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Abstract

Nonlinear partial differential equations on

irregular domains

Sechan Lee

Department of Mathematical Sciences

The Graduate School

Seoul National University

This thesis consists of three papers concerning nonlinear elliptic equations

on irregular domains. In the first paper, we establish the Wiener criterion,

which characterizes a regular boundary point via nonlinear potential theory,

for fully nonlinear equations in non-divergence form. Our approach is based

on the investigation of non-variational capacity, and the construction of bar-

rier functions using a homogeneous solution. The second and third papers

discuss the random homogenization of an obstacle problem for elliptic oper-

ators with Orlicz growth and fully nonlinear operators, respectively. In both

cases, the limit profile satisfies a homogenized equation without obstacles,

if we assume the stationary ergodicity on the perforating holes with criti-

cal size. The heart of analysis lies in capturing the asymptotic behavior of

oscillating solutions, by means of energy and viscosity method, respectively.

Key words: Wiener criterion, random homogenization, fully nonlinear op-

erator, Orlicz space

Student Number: 2016-20241
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Chapter 1

Introduction

The analysis on solutions of the partial differential equations becomes more

complicated when the irregularity on domains are assumed. For example,

the non-smoothness on the boundary of domains or the randomly perforat-

ing holes on the interior of domains induce such difficulties. Nevertheless,

we are still able to describe several regular properties of solutions by em-

ploying an energy method for operators in divergence form and a viscosity

method for operators in non-divergence form, respectively. Roughly speak-

ing, we will concentrate on capturing the asymptotic behaviors of solutions

near the singular point, in terms of capacity or homogeneous solution.

In the first part of this thesis, we are concerned with the irregularity on the

boundary of domains. To illustrate the issues, let Ω be an open and bounded

subset in Rn, f be a boundary data on ∂Ω, and M be an elliptic operator.

For the existence of a solution u (in a suitable sense) to the Dirichlet problem{
M[u] = 0 in Ω,

u = f on ∂Ω,

one may apply Perron’s method. If the solvability of the Dirichlet problem on

any balls is known andM allows a comparison principle, it is rather straight-

forward to prove that the upper Perron solution Hf satisfies M[Hf ] = 0 in

Ω. Nevertheless, we cannot ensure that the boundary condition u = f on ∂Ω
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CHAPTER 1. INTRODUCTION

is satisfied by the upper Perron solution, in general. Instead, we are forced

to discover an additional condition for the boundary ∂Ω, which enables us

to capture the boundary behavior of Hf .

To be precise, we say a boundary point x0 ∈ ∂Ω is regular with respect

to Ω, if

lim
Ω3y→x0

Hf (y) = f(x0).

whenever f ∈ C(∂Ω). One simple characterization of a regular boundary

point is to find a barrier function. As a consequence, by constructing proper

barrier functions, geometric criteria on ∂Ω such as an exterior sphere condi-

tion or an exterior cone condition have been invoked to guarantee the bound-

ary continuity at x0 ∈ ∂Ω for a variety of elliptic operators. Here note that

aforementioned conditions only serve as sufficient conditions for a boundary

point to be regular. In other words, these conditions do not reflect the indi-

vidual character of each operator, and so they are not sharp enough to be a

necessary condition for a regular boundary point.

On the other hand, in the pioneering works [79, 80], Wiener provided an

alternative criterion for a regular boundary point, based on potential theory.

Namely, for the Laplacian operator (M = ∆), x0 ∈ ∂Ω is regular if and only

if the Wiener integral diverges, i.e.

ˆ 1

0

cap2(Bt(x0) \ Ω, B2t(x0))

cap2(Bt(x0), B2t(x0))

dt

t
=∞,

where cap2(K,Ω) is defined by the variational capacity of the Laplacian op-

erator. Surprisingly, the Wiener criterion becomes both a sufficient and nec-

essary condition for the regularity of a boundary point. Here the notion of

capacity is used to measure the ‘size’ of sets in view of given differential

equations. Roughly speaking, x0 ∈ ∂Ω is regular if and only if Ωc is ‘thick’

enough at x0 in the potential theoretic sense.

Both linear and nonlinear potential theory have been extensively studied

2



CHAPTER 1. INTRODUCTION

in literature; see [11, 37, 38, 53, 66, 78] and references therein. Since the main

ingredient of potential theory comes from the integration by parts, the theory

and corresponding Wiener criterion have been developed mostly for operators

in divergence form. Littman, Stampacchia and Weinburger [65] demonstrated

the coincidence between the regular points for uniformly elliptic operators

M = Dj(aijDi), where aij is bounded and measurable, and for the Laplacian

operator. For the p-Laplacian operator (M = ∆p, p > 1), Maz’ya [68] verified

the sufficiency of the p-Wiener criterion, i.e. x0 ∈ ∂Ω is regular for ∆p if

ˆ 1

0

(
capp(Bt(x0) \ Ω, B2t(x0))

capp(Bt(x0), B2t(x0))

)1/(p−1)
dt

t
=∞.

For the converse direction, Lindqvist and Martio [64] proved the necessity of

the Wiener criterion under the assumption p > n−1. Later, Kilpeläinen and

Malý [46] extended this result to any p > 1, via the Wolff potential estimate.

For the other available results on the Wiener criterion, we refer to [2] for

p(x)-Laplacian operators, [59] for operators with Orlicz growth, and [47] for

nonlocal operators. Note that all of these results consider elliptic operators

in divergence form.

For elliptic operators in non-divergence form, relatively small amounts

of results for the Wiener criterion are known. While the equivalence was

obtained for M = Dj(aijDi) with merely measurable coefficients in [65],

Miller [71, 72] discovered the non-equivalence with respect to M = aijDiju,

even if the coefficients aij are continuous. More precisely, he presented ex-

amples of linear operators M in non-divergence form and domains Ω such

that x0 ∈ ∂Ω is regular for M, but x0 is irregular for ∆, and vice-versa. We

also refer [50, 55]. On the other hand, Bauman [7] developed the Wiener test

for M = aijDiju with continuous coefficients aij. He proved that x0 ∈ ∂Ω is

regular if and only if

(i) capM({x0}) > 0, or

(ii)
∑∞

j=1 g̃(x0, x0 + 2−je) · capM(Ωc ∩ (B2−j(x0) \B2−j−1(x0))) =∞.

3



CHAPTER 1. INTRODUCTION

Here g̃ is the normalized Green function and e is a unit vector in Rn.

In Chapter 2, we formulate the Wiener criterion for fully nonlinear ellip-

tic equations in non-divergence form, which is the main result of [60]. Unlike

the cases of operators in divergence form, we cannot define the variational

capacity by minimizing the corresponding energy. Instead, under the assump-

tion that the operator is positively homogeneous of degree one, we explain

the non-variational capacity based on the growth rate of homogeneous solu-

tions. One can see that the non-variational capacity plays a crucial role in

investigating the boundary regularity of solutions.

In the second part of this thesis, we present the random homogenization

result for elliptic equations with highly oscillating obstacles. Indeed, a variety

of physical and biological phenomena can be modeled by partial differential

equations on the media with periodic structure (or oscillating obstacles).

Then the solutions, uε, of these equations are expected to possess periodic

oscillation in microscopic scale (often denoted by ε), which is much smaller

than the size of the domain with macroscopic scale. The homogenization

process is interested in describing the asymptotic behavior of uε when ε→ 0

and determining the effective model which is satisfied by the limit solution

u = limε→0 uε.

There has been a large body of literature on the periodic homogenization

of linear and nonlinear PDEs; for classical results, see [8, 13, 22, 26, 42] and

references therein. Here we concentrate on summarizing the homogenization

results which are closely related to our circumstances.

Cioranescu and Murat employed an energy method to analyze the asymp-

totic behavior of uε in their paper [17], entitled “A strange term coming from

nowhere”. To be precise, they proved that the solution uε of Laplace equa-

tion (−∆uε = f) in a perforated domain with critical hole size, converges

to the solution u of Laplace equation with an additional term depending on

the capacity of holes (−∆u + µu = f). The proof relies on the construction

of appropriate correctors with desired properties under abstract framework.

Note that in their periodic setting, all holes have the identical size and uε = 0

4



CHAPTER 1. INTRODUCTION

on Tε rather than uε ≥ 0 on Tε.

The homogenization result in [17] was extended to the stationary ergodic

setting for the Laplace equations with obstacles by Caffarelli and Mellet [15].

Here the hypothesis of stationary ergodicity is an extension of the notion of

periodicity or almost periodicity, and it requires a random variable to have

self-averaging behavior. They overcame the difficulty coming from random-

ness by exploiting the subadditive ergodic theorem: we refer to [1, 16, 21] for

details. Tang [77] generalized this result for p-Laplacian operator (1 < p < n)

in the stationary ergodic setting.

Furthermore, Γ-convergence methods can be applied in homogenization;

see two books [10, 20]. Ansini and Braides [3] described the asymptotic be-

havior of p-energy type Dirichlet problem in periodically perforated domain.

Focardi extended the results for fractional obstacle problems in stationary

ergodic setting [28] and in aperiodic setting [29].

Caffarelli and Lee [12] developed a viscosity method for periodic homog-

enization of Laplacian and fully nonlinear operator with highly oscillating

obstacles. They considered a viscosity solution satisfying a uniformly elliptic

equation with non-divergence structure, and established a viscosity method

to find an effective equation satisfied by the limit function. See also [48] and

[61] for an application of a viscosity method for periodic homogenization of

nonlinear parabolic equations and semilinear equations, respectively.

In Chapter 3 and 4, we consider elliptic equations with Orlicz growth [57]

and fully nonlinear elliptic equations [58], respectively. Let us briefly explain

the common main ingredient in Chapter 3 and 4: the correctors. As usual

in the homogenization process, the correctors are essential tools to estimate

the difference between ε-solutions and the limit solution. In the abstract

framework, we first find out the desired properties for correctors to explain

the limit profile in the homogenization. Then we construct such correctors

and prove that they possess such properties. Note that these correctors are

also can be employed to the homogenization result of non-critical hole sizes.

In short, when the perforating hole sizes are not critical, we can obtain rather

5



CHAPTER 1. INTRODUCTION

trivial effective equations without additional terms.

Since we consider an obstacle problem with highly oscillating obstacles

in microscopic scale, we require oscillating correctors with prescribed val-

ues on each hole with random size. To be precise, the corrector must be-

have like a fundamental solution near each perforated hole, to explain the

oscillatory behavior of uε. Thus, we will adopt the Dirac-delta measure δ

(energy) for operators in divergence form and the homogeneous solution Φ

(viscosity) for operators in non-divergence form, respectively. In particular,

for non-divergence form operators, we will modify the homogeneous solution

to approximate the Dirac-delta measure in sense of ‘shape’.

Moreover, another important ingredient in the random homogenization

process is the subadditive ergodic theorem. This theorem enables to describe

the self-averaging behavior of given random process, which satisfies the sta-

tionary ergodic property. To determine the critical value or the critical func-

tion which appears in the limit equation, we first study the measure of a

contact set. Indeed, we define an auxiliary function which solves an obstacle

problem with randomness, and then investigate the coincidence set. Since the

measure of a contact sets satisfy the subadditivity, we will conclude that there

exists a critical value which separate behaviors of aforementioned auxiliary

functions.

6



Chapter 2

The Wiener Criterion for Fully

Nonlinear Elliptic Equations

2.1 Introduction

The goal of this chapter is to establish the Wiener criterion for fully nonlinear

elliptic operators, by implementing potential theoretic tools. To illustrate the

issues, we consider an Issacs operator, i.e. an operator F with the following

two properties:

(F1) F is uniformly elliptic: there exist positive constants 0 < λ ≤ Λ such

that for any M ∈ Sn,

λ‖N‖ ≤ F (M +N)− F (M) ≤ Λ‖N‖, ∀N ≥ 0.

Here we write N ≥ 0 whenever N is a non-negative definite symmetric

matrix.

(F2) F is positively homogeneous of degree one: F (tM) = tF (M) for any

t > 0 and M ∈ Sn.

Throughout this chapter, we suppose that F satisfies (F1) and (F2), un-

less otherwise stated. Typical examples of operators satisfying (F1) and (F2)

7



CHAPTER 2. THE WIENER CRITERION FOR FULLY NONLINEAR
ELLIPTIC EQUATIONS

are the Pucci extremal operators P+
λ,Λ and P−λ,Λ, defined by

P+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei, P−λ,Λ(M) = Λ
∑
ei<0

ei + λ
∑
ei>0

ei,

where ei = ei(M) are the eigenvalues of M . For a fully nonlinear operator F

satisfying (F1) and (F2), we define a dual operator

F̃ (M) := −F (−M), for M ∈ Sn.

Then it is obvious that F̃ also satisfies (F1) and (F2). One important property

that F satisfying (F1) and (F2) possesses is the existence of a homogeneous

solution V :

Lemma 2.1.1 (A homogeneous solution; [4, 12]). There exists a non-constant

solution of F (D2u) = 0 in Rn \ {0} that is bounded below in B1 and bounded

above in Rn \ B1. Moreover, the set of all such solutions is of the form

{aV + b | a > 0, b ∈ R}, where V ∈ C1,γ
loc (Rn \ {0}) can be chosen to sat-

isfy one of the following homogeneity relations: for all t > 0

V (x) = V (tx) + log t in Rn \ {0} where α∗ = 0,

or

V (x) = tα
∗
V (tx), α∗V > 0 in Rn \ {0},

for some number α∗ ∈ (−1,∞) \ {0} that depends only on F and n. We call

the number α∗ = α∗(F ) the scaling exponent of F .

We are ready to state our first main theorem, namely, the sufficiency of

the Wiener criterion:

Theorem 2.1.2 (The sufficiency of the Wiener crietrion). If

ˆ 1

0

capF (Bt(x0) \ Ω, B2t(x0))
dt

t
=∞

8
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and

ˆ 1

0

capF̃ (Bt(x0) \ Ω, B2t(x0))
dt

t
=∞,

then the boundary point x0 ∈ ∂Ω is (F -)regular.

We remark that the Wiener integral is again defined in terms of a capac-

ity, but the definition of a F -capacity is quite different from the variational

capacity for the Laplacian case; see Section 2.3 for details. Furthermore, as

a corollary of Theorem 2.1.2, we will derive the quantitative estimate for

a modulus of continuity at a regular boundary point (Lemma 2.4.7), and

suggest another geometric condition, called an exterior corkscrew condition

(Corollary 2.4.9).

Our second main theorem is concerned with the necessity of the Wiener

criterion. We propose a partial result on the necessary condition, i.e. ex-

ploiting the additional structure of F , we show that the Wiener integral at

x0 ∈ ∂Ω must diverge whenever x0 is a regular boundary point.

Theorem 2.1.3 (The necessity of the Wiener criterion). Suppose that F is

concave and α∗(F ) < 1. If a boundary point x0 ∈ ∂Ω is regular, then

ˆ 1

0

capF (Bt(x0) \ Ω, B2t(x0))
dt

t
=∞.

Note that the assumption α∗(F ) < 1 in the fully nonlinear case corre-

sponds to the assumption p > n−1 in the p-Laplacian case, [64]. The under-

lying idea for both cases is to utilize the non-zero capacity of a line segment

(or a set of Hausdorff dimension 1). Further comments on this assumption

can be found in Section 2.5.

In this chapter, the main difficulty arises from the inherent lack of diver-

gence structure; we cannot define a variational capacity by means of an en-

ergy minimizer, and moreover, we cannot employ integral estimates involving

Sobolev inequality and Poincaré inequality. Instead, we will develop potential

theory with non-divergence structure by the construction of appropriate bar-

9
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rier functions using the homogeneous solution, and by the application of the

comparison principle and Harnack inequality. In short, our strategy is to cap-

ture the local boundary behavior of the upper Perron solution Hf in terms

of newly defined capacity capF (K,B) and the capacity potential (or the

balayage) R̂1
K(B), using prescribed tools. Heuristically, the non-variational

capacity measures the ‘height’ of the F -solution with the boundary value 0

on ∂B and 1 on ∂K, while the variational capacity measures the ‘energy’ of

such function. We emphasize that although our notion of capacity does not

satisfy the subadditive property in general, it was still able to recover certain

properties of the variational capacity.

Finally, we would like to point out that the dual operator F̃ is different

from F , for general F . Thus, even though u is an F -supersolution, we cannot

guarantee −u is an F -subsolution. Moreover, a similar feature is found in

the growth rate of the homogeneous solution for F ; two growth rates of an

upward-pointing homogeneous solution and a downward-pointing one can be

different. This phenomenon naturally leads us

(i) to describe the local behavior of both the upper Perron solution Hf

and the lower Perron solution Hf for regularity at x0 ∈ ∂Ω;

(ii) to construct two (upper/lower) barrier functions when characterizing a

regular boundary point;

(iii) to display two different Wiener integrals in our main theorem,

which differ from the previous results that appeared in [7, 46, 79].

This chapter is organized as follows. In Section 2.2, we summarize the ter-

minology and preliminary results for our main theorems. In short, we intro-

duce F -superharmonic functions and Poisson modification and then perform

Perron’s method. In Section 2.3, we first define a balayage and a capac-

ity for uniformly elliptic operators in non-divergence form. Then we prove

several capacitary estimates by constructing auxiliary functions and provide

the characterization of a regular boundary point via balayage. Section 2.4

consists of potential theoretic estimates for the capacity potential. Then we

10
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prove the sufficiency of the Wiener criterion and several corollaries. Finally,

Section 2.5 is devoted to the proof of the (partial) necessity of the Wiener

criterion.

2.2 Perron’s Method

2.2.1 F -Supersolutions and F -Superharmonic Functions

In this subsection, we only require the condition (F1) for an operator F . To

illustrate Perron’s method precisely, we start with two different notions of

solutions for a uniformly elliptic operator F : F -solutions and F -harmonic

functions. Indeed, we will prove that these two notions coincide.

Definition 2.2.1 (F -supersolution). A lower semi-continuous [resp. upper

semi-continuous] function u in Ω is a (viscosity) F -supersolution [resp. (vis-

cosity) F -subsolution] in Ω, when the following condition holds:

if x0 ∈ Ω, ϕ ∈ C2(Ω) and u− ϕ has a local minimum at x0, then

F (D2ϕ(x0)) ≤ 0.

[resp. if u− ϕ has a local maximum at x0, then F (D2ϕ(x0)) ≥ 0.]

We say that u ∈ C(Ω) a (viscosity) F -solution if u is both an F -subsolution

and an F -supersolution.

Lemma 2.2.2. Suppose that a lower semi-continuous function u is an F -

supersolution in Ω. Then

u(x) = lim inf
Ω3y→x

u(y) for any x ∈ Ω.

Proof. We argue by contradiction: suppose that

u(x0) < lim inf
Ω3y→x

u(y) for some x0 ∈ Ω.

11
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Then for any ϕ ∈ C2(Ω), it follows that u − ϕ has a local minimum at x0

and so we can test this function. Therefore,

F (D2ϕ(x0)) ≤ 0 for any ϕ ∈ C2(Ω),

which is impossible.

Theorem 2.2.3. (i) (Stability) Let {uk}k≥1 ⊂ C(Ω) be a sequence of F -

solutions in Ω. Assume that uk converges uniformly in every compact

set of Ω to u. Then u is an F -solution in Ω.

(ii) (Compactness) Suppose that {uk}k≥1 ⊂ C(Ω) is a locally uniformly

bounded sequence of F -solutions in Ω. Then it has a subsequence that

converges locally uniformly in Ω to an F -solution.

Theorem 2.2.4 (Harnack convergence theorem). Let {uk}k≥1 ⊂ C(Ω) be an

increasing sequence of F -solutions in Ω. Then the function u = limk→∞ uk is

either an F -solution or identically +∞ in Ω.

Proof. If u(x) <∞ for some x ∈ Ω, it follows from Harnack inequality that u

is locally bounded in Ω. The interior Cα-estimate yields that the sequence uk

is equicontinuous in every compact subset of Ω. Thus, applying Arzela-Ascoli

theorem and Theorem 2.2.3 (i), we finish the proof.

We demonstrate two essential tools for Perron’s method, namely, the com-

parison principle and the solvability of the Dirichlet problem in a ball.

Theorem 2.2.5 (Comparison principle for F -super/subsolutions, [43, 44]).

Let Ω be a bounded open subset of Rn. Let v ∈ USC(Ω) [resp.u ∈ LSC(Ω)] be

an F -subsolution [resp. F -supersolution] in Ω and v ≤ u on ∂Ω. Then v ≤ u

in Ω.

In the previous theorem, USC(Ω) denotes the set of all upper semi-

continuous functions from Ω to R. Moreover, note that for a lower semi-

continuous function f , there exists an increasing sequence of continuous func-

tions {fn} such that fn → f pointwise as n→∞.

12
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Theorem 2.2.6 (The solvability of the Dirichlet problem). Let Ω satisfy a

uniform exterior cone condition and f ∈ C(∂Ω). Then there exists a unique

F -solution u ∈ C(Ω) of the Dirichlet problem{
F (D2u) = 0 in Ω,

u = f on ∂Ω.

Proof. The existence depends on the construction of global barriers achiev-

ing given boundary data and the standard Perron’s method; see [19, 69] and

[18, 40]. Then the uniqueness comes from the comparison principle, Theo-

rem 2.2.5.

Definition 2.2.7 (F -superharmonic function). A function u : Ω→ (−∞,∞]

is called F -superharmonic if

(i) u is lower semi-continuous;

(ii) u 6≡ ∞ in each component of Ω;

(iii) u satisfies the comparison principle in each open D ⊂⊂ Ω: If h ∈ C(D)

is an F -solution in D, and if h ≤ u on ∂D, then h ≤ u in D.

Analagously, a function u : Ω→ [−∞,∞) is called F -subharmonic if

(i) u is upper semi-continuous;

(ii) u 6≡ −∞ in each component of Ω;

(iii) u satisfies the comparsion principle in each open D ⊂⊂ Ω: If h ∈ C(D)

is an F -solution in D, and if h ≥ u on ∂D, then h ≥ u in D.

We say that u ∈ C(Ω) is F -harmonic if u is both F -subharmonic and F -

superharmonic.

Lemma 2.2.8. (i) If u is F -superharmonic, then au+b is F -superharmonic

whenever a and b are real numbers and a ≥ 0.

13
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(ii) If u and v are F -superhmaronic, then the function min{u, v} is F -

superharmonic.

(iii) Suppose that ui, i = 1, 2, · · · , are F -superharmonic in Ω. If the se-

quence ui is increasing or converges uniformly on compact subsets of

Ω, then in each component of Ω, the limit function u = limi→∞ ui is

F -superharmonic unless u ≡ ∞.

Theorem 2.2.9 (Comparison principle for F -super/subharmonic functions).

Suppose that u is F -superharmonic and that v is F -subharmonic in Ω. If

lim sup
y→x

v(y) ≤ lim inf
y→x

u(y)

for all x ∈ ∂Ω, then v ≤ u in Ω.

Proof. Fix ε > 0 and let

Kε := {x ∈ Ω : v(x) ≥ u(x) + ε}.

Then Kε is a compact subset of Ω and so there exists an open cover Dε

such that Kε ⊂ Dε ⊂ Ω where Dε is a union of finitely many balls Bi, and

∂Dε ⊂ Ω \Kε. Since u is lower semi-continuous, v is upper semi-continuous

and ∂Dε is compact, we can choose a continuous function θ on ∂Dε such that

v ≤ θ ≤ u + ε on ∂Dε. Moreover, since Dε satisfies a uniform exterior cone

condition, there exists h ∈ C(D) which is the unique F -solution in Dε that

coincides with θ on ∂Dε by applying Theorem 2.2.6. Now the definition of

F -super/subharmonic functions yields that

v ≤ h ≤ u+ ε in Dε.

Hence, v ≤ u+ ε in Ω and the desired result follows by letting ε→ 0.

Now we describe the equivalence of F -supersolution and F -superharmonic

function; see also [39, 49, 52].
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Theorem 2.2.10. u is an F -supersolution in Ω if and only if u is F -

superharmonic in Ω.

Proof. Assume first that u is an F -supersolution in Ω. To show that u is F -

superharmonic, we only need to verify the property (iii) in the definition of F -

superharmonic functions. Let D ⊂⊂ Ω be an open set and take h ∈ C(D) to

be an F -solution in D such that h ≤ u on ∂D. Thus, applying the comparison

principle for F -super/subsolutions (Theorem 2.2.5) for u and h, we conclude

that h ≤ u in D.

Assume now that u is F -superharmonic in Ω. For any x0 ∈ Ω, take

ϕ ∈ C2(Br(x0)) such that u − ϕ has a local minimum 0 at x0. We need to

prove that

F (D2ϕ(x0)) ≤ 0. (2.2.1)

We argue by contradiction; suppose that (2.2.1) fails. By the continuity of

the operator F , there exist τ > 0 and ρ ∈ (0, r) such that

F (D2ϕ(x)) > τ in Bρ(x0).

Consider a cut-off function η ∈ C2
0(Bρ(x0)) with supp η ⊂ Bρ/2(x0) and

η(x0) = 1. Since the uniform ellipticity gives

F (D2(ϕ+ εη)) ≥ F (D2ϕ) + εP−λ,Λ(D2η) for any ε > 0,

we can choose a sufficiently small ε0 > 0 so that

F (D2(ϕ+ ε0η)) ≥ 0 in Bρ(x0).

In other words, since ϕ + ε0η ∈ C2(Bρ(x0)), ϕ + ε0η is an F -subsolution

in Bρ(x0). Furthermore, by a similar argument as in the first part, we have

ϕ + ε0η is F -subharmonic in Bρ(x0). On the other hand, on ∂Bρ/2(x0), we
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have

ϕ(x) + ε0η(x) = ϕ(x) ≤ u(x).

Thus, by the comparison principle for F -super/subharmonic functions (The-

orem 2.2.9) for u and ϕ+ ε0η, we conclude that ϕ+ ε0η ≤ u in Bρ/2(x0). In

particular, letting x = x0, we have ϕ(x0) + ε0 ≤ u(x0), which contradicts to

the fact that u(x0) = ϕ(x0).

The result for F -subsolution and F -subharmonic function can be derived

in the same manner and consequently, a function u is an F -solution if and

only if it is F -harmonic.

2.2.2 Perron’s Method

Lemma 2.2.11 (Pasting lemma). Let D ⊂ Ω be open. Also let u and v be

F -superharmonic in Ω and D, resepctively. If the function

s :=

{
min{u, v} in D,

u in Ω \D,

is lower semi-continuous, then s is F -superharmonic in Ω.

Proof. Let G ⊂⊂ Ω be open and h ∈ C(G) be F -harmonic such that h ≤ s

on ∂G. Then h ≤ u in G. In particular, since s is lower semi-continuous,

lim
D∩G3y→x

h(y) ≤ u(x) = s(x) ≤ lim inf
D∩G3y→x

v(y)

for all x ∈ ∂D ∩G. Thus,

lim
D∩G3y→x

h(y) ≤ s(x) ≤ lim inf
D∩G3y→x

v(y)

for all x ∈ ∂(D ∩G), and Theorem 2.2.9 implies h ≤ v in D ∩G. Therefore,

h ≤ s in G and the lemma is proved.
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Suppose that u is F -superharmonic in Ω and that B ⊂⊂ Ω is an open

ball. Let

uB := inf
{
v : v is F -superharmonic in B,

lim inf
y→x

v(y) ≥ u(x) for each x ∈ ∂B
}
.

Then define the Poisson modification P (u,B) of u in B to be the function

P (u,B) :=

{
uB in B,

u in Ω \B.

Lemma 2.2.12 (Poisson modification). The Poisson modification P (u,B)

is F -superharmonic in Ω, F -harmonic in B, and P (u,B) ≤ u in Ω.

Proof. By definition, it is clear that P (u,B) ≤ u in Ω. To show P (u,B)

is F -harmonic in B, choose an increasing sequence of continuous functions

{θj}j≥1 on ∂B such that u = limj→∞ θj. (recall that this is possible since

u is lower semi-continuous.) Then let hj ∈ C(B) be the F -solution of the

Dirichlet problem F (D2hj) = 0 in B and hj = θj on ∂B by Theorem 2.2.6.

The comparison principle yields that hj is also an increasing sequence. Thus,

applying Harnack convergence theorem (Theorem 2.2.4), we have the limit

function h = limj→∞ hj is an F -solution in B. Since

lim inf
y→x

h(y) ≥ lim
j→∞

lim inf
y→x

hj(y) = lim
j→∞

hj(x) = lim
j→∞

θj(x) = u(x), (2.2.2)

for any x ∈ ∂B, we have h ≥ P (u,B) in B by the definition of uB. On the

other hand, since hj(x) ≤ lim infy→x v(y) where x ∈ ∂B and v is an admissible

function for uB, we have h ≤ P (u,B) in B by applying the comparison

principle, letting j →∞ and taking the infimum over v. Therefore, P (u,B) =

h is F -harmonic in B.

Finally, if we show that P (u,B) is lower semi-continuous, then it imme-

diately follows from the pasting lemma that P (u,B) is F -superharmonic in

Ω. Indeed, it is enough to show that P (u,B) is lower semi-continuous at each
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point x ∈ ∂B; recall (2.2.2).

Remark 2.2.13 (Perron’s method). Let Ω be an open, bounded subset of

Rn and f be a bounded function on ∂Ω. The upper class Uf = Uf (Ω) consists

of all functions u in Ω such that

(i) u is F -superharmonic in Ω;

(ii) u is bounded below;

(iii) lim infΩ3y→x u(y) ≥ f(x) for each x ∈ ∂Ω.

Then we define the upper Perron solution of f by

Hf = Hf (Ω) := inf
u∈Uf

u.

Similarly, let the lower class Lf = Lf (Ω) be the set of all F -subharmonic

functions v in Ω which are bounded above and such that

lim sup
Ω3y→x

v(y) ≤ f(x) for each x ∈ ∂Ω,

and define the lower Perron solution of f by

Hf = Hf (Ω) := sup
v∈Lf

v.

Then the comparison principle yields that Hf ≤ Hf .

Lemma 2.2.14. The Perron solutions Hf and Hf are F -solutions in Ω.

Proof. This proof is based on the argument used in [45]. Fix an open ball B

with B ⊂⊂ Ω. Next, choose a countable, dense subset X = {x1, x2, ...} of B

and then for each j = 1, 2, ..., choose ui,j ∈ Uf such that

lim
i→∞

ui,j(xj) = Hf (xj).
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Moreover, replacing ui,j+1 by min{ui,j, ui,j+1} if necessary, we have

lim
i→∞

ui,j(xk) = Hf (xk),

for each k = 1, 2..., j and each j. Now, let Ui,j := P (ui,j, B) be the Poisson

modification of ui,j in B. Then we observe that Hf ≤ Ui,j ≤ ui,j and Ui,j is

F -harmonic in B. By compactness (Theorem 2.2.3 (ii)), Ui,j converges locally

uniformly to F -harmonic vj in B (passing to a subsequence, if necessary).

Again by compactness, vj converges locally uniformly to F -harmonic h in B.

By the construction of h, it follows immediately that

Hf ≤ h

in B and Hf = h on X. For any u ∈ Uf and its Poisson modification

U = P (u,B), we have u ≥ U ≥ Hf . Since U ≥ h on X (which is dense in

B) and U, h are continuous in B, it follows that U ≥ h in B. Thus, u ≥ h in

B which implies that

Hf ≥ h

in B. Hence, Hf = h is F -harmonic in Ω and a similar argument for Hf

completes the proof.

We emphasize that although we proved that F (D2Hf ) = 0 in Ω, we

cannot guarantee that Hf enjoys the boundary condition of the Dirichlet

problem, Hf = f on ∂Ω. To investigate the boundary behavior of the Perron

solutions and ensure the solvability of the Dirichlet problem, we need to

introduce further concepts, namely, a regular point and a barrier function.

Definition 2.2.15 (A regular point). A boundary point x0 ∈ ∂Ω is (F -

)regular with respect to Ω, if

lim
Ω3y→x0

Hf (y) = f(x0) and lim
Ω3y→x0

Hf (y) = f(x0)
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whenever f ∈ C(∂Ω). An open and bounded set Ω is called regular if each

x0 ∈ ∂Ω is a regular boundary point.

Remark 2.2.16. Suppose that an operator M satisfies M[−u] = −M[u];

for example, any linear operator L and p-Laplcian operators ∆p possess this

property. Then we have

Hf = −H−f ,

and so in this case, we can equivalently call x0 ∈ ∂Ω is regular if

lim
Ω3y→x0

Hf (y) = f(x0)

whenever f ∈ C(∂Ω). Nevertheless, for the general fully nonlinear operator

F , we do not have this property. Therefore, it seems that we have to require

both conditions simultaneously, when we define a regular point for F . To

the best of our knowledge, it is unknown whether the two conditions in

the definition are redundant. One possible approach to show that only one

condition is essential is to prove that f is resolutive whenever f is continuous

on ∂Ω; see Definition 2.2.17 for the definition of resolutivity.

Before we define a barrier function, which characterizes a regular bound-

ary point, we shortly deal with the resolutivity of boundary data:

Definition 2.2.17 (Resolutivity). We say that a bounded function f on ∂Ω

is (F -)resolutive if the upper and the lower Perron solutions Hf and Hf

coincide in Ω. When f is resolutive, we write Hf := Hf = Hf .

Lemma 2.2.18. Let Ω be a bounded open set of Rn, let f and g be bounded

functions on ∂Ω, and let c be any real number.

(i) If f = c on ∂Ω, then f is resolutive and Hf = c in Ω.

(ii) Hf+c = Hf + c and Hf+c = Hf + c. If f is resolutive, then f + c is

resolutive and Hf+c = Hf + c.
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(iii) If c > 0, then Hcf = cHf and Hcf = cHf . If f is resolutive, then cf is

resolutive and Hcf = cHf for c ≥ 0.

(iv) If f ≤ g, then Hf ≤ Hg and Hf ≤ Hg.

Note that the resolutivity of f does not imply

lim
y→x

Hf (y) = f(x)

for x ∈ ∂Ω. However, the converse is true in some sense:

Lemma 2.2.19. Let Ω be an open and bounded subset of Rn and f be a

bounded function on ∂Ω. Suppose that there exists F -harmonic h in Ω such

that

lim
Ω3y→x

h(y) = f(x)

for any x ∈ ∂Ω. Then Hf = h = Hf . In particular, f is resolutive.

Proof. Since h ∈ Uf ∩ Lf , we have Hf ≤ h ≤ Hf .

Lemma 2.2.20. If u is a bounded F -superharmonic (or F -subharmonic)

function on the bounded open set Ω such that f(x) = limΩ3y→x u(y) exists for

all x ∈ ∂Ω, then f is a resolutive boundary function.

Proof. Obviously, we have u ∈ Uf and so Hf ≤ u in Ω. Then since Hf is

F -harmonic in Ω and

lim sup
Ω3y→x

Hf (y) ≤ lim
Ω3y→x

u(y) = f(x),

we have Hf ∈ Lf , which implies that Hf ≤ Hf . Because Hf ≤ Hf always

holds, we conclude that f is resolutive. An analogous argument works for the

F -subharmonic case.
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2.2.3 Characterization of a Regular Point

Definition 2.2.21 (Barrier). Let x0 ∈ ∂Ω. A function w+ : Ω → R [resp.

w−] is an upper barrier [resp. lower barrier ] in Ω at the point x0 if

(i) w+ [resp. w−] is F -superharmonic [resp. F -subharmonic] in Ω;

(ii) lim infΩ3y→xw
+(y) > 0 [resp. lim supΩ3y→xw

−(y) < 0] for each x ∈
∂Ω \ {x0};

(iii) limΩ3y→x0 w
+(y) = 0. [resp. limΩ3y→x0 w

−(y) = 0.]

Observe that the maximum principle indicates that an upper barrier w+

is positive in Ω and a lower barrier w− is negative in Ω. Moreover, under the

condition (F2), cw+ is still an upper barrier for any constant c > 0 and an

upper barrier w+. See also [74].

Now we can deduce that a regular boundary point is characterized by the

existence of upper and lower barriers.

Theorem 2.2.22. Let x0 ∈ ∂Ω. Then the following are equivalent:

(i) x0 is regular;

(ii) there exist an upper barrier and a lower barrier at x0.

Proof. (ii) =⇒ (i) For f ∈ C(∂Ω) and ε > 0, there is δ > 0 such that

|x − x0| ≤ δ with x ∈ ∂Ω implies |f(x) − f(x0)| < ε. Moreover, for M :=

sup∂Ω |f |, there exists a large number K > 0 such that

K · lim inf
Ω3y→x

w+(y) ≥ 2M for all x ∈ ∂Ω with |x− x0| ≥ δ.

Here we used that x 7→ lim infΩ3y→xw
+(y) is lower semi-continuous on ∂Ω.

Then since Kw+ + f(x0) + ε ∈ Uf , we have

Hf (y) ≤ Kw+(y) + f(x0) + ε,
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which implies that

lim sup
Ω3y→x0

Hf (y) ≤ f(x0).

An analogous argument leads to

lim inf
Ω3y→x0

Hf (y) ≥ f(x0).

Since Hf ≤ Hf , we conclude that

lim
Ω3y→x0

Hf (y) = f(x0) = lim
Ω3y→x0

Hf (y),

i.e. x0 is a regular boundary point.

(i) =⇒ (ii) Define a distance function d by

d(y) := |y − x0|2

so that d is continuous, non-negative and d(y) = 0 if and only if y = x0.

Moreover, since D2d = 2I, we have F (D2d) = 2F (I) > 0, i.e. d is F -

subharmonic.

Then letting w+ := Hd, we have w+ is F -harmonic in Ω and it follows from

d ∈ Ld that w+ ≥ d in Ω. Thus, for any x ∈ ∂Ω \ {x0},

lim inf
Ω3y→x

w+(y) ≥ d(x) = |x− x0|2 > 0.

Furthermore, since x0 is regular, we have

lim
Ω3y→x0

w+(y) = d(x0) = 0,

and so w+ is a desired upper barrier. The existence of a lower barrier is

guaranteed by considering d̃(y) := −d(y) = −|y − x0|2 and w− := H d̃.
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Indeed, the barrier characterization is a local property:

Lemma 2.2.23. Let x0 ∈ ∂Ω and G ⊂ Ω be open with x0 ∈ ∂G. If x0 is

regular with respect to Ω, then x0 is regular with respect to G.

Proof. By Theorem 2.2.22, there exist an upper barrier w+ and a lower bar-

rier w− with respect to Ω at x0. Then w+|G and w−|G become the desired

barriers with respect to G at x0. Again by Theorem 2.2.22, x0 is regular with

respect to G.

Lemma 2.2.24. Let x0 ∈ ∂Ω and B be a ball containing x0. Then x0 is

regular with respect to Ω if and only if x0 is regular with respect to B ∩ Ω.

Proof. By Lemma 2.2.23, one direction is immediate. For the opposite di-

rection, suppose that x0 is regular with respect to B ∩ Ω. Then there exist

an upper barrier w+ and a lower barrier w− with respect to B ∩ Ω. If we

let m := min∂B∩Ωw
+ > 0 (the minimum exists because w+ is lower semi-

continuous), then the pasting lemma, Lemma 2.2.11, shows that

s+ :=

{
min{w+,m} in B ∩ Ω,

m in Ω \B,

is F -superharmonic in Ω. One can easily verify that s+ is an upper barrier

with respect to Ω at x0. Similarly, a lower barrier s− can be constructed.

The barrier characterization leads to another useful corollary, which en-

ables us to write x0 is regular instead of F -regular, without ambiguity.

Corollary 2.2.25. A boundary point x0 ∈ ∂Ω is F -regular if and only if x0

is F̃ -regular.

Proof. Suppose that x0 is F -regular. By Theorem 2.2.22, there exists an

upper barrier w+
F and a lower barrier w−F . If we let w+

F̃
:= −w−F and w−

F̃
:=

−w+
F , then w+

F̃
and w−

F̃
become an upper barrier and a lower barrier for F̃ ,

respectively. Therefore, again by Theorem 2.2.22, x0 is F̃ -regular.
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Now we present one sufficient condition that guarantees a regular bound-

ary point, namely the exterior cone condition. In Section 2.4, we suggest

another sufficient condition, namely the Wiener criterion, which contains

this exterior cone condition as a special case.

Theorem 2.2.26 (Exterior cone condition). Suppose that Ω satisfies an ex-

terior cone condition at x0 ∈ ∂Ω. Then x0 is a regular boundary point.

Proof. The proof relies on the construction of a local barrier at x0. See [19,

70, 73] for details.

Corollary 2.2.27. All polyhedra and all balls are regular. Furthermore, every

open set can be exhausted by regular open sets. Here a bounded open set Ω is

called a polyhedron if ∂Ω = ∂Ω and if ∂Ω is contained in a finite union of

(n− 1)-hyperplanes.

Proof. Since polyhedra and balls satisfy the uniform exterior cone condition,

the first assertion follows from Theorem 2.2.26. For the second assertion,

exhaust Ω by domains D1 ⊂⊂ D2 ⊂⊂ · · · ⊂⊂ Ω. Then since Dj is compact,

there exists a finite union of open cubes Qji(⊂ Dj+1) that covers Dj. Letting

Pj :=
⋃
i intQji which is a polyhedron by the construction, we obtain the

desired exhaustion.

2.3 Balayage and Capacity

2.3.1 Balayage and Capacity Potential

We define the lower semi-continuous regularization û of any function u : E →
[−∞,∞] by

û(x) := lim
r→0

inf
E∩Br(x)

u.
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Lemma 2.3.1. Suppose that F is a family of F -superharmonic functions in

Ω, locally uniformly bounded below. Then the lower semi-continuous regular-

ization s of inf F ,

s(x) = lim
r→0

inf
Br(x)

(inf F),

is F -superharmonic in Ω.

Proof. Since F is locally uniformly bounded below, s is lower semi-continuous.

Fix an open D ⊂⊂ Ω and let h ∈ C(D) be an F -harmonic function satis-

fying h ≤ s on ∂D. Then h ≤ u in D whenever u ∈ F . It follows from the

continuity of h that h ≤ s in D.

Definition 2.3.2 (Balayage and capacity potential).

(i) For ψ : Ω→ (−∞,∞] which is locally bounded below, let

Φψ = Φψ(Ω) := {u : u is F -superharmonic in Ω and u ≥ ψ in Ω}.

Then the function

Rψ = Rψ(Ω) := inf Φψ

is called the reduced function and its lower semi-continuous regulariza-

tion

R̂ψ = R̂ψ(Ω)

is called the balayage of ψ in Ω. By Lemma 2.3.1, R̂ψ is F -superharmonic

in Ω.

(ii) If u is a non-negative function on a set E ⊂ Ω, we write

Φu
E = Φψ, Ru

E = Rψ, R̂u
E = R̂ψ,
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where

ψ =

{
u in E,

0 in Ω \ E.

The function R̂u
E is called the balayage of u relative to E.

(iii) In particular, we call the function R̂1
E the (F -)capacity potential of E

in Ω.

Remark 2.3.3. For an operator in divergence form, there exists an alter-

native method to define the capacity potential. For simplicity, suppose that

the operator is given by the p-Laplacian. Let Ω be bounded and K ⊂ Ω be a

compact set. For ψ ∈ C∞0 (Ω) with ψ ≡ 1 on K, the p-harmonic function u in

Ω\K with u−ψ ∈ W 1,p
0 (Ω\K) is called the capacity potential of K in Ω and

denoted byR(K,Ω). Here note thatR(K,Ω) is independent of the particular

choice of ψ and the existence of the capacity potential is guaranteed by the

variational method. Indeed, both definitions of capacity potentials coincide;

see [37, Chapter 9] for details.

Lemma 2.3.4. The balayage R̂u
E is F -harmonic in Ω \E and coincides with

Ru
E there. If, in addition, u is F -superharmonic in Ω, then R̂u

E = u in the

interior of E.

Proof. Observe first that if v1 and v2 are in Φu
E, then so is min{v1, v2}. Hence,

the family Φu
E is downward directed and we may invoke Choquet’s topological

lemma (see [37, Lemma 8.3]): there is a decreasing sequence of functions

vi ∈ Φu
E with the limit v such that

v̂(x) = R̂u
E(x)

for all x ∈ Ω.

Next, we choose a ball B ⊂⊂ Ω \ E and consider a Poisson modification

si = P (vi, B). Then it follows that si ∈ Φu
E and si+1 ≤ si ≤ vi. Thus, we
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have

Ru
E ≤ s := lim

i→∞
si ≤ v,

which implies that R̂u
E = v̂ = ŝ. Moreover, since s is F -harmonic in B (Har-

nack convergence theorem, Theorem 2.2.4), we know that ŝ = s. Therefore,

we conclude that the balayage R̂u
E is F -harmonic in Ω\E. The second asser-

tion of the lemma is rather immediate since u ∈ Φu
E if u is F -superharmonic

in Ω.

Lemma 2.3.5. Let K be a compact subset of Ω and consider R1
K = R1

K(Ω)

and R̂1
K = R̂1

K(Ω).

(i) 0 ≤ R̂1
K ≤ R1

K ≤ 1 in Ω.

(ii) R1
K = 1 in K.

(iii) R1
K = R̂1

K in (∂K)c.

(iv) R̂1
K is F -superharmonic in Ω and F -harmonic in Ω \K.

Proof. (i) It immediately follows from the definition of R1
K and the compar-

ison principle.

(ii) Since 1 ∈ Φψ(Ω), we have R1
K ≤ 1 in Ω. On the other hand, for any

u ∈ Φψ(Ω), we have u ≥ ψ = 1 in K and so R1
K ≥ 1 in K.

(iii), (iv) It immediately follows from Lemma 2.3.4 and part (ii).

The following theorem shows that the capacity potential can be under-

stood as the upper Perron solution:

Theorem 2.3.6. Suppose that K is a compact subset of a bounded, open set

Ω and that u = R̂1
K(Ω) is the capacity potential of K in Ω. Moreover, let f
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be a function such that

f =

{
1 on ∂K,

0 in ∂Ω.

Then

R̂1
K(Ω) = Hf (Ω \K)

in Ω \K.

Proof. Lemma 2.3.4 shows that R̂1
K = R1

K in Ω \K. Then recall that

R1
K(Ω) = inf Φ1

K = inf{v : v is F -superharmonic in Ω and v ≥ ψ in Ω},

where

ψ =

{
1 in K,

0 in Ω \K,

and

Hf (Ω \K) = inf Uf = inf{v :v is F -superharmonic in Ω \K,

lim inf
Ω\K3y→x

v(y) ≥ f(x) for each x ∈ ∂(Ω \K)},

where

f =

{
1 on ∂K,

0 in ∂Ω.

(i) Suppose that v ∈ Φ1
K . Since v ≥ 0 in Ω, we have lim infΩ\K3y→x v(y) ≥

0 = f(x) for x ∈ ∂Ω. Moreover, since v is lower semi-continuous, we

have

lim inf
Ω\K3y→x

v(y) ≥ lim inf
Ω3y→x

v(y) ≥ v(x) ≥ 1 = f(x),
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for x ∈ ∂K. Therefore, we conclude v ∈ Uf , which implies that Hf (Ω \
K) ≤ R1

K(Ω) in Ω \K.

(ii) Suppose that v ∈ Uf . We consider v := min{1, v} ∈ Uf so that 0 ≤ v ≤
1 in Ω \K. Then since u ≡ 1 is F -superharmonic in Ω, the function

s =

{
min{1, v} = v in Ω \K,
1 in K

is F -superharmonic in Ω by pasting lemma, Lemma 2.2.11. Obviously,

s ∈ Φ1
K and so R1

K(Ω) ≤ v ≤ v in Ω \K.

2.3.2 Capacity

In general, for an operator in divergence form, we consider a variational ca-

pacity, which comes from minimizing the energy among admissible functions.

On the other hand, for an operator in non-divergence form, we cannot con-

sider the corresponding energy, and so we require an alternative approach to

attain a proper notion of capacity. Our definition of a capacity is in the same

context with [7] for linear operators in non-divergence form and [52] for the

Pucci extremal operators.

Definition 2.3.7 (Non-variational capacity). For a ball B = B2r(x0), we fix

a ball B′ = B7/5r(x0) ⊂ B and a point y0 = x0 + 3
2
re1. Then we define a

capacity for fully nonlinear operator F by

cap(K,B) = capF (K,B) := inf{u(y0) : u is F -superharmonic in B,

u ≥ 0 in B, and u ≥ 1 in K}
(2.3.1)

whenever K is a compact subset of B′.

Comparing the definitions of capacity and capacity potential, we imme-
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diately notice that

cap(K,B) = R̂1
K(B)(y0).

Moreover, appealing to Theorem 2.3.6, we further have

cap(K,B) = Hf (B \K)(y0),

where the boundary data f on ∂(B \K) is given by

f =

{
1 on ∂K,

0 in ∂B.

Finally, considering Harnack inequality for R̂1
K(B) on the sphere ∂B3r/2(x0),

we notice that capacities defined for different choices of y0 ∈ ∂B3r/2(x0) are

comparable.

Lemma 2.3.8 (Properties of capacity). Fix a ball B = B2r(x0). Then the

set function K 7→ cap(K,B), where K is a compact subset of B′ = B7/5r(x0),

enjoys the following properties:

(i) 0 ≤ cap(K,B) ≤ 1.

(ii) If K1 ⊂ K2 ⊂ B′, then

cap(K1, B) ≤ cap(K2, B).

(iii) If a monotone sequence of compact sets {Kj}∞j=1 satisfies B′ ⊃ K1 ⊃
K2 ⊃ · · · , then

cap(K,B) = lim
j→∞

cap(Kj, B), for K :=
∞⋂
j=1

Kj.

(iv) (Subadditivity) We further suppose that F is convex. If K1 and K2 are
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compact subsets of B′, then

cap(K1 ∪K2, B) ≤ cap(K1, B) + cap(K2, B).

Proof. (i) Recalling Lemma 2.3.5, we have 0 ≤ cap(K,B) ≤ 1.

(ii) If K1 ⊂ K2, then Φ1
K2
⊂ Φ1

K1
and so cap(K1, B) ≤ cap(K2, B).

(iii) Since cap(Kj, B) ≥ cap(K,B) by (ii), it is immediate that

cap(K,B) ≤ lim
j→∞

cap(Kj, B).

For the reversed inequality, fix small ε > 0 and u ∈ Φ1
K(B). If j is large

enough, then Kj ⊂ {u ≥ 1− ε} and so

lim
j→∞

cap(Kj, B) ≤ cap({u ≥ 1− ε}, B) ≤ 1

1− ε
u(y0).

Letting ε→ 0+ and taking infimum for u ∈ Φ1
K(B), we conclude that

lim
j→∞

cap(Kj, B) ≤ cap(K,B).

(iv) Let v1 ∈ Φ1
K1

(B) and v2 ∈ Φ1
K2

(B). Since F is convex, we can apply [14,

Theorem 5.8] to obtain 1
2
(v1 + v2) is F -superharmonic in B. Moreover,

it follows from the assumption (F2) that v1 + v2 ∈ Φ1
K1∪K2

(B) and

so R1
K1∪K2

(B) ≤ v1 + v2. Putting the infimum on this inequality and

evaluating at y0, we conclude that

cap(K1 ∪K2, B) ≤ cap(K1, B) + cap(K2, B).

We would like to remove the restriction of compact sets when defining a

32



CHAPTER 2. THE WIENER CRITERION FOR FULLY NONLINEAR
ELLIPTIC EQUATIONS

capacity. For this purpose, when U ⊂ B′ is open, we set the inner capacity

cap∗(U,B) := sup
K⊂U,K compact

cap(K,B).

Then for an arbitrary set E ⊂ B′, we set the outer capacity

cap∗(E,B) := inf
E⊂U⊂B′, U open

cap∗(U,B).

Lemma 2.3.9. Fix a ball B = B2r(x0). For a compact subset K of B′ =

B7r/5(x0), we have

cap(K,B) = cap∗(K,B).

In other words, there is no ambiguity in having two different definitions for

the capacity of compact sets.

Proof. (i) For any open set U satisfying K ⊂ U ⊂ B′, the definition of the

inner capacity yields that

cap(K,B) ≤ cap∗(U,B).

By taking the infimum over such U , we conclude that

cap(K,B) ≤ cap∗(K,B).

(ii) Define a sequence of compact sets {Kj}∞j=1 by

Kj := {x ∈ Rn : dist(x,K) ≤ 1/j},

and a sequence of open sets {Uj}∞j=1 by

Uj := {x ∈ Rn : dist(x,K) < 1/j}.
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We may assume K1 ⊂ B′. Then we have

B′ ⊃ K1 ⊃ U1 ⊃ K2 ⊃ U2 ⊃ · · · ⊃ K, and K =
⋂
j

Kj.

Applying Lemma 2.3.8 (ii), it follows that

cap∗(Uj, B) ≤ cap(Kj, B).

By the definition of outer capacity,

cap∗(K,B) ≤ cap∗(Uj, B) ≤ cap(Kj, B), for any j ∈ N.

Now letting j →∞, Lemma 2.3.8 (iii) leads to

cap∗(K,B) ≤ cap(K,B).

Roughly speaking, we have the following correspondance:

the variational capacity←→ divergence operator,

the height capacity←→ non-divergence operator.

In the following lemma, we explain why the definition of height capacity is

reasonable in some sense. In other words, we claim that for the Laplacian

operator ∆, two definitions of capacity are comparable.

Lemma 2.3.10 (The variational capacity and the height capacity). Suppose

n ≥ 3 and fix two balls B = B2r(x0), B′ = B7r/5(x0) and a point y0 =
3
2
re1 + x0 ∈ ∂B3r/2(x0). Then for any compact set K ⊂ B′, we have

cap∆,var(K,B) ∼ cap∆,height(K,B) rn−2,

where the comparable constant depends only on n.
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Proof. We may assume x0 = 0. We denote by u the capacity potential with

respect to K in B. Note that u is harmonic in B \K.

We begin with the variational capacity:

cap∆,var(K,B) =

ˆ
B\K
|∇u|2 dx =

ˆ
∂K

∂u

∂n
ds = −

ˆ
∂B

∂u

∂n
ds.

Here we applied the divergence theorem and used the behavior of u on the

boundary.

On the other hand, recalling the definition of height capacity, we have

cap∆,height(K,B) = u(y0).

By Harnack inequality, there exist constants c1, c2 > 0 which only depend on

n such that

c1u(y0) ≤ u(x) ≤ c2u(y0) for any x ∈ ∂B3r/2.

Thus, if we set m− := min∂B3r/2
u and m+ := max∂B3r/2

u, then we have

c1cap∆,height(K,B) ≤ m− ≤ m+ ≤ c2cap∆,height(K,B).

Moreover, we consider two barriers h± which solve the Dirichlet problem in

B2r \B3r/2: 
∆h± = 0 in B2r \B3r/2,

h± = m± on ∂B3r/2,

h± = 0 on ∂B2r.

Indeed, using the homogeneous solution V (x) = |x|2−n, one can compute h±

explicitly:

h±(x) = m± ·
|x|2−n − (2r)2−n

(3r/2)2−n − (2r)2−n .
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Then the comparison principle between u and h± leads to

h− ≤ u ≤ h+ in B2r \B3r/2,

and so

c(n)m−
r

= −∂h
−

∂n
≤ −∂u

∂n
≤ −∂h

+

∂n
=
c(n)m+

r
on ∂B.

Therefore, we conclude that

c1(n)rn−2cap∆,height(K,B) ≤ cap∆,var(K,B) ≤ c2(n)rn−2cap∆,height(K,B).

Next, we estimate the capacity of a ball Bρ with respect to the larger

ball B2r. Indeed, the capacity of a ball can capture the growth rate of the

homogeneous solution V of F .

Lemma 2.3.11 (Capacitary estimate for balls). Let B = B2r(x0), B′ =

B 7
5
r(x0) and y0 = x0 + 3

2
re1. Then for any 0 < ρ < 7

5
r, there exists a

constant c = c(n, λ,Λ) > 0 which is independent of r and ρ such that

(i) (α∗ > 0)

1

c

r−α
∗

ρ−α∗ − (2r)−α∗
≤ capF (Bρ(x0), B2r(x0)) ≤ cr−α

∗

ρ−α∗ − (2r)−α∗
.

(ii) (α∗ < 0)

1

c

r−α
∗

(2r)−α∗ − ρ−α∗
≤ capF (Bρ(x0), B2r(x0)) ≤ cr−α

∗

(2r)−α∗ − ρ−α∗
.

(iii) (α∗ = 0)

1

c

1

log(2r)− log ρ
≤ capF (Bρ(x0), B2r(x0)) ≤ c

log(2r)− log ρ
.
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Proof. We may assume x0 = 0. Applying the argument after the definition

of a capacity, we have

capF (Bρ, B2r) = R̂Bρ
(B2r)(y0) = Hf (B2r \Bρ)(y0),

where the boundary data f is given by

f =

{
1 on ∂Bρ,

0 in ∂B2r.

Moreover, since a ball is a regular domain, we can write Hf (B2r \ Bρ) = v

where v is the unique solution of the Dirichlet problem
F (D2v) = 0 in B2r \Bρ,

v = 1 on ∂Bρ,

v = 0 in ∂B2r.

Note that Hf (B2r \Bρ) is continuous upto the boundary. We now split three

cases according to the sign of α∗(F ).

(i) (α∗ > 0) In this case, for the homogeneous solution V (x) = |x|−α∗V
(
x
|x|

)
,

denote

V+ := max
|x|=1

V (x) and V− := min
|x|=1

V (x)

and choose two points x+, x− with |x+| = 1 = |x−| so that

V (x+) = V+ and V (x−) = V−.

We define two functions

v+(x) :=
V (x)− (2r)−α

∗
V−

[ρ−α∗ − (2r)−α∗ ]V−
and v−(x) :=

V (x)− (2r)−α
∗
V+

[ρ−α∗ − (2r)−α∗ ]V+

.
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Then we have

F (D2v+) = 0 = F (D2v−) in B2r \Bρ,

v+ ≥ 1 on ∂Bρ and v+ ≥ 0 on ∂B2r,

v− ≤ 1 on ∂Bρ and v− ≤ 0 on ∂B2r.

Thus, the comparison principle yields that

v− ≤ v = Hf (B2r \Bρ) = R̂Bρ
(B2r) ≤ v+ in B2r \Bρ.

Finally, applying Harnack inequality for v on ∂B3r/2, there exists a

constant c1 > 0 which is independent of r > 0 such that

1

c1

v

(
3rx+

2

)
≤ v(y0) ≤ c1v

(
3rx−

2

)
.

Therefore, we have the desired upper bound:

capF (Bρ, B2r) ≤ c1v

(
3rx−

2

)
≤ c1v

+

(
3rx−

2

)
=

c r−α
∗

ρ−α∗ − (2r)−α∗
.

Similarly, we derive the lower bound:

capF (Bρ, B2r) ≥
1

c1

v

(
3rx+

2

)
≥ 1

c1

v−
(

3rx+

2

)
=

1

c

r−α
∗

ρ−α∗ − (2r)−α∗
.

(ii) (α∗ < 0) For simplicity, we assume that the upward-pointing homoge-

neous solution is given by

V (x) = −|x|−α∗ .

Then we can explicitly write the capacity potential:

v(x) =
(2r)−α

∗ − |x|−α∗

(2r)−α∗ − ρ−α∗
.
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Thus,

capF (Bρ, B2r) = v(y0) ∼ r−α
∗

(2r)−α∗ − ρ−α∗
.

For general V , we can compute by a similar argument as in part (i).

For example, if V (x) = −|x|−α∗V
(
x
|x|

)
, then define

v+(x) :=
(2r)−α

∗
V+ + V (x)

[(2r)−α∗ − ρ−α∗ ]V+

and v−(x) :=
(2r)−α

∗
V− + V (x)

[(2r)−α∗ − ρ−α∗ ]V−
.

(iii) (α∗ = 0) Again for simplicity, we may assume the upward-pointing

homogeneous solution is given by

V (x) = − log |x|.

Similarly, we can explicitly write the capacity potential:

v(x) =
log(2r)− log |x|
log(2r)− log ρ

.

Thus,

capF (Bρ, B2r) = v(y0) ∼ 1

log(2r)− log ρ
.

For general V , we can compute by a similar argument as in part (i).

For example, if V (x) = V
(
x
|x|

)
− log |x|, then define

v+(x) :=
log(2r)− V− + V (x)

log(2r)− log ρ
and v−(x) :=

log(2r)− V+ + V (x)

log(2r)− log ρ
.

We can observe that the capacity of a single point is determined according

to the sign of the scaling exponent α∗(F ). In fact, one can expect the results of

the following lemma taking ρ→ 0+ in the capacitary estimate, Lemma 2.3.11.
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Lemma 2.3.12. For z0 ∈ Rn, choose a ball B = B2r(x0) so that z0 ∈ B′ =

B7r/5(x0).

(i) If α∗(F ) ≥ 0, then capF ({z0}, B) = 0.

(ii) If α∗(F ) < 0, then capF ({z0}, B) > 0.

Proof. (i) Let

V (x) =

 |x|
−α∗V

(
x
|x|

)
if α∗ > 0,

− log |x|+ V
(
x
|x|

)
if α∗ = 0.

be the homogeneous solution of F . Then for m := minx∈∂B V (x − z0)

and any ε > 0, we have

ε · [V (x− z0)−m] ∈ Φ1
{z0}

due to the minimum principle and limx→z0 V (x− z0) =∞. Thus,

cap({z0}, B) = R̂1
{z0}(y0) = R1

{z0}(y0) ≤ ε · [V (y0 − z0)−m].

Since ε > 0 is arbitrary, we finish the first part of proof.

(ii) Let V (x) = −|x|−α∗V
(
x
|x|

)
be the homogeneous solution of F . Then

for maxx∈∂B V (x− z0) =: −M < 0, we consider

u(x) := 1 +
V (x− z0)

M
.

Since sup∂B u = 0 and V is a homogeneous function, we have sup∂B7/5r
u >

0. On the other hand, recalling Theorem 2.3.6,

R̂1
{z0} = Hf (Ω \ {z0}) ≥ Hf (Ω \ {z0}),
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where the boundary data f is given by

f(x) =

{
1 if x = z0,

0 if x ∈ ∂B.

Then u ∈ Lf and so Hf (Ω \ {z0}) ≥ u. Therefore, we conclude that

sup
∂B7/5r

R̂1
{z0} > 0

and by Harnack inequality, cap({z0}, B) > 0 as desired.

2.3.3 Capacity Zero Sets

Definition 2.3.13. A set E in Rn is said to be of (F -)capacity zero, or to

have (F -)capacity zero if

capF (E,B) = 0

whenever E ⊂ B′ ⊂ B. In this case, we write capFE = 0.

According to Lemma 2.3.12 (i), we immediately notice that every single

point is of F -capacity zero if α∗(F ) ≥ 0. Indeed, we are going to show that: to

check whether a compact set K is of capacity zero or not, it is enough to test

with respect to one ball B (Corollary 2.3.15). For this purpose, we require

the following version of a capacitary estimate, called “comparable lemma”.

Lemma 2.3.14 (Comparable lemma). If K ⊂ B′ = B7r/5 and 0 < r ≤ s ≤
2r, then there exists a universal constant c > 0 such that

1

c
capF (K,B2r) ≤ capF (K,B2s) ≤ c capF (K,B2r).
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Proof. We may assume x0 = 0. We claim that for 0 < r ≤ s ≤ 21
20
r, we have

1

c
capF (K,B2r) ≤ capF (K,B2s) ≤ c capF (K,B2r).

Indeed, we may iterate this inequality finitely many times to conclude the

desired inequality for 0 < r ≤ s ≤ 2r. Moreover, let yr = 3
2
re1, ys = 3

2
se1

and denote ur := R̂1
K(B2r), us := R̂1

K(B2s). By the definition of the capacity

potential, it is immediate that ur ≤ us in B2r. In particular, we have

capF (K,B2r) = ur(yr) ≤ us(yr).

On the other hand, an application of Harnack inequality for us (in a small

neighborhood of B3s/2\B10s/7) yields that there exists a constant c > 0 which

is independent of the choice of r and s such that

us(yr) ≤ cus(ys) = c capF (K,B2s).

Here note that |yr| = 3
2
r ≥ 10

7
s > 7

5
s and R1

K(B2s) is F -harmonic in B2s\B7s/5

and B3s/2 \ B10s/7 ⊂ B2s \ B7s/5. Therefore, it finishes the proof for the first

inequality.

Next, for the second inequality, we first assume that α∗(F ) > 0 and the

homogeneous solution is given by V (x) = |x|−α∗ (for computational simplic-

ity) and let

M := max
∂B2r

us ∈ [0, 1).

Then recalling Theorem 2.3.6, the comparison principle yields that

(1−M)ur +M ≥ us in B2r \K. (2.3.2)

Now choose z ∈ ∂B3r/2 so that us(z) = max∂B3r/2
us =: M1. Then it can be
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easily checked that the function

w(x) := M1 ·
|x|−α∗ − (2s)−α

∗

(3r/2)−α∗ − (2s)−α∗

is F -harmonic in B2s \ B3r/2 and by the comparison principle, w ≥ us in

B2s \B3r/2. (here again note that 7
5
s < 3

2
r.) In particular,

M1 ·
(2r)−α

∗ − (2s)−α
∗

(3r/2)−α∗ − (2s)−α∗
≥M,

M1 ·
(3s/2)−α

∗ − (2s)−α
∗

(3r/2)−α∗ − (2s)−α∗
≥ us

(
3

2
se1

)
= capF (K,B2s).

Since (3r/2)−α
∗ − (2r)−α

∗ ≥ (3s/2)−α
∗ − (2s)−α

∗
or equivalently,

(3r/2)−α
∗ − (2s)−α

∗ ≥ [(3s/2)−α
∗ − (2s)−α

∗
] + [(2r)−α

∗ − (2s)−α
∗
],

we obtain

us(z) = M1 ≥M + capF (K,B2s). (2.3.3)

Moreover, by (2.3.2) and (2.3.3), we have ur(z) ≥ (1−M)ur(z) ≥ capF (K,B2s)

and then Harnack inequality leads to

capF (K,B2s) ≤ c capF (K,B2r),

for constant c > 0 which is independent of r and s. Finally, for the general

homogeneous solution or the case of α∗(F ) ≤ 0, one can follow the idea of

Lemma 2.3.11.

Corollary 2.3.15. Suppose that cap(K,B) = 0 for K ⊂ B′ ⊂ B. Then

(i) for any ball B1 such that K ⊂ B′1 and B1 ⊂ B′, we have

cap(K,B1) = 0;
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(ii) for any ball B2 such that B′2 ⊃ B, we have

cap(K,B2) = 0;

(iii) K is of F -capacity zero.

Proof. (i) Apply the first inequality of Lemma 2.3.14 finitely many times.

(ii) Apply the second inequality of Lemma 2.3.14 finitely many times.

(iii) It is an immediate consequence of (i) and (ii).

2.3.4 Another Characterization of a Regular Point

The definitions of a reduced function and a balayage depend on the choice

of an operator F . In this subsection, we need to distinguish an operator and

its dual operator, so we will specify the dependence by denoting R̂1,F
K (Ω)

or R̂1,F̃
K (Ω). We now provide a key lemma for our first main theorem, the

sufficiency of the Wiener criterion:

Lemma 2.3.16. A boundary point x0 ∈ ∂Ω is regular if

R̂1,F̃

B\Ω(2B)(x0) = 1 = R̂1,F

B\Ω(2B)(x0)

whenever B is a ball centered at x0.

Proof. For f ∈ C(∂Ω), consider the upper Perron solution Hf = Hf (Ω). We

may assume f(x0) = 0 and max∂Ω |f | ≤ 1. For ε > 0, we can choose a ball

B with center x0 such that ∂(2B)∩Ω 6= ∅ and |f | < ε in 2B ∩ ∂Ω. Then we

define

u =

{
1 + ε− R̂1,F̃

B\Ω(2B) in Ω ∩ 2B,

1 + ε in Ω \ 2B.
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Since R̂1,F̃

B\Ω(2B) is a F̃ -solution in Ω∩2B, 1+ε−R̂1,F̃

B\Ω(2B) is F -harmonic in

Ω ∩ 2B. On the other hand, by Theorem 2.3.6, R̂1,F̃

B\Ω(2B) can be considered

as the upper Perron solution for the operator F̃ . Then since a ball is regular,

we have

lim
y→x

R̂1,F̃

B\Ω(2B)(y) = 0 for all x ∈ ∂(2B).

Thus, u is continuous in Ω and by the pasting lemma, u is F -superharmonic

in Ω. Moreover, it can be easily checked that

lim inf
y→x

u(y) ≥ f(x) for any x ∈ ∂Ω.

Therefore, u ∈ Uf and so Hf ≤ u. In particular,

lim sup
Ω3y→x0

Hf (y) ≤ lim sup
Ω3y→x0

u(y) = 1 + ε− lim inf
Ω3y→x0

R̂1,F̃

B\Ω(2B)(y)

≤ 1 + ε− R̂1,F̃

B\Ω(2B)(x0) = ε.

For the converse inequality, we define

v =

{
−1− ε+ R̂1,F

B\Ω(2B) in Ω ∩ 2B,

−1− ε in Ω \ 2B.

Then by a similar argument, v ∈ Lf and so,

lim inf
Ω3y→x0

Hf (y) ≥ −ε.

Consequently, since ε > 0 is arbitrary, we conclude that

lim
Ω3y→x0

Hf (y) = lim
Ω3y→x0

Hf (y) = 0 = f(x0),

i.e. x0 is regular.

Next, we provide a converse direction of the above lemma: i.e. a charac-
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terization of an irregular boundary point. We expect that this lemma may be

employed to prove the necessity of the Wiener criterion for the general case.

Lemma 2.3.17 (Characterization of an irregular boundary point). If there

exists a constant ρ > 0 such that the capacity potential u = uρ of Bρ(x0) \ Ω

with respect to B2ρ(x0) satisfies the inequality

u(x0) = R̂1
Bρ(x0)\Ω(B2ρ(x0)) < 1,

then the boundary point x0 ∈ ∂Ω is irregular.

Proof. Since the capacity potential u is the lower semi-continuous regular-

ization, we have

u(x0) = lim inf
Ω3x→x0

u(x) < 1. (2.3.4)

Moreover, by definition, we have uρ′ ≤ uρ when 0 < ρ′ < ρ. Thus, we can

choose a sufficiently small ρ > 0 such that (2.3.4) holds and Ω∩∂B2ρ(x0) 6= ∅.

We now define a smooth boundary data f on ∂(Ω ∩ B2ρ(x0)) such that

f(x) = 3/2 if x ∈ ∂Ω∩Bρ/2(x0), 0 ≤ f(x) ≤ 3/2 if x ∈ ∂Ω∩(Bρ(x0)\Bρ/2(x0))

and f(x) = 0 on the remaining part of ∂(Ω∩B2ρ(x0)). Then we consider the

lower Perron solution Hf (Ω∩B2ρ(x0)). We claim that the following inequality

holds:

Hf (x) ≤ 1

2
+ u(x), x ∈ Ω ∩B2ρ(x0). (2.3.5)

Recalling the comparison principle, it is enough to check the above inequality

on the boundary of the domain Ω∩B2ρ(x0). For this purpose, let v ∈ Lf (Ω∩
B2ρ(x0)) and w ∈ Ug(B2ρ(x0) \ (Bρ(x0) \ Ω)) where g is given by (recall

Theorem 2.3.6)

g =

{
1 on ∂(Bρ(x0) \ Ω),

0 in ∂B2ρ(x0).
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(i) (on ∂Ω ∩B2ρ(x0)) First, for x ∈ ∂Ω ∩Bρ(x0), we have

lim sup
y→x

v(y) ≤ f(x) ≤ 3

2
=

1

2
+ g(x) ≤ 1

2
+ lim inf

y→x
w(y).

Next, for x ∈ ∂Ω ∩ (B2ρ(x0) \Bρ(x0)), we have

lim sup
y→x

v(y) ≤ f(x) = 0 ≤ 1

2
+ g(x) ≤ 1

2
+ lim inf

y→x
w(y).

(ii) (on Ω ∩ ∂B2ρ(x0)) Similarly, we obtain

lim sup
y→x

v(y) ≤ f(x) = 0 ≤ 1

2
+ g(x) ≤ 1

2
+ lim inf

y→x
w(y).

Since v and w are F -subharmonic and F -superharmonic, respectively, we

derive that

v ≤ 1

2
+ w, in Ω ∩B2ρ(x0).

Taking the supremum on v and the infimum on w, we conclude (2.3.5) which

implies that

lim inf
Ω∩B2ρ(x0)3x→x0

Hf (x) ≤ 1

2
+ lim inf

Ω∩B2ρ(x0)3x→x0

u(x) <
3

2
= f(x0).

Therefore, x0 is irregular with respect to Ω∩B2ρ(x0). Recalling Lemma 2.2.24,

we deduce that x0 is irregular with respect to Ω.

2.4 A Sufficient Condition for the Regularity

of a Boundary Point

In this section, we prove the sufficiency of the Wiener criterion and its sequen-

tial corollaries, via the potential estimates. More precisely, we first develop

quantitative estimates for the capacity potential R̂1
K(B) by employing capac-
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itary estimates obtained in Section 2.3. Then we adopt the characterization

of a regular boundary point in terms of the capacity potential to deduce the

desired conclusion.

Definition 2.4.1. We say that a set E is F -thick at z if the Wiener integral

diverges, i.e.

ˆ 1

0

capF (E ∩Bt(z), B2t(z))
dt

t
=∞. (2.4.1)

For simplicity, we write

ϕF (z, E, t) := capF (E ∩Bt(z), B2t(z)),

for the capacity density function in (2.4.1).

Remark 2.4.2. Recalling Lemma 2.3.11, there exists a constant c > 0 which

is independent of t > 0 such that

1/c ≤ capF (Bt, B2t) ≤ c.

Thus, one may write an equivalent form of (2.4.1):

ˆ 1

0

capF (E ∩Bt(z), B2t(z))

capF (Bt(z), B2t(z))

dt

t
=∞,

which is a similar form to the Wiener integral appearing in [46, 79].

We now state an equivalent form of our main theorem, Theorem 2.1.2:

If Ωc is both F -thick and F̃ -thick at x0 ∈ ∂Ω, then x0 is regular.

To prove this statement, we need several auxiliary lemmas regarding the

capacity potential.

Lemma 2.4.3. Fix a ball B. Suppose that K ⊂ B′ is compact and v =
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R̂1
K(B). If 0 < γ < 1 and Kγ := {x ∈ B : v(x) ≥ γ} ⊂ B′, then

cap(Kγ, B) =
1

γ
cap(K,B).

Proof. We write vγ := R̂1
Kγ

(B). Then by Lemma 2.3.4 and the definition of

a reduced function,

vγ = R1
Kγ (B) = inf Φ1

Kγ in B \Kγ.

(i) Clearly, v = R̂1
K(B) is F -superharmonic in B and so is v/γ due to (F2).

Since v ≥ γ in Kγ, we have v/γ ≥ 1 in Kγ. Thus, v/γ ∈ Φ1
Kγ

and so

v

γ
≥ vγ in B \Kγ.

(ii) Recalling Theorem 2.3.6, vγ = Hfγ (B \Kγ) in B \Kγ where

fγ =

{
1 on ∂Kγ,

0 on ∂B.

Then for u ∈ Ufγ (B \Kγ), we have

lim inf
B\Kγ3y→x

u(y) ≥ fγ(x) = 1 =
v(x)

γ
,

for any x ∈ ∂Kγ. Since u is F -superharmonic and v/γ is F -harmonic

in B \Kγ, the comparison principle leads to u ≥ v/γ in B \Kγ and so

vγ ≥
v

γ
in B \Kγ.

Consequently, we conclude that

cap(Kγ, B) = vγ(y0) =
1

γ
v(y0) =

1

γ
cap(K,B).
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Lemma 2.4.4. Fix a ball B = B2r(x0). Let K ⊂ Br = Br(x0) be a compact

set and v = R̂1
K(B). Then there exists a constant c > 0 which is independent

of K and r such that

v(x) ≥ c cap(K,B),

for any x ∈ Br.

Proof. Denote

M := sup
∂B6r/5

v, m := inf
∂B6r/5

v.

Since v is a non-negative F -solution in B \K, Harnack inequality yields that

there exists a constant c1 > 0 independent of r > 0 such that

c1M ≤ m. (2.4.2)

Morevoer, the strong maximum principle in B \B6r/5 implies that

KM := {v ∈ B : v(x) ≥M} ⊂ B6r/5,

and so

cap(KM , B) ≤ cap(B6r/5, B) ∼ 1. (2.4.3)

Here we applied Lemma 2.3.11 and the comparable constant does not depend

on K and r.

Now since KM ⊂ B′, we can apply Lemma 2.4.3:

cap(KM , B) =
1

M
cap(K,B). (2.4.4)
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Finally, combining (2.4.2), (2.4.3) and (2.4.4), we conclude that

m ≥ c1M = c1 ·
cap(K,B)

cap(KM , B)
≥ c2 cap(K,B),

and the minimum principle leads to the desired result.

We may rewrite the previous lemma as

R̂1
K(B2r)(x) ≥ c ϕF (x0, K, r), for any x ∈ Br. (2.4.5)

Lemma 2.4.5. Let x0 ∈ ∂Ω, ρ > 0 and

w = 1− R̂1
Bρ(x0)\Ω(B2ρ(x0)).

Then for all 0 < r ≤ ρ, there exists a constant c > 0 such that

w(x) ≤ exp

(
−c
ˆ ρ

r

ϕF (x0,Ω
c, t)

dt

t

)
,

for any x ∈ Br(x0).

Proof. Denote Bi = B21−iρ(x0). Fix 0 < r ≤ ρ and let k be the integer with

2−kρ < r ≤ 21−kρ. Then write for i = 0, 1, 2, ...

vi := R̂1
Bi+1\Ω(Bi)

and

ai := ϕF (x0,Ω
c, 2−iρ).

Since et ≥ 1 + t, estimate (2.4.5) yields that

vi ≥ cai ≥ 1− exp(−cai) in Bi+1.

Thus, denoting m0 := infB1 v0, we have 1 − m0 ≤ exp(−ca0). Next, let
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D1 := B1 \ (B2 ∩ Ωc) and

ψ1 :=

{
1 in B2 ∩ Ωc,

m0 in D1.

Then we write u1 := R̂ψ1(B1) be the balayage with respect to the ψ1 in B1.

It immediately follows from the definition of balayage that

u1 −m0

1−m0

= R̂1
B2∩Ωc

(B1) = v1.

Again, denoting m1 := infB2 u1, we obtain

1−m1 ≤ (1−m0) exp(−ca1) ≤ exp(−c(a1 + a0)).

Now iterate this step: let Di := Bi \ (Bi+1 ∩ Ωc) and

ψi =

{
1 in Bi+1 ∩ Ωc,

mi−1 in Di.

Denoting ui := R̂ψi(Bi) and mi := infBi+1
ui, we have

ui −mi−1

1−mi−1

= vi

and so

1−mi ≤ (1−mi−1) exp(−cai) ≤ exp

(
−c

i∑
j=0

aj

)
.

Furthermore, we claim that ui ≥ ui+1 in Bi+1. Indeed, by Theorem 2.3.6,

ui = Hfi(Di) in Di where fi ∈ C(∂Di) is given by

fi =

{
1 in ∂(Bi+1 ∩ Ωc),

mi−1 in ∂Bi.
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Thus, for u ∈ Ufi(Di), we have

lim inf
Di+13y→x

u(y) ≥ 1 ≥ lim sup
Di+13y→x

ui+1(y) for any x ∈ ∂(Bi+2 ∩ Ωc),

lim inf
Di+13y→x

u(y) ≥ mi = lim sup
Di+13y→x

ui+1(y) for any x ∈ ∂Bi+1.

Therefore, by the comparison principle, u ≥ ui+1 in Di+1 and so ui =

Hfi(Di) ≥ ui+1 in Bi+1.

Repeating the argument above, we conclude that v0 ≥ u1 ≥ · · · ≥ uk in

Bk, which implies that

w = 1− v0 ≤ 1− uk ≤ 1−mk ≤ exp

(
−c

k∑
j=0

aj

)
in Bk+1.

Finally, the result follows from

ˆ ρ

r

ϕF (x0,Ω
c, t)

dt

t
≤ c

k∑
i=1

ai,

which can be easily checked from the dyadic decomposition. Indeed, we can

deduce from Lemma 2.3.11 and Lemma 2.3.14 that if t ≤ s ≤ 2t, then

capF (Bt \K,B2t) ∼ capF (Bt \K,B2s),

where the comparable constant only depends on n, λ,Λ and these results also

hold for capF̃ (·).

We are ready to prove the sufficiency of the Wiener criterion.

Proof of Theorem 2.1.2. Let x0 ∈ ∂Ω, ρ > 0 and define

wF,ρ := 1− R̂1,F

Bρ(x0)\Ω
(B2ρ(x0)) and wF̃ ,ρ := 1− R̂1,F̃

Bρ(x0)\Ω
(B2ρ(x0)).

Then applying Lemma 2.4.5 for both functions, we have that for all 0 < r ≤ ρ,
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there exist a constant c1, c2 > 0 such that

wF,ρ(x) ≤ exp

(
−c1

ˆ ρ

r

ϕF (x0,Ω
c, t)

dt

t

)
,

wF̃ ,ρ(x) ≤ exp

(
−c2

ˆ ρ

r

ϕF̃ (x0,Ω
c, t)

dt

t

)
,

for any x ∈ Br(x0). Letting r → 0+, we conclude that

R̂1,F

Bρ(x0)\Ω
(B2ρ(x0))(x0) = 1 = R̂1,F̃

Bρ(x0)\Ω
(B2ρ(x0))(x0).

Since ρ > 0 can be arbitrarily chosen, an application of Lemma 2.3.16 yields

that x0 ∈ ∂Ω is a regular boundary point. (Note that a boundary point x0 is

F -regular if and only if it is F̃ -regular; Corollary 2.2.25.)

On the other hand, if additional information is imposed on the boundary

data f , i.e. the boundary data f has its maximum (or minimum) at x0 ∈ ∂Ω,

then we can deduce the continuity of the Perron solution at x0 under a relaxed

condition:

Corollary 2.4.6. Suppose that f ∈ C(∂Ω) attains its maximum [resp. min-

imum] at x0 ∈ ∂Ω. If Ωc is F -thick [resp. F̃ -thick] at x0 ∈ ∂Ω, then

lim
Ω3y→x0

Hf (y) = f(x0) = lim
Ω3y→x0

Hf (y).

Proof. Similarly as in the proof of the previous theorem, this corollary is the

consequence of Lemma 2.3.16 and Lemma 2.4.5.

Furthermore, if the given boundary data f ∈ C(∂Ω) is resolutive, then

we are able to obtain a quantitative estimate for the modulus of continuity.

Lemma 2.4.7 (The modulus of continuity). Suppose that Ω is an open and

bounded subset of Rn. Let f ∈ C(∂Ω).

If x0 ∈ ∂Ω with f(x0) = 0, then for 0 < r ≤ ρ, we have

sup
Ωr

HF
f ≤ max

∂Ω2ρ

f + max
∂Ω

f · exp

(
−c
ˆ ρ

r

ϕF̃ (x0,Ω
c, t)

dt

t

)
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and

inf
Ωr
H
F

f ≥ min
∂Ω2ρ

f + min
∂Ω

f · exp

(
−c
ˆ ρ

r

ϕF (x0,Ω
c, t)

dt

t

)
where Ωr := Ω ∩Br(x0) and ∂Ω2ρ := ∂Ω ∩B2ρ(x0).

Furthermore, if f is resolutive, then we have the quantitative estimate:

min
∂Ω2ρ

f + min
∂Ω

f · exp

(
−c
ˆ ρ

r

ϕF (x0,Ω
c, t)

dt

t

)
≤ inf

Ωr
HF
f

≤ sup
Ωr

HF
f ≤ max

∂Ω2ρ

f + max
∂Ω

f · exp

(
−c
ˆ ρ

r

ϕF̃ (x0,Ω
c, t)

dt

t

)
,

where HF
f := H

F

f = HF
f .

Proof. Let v = R̂1,F̃

Bρ(x0)\Ω
(B2ρ(x0)) be the capacity potential of Bρ \ Ω with

respect to B2ρ. Then let w := 1− v and write

s := w ·max
∂Ω

f + max
∂Ω2ρ

f.

Note that since we assumed f(x0) = 0, we have max∂Ω f ≥ 0 and max∂Ω2ρ f ≥
0. For u ∈ LFf , u is F -subharmonic and s is F -harmonic in Ω2ρ. Moreover,

lim inf
y→x

s(y) ≥ max
∂Ω2ρ

f ≥ lim sup
y→x

u(y) for any x ∈ ∂Ω ∩B2ρ

and

lim inf
y→x

s(y) ≥ max
∂Ω

f ≥ lim sup
y→x

u(y) for any x ∈ Ω ∩ ∂B2ρ.

Thus, the comparison principle yields that s ≥ u in Ω2ρ and so s ≥ HF
f in

Ω2ρ. On the other hand, let

s̃ :=
(

1− R̂1,F

Bρ(x0)\Ω
(B2ρ(x0))

)
·max

∂Ω
(−f) + max

∂Ω2ρ

(−f).

By the same argument, we derive s̃ ≥ H F̃
−f = −HF

f in ∂Ω2ρ.

55



CHAPTER 2. THE WIENER CRITERION FOR FULLY NONLINEAR
ELLIPTIC EQUATIONS

An application of Lemma 2.4.5 for w (and w̃) finishes the proof.

Now we present a new geometric condition for a regular boundary point,

namely the exterior corkscrew condition; see also [41, 62].

Definition 2.4.8. We say that Ω satisfies the exterior corkscrew condition at

x0 ∈ ∂Ω if there exists 0 < δ < 1/4 and R > 0 such that for any 0 < r < R,

there exists y ∈ Br(x0) such that Bδr(y) ⊂ Ωc ∩Br(x0).

Note that if Ω satisfies an exterior cone condition at x0 ∈ ∂Ω, then Ω

satisfies an exterior corkscrew condition at x0. Thus, the following corollary

obtained from the (potential theoretic) Wiener criterion is a generalized result

of Theorem 2.2.26.

Corollary 2.4.9 (Exterior corkscrew condition). Suppose that Ω satisfies

an exterior corkscrew condition at x0 ∈ ∂Ω. Then x0 is a regular boundary

point. Moreover, if f is Hölder continuous at x0 and is resolutive, then Hf

is Hölder continuous at x0.

Proof. A small modification of Lemma 2.3.11 and its proof, we have

cap(Bδr(y), B2r(x0)) ∼ 1, for δ ∈ (0, 1/4) and Bδr(y) ⊂ B2r(x0),

where the comparable constant depends only on n, λ,Λ and δ. Thus, if x0

satisfies an exterior corkscrew condition, then we have

ˆ 1

0

capF (Bt(x0) \ Ω, B2t(x0))
dt

t
≥
ˆ 1

0

capF (Bδt(y), B2t(x0))
dt

t
≥ ∞,

ˆ 1

0

capF̃ (Bt(x0) \ Ω, B2t(x0))
dt

t
≥
ˆ 1

0

capF̃ (Bδt(y), B2t(x0))
dt

t
≥ ∞,

and so x0 is a regular boundary point by the Wiener criterion.

Next, for the second statement, we may assume f(x0) = 0 by adding a

constant for f , if necessary. Since f is resolutive, we can apply the quantita-
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tive estimate obtained in Lemma 2.4.7:

min
∂Ω2ρ

f + min
∂Ω

f · exp

(
−c
ˆ ρ

r

ϕF (x0,Ω
c, t)

dt

t

)
≤ inf

Ωr
HF
f

≤ sup
Ωr

HF
f ≤ max

∂Ω2ρ

f + max
∂Ω

f · exp

(
−c
ˆ ρ

r

ϕF̃ (x0,Ω
c, t)

dt

t

)
,

Here

(i) f is Hölder continuous at x0: there exists a constant C > 0 such that

|f(x)| = |f(x)− f(x0)| ≤ C|x− x0|γ ≤ Cργ for x ∈ ∂Ω2ρ.

(ii) Ω satisfies an exterior corkscrew condition at x0:

exp

(
−c
ˆ ρ

r

ϕF̃ (x0,Ω
c, t)

dt

t

)
≤ exp

(
−c1

ˆ ρ

r

dt

t

)
=

(
r

ρ

)c1
.

Thus, choosing ρ = r1/2, we conclude that the Perron solution Hf is Hölder

continuous at x0.

Remark 2.4.10 (Example). In this example, we suppose n = 2, F = P+
λ,Λ

with ellipticity constants 0 < λ < Λ. Then it immediately follows that

F̃ = P−λ,Λ, α∗(F ) = (n− 1)
λ

Λ
− 1 < 0, α∗(F̃ ) = (n− 1)

Λ

λ
− 1 > 0.

We consider a domain Ω = B1(0) \ {0} ⊂ R2 and its boundary point 0 ∈ ∂Ω.

(i) Since α∗(F ) < 0, we know that a single point has non-zero capacity.

More precisely, recalling the homogeneous solution for F is given by

V (x) = −|x|1−
λ
Λ ,

there exists a constant c = c(λ,Λ) > 0 such that

capF ({0}, B2t(0)) = c.
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Therefore, we have

ˆ ρ

0

capF ({0}, B2t(0))
dt

t
= c

ˆ ρ

0

dt

t
=∞.

In other words, Ωc is F -thick at 0.

(ii) On the other hand, since α∗(F̃ ) > 0, we know that a single point is of

capacity zero. Therefore, we have

ˆ ρ

0

capF̃ ({0}, B2t(0))

capF̃ (Bt(0), B2t(0))

dt

t
= 0.

In other words, Ωc is not F̃ -thick at 0 and we cannot apply our Wiener’s

criterion.

(iii) Let f1 ∈ C(∂Ω) is a boundary data given by

f1(x) =

{
1 if x = 0,

0 if |x| = 1.

Then clearly the function u(x) = 1− |x|1− λΛ = 1− V (x) is the solution

for this Dirichlet problem. In particular, in this case, we have Hf1 = Hf1

(i.e. f1 is resolutive) and

lim
Ω3x→0

Hf1(x) = 1 = f1(0).

Alternatively, one can apply Corollary 2.4.6 to reach the same conclu-

sion, since f1 attains its maximum at 0 and Ωc is F -thick at 0.

(iv) Let f2 ∈ C(∂Ω) is a boundary data given by

f2(x) =

{
−1 if x = 0,

0 if |x| = 1.

Then since the zero function belongs to Uf2 , we have Hf2 ≤ 0. Moreover,
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since ε(1 − |x|−( Λ
λ
−1)) ∈ Lf2 for any ε > 0, we have Hf2

≥ ε(1 −
|x|−( Λ

λ
−1)). Letting ε→ 0, we conclude Hf2

≥ 0.

Therefore, we deduce that Hf2 = Hf2
= 0. Furthermore, it follows that

lim
Ω3x→0

Hf2(x) = 0 6= −1 = f2(0),

which implies that 0 is an irregular boundary point for Ω.

2.5 A Necessary Condition for the Regularity

of a Boundary Point

In this section, we provide the necessity of the Wiener criterion, under ad-

ditional structure on the operator F . Indeed, our strategy is to employ the

argument made in [64] which proved the necessity of the p-Wiener criterion

for p-Laplacian operator with p > n − 1. Since the assumption p > n − 1

was essentially imposed to ensure the capacity of a line segment is non-zero

in [64], we begin with finding the corresponding assumptions in the fully

nonlinear case.

Lemma 2.5.1. Suppose that F is convex and α∗(F ) > s for some s > 0. Let

K be a compact subset in Br(⊂ Rn) such that Hs(K) <∞, where Hs is the

s-dimensional Hausdorff measure. Then

capF (K) = 0.

Proof. For any δ > 0, define

Hs
δ(K) := inf

∑
i

rsi ,

where the infimum is taken over all countable covers of K by balls Bi with

diameter ri not exceeding δ. Then since supδ>0Hs
δ(K) = limδ→0Hs

δ(K) =

Hs(K) <∞ and K is compact, for each δ ∈ (0, r), there exist finitely many
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open balls {Bi = Bri(xi)}Ni=1 such that ri < δ,
⋃N
i=1 Bi ⊃ K, and

N∑
i=1

rsi ≤ Hs(K) + 1 <∞. (2.5.1)

Now we consider the homogeneous solution V (x) = |x|−α∗V
(
x
|x|

)
of F . Here

we may assume min|x|=1 V (x) = 1 by normalizing V . If we let Wi(x) :=

rα
∗

i V (x − xi), then it immediately follows that Wi is non-negative and F -

superharmonic in Rn, and Wi(x) ≥ 1 on Bi.

Finally, we letW :=
∑N

i=1Wi(≥ 0). Since F is convex,W is F -superharmonic

in Rn. Moreover, W ≥ 1 on
⋃N
i=1Bi and in particular, W ≥ 1 on K. There-

fore, W ∈ Φ1
K(B4r) and so

capF (K,B4r) ≤ W (y0) ≤ r−α
∗

max
|x|=1

V (x) ·
N∑
i=1

rα
∗

i

≤ r−α
∗

max
|x|=1

V (x) · (Hs(K) + 1) δα
∗−s,

where we used (2.5.1) and α∗ > s. Letting δ → 0, we finish the proof.

Now we prove the partial converse statement of Lemma 2.5.1. Indeed,

here we only consider the compact set K is given by a line segment L, whose

Hausdorff dimension is exactly 1.

Lemma 2.5.2. Suppose that F is concave and α∗(F ) < 1. Let L = {x0 +se :

ar ≤ s ≤ br} be a line segment in Br(x0), where e is an unit vector in Rn

and 0 < a < b < 1 are constants satisfying b− a < 1
2
. Then

capF (L,B2r) > 0.

Proof. Note that since L is a line segment, for any δ > 0, one can cover L

by open balls Bi = B3δ(xi), 1 ≤ i ≤ N(δ) where xi ∈ L, |xi − xj| ≥ 2δ

whenever i 6= j, and N(δ) ∼ (b−a)r
δ

. We write such cover by Kδ :=
⋃N(δ)
i=1 Bi.

Recalling Lemma 2.3.9 and its proof, for any ε > 0, there exist a sufficiently
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small δ > 0 and corresponding cover Kδ such that

capF (Kδ, B2r) ≤ capF (L,B2r) + ε.

If we denote B̃i := Bδ(xi) and K̃δ =
⋃N(δ)
i=1 B̃i, then we have B̃i are pairwise

disjoint and

capF (K̃δ, B2r) ≤ capF (L,B2r) + ε.

On the other hand, for simplicity, we suppose that the homogeneous solution

V is given by V (x) = |x|−α∗ and α∗(F ) ∈ (0, 1). Note that if α∗ < 0,

then a single point has a positive capacity (Lemma 2.3.12) and the result

immediately follows. Other cases can be shown by similar argument as in

Lemma 2.5.1. For each i = 1, 2, · · · , N(δ), write

Wi(x) :=

(
|x− xi|

δ

)−α∗
and W (x) =

N(δ)∑
i=1

Wi(x).

Since F is concave, W is F -subharmonic in Rn \
⋃N(δ)
i=1 {xi}.

(i) (On ∂K̃δ) For y ∈ ∂K̃δ, let y ∈ ∂Bi for some i. Then for j 6= i, we have

|y − xj| ≥ |xi − xj| − |y − xi| = |xi − xj| − δ,

and so

W (y) ≤ 2(1 + 2−α
∗

+ · · ·+N(δ)−α
∗
)

≤ 2

(
1 +

ˆ N(δ)

2

1

sα∗
ds

)
≤ cN(δ)1−α∗ .

Here we used the condition α∗ < 1.
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(ii) (On ∂B2r) For z ∈ ∂B2r, |z − xi| ≥ 2r − br = (2− b)r, and so

W (z) ≤
(

(2− b)r
δ

)−α∗
·N(δ).

Therefore, for

W̃ (x) :=
W (x)−

(
(2−b)r
δ

)−α∗
·N(δ)

cN(δ)1−α∗ ,

we have

W̃ is F -subharmonic in B \ K̃δ, W̃ ≤ 0 on ∂B2r, and W̃ ≤ 1 on ∂K̃δ.

Note that since K̃δ andB2r is regular domains, the capacity potential R̂1
K̃δ

(B2r)

satisfies:

R̂1
K̃δ

(B2r) = 0 on ∂B2r, and R̂1
K̃δ

(B2r) = 1 on ∂K̃δ.

Hence, the comparison principle yields that

R̂1
K̃δ

(B2r) ≥ W̃ in B2r \ K̃δ.

In particular, putting x = x0 + 3
2
re, we conclude that

|x− xi| ≤ 3r/2− ar =

(
3

2
− a
)
r,

62



CHAPTER 2. THE WIENER CRITERION FOR FULLY NONLINEAR
ELLIPTIC EQUATIONS

and so

R̂1
K̃δ

(B2r)

(
x0 +

3

2
re

)
≥ W̃

(
x0 +

3

2
re

)

≥

[(
(3/2−a)r

δ

)−α∗
−
(

(2−b)r
δ

)−α∗]
·N(δ)

cN(δ)1−α∗

≥ c1(b− a)α
∗

[(
3

2
− a
)−α∗

− (2− b)−α
−∗

]
.

Finally, by applying Harnack inequality for R̂1
K̃δ

(B2r) on ∂B3r/2, we have

ε+ capF (L,B2r) ≥ capF (K̃δ, B2r)

≥ c2 (b− a)α
∗

[(
3

2
− a
)−α∗

− (2− b)−α
−∗

]
> 0.

Since ε > 0 is arbitrary, we finish the proof.

The idea of the previous lemma can be modified to derive the ‘spherical

symmetrization’ result:

Lemma 2.5.3 (Spherical symmetrization). Suppose that F is concave and

α∗(F ) < 1. Let K be a compact subset in Br(x0) such that K meets S(t) :=

{x ∈ Rn : |x−x0| = t} for all t ∈ (ar, br), where 0 < a < b < 1 are constants

satisfying b < 1
4
. Then there exists a constant c = c(n, F, a, b) such that

capF (K,B2r) ≥ c(n, F, a, b) > 0.

Proof. The proof is similar to the one of Lemma 2.5.2. By assumption, we

can choose x(t) ∈ K ∩ S(t) for all t ∈ (ar, br). In particular, for small δ > 0,

we define xi := x(ar+2δi) for i = 1, 2, · · · , N(δ) so that

ar + 2δ ·N(δ) < br ≤ ar + 2δ · (N(δ) + 1).
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Note that N(δ) ∼ (b−a)r
δ

. Moreover, for δ > 0, we define a set Kδ by

Kδ =

N(δ)⋃
i=1

Bi,

where Bi = Bxi(δ). Again recalling Lemma 2.3.9 and its proof, for any ε > 0,

there exists a sufficiently small δ > 0 such that

capF (Kδ, B2r) ≤ capF (K,B2r) + ε.

On the other hand, for simplicity, we suppose that the homogeneous solution

V is given by V (x) = |x|−α∗ and α∗(F ) ∈ (0, 1). For each i = 1, 2, · · · , N(δ),

write

Wi(x) :=

(
|x− xi|

δ

)−α∗
and W (x) =

N(δ)∑
i=1

Wi(x).

Since F is concave, W is F -subharmonic in Rn \
⋃N(δ)
i=1 {xi}.

(i) (On ∂Kδ) For y ∈ ∂Kδ, let y ∈ ∂Bi for some i. Then for j 6= i, we have

|y − xj| ≥ |xi − xj| − |y − xi| = |xi − xj| − δ ≥ 2|i− j|δ − δ,

and so

W (y) ≤ 2(1 + 2−α
∗

+ · · ·+N(δ)−α
∗
)

≤ 2

(
1 +

ˆ N(δ)

2

1

sα∗
ds

)
≤ cN(δ)1−α∗ .

Here we used the condition α∗ < 1.

(ii) (On ∂B2r) For z ∈ ∂B2r, |z − xi| ≥ 2r − br = (2− b)r, and so

W (z) ≤
(

(2− b)r
δ

)−α∗
·N(δ).
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Therefore, for

W̃ (x) :=
W (x)−

(
(2−b)r
δ

)−α∗
·N(δ)

cN(δ)1−α∗ ,

we have

W̃ is F -subharmonic in B \Kδ, W̃ ≤ 0 on ∂B2r, and W̃ ≤ 1 on ∂Kδ.

Note that since Kδ and B2r are regular domains, the capacity potential

R̂1
Kδ

(B2r) satisfies:

R̂1
Kδ

(B2r) = 0 on ∂B2r, and R̂1
Kδ

(B2r) = 1 on ∂Kδ.

Hence, the comparison principle yields that

R̂1
Kδ

(B2r) ≥ W̃ in B2r \Kδ.

In particular, putting x = x0 + 3
2
re1, we conclude that

|x− xi| ≤ 3r/2 + br =

(
3

2
+ b

)
r,

and so

R̂1
Kδ

(B2r)

(
x0 +

3

2
re1

)
≥ W̃

(
x0 +

3

2
re1

)

≥

[(
(3/2+b)r

δ

)−α∗
−
(

(2−b)r
δ

)−α∗]
·N(δ)

cN(δ)1−α∗

≥ c1(b− a)α
∗

[(
3

2
+ b

)−α∗
− (2− b)−α

−∗

]
.

65



CHAPTER 2. THE WIENER CRITERION FOR FULLY NONLINEAR
ELLIPTIC EQUATIONS

Hence,

ε+ capF (K,B2r) ≥ capF (Kδ, B2r)

≥ c2 (b− a)α
∗

[(
3

2
+ b

)−α∗
− (2− b)−α

∗

]
> 0.

Since ε > 0 is arbitrary, we finish the proof.

Let E be a regular set in a ball B2r. Let u = R̂1
E(B2r) be the capacity

potential. For γ ∈ (0, 1), let Aγ = {x ∈ B2r : u(x) < γ}.

Lemma 2.5.4. Suppose that F is concave and α∗(F ) < 1. Then there exists

a constant c1 > 0 depending only on n, λ,Λ such that: if

γ ≥ c1capF (E,B2r),

then the set Aγ contains a sphere S(t) := {x ∈ Rn : |x − x0| = t} for some

t ∈ (r/10, r/5).

Proof. For 0 < γ < 1, let Eγ := {x ∈ B2r : u(x) ≥ γ}. We argue by

contradiction: suppose that Aγ does not contain any S(t) for t ∈ (r/10, r/5).

Then the set Eγ meets S(t) for all t ∈ (r/10, r/5) and we have

capF (Eγ, B2r) ≥ c(n, F ) > 0,

by employing Lemma 2.5.3 for a = 1/10 and b = 1/5.

On the other hand, by Lemma 2.4.3, we have

capF (Eγ, B2r) =
1

γ
capF (E,B2r).

Combining two estimates above, we obtain

γ ≤ 1

c(n, F )
capF (E,B2r).

Therefore, by choosing c1 = 1
c(n,F )

+ 1, we arrive at a contradiction.
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Now we are ready to prove the necessity of the Wiener criterion.

Proof of Theorem 2.1.3. For simplicity, we write Br = Br(x0). Suppose that

Ωc is not F -thick at x0 ∈ ∂Ω, i.e.

ˆ 1

0

capF (Bt \ Ω, B2t)
dt

t
<∞.

For ε > 0 to be determined, choose r1 > 0 small enough so that

ˆ r1

0

capF (Bt \ Ω, B2t)
dt

t
< ε.

Set ri+1 = ri/2 and

ai = capF (Bri \ Ω, B2ri).

Applying Lemma 2.3.14,

∞∑
i=2

ai ≤ c0(n, λ,Λ) ε.

Next, by Corollary 2.2.27 and Lemma 2.3.9, for each i, choose a regular

domain Ei such that Bri \ Ω ⊂ Ei and

bi := capF (Ei, B2ri) < ai + ε · 2−i.

Then we have

∞∑
i=2

bi ≤ (c0 + 1) ε

and so bi ≤ (c0 + 1) ε for i = 2, 3, · · · . Moreover, let ui := R̂1
Ei

(B2ri) be the

capacity potential. By Lemma 2.5.4, for γi = c1 · bi, the set

Ai = {x ∈ B2ri : ui(x) < γi}
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contains S(ti) for some ti ∈ (ri/10, ri/5). Now by selecting ε = 1
2(c0+1)c1

> 0,

we have γi < 1. In particular, since u2 = 1 on E2 and S(t2) ⊂ A2, we conclude

that S(t2) ⊂ Ω.

Next, let f ∈ C(∂Ω) be the boundary function defined by

f(x) =

{
1 if x ∈ Bt2 ∩ ∂Ω,

0 if x ∈ ∂Ω \Bt2 .

Then we have the following results for the lower Perron solution Hf = Hf (Ω):

(i) Hf 6≡ 1: Choose r > 0 large enough so that Ω ⊂ Br. Moreover, set a

domain Ω0 := Br \ (Bt2 ∩ Ω) and a boundary function f0 ∈ C(∂Ω0) by

f0(x) =

{
1 if x ∈ Bt2 ∩ ∂Ω,

0 if x ∈ ∂Br.

Then since Br is regular, we have Hf0(Ω0) < 1 in Br \ Bt2 . On the

other hand, for any v ∈ Lf (Ω) and w ∈ Uf0(Ω0), one can check that

v ≤ w in Ω using the comparison principle. Therefore, we conclude that

Hf (Ω) ≤ Hf0(Ω0) and so Hf (Ω) 6≡ 1.

(ii) maxS(t2) Hf =: M < 1: This is an immediate consequence of the strong

maximum principle for Hf and part (i).

For u :=
Hf−M
1−M which is F -harmonic in Ω and u ≤ 0 in S(t2), we claim that

lim inf
Ω3x→x0

u(x) <
1

2
. (2.5.2)

Indeed, since S(t2) ⊂ Br3 and E3 is a regular domain, we have

u(x) ≤ 0 ≤ lim inf
y→x

u3(y) for any x ∈ ∂Bt2 = S(t2),

lim sup
y→x

u(y) ≤ 1 = lim inf
y→x

u3(y) for any x ∈ ∂E3.

Thus, the comparison principle yields that u ≤ u3 in Bt2 \E3. In particular,
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since S(t3) ⊂ A3, we observe that

u ≤ u3 < γ3 on S(t3).

Iterating this argument (for example, consider u− γ3 instead of u), we con-

clude that

u ≤
i∑

k=3

γk ≤
∞∑
k=3

γk = c1 ·
∞∑
k=3

bi ≤ c1 (c0 + 1) ε =
1

2
on each S(ti),

which leads to (2.5.2).

Finally, recalling the definition of u, the estimate (2.5.2) is equivalent to

lim inf
Ω3x→x0

Hf (x) < 1 = f(x0),

which implies that x0 ∈ ∂Ω is an irregular boundary point.
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Chapter 3

Random Homogenization of

ϕ-Laplace Equations with

Highly Oscillating Obstacles

3.1 Introduction

Let (Ω,F ,P) be a given probability space. For every ω ∈ Ω and every ε > 0,

we consider a domain Dε(ω) obtained by perforating holes from an open,

bounded domain D of Rn. We denote by Tε(ω) the set of holes (we then have

Dε(ω) = D \ Tε(ω)). The goal of this chapter is to study the asymptotic

behavior of the minimizer, uε, of the ϕ-Laplacian functional as ε→ 0.

More precisely, let uε be the solution of the following obstacle problem:

min
{ˆ

D

ϕ(|∇u|) dx−
ˆ
D

fu dx;u ∈ W 1,ϕ
0 (D), u ≥ 0 a.e. in Tε(ω)

}
.

Here ϕ : [0,∞) → [0,∞) is an N-function satisfying the ∆2 ∩ ∇2-condition

and f ∈ Lϕ∗(D), which will be defined in Section 3.2. In particular, when we

set ϕ(t) = 1
p
tp, for p > 1, then it becomes a p-Laplacian obstacle problem and

so ϕ-Laplacian operator is a natural generalization of p-Laplacian operator.

A typical example for an N-function is ϕ(t) = tp logq(1 + t), where p > 1 and
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q > 1− p.
Now suppose that the hole is a union of balls centered at each lattice

point, i.e.

Tε(ω) = ∪k∈ZnBaε(k,ω)(εk),

where a radius of ball, aε(k, ω), will be determined randomly. Then we will

prove that there exists a critical radius aε(k, ω) � ε such that the homog-

enized problem is no longer an obstacle problem, but an elliptic boundary

value problem with a new term that comes from the influence of the obstacles

on the holes. If aε is a critical radius which is determined by capacity condi-

tion, then there exists a function g : [0,∞)→ [0,∞) such that u = limε→0 u
ε

solves

min
{ˆ

D

ϕ(|∇u|) dx+

ˆ
D

g(u−) dx−
ˆ
D

fu dx;u ∈ W 1,ϕ
0 (D)

}
.

In this chapter, we will concentrate on the nontrivial case with critical

radius aε, where the limit solution satisfies an equation with an additional

term. In fact, the behavior of limit solution u can be different (but trivial) if

the radius of holes aε is not critical. First if the order of the decay rate of aε

is higher than the critical one, then the obstacles rarely restrict the behavior

of limit solution. Thus, the limit solution will be a solution of the following

variational problem without obstacles:

min
{ˆ

D

ϕ(|∇u|) dx−
ˆ
D

fu dx;u ∈ W 1,ϕ
0 (D)

}
.

Second, on the contrary, if the order of the decay rate is lower than

the critical one, then the obtacles completely enforce the behavior of limit

solution. Thus, the limit solution will be a solution of the following obstacle

problem:

min
{ˆ

D

ϕ(|∇u|) dx−
ˆ
D

fu dx;u ∈ W 1,ϕ
0 (D), u ≥ 0 a.e. in D

}
.

The main difficulty for extending the homogenization theorems of p-
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Laplacian operator to those of ϕ-Laplacian operator is that the growth expo-

nent of an N-function ϕ(t) may vary with respect to t. As a result, we cannot

expect the homogeneity property for an N-function ϕ, i.e. there is no constant

C > 0 such that ϕ(xy) 6= Cϕ(x)ϕ(y) in general. In fact, if a submultiplicative

function f : R+ → R+ is differentiable at x = 1 and f(1) = 1, then f(x) = xp

for all x ∈ R+ and some p ∈ R. Here f is said to be submultiplicative if the

inequality f(xy) ≤ f(x)f(y) holds for all x, y ∈ R+, and see [27] for details.

Therefore, we cannot find out an explicit formula for the critical function

g or the critical hole size aε (or the capacity of holes) in ϕ-Laplacian case.

Moreover, since the norm in Orlicz space is defined by Luxemburg sense,

there is a restriction when we replace the norm of functions to the modular

of them, involving Hölder’s inequality and Poincaré inequality.

The main idea for the construction of corrector wε is that for the critical

value β0, wε will behave like the fundamental solution of ϕ-Laplacian, near

the holes. To capture this property, we also construct several intermediate

functions between corrector wε and the fundamental solution hε, such as

vεβ0,D
and wετ , which will be defined precisely in Section 3.4. Note that these

auxiliary functions will be defined by the solution of different obstacle prob-

lems and the existence of these functions is guaranteed by Perron’s method.

Finally, exploiting the similarity between wε and hε, we can obtain a strong

convergence of wε in Lϕ(D).

The plan for this chapter is as follows. In Section 3.2, we introduce prelim-

inaries which include definitions and well-known results about an N-function

and Orlicz space. In Section 3.3, we first state two assumptions on the holes:

capacity condition and condition on stationary ergodicity. Moreover, Sec-

tion 3.3 contains the statement and proof of our main theorem, and several

lemmas for correctors. In Section 3.4, we first find the critical value β0 by

studying a measure of contact set. Then we construct a corrector from solv-

ing an obstacle problem which depends on the critical value β0, and show

the desired properties for this corrector. Finally, in Section 3.5, we prove

Lemma 3.3.5 and Lemma 3.3.12.
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3.2 Preliminaries

The study for an N-function and its related Orlicz space was initiated by

extending theory of classical Lp space. For an overview of Orlicz space the-

ory, we refer two books [23, 32] and references therein; both books contain

generalization of theorems in Lp space, such as Sobolev embedding theorem,

density theorem and Poincaré inequality. Liebermann [63] proved a Harnack

inequality for a solution of ϕ-Laplace equations by obtaining local bounded-

ness and weak Harnack inequality. See also [6]. Moreover, in [24, 25], Diening,

Stroffolini and Verde studied the regularity of ϕ-harmonic maps. In fact, they

showed that the minimizer of ϕ-Laplacian energy has a Hölder continuous

gradient by using Lipschitz truncation method as a main tool.

We first introduce some definitions and facts about an N-function and

Orlicz space. Here we always denote D by an open, bounded subset in Rn.

Also note that in this chapter, we denote f ∼ g for two functions f, g when

there exist two constants c1, c2 > 0 such that c1f(t) ≤ g(t) ≤ c2f(t).

Definition 3.2.1 (N-function). ϕ : [0,∞) → [0,∞) is called an N-function

if

(i) ϕ(0) = 0,

(ii) ϕ is strictly increasing and convex,

(iii) limx→0+
ϕ(x)
x

= 0, limx→∞
ϕ(x)
x

=∞.

Definition 3.2.2 (∆2-condition). An N-function ϕ is said to satisfy the ∆2-

condition if there exists c > 0 such that for all t ≥ 0, we have

ϕ(2t) ≤ cϕ(t).

We denote the smallest possible constant by ∆2(ϕ). Since ϕ(t) ≤ ϕ(2t) holds

for an N-function ϕ, the ∆2-condition is equivalent to the relation ϕ(2t) ∼
ϕ(t).
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Definition 3.2.3 (∇2-condition). An N-function ϕ is said to satisfy the

∇2-condition if there exists a > 1 such that for all t ≥ 0 we have

ϕ(t) ≤ ϕ(at)

2a
.

Definition 3.2.4 (Conjugate function). For an N-function ϕ, we define the

Young conjugate ϕ∗ of ϕ by

ϕ∗(t) = sup
s≥0
{ts− ϕ(s)}.

Here ϕ∗ is again an N-function and (ϕ∗)∗ = ϕ. Moreover, we may equivalently

define

ϕ∗(t) :=

ˆ t

0

(ϕ′)−1(s) ds,

which implies that (ϕ∗)′(t) = (ϕ′)−1(t) for t > 0.

Lemma 3.2.5. The following statements are equivalent:

(i) ϕ satisfies the ∇2-condition.

(ii) ϕ∗ satisfies the ∆2-condition.

Remark 3.2.6. By the definition of an N-function and the ∆2-condition, we

can easily check that if ϕ is an N-function satisfying the ∆2-condition, then

ϕ(t) ∼ tϕ′(t),

uniformly in t > 0. Moreover, we can check that uniformly in t > 0,

ϕ∗(ϕ′(t)) ∼ ϕ(t),

whenever ϕ satisfies the ∆2 ∩∇2-condition.

Lemma 3.2.7 ([5, Lemma 2.1]). An N-function ϕ satisfies the ∆2-condition

if and only if

sup
t>0

tϕ′(t)

ϕ(t)
< +∞.

74



CHAPTER 3. RANDOM HOMOGENIZATION OF ϕ-LAPLACE
EQUATIONS

Moreover, its conjugate function ϕ∗ satisfies the ∆2-condition if and only if

inf
t>0

tϕ′(t)

ϕ(t)
> 1.

For a constant pϕ > 0, by differentiating the function ϕ(t)
tpϕ

, we have

t 7→ ϕ(t)

tpϕ
is non-decreasing if and only if tϕ′(t) ≥ pϕϕ(t) for any t ≥ 0.

Similarly, for qϕ > 0, we have

t 7→ ϕ(t)

tqϕ
is non-increasing if and only if tϕ′(t) ≤ qϕϕ(t) for any t ≥ 0.

Lemma 3.2.8 ([35]). Suppose that for an N-function ϕ, there exist 1 < pϕ ≤
qϕ <∞ such that

t 7→ ϕ′(t)

tpϕ−1
is non-decreasing and t 7→ ϕ′(t)

tqϕ−1
is non-increasing.

Then ϕ satisfies the following properties for any s, t ≥ 0:

(i) min{spϕ−1, sqϕ−1}ϕ′(t) ≤ ϕ′(st) ≤ max{spϕ−1, sqϕ−1}ϕ′(t).

(ii) t 7→ ϕ(t)
tpϕ

is non-decreasing and t 7→ ϕ(t)
tqϕ

is non-increasing.

(iii) min{spϕ , sqϕ}ϕ(t) ≤ ϕ(st) ≤ max{spϕ , sqϕ}ϕ(t).

(iv) c1 min{s
pϕ
pϕ−1 , s

qϕ
qϕ−1}ϕ∗(t) ≤ ϕ∗(st) ≤ c2 max{s

pϕ
pϕ−1 , s

qϕ
qϕ−1}ϕ∗(t).

We now state assumptions for ϕ, which are necessary for our main theo-

rem:

Assumption 3.2.9. Let ϕ be an N-function, which is C1 on (0,∞). We also

suppose that there exist constants 1 < pϕ ≤ qϕ < n such that

t 7→ ϕ′(t)

tpϕ−1
is non-decreasing and t 7→ ϕ′(t)

tqϕ−1
is non-increasing.
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We remark that under these assumptions, ϕ satisfies ∆2 ∩ ∇2-condition

and ϕ′ satisfies ∆2-condition.

Definition 3.2.10 (Orlicz space). For an N-function ϕ, Orlicz space Lϕ(D)

consists of all Lebesgue measurable functions defined in D, satisfying

ˆ
D

ϕ(λf(x)) dx <∞ for some λ > 0.

Here Lϕ(D) is a Banach space with the Luxemburg norm

‖f‖Lϕ(D) := inf
{
κ > 0 :

ˆ
D

ϕ

(
|f(x)|
κ

)
dx ≤ 1

}
.

Moreover, we define the Orlicz-Sobolev space W kLϕ(D): the set of measur-

able functions f on D with weak derivatives Dαf ∈ Lϕ(D) for all |α| ≤ k.

Lemma 3.2.11 (Young’s inequality and Hölder’s inequality). Let ϕ be an

N-function. Then the following Young’s inequality holds:

ab ≤ ϕ(a) + ϕ∗(b) for all a, b ≥ 0.

Assume that u ∈ Lϕ(D) and v ∈ Lϕ
∗
(D); then the following Hölder’s in-

equality holds: ˆ
D

uv dx ≤ 2‖u‖ϕ‖v‖ϕ∗ .

Remark 3.2.12 (Norm-modular relation; [23]).

(i) Let ϕ be an N-function. Then we define the norm and the modular of

a function f ∈ Lϕ(D) as following:

‖f‖ϕ := inf
{
λ > 0 :

ˆ
D

ϕ

(
|f |
λ

)
dx ≤ 1

}
,

ρϕ(f) =

ˆ
D

ϕ(|f |) dx.

(ii) For an N-function ϕ and a function f ∈ Lϕ(D), we have the following
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norm-modular relation by their definitions:

‖f‖ϕ ≤ 1 =⇒ ρϕ(f) ≤ ‖f‖ϕ,

‖f‖ϕ > 1 =⇒ ρϕ(f) ≥ ‖f‖ϕ.

In particular, we obtain ‖f‖ϕ ≤ ρϕ(f) + 1.

(iii) Let ϕ be an N-function and let fk, f be functions in Lϕ(D). We say

that fk converges strongly in norm to f if ‖fk − f‖ϕ → 0. Note that

‖fk − f‖ϕ → 0 if and only if ρϕ(λ(fk − f))→ 0 for all λ > 0.

On the other hand, we say that fk converges modularly to f if there

exists λ > 0 such that ρϕ(λ(fk − f))→ 0.

(iv) Let ϕ be an N-function satisfying the ∆2-condition. Then the modular

convergence is equivalent to the norm convergence in Lϕ(D).

Definition 3.2.13 (ϕ-capacity). (i) For A ⊂ Rn,

capϕ(A) := inf

{ˆ
Rn
|∇u|ϕ′(|∇u|) dx : u ∈ C∞0 (Rn), u = 1 on ∂A

}
.

(ii) For any open set D ⊂ Rn and compact set K ⊂ D,

capϕ(K,D) := inf

{ˆ
D

|∇u|ϕ′(|∇u|) dx : u ∈ C∞c (D), u ≡ 1 on K

}
.

Theorem 3.2.14 (Compact embedding; [32, Theorem 6.3.7]). Let ϕ be an

N-function satisfying the ∆2∩∇2-condition. Then W 1,ϕ
0 (D) is compactly em-

bedded in Lϕ(D).

Theorem 3.2.15 (Poincaré inequality; [32, Theorem 6.2.8]). Let ϕ be an

N-function satisfying the ∆2 ∩ ∇2-condition. Then for every u ∈ W 1,ϕ
0 (D),

we have

‖u‖Lϕ(D) ≤ c diam(D)‖∇u‖Lϕ(D).
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Theorem 3.2.16 (Comparison principle). Let ϕ be an N-function and sup-

pose that ∆ϕu ≥ ∆ϕv holds in a bounded domain D. If the inequality

lim sup
x→ζ

u(x) ≤ lim inf
x→ζ

v(x)

holds for any ζ ∈ ∂D, then u ≤ v in D a.e.

Lemma 3.2.17 (Harnack inequality; [6]). Let u be a locally bounded and

non-negative solution of equation

−∇ ·
(
ϕ′(|∇u|)
|∇u|

∇u
)

= B(·, u)

in Ω, where ϕ is an N-function satisfying the ∆2 ∩∇2-condition and

|B(x, u)| ≤ αϕ′(|u(x)|) + β,

for α, β are non-negative numbers.

Let BR ⊂ D be a ball of radius 0 < R ≤ 1. There exists a positive constant

N = N (α, pϕ, qϕ, n) such that

sup
BR/2

u ≤ N
(

inf
BR/2

u+ LR

)
,

where L is any non-negative constant such that β ≤ ϕ′(L) and BR/2 is the

ball of radius R/2 concentric with BR.

3.3 Main Theorem

Before we state the main theorem, let us first make precise the assumptions

on the holes Tε(ω) =
(
∪k∈ZnBaε(k,ω)(εk)

)
∩D.

Assumption 3.3.1. For all k ∈ Zn and a.e. ω ∈ Ω, there exists γ(k, ω)

(independent of ε) such that

capϕ(Baε(k,ω)(εk)) = εnγ(k, ω),
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where cap(A) denotes the capacity of a subset A of Rn. Moreover, we assume

that there exists a constant γ > 0 :

γ(k, ω) ≤ γ for all k ∈ Zn and a.e. ω ∈ Ω.

Assumption 3.3.2. The process γ : Zn × Ω 7→ [0,∞) is stationary ergodic:

there exists a family of measure-preserving transformations τk : Ω→ Ω such

that

(i) (stationary) γ(k + k′, ω) = γ(k, τk′ω) for all k, k′ ∈ Zn and ω ∈ Ω;

(ii) (ergodic) if A ⊂ Ω and τkA = A for all k ∈ Zn, then P (A) = 0 or

P (A) = 1. (in other words, the only invariant set of positive measure is

the whole set.)

Theorem 3.3.3. Assume that Tε(ω) satisfies Assumption 3.3.1 and Assump-

tion 3.3.2. Also let ϕ be an N-function satisfying Assumption 3.2.9. Then

there exists a function g : [0,∞)→ [0,∞) such that when ε goes to zero, the

solution uε(x, ω) of

min
{ˆ

D

ϕ(|∇u|) dx−
ˆ
D

fu dx; u ∈ W 1,ϕ
0 (D), u ≥ 0 a.e. in Tε(ω)

}
converges weakly in W 1,ϕ(D) and almost surely ω ∈ Ω to the solution ū(x)

of the following minimization problem:

min
{ˆ

D

ϕ(|∇u|) + g(u−) dx−
ˆ
D

fu dx; u ∈ W 1,ϕ
0 (D)

}
.

Moreover, g(·) is an N-function satisfying the ∆2 ∩ ∇2-condition; in partic-

ular, if ϕ(t) = 1
p
tp, then g(t) = β0ϕ(t).

Remark 3.3.4. The Euler-Lagrange equations for the minimization problem
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yield 
−∆ϕu

ε = f for x ∈ Dε,

uε(x) ≥ 0 for x ∈ Tε,
uε(x) = 0 for ∂D \ Tε,

where

∆ϕv := −∇ ·
(
ϕ′(|∇v|)
|∇v|

∇v
)
.

3.3.1 Key Lemmas

In this subsection, we introduce several lemmas which are essential for prov-

ing our main theorem. We will prove Lemma 3.3.5 and Lemma 3.3.12, which

describe the behavior of the corrector wε, in Section 3.4 and Section 3.5.

Lemma 3.3.5. There exist a non-negative constant β0 and a function wε(x, ω)

such that 
∆ϕw

ε = β0 in Dε(ω),

wε(x, ω) = 1 for x ∈ Tε(ω),

wε(x, ω) = 0 for x ∈ ∂D \ Tε(ω),

wε(·, ω) ⇀ 0 in W 1,ϕ(D),

for almost all ω ∈ Ω, and wε also satisfies the following properties:

(i) Let ψ1 be a function and ψ2 be an N-function such that ψ2(ψ1(t)) ∼ ϕ(t)

for uniformly in t > 0. Then for any η ∈ D(D),

lim
ε→0

ˆ
D

ψ1(|∇wε|)η dx = 0.

(ii) For any η ∈ D(D),

lim
ε→0

ˆ
D

ϕ′(|∇wε|)|∇wε|η dx =

ˆ
D

β0η dx.
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(iii) For any sequence {vε} ⊂ W 1,ϕ
0 (D) with the property: vε → v weakly in

W 1,ϕ
0 (D) as ε→ 0 and vε = 0 on Tε and any η ∈ D(D), we have that

lim
ε→0

ˆ
D

ϕ′(|∇wε|)
|∇wε|

∇wε · ∇vεη dx = −
ˆ
D

β0vη dx.

Remark 3.3.6. In the first part of Lemma 3.3.5, the assumption ψ2(ψ1(t)) ∼
ϕ(t) implies that, roughly speaking, the growth rate of ψ1 is smaller than

that of ϕ. For example, for the simplest case, if ψ1(t) = t, we can choose

ψ2(t) = ϕ(t). Moreover, if ψ1(t) = ϕ′(t), then we can choose ψ2(t) = ϕ∗(t).

Remark 3.3.7. We introduce the initial and limit energies:

I[u] :=

ˆ
D

ϕ(|∇u|) dx−
ˆ
D

fu dx

and

I0[u] :=

ˆ
D

ϕ(|∇u|) + g(u−) dx−
ˆ
D

fu dx.

With these notations, we have that uε(x, ω) satisfies

I[uε] = inf
v∈Kε

I[v]

with Kε = {v ∈ W 1,ϕ
0 (D); v ≥ 0 a.e. in Tε}.

Since {uε} is bounded in W 1,ϕ(D), there exists a function ū(x, ω) such

that

uε(·, ω) ⇀ ū(·, ω) in W 1,ϕ
0 (D) -weak.

Now to prove the main theorem, it is enough to show that for almost every

ω, ū(·, ω) satisfies:

I0[ū] = inf
v∈W 1,ϕ

0 (D)
I0[v].

Lemma 3.3.8. Let wε be a corrector function defined in Lemma 3.3.5. Then
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there exists a function g : [0,∞)→ [0,∞) such that

lim
ε→0

ˆ
D

ϕ(|∇wε|η) dx =

ˆ
D

g(η) dx,

for any η ∈ D(D), with η ≥ 0. Moreover, g is an increasing function on

[0,∞).

Proof. Let η be a simple function, i.e.

η :=
N∑
i=1

aiχAi ,

where ai > 0 and Ai ⊂ D are mutually disjoint. Then

ˆ
D

ϕ(|∇wε|η) dx =
N∑
i=1

ˆ
D

ϕ(|∇wε|ai)χAi dx.

Now define

µεa(A, ω) :=

ˆ
D

ϕ(a|∇wε(x, ω)|)χA dx,

for ω ∈ Ω, a ≥ 0 and A ⊂ D. First to check the subadditive property of the

random variable µεa, let (Ai)i∈I be a finite family of sets such that

Ai ⊂ A for all i ∈ I,

Ai ∩ Aj = ∅ for all i 6= j,

|A− ∪i∈IAi| = 0.

Then we have

µεa(A, ω) ≤
∑
i∈I

µεa(Ai, ω),
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which yields the subadditive property. Moreover, we have

µεa(A, ω) =

ˆ
D

ϕ(a|∇wε(x, ω)|)χA dx

≤ c

ˆ
D

|∇wε|ϕ′(|∇wε|)χA dx ≤ (cβ0 + 1)|A|,

by part (ii) of Lemma 3.3.5. Finally, thanks to the ergodicity of the trans-

formations τk, it follows from the subadditive ergodic theorem (see [16]) that

for each a there exists a constant g(a) ≥ 0 such that

lim
ε→0

µεa(A, ω)

|A|
= g(a),

or equivalently,

lim
ε→0

ˆ
D

ϕ(a|∇wε(x, ω)|)χA dx =

ˆ
D

g(a)χA dx.

Note that this limit g(a) increases when a increases by the definition of

µεa(A, ω). This construction of g finishes the proof.

Lemma 3.3.9. Let g be the function constructed in Lemma 3.3.8. Then g is

an N-function satisfying the ∆2 ∩∇2-condition.

Proof. Recall the construction of g in the proof of Lemma 3.3.8:

g(a) = lim
ε→0

µεa(A, ω)

|A|
= lim

ε→0

´
D
ϕ(a|∇wε(x, ω)|)χA dx

|A|
.

It is clear that g(0) = 0, g is increasing and convex.

For 0 < s < 1, using Lemma 3.2.8, we have g(s) ≤ g(1)·spϕ , which implies

that

0 ≤ lim
s→0

g(s)

s
≤ lim

s→0
[g(1) · spϕ−1] = 0,

since pϕ > 1. Similarly, we can show that lims→∞
g(s)
s

=∞.
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Moreover, since ϕ satisfies the ∆2-condition,

g(2a) ≤ ∆2(ϕ)g(a).

Thus, g satisfies the ∆2-condition and ∆2(g) ≤ ∆2(ϕ). Using a similar argu-

ment, we conclude that g satisfies the ∆2 ∩∇2-condition.

Remark 3.3.10. Note that if ϕ(t) = 1
p
tp, then we have

lim
ε→0

ˆ
D

ϕ(|∇wε|η) dx = lim
ε→0

ˆ
D

|∇wε|pϕ(η) dx

= lim
ε→0

ˆ
D

|∇wε|ϕ′(|∇wε|)ϕ(η) dx

=

ˆ
D

β0ϕ(η) dx,

by applying part (ii) of Lemma 3.3.5.

Thus, in this case, we can calculate g(t) = β0ϕ(t) explicitly and recover

the result for p-Laplacian in [77].

Remark 3.3.11. In [15, 77] and this chapter, the existence of the critical

value β0 is guaranteed by the subadditive ergodic theorem, and then the

corresponding homogenized operator is implicitly defined. However, follow-

ing the arguments in [3] and [28], we are able to express the critical value

β0 explicitly, in terms of the expectation of the stationary ergodic process

γ(k, ω), for the p-Laplacian operators. Indeed, they showed that β0 (or g)

can be determined explictly when ϕ satisfies a growth condition of order p

(1 < p < n), i.e. there exist two constants c1, c2 > 0 such that

c1(xp − 1) ≤ ϕ(x) ≤ c2(xp + 1) for any x ≥ 0.

In particular, [28, Section 6] discussed how to recover the homogenization

results in [15, 77] and to compute β0, using the Γ-convergence method. Note

that in our general setting, ϕ has varying growth order (roughly, from pϕ to

qϕ), which is not adequate for applying those results.
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Lemma 3.3.12. If Lemma 3.3.5 holds and uε is the solution of

min
{ˆ

D

ϕ(|∇v|)− fv dx : v ∈ W 1,ϕ
0 (D), u ≥ 0 a.e. in Tε(ω)

}
,

then

lim inf
ε→0

I[uε] ≥ I0[u0],

where u0 is the weak limit of {uε} in W 1,ϕ(D).

3.3.2 Proof of Theorem 3.3.3

Proof. For any η ∈ D(D), the function η+η−w
ε is non-negative on Tε(ω) and

is thus admissible for the initial obstacle problem. In particular, by definition

of uε, we have

I[uε] ≤ I[η + η−w
ε],

where

I[η + η−w
ε] =

ˆ
D

ϕ(|∇η +∇η−wε + η−∇wε|) dx−
ˆ
D

f(η + η−w
ε) dx.

Note that since ϕ is increasing,

ˆ
D

ϕ(|∇η +∇η−wε + η−∇wε|) dx ≤
ˆ
D

ϕ(|∇η +∇η−wε|+ |η−∇wε|) dx.

For convenience, let rε := |∇η+∇η−wε| and sε := |η−∇wε|. Then the integral

in the right-hand side can be written as

ˆ
D

ϕ(rε + sε) dx.

Now we will show that

lim
ε→0

ˆ
D

ϕ(rε + sε) dx = lim
ε→0

ˆ
D

ϕ(rε) dx+ lim
ε→0

ˆ
D

ϕ(sε) dx. (3.3.1)

85



CHAPTER 3. RANDOM HOMOGENIZATION OF ϕ-LAPLACE
EQUATIONS

To prove this equation (3.3.1), we need a technical lemma:

Lemma 3.3.13. Let ϕ be an N-function satisfying Assumption 3.2.9. Then

for x, y > 0, we have

|ϕ(x+ y)− ϕ(x)− ϕ(y)| ≤ c(xϕ′(y) + yϕ′(x)),

where the constant c depends only on ∆2(ϕ′).

Proof. (i) (x ≥ y) Let f(y) := ϕ(x+ y)− ϕ(x)− ϕ(y) and then f(0) = 0.

By mean value theorem, we have

f(y)− f(0) = yf ′(t), for t ∈ (0, y).

Here direct calculation yields that

|f ′(y)| = |ϕ′(x+ y)− ϕ′(y)| ≤ 2ϕ′(x+ y).

Recalling ϕ is convex and applying Assumption 3.2.9,

|f ′(t)| ≤ 2ϕ′(x+ y) ≤ 2ϕ′(2x) ≤ cϕ′(x).

Thus, we conclude that

|ϕ(x+ y)− ϕ(x)− ϕ(y)| = |f(y)− f(0)| ≤ cyϕ′(x).

(ii) (x < y) By symmetry, we have |ϕ(x+ y)− ϕ(x)− ϕ(y)| ≤ cxϕ′(y).

Applying this technical lemma for x = rε, y = sε, we obtain that∣∣∣∣ˆ
D

[ϕ(rε + sε)− ϕ(rε)− ϕ(sε)] dx

∣∣∣∣ ≤ c

ˆ
D

(rεϕ′(sε)︸ ︷︷ ︸
=I

+ sεϕ′(rε)︸ ︷︷ ︸
=II

) dx.
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(I) For rεϕ′(sε), note that

rεϕ′(sε) ≤ |∇η| · ϕ′(|∇wε|) + C|wε| · ϕ′(|∇wε|).

First by Lemma 3.3.5 (i), (for ψ1(t) = ϕ′(t) and ψ2(t) = ϕ∗(t)) we

have

lim
ε→0

ˆ
D

|∇η| · ϕ′(|∇wε|) dx = 0.

Next by Hölder’s inequality, we have

ˆ
D

|wε| · ϕ′(|∇wε|) dx ≤ 2‖wε‖ϕ‖ϕ′(∇wε)‖ϕ∗

≤ c‖wε‖ϕ
(

1 +

ˆ
D

ϕ(|∇wε|) dx

)
,

where we used the norm-modular relation and ϕ∗(ϕ′(t)) ∼ ϕ(t) for the

last inequality. Since wε → 0 strongly in Lϕ(D), we obtain

lim
ε→0

ˆ
D

|wε| · ϕ′(|∇wε|) dx = 0.

(II) For sεϕ′(rε), note that

sεϕ′(rε) ≤ C|∇wε| · (ϕ′(|∇η|) + ϕ′(|wε|)).

Again by Lemma 3.3.5 (i), (for ψ1(t) = t and ψ2(t) = ϕ(t)) we have

lim
ε→0

ˆ
D

|∇wε| · ϕ′(|∇η|) dx = 0.

Similarly as in the first case, we obtain

lim
ε→0

ˆ
D

|∇wε| · ϕ′(|wε|) dx = 0.
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Combining two cases above, we conclude that

lim
ε→0

ˆ
D

(rεϕ′(sε) + sεϕ′(rε)) dx = 0,

which proves the equation (3.3.1).

Note that applying Lemma 3.3.8 with wε → 0 strongly in Lϕ(D),

lim
ε→0

ˆ
D

ϕ(|∇η +∇η−wε|) dx =

ˆ
D

ϕ(|∇η|) dx,

lim
ε→0

ˆ
D

ϕ(|η−∇wε|) dx =

ˆ
D

g(η−) dx.

Therefore, we have :

lim sup
ε→0

ˆ
D

ϕ(|∇η +∇η−wε + η−∇wε|) dx ≤
ˆ
D

ϕ(|∇η|) dx+

ˆ
D

g(η−) dx,

which implies that

I0[η] ≥ lim sup
ε→0

I[η + η−w
ε] ≥ lim inf

ε→0
I[uε].

By Lemma 3.3.12, we have I0[η] ≥ I0[ū]. Since the set {η ∈ D(D) : η− ∈
D(D)} is dense in W 1,ϕ

0 (D), we obtain the desired result.

3.4 Critical Value β0 and Corrector wε

3.4.1 Find the Critical Value β0

We introduce the following obstacle problem: for every open set A ⊂ Rn and

β ∈ R,

vεβ,A(x, ω) = inf
{
v(x); ∆ϕv ≤ β −

∑
k∈Zn∩ε−1A

γ(k, ω)εnδ(x− εk) in A,

v ≥ 0 in A, v = 0 on ∂A
}
.
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Moreover, we set

mε
β(A, ω) = |{x ∈ A; vεβ,A(x, ω) = 0}|.

Then from the subadditive ergodic theorem, [1] and [21], for any β ∈ R, there

is a constant l(β) ≥ 0 such that

lim
ε→0

mε
β(B1(x0), ω)

|B1(x0)|
= l(β),

for any B1(x0) ⊂ Rn.

Lemma 3.4.1. (i) l(β) is a non-decreasing funcion of β.

(ii) l(β) = 0 for β < 0.

(iii) l(β) > 0 for β is large enough.

Proof. (i) The proof follows immediately from the inequality

vβ,A ≤ vβ′,A for any β, β′ such that β′ ≤ β.

(ii) If β < 0, let

uβ(x) :=
n

|β|
·
[
ϕ∗
(
|β|
n

)
− ϕ∗

(
|β|
n
r

)]
,

for r = |x − x0|. Then ∆ϕuβ = β in B1(x0) (see Remark 3.4.2 and

Remark 3.4.3 below.) Moreover, uβ > 0 in B1(x0) and uβ = 0 on

∂B1(x0).

Therefore, by comparison principle, we deduce that:

vεβ,B1(x0) ≥ uβ > 0 in B1(x0).

Therefore, mε
β(B1(x0), ω) = 0 for β < 0, which implies that l(β) = 0

for β < 0.
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(iii) Let

a = a(k, ω) =

(
ncγ(k, ω)

β

) 1
n

,

where the constant c = c(n) = 1
nwn

. We define a rotationally symmetric

function gεβ,k(x, ω) for any k ∈ Zn as follows:

gεβ,k(x, ω) :=

{ ´ aε
r

(ϕ′)−1
(
cγ(k, ω)εns1−n − β

n
s
)

ds, if 0 ≤ r ≤ aε,

0, if r ≥ aε,

where r = |x − εk|. Note that by the definition of gεβ,k, we know that

gεβ,k and ∇gεβ,k vanish along ∂Baε . Thus, by Remark 3.4.2 below, we

obtain that

∆ϕg
ε
β,k(x, ω) ≤ β − γ(k, ω)εnδ(x− εk) in Rn,

and gεβ,k(x, ω) = 0 if x /∈ Baε(εk).

On the other hand, if we choose β large so that β ≥ 2nncγ(k, ω), i.e.

1

2
≥ a =

(
ncγ(k, ω)

β

) 1
n

,

then the support of function gεβ,k(x, ω) is contained in the cell ball

B ε
2
(εk). Now we consider the sum of all gεβ,k:

gεβ(x, ω) :=
∑

k∈ε−1B1∩Zn
gεβ,k(x, ω).

By the definition, we know that for any two different k, k′ ∈ ε−1B1∩Zn,

gεβ,k and gεβ,k′ have disjoint support. Then

∆ϕg
ε
β(x, ω) ≤ β −

∑
k∈ε−1B1∩Zn

γ(k, ω)εnδ(x− εk),

and gεβ(x, ω) ≥ 0 for x ∈ B1 and gεβ(x, ω) = 0 on ∂B1.
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Therefore, for almost surely ω ∈ Ω,

0 ≤ vεβ,B1
(x, ω) ≤ gεβ(x, ω), for a.e. x ∈ B1.

Then by the definition of gεβ, we deduce that

⋃
k∈ε−1B1∩Zn

(B1 \Baε(εk)) ⊂ {x ∈ B1 : vεβ,B1
= 0},

which implies

mε
β(B1, ω) ≥ |B1| − Cε−n(aε)n = |B1| − Can.

Thus, we have l(β) > 0 if a is small enough, i.e. β is large enough.

Remark 3.4.2 (Idea of construction for gεβ,k). First note that a function

uεβ,k(x) =
β

2n
|x|2 + cγ(k, ω)εn|x|2−n

solves

∆uεβ,k = β − γ(k, ω)εnδ(x− εk).

Here a direct calculation yields

∇uεβ,k =

(
β

n
r − cnγ(k, ω)εnr1−n

)
x

r
,

where r = |x|.
Since we require

∆ϕg
ε
β,k = β − γ(k, ω)εnδ(x− εk) = ∆uεβ,k,

we have
ϕ′(|∇gεβ,k|)
|∇gεβ,k|

∇gεβ,k = ∇uεβ,k.
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Moreover, we know that gεβ,k should be rotationally symmetric and so we let

gεβ,k(x) = f εβ,k(r) for r = |x|. Then

∇gεβ,k(x) = (f εβ,k)
′
(r) · x

r
.

Finally, combining these results, we conclude that

(f εβ,k)
′
(r) = −(ϕ′)−1

(
cnγ(k, ω)εnr1−n − β

n
r

)
,

when r is small.

Remark 3.4.3 (Estimate for fundamental solution). From the above idea,

we can estimate the fundamental solution f and the solution for ∆ϕuβ = β.

More precisely, we can obtain an explicit formula for these functions:

(i) −∆ϕf = δ0 and lim|x|→∞ f(x) = 0 hold when we define

f(x) =

ˆ ∞
r

(ϕ′)−1(cs1−n) ds =

ˆ ∞
r

(ϕ∗)′(cs1−n) ds, where r = |x|.

(ii) For β ≥ 0, (with the condition uβ(0) = 0)

uβ(x) =

ˆ r

0

(ϕ′)−1

(
β

n
s

)
ds =

ˆ r

0

(ϕ∗)′
(
β

n
s

)
ds =

n

β
· ϕ∗

(
β

n
r

)
.

Similarly for β < 0, (with the condition uβ(x) = 0 on |x| = 1)

uβ(x) =

ˆ 1

r

(ϕ∗)′
(
−β
n
s

)
ds =

ˆ 1

r

(ϕ∗)′
(
|β|
n
s

)
ds

=
n

|β|
·
[
ϕ∗
(
|β|
n

)
− ϕ∗

(
|β|
n
r

)]
.

According to Lemma 3.4.1, β0 := sup{β; l(β) = 0} is well-defined, finite

and non-negative. Thus, we can define the corrector function wε as follows:

wε(x, ω) := inf
{
v(x); ∆ϕv ≤ β0 in D \ Tε, v ≥ 1 on Tε, v = 0 on ∂D \ Tε

}
.
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Then for almost surely ω ∈ Ω, we have that
∆ϕw

ε(x, ω) = β0 for x ∈ D \ Tε,
wε(x, ω) = 1 for x ∈ Tε,
wε(x, ω) = 0 for x ∈ ∂D \ Tε.

3.4.2 W 1,ϕ boundedness of {wε}

To show that {wε} is uniformly bounded in W 1,ϕ(D), we split the proof into

two parts: {wε} is uniformly bounded in Lϕ(D) and {∇wε} is also uniformly

bounded in Lϕ(D).

Proof. To prove the first part, we need to introduce an auxiliary function

v(x): let v be the solution to the following problem{
∆ϕv = β0 in D,

v = 0 on ∂D.

By comparison principle, for almost surely ω ∈ Ω,

v(x) ≤ wε(x, ω) ≤ 1 for a.e. x ∈ D.

Hence,
´
D
ϕ(|wε|) dx ≤ C, which implies that {wε} is uniformly bounded in

Lϕ(D).

To show that {∇wε} is also uniformly bounded in Lϕ(D), we define the

function hε as follows: first for each k ∈ Zn, define hεk be the ϕ-capacity

function of Baε(εk) with respect to Bε/2(εk). Then define hε =
∑

k∈Zn h
ε
k.

Obviously, wε − hε = 0 on Tε and ∂D. Hence, from integration by parts,

ˆ
Dε

β0(hε − wε) dx =

ˆ
Dε

∆ϕw
ε(hε − wε) dx

=

ˆ
Dε

ϕ′(|∇wε|)|∇wε| dx−
ˆ
Dε

ϕ′(|∇wε|)
|∇wε|

∇wε · ∇hε dx.

Then by Young’s inequality and the relation ϕ∗(ϕ′(t)) ∼ ϕ(t), we obtain
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that:∣∣∣∣ˆ
Dε

ϕ′(|∇wε|)
|∇wε|

∇wε · ∇hε dx

∣∣∣∣ ≤ δ

ˆ
Dε

ϕ∗(ϕ′(|∇wε|)) dx+ C(δ)

ˆ
Dε

ϕ(|∇hε|) dx

≤ cδ

ˆ
Dε

ϕ(|∇wε|) dx+ C(δ)

ˆ
Dε

ϕ(|∇hε|) dx.

Now using the relation ϕ′(t)t ∼ ϕ(t) and choosing δ > 0 small enough, we

have:

ˆ
Dε

ϕ(|∇wε|) dx ≤ C

ˆ
Dε

ϕ(|∇hε|) dx︸ ︷︷ ︸
=I

+

ˆ
Dε

β0|hε − wε| dx︸ ︷︷ ︸
=II

 .

(I) First integral: we need a uniform bound for
´
Dε
ϕ(|∇hε|) dx which is

independent of ε. Note that since we have defined hε in terms of ϕ-

capacity function,

ˆ
Dε

ϕ(|∇hε|) dx ∼
∑

k∈Zn∩ε−1D

capϕ(Baε(εk), Bε/2(εk)).

We chose aε(k, ω) so that capϕ(Baε(k,ω)(εk)) = γ(k, ω)εn ≤ γ̄εn. Also

the number of summands (i.e. capacity terms) is proportional to ε−n.

Thus, we conclude that

ˆ
Dε

ϕ(|∇hε|) dx ≤ C,

where C is a uniform constant.

(II) Second integral: Since |hε| ≤ 1 (recall that hε is a ϕ-capacity function)

and v ≤ wε ≤ 1, we obtain the uniform bound for the second integral.

This completes the proof.
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3.4.3 wε → 0 in Lϕ(D) as ε→ 0

To show that wε converges to zero strongly in Lϕ(D), we need to compare

the corrector wε with the auxiliary function vεβ0,D
. Indeed, we will compare

the function vεβ0,D
with the fundamental solution hεk, which will be defined at

Lemma 3.4.4, and then investigate the limiting behavior of vεβ0,D
as ε→ 0.

Lemma 3.4.4. (i) vεβ0,D
(x, ω) ≥ hεk(x, ω) − o(1) for a.e. x ∈ B ε

2
(εk) and

a.s. ω ∈ Ω, where hεk denotes the fundamental solution with singularity

at εk. More precisely,

hεk(x, ω) :=

ˆ ∞
r

(ϕ∗)′(cγ(k, ω)εns1−n) ds, where r = |x− εk|.

(ii) For any τ > 0, v̄εβ0+τ,D converges to 0 in Lϕ(D) as ε goes to 0 for a.s.

ω ∈ Ω, where v̄εβ0+τ,D is defined as follows:

vεβ0+τ,D := inf
{
v(x); ∆ϕv ≤ β0 + τ −

∑
k∈Zn

γ(k, ω)εnδ(x− εk) in D,

v ≥ 0 in D, v = 0 on ∂D
}
,

and let v̄εβ0+τ,D = min{vεβ0+τ,D, 1}.

Proof. (i) Let

b(k, ω) =

(
ncγ(k, ω)

β0

) 1
n

,

where the constant c is the same as in Lemma 3.4.1 (iii). Then we define

the function hεβ0,k
(x, ω) as follows: if b ≥ 1

2
, then

hεβ0,k
(x, ω) :=

{ ´ ε
2

r
(ϕ∗)′

(
cγ(k, ω)εns1−n − β0

n
s
)

ds, if 0 ≤ r ≤ ε
2
,

0, if r ≥ ε
2
,
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and if b ≤ 1
2
, then

hεβ0,k
(x, ω) :=

{ ´ bε
r

(ϕ∗)′
(
cγ(k, ω)εns1−n − β0

n
s
)

ds, if 0 ≤ r ≤ bε,

0, if r ≥ bε,

where r = |x− εk| and x ∈ Bε/2(εk).

If b ≥ 1
2
, then for a.e. x ∈ B ε

2
(εk) and almost surely ω ∈ Ω, we have

that

∆ϕh
ε
β0,k

(x, ω) = β0 − γ(k, ω)εnδ(x− εk),

and hεβ0,k
(x, ω) = 0 if |x − εk| = ε

2
. Thus, we can apply comparison

principle and as a result, for almost surely ω ∈ Ω,

hεβ0,k
(x, ω) ≤ vεβ0,D

(x, ω) a.e. x ∈ B ε
2
(εk).

We can prove the same result for the latter case (b ≤ 1
2
) using a similar

argument. Combining these two cases, for almost surely ω ∈ Ω, we have

hεβ0,k
(x, ω) ≤ vεβ0,D

(x, ω) a.e. x ∈ B ε
2
(εk).

Now by direct computation, we obtain that for almost surely ω ∈ Ω,

hεβ0,k
(x, ω) ≥ hεk(x, ω)− o(1) a.e. x ∈ B ε

2
(εk).

Therefore, for almost surely ω ∈ Ω, we conclude that

vεβ0,D
(x, ω) ≥ hεk(x, ω)− o(1) a.e. x ∈ B ε

2
(εk).

(ii) From the definition of {vεβ0+τ,D}, we know that for almost surely ω ∈ Ω,

∆ϕv
ε
β0+τ,D ≥ −

∑
k∈Zn∩ε−1D

γ(k, ω)εnδ(· − εk).
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Hence, by testing v̄εβ0+τ,D, we have

ˆ
B1

∆ϕv
ε
β0+τ,D · v̄εβ0+τ,D dx ≥ −

∑
k∈Zn∩ε−1D

γ(k, ω)εnv̄εβ0+τ,D(εk).

By part (i), we can easily check that v̄εβ0+τ,D(εk) = 1 for k ∈ Zn∩ε−1D.

Since ϕ′(t)t ∼ ϕ(t) and |{k ∈ Zn ∩ ε−1D}| ∼ ε−n, we obtain

ˆ
D

ϕ(|∇v̄εβ0+τ,D|) dx ≤ C,

where C is a universal constant. Therefore, {v̄εβ0+τ,D} is uniformly bounded

in W 1,ϕ
0 (D).

For almost surely ω ∈ Ω,

lim
ε→0

|{v̄εβ0+τ,D = 0} ∩Br(x0)|
|Br(x0)|

= l(β0 + τ) > 0,

for any Br(x0) ⊂ D. Thus, by a version of Poincaré inequality (see [31,

Lemma 4.8]), there exists a constant C = C(β0 + τ, n) such that

‖v̄εβ0+τ,D‖Lϕ(Br(x0)) ≤ Cr‖∇v̄εβ0+τ,D‖Lϕ(Br(x0)).

Since x0 can be arbitrarily chosen, by summing above inequality and

applying norm-modular relation, we obtain that:

ˆ
D

ϕ(|v̄εβ0+τ,D|) dx ≤ Cr.

Here we may choose r =
√
ε and follow the above argument. By letting

ε→ 0, and then we conclude that

lim
ε→0

ˆ
D

ϕ(|v̄εβ0+τ,D|) dx = 0.

Remark 3.4.5 (Capacity function). Here we will prove that, in fact, hεk
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defined in Lemma 3.4.4 (i) is the capacity function for Baε(k,ω)(εk). In other

words, we will show that lim|x|→∞ h
ε
k(x) = 0, hεk = 1 on ∂Baε , and

∆ϕh
ε
k = 0, in Rn \Baε .

Note that in Assumption 3.2.9 (i), we chose aε so that

capϕ(Baε(k,ω)(εk)) = εnγ(k, ω). (3.4.1)

Proof. Without loss of generality, we let k = 0 and hε := hε0. First as we

checked in Remark 3.4.2, we have that

∆ϕh
ε = −γεnδ0, in Rn.

In particular, we have ∆ϕh
ε = 0 for x ∈ Rn \ {0}. Moreover,

lim
|x|→∞

hε(x) = 0

follows directly from the definition of hε in Lemma 3.4.4 (i).

Finally, to prove that hεk = 1 on ∂Baε , choose bε > 0 so that

1 =

ˆ ∞
bε

(ϕ′)−1(cγ(k, ω)εns1−n) ds. (3.4.2)

Then hε is the capacity function for a set Bbε and so we have

capϕ(Bbε) =

ˆ
Rn\Bbε

|∇hε|ϕ′(|∇hε|) dx

=

ˆ ∞
bε

(cγεnr1−n) · (ϕ′)−1(cγεnr1−n)nωnr
n−1 dr

= γεn
ˆ ∞
bε

(ϕ′)−1(cγεnr1−n) dr = γεn

= capϕ(Baε).

Here we used a change of variables, c = 1
nωn

(Lemma 3.4.1 (iii)), (3.4.1),
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(3.4.2) and

|∇hε(x)| = (ϕ′)−1(cγεnr1−n), where r = |x|.

Therefore, we conclude that aε = bε and we finish the proof.

To finish the proof of wε → 0 in Lϕ(D), it remains to show that the

corrector wε has the same limiting property as v̄εβ0+τ,D. For this purpose, we

introduce a new auxiliary function wετ as follows: for any τ > 0,

wετ (x, ω) := inf
{
v(x) : ∆ϕv ≤ β0 + τ in Dε, v ≥ 1 on Tε and v = 0 on ∂D

}
.

Obviously, for almost surely ω ∈ Ω, wε(x, ω) ≥ wετ (x, ω) for a.e. x ∈ D and

{wετ} is also bounded in W 1,ϕ(D) by previous result. More precisely, {wετ}
satisfies the following property:

Proposition 3.4.6. (i) For almost surely ω ∈ Ω, we have

‖wε − wετ‖W 1,ϕ(D) → 0,

as τ → 0+.

(ii) For almost surely ω ∈ Ω, we have

lim
ε→0

ˆ
D

ϕ(|wετ |) dx = 0.

Proof. For simplicity, we write S : Rn → Rn by

S(Q) :=
ϕ′(|Q|)
|Q|

Q, where Q ∈ Rn.

(i) First by repeating the proof for W 1,ϕ(D) boundedness of wε (see Sec-

tion 3.4.2), we know that wετ is uniformly bounded in W 1,ϕ(D) when

τ ∈ (0, 1). Moreover, since wετ − wε ∈ W
1,ϕ
0 (D), we can use it as a test

99



CHAPTER 3. RANDOM HOMOGENIZATION OF ϕ-LAPLACE
EQUATIONS

function:

−τ
ˆ
D

(wετ − wε) dx = −
ˆ
D

(∆ϕw
ε
τ −∆ϕw

ε) · (wετ − wε) dx

=

ˆ
D

(S(∇wετ )− S(∇wε)) · (∇wετ −∇wε) dx.

Recalling the proof in Section 3.4.2, we know that {wετ−wε} is bounded

in L∞(D) when τ ∈ (0, 1). This yields that

ˆ
D

(S(∇wετ )− S(∇wε)) · (∇wετ −∇wε) dx→ 0,

when τ → 0+. Therefore, by [54, Theorem 4], we conclude that

wετ → wε in W 1,ϕ(D),

when τ → 0+.

(ii) We follow the proof of Proposition 3.3. in [77]: decompose the function

wετ into

wετ = (wετ )+ − (wετ )−,

and then estimate each part. First by Lemma 3.4.4 (i), Remark 3.4.5,

and comparison principle (between vεβ0+τ,D + o(1) and wετ in Dε), we

know

0 ≤ (wετ )+ ≤ v̄εβ0+τ,D + o(1).

Therefore, applying Lemma 3.4.4 (ii), we obtain

lim
ε→0

ˆ
D

ϕ((wετ )+) dx = 0.

Next, to estimate the negative part (wετ )−, we may assume that

sup
Bε/2(εk)

(wετ )− > 0.
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Since ∆ϕw
ε
τ = β0 +τ in Dε, then wετ is continuous in D and so is (wετ )−.

Thus, for small ε > 0, we can apply Harnack inequality, Lemma 3.2.17,

to (wετ )−, in a ball with a radius R = ε → 0. However, note that the

constants N and L in Lemma 3.2.17 do not depend on ε > 0. Therefore,

we have that for a.s. ω ∈ Ω,

sup
Bε/2(εk)

(wετ )− = o(1),

which implies that

lim
ε→0

ˆ
D

ϕ((wετ )−) dx = 0.

Therefore, combining two results above, we conclude that

lim
ε→0

ˆ
D

ϕ(|wετ |) dx = 0.

Hence, by Proposition 3.4.6, we have that

lim
ε→0

ˆ
D

ϕ(|wε|) dx = 0.

Thereofore, we can select a subsequence from {wε} which converges to zero

weakly in W 1,ϕ(D).

3.5 Proof of Lemma 3.3.5 and Lemma 3.3.12

3.5.1 Proof of Lemma 3.3.5

Proof. (i) Without loss of generality, we assume that η ∈ D(D) and η ≥ 0 on

D. Let θ be in (0, 1). To prove property (i), we need to prove the two facts:

lim sup
ε→0

ˆ
D∩{wε≤θ}

ψ1(|∇wε|)η dx ≤ C(β0, η)θ
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and

lim sup
ε→0

ˆ
D∩{wε>θ}

ψ1(|∇wε|)η dx = 0

In fact, if we let wεθ = (θ − wε)+, then wεθη ∈ W
1,ϕ
0 (D) and wεθη converges to

θη weakly in W 1,ϕ
0 (D). Moreover, since θ < 1, wεθ = 0 on the holes Tε. Hence,

from integration by parts,

lim
ε→0

ˆ
D

ϕ′(|∇wε|)
|∇wε|

∇wε · ∇(wεθη) dx = −β0θ

ˆ
D

η dx.

which implies

lim
ε→0

{ˆ
D∩{wε≤θ}

|∇wε|ϕ′(|∇wε|)η dx−
ˆ
D∩{wε≤θ}

ϕ′(|∇wε|)
|∇wε|

∇wε · ∇η wεθ dx
}

= β0θ

ˆ
D

η dx

Applying Hölder’s inequality, we have∣∣∣∣ˆ
D∩{wε≤θ}

ϕ′(|∇wε|)
|∇wε|

∇wε · ∇η wεθ dx

∣∣∣∣ ≤ ˆ
D∩{wε≤θ}

ϕ′(|∇wε|) · |∇η|wεθ dx

≤ C(η)‖ϕ′(|∇wε|)‖ϕ∗‖wεθ‖ϕ.

Recalling the norm-modular relation and the relation ϕ∗(ϕ′(t)) ∼ ϕ(t), we

obtain

‖ϕ′(|∇wε|)‖ϕ∗ ≤
ˆ
D

ϕ∗(ϕ′(|∇wε|)) dx+ 1 ≤ C

ˆ
D

ϕ(|∇wε|) dx+ 1 ≤ C.

Then using wεθ ⇀ θ weakly in W 1,ϕ(D) and the definition of the Orlicz space

norm,

lim
ε→0
‖wεθ‖ϕ = ‖θ‖ϕ ≤ Cθ.

Thus,

lim sup
ε→0

ˆ
D∩{wε≤θ}

|∇wε|ϕ′(|∇wε|)η dx ≤ C(β0, η)θ,
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which implies

lim sup
ε→0

ˆ
D∩{wε≤θ}

ϕ(|∇wε|)η dx ≤ C(β0, η)θ,

by tϕ′(t) ∼ ϕ(t).

Now let ψ2 be an N-function such that ψ2(ψ1(t)) ∼ ϕ(t), for uniformly in

t > 0. Then by Hölder’s inequality, we have that

ˆ
D∩{wε≤θ}

ψ1(|∇wε|)η dx ≤ 2‖√ηψ1(|∇wε|)χD∩{wε≤θ}‖ψ2 · ‖
√
η‖ψ∗2

≤ 2

(ˆ
D∩{wε≤θ}

ψ2(
√
ηψ1(|∇wε|)) dx

)1/pψ2

· ‖√η‖ψ∗2

≤ c(η, ψ2)

(ˆ
D∩{wε≤θ}

ϕ(|∇wε|)η̃ dx

)1/pψ2

.

Thus, we conclude that

lim sup
ε→0

ˆ
D∩{wε≤θ}

ψ1(|∇wε|)η dx ≤ C(η, ψ2, ϕ, β0)θ
1
pψ2 .

Similarly for the integral
´
D∩{wε>θ} ψ1(|∇wε|)η dx, we again apply Hölder’s

inequality, then

ˆ
D∩{wε>θ}

ψ1(|∇wε|)η dx ≤ 2‖√ηψ1(|∇wε|)‖ψ2 · ‖
√
ηχD∩{wε>θ}‖ψ∗2

Here the sequence {wε} is uniformly bounded in W 1,ϕ(D) and

lim
ε→0

ˆ
D∩{wε>θ}

η̃ dx = 0.

This implies

lim sup
ε→0

ˆ
D∩{wε>θ}

ψ1(|∇wε|)η dx = 0.

103



CHAPTER 3. RANDOM HOMOGENIZATION OF ϕ-LAPLACE
EQUATIONS

Therefore,

lim sup
ε→0

ˆ
D

ψ1(|∇wε|)η dx ≤ C(η, ψ2, ϕ, β0)θ
1
pψ2 .

Since θ is an arbitrarily small positive number, we conclude that

lim
ε→0

ˆ
D

ψ1(|∇wε|)η dx = 0.

(ii) Let η ∈ D(D). Then since η(1 − wε) ∈ D(D) and from integration by

parts,

ˆ
D

β0η(1− wε) dx =

ˆ
D

∇ · S(∇wε) η(1− wε) dx

=

ˆ
D

∇η · S(∇wε)(wε − 1) dx+

ˆ
D

ηS(∇wε) · ∇wε dx.

Since wε goes to 0 weakly in W 1,ϕ(D),

lim
ε→0

β0

ˆ
D

η(1− wε) dx =

ˆ
D

β0η dx.

Recall that wε converges to 0 strongly in Lϕ(D) and {∇wε} is bounded in

Lϕ(D). Hence, by Hölder’s inequality, we have that

lim
ε→0

∣∣∣∣ˆ
D

∇η · S(∇wε)wε dx

∣∣∣∣ ≤ c(η)

ˆ
D

ϕ′(|∇wε|)|wε| dx = 0.

Finally, by part (i), we know that (let ψ1(t) = ϕ′(t) and ψ2(t) = ϕ∗(t).)

lim
ε→0

∣∣∣∣ˆ
D

∇η · S(∇wε) dx

∣∣∣∣ ≤ ˆ
D

|∇η|ϕ′(|∇wε|) dx = 0.

Therefore,

lim
ε→0

ˆ
D

ηS(∇wε) · ∇wε dx =

ˆ
D

β0η dx.
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(iii) From integration by parts, we have that

−
ˆ
D

β0v
εη = −

ˆ
D

∇ · S(∇wε) vεη

=

ˆ
D

ηS(∇wε) · ∇vε +

ˆ
D

vεS(∇wε) · ∇η.

Since {vε} is bounded in W 1,ϕ
0 (D) with qϕ < n, by Sobolev embedding theo-

rem (see [32, Corollary 6.3.4]), {vε} is bounded in Lψ(D) for an N-function

ψ which satisfies

t−
1
nϕ−1(t) ∼ ψ−1(t). (3.5.1)

Hence, by Hölder’s inequality,∣∣∣∣ˆ
D

vεS(∇wε) · ∇η
∣∣∣∣ ≤ 2‖vε‖ψ‖ϕ′(∇wε)∇η‖ψ∗ .

Then by applying part (i), (let ψ1 = ψ∗ ◦ ϕ′ and ψ2 = ϕ∗ ◦ (ψ∗)−1.)

lim
ε→0
‖ϕ′(∇wε)∇η‖ψ∗ = 0.

Note that (3.5.1) ensures that ψ2 is an N-function. (see [32, Theorem 2.4.10].)

Therefore,

lim
ε→0

ˆ
D

S(∇wε) · ∇vεη dx = −
ˆ
D

β0vη dx.

3.5.2 Proof of Lemma 3.3.12

For a general N-function ϕ, we cannot expect that ϕ has a multiplicative

property. Here a function f is said to have a multiplicative property if there

exists a constant C > 0 such that f(xy) = Cf(x)f(y), for any x, y > 0.

Note that for p-Laplacian case (ϕ(t) = tp), we have a multiplicative property

with C = 1. Thus, we can separate the solution uε and the test function η

within the function ϕ and apply Lemma 3.3.5 directly. However, to prove
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Lemma 3.3.12 for a general N-function ϕ, we need some revised version of

part (ii), (iii) in Lemma 3.3.5:

Lemma 3.5.1. Let wε be a corrector function defined in Lemma 3.3.5.

(i) There exists a function h : [0,∞)→ [0,∞) such that

lim
ε→0
∇ ·
(
ϕ′(|∇wε|η)

|∇wε|
∇wε

)
= h(η), (in distribution sense)

for any η ∈ D(D), with η ≥ 0.

(ii) For any η ∈ D(D) with η ≥ 0,

lim
ε→0

ˆ
D

ϕ′(|∇wε|η)|∇wε|η dx =

ˆ
D

ηh(η) dx.

(iii) For any sequence {vε} ⊂ W 1,ϕ
0 (D) with the property: vε → v weakly in

W 1,ϕ
0 (D) as ε→ 0 and vε = 0 on Tε and any η ∈ D(D) with η ≥ 0, we

have that

lim
ε→0

ˆ
D

ϕ′(|∇wε|η)

|∇wε|
∇wε · ∇vε dx = −

ˆ
D

vh(η) dx.

Proof. (i) Follow the proof of Lemma 3.3.8 and recall that wε → 0 strongly

in Lϕ(D).

(ii), (iii) Follow the proof of part (ii), (iii) in Lemma 3.3.5. The only difference

is using

lim
ε→0
∇ ·
(
ϕ′(|∇wε|η)

|∇wε|
∇wε

)
= h(η),

instead of

∇ ·
(
ϕ′(|∇wε|)
|∇wε|

∇wε
)

= β0.
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Lemma 3.5.2. For an N-function ϕ, we have

ϕ′(t)t− ϕ∗(ϕ′(t)) = ϕ(t),

for all t ≥ 0.

Proof. Recall the definition of ϕ∗:

ϕ∗(t) := sup
s≥0

(st− ϕ(s)).

In particular, it yields

ϕ∗(ϕ′(t)) := sup
s≥0

(sϕ′(t)− ϕ(s)).

If we denote f(s) := sϕ′(t) − ϕ(s), then f ′(s) = ϕ′(t) − ϕ′(s). Since ϕ′ is

increasing function, we know that f attains its maximum at s = t. It finishes

the proof.

Proof of Lemma 3.3.12. Let us decompose uε = uε+− uε−. Obviously, we

have (up to subsequence, if necessary)

lim inf
ε→0

I[uε] = lim
ε→0

I[uε],

and uε± ⇀ u0
± weakly in W 1,ϕ(D), respectively. Here note that

ˆ
D

ϕ(|∇uε|) dx =

ˆ
D

ϕ(|∇uε+|) dx+

ˆ
D

ϕ(|∇uε−|) dx,

and ˆ
D

ϕ(|∇u0|) dx =

ˆ
D

ϕ(|∇u0
+|) dx+

ˆ
D

ϕ(|∇u0
−|) dx.

For uε+, we apply the classical lower semicontinuity property ([23]):

lim inf
ε→0

ˆ
D

ϕ(|∇uε+|) dx ≥
ˆ
D

ϕ(|∇u0
+|) dx.
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In order to prove Lemma 3.3.12, we need to show the following revised lower

semicontinuity property:

lim inf
ε→0

ˆ
D

ϕ(|∇uε−|) dx ≥
ˆ
D

ϕ(|∇u0
−|) dx+

ˆ
D

g(u0
−) dx.

Let θ > 0 be any small positive number and η is a test function in D(D).

Firstly, we claim that

lim inf
ε→0

ˆ
wε≤θ

ϕ(|∇uε−|) ≥
ˆ
D

ϕ′(|∇η|)
|∇η|

∇η · ∇u0
− −
ˆ
D

ϕ∗(ϕ′(|∇η|)). (3.5.2)

In fact, from Young’s inequality, we have

ˆ
wε≤θ

ϕ′(|∇η|)
|∇η|

∇η · ∇uε− ≤
ˆ
wε≤θ

ϕ(|∇uε−|) +

ˆ
wε≤θ

ϕ∗(ϕ′(|∇η|)).

Since wε converges to 0 weakly in W 1,ϕ(D), then |{wε > θ}| → 0 as ε goes

to 0. Hence,

lim
ε→0

ˆ
wε>θ

ϕ(|∇η|) dx = 0,

which implies that (by Hölder’s inequality and equivalence of norm-modular

convergence)

lim
ε→0

ˆ
wε>θ

ϕ′(|∇η|)
|∇η|

∇η · ∇uε− dx = 0.

Since uε− converges to u0
− weakly in W 1,ϕ(D), we obtain the estimate (3.5.2).

Next, we will prove that for a test function η with η ≥ 0,

ˆ
wε>θ

ϕ(|∇uε−|) dx ≥ −
ˆ
D

ϕ∗(ϕ′(|∇wε|η)) dx

−
ˆ
D

ϕ′(|∇wε|η)

|∇wε|
∇wε · ∇uε− dx− Cθ − f(θ).

(3.5.3)

Indeed, by Young’s inequality, we have

−
ˆ
wε>θ

ϕ′(|∇wε|η)

|∇wε|
∇wε · ∇uε− ≤

ˆ
wε>θ

ϕ∗(ϕ′(|∇wε|η)) +

ˆ
wε>θ

ϕ(|∇uε−|).
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Then by the proof of part (i) of Lemma 3.3.5,

ˆ
wε<θ

ϕ∗(ϕ′(|∇wε|η)) dx ≤ Cθ,

and by Hölder’s inequality,∣∣∣∣ˆ
wε<θ

ϕ′(|∇wε|η)

|∇wε|
∇wε · ∇uε− dx

∣∣∣∣ ≤ 2‖ϕ′(|∇wε|η)χ{wε<θ}‖ϕ∗‖∇uε−‖ϕ =: f(θ).

Here f(θ)→ 0 when θ → 0, since

(i) {uε−} is uniformly bounded in W 1,ϕ(D),

(ii)
´
wε<θ

ϕ∗(ϕ′(|∇wε|η)) dx ≤ c
´
wε<θ

ϕ(|∇wε|)η̃ dx ≤ Cθ, and so the mod-

ular converges to 0 when θ → 0. By the equivalence of norm-modular

convergence, we know ‖ϕ′(|∇wε|η)χ{wε<θ}‖ϕ∗ → 0 when θ → 0.

Thus, the estimate (3.5.3) follows. Letting ε→ 0 in (3.5.3), we have:

lim inf
ε→0

ˆ
wε>θ

ϕ(|∇uε−|) dx ≥ − lim sup
ε→0

ˆ
D

ϕ∗(ϕ′(|∇wε|η)) dx

− lim sup
ε→0

ˆ
D

ϕ′(|∇wε|η)

|∇wε|
∇wε · ∇uε− dx− Cθ − f(θ).

Here by applying part (iii) of Lemma 3.5.1, we obtain

lim sup
ε→0

ˆ
D

ϕ′(|∇wε|η)

|∇wε|
∇wε · ∇uε− dx = −

ˆ
D

u0
−h(η) dx.

Moreover, using Lemma 3.5.2, we have

ϕ∗(ϕ′(|∇wε|η)) = ϕ′(|∇wε|η)|∇wε|η − ϕ(|∇wε|η),

and thus applying Lemma 3.3.8 and part (ii) of Lemma 3.5.1, we conclude

that

lim sup
ε→0

ˆ
D

ϕ∗(ϕ′(|∇wε|η)) dx =

ˆ
D

ηh(η) dx−
ˆ
D

g(η) dx.
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Therefore, we obtain the following estimate:

lim inf
ε→0

ˆ
wε>θ

ϕ(|∇uε−|) dx ≥
ˆ
D

(u0
− − η)h(η) dx+

ˆ
D

g(η) dx− Cθ − f(θ).

(3.5.4)

We now combine two estimates (3.5.2) and (3.5.4) to derive

lim inf
ε→0

ˆ
D

ϕ(|∇uε−|) dx ≥
ˆ
D

ϕ′(|∇η|)
|∇η|

∇η · ∇u0
− dx−

ˆ
D

ϕ∗(ϕ′(|∇η|)) dx

+

ˆ
D

(u0
− − η)h(η) dx+

ˆ
D

g(η) dx.

In particular, by setting η = u0
− (since the test functions are dense in

W 1,ϕ
0 (D)), we conclude (applying Lemma 3.5.2)

lim inf
ε→0

ˆ
D

ϕ(|∇uε−|) dx ≥
ˆ
D

ϕ(|∇u0
−|) dx+

ˆ
D

g(u0
−) dx,

which finishes the proof.
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Chapter 4

Random Homogenization of

Fully Nonlinear Elliptic

Equations with Highly

Oscillating Obstacles

4.1 Introduction

This chapter is devoted to the random homogenization of fully nonlinear

equations with highly oscillating random obstacles, via a viscosity method.

To state our main theorem, let (Ω,F ,P) be a given probability space. For

every ω ∈ Ω and every ε > 0, we consider a domain Dε(ω) obtained by

perforating holes from an open, bounded domain D of Rn. We denote by

Tε(ω), the set of holes (i.e. Dε(ω) = D \ Tε(ω)) and impose two assumptions

on Tε(ω), namely Assumption 4.2.1 and Assumption 4.2.2, which will be

stated later. Moreover, let us consider a special smooth function ϕ(x) in D

such that ϕ ≤ 0 on ∂D and ϕ > 0 in some region of D. Then we are going to

consider highly oscillating obstacles ϕε(x) which are zero in Dε(ω) and ϕ(x)
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on holes Tε(ω), i.e.

ϕε(x) :=

{
ϕ(x) if x ∈ Tε(ω),

0 otherwise.

Now we consider the standard obstacle problem asking the least viscosity

supersolution of Laplacian operator above the given oscillating obstacle:
∆uε ≤ 0 in D,

uε(x) = 0 on ∂D,

uε(x) ≥ ϕε(x) in D.

(Lε)

The concept of viscosity solution and its regularity can be found in [14]. Then

our main theorem concerning the Laplacian operator is the following:

Theorem 4.1.1. Let uε be the least viscosity supersolution of (Lε).

(i) There is a continuous function u such that uε ⇀ u in D with respect

to Lp-norm, for p > 0, and for any δ > 0, there is a subset Dδ ⊂ D

and ε0 such that for 0 < ε < ε0, uε → u uniformly in Dδ as ε→ 0 and

|D \Dδ| < δ.

(ii) There exists a critical value β0 > 0 such that u is a viscosity solution

of {
∆u+ β0(ϕ− u)+ = 0 in D,

u = 0 on ∂D.
(L)

Here the critical value β0 can be interpreted as a capacity-like quantity;

see [12] for details. Moreover, a viscosity method for the Laplacian case can

be extended to a general class of fully nonlinear operators. More precisely, we

will consider a fully nonlinear operator F , which satisfies two assumptions

(F1) and (F2) stated in Chapter 2. Then we will deal with the fully nonlinear
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version of equation (Lε): find the least viscosity supersolution uε such that
F (D2uε(x)) ≤ 0 in D,

uε = 0 on ∂D,

uε(x) ≥ ϕε(x) in D.

(Fε)

Then our main theorem concerning the fully nonlinear operator is the fol-

lowing:

Theorem 4.1.2. Let uε be the least viscosity supersolution of (Fε).

(i) There is a continuous function u such that uε ⇀ u in D with respect

to Lp-norm, for p > 0, and for any δ > 0, there is a subset Dδ ⊂ D

and ε0 such that for 0 < ε < ε0, uε → u uniformly in Dδ as ε→ 0 and

|D \Dδ| < δ.

(ii) There exists a fully nonlinear, uniformly elliptic operator F such that

u is a viscosity solution of{
F (D2u, (ϕ− u)+) = 0 in D,

u = 0 on ∂D.
(F )

We summarize the main steps of this chapter and explain related key

features briefly.

(i) (The critical value β0) In the stationary ergodic environment, the deter-

mination of the critical value β0 is performed by an application of the

subadditive ergodic theorem. For this purpose, we define a proper con-

tact set (often with zero obstacle) of some auxiliary functions so that the

measure of a contact set has a subadditive property. For the equations

with divergence structure [15, 57, 77], this process has been done by

considering the Dirac-delta distribution δ0. Unfortunately, the inherent

lack of divergence structure (i.e. integration by parts) prevents us from

employing similar techniques. To overcome this obstruction, our idea
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is to approximate the homogeneous solution in the sense of “shape”,

which enables us to define auxiliary functions without the notion of δ0.

We now denote two auxiliary functions, namely, free solutions wβ,σ,A and

obstacle solutions vβ,σ,A (see Section 4.4 for precise definitions). To find

the critical value β0, we further have to check the convergence of these

functions when σ → 0. Unlike the linear case, there is no monotone

property for the fully nonlinear case; however, such difficulty could be

overcome by the isolated singularity theorem, Theorem 4.4.11. In short,

this theorem guarantees that a singular solution must behave like the

corresponding homogeneous solution, near an isolated singularity. With

the help of Theorem 4.4.11 and Arzela-Ascoli theorem, we derive the

existence and uniqueness of such limit function.

(ii) (Properties of a corrector wε) After determining the critical value β0,

we define a corrector wε (see Section 4.5 for precise definitions). Here we

require two properties for wε to finish the proof of our main theorem:

(P1) limε→0w
ε = 0 away from each hole;

(P2) wε = 1 (or wε ≈ 1, see Section 4.5) on the boundary of each hole.

Note that (P2) is trivial by the definition of wε. Our strategy is to check

these properties for the auxiliary functions wεβ,A := limε→0w
ε
β,σ,A and

vεβ,A := limε→0 v
ε
β,σ,A first, and then transport the convergence prop-

erty (P1) to the corrector wε via the comparison principle. Indeed, we

show that the auxiliary functions satisfy (P1) and (P2) by studying the

theory for obstacle problems and singular solutions, together with the

criticality of β0. More precisely, we discover the “spreading effect” of

obstacle solutions using the quadratic growth of obstacle problems and

construct appropriate barriers using the behavior of (approximated) ho-

mogeneous solutions. Again, although the linear case is fairly straight-

forward, an additional challenge occurs for the fully nonlinear case; the

Alexandrov-Backelman-Pucci estimate (for viscosity solutions) and the

stability of coincidence sets (for obstacle problems) will help us.
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This chapter is organized as follows. In Section 4.2, we investigate the

behavior of uε away from holes, and as a consequence, we derive the con-

vergence of uε to the homogenized solution u. Section 4.3 is devoted to the

explanation of a homogeneous solution and its C1,1-approximation in the

sense of “shape”. In Section 4.4, we define free solutions wβ,σ,A and obstacle

solutions vβ,σ,A, and prove the convergence of these auxiliary functions when

σ → 0. Then we conclude that the critical value β0 is well-defined by the sub-

additive ergodic theorem. In Section 4.5, we justify two properties of wβ,σ,A,

and transport the information to the corrector wε, which enables us to finish

the proof for our main theorem. Note that to clarify the difficulties coming

from nonlinearity, we deal with the Laplacian case and the fully nonlinear

case in consecutive order within each section.

4.2 Estimates and Convergence

Let us make precise assumptions on the holes

Tε(ω) =
(
∪k∈ZnBaε(r(k,ω))(εk)

)
∩D,

where the size of hole is determined randomly, but the center of hole is

periodically distributed.

Assumption 4.2.1. For all k ∈ Zn and a.e. ω ∈ Ω, there exists γ(k, ω)

(independent of ε) such that

aε(r(k, ω))α
∗

= εα
∗+2γ(k, ω),

where α∗ denotes the scaling exponent of F and aε(r) = rε
α∗+2
α∗ . Moreover,

we assume that there exists a constant γ > 0 :

γ(k, ω) ≤ γ for all k ∈ Zn and a.e. ω ∈ Ω.
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Assumption 4.2.2. The process γ : Zn × Ω 7→ [0,∞) is stationary ergodic.

Recall Assumption 3.3.2.

Remark 4.2.3. In this chapter, we will concentrate on the non-trivial case

with critical hole size aε ≈ ε
α∗+2
α∗ so that the limit solution satisfies an effective

equation without obstacles. In fact, the behavior of limit solution u can be

different (but trivial) if the radius of holes aε is not critical. See [12] for

details.

We now derive the estimate for the oscillation of uε on ∂Bbε(k) where

bε is chosen to have an intermediate growth rate between ε and aε. We first

consider the Laplacian case.

Lemma 4.2.4. Set bε(k, ω) = (εaε(k, ω))1/2 where aε(k, ω) ≈ ε
n
n−2 is the

critical rate. Then

osc
∂Bbε (k)

uε = o(εγ)

for k ∈ εZn ∩ suppϕ and for some 0 < γ < 1.

Proof. See [12, Lemma 3.4] or [48, Lemma 2.9] for proof.

Next, we control the behavior of uε in D \ (∪k∈ZnBbε(k)) by constructing

appropriate barrier functions h±ε and applying the comparison principle with

uε. This kind of idea was also employed in [36], which do not require the size

of perforating holes to be identical. Note that in the periodic setting, similar

results follows from the discrete gradient estimate [12, 48]; if we define

∆eiuε :=
uε(x+ εei)− uε(x)

ε
for unit vector ei ∈ Rn,

then there exists a uniform constant C > 0 such that

|∆euε| < C. (4.2.1)
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Lemma 4.2.5. For ε ∈ (0, 1), let h±ε be the solutions of the Dirichlet problem
∆h±ε = 0 in D \ (∪k∈ZnBbε(k)),

h±ε = 0 on ∂D,

h+
ε (x) = sup∂Bbε (k) uε

h−ε (x) = inf∂Bbε (k) uε for x ∈ ∂Bbε(k) where k ∈ Zn.

Then h±ε have the following properties:

(i) 0 ≤ h−ε ≤ uε ≤ h+
ε .

(ii) h±ε ∈ C2,α; in particular, we have

|h±ε (x)− h±ε (y)| ≤ C|x− y|α,

for any α ∈ (0, 1) and any x, y ∈ D \ (∪k∈ZnBbε(k)).

(iii) h+
ε − h−ε ≤ maxk∈Zn osc∂Bbε (k) uε.

Proof. (i) It follows directly from the construction of h±ε and the compar-

ison principle with uε.

(ii) Since the boundary data for h±ε are clearly in Cα for any α ∈ (0, 1), the

desired result follows from the boundary C2,α-estimate; for example, see

[30].

(iii) The maximum principle for h+
ε − h−ε yields the inequality.

We also need the following version of Arzela-Ascoli theorem, whose proof

is a simple modification of the original one. In short, the equicontinuous

assumption in Arzela-Ascoli theorem can be relaxed to “almost equicontinu-

ity”.

Lemma 4.2.6 (Arzela-Ascoli theorem). Let A be a compact subset of Rn.

Suppose that a sequence of functions {fl}l∈N defined on A satisfies
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(i) (Uniformly bounded) There exists a constant M > 0 such that

|fl(x)| ≤M,

for any l ∈ N and x ∈ A.

(ii) (Almost equicontinuous) There exists a constant α ∈ (0, 1), C > 0 and

a function g : N→ R≥0 such that liml→∞ g(l) = 0 and

|fl(x)− fl(y)| ≤ C|x− y|α + g(l),

for any x, y ∈ A.

Then there exists a subsequence {flk}k∈N which converges uniformly on A.

Moreover, if we denote the limit function by f , then f ∈ Cα(A).

Theorem 4.2.7 (Uniform convergence). There is a continuous function u

such that uε → u weakly in D with respect to Lp-norm for any p > 0. Also for

any δ > 0, there is a subset Dδ ⊂ D and a sequence {εl}l∈N such that εl > 0,

liml→∞ εl = 0 and uεl → u uniformly in Dδ as l→∞ and |D \Dδ| < δ.

Proof. See [12] and [48] for detailed proof. Here the only difference occurs

when applying the discrete gradient estimate in the references. More pre-

cisely, the absence of periodicity in stationary ergodic setting prevents us from

achieving the discrete gradient estimate (4.2.1). Nevertheless, Lemma 4.2.4

and Lemma 4.2.5 provides the “almost equicontinuity” of uε, i.e.

|uε(x)− uε(y)| = uε(x)− uε(y) ≤ h+
ε (x)− h−ε (y)

≤ h+
ε (x)− h+

ε (y) + h+
ε (y)− h−ε (y)

≤ C|x− y|α + max
k∈Zn

osc
∂Bbε (k)

uε

≤ C|x− y|α + o(εγ),

for any x, y ∈ D \ (∪k∈ZnBbε(k)) where we assumed uε(x) ≥ uε(y) without

loss of generality. Then we can apply the modified Arzela-Ascoli theorem,
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Lemma 4.2.6, for uε and finish the proof following the previous references.

Remark 4.2.8. Note that the argument for the Laplacian operator in this

section can be repeated for the uniformly elliptic, fully nonlinear operator

F . Indeed, we only used the comparison principle, boundary Cα-estimate,

Harnack inequality, and oscillation lemma which still hold for F ; for example,

see [18] and [14].

In conclusion, we presented the proof for the first part of Theorem 4.1.1

and Theorem 4.1.2, which concerns the convergence of uε to the limit function

u. In the remaining of this chapter, we will concentrate on the second part of

our main theorems by constructing a proper corrector and investigating its

properties.

4.3 The Approximation of a Homogeneous

Solution

To determine the critical value β0, the essential step is to define the cor-

responding subadditive quantity since the size of hole is not identical, but

random. In the papers [15] (for Laplacian case), [77] (for p-Laplacian case)

and [57] (for ϕ-Laplacian case), they described the subadditive quantity in

terms of Dirac-delta distribution δ0 and proved the properties of correctors

using an energy method. However, this approach is not suitable for our case,

because the operators that we consider do not have the divergence structure.

Hence, we concentrate on the non-divergence structure of F ; in particular,

we will capture its “shape” and employ a viscosity method to verify the

properties of correctors.

4.3.1 A Homogeneous Solution

The starting point is a homogeneous solution for F , a uniformly elliptic

fully nonlinear operator being homogeneous of degree one. We recall that
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Lemma 2.1.1 explains the existence, uniqueness, and behaviors of a homoge-

neous solution for F .

Remark 4.3.1. (i) Throughout this chapter, we denote a homogeneous

solution by Φ, instead of V in Chapter 2.

(ii) In the remaining of this chapter, we concentrate on the case α∗ > 0

(which corresponds to n ≥ 3 in the Laplacian case) to simplify the

statement. Indeed, the same argument can be applied to α∗ = 0 (which

corresponds to n = 2 in the Laplacian case) and α∗ < 0 (which corre-

sponds to n = 1 in the Laplacian case).

(iii) Since F is positively homogeneous of degree one, we have aΦ + b is

again a homogeneous solution for a > 0, b ∈ R and a homogeneous

solution Φ. In the remaining of this chapter, we fix the ‘normalized’

homogeneous solution Φ by

Φ(x) = |x|−α∗Φ
(
x

|x|

)
=: |x|−α∗φ(θ), for θ =

x

|x|
∈ Sn−1,

where φ is chosen so that minθ∈Sn−1 φ(θ) = 1. Note that here we nor-

malize a homogeneous solution in the sense of the ‘height’ (at |x| = 1)

while in the Laplacian case, we typically normalize in the sense of ‘mass’

(i.e. measure): −∆Φ = δ0.

4.3.2 Approximation of a Homogeneous Solution

In divergence case, it is natural to approximate the Dirac-delta measure δ0

by measurable functions {fσ}. More precisely, we define

fσ(x) =
1

|Bσ|
χBσ(x),

for any σ > 0 and let a regularized homogeneous solution Φσ by the solution

of TΦσ = fσ in Rn, where T is a uniformly elliptic operator with divergence
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structure. Then Φσ → Φ in L1(Rn) and fσ → δ0 in distribution sense as

σ → 0+.

In non-divergence case, we do not have the corresponding measure such

as the Dirac-delta δ0. In other words, it is difficult to define F (D2Φ) in the

whole space Rn, while we know that F (D2Φ) = 0 in Rn \ {0}; see [51].

Thus, instead of measure-sense, we focus on the ‘shape’ of Φ; we define an

approximated homogeneous solution Φσ for σ > 0 by

Φσ =

{
Φ in Rn \Baσ ,

Wσ in Baσ ,

where Φ is the normalized homogeneous solution and Wσ, aσ will be deter-

mined later. (note that a radius aσ must converge to zero when σ → 0.) Then

we define a corresponding function νσ by

νσ := −F (D2Φσ) in Rn.

Since Φσ = Φ in Bc
aσ and Φ is a homogeneous solution, we immediately have

that νσ ≡ 0 in Bc
aσ and so supp νσ ⊂ Baσ .

Laplacian case

Continuing to the argument above, we can define a radius aσ and an ap-

proximated homogeneous solution Wσ. Note that for the Laplacian case, we

have α∗ = n − 2 and so the normalized homogeneous solution is given by

Φ(x) = |x|2−n. On the other hand, we see that the radius of hole aε is as-

sumed to comparable to εn/(n−2). Since the corrector wε will be constructed

so that wε ≈ 1 near ∂Tε (see Section 4.5), we require the homogeneous solu-

tion Φ(x) ≈ ε−2 near |x| = aε = aε/ε. Here we need to distinguish the scale

ε and the scale 1.

Therefore, we let aσ := σ
2

n−2 and determine a quadratic polynomial Wσ
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which is rotationally symmetric and satisifes

Wσ(x) = Φ(x) and ∇Wσ(x) = ∇Φ(x),

if |x| = aσ. Indeed, for σ > 0, we set

Φσ(x) :=

{
Φ(x) = |x|2−n |x| ≥ aσ,

Wσ(x) = −mσ|x|2 + kσ |x| < aσ,

where mσ = n−2
2
σ
−2n
n−2 and kσ = n

2
σ−2. Then Φσ ∈ C1,1(Rn) and it follows

that

∆Φσ(x) = −νσ(x) :=

{
0 |x| ≥ aσ,

−2nmσ |x| < aσ.

On the other hand, by its construction, we immediately have that

Φσ → Φ as σ → 0,

locally uniformly on Rn \ {0}. Moreover, for 0 < σ1 ≤ σ2,

Φσ1 = Φσ2 in Bc
aσ2
, (4.3.1)

and

Φσ1 ≥ Φσ2 in Rn. (4.3.2)

Note that this approximation is related to the Dirac-delta measure:

−νσ ⇀ −n(n− 2)ωnδ0 as σ → 0,

in distribution sense, i.e.

−
ˆ
Baσ

νσ(x)η(x) dx→ −n(n− 2)ωnη(0) as σ → 0,
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for any η ∈ C∞c (Rn).

Fully nonlinear case

In this case, the radius of hole aε is comparable to ε
α∗+2
α∗ . Since the normalized

homogeneous solution is given by

Φ(x) = r−α
∗
φ(θ),

in spherical coordinates, we let aσ = σ
2
α∗ . Moreover, we consider a (strict)

superlevel set of Φ:

Caσ := {x = (r, θ) ∈ Rn : r−α
∗
φ(θ) > a−α

∗

σ }.

Note that we have Caσ = Baσ as before, if we let φ(θ) ≡ 1, i.e. F is rotationally

symmetric. Then for σ > 0, we set

Φσ(x) :=

{
Φ(x) = r−α

∗
φ(θ) x ∈ Cc

aσ ,

Wσ(x) = −mσ(rα
∗
φ(θ)−1)s + kσ x ∈ Caσ ,

where s (which is independent of σ > 0), mσ and kσ will be determined.

(i) (Φσ ∈ C1,1) We only need to check this property on ∂Caσ . In fact, for

(r, θ) ∈ ∂Caσ , we have

Φ(r, θ) = a−α
∗

σ , Wσ(r, θ) = −mσa
α∗s
σ + kσ,

∂rΦ(r, θ) = −α
∗

r
a−α

∗

σ , ∂rWσ(r, θ) = −mσα
∗s

r
aα
∗s
σ ,

and

∇θΦ(r, θ) = r−α
∗∇θφ,

∇θWσ(r, θ) = mσsr
α∗sφ(θ)−s−1∇θφ = mσsr

−α∗aα
∗(s+1)
σ ∇θφ.
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Therefore, we conclude Wσ ∈ C1,1 provided that

mσ =
1

s
σ−2(s+1) and kσ =

(
1 +

1

s

)
σ−2,

for some constant s > 0.

(ii) (F (D2Wσ) =: −νσ ≤ 0) To verify this property, it is enough to show

that there exists a sufficiently large s such that

P−(−D2Wσ) ≥ 0.

For this purpose, we claim that for sufficiently large s = s(λ,Λ, f) > 0,

we have

P−(D2w) ≥ 0,

where w(r, θ) := rsf(θ) for a positive function f ∈ C2(Sn−1). Indeed,

one can calculate the Hessian of w as follows:

Hess(w) ∼ (aij(s, θ))r
s−2,

where

aij(s, θ) =

{
s(s− 1)f(θ) if (i, j) = (1, 1),

o(s2)gij(θ) otherwise,

for gij ∈ C(Sn−1), 1 ≤ i, j ≤ n. See appendix in [67] for the computation

of the Hessian matrix in spherical coordinates. In short, we have the

dominant s2-order only in (1, 1)-component of Hess(w), since the power

of s is added if and only if we take a radial derivative with respect to

w.

Moreover, since det(tI−A) = (t−λ1(A)) · · · (t−λn(A)) and the deter-

minant function is smooth, one can easily check that the eigenvalues of
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Hess(w) is given by

(s2f(θ) + o(s2)b1(θ), o(s2)b2(θ), ..., o(s2)bn(θ)) · rs−2,

for some functions bi ∈ C(Sn−1). Hence, for sufficiently large s =

s(λ,Λ, f) > 0, we have

P−(D2w) ≥ [λs2f(θ)− Λb(θ)o(s2)] · rs−2 ≥ 0,

as claimed.

After choosing s,mσ and kσ in this way, we immediately have that

Φσ → Φ as σ → 0,

locally uniformly on Rn \ {0}. Moreover, we have Φσ1 = Φσ2 in Cc
aσ2

, and

Φσ1 ≥ Φσ2 in Rn whenever 0 < σ1 ≤ σ2.

4.4 The Convergence of Free Solutions and

Obstacle Solutions

To apply the subadditive ergodic theorem (see [16, 21]) and determine the

critical value β0, we first consider an obstacle problem and its solution as an

auxiliary function for a corrector wε. In view of [15, 57, 77], the forcing term of

an obstacle problem was presented by the Dirac-delta measure. In contrast

to those operators of divergence form, we cannot exploit this energy-type

method in fully nonlinear operator of non-divergence form. Instead, to cap-

ture the behavior of a corrector wε, we are going to adopt the approximation

of a homogeneous solution which was obtained in the previous section. More-

over, to connect the properties between an obstacle solution and a corrector,

we need one more auxiliary function, namely a “free” solution.

While the argument concerning these auxiliary functions is relatively

straightforward in the Laplacian case, there arises several challenges in the
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fully nonlinear case. Hence, we will first investigate nice properties of obsta-

cle solutions and free solutions in the Laplacian case, and then justify the

validity of those properties in the fully nonlinear case.

4.4.1 Laplacian Operator

We start with the definition of obstacle solutions and free solutions in the

Laplacian operator:

Definition 4.4.1. Let A be an open and bounded subset of Rn.

(i) For β ∈ R, we define an “obstacle” solution

vβ,σ,A(x, ω) := inf
{
v(x) : ∆v ≤ β −

∑
k∈Zn∩A

γ(k, ω)νσ(x− k) in A,

v ≥ 0 in A, v = 0 on ∂A
}
.

and its rescaled function vεβ,σ(y, ω) := ε2vβ,σ,ε−1A(y/ε, ω).

(ii) For β ∈ R, we define a “free” solution

wβ,σ,A(x, ω) := inf
{
w(x) : ∆w ≤ β −

∑
k∈Zn∩A

γ(k, ω)νσ(x− k) in A,

w = 0 on ∂A
}
.

and its rescaled function wεβ,σ(y, ω) := ε2wβ,σ,ε−1A(y/ε, ω).

Lemma 4.4.2 (Multiple sources; ∆.). Let 0 < σ1 ≤ σ2 � 1. For a non-

negative function γ : Zn → R≥0, we consider the solutions wi, defined by{
∆wi(x) = −

∑
k∈Zn γ(k)νσi(x− k) in A,

wi(x) = 0 on ∂A.

Then we have w1 ≥ w2 in A.

Proof. First, we let w̃i(x) =
∑

k∈Zn γ(k)Φσi(x− k). Then we have ∆w̃i(x) =

−
∑

k∈Zn γ(k)νσi(x − k), and w̃1 ≥ w̃2 in A by (4.3.2). Recalling (4.3.1), we
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also have that w̃1 = w̃2 on ∂A. Thus, if we let g be the solution of the

Dirichlet problem {
∆g = 0 in A,

g = −w̃1(= −w̃2) on ∂A,

then we conclude wi = w̃i + g, which completes the proof.

Lemma 4.4.3 (Additional source; ∆.). Suppose that a function wi defined

by the Dirichlet problem {
∆wi = fi in A,

wi = 0 on ∂A,

satisfy w1 ≥ w2 in A. Moreover, for a constant β ≥ 0, we define a function

wβ,i by {
∆wβ,i = fi + β in A,

wβ,i = 0 on ∂A.

Then we have wβ,1 ≥ wβ,2 in A.

Proof. Let gβ be the solution of the Dirichlet problem{
∆gβ = β in A,

gβ = 0 on ∂A.

Then the result follows immediately from wβ,i = wi + gβ.

Remark 4.4.4 (Existence of limit free solutions; ∆.). For 0 < σ1 ≤ σ2 � 1,

applying Lemma 4.4.2, Lemma 4.4.3 and their proofs, we have

wβ,σ1,A ≥ wβ,σ2,A in A, (4.4.1)
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and furthermore,

wβ,σ1,A(x) = wβ,σ2,A(x) if x ∈ ∪k∈Zn(Baσ2
(k))c . (4.4.2)

In particular, (4.4.1), the monotonicity of {wβ,σ,A}σ>0 yields the convergence

of free solutions wβ,σ,A when σ → 0+. We denote the limit function by wβ,A.

Lemma 4.4.5 (Obstacle solution; ∆.). Let 0 < σ1 ≤ σ2 � 1. For a constant

β ≥ 0 and a non-negative function γ : Zn → R≥0, we define (an obstacle

solution) vβ,i by

vβ,i(x) := inf
{
v(x) : ∆v ≤ β −

∑
k∈Zn∩A

γ(k)νσi(x− k) in A,

v ≥ 0 in A, v = 0 on ∂A
}
.

(4.4.3)

Then we have vβ,1 ≥ vβ,2 in A.

Proof. We have the equivalent definition of an obstacle problem (4.4.3):

∆vβ,i ≤ β −
∑

k∈Zn∩A

γ(k)νσi(x− k), vβ,i ≥ 0 in A and

∆vβ,i = β −
∑

k∈Zn∩A

γ(k)νσi(x− k) if vβ,i > 0.

Moreover, for sufficiently small σi > 0 and k ∈ Zn with γ(k) 6= 0, we have

β − γ(k)νσi(x − k) < 0 for |x − k| < aσi . Since β − γ(k)νσi(x − k) < 0 in

Baσi
(k) for any k ∈ Zn ∩ A with γ(k) 6= 0, we have

vβ,i > 0 in ∪k∈Zn∩ABaσi
(k). (4.4.4)

Now, if we let ṽ(x) := vβ,2(x) +
∑

k∈Zn∩A γ(k)(Φσ1(x− k)−Φσ2(x− k)), then

by (4.3.2), we have ṽ ≥ vβ,2 in A. Thus, the proof will be completed if we

prove vβ,1 = ṽ. Indeed, ṽ ≥ 0 in A. We split two cases:

(i) (ṽ(x) = 0) By the definition of ṽ, for each k ∈ Zn, we have either

γ(k) = 0 or Φσ1(x−k) = Φσ2(x−k). In the latter case, the construction
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of Φσ yields |x − k| > aσ2 ≥ aσ1 and so νσi(x − k) = 0. Thus, in both

cases, we have γ(k)νσi(x− k) = 0 and so

0 = ∆ṽ(x) ≤ β −
∑

k∈Zn∩A

γ(k)νσi(x− k) = β

(ii) (ṽ(x) > 0) By the definition of ṽ, we have either vβ,2(x) > 0 or |x−k| ≤
aσ2 for some k ∈ Zn with γ(k) 6= 0. Recalling (4.4.4), in both cases, we

have vβ,2(x) > 0 which yields that

∆vβ,2(x) = β −
∑

k∈Zn∩A

γ(k)νσ2(x− k).

Therefore, we conclude that

∆ṽ(x) =∆

(
vβ,2(x) +

∑
k∈Zn∩A

γ(k)(Φσ1(x− k)− Φσ2(x− k))

)
=β −

∑
k∈Zn∩A

γ(k)νσ1(x− k).

Remark 4.4.6 (Existence of limit obstacle solutions; ∆.). We know that

the assumption in Lemma 4.4.5 holds by Lemma 4.4.2 and Lemma 4.4.3, i.e.

we have (4.4.1) and further (4.4.2). Thus, by applying Lemma 4.4.5 and its

proof, we conclude that

vβ,σ1,A ≥ vβ,σ2,A in A, (4.4.5)

and furthermore,

vβ,σ1,A(x) = vβ,σ2,A(x) if x ∈ ∪k∈Zn(Baσ2
(k))c . (4.4.6)

In particular, (4.4.5), the monotonicity of {vβ,σ,A}σ>0 yields the convergence

of obstacle solutions vβ,σ,A when σ → 0+.
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We now define the measure of contact set for an obstacle problem and

determine the critical value β0. Indeed, we define a random variable mβ,A by

mβ,A := |{x ∈ A : vβ,A = 0}|.

Lemma 4.4.7 (A subadditive quantity). (i) The random variable mβ,A is

subadditive: in other words, for the finite family of sets (Ai)i∈I such that

Ai ⊂ A for all i ∈ I,

Ai ∩ Aj = ∅ for all i 6= j,

|A− ∪i∈IAi| = 0,

then mβ,A ≤
∑

i∈I mβ,Ai .

(ii) The process Tkmβ,A := mβ,k+A has the same distribution for all k ∈ Zn.

Proof. (i) Since vβ,A is admissible for vβ,Ai for each i, we have

vβ,Ai ≤ vβ,A in Ai.

Thus, we have the desired result.

(ii) It follows immediately from our assumptions on γ(k, ω).

Due to the previous lemma, we can apply a subadditive ergodic theorem

(see [16, 21]). More precisely, we have

l(β) = lim
t→∞

mβ,Bt

|Bt|
.

and a scaled version:

l(β) = lim
ε→0

|{y : vεβ(y, ω) = 0}|
|B1|

a.s.,

where vεβ(y, ω) := ε2vβ,ε−1B(y/ε, ω).
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Lemma 4.4.8 (Properties of l(β)). (i) l(β) is non-decreasing function with

respect to β.

(ii) If β < 0, then l(β) = 0.

(iii) If β > 0 is large enough, then l(β) > 0.

Proof. (i) For β1 ≤ β2, we have vβ2,A ≤ vβ1,A which implies that mβ1,A ≤
mβ2,A.

(ii) Since vβ,σ,Bt is a solution of an obstacle problem, we have

∆vβ,σ,Bt ≤ β −
∑

k∈Zn∩A

γ(k, ω)νσ(k, ω) ≤ β,

in Bt. Thus, by the comparison principle,

vβ,σ,A ≥
β

2n
(|x|2 − t2) > 0

in Bt. Letting σ → 0, we have vβ,A > 0 in A which implies that l(β) = 0

for β < 0.

(iii) For k ∈ Zn, we define

hk(x) =
β

2n
|x− k|2 + γ(k, ω)Φσ(x− k).

Then we have hk ∈ C1,1 and ∆hk = β − γ(k, ω)νσ(x − k). Moreover,

a direct calculation yields that a rotationally symmetric function hk

attains its minimum at

|x− k| = rk =

(
n(n− 2)γ(k, ω)

β

)1/n

.

Since γ(k, ω) ≤ γ, we can choose β > 0 large enough so that rk < 1/2

for any k ∈ Zn. Moreover, we can choose a constant Dk so that the
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minimum of hk(x)−Dk is exactly 0. Now if we define

h̃k(x) =

{
hk(x)−Dk if |x| < rk,

0 if |x| ≥ rk,

then h̃k is well-defined and it belongs to C1,1. Moreover, since ∆h̃k = β−
γ(k, ω)νσ(x−k) in Brk ,

∑
k∈Zn∩tB h̃k is admissible for vβ,σ,tB. Therefore,

we conclude that

lσ(β) := lim
t→∞

|{x ∈ tB : vβ,σ,tB = 0}|
|tB|

≥
|C1| − |B1/2|
|C1|

≥ 1− ωn
2n

> 0,

which ensures that l(β) > 0 for large enough β.

Finally, we let the (non-negative) critical value

β0 := sup{β : l(β) = 0},

which is well-defined by the previous lemma.

4.4.2 Fully Nonlinear Operator

Definition 4.4.9. (i) For M ∈ Sn and β ∈ R, we define an “obstacle”

solution

vβ,σ,A;M(x, ω) := inf
{
v(x) : v ≥ 0 in A, v = 0 on ∂A,

F (M +D2v(x)) ≤ β + F (M)−
∑

k∈Zn∩A

γ(k, ω)νσ(x− k) in A
}
,

and its rescaled function vεβ,σ;M(y, ω) := ε2vβ,σ,ε−1A;M(y/ε, ω).
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(ii) For M ∈ Sn and β ∈ R, we define a “free” solution

wβ,σ,A;M(x, ω) := inf
{
w(x) : w = 0 on ∂A,

F (M +D2w(x)) ≤ β + F (M)−
∑

k∈Zn∩A

γ(k, ω)νσ(x− k) in A
}
.

and its rescaled function wεβ,σ;M(y, ω) := ε2wβ,σ,ε−1A;M(y/ε, ω).

Before showing the convergence of these functions when σ → 0+, we first

describe the local behavior of a singular solution with an isolated singularity

at some point x0. Roughly speaking, we will demonstrate that the growth

rate of a singular solution near the singularity point is the same as the growth

rate of the corresponding homogeneous solution Φ. This type of result was

first proved by M. Bôcher [9] for the Laplacian operator in 1903. Similar

results can be found in [75, 76] for quasilinear divergence-type equations, [51]

for Pucci operators, [12, 4] for fully nonlinear operators with homogeneous

degree one and [34, 33] for a class of subequations. Note that they considered

the local behavior of solutions for equations with zero-forcing term; in the

following lemmas, we present generalized results by choosing a general forcing

term.

Lemma 4.4.10. Let u ∈ C(B1 \ {0}) be a viscosity solution of

F (D2u) = g(x) in B1 \ {0},

where g ∈ L∞(B1), u is bounded on ∂B1 and lim|x|→0 u(x) =∞. Then there

exist positive constants a0 and C0 such that

a0Φ(x)− C0 ≤ u(x) ≤ 1

a0

Φ(x) + C0.

Proof. We may assume u is positive in B1 \ {0} by adding a constant on u,

if necessary. To show the lower bound, suppose that there exist sequences
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ai → 0, εi → 0 and xi ∈ B1 \ {0} such that

u(xi) ≤ aiΦ(xi) for |xi| = εi. (4.4.7)

Note that from [14], we have the Harnack inequality

sup
∂B1/2

u ≤ C

(
inf
∂B1/2

u+ ‖g‖Ln(B1)

)
.

Recalling that F is positively homogeneous of degree one and considering the

scaled function ur(x) := u(rx) for small r > 0, we deduce that

sup
∂Br/2

u ≤ C

(
inf
∂Br/2

u+ r‖g‖Ln(B1)

)
. (4.4.8)

Thus, (4.4.7), (4.4.8) and the homogeneity of Φ imply that

u(x) ≤ C(u(xi) + εi‖g‖Ln(B1)) ≤ C(aiΦ(xi) + εi‖g‖Ln(B1))

≤ C̃aiΦ(x) + Cεi‖g‖Ln(B1),

for |x| = εi. Since F (D2(Φ−c|x|2)) = F (D2Φ−2cI) ≤ F (D2Φ)−2cλ ≤ g(x)

for sufficiently large c > 0, the comparison principle yields that

u(x) ≤ C̃aiΦ(x) + c1 − c2|x|2 for εi ≤ |x| ≤ 1.

for some c1, c2 > 0. Letting i→∞, we have u is bounded above in B1 \ {0}
which contradicts to the assumption lim|x|→0 u(x) =∞. Therefore, we obtain

the lower bound and from the similar argument, we finish the proof.

Theorem 4.4.11 (An isolated singularity). Let u ∈ C(B1\{0}) be a solution

of

F (D2u) = g(x) in B1 \ {0},

where g ∈ L∞(B1), u is bounded on ∂B1 and lim|x|→0 u(x) =∞. Then there
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exists a positive constant a such that

lim
x→0

u(x)

Φ(x)
= a. (4.4.9)

Proof. Set ũε(x) := εα
∗
u(εx). Then the homogeneity of the homogeneous

solution Φ gives

u(εx)

Φ(εx)
=
εα
∗
u(εx)

εα∗Φ(εx)
=
ũε(x)

Φ(x)
.

For a compact set K ⊂ Rn \ {0}, an application of Lemma 4.4.10 leads to

sup
x∈K

ũε(x)

Φ(x)
= sup

x∈εK

u(εx)

Φ(εx)
≤ 1

a0

+ C1,

for some constant C1 > 0 which is independent of ε > 0. Employing a similar

argument for the lower bound, we conclude that

sup
0<ε<ε0

‖ũε‖L∞(K) ≤ CK .

Since F (D2ũε(x)) = εα
∗+2g(εx) holds for any x ∈ B1\{0}, we also obtain the

uniform Hölder estimates for the sequence {ũε}ε>0 in K. Therefore, Arzela-

Ascoli theorem implies that there exist a subsequence εj → 0 and a function

v ∈ C(Rn \ {0}) such that ũεj → v locally uniformly in Rn \ {0}. Then for

any x ∈ Rn \ {0}, the homogeneity of Φ yields

v(x)

Φ(x)
= lim

ε→0

ũε(x)

Φ(x)
= lim

ε→0

u(εx)

Φ(εx)
∈ [a, a],

where

a := lim inf
ε→0

inf
|x|=ε

u(x)

Φ(x)
, a := lim sup

ε→0
sup
|x|=ε

u(x)

Φ(x)
.

Here a, a ∈ (0,∞) by Lemma 4.4.10. Moreover, since ũε → v and εα
∗+2g(εx)→

0 uniformly on every compact subset K, we have F (D2v) = 0 in Rn \ {0}.
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Finally, choose xε ∈ ∂Bε so that u(xε) = inf |x|=ε
u(x)
Φ(x)

Φ(xε). Then there exist

a (further) subsequence εj → 0 and y ∈ ∂B1 such that
xεj
εj
→ y. Since

v(y) = lim
j→∞

ũεj(ε
−1
j xεj) = lim

j→∞
εα
∗

j u(xεj)

= lim
j→∞

(
inf
|x|=εj

u(x)

Φ(x)
Φ

(
xεj
εj

))
= aΦ(y),

we conclude that v ≡ aΦ in Rn \ {0} by the strong maximum principle.

Hence, we have

lim sup
x→0

u(x)

Φ(x)
= lim sup

ε→0
max
x∈∂B1

ũε(x)

Φ(x)
= max

x∈∂B1

v(x)

Φ(x)
= a,

which implies the desired result

lim
x→0

u(x)

Φ(x)
= a(:= a = a).

Free solutions

For notational simplicity, we write a free solution

wσ(x, ω) := wβ,σ,A;M(x, ω),

where β ≥ 0, A ⊂ Rn,M ∈ Sn are fixed and σ > 0. Moreover, we denote

zσ :=
∑

k∈Zn∩A

γ(k, ω)Φσ(x− k).

For 0 < σ1 ≤ σ2 � 1, we have zσ1(x) = zσ2(x) whenever |x− k| ≥ aσ2(k) for

any k ∈ Zn.

We will estimate F (M +D2zσ): we may expect

F (M +D2zσ) ≈ F (M)−
∑

k∈Zn∩A

γ(k, ω)νσ(x− k)
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in A, by heuristic computation. Indeed, recall that F is positively homoge-

neous of degree one, F (D2Φσ) = −νσ by the construction of approximated

homogeneous solution Φσ and Φσ(x − k) is “flat” away from k ∈ Zn (i.e.

D2Φσ(x − k) ≈ 0, away from k ∈ Zn.) We prove this observation rigorously

in the following lemma:

Lemma 4.4.12. (i) There exists a constant C > 0 which is independent

of σ > 0 such that∣∣∣∣∣F (M +D2zσ(x))−

(
−

∑
k∈Zn∩A

γ(k, ω)νσ(x− k)

)∣∣∣∣∣ ≤ C. (4.4.10)

(ii) There exists a constant C > 0 which is independent of σ > 0 such that

|F (M +D2zσ)− F (M +D2wσ)| ≤ C.

(iii) There exists a constant C > 0 which is independent of σ > 0 such that

‖zσ − wσ‖L∞(A) ≤ C. (4.4.11)

(iv) There exists a subsequence {wσm}∞m=1 and a limit function w ∈ C(A \
∪k∈Zn{k}) such that wσm → w when σ → 0+ uniformly on every com-

pact subset of A \ ∪k∈Zn{k}.

Proof. (i) Since F is uniformly elliptic and positively homogeneous of de-

gree one, we have

F (M +D2zσ) ≤ −γ(k0)νσ(x− k) + P+(M)

+
∑
k 6=k0

γ(k)P+(D2Φ(x− k))

where |x − k0| ≤ 1/3 for k0 ∈ Zn ∩ A. Since there exists a pos-

itive constant γ > 0 such that γ(k) ≤ γ, there exists a constant
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C = C(F,A,M, γ) such that

P+(M) +
∑
k 6=k0

γ(k)P+(D2Φ(x− k)) ≤ C,

where |x− k0| ≤ 1/3 for k0 ∈ Zn ∩ A. Similarly, we also have

F (M +D2zσ) ≤ P+(M) +
∑
k∈Zn

γ(k)P+(D2Φ(x− k)) ≤ C,

where |x−k| > 1/3 for any k ∈ Zn∩A. We can apply the same argument

for finding the lower bound of F (M +D2zσ) and thus, we conclude the

desired result (4.4.10).

(ii) It follows directly from the part (i) and the definition of wσ.

(iii) We may assume x0 = 0 ∈ A and A ⊂ Bl(x0) for some l > 0. Note that

F

(
D2

(
zσ +

xTMx

2
+
C(|x|2 − l2)

2nλ

))
≥ F (M +D2zσ) + P−

(
C

nλ
I

)
= F (M +D2zσ) + C

≥ F (M +D2wσ)

= F

(
D2

(
wσ +

1

2
xTMx

))
.

Moreover, by the construction of Φσ, zσ1 = zσ2 on ∂A for any σ1, σ2 > 0.

Thus, there exists a constant C independent of σ such that |zσ| ≤ C on

∂A. Therefore, the comparison principle leads to

zσ − C +
1

2
xTMx+

C

2nλ
(|x|2 − l2) ≤ wσ +

1

2
xTMx,

which implies that zσ − wσ ≤ C. From the same argument, we derive

(4.4.11).

(iv) Let K be a compact subset of A\∪k∈Zn{k}. Again by the construction of

Φσ, we have zσ(x) =
∑

k∈Zn γ(k)Φ(x−k) in K for any sufficiently small
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σ > 0. In other words, the function zσ in K is independent of σ > 0 (if

it is sufficiently small). Due to part (iii), we have a uniform L∞-bound

for wσ: ‖wσ‖L∞(K) ≤ C, and F (D2wσ) = β in K. Hence, application of

Arzela-Ascoli theorem together with the interior Cα-estimate and stan-

dard diagonal process ensures the existence of a convergent subsequence

and corresponding limit function.

Theorem 4.4.13 (Convergence of free solutions). There exists a unique limit

function w ∈ C(A \ ∪k∈Zn{k}) such that wσ → w when σ → 0+ uniformly

on every compact subset of A \ ∪k∈Zn{k}. Moreover, w satisfies{
F (M +D2w) = β + F (M) in A \ ∪k∈Zn{k},
w = 0, on ∂A,

and

lim
x→k

w(x, ω)

Φ(x− k)
= γ(k, ω),

for any k ∈ Zn ∩ A.

Proof. According to Lemma 4.4.12 (iv), there exists a limit function w ∈
C(A \∪k∈Zn{k}) such that wσm → w when m→∞ uniformly on every com-

pact subset of A \ ∪k∈Zn{k}. Recalling Proposition 2.9. in [14] (the stability

of viscosity solutions), we deduce that w is a viscosity solution of{
F (M +D2w) = β + F (M) in A \ ∪k∈Zn{k},
w = 0, on ∂A.

Moreover, since zσ(k) → ∞ when σ → 0+ for k ∈ Zn ∩ A with γ(k) > 0,

Lemma 4.4.12 (iii) yields that w has an isolated singularity at eath k ∈ Zn∩A
whenever γ(k) > 0. Thus, applying Theorem 4.4.11 for an isolated singularity
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k ∈ Zn ∩ A, we have

lim
x→k

w(x)

Φ(x− k)
= a, (4.4.12)

for some positive constant a > 0.

Now we claim that a = γ(k). Indeed, for ε > 0, there exists δ > 0 such

that

0 < |x− k| < δ =⇒ (a− ε)Φ(x− k) ≤ w(x) ≤ (a+ ε)Φ(x− k),

by (4.4.12). Let {wσm}∞m=1 be a subsequence such that wσm → w uniformly

on every compact subset of A \∪k∈Zn{k}. Then for any m ∈ N large enough,

we have

|w(x)− wσm(x)| ≤ 1, |wσm(x)− zσm(x)| ≤ C,

for min{δ/2, ε} < |x − k| < δ. Note that C is independent of m. (see

Lemma 4.4.12 (iii).) Recalling the definition of zσ, for m large enough, we

have

γ(k)Φ(x− k) ≤ zσm(x) ≤ γ(k)Φ(x− k) + C,

for min{δ/2, ε} < |x − k| < δ and C > 0 which is independent of m. Com-

bining these estimates together, we conclude that

(a− ε)Φ(x− k)− C ≤ γ(k)Φ(x− k) ≤ (a+ ε)Φ(x− k) + C.

Dividing by Φ(x− k) and letting ε→ 0 leads to a = γ(k), as desired.

Finally, it only remains to prove the uniqueness of limit functions. For

this purpose, let w,w be two limit functions of {wσ}σ>0. Then both w and
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w are viscosity solutions of{
F (M +D2w) = β + F (M) in A \ ∪k∈Zn{k},
w = 0, on ∂A.

Moreover, the argument above allows us to capture the behavior of limit

functions near an isolated singularity, namely:

lim
x→k

w(x)

Φ(x− k)
= γ(k) = lim

x→k

w(x)

Φ(x− k)
.

Fix ε > 0. Then there exists small enough δ > 0 such that

(1 + ε)w ≥ w,

for |x − k| = δ with k ∈ Zn ∩ A. Employing a similar argument as in the

proof of Lemma 4.4.10 and Theorem 4.4.11, there exist constants c1, c2 > 0

such that

F (M +D2((1 + ε)w + βε(c1 − c2|x|2)) ≤ β + F (M) = F (M +D2w)

in A \ ∪kBδ(k), and

(1 + ε)w + βε(c1 − c2|x|2) ≥ w on ∂(A \ ∪kBδ(k)).

Applying the comparison principle and letting ε → 0, we have w ≥ w and

by the symmetry, we conclude that w = w.

Obstacle solutions

For notational simplicity, we write an obstacle solution

vσ(x, ω) := vβ,σ,A;M(x, ω),
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where β ≥ 0, A ⊂ Rn,M ∈ Sn are fixed and σ > 0. The convergence of

obstacle solutions {vσ}σ>0 can be achieved if we exploit the result for free

solutions.

Lemma 4.4.14. (i) 0 ≤ |F (M +D2wσ)− F (M +D2vσ)| ≤ β in A.

(ii) There exists a constant C > 0 which is independent of σ > 0 such that

‖zσ − vσ‖L∞(A) ≤ C.

(iii) There exists a subsequence {vσm}∞m=1 and a limit function v ∈ C(A \
∪k∈Zn{k}) such that vσm → v when σ → 0+ uniformly on every compact

subset of A \ ∪k∈Zn{k}.

Proof. (i) Since

F (M +D2vσ) = F (M) +

(
β −

∑
k∈Zn∩A

γ(k, ω)νσ(x− k)

)
χ{vσ>0},

we have

F (M +D2wσ)− F (M +D2vσ)

=

(
β −

∑
k∈Zn∩A

γ(k, ω)νσ(x− k)

)
χ{vσ=0} = βχ{vσ=0}.

Here we used that νσ > 0 near k ∈ Zn with γ(k, ω) > 0, recalling the

proof for Lemma 4.4.5.

(ii) It follows from the comparison principle (similarly as in the proof of

Lemma 4.4.12 (iii)) and (4.4.11).

(iii) See the proof of Lemma 4.4.12 (iv).
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Theorem 4.4.15 (Convergence of obstacle solutions). There exists a unique

limit function v ∈ C(A\∪k∈Zn{k}) such that vσ → v when σ → 0+ uniformly

on every compact subset of A \ ∪k∈Zn{k}. Moreover, v satisfies


F (M +D2v) = F (M) + βχ{v>0} in A \ ∪k∈Zn{k},
v ≥ 0 in A \ ∪k∈Zn{k},
v = 0, on ∂A,

(4.4.13)

and

lim
x→k

v(x, ω)

Φ(x− k)
= γ(k, ω),

for any k ∈ Zn ∩ A.

Proof. The most part of the proof is the same as the proof of Theorem 4.4.13,

which is an application of the uniform convergence obtained in the previous

lemma, the stability of obstacle problems and the isolated singularity theo-

rem, Theorem 4.4.11.

Again it only remains to prove the uniqueness part. Let v, v be two limit

functions of {vσ}σ>0. Since vσ behaves like zσ (or Φσ) near k ∈ Zn, Theo-

rem 4.4.11 implies that

lim
x→k

v(x)

Φ(x− k)
= γ(k) = lim

x→k

v(x)

Φ(x− k)
.

Fix ε > 0. Then there exists small enough δ > 0 such that

(1 + ε)v ≥ v,

for |x− k| = δ with k ∈ Zn ∩A. Similarly as in the proof of Theorem 4.4.13,

there exist constants c1, c2 > 0 such that

F (M +D2((1 + ε)v + βε(c1 − c2|x|2))) ≤ β + F (M) in A \ ∪kBδ(k),
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(1 + ε)v + βε(c1 − c2|x|2) ≥ v on ∂(A \ ∪kBδ(k)),

and

(1 + ε)v + βε(c1 − c2|x|2) ≥ 0 in A \ ∪kBδ(k).

Note that v can be written as the unique solution of the following obstacle

problem

inf
{
v(x) :F (M +D2v(x)) ≤ β + F (M) in A \ ∪kBδ(k),

v ≥ 0 in A \ ∪kBδ(k), v ≥ v on ∪k∂Bδ(k), v ≥ 0 on ∂A.
}

Since the function (1 + ε)v + βε(c1 − c2|x|2) is admissible for the obstacle

problem above, we have (1 + ε)v + βε(c1 − c2|x|2) ≥ v. Letting ε → 0, we

have v ≥ v and by the symmetry, we conclude that v = v.

Now as we have done in the Laplacian case, we are able to define the

measure of contact set for an obstacle problem and to determine the critical

value β0. Indeed, for any M ∈ Sn, we define a random variable mβ,A;M by

mβ,A;M := |{x ∈ A : vβ,A;M = 0}|.

Lemma 4.4.16 (A subadditive quantity). (i) The random variable mβ,A;M

is subadditive.

(ii) The process Tkmβ,A;M := mβ,k+A;M has the same distribution for all

k ∈ Zn.

Proof. See the proof of Lemma 4.4.7.

Due to the previous lemma, an application of subadditive ergodic theorem
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yields

l(β;M) = lim
t→∞

mβ,Bt;M

|Bt|
a.s.

and a scaled version:

l(β;M) = lim
ε→0

|{y : vεβ;M(y, ω) = 0}|
|B1|

a.s.,

where vεβ;M(y, ω) := ε2vβ,ε−1B;M(y/ε, ω).

Lemma 4.4.17 (Properties of l(β;M)). Let M ∈ Sn.

(i) l(β;M) is non-decreasing function with respect to β.

(ii) If β ≤ 0, then l(β;M) = 0.

(iii) If β > 0 is large enough, then l(β;M) > 0.

Proof. See the proof of Lemma 4.4.8.

Finally, we let the (non-negative) critical value

β0(M) := sup{β : l(β;M) = 0},

which is well-defined by the previous lemma.

4.5 The Properties of Free Solutions and Ob-

stacle Solutions

In short, the argument in the previous section enables us to show the conver-

gence of obstacle functions {vβ,σ,A}σ>0 and free functions {wβ,σ,A}σ>0 when

σ → 0; so we could define the critical value β0. Note that, in the Lapla-

cian case, we have a further information such that wβ,σ1,A = wβ,σ2,A and

vβ,σ1,A = vβ,σ2,A if x /∈ ∪k∈Zn(Baσ2
(k))c and 0 < σ1 ≤ σ2.
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In this section, we first extract useful properties (namely, (P1) and (P2)

in Section 4.1) of limit obstacle solutions and free solutions by investigating

the behaviors of approximated solutions (whose parameter is given by σ).

Here we should check whether the auxiliary functions are rescaled or not

carefully. Then we define the corrector in terms of the critical value β0 and

transport the desired properties for correctors by comparing to the auxiliary

functions. Finally, we end up with our main homogenization result employing

the correctors.

Again we justify each step above with respect to the Laplacian operator

∆ first, and then to the general fully nonlinear operator F .

4.5.1 Laplacian Operator

We begin with the step which illustrates the behavior of an obstacle solution

and a free solution away from perforated holes, when ε→ 0. In other words,

we are going to show that for the critical value β0, we have

lim
ε→0

wεβ0
= 0,

away from holes (which will be precisely stated later). Note that

(i) we split two cases depending on the value l(β), more precisely,

· if l(β) = 0, i.e. vεβ never meet the (zero) obstacle, then we expect that

vεβ > 0 in D;

· if l(β) > 0, i.e. vεβ meets the (zero) obstacle in some region, then

we expect that vεβ = 0 occurs throughout the whole domain (we will

prove the “spreading effect” of contact point);

(ii) we first prove for an obstacle solution vεβ and transport this information

to a free solution wεβ.

Lemma 4.5.1. If l(β) = 0, then lim infε→0w
ε
β ≥ 0 in D.
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Proof. We may assume D = B1 and write vεβ,σ(x, ω) = ε2vβ,σ,ε−1B1
(x/ε, ω)

and wεβ,σ(x, ω) = ε2wβ,σ,ε−1B1
(x/ε, ω). First recall that for each fixed ε > 0,

we have vβ,σ,ε−1D ↗ vβ,ε−1B1
when σ ↘ 0+. Moreover, vβ,σ,ε−1B1

6= vβ,ε−1B1

only can occur in ∪k∈ZnBaσ(k), where aσ = σ
2

n−2 . Thus, for any sufficiently

small σ > 0, the coincidence sets are identical;

{vεβ = 0} = {vεβ,σ = 0}. (4.5.1)

On the other hand, recalling (4.4.4), we obtain

vβ,σ,ε−1B1
(x) > 0 if x ∈ ∪k∈ZnBaσ(k),

which yields

∆(wβ,σ,ε−1B1
− vβ,σ,ε−1B1

) =

(
β −

∑
k∈Zn

γ(k)νσ(x− k)

)
χ{vβ,σ,ε−1B1

=0}

= βχ{vβ,σ,ε−1B1
=0}.

Applying the Alexandrov-Backelman-Pucci estimate (for exmaple, [14]), we

obtain that

sup
Bε−1

(vβ,σ,ε−1B1
− wβ,σ,ε−1B1

) ≤ Cε−1

(ˆ
Bε−1

(βχ{vβ,σ,ε−1B1
=0})

n

)1/n

= Cβε−1|{vβ,σ,ε−1B1
= 0} ∩Bε−1|1/n.

By rescaling, we have

sup
B1

(vεβ,σ − wεβ,σ) ≤ Cβ|{vεβ,σ = 0} ∩B1|1/n,

or equivalently,

wεβ,σ ≥ vεβ,σ − Cβ|{vεβ,σ = 0}|
1
n ≥ −Cβ|{vεβ,σ = 0}|

1
n ,
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in B1. Letting σ → 0+ and applying (4.5.1), we have wεβ ≥ −Cβ|{vεβ =

0}| 1n in B1. Finally, since 0 = l(β) = limε→0
|{vεβ=0}|
|B1| , we conclude that

lim infε→0w
ε
β ≥ 0 in B1.

Next, to estimate the upper bound for wεβ when l(β) > 0, we study

the quadratic growth property of an obstacle problem. For this purpose, let

u ∈ L∞(D) be a non-negative solution of

∆u = f(x)χ{u>0} in D, (4.5.2)

for f ∈ L∞(D). For an open set D(u) = {u > 0}, we define the free boundary

Γ(u) := ∂D(u) ∩D.

The following lemma explains the quadratic growth of the solution for an

obstacle problem near the free boundary. In other words, the solution has

the optimal C1,1-regularity.

Lemma 4.5.2 (Quadratic growth). Let u ∈ L∞(D), u ≥ 0, satisfy (4.5.2),

x0 ∈ Γ(u), and B2r(x0) ⊂ D. Then there exists a constant C = C(n) > 0

such that

sup
Br(x0)

u ≤ C‖f‖L∞(D)r
2.

Proof. See the proof of Lemma 4.5.14 which deals with the same result for

the fully nonlinear operator.

Lemma 4.5.3. If l(β) > 0, then we have

lim
ε→0

vεβ,σ = 0 in D,

for each sufficiently small σ > 0.

Proof. We may assume D = Q1, where Qr := [−r/2, r/2]n is a cube of width
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r > 0. By (4.5.1), we have

lσ(β) := lim
ε→0

|{x ∈ Q1 : vεβ,σ = 0}|
|Q1|

= l(β) > 0 (4.5.3)

for any sufficiently small σ > 0. Here we fix a sufficiently small σ > 0, and

for any m ∈ N, we split Q1 into 2mn smaller cubes of equal size, whose width

is exactly 1/2m. For Q being any of these cubes, we have vεβ,σ ≥ 0 on ∂Q.

Thus, applying the comparison principle in Q, we have

lim
ε→0

|{x ∈ Q : vεβ,σ = 0}|
|Q|

≤ lσ(β). (4.5.4)

Then from (4.5.3) and (4.5.4), we deduce that for sufficiently small ε > 0,

the set {x ∈ Q : vεβ,σ = 0} is non-empty for any smaller cubes Q. In other

words, we have shown the contact set {vεβ,σ = 0} “spreads” all over the Q1.

For a smaller cube Q (with width 1/2m) such that Q∩∂Q1 = ∅, the above

result yields that there exists a point x0 ∈ Q such that vεβ,σ(x0) = 0 for any

sufficiently small ε > 0. Recalling the definition of the obstacle solution vεβ,σ,

we have

∆vεβ,σ =

(
β −

∑
k∈Zn

γ(k)νσ(x/ε− k)

)
χ{vεβ,σ>0} in B1.

Thus, by applying Lemma 4.5.2, we have

sup
Q
vεβ,σ ≤ sup

B√n
2m

(x0)

vεβ,σ ≤ Cn(β + cγσ
−2n
n−2 )

n

22m
,

for any smaller cubes Q such that Q ∩ ∂Q1 = ∅. Thus, letting m→∞ and

then choosing sufficiently small ε = ε(m) > 0, we conclude that limε→0 v
ε
β,σ =

0 in Q1.

Since wεβ ≤ vεβ by their definitions and vεβ,σ = vεβ in D \ ∪k∈ZnBεaσ(εk),

we deduce the following corollary:
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Corollary 4.5.4. Let q ∈ (0, 1/2). If l(β) > 0, then

lim
ε→0

sup
D\∪k∈ZnBqε(εk)

wεβ ≤ 0.

Applying Lemma 4.5.1, Corollary 4.5.4 and the fact that β0 is the critical

value, we have:

Corollary 4.5.5. Let Bη(x0) ⊂ D. Then there exists a sequence {εj}j∈N
such that εj → 0+ and

lim
j→∞

w
εj
β0

(x) = 0,

for any x ∈ ∂Bη(x0) ∪ {x0}.

Next, we study the asymptotic behavior of auxiliary functions near the

boundary of holes ∂Tε. More precisely, we need to show that

wεβ0
= 1 + o(1), on ∂Tε.

In short, this can be done by comparing the auxiliary functions with the

normalized homogeneous solution.

Lemma 4.5.6. For k ∈ Zn, we denote

hβ,σ,k(x) :=
β

2n
|x− k|2 + γ(k, ω)Φσ(x− k).

(i) For every β and for every k ∈ Zn, we have

vβ,σ,ε−1D(x) ≥ hβ,σ,k(x)− β

2n
− r(k, ω)n−2,

for all x ∈ B1(k) and almost every ω ∈ Ω.

(ii) For every β > β0, we have

vβ,σ,ε−1D(x) ≤ hβ,σ,k(x) + o(ε−2),
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for all x ∈ B1/2(k) and almost every ω ∈ Ω.

Proof. We refer to [15, Lemma 4.3]. The only difference arises from that we

are considering functions with σ- dependence, which does not change the

proof. Otherwise, it can also be shown by applying the comparison principle

and Lemma 4.5.3; indeed, see the proof of Lemma 4.5.18 later in the fully

nonlinear case.

We denote

hβ,k(x) := lim
σ→0

hβ,σ,k(x) =
β

2n
|x− k|2 + γ(k, ω)Φ(x− k),

and hεβ,k(x) := ε2hβ,k(x/ε). Then since hβ,k|∂Baε(r(k,ω))(k) = ε−2+ β
2n
|aε(r(k, ω))|2,

we deduce the following corollary by letting σ → 0+ in Lemma 4.5.6:

Corollary 4.5.7. (i) For every β and k ∈ Zn such that r(k, ω) > 0, we

have

vβ,ε−1D(x) ≥ ε−2 +O(1) on ∂Baε(r(k,ω))(k) a.e. ω ∈ Ω,

and so

vεβ(x) ≥ 1 + o(1) on ∂Tε(ω) a.e. ω ∈ Ω,

for all β.

(ii) For every β > β0 and every k ∈ Zn, we have

vβ,ε−1D(x) ≤ ε−2 + o(ε−2) on ∂Baε(r(k,ω))(k) a.e. ω ∈ Ω,

and so

vεβ(x) ≤ 1 + o(1) on ∂Tε(ω) a.e. ω ∈ Ω,

for all β > β0.
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Lemma 4.5.8. For every k ∈ Zn, wεβ0
satisfies

hεβ0,k
(x)− o(1) ≤ wεβ0

(x) ≤ hεβ0,k
(x) + o(1) ∀x ∈ Bε/2(εk) ∩D a.e. ω ∈ Ω.

In particular,

wεβ0
= 1 + o(1) on ∂Tε ∩D.

Proof. Recall that for every β, we denote vεβ(x) = ε2vβ,ε−1D(x/ε), which is

defined in D and vεβ = 0 on ∂D.

(i) Let β > β0. Note that

∆wβ0,σ,ε−1D = β0 −
∑

k∈Zn∩ε−1D

γ(k, ω)νσ(x− k),

and

∆vβ,σ,ε−1D =

(
β −

∑
k∈Zn∩ε−1D

γ(k, ω)νσ(x− k)

)
χ{vβ,σ,ε−1D>0},

in ε−1D. Thus, we have

∆(wβ0,σ,ε−1D − vβ,σ,ε−1D) ≥ β0 − β

and wβ0,σ,ε−1D − vβ,σ,ε−1D = 0 on ∂(ε−1D). By rescaling, we obtain

∆(wεβ0,σ
− vεβ,σ) ≥ β0 − β

and wεβ0,σ
− vεβ,σ = 0 on ∂D. The Green representation formula yields

that

wεβ0,σ
(x0)− vεβ,σ(x0) ≤

ˆ
D

G(x, x0)(β0 − β) dx

≤ (β − β0)

ˆ
D

Φ(x− x0) dx ≤ O(β − β0),
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where G(·, ·) is the Green function on D. (∆G(·, x0) = δx0 and G = 0

on ∂D.) Applying Lemma 4.5.6 (ii), we conclude that

wεβ0,σ
(x) ≤ ε2hβ,σ,k(x/ε) + o(1) +O(β − β0)

for all x ∈ Bε/2(εk). Letting σ → 0 and then β → β0, we obtain the

desired upper bound.

(ii) Arguing as in (i), for every β ≤ β0, we have

∆(vβ,σ,ε−1D − wβ0,σ,ε−1D) = β − β0 − βχ{vβ,σ,ε−1D=0}.

By rescaling, we obtain that

∆(vεβ,σ − wεβ0,σ
) = β − β0 − βχ{vεβ,σ=0}

Again, the Green representation formula leads to

vεβ,σ − wεβ0,σ
≤ O(β0 − β) + Cβ|{vεβ,σ = 0}|1/(n−1) in D.

Applying Lemma 4.5.6 (i), we conclude that

wεβ0,σ
(x) ≥ ε2hβ,σ,k(x/ε)− o(1)−O(β0 − β)− Cβ|{vεβ,σ = 0}|1/(n−1).

Letting σ → 0, (see (4.5.1))

wεβ0
(x) ≥ hεβ,k(x)− o(1)−O(β0 − β)− Cβ|{vεβ = 0}|1/(n−1).

Since limε→0 |{vεβ = 0}| = l(β) · |D| = 0 for any β ≤ β0, we obtain the

desired lower bound.
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Now we define a corrector:
∆wε(x, ω) = β0 for x ∈ D \ Tε,
wε(x, ω) = 1 for x ∈ ∂Tε,
wε(x, ω) = 0 for x ∈ ∂D \ Tε.

(4.5.5)

Lemma 4.5.9. Let Bη(x0) ⊂ D. Then there exists a sequence {εj}j∈N such

that εj → 0+ and

lim
j→∞

wεj(x) = 0,

for any x ∈ ∂Bη(x0) ∪ {x0}.

Proof. Since ∆wεβ0,σ
= β0 in D \ ∪kBεaσ(εk), letting σ = ε yields that

∆wεβ0
= ∆wεβ0,ε

= β0 in D \ ∪kBaε(εk) = D \ Tε,

Recalling Lemma 4.5.8 and applying the comparison principle for wε and wεβ0

in D \ Tε, we have

wεβ0
(x)− o(1) ≤ wε(x) ≤ wεβ0

(x) + o(1) in D \ Tε.

Therefore, the desired result follows from Corollary 4.5.5.

Finally, we are ready to finish the proof of our main theorem for the

Laplacian case:

Proof of Theorem 4.1.1 (ii). We are going to show that u is a subsolution.

Let us assume there is a parabola P touching u from above at x0 and

∆P + β0(ϕ(x0)− P (x0))+ < −2µ0 < 0.

In a small neighborhood of x0, Bη(x0), there exists another parabola Q such
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that 
D2P < D2Q in Bη(x0),

P (x0) > Q(x0) + δ0,

P (x) < Q(x) on ∂Bη(x0).

In addition, we can choose a sufficinetly small ε0 > 0 so that Q satisfies

∆Q+ β0(ϕ(x0)− u(x0) + 3ε0) =: ∆Q+ β0ξ0 < −µ0 < 0,

and

|Q(x)−Q(x0)|+ |ϕ(x)− ϕ(x0)| < ε0

for x ∈ Bη(x0). Let us consider Qε(x) := Q(x) + wε(x)ξ0. Then by the

definition of wε, we have ∆Qε < −µ0 < 0 and

Qε(x) = Q(x) + ξ0 = Q(x) + ϕ(x0)− u(x0) + 3ε0 > ϕ(x),

on Taε ∩ Bη(x0). Therefore, the maximum principle yields that Qε ≥ ϕε in

Bη(x0).

Now we define the function

vε :=

{
min{uε, Qε} in Bη(x0),

uε in D \Bη(x0).

Applying Lemma 4.5.9, for sufficiently small ε > 0 (at least for a subsequence

{εj}), we have Qε > uε on ∂Bη(x0). Thus, the function vε is well-defined

and will be a viscosity supersolution of (Lε). Since uε is the least viscosity

supersolution, we have uε ≤ vε ≤ Qε in Bη(x0). Letting ε→ 0, we have

u(x0) ≤ Q(x0) < P (x0) = u(x0),

which is a contradiction. By an argument similar to the proof of Lemma 4.1
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in [12], we can show that u is also a viscosity supersolution of (L). (or see

the proof of Theorem 4.1.2 (ii) which deals with the argument for a viscosity

supersolution of (F ).)

4.5.2 Fully Nonlinear Operator

In the Laplacian case, the strong properties of the obstacle solutions (see

Lemma 4.4.5 and its proof) immediately led to the equality between coinci-

dence sets, (4.5.1): for any sufficiently small σ > 0,

{vεβ,σ = 0} = {vεβ = 0}.

On the other hand, in the fully nonlinear case, we only have the uniform

convergence of the obstacle solutions and we require some auxiliary lemmas

to derive the stability of coincidence sets, which is a weaker consequence

compared to (4.5.1).

We begin with a simple lemma:

Lemma 4.5.10. For an open set D ⊂ Rn, let {um}∞m=1 and u0 be continuous

functions on D. If um → u0 uniformly on every compact subset of D as

m→∞, then

lim sup
m→∞

|{um = 0}| ≤ |{u0 = 0}|.

Proof. Suppose that

lim sup
m→∞

|{um = 0}| > |{u0 = 0}|.

Then there exist an open neighborhood A of {u0 = 0} and a compact set

K ⊂⊂ D such that ({um = 0} ∩ K) \ A is non-empty (upto subsequence,

if necessary). In other words, there exists a sequence of points xm ∈ K

satisfying xm ∈ {um = 0} \A . Again, upto subsequence, there exists a point
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x0 ∈ K \ A such that xm → x0. Then for any ε > 0, we have

|um(xm)− u0(x0)| ≤ |um(xm)− u0(xm)|+ |u0(xm)− u0(x0)| < ε,

for sufficiently large m, which yields that

u0(x0) = lim
m→∞

um(xm) = 0.

This contradicts to x0 /∈ {u0 = 0} and so we have the desired inequality.

Next, for the other direction of the inequality obtained from Lemma 4.5.10,

we need an additional work in terms of obstacle problem theory. Let u be

a non-negative solution of an obstacle problem F (D2u) = f(x)χ{u>0} in D,

for f ∈ L∞(D). By Theorem 1.2.1 in [56], we have u ∈ C1,1
loc (D) ∩ C(D).

We set D(u) := {x ∈ D : u(x) > 0}, C(u) := {x ∈ D : u(x) = 0}, and

Γ(u) := ∂D(u) ∩D.

Lemma 4.5.11 (Non-degeneracy; [56, Lemma 3.4]). Suppose that f ≥M >

0 in D and let x0 be any point in D(u). Then for any ball Br(x0) ⊂ D,

sup
Br(x0)

[u(x)− u(x0)] ≥ Mr2

2nΛ
.

Lemma 4.5.12. Suppose that f ≥ M > 0 in D and u0, um, m ∈ N are

non-negative solutions of F (D2v) = f(x)χ{v>0} in D. If um → u0 uniformly

in every compact subset of D, then we have

(i) lim supm→∞D(um) ⊂ D(u0);

(ii) lim supm→∞ |D(um)| ≤ |D(u0)|;

(iii) lim infm→∞ |C(um)| ≥ |C(u0)|.

where lim supm→∞Am means the set of all limit points of sequences {xm},
xm ∈ Am.

Proof. (i) It is a consequence of Lemma 4.5.11; see Corollary 3.5 in [56].
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(ii) Its proof is similar to the one of Lemma 4.5.10. Indeed, we suppose that

lim sup
m→∞

|D(um)| > |D(u0)|.

Then there exists an open neighborhood A of D(u0) such that there is

a sequence of points xm ∈ D (upto subsequence, if necessary) satisfying

xm ∈ D(um) \ A. Then there is a point x0 ∈ D such that xm → x0,

which implies that

x0 ∈ lim sup
m→∞

D(um) \ A ⊂ lim sup
m→∞

D(um) \D(u0).

This contradicts to (i).

(iii) Since D(um) = D \ C(um) and D(u0) = (D \ C(u0)) ∪ Γ(u0),

lim inf
m→∞

|C(um)| ≥ |C(u0)| − |Γ(u0)|

follows from (ii). Note that when F is positively homogeneous of degree

one, the free boundary Γ(u0) is a C1,α-graph; see [56, Theorem 3.3]. In

particular, |Γ(u0)| = 0 and thus, the desired inequality follows.

Combining the results from Lemma 4.5.10 and Lemma 4.5.12 (iii), we have

the stability of coincidence sets ; i.e. since vεβ,σ converges to vεβ uniformly on

every compact subset of D as σ → 0, we have

lim
σ→0
|{vεβ,σ = 0}| = |{vεβ = 0}|. (4.5.6)

Now, we proceed similarly as in the Laplacian case:

Lemma 4.5.13. If l(β) = 0, then lim infε→0w
ε
β ≥ 0 in D.

Proof. We may assume D = B1 and write vεβ,σ(x, ω) = ε2vβ,σ,ε−1B1
(x/ε, ω)

and wεβ,σ(x, ω) = ε2wβ,σ,ε−1B1
(x/ε, ω). Recalling the proof for Lemma 4.4.5,
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we obtain vβ,σ,ε−1B1
(x) > 0 if x ∈ ∪k∈ZnBaσ(k), which yields

F (M +D2wβ,σ,ε−1B1
)− F (M +D2vβ,σ,ε−1B1

)

=

(
β −

∑
k∈Zn

γ(k)νσ(x− k)

)
χ{vβ,σ,ε−1B1

=0} = βχ{vβ,σ,ε−1B1
=0}.

Now let h be the solution of{
P+(D2h) = −βχ{vβ,σ,ε−1B1

=0} in ε−1B1,

h = 0 on ∂(ε−1B1).

Then the uniformly ellipticity of F yields that

F (M +D2(wβ,σ,ε−1B1
+ h)) ≤ F (M +D2wβ,σ,ε−1B1

) + P+(D2h)

= F (M +D2vβ,σ,ε−1B1
),

and thus, we have wβ,σ,ε−1B1
+ h ≥ vβ,σ,ε−1B1

in ε−1B1 by the comparison

principle. (for example, see [18]) Applying the Alexandrov-Backelman-Pucci

estimate for h, we obtain that

sup
Bε−1

h ≤ Cε−1

(ˆ
Bε−1

(βχ{vβ,σ,ε−1B1
=0})

n

)1/n

= Cβε−1|{vβ,σ,ε−1B1
= 0} ∩Bε−1|1/n.

Now the remaining part is the same as in the proof of Lemma 4.5.1. The only

difference arises when applying the stability of coincidence sets, (4.5.6).

Similarly as in the Laplacian case (Lemma 4.5.2), one can prove the

quadratic growth property in the fully nonlinear case:

Lemma 4.5.14 (Quadratic growth; fully nonlinear operator). Let u be a

non-negative solution of an obstacle problem, i.e. u satisfies

F (D2u) = f(x)χ{u>0} in D,
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for f ∈ L∞(D). If x0 ∈ Γ(u), and B2r(x0) ⊂ D, then

sup
Br(x0)

u ≤ C(n, λ,Λ)‖f‖L∞(D)r
2.

Proof. For simplicity, we may assume x0 = 0 and write BR = BR(0) for any

R > 0. Then we split u into the sum u1 + u2 in B2r, where

F (D2u1) = F (D2u), P+(D2u2) = 0 in B2r;

u1 = 0, u2 = u on ∂B2r.

We estimate these functions u1 and u2 separately.

(i) To estimate u1, we consider a barrier function

g−(x) :=
1

2n
(4r2 − |x|2).

Then we immediately obtain

F (D2g−) = F

(
− 1

n
I

)
≤ −λ

in B2r and g− = 0 on ∂B2r. Thus, the comparison principle yields that

for x ∈ B2r,

u1(x) ≤ M

λ
g−(x) ≤ C(n, λ)Mr2,

where M := ‖f‖L∞(D). Considering g+(x) := 1
2n

(|x|2− 4r2)(= −g−(x)),

we can conclude that

|u1(x)| ≤ C(n, λ)Mr2.

(ii) To estimate u2, note that u2 ≥ 0 in B2r since F (D2u2) = 0 in B2r and
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u2 = u ≥ 0 on ∂B2r. Moreover, since 0 ∈ Γ(u), we have

u2(0) = −u1(0) ≤ C(n, λ)Mr2,

by the previous result. Thus, applying Harnack inequality to a non-

negative function u2 in B2r, we conclude that for x ∈ Br,

u2(x) ≤ C(n, λ,Λ)u2(0) ≤ C(n, λ,Λ)Mr2.

Finally, combining the estimates for u1 and u2, we obtain the desired

estiamtes for u.

Lemma 4.5.15. If l(β) > 0, then we have

lim
ε→0

vεβ,σ = 0 in D,

for each sufficiently small σ > 0.

Proof. Its proof can be done by following the proof of Lemma 4.5.3. Note

that here we use the stability of coincidence sets and the quadratic separation

occurred at the contact point.

Since wεβ ≤ vεβ by their definitions and vεβ,σ uniformly converges to vεβ on

every compact subset of D \ ∪k∈Zn(εk), we deduce the following corollary:

Corollary 4.5.16. Let q ∈ (0, 1/2). If l(β) > 0, then

lim
ε→0

sup
D\∪k∈ZnBqε(εk)

wεβ ≤ 0.

Applying Lemma 4.5.13, Corollary 4.5.16 and the fact that β0 is the

critical value, we have:
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Corollary 4.5.17. Let Bη(x0) ⊂ D. Then there exists a sequence {εj}j∈N
such that εj → 0+ and

lim
j→∞

w
εj
β0

(x) = 0,

for any x ∈ ∂Bη(x0) ∪ {x0}.

Lemma 4.5.18. For k ∈ Zn and M ∈ Sn, we denote

h−β,σ,k;M(x) :=
β + F (M)

2nλ
|x− k|2 + γ(k, ω)Φσ(x− k)− 1

2
(x− k)TM(x− k),

and

h+
σ,k;M(x) :=

F (M)

2nΛ
|x− k|2 + γ(k, ω)Φσ(x− k)− 1

2
(x− k)TM(x− k).

(i) For every β, we have

vβ,σ,ε−1D;M(x) ≥ h−β,σ,k;M(x)− β

8nλ
− (2r(k, ω))α

∗ − 1

8
‖M‖,

for all x ∈ B1/2(k) and almost every ω ∈ Ω.

(ii) For every β > β0, we have

vβ,σ,ε−1D;M(x) ≤ h+
σ,k;M(x) + o(ε−2),

for all x ∈ B1/2(k) and almost every ω ∈ Ω.

Proof. (i) By a direct calculation, for x ∈ B1/2(k), we have

F (M +D2h−β,σ,k;M) = F

(
β + F (M)

nλ
I + γ(k, ω)D2Φσ(x− k)

)
≥ β + F (M)− γ(k, ω)νσ(x− k)

≥ F (M +D2vβ,σ,ε−1D;M).

Thus, the comparison principle yields the desired inequality.
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(ii) Combining Theorem 4.4.15 (uniform convergence on every compact

subset of D \ ∪k∈Zn{εk}) and Lemma 4.5.15, we have (after rescaling)

vβ,σ,ε−1D;M = o(ε−2),

if x ∈ ε−1D \ ∪k∈ZnB1/2(k). On the other hand, in B1/2(k),

F (M +D2h+
σ,k;M) = F

(
F (M)

nΛ
I + γ(k, ω)D2Φσ(x− k)

)
≤ F (M)− γ(k, ω)νσ(x− k) ≤ F (M +D2vβ,σ,ε−1D;M).

Moreover, there exists a constant L = L(n, F,M) ≥ 0 (independent of

k) such that h+
β,σ,k;M+L ≥ 0 on ∂B1/2(k). Thus, again by the comparison

principle, we conclude the desired inequality.

We denote

h−β,k;M(x) := lim
σ→0

h−β,σ,k;M(x), h+
k;M(x) := lim

σ→0
h+
σ,k;M(x),

and

h−,εβ,k;M(x) := ε2h−β,k;M(x/ε) h+,ε
k;M(x) := ε2h+

k;M(x/ε).

Recalling Assumption 4.2.1, we have

γ(k, ω)(aε)−α
∗

= ε−2,

where aε = aε(r(k, ω))/ε. Thus, we deduce

h−β,k;M |∂Baε(r(k,ω))(k) = ε−2φ(θ) +O(1), h+
k;M |∂Baε(r(k,ω))(k) = ε−2φ(θ) +O(1)

which yields the following corollary after letting σ → 0+ in Lemma 4.5.18:

Corollary 4.5.19. (i) For every β and k ∈ Zn such that r(k, ω) > 0, we
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have

vβ,ε−1D;M(x) ≥ ε−2φ(θ) +O(1) on ∂Baε(r(k,ω))(k) a.e. ω ∈ Ω,

and so

vεβ;M(x) ≥ φ(θ) + o(1) on ∂Tε(ω) a.e. ω ∈ Ω,

for all β.

(ii) For every β > β0 and every k ∈ Zn, we have

vβ,ε−1D;M(x) ≤ ε−2φ(θ) + o(ε−2) on ∂Baε(r(k,ω))(k) a.e. ω ∈ Ω,

and so

vεβ;M(x) ≤ φ(θ) + o(1) on ∂Tε(ω) a.e. ω ∈ Ω,

for all β > β0.

Lemma 4.5.20. For every k ∈ Zn, wεβ0
satisfies

h−,εβ0,k;M(x)− o(1) ≤ wεβ0;M(x) ≤ h+,ε
k;M(x) + o(1) ∀x ∈ Bε/2(εk) ∩D.

In particular,

wεβ0;M = φ(θ) + o(1) on ∂Tε ∩D.

Proof. For simplicity, we drop the subscript M in this proof. Recall that for

every β, we denote

vεβ(x) = ε2vβ,ε−1D(x/ε),

which is defined in D and vεβ = 0 on ∂D. Compared to the Laplacian

case (Lemma 4.5.8), we cannot exploit the Green representation formula
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when estimating an auxiliary function. Instead, we will use the Alexandrov-

Backelman-Pucci estimate.

(i) Let β > β0. Note that

F (M +D2wβ0,σ,ε−1D) = F (M) + β0 −
∑

k∈Zn∩ε−1D

γ(k, ω)νσ(x− k),

and

F (M +D2vβ,σ,ε−1D)

= F (M) +

(
β −

∑
k∈Zn∩ε−1D

γ(k, ω)νσ(x− k)

)
χ{vβ,σ,ε−1D>0}

= F (M) + βχ{vβ,σ,ε−1D>0} −
∑

k∈Zn∩ε−1D

γ(k, ω)νσ(x− k)

≤ F (M) + β −
∑

k∈Zn∩ε−1D

γ(k, ω)νσ(x− k).

Now let h be the solution of{
P+(D2h) = β0 − β in ε−1D,

h = 0 on ∂(ε−1D).

Since

F (M +D2vβ,σ,ε−1D +D2h) ≤ F (M +D2vβ,σ,ε−1D) + P+(D2h)

≤ F (M +D2wβ0,σ,ε−1D),

the comparison principle leads to vβ,σ,ε−1D+h ≥ wβ0,σ,ε−1D. Then an ap-

plication of Alexandrov-Backelman-Pucci estimate for h indicates that

sup
ε−1D

h ≤ Cε−1diamD‖β − β0‖Ln(ε−1D) ≤ C(ε−1diamD)2(β − β0).
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Thus, by rescaling, we conclude that

wεβ0,σ
≤ vεβ,σ + C(diamD)2(β − β0).

Applying Lemma 4.5.18 (ii), we conclude that

wεβ0,σ
(x) ≤ ε2h+

σ,k(x/ε) + o(1) + C(diamD)2(β − β0)

for all x ∈ Bε/2(εk). Letting σ → 0 and then β → β0, we obtain the

desired upper bound.

(ii) Arguing as in (i), for every β ≤ β0, let h be the solution of{
P+(D2h) = β − β0 − βχ{vβ,σ,ε−1D=0} in ε−1D,

h = 0 on ∂(ε−1D).

Then since

F (M +D2wβ0,σ,ε−1D +D2h) ≤ F (M +D2vβ,σ,ε−1D),

we have wβ0,σ,ε−1D + h ≥ vβ,σ,ε−1D. Again, the Alexandrov-Backelman-

Pucci estimate yields that

sup
ε−1D

h ≤ C(ε−1diamD)2

[
(β0 − β) +

(
|{vβ,σ,ε−1D = 0}|

|ε−1D|

)1/n
]
.

By rescaling, we obtain that

wεβ0,σ
≥ vεβ,σ − C(diamD)2

[
(β0 − β) +

( |{vεβ,σ = 0}|
|D|

)1/n
]
.
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Applying Lemma 4.5.18 (i) and letting σ → 0,

wεβ0
(x) ≥ ε2h−β,k(x/ε)− o(1)

− C(diamD)2

[
(β0 − β) +

( |{vεβ = 0}|
|D|

)1/n
]
.

Since limε→0
|{vεβ=0}|
|D| = l(β) = 0 for any β ≤ β0, we obtain the desired

lower bound.

For each symmetric matrix M ∈ Sn, we define a corrector wεM by
F (M +D2wεM) = β0(M) + F (M) in Dε,

wεM(x) = φ(θ) on ∂Tε,

wεM = 0 on ∂D,

where β0(M) is the critical value. Note that we impose the boundary con-

dition wε = φ(θ) on ∂Tε instead of wε = 1, which we wrote wε ≈ 1 in the

Introduction.

Lemma 4.5.21. Let Bη(x0) ⊂ D. Then there exists a sequence {εj}j∈N such

that εj → 0+ and

lim
j→∞

wεj(x) = 0,

for any x ∈ ∂Bη(x0) ∪ {x0}.

Proof. First of all, by Theorem 4.4.13, the free solution wεβ0;M satisfies

F (M +D2wεβ0;M) = β0(M) + F (M) in D \ ∪k∈Zn{εk},

while the corrector wεM satisfies

F (M +D2wεM) = β0(M) + F (M).
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Applying Lemma 4.5.20 together with the comparison principle for wεM and

wεβ0;M in D \ Tε, it holds that

wεβ0;M(x)− o(1) ≤ wε(x) ≤ wεβ0;M(x) + o(1) in D \ Tε.

Therefore, the desired result follows from Corollary 4.5.17.

Before finding the effective equation satisfied by the limit profile u, we

show the uniform ellipticity of the homogenized operator.

Lemma 4.5.22. For M ∈ Sn and c ≥ 0, set

F (M, c) := F (M + cD2wεM)

=

{
cF (M/c+D2wεM) = cβ0(M/c) + F (M) if c > 0,

F (M) if c = 0.

Then we have λ‖N‖ ≤ F (M +N, c)− F (M, c) ≤ Λ‖N‖ for any N ≥ 0.

Proof. If c = 0, then the result follows from the uniform ellipticity of F . For

c = 1, we have

F (M +N, 1) = F (M +N +D2wεM+N) ≤ F (M +D2wεM+N) + Λ‖N‖

We denote w̃ be the solution of
F (M +D2w̃) = F (M +N, 1)− Λ‖N‖ in Dε,

w̃(x) = φ(θ) on ∂Tε,

w̃ = 0 on ∂D.

Then the comparison principle yields that w̃ ≥ wεM+N and so w̃ ≥ 0 letting

ε→ 0. Recalling the definition of wεM , we have

F (M +D2w̃) ≤ F (M +D2wεM) = β0(M) + F (M) = F (M, 1),
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and so

F (M +N, 1) ≤ F (M, 1) + Λ‖N‖.

The lower bound can be proved similarly. Moreover, considering M/c and

N/c instead of M and N , we can finish the proof for general c > 0.

Finally, we are ready to finish the proof of our main theorem for the fully

nonlinear case:

Proof of Theorem 4.1.2 (ii). Recalling Lemma 4.5.22, F is uniformly elliptic.

We are going to show that u is a supersolution. Let us assume that there is

a parabola P touching u from below at x0 and

F (D2P, (ϕ(x0)− P (x0))+) > 2µ0 > 0.

In a small neighborhood of x0, Bη(x0), there exists another parabola Q such

that 
D2P > D2Q in Bη(x0),

P (x0) + δ0 < Q(x0),

P (x) > Q(x) on ∂Bη(x0).

In addition, for ξ0 := (ϕ(x0) − u(x0))+, F (D2Q, ξ0) > µ0 > 0. Then for a

corrector wεM with M = D2Q, we have

F (D2Qε) = F (D2Q+ ξ0D
2wεM) = F (D2Q, ξ0) > µ0 > 0,

where Qε(x) = Q(x) + ξ0w
ε
M(x). Since Qε < uε on ∂Bρ(x0) for sufficiently

small ε > 0, the comparison principle yields that Q(x0) ≤ u(x0). It contra-

dicts to the fact that Q(x0) > P (x0) + δ0 = u(x0) + δ0. A similar argument

tells us u is also a subsolution.
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[27] C. E. Finol and M. Wójtowicz. Multiplicative properties of real functions

with applications to classical functions. Aequationes Math., 59(1-2):134–

149, 2000.

[28] M. Focardi. Homogenization of random fractional obstacle problems via

Γ-convergence. Comm. Partial Differential Equations, 34(10-12):1607–

1631, 2009.

[29] M. Focardi. Aperiodic fractional obstacle problems. Adv. Math.,

225(6):3502–3544, 2010.

[30] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equa-

tions of second order, volume 224 of Grundlehren der Mathematis-

chen Wissenschaften [Fundamental Principles of Mathematical Sci-

ences]. Springer-Verlag, Berlin, second edition, 1983.

[31] Q. Han and F. Lin. Elliptic partial differential equations, volume 1 of

Courant Lecture Notes in Mathematics. Courant Institute of Mathemat-

ical Sciences, New York; American Mathematical Society, Providence,

RI, second edition, 2011.
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[37] J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear potential theory

of degenerate elliptic equations. Dover Publications, Inc., Mineola, NY,

2006. Unabridged republication of the 1993 original.

[38] L. L. Helms. Potential theory. Universitext. Springer-Verlag London,

Ltd., London, 2009.
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국문초록

본 학위 논문은 비정칙 영역에서의 비선형 타원형 방정식을 다룬 세 편의 연구논문

으로 구성된다. 첫 번째 논문에서, 우리는 비선형 퍼텐셜 이론을 통해 완전 비선형

방정식에 대한 정칙 경계점을 특징짓는 위너 판정법을 확립한다. 우리의 접근 방식은

비변분 용량의 분석과 동차해를 사용한 장벽 함수의 구성을 기반으로 한다. 두 번째

및 세 번째 논문은 각각 올리츠 증가성을 가진 타원형 작용소와 완전 비선형 작용소

에 대한 장애물 문제의 임의 균질화에 대해 논의한다. 임계 크기를 가진 구멍에 대해

정상 에르고딕 성질을 가정하면, 두 경우 모두 극한 함수는 장애물이 없는 균질화된

방정식을 만족한다. 분석의 핵심은 각각 에너지와 점성 방법을 통해, 진동하는 해의

점근적 행동을 포착하는 데 있다.

주요어휘: 위너 판정법, 임의 균질화, 완전 비선형 작용소, 올리츠 공간

학번: 2016-20241
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