ Cd+3(Rd+3) satisfies (3.2.3) and (3.2.4) for
j = l = 0 and |α| ≤ d+ 3. Then, there is a constant C = C(B) such that

‖T [a]f‖L∞(Rd+1) ≤ Cδ‖f‖L∞(Rd), (3.2.12)

‖(1− χ̃)T [a]f‖Lp(Rd+1) ≤ C2−kδ1−N‖f‖Lp(Rd), p > 1, (3.2.13)

where χ̃ ∈ C∞c ((2−2, 23)) such that χ̃ = 1 on [3−1, 6].

Proof. We first note

T [a]f(x, t) =

∫
K[a](s, t, ·) ∗ f(x) ds, (3.2.14)

where

K[a](s, t, x) = (2π)−d−1

∫∫∫
ei(t−t

′,x−t′γ(s))·(τ,ξ)a(s, t′, τ, ξ) dξdτdt′. (3.2.15)

Since supps a ⊂ I(s0, δ), to prove (3.2.12) we need only to show

‖K[a](s, ·)‖L∞t L1
x
≤ C, s ∈ I(s0, δ) (3.2.16)

for some C = C(B) > 0. To this end, changing variables (τ, ξ)→ 2kLδs(τ, ξ) in

the right hand side of (3.2.15) and noting |detLδs| = δN |det L̃δs| = δN(N+1)/2,
we get

K[a](s, t, x) = C∗

∫∫∫
ei2

k(t−t′,x−tγ(s))·(δN τ, L̃δsξ)a(s, t′, 2kLδs(τ, ξ)) dξdτdt′,
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where C∗ = (2π)−d−1δN(N+1)/22k(d+1). Since a satisfies (3.2.3), by (3.2.8) and
Lemma 3.2.2 we have supp a(s, t, 2kLδs·) ⊂ {(τ, ξ) : |(τ, ξ)| .B 1}. Besides, by
(3.2.4) and (3.2.8) it follows that |∂ατ,ξ

(
a(s, t, 2kLδs(τ, ξ))

)
| .B 1 for |α| ≤ d+3.

Thus, repeated integration by parts in τ, ξ yields

|K[a](s, t, x)| . C∗

∫ 4

1/2

(
1 + 2k

∣∣(δN(t− t′), (L̃δs)ᵀ(x− tγ(s))
)∣∣)−d−3

dt′,

by which we obtain (3.2.16) as desired.
It is easy to show (3.2.13). The above estimate for K[a] gives

‖(1− χ̃)K[a](s, t, ·)‖L1
x
. δ−N2−k|t− 1|−1|1− χ̃(t)|.

Since supps a ⊂ I(s0, δ), (3.2.13) for p > 1 follows by (3.2.14), Minkowski’s
and Young’s convolution inequalities.

3.3 Rescaling

Let a ∈ Ak(s0, δ). Suppose that

N−1∑
j=1

δj|〈γ(j)(s), ξ〉| ≥ 2kδN/B′ (3.3.1)

holds on supps,ξ a for some B′ > 0. Then, via decomposition and rescaling, we
can bound the Lp norm of T [a]f by those of the operators given by symbols
of type (j,N − 1, B̃) relative to a curve for some B̃ and j (see Lemma 3.3.1
below).

To do so, we define a rescaled curve γδs0 : I → Rd by

γδs0(s) = δ−N(L̃δs0)ᵀ
(
γ(δs+ s0)− γ(s0)

)
. (3.3.2)

As δ → 0, the curves γδs0 get close to a nondegenerate curve in N dimensional
vector space, so the curves behave in a uniform way. In particular, (3.1.1)
and V(N,B) hold for some B for γδs0 if δ < δ′ for a constant δ′ = δ′(B) small
enough.

Note (γδs0)(j)(s) = δj−N(L̃δs0)ᵀγ(j)(δs+s0), 1 ≤ j ≤ N−1, and |(γδs0)(j)(s)| .
Bδ, N + 1 ≤ j ≤ 3d+ 1. Thus, Taylor series expansion and (3.2.1) give

(γδs0)(j)(s) =

N−j−1∑
k=0

γ(j+k)(s0)

k!
sk +

(L̃δs0)ᵀγ(N)(s0)

(N − j)!
sN−j +O(Bδ)
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for j = 1, . . . , N − 1. By (3.3.2), we have (γδs0)(N)(s) = (L̃δs0)ᵀγ(N)(s0) +
O(δ). We write γ(N)(s0) = v + v′ where v ∈ Vγ,N−1

s and v′ ∈ (Vγ,N−1
s )⊥.

Then, (L̃δs0)ᵀγ(N)(s0) = (L̃δs0)ᵀv + v′. Since |(L̃δs0)ᵀv| .B δ and |v′| ≤ B,

|(L̃δs0)ᵀγ(N)(s0)| ≤ B+Cδ for some C = C(B). Thus, γ = γδs0 satisfies (3.1.1)
with B replaced by 3B if δ < δ′.

An elementary argument (elimination) shows

Vol
(
(γδs0)(1)(s), . . . , (γδs0)(N)(s)

)
= Vol

(
γ(1)(s0), . . . , γ

(N)(s0)
)

+O(δ)

since (L̃δs0)ᵀγ(N)(s0) = (L̃δs0)ᵀv + v′ and γ(N)(s0) = v + v′. Taking δ′ small
enough, from V(N,B) for γ we see V(N, 3B) hold for γ = γδs0 if 0 < δ < δ′.

The next lemma (cf. [26, Lemma 2.9]) plays a crucial role in what follows.

Lemma 3.3.1. Let 2 ≤ N ≤ d, a ∈ Ak(s0, δ), and j∗ = log(2kδN). Suppose
(3.3.1) holds on supps,ξ a. Then, there exist constants C, B̃ ≥ 1, and δ′ > 0

depending on B, and symbols a1, . . . , al∗ of type (j,N − 1, B̃) relative to γδs0,
such that ∥∥χ̃ T [a]f

∥∥
Lp(Rd+1)

≤ Cδ
∑

1≤l≤C

∥∥At[γδs0 , al ]f̃l∥∥Lp(Rd+1)
,

‖f̃l‖p = ‖f‖p, and j ∈ [j∗ − C, j∗ + C] as long as 0 < δ < δ′.

Proof. We set aδ,s0(s, t, τ, ξ) = a
(
δs + s0, t, τ, ξ

)
. Combining (3.2.10) and

(3.2.11), we write T [a]f as an integral (e.g., see (3.2.14) and (3.2.15)). Then,
the change of variables s→ δs+ s0 and (τ, ξ)→ (τ − γ(s0) · ξ, ξ) gives

T [a]f(x, t) = (2π)−d−1 δ

∫∫
ei〈x−tγ(s0), ξ〉J (s, t, ξ)f̂(ξ) dsdξ,

where

J (s, t, ξ) =

∫∫
eitτe−it

′( τ+(γ(δs+s0)−γ(s0))·ξ ) aδ,s0(s, t′, τ − γ(s0) · ξ, ξ
)
dt′dτ.

Let f̃ be given by F(f̃) = | det δ−N L̃δs0|
1−1/pf̂(δ−N L̃δs0· ) where F(f̃ ) de-

notes the Fourier transform of f̃ . Then, ‖f̃‖p = ‖f‖p. Changing variables

ξ → δ−N L̃δs0ξ gives

T [a]f(x, t) = Cd

∫∫
ei〈x−tγ(s0),δ−N L̃δs0ξ〉J (s, t, δ−N L̃δs0ξ)F(f̃ )(ξ) dsdξ,
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where Cd = (2π)−d−1 δ|det δ−N L̃δs0|
1/p. This leads us to set

ã(s, t, ξ) =
1

2π

∫∫
e−it

′(τ+γδs0 (s)·ξ)χ̃(t)aδ,s0
(
s, t+ t′, δ−NLδs0(τ, ξ)

)
dt′dτ.

(3.3.3)

It is easy to check ã ∈ Cd+N+2(Rd+2), since so is a and γ ∈ C3d+1.

By (3.3.2) and (3.2.2), we note χ̃(t)J (s, t, δ−N L̃δs0ξ) = 2πe−itγ
δ
s0

(s)·ξ ã(s, t, ξ).
Therefore,

χ̃(t)T [a]f(x, t) = δ| det δ−N L̃δs0|
1
p At[γδs0 , ã ]f̃

(
δ−N(L̃δs0)ᵀ(x− tγ(s0))

)
,

and a change of variables gives∥∥χ̃ T [a]f
∥∥
Lp(Rd+1)

= δ
∥∥At[γδs0 , ã ]f̃

∥∥
Lp(Rd+1)

. (3.3.4)

We shall obtain symbols of type (j,N − 1, B̃) from ã via decomposition
and rescaling. To this end, we first note

suppξ ã ⊂
{
ξ ∈ Rd : C−1δN2k ≤ |ξ| ≤ CδN2k

}
(3.3.5)

for a constant C = C(B) ≥ 1. This follows by Lemma 3.2.2 since there exists
τ such that δ−NLδs0(τ, ξ) ∈ Λk(s0, δ, B) if ξ ∈ suppξ ã. We claim

|∂js∂lt∂αξ ã(s, t, ξ)| .B |ξ|−|α|, (j, l, α) ∈ IN−1. (3.3.6)

To show (3.3.6), let us set

b(s, t, t′, τ, ξ) = χ̃(t)aδ,s0(s, t+ t′, δ−NLδs0(τ, ξ)
)
.

Note 0 ≤ j ≤ 1. Taking derivatives on both sides of (3.3.3), we have

∂js∂
l
t∂
α
ξ ã(s, t, ξ) = I[b1] :=

1

2π

∫∫
e−it

′(τ+γδs0 (s)·ξ)b1(s, t, t′, τ, ξ) dt′dτ,

where

b1 =
∑

u1+u2=j,
α1+α2+α3=α

Cα,u
(
t′γδ ′s0 · ξ

)u1−|α1|(t′γδ ′s0 )α1(t′γδs0)α2 ∂u2
s ∂

l
t∂
α3
ξ b,

31



CHAPTER 3. LOCAL SMOOTHING ESTIMATE

with 0 ≤ u1 ≤ 1, 0 ≤ |α1| ≤ u1, and constants Cα,u satisfying |Cα,u| = 1.
Integration by parts u1 + |α2| times in τ gives ∂js∂

l
t∂
α
ξ ã = I[b2], where

b2 =
∑

u1+u2=j,
α1+α2+α3=α

C ′α,u
(
γδ ′s0 · ξ

)u1−|α1|(γδ ′s0 )α1(γδs0)α2 ∂u1+|α2|
τ ∂u2

s ∂
l
t∂
α3
ξ b

with constants C ′α,u satisfying |C ′α,u| = 1. We decompose I[b2] = I[χEb2] +
I[χEcb2] where E = {(τ, ξ) : |τ + γδs0(s) · ξ| ≤ 1}. Then, integrating by parts
in t′ for I[χEcb2], we obtain

|I[b2]| .
∫∫

χE|b2| +
χEc |∂2

t′b2|
|τ + γδs0(s) · ξ|2

dt′dτ.

Since a ∈ Ak(s0, δ), |∂j
′
s ∂

l′
t ∂

α′

τ,ξb| .B |ξ|−|α
′| for (j′, l′, α′) ∈ IN . It is also clear

that |γδ ′s0 (s)| . 1 if δ < δ′. Thus, |b2| = O(|ξ|−|α|) and |∂2
t′b2| = O(|ξ|−|α|) if

l ≤ 2(N − 1). Since ∂js∂
l
t∂
α
ξ ã = I[b2], we get (3.3.6).

Now, we decompose ã. Let χ̃1, χ̃2, and χ̃3 ∈ C∞c (R) such that χ̃1 + χ̃2 +
χ̃3 = 1 on supp χ̃ and supp χ̃` ⊂ [2`−3, 2`]. Also, let β ∈ C∞c ((2−1, 2)) such
that

∑
β(2−k·) = 1 on R+. Then, we set

a`,j(s, t, ξ) = χ̃`(t)β(2−j|ξ|)ã(s, t, ξ),

so
∑

`,j a`,j = ã. By (3.3.5), a`,j = 0 if |j − j∗| > C for some C > 0.

Denoting (a)ρ(s, t, ξ) = a(s, ρt, ρ−1ξ), via rescaling we can observe that
Aρt[γδs0 , a ]g(x) = At[γδs0 , (a)ρ ]g(ρ ·)(x/ρ). Thus, changes of variables yield

‖At[γδs0 , a`,j ]f̃‖Lp(Rd+1) = 2(`−2)/p‖At[γδs0 , (a`,j)2`−2 ]f̃`‖Lp(Rd+1),

where f̃` = 2(`−2)d/pf̃(2`−2·). Since At[γδs0 , ã] =
∑

`,j
At[γδs0 , a`,j], by (3.3.4)

we get ∥∥χ̃ T [a]f
∥∥
Lp(Rd+1)

. δ
∑

`,j

∥∥At[γδs0 , (a`,j)2`−2 ]f̃`
∥∥
Lp(Rd+1)

.

To complete the proof, we only have to relabel (a`,j)2`−2 , ` = 1, 2, 3,
j∗ − C ≤ j ≤ j∗ + C. Indeed, since ã ∈ Cd+N+2, (a`,j)2`−2 ∈ Cd+N+2,
which is supported in I × [2−1, 4] × Aj+`−2. Obviously, (3.3.6) holds for
ã = (a`,j)2`−2 because ` = 1, 2, 3. Changing variables s → δs + s0 and

ξ → δ−N L̃δs0ξ in (3.3.1), by (3.3.2) we see that (3.3.1) on supps,ξ a is equiva-

lent to
∑N−1

j=1 |〈(γδs0)(j)(s), ξ〉| ≥ 2kδN/B′ for (s, ξ) ∈ supps,ξ aδ,s0( · , δ−NLδs0 ·).
Note supps,ξ aδ,s0( · , δ−NLδs0 ·) ⊃ supps,ξ ã. So, the same holds on supps,ξ ã and
hence on supps,ξ(a`,j)2`−2 if B′ replaced by 2B′. Therefore, C−1(a`,j)2`−2 is of

type (j + `− 2, N − 1, B̃) relative to γδs0 for a large constant C = C(B).
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3.4 Localizing frequency near degenerate set

For the proof of Proposition 3.1.3, we make some reductions by decomposing
the symbol a. We fix a sufficiently small positive constant

δ∗ ≤ min{δ′, (27dB6)−N},

which is to be specified in what follows. Here δ′ is the number given in Lemma
3.3.1.

We recall that γ satisfies (3.1.1), N(N,B), V(N,B), and a is of type
(k,N,B) relative to γ. We set

ηN(s, ξ) =
∏

1≤j≤N−1

β0

(
B2−k−1δj−N∗ 〈γ(j)(s), ξ〉

)
, (3.4.1)

where β0 ∈ C∞c ((−1, 1)) such that β0 = 1 on [−1/2, 1/2]. It is easy to see
|∂js∂lt∂αξ (aηN)| ≤ C|ξ|−|α| for (j, l, α) ∈ IN , and the same holds for a(1− ηN).

Note
∑N−1

j=1 |γ(j)(s) · ξ| ≥ (2B)−1δN∗ |ξ| on supps,ξ(a(1 − ηN)). So, we see

a(1 − ηN) is a symbol of type (k,N − 1, B′) for B′ = CB2δ−C∗ with a large
C. Applying the assumption (Theorem 3.1.2 with L = N − 1 and B = B′),
we obtain

‖At[γ, a(1− ηN)]f‖Lp(Rd+1) ≤ C2(− 2
p

+ε)k‖f‖Lp(Rd), p ≥ 4N − 6.

Thus, it suffices to consider At[γ, aηN ]. Since N(N,B) holds on supps,ξ a,

|γ(N)(s) · ξ| ≥ (2B)−1|ξ| (3.4.2)

whenever (s, t, ξ) ∈ supp aηN for some t.

Basic assumption Before we continue to prove the estimate for At[γ, aηN ],
we make several assumptions which are clearly permissible by elementary
decompositions.

Decomposing a, we may assume that suppξ a is contained in a narrow
conic neighborhood and supps a ⊂ I(s0, δ∗) for some s0. Let us set

Γk =
{
ξ ∈ Ak : dist

(
|ξ|−1ξ, |ξ′|−1ξ′

)
< δ∗ for some ξ′ ∈ suppξ(aηN)

}
.

We may also assume γ(N−1)(s′) · ξ′ = 0 for some (s′, ξ′) ∈ I(s0, δ∗) × Γk.
Otherwise, |γ(N−1)(s) · ξ| & |ξ| on supps,ξ aηN and hence aηN = 0 if we take
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B large enough. By (3.4.2) and the implicit function theorem, there exists σ
such that

γ(N−1)(σ(ξ)) · ξ = 0 (3.4.3)

in a narrow conic neighborhood of ξ′ where σ ∈ C2d+2 since γ ∈ C3d+1(I). So,
decomposing a further, we may assume σ ∈ C2d+2(Γk) and σ(ξ) ∈ I(s0, δ∗)
for ξ ∈ Γk. Furthermore, since σ is homogeneous of degree zero,

|∂αξ σ(ξ)| ≤ C|ξ|−|α|, ξ ∈ Γk (3.4.4)

for a constant C = C(B) if |α| ≤ 2d+ 2. Any symbol which appears in what
follows is to be given by decomposing the symbol a with appropriate cutoff
functions. So, the s, ξ-supports of the symbols are assumed to be contained in
I(s0, δ∗)× Γk.

We break a to have further localization on the Fourier side. Let

a1(s, t, τ, ξ) = aηN β0

(
2−2kδ−2N

∗ |τ + 〈γ(s), ξ〉|2
)

and a0 = aηN − a1. Then, by Fourier inversion

At[γ, aηN ]f = T [a1]f + T [a0]f.

It is easy to show ‖T [a0]f‖p .B 2−2k‖f‖p for 1 ≤ p ≤ ∞. Indeed, consider
ã0 = −(τ+γ(s) ·ξ)−2∂2

t a0. By (3.2.10) and integration by parts in t′, m[a0] =
m[ã0] and hence T [a0] = T [ã0]. Thanks to (3.2.14), it is sufficient to show

|K[ã0](s, t, x)
∣∣ ≤ C 2k(d−1)

∫ (
1 + 2k|t− t′|+ 2k|x− t′γ(s)|

)−d−3
dt′

for a constant C = C(B, δ∗). Note |τ + 〈γ(s), ξ〉| & 2k on supp ã0, and recall
(3.2.15). Rescaling and integration by parts in τ, ξ, as in the proof of Lemma
3.2.4, show the estimate.

The difficult part is to estimate T [a1]. Since δ∗ is a fixed constant, it
is obvious that C−1a1 ∈ Ak(s0, δ∗) for some C = C(B, δ∗). So, the desired
estimate for T [a1] follows once we have the next proposition.

Proposition 3.4.1. Let a ∈ Ak(s0, δ∗) with suppξ a ⊂ Γk. Suppose Theorem
3.1.2 holds for L = N − 1. Then, if p ≥ 4N − 2, for ε > 0 we have∥∥T [a]f

∥∥
Lp(Rd+1)

≤ Cε2
− 2
p
k+εk‖f‖Lp(Rd). (3.4.5)
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Therefore, the proof of Proposition 3.1.3 is completed if we prove Propo-
sition 3.4.1. For the purpose, we use Proposition 3.4.2 below, which allows us
to decompose T [a] into operators given by symbols with smaller s-supports
while the consequent minor parts have acceptable bounds. This type of ar-
gument was used in [44] when L = 2.

3.4.1 Iterative argument

Let δ0 and δ1 be positive numbers such that

27dB6δ
(N+1)/N
0 ≤ δ1 ≤ δ0 ≤ δ∗, 2−k/N ≤ δ1. (3.4.6)

Then, it is clear that

B6Nδj+1
0 ≤ 2−7dNδj1, j = 1, . . . , N. (3.4.7)

For n ≥ 0, we denote Jµn = {ν ∈ Z : |2nδ1ν − δ0µ| ≤ δ0}.

Proposition 3.4.2. For µ such that δ0µ ∈ I(s0, δ∗)∩δ0Z, let aµ ∈ Ak(δ0µ, δ0)
with supps,ξ a

µ ⊂ I(s0, δ∗)×Γk. Suppose Theorem 3.1.2 holds for L = N − 1.
Then, if p ≥ 4N − 2, for ε > 0 there exist a constant Cε = Cε(B) ≥ 2 and
symbols aν ∈ Ak(δ1ν, δ1) with supps,ξ aν ⊂ I(s0, δ∗)×Γk, ν ∈ ∪µJµ0 , such that

(∑
µ

‖T [aµ]f‖pp
) 1
p ≤ Cε

(δ1

δ0

) 2N
p
−1−ε(∑

ν

‖T [aν ]f‖pp
) 1
p + Cεδ

− 2N
p

+1+ε

0 2−
2k
p

+2εk‖f‖p.

Rest of this section, assuming Proposition 3.4.2, we prove Proposition
3.4.1.

Let a ∈ Ak(s0, δ∗). We may assume s0 = δ∗µ for some µ ∈ Z. To apply
Proposition 3.4.2 iteratively, we need to choose an appropriate decreasing
sequence of positive numbers since the decomposition is subject to the con-
dition (3.4.6).

Let δ0 = δ∗, so (27dB6)Nδ0 < 1. Let J be the largest integer such that

(27dB6)N(N+1
N

)J−1−Nδ
(N+1
N

)J−1

0 > 2−
k
N .

So, J ≤ C1 log k for a constant C1 ≥ 1. We set

δJ = 2−
k
N , δj = (27dB6)N(N+1

N
)j−Nδ

(N+1
N

)j

0 (3.4.8)
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for j = 1, . . . , J − 1. Thus, it follows that

27dB6δ
(N+1)/N
j ≤ δj+1 < δj, j = 0, . . . , J − 1. (3.4.9)

For a given ε > 0, let ε̃ = ε/4. Since a ∈ Ak(δ0µ, δ0) and (3.4.6) holds for
δ0 and δ1, applying Proposition 3.4.2 to T [a], we have

‖T [a]f‖p ≤ Cε̃
(
δ1/δ0

) 2N
p
−1−ε̃(∑

ν1

‖T [aν1 ]f‖pp
) 1
p + Cε̃δ

− 2N
p

+1+ε̃

0 2−
2
p
k+2ε̃k‖f‖p,

where aν1 ∈ Ak(δ1ν1, δ1), ν1 ∈ Jµ0 . Thanks to (3.4.9) we may apply again
Proposition 3.4.2 to T [aν1 ] while δ0, δ1 replaced by δ1, δ2, respectively. Re-
peating this procedure up to J-th step yields symbols aν ∈ Ak(δJν, δJ),
δJν ∈ δJZ ∩ I(δ0µ, δ0), such that

‖T [a]f‖p ≤ CJ
ε̃ δ

2N
p
−1−ε̃

J

(∑
ν

‖T [aν ]f‖pp
) 1
p+

∑
0≤j≤J−1

Cj+1
ε̃ δ

− 2N
p

+1+ε̃

0 2−
2
p
k+2ε̃k‖f‖p

for p ≥ 4N − 2. Now, assuming(∑
ν

‖T [aν ]f‖pp
)1/p

.B 2−k/N‖f‖p, 2 ≤ p ≤ ∞ (3.4.10)

for the moment, we can finish the proof of Proposition 3.4.1. Since Cε̃ ≥ 2,
combining the above inequalities, we get

‖T [a]f‖p .BC
J+1
ε̃

(
2−

2
p
k+ ε̃

N
k + 2−

2
p
k+2ε̃k

)
‖f‖p.

Note J ≤ C1 log k, so CJ+1
ε̃ ≤ C ′2εk/2 for some C ′ if k is sufficiently large.

Thus, the right hand side is bounded by C2−2k/p+εk‖f‖p.
It remains to show (3.4.10) for 2 ≤ p ≤ ∞. By interpolation, it is enough

to obtain (3.4.10) for p =∞ and p = 2. The case p =∞ follows by (3.2.12)
since aν ∈ Ak(δJν, δJ). So, we need only to prove (3.4.10) for p = 2. To do this,
we first observe the following, which shows suppξ aν are finitely overlapping.

Lemma 3.4.3. For b ≥ 1, s ∈ I(s0, δ∗), and 0 < δ ≤ δ∗, let us set

Λ′k(s, δ, b) =
⋂

1≤j≤N−1

{
ξ ∈ Γk : |〈γ(j)(s), ξ〉| ≤ b2kδN−j

}
. (3.4.11)

If Λ′k(s1, δ, b) ∩ Λ′k(s2, δ, b) 6= ∅ for some s1, s2 ∈ I(s0, δ∗), then there is a
constant C = C(B) such that |s1 − s2| ≤ Cbδ.
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Proof. Let ξ ∈ Λ′k(s1, δ, b)∩Λ′k(s2, δ, b). Since |γ(N−1)(sj) · ξ| ≤ b2kδ, j = 1, 2,
by (3.4.3) and (3.4.2) we see |sj − σ(ξ)| ≤ 22bBδ, j = 1, 2, using the mean
value theorem. This implies |s1 − s2| ≤ 23bBδ.

We recall (3.2.10). Since (3.4.2) holds on supps,ξ aν , by van der Corput’s
lemma (e.g., see [55, Corollary, p. 334]) we have

|m[aν ](τ, ξ)| . 2−k/N
(
‖aν(·, t, τ, ξ)‖∞ + ‖∂saν(·, t, τ, ξ)‖1

)
.B 2−k/N .

The second inequality is clear since aν ∈ Ak(δJν, δJ). From (3.2.11) note

F(T [aν ]f) = m[aν ]f̂ . By (3.2.10), suppξ F(T [aν ]f) ⊂ Sν := Λ′k(δJν, δJ , 2
5B),

since suppξ aν ⊂ Sν . By Lemma 3.4.3 it follows that the sets Sν overlap at
most C = C(B) times. Therefore, Plancherel’s theorem and the estimate
above yield

‖
∑
ν

T [aν ]f‖2
2 .B 2−2k/N

∑
ν

∫
Sν

∫
{τ :|τ+γ(δJν)·ξ|≤25B}

dτ |f̂(ξ)|2 dξ

since supp aν ⊂ Λk(δJν, δJ , B). This gives (3.4.10) for p = 2.

3.5 Decoupling in a local coordinate

In this section, we prove Proposition 3.4.2 by applying the decoupling in-
equality. Meanwhile, the induction assumption (Theorem 3.1.2 with L = N−
1) plays an important role. We decompose a given symbol aµ ∈ Ak(δ0µ, δ0)
into the symbols with their s-supports contained in intervals of length about
δ1 while the consequent minor contribution is controlled within an acceptable
bound. To achieve it up to δ1 satisfying (3.4.6), we approximate 〈G(s), (τ, ξ)〉
in a local coordinate system near the set {(s, ξ) : 〈γ(N−1)(s), ξ〉 = 0}.

3.5.1 Decomposition of the symbol aµ

We begin by introducing some notations.
Fixing µ ∈ Z such that δ0µ ∈ I(s0, δ∗), we consider linear maps

yjµ(τ, ξ) = 〈G(j)(δ0µ), (τ, ξ)〉, j = 0, 1, . . . , N.

In particular, yjµ(τ, ξ) = 〈γ(j)(δ0µ), ξ〉 if 1 ≤ j ≤ N. By (3.4.2) it follows that

|yNµ (τ, ξ)| ≥ (2B)−1|ξ|. (3.5.1)
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We denote

ωµ(ξ) =
yN−1
µ (τ, ξ)

yNµ (τ, ξ)
,

which is close to δ0µ − σ(ξ) (see (3.5.5)). Then, we define gNµ , g
N−1
µ , . . . , g0

µ

recursively, by setting gNµ = yNµ , and

gjµ(τ, ξ) = yjµ(τ, ξ)−
N∑

`=j+1

g`µ(τ, ξ)

(`− j)!
(ωµ(ξ))`−j, j = N − 1, . . . , 0. (3.5.2)

Note that gN−1
µ = 0 and (3.5.2) can be rewritten as follows:

ymµ (τ, ξ) =
N∑
`=m

g`µ(τ, ξ)

(`−m)!
(ωµ(ξ))`−m, m = 0, . . . , N. (3.5.3)

The identity continues to hold for m = N since gNµ = yNµ . Apparently,
g1
µ, . . . , g

N
µ are independent of τ since so are y1

µ, . . . , y
N
µ .

For j = 1, . . . , N , set

Ej(ξ) := (yNµ (τ, ξ))−1

∫ δ0µ

σ(ξ)

〈γ(N+1)(r), ξ〉
j!

(σ(ξ)− r)jdr. (3.5.4)

By (3.5.4) with j = 1 and integration by parts, we have

E1(ξ) = σ(ξ)− δ0µ+ ωµ(ξ). (3.5.5)

Lemma 3.5.1. For 0 ≤ j ≤ N − 1, we have

〈G(j)(σ(ξ)), (τ,ξ)〉 =
N∑
`=j

g`µ (E1)`−j

(`− j)!
− yNµ EN−j. (3.5.6)

Proof. When j = N−1, (3.5.6) is clear. To show (3.5.6) for j = 0, 1, . . . , N−2,
by Taylor’s theorem with integral remainder we have

〈G(j)(σ(ξ)), (τ, ξ)〉 =
N∑
m=j

ymµ (τ, ξ)
(σ(ξ)− δ0µ)m−j

(m− j)!
− yNµ (τ, ξ)EN−j(ξ).
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Using (3.5.3) and then changing the order of the sums, we see

〈G(j)(σ(ξ)), (τ, ξ)〉 =
N∑
`=j

g`µ

(∑̀
m=j

(σ(ξ)− δ0µ)m−j

(`−m)!(m− j)!
(ωµ)`−m

)
− yNµ EN−j.

The sum over m equals (σ(ξ) − δ0µ + ωµ)`−j/(` − j)!. So, (3.5.6) follows by
(3.5.5).

We now decompose the symbol aµ ∈ Ak(δ0µ, δ0) by making use of gjµ,
j = 0, . . . , N − 2. We define

Gµ
N(s, τ, ξ) =

N−2∑
j=0

(
2−kgjµ(τ, ξ)

) 2N !
N−j + (s− σ(ξ))2N !. (3.5.7)

Let βN = β0−β0(22N !·), so
∑

`∈Z βN(22N !`·) = 1. We also take ζ ∈ C∞c ((−1, 1))
such that

∑
ν∈Z ζ(· − ν) = 1. For n ≥ 0 and ν ∈ Jµn, we set

aµ,nν = aµ ×

{
β0

(
δ−2N !

1 Gµ
N

)
ζ(δ−1

1 s− ν), n = 0,

βN
(
(2nδ1)−2N ! Gµ

N

)
ζ(2−nδ−1

1 s− ν), n ≥ 1.

Then, it follows that

aµ =
∑
n≥0

∑
ν∈Jµn

aµ,nν . (3.5.8)

Lemma 3.5.2. There is a constant C = C(B) such that C−1aµ,nν is in
Ak(2

nδ1ν, 2
nδ1) for n ≥ 0, µ, and ν.

The proof of Lemma 3.5.2 is elementary though it is somewhat involved.
We postpone the proof until Section 3.6.

We collect some elementary facts regarding aµ,nν . First, we may assume

2nδ1 .B δ0 (3.5.9)

since, otherwise, aµ,nν = 0. Note |〈γ(N−1)(δ0µ), ξ〉| ≤ B2k+5δ0 if ξ ∈ suppξ aµ.
Then, (3.4.2), (3.4.3), and the mean value theorem show

|σ(ξ)− δ0µ| ≤ B227δ0 (3.5.10)
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for ξ ∈ suppξ aµ. If (τ, ξ) ∈ suppτ,ξ aµ ⊂ Λk(δ0µ, δ0, B), |yjµ(τ, ξ)| ≤ B2k+5δN−j0

for 0 ≤ j ≤ N − 1. Since |ωµ| . B2δ0, (3.5.2) gives |gjµ(τ, ξ)| .B 2k+5δN−j0

for 0 ≤ j ≤ N − 2. Therefore, Gµ
N .B δ

2N !
0 on the support of aµ. This gives

(3.5.9).
Since Gµ

N ≤ (2nδ1)2N ! on supp aµ,nν , the following hold on the support of
aµ,nν :

|s− σ(ξ)| ≤ 2nδ1, (3.5.11)

2−k|gjµ(τ, ξ)| ≤ (2nδ1)N−j, 0 ≤ j ≤ N − 1. (3.5.12)

The inequality (3.5.12) holds true for j = N − 1 since gN−1
µ = 0. We also

have

|Ej(ξ)| ≤ B2(B227δ0)j+1, (3.5.13)

|σ(ξ)− 2nδ1ν| ≤ 2n+1δ1. (3.5.14)

on suppξ a
µ,n
ν . By using (3.5.4), (3.5.10), and (3.5.1), it is easy to show

(3.5.13). Since |s− 2nδ1ν| ≤ 2nδ1 on supps a
µ,n
ν , (3.5.14) follows by (3.5.11).

3.5.2 Decoupling for the symbol aµ

By (3.5.8) and the Minkowski inequality we have(∑
µ

∥∥T [aµ]f
∥∥p
p

)1/p ≤
∑
n≥0

(∑
µ

∥∥∑
ν∈Jµn

T [aµ,nν ]f
∥∥p
p

)1/p
. (3.5.15)

We apply the inequality (2.1.14) to
∑

ν∈Jµn T [aµ,nν ]f after a suitable linear
change of variables. The symbols aµ,0ν are to constitute the set {aν} while the
operators associated to aµ,nν , n ≥ 1 are to be handled similarly as in Section
2.

Applying the decoupling inequality

To prove Proposition 3.4.2, we first show∥∥∑
ν∈Jµn

T [aµ,nν ]f
∥∥
p
≤ Cε

(
2nδ1/δ0

) 2N
p
−1−ε(∑

ν∈Jµn

∥∥T [aµ,nν ]f
∥∥p
p

)1/p
(3.5.16)
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for p ≥ 4N − 2. To apply the inequality (2.1.14), we consider suppτ,ξ a
µ,n
ν ,

which contains the Fourier support of T [aµ,nν ]f as is clear from (3.2.10) and
(3.2.11).

We set
yµ(τ, ξ) =

(
y0
µ(τ, ξ), . . . , yNµ (τ, ξ)

)
.

Lemma 3.5.3. Let r = rN+1
◦ and matrix Dδ := (δ−Ne1, δ

1−Ne2, . . . , δ
0eN+1)

where ej denotes the j-th standard unit vector in RN+1. On suppτ,ξ a
µ,n
ν , we

have∣∣∣〈Dδ0yµ(τ, ξ), r(j)
(2nδ1

δ0

ν − µ
)〉∣∣∣ .2k

(2nδ1

δ0

)N+1−j
, 1 ≤ j ≤ N,

(3.5.17)

(2B)−12k−1 ≤
∣∣〈yµ(τ, ξ), r(N+1)

〉∣∣ ≤ B2k+1. (3.5.18)

Proof. We write r = (r1, . . . , rN+1). Note r
(j)
m (s) = sm−j/(m− j)! for m ≥ j.

By (3.5.3) we have

ym−1
µ r(j)

m (2nδ1ν − δ0µ) =
N∑

`=m−1

g`µ
(2nδ1ν − δ0µ)m−j

(`+ 1−m)!(m− j)!
ω`+1−m
µ

for m ≥ j. Since r
(j)
m (s) = 0 for j > m, taking sum over m gives

〈
yµ, r

(j)(2nδ1ν − δ0µ)
〉

=
N∑

`=j−1

g`µ
(2nδ1ν − δ0µ+ ωµ)`+1−j

(`+ 1− j)!
.

From (3.5.5) note 2nδ1ν − δ0µ + ωµ = 2nδ1ν − σ(ξ) + E1. Thus, (3.5.14),
(3.5.13) with j = 1, and (3.4.7) with j = 1 show |2nδ1ν − δ0µ + ωµ| . 2nδ1.
Using (3.5.12), we obtain∣∣〈yµ(τ, ξ), r(j)(2nδ1ν − δ0µ)

〉∣∣ . 2k(2nδ1)N+1−j, 1 ≤ j ≤ N.

By homogeneity it follows that 〈η, r(j)(δ0s)〉 = δN+1−j
0 〈Dδ0η, r(j)(s)〉 for η ∈

RN+1. Therefore, we get (3.5.17). For (3.5.18) note r(N+1) = (0, . . . , 0, 1), so
〈yµ, r(N+1)〉 = yNµ and (3.5.18) follows by (3.5.1).

Let V = span{γ′(δ0µ), . . . , γ(N)(δ0µ)} and {vN+1, . . . , vd} be an orthonor-
mal basis of V⊥. Since γ satisfies V(N,B), for each ξ ∈ Rd we can write

ξ = ξ +
∑

N+1≤j≤d

yj(ξ)vj, (3.5.19)
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where ξ ∈ V and yj(ξ) ∈ R, N + 1 ≤ j ≤ d. We define a linear map Yδ0
µ by

Yδ0
µ (τ, ξ) =

(
2−kDδ0yµ(τ, ξ), yN+1(ξ), . . . , yd(ξ)

)
.

Then, by (3.5.17) and (3.5.18) we see

Yδ0
µ (suppτ,ξ a

µ,n
ν ) ⊂ s

(2nδ1

δ0

ν − µ,C 2nδ1

δ0

, 22B; rN+1
◦

)
× Rd−N (3.5.20)

for some C > 1. Thus, we have the inequality (2.1.14) for δ = C2nδ1/δ0, the
collection of slabs s(2nδ1ν/δ0−µ,C2nδ1/δ0, CB; rN+1

◦ ), ν ∈ Jµn. Therefore, via
cylindrical extension in yN+1, . . . , yd (see (2.1.16)) and the change of variables
(τ, ξ) → Yδ0

µ (τ, ξ) we obtain (3.5.16) since the decoupling inequality is not
affected by affine change of variables in the Fourier side.

Combining (3.5.15) and (3.5.16), we obtain(∑
µ

‖T [aµ]f‖pp
)1/p ≤

∑
n≥0

En

for p ≥ 4N − 2, where

En = Cε
(
2nδ1/δ0

) 2N
p
−1−ε(∑

µ

∑
ν∈Jµn

‖T [aµ,nν ]f‖pp
)1/p

.

Since the intervals I(δ0µ, δ0) overlap, there are at most three nonzero
aµ,0ν for each ν. We take aν = aµ,0ν which maximizes ‖T [aµ,0ν ]f‖p. Then, it

is clear that E0 ≤ 31/pCε(δ1/δ0)
2N
p
−1−ε(

∑
ν ‖T [aν ]f‖pp )1/p. By Lemma 3.5.2,

C−1aν ∈ Ak(δ1ν, δ1) for a constant C. Thus, the proof of Proposition 3.4.2 is
now reduced to showing∑

n≥1

En .B δ
− 2N

p
+1+ε

0 2−
2
p
k+2εk‖f‖p, p ≥ 4N − 2. (3.5.21)

3.5.3 Estimates for less degenerate parts

Estimates for En when n ≥ 1

To show (3.5.21) we decompose aµ,nν so that (3.5.26) or (3.5.27) (see Lemma
3.5.5 below) holds on the s, ξ-supports of the resulting symbols. If (3.5.26)
holds, we use the assumption after rescaling, whereas we handle the other
case using estimates for the kernels of the operators.
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Let

Ḡµ
N(s, ξ) =

∑
1≤j≤N−2

(
2−kgjµ

) 2N !
N−j +

(
s− σ(ξ)

)2N !
. (3.5.22)

The right hand side is independent of τ since so are gjµ, 1 ≤ j ≤ N − 2.
Let C0 = 22dB. We set

aµ,nν,1 = aµ,nν β0

(
(2−kg0

µ)2(N−1)!/(C2N !
0 Ḡµ

N)
)
, n ≥ 1, (3.5.23)

and aµ,nν,2 = aµ,nν − aµ,nν,1 , so aµ,nν = aµ,nν,1 + aµ,nν,2 . Similarly as before, we have the
following, which we prove in Section 3.6.

Lemma 3.5.4. There exists a constant C = C(B) such that C−1aµ,nν,1 , and
C−1aµ,nν,2 are contained in Ak(2

nδ1ν, 2
nδ1) for n ≥ 1.

The estimate (3.5.21) follows if we show(∑
µ

∑
ν∈Jµn

‖T [aµ,nν,1 ]f‖pp
)1/p ≤ Cε2

− 2
p
k+εk(2nδ1)−

2N
p

+1+ε‖f‖p, p ≥ 4N − 6,

(3.5.24)

for any ε > 0, and(∑
µ

∑
ν∈Jµn

‖T [aµ,nν,2 ]f‖pp
)1/p

.B 2−
(N+2)k

2N (2nδ1)−
N
2 ‖f‖p, 2 ≤ p ≤ ∞ (3.5.25)

when n ≥ 1. Thanks to (3.5.9), those estimates give∑
n≥1

En ≤ Cεδ
− 2N

p
+1+ε

0

∑
1≤n≤log2(Cδ0/δ1)

(
2−

2
p
k+εk + 2−

(N+2)k
2N (2nδ1)

2N
p
−N+2

2
−ε)‖f‖p

for p ≥ 4N−2. Note log2(δ0/δ1) ≤ Ck from (3.4.6). So, (3.5.21) follows since
4N − 2 > 4N/(N + 2) and δ1 ≥ 2−k/N .

In order to prove the estimates (3.5.24) and (3.5.25), we start with the
next lemma.

Lemma 3.5.5. Let n ≥ 1. For a constant C = C(B) > 0, we have the
following :∑

1≤j≤N−1

(2nδ1)−(N−j)|〈γ(j)(s), ξ〉| ≥ C2k, (s, ξ) ∈ supps,ξ a
µ,n
ν,1 , (3.5.26)

(2nδ1)−N |τ + 〈γ(s), ξ〉| ≥ C2k, (s, ξ) ∈ supps,ξ a
µ,n
ν,2 . (3.5.27)
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Proof. We first prove (3.5.26). Since Gµ
N ≥ 2−2N !−1(2nδ1)2N ! on supps,ξ a

µ,n
ν ,

one of the following holds on supp aµ,nν,1 :

|s− σ(ξ)| ≥ (23C0B)−12nδ1, (3.5.28)

2−k|gjµ(τ, ξ)| ≥ (22C0)−(N−j)(2nδ1)N−j (3.5.29)

for some 1 ≤ j ≤ N − 2, where C0 = 22dB (see (3.5.23)). If (3.5.28) holds,
by (3.4.2) and (3.4.3) it follows that (2nδ1)−1|〈γ(N−1)(s), ξ〉| & 2k. Thus,
to show (3.5.26) we may assume (3.5.28) fails, i.e., (3.5.29) holds for some
1 ≤ j ≤ N−2. So, there is an integer ` ∈ [0, N−2] such that (3.5.29) fails for
`+ 1 ≤ j ≤ N − 2, whereas (3.5.29) holds for j = `. By (3.5.6) and (3.5.13),
we have

|〈G(`)(σ(ξ)), (τ, ξ)〉| ≥ |g`µ| −
N∑

j=`+1

|gjµ|
(B6214δ2

0)j−`

(j − `)!
− 2B3(B227δ0)N+1−`|ξ|.

(3.5.30)
Thus, by (3.4.7), |〈G(`)(σ(ξ)), (τ, ξ)〉| ≥ (23C0)−(N−`)2k(2nδ1)N−`. Also,

(3.5.6) and our choice of ` give |〈G(j)(σ(ξ)), (τ, ξ)〉| ≤ (2C0)−(N−j)2k(2nδ1)N−j

for `+1 ≤ j ≤ N−2. Combining this with |s−σ(ξ)| < (23C0B)−12nδ1 and ex-
panding G(`) in Taylor series at σ(ξ), we see |〈G(`)(s), (τ, ξ)〉| ≥ C2k(2nδ1)N−`

for some C = C(B) > 0. This proves (3.5.26).
We now show (3.5.27), which is easier. On supp aµ,nν,2 , |g0

µ| ≥ 2k−N−1(2nδ1)N

and 2−k|gjµ| ≤ 2C
−(N−j)
0 (2nδ1)N−j for j = 1, . . . , N − 2. Using (3.5.30) with

` = 0, by (3.4.7) and (3.4.6) we get (2nδ1)−N |τ + 〈γ(σ(ξ)), ξ〉| ≥ 2−N−22k. We
note that |s − σ(ξ)| ≤ 2C−1

0 2nδ1 and |〈G(j)(σ(ξ)), (τ, ξ)〉| ≤ C−1
0 2k(2nδ1)N−j

for 1 ≤ j ≤ N − 2 on supp aµ,nν,2 . Since |〈G(N)(s), (τ, ξ)〉| ≤ B2k+1, using
Taylor series expansion at σ(ξ) as above, we see (3.5.27) holds true for some
C = C(B) > 0.

Additionally, we make use of disjointness of suppξ a
µ,n
ν by combining

Lemma 3.4.3 and the next one.

Lemma 3.5.6. There is a positive constant C = C(B) such that

|(L̃δs)−1ξ| ≤ Cb2k (3.5.31)

whenever ξ ∈ Λ′k(s, δ, b) (see (3.4.11)). If ξ ∈ Γk and (3.5.31) holds with
C = 1, then ξ ∈ Λ′k(s, δ, C1b) for some C1 = C1(B) > 0.
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Proof. Let η ∈ Rd and {vN , . . . , vd} be an orthonormal basis of (span{γ(j)(s) :
1 ≤ j ≤ N−1})⊥. We write η =

∑N−1
j=1 cjγ

(j)(s)+
∑d

j=N cjvj. Since V(N,B)
holds for γ, |η| ∼ |(c1, · · · , cd)|. Let ξ ∈ Λ′k(s, δ, b). Then, (3.2.1) gives

〈η, (L̃δs)−1ξ〉 = 〈(L̃δs)−ᵀη, ξ〉 =
N−1∑
j=1

δj−Ncj〈γ(j)(s), ξ〉+
d∑

j=N

cj〈vj, ξ〉.

Thus, by (3.4.11) we get |〈η, (L̃δs)−1ξ〉| ≤ Cb|η|2k, which shows (3.5.31).

By (3.2.1), 〈γ(j)(s), ξ〉 = δN−j〈γ(j)(s), (L̃δs)−1ξ〉 for 1 ≤ j ≤ N − 1. There-
fore, (3.5.31) with C = 1 gives |〈γ(j)(s), ξ〉| ≤ C1bδ

N−j2k for a constant
C1 > 0 when 1 ≤ j ≤ N − 1. This proves the second statement.

Now, we are ready to prove the estimates (3.5.24) and (3.5.25). We first
show (3.5.24).

Proof of (3.5.24). By Lemma 3.5.4, C−1aµ,nν,1 ∈ Ak(2
nδ1ν, 2

nδ1) for some C >
0, and (3.5.26) holds on supps,ξ a

µ,n
ν,1 . Thus, taking δ = 2nδ1 and s0 = 2nδ1ν,

we may use Lemma 3.3.1 for χ̃T [aµ,nν,1 ]f to get∥∥χ̃T [aµ,nν,1 ]f
∥∥
Lp(Rd+1)

≤ C
∑

1≤l≤C

δ
∥∥At[γδs0 , al ]f̃l∥∥Lp(Rd+1)

,

where ‖f̃l‖p = ‖f‖p, al are of type (j,N − 1, B′) relative to γδs0 for some
B′ > 0, and 2j ∼ (2nδ1)N2k. As seen before, γ = γδs0 satisfies V(N, 3B) and
(3.1.1) with B replaced by 3B for δ ≤ δ∗. So, γ = γδs0 satisfies V(N − 1, B′)
for a large B′.

Therefore, we may apply the assumption (Theorem 3.1.2 with L = N −
1) to At[γδs0 , al], which gives ‖At[γδs0 , al]f‖p ≤ Cε

(
2k(2nδ1)N

)− 2
p

+ε‖f‖p for a
constant Cε = Cε(B

′). Consequently, we obtain

‖χ̃T [aµ,nν,1 ]f‖p ≤ Cε2
− 2
p
k+εk(2nδ1)1− 2N

p
+ε‖f‖p

for p ≥ 4(N − 1) − 2. Besides, since C−1aµ,nν,1 ∈ Ak(2
nδ1ν, 2

nδ1), by (3.2.13)
we have ‖(1− χ̃)T [aµ,nν,1 ]f‖Lp(Rd+1) .B 2−k(2nδ1)1−N‖f‖Lp(Rd) for p > 1. Note

2nδ1 & 2−k/N . Combining those two estimates yields

‖T [aµ,nν,1 ]f‖p ≤ Cε2
− 2
p
k+εk(2nδ1)1− 2N

p
+ε‖f‖p. (3.5.32)
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To exploit disjointness of suppξ a
µ,n
ν,1 , we define a multiplier operator by

F(P δ
s f)(ξ) = β0

(
|(L̃δs)−1ξ|/(C02k)

)
f̂(ξ)

for a constant C0 > 0. Since suppξ a
µ,n
ν,1 ⊂ Λ′k(2

nδ1ν, 2nδ1, 2
5B), by Lemma

3.5.6 we may choose C0 large enough so that β0

(
|(L̃2nδ1

2nδ1ν
)−1 · |/(C02k)

)
= 1

on suppξ a
µ,n
ν,1 . Thus, T [aµ,nν,1 ]f = T [aµ,nν,1 ]P 2nδ1

2nδ1ν
f . Combining this and (3.5.32),

we obtain(∑
µ

∑
ν∈Jµn

‖T [aµ,nν,1 ]f‖pp
)1/p ≤ Cε2

− 2
p
k+εk(2nδ1)1− 2N

p
+ε
(∑

µ

∑
ν∈Jµn

‖P 2nδ1
2nδ1ν

f‖pp
)1/p

for a constant Cε = Cε(B) if p ≥ 4N − 6. Therefore, (3.5.24) follows if we
show (∑

µ

∑
ν∈Jµn

‖P 2nδ1
2nδ1ν

f‖pp
)1/p

.B ‖f‖p, 2 ≤ p ≤ ∞. (3.5.33)

By interpolation it suffices to obtain (3.5.33) for p = 2,∞. The case
p = ∞ is trivial since ‖P 2nδ1

2nδ1ν
f‖∞ . ‖f‖∞. For p = 2, (3.5.33) follows

by Plancherel’s theorem since supp β0

(
|(L̃2nδ1

2nδ1ν
)−1 · |/(C02k)

)
f̂ , ν ∈ Jµn are

finitely overlapping. Indeed, by Lemma 3.5.6 we have supp β0

(
|(L̃2nδ1

2nδ1ν
)−1 ·

|/(C02k)
)
f̂ ⊂ Λ′k(2

nδ1ν, 2
nδ1, C1B) for a constant C1. It is clear from lemma

3.4.3 that Λ′k(2
nδ1ν, 2

nδ1, C1B), ν ∈ Jµn overlap at most C = C(B) times.

The proof of (3.5.25) is much easier since we have a favorable estimate
for the kernel of T [aµ,nν,2 ] thanks to the lower bound (3.5.27).

Proof of (3.5.25). Let

b(s, t, τ, ξ) = i−1(τ + 〈γ(s), ξ〉)−1∂ta
µ,n
ν,2 (s, t, τ, ξ).

Then, integration by parts in t shows m[aµ,nν,2 ] = m[b]. Note (3.5.27) holds and
C−1aµ,nν,2 ∈ Ak(2

nδ1ν, 2
nδ1) for a constant C ≥ 1. Thus, a := C−12k(2nδ1)Nb

satisfies, with δ = 2nδ1 and s0 = 2nδ1ν, (3.2.3) and (3.2.4) for 0 ≤ j ≤ 1,
0 ≤ l ≤ 2N−1, |α| ≤ d+N+2. Applying (3.2.12), we obtain ‖T [aµ,nν,2 ]f‖∞ .B

2−k(2nδ1)1−N‖f‖∞. Since δ1 ≥ 2−k/N , this gives

‖T [aµ,nν,2 ]f‖∞ .B 2−
(N+2)k

2N (2nδ1)−
N
2 ‖f‖∞. (3.5.34)
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By interpolation it is sufficient to show (3.5.25) for p = 2. Note that
we have ‖b(·, t, τ, ξ)‖∞ + ‖∂sb(·, t, τ, ξ)‖1 . 2−k(2nδ1)−N . Thus, (3.4.2) and
van der Corput’s lemma in s give |m[aµ,nν,2 ](τ, ξ)| . 2−k(1+N)/N(2nδ1)−N . Since

suppξ a
µ,n
ν,2 ⊂ Λ′k(2

nδ1ν, 2
nδ1, 2

5B), as before, we have T [aµ,n2,ν ]f = T [aµ,n2,ν ]P 2nδ1
2nδ1ν

f
with C0 > 0 large enough. Thus, by Plancherel’s theorem

‖T [aµ,nν,2 ]f‖2
L2 .B 2−

2(1+N)
N

k(2nδ1)−2N

∫∫
{τ :|g0

µ(τ,ξ)|≤2k+1(2nδ1)N}
dτ |F(P 2nδ1

2nδ1ν
f)(ξ)|2 dξ.

Combining this and (3.5.33) yields (3.5.25) for p = 2.

3.6 Bounds on the symbols

Proof of Lemma 3.5.2

To simplify notations, we denote

δ∗ = 2nδ1, s∗ = 2nδ1ν

for the rest of this section. To prove Lemma 3.5.2, we verify (3.2.3) and
(3.2.4) with a = aµ,nν , δ = δ∗, and s0 = s∗. The first is easy. In fact, since
aµ ∈ Ak(δ0µ, δ0) and supps a

µ,n
ν ⊂ I(s∗, δ∗), we only need to show

|〈G(j)(s∗), (τ, ξ)〉| ≤ B2k+5δN−j∗ , j = 0, . . . , N − 1 (3.6.1)

on suppτ,ξ a
µ,n
ν . Using (3.5.6) and (3.5.12) together with (3.4.7) and (3.5.13),

one can easily obtain

|〈G(j)(σ(ξ)), (τ, ξ)〉| ≤ 2k+1δN−j∗ , j = 0, . . . , N − 1 (3.6.2)

on suppτ,ξ a
µ,n
ν . Expanding 〈G(j)(s), (τ, ξ)〉 in Taylor’s series at σ(ξ) gives

(3.6.1) since (3.5.14) holds.

We now proceed to show (3.2.4) with a = aµ,nν , δ = δ∗, and s0 = s∗. Since
aµ,nν consists of three factors aµ, βN(δ−2N !

∗ Gµ
N), and ζ(δ−1

∗ s− ν), by Leibniz’s
rule it is sufficient to consider the derivatives of each of them. The bounds
on the derivatives ζ(δ−1

∗ s− ν) are clear. So, it suffices to show (3.2.4) for

a = aµ, βN(δ−2N !
∗ Gµ

N)

with δ = δ∗ and s0 = s∗ whenever (τ, ξ) ∈ supp aµ,nν (s, t,Lδ∗s∗·).
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We handle aµ first. That is to say, we show∣∣∂js∂lt∂ατ,ξ(aµ(s, t,Lδ∗s∗(τ, ξ))
)∣∣ .B δ

−j
∗ |(τ, ξ)|−|α|, (j, l, α) ∈ IN , (3.6.3)

for (τ, ξ) ∈ supp aµ,nν (s, t,Lδ∗s∗·). Since aµ ∈ Ak(δ0µ, δ0) and |s∗− δ0µ| ≤ δ0, we
have

|∂js∂lt∂ατ,ξ
(
aµ(s, t,Lδ0s∗ (τ, ξ))

)
| .B δ

−j
0 |(τ, ξ)|−|α|, (j, l, α) ∈ IN . (3.6.4)

One can show this using (3.2.8). We consider U := (Lδ0s∗ )
−1Lδ∗s∗ . By (3.2.5) we

have | Uᵀz| .B |z| because |δ−1
0 2nδ1| .B 1. Thus, (3.6.4) gives

|∂js∂lt∂ατ,ξ
(
aµ(s, t,Lδ0s∗U(τ, ξ))

)
| .B δ

−j
0 |U(τ, ξ)|−|α|

for (τ, ξ) ∈ supp aµ,nν (s, t,Lδ∗s∗ ·).
Let (τ, ξ) ∈ supp aµ,nν (s, t,Lδ∗s∗·). Then, Lδ0s∗U(τ, ξ) = Lδ∗s∗(τ, ξ) ∈ Λk(s∗, δ∗, B),

so |L̃δ∗s∗ ξ| ∼ |(τ, ξ)| by Lemma 3.2.2. This and (3.2.6) give

|(τ, ξ)| ∼ |L̃δ∗s∗ ξ| ≤ |L
δ∗
s∗(τ, ξ)| ≤ | U(τ, ξ)|

for (τ, ξ) ∈ supp aµ,nν (s, t,Lδ∗s∗ ·). So, we obtain (3.6.3) since δ∗ . δ0.

We continue to show (3.2.4) for a = βN(δ−2N !
∗ Gµ

N). Note δ−2N !
∗ Gµ

N is a
sum of (δ−1

∗ (s − σ(ξ)))2N ! and (δ−(N−j)
∗ 2−kgjµ)2N !/(N−j), 0 ≤ j ≤ N − 2.

Since the exponents 2N !/(N − j) are even integers, for the desired bounds
on ∂ατ,ξ(βN(δ−2N !

∗ Gµ
N)) it suffices to show the same bounds on the derivatives

of
δ−1
∗ (s− σ(ξ)), δ−(N−j)

∗ 2−kgjµ, 0 ≤ j ≤ N − 2.

The bound on ∂αξ δ
−1
∗ (s− σ) is a consequence of (3.2.7) and the following

lemma. To simplify notations, we denote

Ξ = Lδ∗s∗(τ, ξ), Ξ̃ = L̃δ∗s∗ξ.

Lemma 3.6.1. If Ξ ∈ suppτ,ξ a
µ,n
ν , then we have

|δ−1
∗ ∂αξ (σ(Ξ̃))| .B |ξ|−|α|, 1 ≤ |α| ≤ 2d+ 2. (3.6.5)

Proof. By (3.4.3), γ(N−1)(σ(Ξ̃)) · Ξ̃ = 0. Differentiation gives

γ(N)(σ(Ξ̃)) · Ξ̃ ∇ξ(σ(Ξ̃)) + (L̃δ∗s∗)
ᵀγ(N−1)(σ(Ξ̃)) = 0. (3.6.6)
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Denote s = σ(Ξ̃). By (3.2.1), (L̃δ∗s∗)
ᵀγ(N−1)(s) = δ∗(L̃δ∗s∗)

ᵀ(L̃δ∗s )−ᵀγ(N−1)(s).

Since |s∗ − s| ≤ δ∗, by Lemma 3.2.3 we have |(L̃δ∗s∗)
ᵀγ(N−1)

(
σ(Ξ̃)

)
| .B δ∗.

Besides, |γ(N)(σ(Ξ̃)) · Ξ̃| & |Ξ̃| ∼ 2k (see (3.4.2)). Thus, (3.6.6) and (3.2.7)
give

|∇ξ(σ(Ξ̃))| .B δ∗|ξ|−1,

which proves (3.6.5) with |α| = 1.
We show the bounds on the derivatives of higher order by induction.

Assume that (3.6.5) holds true for |α| ≤ L. Let α′ be a multi-index such that
|α′| = L+1. Then, differentiating (3.6.6) and using the induction assumption,
one can easily see γ(N)(σ(Ξ̃)) · Ξ̃ ∂α

′

ξ (σ(Ξ̃)) = O(δ∗|ξ|−L), by which we get

(3.6.5) for |α| = L + 1. Since σ ∈ C2d+2, one can continue this as far as
L ≤ 2d+ 1.

The proof of Lemma 3.5.2 is now completed if we show∣∣2−k∂ατ,ξ(g`µ(Ξ)
)∣∣ .B δ

N−`
∗ 2−k|α|, |α| ≤ d+N + 2 (3.6.7)

for 0 ≤ ` ≤ N − 2 whenever Ξ ∈ supp aµ,nν (s, t, ·). To this end, we use the
following.

Lemma 3.6.2. For j = 0, . . . , N , we set

Aj = δ−(N−j)
∗ 2−k

〈
G(j)(σ(Ξ̃)),Ξ

〉
.

If (τ, ξ) ∈ supp aµ,nν (s, t,Lδ∗s∗·), then for j = 0, . . . , N we have

|∂ατ,ξAj| .B |(τ, ξ)|−|α|, 1 ≤ |α| ≤ 2d+ 2. (3.6.8)

Proof. When j = N , the estimate (3.6.8) follows by Lemma 3.6.1 and (3.2.7).
So, we may assume j ≤ N − 1. Differentiating Aj, we have

∇τ,ξAj = Bj +Dj,

where

Bj = δ−1
∗

(
0,∇ξ(σ(Ξ̃))

)
Aj+1, Dj = δ−(N−j)

∗ 2−k(Lδ∗s∗)
ᵀG(j)(σ(Ξ̃)).

Note (Lδ∗s∗)
ᵀG(j)(s∗) = δN−j∗ G(j)(s∗) for 0 ≤ j ≤ N − 1. Since |s∗ − σ(Ξ̃)| . δ∗,

similarly as before, Lemma 3.2.3 and (3.2.5) give

|(Lδ∗s∗)
ᵀG(j)(σ(Ξ̃))| .B δ

N−j
∗ , 0 ≤ j ≤ N − 1. (3.6.9)
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By Lemma 3.6.1 and (3.6.2), |Bj| . |ξ|−1. Thus, for Ξ ∈ Λk(s∗, δ∗, B), we
have

|∇τ,ξAj| .B |ξ|−1 + 2−k .B |(τ, ξ)|−1, j = 0, . . . , N − 1,

For the second inequality we use (3.2.7). This gives (3.6.8) when |α| = 1.
To show (3.6.8) for 2 ≤ |α| ≤ 2d + 2, we use backward induction. By

(3.4.3) we note AN−1 = 0, so (3.6.8) trivially holds when j = N − 1. We now
assume that (3.6.8) holds true if j0 + 1 ≤ j ≤ N − 1 for some j0. Lemma
3.6.1, (3.2.7), and the induction assumption show ∂α

′

τ,ξBj0 = O(|(τ, ξ)|−1−|α′|)

for 1 ≤ |α′| ≤ 2d+ 1. Concerning Dj0 , observe that ∂α
′

ξ (G(j0)(σ(Ξ̃))) is given
by a sum of the terms

G(j)(σ(Ξ̃))

j−j0∏
n=1

∂
α′n
ξ (σ(Ξ̃)),

where j ≥ j0 and α′1 + · · · + α′j−j0 = α′. Hence, Lemma 3.6.1, (3.6.9), and

(3.2.7) give ∂α
′

ξ Dj0 = O(|(τ, ξ)|−1−|α′|) for 1 ≤ |α′| ≤ 2d+ 1. Therefore, com-

bining the estimates for Bj0 and Dj0 , we get ∂α
′

τ,ξ∇τ,ξAj0 = O(|(τ, ξ)|−1−|α′|).
This proves (3.6.8) for j = j0.

Before proving (3.6.7), we first note

|∂αξ
(
Ej(Ξ̃)

)
| .B δ

j
∗ |ξ|−|α|, |α| ≤ 2d+ 2 (3.6.10)

for j = 1, . . . , N . This can be shown by a routine computation. Indeed,
differentiating (3.5.4), and using Lemma 3.6.1 and (3.4.7), one can easily see
(3.6.10) since |σ(Ξ̃)− δ0µ| . δ0.

To show (3.6.7) for 0 ≤ ` ≤ N − 2, we again use backward induction.
Observe that (3.6.7) holds for ` = N,N − 1, and assume that (3.6.7) holds
for j + 1 ≤ ` ≤ N for some j ≤ N − 2. By (3.5.6) we have

2−kgjµ = δN−j∗ Aj −
∑

j+1≤`≤N

(2−kg`µ)(E1)`−j/(`− j)! + 2−kyNµ EN−j.

Thus, by Lemma 3.6.2 and (3.6.10), we get (3.6.7) with ` = j. This completes
the proof of Lemma 3.5.2.
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Proof of Lemma 3.5.4

Lemma 3.5.4 can be proved in a similar way as the previous subsection. So,
we shall be brief.

By Lemma 3.5.2 we have C−1aµ,nν ∈ Ak(s∗, δ∗) for a constant C ≥ 1, so it
suffices to show C−1aµ,nν,1 ∈ Ak(s∗, δ∗) for some C ≥ 1. The support condition
(3.2.3) is obvious, so we need only to show (3.2.4) with a = aµ,nν,1 , δ = δ∗, and
s0 = s∗. Moreover, recalling (3.5.23), it is enough to consider the additional
factor only, i.e., to show∣∣∣∂ατ,ξ(β0

((
δ−N∗ 2−kg0

µ(Lδ∗s∗(τ, ξ))
)2(N−1)!

C2N !
0 δ−2N !

∗ Ḡµ
N(s, L̃δ∗s∗ξ)

))∣∣∣ . |(τ, ξ)|−|α|
for (τ, ξ) ∈ supp aµ,nν,1 (s, t,Lδ∗s∗·). Since δ−2N !

∗ Ḡµ
N & 1 on supps,ξ a

µ,n
ν,1 , one can

obtain the estimate in the same way as in the proof of Lemma 3.5.2.

3.7 Sharpness of Theorem 1.1.2

Before closing this chapter, we show the optimality of the regularity exponent
α in Theorem 1.1.2.

Proposition 3.7.1. Suppose (3.0.1) holds for ψ(0) 6= 0. Then α ≤ 2/p.

Proof. We write γ = (γ1, . . . , γd). Via an affine change of variables, we may
assume γ1(0) = 0 and γ′1(s) 6= 0 on an interval J = [−δ0, δ0] for 0 < δ0 � 1.
Since ψ(0) 6= 0, we may also assume ψ ≥ 1 on J .

We choose ζ0 ∈ S(R) such that supp ζ̂0 ⊂ [−1, 1] and ζ0 ≥ 1 on [−r1, r1]
where r1 = 1 + 2 max{|γ(s)| : s ∈ J}. Denoting x̄ = (x1, . . . , xd−1) and
γ̄(t) = (γ1(t), . . . , γd−1(t)), we define

Āth(x) =

∫
eitλγd(s)ζ0(xd − tγd(s))h(x̄− tγ̄(s))ψ(s) ds.

Let ζ ∈ C∞c ((−2, 2)) be a positive function such that ζ = 1 on [−1, 1].
For a positive constant c� δ0, let g1(x̄) =

∑
ν∈λ−1Z∩[−c,c] ζ(λ|x̄+ γ̄(ν)|). We

consider
g(x̄) = e−iλϕ(x1)g1(x̄),

where ϕ(s) = γd ◦ (−γ1)−1(s). We claim that, if c is small enough,

|Ātg(x)| & 1, (x, t) ∈ Sc, (3.7.1)
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where Sc = {(x, t) : |x̄| ≤ cλ−1, |xd| ≤ c, |t− 1| ≤ cλ−1}. To show this, note

Ātg(x) =

∫
eiλ(tγd(s)−ϕ(x1−tγ1(s)))ζ0(xd − tγd(s))g1(x̄− tγ̄(s))ψ(s) ds.

Let (x, t) ∈ Sc. Then, supp g1(x̄ − tγ̄(·)) ⊂ [−C1c, C1c] for some C1 > 0.
Since ϕ(s) = γd ◦ (−γ1)−1(s), by the mean value theorem we see |ϕ(x1 −
tγ1(s)) − γd(s)| ≤ 2r0cλ

−1 where r0 = 10r1 max{|∂sϕ(s)| : s ∈ (−γ1)(J∗)}
and J∗ = [−(C1 + 1)c, (C1 + 1)c]. Thus, we have

|tγd(s)− ϕ(x1 − tγ1(s))| ≤ 3r0cλ
−1. (3.7.2)

Besides, if λ is sufficiently large, g1(x̄ − tγ̄(s)) =
∑

ν∈λ−1Z∩[−c,c] ζ(λ|x̄ − (t −
1)γ̄(s) + γ̄(ν) − γ̄(s)|) & 1 if s ∈ [−c/2, c/2]. Since supp g1(x̄ − tγ̄(·)) ⊂ J
with c small enough and ζ0(xd − tγd(s)) ≥ 1, we get

∫
ζ0(xd − tγd(s))g1(x̄−

tγ̄(s))ψ(s) ds & 1. Therefore, (3.7.1) follows by (3.7.2) if c is small enough,
i.e., c� 1/(3r0).

We set f(x) = e−iλxdζ0(xd)g(x̄). Then, χ(t)Atf(x) = e−iλxdχ(t)Ātg(x).

By our choice of ζ0, supp f̂ ⊂ {ξ : |ξd + λ| ≤ 1}, so suppF(χ(t)Atf) ⊂
{(τ, ξ) : |ξd + λ| ≤ 1}. This gives

λα‖χ(t)Atf‖Lp(Rd+1) . ‖χ(t)Atf‖Lpα(Rd+1). (3.7.3)

Indeed, λα‖χ(t)Atf‖Lp(Rd+1) . ‖χ(t)Atf‖Lp(Rt,x̄;Lpα(Rxd )) by Mihlin’s multi-
plier theorem in xd. Similarly, one also sees ‖F‖Lp(Rt,x̄;Lpα(Rxd )) ≤ C‖F‖Lpα(Rd+1)

for α ≥ 0 and any F . Combining those inequalities gives (3.7.3).
From (3.7.1) we have ‖χ(t)Atf‖p = ‖χ(t)Ātg‖p ≥ Cλ−d/p. Note that

supp g is contained in a O(λ−1)-neighborhood of −γ̄, so it follows that ‖f‖p .
λ−(d−2)/p. Therefore, by (3.7.3) the inequality (3.0.1) implies λαλ−d/p .
λ−(d−2)/p. Taking λ→∞ gives α ≤ 2/p.
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Sobolev estimate

Let 2 ≤ p ≤ ∞. We set Af = A1f , and we are concerned with the Lp Sobolev
regularity estimate

‖Af‖Lpα(Rd) ≤ C‖f‖Lp(Rd). (4.0.1)

In this chapter, we prove Theorem 1.1.1, whose proof proceeds in a similar
way as that of Theorem 1.1.2. However, we provide some details to make it
clear how the optimal bounds are achieved. Since there are no t, τ variables
for the symbols, the proof is consequently simpler but some modifications
are necessary.

For a large B ≥ 1, we assume

max
0≤j≤2d

|γ(j)(s)| ≤ B, s ∈ I. (4.0.2)

Let 2 ≤ L ≤ d. For γ satisfying V(L,B) we say ā ∈ Cd+1(Rd+1) is a symbol
of type (k, L,B) relative to γ if supp ā ⊂ I × Ak, N(L,B) holds for γ on
supp ā, and

|∂js∂αξ ā(s, ξ)| ≤ B|ξ|−|α| (4.0.3)

for 0 ≤ j ≤ 1 and |α| ≤ d+ 1. As before, Theorem 1.1.1 is a straightforward
consequence of the following. We denote A[γ, ā] = A1[γ, ā].

Theorem 4.0.1. Suppose γ ∈ C2d(I) satisfies (4.0.2) and ā is a symbol of
type (k, L,B) relative to γ for some B ≥ 1. Then, if p > 2(L − 1), for a
constant C = C(B)

‖A[γ, ā]f‖Lp(Rd) ≤ C2−k/p‖f‖Lp(Rd). (4.0.4)
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In order to prove Theorem 1.1.1, we consider āk(s, ξ) := ψ(s)β(2−k|ξ|),
where β ∈ C∞c ((1/2, 4)). By (1.1.1) āk is a symbol of type (k, d, B) relative to
γ for some B, thus Theorem 4.0.1 gives (4.0.4) for p > 2(d−1). The estimate
(4.0.4) for each dyadic pieces can be put together by the result in [42]. So,
we get (4.0.1) with α = α(p) when p > 2(d− 1) (e.g., see [4]).

Interpolation with ‖A[γ, āk]f‖2 . 2−k/d‖f‖2 which follows from (1.1.2)
gives ‖A[γ, āk]f‖p .B 2−αk‖f‖p for α ≤ α(p) with strict inequality when
p ∈ (2, 2(d−1)]. Using those estimates, we can prove Corollary 1.1.5. Indeed,
if γ is a curve of maximal type ` > d, a typical scaling argument gives
‖A[γ, āk]f‖p .B 2−min(α(p),1/`)k‖f‖p for p 6= ` when ` ≥ 2d − 2, and for
p ∈ [2, 2`/(2d − `)) ∪ (2d − 2,∞) when d < ` < 2d − 2. As above, one can
combine the estimates ([42]) to get (4.0.1).

4.1 Sobolev estimate with localized frequency

The case L = 2 is easy. Since ā is a symbol of type (k, 2, B) relative to γ,
van der Corput’s lemma and Plancherel’s theorem give (4.0.4) for p = 2.
Interpolation with L∞ estimate shows (4.0.4) for p ≥ 2. When L ≥ 3, we
have the following, which immediately yields Theorem 4.0.1.

Proposition 4.1.1. Let 3 ≤ N ≤ d. Suppose Theorem 4.0.1 holds for L =
N − 1. Then Theorem 4.0.1 holds true with L = N .

To prove the proposition, we fix N ∈ [3, d] and γ satisfying V(N,B), and
ā of type (k,N,B) relative to γ.

For s0 and δ > 0 such that I(s0, δ) ⊂ I, let

Λ̄k(s0, δ, B) =
⋂

1≤j≤N−1

{
ξ ∈ Ak : |〈γ(j)(s0), ξ〉| ≤ B2k+5δN−j

}
.

By Āk(s0, δ) we denote a collection of ā ∈ Cd+1(Rd+1) such that supp ā ⊂
I(s0, δ) × Λ̄k(s0, δ, B) and |∂js∂αξ ā(s, L̃δs0ξ)| ≤ Bδ−j2−k|α| for 0 ≤ j ≤ 1 and
|α| ≤ d+ 1.

The next lemma which plays the same role as Lemma 3.3.1 can be shown
through routine adaptation of the proof of Lemma 3.3.1.

Lemma 4.1.2. Let ā ∈ Āk(s0, δ) and j∗ = log(2kδN). Suppose (3.3.1) holds
on supp ā. Then, there exist constants C, B̃ ≥ 1, and δ′ > 0 depending on
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B, and symbols ā1, . . . , āl∗ of type (j,N − 1, B̃) relative to γδs0, such that

‖A[γ, ā]f‖Lp(Rd) ≤ Cδ
∑

1≤l≤C

∥∥A[γδs0 , āl]f̃l
∥∥
Lp(Rd)

,

‖f̃l‖p = ‖f‖p, and j ∈ [j∗ − C, j∗ + C] as long as 0 < δ < δ′.

The order of necessary regularity on γ is reduced since ā is independent
of τ, t. Actually, we may take ã(s, ξ) = ā(δs + s0, δ

−N L̃δs0ξ) while following
the Proof of Lemma 3.3.1 since validity of (4.0.3) is clear for ā = ã.

Using ηN (see (3.4.1)), we break

A[γ, ā] = A[γ, āηN ] +A[γ, ā(1− ηN)].

Note that C−1ā(1− ηN) is of type (k,N − 1, B′) relative to γ for some large
constants B′ and C, so we may apply the assumption to A[γ, ā(1 − ηN)]f .
Consequently, we have the estimate (4.0.4) for ā = ā(1− ηN) if p > 2N − 4.

To obtain the estimate forA[γ, āηN ], as before, we may assume supp āηN ⊂
I(s0, δ∗)× Γ̄k for some s0 and a small δ∗. Here, Γ̄k is defined in the same way
as Γk by replacing aηN by āηN . Since (3.4.2) holds on supp(āηN), we may
work under the same Basic assumption as in Section 3.4. That is to say, we
have σ on Γ̄k satisfying (3.4.3) and σ(ξ) ∈ I(s0, δ∗) for ξ ∈ Γ̄k. Furthermore,
σ ∈ Cd+1 since γ ∈ C2d(I), and (3.4.4) holds for ξ ∈ Γ̄k and |α| ≤ d+1. Thus,
(4.0.3) remains valid for the symbols given subsequently by decomposing ā
with cutoff functions associated with σ, and Ḡµ

N .
Apparently, C−1āηN ∈ Āk(s0, δ∗) for a constant C = C(B, δ∗), therefore

the proof of Proposition 4.1.1 is completed if we show the following.

Proposition 4.1.3. Let 3 ≤ N ≤ d and ā ∈ Āk(s0, δ∗) with suppξ ā ⊂ Γ̄k.
Suppose Theorem 4.0.1 holds for L = N − 1. Then, if p > 2(N − 1), we have
(4.0.4).

We prove Proposition 4.1.3 using the next, which corresponds to Propo-
sition 3.4.2. In what follows, we denote A[ā] = A[γ, ā].

Proposition 4.1.4. Let δ0 and δ1 satisfy (3.4.6). For µ such that δ0µ ∈
I(s0, δ∗) ∩ δ0Z, let āµ ∈ Āk(δ0µ, δ0) with supp āµ ⊂ I(s0, δ∗) × Γ̄k. Suppose
Theorem 4.0.1 holds for L = N − 1. Then, if p ∈ (2N − 2,∞), there are
constants ε0 > 0, C0 = C0(ε0, B) ≥ 2, and symbols āν ∈ Āk(δ1ν, δ1) with
supp āν ⊂ I(s0, δ∗)× Γ̄k, ν ∈ ∪µJµ0 , such that(∑

µ

‖A[āµ]f‖pp
) 1
p ≤ C0

(
δ1/δ0

)N
p
−1+ε0(∑

ν

‖A[āν ]f‖pp
) 1
p +C0δ

−N
p

+1

0 2−
k
p ‖f‖p.
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Let δ′ be given as in Lemma 4.1.2, and let δ◦ > 0 be a positive constant
such that

δ◦ ≤ min{δ′, (27dB6)−NC
−2N/ε0
0 }. (4.1.1)

Proof of Proposition 4.1.3. Set δ0 = δ◦, and let δ1, . . . , δJ be given by (3.4.8).
Then, applying Proposition 4.1.4 iteratively up to J-th step (see Section
3.4.1), we have symbols āν ∈ Āk(δJν, δJ), δJν ∈ I(s0, δ0), such that∥∥A[ā]f

∥∥
p
≤ CJ

0 δ
N
p
−1+ε0

J

(∑
ν

‖A[āν ]f‖pp
)1/p

+2−
k
p δ
−N
p

+1−ε0
0

∑
0≤j≤J−1

Cj+1
0 δε0j ‖f‖p.

By (4.1.1) and (3.4.8), δj ≤ C
−2((N+1)/N)jN/ε0
0 , 0 ≤ j ≤ J−1. So,

∑J−1
j=0 C

j+1
0 δε0j

is bounded by a constant C1, and CJ
0 δ

ε0
J ≤ C1. Thus, the matter is now re-

duced to showing(∑
ν

‖A[āν ]f‖pLp(Rd)

)1/p
.B 2−

k
N ‖f‖Lp(Rd), 2 ≤ p ≤ ∞,

which corresponds to (3.4.10). The case p = ∞ follows from the estimate
‖A[ā]f‖L∞ ≤ Cδ‖f‖L∞ when ā ∈ Āk(s0, δ) for some s0, δ (cf. (3.2.12)). One
can obtain this in the same manner as in the proof of Lemma 3.2.4. The case
p = 2 can be handled similarly as before, using Plancherel’s theorem and van
der Corput’s lemma combined with Lemma 3.4.3 and (3.4.2).

The proof of Proposition 4.1.4 is similar to that of Proposition 3.4.2.
Instead of (2.1.14) we use the estimate (2.1.15), in which the exponent is ad-
justed to the sharp Sobolev regularity estimate. However, a similar approach
breaks down if one tries to obtain the local smoothing estimate (3.0.1) with
the optimal regularity α = 2/p. To do so, we need the inequality (2.1.7) for
4N − 2 < p ≤ N(N + 1). However, there is no such estimate available when
N = 2.

4.2 Removing ε-loss in regularity

Let āµ ∈ Āk(δ0µ, δ0). For ν ∈ Jµn, set

āµ,nν = āµ ×

{
β0

(
δ−2N !

1 Ḡµ
N

)
ζ(δ−1

1 s− ν), n = 0,

βN
(
(2nδ1)−2N ! Ḡµ

N

)
ζ(2−nδ−1

1 s− ν), n ≥ 1,
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(see (3.5.22)). Let ȳµ = (y1
µ, . . . , y

N
µ ), and let D̄δ denote the N × N matrix

(δ1−N ē1, δ
2−N ē2, . . . , δ

0ēN) where ēj is the j-th standard unit vector in RN .
Recalling (3.5.19), we consider a linear map

Ȳδ0
µ (ξ) =

(
2−kD̄δ0ȳµ, yN+1, . . . , yd

)
.

Let r denote the curve rN◦ . Note that (3.5.11) and (3.5.12) hold on supp āµ,nν .
Similarly as in Proof of Lemma 3.5.3, we see |〈ȳµ, r(j)((2nδ1/δ0)ν − µ)〉| .
2k(2nδ1/δ0)N−j for 1 ≤ j ≤ N − 1 and 2k−2/B ≤

∣∣〈ȳµ, r(N)
〉∣∣ ≤ CB2k on

suppξ ā
µ,n
ν . Thus, as before (cf. (3.5.20)), we have

Ȳδ0
µ (suppξ ā

µ,n
ν ) ⊂ s

(2nδ1

δ0

ν − µ, C 2nδ1

δ0

, CB; rN◦

)
× Rd−N

for some C > 0. Note suppF(A[āµ,nν ]f) ⊂ suppξ ā
µ,n
ν . Therefore, changing

variables, by (2.1.15) with N replaced by N − 1 and its cylindrical extension
(e.g.,(2.1.16)), we get∥∥∑

ν∈Jµn

A[āµ,nν ]f
∥∥
p
≤ C0

(
2nδ1/δ0

)N
p
−1+ε0(∑

ν∈Jµn

∥∥A[āµ,nν ]f
∥∥p
p

)1/p
(4.2.1)

for 2N − 2 < p < ∞ (cf. (3.5.16)). Since A[āµ]f =
∑

n

∑
ν∈Jµn A[āµ,nν ]f , by

Minkowski’s inequality and (4.2.1), we have (
∑

µ ‖A[āµ]f‖pp )1/p bounded by∑
n≥0

Ēn := C0

∑
n≥0

(
2nδ1/δ0

)N
p
−1+ε0(∑

µ

∑
ν∈Jµn

‖A[āµ,nν ]f‖pp
)1/p

.

The proof of Lemma 3.5.2 also shows C−1āµ,nν ∈ Āk(2
nδ1ν, 2

nδ1) for a
positive constant C. Therefore, the matter is reduced to obtaining(∑

µ

∑
ν∈Jµn

‖A[āµ,nν ]f‖p
Lp(Rd)

)1/p
.B (2nδ1)1−N

p 2−
k
p ‖f‖Lp(Rd), n ≥ 1

(4.2.2)

for p > 2(N−2). This gives
∑

n≥1 Ēn .B δ
−N/p+1
0 2−k/p‖f‖p since 2nδ1 ≤ Cδ0.

The proof of (4.2.2) is similar with that of (3.5.24). Since C−1āµ,nν ∈
Āk(2

nδ1ν, 2
nδ1), we haveA[āµ,nν ]f = A[āµ,nν ]P 2nδ1

2nδ1ν
f . Besides, (3.5.28) or (3.5.29)

for some 1 ≤ j ≤ N − 2 holds on supp āµ,nν . Thus, (3.3.1) holds with δ = 2nδ1

for some B′ on supp āµ,nν for n ≥ 1 (see Proof of Lemma 3.5.5). Therefore,
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applying Lemma 4.1.2 to A[āµ,nν ]f and then the assumption (Theorem 4.0.1
with L = N − 1), we obtain

‖A[āµ,nν ]f‖Lp(Rd) .B (2nδ1)1−N
p 2−

k
p ‖P 2nδ1

2nδ1ν
f‖p.

This combined with (3.5.33) gives (4.2.2) as desired.

4.3 Sharpness of Theorem 1.1.1

Before closing this chapter, we show the optimality of the regularity exponent
α in Theorem 1.1.1. This is easier analogue of Proposition 3.7.1 with fixed
t = 1.

Proposition 4.3.1. Suppose (4.0.1) holds for ψ(0) 6= 0. Then α ≤ 1/p.

Proof. We write γ = (γ1, . . . , γd). Via an affine change of variables, we may
assume γ1(0) = 0 and γ′1(s) 6= 0 on an interval J = [−δ0, δ0] for 0 < δ0 � 1.
Since ψ(0) 6= 0, we may also assume ψ ≥ 1 on J .

We choose ζ0 ∈ S(R) such that supp ζ̂0 ⊂ [−1, 1] and ζ0 ≥ 1 on [−r1, r1]
where r1 = 1 + 2 max{|γ(s)| : s ∈ J}. Denoting x̄ = (x1, . . . , xd−1) and
γ̄(t) = (γ1(t), . . . , γd−1(t)), we define

Āh(x) =

∫
eiλγd(s)ζ0(xd − γd(s))h(x̄− γ̄(s))ψ(s) ds.

Let ζ ∈ C∞c ((−2, 2)) be a positive function such that ζ = 1 on [−1, 1].
For a positive constant c� δ0, let g1(x̄) =

∑
ν∈λ−1Z∩[−c,c] ζ(λ|x̄+ γ̄(ν)|). We

consider
g(x̄) = e−iλϕ(x1)g1(x̄),

where ϕ(s) = γd ◦ (−γ1)−1(s). We claim that, if c is small enough,

|Āg(x)| & 1, x ∈ Sc, (4.3.1)

where Sc = {x : |x̄| ≤ cλ−1, |xd| ≤ c}. To show this, note

Āg(x) =

∫
eiλ(γd(s)−ϕ(x1−γ1(s)))ζ0(xd − γd(s))g1(x̄− γ̄(s))ψ(s) ds.
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Let x ∈ Sc. Then, supp g1(x̄− γ̄(·)) ⊂ [−C1c, C1c] for some C1 > 0. Since
ϕ(s) = γd ◦ (−γ1)−1(s), by the mean value theorem we see

|ϕ(x1 − γ1(s))− γd(s)| ≤ r0cλ
−1 (4.3.2)

where r0 = 10r1 max{|∂sϕ(s)| : s ∈ (−γ1)(J∗)} and J∗ = [−(C1 + 1)c, (C1 +
1)c]. Besides, if λ is sufficiently large, g1(x̄ − γ̄(s)) =

∑
ν∈λ−1Z∩[−c,c] ζ(λ|x̄ +

γ̄(ν)− γ̄(s)|) & 1 if s ∈ [−c/2, c/2]. Since supp g1(x̄− tγ̄(·)) ⊂ J with c small
enough and ζ0(xd−γd(s)) ≥ 1, we get

∫
ζ0(xd−γd(s))g1(x̄−γ̄(s))ψ(s) ds & 1.

Therefore, (4.3.1) follows by (4.3.2) if c is small enough, i.e., c� 1/(3r0).
We set f(x) = e−iλxdζ0(xd)g(x̄). Then, Af(x) = e−iλxdĀg(x). By our

choice of ζ0, supp f̂ ⊂ {ξ : |ξd + λ| ≤ 1}, so suppF(Af) ⊂ {ξ : |ξd + λ| ≤ 1}.
This gives

λα‖Af‖Lp(Rd+1) . ‖Af‖Lpα(Rd+1). (4.3.3)

From (4.3.1) we have ‖Af‖p = ‖Āg‖p ≥ Cλ−(d−1)/p. Note that supp g is con-
tained in a O(λ−1)-neighborhood of −γ̄, so it follows that ‖f‖p . λ−(d−2)/p.
Therefore, by (4.3.3) the inequality (4.0.1) implies λαλ−(d−1)/p . λ−(d−2)/p.
Taking λ→∞ gives α ≤ 1/p.

4.4 Finite type curves

Before closing this chapter, we show the corollaries for curves of maximal
type based on the argument in [44]. Let γ be a smooth curve of maximal
type `. For fixed point s0, we can find integers ni and orthonormal vectors
{vi}i=1,...,d satisfying n1 < · · · < nd,

〈γ(j)(s0), vi〉 = 0, for 1 ≤ j < ni, 〈γ(ni)(s0), vi〉 6= 0.

After rotation, we can assume that

γ(s+ s0) = γ(s0) + (sn1g1(s), · · · , sndgd(s))

where gi are smooth function with gi(0) 6= 0. There exist ρs0 ∈ (0, 1) such
that gi(s) 6= 0 for |s| ≤ ρs0 . It is enough to consider that

At[ψs0 ]f(x) =

∫
f(x− tγ(s))ψs0(s)ds

where ψs0 ∈ C∞0 (s0 − ρs0 , s0 + ρs0). Using dyadic decomposition in s, we
have At[ψs0 ]f =

∑
j≥0At[ψs0β(2j|s − s0|)]f . Here, β ∈ C∞0 ((1/2, 2)) such
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that
∑

j β(2j| · |) ≡ 1. After translation and scaling, we have At[ψs0 ]f =∑
j≥0At,jf where

At,jf(x) := 2−j
∫
f(x− tγ(2−js+ s0))ψs0(2−js+ s0)β(|s|)ds.

By Dj we denote the d × d matrix (2jn1e1, · · · , 2jnded) where ei is the i-th
standard unit vector in Rd. Define fj(x) = f(Djx) then we have

At,jf(D−jx) := 2−j
∫
f−j(x−tDjγ(2−js+s0))ψs0(2−js+s0)β(|s|)ds. (4.4.1)

Now set
γj = (sn1g1(2−js), · · · , sndgd(2−js)).

Then Djγ(2−js+s0) = Djγ(s0)+γj(s) and γj is nondegenerate for sufficiently
large j for 1/2 ≤ |s| ≤ 2.

Proof of Corollary 1.1.5,1.1.6 and 1.1.7. By (4.4.1),

‖At,jf‖Lpα . 2(ndα−1)j|D−j|1/p‖At[γj, ψj]f−j‖Lpα

where ψj(s) = ψs0(2−js + s0)β(|s|) and At[γ, ψ]f =
∫
f(· − tγ(s))ψ(s)ds.

Firstly, since γj is nondegenerate in the support of ψj, theorem 1.1.1 implies
that if p > 2d− 2 we have

‖A1,jf‖Lp
1/p

. 2(nd/p−1)j|D−j|1/p‖f−j‖p . 2(nd/p−1)j‖f‖p.

Thus, if p > max{2d − 2, `} we have ‖A1[ψs0 ]f‖Lp
1/p

. ‖f‖p which implies

corollary 1.1.5.
Secondly, theorem 1.1.2 implies that if p > 2d − 2 there exist α > 1/p

satisfying

‖χ(t)At,jf‖Lpα(Rd+1) . 2(ndα−1)j|D−j|1/p‖f−j‖p . 2(ndα−1)j‖f‖p.

We can conclude that if p > max{2d − 2, `} there exist 1/p < α < 1/nd
satisfying ‖χ(t)At[ψs0 ]f‖Lpα(Rd+1) . ‖f‖p which implies corollary 1.1.6 and
1.1.7.
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Chapter 5

Maximal estimate

As mentioned before, Theorem 1.1.2 implies Theorem 1.1.4. In this chapter,
we concentrate on proving Theorem 1.1.3 which is the optimal maximal es-
timate associated to averages over curves in R3. We assume that the curve γ
has nonvanishing curvature and torsion, equivalently,

det(γ′(s), γ′′(s), γ′′′(s)) 6= 0 (5.0.1)

for s ∈ I = [−1, 1]. And set

Af(x, t) := Atf(x), Mf = sup
t>0

Af(x, t).

The condition is the natural nondegeneracy condition which is commonly
used in the studies related to space curves and the most typical examples are
the helix and the moment curve (s, s2, s3). Recall that Theorem 1.1.3 is:

Theorem 5.0.1. Suppose that γ : I → R3 is a smooth curve which has non-
vanishing curvature and torsion, and ψ is a nontrivial, nonnegative, smooth
function supported in (−1, 1). Then, there is a constant C such that

‖Mf‖Lp(R3) ≤ C‖f‖Lp(R3) (5.0.2)

for all f ∈ Lp(R3) if and only if p > 3.

The assumption that ψ is smooth is not necessary and it is clear that the
theorem holds for a continuous ψ. Even though γ is assumed to be smooth,
there is a positive integer D such that (5.0.2) holds for γ ∈ CD(I) (see
Remark 1).
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Our argument in this chapter is closely related to the induction strategy
developed by Ham and Lee [22]. They obtained the sharp adjoint restriction
estimate for the space curve in Lp(µ) when µ is an α-dimensional measure
(see Section 5.1.1 for the definition). The work was in turn inspired by the
multilinear approach due to Bourgain and Guth [13]. Main novelty of the cur-
rent paper lies in devising an induction argument which directly works for the
maximal operator. In contrast to the adjoint restriction operator a suitable
form of multilinear estimate is not so obvious for the averaging operator A. In
order to prove a multilinear estimate for A which enjoys better boundedness
property under a certain additional assumption, we first express the operator
A as a sum of adjoint restriction operators and then relate them to geome-
try of the curves so that the transversality condition can be reformulated in
terms of the relative positions between the associated curves. Unfortunately,
some of the consequent adjoint restriction operators are associated to C1,1/2

surfaces but not to C2 surfaces, so we can not directly apply the multilinear
restriction estimate which is due to Bennett, Carbery, and Tao [9]. However,
it is not difficult to see that the argument in [9] continues to work for the
C1,1/2 surfaces (see Theorem 2.2.3). We also make use of some of the results
from [44] to strengthen the multilinear estimate and also to deal with the
nondegenerate part, whereas the difficult degenerate part is to be handled
by the multilinear estimate which we prove in Section 5.4, 5.5.

Structure of the chapter. In Section 5.1 we show that the maximal estimate
can be deduced from a form of weighted estimates. And we formalize the
induction setup to prove the weighted estimates in Section 5.2. In Section
5.4, 5.5 we obtain a weighted multilinear estimate for A under a certain
separation condition. In Section 5.6 we establish the maximal bound putting
the previous estimates together and show the optimality of the range of p in
Section 5.7.

5.1 Connection with α-dimensional weight

In this section we reduce the proof of maximal estimate to showing a form
of weighted estimates for the averaging operators.

By the argument in [10] (also see [47]) which relies on Littlewood-Paley
decomposition and scaling one can obtain the maximal estimate (5.0.2) from
that for sup1≤t≤2

∣∣Af(x, t)
∣∣. More precisely, it is sufficient to show that there
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is an εp > 0 such that

‖Af‖LpxL∞t (R3×[1,2]) ≤ Cλ−εp‖f‖Lp(R3) (5.1.1)

for all f ∈ S(R3) whenever

supp f̂ ⊂ Aλ := {ξ ∈ R3 : 3λ/4 ≤ |ξ| ≤ 7λ/4}, λ ≥ 1. (5.1.2)

For the rest of the paper, we assume (5.1.2) unless it is mentioned otherwise.

Notation. Throughout the paper C, C1, . . . and c are supposed to be in-
dependent positive constants, and Cε, Cδ are constants depending on ε, δ
but all of these constants may vary at each appearance. In addition to the
conventional notation ·̂ we use F and F−1 to denote the Fourier and inverse
Fourier transforms, respectively. By Q1 = O(Q2) we denote |Q1| ≤ CQ2 for
a constant C and we also use the notation Q1 = Os(Q2) if |Q1| ≤ Q2.

5.1.1 Estimate with α-dimensional measure

Let Bd(z, r) denote the ball of radius r which is centered at z ∈ Rd. Let µ be
a positive Borel measure on R4. For 0 < α ≤ 4 we say µ is α-dimensional if
there is a constant C such that

µ(B4(z, r)) ≤ Crα

for all r > 0 and z ∈ R4. For an α-dimensional measure µ we define

〈µ〉α = sup
z∈R4,r>0

r−αµ(B4(z, r)).

Instead of directly proving the maximal estimate (5.1.1) we obtain estimates
for Af with α-dimensional measures. From those estimates we can deduce
the estimate (5.1.1). As far as the authors are aware, it seems that this
type of argument deducing the maximal estimate from the estimates with
α-dimensional measures first appeared in [37]. (See also [62, p.1283] for a
related discussion.)

Theorem 5.1.1. Let µ be 3-dimensional. Suppose that γ : I → R3 is a
smooth curve satisfying (5.0.1). Then, for p > 3 there is an εp > 0 such that

‖Af‖Lp(R3×[1,2],dµ) ≤ C〈µ〉
1
p

3 λ
−εp‖f‖Lp(R3) (5.1.3)

whenever f̂ is supported on Aλ.
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We shall work only with 3-dimensional measures even though it is possible
to prove such estimates with α-dimensional measure, α 6= 3 on a certain range
of p (see Remark 2). The following shows the estimate (5.1.3) implies (5.1.1).

Lemma 5.1.2. Suppose (5.1.3) holds true for any 3-dimensional measure µ.
Then the estimate (5.1.1) holds.

To prove this, we start with an elementary lemma.

Lemma 5.1.3. Let η ∈ C∞0 ([2−3, 23]) and ψ ∈ C∞0 (I). Set r0 = 4 max{|γ(s)| :
s ∈ suppψ}+ 1 and

Kη(x, t) = (2π)−3

∫∫
ei(x·ξ−tγ(s)·ξ)ψ(s) ds η(λ−1|ξ|) dξ.

If |x| ≥ r0 and |t| ≤ 2, then |Kη(x, t)| ≤ C‖η‖C2N+3EN(x) for any N ≥ 1
where EN(x) := λ−N(1 + |x|)−N .

Changing variables we note Kη(x, t) = λ3

(2π)3

∫∫
eiλ(x·ξ−tγ(s)·ξ)ψ(s) ds η(|ξ|) dξ.

Then repeated integration by parts in ξ gives the desired estimate since
|∇ξ(x · ξ − tγ(s) · ξ)| ≥ 2−1|x| if |x| ≥ r0 and |t| ≤ 2.

Proof of Lemma 5.1.2. To obtain (5.1.1) it suffices to show the local estimate

‖Af‖LpxL∞t (B3(0,1)×[1,2]) ≤ Cλ−εp‖f‖Lp(R3). (5.1.4)

This is obvious if f̂ is not assumed to be supported in Aλ. However, we may
handle f as if it were supported on a ball of radius r0. Since supp f̂ ⊂ Aλ,
Af(·, t) = Kη(·, t) ∗ f for an η such that η ∈ C∞c ((2−1, 2)) and η = 1 on
[3/4, 7/4]. So, Lemma 5.1.3 gives |Kη(x, t)| ≤ CEN(x) if |x| ≥ r0 and |t| ≤ 2.
Thus, by the typical localization argument (e.g., see the proof of Lemma
5.5.4) one can easily see that (5.1.4) implies (5.1.1).

In order to prove (5.1.4), using the Kolmogorov-Seliverstov-Plessner lin-
earization, it is enough to show

‖Af(·, t(·))‖Lp(B3(0,1)) ≤ Cλ−εp‖f‖Lp(R3) (5.1.5)

for a measurable function t : B3(0, 1)→ [1, 2] with C independent of t. Since

f̂ is supported in Aλ, Af is uniformly continuous on every compact subset. So,
for (5.1.4) we may assume that t is continuous. With a continuous function
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t, the positive linear functional Cc(R4) 3 F 7→
∫
B3(0,1)

F (x, t(x))dx defines a

measure µ* by the relation∫
F (x, t) dµ(x, t) =

∫
B3(0,1)

F (x, t(x)) dx, F ∈ Cc(R4).

We now notice that µ is a 3-dimensional measure. Since B4((x◦, t◦), r) ⊂
{(x, t) ∈ R3 × R : |x− x◦| ≤ r},

µ
(
B4((x◦, t◦), r)

)
=

∫
B3(0,1)

χB4((x◦,t◦),r)(x, t(x)) dx ≤
∫
χB3(x◦,r)(x) dx =

4

3
πr3

for any r > 0 and (x◦, t◦) ∈ R3 × R. Thus we have 〈µ〉3 ≤ 4π/3. Noting
‖Af(·, t(·))‖Lp(B3(0,1)) = ‖Af‖Lp(dµ), we apply Theorem 5.1.1 and get (5.1.5)
with C independent of t.

5.1.2 Weighted estimate

For 0 < α ≤ 4 let us denote by Ωα the collection of nonnegative measurable
functions ω on R4 such that the measure ω dxdt is α-dimensional. For a
simpler notation we denote

[ω]α = 〈ω dxdt〉α

for ω ∈ Ωα. Even though Ωα is properly contained in the set of α-dimensional
measures, the fact that supp f̂ ⊂ Aλ allows us to recover the estimate (5.1.3)
from an estimate against ω ∈ Ωα.

Lemma 5.1.4. Let Ĩ = [2−1, 22]. Suppose that

‖Af‖Lp(R3×Ĩ,ω) ≤ C[ω]
1
p

3 λ
−εp‖f‖Lp(R3) (5.1.6)

whenever ω ∈ Ω3 and f̂ is supported on Aλ, then (5.1.3) holds for any 3-
dimensional measure µ.

The proof of the maximal estimate (5.1.1) is now reduced to showing
(5.1.6). Lemma 5.1.4 of course remains valid for any α ∈ (0, 4].

To show Lemma 5.1.4 we make use of the next two lemmas: Lemma 5.1.5
and 5.1.6. The former can be shown following the standard argument (for
example, see [33, pp. 47–49]), so we omit the proof.

*In fact, µ becomes a regular Borel measure by the Riesz-Markov-Kakutani represen-
tation theorem.
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Lemma 5.1.5. Let 0 < α ≤ 4 and ϕ ∈ S(R4). Set ϕλ = λ4ϕ(λ ·). If µ is an
α-dimensional measure, then |ϕ|λ ∗ µ ∈ Ωα and [|ϕ|λ ∗ µ]α ≤ Cϕ〈µ〉α.

In what follows χ̃ denotes a function in C∞0 (Ĩ) which satisfies χ̃ = 1 on
[1, 2], and β, β0 respectively denote the functions such that β ∈ C∞0 ([2−1, 2]),
β = 1 on [3/4, 7/4]; β0 ∈ C∞0 ([−2, 2]), β0 = 1 on [−1, 1].

Lemma 5.1.6. Let r0 = 1 + 4 max{|γ(s)| : s ∈ suppψ} and let

m(ξ, τ) =

∫∫
χ̃(t)e−it(τ+γ(s)·ξ)ψ(s) dsdt β(λ−1|ξ|), (ξ, τ) ∈ R3 × R.

Then, we have |F−1
(
m(ξ, τ)(1−β0((λr0)−1τ))

)
| ≤ CN‖ψ‖∞ẼN

t for any N >

0 where ẼN
t := (1 + |t|)−NEN .

Proof. Let ρ`(t) = (−it)k+`χ̃(t) and note that ∂αξ ∂
k
τm(ξ, τ) is a sum of the

terms
∫
ρ̂|α1|(τ+γ(s)·ξ)(γ(s))α1ψ(s) ds×O(λ−|α2|) with α1+α2 = α. Thus we

have |∂αξ ∂kτm(ξ, τ)| ≤ CN‖ψ‖∞r|α|0 (r0λ)−N(1 + |τ |)−N for any N if |τ | ≥ r0λ,
and we get the desired estimate by routine integration by parts.

Proof of Lemma 5.1.4. We define an auxiliary operator Ã by

F(Ãh)(ξ, τ) = β0((λr0)−1τ)F
(
χ̃(t)Ah

)
(ξ, τ).

Since f̂ is supported in Aλ, we have |(χ̃(t)A− Ã)f | ≤ CẼN
t ∗ |f | by Lemma

5.1.6. We then note that
∫
ẼN
t (x − y)dµ(x, t) ≤ Cλ−N〈µ〉3 and

∫
ẼN
t (x −

y)dy ≤ Cλ−N . Thus by Schur’s test we get

‖ẼN
t ∗ f‖Lp(R3×R,dµ) ≤ C〈µ〉

1
p

3 λ
−N‖f‖Lp(R3) (5.1.7)

for 1 ≤ p ≤ ∞ and a large N . So, in order to obtain (5.1.3), it suffices to
prove

‖Ãf‖Lp(R3×[1,2],dµ) ≤ C〈µ〉
1
p

3 λ
−εp‖f‖Lp(R3). (5.1.8)

Since the space time Fourier transform of Ãf is supported in B4(0, 22r0λ),

Ãf = Ãf ∗ ϕr0λ for some ϕ ∈ S(R4), which gives |Ãf |p ≤ C|Ãf |p ∗ |ϕr0λ| via
Hölder’s inequality. Thus we have

‖Ãf‖Lp(R3×[1,2],dµ) ≤ C‖Ãf‖Lp(R3×R,ω),

where we set ω = |ϕr0λ| ∗ µ. Therefore, using |(χ̃(t)A − Ã)f | ≤ CẼN
t ∗ |f |

again, we have only to obtain the estimate for χ̃(t)Af in Lp(R3×R, ω) since
the minor part can be handled as before. Since [ω]3 ≤ C〈µ〉3 by Lemma 5.1.5,
the estimate (5.1.8) follows from (5.1.6) because supp χ̃ ⊂ Ĩ.
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5.2 Reduction after normalization

In order to prove the estimate (5.1.6), as mentioned before, we use an in-
duction type argument over a class of curves. For the purpose we need to
normalize the curves properly so that the induction assumption applies. This
step is important especially for defining the induction quantity and proving
uniform estimates (cf. [22, 29]).

5.2.1 Normalization of curves and weights

Let D ≥ 25 be a positive integer which is taken to be large. Let γ ∈ CD(I)
which satisfies (5.0.1). Then, for s◦ and 0 < δ � 1 such that [s◦−δ, s◦+δ] ⊂ I,
we define

Mδ
γ(s◦) =

(
δγ′(s◦), δ

2γ′′(s◦), δ
3γ′′′(s◦)

)
and

γδs◦(s) = (Mδ
γ(s◦))

−1
(
γ(δs+ s◦)− γ(s◦)

)
. (5.2.1)

Let γ◦(s) = (s, s2/2!, s3/3!). We consider a class of curves which are small
perturbations of the curve γ◦ in CD(I). For ε◦ > 0, we set

CD(ε◦) =
{
γ ∈ CD(I) : ‖γ − γ◦‖CD(I) ≤ ε◦

}
.

Using an affine map, one can transform a small enough sub-curve of any
γ ∈ CD(I) satisfying (5.0.1) so as to be contained in CD(ε◦). The following
lemma is a slight modification of [22, Lemma 2.1].

Lemma 5.2.1. Let s◦ ∈ (−1, 1) and γ ∈ CD(I) satisfying (5.0.1) on I.
Then, for any ε◦ > 0, there exists δ∗ = δ∗(ε◦, γ) > 0 such that γδs◦ ∈ CD(ε◦)
whenever [s◦ − δ, s◦ + δ] ⊂ I and |δ| ≤ δ∗. Additionally, if γ ∈ CD(ε◦)
and ε◦ < 2−5, there is a uniform δ◦ > 0 such that γδs◦ ∈ CD(ε◦) whenever
[s◦ − δ, s◦ + δ] ⊂ I with |δ| ≤ δ◦.

For a matrix M we denote ‖M‖ = sup|z|=1 |Mz|.

Proof. By Taylor’s expansion, we have

γ(δs+ s◦)− γ(s◦) = δγ′(s◦)s+ δ2γ′′(s◦)
s2

2
+ δ3γ′′′(s◦)

s3

3!
+ R̃(s◦, δ, s)

= Mδ
γ(s◦)γ◦(s) + R̃(s◦, δ, s)
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and ‖R̃(s◦, δ, ·)‖CD(I) ≤ Cδ4. By (5.2.1), γδs◦(s) = γ◦(s)+(Mδ
γ(s◦))

−1R̃(s◦, δ, s).
Since ‖(Mδ

γ(s◦))
−1‖ ≤ C1δ

−3 for a constant C1, taking a positive δ∗ such

that CC1δ∗ ≤ ε◦ we have ‖(Mδ
γ(s◦))

−1R̃(s◦, δ, ·)‖CD(I) ≤ ε◦ and, hence,
γδs◦ ∈ CD(ε◦) for 0 < δ ≤ δ∗. The second assertion can also be shown in
the same manner, so we omit the detail.

For δ > 0 we denote by Dδ the diagonal matrix (δe1, δ
2e2, δ

3e3). To nor-
malize the weights we need the next lemma which can be shown by the
argument in [22].

Lemma 5.2.2. Let 0 < α ≤ 4, 0 < δ � 1 and ω ∈ Ωα, and let M be a 4× 4
nonsingular matrix. Set ωδ(x, t) = ω

(
Dδx, t

)
and ωM(x, t) = ω

(
M(x, t)

)
.

Then for a constant C independent of ω and δ we have

[ωδ]α ≤ Cδ3α−12[ω]α, (5.2.2)

[ωM]α ≤ |det M|−1‖M‖α[ω]α. (5.2.3)

Proof. The inequality (5.2.2) is equivalent to∫
B4(y,r)

ω(Dδx, t) dxdt ≤ Cδ3α−12[ω]αr
α

for y ∈ R4 and r > 0. To see this, changing variables x→ D−1
δ x, the left hand

side is equal to δ−6
∫
χB4(y,r)(D

−1
δ x, t)ω(x, t) dxdt. Then we note that the set

{(x, t) : (D−1
δ x, t) ∈ B4(y, r)} is contained in a rectangle Rδ of dimensions

about δr× δ2r× δ3r× r. Since Rδ is covered by at most Cδ−6 many balls of
radius δ3r, the inequality follows.

For (5.2.3) we only have to show∫
B4(y,r)

ω(M(x, t)) dxdt ≤ |det M|−1‖M‖α[ω]αr
α

for y ∈ R4 and r > 0. Changing variables, we see that the left hand side
equals |det M|−1

∫
χB4(y,r)(M

−1(x, t))ω(x, t)dxdt. So, we get the inequality
since (x, t) ∈ B4(My, ‖M‖r) if M−1(x, t) ∈ B4(y, r).

5.2.2 Induction quantity

Throughout the chapter we fix a small positive constant c◦. To show (5.1.6)
for a smooth curve satisfying (5.0.1), it is sufficient to handle γ ∈ CD(ε◦)
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with a small ε◦ > 0 while ψ ∈ CD and suppψ ⊂ [−c◦, c◦]. As we shall see
later, this can be shown by a finite decomposition and changing variables via
affine transformation.

Definition 5.2.3. Let c◦, ε◦ and δ be the numbers such that 0 < c◦ ≤ 2−10,
0 < ε◦ ≤ c2

◦, and
0 < δ ≤ min(c◦, δ◦) (5.2.4)

where δ◦ is given in Lemma 5.2.1. The number δ is to be chosen later (see
Section 5.6). We also denote J◦ = [−c◦, c◦] and

J(δ) =
{
J : J = [c◦δ(k − 1), c◦δ(k + 1)], k ∈ Z, |k| ≤ (c◦δ)

−1 + 1
}
,

so that the intervals in J(δ) cover I. For each J ∈ J(δ) we define ND(J) to
be the set of functions such that ψ ∈ CD

0 (J) and ‖ψ(|J | ·)‖CD(R) ≤ 1. For a
given interval J we denote by ψJ a function in ND(J).

For a smooth function a on I× Ĩ×Aλ, following [44], we define an integral
operator by setting

Aγ[a]f(x, t) = (2π)−3

∫∫
ei(x−tγ(s))·ξa(s, t, ξ) dsf̂(ξ) dξ. (5.2.5)

In particular, we note Af = Aγ[ψ]f as is clear by Fourier inversion.
Let us take ζ ∈ C∞0 ([−1, 1]) such that ζ ≥ 0 and

∑
k∈Z ζ(s− k) = 1. For

an interval J we denote by cJ the center of J and set ζJ(s) = ζ(2(s−cJ)/|J |).
Consequentially, ζJ ∈ C∞0 (J) and

∑
J∈J(δ) ζJ(s) = 1 for s ∈ I. As a result,

we have

Aγ[ψ]f(x, t) =
∑
J∈J(δ)

Aγ[ψζJ ]f(x, t) (5.2.6)

if suppψ ⊂ I◦. The following is one of the key lemmas which relates the
estimate for the average over a short curve to that over a larger one.

Lemma 5.2.4. Let I ′ ⊂ Ĩ be an interval, and let ω ∈ Ω3, J = [s◦− c◦δ, s◦+
c◦δ] ∈ J(δ) and ψJ ∈ ND(J). Suppose that γ ∈ CD(I) satisfies (5.0.1) and

supp f̂ ⊂ Aλ. Then, there are ω̃ ∈ Ω3, f̃ with ‖f̃‖p = ‖f‖p, and ψJ◦ ∈ ND(J◦)
which satisfy the following:

‖Aγ[ψJ ]f‖Lp(R3×I′,ω) = δ1− 3
p‖Aγδs◦ [ψJ◦ ]f̃‖Lp(R3×I′,ω̃), (5.2.7)

[ω̃]3 ≤ C(1 + |γ(s◦)|)3| det M1
γ(s◦)|−1(1 + ‖M1

γ(s◦)‖)3[ω]3, (5.2.8)
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and

suppF(f̃ ) ⊂
{
ξ :

3

4
d∗δ

3λ ≤ |ξ| ≤ 7

4
d∗δλ

}
, (5.2.9)

where 1/d∗ = ‖(M1
γ(s◦))

−t‖ and 1/d∗ = inf |z|=1 |(M1
γ(s◦))

−tz|.

Proof. We denote ψJ◦(s) = ψJ(δs + s◦). Then it is clear that ψJ◦∈ ND(J◦).
We set

f̃(x) = |det(Mδ
γ(s◦))|

1
pf(Mδ

γ(s◦)x),

so ‖f̃‖p = ‖f‖p and the Fourier transform of f̃ is supported in the set Sλ =

{ξ : 3λ/4 ≤ |(Mδ
γ(s◦))

−tξ| ≤ 7λ/4} because supp f̂ ⊂ Aλ. Since Mδ
γ(s◦) =

M1
γ(s◦)Dδ, it is easy to see that Sλ ⊂ {ξ : 3λd∗/4 ≤ |D−1

δ ξ| ≤ 7λd∗/4}, thus
we get (5.2.9).

We now define ω and ω̃ by setting ω(x, t) = ω(x+ tγ(s◦), t) and

ω̃(x, t) = δ3ω(Mδ
γ(s◦)x, t),

respectively. Denoting by M the matrix such that M(x, t) = (x + tγ(s◦), t),
we note that ω = ωM, det M = 1, and ‖M‖ ≤ 1 + |γ(s◦)|. Thus using (5.2.3)
we have [ω]3 ≤ (1 + |γ(s◦)|)3[ω]3. Similarly, let M′ denote the matrix such
that M′(x, t) = (M1

γ(s◦)x, t). Then ω̃ = δ3(ωM′)
δ since Mδ

γ(s◦) = M1
γ(s◦)Dδ.

Using (5.2.2) and (5.2.3) we get [ω̃]3 ≤ C| det M1
γ(s◦)|−1(1 + ‖M1

γ(s◦)‖)3[ω]3
since det M′ = det M1

γ(s◦) and ‖M′‖ ≤ 1 + ‖M1
γ(s◦)‖. Combining these two

inequalities gives (5.2.8).
To complete the proof it remains to show (5.2.7). Note thatAγ[ψJ ]f(x, t) =

δ
∫
f
(
x−tγ(s◦)−tMδ

γ(s◦)γ
δ
s◦(s)

)
ψJ(δs+s◦) ds, changing variables s→ δs+s◦

and using (5.2.1). We thus have

Aγ[ψJ ]f(x, t) = δ|det Mδ
γ(s◦)|

− 1
p

∫
f̃
(
(Mδ

γ(s◦))
−1(x− tγ(s◦))− tγδs◦(s)

)
ψJ◦ds.

Therefore the change of variables x→ Mδ
γ(s◦)x+ tγ(s◦) yields (5.2.7).

Reduction

Let γ ∈ CD(I) be a curve satisfying (5.0.1). For a given ε◦ > 0 we take
δ = δ∗ where δ∗ is the number given in Lemma 5.2.1. We now apply (5.2.6)
to ψ ∈ CD

0 (I) and then Lemma 5.2.4 to each interval J , so that we have

‖Aγ[ψ]f‖Lp(R3×Ĩ,ω) ≤ δ1− 3
p

∑
J∈J(δ)

∥∥AγδcJ [ψJ ]f̃J
∥∥
Lp(R3×Ĩ,ω̃J )

,
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where γδcJ ∈ CD(ε◦) (by Lemma 5.2.1), [ω̃J ]3 ≤ CJ [ω]3, C−1ψJ ∈ ND(J◦)

for some constants CJ , C > 0, and f̃J satisfies that ‖f̃J‖p ≤ ‖f‖p and

suppF(f̃J) ⊂ {ξ : (BJ)−1λ ≤ |ξ| ≤ BJλ} for a constant BJ . Since there are
at most Cδ−1

∗ many intervals, for the estimate (5.1.6) it is enough to obtain

estimate for each Aγ
δ
cJ [ψJ ]f̃J against the weight ω̃J . Hence, after decomposing

f̃J via Littlewood-Paley projection and replacing ω̃J with (CJ [ω]3)−1ω̃J , in
order to show (5.1.6) we need only to consider the curve γ ∈ CD(ε◦) and the
weight ω with [ω]3 ≤ 1.

Furthermore, sinceAγ[ψ]f(x, t) = Aγ[ψ]f( ·
r
)(rx, rt), by scaling after split-

ting Ĩ into three intervals [2−1, 1], [1, 2] and [2, 4], the proof of (5.1.6) now
reduces to showing

‖Aγ[ψ]f‖Lp(R3×[1,2],ω) ≤ Cλ−εp‖f‖Lp(R3)

for [ω]3 ≤ 1, γ ∈ CD(ε◦), and ψ ∈ ND(J◦) for some D.

Definition 5.2.5. Fixing p, ε◦, D, for λ ≥ 1 we define the quantity Q(λ) by

Q(λ) = sup
{
‖Aγ[ψ]f‖Lp(R3×[1,2],ω) : γ ∈ CD(ε◦), ψ ∈ ND(J◦),

[ω]3 ≤ 1, supp f̂ ⊂ Aλ, ‖f‖Lp(R3) ≤ 1
}
.

An elementary estimate gives Q(λ) ≤ Cλ2 for 1 ≤ p ≤ ∞.

Thanks to the discussion in the above and Lemma 5.1.4, Theorem 5.1.1
now follows from the next proposition, which we prove in Section 5.6.

Proposition 5.2.6. For p ∈ (3,∞), there are positive constants ε◦, D, εp,
and C such that

Q(λ) ≤ Cλ−εp . (5.2.10)

In order to show (5.2.10) we need only to handle Aγ[ψ] with ψ ∈ ND(J◦),
which we decompose in the fashion of (5.2.6). Thus it suffices work with the
intervals J ∩ J◦ 6= ∅. We set

J◦(δ) =
{
J ∈ J(δ) : J ⊂ (1 + 2c◦)J◦

}
.

What follows next is a consequence of Lemma 5.2.4, which plays an important
role in proving (5.2.10).
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Lemma 5.2.7. Let J ∈ J◦(δ) and ψJ ∈ ND(J). Suppose γ ∈ CD(ε◦), [ω]3 ≤
1, and supp f̂ ⊂ Aλ. If δ3λ ≥ 22 and ε◦ > 0 is sufficiently small, there are
constants C, independent of γ, ω, and ψJ , such that∥∥Aγ[ψJ ]f

∥∥
Lp(R3×[1,2],ω)

≤ Cδ1− 3
pKδ(λ)‖f‖Lp(R3), (5.2.11)

where
Kδ(λ) =

∑
2−2δ3λ≤2j≤22δλ

Q(2j).

Proof. We denote J = [s◦ − c◦δ, s◦ + c◦δ]. Since γ ∈ CD(ε◦), γ
δ
s◦ ∈ CD(ε◦)

by Lemma 5.2.1 and our choice of δ, i.e., (5.2.4). Noting that s◦ ∈ 2J◦,
γ ∈ CD(ε◦) and ε◦ ≤ c2

◦, we see that |γ(s◦)| ≤ 3c◦ and ‖M1
γ(s◦)− I3‖ ≤ 5c◦. If

we use
∑∞

`=0(I3−M1
γ(s◦))

` = (M1
γ(s◦))

−1, it follows ‖(M1
γ(s◦))

−1−I3‖ ≤ 5c◦
1−5c◦

.

Since ‖M‖ = ‖Mt‖ for any matrix M, ‖(M1
γ(s◦))

−t− I3‖ < 1/100. So, we have

99

100
≤ inf
|z|=1
|(M1

γ(s◦))
−tz|, ‖(M1

γ(s◦))
−t‖, | det M1

γ(s◦)| ≤
101

100
.

Therefore, by (5.2.8) and (5.2.9) we see respectively that [ω̃]3 ≤ C with a

constant C independent of γ and that suppF(f̃ ) ⊂ {ξ : 2−1δ3λ ≤ |ξ| ≤ 2δλ}.
Let β∗ ∈ C∞0 ([3/4, 7/4]) such that

∑
j β∗(2

−j·) = 1. We decompose

f̃ =
∑

2−2δ3λ≤2j≤22δλ

f̃j,

where f̃j = F−1
(
β∗(2

−j| · |)F(f̃ )
)
. By (5.2.7) it follows that∥∥Aγ[ψJ ]f

∥∥
Lp(R3×[1,2],ω)

≤ δ1− 3
p

∑
2−2δ3λ≤2j≤22δλ

‖Aγδs◦ [ψJ◦ ]f̃j‖Lp(R3×[1,2],ω̃).

Since suppF(f̃j) ⊂ A2j and ‖f̃j‖p ≤ Cβ∗‖f‖p and since γδs◦ ∈ CD(ε◦), ψJ◦ ∈
ND(J◦) and [ω̃]3 ≤ C, we have ‖Aγδs◦ [ψJ◦ ]f̃j‖Lp(R3×[1,2],ω̃) ≤ CQ(2j)‖f‖p while
C is independent of γ, ω, and ψJ . Therefore we get (5.2.11).

5.3 Decomposition

To show the inequality (5.2.10) we need only to deal with γ ∈ CD(ε◦) and
ψ ∈ ND(J◦), therefore it suffices to consider the curve γ over the interval
(1+2c◦)J◦. This additional localization is helpful for simplifying the argument
which follows henceforth.
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5.3.1 Decomposition in Fourier side

Since ε◦ ≤ c2
◦, it is clear that

|γ′(s)− e1| ≤ 2c◦, |γ′′(s)− e2| ≤ 2c◦, |γ′′′(s)− e3| ≤ 2c◦ (5.3.1)

for s ∈ (1+2c◦)J◦ and γ ∈ CD(ε◦). Thus we have |γ′(s) ·ξ|+ |γ′′(s) ·ξ| ≥ c◦|ξ|
if |ξ1| ≥ 3c◦|ξ| or |ξ2| ≥ 3c◦|ξ|. Using Proposition 5.3.8 below we can handle
the contribution from the part of frequency |ξ1| ≥ 3c◦|ξ| or |ξ2| ≥ 3c◦|ξ| since
the condition (5.3.7) is satisfied. We shall mainly concentrate on the case
where ξ is included in the set

A∗λ :=
{
ξ : 2−1λ ≤ |ξ| ≤ 2λ, |ξ1| ≤ 22c◦|ξ|, |ξ2| ≤ 22c◦|ξ|

}
.

The following is easy to see.

Lemma 5.3.1. There exists a function σ ∈ CD−2(A∗λ), homogeneous of de-
gree 0, such that, for ξ ∈ A∗λ, |σ(ξ)| ≤ 5c◦ and

γ′′(σ(ξ)) · ξ = 0.

Indeed, we need to solve the equation γ′′(s) ·ξ = 0 for a given ξ, equivalently,
ξ−1

3 ξ2 + s + e(ξ, s) = 0 where e(ξ, s) is a function of homogeneous of degree
zero and ‖e(ξ, ·)‖CD−2 ≤ 2ε◦. An elementary argument shows existence of
σ(ξ) and the implicit function theorem guarantees that σ ∈ CD−2(A∗λ) since
γ ∈ CD(ε◦). It is clear that |σ(ξ)| ≤ 5c◦ because ξ−1

3 ξ2 +σ(ξ)+e(ξ, σ(ξ)) = 0.
For ξ ∈ A∗λ, we denote

Λγ(ξ) = γ′′′(σ(ξ)) · ξ,

Rγ(ξ) = −γ
′(σ(ξ)) · ξ

Λγ(ξ)
.

If ξ ∈ A∗λ and σ(ξ) ∈ (1 + 2c◦)J◦, by (5.3.1) we have 2−2λ ≤ |Λγ(ξ)| ≤ 22λ,
|γ′(σ(ξ)) · ξ − ξ1| ≤ 23c◦λ, and

∣∣Λγ(ξ)− ξ3

∣∣ ≤ 23c◦λ, so |Rγ(ξ)| ≤ 26c◦.

Decomposition of the operator Aγ[ψJ ]

By Taylor’s expansion we have

γ′(s) · ξ = −Λγ(ξ)Rγ(ξ) + 2−1Λγ(ξ)(s− σ(ξ))2 +O(ε◦λ|s− σ(ξ)|3),
(5.3.2)

γ′′(s) · ξ = Λγ(ξ)(s− σ(ξ)) +O(ε◦λ|s− σ(ξ)|2) (5.3.3)
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for s ∈ J and ξ ∈ A∗λ. Thus γ′(s) · ξ and γ′′(s) · ξ have lower bounds if σ(ξ) is
distanced from J , so it is not difficult to have control over the contribution
from the associated frequency. However, if σ(ξ) is close to J for ξ ∈ supp f̂ ,
the behavior of Aγ[ψJ ]f becomes less favorable. This leads us to define, for
K ≥ 1 and J ∈ J◦(δ),

RJ(K) =
{
ξ : |γ′(cJ)·ξ| ≤ Kc2

◦δ
2λ, |γ′′(cJ)·ξ| ≤ Kc◦δλ, 2−2λ ≤ |ξ3| ≤ 22λ

}
,

which contains the unfavorable frequency part of Aγ[ψJ ]f . Concerning the
sets RJ(K) we have the next lemma which we use later.

Lemma 5.3.2. Let γ ∈ CD(ε◦). If ε◦ > 0 is sufficiently small, we have the
following with C independent of γ and δ:∑

J∈J◦(δ)

χRJ (26) ≤ C. (5.3.4)

Proof. In order to show (5.3.4) it is sufficient to verify that the sets rJ :=
{ξ : λξ ∈ RJ(26)} overlap each other at most C many times. Note that rJ
is contained in 28c◦δ neighborhood of the line LJ passing through the origin
with its direction parallel to γ′(cJ)× γ′′(cJ). Since rJ ⊂ {ξ : 2−4 ≤ |ξ| ≤ 24},
it is sufficient to show that the directions of the lines LJ are separated from
each other by a distance at least 2−1c◦δ. This in turn follows from the fact
that

d

ds

(
γ′(s)× γ′′(s)

)
= γ′(s)× γ′′′(s) = −e2 +Os(5c◦)

for γ ∈ CD(ε◦) because the distance between the centers cJ of J is at least
c◦δ. Since s ∈ [−2c◦, 2c◦] and γ ∈ CD(ε◦), we have |γ′(s)− e1| ≤ 2c◦(1 + 2c◦)
and |γ′′′(s)− e3| ≤ c2

◦. Thus the last equality is clear.

Let β̃ ∈ C∞0 ([2−2, 22]) such that β̃ = 1 on [2−1, 2]. Then we set

χ̃RJ (ξ) = β0

( |γ′(cJ) · ξ|
25c2
◦δ

2λ

)
β0

( |γ′′(cJ) · ξ|
25c◦δλ

)
β̃
( |ξ3|
λ

)
,

so that χ̃RJ is supported in RJ(26) and χ̃RJ (ξ) = 1 if ξ ∈ RJ(25) ∩ A∗λ. We
set

PJf = F−1(χ̃RJ f̂ ).

The following is a consequence of (5.3.4).
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Lemma 5.3.3. If ε◦ is small enough, we have
(∑

J∈J◦(δ) ‖PJf‖
p
p

)1/p ≤ C‖f‖p
for 2 ≤ p ≤ ∞ whenever γ ∈ CD(ε◦).

The inequality follows from interpolation between the cases p = 2 and p =
∞. Plancherel’s theorem and (5.3.4) give (

∑
J ‖PJf‖2

2)1/2 ≤ C‖f‖2 and the
estimate maxJ ‖PJf‖∞ ≤ C‖f‖∞ is obvious.

Decomposition away from the conic surface Cλ
We further decompose Aγ[ψJ ]PJf in Fourier side taking into account how
close ξ is to the conic set Cλ := {ξ ∈ A∗λ : Rγ(ξ) = 0}. To this end we set

χ̃A∗λ(ξ) = β0

( ξ1

2c◦|ξ|
)
β0

( ξ2

2c◦|ξ|
)
β(λ−1|ξ|).

For 0 < ν � 1, we define the cutoff functions πc, πe, π
1
o, and π0

o by setting

πc(ξ) = χ̃A∗λ(ξ)β0(λ
2
3
−2ν |Rγ(ξ)|),

πe(ξ) = β(λ−1|ξ|)− χ̃A∗λ(ξ)β0(δ−100|Rγ(ξ)|),

and, for j = 0, 1,

πjo(ξ) = χ̃A∗λ(ξ)χ{ξ:(−1)j+1Rγ(ξ)>0}
(
β0(δ−100|Rγ(ξ)|)− β0(λ

2
3
−2ν |Rγ(ξ)|)

)
.

The support of χ̃A∗λ is contained in A∗λ and πc + π1
o + π0

o + πe = β(λ−1| · |)
almost everywhere. The functions πc, π

1
o + π0

o, and β(λ−1| · |) − πe roughly
split the set A∗λ into three regions {ξ : |Rγ(ξ)| ≤ Cλ2ν−2/3}, {ξ : Cλ2ν−2/3 ≤
|Rγ(ξ)| ≤ C1δ

100}, and {ξ : C1δ
100 ≤ |Rγ(ξ)|}. The division between the first

set and the other two reflects different asymptotic behaviors of the multiplier
Aγ[ψJ ](ei(·)·ξ)(0, t) as |ξ| → ∞. The further division of the second and the
third sets is necessitated to guarantee the transversality condition for the
multilinear estimate, which is to be discussed in the next section.

We also define the associated multiplier operators Pc, P1
o , P0

o , and Pe by

P̂cg(ξ) = πc(ξ)ĝ(ξ), F(Pjo g)(ξ) = πjo(ξ)ĝ(ξ), j = 0, 1, P̂eg(ξ) = πe(ξ)ĝ(ξ).

Besides, we set Pn = Pc + P1
o + P0

o . Then easy estimates for the kernels of
the operators give

‖Pc‖p→p ≤ C1λ
C , ‖Pjo ‖p→p ≤ C1λ

C , j = 0, 1, (5.3.5)
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for 1 ≤ p ≤ ∞ and some constants C,C1 > 0. It is possible to get better
bounds if we use the decoupling or the square function estimate for the cone
(for example, [31, 21]) but we do not attempt to do so since it is irrelevant
to our purpose. Similarly, we also have

‖Pe‖p→p ≤ C1δ
−C , ‖Pn‖p→p ≤ C1δ

−C (5.3.6)

for 1 ≤ p ≤ ∞. For the former we need only to note that ‖F−1(πe)‖L1(R3) ≤
C1δ

−C . The latter follows from the former because the multiplier associated
to the operator Pn is β(λ−1| · |)− πe.

5.3.2 Nondegenerate part

Decomposition of the operator A in Fourier side gives rise to the operators
of the form of (5.2.5) such as Aγ[ψJ ]PJ , Aγ[ψJ ](1 − PJ), . . . , Aγ[ψJ ]Pe. If
|γ′(s) · ξ|+ |γ′′(s) · ξ| ≥ C|ξ| on the support of a, we can handle Aγ[a] using
the following theorem which is a straightforward consequence of [44, Theorem
4.1].

Theorem 5.3.4. Let K ≥ 1 and [s◦−2r, s◦+2r] ⊂ I with K−1 ≤ r. Suppose
that a(s, t, ξ) is a smooth function supported in [s◦ − r, s◦ + r]× Ĩ × Aλ and
|∂j1s ∂

j2
t ∂

α
ξ a(s, t, ξ)| ≤ B|ξ|−|α| for |α| ≤ 5 and j1, j2 = 0, 1. Also, assume that

|γ′(s) · ξ|+ |γ′′(s) · ξ| ≥ K−1|ξ| (5.3.7)

whenever (s, t, ξ) ∈ supp a for some t ∈ Ĩ. Then, if p ≥ 6 and ε◦ > 0 is small
enough, for ε > 0

‖Aγ[a]f‖Lp(R3×Ĩ) ≤ CεBK
Cλ−

2
p

+ε‖f‖Lp(R3) (5.3.8)

whenever γ ∈ CD(ε◦) and f̂ is supported in Aλ.

The statement of Theorem 5.3.4 differs from the one in [44] in a couple
of aspects. First, the range of p is enlarged to p ≥ 6 � thanks to the `p-
decoupling inequality for the cone [11]. Secondly, there is an extra factor KC

in (5.3.8). The estimate (5.3.8) can be seen following the argument in [44].
It is also possible to deduce (5.3.8) from that with K ∈ [2−1, 2] by finite

�The critical case p = 6 can be included by interpolation with a trivial estimate.
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decomposition and making use of scaling and affine transform. Uniformity of
the bound over γ ∈ CD(ε◦) is clear.

The estimate |
∫
e−itγ(s)·ξa(s, t, ξ)ds| ≤ C1BK

C |ξ|− 1
2 follows by (5.3.7)

and van der Corput’s Lemma. Then ‖Aγ[a]f‖L2(R3×Ĩ) ≤ C1BK
Cλ−

1
2‖f‖L2(R3)

by Plancherel’s theorem. Interpolation between the estimate and (5.3.8) with
p = 6 gives

Corollary 5.3.5. Under the same assumption as in Theorem 5.3.4, if 2 ≤
p ≤ 6 and ε◦ is small enough, for ε > 0

‖Aγ[a]f‖Lp(R3×Ĩ) ≤ CεBK
Cλ−

1
4
− 1

2p
+ε‖f‖Lp(R3)

whenever γ ∈ CD(ε◦) and f̂ is supported in Aλ.

We also make use of the following ([44, Theorem 1.4]).

Theorem 5.3.6. Let J ⊂ I be a compact interval of length δ and ψJ ∈
ND(J). Then, if p ≥ 6 and ε◦ is small enough, for ε > 0

‖Aγ[ψJ ]f‖Lp(R3×Ĩ) ≤ Cεδ
−Cλ−

4
3p

+ε‖f‖Lp(R3) (5.3.9)

whenever γ ∈ CD(ε◦) and f̂ is supported in Aλ.

Compared with [44, Theorem 1.4], the range of p is extended to p ≥ 6
by the aforementioned decoupling inequality [11]. The estimate (5.3.9) with
additional factor δ−C can be shown by scaling and its uniformity over γ ∈
CD(ε◦) is also obvious.

Estimates for Aγ[ψJ ](1− PJ) and Aγ[ψJ ]Pe

The condition (5.3.7) is satisfied on the support of ψJ(s)(1− χ̃RJ (ξ)). Thus,
using Corollary 5.3.5, we can get a favorable estimate for Aγ[ψJ ](1−PJ). We
also obtain the similar estimate for Aγ[ψJ ]Pe (see Proposition 5.3.8 below).

Proposition 5.3.7. Let [ω]3 ≤ 1, and J ∈ J◦(δ). If 2 ≤ p ≤ 6 and ε◦ > 0 is
small enough, for ε > 0 there are constants C and Cε such that

‖Aγ[ψJ ](1− PJ)f‖Lp(R3×[1,2],ω) ≤ Cεδ
−Cλ

1
2

( 1
p
− 1

2
)+ε‖f‖Lp(R3) (5.3.10)

whenever supp f̂ ⊂ Aλ, γ ∈ CD(ε◦), and ψJ ∈ ND(J).
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Proof. We set

a(s, t, ξ) = χ̃(t)ψJ(s)(1− χ̃RJ (ξ))β(λ−1|ξ|),

so that Aγ[a]f = χ̃(t)Aγ[ψJ ](1 − PJ)f . We claim that (5.3.7) holds on the
support of a with K = C1δ

−2 > 0, C1 = C1(c◦).
To see this, it suffices to consider the case ξ ∈ A∗λ because of (5.3.1). We

first note that ξ ∈ RJ(25) if σ(ξ) ∈ [ cJ − |J |, cJ + |J | ] and |Rγ(ξ)| ≤ 23c2
◦δ

2.
Indeed, since |σ(ξ)− cJ | ≤ 2c◦δ, by (5.3.2) we have |γ′(cJ) · ξ| ≤ 25c2

◦δ
2λ, and

we get |γ′′(cJ)·ξ| ≤ 23c◦δλ from (5.3.3). So, it follows ξ ∈ RJ(25) since ξ ∈ A∗λ.
Hence, if ξ ∈ supp(1− χ̃RJ )β(λ−1| · |)∩A∗λ, we have σ(ξ) /∈ [cJ −|J |, cJ + |J | ]
or |Rγ(ξ)| ≥ 23c2

◦δ
2. In the first case we have |γ′′(s) · ξ| ≥ 2−2c◦δλ by (5.3.3).

Thus we may assume |Rγ(ξ)| ≥ 23c2
◦δ

2 and |s−σ(ξ)| ≤ 3c◦δ and then we get
|γ′(s) · ξ| ≥ 2c2

◦δ
2λ using (5.3.2). This shows the claim.

Since (5.3.7) holds on the support of a, by Corollary 5.3.5 we have the
estimate

‖χ̃(t)Aγ[ψJ ](1− PJ)f‖Lp(R3×R) ≤ Cεδ
−Cλ−

1
4
− 1

2p
+ε‖f‖Lp(R3) (5.3.11)

for 2 ≤ p ≤ 6. We use the estimate to obtain the weighted estimate (5.3.10)
and argue similarly as in the proof of Lemma 5.1.4. So, we shall be brief.

As before, let us define an operator ÃJ by

F(ÃJh)(ξ, τ) = β0((λr0)−1τ)β(λ−1|ξ|)F
(
χ̃(t)Aγ[ψJ ]h

)
(ξ, τ),

where r0 = 1 + 4 max{|γ(s)| : s ∈ suppψJ}. Then we have |(χ̃(t)Aγ[ψJ ] −
ÃJ)h| ≤ CẼN

t ∗ |h| for any N if we use Lemma 5.1.6. Putting together this
(e.g., (5.1.7)), [ω]3 ≤ 1 and ‖(1− PJ)f‖p ≤ C‖f‖p, we see that

‖χ̃(t)Aγ[ψJ ](1− PJ)f‖Lp(R3×R,ω) ≤ ‖ÃJ(1− PJ)f‖Lp(R3×R,ω) + Cλ−N‖f‖p.

The Fourier transform of ÃJ(1−PJ)f is supported in B4(0, 22r0λ). By Lemma

5.5.5 we thus get ‖ÃJ(1 − PJ)f‖Lp(R3×R,ω) ≤ Cλ1/p‖ÃJ(1 − PJ)f‖Lp(R3×R).

Disregarding the minor contribution from (χ̃(t)Aγ[ψJ ] − ÃJ)(1 − PJ)f , we
only need to obtain the estimate for χ̃(t)Aγ[ψJ ](1 − PJ)f in Lp(R3 × R).
Therefore we obtain the estimate (5.3.10) by (5.3.11).

Proposition 5.3.8. Under the same assumption as in Proposition 5.3.7, if
2 ≤ p ≤ 6 and ε◦ > 0 is small enough, for any ε > 0

‖Aγ[ψJ ]Pef‖Lp(R3×[1,2],ω) ≤ Cεδ
−Cλ

1
2

( 1
p
− 1

2
)+ε‖f‖Lp(R3)

whenever supp f̂ ⊂ Aλ, γ ∈ CD(ε◦) and ψJ ∈ ND(J).
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Proof. We set π1
e(ξ) = χ̃A∗λ(ξ)

(
1− β0(δ−100|Rγ(ξ)|)

)
and π2

e(ξ) = β(λ−1|ξ|)−
χ̃A∗λ(ξ), so that πe = π1

e + π2
e. Then we break χ̃(t)Aγ[ψJ ]Pef = Aγ[a1]f +

Aγ[a2]f , where
aj(s, t, ξ) = χ̃(t)ψJ(s)πje(ξ), j = 1, 2.

We first consider Aγ[a1]f . After decomposing ψJ into the bump functions
ψ` supported in finitely overlapping intervals J` such that δ100 ≤ |J`| ≤ 2δ100,

ψJ =
∑
ψ`, and |ψ(k)

` | ≤ Ckδ
−100k, we set a1

`(s, t, ξ) = χ̃(t)ψ`(s)π
1
e(ξ). By

(5.3.3) |γ′′(s) · ξ| ≥ 2−3λδ100 for s ∈ suppψ` if σ(ξ) 6∈ [cJ` − |J`|, cJ` + |J`|].
Otherwise, from (5.3.2) we have |γ′(s) · ξ| ≥ 2−2δ100λ for s ∈ suppψ` since
|Rγ(ξ)| ≥ δ100 on supp π1

e. Therefore (5.3.7) holds with K = Cδ−100 for
(s, t, ξ) ∈ supp a1

` . An application of Corollary 5.3.5 with a = a1
` gives

‖Aγ[a1
` ]f‖Lp(R3×R) ≤ Cεδ

−Cλ−
1
4
− 1

2p
+ε‖f‖Lp(R3).

Arguing similarly as in the proof of Proposition 5.3.7, we get the weighted

estimate ‖Aγ[a1
` ]f‖Lp(R3×[1,2],ω) ≤ Cεδ

−Cλ−
1
4

+ 1
2p

+ε‖f‖Lp(R3). Summation over
` thus gives the desired estimate since there are at most Cδ−100 many `.

The estimate ‖Aγ[a2]f‖Lp(R3×[1,2],ω) ≤ Cελ
− 1

4
+ 1

2p
+ε‖f‖Lp(R3) can be ob-

tained likewise but more straightforwardly since |γ′(s) · ξ|+ |γ′′(s) · ξ| ≥ c◦|ξ|
on supp a2.

5.4 Asymptotic expansions of the multiplier

The main object of this and next sections is to prove the following weighted
multilinear estimate for Aγ[ψJ ]Pnf . Throughout this and the next sections
we assume γ ∈ CD(ε◦) with an ε◦ small enough.

Proposition 5.4.1. Let Jk ∈ J◦(δ), 1 ≤ k ≤ 4, and [ω]3 ≤ 1. Suppose that

f̂1, . . . , f̂4 are supported in Aλ and dist (J`, Jk) ≥ δ, ` 6= k. If 14/5 < p ≤ 6,
there are constants εp > 0, D, and Cδ > 0 such that

∥∥∥ 4∏
k=1

|Aγ[ψJk ](PnPJkfk)|
1
4

∥∥∥
Lp(R3×[1,2],ω)

≤ Cδλ
−εp

4∏
k=1

‖fk‖
1
4

Lp(R3) (5.4.1)

whenever γ ∈ CD(ε◦) and ψJk ∈ ND(Jk), 1 ≤ k ≤ 4.
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In order to prove Proposition 5.4.1 we first try to express Aγ[ψJk ]Pn as a
sum of adjoint restriction operators. To do so, we expand the Fourier mul-
tiplier of the operator Aγ[ψJk ]Pn into a series of suitable form. We handle
separately Aγ[ψJk ]Pc (Lemma 5.4.2) and Aγ[ψJk ]Pjo , j = 1, 0 (Lemma 5.4.4).
The estimates in Lemma 5.4.2 and 5.4.4 are somewhat rough but we do not
attempt to make them as efficient as possible.

Multiplier of Aγ[ψJ ]Pc
Let J ∈ J◦(δ). For ψJ ∈ ND(J) we set

mJ(t, ξ) = (2π)−3

∫
e−itγ(s)·ξψJ(s) ds.

The multiplier mJπc of Aγ[ψJ ]Pc has the worse decay in ξ as the zeros of
γ′(s) · ξ and γ′′(s) · ξ are close to each other. We define

Φc(ξ) = γ(σ(ξ)) · ξ, ξ ∈ A∗λ,

and an adjoint restriction operator T c
λ by setting

T c
λ g(x, t) =

∫
Ccλ(δ)

ei(x·ξ−tΦ
c(ξ))g(ξ) dξ,

where Ccλ(δ) = {ξ ∈ A∗λ : |Rγ(ξ)| ≤ 2δ100}. We note that supp πc ⊂ Ccλ(δ).

Lemma 5.4.2. Let 0 < ν � 1 and J ∈ J◦(δ). Suppose γ ∈ CD(ε◦), ψJ ∈
ND(J), and f̂ is supported on Aλ. Then we have

Aγ[ψJ ]Pcf =
∑

`∈Z: |`|≤λ10ν

eit`T c
λ

(
c`πcf̂

)
+ Ecf, t ∈ Ĩ ,

and the following hold with C, CN , and Cδ independent of γ and ψJ :

|c`(ξ)| ≤ CNλ
ν− 1

3 (1 + λ−3ν |`|)−N (5.4.2)

for any N and

‖Ecf‖Lq(R3×Ĩ) ≤ Cδλ
C− 3

2
νD‖f‖p, 1 ≤ p ≤ q ≤ ∞. (5.4.3)
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Summation over ` results from the Fourier series expansion in t of an
amplitude function which appears after factoring out e−itΦ

c(ξ). This simplifies
the amplitude function depending both on ξ and t which causes considerable
loss in bound when we attempt to directly apply the multilinear restriction
estimate (for example see [9, Theorem 6.2]).

For the proof of Lemma 5.4.2 and Lemma 5.4.4 below we write mJ(t, ξ)
in a different form. Changing of variables s→ s+ σ(ξ), we have

mJ(t, ξ) = (2π)−3e−itΦ
c(ξ)

∫
e−itφ(s,ξ)ψJ(s+ σ(ξ))ds, (5.4.4)

where

φ(s, ξ) := γ(s+ σ(ξ)) · ξ − γ(σ(ξ)) · ξ .

We here note that J ⊂ (1 + 2c◦)J◦ and |σ(ξ)| ≤ 5c◦ for ξ ∈ A∗λ by Lemma
5.3.1. Thus φ ∈ CD−2([−1/2, 1/2]× A∗λ) and suppψJ(·+ σ(ξ)) ⊂ 23J◦. Since
γ ∈ CD(ε◦) and γ′′(σ(ξ)) · ξ = 0, by Taylor’s expansion it follows that

φ(s, ξ) = Λγ(ξ)
(
−Rγ(ξ)s+

1

6
s3 + Θ(s, ξ)

)
, (5.4.5)

|∂ksΘ(s, ξ)| ≤ Ckε◦|s|max(4−k,0), 0 ≤ k ≤ D. (5.4.6)

In what follows we occasionally resort to (5.4.5) and (5.4.6) to exploit the
properties of the phase function φ(·, ξ).

Proof of Lemma 5.4.2. We need to consider mJ(t, ξ) while ξ ∈ supp πc. We
break

ψJ(s+ σ(ξ)) = am(s, ξ) + ae(s, ξ),

where am(s, ξ) = ψJ(s+ σ(ξ))β0(2−4λ
1
3
−νs). Then we put

Iθ(t, ξ) = (2π)−3

∫
e−itφ(s,ξ)aθ(s, ξ)ds, θ ∈ {m, e}.

By (5.4.4) it follows

mJ(t, ξ) = e−itΦ
c(ξ)
(
Im(t, ξ) + Ie(t, ξ)

)
.

The major term is Im while Ie decays fast as λ → ∞. Let χ◦ ∈ C∞0 ([0, 2π])
such that χ◦ = 1 on the interval [2−1, 22]. Expanding χ◦(t)Im(t, ξ) into
Fourier series in t over the interval [0, 2π] we have

χ◦(t)Im(t, ξ) =
∑
`∈Z

c`(ξ)e
it`.
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Note that F(χ◦Im(·, ξ))(`) = (2π)−3
∫
χ̂◦(`+φ(s, ξ))am(s, ξ)ds. Since |φ(s, ξ)|

≤ Cλ3ν on the support of am(·, ξ) by (5.4.5), we have |F(χ◦Im(·, ξ))(`)| ≤
Cλν−

1
3 |`|−N for any N if |`| ≥ C1λ

3ν for a large C1. Thus we get (5.4.2)
for any N > 0. We also note that |∂αξ φ| ≤ C and |∂αξ am| ≤ Cδ because

|∂αξ σ| ≤ Cλ−|α| on A∗λ for |α| ≤ D − 2 (see Lemma 5.3.1). By the same
argument we obtain, for any N > 0,

|∂αξ c`(ξ)| ≤ Cδλ
ν− 1

3 (1 + λ−3ν |`|)−N . (5.4.7)

We now put

Ecg(x, t) =
∑
|`|>λ10ν

eit`F−1
x

(
c`e
−itΦc

πcĝ
)

+ F−1
x (Ie(t, ·)e−itΦ

c

πcĝ ).

We shall show (5.4.3) to complete the proof. The terms F−1
x

(
c`e
−itΦc

πcĝ
)

in the summation can be handled easily. Combining the estimate (5.4.7)
and |∂αξ e−itΦ

c| ≤ C for |α| ≤ 4, we see that F−1
x (c`e

−itΦc
πcĝ ) = Kt ∗ Pcg and

|Kt| ≤ Cδλ
C(1+λ−3ν |`|)−N(1+ |x|)−4. Thus, the convolution inequality gives

‖F−1
x (c`e

−itΦc

πcĝ )‖Lq(R3×Ĩ) ≤ Cδλ
C(1 + λ−3ν |`|)−N‖Pcg‖p

for 1 ≤ p ≤ q ≤ ∞. Taking a large N ≥ D and using the estimate in (5.3.5),
we obtain

∑
|`|≥λ10ν ‖F−1

x (c`e
−itΦc

πcĝ )‖Lq(R3×Ĩ) ≤ Cδλ
C−2νD‖g‖p.

In order to show the estimate for F−1
x (Ie(t, ·)e−itΦ

c
πcĝ ) we claim

|∂αξ Ie(t, ξ)| ≤ Cδλ
− 3

2
ν(D−|α|) (5.4.8)

for ξ ∈ supp πc and |α| ≤ 4. Using (5.4.8) for |α| ≤ 4, similarly as before,

we see F−1
x (Ie(t, ·)e−itΦ

c
πcĝ ) = Kt ∗ Pcg with |Kt| ≤ Cδλ

C− 3
2
νD(1 + |x|)−4.

Therefore, the convolution inequality and (5.3.5) give∥∥F−1
x (Ie(t, ·)e−itΦ

c

πcĝ )
∥∥
Lq(R3×Ĩ) ≤ Cδλ

C− 3
2
νD‖g‖p, 1 ≤ p ≤ q ≤ ∞.

Now it remains to show (5.4.8). We recall ae(s, ξ) = ψJ(s + σ(ξ))(1 −
β0(2−4λ

1
3
−νs)). Since |s| ≥ 24λν−

1
3 on the support of ae(·, ξ) and |Rγ(ξ)| ≤

2λ2ν− 2
3 for ξ ∈ supp πc, by (5.4.5) and (5.4.6) it follows that C1λ|s|2 ≤

|∂sφ(s, ξ)| ≤ C2λ|s|2 and

C3λ|s|3−k ≤ |∂ksφ(s,ξ)| ≤ C4λ|s|3−k, k = 2, 3,

|∂ksφ(s, ξ)| ≤ C5ε◦λ, 4 ≤ k ≤ D
(5.4.9)
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for some positive constants C1, . . . , C5. Thus, noting |∂ks ae(s, ξ)| ≤ Cδλ
( 1

3
−ν)k

for 0 ≤ k ≤ D, we have

b`+1 :=
|∂`+1
s φ(s, ξ)|
|∂sφ(s, ξ)|`+1

≤ Cδλ
− 3

2
ν(`+1), b′` :=

|∂`sae(s, ξ)|
|∂sφ(s, ξ)|`

≤ Cδλ
−3ν`

(5.4.10)

for ` ≥ 1 if ξ ∈ supp πc and |s| ≥ 24λν−
1
3 . After integrating by parts

D − 1 times we see that |Ie(t, ξ)| is bounded by a finite sum of the terms
C
∫ ∏m

j=1M`jds where M` ∈ {b`+1, b
′
`},
∑m

j=1 `j = D − 1, and `j ≥ 1. Us-

ing (5.4.10) we get |Ie(t, ξ)| ≤ Cδλ
− 3

2
νD for ξ ∈ suppπc. Furthermore, since

∂ks ∂
α
ξ φ, α 6= 0 are bounded, the same argument shows (5.4.8).

Multipliers of Aγ[ψJ ]P1
o and Aγ[ψJ ]P0

o

We obtain similar expansions for mJπ
j
o, j = 0, 1. As we shall see, mJπ

0
o is a

minor term decaying rapidly as λ→∞ (see (5.4.21)). We concentrate on the
case ξ ∈ supp π1

o for the moment.
Let ρ1 ∈ C∞0 ([2−5, 25]), ρ0 ∈ C∞c ([0, 2−4)) and ρ2 ∈ C∞((24,∞)) such that

ρ1 = 1 on [2−4, 24] and ρ0 + ρ1 + ρ2 = 1 on [0,∞). For j = 0, 1, 2, we set

aj(s, ξ) = ψJ(s+ σ(ξ))ρj
(
R−1/2
γ (ξ)|s|

)
,

Ij(t, ξ) = (2π)−3

∫
e−itφ(s,ξ)aj(s, ξ) ds,

and then we have

mJ(t, ξ) = e−itΦ
c(ξ)
(
I0(t, ξ) + I1(t, ξ) + I2(t, ξ)

)
. (5.4.11)

The main term is I1 while I0 and I2 are rapidly decaying as λ → ∞ (see
(5.4.22) below). The second derivative of the phase function does not vanish
on supp a1(·, ξ), so we may apply the method of stationary phase for I1(t, ξ).
For the purpose we set

φ̃(s, ξ) = L−1(ξ)φ
(
R1/2
γ (ξ)s, ξ

)
, (5.4.12)

where L(ξ) = Λγ(ξ)Rγ(ξ)
3
2 and set

a±(s, ξ) = ψJ
(
R1/2
γ (ξ)s+ σ(ξ)

)
ρ1(±s),

I±1 (t, ξ) = (2π)−3R1/2
γ (ξ)

∫
e−itL(ξ)φ̃(s,ξ)a±(s, ξ) ds.
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By scaling s→ R
1/2
γ (ξ)s we have

I1(t, ξ) = I+
1 (t, ξ) + I−1 (t, ξ). (5.4.13)

We try to find the stationary points of the function φ̃(·, ξ) which give
rise to two different phase functions Φ± (see (5.4.15) below). As we shall see
later, it is important for application of the multilinear restriction estimate
how smooth these phase functions are. So, we deal with the matter carefully.

Lemma 5.4.3. There are τ+, τ− ∈ CD−4(A∗λ × [−δ10, δ10]), homogeneous of
degree zero, such that ±τ±(ξ, θ) ∈ [2−1, 2] and, if Rγ(ξ) ≥ 0,

∂sφ̃
(
τ±(ξ, R1/2

γ (ξ)), ξ
)

= 0. (5.4.14)

Proof. We begin by setting

Θ0(s, ξ) = s−3Θ(s, ξ),

which is homogeneous of degree zero in ξ. One can see Θ0 ∈ CD−3([−1/2, 1/2]×
A∗λ) because Θ0(s, ξ) = (s/3!)

∫ 1

0
(1− t)3γ(4)(st+ σ(ξ)) · ξΛ−1

γ (ξ)dt by Tay-
lor’s theorem with integral remainder. Then we consider the function

φ̃0(s, ξ, θ) = −s+
s3

3!
+ s3Θ0(θs, ξ)

with (s, ξ, θ) ∈ Ω± := (±[2−5, 25]) × A∗λ × [−δ10, δ10]. It is clear that φ̃0 ∈
CD−3(Ω±).

Since Θ0, ∂sΘ0 and ∂2
sΘ0 areO(ε◦) as can be seen using (5.4.5) and (5.4.6),

we have ∂sφ̃0(s, ξ, θ) = −1 + s2/2 +O(ε◦) and ∂2
s φ̃0(s, ξ, θ) = s+O(ε◦). We

now note that ∂sφ̃0(·, ξ, θ) has two distinct zeros which are respectively close
to
√

2 and −
√

2, thus by the implicit function theorem there are τ+(ξ, θ) and

τ−(ξ, θ) such that ∂sφ̃
(
τ±(ξ, θ), ξ, θ

)
= 0 and ±τ±(ξ, θ) ∈ [2−1, 2] if ε◦ is small

enough. Additionally, τ+ and τ− are D − 4 times continuously differentiable

since so is ∂sφ̃0. By (5.4.5) and (5.4.12) we note that φ̃0(s, ξ, R
1/2
γ (ξ)) =

φ̃(s, ξ), thus it follows that φ̃0(s, ξ, R
1/2
γ (ξ)) = ∂sφ̃(s, ξ) when Rγ(ξ) ≥ 0.

Therefore we obtain (5.4.14).

We set
s±(ξ) = R1/2

γ (ξ)τ±
(
ξ, R1/2

γ (ξ)
)
.

84



CHAPTER 5. MAXIMAL ESTIMATE

Then from (5.4.12) it follows γ′
(
s±(ξ) + σ(ξ)

)
· ξ = 0. We define

Φ±(ξ) = γ
(
s±(ξ) + σ(ξ)

)
· ξ (5.4.15)

for ξ ∈ A∗λ ∩ {ξ : Rγ(ξ) ≥ 0}. If Rγ(ξ) = 0 for some ξ, ∇Φ±(ξ) may not exist

because R
1/2
γ is not differentiable at ξ. However, ∇Φ± can be defined to be a

continuous function on A∗λ ∩ {ξ : Rγ(ξ) ≥ 0}. Indeed, differentiating (5.4.15)
gives

∇Φ±(ξ) = γ
(
s±(ξ) + σ(ξ)

)
(5.4.16)

if Rγ(ξ) > 0. Thus ∇Φ± becomes continuous on A∗λ ∩ {ξ : Rγ(ξ) ≥ 0} if we
set ∇Φ±(ξ) = γ

(
σ(ξ)

)
when Rγ(ξ) = 0 since γ, σ are continuous.

We define the adjoint restriction operators T ±λ by

T ±λ g(x, t) =

∫
Coλ(δ)

ei(x·ξ−tΦ
±(ξ))g(ξ) dξ,

where Coλ(δ) := {ξ ∈ A∗λ : 0 ≤ Rγ(ξ) ≤ 2δ100}. Putting together the discus-
sion so far with the method of stationary phase we can obtain

Lemma 5.4.4. Let 0 < ν � 1, M = [D−1
3

], and J ∈ J◦(δ). Suppose γ ∈
CD(ε◦), ψJ ∈ ND(J), and f̂ is supported on Aλ. Then, we have

Aγ[ψJ ](P1
o + P0

o )f =
∑
±

M−1∑
`=0

t−
2`+1

2 T ±λ
(
γ±` π

1
of̂
)

+ Eof, t ∈ Ĩ , (5.4.17)

and the following hold with C and Cδ independent of γ and ψJ :

|γ±` (ξ)| ≤ Cδλ
− 1

3
− ν

2λ−3`ν (5.4.18)

for 0 ≤ ` ≤M − 1 and

‖Eof‖Lq(R3×Ĩ) ≤ Cδλ
C−3νM‖f‖p, 1 ≤ p ≤ q ≤ ∞. (5.4.19)

It should be noted that the expansion in (5.4.17) is obtained only on the
support of π1

o but not on the larger set Coλ(δ).
We now proceed to apply to I±1 the method of stationary phase. We first

note that supp a±(·, ξ) ⊂ ±[2−5, 25] and, as seen in the above, the phase

φ̃(·, ξ) has the stationary points τ±(ξ, R
1/2
γ (ξ)) while ∂2

s φ̃(·, ξ) = s + Os(ε◦)
for ξ ∈ A∗λ ∩ {ξ : 0 ≤ Rγ(ξ) ≤ 2δ100}. We also note that |L(ξ)| ≥ 2−1λ3ν for
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ξ ∈ supp π1
o and that L(ξ)φ̃(τ±(ξ, R

1/2
γ (ξ)), ξ) = γ

(
s±(ξ) + σ(ξ)

)
· ξ − Φc(ξ).

Bring all these observations together, we now apply [23, Theorem 7.7.5] (also
see [23, Theorem 7.7.6]) and obtain

I±1 (t, ξ) = eit(Φ
c(ξ)−Φ±(ξ))R1/2

γ (ξ)
M−1∑
`=0

d±` (ξ)(tL(ξ))−
1
2
−` + e±M(t, ξ) (5.4.20)

for ξ ∈ suppπ1
o where M = [D−1

3
] and e±M(t, ξ) = O

(
|tL(ξ)|−M

)
. The func-

tions d±` (ξ) are bounded on the support of π1
o since so are ∂ks φ̃ and ∂ks a

±.

Proof of Lemma 5.4.4. Recalling (5.4.11) and (5.4.13) we write

mJ(π1
o + π0

o) = e−itΦ
c

(I+
1 + I−1 )π1

o + e−itΦ
c

(I0 + I2)π1
o +mJπ

0
o.

Using (5.4.20), we now put

E(t, ·) = e−itΦ
c(
e+
M(t, ·) + e−M(t, ·)

)
π1
o + e−itΦ

c(I0(t, ·) + I2(t, ·)
)
π1
o +mJ(t, ·)π0

o,

and then we set Eof = F−1
ξ (E(t, ·)f̂ ) and γ±` (ξ) = R

1/2
γ (ξ)d±` (ξ)(L(ξ))−

1
2
−`.

Thus we have (5.4.17) and the inequality (5.4.18) follows because |L(ξ)| ≥
2−1λ3ν and d±` are bounded on the support of π1

o.
To show (5.4.19) we use the following:

|∂αξmJ(t, ξ)| ≤ Cδλ
− 3

2
ν(D−|α|), ξ ∈ suppπ0

o, (5.4.21)

and
|∂αξ I0(t, ξ)| ≤ Cδλ

− 3
2
ν(D−|α|),

|∂αξ I2(t, ξ)| ≤ Cδλ
− 3

2
ν(D−|α|),

ξ ∈ supp π1
o. (5.4.22)

Assuming this for the moment we obtain (5.4.19). Note that |∂αξ Φc| ≤ Cλ1−|α|

and |∂αξ e±M | ≤ C1λ
C−3νM for |α| ≤ 4. Combining this, (5.4.21) and (5.4.22)

for |α| ≤ 4 and using the estimate (5.3.5), we get (5.4.19) in the same manner
as before.

To complete the proof, we are left to prove (5.4.21) and (5.4.22). Let

us first consider (5.4.21) which is easier. Since Rγ(ξ) ≤ −λ2ν− 2
3 for ξ ∈

supp π0
o, by (5.4.5) we see that |∂sφ| ≥ C1λ

(
− Rγ(ξ) + s2(1/2 − ε◦|s|)

)
≥

C2λmax(s2, λ2ν− 2
3 ) for some C1, C2 > 0. Combining this with (5.4.9), we have

(5.4.10) holds for ` ≥ 1 when ae is replaced by ψJ(s+σ(ξ)). Thus integration
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by parts gives |mJ(t, ξ)| ≤ Cδλ
− 3

2
νD if Rγ(ξ) ≤ −λ2ν− 2

3 . The same argument
also works for ∂αξmJ(t, ξ), so we obtain (5.4.21).

We now show (5.4.22) only with α = 0, and the derivatives ∂αξ I0 and ∂αξ I2

can be handled likewise. We consider I0 first. By (5.4.5) we have |∂sφ| ≥
CλRγ(ξ) for |s| ≤ 2−4R

1/2
γ (ξ). Combining this with (5.4.9), we get the first

estimate in (5.4.10) for ` ≥ 1 when |s| ≤ 2−4R
1/2
γ (ξ) because λ2ν− 2

3 ≤ Rγ(ξ).

Note that |∂`sa0(s, ξ)| ≤ CδR
−`/2
γ (ξ), hence for ` ≥ 1 we have the second

estimate in (5.4.10) with ae replaced by a0. Therefore repeated integration
by parts gives the estimate for I0. We can handle I2 in the same manner.
Since |s| ≥ 24R

1/2
γ (ξ), by (5.4.5) we have C1λ|s|2 ≤ |∂sφ(s, ξ)| ≤ C2λ|s|2

and obviously |∂`sa2(s, ξ)| ≤ CδR
−`/2
γ (ξ). So, we get the estimate (5.4.10) for

|s| ≥ 24R
1/2
γ (ξ) and ` ≥ 1 while ae is replaced by a2. Thus integration by

parts gives the estimate for I2.

In contrast to Φc the 2nd derivatives of Φ± are no longer bounded. How-
ever, a computation with γ = γ◦

� leads us to expect that Φ± ∈ C1,1/2. What
follows shows this holds true for γ ∈ CD(ε◦).

Lemma 5.4.5. For ξ1, ξ2 ∈ Co1 (δ), there is a constant C independent of γ
such that

|∇Φ±(ξ1)−∇Φ±(ξ2)| ≤ C|ξ1 − ξ2|
1
2 . (5.4.23)

Proof. Let us set τ±0 (ξ) = τ±(ξ, R
1/2
γ (ξ)), so s±(ξ) = R

1/2
γ (ξ)τ±0 (ξ). Using

(5.4.16) and applying the mean value inequality to γ, it is easy to see

|∇Φ±(ξ1)−∇Φ±(ξ2)| ≤ C|s±(ξ1)− s±(ξ2)|+ C|σ(ξ1)− σ(ξ2)|.

Since σ ∈ CD−2(A∗λ) from Lemma 5.3.1, we only have to consider the first
term on the right hand side, which is in turn bounded by

|R1/2
γ (ξ1)−R1/2

γ (ξ2)||τ±0 (ξ1)|+R1/2
γ (ξ2)|τ±0 (ξ1)− τ±0 (ξ2)|.

It is easy to see that |R1/2
γ (ξ1) − R1/2

γ (ξ2)| ≤ C|ξ1 − ξ2|
1
2 . Since τ± is D − 4

times continuously differentiable in a region containing Co1 (δ) (Lemma 5.4.3)

and τ±0 (ξ) = τ±(ξ, R
1/2
γ (ξ)), by the mean value inequality it follows that

|τ±0 (ξ1)− τ±0 (ξ2)| ≤ C|R1/2
γ (ξ1)−R1/2

γ (ξ2)|+C|ξ1− ξ2|. Consequently, we get
the inequality (5.4.23).

�If γ = γ◦, Φc(ξ) = −ξ1ξ2/ξ3+ξ32/(3ξ
2
3) and Φ±(ξ) = Φc(ξ)∓3−1ξ3

(
ξ22/ξ

2
3−2ξ1/ξ3

)3/2
.
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5.5 Multilinear restriction estimate

In this section we obtain a form of multilinear restriction estimate which we
need to prove (5.4.1). The surfaces associated to Φc and Φ± have a certain
curvature property, so it is possible to get an L2-Lq smoothing estimate
using the typical TT ∗ argument. However, the consequent estimate is not so
strong enough as to be useful for controlling the maximal operator. Instead,
we utilize 4-linear estimates which are to be deduced from the multilinear
restriction estimate under transversality assumption ([9]).

Multilinear restriction estimate for C1,α hypersurfaces

For the adjoint restriction estimate, the surfaces are typically assumed to
be compact and twice continuously differentiable. The same assumption was
also made for the multilinear restriction estimate in [9, Theorem 1.16] but the
phase functions Φ± no longer have bounded second derivatives. Nevertheless,
it is not difficult to see that the argument in [9] continues to work with C1,α

surface, α > 0(see Theorem 2.2.3).
Making use of Theorem 2.2.3 we obtain the following.

Proposition 5.5.1. Let θ1, . . . , θ4 ∈ {c,+,−} and let Jk ∈ J◦(δ), 1 ≤ k ≤ 4.
Suppose that γ ∈ CD(ε◦) and dist (J`, Jk) ≥ δ, ` 6= k. Then, for any ε > 0
and R ≥ 1 there is a constant Cε such that∥∥∥ 4∏

k=1

|T θk1

(
χ̃RJk (λ·)gk

)
|

1
4

∥∥∥
L

8
3 (B4(0,R))

≤ Cδ−CεRε

4∏
k=1

‖gk‖
1
4
2 . (5.5.1)

Proof. We begin with recalling that χ̃RJk (λ·) is supported in λ−1RJk(2
6) and

that |Rγ(ξ)| ≤ 2δ100 if ξ ∈ Cc1(δ) or Co1 (δ). Since∇ξΦ
c(ξ) = γ(σ(ξ))+γ′(σ(ξ))·

ξ∇σ(ξ), we have ∇ξΦ
c(ξ) = γ(σ(ξ)) + O(δ100) for ξ ∈ Cc1(δ). If ξ ∈ Co1 (δ),

by (5.4.16) we have ∇ξΦ
±(ξ) = γ(σ(ξ)) +Os(22δ50) because |Rγ(ξ)| ≤ 2δ100.

Thus
Nk(ξ) := |(∇Φθk(ξ), 1)|−1(∇Φθk(ξ), 1)

which is normal to the surface (ξ,−Φθk(ξ)) satisfies

Nk(ξ) =
(γ(σ(ξ)), 1)√
|γ(σ(ξ))|2 + 1

+Os(23δ50), ξ ∈ Cθk1 (δ), k = 1, . . . , 4,

where we denote C±1 (δ) = Co1 (δ).
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Let ξk ∈ λ−1RJk(2
6) ∩ Cθk1 (δ), k = 1, . . . , 4. Then we have σ(ξk) ∈

[−3c◦, 3c◦] since Jk ⊂ (1 + 2c◦)J◦. Let Γ denote the matrix whose k-th col-
umn is the vector

(
γ(σ(ξk)), 1

)
, k = 1, . . . , 4. By the generalized mean value

theorem (see for example [41, Part V, Ch.1, 95]) there exists uk ∈ [−3c◦, 3c◦]
such that

det Γ = det

(
γ(u1) γ′(u2) γ′′(u3) γ′′′(u4)

1 0 0 0

) ∏
1≤`<k≤4

|σ(ξ`)− σ(ξk)|.

Since γ ∈ CD(ε◦) and u1, . . . , u4 ∈ [−3c◦, 3c◦], the determinant on the right
hand side has its absolute value 1 + Os(ε◦) regardless of γ (for example see
(5.3.1)). On the other hand, using (5.3.3) with s = cJk , for ξk ∈ λ−1RJk(2

6)∩
Cθk1 (δ) we have |cJk −σ(ξk)| ≤ 2−2δ with a small enough ε◦, and we also have
|cJ` − cJk | ≥ (1 + 2c◦)δ, ` 6= k because dist (J`, Jk) ≥ δ. So, |σ(ξ`)− σ(ξk)| >
2−1δ if ` 6= k, thus we have

∏
1≤`<k≤4 |σ(ξ`)− σ(ξk)| > 2−6δ6. Consequently,

we obtain
|det(N1(ξ1), . . . ,N4(ξ4))| > 2−7δ6

provided that ξk ∈ λ−1RJk(2
6) ∩ Cθk1 (δ) for k = 1, . . . , 4. That is to say, the

transversality condition holds uniformly regardless of the choice of θ1, . . . , θ4 ∈
{c,+,−}.

We now note that Φc is continuously differentiable at least twice in a
region containing Cc1(δ) and that ‖Φ±‖C1,1/2(Co1 (δ)) ≤ C by Lemma 5.4.5. To

apply Theorem 2.2.3 we need only to make it sure that Φ± extends as a C1,1/2

function to an open set containing Co1 (δ). The only part of the boundary which
can be problematic is S := {ξ : Rγ(ξ) = 0} ∩ Co1 (δ) since Φ± is homogenous
and D − 4 times continuously differentiable on {ξ : Rγ(ξ) = 2δ100} ∩ Co1 (δ)
(see Lemma 5.3.1 and 5.4.3). We note that Rγ(ξ) = 0 if and only if g(ξ) :=
γ′(σ(ξ)) · ξ = 0. Since ∇g(ξ) = γ′′(σ(ξ)) = e2 +Os(6c◦) for ξ ∈ A∗1 by Lemma
5.3.1 and since g ∈ CD−2(A∗1), by the implicit function theorem it follows
that S is a part of a CD−2 boundary. Thus we can extend Φ± to be a C1,1/2

function across S (e.g., [18, pp. 136–137]). Therefore we may apply Theorem
2.2.3 and get the estimate (5.5.1).

As Φc, Φ± are homogeneous of degree 1, the following is an immediate
consequence of Proposition 5.5.1 by means of scaling and Plancherel’s theo-
rem.
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Corollary 5.5.2. Under the same assumption as in Proposition 5.5.1, for
any ε > 0 there is a Cε = Cε(δ) > 0 such that

∥∥∥ 4∏
k=1

|T θkλ
(
χ̃RJk f̂k

)
|

1
4

∥∥∥
L

8
3 (B4(0,23))

≤ Cελ
ε

4∏
k=1

‖fk‖
1
4
2 . (5.5.2)

5.5.1 Multilinear estimate for Aγ[ψJk]PnPJk
We are ready to prove Proposition 5.4.1. We first show the multilinear esti-
mate in Lq(R3 × Ĩ) from which we deduce the weighted estimate.

Proposition 5.5.3. Let Jk ∈ J◦(δ), 1 ≤ k ≤ 4. Suppose that dist (J`, Jk) ≥
δ, ` 6= k. If 1/q = 5/(8p) + 1/16 and 2 ≤ p ≤ 6, for ε > 0 there are constants
Cε = Cε(δ) and D = D(ε) such that

∥∥∥ 4∏
k=1

|Aγ[ψJk ]PnPJkfk|
1
4

∥∥∥
Lq(R3×Ĩ)

≤ Cελ
− 1

3p
− 1

6
+ε

4∏
k=1

‖fk‖
1
4

Lp(R3) (5.5.3)

whenever γ ∈ CD(ε◦), ψJk ∈ ND(Jk), and f̂k is supported on Aλ.

By the localization argument it is sufficient for the estimate (5.5.3) to
show its local counterpart. In fact, we have

Lemma 5.5.4. Let 1 ≤ p ≤ q ≤ ∞ and b ∈ R, and let I ′ ⊂ Ĩ be an
interval. Let γ ∈ CD(ε◦), ω ∈ Ωα, 0 < α ≤ 4, and ψJk ∈ ND(Jk), Jk ∈ J◦(δ),
1 ≤ k ≤ 4. If

∥∥∥ 4∏
k=1

|Aγ[ψJk ]PnPJkfk|
1
4

∥∥∥
Lq(B3(0,1)×I′,ω)

≤ Bλb[ω]
1
q
α

4∏
k=1

‖fk‖
1
4

Lp(R3) (5.5.4)

holds for a large enough D = D(b), then we have

∥∥∥ 4∏
k=1

|Aγ[ψJk ]PnPJkfk|
1
4

∥∥∥
Lq(R3×I′,ω)

≤ CδBλ
b[ω]

1
q
α

4∏
k=1

‖fk‖
1
4

Lp(R3). (5.5.5)

Proof. Let Kk(·, t) denote the kernel of the operator Aγ[ψJk ]PnPJk . We note
that the multiplier of PnPJk is given bym(ξ) = χ̃A∗λ(ξ)β0(δ−100|Rγ(ξ)|)χ̃RJk (ξ)

and ‖m(λ·)‖CM ≤ Cδ−CM for M ≤ D−2. Since |γ(s)| ≤ 2(c◦+ε◦) for s ∈ Jk,
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by Lemma 5.1.3 we have |Kk(x, t)| ≤ CδEM(x) for M ≤ (D− 5)/2 if |x| ≥ 2
and t ∈ Ĩ. For k ∈ Z3 set Bk = B3(k, 1) and B′k = B3(k, 3). Then we have

|Aγ[ψJk ]PnPJkf | ≤
∑
k∈Z3

χBk
|Aγ[ψJk ]PnPJk(χB′kf)|+ CδEM ∗ |f |.

Taking M = 4N + 9 and combining this with |Aγ[ψJk ]PnPJkg| ≤ Cδλ
3(1 + | ·

|)−N ∗ |g|, we see that
∏4

k=1 |Aγ[ψJk ]PnPJkfk| is bounded by

∑
k∈Z3

χBk

4∏
k=1

|Aγ[ψJk ]PnPJk(χB′kfk)|+ Cδ

4∏
k=1

(EN ∗ |fk|).

Since ‖EN ∗ |f |‖Lq(R3×I′,ω) ≤ C[ω]
1/q
α λ−N‖f‖p for 1 ≤ p ≤ q, taking a large

N ≥ −b, we may disregard the second term. We now use (5.5.4) to get∥∥∥ 4∏
k=1

|Aγ[ψJk ]PnPJk(χB′kfk)|
1
4

∥∥∥
Lq(Bk×I′,ω)

≤ Bλb[ω]
1
q
α

4∏
k=1

‖χB′kfk‖
1
4

Lp(R3).

Thus the desired estimate (5.5.5) follows by taking summation over k and
Hölder’s inequality since B′k overlap each other at most 62 times.

Thanks to Lemma 5.5.4, the proof of Proposition 5.5.3 is reduced to
showing∥∥∥ 4∏

k=1

|Aγ[ψJk ]PnPJkfk|
1
4

∥∥∥
Lq(B3(0,1)×Ĩ)

≤ Cελ
− 1

3p
− 1

6
+ε

4∏
k=1

‖fk‖
1
4

Lp(R3) (5.5.6)

for p, q satisfying 1/q = 5/(8p) + 1/16 and 2 ≤ p ≤ 6. Since ‖PnPJkg‖p ≤
Cδ‖g‖p by (5.3.6), using the estimate (5.3.9) with p = 6 after Hölder’s in-
equality, we get the estimate (5.5.6) with p = 6. Thus in view of interpolation
we only have to obtain∥∥∥ 4∏

k=1

|Aγ[ψJk ]PnPJkfk|
1
4

∥∥∥
L

8
3 (B3(0,1)×Ĩ)

≤ Cελ
− 1

3
+ε

4∏
k=1

‖fk‖
1
4

L2(R3). (5.5.7)

Proof of (5.5.7). For a given ε > 0 we fix ν such that 10ν = 2−1ε and
then take an integer D such that D ≥ C1/ν with a large constant C1. For
simplicity let us set

Fk = Aγ[ψJk ]PnPJkfk, k = 1, . . . , 4. (5.5.8)
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By Lemma 5.4.2 and 5.4.4, we have

Fk = F c
k + F+

k + F−k + Efk, k = 1, . . . , 4,

where E satisfies ‖Efk‖q ≤ Cδλ
C−νD‖fk‖p for 1 ≤ p ≤ q ≤ ∞, and

F c
k =

∑
|`|≤λ10ν

eit`T c
λ (c`πcχ̃RJk f̂k), F±k =

∑
0≤m≤M−1

t−
2m+1

2 T ±λ (γ±mπ
1
oχ̃RJk f̂k).

We thus need to handle the terms Π4
k=1hk where hk ∈ {F c

k , F
±
k , Efk},

1 ≤ k ≤ 4. Any product which has Efk as one of its factors is easily handled
by taking C1 large enough if one uses Hölder’s inequality and the trivial
estimates ‖T c

λ (πcĝ)‖q ≤ Cδλ
C‖g‖p and ‖T ±λ (π1

oĝ)‖q ≤ Cδλ
C‖g‖p, which hold

for 1 ≤ p ≤ q ≤ ∞. So, it suffices to obtain the estimates for the products
which consist only of the terms F c

k , F±k . By (5.4.2) and (5.4.18) we have∑
|`|≤λ10ν λ

1
3
−ν‖c`‖∞ ≤ Cλ3ν and

∑M−1
`=0 ‖γ

±
` ‖∞ ≤ Cδλ

− 1
3
− ν

2 . Thus, using the

estimate (5.5.2) and Plancherel’s theorem, we obtain∥∥∥ 4∏
k=1

|F θk
k |

1
4

∥∥∥
L

8
3 (B4(0,23))

≤ Cελ
− 1

3
+10ν+ ε

2

4∏
k=1

‖fk‖
1
4
2 ,

where θk ∈ {c,+,−} for 1 ≤ k ≤ 4. Therefore we get (5.5.7).

5.5.2 Putting altogether

We are in a position to prove Proposition 5.4.1. By Lemma 5.5.4, it suffices
to show that∥∥∥ 4∏

k=1

|Aγ[ψJk ]PnPJkfk|
1
4

∥∥∥
Lp(B3(0,1)×[1,2],ω)

≤ Cδλ
−εp

4∏
k=1

‖fk‖
1
4

Lp(R3) (5.5.9)

for 14/5 < p ≤ 6. The exponent p/4 here is not necessarily bigger than or
equal to 1, so we can not use Hölder’s inequality to exploit the fact that
the Fourier transform of PnPJkfk is supported in B3(0, 2λ). Nevertheless, the
following lemma enables us to deal with the case p/4 < 1.

Lemma 5.5.5. Let 0 < p ≤ ∞, 0 < α ≤ 4 and ω ∈ Ωα. Suppose that
F ∈ Lp(R4, ω) and F̂ is supported on B4(0, λ). Then we have

‖F‖Lp(R4,ω) ≤ C[ω]
1
p
αλ

4−α
p ‖F‖Lp(R4). (5.5.10)
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Proof. Note that wdxdt� dxdt since ω ∈ Ωα. Thus ‖F‖L∞(R4,ω) ≤ ‖F‖L∞(R4).
When 1 ≤ p < ∞, as already seen, (5.5.10) is a simple consequence of
Hölder’s inequality, so we only need to consider p ∈ (0, 1).

Let us take ϕ ∈ S(R4) such that ϕ̂ = 1 on B4(0, 1) and ϕ̂ is supported

on B4(0, 2). Then we have F = F ∗ ϕλ since F̂ is supported on B4(0, λ). We
first claim that

|F |p ≤ C|F |p ∗ |ϕ|pλ, (5.5.11)

where we denote |ϕ|pλ = (|ϕ|p)λ. Once we have (5.5.11) the proof of (5.5.10)
is rather straightforward. Indeed, by (5.5.11) it follows that ‖F‖pLp(R4,ω) ≤
C
∫
|F (x)|p|ϕ|pλ ∗ ω(x)dx ≤ C‖F‖pLp(R4)‖|ϕ|

p
λ ∗ ω‖∞. Since ‖|ϕ|pλ ∗ ω‖∞ ≤

Cλ4−α[ω]α, this gives (5.5.10).
We now turn to the proof of (5.5.11). By scaling we may assume λ = 1,

otherwise one may replace F with F (·/λ). To show (5.5.11) when λ = 1, we
first notice that

|F | ∗ |ϕ|(x) =

∫
|F (y)ϕ(x− y)|dy ≤ ‖Fϕ(x− ·)‖1−p

∞ |F |p ∗ |ϕ|p(x).

Since the Fourier transform of Fϕ(x−·) is supported in B4(0, 5), Fϕ(x−·) =(
Fϕ(x−·)

)
∗5−1ϕ(5−1·) and ‖Fϕ(x−·)‖∞ ≤ C‖Fϕ(x−·)‖1 = C|F |∗ |ϕ|(x).

Combining this and the inequality above gives (|F | ∗ |ϕ|)p ≤ C|F |p ∗ |ϕ|p.
Since |F | ≤ |F | ∗ |ϕ|, we get (5.5.11) with λ = 1.

Proof of (5.5.9)

Here we keep using the simpler notation (5.5.8). The estimate (5.5.9) follows
if we show∥∥∥ 4∏

k=1

|χ̃Fk|
1
4

∥∥∥
Lp(B3(0,1)×Ĩ,ω)

≤ Cδλ
−εp

4∏
k=1

‖fk‖
1
4

Lp(R3). (5.5.12)

We deduce the weighted estimate from Proposition 5.5.3 in the same way as
in the proof of Proposition 5.3.7. The difference is that we are dealing with
a multilinear estimate and the exponent p/4 can be less than 1. To apply

Lemma 5.5.5 we break χ̃Fk = Ãkfk + Ekfk where

F(Ãkfk)(ξ, τ) = β0((λr0)−1τ)F(χ̃Fk)(ξ, τ)
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and r0 = 1 + 4 max{|γ(s)| : s ∈ suppψJk , k = 1, . . . , 4}. By Lemma 5.1.6 we

have |Ekfk(x, t)| ≤ CẼM
t ∗ |fk|(x) for any M . Thus, taking a large M and

using the trivial estimate |χ̃Fk| ≤ Cλ3(1 + | · |)−M ∗ |fk|, one can easily see

∥∥∥ 4∏
k=1

|χ̃Fk|
1
4

∥∥∥
Lq(B3(0,1)×Ĩ,ω)

≤ C
∥∥∥ 4∏
k=1

|Ãkfk|
1
4

∥∥∥
Lq(R4,ω)

+ Cλ−N
4∏

k=1

‖fk‖
1
4

Lp(R3)

for a large N . Since [ω]3 ≤ 1 and the support of F(
∏4

k=1 Ãkfk) is contained in

a ball of radius 24r0λ, the inequality (5.5.10) gives ‖
∏4

k=1 |Ãkfk|
1
4‖Lq(R4,ω) ≤

Cλ1/q‖
∏4

k=1 |Ãkfk|
1
4‖Lq(R4). To estimate the last one in Lq(R4), using the

estimate |Ekfk(x, t)| ≤ CẼM
t ∗ |fk| again and disregarding the minor con-

tributions, it suffices to obtain the bound on ‖
∏4

k=1 |χ̃Fk|
1
4‖Lq(R4). Since

supp χ̃ ⊂ Ĩ, by the estimate (5.5.3) we get

∥∥∥ 4∏
k=1

|χ̃Fk|
1
4

∥∥∥
Lq(B3(0,1)×Ĩ,ω)

≤ Cε(δ)λ
7
24

( 1
p
− 5

14
)+ε

4∏
k=1

‖fk‖
1
4

Lp(R3)

for 1/q = 5/(8p) + 1/16 and 2 ≤ p ≤ 6. Finally, we obtain (5.5.12) for
14/5 < p ≤ 6 by Hölder’s inequality since ‖ω‖L1(B3(0,1)×Ĩ) ≤ C[ω]3 and
q ≥ p.

Remark 1. In the above we try to obtain the estimate (5.4.1) on a range of p
as large as possible by suppressing ν arbitrary small ( Proof of (5.5.7)). This
forces us to take a large D ≥ C1/ν. However, to obtain the maximal estimate
it is enough to have the estimate (5.4.1) on the smaller range 3 < p ≤ 6
instead of 14/5 < p ≤ 6. For 3 < p ≤ 6, we can prove (5.4.1) with a fixed
ν and D. For example, optimizing the estimates at various places, we can
take ν = 1/397 and D = 720. In other words, Theorem 5.0.1 holds true for
γ ∈ C720(I).

5.6 Closing induction argument

In this section we complete the proof of Theorem 5.0.1. We prove the suffi-
ciency in this section. By the reduction in Section 5.2.2, Lemma 5.1.4) and
Lemma 5.1.2, it suffices to prove Proposition 5.2.6, which also proves Theo-
rem 5.1.1.
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Decomposition

We first decompose the averaging operator Aγ[ψ] in such a way that we
can use the multilinear estimate obtained in Section 5.4, 5.5. The following
Lemma 5.6.1 is a slight modification of [22, Lemma 2.8]. Let us set

J4
∗(δ) =

{
(J1, . . . , J4) : J1, . . . , J4 ∈ J◦(δ), min

` 6=k
dist (J`, Jk) ≥ δ

}
.

Lemma 5.6.1. Let ψ ∈ ND(J◦) and γ ∈ CD(ε◦). There is a constant C =
C(D) independent of z = (x, t), γ, and δ such that

|Aγ[ψ]f(z)| ≤ Cmax
J∈J◦(δ)

|Aγ[ψJ ]f(z)|+ Cδ−1
∑

(J1,...,J4)∈J4
∗(δ)

4∏
k=1

∣∣Aγ[ψJk ]f(z)
∣∣ 1

4 ,

(5.6.1)
where ψJ ∈ ND(J) and ψJk ∈ ND(Jk).

Proof. Let us recall (5.2.6). It is clear that there is a constant CD > 0 such
that C−1

D ψζJ ∈ ND(J) for J ∈ J◦(δ). Setting ψJ = C−1
D ψζJ we have

Aγ[ψ]f(z) = CD
∑

J∈J◦(δ)

Aγ[ψJ ]f(z).

Let us set J1 = J◦(δ). For a fixed z, define J∗1 to be an interval in J1 such
that |Aγ[ψJ∗1 ]f(z)| = maxJ∈J1 |Aγ[ψJ ]f(z)|. For k = 2, 3, 4, we recursively
define Jk and J∗k ∈ Jk. Let Jk = {J ∈ Jk−1 : dist (J, J∗k−1) ≥ δ} and let
J∗k ∈ Jk denote an interval such that |Aγ[ψJ∗k ]f(z)| = maxJ∈Jk |Aγ[ψJ ]f(z)|.
Thus, if dist (J, J∗k ) ≥ δ for all 1 ≤ k ≤ 3, we have |Aγ[ψJ ]f | ≤ |Aγ[ψJ∗k ]f | for
1 ≤ k ≤ 4.

Let us denote J =
⋃3
k=1{J ∈ J◦(δ) : dist (J, J∗k ) < δ}. Splitting the sum

into the cases J ∈ J and J 6∈ J , we have

C−1
D |A

γ[ψ]f(z)| ≤
∑
J∈J

|Aγ[ψJ ]f(z)|+
∑
J 6∈J

|Aγ[ψJ ]f(z)|.

The first on the right hand side is bounded by C maxJ∈J◦(δ) |Aγ[ψJ ]f(z)| and

the second by Cδ−1
∏4

k=1 |Aγ[ψJ∗k ]f(z)| 14 . (5.6.1) follows since dist (J∗k , J
∗
` ) ≥ δ

if k 6= `.

The next lemma gives control over the first term on the right hand side
of (5.6.1).
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Lemma 5.6.2. Let 2 < p ≤ 6, and let [ω]3 ≤ 1 and ψJ ∈ ND(J) for each
J ∈ J◦(δ). If δ3λ ≥ 22 and ε◦ > 0 is sufficiently small, there is an εp > 0
such that

‖ max
J∈J◦(δ)

|Aγ[ψJ ]f |
∥∥
Lp(R3×[1,2],ω)

≤ C
(
δ1− 3

pKδ(λ) + Cδλ
−εp
)
‖f‖Lp(R3)

whenever γ ∈ CD(ε◦) and f̂ is supported on Aλ.

Proof of Lemma 5.6.2. By the embedding `p ⊂ `∞ and Minkowski’s inequal-
ity,

‖ max
J∈J◦(δ)

|Aγ[ψJ ]f |
∥∥p
Lp(R3×[1,2],ω)

≤ 2p(I + II),

where

I =
∑

J∈J◦(δ)

‖Aγ[ψJ ]PJf
∥∥p
Lp(R3×[1,2],ω)

, II =
∑

J∈J◦(δ)

‖Aγ[ψJ ](f − PJf)
∥∥p
Lp(R3×[1,2],ω)

.

For II we apply Proposition 5.3.7. Taking εp = 1
4
(1

2
− 1

p
) and using the

estimate (5.3.10) with ε = εp/2, we have II
1
p ≤ Cδλ

−εp‖f‖Lp(R3) since there
are at most Cδ−1 many J . To handle I, we invoke Lemma 5.2.7 and then use
Lemma 5.3.3 to obtain

I ≤ Cδp−3Kδ(λ)p
∑

J∈J◦(δ)

‖PJf‖pp ≤ Cδp−3Kδ(λ)p‖f‖pp.

Therefore the desired bound follows.

Now we consider the product terms appearing in (5.6.1).

Lemma 5.6.3. Let 14
5
< p ≤ 6, [ω]3 ≤ 1, and (J1, . . . , J4) ∈ J4

∗(δ). If
δ3λ ≥ 22 and ε◦ > 0 is small enough, there are positive constants εp, c, D
such that∥∥∥ 4∏

k=1

|Aγ[ψJk ]f |
1
4

∥∥∥
Lp(R3×[1,2],ω)

≤ Cδ

(
λ−εp + λ−cKδ(λ)

)
‖f‖Lp(R3) (5.6.2)

whenever γ ∈ CD(ε◦), ψJk ∈ ND(Jk), k = 1, . . . , 4, and f̂ is supported in Aλ.
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Proof. For each 1 ≤ k ≤ 4 we split f = bk + gk, where

bk = PnPJkf, gk = Pn(1− PJk)f + Pef.

We here use f = Pnf + Pef because f̂ is supported on Aλ. Thus, the left
hand side of (5.6.2) is bounded by a constant times

M =
∑

hk∈{bk,gk}

∥∥∥ 4∏
k=1

|Aγ[ψJk ]hk|
1
4

∥∥∥
Lp(R3×[1,2],ω)

.

We consider the cases (h1, . . . , h4) = (b1, . . . , b4) and (h1, . . . , h4) 6= (b1, . . . , b4).
For the former case we use Proposition 5.4.1 and the estimate (5.3.6). Since
14/5 < p ≤ 6, there is an εp > 0 such that∥∥∥ 4∏

k=1

|Aγ[ψJk ]bk|
1
4

∥∥∥
Lp(R3×[1,2],ω)

≤ Cδλ
−εp‖f‖Lp(R3).

For the other case we combine Proposition 5.3.7, 5.3.8, and Lemma 5.2.7. In
fact, Proposition 5.3.7 and 5.3.8 followed by (5.3.6) yield

‖Aγ[ψJk ]gk‖Lp(R3×[1,2],ω) ≤ Cεδ
−Cλ

1
2

( 1
p
− 1

2
)+ε‖f‖Lp(R3)

for 2 ≤ p ≤ 6. If we consider a particular case (h1, . . . , h4) = (b1, b2, b3, g4),
by Hölder’s inequality and the above estimate we have∥∥∥ 4∏

k=1

|Aγ[ψJk ]hk|
1
4

∥∥∥
Lp(R3×[1,2],ω)

≤ Cδλ
−c‖f‖

1
4

Lp(R3)

3∏
k=1

∥∥Aγ[ψJk ]bk∥∥ 1
4

Lp(R3×[1,2],ω)

for a constant c > 0 because p > 14/5. We apply Lemma 5.2.7 to handle the
last three factors. Since ‖bk‖ ≤ C1δ

−C‖f‖Lp(R3) from (5.3.6), the inequality
(5.2.11) gives∥∥∥ 4∏

k=1

|Aγ[ψJk ]hk|
1
4

∥∥∥
Lp(R3×[1,2],ω)

≤ Cδλ
−cKδ(λ)

3
4‖f‖Lp(R3).

We can deal with the remaining products similarly. As a consequence, we
obtain

M ≤ Cδ

(
λ−εp +

3∑
`=1

λ−(4−`)cKδ(λ)
`
4

)
‖f‖Lp(R3)

and therefore the bound (5.6.2) after a simple manipulation since we may
assume εp ≤ c taking a smaller εp if necessary.
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We now conclude the proof of (5.2.10) putting together the previous es-
timates.

Proof of (5.2.10)

Since ‖Af‖L∞(R3×[1,2],ω) ≤ C‖f‖L∞(R3), by interpolation it is sufficient to show
(5.2.10) for 3 < p < 6. Let p ∈ (3, 6) and take an ε◦ > 0 small enough and
a large D such that the estimates in Lemma 5.6.2 and 5.6.3 hold whenever
γ ∈ CD(ε◦) and ψJ ∈ ND(J), J ∈ J◦(δ).

Let γ ∈ CD(ε◦), ω ∈ Ω3 with [ω]3 ≤ 1 and ψ ∈ ND(J◦), and let f be a

function such that supp f̂ ⊂ Aλ and ‖f‖p ≤ 1. By (5.6.1) and Minkowski’s
inequality we see that ‖Aγ[ψ]f‖Lp(R3×[1,2],ω) is bounded by

C
∥∥ max
J∈J◦(δ)

|Aγ[ψJ ]f |
∥∥
Lp(R3×[1,2],ω)

+ Cδ
∑

(J1,...,J4)∈J4
∗(δ)

∥∥∥ 4∏
k=1

|Aγ[ψJk ]f |
1
4

∥∥∥
Lp(R3×[1,2],ω)

.

Then Lemma 5.6.2 and 5.6.3 gives

‖Aγ[ψ]f‖Lp(R3×[1,2],ω) ≤ C
(
δ1− 3

p + λ−c
)
Kδ(λ) + Cδλ

−εp

if 22δ−3 ≤ λ. Taking supremum over f, ω, ψ, and γ, we obtain

Q(λ) ≤ C
(
δ1− 3

p + λ−c
)
Kδ(λ) + Cδλ

−εp (5.6.3)

for 22δ−3 ≤ λ. In order to close the induction we need to modify Q(λ) slightly.
Fix 0 < b which is to be chosen later. We define

Qb(λ) = sup
1≤r≤λ

rbQ(r).

We observe λbKδ(λ) ≤ 22bδ−3b
∑

2−2δ3λ≤2j≤22δλ 2jbQ(2j), and hence we

have λbKδ(λ) ≤ C| log δ|δ−3bQb(2
2δλ). Multiplying λb to both sides of (5.6.3),

we thus get

λbQ(λ) ≤ C
(
δ1− 3

p + λ−c
)
| log δ|δ−3bQb(2

2δλ) + Cδλ
b−εp

for 22δ−3 ≤ λ. We now choose a small enough b such that 1− 3
p
− 3b > 0 and

b − εp < 0, then fix a small enough δ > 0 such that Cδ1− 3
p | log δ|δ−3b ≤ 2−2

and 22δ ≤ 1. Such a choice is clearly possible because p > 3. Let λ◦ be a large
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number such that δ1− 3
p ≥ λ−c◦ and 22δ−3 ≤ λ◦. Then we have the inequality

λbQ(λ) ≤ 2−1Qb(λ) + Cδ for λ ≥ λ◦ since Qb is increasing. This obviously
implies

λbQ(λ) ≤ 2−1Qb(r) + Cδ

for λ◦ ≤ λ ≤ r. Note that Qb(λ◦) ≤ λb◦C2 for a certain constant C2 (because
of the trivial estimate Q(λ) ≤ Cλ2). Taking supremum over λ ∈ [1, r] we get
Qb(r) ≤ 2−1Qb(r) + λb◦C2 +Cδ. Therefore we have Qb(r) ≤ C3 for a constant
C3 and conclude Q(λ) ≤ C3λ

−b for λ ≥ 1.

Remark 2. Routine adaptation of our argument proves Lp improving prop-
erty of the localized maximal operator Mf(x) := sup1≤t≤2

∣∣Af(x, t)
∣∣. In fact,

if γ is smooth, the estimate ‖Mf‖Lq(R3) ≤ C‖f‖Lp(R3) holds provided that
(1/p, 1/q) is contained in the interior of the triangle with vertices (0, 0),
(1/3, 1/3), and (19/66, 8/33). It is possible to extend the range slightly mak-
ing use of the estimate (5.3.9) with p > 6. Furthermore, one can show that
M is bounded from Lp to Lp(dµ) for p > 9− 2α when µ is an α dimensional

measure and 3 > α > 65−
√

865
12

= 2.9657 . . .

5.7 Sharpness of Theorem 5.0.1

To prove that Lp boundedness of M fails for p ≤ 3, it is sufficient to show the
next proposition. Our construction below is a modification of Stein’s example
in [54].

Proposition 5.7.1. Let p ≤ d and ψ 6≡ 0 be a nonnegative continuous
function supported in I. Suppose γ : I → Rd be a smooth nondegenerate
curve. Then there is an h ∈ Lp(Rd) such that Mh =∞ on a nonempty open
set.

Proof. Since ψ ≥ 0 and ψ 6≡ 0, we may assume that ψ(s) ≥ c on an interval
J ⊂ I for some c > 0. By (1.1.1) we may additionally assume that |γ(s)| ≥ c
on J taking a subinterval of J if necessary because the condition (1.1.1) can
not be satisfied if there is no such a subinterval.

Since γ′(s), · · · , γ(d)(s) are linearly independent, we can write

γ(s) =
d∑
i=1

ci(s)γ
(i)(s), s ∈ J (5.7.1)
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for some smooth functions c1, · · · , cd. We claim that there is an s◦ ∈ J
such that cd(s◦) 6= 0. Suppose that there is no such s◦ ∈ J , that is to
say, cd(s) ≡ 0 for all s ∈ J . Differentiating both side of (5.7.1), we have
(c′1(s) − 1)γ′(s) +

∑d−1
i=2 [ci−1(s) + c′i(s)]γ

(i)(s) + cd−1(s)γ(d)(s) = 0, which
implies cd−1(s) ≡ 0, ci−1(s)+c′i(s) ≡ 0, and c′1(s) ≡ 1 for s ∈ J . This leads to
a contradiction and proves the claim. Therefore there are s◦ ∈ J and δ > 0
such that

|cd(s)| ≥ c, s ∈ [s◦ − δ, s◦ + δ] ⊂ J

for some c > 0. We only consider the case cd(s) ≥ c since the other case can
be handled similarly.

For x ∈ Rd let y = (y1, · · · , yd) denote the coordinate of x with respect to
the basis {γ′(s◦), · · · , γ(d)(s◦)}, i.e., x = y1γ

′(s◦)+ · · ·+ydγ
(d)(s◦), and we set

y = (y1, · · · , yd−1). For some ε > 0 we take g(t) = χ[0,2−1](t)|t|−
1
d | log |t||− 1

d
−ε

and then we consider
h(x) = χ0(|y|)g(yd),

where χ0 ∈ C∞0 ([−2, 2]) is a nonnegative function such that χ0 = 1 on [−1, 1].
It is easy to see h ∈ Lp(Rd) for p ≤ d because g ∈ Ld(R) for p ≤ d. Thus we
only have to show that sup0<tAh =∞ on a nonempty open set.

Let us write γ(s) =
∑d

i=1 ai(s)γ
(i)(s◦) and a(s) = (a1(s), · · · , ad−1(s)).

Since cj(s◦) = aj(s◦), j = 1, . . . , d, by Taylor’s expansion we have

γ(s) =
d∑
i=1

(
ci(s◦) + (s− s◦)i/i!

)
γ(i)(s◦) +O((s− s◦)d+1).

So, yd − tad(s) = yd − tcd(s◦) − t
(
(s − s◦)d/d! + O((s − s◦)d+1)

)
. For yd >

0 we take t = yd/cd(s◦) > 0. Then it follows that C1yd|s − s◦|d ≤ |yd −
tad(s)| ≤ C2yd|s − s◦|d for some C1, C2 > 0, so |g(yd − tad(s))| ≥ Cy

− 1
d

d |s −
s◦|−1| log(yd|s− s◦|d)|−

1
d
−ε provided that |s− s◦| < c′ for a small c′ > 0 and

0 < yd ≤ 1. Thus by our choice of δ and s◦ we have

Ah
(
x,

yd
cd(s◦)

)
≥ Cy

− 1
d

d

∫
|s−s◦|≤δ′

χ̃0(y, s)|s− s◦|−1| log(yd|s− s◦|d)|−
1
d
−ε ds

for 0 < yd ≤ 1 where δ′ = min(δ, c′) and χ̃0(y, s) = χ0(|y − yd
cd(s◦)

a(s)|). Since

χ̃0(y, s) ≥ 1 if |y| ≤ r◦ for a small enough r◦ > 0, we have

Ah
(
x,

yd
cd(s◦)

)
≥ Cy

− 1
d

d

∫
|s−s◦|≤min(δ′, y

1
d
d /10)

|s− s◦|−1| log |s− s◦||−
1
d
−ε ds =∞
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for y ∈ Bd(0, r◦) ∩ {y : 0 < yd < 1} as desired.
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국문초록

이 학위 논문에서는 Rd 곡선으로 정의되는 평균에 대한 극대 유계와 정칙성

을 규명하는 연구를 진행한다. 다양체 위에서 평균으로 정의되는 적분 변환의
극대 유계와 최적 정칙성 문제는 조화 해석학의 기본 주제로, 1970년대부터
널리연구되어왔다.곡선의간단한기하학적구조에도불구하고,곡선위에서
평균의 극대 유계와 최적 정칙성은 낮은 차원 일부를 제외하고 거의 알려지지

않았다. 이 논문의 결과는 모든 차원에서 이들 문제들에 돌파구를 마련하는
획기적인 기여를 한다. 첫째, 삼차원 이상에서 곡선 위의 평균 연산자에 대한
최적소볼레프정칙유계를부분적끝점문제를제외하고모두증명한다.이는
벨트란, 구오, 히크만, 시거에 의해 제기된 추측을 완전히 해결한 것이다. 둘
째,삼차원이상공간안의곡선위에서평균값연산자의국소평활유계를최적
차수까지 증명한다. 그 결과로, 사차원 이상에서 자명하지 않은 극대 유계를
최초로 보인다. 마지막으로, 삼차원 공간안의 곡선위에서 극대 유계를 최적
범위에서 증명한다.

주요어휘: 평균값 연산자, 극대 유계, 소볼레프 정칙성, 국소적 평활화
학번: 2016-20240
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