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Abstract

Nonlinear partial differential equations on
irregular domains

Sechan Lee
Department of Mathematical Sciences

The Graduate School

Seoul National University

This thesis consists of three papers concerning nonlinear elliptic equations
on irregular domains. In the first paper, we establish the Wiener criterion,
which characterizes a regular boundary point via nonlinear potential theory,
for fully nonlinear equations in non-divergence form. Our approach is based
on the investigation of non-variational capacity, and the construction of bar-
rier functions using a homogeneous solution. The second and third papers
discuss the random homogenization of an obstacle problem for elliptic oper-
ators with Orlicz growth and fully nonlinear operators, respectively. In both
cases, the limit profile satisfies a homogenized equation without obstacles,
if we assume the stationary ergodicity on the perforating holes with criti-
cal size. The heart of analysis lies in capturing the asymptotic behavior of

oscillating solutions, by means of energy and viscosity method, respectively.

Key words: Wiener criterion, random homogenization, fully nonlinear op-
erator, Orlicz space
Student Number: 2016-20241
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Chapter 1
Introduction

The analysis on solutions of the partial differential equations becomes more
complicated when the irregularity on domains are assumed. For example,
the non-smoothness on the boundary of domains or the randomly perforat-
ing holes on the interior of domains induce such difficulties. Nevertheless,
we are still able to describe several regular properties of solutions by em-
ploying an energy method for operators in divergence form and a viscosity
method for operators in non-divergence form, respectively. Roughly speak-
ing, we will concentrate on capturing the asymptotic behaviors of solutions
near the singular point, in terms of capacity or homogeneous solution.

In the first part of this thesis, we are concerned with the irregularity on the
boundary of domains. To illustrate the issues, let €2 be an open and bounded
subset in R™, f be a boundary data on 0¢2, and M be an elliptic operator.

For the existence of a solution u (in a suitable sense) to the Dirichlet problem

Miu] =0 in Q,
u=f on 0f),

one may apply Perron’s method. If the solvability of the Dirichlet problem on
any balls is known and M allows a comparison principle, it is rather straight-
forward to prove that the upper Perron solution ﬁf satisfies M[Hf] =0in

Q2. Nevertheless, we cannot ensure that the boundary condition v = f on 02
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is satisfied by the upper Perron solution, in general. Instead, we are forced
to discover an additional condition for the boundary 02, which enables us
to capture the boundary behavior of ﬁf.

To be precise, we say a boundary point xq € 02 is reqular with respect
to €, if

lim H,(y) = f(xo).

Q3y—axo

whenever f € C(99). One simple characterization of a regular boundary
point is to find a barrier function. As a consequence, by constructing proper
barrier functions, geometric criteria on 02 such as an exterior sphere condi-
tion or an exterior cone condition have been invoked to guarantee the bound-
ary continuity at zy € 02 for a variety of elliptic operators. Here note that
aforementioned conditions only serve as sufficient conditions for a boundary
point to be regular. In other words, these conditions do not reflect the indi-
vidual character of each operator, and so they are not sharp enough to be a
necessary condition for a regular boundary point.

On the other hand, in the pioneering works [79, 80], Wiener provided an
alternative criterion for a regular boundary point, based on potential theory.
Namely, for the Laplacian operator (M = A), xy € 99 is regular if and only

if the Wiener integral diverges, i.e.

capy(Bi(zo), Bu(wo) £

/1 capy(Bi(xg) \ Q, By (x0)) dt

where cap, (K, ) is defined by the variational capacity of the Laplacian op-
erator. Surprisingly, the Wiener criterion becomes both a sufficient and nec-
essary condition for the regularity of a boundary point. Here the notion of
capacity is used to measure the ‘size’ of sets in view of given differential
equations. Roughly speaking, xy € 02 is regular if and only if ¢ is ‘thick’
enough at zy in the potential theoretic sense.

Both linear and nonlinear potential theory have been extensively studied
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in literature; see [11, 37, 38, 53, 66, 78] and references therein. Since the main
ingredient of potential theory comes from the integration by parts, the theory
and corresponding Wiener criterion have been developed mostly for operators
in divergence form. Littman, Stampacchia and Weinburger [65] demonstrated
the coincidence between the regular points for uniformly elliptic operators
M = D;(a;; D;), where a;; is bounded and measurable, and for the Laplacian
operator. For the p-Laplacian operator (M = A,,p > 1), Maz'ya [68] verified

the sufficiency of the p-Wiener criterion, i.e. o € 02 is regular for A, if

— = 00.
t

/1 (capp<—Bt<xo> \2, B%@O))) Y
0 cap,, (B (o), Ba(o))

For the converse direction, Lindqvist and Martio [64] proved the necessity of
the Wiener criterion under the assumption p > n — 1. Later, Kilpelainen and
Maly [46] extended this result to any p > 1, via the Wolff potential estimate.
For the other available results on the Wiener criterion, we refer to [2] for
p(z)-Laplacian operators, [59] for operators with Orlicz growth, and [47] for
nonlocal operators. Note that all of these results consider elliptic operators
in divergence form.

For elliptic operators in non-divergence form, relatively small amounts
of results for the Wiener criterion are known. While the equivalence was
obtained for M = D,(a;;D;) with merely measurable coefficients in [65],
Miller [71, 72] discovered the non-equivalence with respect to M = a;;D;;u,
even if the coefficients a;; are continuous. More precisely, he presented ex-
amples of linear operators M in non-divergence form and domains {2 such
that xy € 0€) is regular for M, but z is irregular for A, and vice-versa. We
also refer [50, 55]. On the other hand, Bauman [7] developed the Wiener test
for M = a;;D;;u with continuous coefficients a;;. He proved that x, € € is

regular if and only if
(i) capy({zo}) >0, or

(ii) Z;’il G(zo, 20 +277€) - cap o (2° N (By-s(wg) \ By-i-1(g))) = oo.



CHAPTER 1. INTRODUCTION

Here g is the normalized Green function and e is a unit vector in R"™.

In Chapter 2, we formulate the Wiener criterion for fully nonlinear ellip-
tic equations in non-divergence form, which is the main result of [60]. Unlike
the cases of operators in divergence form, we cannot define the variational
capacity by minimizing the corresponding energy. Instead, under the assump-
tion that the operator is positively homogeneous of degree one, we explain
the non-variational capacity based on the growth rate of homogeneous solu-
tions. One can see that the non-variational capacity plays a crucial role in
investigating the boundary regularity of solutions.

In the second part of this thesis, we present the random homogenization
result for elliptic equations with highly oscillating obstacles. Indeed, a variety
of physical and biological phenomena can be modeled by partial differential
equations on the media with periodic structure (or oscillating obstacles).
Then the solutions, u., of these equations are expected to possess periodic
oscillation in microscopic scale (often denoted by ¢), which is much smaller
than the size of the domain with macroscopic scale. The homogenization
process is interested in describing the asymptotic behavior of u. when ¢ — 0
and determining the effective model which is satisfied by the limit solution
u = lim._,q u,.

There has been a large body of literature on the periodic homogenization
of linear and nonlinear PDEs; for classical results, see [8, 13, 22, 26, 42| and
references therein. Here we concentrate on summarizing the homogenization
results which are closely related to our circumstances.

Cioranescu and Murat employed an energy method to analyze the asymp-
totic behavior of u. in their paper [17], entitled “A strange term coming from
nowhere”. To be precise, they proved that the solution u. of Laplace equa-
tion (—Au. = f) in a perforated domain with critical hole size, converges
to the solution u of Laplace equation with an additional term depending on
the capacity of holes (—Awu + pu = f). The proof relies on the construction
of appropriate correctors with desired properties under abstract framework.

Note that in their periodic setting, all holes have the identical size and u. = 0
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on T, rather than u, > 0 on 7.

The homogenization result in [17] was extended to the stationary ergodic
setting for the Laplace equations with obstacles by Caffarelli and Mellet [15].
Here the hypothesis of stationary ergodicity is an extension of the notion of
periodicity or almost periodicity, and it requires a random variable to have
self-averaging behavior. They overcame the difficulty coming from random-
ness by exploiting the subadditive ergodic theorem: we refer to [1, 16, 21| for
details. Tang [77] generalized this result for p-Laplacian operator (1 < p < n)
in the stationary ergodic setting.

Furthermore, I'-convergence methods can be applied in homogenization;
see two books [10, 20]. Ansini and Braides [3] described the asymptotic be-
havior of p-energy type Dirichlet problem in periodically perforated domain.
Focardi extended the results for fractional obstacle problems in stationary
ergodic setting [28] and in aperiodic setting [29].

Caffarelli and Lee [12] developed a viscosity method for periodic homog-
enization of Laplacian and fully nonlinear operator with highly oscillating
obstacles. They considered a viscosity solution satisfying a uniformly elliptic
equation with non-divergence structure, and established a viscosity method
to find an effective equation satisfied by the limit function. See also [48] and
[61] for an application of a viscosity method for periodic homogenization of
nonlinear parabolic equations and semilinear equations, respectively.

In Chapter 3 and 4, we consider elliptic equations with Orlicz growth [57]
and fully nonlinear elliptic equations [58], respectively. Let us briefly explain
the common main ingredient in Chapter 3 and 4: the correctors. As usual
in the homogenization process, the correctors are essential tools to estimate
the difference between e-solutions and the limit solution. In the abstract
framework, we first find out the desired properties for correctors to explain
the limit profile in the homogenization. Then we construct such correctors
and prove that they possess such properties. Note that these correctors are
also can be employed to the homogenization result of non-critical hole sizes.

In short, when the perforating hole sizes are not critical, we can obtain rather
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trivial effective equations without additional terms.

Since we consider an obstacle problem with highly oscillating obstacles
in microscopic scale, we require oscillating correctors with prescribed val-
ues on each hole with random size. To be precise, the corrector must be-
have like a fundamental solution near each perforated hole, to explain the
oscillatory behavior of u.. Thus, we will adopt the Dirac-delta measure ¢
(energy) for operators in divergence form and the homogeneous solution ®
(viscosity) for operators in non-divergence form, respectively. In particular,
for non-divergence form operators, we will modify the homogeneous solution
to approximate the Dirac-delta measure in sense of ‘shape’.

Moreover, another important ingredient in the random homogenization
process is the subadditive ergodic theorem. This theorem enables to describe
the self-averaging behavior of given random process, which satisfies the sta-
tionary ergodic property. To determine the critical value or the critical func-
tion which appears in the limit equation, we first study the measure of a
contact set. Indeed, we define an auxiliary function which solves an obstacle
problem with randomness, and then investigate the coincidence set. Since the
measure of a contact sets satisfy the subadditivity, we will conclude that there
exists a critical value which separate behaviors of aforementioned auxiliary

functions.



Chapter 2

The Wiener Criterion for Fully

Nonlinear Elliptic Equations

2.1 Introduction

The goal of this chapter is to establish the Wiener criterion for fully nonlinear
elliptic operators, by implementing potential theoretic tools. To illustrate the
issues, we consider an Issacs operator, i.e. an operator F' with the following

two properties:

(F1) F is uniformly elliptic: there exist positive constants 0 < A < A such
that for any M € S™,

M|N|| < F(M+ N)—F(M) <A|N||, YN >0.
Here we write N > 0 whenever N is a non-negative definite symmetric

matrix.

(F2) F is positively homogeneous of degree one: F(tM) = tF(M) for any
t>0and M e S™

Throughout this chapter, we suppose that F' satisfies (F1) and (F2), un-
less otherwise stated. Typical examples of operators satisfying (F1) and (F2)
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are the Pucci extremal operators Py, and Py, defined by
P,QL,A(M) :Azeﬁ')\zeu Pia(M) ZAZ@—I—)\Z@,
e; >0 e; <0 e; <0 e; >0
where e; = e;(M) are the eigenvalues of M. For a fully nonlinear operator F'
satisfying (F1) and (F2), we define a dual operator

F(M):=—-F(—-M), forMeS".

Then it is obvious that F also satisfies (F1) and (F2). One important property
that F' satisfying (F1) and (F2) possesses is the existence of a homogeneous

solution V:

Lemma 2.1.1 (A homogeneous solution; [4, 12]). There exists a non-constant
solution of F(D?*u) =0 in R™\ {0} that is bounded below in By and bounded
above in R™ \ By. Moreover, the set of all such solutions is of the form
{aV +bla > 0,b € R}, where V € CLY(R™\ {0}) can be chosen to sat-

loc

isfy one of the following homogeneity relations: for all t > 0
V(z) =V(tz) +logt inR"\ {0} where a” =0,
or
V(z) =t V(tr), «*V >0 inR™\ {0},

for some number a* € (—1,00) \ {0} that depends only on F' and n. We call

the number o = o*(F') the scaling exponent of F'.

We are ready to state our first main theorem, namely, the sufficiency of

the Wiener criterion:

Theorem 2.1.2 (The sufficiency of the Wiener crietrion). If

/0 cap (Bi(0) \ 2, Ba(o) & = o0
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and

| cams Btz \ 2. Bu(ao) - = o

then the boundary point xo € 02 is (F-)regqular.

We remark that the Wiener integral is again defined in terms of a capac-
ity, but the definition of a F-capacity is quite different from the variational
capacity for the Laplacian case; see Section 2.3 for details. Furthermore, as
a corollary of Theorem 2.1.2, we will derive the quantitative estimate for
a modulus of continuity at a regular boundary point (Lemma 2.4.7), and
suggest another geometric condition, called an exterior corkscrew condition
(Corollary 2.4.9).

Our second main theorem is concerned with the necessity of the Wiener
criterion. We propose a partial result on the necessary condition, i.e. ex-
ploiting the additional structure of F, we show that the Wiener integral at

xg € 002 must diverge whenever xy is a regular boundary point.

Theorem 2.1.3 (The necessity of the Wiener criterion). Suppose that F' is
concave and o*(F') < 1. If a boundary point xo € OS2 is regular, then

/0 capp(By(@o) \ Q,BWO))% _ .

Note that the assumption o*(F) < 1 in the fully nonlinear case corre-
sponds to the assumption p > n — 1 in the p-Laplacian case, [64]. The under-
lying idea for both cases is to utilize the non-zero capacity of a line segment
(or a set of Hausdorff dimension 1). Further comments on this assumption
can be found in Section 2.5.

In this chapter, the main difficulty arises from the inherent lack of diver-
gence structure; we cannot define a variational capacity by means of an en-
ergy minimizer, and moreover, we cannot employ integral estimates involving
Sobolev inequality and Poincaré inequality. Instead, we will develop potential

theory with non-divergence structure by the construction of appropriate bar-
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rier functions using the homogeneous solution, and by the application of the
comparison principle and Harnack inequality. In short, our strategy is to cap-
ture the local boundary behavior of the upper Perron solution ﬁf in terms
of newly defined capacity capp(K, B) and the capacity potential (or the
balayage) E}{(B), using prescribed tools. Heuristically, the non-variational
capacity measures the ‘height’ of the F-solution with the boundary value 0
on 0B and 1 on 0K, while the variational capacity measures the ‘energy’ of
such function. We emphasize that although our notion of capacity does not
satisfy the subadditive property in general, it was still able to recover certain
properties of the variational capacity.

Finally, we would like to point out that the dual operator F is different
from F', for general F'. Thus, even though w is an F-supersolution, we cannot
guarantee —u is an F-subsolution. Moreover, a similar feature is found in
the growth rate of the homogeneous solution for F'; two growth rates of an
upward-pointing homogeneous solution and a downward-pointing one can be

different. This phenomenon naturally leads us

(i) to describe the local behavior of both the upper Perron solution H f

and the lower Perron solution H; for regularity at zo € 0§;

(ii) to construct two (upper/lower) barrier functions when characterizing a

regular boundary point;
(ili) to display two different Wiener integrals in our main theorem,

which differ from the previous results that appeared in [7, 46, 79].

This chapter is organized as follows. In Section 2.2, we summarize the ter-
minology and preliminary results for our main theorems. In short, we intro-
duce F-superharmonic functions and Poisson modification and then perform
Perron’s method. In Section 2.3, we first define a balayage and a capac-
ity for uniformly elliptic operators in non-divergence form. Then we prove
several capacitary estimates by constructing auxiliary functions and provide
the characterization of a regular boundary point via balayage. Section 2.4

consists of potential theoretic estimates for the capacity potential. Then we

10
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prove the sufficiency of the Wiener criterion and several corollaries. Finally,
Section 2.5 is devoted to the proof of the (partial) necessity of the Wiener

criterion.

2.2 Perron’s Method

2.2.1 F-Supersolutions and F-Superharmonic Functions

In this subsection, we only require the condition (F1) for an operator F'. To
illustrate Perron’s method precisely, we start with two different notions of
solutions for a uniformly elliptic operator F: F-solutions and F-harmonic

functions. Indeed, we will prove that these two notions coincide.

Definition 2.2.1 (F-supersolution). A lower semi-continuous [resp. upper
semi-continuous| function w in Q is a (viscosity) F-supersolution [resp. (vis-
cosity) F-subsolution] in €2, when the following condition holds:

if zg € Q, p € C?(Q) and u — ¢ has a local minimum at z,, then
F(D?*¢(x0)) < 0.

[resp. if u — ¢ has a local maximum at xq, then F(D?%*p(z¢)) > 0.]
We say that u € C(Q) a (viscosity) F-solution if u is both an F-subsolution

and an F-supersolution.

Lemma 2.2.2. Suppose that a lower semi-continuous function u is an F'-

supersolution in ). Then
u(x) =liminfu(y) for any z € Q.
Qoy—z

Proof. We argue by contradiction: suppose that

u(zg) < liminfu(y) for some o € €.
Qoy—x

11
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Then for any ¢ € C?(), it follows that u — ¢ has a local minimum at

and so we can test this function. Therefore,
F(D?*p(x0)) <0 for any ¢ € C%(),

which is impossible. [

Theorem 2.2.3. (i) (Stability) Let {ux}tr>1 C C(Q) be a sequence of F-
solutions in ). Assume that uj, converges uniformly in every compact

set of Q to w. Then u is an F-solution in €.

(ii) (Compactness) Suppose that {ui}r>1 C C(Q) is a locally uniformly
bounded sequence of F-solutions in ). Then it has a subsequence that

converges locally uniformly in Q to an F-solution.

Theorem 2.2.4 (Harnack convergence theorem). Let {uy}r>1 C C(£2) be an
increasing sequence of F-solutions in . Then the function u = limy_, uy, is

either an F-solution or identically +oo in €.

Proof. If u(z) < oo for some z € €, it follows from Harnack inequality that u
is locally bounded in 2. The interior C'“-estimate yields that the sequence wuy
is equicontinuous in every compact subset of €). Thus, applying Arzela-Ascoli
theorem and Theorem 2.2.3 (i), we finish the proof. O

We demonstrate two essential tools for Perron’s method, namely, the com-

parison principle and the solvability of the Dirichlet problem in a ball.

Theorem 2.2.5 (Comparison principle for F-super/subsolutions, [43, 44]).
Let Q be a bounded open subset of R™. Let v € USC(Q) [resp.u € LSC(Q)] be
an F-subsolution [resp. F-supersolution] in Q and v < u on 02. Then v < u
in Q).

In the previous theorem, USC({2) denotes the set of all upper semi-
continuous functions from Q to R. Moreover, note that for a lower semi-
continuous function f, there exists an increasing sequence of continuous func-

tions { f,} such that f,, — f pointwise as n — 0.

12
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Theorem 2.2.6 (The solvability of the Dirichlet problem). Let Q2 satisfy a

uniform exterior cone condition and f € C(0S2). Then there exists a unique

F-solution u € C(Q) of the Dirichlet problem

F(D?*u) =0 1in Q,
u=f on 0S).

Proof. The existence depends on the construction of global barriers achiev-
ing given boundary data and the standard Perron’s method; see [19, 69] and
[18, 40]. Then the uniqueness comes from the comparison principle, Theo-
rem 2.2.5. O

Definition 2.2.7 (F-superharmonic function). A function u : Q — (—o0, 0]

is called F-superharmonic if
(i) u is lower semi-continuous;
(ii) u # oo in each component of Q;

(iii) wu satisfies the comparison principle in each open D CC Q: If h € C(D)
is an F-solution in D, and if h < w on 0D, then h < u in D.

Analagously, a function u : 2 — [—00, 00) is called F-subharmonic if
(i) w is upper semi-continuous;
(ii) u # —oo in each component of ;

(iii) u satisfies the comparsion principle in each open D CC Q: If h € C(D)
is an F-solution in D, and if A > w on 0D, then h > u in D.

We say that u € C(Q) is F-harmonic if u is both F-subharmonic and F-

superharmonic.

Lemma 2.2.8. (i) Ifu is F-superharmonic, then au+b is F-superharmonic

whenever a and b are real numbers and a > 0.

13
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(i) If w and v are F-superhmaronic, then the function min{u,v} is F-

superharmonic.

(iii) Suppose that u;, © = 1,2,---, are F-superharmonic in . If the se-
quence u; s increasing or converges uniformly on compact subsets of
Q, then in each component of €, the limit function v = lim;_,. u; is

F'-superharmonic unless u = oo.

Theorem 2.2.9 (Comparison principle for F-super/subharmonic functions).

Suppose that u is F-superharmonic and that v is F-subharmonic in €. If

limsup v(y) < liminf u(y)

y—x y—x
for all x € 092, then v < wu in €.

Proof. Fix ¢ > 0 and let
K. ={x € Q:v(x) >u(x)+e}.

Then K. is a compact subset of €2 and so there exists an open cover D,
such that K. C D. C ) where D, is a union of finitely many balls B;, and
0D. C 2\ K.. Since u is lower semi-continuous, v is upper semi-continuous
and 0D, is compact, we can choose a continuous function 8 on 0D, such that
v <0 <u+eon dD.. Moreover, since D, satisfies a uniform exterior cone
condition, there exists h € C(D) which is the unique F-solution in D, that
coincides with 6 on 0D, by applying Theorem 2.2.6. Now the definition of

F-super/subharmonic functions yields that
v<h<u+e in D..

Hence, v < u + ¢ in 2 and the desired result follows by letting ¢ — 0. O]

Now we describe the equivalence of F-supersolution and F-superharmonic
function; see also [39, 49, 52].

14



CHAPTER 2. THE WIENER CRITERION FOR FULLY NONLINEAR
ELLIPTIC EQUATIONS

Theorem 2.2.10. u is an F-supersolution in Q if and only if u is F-

superharmonic in 2.

Proof. Assume first that u is an F-supersolution in 2. To show that u is F-
superharmonic, we only need to verify the property (iii) in the definition of F-
superharmonic functions. Let D CC € be an open set and take h € C(D) to
be an F-solution in D such that A < won dD. Thus, applying the comparison
principle for F-super/subsolutions (Theorem 2.2.5) for u and h, we conclude
that h < w in D.

Assume now that u is F-superharmonic in €. For any z, € (), take
¢ € C*(B,(z0)) such that u — ¢ has a local minimum 0 at xy. We need to
prove that

F(D?*p(x)) <0. (2.2.1)

We argue by contradiction; suppose that (2.2.1) fails. By the continuity of
the operator F', there exist 7 > 0 and p € (0,7) such that

F(D*p(z)) > 71 in B,(z0).

Consider a cut-off function n € C§(B,(x0)) with suppn C B, (z¢) and

n(xo) = 1. Since the uniform ellipticity gives
F(D?*(p +en)) > F(D*p) + 67)):A(D27]) for any € > 0,
we can choose a sufficiently small g > 0 so that
F(D*(¢+¢egn)) >0 in By(xo).

In other words, since ¢ + ggn € C?(B,(x0)), ¢ + €on is an F-subsolution
in B,(xp). Furthermore, by a similar argument as in the first part, we have

¢ + gon is F-subharmonic in B,(zy). On the other hand, on 0B,/ (), we
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have

p(x) +eon(z) = p(z) < u(),

Thus, by the comparison principle for F-super/subharmonic functions (The-
orem 2.2.9) for u and ¢ + gon, we conclude that ¢ +on < u in B,js(zo). In
particular, letting x = xo, we have p(xy) + ¢ < u(xg), which contradicts to
the fact that u(xg) = w(z0). O

The result for F-subsolution and F-subharmonic function can be derived
in the same manner and consequently, a function u is an F-solution if and

only if it is F-harmonic.

2.2.2 Perron’s Method

Lemma 2.2.11 (Pasting lemma). Let D C Q be open. Also let u and v be

F-superharmonic in € and D, resepctively. If the function

min{u,v} in D,
s =
u in Q\ D,

s lower semi-continuous, then s is F-superharmonic in 2.

Proof. Let G CC €2 be open and h € C(G) be F-harmonic such that h < s

on 0G. Then h < w in G. In particular, since s is lower semi-continuous,

e
ool 1) < ule) = 5() < fimint v(y

for all x € 0D N G. Thus,

. <
oty ") = 50) = St o)

for all x € 9(D N G), and Theorem 2.2.9 implies h < v in D N G. Therefore,
h < s in G and the lemma is proved. ]
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Suppose that u is F-superharmonic in €2 and that B CC 2 is an open
ball. Let

up = inf {v v is F-superharmonic in B,

liminf v(y) > u(x) for each = € aB}.

Yy—T

Then define the Poisson modification P(u, B) of v in B to be the function

up in B,

Plu. B) ::{ u inQ\ B.

Lemma 2.2.12 (Poisson modification). The Poisson modification P(u, B)

is F-superharmonic in Q, F-harmonic in B, and P(u, B) < u in Q.

Proof. By definition, it is clear that P(u, B) < w in Q. To show P(u, B)
is F-harmonic in B, choose an increasing sequence of continuous functions
{0;};>1 on OB such that u = lim;_, #;. (recall that this is possible since
u is lower semi-continuous.) Then let h; € C(B) be the F-solution of the
Dirichlet problem F(D?*h;) = 0 in B and h; = 6; on 9B by Theorem 2.2.6.
The comparison principle yields that h; is also an increasing sequence. Thus,
applying Harnack convergence theorem (Theorem 2.2.4), we have the limit
function h = lim;_, h; is an F-solution in B. Since

lignﬁi:?f h(y) > ]lirlgo lizriiilf hi(y) = ]ll)rglo hj(x) = jli)rgo 0;(x) =u(x), (2.2.2)
for any = € 0B, we have h > P(u, B) in B by the definition of ug. On the
other hand, since h;(x) < liminf, ,, v(y) where z € 9B and v is an admissible
function for up, we have h < P(u,B) in B by applying the comparison
principle, letting j — oo and taking the infimum over v. Therefore, P(u, B) =
h is F-harmonic in B.

Finally, if we show that P(u, B) is lower semi-continuous, then it imme-
diately follows from the pasting lemma that P(u, B) is F-superharmonic in

2. Indeed, it is enough to show that P(u, B) is lower semi-continuous at each
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point x € 0B; recall (2.2.2). O

Remark 2.2.13 (Perron’s method). Let €2 be an open, bounded subset of
R™ and f be a bounded function on 09Q2. The upper class Uy = Uy (€2) consists

of all functions w in €2 such that
(i) wis F-superharmonic in €;
(ii) w is bounded below;
(iii) liminfos, ., u(y) > f(z) for each z € 0N2.

Then we define the upper Perron solution of f by

ﬁf = ﬁf(Q) = mf Uu.

UEUf

Similarly, let the lower class L; = L;(£2) be the set of all F-subharmonic

functions v in €2 which are bounded above and such that

limsupv(y) < f(z) for each z € 99,

Qdy—z

and define the lower Perron solution of f by

H; = H,( ) := sup v.
U€£f

Then the comparison principle yields that H; < Hf.
Lemma 2.2.14. The Perron solutions Hf and H; are F-solutions in Q.

Proof. This proof is based on the argument used in [45]. Fix an open ball B
with B CC Q. Next, choose a countable, dense subset X = {z1,xz,...} of B
and then for each j = 1,2, ..., choose u; ; € Uy such that

lim wj(2;) = H(2;).

1—00
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Moreover, replacing u; j+1 by min{w; ;,u; j+1} if necessary, we have

lim w; j(xy,) = Hy(xy),

11— 00

for each k = 1,2...,j and each j. Now, let U;; := P(u;, B) be the Poisson
modification of u; ; in B. Then we observe that H; < U;; < u;; and U, is
F-harmonic in B. By compactness (Theorem 2.2.3 (ii)), U; ; converges locally
uniformly to F-harmonic v; in B (passing to a subsequence, if necessary).
Again by compactness, v; converges locally uniformly to F-harmonic h in B.
By the construction of h, it follows immediately that

Hy<h
in B and Hf = h on X. For any u € U; and its Poisson modification
U = P(u,B), we have u > U > ﬁf. Since U > h on X (which is dense in
B) and U, h are continuous in B, it follows that U > h in B. Thus, u > h in
B which implies that

Hy>h

in B. Hence, Hf = h is F-harmonic in 2 and a similar argument for H,

completes the proof. O

We emphasize that although we proved that F(D*H;) = 0 in Q, we
cannot guarantee that ﬁf enjoys the boundary condition of the Dirichlet
problem, H; = f on 9. To investigate the boundary behavior of the Perron
solutions and ensure the solvability of the Dirichlet problem, we need to

introduce further concepts, namely, a reqular point and a barrier function.

Definition 2.2.15 (A regular point). A boundary point zo € 09 is (F-
Yregular with respect to €, if

lim H;(y) = f(zo) and lim H,(y) = f(xo)

Q3y~>w0 QBy%xo
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whenever f € C(0f2). An open and bounded set (2 is called regular if each

xo € 0f) is a regular boundary point.

Remark 2.2.16. Suppose that an operator M satisfies M[—u] = —M[u];
for example, any linear operator L and p-Laplcian operators A, possess this

property. Then we have
ﬁf - _ﬂ—f7
and so in this case, we can equivalently call xq € 9L is regular if

lim H(y) = f(o)

Qay—mo

whenever f € C(0). Nevertheless, for the general fully nonlinear operator
F', we do not have this property. Therefore, it seems that we have to require
both conditions simultaneously, when we define a regular point for F. To
the best of our knowledge, it is unknown whether the two conditions in
the definition are redundant. One possible approach to show that only one
condition is essential is to prove that f is resolutive whenever f is continuous

on 02; see Definition 2.2.17 for the definition of resolutivity.

Before we define a barrier function, which characterizes a regular bound-

ary point, we shortly deal with the resolutivity of boundary data:

Definition 2.2.17 (Resolutivity). We say that a bounded function f on OS2
is (F-)resolutive if the upper and the lower Perron solutions H; and H f

coincide in . When f is resolutive, we write H; :== H; = H £

Lemma 2.2.18. Let €2 be a bounded open set of R™, let f and g be bounded

functions on 0N, and let ¢ be any real number.
(i) If f = c on 0, then f is resolutive and Hy = c in .

(ii) Hyre = Hy + ¢ and H, .= H;+c. If f is resolutive, then f + c is
resolutive and Hyy. = Hy + c.
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(i4i) If ¢ > 0, then H.; = cH; and H, ;= cH;. If f is resolutive, then cf is
resolutive and H.y = cHy for ¢ > 0.

(i) If f < g, then Hf < H, and H; < H .

Note that the resolutivity of f does not imply

lim Hy(y) = f(x)

y—)x
for x € 0€2. However, the converse is true in some sense:

Lemma 2.2.19. Let 2 be an open and bounded subset of R™ and f be a
bounded function on 0. Suppose that there exists F'-harmonic h in € such

that

lim h(y) = f(z)

Qoy—x
for any x € 9Q. Then Hy = h = H,. In particular, f is resolutive.
Proof. Since h € Uy N Ly, we have Hy < h < H . O

Lemma 2.2.20. If u is a bounded F-superharmonic (or F-subharmonic)
function on the bounded open set 2 such that f(z) = limgs,—,, u(y) ezists for

all x € 0, then f is a resolutive boundary function.

Proof. Obviously, we have u € Uy and so Hy < u in Q. Then since H; is

F-harmonic in  and

limsup H(y) < lim u(y) = f(z),

Qoy—a Qoy—x

we have Ff € Ly, which implies that ﬁf < ﬁf. Because ﬂf < Ff always
holds, we conclude that f is resolutive. An analogous argument works for the

F-subharmonic case. ]
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2.2.3 Characterization of a Regular Point

Definition 2.2.21 (Barrier). Let 2o € Q. A function w™ : © — R [resp.

w~] is an upper barrier [resp. lower barrier] in € at the point xq if
(i) w™ [resp. w™] is F-superharmonic [resp. F-subharmonic| in €2;

(ii) liminfosy . w*(y) > 0 [resp. limsupg,, ,, w™(y) < 0] for each z €

O\ {xo};
(iii) limosy—z, wT(y) = 0. [resp. limgsy .z w™(y) = 0.]

Observe that the maximum principle indicates that an upper barrier w™
is positive in 2 and a lower barrier w™ is negative in 2. Moreover, under the
condition (F2), cw™ is still an upper barrier for any constant ¢ > 0 and an
upper barrier w'. See also [74].

Now we can deduce that a regular boundary point is characterized by the

existence of upper and lower barriers.

Theorem 2.2.22. Let xg € 0N2. Then the following are equivalent:
(i) xo is reqular;
(ii) there exist an upper barrier and a lower barrier at x.

Proof. (ii) = (i) For f € C(09) and ¢ > 0, there is § > 0 such that
|z — xo| < with x € 0Q implies |f(x) — f(z0)| < €. Moreover, for M :=
SUppq | f|, there exists a large number K > 0 such that

K -liminfw™(y) > 2M for all z € 9Q with |z — x| > 4.
Qoy—a

Here we used that z — liminfgs, ,, w'(y) is lower semi-continuous on 052,

Then since Kw" + f(x) + ¢ € Uy, we have

Hy(y) < Kw*(y) + f(xo) + ¢,
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limsup H(y) < f(zo).

93y~>x0

An analogous argument leads to

liminf H ,(y) > f(xo).

Qay%xo

Since H < Ff, we conclude that

lim Hy(y) = f(zo) = lim H,(y),

Q3y—xo Q3y—zo
i.e. g is a regular boundary point.

(i) = (ii) Define a distance function d by

d(y) = |y — zol*

so that d is continuous, non-negative and d(y) = 0 if and only if y = x.
Moreover, since D*d = 21, we have F(D?d) = 2F(I) > 0, i.e. d is F-

subharmonic.

Then letting w := H,, we have w" is F-harmonic in Q and it follows from

d € L4 that wt > d in Q. Thus, for any x € 9Q \ {z0},

liminf w" (y) > d(z) = |x — x0|* > 0.
Qoy—zx

Furthermore, since x is regular, we have

lim w*(y) = d(zg) =0,

Qay—mo

and so w' is a desired upper barrier. The existence of a lower barrier is

guaranteed by considering d(y) := —d(y) = —|y — xo|* and w™ := H.

23
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Indeed, the barrier characterization is a local property:

Lemma 2.2.23. Let xy € 092 and G C Q be open with xq € 0G. If xqy is

reqular with respect to ), then xq is reqular with respect to G.

Proof. By Theorem 2.2.22, there exist an upper barrier w* and a lower bar-
rier w~ with respect to Q at 2. Then w'|g and w™|g become the desired
barriers with respect to G at xy. Again by Theorem 2.2.22, z is regular with
respect to G. O]

Lemma 2.2.24. Let xy € 092 and B be a ball containing xo. Then xq is
reqular with respect to 0 if and only if xo is reqular with respect to B N ().

Proof. By Lemma 2.2.23, one direction is immediate. For the opposite di-
rection, suppose that xg is regular with respect to B N ). Then there exist
an upper barrier w" and a lower barrier w~ with respect to B N Q. If we
let m := minggng wt > 0 (the minimum exists because w™ is lower semi-

continuous), then the pasting lemma, Lemma 2.2.11, shows that

N min{w™,m} in BNQ,
st =
m in Q\ B,

is F-superharmonic in €2. One can easily verify that s is an upper barrier

with respect to Q2 at xy. Similarly, a lower barrier s~ can be constructed. [

The barrier characterization leads to another useful corollary, which en-

ables us to write z is regular instead of F-regular, without ambiguity.

Corollary 2.2.25. A boundary point xo € OS2 is F-reqular if and only if x

is F -reqular.

Proof. Suppose that xg is F-regular. By Theorem 2.2.22, there exists an
upper barrier w} and a lower barrier wy. If we let wg = —wy and W =
—wj:, then w;; and w become an upper barrier and a lower barrier for F,

respectively. Therefore, again by Theorem 2.2.22, x, is F -regular. O
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Now we present one sufficient condition that guarantees a regular bound-
ary point, namely the exterior cone condition. In Section 2.4, we suggest
another sufficient condition, namely the Wiener criterion, which contains

this exterior cone condition as a special case.

Theorem 2.2.26 (Exterior cone condition). Suppose that ) satisfies an ex-

terior cone condition at xq € 2. Then xq is a regular boundary point.

Proof. The proof relies on the construction of a local barrier at zq. See [19,
70, 73] for details. O

Corollary 2.2.27. All polyhedra and all balls are reqular. Furthermore, every
open set can be exhausted by reqular open sets. Here a bounded open set () is
called a polyhedron if O = 0Q and if OS) is contained in a finite union of
(n — 1)-hyperplanes.

Proof. Since polyhedra and balls satisfy the uniform exterior cone condition,
the first assertion follows from Theorem 2.2.26. For the second assertion,
exhaust €2 by domains Dy CC Dy CC --- CC 2. Then since Fj is compact,
there exists a finite union of open cubes Q;,(C D) that covers D;. Letting
P =, intQ_ji which is a polyhedron by the construction, we obtain the

desired exhaustion. O

2.3 Balayage and Capacity

2.3.1 Balayage and Capacity Potential

We define the lower semi-continuous reqularization @ of any function v : £ —

[_007 OO] by

(z) :=lim inf w.
r—0 ENBy(z)
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Lemma 2.3.1. Suppose that F is a family of F-superharmonic functions in
Q, locally uniformly bounded below. Then the lower semi-continuous reqular-

ization s of inf F,

s(x) = lim inf (inf F),

r—0 Br(ag)

is F'-superharmonic in Q.

Proof. Since F is locally uniformly bounded below, s is lower semi-continuous.

Fix an open D CC 2 and let h € C(D) be an F-harmonic function satis-
fying h < s on dD. Then h < u in D whenever u € F. It follows from the
continuity of h that h < sin D. O

Definition 2.3.2 (Balayage and capacity potential).

(i) For ¢ : Q — (—o0, 00] which is locally bounded below, let
dY = d¥Y(Q) := {u : u is F-superharmonic in Q and u > 1 in Q}.
Then the function
RY = R¥(Q) := inf ®¥

is called the reduced function and its lower semi-continuous regulariza-

tion
RY = R¥(Q)

is called the balayage of ¢/ in Q2. By Lemma 2.3.1, RYisF -superharmonic
in 2.

(ii) If u is a non-negative function on a set £ C (), we write

% =%, RL=RY RL=R"
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where

= u in F,
10 inQ\E.

The function fi% is called the balayage of u relative to E.

(iti) In particular, we call the function RY the (F-)capacity potential of E
in Q.

Remark 2.3.3. For an operator in divergence form, there exists an alter-
native method to define the capacity potential. For simplicity, suppose that
the operator is given by the p-Laplacian. Let 2 be bounded and K C €2 be a
compact set. For ¢ € C°(Q2) with ¢ = 1 on K, the p-harmonic function w in
O\ K with u—1v¢ € W, P(Q\ K) is called the capacity potential of K in © and
denoted by R(K, 2). Here note that R(X, §2) is independent of the particular
choice of ¢ and the existence of the capacity potential is guaranteed by the
variational method. Indeed, both definitions of capacity potentials coincide;
see [37, Chapter 9] for details.

Lemma 2.3.4. The balayage R% is F-harmonic in Q\ E and coincides with
Ry, there. If, in addition, w is F'-superharmonic in §2, then R% = u in the

interior of E.

Proof. Observe first that if v; and vy are in @Y, then so is min{wy, v }. Hence,
the family ®% is downward directed and we may invoke Choquet’s topological
lemma (see [37, Lemma 8.3]): there is a decreasing sequence of functions

v; € @Y% with the limit v such that

for all z € €.
Next, we choose a ball B CC Q\ E and consider a Poisson modification
s; = P(v;, B). Then it follows that s; € ®% and s;.1 < s; < v;. Thus, we
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have

RE <s:=lim s; <,
1—00

which implies that R% = © = 5. Moreover, since s is F-harmonic in B (Har-
nack convergence theorem, Theorem 2.2.4), we know that § = s. Therefore,
we conclude that the balayage f%‘fE is F-harmonic in Q\ E. The second asser-
tion of the lemma is rather immediate since u € ®% if v is F-superharmonic

in 2. O

Lemma 2.3.5. Let K be a compact subset of Q and consider R}, = Rj;(Q)
and R, = RL(Q).

(i) 0 < RL <RL <1inqQ.
(i) RL. =1 in K.
(iii) Rk = Rl in (0K)°.
(i) R) is F-superharmonic in Q and F-harmonic in Q\ K.

Proof. (i) It immediately follows from the definition of R}, and the compar-

ison principle.

(ii) Since 1 € ®¥(Q), we have RL < 1 in Q. On the other hand, for any
u € ®¥(Q), we have u > 1 = 11in K and so R}, > 1in K.

(iii), (iv) It immediately follows from Lemma 2.3.4 and part (ii).
[

The following theorem shows that the capacity potential can be under-

stood as the upper Perron solution:

Theorem 2.3.6. Suppose that K is a compact subset of a bounded, open set
Q and that u = RL(Q) is the capacity potential of K in Q. Moreover, let f
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be a function such that

e 1 on 0K,
] 0 ino.
Then
Ri(Q) = Hy(Q\ K)
in Q\ K.

Proof. Lemma 2.3.4 shows that RL = RL in Q\ K. Then recall that
Ry (Q) = inf @}, = inf{v : v is F-superharmonic in Q and v > 1) in Q},

where

1 in K,
Y = .
0 inQ\ K,

and
H(Q\ K) = infUd; = inf{v v is F-superharmonic in Q \ K,
liminf v(y) > f(z) for each z € 9(Q\ K)},

QA\K3y—z

where

/= 1 on 0K,
] 0 inoQ.

(i) Suppose that v € ®j.. Since v > 0 in Q, we have lim info\ g5y, v(y) >
0 = f(z) for x € 092. Moreover, since v is lower semi-continuous, we

have

. g s
Ql\l;(n;ygfgcv(y) = liminfo(y) > v(z) = 1 = f(2),
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for z € OK. Therefore, we conclude v € Uy, which implies that H (2 \
K) < RL(Q)in Q\ K.

(ii) Suppose that v € Uy. We consider 7 := min{1,v} € Uy so that 0 < v <

1in Q\ K. Then since u = 1 is F-superharmonic in €, the function

min{1,7} =7 in Q\ K,
S =
1 in K

is F-superharmonic in €2 by pasting lemma, Lemma 2.2.11. Obviously,
s € @k and so RL(Q) <t <vin Q\ K.

2.3.2 Capacity

In general, for an operator in divergence form, we consider a variational ca-
pacity, which comes from minimizing the energy among admissible functions.
On the other hand, for an operator in non-divergence form, we cannot con-
sider the corresponding energy, and so we require an alternative approach to
attain a proper notion of capacity. Our definition of a capacity is in the same
context with [7] for linear operators in non-divergence form and [52] for the

Pucci extremal operators.

Definition 2.3.7 (Non-variational capacity). For a ball B = By,.(z0), we fix
a ball B = By/s5.(z9) C B and a point yo = xo + %rel. Then we define a

capacity for fully nonlinear operator F' by

cap(K, B) = capp(K, B) := inf{u(yo) : v is F-superharmonic in B, (23.1)
w>01in B,and u > 1 in K} o

whenever K is a compact subset of B’.

Comparing the definitions of capacity and capacity potential, we imme-
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diately notice that
cap(K, B) = Rjc(B)(yo)-
Moreover, appealing to Theorem 2.3.6, we further have
cap(K, B) = Hf(B\ K)(yo),

where the boundary data f on (B \ K) is given by

f= 1 on 0K,
] 0 indB.

Finally, considering Harnack inequality for R} (B) on the sphere dBs, /2(0),
we notice that capacities defined for different choices of yy € 0Bs,/2(0) are

comparable.

Lemma 2.3.8 (Properties of capacity). Fiz a ball B = Ba.(x¢). Then the
set function K +— cap(K, B), where K is a compact subset of B' = By /5. (0),

enjoys the following properties:
(i) 0 < cap(K, B) < 1.

(Z’l) [le C KQ C B/, then

cap(Ky, B) < cap(Ky, B).

(i4) If a monotone sequence of compact sets { K;}32, satisfies B' O Ky D
Ky D .-+, then

cap(K, B) = lim cap(Kj, B), for K = ﬂ K;.
j—roo =1
() (Subadditivity) We further suppose that F is convex. If K; and Ky are
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compact subsets of B', then

Cap(Kl U KQv B) S Cap(Kla B) + Cap(K27 B)

Proof. (i) Recalling Lemma 2.3.5, we have 0 < cap(K, B) < 1.
(ii) If Ky C K, then @}, C ®p. and so cap(Ky, B) < cap(Ks, B).

(ili) Since cap(Kj, B) > cap(K, B) by (ii), it is immediate that

cap(K, B) < lim cap(Kj, B).

Jj—00

For the reversed inequality, fix small € > 0 and u € ®L(B). If j is large
enough, then K; C {u > 1 —¢} and so

u).

lim cap(Kj, B) < cap({u>1—¢},B) <

Jj—o0 1

Letting € — 07 and taking infimum for u € ®%(B), we conclude that

lim cap(Kj, B) < cap(K, B).

Jj—00

(iv) Let vy € @, (B) and v, € @, (B). Since F is convex, we can apply [14,
Theorem 5.8] to obtain £(v; + v2) is F-superharmonic in B. Moreover,
it follows from the assumption (F2) that vy + vy € Pp g, (B) and
50 Ry ik, (B) < vy + vo. Putting the infimum on this inequality and

evaluating at y,, we conclude that
Cap(Kl U K27 B) < Cap(Kb B) + Cap(K27 B)

]

We would like to remove the restriction of compact sets when defining a
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capacity. For this purpose, when U C B’ is open, we set the inner capacity

cap, (U, B) := sup cap(K, B).

KCU, K compact

Then for an arbitrary set £ C B’, we set the outer capacity

cap”(E, B) := inf cap, (U, B).

ECUCB’,U open

Lemma 2.3.9. Fiz a ball B = By, (). For a compact subset K of B' =

Bz, /5(x0), we have
cap(K, B) = cap*(K, B).

In other words, there is no ambiguity in having two different definitions for

the capacity of compact sets.

Proof. (i) For any open set U satisfying K C U C B’, the definition of the

inner capacity yields that
cap(K, B) < cap,(U, B).
By taking the infimum over such U, we conclude that
cap(K, B) < cap*(K, B).
(ii) Define a sequence of compact sets { K;}32; by
K; :={z e R" : dist(z, K) < 1/j},
and a sequence of open sets {U;}32, by

U; :={z e R" : dist(z, K) < 1/j}.
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We may assume K; C B’. Then we have

BOoK DU >Ky, DUy D---DK, and K:ﬂKj.
i

Applying Lemma 2.3.8 (ii), it follows that
cap,(U;, B) < cap(K;, B).
By the definition of outer capacity,
cap”(K, B) < cap,(U;, B) < cap(Kj,B), for any j € N.
Now letting j — oo, Lemma 2.3.8 (iii) leads to

cap®(K, B) < cap(K, B).

Roughly speaking, we have the following correspondance:

the variational capacity <— divergence operator,

the height capacity «— non-divergence operator.

In the following lemma, we explain why the definition of height capacity is
reasonable in some sense. In other words, we claim that for the Laplacian

operator A, two definitions of capacity are comparable.

Lemma 2.3.10 (The variational capacity and the height capacity). Suppose
n > 3 and fix two balls B = By (x9), B’ = Bry5(x0) and a point yo =
%7“61 + 29 € 0Bs,2(x0). Then for any compact set K C B', we have

CapA,var(Kv B) ~ CapA,height(K7 B) Tn_zv
where the comparable constant depends only on n.
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Proof. We may assume xo = 0. We denote by u the capacity potential with
respect to K in B. Note that u is harmonic in B \ K.

We begin with the variational capacity:

ou Ju
capa var (K, B :/ Vu2dx:/ —ds:—/ ——ds.
avarl ) B\K| | ok On ap On

Here we applied the divergence theorem and used the behavior of u on the
boundary.
On the other hand, recalling the definition of height capacity, we have

CapA,height(K7 B) = u(yo)-

By Harnack inequality, there exist constants c;, co > 0 which only depend on

n such that
cru(yo) < u(w) < cpu(yo) for any z € 9Bz, 0.
Thus, if we set m_ := minyp, ,u and my := maxgg, , u, then we have
C1CAPA height (K, B) < m- < my < 2€8DA peignt (K B).

Moreover, we consider two barriers h* which solve the Dirichlet problem in
B, \ Bs, /2"

Ahi =0 in B2r \ B37«/27
h:t =m4 On 8337,/2,
ht =0 on 0B8,,.

Indeed, using the homogeneous solution V(x) = |z|>™", one can compute h*

explicitly:

=
(3r/2)2 7 — (2r)2 "

hE(z) =m

35



CHAPTER 2. THE WIENER CRITERION FOR FULLY NONLINEAR
ELLIPTIC EQUATIONS

Then the comparison principle between u and A* leads to
h™ <u<h" in By, \ By,

and so

Therefore, we conclude that
1 (n)rn_QcapA,height(K? B) S CapA,var(K7 B) S C2 (n)rn_QcapA,height(K7 B)

]

Next, we estimate the capacity of a ball B, with respect to the larger
ball Bs,. Indeed, the capacity of a ball can capture the growth rate of the

homogeneous solution V' of F.

Lemma 2.3.11 (Capacitary estimate for balls). Let B = Ba.(z9), B’ =

B%T(azo) and Yo = xo + %rel. Then for any 0 < p < gr, there exists a

constant ¢ = c¢(n, A\, A) > 0 which is independent of r and p such that

(i) (a*>0)

1 r cr=@

- < B, (7). Bor(10)) <

o BT capp(B, (o), Bar(z0)) < PR
(ii) (a* <0)

- ca x (z - -

c (2r)=o" —p—o" — PriEplFo/); B2riio (2r)— — pa

(iii) (o =0)

— 1 P ¢
og(2 — <_ P B Y B r
¢ 1 g( T) 10g p F( p( 0)7 2 (]}0))

< .
~ log(2r) —log p
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Proof. We may assume xy = 0. Applying the argument after the definition

of a capacity, we have

cap(B,, Bay) = B(Bar)(yo) = H(Bar \ B,)(w0),

where the boundary data f is given by

f= 1 on 0B,
0 in 8B2,,.

Moreover, since a ball is a regular domain, we can write H;(Ba, \ B,) = v

where v is the unique solution of the Dirichlet problem

F(D*v) =0 in By, \ B,,
v=1 on 0B,
v=20 in 0Bs,.

Note that H ;(Bs, \ B,) is continuous upto the boundary. We now split three

cases according to the sign of o*(F).

(i) (o > 0) In this case, for the homogeneous solution V (z) = |z|~*V (%'),

denote

Vi :=maxV(z) and V_:=minV(z)

|z|=1 lz|=1

and choose two points z;,x_ with |x| =1 = |z_| so that
V(zy)=Vy and V(z_)=V_.

We define two functions

Vi(z) — (2r)" > V_
[~ = (2r) = JV-

Viz) = @)V,
[ = @)V

v (x) = and v (z):=
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Then we have

F(D*vt) =0= F(D*") in By, \ B,,
vt >1on 0B, and vT >0 on OB,

v~ <1lon dB, and v- <0 on dBy,.
Thus, the comparison principle yields that
v~ <v=H(By \ B, = RE(BQT> <v" in By \ B,.

Finally, applying Harnack inequality for v on 0Bs, /o, there exists a
constant ¢; > 0 which is independent of r > 0 such that

1 3rx 3re_
av( 2+)§U(y0)§C1’U( 2 )

Therefore, we have the desired upper bound:

_ 3ra_ Bra_ -
capp(B,, Bay) < CW( r;c ) <ot ( 7’251; ) = pa*cr

Similarly, we derive the lower bound:

— 1 3rTy 1 [ 3razy 1 ro
B,, By) > — > — = - :
capp(By. Bar) 2 clv ( 2 ) - clv ( 2 ) cp — (2r)""

(ii) (o < 0) For simplicity, we assume that the upward-pointing homoge-

neous solution is given by
V(z) = |27

Then we can explicitly write the capacity potential:

(2r)= — |z
(2r)=e" —p=

v(x) =

38
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Thus,

_a*

capp(By, Bay) = v(yo) ~ . -
F( P ) ( ) (27“)_0‘ . p_a

For general V', we can compute by a similar argument as in part (i).
For example, if V(x) = —|z|7*V <l|>, then define

|z

2r)"V, + V() _ (2r)=V_ + V()
vt(z) = ( S L and v () := - —
)= fary e — vy )= fary e —pra v
(iii) (a* = 0) Again for simplicity, we may assume the upward-pointing

homogeneous solution is given by
V(z) = —log |z|.

Similarly, we can explicitly write the capacity potential:

o(x) = log(2r) — log ||
~ log(2r) —logp

Thus,

1
log(2r) —logp

capp(B,, Bar) = v(yo) ~

For general V', we can compute by a similar argument as in part (i).
For example, if V(z) =V (ﬁ) — log |z|, then define
_ log(2r) = V_ 4V (x)

_log(2r) =V, +V(z)
log(2r) — log p N '

)
vi(z) log(2r) — log p

and v (z):

]

We can observe that the capacity of a single point is determined according
to the sign of the scaling exponent o*(F’). In fact, one can expect the results of

the following lemma taking p — 07 in the capacitary estimate, Lemma 2.3.11.
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Lemma 2.3.12. For zy € R™, choose a ball B = By, () so that zy € B’ =
B?r/s(xo)-

(i) If a*(F) > 0, then capp({z0}, B) = 0.
(i1) If o*(F) < 0, then capp({z20}, B) > 0.

Proof. (i) Let

|V <W> if @ >0,
V(z) =
—log || +V<|ﬁ—|> if o* =0.

be the homogeneous solution of F. Then for m := min,cop V(z — 20)

and any € > (, we have
e-[V(z—2)—m]edp,,
due to the minimum principle and lim,_,,, V(x — 29) = oo. Thus,
cap({z0}, B) = Riy (%) = Rl (v0) < & - [V(yo — 20) — m].

Since € > 0 is arbitrary, we finish the first part of proof.

(ii) Let V(z) = —|z|*V (ﬁ) be the homogeneous solution of F. Then

for max,cop V(z — z9) =: —M < 0, we consider

V(x — ZO)'

u(zr) =1+ i

Since supyp u = 0 and V' is a homogeneous function, we have supyp, 1 U >
0. On the other hand, recalling Theorem 2.3.6,

Ry =Hp(Q\ {z}) > H (Q\ {z0}),
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where the boundary data f is given by

1 if x = 2,
f(x)_{ 0 ifz € dB.

Then u € Ly and so H;(2\ {20}) > u. Therefore, we conclude that

Al
sup R, >0
0B /5, {ro)

and by Harnack inequality, cap({zo}, B) > 0 as desired.

2.3.3 Capacity Zero Sets
Definition 2.3.13. A set E in R" is said to be of (F-)capacity zero, or to
have (F-)capacity zero if

capp(E,B) =0

whenever £ C B’ C B. In this case, we write cappFE = 0.

According to Lemma 2.3.12 (i), we immediately notice that every single
point is of F-capacity zero if o*(F') > 0. Indeed, we are going to show that: to
check whether a compact set K is of capacity zero or not, it is enough to test
with respect to one ball B (Corollary 2.3.15). For this purpose, we require

the following version of a capacitary estimate, called “comparable lemma”.

Lemma 2.3.14 (Comparable lemma). If K C B’ = By, and 0 <1 < s <

2r, then there exists a universal constant ¢ > 0 such that

1
- CapF(Ka BZr) S CapF(Ky BQS) S CC&pF(K, BQT)‘
C
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Proof. We may assume z¢y = 0. We claim that for 0 <r < s < %r, we have
1
—capp(K, By,) < capp(K, Bss) < ccapp(K, By,).
c

Indeed, we may iterate this inequality finitely many times to conclude the
desired inequality for 0 < r < s < 2r. Moreover, let y, = %rel, Ys = %sel
and denote u, := Ry (Ba,), us := Rj(Bs;). By the definition of the capacity

potential, it is immediate that u, < u, in Bs,. In particular, we have

cap (K, Bar) = ur(yr) < us(yr).

On the other hand, an application of Harnack inequality for us (in a small
neighborhood of Bs s\ Bios/7) yields that there exists a constant ¢ > 0 which

is independent of the choice of r and s such that

us(yr) < Cus<ys) = CcapF(K7 BZS)-

Here note that |y,| = 2r > s > Isand R} (Bs,) is F-harmonic in Ba,\ Brg/s
and Bsgo \ Bios/7 C Bas \ Brs/s. Therefore, it finishes the proof for the first
inequality.

Next, for the second inequality, we first assume that o*(F) > 0 and the
homogeneous solution is given by V(z) = |z|~®" (for computational simplic-
ity) and let

M :=maxus € [0,1).
9] 2r
Then recalling Theorem 2.3.6, the comparison principle yields that

(1= M)u, +M >u, in By \ K. (2.3.2)

Now choose z € 0B3,/2 so that uy(z) = maxpp,, , us = M. Then it can be
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easily checked that the function

27" — (25)
(3r/2)=e" = (28)7

w(z) == M -

is F-harmonic in By \ Bs,j2 and by the comparison principle, w > u, in

By, \ Bs, /2. (here again note that %s < %r) In particular,

(2r)7 — (25)7 .y

M; -

(3r/2)—" — (2s)—" = 77
(35/2)7%" — (25)7 3 B
M - Gr2) = (25 > U <§861> = capp (K, Bay).

Since (3r/2)" — (2r)7®" > (35/2) — (25)7" or equivalently,
(3r/2) — (25" > [(3s/2) — (28) ]+ [(2)" — (25)™],
we obtain
us(2) = My > M + capp(K, Bay). (2.3.3)

Moreover, by (2.3.2) and (2.3.3), we have u,(z) > (1-M)u,(z) > capp(K, Bas)

and then Harnack inequality leads to
capp(K, Bys) < ccapp(K, By,),

for constant ¢ > 0 which is independent of r and s. Finally, for the general
homogeneous solution or the case of a*(F') < 0, one can follow the idea of
Lemma 2.3.11. [l

Corollary 2.3.15. Suppose that cap(K, B) =0 for K C B’ C B. Then

(i) for any ball By such that K C B} and By C B, we have

cap(K, B1) = 0;
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(ii) for any ball By such that By, D B, we have

cap (K, B) = 0;

(iii) K is of F-capacity zero.
Proof. (i) Apply the first inequality of Lemma 2.3.14 finitely many times.
(ii) Apply the second inequality of Lemma 2.3.14 finitely many times.

(iii) It is an immediate consequence of (i) and (ii).

2.3.4 Another Characterization of a Regular Point

The definitions of a reduced function and a balayage depend on the choice
of an operator F'. In this subsection, we need to distinguish an operator and
its dual operator, so we will specify the dependence by denoting R}(F(Q)
or R}(ﬁ(Q) We now provide a key lemma for our first main theorem, the

sufficiency of the Wiener criterion:

Lemma 2.3.16. A boundary point xoq € 0S) is reqular if

REF (2B)(x) = 1 = RLE (2B)(x0)

B\Q B\Q
whenever B is a ball centered at .

Proof. For f € C(09), consider the upper Perron solution H; = H (). We
may assume f(zg) = 0 and maxggq |f| < 1. For ¢ > 0, we can choose a ball
B with center zy such that 0(2B)NQ # & and |f| < € in 2BN0S2. Then we
define

14+e—RY (2B) inQN2B,
. L7 (2B)
14¢ in Q\ 2B.
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Since RLF (2B) is a F-solution in QN2B, 1+ — R: F (2B) is F-harmonic in

B\Q B\Q
2N 2B. On the other hand, by Theorem 2.3.6, R%@)@B) can be considered

as the upper Perron solution for the operator F. Then since a ball is regular,

we have

lim R2F (2B)(y) =0 for all = € H(2B).

Y= B\Q

Thus, u is continuous in €2 and by the pasting lemma, v is F-superharmonic

in 2. Moreover, it can be easily checked that

liminfu(y) > f(z) for any x € 0.

Yy—x

Therefore, u € Uy and so ﬁf < u. In particular,

limsup H ((y) < limsupu(y) = 1 + & — liminf Rf\Q(QB)(y)

Q3y—rzo Q3y—ao Qoy—xzo
1LF
< 1+€—RB\Q(2B)( ) c.
For the converse inequality, we define

B\Q

—1—e+ RV (2B) in QN2B,
v =
—1—¢ in Q\ 2B.

Then by a similar argument, v € L7 and so,

liminf H (y) > —e.

Q3y—xo

Consequently, since € > 0 is arbitrary, we conclude that

lim H(y) = lim H,(y) = 0= f(xo),

Q>y—xo Qdy—xo
i.e. xg is regular. O]

Next, we provide a converse direction of the above lemma: i.e. a charac-
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terization of an irregular boundary point. We expect that this lemma may be

employed to prove the necessity of the Wiener criterion for the general case.

Lemma 2.3.17 (Characterization of an irregular boundary point). If there

ezists a constant p > 0 such that the capacity potential uw = u, of B,(x) \ {2
with respect to Bo,(xo) satisfies the inequality

~

u(ro) = Rm\Q(B%(%)) <1,

then the boundary point xo € 0S) is irreqular.

Proof. Since the capacity potential u is the lower semi-continuous regular-

ization, we have
u(zo) = liminf u(x) < 1. (2.3.4)

Q3z—x0

Moreover, by definition, we have u, < u, when 0 < p’ < p. Thus, we can
choose a sufficiently small p > 0 such that (2.3.4) holds and QNI By, (o) # 2.
We now define a smooth boundary data f on 9(Q2 N By,(x0)) such that
flx) =3/2ifx € 0QNB,/2(x0), 0 < f(x) < 3/2if x € 00N (B,(20)\B,/2(20))
and f(x) = 0 on the remaining part of (2N Ba,(xo)). Then we consider the

lower Perron solution H (2N By,(0)). We claim that the following inequality
holds:

H(r) < % +u(z), € QN Byy(x). (2.3.5)

Recalling the comparison principle, it is enough to check the above inequality
on the boundary of the domain M By, (). For this purpose, let v € L(2N

By,(z0)) and w € Uy(Bay(xo) \ (By(xo) \ ©2)) where ¢ is given by (recall
Theorem 2.3.6)

1 on O(B,(z9) \ ),
0 in 0Bs,(zo).
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(i) (on 0Q N Byy(xg)) First, for z € 0Q N B,(z), we have

1 1
=3 +g(x) < 3 + lim inf w(y).

Yy—x

DN o

limsupv(y) < f(x) <

Yy—x

Next, for x € 0Q N (Ba,y(x0) \ By(xo)), we have

1 1
limsupv(y) < f(z) =0< = +g(z) < 5T lim inf w(y).

y—x 2 y—x
(i) (on QN OBsy,(xg)) Similarly, we obtain

1 1
limsupv(y) < f(z) =0 < - +g(x) < - + liminfw(y).

Yy—T 2 Yy—xT

Since v and w are F-subharmonic and F-superharmonic, respectively, we
derive that

1
v < 5 +w, in QN Byy(zo).

Taking the supremum on v and the infimum on w, we conclude (2.3.5) which

implies that

w

liminf  H,(7) <

lim inf 3 '
QN B2, (x0)dT—T0 + 1 U(.Qf) f(-’ﬂo)

1
2 QN B2, (x0)dz—x0

\)

Therefore, y is irregular with respect to QN By, (zo). Recalling Lemma 2.2.24,

we deduce that xzq is irregular with respect to 2. O]

2.4 A Sufficient Condition for the Regularity

of a Boundary Point

In this section, we prove the sufficiency of the Wiener criterion and its sequen-
tial corollaries, via the potential estimates. More precisely, we first develop

quantitative estimates for the capacity potential R}((B ) by employing capac-
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itary estimates obtained in Section 2.3. Then we adopt the characterization
of a regular boundary point in terms of the capacity potential to deduce the

desired conclusion.

Definition 2.4.1. We say that a set F is F'-thick at z if the Wiener integral

diverges, i.e.

/0 capp(E N Bi(), Bgt(z))% . (2.4.1)

For simplicity, we write

or(z, E,t) == capp(E N By(2), By(2)),

for the capacity density function in (2.4.1).

Remark 2.4.2. Recalling Lemma 2.3.11, there exists a constant ¢ > 0 which
is independent of t > 0 such that

1/e < capF(E, By) < c.

Thus, one may write an equivalent form of (2.4.1):

capp(Bi(2), Bu(z) L

/1 capp(E N By(z), By(2)) dt

which is a similar form to the Wiener integral appearing in [46, 79].

We now state an equivalent form of our main theorem, Theorem 2.1.2:
If Q° is both F-thick and F-thick at xo € 0F), then x is regular.

To prove this statement, we need several auxiliary lemmas regarding the

capacity potential.

Lemma 2.4.3. Fiz a ball B. Suppose that K C B’ is compact and v =
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RL(B). If0 <~y <1 and K, :={x € B:v(z) >~} C B, then
1
cap(K,, B) = —cap(K, B).
Y

Proof. We write vy := R}(W(B) Then by Lemma 2.3.4 and the definition of

a reduced function,
vy = Ry (B) =inf &} in B\ K,.

(i) Clearly, v = RL(B) is F-superharmonic in B and so is v/v due to (F2).
Since v > 7 in K, we have v/y > 1 in K. Thus, v/y € ®} and so

>wv, in B\ K,.

2|

(ii) Recalling Theorem 2.3.6, v, = Hy, (B \ K,) in B \ K., where

f= 1 on J0K,,
"1 0 ondB.

Then for u € Uy (B \ K,), we have

. v(z)
1 f > =1=
B\llr{%lzr}%u(y) > fy(z) -

for any x € 0K,. Since u is F-superharmonic and v/v is F-harmonic

in B\ K, the comparison principle leads to u > v/v in B\ K., and so

Uy > in B\ K,.

2

Consequently, we conclude that

1 1
cap(y, B) = vy(yo) = ;v(yo) = ;Cap(K B).
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Lemma 2.4.4. Fiz a ball B = Bs.(x¢). Let K C B, = B,.(zg) be a compact
set and v = R}((B) Then there exists a constant ¢ > 0 which is independent
of K and r such that

v(x) > ccap(K, B),

for any x € B,.

Proof. Denote

M := sup v, m:= inf wv.
9Bg, /5 9Bgr /5

Since v is a non-negative F-solution in B\ K, Harnack inequality yields that

there exists a constant ¢; > 0 independent of » > 0 such that
calM < m. (2.4.2)
Morevoer, the strong maximum principle in B\ Bg, /5 implies that
Ky :={v e B:v(x) > M} C Bg,ys,
and so
cap(Kyr, B) < cap(Be, s, B) ~ 1. (2.4.3)

Here we applied Lemma 2.3.11 and the comparable constant does not depend
on K and r.

Now since K, C B’, we can apply Lemma 2.4.3:

1
cap(Ky, B) = Mcap(K,B). (2.4.4)
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Finally, combining (2.4.2), (2.4.3) and (2.4.4), we conclude that

cap(K, B)
>coM=c¢c - ——— > K,B
m > ¢ c cap(Ku D) = co cap(K, B),
and the minimum principle leads to the desired result. O

We may rewrite the previous lemma as
RY(By)(z) > cpp(zo, K,r), for any x € B,. (2.4.5)
Lemma 2.4.5. Let x¢ € 052, p > 0 and

Then for all 0 < r < p, there exists a constant ¢ > 0 such that

p dt
w(z) < exp (—c/ goF(xO,Qc,t)?) ,

for any x € B,(z9).

Proof. Denote B; = Byi-i (). Fix 0 < r < p and let k be the integer with
27kp < r < 217%p. Then write for i = 0,1,2, ...

V; 1= ﬁl (Bz)

Bi+1\Q

and
a; == pp(x0,Q%,27"p).
Since €' > 1 + ¢, estimate (2.4.5) yields that
v; > ca; > 1 —exp(—ca;) in Biyg.

Thus, denoting mgy := infg, vy, we have 1 — mg < exp(—cap). Next, let
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Dl = Bl \ (Eﬂ Qc) and

1 in BoNQe,
Py = .
mgo in Dy.

Then we write u; := R’“(Bl) be the balayage with respect to the ¢, in B;.
It immediately follows from the definition of balayage that
Uy — My >

=R

‘BoN)e

B)) =wvy.
1—m0 (1) o

Again, denoting my := infp, u;, we obtain

1 —my < (1 —myp)exp(—cay) < exp(—c(a; + ap)).

Now iterate this step: let D; := B; \ (B;+1 N Q) and

i =

m;—1 in Dz

{1 in Bisy N,

Denoting u; := ]%¢i(Bi) and m; := infg. . u;, we have

141

Uy — Myi—1
1 —m;y

and so
1 —m; < (1 —m;_1)exp(—ca;) < exp (—cZa]) :
=0

Furthermore, we claim that w; > ;.1 in B;;q. Indeed, by Theorem 2.3.6,
u; = Hy,(D;) in D; where f; € C(9D;) is given by

f_{l in (Bi1 NQ°),

m;_q in 831
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Thus, for v € Uy, (D;), we have

liminf w(y) > 1> limsup w;1(y) for any o € 9(B;12 N Q°),

Diy13y—z Diy12y—ax

liminf w(y) > m; = limsup u;1(y) for any x € 0B ;.
Di+19y4>x D,-+19y—>ac

Therefore, by the comparison principle, u > wu;;1 in D;y; and so u; =
Hy,(D;) > uiyy in Biyy.
Repeating the argument above, we conclude that vy > u; > -+ > ug in

By, which implies that
k
w=1—1v<1—up<1—my <exp (—cZa]) in Byyq.
§=0

Finally, the result follows from

k
P dt
/T SDF(xO;cht)7 < C;aia

which can be easily checked from the dyadic decomposition. Indeed, we can
deduce from Lemma 2.3.11 and Lemma 2.3.14 that if t < s < 2¢, then

CapF(E\ K, By) ~ CapF<§t\ K, Byy),

where the comparable constant only depends on n, A\, A and these results also
hold for capz(-). O
We are ready to prove the sufficiency of the Wiener criterion.

Proof of Theorem 2.1.2. Let xq € 0€), p > 0 and define

HLF o ALF
wp, =1— R%\Q(ng(:co)) and wg ,=1-— R%\Q(ng(:co)).

Then applying Lemma 2.4.5 for both functions, we have that for all0 < r < p,
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there exist a constant ¢q, ¢y > 0 such that

P . o dt
wrp(x) <exp | —c wr (o, ’t>7 ,

/ ot
Wﬁm(l’) S eXp | —C2 Spﬁ(lh?Q 7t)? )

for any = € B,(xg). Letting r — 0", we conclude that

REE s o(Bool0))(w0) = 1= R (Bay(0)) (o).

Since p > 0 can be arbitrarily chosen, an application of Lemma 2.3.16 yields
that 2o € 92 is a regular boundary point. (Note that a boundary point xg is
F-regular if and only if it is F -regular; Corollary 2.2.25.) O

On the other hand, if additional information is imposed on the boundary
data f, i.e. the boundary data f has its maximum (or minimum) at zy € 02,
then we can deduce the continuity of the Perron solution at zy under a relaxed

condition:

Corollary 2.4.6. Suppose that f € C(9Q) attains its mazimum [resp. min-
imum] at o € 0. If Q¢ is F-thick [resp. F-thick] at xo € 0K, then

lim Hy(y) = f(xo) = lim H,(y).

Q35y—xo Q3y—xo

Proof. Similarly as in the proof of the previous theorem, this corollary is the

consequence of Lemma 2.3.16 and Lemma 2.4.5. ]

Furthermore, if the given boundary data f € C(0R) is resolutive, then

we are able to obtain a quantitative estimate for the modulus of continuity.

Lemma 2.4.7 (The modulus of continuity). Suppose that 2 is an open and
bounded subset of R™. Let f € C(0%).
If xy € OQ with f(xo) =0, then for 0 <r < p, we have
dt

p
HE < : — (g, Q°, ) —
Sslzlrp_f < %%g}p{f—kl%%xf exp( c/r or(x0, Q1) ; )
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and
inf 7, > min f + min f /" (20, ¢, 1) 2
Ty = i o /e (e | er(e0 2003
where . := QN B, (zo) and 08, := 02 N By,(x0).

Furthermore, if f is resolutive, then we have the quantitative estimate:

. . ’ dt . F
Ia%fij”%}?f - exp (_C/r QOF(xO»QC7t)7) < inf Hy

P dt
<supHF < cexp [ — (¢
< sup Hj —%%%ferné%Xf eXp( C/T @i (20, Q, >t)’

where Hj := H? = H5.

Proof. Let v = R%\Q(ng(xo)) be the capacity potential of B, \  with
p\T0

respect to By,. Then let w := 1 — v and write

S = W - Mmax max f.
o9 f+a pr

Note that since we assumed f(z¢) = 0, we have maxaq f > 0 and maxaq,, f >

0. For u € LL, u is F-subharmonic and s is F-harmonic in (,,. Moreover,

liminf s(y) > max f > limsupu(y) for any z € 9Q N By,

y—x 2190 y—a

and

liminf s(y) > r%%xf > limsupu(y) for any z € QN 0OBs,.

y—z y—T

Thus, the comparison principle yields that s > u in €, and so s > H ? in
{25,. On the other hand, let

5= (1 - R%\Q(sz(xo))) ~max(—f) + max(—f).

By the same argument, we derive s > ﬂiv = —F? in 0Qy,,.
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An application of Lemma 2.4.5 for w (and w) finishes the proof. O

Now we present a new geometric condition for a regular boundary point,

namely the exterior corkscrew condition; see also [41, 62].

Definition 2.4.8. We say that (2 satisfies the exterior corkscrew condition at
xo € 0N if there exists 0 < 0 < 1/4 and R > 0 such that for any 0 < r < R,
there exists y € B,(xg) such that By, (y) C Q°N B,.(zo).

Note that if € satisfies an exterior cone condition at xg € 02, then
satisfies an exterior corkscrew condition at xy. Thus, the following corollary

obtained from the (potential theoretic) Wiener criterion is a generalized result
of Theorem 2.2.26.

Corollary 2.4.9 (Exterior corkscrew condition). Suppose that Q satisfies
an exterior corkscrew condition at vy € 0S). Then xq is a reqular boundary
point. Moreover, if f is Holder continuous at xy and is resolutive, then Hy

is Holder continuous at xg.

Proof. A small modification of Lemma 2.3.11 and its proof, we have

cap(Bs-(y), Bar(xg)) ~ 1, for § € (0,1/4) and By, (y) C Bo,(x0),

where the comparable constant depends only on n, A\, A and 6. Thus, if xg

satisfies an exterior corkscrew condition, then we have

| e Bl \ 2 Bl T > [ conp (Bl Buan)) § > o

/0 capg(Bi(o) \ Qﬂ%@()))% > /0 Capﬁ(Bét(y)aB%(l’O))% > o0,

and so xg is a regular boundary point by the Wiener criterion.
Next, for the second statement, we may assume f(z) = 0 by adding a

constant for f, if necessary. Since f is resolutive, we can apply the quantita-
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tive estimate obtained in Lemma 2.4.7:

: : P e ndi : F
ggl)lgf +H81}2nf - exp (—C/T or (o, 2 ,t)?) < 1§r21erf

P dt
<sup Hf < Ig}%i(f +max f - exp (—C/T @ﬁ(%ﬂﬂﬂy) ,

T

Here

(i) f is Holder continuous at zy: there exists a constant C' > 0 such that

|f(x)] = [f(z) = f(xo)] < Clz — x| < Cp” for & € 0Qy,,.

(ii) Q satisfies an exterior corkscrew condition at z:

r . dt P de r\
exp —c/ gpﬁ(xo,Q,t)7 < exp _Cl/ — )= ; )

Thus, choosing p = r'/2, we conclude that the Perron solution H ¢ is Holder

continuous at xg. ]

Remark 2.4.10 (Example). In this example, we suppose n = 2, F' = PIA
with ellipticity constants 0 < A < A. Then it immediately follows that

o ~ A
F =Py, oz*(F):(n—l)%—1<0, oz*(F):(n—l)X—1>0,

We consider a domain © = B;(0) \ {0} € R? and its boundary point 0 € 9.

(i) Since o*(F) < 0, we know that a single point has non-zero capacity.

More precisely, recalling the homogeneous solution for F'is given by
V(e) = |73,
there exists a constant ¢ = ¢(A, A) > 0 such that

capp({0}, B;(0)) = c.
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Therefore, we have

t t
In other words, ¢ is F-thick at 0.

(ii) On the other hand, since o*(F) > 0, we know that a single point is of

capacity zero. Therefore, we have

/f’ capz({0}, B2(0)) dat
0 capp(Byi(0), By (0)) 1

In other words, 2¢ is not F-thick at 0 and we cannot apply our Wiener’s

criterion.

(iii) Let f; € C'(09) is a boundary data given by

1 ifz=0,
xTr) =
h(@) {0 if |z = 1.

Then clearly the function u(z) =1 — |z|*"2 = 1 — V(2) is the solution
for this Dirichlet problem. In particular, in this case, we have Ffl =H,

(i.e. fy is resolutive) and

lim Hy (z) =1= fi(0).

Q352—0

Alternatively, one can apply Corollary 2.4.6 to reach the same conclu-

sion, since f; attains its maximum at 0 and 2¢ is F-thick at 0.

(iv) Let fo € C'(012) is a boundary data given by

-1 ifx =0,
€T) =
F@) {0 if |z] = 1.

Then since the zero function belongs to Uy, , we have H ;, < 0. Moreover,
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since (1 — |:1:|*(§*1)) € Ly, for any ¢ > 0, we have H; > ¢(1 —
|z|~(3~D). Letting ¢ — 0, we conclude H; >0.

Therefore, we deduce that H;, = H 7, = 0. Furthermore, it follows that

lim Hy,(z) =0# —1= f5(0),

Q3z—0

which implies that 0 is an irregular boundary point for €.

2.5 A Necessary Condition for the Regularity

of a Boundary Point

In this section, we provide the necessity of the Wiener criterion, under ad-
ditional structure on the operator F'. Indeed, our strategy is to employ the
argument made in [64] which proved the necessity of the p-Wiener criterion
for p-Laplacian operator with p > n — 1. Since the assumption p > n — 1
was essentially imposed to ensure the capacity of a line segment is non-zero
in [64], we begin with finding the corresponding assumptions in the fully

nonlinear case.

Lemma 2.5.1. Suppose that F' is conver and o*(F) > s for some s > 0. Let
K be a compact subset in B,.(C R") such that H*(K) < oo, where H® is the

s-dimensional Hausdorff measure. Then
capp(K) = 0.
Proof. For any ¢ > 0, define

Hi(K) = infz 7,

where the infimum is taken over all countable covers of K by balls B; with
diameter r; not exceeding 6. Then since supy., Hi(K) = limso Hi(K) =

H*(K) < oo and K is compact, for each ¢ € (0,7), there exist finitely many
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open balls { B; = B, (z;)}Y, such that r; <&, UX, B; D K, and

D <H(K)+1 < oo (2.5.1)

Now we consider the homogeneous solution V(x) = |z|~* V <‘i—|) of F'. Here
we may assume minj—; V() = 1 by normalizing V. If we let Wj(x) :=
r&"V(z — z;), then it immediately follows that W; is non-negative and F-
superharmonic in R”, and W;(z) > 1 on B;.

Finally, we let W := Zfil W;(> 0). Since F'is convex, W' is F-superharmonic
in R™. Moreover, W > 1 on Uf\il B; and in particular, W > 1 on K. There-
fore, W € ®}-(By,) and so

N
capp(K, By) < Wi(yo) < r~® max V(z)- er‘
-1

|z|=1

<7~ max V(x) - (H(K)+1)5 ™,

- |z|=1
where we used (2.5.1) and a* > s. Letting § — 0, we finish the proof. O

Now we prove the partial converse statement of Lemma 2.5.1. Indeed,
here we only consider the compact set K is given by a line segment L, whose

Hausdorff dimension is exactly 1.

Lemma 2.5.2. Suppose that F' is concave and o*(F) < 1. Let L = {xo+se :
ar < s < br} be a line segment in B,(xq), where e is an unit vector in R™

and 0 < a < b <1 are constants satisfying b —a < % Then
capp(L, By,) > 0.

Proof. Note that since L is a line segment, for any 6 > 0, one can cover L
by open balls B, = Bss(x;), 1 < i < N(0) where z; € L, |z; — xj| > 2§
whenever i # j, and N(J) ~ (Z’_Ta)?". We write such cover by K; := Ui]\;(f) B;.
Recalling Lemma 2.3.9 and its proof, for any € > 0, there exist a sufficiently
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small 6 > 0 and corresponding cover Ky such that
capp(Ks, Byy) < capp(L, Byy) + €.

If we denote Ez := Bs(x;) and 1?5 = U].V(f ) Ei, then we have EZ are pairwise

1=

disjoint and
capF([?g, By,) < capp(L, By,) + €.

On the other hand, for simplicity, we suppose that the homogeneous solution
V is given by V(z) = |z|7® and o*(F) € (0,1). Note that if a* < 0,
then a single point has a positive capacity (Lemma 2.3.12) and the result
immediately follows. Other cases can be shown by similar argument as in
Lemma 2.5.1. For each i = 1,2,--- | N(J), write

Wi(z) = ('x;x”)_a* and W(x)zNg(E)Wi@).

=1

Since F' is concave, W is F-subharmonic in R" \ Uf\;(f ){xl}

(i) (On 8[?5) For y € 8[?5, let y € OB; for some i. Then for j # i, we have
ly — x5l = 2 — x5 = |y — @il = | — 23] =6,
and so

Wi(y) <21 4+27 +--- + N(©)™)

N@ .
<2 1+/ ~ds | <cN(@),
2 Ch

Here we used the condition o* < 1.
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(ii) (On 0By,) For z € 0By, |z — ;| > 2r — br = (2 — b)r, and so

W(z) < ((2 _55’”")&* . N(5).

Therefore, for

we have
W is F-subharmonic in B \ [?5, W <0 on 0By, and W <1 on 8[?5.

Note that since Ks and By, is regular domains, the capacity potential R}{ (Bs,)
é

satisfies:
R (By) =0o0n 9By, and Rp (B) =1 on 0K;.
Hence, the comparison principle yields that
Ry (By) > W in By, \ K.

In particular, putting x = x¢ + %re, we conclude that

3
|lv — ;] <3r/2 —ar = (§—a)r,
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and so

Finally, by applying Harnack inequality for ]A%}(é(BQT) on 0Bs, 2, we have

e + capp(L, By,) > capF(Kg, By,)

> ¢y (b—a)® [(g - a) o (2 — b)—“*] > 0.

Since € > 0 is arbitrary, we finish the proof. n

The idea of the previous lemma can be modified to derive the ‘spherical

symmetrization’ result:

Lemma 2.5.3 (Spherical symmetrization). Suppose that F' is concave and
a*(F) < 1. Let K be a compact subset in B.(zg) such that K meets S(t) :=
{z e R": |z —xo| =t} for allt € (ar,br), where 0 < a < b <1 are constants

satisfying b < i. Then there ezists a constant ¢ = c¢(n, F,a,b) such that
capp(K, By,) > ¢(n, F,a,b) > 0.

Proof. The proof is similar to the one of Lemma 2.5.2. By assumption, we
can choose x(;) € K N S(t) for all t € (ar,br). In particular, for small § > 0,
we define &; := (44005 for i =1,2,--- , N(0) so that

ar+26-N(0) <br <ar+26-(N(5)+1).
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Note that N(d) ~ (b_Ta)r. Moreover, for 6 > 0, we define a set Kj by

where B; = B,,(d). Again recalling Lemma 2.3.9 and its proof, for any € > 0,
there exists a sufficiently small § > 0 such that

capp(Ks, Bay) < capp(K, Ba,) + €.

On the other hand, for simplicity, we suppose that the homogeneous solution
V is given by V(z) = 2|7 and o*(F) € (0,1). For each i = 1,2,--- , N(§),

write

Wiz) == (‘xgxi’)a* and W(x):Nz(é)Wi(x).

=1

Since F' is concave, W is F-subharmonic in R \ vaz(f ){:cz}

(i) (On 0Kj) For y € 0K, let y € OB; for some i. Then for j # i, we have
ly — a5l = o — a5 = |y — @3] = [ — 23] =6 = 2|0 — j]6 =6,
and so

Wi(y) <2(1+ 27" L N((S)f‘"*)

N(9) 1 §
<2 1+/ ~ds | <eN(@6)'.
2 5%

Here we used the condition o* < 1.

(ii) (On 0By, For z € 0By, |z — ;| > 2r — br = (2 — b)r, and so

Wi(z) < (@) Y
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Therefore, for

o w - ()N
Wiz) = N ’

we have
W is F-subharmonic in B \ K, W <0 on 0By, and W <1 on 0Kj.

Note that since Ks and B, are regular domains, the capacity potential
R} (By,) satisfies:

]%}{B(BQT) =0 on 0By, and R}{é(Bgr) =1 on 0Kj.
Hence, the comparison principle yields that
RY,(Boy) > W in By, \ K.
In particular, putting x = x¢ + %?“61, we conclude that
3

|z — ;| <3r/24+br = (5—1-6) T,

and so
3
o + 57’61

> W
(e2) "~ (229 ] e
>

cN(0)t—e"

(g + b) o (2 — b)‘“*] .

A 3
R}((;(-BQT‘) (370 + 57’61)

> c1(b—a)™
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Hence,

€ + capp(K, By) > capp(Ks, Bay)

(; + b> o (2 — b)—a*] > 0.

Since € > 0 is arbitrary, we finish the proof. n

> ¢y (b—a)™

Let E be a regular set in a ball Bs,. Let u = JQ’}E(B%) be the capacity
potential. For v € (0,1), let A, = {z € By, : u(z) < ~v}.

Lemma 2.5.4. Suppose that F' is concave and o*(F) < 1. Then there ezists
a constant ¢y > 0 depending only on n, A\, A\ such that: if

v > cicapp(E, By,),

then the set A, contains a sphere S(t) := {x € R : |z — xo| = t} for some
t e (r/10,7/5).

Proof. For 0 < v < 1, let E, := {x € By, : u(x) > v}. We argue by
contradiction: suppose that A, does not contain any S(t) for ¢t € (r/10,7/5).
Then the set £, meets S(t) for all t € (r/10,7/5) and we have

CapF(E’ya BQ’I’) 2 c(n, F) > 07

by employing Lemma 2.5.3 for a = 1/10 and b = 1/5.
On the other hand, by Lemma 2.4.3, we have

1
capp(Ey, Byy) = ;capF(E,BQ,,).
Combining two estimates above, we obtain

S

E. By,).
C(n,F) Ca‘pF( y D2 )

Therefore, by choosing ¢; = ﬁ + 1, we arrive at a contradiction. O]
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Now we are ready to prove the necessity of the Wiener criterion.

Proof of Theorem 2.1.3. For simplicity, we write B, = B,.(zy). Suppose that
Q¢ is not F-thick at xg € 092, i.e.

! — dt
/ CapF(Bt \ Q, Bgt)7 < Q.
0

For £ > 0 to be determined, choose r; > 0 small enough so that

" — dt
/ CapF(Bt\Q, B2t)7 < €.
0
Set r;y1 = r;/2 and
a; = capp(B;, \ ©, Bay,).

Applying Lemma 2.3.14,

Z a; < co(n, A\, A)e.

=2

Next, by Corollary 2.2.27 and Lemma 2.3.9, for each 7, choose a regular
domain E; such that B,, \ Q C E; and

b; := capp(F;, Bar,) < a; + € - 27t

Then we have

Zblg (Co+1)5

1=2

and so b; < (co+ 1)e for i = 2,3,--- . Moreover, let u; := RL (By,,) be the

0

capacity potential. By Lemma 2.5.4, for v; = ¢; - b;, the set
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contains S(t;) for some t; € (r;/10,7;/5). Now by selecting ¢ = > 0,

1
2(co+1)c1
we have v; < 1. In particular, since uy = 1 on Ey and S(t2) C Ay, we conclude
that S(ty) C Q.

Next, let f € C(02) be the boundary function defined by

1 1fxEBt2ﬂ8§2,
flz) = .
0 1f:U€aQ\Bt2

Then we have the following results for the lower Perron solution H ; = H ((€2):

(i) H; # 1. Choose r > 0 large enough so that 2 C B,. Moreover, set a
domain Qp := B, \ (B, N ) and a boundary function f, € C(9€) by

1 ifze Bt2 N aQ,
folz) = .
0 if x € 0B,.

Then since B, is regular, we have Hy, () < 1 in B, \ B,. On the
other hand, for any v € L£;(2) and w € Uy, (€), one can check that
v < w in € using the comparison principle. Therefore, we conclude that
H(Q) < Hp,(Q) and so Hy(Q) # 1.

(ii) maxg,) H ¢ =: M < 1: This is an immediate consequence of the strong

maximum principle for H , and part (i).

which is F-harmonic in © and v < 0 in S(t2), we claim that

— Hy
For u := ='—;

(2.5.2)

N | —

liminf u(x) <
Q33—

Indeed, since S(t2) C B,, and Ej is a regular domain, we have

uw(z) <0 <liminfus(y) for any x € 0B, = S(t2),

y—x
limsupu(y) <1 =liminfus(y) for any z € OF;.

y—x y—w

Thus, the comparison principle yields that u < ug in By, \ E3. In particular,
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since S(t3) C As, we observe that
u<ug <~z on S(t3).

Iterating this argument (for example, consider u — -3 instead of u), we con-
clude that

% 0 oo
1
USE ’YkSE ”ykICyE bigcl(co—i-l)a:i on each S(t;),
k=3 k=3 k=3

which leads to (2.5.2).
Finally, recalling the definition of u, the estimate (2.5.2) is equivalent to

liminf H(z) < 1 = f(wo),

Q33—

which implies that zy € 02 is an irregular boundary point. O]
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Chapter 3

Random Homogenization of
w-Laplace Equations with
Highly Oscillating Obstacles

3.1 Introduction

Let (2, F,P) be a given probability space. For every w € Q2 and every € > 0,
we consider a domain D.(w) obtained by perforating holes from an open,
bounded domain D of R™. We denote by T.(w) the set of holes (we then have
D.(w) = D\ T.(w)). The goal of this chapter is to study the asymptotic
behavior of the minimizer, u,., of the p-Laplacian functional as ¢ — 0.

More precisely, let u. be the solution of the following obstacle problem:
min {/ o(|Vul)dz — / fudz;u € Wy?(D),u > 0 a.e. in Tg(a})}.
D D

Here ¢ : [0,00) — [0,00) is an N-function satisfying the Ay N Vy-condition
and f € L¥ (D), which will be defined in Section 3.2. In particular, when we
set p(t) = %tp , for p > 1, then it becomes a p-Laplacian obstacle problem and
so ¢-Laplacian operator is a natural generalization of p-Laplacian operator.

A typical example for an N-function is ¢(t) = t? log?(1+t), where p > 1 and
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qg>1—np.
Now suppose that the hole is a union of balls centered at each lattice
point, i.e.
T.(w) = Ukezn Bas (k) (€k),

where a radius of ball, a®(k,w), will be determined randomly. Then we will
prove that there exists a critical radius a®(k,w) < & such that the homog-
enized problem is no longer an obstacle problem, but an elliptic boundary
value problem with a new term that comes from the influence of the obstacles
on the holes. If a° is a critical radius which is determined by capacity condi-
tion, then there exists a function g : [0, 00) — [0, 00) such that u = lim._,o u*

solves

min{/Dgo(|Vu|)dx+/Dg(u_)dx—/Dfudx;uEWS"P(D)}.

In this chapter, we will concentrate on the nontrivial case with critical
radius a®, where the limit solution satisfies an equation with an additional
term. In fact, the behavior of limit solution u can be different (but trivial) if
the radius of holes a° is not critical. First if the order of the decay rate of a°
is higher than the critical one, then the obstacles rarely restrict the behavior
of limit solution. Thus, the limit solution will be a solution of the following

variational problem without obstacles:

min{/Dgo(|Vu|)dm—/Dfudx;uEWOL‘P(D)}.

Second, on the contrary, if the order of the decay rate is lower than
the critical one, then the obtacles completely enforce the behavior of limit
solution. Thus, the limit solution will be a solution of the following obstacle

problem:

min{/ o(|Vu|) dz —/ fudz;u € Wy?(D),u >0 a.e. in D}.
D D
The main difficulty for extending the homogenization theorems of p-
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Laplacian operator to those of p-Laplacian operator is that the growth expo-
nent of an N-function ¢(¢) may vary with respect to ¢. As a result, we cannot
expect the homogeneity property for an N-function ¢, i.e. there is no constant
C' > 0 such that p(zy) # Co(z)p(y) in general. In fact, if a submultiplicative
function f : Rt — R* is differentiable at x = 1 and f(1) = 1, then f(z) = 2P
for all x € R* and some p € R. Here f is said to be submultiplicative if the
inequality f(zy) < f(z)f(y) holds for all z,y € R*, and see [27] for details.
Therefore, we cannot find out an explicit formula for the critical function
g or the critical hole size a® (or the capacity of holes) in p-Laplacian case.
Moreover, since the norm in Orlicz space is defined by Luxemburg sense,
there is a restriction when we replace the norm of functions to the modular
of them, involving Holder’s inequality and Poincaré inequality.

The main idea for the construction of corrector w® is that for the critical
value [y, w® will behave like the fundamental solution of p-Laplacian, near
the holes. To capture this property, we also construct several intermediate
functions between corrector w® and the fundamental solution A%, such as
vg,.p and wy, which will be defined precisely in Section 3.4. Note that these
auxiliary functions will be defined by the solution of different obstacle prob-
lems and the existence of these functions is guaranteed by Perron’s method.
Finally, exploiting the similarity between w® and h®, we can obtain a strong
convergence of w® in L?(D).

The plan for this chapter is as follows. In Section 3.2, we introduce prelim-
inaries which include definitions and well-known results about an N-function
and Orlicz space. In Section 3.3, we first state two assumptions on the holes:
capacity condition and condition on stationary ergodicity. Moreover, Sec-
tion 3.3 contains the statement and proof of our main theorem, and several
lemmas for correctors. In Section 3.4, we first find the critical value 3, by
studying a measure of contact set. Then we construct a corrector from solv-
ing an obstacle problem which depends on the critical value 3y, and show
the desired properties for this corrector. Finally, in Section 3.5, we prove
Lemma 3.3.5 and Lemma 3.3.12.
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3.2 Preliminaries

The study for an N-function and its related Orlicz space was initiated by
extending theory of classical L? space. For an overview of Orlicz space the-
ory, we refer two books [23, 32] and references therein; both books contain
generalization of theorems in LP space, such as Sobolev embedding theorem,
density theorem and Poincaré inequality. Liebermann [63] proved a Harnack
inequality for a solution of ¢-Laplace equations by obtaining local bounded-
ness and weak Harnack inequality. See also [6]. Moreover, in [24, 25], Diening,
Stroffolini and Verde studied the regularity of ¢-harmonic maps. In fact, they
showed that the minimizer of ¢-Laplacian energy has a Hoélder continuous
gradient by using Lipschitz truncation method as a main tool.

We first introduce some definitions and facts about an N-function and
Orlicz space. Here we always denote D by an open, bounded subset in R™.
Also note that in this chapter, we denote f ~ ¢ for two functions f, g when

there exist two constants ¢, co > 0 such that ¢, f(t) < g(t) < caf(%).

Definition 3.2.1 (N-function). ¢ : [0,00) — [0,00) is called an N-function
if

(ii) ¢ is strictly increasing and convex,

(iii) Tim, o+ 22 = 0,lim, o £ = oo,

Definition 3.2.2 (Aj-condition). An N-function ¢ is said to satisfy the Ag-

condition if there exists ¢ > 0 such that for all £ > 0, we have

©(2t) < cp(t).

We denote the smallest possible constant by As (). Since p(t) < ¢(2t) holds

for an N-function ¢, the Ag-condition is equivalent to the relation p(2t) ~
p(t)-
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Definition 3.2.3 (Vs-condition). An N-function ¢ is said to satisfy the

Va-condition if there exists a > 1 such that for all ¢ > 0 we have

p(at)
2a

p(t) <

Definition 3.2.4 (Conjugate function). For an N-function ¢, we define the
Young conjugate ¢* of ¢ by

©*(t) = sup{ts — »(s)}.

s>0

Here ¢* is again an N-function and (¢*)* = ¢. Moreover, we may equivalently
define

which implies that (¢*)'(t) = (¢')7'(t) for t > 0.
Lemma 3.2.5. The following statements are equivalent:
(i) ¢ satisfies the Vy-condition.
(ii) ¢* satisfies the Ag-condition.

Remark 3.2.6. By the definition of an N-function and the Ay-condition, we

can easily check that if ¢ is an N-function satisfying the As-condition, then

p(t) ~ 1/ (1),

uniformly in ¢ > 0. Moreover, we can check that uniformly in ¢ > 0,

" (' (1) ~ (1),

whenever ¢ satisfies the Ay N Va-condition.

Lemma 3.2.7 ([5, Lemma 2.1]). An N-function ¢ satisfies the Ag-condition
if and only iof
te' (1)
sup
>0 @(t)

< 400
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Moreover, its conjugate function ©* satisfies the Ay-condition if and only if

/
inf te'(t)

> 1.
>0 (t)

For a constant p, > 0, by differentiating the function 2t) we have

tPy
Pt

is non-decreasing if and only if t¢'(t) > pyp(t) for any ¢ > 0.

Py

Similarly, for g, > 0, we have

p(t)

de

t—

is non-increasing if and only if t¢'(t) < gyp(t) for any ¢ > 0.

Lemma 3.2.8 ([35]). Suppose that for an N-function ¢, there exist 1 < p, <
q, < 0o such that

"(t "(t
(t) 1s non-decreasing and t —> 7(t)

Lt tpw*l t%o*l

1S MON-1NCreasing.

Then ¢ satisfies the following properties for any s, t > 0:

(1) min{sPet st 11/ (1) < o (st) < max{sPet st Lo/ (8).

(i) t — % s non-decreasing and t — % 1S MOM-INCreasing.

(7i) min{sP?, s% }o(t) < p(st) < max{sPe, s% }p(t).

Py Py *[%)

q
(iv) exmin{sie 1,577} (1) < @ (st) < comax{se T, 5701 h (1),

We now state assumptions for ¢, which are necessary for our main theo-

rem:

Assumption 3.2.9. Let ¢ be an N-function, which is C'! on (0, 00). We also
suppose that there exist constants 1 < p, < g, < n such that

/ t / t
LU is non-decreasing and t SO—<)

- tpw*l t%o*l

is non-increasing.
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We remark that under these assumptions, ¢ satisfies Ay N Vy-condition

and ¢’ satisfies As-condition.

Definition 3.2.10 (Orlicz space). For an N-function ¢, Orlicz space L¥(D)

consists of all Lebesgue measurable functions defined in D, satisfying
/ ©(Af(x))dz < oo for some A > 0.
D

Here L?(D) is a Banach space with the Luxemburg norm

11l ooy = mf{mo:/Dgp(@) dr<1).

Moreover, we define the Orlicz-Sobolev space W*L#?(D): the set of measur-
able functions f on D with weak derivatives D*f € L¥(D) for all |a] < k.

Lemma 3.2.11 (Young’s inequality and Hélder’s inequality). Let ¢ be an
N-function. Then the following Young’s inequality holds:

ab < p(a) + ¢*(b)  for all a,b > 0.

Assume that uw € L?(D) and v € L¥ (D); then the following Hélder’s in-
equality holds:

[ wode <2l ol
D
Remark 3.2.12 (Norm-modular relation; [23]).

(i) Let ¢ be an N-function. Then we define the norm and the modular of

a function f € L¥?(D) as following:

I =int{r>0: [ (5) ar <1},

polf) = /D (1)) da.

(ii) For an N-function ¢ and a function f € L¢(D), we have the following
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(iii)

(iv)

norm-modular relation by their definitions:

[flle <1 = po(f) <

|
Hf”w >1 = py(f) > ||f“@0

In particular, we obtain || f|, < p,(f) + 1.

Let ¢ be an N-function and let fy, f be functions in L¥(D). We say
that fj, converges strongly in norm to f if ||fx — f|l, — 0. Note that
|| f — fll, = 0if and only if p,(A(fx — f)) — 0 for all A > 0.

On the other hand, we say that f, converges modularly to f if there
exists A > 0 such that p,(A(fx — f)) — 0.

Let ¢ be an N-function satisfying the As-condition. Then the modular

convergence is equivalent to the norm convergence in L¥(D).

Definition 3.2.13 (p-capacity). (i) For A C R™,

(i)

cap,(A) == inf{ IVule'(|Vul)dz : v e CP(R™"), u=1on 8A} :
R”L

For any open set D C R™ and compact set K C D,

cap, (K, D) := inf {/ |Vule' ([Vu])dz : w € CX(D),u=1on K} :
D

Theorem 3.2.14 (Compact embedding; [32, Theorem 6.3.7]). Let ¢ be an
N-function satisfying the Ay N Vy-condition. Then Wol’“”(D) is compactly em-
bedded in L¥(D).

Theorem 3.2.15 (Poincaré inequality; [32, Theorem 6.2.8]). Let ¢ be an
N-function satisfying the Ao N Vao-condition. Then for every u € Wol"p(D),

we have

[ullLep) < cdiam(D)||Vul[Le(p).
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Theorem 3.2.16 (Comparison principle). Let ¢ be an N-function and sup-
pose that Ay,u > Ayv holds in a bounded domain D. If the inequality

limsup u(z) < liminf v(z)
z—(¢ z—(

holds for any ¢ € 0D, then u <wv in D a.e.

Lemma 3.2.17 (Harnack inequality; [6]). Let u be a locally bounded and

non-negative solution of equation

V. (ﬂ“v—vui"”v@ = B(,u)

in 2, where @ is an N-function satisfying the Ay N Vao-condition and
B(z, u)| < o (Ju(z)]) + 8,

for a, B are non-negative numbers.
Let B C D be a ball of radius 0 < R < 1. There exists a positive constant
N = N(a,py, q,,n) such that
Dy 4y

supuﬁN(infu+LR),

Bry2 Bry2

where L is any non-negative constant such that B < ¢'(L) and Bgjs is the
ball of radius R/2 concentric with Bg.

3.3 Main Theorem

Before we state the main theorem, let us first make precise the assumptions
on the holes T.(w) = (UkGZnBas(hw) (sk)) NnD.

Assumption 3.3.1. For all k£ € Z™ and a.e. w € (), there exists v(k,w)
(independent of €) such that

capy, (Bas (kw)(€k)) = "y (k,w),
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where cap(A) denotes the capacity of a subset A of R". Moreover, we assume

that there exists a constant 7 > 0 :
v(k,w) <7 forall k € Z" and a.e. w € Q.

Assumption 3.3.2. The process v : Z" x Q — [0,00) is stationary ergodic:
there exists a family of measure-preserving transformations 7 : 2 — {2 such
that

(i) (stationary) v(k + k', w) = v(k, ww) for all k, k" € Z™ and w € Q;

(i) (ergodic) if A C Q and 7, A = A for all k € Z", then P(A) = 0 or
P(A) = 1. (in other words, the only invariant set of positive measure is
the whole set.)

Theorem 3.3.3. Assume that T.(w) satisfies Assumption 3.3.1 and Assump-
tion 3.3.2. Also let ¢ be an N-function satisfying Assumption 3.2.9. Then
there exists a function g : [0,00) — [0,00) such that when e goes to zero, the

solution u®(x,w) of

min{/ g0(|Vu|)dx—/ fudz; u € Wy#(D),u >0 a.e. in Ts(w)}
D D

converges weakly in Wh?(D) and almost surely w € Q to the solution u(x)

of the following minimization problem:

min{/ljgo(lvm)+g(u_)da:—/Dfudx; u € Wol’w(D)}.

Moreover, g(-) is an N-function satisfying the Ag N Vo-condition; in partic-
ular, if o(t) = I—ljtp, then g(t) = Bop(t).

Remark 3.3.4. The Euler-Lagrange equations for the minimization problem
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yield
—Agu® = f forx € D,,
u(z) >0 forxeT,,
u*(z) =0  for 9D\ T,
where

_ _y. (¢UVY)
Ayv ==V ( Vol Vo .

3.3.1 Key Lemmas

In this subsection, we introduce several lemmas which are essential for prov-
ing our main theorem. We will prove Lemma 3.3.5 and Lemma 3.3.12, which

describe the behavior of the corrector we, in Section 3.4 and Section 3.5.

Lemma 3.3.5. There ezist a non-negative constant By and a function w®(x,w)

such that

Agjw® =y in D.(w),

we(z,w) =1 forz e T.(w),
wé(z,w) =0 forx e oD\ T(w),
w(-,w) =0 n Wh?(D),

for almost all w € Q, and w* also satisfies the following properties:

(i) Let vy be a function and 1y be an N-function such that o(11(t)) ~ o(t)
for uniformly in t > 0. Then for any n € D(D),

lim/ P (|Vw®|)ndz = 0.
e=0 Jp
(ii) For any n € D(D),

lim/go’(|Vwa|)|Vw5|nd$:/ﬁondx.
e=0 Jp D
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(iii) For any sequence {v°} C Wol’“’(D) with the property: v — v weakly in
Wy#(D) as e — 0 and v° =0 on T- and any n € D(D), we have that

/ 5
[ gV
=0 Jp  |Vuw?|

Vuw® - Vo'nde = —/ Bovn dx.
D

Remark 3.3.6. In the first part of Lemma 3.3.5, the assumption 1) (11 (t)) ~
©(t) implies that, roughly speaking, the growth rate of ¢4 is smaller than
that of . For example, for the simplest case, if 11(t) = ¢, we can choose

a(t) = @(t). Moreover, if 1 (t) = ¢/(t), then we can choose ¥,(t) = ¢*(t).

Remark 3.3.7. We introduce the initial and limit energies:

1] ::/D¢(|Vu|)dx—/Dfudx

and

L= [ elIvu)+gu)de = [ fude

With these notations, we have that u®(z,w) satisfies

Iu] = vlen[ge I[v]
with K. = {v € W;*(D);v > 0 a.e. in T.}.
Since {u} is bounded in W'¥(D), there exists a function u(z,w) such
that
uf (-, w) = a(-,w) in Wy?(D) -weak.

Now to prove the main theorem, it is enough to show that for almost every
w, u(+,w) satisfies:

[0[/(1] = inf [O[U].
veW, ?(D)

Lemma 3.3.8. Let w® be a corrector function defined in Lemma 3.3.5. Then
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there exists a function g : [0,00) — [0, 00) such that

lm/wwwmm:/mmm
e—0 D D

for any n € D(D), with n > 0. Moreover, g is an increasing function on
[0,00).

Proof. Let 1 be a simple function, i.e.

N
ni= Z ;X Ay s
1=1

where a; > 0 and A; C D are mutually disjoint. Then

N
/mwmmmzz/wwmmmﬂu
D = /D

Now define

%MM%ZL@MVW@wmmdm

forw e Q,a>0and A C D. First to check the subadditive property of the

random variable pg, let (A;);c; be a finite family of sets such that

A; C Aforalliel,
A;NA; =@ for all i # j,
|A — Uier Ai| = 0.

Then we have

/LZ(A,W) < Z ”Z(Aiv w)v

el
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which yields the subadditive property. Moreover, we have

1 (A, w) = /D (0 Vs (2, ) )xa dz

< / V| (V) xade < (cfo + D)|A],
D

by part (ii) of Lemma 3.3.5. Finally, thanks to the ergodicity of the trans-
formations 7y, it follows from the subadditive ergodic theorem (see [16]) that
for each a there exists a constant g(a) > 0 such that
 pa(A,w)
lim =—— = g(a),

|A]

e—0

or equivalently,

lim gp(a|Vw€(x,w)|)XAdx:/g(a)XAdx.

e—0 D D

Note that this limit g(a) increases when a increases by the definition of

1 (A, w). This construction of ¢ finishes the proof. O

Lemma 3.3.9. Let g be the function constructed in Lemma 3.3.8. Then g is
an N-function satisfying the Ay N Vy-condition.

Proof. Recall the construction of g in the proof of Lemma 3.3.8:

o pe(Aw) L [pe(al Ve (z,w))xa de
9(a) = limg Al o |A] '

It is clear that ¢g(0) = 0, g is increasing and convex.
For 0 < s < 1, using Lemma 3.2.8, we have g(s) < g(1)-sP¢, which implies
that

0 < lim 9(s) < lim[g(1) - s**~'] = 0,

s—0 8 s—0

since p, > 1. Similarly, we can show that lim_, @ = 00.
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Moreover, since ¢ satisfies the As-condition,

9(2a) < As(p)g(a).

Thus, ¢ satisfies the Ay-condition and As(g) < As(p). Using a similar argu-

ment, we conclude that g satisfies the Ay N Vy-condition. O

Remark 3.3.10. Note that if ¢(t) = 1#7, then we have

o
. € 1 e|p
;%Awmmwm1%4wwwwm

= lim [ [V |'([Vw|)p(n) de
€ D
~ [ fustn)d.

D

by applying part (ii) of Lemma 3.3.5.
Thus, in this case, we can calculate g(t) = Bop(t) explicitly and recover

the result for p-Laplacian in [77].

Remark 3.3.11. In [15, 77] and this chapter, the existence of the critical
value [y is guaranteed by the subadditive ergodic theorem, and then the
corresponding homogenized operator is implicitly defined. However, follow-
ing the arguments in [3] and [28], we are able to express the critical value
B explicitly, in terms of the expectation of the stationary ergodic process
v(k,w), for the p-Laplacian operators. Indeed, they showed that §, (or g)
can be determined explictly when ¢ satisfies a growth condition of order p

(1 < p < n), ie. there exist two constants ¢;, ¢y > 0 such that
cp(aP = 1) < p(x) < cg(a? +1) for any = > 0.

In particular, [28, Section 6] discussed how to recover the homogenization
results in [15, 77] and to compute [y, using the I'-convergence method. Note
that in our general setting, ¢ has varying growth order (roughly, from p,, to

q,), which is not adequate for applying those results.
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Lemma 3.3.12. If Lemma 3.53.5 holds and u® is the solution of
min{/ o(|Vv|) = fode : v € Wy¥(D),u >0 a.e. in Tg(w)},
D

then
lim inf I[u®] > I[u"],

e—0

where u° is the weak limit of {u®} in WhH?(D).

3.3.2 Proof of Theorem 3.3.3

Proof. For any n € D(D), the function n+n_w*® is non-negative on 7. (w) and
is thus admissible for the initial obstacle problem. In particular, by definition

of u®, we have
Iu] < In + n-w],
where

HwMﬂﬂzf

9MWHVmM+mVWWM—/fW+mWMm
D D

Note that since ¢ is increasing,
/ o(|Vn + Vn_w® +n_-Vuw|)dr < / o(|Vn + Vn_w®| + [n_Vws]|) d.
D D

For convenience, let 7¢ := |Vn+Vn_w*| and s° := |n_Vw®|. Then the integral

in the right-hand side can be written as

/ o(r® + s%) de.
D
Now we will show that

ll_rg% Dgo(r + s )dx:ll_{r(l) Dgp(r )dx—l—il_r}% D(p(s )dx. (3.3.1)
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To prove this equation (3.3.1), we need a technical lemma:

Lemma 3.3.13. Let ¢ be an N-function satisfying Assumption 3.2.9. Then
for x,y >0, we have

lp(z +y) — o(@) —e(y)| < clzd'(y) +y¢e' (),

where the constant ¢ depends only on Ay (¢').

Proof. (i) (x> y) Let f(y) = oz +y) — plx) — p(y) and then f(0) = 0.

By mean value theorem, we have

fly) = f(0) =yf'(t), forte(0,y).

Here direct calculation yields that
W)l =1z +y) = ¢'(Y)| <26 (z + ).
Recalling ¢ is convex and applying Assumption 3.2.9,

1f'(0)] < 2¢'(z +y) < 2¢'(22) < el (2).

Thus, we conclude that
(@ +y) — o) — o)l = |fy) = fO)] < ey (2).

(ii) (z <y) By symmetry, we have |p(z +y) — ¢(x) — o(y)| < cxy'(y).
O

Applying this technical lemma for x = ¢, y = s°, we obtain that

/D p(r* + 5°) — o(r®) — p(s%)] da

<c [ o) reey .

=1 =I1
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(I) For r¢¢/(s%), note that
re(s7) < [Vl - ' (IVur]) + Clus] - ¢ (| V).

First by Lemma 3.3.5 (i), (for ¢4 (t) = ¢'(t) and () = p*(t)) we

have
. / £ o
tiy [ V] ([ V0]) do =0,
Next by Holder’s inequality, we have

/D W] - (IVwf]) dz < 2[|w[lo[l¢' (Vw©) |-

< cljuf]l, (1 -/ ¢<|wa|>dx) |
D

where we used the norm-modular relation and ¢*(¢'(t)) ~ @(t) for the

last inequality. Since w® — 0 strongly in L?(D), we obtain
: € . / g —
tim [ fu]- (V] do = .
(IT) For s°¢'(r®), note that
s7¢/(rf) < CIVwf| - (' (|Vn]) + & ([w])).

Again by Lemma 3.3.5 (i), (for ¢(t) =t and 12(t) = ¢(t)) we have

lim/ |Vw®| - ¢'(]Vn])dz = 0.
e=0 Jp

Similarly as in the first case, we obtain

e—0

lim/ |Vw?| - ¢'(Jw®|) dz = 0.
D
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Combining two cases above, we conclude that

lim [ (rf¢'(s°) + s°¢'(r%)) dz = 0,
e=0 Jp

which proves the equation (3.3.1).
Note that applying Lemma 3.3.8 with w® — 0 strongly in L?(D),

lim / AV + Vi_uf]) de = / (V) de,
e—0 D D

iy [ - Furdo = [ gl d,
E—> D D

Therefore, we have :

lim sup/ o(|Vn+ Vn_w® + n_Vuw|)dz < /
D

e—0 D

(1 Vn]) dz + /D g(n_) da,

which implies that

Io[n] > limsup I[n + n-w®] > liminf I[uf].

e—0 e=0

By Lemma 3.3.12, we have Iy[n] > Iy[a]. Since the set {n € D(D) : n_ €
D(D)} is dense in Wy #(D), we obtain the desired result. O

3.4 Critical Value (5, and Corrector w*

3.4.1 Find the Critical Value [,

We introduce the following obstacle problem: for every open set A C R" and
B eR,

v 4(7,w) = inf {v(x); Ayv < B — Z v(k,w)e"d(x — k) in A,

keZrne—1A

vEOinA,U:OOnGA}.
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Moreover, we set
ms(A,w) = [{r € A;vp 4(z,w) =0}

Then from the subadditive ergodic theorem, [1] and [21], for any 5 € R, there
is a constant () > 0 such that

. m3(Bi(zo),w)
lim
e=0 | Bi(70)]

=1(P),

for any By(xo) C R™

Lemma 3.4.1. (i) I(53) is a non-decreasing funcion of 3.
(ii) 1(B) =0 for 5 < 0.

(iii) 1(5) > 0 for B is large enough.

Proof. (i) The proof follows immediately from the inequality

vg.a < vg 4 for any G, 8" such that §' < f.

(i) If 8 < 0, let

o= o () -+ (2]

for r = |v — x¢|. Then Ayug = f in Bi(x) (see Remark 3.4.2 and
Remark 3.4.3 below.) Moreover, ug > 0 in Bj(zo) and ug = 0 on
331(3:0).

Therefore, by comparison principle, we deduce that:
v;,Bl(IO) > ug > 0 in Bl<$0).

Therefore, mg (B (7o), w) = 0 for 3 < 0, which implies that [(3) = 0
for g < 0.
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(iii) Let
ney(k, w)) "
/8 Y

where the constant ¢ = ¢(n) = ﬁ We define a rotationally symmetric

a = alk,w) = (

function g, (z,w) for any k € Z" as follows:

fra8(¢/)_1 (CV(kaw)gnSI_n — 28) ds, if 0 <r <ae,
0, if r > ae,

gé,k(% w) = {

where r = |z — ¢k[. Note that by the definition of g5, we know that
95 and Vg, vanish along 0B, . Thus, by Remark 3.4.2 below, we
obtain that

Aygsp(r,w) < B —7(k,w)e"d(x —ck) in R",

and g5 ,(z,w) = 0if x ¢ B, (ek).
On the other hand, if we choose g large so that g > 2"ncy(k,w), i.e.

1>a:(w>{
2" 5

then the support of function ggk(:c,w) is contained in the cell ball

B (ek). Now we consider the sum of all g5 ,:

92(I7w) = Z gg,k(wi)'

kce—1BiNZ"

By the definition, we know that for any two different k, k' € e~ B, NZ",
95 and g5, have disjoint support. Then

Dpdile) SB— 3 Ak w)emd(r — k),

kEEilBlﬁZn

and g3(7,w) > 0 for x € By and g5(z,w) = 0 on 9B;.
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Therefore, for almost surely w € €,
0 <vgp (7,w) <gs(r,w), forae xe B,
Then by the definition of g3, we deduce that

U  (Bi\Bu(ek)) C {x € By : v 5 =0},

kEElelﬂZ"

which implies
m(By,w) > |Bi| — Ce™"(ag)" = |By| — Ca".

Thus, we have () > 0 if a is small enough, i.e. § is large enough.
[

Remark 3.4.2 (Idea of construction for g5, ). First note that a function
Sk(x :£$2—|—C’Y k,w)e™ x>
8, 2n

solves

Augy = B —y(k,w)e"d(x — k).

Here a direct calculation yields

)

Vug, = (gr — cnfy(k;,w)anrl”)

=8

where r = |z|.

Since we require
Npgpp =0 —(k,w)e"d(x — ck) = Augy,

we have , .
2 (|Vgﬁ,k|)

95 = Vug .
|V9§,k| ok ok
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Moreover, we know that g5, should be rotationally symmetric and so we let

ggk(a;) = fgk(r) for r = |z|. Then

Xz

Vi) = (f5) (1) - —

Finally, combining these results, we conclude that

50/ 0) =~ (enlkwpznr = 2r).

when 7 is small.

Remark 3.4.3 (Estimate for fundamental solution). From the above idea,
we can estimate the fundamental solution f and the solution for A,ug = f3.

More precisely, we can obtain an explicit formula for these functions:

(i) —A,f = 0o and limy|—eo f(2) = 0 hold when we define
f(z) = /Oo(go')_l(csl_") ds = /Oo(go*)'(csl_”) ds, where r = |z|.
(ii) For 8 > 0, (with the condition ug(0) = 0)
wie) = [t (s} as= [(or (Zs) as="5 0 ().
Similarly for 8 < 0, (with the condition ug(xz) =0 on |z| = 1)
1 1
wie) = [y (<25) as= [y (s as
o () (1)
RSN

According to Lemma 3.4.1, By := sup{3; () = 0} is well-defined, finite

and non-negative. Thus, we can define the corrector function w® as follows:
w®(x,w) = inf {v(m);va <Boin D\T.,v>1onT.,,v=00n0dD\ TE}.
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Then for almost surely w € €2, we have that

A w(z,w) = py forx € D\ T,
we(r,w) =1 for z € T,
wé(z,w) =0 for x € 0D \ T-.

3.4.2 W' boundedness of {w}

To show that {w®} is uniformly bounded in W1#(D), we split the proof into
two parts: {w®} is uniformly bounded in L¥(D) and {Vw*®} is also uniformly
bounded in L¥(D).

Proof. To prove the first part, we need to introduce an auxiliary function

v(x): let v be the solution to the following problem

Ayv =Py in D,
v=20 on 0D.

By comparison principle, for almost surely w € €2,
v(z) < w(z,w) <1 forae z€D.

Hence, [, ¢(|wf])dz < C, which implies that {w*} is uniformly bounded in
L#(D).

To show that {Vw®} is also uniformly bounded in L#(D), we define the
function h® as follows: first for each £ € Z", define hj be the p-capacity
function of B, (¢k) with respect to B, (k). Then define h* =", .. hy.

Obviously, w® — h® = 0 on T and dD. Hence, from integration by parts,

Bo(h® —w®)dx = Ayw* (b —w)de
De

De
De De |vw€’

Then by Young’s inequality and the relation ¢*(¢/'(t)) ~ ¢(t), we obtain
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that:

(Vo o o,
/E—!szl Vo - VRS da

<5 / o (¢ (Vu])) de + C() / (V) da

De

§05/ gp(|Vuﬂ)dx+C’(5)/ S(|VAE)) da.

€

Now using the relation ¢'(t)t ~ ¢(t) and choosing 6 > 0 small enough, we

have:

/ o(IVer))dz < C / H(IVh]) da + / Boll — w'|de
D, \DE . \D‘E ,

-~ -~

=] =II

(I) First integral: we need a uniform bound for [}, ¢(|VA®|)dz which is
independent of . Note that since we have defined h® in terms of -

capacity function,

| evnhde s S cap, (BualeR). Buslek).

De keZ"Ne—1D

We chose a®(k,w) so that cap,(Bas(kw)(€k)) = 7(k,w)e™ < 3e™. Also

the number of summands (i.e. capacity terms) is proportional to e~".

Thus, we conclude that
| v <c.

where C' is a uniform constant.

(IT) Second integral: Since |h¥| < 1 (recall that h® is a p-capacity function)
and v < w® < 1, we obtain the uniform bound for the second integral.

This completes the proof.
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3.43 w' —0in L?(D) ase—0

To show that w® converges to zero strongly in L?(D), we need to compare
the corrector w® with the auxiliary function vj p. Indeed, we will compare
the function vj p with the fundamental solution hj, which will be defined at

Lemma 3.4.4, and then investigate the limiting behavior of vj ,, as € — 0.

Lemma 3.4.4. (i) vj p(z,w) > hi(z,w) —o(1) for a.e. v € Bs(ck) and
a.s. w € Q, where hy, denotes the fundamental solution with singularity

at ek. More precisely,

hi(z,w) = / () (cy(k,w)e"s' ™) ds, wherer = |x — ck|.

(i) For any T >0, v5 ,, p converges to 0 in L¥(D) as & goes to 0 for a.s.

w € Q, where v . 1, s defined as follows:

V5 1rp = inf {v(m); Apv < fo+ 7 — Z v(k,w)e™d(x — ek) in D,

kezn
v>0inD,v=0 oné?D},
and let 17)?304_7_71) = min{vgo-i-T,Da 1}

Proof. (i) Let

= (221

where the constant ¢ is the same as in Lemma 3.4.1 (iii). Then we define

the function hg ,(z,w) as follows: if b > 3, then

C lrw) = ff(gp*)’ (ny(k,w)ensl_” — 5”—05) ds, if 0
Bo kA 0, ifr
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and if b < %, then

frbg(@*)/ (CV(k,w)E”SI*" — @s) ds, if 0 <r <be,

n

0, if r > be,

R, 1T, w) = {

where r = |z — k| and © € B, /5(ek).

Ifo> %, then for a.e. € Bz(ek) and almost surely w € €2, we have
that
Aphg, i (z,w) = o — v(k,w)e"d(x — ek),

and hg ,(v,w) = 0 if [ — ek| = 5. Thus, we can apply comparison

principle and as a result, for almost surely w € €,
hy (@, w) <05 p(w,w)  ae. x € Be(ek).

We can prove the same result for the latter case (b < 1) using a similar

argument. Combining these two cases, for almost surely w € €2, we have
ho (T, w) <05 p(w,w)  ae. x € Be(ek).
Now by direct computation, we obtain that for almost surely w € €2,
ok (T w) > hi(z,w) —o(1) ae. x € Bs(ek).
Therefore, for almost surely w € €2, we conclude that

Vg, p(T,w) > hi(z,w) —o(1) a.e. z € Bs(ck).

(ii) From the definition of {v, ,, p}, we know that for almost surely w € €,

Apvz 1rp = — Z v(k,w)e™d(- — ek).

k€ZnrNe—1D
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Hence, by testing v3 ., p, we have

/ vago-&-T,D ) 1_),%0+T,D dz > — Z 7(k>w)€n®Eo+T7D(€k)'
B keZrne—1D

By part (i), we can easily check that o5, . (k) = 1 for k € Z"Ne™'D.
Since ¢'(t)t ~ ¢(t) and |[{k € Z" N e 'D}| ~ e, we obtain

| AV phds <,
D

where C' is a universal constant. Therefore, {05 .} is uniformly bounded

in Wy (D).

For almost surely w € €2,

oo 1T = 0} 01 By o)
T B )]

= 1(6y +7) >0,

for any B, (z¢) C D. Thus, by a version of Poincaré inequality (see [31,
Lemma 4.8]), there exists a constant C' = C(fy + 7, n) such that

H@%()-FT,DHL“’(BT(HCO)) < CTHV@EO-H,D||LV’(BT(:;:0))~

Since xg can be arbitrarily chosen, by summing above inequality and

applying norm-modular relation, we obtain that:

LM%ﬁwmsw.

Here we may choose r = /¢ and follow the above argument. By letting

e — 0, and then we conclude that

lim [ o(|05,,, pl)dz = 0.

e—0 D

]

Remark 3.4.5 (Capacity function). Here we will prove that, in fact, hj
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defined in Lemma 3.4.4 (i) is the capacity function for Bge (. (€k). In other

words, we will show that lim|g_ hi(z) = 0, hi = 1 on 0B,-, and
Ah =0, inR"\ B,
Note that in Assumption 3.2.9 (i), we chose a® so that
cap,(Bas(kw) (€k)) = e"v(k, w). (3.4.1)

Proof. Without loss of generality, we let & = 0 and h® := h{. First as we
checked in Remark 3.4.2, we have that

Ay h® = =", in R™.
In particular, we have A,h® =0 for x € R™ \ {0}. Moreover,
lim A(z) =0
|z|—o00

follows directly from the definition of A° in Lemma 3.4.4 (i).
Finally, to prove that h; = 1 on 0B,:, choose b° > 0 so that

1= /bsoo(@')l(cv(k,w)gnsln) ds. (3.4.2)

Then A° is the capacity function for a set By and so we have

Cap@(BbE):/R\B |VRE|Q (|VR]) da
n\ Bpe

&

= / (cye™r ™) - (@) Heye™r T nw,r™dr
b

€

e [ @) et dr = e
b

= cap,,(Ba:).

Here we used a change of variables, ¢ = ﬁ (Lemma 3.4.1 (iii)), (3.4.1),
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(3.4.2) and
VA (z)| = (&) Heye™'™),  where r = |z].

Therefore, we conclude that a® = b° and we finish the proof.
]

To finish the proof of w® — 0 in L¥(D), it remains to show that the
corrector w® has the same limiting property as v ., 5. For this purpose, we

introduce a new auxiliary function w: as follows: for any 7 > 0,
w(z,w) ;= inf {v(m) Ay < fBy+7in D.,v>1on T, and v =0 on 8D}.

Obviously, for almost surely w € Q, w®(z,w) > wi(z,w) for a.e. x € D and
{wt} is also bounded in W'¥(D) by previous result. More precisely, {w¢}
satisfies the following property:

Proposition 3.4.6. (i) For almost surely w € Q, we have
|w® = wi||wiepy = 0,

as T — 07T,

(ii) For almost surely w € 2, we have

lim | ¢(Jws])dz =0.

e—0 D
Proof. For simplicity, we write S : R® — R" by

#'(1Q0)
Q|

S(Q) = Q, where QQ € R".

(i) First by repeating the proof for W'#(D) boundedness of w® (see Sec-

tion 3.4.2), we know that w is uniformly bounded in W#(D) when

7 € (0,1). Moreover, since w — w® € W,#(D), we can use it as a test
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function:

[ —wyar = - [ Gt - A0 -0
= /D(S(Vwi) — S(Vw)) - (Vw: — Vw) dz.

Recalling the proof in Section 3.4.2, we know that {ws —w*®} is bounded
in L>°(D) when 7 € (0,1). This yields that

/ (S(Vw:) — S(Vuo)) - (Vw: — Vu)dz — 0,
D
when 7 — 07. Therefore, by [54, Theorem 4], we conclude that

we — w®  in WH(D),

T

when 7 — 0.

(ii) We follow the proof of Proposition 3.3. in [77]: decompose the function

.
w5 1nto

and then estimate each part. First by Lemma 3.4.4 (i), Remark 3.4.5,
and comparison principle (between v ., p + o(1) and wi in D,), we
know

0 < (w7)+ < U5y prp + 0(1).

Therefore, applying Lemma 3.4.4 (ii), we obtain

lim [ o((w)y)dz =0.
e=0 Jp

Next, to estimate the negative part (w2)_, we may assume that

sup (wi)_ > 0.
BE/Q(‘Sk)
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Since Ayws = By +7 in D,, then w is continuous in D and so is (wg)_.
Thus, for small € > 0, we can apply Harnack inequality, Lemma 3.2.17,

to (w2)_, in a ball with a radius R = ¢ — 0. However, note that the

T

constants N and L in Lemma 3.2.17 do not depend on ¢ > 0. Therefore,

we have that for a.s. w € Q,

sup (w7)- = o(1),
B5/2(5k)

which implies that

lim DsO((w )-)dz =0.

Therefore, combining two results above, we conclude that
lim [ o(Jws])dx = 0.

e—0 D

Hence, by Proposition 3.4.6, we have that
ti [ (] dz =0

Thereofore, we can select a subsequence from {w®} which converges to zero
weakly in W?(D).

3.5 Proof of Lemma 3.3.5 and Lemma 3.3.12

3.5.1 Proof of Lemma 3.3.5

Proof. (i) Without loss of generality, we assume that n € D(D) and n > 0 on
D. Let 0 be in (0,1). To prove property (i), we need to prove the two facts:

limsup/ D (|Vw|)ndz < C(Bo,n)0
Dn{w=<6}

e—0
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and

e—0

limsup/ Y1 (|[Vws|)ndz =0
Dn{w=>6}

In fact, if we let wj = (§ — w*) 4, then win € Wy ¥(D) and wjn converges to
On weakly in W, ¥ (D). Moreover, since § < 1, w§ = 0 on the holes T%. Hence,

from integration by parts,
—>ng - V(wgn) do = —ﬁoé/ ndz.
D

which implies

, o' ([Vw])
lim / V| (|Vw®|)ndz — / ————Vu* - Vn w;dx
5—’0{ D{we<0} | [l ) pr{we<ey | VW ’ }

2509/ ndx
D

Applying Holder’s inequality, we have

/ )
/ g[ver)) |)VwE~V77 wy dx
Dn{w=<6}

sh/ (V) - [Vinlaw da
Dn{w=<6}

< Clle' (V)

o* W[ -

Recalling the norm-modular relation and the relation ¢*(¢'(t)) ~ ¢(t), we

obtain

' ([Vwr])

o < / O (P (Vi) de +1 < C/ o(|[Vu)de +1 < C.
D D

Then using w§ — 6§ weakly in W?(D) and the definition of the Orlicz space
norm,
tim [, = 9], < OO,

Thus,
limsup/ |Vw | (IVwe|)ndz < C(Bo,n)d,
Dn{w=<0}

e—0
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which implies

e—0

lim sup / SV de < C(o, )b,
Dn{w=<0}

by 1'(t) ~ (1),
Now let 15 be an N-function such that ¥ (¢ (t)) ~ (), for uniformly in
t > 0. Then by Holder’s inequality, we have that

/ D[V ndz < 2|lyn (IVw )xpague <oyl - [Vl
Dn{w=<0}

¥3

<2 wlyan(ve)a) "

1/py,y
< (n, ) ( [ v dx) .
Dn{w=<6}

Thus, we conclude that

_1
fimsup [ (Ve < Cna g )87
Dn{we<6}

e—0

Similarly for the integral fDm{w€>0} 1 (|Vwe|)ndz, we again apply Holder’s
inequality, then

/ Oi([Vwr)nde < 2[lvn (IVw D, - IV0x w0y llv
Dn{ws>6}

Here the sequence {w®} is uniformly bounded in W!¥(D) and

lim ndx = 0.
€20 J pn{we>6}

This implies
lim sup/ 1 (|Vw®|)nde = 0.
Dn{w=>6}

e—0
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Therefore,

e—0

1
lim Sup/ w1(|vwa|)77 dx S 0(77’ ¢27 2 ﬁO)epwz :
D
Since # is an arbitrarily small positive number, we conclude that
;g%/le(\Vw )y dz = 0.

(ii) Let n € D(D). Then since n(1 — w®) € D(D) and from integration by

parts,

/Dﬁon(l _wf)da :/Dv - S(Vut) (1 — wf) da

:/ V- S(Vw®)(w® —1)dx + / nS(Vw®) - Vw dz.
D D
Since w® goes to 0 weakly in Wh?(D),

limﬁo/ n(l —w®)dx = / Bondz.
e—0 D D

Recall that w® converges to 0 strongly in L#(D) and {Vw*} is bounded in
L?(D). Hence, by Holder’s inequality, we have that

lim
e—0

/ V- S(Vw)w® dz
D

<clo) [ (Ve do =0,
D
Finally, by part (i), we know that (let 11 (t) = ¢'(t) and 15(t) = ¢*(¢).)

lim
e—0

/Vn~S(Vw5)d:U §/ (Vn|¢'(|Vw?]) dz = 0.
D D

Therefore,

lim [ nS(Vw?) - Vuwdr = / Bondz.
D D

e—0
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(iii) From integration by parts, we have that

—/Dﬁgvgn:—/DV-S(VwS) v
:/Dns(wf)-vvw/ v°S(Vu®) - V.

D

Since {v°} is bounded in W, *#(D) with g, < n, by Sobolev embedding theo-
rem (see [32, Corollary 6.3.4]), {v°} is bounded in L¥(D) for an N-function
v which satisfies

1

T L) ~ (). (3.5.1)

Hence, by Holder’s inequality,

(A

JREGZEE Vn‘ < 2ol (V) ¥

Then by applying part (i), (let ¢ = ¥* o ¢’ and 1, = p* o (*)71.)

: / €
lm (V) 77

w*:O.

Note that (3.5.1) ensures that 1, is an N-function. (see [32, Theorem 2.4.10].)
Therefore,
lim [ S(Vw®) - Vovnde = —/ Bovn dex.
D

e—0 D

3.5.2 Proof of Lemma 3.3.12

For a general N-function ¢, we cannot expect that ¢ has a multiplicative
property. Here a function f is said to have a multiplicative property if there
exists a constant C' > 0 such that f(zy) = Cf(z)f(y), for any z,y > 0.
Note that for p-Laplacian case (p(t) = t?), we have a multiplicative property
with C' = 1. Thus, we can separate the solution u° and the test function n

within the function ¢ and apply Lemma 3.3.5 directly. However, to prove
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Lemma 3.3.12 for a general N-function ¢, we need some revised version of

part (ii), (iii) in Lemma 3.3.5:
Lemma 3.5.1. Let w® be a corrector function defined in Lemma 3.53.5.

(i) There exists a function h : [0,00) — [0,00) such that

/ S
limV - (MVuf) = h(n), (in distribution sense)

e—0 |Vw5|
for any n € D(D), with n > 0.

(i1) For any n € D(D) with n > 0,

i / o (V)| Vo dar = / nh(n) de.
e— D D

(iii) For any sequence {v°} C Wy¥(D) with the property: v° — v weakly in
Wy #(D) as e — 0 and v° = 0 on T. and any n € D(D) with n > 0, we
have that

/ 15
o [ Turl)
=0 [p  [Vwe|

Vuw® - Vodr = —/ vh(n) dz.
D

Proof. (i) Follow the proof of Lemma 3.3.8 and recall that w® — 0 strongly
in L¥(D).

(ii), (iii) Follow the proof of part (ii), (iii) in Lemma 3.3.5. The only difference

is using

lim V- (@’(Wwaln)VwE) — h(y),

e—0 ‘VU}E‘
instead of

PV g <)
v (Fear v) =
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Lemma 3.5.2. For an N-function ¢, we have

¢ ()t — o™ (') = (1),
for allt > 0.

Proof. Recall the definition of ¢*:

P (t) = Ssglg(st —¢(s)).

In particular, it yields

" (' () := sup(s¢'(t) — o(s)).

s>0

If we denote f(s) := s¢'(t) — (s), then f'(s) = ¢'(t) — ¢'(s). Since ¢’ is
increasing function, we know that f attains its maximum at s = ¢. It finishes

the proof. O

Proof of Lemma 3.3.12. Let us decompose u° = uS — uZ . Obviously, we

have (up to subsequence, if necessary)

lim inf I[u®] = lim I]uf],
e—0 e—0

and v — uY weakly in W'#(D), respectively. Here note that

[ evahas = [ pvicldos [ o9 .

and

[ evahae = [ vathdes [ o9 .

For u% , we apply the classical lower semicontinuity property ([23]):

liminf/ ¢(|Vui|)dx2/gp(|Vui|)dx.
e—0 D D
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In order to prove Lemma 3.3.12, we need to show the following revised lower

semicontinuity property:

liminf/<p(|VuE|)dx2/g0(\Vu0|)dx+/g(uo)dx.
e—0 D D

D

Let 6 > 0 be any small positive number and 7 is a test function in D(D).
Firstly, we claim that

lim inf <P(|Vu5|)2/ MVT)'VuO—/[)go*(@’(|Vn|)). (3.5.2)

=0 Jue<o p |Vn

In fact, from Young’s inequality, we have

¢'(IVn c : .
[ By v < [ pivih+ [ o9
we<o |V we<H we<h
Since w® converges to 0 weakly in W#(D), then [{w® > 0}| — 0 as ¢ goes
to 0. Hence,
lim e(|Vnl) dz =0,

e—0 wES0
which implies that (by Holder’s inequality and equivalence of norm-modular
convergence)
' (IVn])

lim ————Vn-Vus dz = 0.
e=0 we >0 |V77|

Since u® converges to u® weakly in Wh?(D), we obtain the estimate (3.5.2).

Next, we will prove that for a test function n with n > 0,

/E>0 @('vuihdl’ > _/D‘P*<90/(|Vw€!77))dx

(V)
— I~ " Vw -Vu doz — CH— £(0).
/ Vo 1)

(3.5.3)

Indeed, by Young’s inequality, we have

/vwa x(, 1 g g
[ Ry v < [ e v+ [ a9,
we >0 va’ we >0

we >0
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Then by the proof of part (i) of Lemma 3.3.5,
| @@ vurin) s < oo,
we<

and by Holder’s inequality,

/ £
[ AT gy g,
wE <O |vw£|

<2/l (Vo) X que <oy |+ | VU ||, =2 f(0).

Here f(6) — 0 when 6§ — 0, since
(i) {w®} is uniformly bounded in W'#(D),

(ii) [, @™ (@' (|Vwiln))de < c [ ._,o(|Vw|)yde < C6, and so the mod-

ular converges to 0 when 8 — 0. By the equivalence of norm-modular

convergence, we know ||¢'(|Vw®|n)x {we<gy||o+ — 0 when 6 — 0.

Thus, the estimate (3.5.3) follows. Letting ¢ — 0 in (3.5.3), we have:

liminf/ o(|Vus |)dz > —limsup/ O (¢ (|Vw®|n)) dzx
we >0 D

e—0 e—0

— lim Sup/ MVwa -Vu® dz — C0 — f(6).
D

|[Vws]

e—0

Here by applying part (iii) of Lemma 3.5.1, we obtain

limsup/ MVU}‘E -Vut dr = —/ u? h(n) dz.
e—0 D |Vw€] D

Moreover, using Lemma 3.5.2, we have

" (¢'(|Vw©In)) = &' (IVws|n)|Vw|n — o(|Vw|n),

and thus applying Lemma 3.3.8 and part (ii) of Lemma 3.5.1, we conclude
that

1imsup/Dso*(sD’(|Vw€|n))dfrZ/Dnh(n)dx—/Dg(n)dx-

e—0
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Therefore, we obtain the following estimate:

ligglf/5>9 o(|Vus|)de > /D(uo_ —n)h(n)dx + /Dg(n) dx —C0 — f(0).
(3.5.4)

We now combine two estimates (3.5.2) and (3.5.4) to derive

. "(IVnl)
hrnlnf/ Vut dxz/LV -Vu? da:—/ (' (|Vn])) dz
minf | o(IVuZ)) il P (@' (V)

D

+ [ @ —nntnas+ [ gt a

In particular, by setting n = u® (since the test functions are dense in

Wy #(D)), we conclude (applying Lemma 3.5.2)

limiglf/go(Wua_Ddxz/¢(|Vu9|)dx+/g(u9)dx,
E— D D

D

which finishes the proof.
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Chapter 4

Random Homogenization of
Fully Nonlinear Elliptic
Equations with Highly
Oscillating Obstacles

4.1 Introduction

This chapter is devoted to the random homogenization of fully nonlinear
equations with highly oscillating random obstacles, via a viscosity method.
To state our main theorem, let (€2, F,P) be a given probability space. For
every w €  and every £ > 0, we consider a domain D.(w) obtained by
perforating holes from an open, bounded domain D of R". We denote by
T-(w), the set of holes (i.e. D.(w) = D\ T.(w)) and impose two assumptions
on T.(w), namely Assumption 4.2.1 and Assumption 4.2.2, which will be
stated later. Moreover, let us consider a special smooth function ¢(z) in D
such that ¢ < 0 on 0D and ¢ > 0 in some region of D. Then we are going to

consider highly oscillating obstacles ¢.(x) which are zero in D.(w) and ¢(x)
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on holes T..(w), i.e.

o(x) ifz e T (w),
905(-77> = .
0 otherwise.

Now we consider the standard obstacle problem asking the least viscosity

supersolution of Laplacian operator above the given oscillating obstacle:

Au. <0 in D,
us(x) =0 on 0D, (Le)
us(x) > @ (x) in D.

The concept of viscosity solution and its regularity can be found in [14]. Then

our main theorem concerning the Laplacian operator is the following:
Theorem 4.1.1. Let u. be the least viscosity supersolution of (Le).

(i) There is a continuous function u such that u. — w in D with respect
to LP-norm, for p > 0, and for any 0 > 0, there is a subset Ds C D
and €y such that for 0 < € < €g, u. — u uniformly in Ds as e — 0 and
|D\ Ds| < 0.

(ii) There exists a critical value Sy > 0 such that u is a viscosity solution

of

{ Au+ Bolp —u)y =0 in D, @)
u=">0 on 0D.

Here the critical value 5, can be interpreted as a capacity-like quantity;
see [12] for details. Moreover, a viscosity method for the Laplacian case can
be extended to a general class of fully nonlinear operators. More precisely, we
will consider a fully nonlinear operator F', which satisfies two assumptions
(F1) and (F2) stated in Chapter 2. Then we will deal with the fully nonlinear
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version of equation (L.): find the least viscosity supersolution u. such that

F(D?uc(z)) <0 in D,
u. =0 on 0D, (F.)
ue(x) > @ () in D.

Then our main theorem concerning the fully nonlinear operator is the fol-

lowing:
Theorem 4.1.2. Let u. be the least viscosity supersolution of (F%).

(i) There is a continuous function u such that u. — w in D with respect
to LP-norm, for p > 0, and for any 6 > 0, there is a subset Ds C D
and g such that for 0 < e < &g, u. — u uniformly in Ds as € — 0 and
|D\ Ds| < 0.

(ii) There exists a fully nonlinear, uniformly elliptic operator F such that

u is a viscosity solution of

F(D?u, (p—u)y) =0 in D, _
()

u=20 on OD.
We summarize the main steps of this chapter and explain related key

features briefly.

(i) (The critical value ) In the stationary ergodic environment, the deter-
mination of the critical value [y is performed by an application of the
subadditive ergodic theorem. For this purpose, we define a proper con-
tact set (often with zero obstacle) of some auxiliary functions so that the
measure of a contact set has a subadditive property. For the equations
with divergence structure [15, 57, 77|, this process has been done by
considering the Dirac-delta distribution dy. Unfortunately, the inherent
lack of divergence structure (i.e. integration by parts) prevents us from

employing similar techniques. To overcome this obstruction, our idea
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is to approximate the homogeneous solution in the sense of “shape”,

which enables us to define auxiliary functions without the notion of dy.

We now denote two auxiliary functions, namely, free solutions wg , 4 and
obstacle solutions vg, 4 (see Section 4.4 for precise definitions). To find
the critical value 8y, we further have to check the convergence of these
functions when ¢ — 0. Unlike the linear case, there is no monotone
property for the fully nonlinear case; however, such difficulty could be
overcome by the isolated singularity theorem, Theorem 4.4.11. In short,
this theorem guarantees that a singular solution must behave like the
corresponding homogeneous solution, near an isolated singularity. With
the help of Theorem 4.4.11 and Arzela-Ascoli theorem, we derive the

existence and uniqueness of such limit function.

(Properties of a corrector w®) After determining the critical value fy,
we define a corrector w® (see Section 4.5 for precise definitions). Here we

require two properties for w® to finish the proof of our main theorem:

(P1) lim._,ow® = 0 away from each hole;

(P2) w® =1 (or w® = 1, see Section 4.5) on the boundary of each hole.

Note that (P2) is trivial by the definition of w®. Our strategy is to check
these properties for the auxiliary functions wj 4 := lim.,owj, 4, and
v5 4 = lime 005, 4 first, and then transport the convergence prop-
erty (P1) to the corrector w® via the comparison principle. Indeed, we
show that the auxiliary functions satisfy (P1) and (P2) by studying the
theory for obstacle problems and singular solutions, together with the
criticality of By. More precisely, we discover the “spreading effect” of
obstacle solutions using the quadratic growth of obstacle problems and
construct appropriate barriers using the behavior of (approximated) ho-
mogeneous solutions. Again, although the linear case is fairly straight-
forward, an additional challenge occurs for the fully nonlinear case; the
Alexandrov-Backelman-Pucci estimate (for viscosity solutions) and the

stability of coincidence sets (for obstacle problems) will help us.
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This chapter is organized as follows. In Section 4.2, we investigate the
behavior of u. away from holes, and as a consequence, we derive the con-
vergence of u. to the homogenized solution u. Section 4.3 is devoted to the
explanation of a homogeneous solution and its C!-approximation in the
sense of “shape”. In Section 4.4, we define free solutions wg, 4 and obstacle
solutions vg 4, and prove the convergence of these auxiliary functions when
o — 0. Then we conclude that the critical value [y is well-defined by the sub-
additive ergodic theorem. In Section 4.5, we justify two properties of ws . 4,
and transport the information to the corrector w®, which enables us to finish
the proof for our main theorem. Note that to clarify the difficulties coming
from nonlinearity, we deal with the Laplacian case and the fully nonlinear

case in consecutive order within each section.

4.2 Estimates and Convergence

Let us make precise assumptions on the holes

TE(w) = (UkEZnBCLS(T(k,w))<€k)) ﬂ D7

where the size of hole is determined randomly, but the center of hole is

periodically distributed.

Assumption 4.2.1. For all k € Z" and a.e. w € (, there exists v(k,w)
(independent of €) such that

a*(r(k,w))™ =" y(k,w),

a*42
a*

where o denotes the scaling exponent of F' and a®(r) = re *. Moreover,

we assume that there exists a constant 7y > 0 :

v(k,w) <7 forall k € Z" and a.e. w € €.
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Assumption 4.2.2. The process v : Z™ x Q +— [0, 00) is stationary ergodic.
Recall Assumption 3.3.2.

Remark 4.2.3. In this chapter, we will concentrate on the non-trivial case
with critical hole size a® ~ £%5%* so that the limit solution satisfies an effective
equation without obstacles. In fact, the behavior of limit solution u can be
different (but trivial) if the radius of holes a® is not critical. See [12] for

details.

We now derive the estimate for the oscillation of u. on 0B, (k) where
b. is chosen to have an intermediate growth rate between £ and a®. We first

consider the Laplacian case.

Lemma 4.2.4. Set b.(k,w) = (ca°(k,w))"/? where a°(k,w) ~ en-2 is the

critical rate. Then

osc u. = o(g”
OBy (k) (")

for k € eZ" N suppp and for some 0 < v < 1.
Proof. See [12, Lemma 3.4] or [48, Lemma 2.9] for proof. O

Next, we control the behavior of u. in D \ (Ugezn By, (k)) by constructing
appropriate barrier functions h¥ and applying the comparison principle with
ue. This kind of idea was also employed in [36], which do not require the size
of perforating holes to be identical. Note that in the periodic setting, similar
results follows from the discrete gradient estimate [12, 48]; if we define

us(x + €e;) — u.(x)

Ague = for unit vector e; € R",
€

then there exists a uniform constant C' > 0 such that

1Au.| < C. (4.2.1)
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Lemma 4.2.5. Fore € (0,1), let hE be the solutions of the Dirichlet problem

AhF =0 in D\ (Urez» By, (k)),

hE=0 on 0D,

hi(z) = supyp, () Ue

hZ(x) = infop, xyu. for x € OBy (k) where k € Z".

Then h* have the following properties:
(i) 0< hZ <u.<ht.

(ii) hE € C**; in particular, we have
[hZ(x) — hZ (y)| < Cle —y|*,

for any a € (0,1) and any x,y € D \ (Ugezn By, (k)).
(i4i) hf — hZ < maxpezn 05CoB,_ (k) Ue-

Proof. (i) Tt follows directly from the construction of A= and the compar-

ison principle with ..

11) Since the boundary data tor are clearly in or any o € (0,1), the
ii) Si hbddfhgE learly in C'* fi 0,1), th

desired result follows from the boundary C*“-estimate; for example, see

[30].

(iii) The maximum principle for At — h_ yields the inequality.

[]

We also need the following version of Arzela-Ascoli theorem, whose proof
is a simple modification of the original one. In short, the equicontinuous
assumption in Arzela-Ascoli theorem can be relaxed to “almost equicontinu-

: WM

1ty”.

Lemma 4.2.6 (Arzela-Ascoli theorem). Let A be a compact subset of R™.
Suppose that a sequence of functions { fi}ien defined on A satisfies
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(i) (Uniformly bounded) There ezists a constant M > 0 such that
[filz)] < M,

foranyl e N and x € A.

(ii) (Almost equicontinuous) There exists a constant o € (0,1), C' > 0 and
a function g : N — Rsq such that lim;_, g(I) =0 and

|fi(z) = fily)] < Clz —y|* + g(1),

for any x,y € A.

Then there exists a subsequence {fi, }ren which converges uniformly on A.

Moreover, if we denote the limit function by f, then f € C*(A).

Theorem 4.2.7 (Uniform convergence). There is a continuous function u
such that u. — u weakly in D with respect to LP-norm for any p > 0. Also for
any 6 > 0, there is a subset Ds C D and a sequence {g;}1en such that g, > 0,

limy 00 €, = 0 and u., — u uniformly in Ds as | — oo and |D \ Ds| < 6.

Proof. See [12] and [48] for detailed proof. Here the only difference occurs
when applying the discrete gradient estimate in the references. More pre-
cisely, the absence of periodicity in stationary ergodic setting prevents us from
achieving the discrete gradient estimate (4.2.1). Nevertheless, Lemma 4.2.4

and Lemma 4.2.5 provides the “almost equicontinuity” of u., i.e.

’us(x) - uz—:(y>| = u€<£L’) - U5<y) < h;r(a:) - h;(y)
< hd(x) = hi(y) +hi(y) — ho (y)

< Clz —y|* + max osc u.
k€Zn OB, (k)

< Cle —y|* +o(e”),

for any z,y € D\ (Ugezn By, (k)) where we assumed u.(z) > u.(y) without

loss of generality. Then we can apply the modified Arzela-Ascoli theorem,
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Lemma 4.2.6, for u. and finish the proof following the previous references. []

Remark 4.2.8. Note that the argument for the Laplacian operator in this
section can be repeated for the uniformly elliptic, fully nonlinear operator
F. Indeed, we only used the comparison principle, boundary C'“-estimate,
Harnack inequality, and oscillation lemma which still hold for F'; for example,
see [18] and [14].

In conclusion, we presented the proof for the first part of Theorem 4.1.1
and Theorem 4.1.2, which concerns the convergence of u, to the limit function
u. In the remaining of this chapter, we will concentrate on the second part of
our main theorems by constructing a proper corrector and investigating its

properties.

4.3 The Approximation of a Homogeneous

Solution

To determine the critical value 3y, the essential step is to define the cor-
responding subadditive quantity since the size of hole is not identical, but
random. In the papers [15] (for Laplacian case), [77] (for p-Laplacian case)
and [57] (for p-Laplacian case), they described the subadditive quantity in
terms of Dirac-delta distribution dy and proved the properties of correctors
using an energy method. However, this approach is not suitable for our case,
because the operators that we consider do not have the divergence structure.
Hence, we concentrate on the non-divergence structure of F'; in particular,
we will capture its “shape” and employ a viscosity method to verify the

properties of correctors.

4.3.1 A Homogeneous Solution

The starting point is a homogeneous solution for F', a uniformly elliptic

fully nonlinear operator being homogeneous of degree one. We recall that
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Lemma 2.1.1 explains the existence, uniqueness, and behaviors of a homoge-

neous solution for F.

Remark 4.3.1. (i) Throughout this chapter, we denote a homogeneous
solution by ®, instead of V' in Chapter 2.

(ii) In the remaining of this chapter, we concentrate on the case a* > 0
(which corresponds to n > 3 in the Laplacian case) to simplify the
statement. Indeed, the same argument can be applied to a* = 0 (which
corresponds to n = 2 in the Laplacian case) and o* < 0 (which corre-

sponds to n = 1 in the Laplacian case).

(iii) Since F' is positively homogeneous of degree one, we have a® + b is
again a homogeneous solution for a > 0, b € R and a homogeneous
solution ®. In the remaining of this chapter, we fix the ‘normalized’

homogeneous solution ¢ by

T

|z]

where ¢ is chosen so that mingegn-1 ¢(f) = 1. Note that here we nor-

®(z) = o] P (ﬁ) =[] $(6), forf="—e 5"
T

malize a homogeneous solution in the sense of the ‘height’ (at |z| = 1)
while in the Laplacian case, we typically normalize in the sense of ‘mass’

(i.e. measure): —A® = J.

4.3.2 Approximation of a Homogeneous Solution

In divergence case, it is natural to approximate the Dirac-delta measure 4y

by measurable functions {f,}. More precisely, we define

1
folz) = @XBJ(JU);

for any o > 0 and let a regularized homogeneous solution ®, by the solution

of T®, = f, in R™, where T is a uniformly elliptic operator with divergence
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structure. Then ®, — ® in L'(R") and f, — Jy in distribution sense as
o— 0F.

In non-divergence case, we do not have the corresponding measure such
as the Dirac-delta dy. In other words, it is difficult to define F'(D?*®) in the
whole space R™, while we know that F(D?®) = 0 in R" \ {0}; see [51].
Thus, instead of measure-sense, we focus on the ‘shape’ of ®; we define an

approximated homogeneous solution @, for ¢ > 0 by

b — ® inR"\ By,
7 W, in B,

where ® is the normalized homogeneous solution and W,, @, will be deter-
mined later. (note that a radius @, must converge to zero when o — 0.) Then

we define a corresponding function v, by
Ve := —F(D*®,) in R".

Since @, = ® in B and ® is a homogeneous solution, we immediately have

that v, =0 in B and so supp v, C Bg,.

Laplacian case

Continuing to the argument above, we can define a radius @, and an ap-
proximated homogeneous solution W,. Note that for the Laplacian case, we
have a* = n — 2 and so the normalized homogeneous solution is given by
®(z) = |z|>~". On the other hand, we see that the radius of hole a° is as-
sumed to comparable to €/ (=2 Since the corrector w® will be constructed
so that w® ~ 1 near 07 (see Section 4.5), we require the homogeneous solu-

2 near |z| = @ = a/e. Here we need to distinguish the scale

tion ®(z) ~ e~
¢ and the scale 1.

Therefore, we let a, := o2 and determine a quadratic polynomial W,
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which is rotationally symmetric and satisifes
W,(xz) = ®(x) and VW,(z) =V(x),

if |x| = @,. Indeed, for o > 0, we set

ooty o [ 0 = 2P ol >3,
o(T) =
Wy(z) = —my|z]* + ko |2| < @y,

—2n

where m, = ">2072 and k, = 2o~ 2. Then &, € C*'(R") and it follows

2
that

Ad,(x) = —v,(2) = { 0 2| > @,

—2nm, |z| < a,.

On the other hand, by its construction, we immediately have that
P, P aso— 0,

locally uniformly on R” \ {0}. Moreover, for 0 < o1 < 09,
b, =b,, in Bg@,

and
o, > d,, inR".

Note that this approximation is related to the Dirac-delta measure:

—Vy — —n(n —2)w,dy as o — 0,
in distribution sense, i.e.

~ [ veladnta)de = =nn = 2)n(0) s o0,

ao
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for any n € C°(R™).

Fully nonlinear case

a*+2
a*

In this case, the radius of hole a® is comparable to € ®Since the normalized

homogeneous solution is given by

®(z) =~ ¢(0),

in spherical coordinates, we let @, = oa*. Moreover, we consider a (strict)

superlevel set of ®:
Co i={x=(r,0) cR": v~ ¢(0) >a,* }.

Note that we have Cz, = Bg, as before, if we let ¢(0) = 1,i.e. F is rotationally

symmetric. Then for o > 0, we set

ooty | B0 = 00) recs,
T Wy(z) = —me(r* ¢(0) 1) +k, x€Cy,,

where s (which is independent of ¢ > 0), m, and k, will be determined.

(i) (®, € C"') We only need to check this property on 9Cy, . In fact, for
(r,8) € 0C5,, we have

d(r,0) =a,™, Wy(r,0) = —m,as * + k,,

*

87"(1)(7“a 0) = _a?a;a*’ arWa(ra 0) =

meya’™s

*
=S
aO’

)

r

and

VGCD(T, 0) = T_a* Vqu,
VQWU(T, 9) = mgsra*sd)(e)—s—lve(b _ mgST_a*aa*(s+1)v0¢.

o
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Therefore, we conclude W, € C'! provided that

1 1
my = —o 26t and &, = (1 + —) o2,
s s
for some constant s > 0.
(i) (F(D*W,) =: —v, < 0) To verify this property, it is enough to show

that there exists a sufficiently large s such that
P~ (—D*W,) > 0.

For this purpose, we claim that for sufficiently large s = s(\, A, f) > 0,

we have
P~ (D*w) > 0,

where w(r, 0) := r*f(0) for a positive function f € C?*(S"1). Indeed,

one can calculate the Hessian of w as follows:
Hess(w) ~ (a;;(s, 9))7"572,

where

0 (5.0) = { s(s = 1)f(0) i (5,) = (1,1),

o(s?)g;;(0)  otherwise,

for g;; € C(S"1),1 <4,j < n. See appendix in [67] for the computation
of the Hessian matrix in spherical coordinates. In short, we have the
dominant s?-order only in (1, 1)-component of Hess(w), since the power
of s is added if and only if we take a radial derivative with respect to

w.

Moreover, since det(t/ — A) = (t — A (A)) - -+ (t — A (A)) and the deter-

minant function is smooth, one can easily check that the eigenvalues of
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Hess(w) is given by
(s2£(0) + o(s*)by(0), 0(5*)by(8), ..., 0(5%)bn(0)) - 7572,

for some functions b; € C(S™'). Hence, for sufficiently large s =
s(A A, f) > 0, we have

P~ (D*w) > [As*f(0) — Ab(0)o(s*)] - 7572 > 0,

as claimed.

After choosing s, m, and k, in this way, we immediately have that
P, - P aso— 0,

locally uniformly on R"\ {0}. Moreover, we have ®,, = &, in (g, and

b, > &,, in R” whenever 0 < 07 < 05.

4.4 'The Convergence of Free Solutions and

Obstacle Solutions

To apply the subadditive ergodic theorem (see [16, 21]) and determine the
critical value 3y, we first consider an obstacle problem and its solution as an
auxiliary function for a corrector w®. In view of [15, 57, 77], the forcing term of
an obstacle problem was presented by the Dirac-delta measure. In contrast
to those operators of divergence form, we cannot exploit this energy-type
method in fully nonlinear operator of non-divergence form. Instead, to cap-
ture the behavior of a corrector w®, we are going to adopt the approximation
of a homogeneous solution which was obtained in the previous section. More-
over, to connect the properties between an obstacle solution and a corrector,
we need one more auxiliary function, namely a “free” solution.

While the argument concerning these auxiliary functions is relatively

straightforward in the Laplacian case, there arises several challenges in the
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fully nonlinear case. Hence, we will first investigate nice properties of obsta-
cle solutions and free solutions in the Laplacian case, and then justify the

validity of those properties in the fully nonlinear case.

4.4.1 Laplacian Operator

We start with the definition of obstacle solutions and free solutions in the

Laplacian operator:
Definition 4.4.1. Let A be an open and bounded subset of R™.
(i) For $ € R, we define an “obstacle” solution

Vg o a(T,w) = inf {v(w) cAv < G — Z v(k,w)v,(x — k) in A,

kezrnA
UEOinA,v:OonaA}.
and its rescaled function 75, (y, w) == €*vg 5.14(y /e, w).

(ii) For g € R, we define a “free” solution

Wg o a(T,w) = inf {w(x) Aw < [ — Z v(k,w)v,(x — k) in A,

keZrNA
w =0 on 8A}.
and its rescaled function W5, (y,w) == e*wg 514 (y /e, w).

Lemma 4.4.2 (Multiple sources; A.). Let 0 < 01 < 09 < 1. For a non-

negative function v : Z" — R, we consider the solutions w;, defined by

Awl(aj) - ZkeZ” V(k)yai (:C - k) in A>
w;i(r) =0 on OA.

Then we have wy > wy in A.

Proof. First, we let w;(x) = >, ym V(k)®s,(x — k). Then we have Aw;(z) =
— > kezn VK)Vs, (x — k), and wy > w, in A by (4.3.2). Recalling (4.3.1), we
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also have that w; = wy on 0A. Thus, if we let g be the solution of the

Dirichlet problem

Ag=0 in A,
g = —wi(= —ws) on JA,

then we conclude w; = w; + g, which completes the proof. O

Lemma 4.4.3 (Additional source; A.). Suppose that a function w; defined
by the Dirichlet problem

w; =0 on 0A,

satisfy wy > we in A. Moreover, for a constant B > 0, we define a function

wg,i by

Awm = fz + /B m A,
wg; =0 on OA.

Then we have wg1 > wgs in A.

Proof. Let gz be the solution of the Dirichlet problem

Agg = in A,
gs=0 on JA.

Then the result follows immediately from wg; = w; + gs. O

Remark 4.4.4 (Existence of limit free solutions; A.). For 0 < 01 < 09 < 1,
applying Lemma 4.4.2, Lemma 4.4.3 and their proofs, we have

Wa,o1,A > Wga,09,A in A, (441)
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and furthermore,

w57017A(£U) = ’LU@ULA(Q?) if z € Ugezn (Bag2 (k))c . (442)

In particular, (4.4.1), the monotonicity of {wg , 4 }s>0 yields the convergence

of free solutions wg, 4 when o — 07. We denote the limit function by ws 4.

Lemma 4.4.5 (Obstacle solution; A.). Let 0 < 0y < 09 < 1. For a constant
B > 0 and a non-negative function v : Z" — Rsq, we define (an obstacle

solution) vg; by

vg () := inf {v(x) Av < B — Z v(k)v,, (x — k) in A,
kezZ"nA (4‘4‘3)
v>0inA v=0 onﬁA}.

Then we have vy > vgo in A.

Proof. We have the equivalent definition of an obstacle problem (4.4.3):

Avg; <B— > (ko (w—k), v5; >0 inAand

kEZPNA
Avgi=B— > (ko (x—k) ifvg; > 0.
keZrNA
Moreover, for sufficiently small o; > 0 and k € Z" with (k) # 0, we have
B —~(k)v,,(x — k) < 0 for |z — k| < @,,. Since f — v(k)v,,(x — k) < 0 in
Bg, (k) for any k € Z™ N A with (k) # 0, we have

ao,;

Vg > 0 in UkEZ”ﬂABEUZ- (/{?) (444)

Now, if we let ¥(x) := v32(2) + D tcznna V(E)(Po, (. — k) — Py, (2 — k), then
by (4.3.2), we have ¥ > vgo in A. Thus, the proof will be completed if we

prove vg; = v. Indeed, v > 0 in A. We split two cases:

(i) (v(x) = 0) By the definition of v, for each k € Z", we have either
v(k) =0or &, (r—k) = ®,,(z—k). In the latter case, the construction
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of ®, yields |x — k| > @,, > @,, and so v,,(x — k) = 0. Thus, in both

cases, we have v(k)v,,(z — k) = 0 and so

0=Av(x)<B— Y ko (r—k) =7

keZ™"NA

(ii) (v(x) > 0) By the definition of v, we have either vgo(z) > 0 or |z —k| <
@y, for some k € Z™ with (k) # 0. Recalling (4.4.4), in both cases, we
have vgo(x) > 0 which yields that

Avga(a) == Y A(k)ve(r k).

keZ™"NA

Therefore, we conclude that

A”lj(l‘) =A (UB,Q(:E) + Z /y(k:)(q)m (ZE - k) - (I)Uz(x - k)))

keZ"NA
=0 — Z V(K)o (x — k).

keZ™NA

]

Remark 4.4.6 (Existence of limit obstacle solutions; A.). We know that
the assumption in Lemma 4.4.5 holds by Lemma 4.4.2 and Lemma 4.4.3, i.e.
we have (4.4.1) and further (4.4.2). Thus, by applying Lemma 4.4.5 and its

proof, we conclude that
Vo1, A > Vgoya DA, (4.4.5)
and furthermore,
V8,01,A(T) = Vg oy, a(7)  if 2 € Upezn(Ba,, (k). (4.4.6)

In particular, (4.4.5), the monotonicity of {vg s 4}s>0 yields the convergence

of obstacle solutions vg, 4 when o — 0%,
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We now define the measure of contact set for an obstacle problem and

determine the critical value fy. Indeed, we define a random variable mg 4 by
mpa:=|{r € A:vga=0}.

Lemma 4.4.7 (A subadditive quantity). (i) The random variable mg 4 is
subadditive: in other words, for the finite family of sets (A;)ier such that

A; C A foralliel,
AiNA; =@ foralli# j,
|A = Uier Ai| =0,
then mg.a <) iermp.a,-
(ii) The process Tymp 4 == Mg+ has the same distribution for all k € Z™.

Proof. (i) Since vg 4 is admissible for vg 4, for each i, we have
Vg, A; < Vg, A in Al

Thus, we have the desired result.

(ii) It follows immediately from our assumptions on v(k,w).
[

Due to the previous lemma, we can apply a subadditive ergodic theorem

(see [16, 21]). More precisely, we have

and a scaled version:

_ o Ry vy, w) = 03
=i

a.s.,

where 75(y, w) = e*vg.15(y/e, w).
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Lemma 4.4.8 (Properties of I[(8)). (i) I(B) is non-decreasing function with

respect to 3.

(i) If B <0, then I(B) = 0.

(iii) If B > 0 is large enough, then I(5) > 0.

Proof. (i) For 1 < [, we have vg, 4 < vg, 4 which implies that mg, 4 <

(i)

(iii)

mpy,A-

Since vg 4, is a solution of an obstacle problem, we have

AU@th < B - Z V(kaw)yﬂ(lﬁw) < Ba

keZ™"NA

in B;. Thus, by the comparison principle,
B2 o
Vgga > —(lx|"—1t7) >0
poa 2 5 (|27 = 1)

in B;. Letting ¢ — 0, we have vg 4 > 0 in A which implies that [(5) = 0
for 5 < 0.

For k € Z", we define
_5 2
hi(x) = %VU — k" +y(k,w)®o(z — k).

Then we have hy € CY' and Ahy = 8 — y(k,w)v,(z — k). Moreover,
a direct calculation yields that a rotationally symmetric function hy

attains its minimum at

o — k| =y = (n(n— 25)7(%@)1/".

Since y(k,w) < 7, we can choose > 0 large enough so that r, < 1/2

for any k € Z". Moreover, we can choose a constant Dy so that the
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minimum of hy(z) — Dy, is exactly 0. Now if we define

~ hi(xz) — Dy, if |z| < 7,
hy(z) = .
0 if || > ry,

then Ek is well-defined and it belongs to C'*'. Moreover, since A%k =[—
Y(k,w)ve(x—k)in By, Y pcmmmn hy is admissible for Vg o5 Therefore,

we conclude that

Nz etB g =0} _ |Ci] — By W
ly =1 = >1——>0,
=l B ST Cle
which ensures that [(5) > 0 for large enough £.
[

Finally, we let the (non-negative) critical value

Bo := sup{f : 1(B) = 0},

which is well-defined by the previous lemma.

4.4.2 Fully Nonlinear Operator

Definition 4.4.9. (i) For M € 8" and § € R, we define an “obstacle”

solution

Ug,0,4:m (T, w) := inf {U(x) cv>0in A, v=0o0n JA,

F(M +D(@)) < B+ F(M) = Y y(k,w)vy(e — k) in A},

keZ™NA

and its rescaled function 75 .y, (y,w) := €*vg5.c-14.0 (¥ /2, W).
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(ii)) For M € 8™ and B € R, we define a “free” solution

Wa,o, A0 (T, w) = inf {w(x) cw =0 on JA,

F(M + D*w(x)) < B+ F(M) — Y y(k,w)vy(z — k) in A}.

kezZnnA
and its rescaled function W5 .y, (y,w) = €*wg g 1400 (y/€, w).

Before showing the convergence of these functions when o — 07, we first
describe the local behavior of a singular solution with an isolated singularity
at some point xy. Roughly speaking, we will demonstrate that the growth
rate of a singular solution near the singularity point is the same as the growth
rate of the corresponding homogeneous solution ®. This type of result was
first proved by M. Bocher [9] for the Laplacian operator in 1903. Similar
results can be found in [75, 76] for quasilinear divergence-type equations, [51]
for Pucci operators, [12, 4] for fully nonlinear operators with homogeneous
degree one and [34, 33| for a class of subequations. Note that they considered
the local behavior of solutions for equations with zero-forcing term; in the
following lemmas, we present generalized results by choosing a general forcing

term.

Lemma 4.4.10. Let u € C(B; \ {0}) be a viscosity solution of
F(D*) = g(z) in By \ {0},

where g € L*(By), u is bounded on 0B, and limz 0 u(x) = co. Then there

exist positive constants ag and Cy such that

1
ao®(z) — Cy < ufx) < a—@(a:) + Co.
0

Proof. We may assume u is positive in By \ {0} by adding a constant on u,

if necessary. To show the lower bound, suppose that there exist sequences
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a; — 0, e; — 0 and x; € By \ {0} such that
u(z;) < a;®(z;) for |x;| =& (4.4.7)

Note that from [14], we have the Harnack inequality

sup u < C ( inf w4+ ||g||Ln(Bl)) :
8B, /s 9B1/3

Recalling that F' is positively homogeneous of degree one and considering the

scaled function u,(z) := u(rz) for small r > 0, we deduce that

sup u < C < inf u—l—ngHLn(Bl)) : (4.4.8)
aBr/? 8BT/Q

Thus, (4.4.7), (4.4.8) and the homogeneity of ® imply that

u(@) < Clu(e:) + eillglonm) < Clai®(w:) +eillgl )
< Ca;®(x) + Ceill gl 1n By

for |z| = ;. Since F(D?*(® —c|z|*)) = F(D?*® —2cl) < F(D?*®) —2cA < g(x)
for sufficiently large ¢ > 0, the comparison principle yields that

w(z) < Ca;®(x) + ¢ — co|z|? forg; < |z] < 1.

for some ¢y, co > 0. Letting ¢ — oo, we have u is bounded above in B; \ {0}
which contradicts to the assumption limy, o u(z) = cc. Therefore, we obtain

the lower bound and from the similar argument, we finish the proof. O

Theorem 4.4.11 (An isolated singularity). Let u € C(B1\{0}) be a solution
of

F(D*u) = g(x) in By \ {0},
where g € L>(By), u is bounded on 0By and lim,_,o u(x) = co. Then there
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erists a positive constant a such that

(@)
ilgcl) d(z)

(4.4.9)

Proof. Set u.(x) := £* u(ex). Then the homogeneity of the homogeneous

solution ® gives

u(er) e uler) U (x)

Plex) e P(ex) P(w)

For a compact set K C R™\ {0}, an application of Lemma 4.4.10 leads to

ue(x) u(ex) < 1
su = su —
xellg (D(ZB) :L‘EEII)( (b(€$) o Qg

+Cla

for some constant C'; > 0 which is independent of € > 0. Employing a similar

argument for the lower bound, we conclude that

S ftelle e < Crc
Since F(D*u.(x)) = e *2g(ex) holds for any z € B;\ {0}, we also obtain the
uniform Holder estimates for the sequence {u.}.~o in K. Therefore, Arzela-
Ascoli theorem implies that there exist a subsequence €; — 0 and a function
v € C(R"\ {0}) such that ., — v locally uniformly in R™ \ {0}. Then for
any x € R™\ {0}, the homogeneity of ® yields

where

e cu(e)
a = liminf inf —=, @ := limsup su .
- e—=0 |z|=¢ CID(x) e—0 P m:pe (I)(ﬁ)

Here a,a € (0, 00) by Lemma 4.4.10. Moreover, since @i, — v and ¢* *2g(ex) —

0 uniformly on every compact subset K, we have F(D?v) = 0 in R™\ {0}.

135



CHAPTER 4. RANDOM HOMOGENIZATION OF FULLY
NONLINEAR ELLIPTIC EQUATIONS

Finally, choose z. € 0B; so that u(z.) = inf|;—. %@(za). Then there exist

a (further) subsequence ¢; — 0 and y € 9B, such that % — y. Since

v(y) = jli_)r& U, (e xe,) = jlj_)rgo e u(.,)

- (5 () o0

we conclude that v = a® in R™ \ {0} by the strong maximum principle.

Hence, we have

ey 1) W) o)
1M SUup ——— = 111 Sup max = _ =
oo B(z) S0P B, B(x) | ecod d(z)

which implies the desired result

' u<x)—a':a:6
:lclg(l)q)(x)_ (=a=3a)

Free solutions

For notational simplicity, we write a free solution

Wo (T, w) = Wg o a.0m(T,w),

where > 0,A CR", M € 8" are fixed and ¢ > 0. Moreover, we denote

2y 1= Z v(k,w)P,(z — k).

keZ"NA

For 0 < 0y < 09 < 1, we have z,, () = 2,,(z) whenever |z — k| > @,, (k) for
any k € Z".
We will estimate F(M + D?z,): we may expect

F(M + D?z,) ~ F(M) — Z v(k,w)vy(x — k)

keZ™NA
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in A, by heuristic computation. Indeed, recall that F' is positively homoge-
neous of degree one, F(D?*®,) = —v, by the construction of approximated
homogeneous solution ®, and ®,(x — k) is “flat” away from k € Z" (i.e.
D*®,(x — k) ~ 0, away from k € Z".) We prove this observation rigorously

in the following lemma:

Lemma 4.4.12. (i) There exists a constant C' > 0 which is independent
of o > 0 such that

<C. (4.4.10)

F(M + D*z,(x)) — (- >k w)ve(z — k:))

keZ™NA

(ii) There exists a constant C > 0 which is independent of o > 0 such that

|F'(M + D?*2,) — F(M + D*w,)| < C.

(i1i) There exists a constant C' > 0 which is independent of o > 0 such that

HZU — U)JHLoo(A) S C. (4411)

(iv) There exists a subsequence {w,, }oo_; and a limit function w € C(A \
Ukezn{k}) such that w,, — w when o — 0% uniformly on every com-
pact subset of A\ Ugezn{k}.

Proof. (i) Since F' is uniformly elliptic and positively homogeneous of de-

gree one, we have

F(M + D*z,) < —y(ko)vy(z — k) + P (M)
+ 3 y(k)yPT(D*®(x — k)

kko

where v — ko| < 1/3 for ky € Z™ N A. Since there exists a pos-
itive constant 7 > 0 such that (k) < 7, there exists a constant
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C =C(F,A, M,7) such that

M)+ A (k)PHD*®(z — k) < C,

kko

where |z — ko| < 1/3 for ko € Z™ N A. Similarly, we also have

F(M + D’z,) < PHM) + Y y(k)PT(D*®(x - k)) < C,

keZm

where |z—Fk| > 1/3 for any k € Z"NA. We can apply the same argument
for finding the lower bound of F(M + D?z,) and thus, we conclude the
desired result (4.4.10).

It follows directly from the part (i) and the definition of w,.

We may assume zop = 0 € A and A C By(x¢) for some [ > 0. Note that

T 2 _ 72
5 Mz C(|z|* —1?) 9 C’
>
F(D <z0+ 5+ 5 F(M+ D?z,) + P~ n}\

= F(M + D*2,) + C
> F(M + D*w,)

1
=F <D2 (wa + §xTMa:)) .

Moreover, by the construction of ®,, z,, = 2,, on 0A for any o1, g9 > 0.
Thus, there exists a constant C' independent of ¢ such that |z,| < C on

O0A. Therefore, the comparison principle leads to

1
-C+ xTMx—i-%(] |2—l2)§w0+§xTMJ:,

which implies that z, — w, < C. From the same argument, we derive
(4.4.11).

Let K be a compact subset of A\Uygezn{k}. Again by the construction of
d,, we have 2,(x) = Y, cpn 7(k)®(2 — k) in K for any sufficiently small
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o > 0. In other words, the function z, in K is independent of o > 0 (if
it is sufficiently small). Due to part (iii), we have a uniform L*°-bound
for wy: ||w, || (k) < C, and F(D*w,) = § in K. Hence, application of
Arzela-Ascoli theorem together with the interior C'“-estimate and stan-
dard diagonal process ensures the existence of a convergent subsequence
and corresponding limit function.

]

Theorem 4.4.13 (Convergence of free solutions). There exists a unique limit
function w € C(A \ Ugezn{k}) such that w, — w when o — 07 uniformly

on every compact subset of A\ Ugezn{k}. Moreover, w satisfies

F(M + D*w) =3+ F(M) in A\ Upezn{k},
w =0, on 0A,

and

. )
glcl—r>rllc d(x—k) vk, w),

forany k € Z" N A.
Proof. According to Lemma 4.4.12 (iv), there exists a limit function w €
C'(A\ Ugezn{k}) such that w,,, — w when m — oo uniformly on every com-

pact subset of A\ Ugezn{k}. Recalling Proposition 2.9. in [14] (the stability

of viscosity solutions), we deduce that w is a viscosity solution of

F(M + D*w) =3+ F(M) in A\ Ugezn{k},
w =0, on 0A.

Moreover, since z,(k) — oo when ¢ — 07 for k € Z" N A with y(k) > 0,
Lemma 4.4.12 (iii) yields that w has an isolated singularity at eath k € Z"NA
whenever v(k) > 0. Thus, applying Theorem 4.4.11 for an isolated singularity
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ke Z"N A, we have

lim w(z)

= 4.4.12
ok Oz — k) ( )

for some positive constant a > 0.
Now we claim that a = (k). Indeed, for £ > 0, there exists § > 0 such
that

O<|z—kl<d = (a—e)®(x—k) <w(r)<(a+e)P(x—k),

by (4.4.12). Let {w,,, }5°_; be a subsequence such that w,, — w uniformly
on every compact subset of A\ Upezn{k}. Then for any m € N large enough,

we have
lw(z) — W, (¥)] <1, |we,, () = 2, (z)| < C,

for min{d/2,e} < |z — k| < 4. Note that C' is independent of m. (see
Lemma 4.4.12 (iii).) Recalling the definition of z,, for m large enough, we

have
V(k)P(z — k) < 25, (x) < y(k)®(z — k) + C,

for min{0/2,¢e} < |x — k| < 6 and C' > 0 which is independent of m. Com-

bining these estimates together, we conclude that
(a—e)P(x—k)—C <~k)P(x—Fk)<(a+e)P(x—Fk)+C.

Dividing by ®(z — k) and letting ¢ — 0 leads to a = y(k), as desired.
Finally, it only remains to prove the uniqueness of limit functions. For

this purpose, let W, w be two limit functions of {w,},~¢. Then both w and
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w are viscosity solutions of

F(M + D2U)) = ﬁ—i— F(M) in A\Ukezn{k},
w =0, on 0A.

Moreover, the argument above allows us to capture the behavior of limit

functions near an isolated singularity, namely:

lim w(z)

_ o w(@)
lig e = 9) =l 2

Fix € > 0. Then there exists small enough 6 > 0 such that

(I+e)w>w

for |x — k| = 0 with £ € Z" N A. Employing a similar argument as in the
proof of Lemma 4.4.10 and Theorem 4.4.11, there exist constants c¢;,co > 0

such that
F(M + D*((1 + &)@ + Be(cy — eo|z]?)) < B+ F(M) = F(M + D*w)
in A\ UyBs(k), and
(1+ )@+ Be(cr — ealz)?) >w  on A(A\ Uy Bs(k)).

Applying the comparison principle and letting ¢ — 0, we have w > w and

by the symmetry, we conclude that w = w. O]

Obstacle solutions

For notational simplicity, we write an obstacle solution

Vo (2, w) == Vg0 am (T, w),
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where f > 0,A C R", M € 8" are fixed and ¢ > 0. The convergence of
obstacle solutions {v,},~o can be achieved if we exploit the result for free

solutions.
Lemma 4.4.14. (i) 0 < |F(M + D*w,) — F(M + D*v,)| < 3 in A.

(ii) There exists a constant C' > 0 which is independent of o > 0 such that

”ZU — UO—HLOO(A) S C

(i11) There exists a subsequence {v,, }5°_, and a limit function v € C(A\
Ukezn{k}) such that v, — v when o — 0 uniformly on every compact
subset of A\ Ugezn{k}.

Proof. (i) Since
F(M + D*,) = F(M) + <5 - Y kw(r - k)) X {07 >0}
keZrNA

we have
F(M + D*w,) — F(M + D?v,)

= (5 — Z v(k, w)v,(x — k)) X{vo=0} = BX{v,=0}-

keZ™NA

Here we used that v, > 0 near k € Z" with v(k,w) > 0, recalling the

proof for Lemma 4.4.5.

(ii) It follows from the comparison principle (similarly as in the proof of
Lemma 4.4.12 (iii)) and (4.4.11).

(iii) See the proof of Lemma 4.4.12 (iv).
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Theorem 4.4.15 (Convergence of obstacle solutions). There exists a unique
limit function v € C(A\Ugezn{k}) such that v, — v when o — 07 uniformly

on every compact subset of A\ Ugezn{k}. Moreover, v satisfies

F(M + D*0) = F(M) + Bx{ws0y n A\ Ugezn{k},

v >0 in A\ Upezn{k}, (4.4.13)
v=0, on 0A,
and
. v(r,w)
1 k
x;k (I)<(L’ — k?) ’Y( ,w),

forany k € Z" N A.

Proof. The most part of the proof is the same as the proof of Theorem 4.4.13,
which is an application of the uniform convergence obtained in the previous
lemma, the stability of obstacle problems and the isolated singularity theo-
rem, Theorem 4.4.11.

Again it only remains to prove the uniqueness part. Let U, v be two limit
functions of {v,},~0. Since v, behaves like z, (or ®,) near k € Z", Theo-

rem 4.4.11 implies that

Fix £ > 0. Then there exists small enough 0 > 0 such that
(1+¢)v >0,

for | — k| = § with k € Z™ N A. Similarly as in the proof of Theorem 4.4.13,

there exist constants ¢q, co > 0 such that

F(M + D*((1+ &)v + Be(c1 — o|z]?)) < B+ F(M) in A\ UpBs(k),
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(1+e)v + Be(er — ealx?) > v on O(A\ UpBs(k)),
and
(1+¢)v + Be(er — ealx*) >0 in A\ UpBs(k).

Note that v can be written as the unique solution of the following obstacle

problem

inf {v(x) F(M + D*(z)) < 8+ F(M) in A\ UpBs(k),

v>0in A\ UpBs(k), v > v on UpdBs(k), v > 0 on (9A.}

Since the function (1 + &)v + Be(c; — c2|z|?) is admissible for the obstacle
problem above, we have (1 + €)v + Be(c; — co|x]?) > v. Letting € — 0, we
have ¥ > v and by the symmetry, we conclude that v = v.

[

Now as we have done in the Laplacian case, we are able to define the
measure of contact set for an obstacle problem and to determine the critical

value f3y. Indeed, for any M € S", we define a random variable mg 4. by
mg a.m ‘= |{$ cA: VB, A:M = 0}|

Lemma 4.4.16 (A subadditive quantity). (i) The random variable mg a.nr

18 subadditive.

(i) The process Tymp an = Mprran has the same distribution for all
keZr.
Proof. See the proof of Lemma 4.4.7. m

Due to the previous lemma, an application of subadditive ergodic theorem
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yields

) i TMB,ByM
(B; M) = tlggo B a.s.

and a scaled version:

[{y : 95,0 (y, w) = 0}
I(B; M) =lim :

a.s.,

where 7., (y,w) = e*vg 151 (y/e, w).
Lemma 4.4.17 (Properties of I(5; M)). Let M € S™.
(i) 1(B; M) is non-decreasing function with respect to [3.
(i) If B <0, then I(B; M) = 0.
(#i) If B > 0 is large enough, then I(3; M) > 0.
Proof. See the proof of Lemma 4.4.8. O

Finally, we let the (non-negative) critical value
Bo(M) :=sup{S : l(B; M) = 0},

which is well-defined by the previous lemma.

4.5 The Properties of Free Solutions and Ob-

stacle Solutions

In short, the argument in the previous section enables us to show the conver-
gence of obstacle functions {vg, 4},>0 and free functions {wg, 4}o>0 When
o — 0; so we could define the critical value (. Note that, in the Lapla-
cian case, we have a further information such that wg,, 4 = ws,, 4 and

V01,4 = Vg,op,A if T & Upezn(Ba,, (k) and 0 < o1 < 0.
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In this section, we first extract useful properties (namely, (P1) and (P2)
in Section 4.1) of limit obstacle solutions and free solutions by investigating
the behaviors of approximated solutions (whose parameter is given by o).
Here we should check whether the auxiliary functions are rescaled or not
carefully. Then we define the corrector in terms of the critical value 5y and
transport the desired properties for correctors by comparing to the auxiliary
functions. Finally, we end up with our main homogenization result employing
the correctors.

Again we justify each step above with respect to the Laplacian operator

A first, and then to the general fully nonlinear operator F'.

4.5.1 Laplacian Operator

We begin with the step which illustrates the behavior of an obstacle solution
and a free solution away from perforated holes, when ¢ — 0. In other words,

we are going to show that for the critical value 3y, we have

o
Ly 5, =0,

away from holes (which will be precisely stated later). Note that
(i) we split two cases depending on the value [(/3), more precisely,

- if I(B) = 0, i.e. U3 never meet the (zero) obstacle, then we expect that
vz > 0in D;
- if [(B) > 0, i.e. D3 meets the (zero) obstacle in some region, then

we expect that 75 = 0 occurs throughout the whole domain (we will

prove the “spreading effect” of contact point);

(ii) we first prove for an obstacle solution v and transport this information

to a free solution w%.

Lemma 4.5.1. IfI(3) = 0, then liminf. .o w3 > 0 in D.
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Proof. We may assume D = B; and write 73 ,(z,w) = €*vg,.-15,(2/e,w)
and W5 ,(z, w) = e*wg 15, (x/e,w). First recall that for each fixed £ > 0,
we have vg,.-1p Vg1, when o N\, 07. Moreover, vs,.-15, # Vg1,
only can occur in Ugezn Bg, (k), where @, = = Thus, for any sufficiently

small ¢ > 0, the coincidence sets are identical;
{05 =0} = {v3, = 0}. (4.5.1)
On the other hand, recalling (4.4.4), we obtain
Vgge—1p, () >0 if ¥ € Upegn By, (k),

which yields

A(wﬂ,a,€*131 - ,U,B,a,alel) = (5 - Z V(kj)ya(l‘ - k)) X{%,a,e—131=0}

kezm

— /BX{UB,O',57151 :O} .

Applying the Alexandrov-Backelman-Pucci estimate (for exmaple, [14]), we
obtain that

1/n
sSup (UﬂaUﬁ_lBl - wﬁ,U,a_lBl) < Ce™! (/ (ﬁx{vﬁ,o,slBlzo})n>
B,

B.

= Cﬂ€_1|{’0ﬁ’g,57131 = O} N Bafl |1/n
By rescaling, we have

SEP<U2,U - w%,cf) < C/BHU%,U = 0} N Bl|1/n7

or equivalently,

w5, > 05, — CB{T5, = 0}» > —CB|{w5, = 0}|~,
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in By. Letting ¢ — 07 and applying (4.5.1), we have w3 > —CB|{1; =

0}# in By. Finally, since 0 = [(8) = limsﬁo%

liminf. ,ow3 > 0 in B. O

, we conclude that

Next, to estimate the upper bound for w§ when I(8) > 0, we study
the quadratic growth property of an obstacle problem. For this purpose, let

u € L>®(D) be a non-negative solution of
Au= f(x)X{us0p in D, (4.5.2)

for f € L>°(D). For an open set D(u) = {u > 0}, we define the free boundary

The following lemma explains the quadratic growth of the solution for an
obstacle problem near the free boundary. In other words, the solution has

the optimal C''!-regularity.

Lemma 4.5.2 (Quadratic growth). Let u € L*(D), u > 0, satisfy (4.5.2),
xo € I'(u), and Ba.(xo) C D. Then there ezists a constant C = C(n) > 0
such that

sup u < O fllz=yr*.
BT(CCO)

Proof. See the proof of Lemma 4.5.14 which deals with the same result for

the fully nonlinear operator. O

Lemma 4.5.3. If () > 0, then we have

e ,
g%vﬁ,a_o in D,

for each sufficiently small o > 0.

Proof. We may assume D = @y, where Q,. := [—r/2,7/2]" is a cube of width
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r > 0. By (4.5.1), we have

1o(8) = lim 1 € @1 Vs = O}

lim o =1(8) >0 (4.5.3)

for any sufficiently small o > 0. Here we fix a sufficiently small ¢ > 0, and

2™ smaller cubes of equal size, whose width

for any m € N, we split 7 into
is exactly 1/2™. For @ being any of these cubes, we have v3 , > 0 on 0Q.

Thus, applying the comparison principle in (), we have

€EQ:v5_=0
o Hr € Q7 =0} _
e—0 ’Q|

Then from (4.5.3) and (4.5.4), we deduce that for sufficiently small ¢ > 0,
the set {z € Q : 73, = 0} is non-empty for any smaller cubes Q. In other

L(B). (4.5.4)

words, we have shown the contact set {v5, = 0} “spreads” all over the Q.

For a smaller cube @ (with width 1/2™) such that QNOQ; = &, the above
result yields that there exists a point zy € @ such that 3 ,(x¢) = 0 for any
sufficiently small € > 0. Recalling the definition of the obstacle solution vj ,

we have
Avg , = (ﬁ - Z v(k)vy(z/e — k)) X{w, >0y in Bi.
kezn
Thus, by applying Lemma 4.5.2, we have

—2n n
supv;, < sup Uz, < Cp(f + cyon-2)
Q

BQ\/Tg(Io)

922m ?

for any smaller cubes ) such that @ N 0Q; = &. Thus, letting m — oo and
then choosing sufficiently small e = £(m) > 0, we conclude that lim. 75, =
0 in Ql- O

Since Wy < U5 by their definitions and o3, = 75 in D \ Ukezn Beg, (€k),

we deduce the following corollary:
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Corollary 4.5.4. Let g € (0,1/2). Ifl(5) > 0, then

lim sup wy < 0.
€20 D\Upezn Bye (ek)

Applying Lemma 4.5.1, Corollary 4.5.4 and the fact that 3y is the critical

value, we have:

Corollary 4.5.5. Let B, (x¢) C D. Then there exists a sequence {c;};en

such that ; — 07 and

lim w} (z) =0,

j—00
for any x € 0B, (zo) U {zo}.

Next, we study the asymptotic behavior of auxiliary functions near the

boundary of holes 9T.. More precisely, we need to show that
Ws, = 1+0(1), on ..

In short, this can be done by comparing the auxiliary functions with the

normalized homogeneous solution.

Lemma 4.5.6. For k € Z", we denote
_ B 2
hgor(T) = %|m — k" +y(k,w)®,(x — k).
(i) For every 8 and for every k € Z", we have

V8,0e-1D(T) > hgonr(T) — % —r(k,w)" 7,

for all x € By(k) and almost every w € §.

(ii) For every 8 > [y, we have
V,e-10(2) < hp () +0(e7%),
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for all x € By (k) and almost every w € €.

Proof. We refer to [15, Lemma 4.3]. The only difference arises from that we
are considering functions with o- dependence, which does not change the
proof. Otherwise, it can also be shown by applying the comparison principle
and Lemma 4.5.3; indeed, see the proof of Lemma 4.5.18 later in the fully

nonlinear case. O

We denote
h k(x) = lim h k(:c) = —|x — k]Q + fy(k’ w)@(x — k)
3, . 50 58,0, m ) y

and hg (z) == e2hg(x/€). Then since hg k|op,

e (r(k,w))

we deduce the following corollary by letting ¢ — 0" in Lemma 4.5.6:

Corollary 4.5.7. (i) For every  and k € Z" such that r(k,w) > 0, we

have
Vge-1p(x) > 2+ O0(1)  on OB (rrw) (k) a.e. w € Q,
and so
T(r) > 14+ 0(1) on I (w) a.e. w €,
for all (.

(ii) For every > [y and every k € 7", we have
vge—1p(z) < e?+o0(e?) on 0Bz (r(kw)) (k) a.e. w € €,
and so
(7)) <1+4+0(1) on I (w) a.e. w e,
for all B > By.

151

w = 2+ 2@ (r(k,w)) P,



CHAPTER 4. RANDOM HOMOGENIZATION OF FULLY
NONLINEAR ELLIPTIC EQUATIONS

Lemma 4.5.8. For every k € Z", Wy, satisfies
ok() —o(1) w5, (z) < h, p(x) +0(1) Vo € Bojp(ek)ND a.e w e
In particular,
Ws, =1+0(1) ondT.ND.

Proof. Recall that for every §, we denote v5(z) = e2vg.—1p(x/e), which is
defined in D and v5 =0 on 9D.

(i) Let 8> By. Note that

Awgy 5c-1p = Bo — Z Yk, w)v,(x — k),

keZrNe—1D

and

Avgge1p = (5 - Z v(k, w)v, (x — k‘)) X{vs , .—1p>0}>

keZrNe—1D
in e7'D. Thus, we have
A(“’Bo,o,e*lD - Uﬁ,o,sle) > Bo—f
and wg, ye-1p — Vge—1p = 0 on (e~ D). By rescaling, we obtain

AWy = Vo) = o= B

and W, , — U5, = 0 on dD. The Green representation formula yields

that

Wy (00) ~ T (0) < [ Gl u)(o = ) da

D

< (8- 50)/DQ>(37 —x0)dz < O(B — Bo),
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where G(-,-) is the Green function on D. (AG(-,z) = 0., and G =0
on 0D.) Applying Lemma 4.5.6 (ii), we conclude that

Wiy o(2) < hspi(/2) + o(1) + OB — fi)

for all x € B.y(ek). Letting o — 0 and then 8 — Sy, we obtain the
desired upper bound.

(ii) Arguing as in (i), for every 8 < 3y, we have
A(Vgpe-1p — Wayoe—1p) = B — Bo — BX{vy -1 p=0}-
By rescaling, we obtain that
A(@%,a - EEO,U) =p— 05— ﬁX{@;U:o}
Again, the Green representation formula leads to
Tho — Wioo < O(fo = B) + CBI{TG, = 0}V in D.
Applying Lemma 4.5.6 (i), we conclude that
Who(7) 2 g on(a/e) = o(1) — O(By — B) — CB{T5,, = 0}V,
Letting 0 — 0, (see (4.5.1))
W5, (1) 2 h () — o(1) = O(f — ) — CHI{w5 = 0}V,

Since lim. o [{v = 0}| = (B) - |D| = 0 for any 3 < By, we obtain the

desired lower bound.
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Now we define a corrector:

Aw®(z,w) = fy for x € D\ Ty,
we(z,w) =1 for z € 0T, (4.5.5)
wé(z,w) =0 for x € 0D\ T..

Lemma 4.5.9. Let B,(xo) C D. Then there exists a sequence {€;};en such
that e; — 0% and

lim w% (z) =0,
j—o0

for any x € 0B, (zo) U {zo}.
Proof. Since Awj, , = fo in D\ UpB.g, (¢k), letting o = ¢ yields that

Awﬁo - AEEO#‘? =fo inD \ Uy Bas (5k) =D \ 1,

Recalling Lemma 4.5.8 and applying the comparison principle for w® and wg,
in D\ T, we have

W, (1) —o(1) <w(z) <wg () +o(1) in D\T..

Therefore, the desired result follows from Corollary 4.5.5. O

Finally, we are ready to finish the proof of our main theorem for the

Laplacian case:

Proof of Theorem 4.1.1 (1i). We are going to show that u is a subsolution.

Let us assume there is a parabola P touching u from above at xq and
AP + B()(QO(Qjo) — P(l’o))+ < —2,u0 < 0.

In a small neighborhood of xg, B,(z), there exists another parabola @) such
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that
D?P < D?Q in B, (),
P(xg) > Q(xo) + do,
P(z) < Q(z) on 0B, (xo).

In addition, we can choose a sufficinetly small 5 > 0 so that () satisfies

AQ + Bo(e(xo) — ulzo) 4 320) =1 AQ + Bobo < —po < 0,

and

Q) — Q(xo)| + [0(2) — ¢(x0)] < 0

for © € B,(xo). Let us consider Q.(z) = Q(x) + w*(x)&. Then by the
definition of w?®, we have AQ. < —puy < 0 and

Q:(x) = Q(x) + & = Q(z) + (o) — u(zo) + 380 > (),

on Ty N By(xp). Therefore, the maximum principle yields that Q. > ¢. in
BW (330)
Now we define the function

Y min{u., Q.} in B, (),
| e in D\ B,(z).

Applying Lemma 4.5.9, for sufficiently small ¢ > 0 (at least for a subsequence
{e;}), we have Q. > wu. on 0B, (x¢). Thus, the function v, is well-defined
and will be a viscosity supersolution of (L.). Since u. is the least viscosity

supersolution, we have u, < v, < Q. in B, (). Letting ¢ — 0, we have
u(zy) < Q(x0) < P(x0) = u(o),

which is a contradiction. By an argument similar to the proof of Lemma 4.1
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in [12], we can show that u is also a viscosity supersolution of (L). (or see
the proof of Theorem 4.1.2 (ii) which deals with the argument for a viscosity
supersolution of (F).)

]

4.5.2 Fully Nonlinear Operator

In the Laplacian case, the strong properties of the obstacle solutions (see
Lemma 4.4.5 and its proof) immediately led to the equality between coinci-

dence sets, (4.5.1): for any sufficiently small o > 0,
{75, = 0} = {75 = 0}.

On the other hand, in the fully nonlinear case, we only have the uniform
convergence of the obstacle solutions and we require some auxiliary lemmas
to derive the stability of coincidence sets, which is a weaker consequence
compared to (4.5.1).

We begin with a simple lemma:

Lemma 4.5.10. For an open set D C R", let {u,, }5o_, and ug be continuous
functions on D. If u,, — ug uniformly on every compact subset of D as

m — oo, then

limsup [{u, = 0} < [{ug = 0}].

m—00

Proof. Suppose that

lim sup [{u,, = 0} > [{uo = 0}].

m—0o0
Then there exist an open neighborhood A of {uy = 0} and a compact set
K cc D such that ({u,, = 0} N K) \ A is non-empty (upto subsequence,
if necessary). In other words, there exists a sequence of points z,, € K

satisfying z,, € {u,, = 0} \ A . Again, upto subsequence, there exists a point
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xo € K\ A such that x,, — . Then for any € > 0, we have

[t (Zm) — o (20)| < [t (2m) — wo(2m)| + |uo(zm) — uo(zo)| < e,
for sufficiently large m, which yields that

uo(xg) = nll_r}r(l)o U (Ty) = 0.

This contradicts to zo ¢ {up = 0} and so we have the desired inequality. [

Next, for the other direction of the inequality obtained from Lemma 4.5.10,
we need an additional work in terms of obstacle problem theory. Let u be
a non-negative solution of an obstacle problem F'(D?*u) = f(z)x{us0} in D,
for f € L>(D). By Theorem 1.2.1 in [56], we have u € C,.}(D) n C(D).
We set D(u) := {z € D : u(z) > 0}, C(u) :== {z € D : u(zr) = 0}, and
['(u) := 0D (u) N D.

Lemma 4.5.11 (Non-degeneracy; [56, Lemma 3.4]). Suppose that f > M >
0 in D and let xo be any point in D(u). Then for any ball B.(zq) C D,

M2
sup |u(x) — ulx > .
Jup [u(z) - u(eo)) 2 57

Lemma 4.5.12. Suppose that f > M > 0 wn D and ug, u,, m € N are
non-negative solutions of F(D?v) = f(x)X{us0p 1 D. If uy — uo uniformly

in every compact subset of D, then we have

() Tmsup,, o0 | D (um)| < 1D (uo)l;
(111) lminf,, o |C(um)| > |C(u)l.

where limsup,,_, ., A, means the set of all limit points of sequences {x,,},

Tm € Ay
Proof. (i) It is a consequence of Lemma 4.5.11; see Corollary 3.5 in [56].
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(i)

(iii)

Its proof is similar to the one of Lemma 4.5.10. Indeed, we suppose that

limsup | D ()| > [Duo)]-

m—r0o0

Then there exists an open neighborhood A of D(ug) such that there is
a sequence of points z,,, € D (upto subsequence, if necessary) satisfying
ZTm € D(uy) \ A. Then there is a point xy € D such that x,, — =z,
which implies that

xo € limsup D(uy,) \ A C limsup D(u,,) \ D(up).

m— 00 m— 00

This contradicts to (i).

Since D(up,) = D \ C(uy,) and D(ug) = (D \ C(up)) U (),

lim i | ()| > | (u0)| — [P(uo)]
follows from (ii). Note that when F' is positively homogeneous of degree
one, the free boundary I'(ug) is a C*®-graph; see [56, Theorem 3.3]. In
particular, |T'(up)| = 0 and thus, the desired inequality follows.
[

Combining the results from Lemma 4.5.10 and Lemma 4.5.12 (iii), we have

the stability of coincidence sets; i.e. since vg , converges to vj uniformly on

every compact subset of D as o — 0, we have

lim {05, = 0} = {5 = 0} (45.6)

Now, we proceed similarly as in the Laplacian case:

Lemma 4.5.13. Ifl(3) =0, then liminf. ,ow3 > 0 in D.

Proof. We may assume D = By and write 75 ,(2,w) = €*vg,.-1p,(2/e,w)

and W5 ,(z, w) = e*wg o1, (2/€,w). Recalling the proof for Lemma 4.4.5,
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we obtain vg ,.-1p, () > 0 if € Ugezn By, (k), which yields

F(M + D*wg 4.-1p,) — F(M + D*vg 5 .-1p,)

= (ﬁ - Z V(k)yﬂ(x - k)) X{Ug,g,glelzo} - ﬁX{UB,mS*lBl:O}.

kezn
Now let h be the solution of

PH(D2h) = —5)({”67“6,131:0} ine !By,
h=0 on d(e7'By).

Then the uniformly ellipticity of F' yields that

F(M + D*(wg -1, + 1)) < F(M + D*wg g e-1,) + P*(D?h)

F
F(M + D*vgye13,),

and thus, we have wg,.-1p, + h > vg,.-1p, in € "By by the comparison
principle. (for example, see [18]) Applying the Alexandrov-Backelman-Pucci

estimate for h, we obtain that

1/n
sup h < Ce™! </ (ﬁx{%”_lmzo})n>
B.—1 B_—1 o

= Cﬁ€71|{1)f37075—131 = 0} N B, |1/n.

Now the remaining part is the same as in the proof of Lemma 4.5.1. The only

difference arises when applying the stability of coincidence sets, (4.5.6). O

Similarly as in the Laplacian case (Lemma 4.5.2), one can prove the

quadratic growth property in the fully nonlinear case:

Lemma 4.5.14 (Quadratic growth; fully nonlinear operator). Let u be a

non-negative solution of an obstacle problem, i.e. u satisfies
F(D?*u) = f(@)Xqus0y in D,
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for f e L>(D). If xo € I'(u), and Ba.(xo) C D, then

sup u < O(?’L, )\7A)||fHL°°(D)r2'
B (z0)

Proof. For simplicity, we may assume xy = 0 and write Bg = Bg(0) for any

R > 0. Then we split u into the sum u; + us in Bs,, where

F(D*uy) = F(D*u), PT(D*uy) =0 in By,;

up =0, uy=u on 0B,,.

We estimate these functions u; and usy separately.

(i) To estimate wu;, we consider a barrier function

g-(r) = (47— af’).

Then we immediately obtain
9 1
F(D?g )=F|—1) < -\
n

in By, and g_ = 0 on JB,,. Thus, the comparison principle yields that
for x € Bs,,

uy(z) < %g(a;) < C(n, \)Mr?,

where M := || f|| Lo (p). Considering g (z) := 5-(|z|* — 4r?)(= —g_(x)),

we can conclude that

luy(2)| < C(n, \)Mr?.

(i) To estimate uy, note that us > 0 in By, since F(D?*uy) = 0 in By, and
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us = u > 0 on 0By,.. Moreover, since 0 € I'(u), we have
u2(0) = —u1(0) < C(n, \)M7r?,

by the previous result. Thus, applying Harnack inequality to a non-

negative function us in Bs,, we conclude that for z € B,,
uz(z) < C(n, A, Nuy(0) < C(n, A\, A)Mr?.

Finally, combining the estimates for u; and wuy, we obtain the desired

estiamtes for w.

Lemma 4.5.15. If () > 0, then we have

e ,
g%vﬁ,a_o in D,

for each sufficiently small o > 0.

Proof. Tts proof can be done by following the proof of Lemma 4.5.3. Note
that here we use the stability of coincidence sets and the quadratic separation

occurred at the contact point. O]

Since wj < 05 by their definitions and 5 , uniformly converges to v5 on

every compact subset of D \ Uyezn(ek), we deduce the following corollary:

Corollary 4.5.16. Let q € (0,1/2). IfI(3) > 0, then

lim sup wh < 0.
€20 D\Upezn Bye (ck)

Applying Lemma 4.5.13, Corollary 4.5.16 and the fact that [, is the

critical value, we have:
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Corollary 4.5.17. Let B,(xo) C D. Then there exists a sequence {c;} en
such that ; — 0% and

. —E&;
lim g, (x) =0,

for any x € 0B, (zo) U {zo}.

Lemma 4.5.18. For k € Z" and M € 8™, we denote

F(M 1
Woan(@) = T e ke ) (o — ) (o~ M k),
and
ht () == %M — k| 4+ y(k,w) Py (z — k) — %(x —E)Y'M(z — k).

(i) For every 3, we have

B
nA

1
U/Bya':f_lD%M(x) Z hﬁ,o‘,k;M(x) - - (Qr(k,w)) - g”MH?

for all x € Bys(k) and almost every w € Q.

(ii) For every 8 > [y, we have

Vg e-1psn () < by () +o(e7?),

for all x € By (k) and almost every w € Q.
Proof. (i) By a direct calculation, for x € By 5(k), we have

B+ F(M)
nA

> B+ F(M) —~(k,w)v,(z — k)

> F(M + D2U,B,a,€_1D;M)'

F(M + D?hg o 0g) = F ( I +~(k,w)D*®, (2 — k:))

Thus, the comparison principle yields the desired inequality.
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(ii) Combining Theorem 4.4.15 (uniform convergence on every compact

subset of D \ Ugezn{ck}) and Lemma 4.5.15, we have (after rescaling)

Vg oe-iom = 0(€7%),
if # € e7'D \ Uyezn By j2(k). On the other hand, in By jo(k),

F(M + D*h} ) = F (%I +v(k,w)D*®, (z — k))

< F(M) —y(k,w)v,(z — k) < F(M + D*vg 5 c—1p.a1).-

Moreover, there exists a constant L = L(n, F, M) > 0 (independent of
k) such that hj .\, +L > 0 0on 0By 5(k). Thus, again by the comparison
principle, we conclude the desired inequality.

0

We denote

hg,k;M<‘T> = i{% h,B,a,k:;M(‘r)? h;M(‘r) = (171_% h;r,k:;M(x)7

and
hg e () 1= g (/) iy (@) = 21l (a/e).
Recalling Assumption 4.2.1, we have
y(k,w)(@)™ =72,
where @° = a*(r(k,w))/e. Thus, we deduce
N kenr|0Ba oy k) = € 20(0) + O(1),  Bfylose geun k) =€ 20(0) + O(1)

which yields the following corollary after letting o — 07 in Lemma 4.5.18:

Corollary 4.5.19. (i) For every  and k € Z™ such that r(k,w) > 0, we
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have
Vg e—1p.p () > e20(0)+0(1) on OBz (r(kw)) (k) a.e. w € €,
and so
V() > ¢(0) +o(1) on IT.(w) a.e. w € Q,

for all 5.

(i) For every B > By and every k € Z", we have
Vg1 (2) < e729(0) + 0(e7%)  on OBae(r(kw)) (k) a.e. w € €,
and so
Vam () < @(0) +0o(1) on dT.(w) a.e. w e Q,

for all B > pBy.

Lemma 4.5.20. For every k € 2", w5, satisfies
R () — o(1) < @5 (2) < h:f/l(x) +0(1) Vo € B.jp(ck)N D.
In particular,
Way = ¢(0) +0(1) on IT. N D.

Proof. For simplicity, we drop the subscript M in this proof. Recall that for

every (3, we denote

3(x) = e’vpm1p(z/e),

which is defined in D and v = 0 on 9D. Compared to the Laplacian

case (Lemma 4.5.8), we cannot exploit the Green representation formula
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when estimating an auxiliary function. Instead, we will use the Alexandrov-

Backelman-Pucci estimate.

(i) Let 8> By. Note that

F(M + D*wgygeip) = F(M)+ Go— Y v(k,w)vp(e— k),

k€Znrne—1D

and
F(M + D*vg,.-1p)

= F(M) + (5 - Z V(k.aw)yd(x - k>> X{vg,a,e*1D>0}

k€Z"rNe—1D

= F(M) + BX{v, , .—1,>0) — Z vk, w)vy(z — k)

keZmne—1D

SFM)+8- ) vk w(z—k).

keZrne—1D
Now let h be the solution of

PHDR) = By — f ine'D,
h=0 on d(e~'D).

Since

F(M + D*vg,.-1p + D?h) (M + D*vg4.1p) + P (D?h)

<F
< F<M =+ DQw,BO,U,E—lD)a

the comparison principle leads to vg , .-1p+h > wg, ».—1p. Then an ap-

plication of Alexandrov-Backelman-Pucci estimate for A indicates that

sup h < Ce 'diamD||3 — Bol|pn(e-1py < C(e™ diamD)*(8 — o).

e 1D
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Thus, by rescaling, we conclude that
W5, , < U3, + C(diamD)*(3 — ).
Applying Lemma 4.5.18 (ii), we conclude that
0 (@) < ht4(2/2) + 0(1) + C(diamD)(5 — o)

for all x € B.y(ek). Letting 0 — 0 and then 8 — fy, we obtain the
desired upper bound.

(ii) Arguing as in (i), for every 5 < fy, let h be the solution of

PH(D?h) =B — fo — ﬁX{v@,o,sAD:O} in e7'D,
h=0 on d(e~'D).

Then since
F(M + szl,l)ﬁoyo-ﬁ—lD + Dzh) < F(M + DZUIB707E—1D),

we have wg, ,.-1p +h > vg,.-1p. Again, the Alexandrov-Backelman-

Pucci estimate yields that

_ 1/n

e—1D |€_1D’

By rescaling, we obtain that

75 =0 1/n
m;0,0' > 62,0 - C(dl&mD)Q [(ﬁo — B) + (|{U,3,|+w}|) ] .
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Applying Lemma 4.5.18 (i) and letting o — 0,

wp, (z) > 52h§7k(x/5) —o(1)

e = 1/n
— C(diamD)? [(ﬁo —B)+ <%) ] :

=0 _

D] (6) = 0 for any 8 < [, we obtain the desired

Since lim._,

lower bound.

For each symmetric matrix M € 8™, we define a corrector wj,; by

F(M + D*w3,) = Bo(M) + F(M) in D.,
wiy () = ¢(0) on 0T,
wi =0 on 0D,

where fo(M) is the critical value. Note that we impose the boundary con-
dition w® = ¢(#) on IT; instead of w® = 1, which we wrote w® ~ 1 in the

Introduction.

Lemma 4.5.21. Let B,(xo) C D. Then there exists a sequence {€;}jen such
that ¢; — 0% and

jlgglow i(x) =0,

for any x € 0B, (zo) U {zo}.

Proof. First of all, by Theorem 4.4.13, the free solution wg ,, satisfies
F(M + D*wj,.p) = fo(M) + F(M) in D\ Ugezn{ck},
while the corrector w5, satisfies
F(M + D*w}y) = Bo(M) + F(M).
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Applying Lemma 4.5.20 together with the comparison principle for w3, and
W, in D\ T, it holds that

W, () —0o(1) < w(x) < W, (7) +0(1) in D\T..

Therefore, the desired result follows from Corollary 4.5.17. m

Before finding the effective equation satisfied by the limit profile u, we

show the uniform ellipticity of the homogenized operator.

Lemma 4.5.22. For M € 8™ and ¢ > 0, set

F(M, c):=F(M+ chwﬁw)

) cF(M/c+ D*wiy) = cfo(M/c) + F(M) if ¢ >0,
L Fan fe=0.

Then we have A|N|| < F(M + N,¢) — F(M,c) < A||N|| for any N > 0.

Proof. 1f ¢ = 0, then the result follows from the uniform ellipticity of F'. For

c =1, we have
F(M + N,1) = F(M + N + D*u§,.y) < F(M + D*w§; ) + AN

We denote w be the solution of

F(M + D*w) = F(M + N,1) — A||N]|| in D.,
w(x) = ¢(0) on 0T,
w=0 on 0D.

Then the comparison principle yields that w > wj,, y and so w > 0 letting

¢ — 0. Recalling the definition of w§,;, we have

F(M + D*@) < F(M + D*w5,) = Bo(M) + F(M) = F(M, 1),
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and so
F(M +N,1) < F(M,1) + AN
The lower bound can be proved similarly. Moreover, considering M /¢ and

N/c instead of M and N, we can finish the proof for general ¢ > 0. O]

Finally, we are ready to finish the proof of our main theorem for the fully

nonlinear case:

Proof of Theorem 4.1.2 (ii). Recalling Lemma 4.5.22, F is uniformly elliptic.
We are going to show that u is a supersolution. Let us assume that there is

a parabola P touching u from below at zy and
F(D*P, (p(x0) — P(x0))4) > 249 > 0.

In a small neighborhood of xg, B,(z), there exists another parabola @) such
that

D?P > D*Q in B, (zo),
P(IQ) + 50 < Q(l‘o),
P(z) > Q(x) on 0B, (x).

In addition, for & = (@(z0) — u(z))y, F(D?*Q,&) > po > 0. Then for a

corrector w§, with M = D?Q, we have
F(D*Q.) = F(D*Q + &D*wyy) = F(D?*Q, &) > o > 0,

where Q.(z) = Q(z) + &ui,(z). Since Q. < u. on 0B,(x) for sufficiently
small € > 0, the comparison principle yields that Q(xo) < u(xg). It contra-
dicts to the fact that Q(zg) > P(xo) + dg = u(xo) + do. A similar argument

tells us w is also a subsolution. O
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