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Abstract

Regularity results for Orlicz phase problems

Sumiya Baasandorj

Department of Mathematical Sciences
The Graduate School

Seoul National University

In this thesis, we provide comprehensive regularity results and optimal
conditions for a general class of functionals involving Orlicz multi-phase,
which exhibits non-standard growth conditions and non-uniformly elliptic
properties.

First, we give a unified treatment to show various regularity results for
minima of Orlicz multi-phase type functionals with coefficient functions not
necessarily Hölder continuous even for a lower level of the regularity. More-
over, assuming that minima of such functionals belong to better spaces such
as C0,γ(Ω) or Lκ(Ω) for some γ ∈ (0, 1) and κ ∈ (1,∞], we address optimal
conditions on nonlinearity for each variant under which we build comprehen-
sive regularity results.

Second, we prove local Calderón-Zygmund type estimates under the opti-
mal conditions on the nonlinearity for distributional solutions to non-uniformly
elliptic equations of Orlicz double phase and multi-phase type in divergence
form with the coefficient functions not necessarily Hölder continuous.

Lastly, we establish an optimal C1,α-regularity for viscosity solutions of
a class of degenerate/singular fully nonlinear elliptic equations by finding
minimal regularity requirements on the associated operator.

Key words:Orlicz phase problem; regularity; non-standard growth; Calderón-
Zygmund theory; fully nonlinear degenerate/singular equations; viscosity so-
lutions
Student Number: 2017-33717
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Chapter 1

Introduction

The first part of this thesis is concerned with optimal and comprehensive
regularity results for minima of functionals featuring a non-standard growth
and a non-uniform ellipticity. The primary model keeping in mind under
investigation is given by an Orlicz multi-phase functional

W 1,1(Ω) ∋ υ 7→ P(υ,Ω) :=

ˆ

Ω

Ψ(x, |Dυ|) dx (1.0.1)

for a bounded open domain Ω ⊂ Rn with n ⩾ 2, where throughout the thesis
we shall always denote by

Ψ(x, t) := G(t) + a(x)Ha(t) + b(x)Hb(t) (x ∈ Ω, t ⩾ 0) (1.0.2)

for N -functions G,Ha, Hb ∈ N in the sense of Definition 2.1.1 and 0 ⩽
a(·), b(·) ∈ L∞(Ω). The Orlicz multi-phase functional P in (1.0.1) is natu-
rally defined for functions υ ∈ W 1,1(Ω), which is natural one including the
following examples of functionals for the regularity theory:

1. p-growth: Ψ(x, t) ≡ tp with p > 1, see for instance [82, 89, 109, 110,
112, 113, 133, 134].

2. Orlicz growth: Ψ(x, t) ≡ G(t), see for instance [74, 75, 111].

3. (p, q)-double phase: Ψ(x, t) ≡ tp+a(x)tq for 1 < p ⩽ q, see for instance
[20, 22, 57, 58].
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CHAPTER 1. INTRODUCTION

4. Borderline case of double phase: Ψ(x, t) ≡ tp + a(x)tp log(1 + t) for
1 < p, see for instance [21, 39].

5. Multi-phase: Ψ(x, t) ≡ tp + a(x)tq + b(x)ts for 1 < p ⩽ q, s, see for
instance [71].

6. Orlicz double phase: Ψ(x, t) ≡ G(t) + a(x)Ha(t), see for instance [12,
39].

7. Orlicz multi-phase: Ψ(x, t) ≡ G(t) + a(x)Ha(t) + b(x)Hb(t), see for
instance [12].

Over last several years a systematic analysis of the functionals afore-
mentioned has been an object of intensive studies for the regularity theory.
Among them (p, q)-double phase functional is a significant example given by

W 1,1(Ω) ∋ v 7→ Pp,q(v,Ω) :=

ˆ

Ω

[|Dv|p + a(x)|Dv|q] dx, 1 < p ⩽ q.

(1.0.3)

Another example is the so-called borderline case of double phase defined by

W 1,1(Ω) ∋ v 7→ Plog(v,Ω) :=

ˆ

Ω

[|Dv|p + a(x)|Dv|p log(1 + |Dv|)] dx, 1 < p.

(1.0.4)

The last functional we would like to single out is the so-called multi-phase
functional introduced in [71] is of type

W 1,1(Ω) ∋ v 7→ Pp,q,s(v,Ω) :=

ˆ

Ω

[|Dv|p + a(x)|Dv|q + b(x)|Dv|s] dx,

1 < p ⩽ q, s. (1.0.5)

The (p, q)-double phase functional was initially introduced by Zhikov
[139, 140, 143] in order to study the feature of strongly anisotropic materials
in the context of homogenization and nonlinear elasticity. A main common
feature of the functionals Pp,q, Pp,q,s and Plog in (1.0.3)-(1.0.5) is that their
integrand changes their growth and ellipticity ratio depending on the ge-
ometric behavior of the coefficient functions a(·) and b(·), which determine

2



CHAPTER 1. INTRODUCTION

the geometry of the mixture of different materials. Each functional mentioned
above belongs to a family of functionals with nonstandard growth conditions
of (p, q)-type. These are functionals of type

W 1,1(Ω) ∋ v 7→
ˆ

Ω

F (x,Dv) dx,

whose energy density F (x, z) satisfies

|z|p − 1 ≲ F (x, z) ≲ |z|q + 1, 1 < p < q,

according to Marcellini’s terminology [114, 115, 116]. Over the several decades,
functionals with nonstandard growth have been extensively investigated, see
for instance [3, 33, 61, 78, 79, 80, 86, 87, 129, 130] and see also [117, 118] for
an overview of the state of the art. Those functionals aforementioned give
a relevant example of the energy overlying in the so-called Musielak-Orlicz
space which will described in Chapter 2.

For the regularity theory, the optimal conditions for the gradient of a
local minimizer v of the functional Pp,q in (1.0.3) to be Hölder continuous
have been discovered in [22, 57, 58]. They are

q

p
⩽ 1 +

α

n
if v ∈ W 1,p(Ω),

q ⩽ p+ α if v ∈ W 1,p(Ω) ∩ L∞(Ω),

q < p+
α

1− γ
if v ∈ W 1,p(Ω) ∩ C0,γ(Ω) with γ ∈ (0, 1),

(1.0.6a)

(1.0.6b)

(1.0.6c)

where 0 ⩽ a(·) ∈ C0,α(Ω) for some α ∈ (0, 1].

Remark 1.0.1. The conditions in (1.0.6a)-(1.0.6b) are essentially sharp in
the sense of Lavrentiev gap (see (1.0.26) for the definition) for the functional
Pp,q. Indeed, as shown in [80, 86], for every ε > 0, it is possible to construct
a suitable coefficient function 0 ⩽ a(·) ∈ C0,α(Ω) for some α ∈ (0, 1) to find
exponents p, q with

n− ε < p < n < n+ α < q < n+ ε (1.0.7)

such that there exist bounded minima of the functional in (1.0.3) whose set
of discontinuity points has Hausdorff dimension larger than n− p− ε, which
means that minima of the functional in (1.0.3) are as bad as any other W 1,p

3



CHAPTER 1. INTRODUCTION

functions. The selection in (1.0.7) makes both conditions (1.0.6a) and (1.0.6b)
to be failed. Furthermore, there are recent results concerning the absence of
Lavrentiev phenomenon [18], which shows that the conditions (1.0.6b) and
(1.0.6c) are sharp for the functional in (1.0.3) with a coefficient function
0 ⩽ a(·) ∈ C0,α(Ω) for some α ∈ (0, 1) by constructing appropriate coun-
terexamples based on Zhikov’s two-dimensional checkboard as introduced in
[139].

On the other hand, letting 0 ⩽ a(·) ∈ Cωa(Ω) with a continuous and
concave function ωa : [0,∞) → [0,∞) vanishing at the origin in (1.0.4),
the conditions for a local minimizer v of the functional Plog in (1.0.4) to be
regular have been discovered in [21], which are

v is Hölder continuous with an exponent

if lim sup
ρ→0+

ωa(ρ) log

(
1

ρ

)
<∞,

v is Hölder continuous with an arbitrary exponent

if lim sup
ρ→0+

ωa(ρ) log

(
1

ρ

)
= 0,

Dv is Hölder continuous

if ωa(ρ) ≲ ρα with α ∈ (0, 1].

(1.0.8a)

(1.0.8b)

(1.0.8c)

Furthermore, the optimal condition for the gradient of minima of the
multi-phase functional Pp,q,s in (1.0.5) to be Hölder continuous has been
obtained in [71], that is

q

p
⩽ 1 +

α

n
and

s

p
⩽ 1 +

β

n
, (1.0.9)

where 0 ⩽ a(·) ∈ C0,α(Ω) and 0 ⩽ b(·) ∈ C0,β(Ω) for some α, β ∈ (0, 1]. In
fact, the condition (1.0.9) is a natural outcome of (1.0.6a) and sharp via Re-
mark 1.0.1. In the first part of the thesis, we intend to unify all conditions pre-
sented in (1.0.6a)-(1.0.6c), (1.0.8a)-(1.0.8c) and (1.0.9) by considering more
general class of functionals modelled on Orlicz multi-phase energy functional
(1.0.1) under more weakened assumptions that the coefficient functions a(·)
and b(·) in (1.0.1) are not necessarily Hölder continuous even for a lower level
of the regularity. Moreover, under newly found conditions on the nonlinearity
depending upon a priori assumptions on minima for investigation, we prove

4



CHAPTER 1. INTRODUCTION

various regularity results starting from local boundedness of minima up to
Hölder continuity for the gradient of minima. More precisely, we consider a
class of general functionals of type

W 1,1(Ω) ∋ υ 7→ F(υ,Ω) :=

ˆ

Ω

F (x, υ,Dυ) dx, (1.0.10)

where the integral density F : Ω × R × Rn → R is a Caratheódory map
satisfying the double-sided bound with constants 0 < ν ⩽ L <∞:

νΨ(x, |z|) ⩽ F (x, y, z) ⩽ LΨ(x, |z|) (x ∈ Ω, y ∈ R, z ∈ Rn), (1.0.11)

where Ψ is the same function as in (1.0.2). Under the growth conditions
(1.0.11), local minima (Q-minima) of the functional F in (1.0.10) for some
number Q ⩾ 1 is defined classically as follows:

Definition 1.0.1. A function u ∈ W 1,1
loc (Ω) is a local minimizer (Q-minimizer)

of the functional F defined in (1.0.10) if Ψ(x, |Du|) ∈ L1(Ω) and the mini-
mality condition

F(u, supp(u− υ)) ⩽ F(υ, supp(u− υ))

(F(u, supp(u− υ)) ⩽ QF(υ, supp(u− υ)))

is satisfied, whenever υ ∈ W 1,1
loc (Ω) with supp(u− υ) ⋐ Ω.

In what follows, we shall always assume 0 ⩽ a(·) ∈ Cωa(Ω) and 0 ⩽ b(·) ∈
Cωb(Ω), where ωa, ωb : [0,∞) → [0,∞) are continuous and concave functions
such that ωa(0) = 0 and ωb(0) = 0, unless they are specified. Then we define
the auxiliary function Λ : (0,∞)× (0,∞) → (0,∞) given by

Λ(ρ, t) :=
ωa(ρ)

1 + ωa(ρ)

Ha(t)

G(t)
+

ωb(ρ)

1 + ωb(ρ)

Hb(t)

G(t)
for any ρ, t > 0. (1.0.12)

We shall consider a local Q-minimizer u of the functional P in (1.0.1) or a
local minimizer u of the functional F in (1.0.10) under each of the following
basic assumptions:u ∈ W 1,Ψ(Ω),

λ1 := sup
ρ>0

Λ
(
ρ,G−1(ρ−n)

)
<∞, (1.0.13)

5



CHAPTER 1. INTRODUCTION

u ∈ W 1,Ψ(Ω) ∩ L∞(Ω),

λ2 := sup
ρ>0

Λ

(
ρ,

1

ρ

)
<∞,

(1.0.14)

u ∈ W 1,Ψ(Ω) ∩ C0,γ(Ω) for some γ ∈ (0, 1),

λ3 := sup
ρ>0

Λ

(
ρ

1
1−γ ,

1

ρ

)
<∞.

(1.0.15)

Here G−1 is the inverse function of G. Let us neatly explain why those
conditions (1.0.13)− (1.0.15) make sense by considering some significant spe-
cial cases. In the case (G(t), Ha(t), Hb(t)) ≡ (tp, tq, ts) with 1 < p ⩽ q, s,
ωa(ρ) ≡ ρα and ωb(ρ) ≡ ρβ for some α, β ∈ (0, 1], direct calculations yield
that

the condition (1.0.13)2 ⇐⇒ q

p
⩽ 1 +

α

n
and

s

p
⩽ 1 +

β

n
, (1.0.16)

the condition (1.0.14)2 ⇐⇒ q ⩽ p+ α and s ⩽ p+ β (1.0.17)

and

the condition (1.0.14)2 ⇐⇒ q ⩽ p+
α

1− γ
and s ⩽ p+

β

1− γ
.

(1.0.18)

In particular, in the case b(·) ≡ 0, the conditions (1.0.13)-(1.0.15) are read as
(1.0.6a)-(1.0.6c), respectively, except the borderline case of the last condition.
Clearly, the condition in (1.0.16) is the same one as in (1.0.9). Moreover, in
the case of (G(t), Ha(t), Hb(t)) ≡ (tp, tp log(1 + t), tp log(1 + t)) with p > 1,
we see that the conditions (1.0.13)2 and (1.0.14)2 are equivalent to

lim sup
ρ→0+

(
ωa(ρ) log

(
1

ρ

)
+ ωb(ρ) log

(
1

ρ

))
< +∞. (1.0.19)

In particular, for b(·) ≡ 0, the above condition is equivalent to (1.0.8a).
Furthermore, we are also able to give more examples of functionals showing
how a modulus of continuity of a(·) and b(·) is exactly adjusted to the size of
the phase transition. The natural assumptions for showing further regularity

6



CHAPTER 1. INTRODUCTION

properties of minima of the Zygmund multi-phase functional determined by
(G(t), Ha(t), Hb(t)) ≡ (tp[log(1 + t)]p0 , tq[log(1 + t)]q0 , ts[log(1 + t)]s0) with
p, q, s > 1 and s0, q0 ⩾ p0 ⩾ 1, are that

the condition (1.0.13)2
⇐⇒

sup
ρ>0

ωa

(
ρ−

p
n [log(1 + ρ)]−

p0
n

)
1 + ωa

(
ρ−

p
n [log(1 + ρ)]−

p0
n

)ρq−p[log(1 + ρ)]q0−p0

+ sup
ρ>0

ωb

(
ρ−

p
n [log(1 + ρ)]−

p0
n

)
1 + ωb

(
ρ−

p
n [log(1 + ρ)]−

p0
n

)ρs−p[log(1 + ρ)]s0−p0 <∞, (1.0.20)

the condition (1.0.14)2
⇐⇒

sup
ρ>0

ωa(ρ)

1 + ωa(ρ)
ρp−q

[
log

(
1 +

1

ρ

)]q0−p0

+ sup
ρ>0

ωb(ρ)

1 + ωb(ρ)
ρp−s

[
log

(
1 +

1

ρ

)]s0−p0

<∞ (1.0.21)

and

the condition (1.0.15)2
⇐⇒

sup
ρ>0

ωa

(
ρ

1
1−γ

)
1 + ωa

(
ρ

1
1−γ

)ρp−q

[
log

(
1 +

1

ρ

)]q0−p0

+ sup
ρ>0

ωb

(
ρ

1
1−γ

)
1 + ωb

(
ρ

1
1−γ

)ρp−s

[
log

(
1 +

1

ρ

)]s0−p0

<∞. (1.0.22)

Another example of functionals can be determined by (G(t), Ha(t), Hb(t)) ≡
(tp, tq log log(e + t), ts log log(e + t)) with 1 < p ⩽ q, s. Straightforwardly, it

7
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can be seen that

the condition (1.0.13)2
⇐⇒

lim sup
ρ→0+

ωa(ρ)ρ
n−nq

p log log
(
e+ ρ−

n
p

)
+ lim sup

ρ→0+
ωb(ρ)ρ

n−ns
p log log

(
e+ ρ−

n
p

)
<∞, (1.0.23)

the condition (1.0.14)2
⇐⇒

lim sup
ρ→0+

ωa(ρ)ρ
p−q log log

(
e+

1

ρ

)
+ lim sup

ρ→0+
ωb(ρ)ρ

p−s log log

(
e+

1

ρ

)
<∞. (1.0.24)

and

the condition (1.0.15)2
⇐⇒

lim sup
ρ→0+

ωa

(
ρ

1
1−γ

)
ρp−q log log

(
e+

1

ρ

)
+ lim sup

ρ→0+
ωb

(
ρ

1
1−γ

)
ρp−s log log

(
e+

1

ρ

)
<∞. (1.0.25)

The assumptions (1.0.13)-(1.0.15) lead to exhibiting new instances of
Lavrantiev phenomenon [139, 140, 141, 142, 143]. According to the classi-
cal definition, the Lavrentiev gap for the functional F defined in (1.0.10)
under the growth assumption (1.0.11) may appear if

inf
v∈v0+W 1,G

0 (B)

F(v,B) < inf
v∈v0+W 1,G

0 (B)∩W
1,Ψ+

Ω
loc (B)

F(v,B) (1.0.26)

holds for a ball B ⋐ Ω and a function v0 ∈ W 1,∞(B), where Ψ+
Ω is defined

in (2.1.3) below. That is, local minima of F may not belong to W
1,Ψ+

Ω
loc (B) in

8



CHAPTER 1. INTRODUCTION

general. To see this more precisely, let us turn our attention to the classical
case that G(t) ≡ tp, Ha(t) ≡ tq, ωa(ρ) ≡ ρα and ωb(·) ≡ 0 for some 1 < p < q
and α ∈ (0, 1] such that

1 < p < n < n+ α < q. (1.0.27)

Under classical double phase setting together with (1.0.27), the results of
[57, Theorem 4.1] and [80, Section 3] provide us the existence of a coefficient
function 0 ⩽ a(·) ∈ C0,α(Ω) and a boundary datum u0 ∈ W 1,p(B) ∩ L∞(B)
such that the Lavrentiev phenomenon (1.0.26) is occurred. In this regard,
we show that there is no Lavrentiev gap for the functional F in (1.0.10)
satisfying the basic structure assumption (1.0.11) under each of assumptions
(1.0.13)2, (1.0.14)2 and (1.0.15)2, see Theorem 2.3.1.

We shall investigate various regularity results of a local minimizer u of
the functional F in (1.0.10) comprehensively in Chapter 3 , the main con-
tents of Chapter 3 are Theorem 3.1.1 and Theorem 3.1.2 for functionals
modelled on Orlicz multi-phase energy (Theorem 3.6.1 and Theorem 3.6.2
for functionals modelled on Orlicz double phase energy), under each of as-
sumptions (1.0.13)-(1.0.15) for minima. We note that Hölder regularity for
the gradient of a local minimizer in Theorem 3.1.1 (Theorem 3.6.1) is already
optimal in the classical p-Laplacian case that G(t) ≡ tp and a(·) ≡ b(·) ≡ 0
[133, 134]. The assumptions in (3.1.10a)-(3.1.10c) are optimal by Remark
1.0.1. The regularity results reported here complement in a unified way the
main results of [21, 22, 57, 58, 71], where the functions in (1.0.3)-(1.0.5) are
considered under the corresponding conditions we have discussed in (1.0.6a)-
(1.0.6c),(1.0.8a)-(1.0.8c) and (1.0.9), respectively, and the arguments used
in these papers are strongly dependent of the number of phases along with
the Hölder continuity of the coefficient functions in the non-linearity. Our
approaches for proving the above theorems are in fact independent of this
weakness. The approaches we present in Chapter 3 lead to avoiding the use of
difference quotient methods employed in [57, 58] for obtaining various regu-
larity properties of minima of the functional in (1.0.3). In fact, the difference
quotient techniques can deal with the case that the coefficient functions in the
nonlinearity are Hölder continuous. On the other hand, we are treating the
case of not necessarily having Hölder continuous coefficient functions in the
nonlinearity by applying a Harmonic type approximation (see Lemma 2.5.1)
for comparing a homogeneous equation with a limiting equation having the
lipschitz regularity property (see Lemma 3.3.3 and Lemma 3.3.4).

9



CHAPTER 1. INTRODUCTION

The contents in Chapter 3 could provide a guideline to deal with a very
general class of non-autonomous functionals whose energy density behaves
like

F (x, y, z) ≈ Φ(x, |z|) (1.0.28)

for Φ being a certain Young function as we shall introduce in Definition 2.1.1
below. The investigation of such problems has been a field of interest for re-
search activities over the decades. In fact, a main difficulty lies in discovering
the optimal conditions to be placed on Φ(x, t) with respect to (x, t)-variables.
Here we mention a very recent and interesting paper [97] in which the au-
thors give a reasonable answer to such a question by considering a class of
functionals of Uhlenbeck type without any a priori assumption on minima
involved. Essensially, the assumption [97, (VA1)] is not comparable with the
assumption (1.0.13)2. Moreover, the method used in [97] can not be applica-
ble to treat the regularity of minima of the functional F in (1.0.10) having
the solution dependence. Besides the papers mentioned before, there is a rich
literature, see for instance [4, 5, 25, 62, 81, 108, 124, 125, 132] and reference
therein. We also refer to a survey paper [117].

The second part of the thesis is devoted to analyzing the validity of local
Calderón-Zygmund type estimates for distributional solutions to the equation
of divergence form

divA(x,Du) = divB(x, F ) in Ω (1.0.29)

for a bounded open subset Ω ⊂ Rn with n ⩾ 2, where the vector field
A : Ω × Rn → Rn is continuous, differentiable with respect to the second
variable z ∈ Rn \ {0}, and satisfies the following structural conditions with
fixed constants 0 < ν ⩽ L <∞:

|A(x, z)|+ |DzA(x, z)||z| ⩽ L
Ψ(x, |z|)

|z|
,

ν
Ψ(x, |z|)

|z|2
|ξ|2 ⩽ ⟨DzA(x, z)ξ, ξ⟩ ,

|A(x1, z)− A(x2, z)||z| ⩽ L |Ψ(x1, |z|)−Ψ(x2, |z|)| ,

(1.0.30)

whenever z ∈ Rn \ {0}, ξ ∈ Rn, x, x1, x2 ∈ Ω. On the right-hand side of the
equation (1.0.29), we have that B : Ω × Rn → Rn is a Caratheodory vector

10



CHAPTER 1. INTRODUCTION

field satisfying

|z||B(x, z)| ⩽ LΨ(x, |z|) (x ∈ Ω, z ∈ Rn). (1.0.31)

In the structure assumptions (1.0.30) and (1.0.31) above, Ψ is the same one
as initially defined in (1.0.2). We shall consider a distributional solution u of
(1.0.29) under the assumptions (1.0.13) or (1.0.14). A primary model keeping
in mind of the equation (1.0.29) is of the form

div

(
∂tΨ(x, |Du|) Du

|Du|

)
= divB(x, F ) in Ω, (1.0.32)

where ∂t stands for the partial derivative of Ψ(x, t) with respect to t-variable,
which is the Euler-Lagrange equation of the following functional

W 1,1(Ω) ∋ v 7→ P(v,Ω)−
ˆ

Ω

⟨B(x, F ), Dv⟩ dx, (1.0.33)

where the functional P is initially given as in (1.0.1).
The main purpose of the second part of the thesis is to discover and de-

velop optimal conditions on both nonlinearity A(x, z) and the coefficient
function a(·) and b(·) (see (4.1.9) and (4.1.10)), that are not necessarily
Hölder continuous, under which for any distributional solution u ∈ W 1,Ψ(Ω)
to (1.0.29) the following local Calderón-Zygmund type implication

Ψ(x, |F |) ∈ LΥ
loc(Ω) =⇒ Ψ(x, |Du|) ∈ LΥ

loc(Ω) (1.0.34)

with

 

BR/2

Υ(Ψ(x, |Du|)) dx ≲ Υ

 

BR

Ψ(x, |Du|) dx

+

 

BR

Υ(Ψ(x, |F |)) dx

(1.0.35)

holds for every Υ ∈ N with an index s(Υ) ⩾ 1 in the sense of Definition
2.1.1 and every ball BR ⋐ Ω. Let us now discuss previous known results
on Calderón-Zygmund type implications like (1.0.34) as special cases of the
problem we consider:

1. For Ψ(x, t) ≡ tp with p > 1, there has been historical progress of

11
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studying the regularity theory of non-linear p-Laplacian type equations
of divergence form over the last several decades so that there is almost
no possibility to mention all the works that have been done up to now.
We only refer to some noteworthy results, see for instance [5, 10, 41,
44, 45, 47, 48, 49, 102, 103, 105].

2. For Ψ(x, t) ≡ G(t) with G ∈ N , the global Calderón-Zygmund esti-
mates over the whole domain Rn have been achieved in [135] and the
same result was proved for general equations involving a solution de-
pendence over bounded non-smooth domains [16, 42, 50]. Moreover,
the Lipschitz regularity has been proved in [54] for equations and [55]
for systems.

3. For Ψ(x, t) ≡ tp + a(x)tq with 1 < p ⩽ q and 0 ⩽ a(·) ∈ C0,α(Ω) for
some α ∈ (0, 1], the implication (1.0.34) has been obtained in [59, 70]
under the main assumption (1.0.6a). The global implication of (1.0.34)
is proved in [37] over a suitable smooth domain and [36] over nonsmooth
domain under the same assumption (1.0.6a). We also note that the im-
plication (1.0.34) is proved in [59] for bounded solutions of (1.0.29)
under the assumption (1.0.6b), where the nonlinearity A(·) is of varia-
tional form as in (1.0.32) and an additional information on the vector
field F in (1.0.29) is assumed (see [59, (1.27)]).

4. For Ψ(x, t) ≡ tp+a(x)tp log(1+t) with 1 < p and 0 ⩽ a(·) ∈ Cωa(Ω) for
ωa : [0,∞) → [0,∞) being a continuous and concave function vanishing
at the origin, the global Calderón-Zygmund estimates like (1.0.34) is
proved in [38] under the optimal assumption

lim sup
ρ→0+

ωa(ρ) log

(
1

ρ

)
= 0.

5. For Ψ(x, t) ≡ G(t) + a(x)Ha(t) + b(x)Hb(t) with G,Ha, Hb ∈ N and
0 ⩽ a(·) ∈ C0,α(Ω) and 0 ⩽ b(·) ∈ C0,β(Ω) for some α, β ∈ (0, 1],
the above implication (1.0.34) has been proved in [14] under the main
assumption

sup
ρ>0

Ha(ρ)

G(ρ) + [G(ρ)]1+
α
n

<∞ (1.0.36)

12
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when b(·) ≡ 0. If b(·) ̸≡ 0, then the same result is proved in [15] under
the main condition on the nonlinearity

sup
ρ>0

(
Ha(ρ)

G(ρ) + [G(ρ)]1+
α
n

+
Hb(t)

G(ρ) + [G(ρ)]1+
β
n

)
<∞

and max{α, β} ⩽ 2min{α, β}. (1.0.37)

The second assumption in (1.0.37) is unavoidable according to the ar-
guments and structure assumptions in (1.0.30). Recently, the author of
[69] proved the implication (1.0.34) under the condition (1.0.9) when
G(t) ≡ tp, Ha(t) ≡ tq and Hb(t) ≡ ts for 1 < p ⩽ q, s and the nonlinear-
ity A(·) is of variational form in (1.0.32). Notice that if the nonlinearity
A(·) is of variational form like in (1.0.32), then there are advantages
that solutions to corresponding homogeneous problems can be directly
treated as minima of the functional under the consideration.

5. Lastly, we only mention our recent result of [17] on the validity of
the implication of (1.0.34) with the estimate (1.0.35) for more gen-
eral settings involving variable exponents like Ψ(x, t) ≡ [G(t)]p(x) +
a(x)[Ha(t)]

q(x) with G,Ha ∈ N , log-Hölder continuous functions 1 ⩽
p(·), q(·) and 0 ⩽ a(·) ∈ C0,α(Ω) for some α ∈ (0, 1]. We refer reader to
[6, 122, 124, 125] for further regularity results on problems involving
variable exponents

For the Orlicz double phase case, we assume that the vector field A(·) in
(1.0.29) is general one satisfying (1.0.30) and, for the Orlicz multi-phase
case, we let

A(x, z) := AG(z) + a(x)AHa(z) + b(x)AHb
(z) (∀x ∈ Ω, z ∈ Rn)

in (1.0.30) for some reasons to apply harmonic type approximation Lemma
2.5.1, where the vector fields AG, AHa , AHb

: Rn → Rn satisfy the growth
and ellipticity conditions (4.1.17) below, we prove the validity of implication
(1.0.34) for any distributional solution u ∈ W 1,Ψ(Ω) of (1.0.29) under the
main assumptions (1.0.13) or (1.0.14), see Theorem 4.1.1 and Theorem 4.1.2.
Note that we are not allowed directly to apply the approaches employed in
[14, 15, 59, 70, 69] as they strongly rely on a difference quotient argument
which in turn strictly require the Hölder continuity of the modulating co-
efficient functions a(·) and b(·) that are not always assumed to be Hölder
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continuous in Chapter 4. The main tool for establishing (1.0.34)-(1.0.35) is
a reverse Hölder type inequality  

BR/2

[
Ψ−

BR
(|Dw|)

]d
dx


1
d

≲
 

BR

Ψ(x, |Dw|) dx (1.0.38)

for every d ∈ (1,∞) and ball BR ⋐ Ω, see Theorem 4.2.4, where w ∈
W 1,Ψ(BR) is the weak solution to the Dirichlet problem{

divA(x,Dw) = 0 in BR

w ∈ u+W 1,Ψ
0 (BR).

(1.0.39)

We bypass such a nontrivial obstruction by treating the solution of (1.0.39)
as quasi-minima of the Orlicz multi-phase (double phase) energy functional
in (1.0.1) and combining harmonic type approximation with some delicate
decay estimates to conclude (1.0.38). We believe that, using approaches in
Chapter 4 together with adapting methods presented in [36], the global
Calderón-Zygmund type estimates like (1.0.34) can be (should be) proved
on a non-smooth domain under each of assumptions (4.1.9) and (4.1.10).
We also point out that problems with Orlicz growth and generalized Or-
licz growth are central topics as natural generalizations of p-Laplacian prob-
lems which have been an object intensive studies over last decades. Besides
the papers mentioned above, there is a richness of literature on regularity
theory of elliptic/parabolic equations; see for instance, Lipschitz regular-
ity for elliptic/parabolic equations [23, 54, 55, 77, 81], potential estimates
[19, 32, 43], Hölder continuity [35, 94, 95, 96], obstacle problems [11, 31],
Calderón-Zygmund estimates [7, 8, 40, 98, 138] and reference therein. We
also refer to the recent textbook [56].

In the last part of the thesis, we provide a unified way for proving Hölder
regularity for the gradient of viscosity solutions to fully nonlinear elliptic
equations of the form

Φ(x, |Du|)F (D2u) = f(x) in B1, (1.0.40)

where B1 ≡ B1(0) ⊂ Rn with n ⩾ 2 is the unit ball, F : S(n) → R is a
uniformly (λ,Λ)-elliptic operator in the sense of (A1) below (see Chapter 5)
and Φ : B1 × [0,∞) → [0,∞) is a continuous map featuring a degeneracy
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and singularity for the gradient described as in (A2) below (see Chapter 5).
From a variational point of view, the fully nonlinear equation (1.0.40) is

closely related to the energy functional

v 7→
ˆ

B1

φ(x, |Dv|) dx (1.0.41)

for a integral density φ : B1 × [0,∞) → [0,∞) in a way that the Euler-
Lagrange equation corresposnding to the functional (1.0.41) forms an equa-
tion of type (1.0.40). The functional in (1.0.41) is a highly general non-
autonomous functional with Uhlenbeck structure including significant models
such as p−, Orlicz-, p(x)−, double phase- and Orlicz multi-phase growth and
so on. For instance, Orlicz multi-phase functional in (1.0.1) is one of func-
tionals of type in (1.0.41) which we consider in the first parts of the thesis.
Hölder continuity for the gradient of local minima of the functional (1.0.41)
under suitable optimal assumptions has been investigated in [97], where fun-
damental assumptions on the integral density function φ in (1.0.41) are that

there exist constants 1 < p ⩽ q such that the map t 7→ φ(x, t)

tp
is almost

non-decreasing and the map t 7→ φ(x, t)

tq
is almost non-increasing, see [97,

Definition 3.1]. In this regard, our conditions on Φ in (1.0.40) introduced in
(A2) is absolutely natural. Let us discuss known regularity results for vis-
cosity solutions of equations in the form of (1.0.40) for significant special
cases.

1. For Φ(x, t) ≡ tp with i(Φ) = d(Φ) = p > −1 in condition (A2), fully
nonlinear equations (1.0.40) with this type of Φ(x, t) have been studied
in a series of papers. The authors of [26] proved the comparison prin-
ciple and Liouville type theorems in the singular case (−1 < p < 0),
and showed the regularity and uniqueness of the first eigenfunction in
[27]. Alexandrov-Bakelman-Pucci estimates and the Harnack inequal-
ity have been also obtained in [63, 64, 99]. In particular, the authors of
[100] proved local Hölder continuity for the gradient of viscosity solu-
tions of (5.1.1) in the degenerate case (p ⩾ 0). Moreover, the authors
of [9] proved the optimality of Hölder regularity for the gradient of vis-
cosity solutions for the same problem in [100] by showing that viscosity

solutions are C1,β
loc with β = min

{
ᾱ,

1

p+ 1

}
and β ∈ (0, ᾱ), where
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ᾱ ∈ (0, 1) is an universal Hölder exponent coming from the Krylov-
Safonov regularity for the homogeneous equation F (D2h) = 0.

2. For Φ(x, t) ≡ tp + a(x)tq with −1 < p, q and 0 ⩽ a(·) ∈ C(B1),
the constants in (A2) can be determined as i(Φ) = min{p, q} and
d(Φ) = max{p, q}. The author of [67] proved the local C1,β−regularity
of viscosity solutions of (5.1.1) for 0 ⩽ p ⩽ q. Moreover, in this de-
generate case, the sharpness of the local C1,β-regularity estimates for
bounded viscosity solutions is shown in [65].

3. For Φ(x, t) = tp(x) with p(·) ∈ C(B1), i(Φ) = inf
x∈B1

p(x) > −1 and

d(Φ) = sup
x∈B1

p(x) in (A2), C1,β-regularity of viscosity solutions has been

studied in [34]. In this paper, we provide a novel way to prove Hölder
continuity for the gradient of viscosity solutions of (5.1.1) for both
degenerate/singular cases in the full generality.

4. For Φ(x, t) ≡ tp(x)+a(x)tq(x) with functions 0 ⩽ a(·) ∈ C(B1) and −1 <
p(·), q(·) in C(B1), the constants in (A2) are i(Φ) = inf

x∈B1

{p(x), q(x)}
and d(Φ) = sup

x∈B1

{p(x), q(x)}. In [85], local Hölder continuity for the

gradient has been proved when 0 ⩽ p(·) ⩽ q(·).

For a variational point of these special cases we have discussed above,
we refer to the recent survey paper [118] presenting important results in
problems with nonstandard growth conditions. We also point out the very
recent paper [104] dealing with viscosity solutions of an equation of the form

|Du|β(x,u,Du)F (D2u) = f(x) in B1, (1.0.42)

where β : B1 × R × Rn → R is a map satisfying 0 < βm ⩽ β(·) ⩽ βM
for some positive constants βm and βM . In [104], local Hölder continuity
for the gradient of viscosity solutions of (1.0.42) is obtained under general
conditions on the exponent function β(·) for the degenerate case, while the
singular case is not be treated due to the methods employed there and the
equation (1.0.40) can not be represented as (1.0.42) in general. The main
results of Chapter 5 are contained in Theorem 5.1.1, which are sharp in the
view of an example given in [100]. As we have discussed above, the results
of Theorem 5.1.1 cover the main results of the papers [34, 85, 67, 100] for
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both cases involving degenerate/singular terms in a unified way. Moreover,
the results of Theorem 5.1.1 cover another important cases such as

1. Φ(x, t) ≡ tp + a(x)tp log(e + t) with −1 < p and 0 ⩽ a(·) ∈ C(B1),
where the constants in (A2) are given by i(Φ) = p and d(Φ) = p + ε
for any ε > 0,

2. Φ(x, t) ≡ ϕ(t) + a(x)ψ(t) for suitable functions ϕ, ψ and 0 ⩽ a(·) ∈
C(B1).

The rest of the thesis organized as follows. In the next chapter, we in-
troduce notations, functions spaces, analytic tools and basic results such as
Absence of Lavrentiev phenomenon, Sobolev Poincaré type inequalities and
Harmonic type approximation to be employed throughout the thesis. In chap-
ter 3, we discuss various regularity results of minima of Orlicz multi-phase
functionals. Chapter 4 is devoted to proving local Calderón-Zygmund esti-
mates for Orlicz multi-phase problems. In last chapter, we investigate Hölder
regularity for the gradient of viscosity solutions to a class of fully nonlinear
equations.
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Chapter 2

Preliminaries and auxiliary
tools

2.1 Notations

Throughout the thesis, we shall always denote by c to mean a generic positive
constant, possibly varying from line to line, while special constants will be
denoted by c1, c̄, c∗, cε, and so on. All such constants will be always not smaller
than one; moreover relevant dependencies on parameters will be emphasized
using parentheses, that is, for example c ≡ c(n, s(G), ν, L) means that c
depends only on n, s(G), ν, L. We denote byBR(x0) = {x ∈ Rn : |x−x0| < R}
the open ball in Rn centered at x0 ∈ Rn with a radius R > 0. If the center is
clear in the context, we shall omit the center point by writing BR ≡ BR(x0).
We shall also denote B1 ≡ B1(0) ⊂ Rn unless the center is specified. With
f : B → RN (N ⩾ 1) being a measurable map for a measurable subset
B ⊂ Rn having finite and positive measure, we denote by

(f)B ≡
 

B

f(x) dx =
1

|B|

ˆ

B

f(x) dx

its integral average over B. For a measurable map f : Ω → R and an open
subset B ⊂ Ω with σ : [0,∞) → [0,∞) being a continuous and concave
function such that σ(0) = 0, we shall use the notation as

[f ]σ;B := sup
x,y∈B,x ̸=y

|f(x)− f(y)|
σ(|x− y|)

and [f ]σ ≡ [f ]σ;Ω.
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We denote by Cσ(Ω) the space of uniformly continuous functions on Ω whose
modulus of continuity does not exceed σ. The space Cσ(Ω) is endowed with
the norm defined for a function f by

∥f∥Cσ(Ω) = ∥f∥L∞(Ω) + [f ]σ;Ω.

In particular, if σ(ρ) = ρα for some α ∈ (0, 1], then we denote

[f ]0,α;B := sup
x,y∈B,x ̸=y

|f(x)− f(y)|
|x− y|α

and [f ]0,α ≡ [f ]0,α;Ω.

For a given continuous and concave function σ : [0,∞) → [0,∞) vanishing
at the origin, we shall use some elementary properties in the future as

σ(λt) ⩽ λσ(t) for every λ ⩾ 1 and t ⩾ 0 (2.1.1)

and

1

σ(λt)
⩽

1

σ(t)
+

1

λσ(t)
for every λ, t > 0 unless σ is constant.

(2.1.2)

Throughout the thesis, for any given open subset B ⊂ Ω, we shall also
use the notations by

a−(B) := inf
x∈B

a(x), a+(B) := sup
x∈B

a(x),

b−(B) := inf
x∈B

b(x), b+(B) := sup
x∈B

b(x),

Ψ−
B (t) := G(t) + inf

x∈B
a(x)Ha(t) + inf

x∈B
b(x)Hb(t),

Ψ+
B (t) := G(t) + sup

x∈B
a(x)Ha(t) + sup

x∈B
b(x)Hb(t) (2.1.3)

for every t ⩾ 0.

Definition 2.1.1. A measurable function Φ : Ω × [0,∞) → [0,∞) is called
an Young function if, for any fixed x ∈ Ω, the function Φ(x, ·) increasing and
convex such that

Φ(x, 0) = 0, lim
t→∞

Φ(x, t) = +∞, lim
t→0+

Φ(x, t)

t
= 0 and lim

t→∞

Φ(x, t)

t
= +∞.
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We denote by N (Ω) the set of Young functions Φ : Ω × [0,∞) → [0,∞)
such that, for any fixed x ∈ Ω, Φ(x, ·) ∈ C1([0,∞)) ∩ C2((0,∞)) and there
exists a constant s(Φ) ⩾ 1 with

1

s(Φ)
⩽
∂2ttΦ(x, t)t

∂tΦ(x, t)
⩽ s(Φ) (2.1.4)

uniformly for all x ∈ Ω and t > 0, where in the future we shall call this
number s(Φ) by an index of Φ. Furthermore, we denote also N to mean the
set of Young functions Φ ∈ N (Ω) such that Φ does not depend on the first
variable x.

As a direct consequence of the above definition, for any Φ ∈ N (Ω) with
an index s(Φ) ⩾ 1 and any fixed point x ∈ Ω, we can observe

t2∂2ttΦ(x, t) ≈ t∂tΦ(x, t) ≈ Φ(x, t) (2.1.5)

for uniformly all t > 0, where note that all implied constants only depend
only on s(Φ). Now we state some important properties of functions of N (Ω),
see [14, 15, 39] for their proofs.

Lemma 2.1.1. Let Φ ∈ N (Ω) with an index s(Φ) ⩾ 1. Then, for any fixed
x ∈ Ω, we have

1. Λ
1+ 1

s(Φ)

0 Φ(x, t) ⩽ Φ(x,Λ0t) ⩽ Λ
s(Φ)+1
0 Φ(x, t) for any Λ0 ⩾ 1 and t ⩾ 0.

2. λ
1+s(Φ)
0 Φ(x, t) ⩽ Φ(x, λ0t) ⩽ λ

1
s(Φ)

+1

0 Φ(x, t) for any 0 < λ0 ⩽ 1 and
t ⩾ 0.

3. Λ
1

1+s(Φ)

0 Φ−1
t (x, t) ⩽ Φ−1

t (x,Λ0t) ⩽ Λ
s(Φ)

1+s(Φ)

0 Φ−1
t (x, t) for any Λ0 ⩾ 1 and

t ⩾ 0.

4. λ
s(Φ)

1+s(Φ)

0 Φ−1
t (x, t) ⩽ Φ−1

t (x, λ0t) ⩽ λ
1

1+s(Φ)

0 Φ−1
t (x, t) for any 0 < λ0 ⩽ 1

and t ⩾ 0.

In the above lemma, for a fixed point x ∈ Ω, Φ−1
t (x, t) is understood by

the inverse function of Φ(x, t) with respect to t-variable.

Remark 2.1.1. For a given Φ ∈ N (Ω) with an index s(Φ) ⩾ 1, we notice
useful but direct consequences of Lemma 2.1.1 as

Φ(x, t+ s) ⩽ Φ(x, 2t) + Φ(x, 2s) ⩽ 21+s(Φ) (Φ(x, t) + Φ(x, s)) (2.1.6)
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for every x ∈ Ω and t, s ⩾ 0. Furthermore, for any fixed x ∈ Ω, we have

∂tΦ(x, t) ⩽ (1 + s(Φ))
Φ(x, t)

t
⩽ (1 + s(Φ))[Φ(x, 1)]

s(Φ)
1+s(Φ) [Φ(x, t)]

1
1+s(Φ)

for every 0 ⩽ t ⩽ 1

and

∂tΦ(x, t) ⩽ (1 + s(Φ))
Φ(x, t)

t
⩽ (1 + s(Φ))[Φ(x, 1)]

1
1+s(Φ) [Φ(x, t)]

s(Φ)
1+s(Φ)

for every t ⩾ 1.

Putting together the last two inequalities, we have the following very useful
inequality which will be applied in the future

Φ(x, t)

t
≈ ∂tΦ(x, t)

⩽ (1 + s(Φ))
(
[Φ(x, 1)]

s(Φ)
1+s(Φ) [Φ(x, t)]

1
1+s(Φ) + [Φ(x, 1)]

1
1+s(Φ) [Φ(x, t)]

s(Φ)
1+s(Φ)

)
(2.1.7)

for every x ∈ Ω and t ⩾ 0.

Lemma 2.1.2. Let Φ, Φ̃ ∈ N (Ω) with indices s(Φ), s(Φ̃) ⩾ 1. Then,

1. For any non-negative real numbers a, b satisfying a+ b > 0, aΦ+ bΦ̃ ∈
N (Ω) with s(aΦ + bΦ̃) = s(Φ) + s(Φ̃) and ΦΦ̃ ∈ N (Ω) with s(ΦΦ̃) =
4s(Φ)s(Φ̃)(s(Φ) + s(Φ̃)).

2. For any number m ⩾ 1, Φm ∈ N (Ω) with s(Φm) = s(Φ) + (m −
1)(s(Φ) + 1).

3. For any number µ ⩾ 0, Φµ(x, t) := tµΦ(x, t) ∈ N (Ω) with s(Φµ) =
µ+ 3[s(Φ)]2.

4. There exists θ0 ∈ (0, 1) depending only on s(Φ) such that Φθ ∈ N (Ω)
for every θ ∈ (θ0, 1] with s(Φ

θ) depending only on s(Φ) and θ.

Lemma 2.1.3. Let Φ ∈ N with an index s(Φ) ⩾ 1. Then t 7→ Φ
(
t

1
s(Φ)+1

)
is

a concave function.

21



CHAPTER 2. PRELIMINARIES AND AUXILIARY TOOLS

Lemma 2.1.4. Let Φ ∈ N (Ω) with an index s(Φ) ⩾ 1. Then there exists a
positive constant c ≡ c(s(Φ)) such that

s1∂tΦ(x, s2) + s2∂tΦ(x, s1) ⩽ εΦ(x, s1) +
c

εs(Φ)
Φ(x, s2)

holds for all s1, s2 ⩾ 0 and 0 < ε ⩽ 1.

Lemma 2.1.5. Let Φ1,Φ2 ∈ N with indices s(Φ1), s(Φ2) ⩾ 1. There exists
a constant d0 ≡ d0(s(Φ1), s(Φ2)) such that the map

t 7→
(
Φ1 ◦ Φ−1

2

) (
t
1
d

)
is concave in (0,∞) for every d ⩾ d0.

Proof. Let us denote by hd(t) :=
(
Φ1 ◦ Φ−1

2

) (
t
1
d

)
and gd(t) := Φ−1

2

(
t
1
d

)
.

It suffices to check h′′d ⩽ 0 in (0,∞) for every d ⩾ d0(s(Φ1), s(Φ2)). Direct
computations and (2.1.4) imply

h′′d(t) = Φ′′
1(gd(t))[g

′
d(t)]

2 + Φ′
1(gd(t))g

′′
d(t)

⩽ Φ′
1(g(t))

(
(1 + s(Φ1))

[g′d(t)]
2

gd(t)
+ g′′d(t)

)
.

Since Φ′
1 ⩾ 0 in (0,∞), we calculate the term in the bracket. By again

elementary calculations and recalling Φ′′
2 ⩾ 0 in (0,∞), we have

g′d(t) =
1
d
t
1
d
−1

Φ′
2(gd(t))

and g′′d(t) ⩽
1
d

(
1
d
− 1
)
t
1
d
−2

Φ′
2(gd(t))

.

Then inserting the content of last display into the previous one and using
(2.1.5), we find

(1 + s(Φ1))
[g′d(t)]

2

gd(t)
+ g′′d(t) ⩽

t
1
d
−2

dΦ′
2(gd(t))

(
d0
d

− 1

)
⩽ 0

for every constant d ⩾ d0 ≡ d0(s(Φ1), s(Φ2)).

Remark 2.1.2. We note that Ψ ∈ N (Ω) with an index s(Ψ) = s(G)+s(Ha)+
s(Hb) by Lemma 2.1.2. In particular, for every open subset B ⊂ Ω, it holds
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that Ψ+
B ,Ψ

−
B ∈ N with indices s

(
Ψ+

B
)
= s(G)+ s(Ha)+ s(Hb) and s

(
Ψ−

B
)
=

s(G) + s(Ha) + s(Hb).

For a given Young function Φ ∈ N (Ω) with an index s(Φ) ⩾ 1, we define
the vector field VΦ : Ω× Rn \ {0} → Rn as follows

VΦ(x, z) :=

[
∂tΦ(x, |z|)

|z|

] 1
2

z. (2.1.8)

Furthermore, we shall often use the following inequalities that

1ˆ

0

Φ(x, |θz1 + (1− θ)z2|)
|θz1 + (1− θ)z2|2

dθ ≈ Φ(x, |z1|+ |z2|)
(|z1|+ |z2|)2

, (2.1.9)

|VΦ(x, z1)− VΦ(x, z2)|2 ≈ ∂2ttΦ(x, |z1|+ |z2|)|z1 − z2|2

≈ ∂tΦ(x, |z1|+ |z2|)
|z1|+ |z2|

|z1 − z2|2, (2.1.10)

Φ(x, |z1 − z2|) ≲ Φ(x, |z1|+ |z2|)
|z1 − z2|
|z1|+ |z2|

(2.1.11)

and〈
∂tΦ(x, |z1|)

z1
|z1|

− ∂tΦ(x, |z2|)
z2
|z2|

, z1 − z2

〉
≈ |VΦ(x, z1)− VΦ(x, z2)|2

(2.1.12)

hold true, whenever x ∈ Ω and z1, z2 ∈ Rn \ {0}, where all implied constants
in (2.1.9)-(2.1.12) depend on n and s(Φ) (see [73] for further discussions).
Moreover, we have the following useful inequality

|VΦ(x, z2)− VΦ(x, z1)|2 ≲
1ˆ

0

|VΦ(x, θz2 + (1− θ)z1)− VΦ(x, z1)|2
dθ

θ
(∀x ∈ Ω),

(2.1.13)
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which follows from the following estimates that

1ˆ

0

|VΦ(x, θz2 + (1− θ)z1)− VΦ(x, z1)|2
dθ

θ

(2.1.10)

≳

1ˆ

0

Φ(x, |θz2 + (1− θ)z1|+ |z1|)
(|θz2 + (1− θ)z1|+ |z1|)2

θ|z2 − z1|2 dθ

≳
|z2 − z1|2

(|z2|+ |z1|)2

1ˆ

0

Φ(x, |θz2 + (1− θ)z1|+ |z1|)θ dθ

≳
|z2 − z1|2

(|z2|+ |z1|)2
Φ

x, 1ˆ

0

(|θz2 + (1− θ)z1|+ |z1|)θ dθ


≳

|z2 − z1|2

(|z2|+ |z1|)2
Φ (x, |z2|+ |z1|)

(2.1.10)
≈ |VΦ(x, z2)− VΦ(x, z1)|2

hold with having all implied constants in the above display depending on n
and s(Φ), whenever x ∈ Ω and z1, z2 ∈ Rn\{0}, where in the third inequality
of the last display we have applied Jensen’s inequality to the convex function
Φ(x, ·) with respect to measure θ dθ.

Lemma 2.1.1. Let Φ ∈ N (Ω) with an index s(Φ). Then there exists a con-
stant c ≡ c(s(Φ)) such that

Φ(x, |z1 − z2|) ≤ εΦ(x, |z1|) +
c

ε
|VΦ(x, z1)− VΦ(x, z2)|2

holds, whenever ε ∈ (0, 1), x ∈ Ω and z1, z2 ∈ Rn \ {0}.

2.2 Musielak-Orlicz and Musielak-Orlicz-Sobolev

spaces

We now introduce the Musielak-Orlicz spaces (generalized Orlicz spaces),
which generalize the Orlicz spaces. Let Φ : Ω× [0,∞) → [0,∞) be an Young
function. Here we present some definitions and properties associated to Young
functions.
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Definition 2.2.1. Let Φ be a Young function.

1. Φ is said to satisfy the ∆2-condition, denoted by Φ ∈ ∆2, if there exists
a positive number ∆2(Φ) such that Φ(x, 2t) ⩽ ∆2(Φ)Φ(x, t) for all
x ∈ Ω and t ⩾ 0.

2. Φ is said to satisfy the ∇2-condition, denoted by Φ ∈ ∇2, if there exists
a positive number ∇2(Φ) > 1 such that Φ(x,∇2(Φ) t) ⩾ 2∇2(Φ)Φ(x, t)
for all x ∈ Ω and t ≥ 0.

3. We write Φ ∈ ∆2 ∩∇2 if Φ ∈ ∆2 and Φ ∈ ∇2.

For a given Young function Φ, we define the complementary function Φ∗

of Φ by, for each x ∈ Ω and t ⩾ 0,

Φ∗(x, t) = sup{st− Φ(x, s) : s ≥ 0}.

Then Φ∗ satisfies all the conditions to be a Young function. One can see that
(Φ∗)∗ = Φ and that Φ ∈ ∇2 if and only if Φ∗ ∈ ∆2 with 2∇2(Φ) = ∆2(Φ

∗).
For an Young function Φ, the Musielak-Orlicz class KΦ(Ω;RN), N ⩾ 1,

consists of all measurable functions v : Ω → RN satisfying

ˆ

Ω

Φ(x, |v(x)|) dx < +∞.

The Musielak-Orlicz space LΦ(Ω;RN) is the vector space generated byKΦ(Ω;RN).
If Φ ∈ ∆2, then K

Φ(Ω;RN) = LΦ(Ω;RN) and this space is a Banach space
under the Luxemburg norm

∥v∥LΦ(Ω;RN ) = inf

σ > 0 :

ˆ

Ω

Φ

(
x,

|v(x)|
σ

)
dx ≤ 1

 .

The Musielak-Orlicz-Sobolev space W 1,Φ(Ω;RN) is the function space of
all measurable functions v ∈ LΦ(Ω;RN) such that its distributional gradient
vector Dv belongs to LΦ(Ω;RNn). For v ∈ W 1,Φ(Ω;RN), we define its norm
to be

∥v∥W 1,Φ(Ω;RN ) = ∥v∥LΦ(Ω;RN ) + ∥Dv∥LΦ(Ω;RNn) .

The spaceW 1,Φ
0 (Ω;RN) is defined as the closure of C∞

0 (Ω;RN) inW 1,Φ(Ω;RN).
For N = 1, we simply write LΦ(Ω) := LΦ(Ω;R) and W 1,Φ(Ω) := W 1,Φ(Ω;R).
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For a detailed discussion of the Musielak-Orlicz spaces and the associated
Sobolev spaces, we refer the reader to [2, 24, 56, 72, 92, 93, 119, 127, 131]
and references therein.

We end up this preliminary section with presenting some standard tech-
nical lemmas which will be applied later, see for instance [90, 91, 109].

Lemma 2.2.1. Let h : [ρ0, ρ1] → R be a non-negative and bounded function,
and θ ∈ (0, 1), A,B ⩾ 0, γ1, γ2 ⩾ 0. Assume that

h(t) ⩽ θh(s) +
A

(s− t)γ1
+

B

(s− t)γ2

holds for ρ0 ⩽ t < s ⩽ ρ1. Then there exists a constant c ≡ c(θ, γ1, γ2)
satisfying the following inequality

h(ρ0) ⩽
cA

(ρ1 − ρ0)γ1
+

cB

(ρ1 − ρ0)γ2
.

Lemma 2.2.2. Let {Yi}∞i=0 be a sequence of nonnegative numbers satisfying
the following recursive inequalities

Yi+1 ⩽ CbiY 1+τ0
i

with some fixed positive constant C, b > 1 and τ0 > 0 for every i = 0, 1, 2, . . ..
If

Y0 ⩽ C
− 1

τ0 b
− 1

τ20 ,

then Yi → 0 as i→ ∞.

Lemma 2.2.3. Let v ∈ W 1,1(Bρ) for some ball Bρ ⊂ Rn. Then there exists
c ≡ c(n) such that

(l − k)|Bρ ∩ {v > l}|1−
1
n ⩽

c|Bρ|
|Bρ \ {v > k}|

ˆ

Bρ∩{k<v⩽l}

|Dv| dx

holds, whenever l and k are real numbers with l > k.
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2.3 Absence of Lavrentiev phenomenon

Here we deal with the absence of Lavrantiev phenomenon under the assump-
tions introduced in (1.0.13)2, (1.0.14)2 and (1.0.15)2. The following theorem
widely covers the results of [57, Theorem 4.1], [58, Proposition 3.6], [39, The-
orem 3.1], [22, Theorem 4], [14, Theorem 4.1] and [15, Theorem 3.1].

Theorem 2.3.1. Let P be the functional defined in (1.0.1) with G,Ha, Hb ∈
N and the coefficient functions 0 ⩽ a(·) ∈ Cωa(Ω) and 0 ⩽ b(·) ∈ Cωb(Ω) for
the functions ωa, ωb being continuous, concave and vanishing at 0.

1. If the condition (1.0.13)2 is satisfied, then for any function v ∈ W 1,Ψ
loc (Ω)

and ball BR ≡ BR(x0) ⋐ B̃ ⋐ Ω with P(v, B̃) < ∞, there exists a
sequence of functions {vk}∞k=1 ⊂ W 1,∞(BR) such that

vk → v in W 1,G(BR) and P(vk, BR) → P(v,BR). (2.3.1)

2. If the condition (1.0.14)2 is satisfied, then for any function v ∈ W 1,Ψ
loc (Ω)∩

L∞
loc(Ω) and ball BR ≡ BR(x0) ⋐ B̃ ⋐ Ω with P(v, B̃) <∞, there exists

a sequence of functions {vk}∞k=1 ⊂ W 1,∞(BR) such that

vk → v in W 1,G(BR), P(vk, BR) → P(v,BR)

and lim sup
k→∞

∥vk∥L∞(BR) ⩽ ∥v∥L∞(BR) . (2.3.2)

3. Let v ∈ W 1,Ψ(Ω)∩C0,γ(Ω) with some γ ∈ (0, 1) be a local Q-minimizer
of the functional P under the assumption (1.0.15)2. Then, for every
ball BR ⋐ Ω, there exists a sequence of functions {vk}∞k=1 ⊂ W 1,∞(BR)
such that

vk → v in W 1,G(BR) and P(vk, BR) → P(v,BR). (2.3.3)

Proof. Essentially, the proof for the first two parts is similar to the one of
[39, Theorem 3.1]. Since our assumptions are weaker than the assumptions
considered there, we provide the detailed proof in any case. First we fix ε0 ∈
(0, 1) such that BR ⋐ BR+ε0 ⋐ B̃ ⋐ Ω. Let ρ ∈ C∞

0 (B1) be a non-negative

standard mollifier with

ˆ

Rn

ρ dx = 1. Then we set ρε(x) :=
1

εn
ρ
(x
ε

)
for x ∈ Bε
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with 0 < ε < ε0. Clearly ρε ∈ C∞
0 (Bε),

ˆ

Rn

ρε dx = 1, 0 ⩽ ρε ⩽ c(n)ε−n and

|Dρε| ⩽ c(n)ε−(n+1). For every 0 < ε < ε0/2, we consider the following
functions:

vε(x) := (v ∗ ρε)(x), aε(x) := inf
y∈B2ε(x)

a(y), bε(x) := inf
y∈B2ε(x)

b(y) (2.3.4)

and

Ψε(x, t) := G(t) + aε(x)Ha(t) + bε(x)Hb(t) (2.3.5)

for every x ∈ BR and t ⩾ 0.

1. By Jensen’s inequality, for a fixed x ∈ BR, we have

G(|Dvε(x)|) = G (|(Dv ∗ ρε)(x)|) ⩽
ˆ

Rn

G(|Dv(x− y)|)ρε(y) dy ⩽ cε−n.

It follows from (1.0.13)2 and the last display that

Ha(|Dvε(x)|) =
(Ha ◦G−1) (G(|Dvε(x)|))

G(|Dvε(x)|)
G(|Dvε(x)|)

⩽ λ1

(
1 +

[
ωa

(
[G(|Dvε(x)|)]−

1
n

)]−1
)
G(|Dvε(x)|)

⩽ c
(
1 + [ωa(ε)]

−1
)
G(|Dvε(x)|)

⩽ c
(
1 + [ωa(ε)]

−1
)
Ψε(x, |Dvε(x)|). (2.3.6)

Similarly as above, we have

Hb(|Dvε(x)|) ⩽ c
(
1 + [ωb(ε)]

−1
)
Ψε(x, |Dvε(x)|). (2.3.7)

2. Since v is locally bounded in Ω, we have

|Dvε(x)| = |(v ∗Dρε)(x)| ⩽
ˆ

Rn

|v(x− y)||Dρε(y)| dy ⩽ c(n) ∥v∥L∞(B̃) ε
−1.
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Then, the assumption (1.0.14)2 and the last display imply

Ha(|Dvε(x)|) =
Ha(|Dvε(x)|)
G(|Dvε(x)|)

G(|Dvε(x)|)

⩽ λ2

(
1 +

[
ωa

(
|Dvε(x)|−1

)]−1
)
G(|Dvε(x)|)

⩽ c
(
1 + [ωa(ε)]

−1
)
G(|Dvε(x)|)

⩽ c
(
1 + [ωa(ε)]

−1
)
Ψε(x, |Dvε(x)|) (2.3.8)

with some constant c ≡ c
(
n, λ2, ∥v∥L∞(B̃)

)
for every x ∈ BR. Arguing

in the same way, for every x ∈ BR, we have

Hb(|Dvε(x)|) ⩽ c
(
1 + [ωb(ε)]

−1
)
Ψε(x, |Dvε(x)|). (2.3.9)

Using the continuity of the coefficient functions a(·) and b(·) and recalling
the definition of Ψε in (2.3.6), for every x ∈ BR, we have

Ψ(x, |Dvε(x)|) ⩽ Ψε(x, |Dvε(x)|) + |a(x)− aε(x)|Ha(|Dfε(x)|)
+ |b(x)− bε(x)|Hb(|Dfε(x)|)

⩽ Ψε(x, |Dvε(x)|) + 4[a]ωaωa(ε)Ha(|Dvε(x)|)
+ 4[b]ωb

ωb(ε)Hb(|Dvε(x)|). (2.3.10)

Therefore, taking into account (2.3.6)-(2.3.7) when the first case comes into
play, and (2.3.8)-(2.3.9) when the second case is considered, in any case, it
follows from (2.3.10) that

Ψ(x, |Dvε(x)|) ⩽ cΨε(x, |Dvε(x)|) + cωa(ε)(1 + [ωa(ε)]
−1)Ψε(x, |Dvε(x)|)

cωb(ε)(1 + [ωb(ε)]
−1)Ψε(x, |Dvε(x)|) ⩽ cΨε(x, |Dvε(x)|)

(2.3.11)

for some constant c being independent of ε. Therefore, by Jensen’s inequality,
we get

Ψε(x, |Dvε(x)|) ⩽
ˆ

Bε(x)

Ψε(x, |Dv(y)|)ρε(x− y) dy
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⩽
ˆ

Bε(x)

Ψ(y, |Dv(y)|)ρε(x− y) dy

= [Ψ(·, |Dv(·)|) ∗ ρε](x) =: [Ψ(·, |Dv(·)|]ε(x). (2.3.12)

Hence, in any case, using (2.3.11)-(2.3.12), we conclude that

Ψ(x, |Dvε(x)|) ⩽ c[Ψ(·, |Dv(·)|)]ε(x) (2.3.13)

holds every x ∈ BR with a constant c independent of ε. Since [Ψ(·, |Dv(·)|)]ε →
Ψ(·, |Dv(·)|) strongly in L1(BR), we are able to apply the general Lebesgue’s
dominated convergence theorem of [126, Theorem 19] to obtain a sequence
of functions {vk} := {vεk} ⊂ C∞

0 (B̃) satisfying (2.3.1) for the first case and
(2.3.2)1,2 for the second case with some suitable choice of εk → 0. Clearly, the
assertion (2.3.2)3 comes from the very definition of mollification of v defined
in (2.3.4).

3. Now we turn our attention to proving the last part of the theorem.
Applying a Caccioppoli type inequality of Lemma 3.2.2 under the as-
sumption (1.0.15)2 below, we see that

 

Bε(x)

Ψε(x, |Dv(z)|) dz ⩽ c

 

B2ε(x)

Ψε

(
x,

∣∣∣∣v(z)− (v)B2ε(x)

ε

∣∣∣∣) dz

(2.3.14)

for a constant c independent of ε. Therefore, by the definition of the
convolution, the fact that Ψε(x, ·) is convex for any fixed x ∈ BR and
(2.3.14), we have

|Dvε(x)| ⩽ c (Ψε(x, ·))−1
t ◦Ψε

x,  
Bε(x)

|Dv(z)| dz


⩽ c (Ψε(x, ·))−1

t

  

Bε(x)

Ψε(x, |Dv(z)|) dz
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⩽ c (Ψε(x, ·))−1
t

  

B2ε(x)

Ψε

(
x,

∣∣∣∣v(z)− (v)B2ε(x)

ε

∣∣∣∣) dz

 ⩽ cεγ−1

(2.3.15)

with some constant c independent of ε, whenever x ∈ BR and ε ∈
(0, ε0/4), where we have also used the assumption v ∈ C0,γ(Ω) for some
γ ∈ (0, 1) and Lemma 2.1.1 together with Remark 2.1.2. Recalling the
definition of Ψε in (2.3.5), using the modulus of continuity of functions
a(·), b(·) and the assumption (1.0.15)2, for every x ∈ BR, we estimate

Ψ(x, |Dvε(x)|) ⩽ Ψε(x, |Dvε(x)|) + |aε(x)− a(x)|Ha(|Dvε(x)|)
+ |bε(x)− b(x)|Hb(|Dvε(x)|)

⩽ Ψε(x, |Dvε(x)|)

+ cωa(ε)

(
1 +

[
ωa

(
|Dvε(x)|−

1
1−γ

)]−1
)
G(|Dvε(x)|)

+ cωb(ε)

(
1 +

[
ωb

(
|Dvε(x)|−

1
1−γ

)]−1
)
G(|Dvε(x)|)

⩽ cΨε(x, |Dvε(x)|)

for a constant c independent of ε, where we have also used (2.3.15).
Then arguing in the same way as in (2.3.12)-(2.3.13), we find a sequence
of functions {vk}∞k=1 ⊂ W 1,∞(BR) satisfying (2.3.3). The proof is now
finished.

2.4 Sobolev-Poincaré type inequalities

In the present section we provide a Sobolev-Poincaré type inequality for
functions v ∈ W 1,Ψ(BR) with some ball BR ⊂ Ω, which is one of key points
for further investigations. For this, first we give a Sobolev-Poincaré type
inequality for functions of W 1,Φ(BR) with Φ ∈ N and a ball BR ⊂ Rn.

Lemma 2.4.1. Let Φ ∈ N with an index s(Φ) ⩾ 1. For any d0 ∈
[
1,

n

n− 1

)
,
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there exists θ ≡ θ(n, s(Φ), d0) ∈ (0, 1) such that 

BR

[
Φ

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d0 dx
 1

d0

⩽ c

 

BR

[Φ(|Dv|)]θ dx

 1
θ

(2.4.1)

holds for some constant c ≡ c(n, s(Φ), d0), whenever v ∈ W 1,Φ(BR) and
BR ⊂ Rn is a ball. Moreover, the above estimate still holds with v − (v)BR

replaced by v if v ∈ W 1,Φ
0 (BR).

Proof. First note by Lemma 2.1.24 that there exists θ ≡ θ(n, s(Φ), d0) ∈(
(n− 1)d0

n
, 1

)
such that Φθ ∈ N with an index s(Φθ) depending on n, s(Φ), d0.

Therefore, the following classical formula

|v(x)− (v)BR
| ⩽ c(n)

ˆ

BR

|Dv(y)|
|x− y|n−1

dy (2.4.2)

holds for a.e x ∈ BR, see for instance [91, Lemma 7.14]. Letting E := 

BR

Φθ(|Dv|) dx, one can assume that E > 0, otherwise v is constant on BR

and the inequality (2.4.1) is trivial. Using (2.4.2), the fact that Φ is increasing
and Lemma 2.1.1, we have

I :=

 

BR

[
Φ

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d0 dx ⩽ c

 

BR

Φ
ˆ

BR

|Dv(y)|
R|x− y|n−1

dy

d0

dx

with c ≡ c(n, s(Φ), d0). Since

ˆ

BR

1

R|x− y|n−1
dy < c(n), where this constant

is independent of x ∈ BR and a ball BR, we apply Jensen’s inequality to the
convex function Φθ with respect to the measure R−1|x−y|−(n−1) dy to obtain

I ⩽ c

 

BR

ˆ

BR

[Φ(|Dv(y)|)]θ

R|x− y|n−1
dy


d0
θ

dx
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= cR
(n−1)d0

θ E
d0
θ

 

BR

 

BR

[Φ(|Dv(y)|)]θ

|x− y|n−1
E−1 dy


d0
θ

dx

⩽ cR
(n−1)d0

θ E
d0
θ

 

BR

 

BR

[Φ(|Dv(y)|)]θ

|x− y|
(n−1)d0

θ

E−1 dy dx, (2.4.3)

where in the last estimate we have applied again Jensen’s inequality to the

convex function t 7→ t
d0
θ with respect to the measure E−1Φθ(|Dv(y)|) dy. We

observe that 

BR

1

|x− y|
(n−1)d0

θ

dx ⩽
1

|BR|

ˆ

B2R(y)

1

|x− y|
(n−1)d0

θ

dx ⩽ c(n, s(Φ), d)R− (n−1)d0
θ ,

which is possible since
(n− 1)d0

θ
< n. Inserting the last estimate into (2.4.3),

the inequality (2.4.1) follows. Finally, if we replace v − (v)BR
by v if v ∈

W 1,Φ
0 (BR), then the estimate (2.4.1) still holds true since the following clas-

sical formula

|v(x)| ⩽ c(n)

ˆ

BR

|Dv(y)|
|x− y|n−1

dy

is valid for a.e x ∈ BR, whenever v ∈ W 1,1
0 (BR), see for instance [91, Lemma

7.14].

Theorem 2.4.1. Let v ∈ W 1,Ψ(BR) for a ball BR ⊂ Ω with R ⩽ 1 under
G,Ha, Hb ∈ N and 0 ⩽ a(·) ∈ Cωa(Ω) and 0 ⩽ b(·) ∈ Cωb(Ω) for the
continuous and concave functions ωa, ωb vanishing at the origin. Then, for

any d ∈
[
1,

n2

n2 − 1

)
, there exist constants θ ≡ θ(n, s(G), s(Ha), s(Hb), d) ∈

(0, 1) and c ≡ c(n, s(G), s(Ha), s(Hb), ωa(1), ωb(1), d) such that the following
Sobolev-Poincaré-type inequality holds: 

BR

[
Ψ

(
x,

∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

⩽ cλsp

 
BR

[Ψ(x, |Dv|)]θ dx

 1
θ

, (2.4.4)
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where

λsp =



1 + λ1([a]ωa + [b]ωb
)

1 +

ˆ

BR

G(|Dv|) dx

 1
n


if v ∈ W 1,Ψ(BR) with (1.0.13)2.

1 + λ2([a]ωa + [b]ωb
)
(
1 + ∥v∥L∞(BR)

)
if v ∈ L∞(BR) with (1.0.14)2.

1 + λ3([a]ωa + [b]ωb
)

(
1 +

[
R−γ osc

BR

v

] 1
1−γ

)
if v ∈ C0,γ(BR) with (1.0.15)2.

(2.4.5a)

(2.4.5b)

(2.4.5c)

Moreover, the above estimate (2.4.4) is still valid with v−(v)BR
replaced by v

depending on which one of (2.4.5a)-(2.4.5c) comes into play if v ∈ W 1,Ψ
0 (BR).

Proof. The above theorem widely covers the results of [14, Theorem 4.2], [15,
Theorem 32.] and also the results of [57, Theorem 1.6], which is a special case
when G(t) ≡ tp, Ha(t) ≡ tq, ωa(ρ) ≡ ρα and ωb(·) ≡ 0 for some constants
1 < p ⩽ q and α ∈ (0, 1]. Then using the continuity of the coefficient functions
a(·) and b(·), we find

I :=

 

BR

[
Ψ

(
x,

∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

⩽ 18[a]ωaωa(R)

 

BR

[
Ha

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

+ 18[b]ωb
ωb(R)

 

BR

[
Hb

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

+ 9

 

BR

[
Ψ−

BR

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

=: 18[a]ωaI1 + 18[b]ωb
I2 + 9I3, (2.4.6)
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where we have used the following elementary inequality

(t1 + t2 + t3)
d ⩽ 3d

(
td1 + td2 + td3

)
(∀t1, t2, t3 ⩾ 0).

We now estimate the terms Ii with i ∈ {1, 2, 3} in (2.4.6) depending on which
one of (1.0.13)2, (1.0.14)2 and (1.0.15)2 is in force. In turn, using (1.0.13)2
and (2.1.2), we see

I1 = ωa(R)

 

BR

(Ha ◦G−1)
(
G
(∣∣∣v−(v)BR

R

∣∣∣))
G
(∣∣∣v−(v)BR

R

∣∣∣) G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)
d

dx


1
d

⩽ λ1ωa(R)

 

BR

1 +

[
ωa

([
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]− 1
n

)]−1


× G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
) 1

d

⩽ λ1ωa(R)

 

BR

[(
1 +

[
1

ωa(R)
+

R

ωa(R)

(
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)) 1
n

])

× G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
) 1

d

⩽ 9λ1(1 + ωa(1))

 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

+ 9λ1R

 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)](1+ 1
n)d

dx

 1
d

, (2.4.7)

where we have used also that ωa(·) is non-decreasing and R ⩽ 1. In the same
way, we have

I2 ⩽ 9λ1(1 + ωb(1))

 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d
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+ 9λ1R

 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)](1+ 1
n)d

dx

 1
d

. (2.4.8)

Adding the estimates coming from the last two displays and applying Lemma

2.4.1 with Φ ≡ G for d0 ≡ d and d0 ≡
(
1 +

1

n

)
d <

n

n− 1
, there exists

θ1 ≡ θ1(n, s(G), d) ∈ (0, 1) such that

I1 + I2 ⩽ cλ1

 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

+ cλ1R

 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)](1+ 1
n)d

dx

 1
d

⩽ cλ1

 
BR

[G(|Dv|)]θ1 dx

 1
θ1

+ cλ1R

 
BR

[G(|Dv|)]θ1 dx

(1+ 1
n)

1
θ1

⩽ cλ1

1 +
ˆ

BR

G(|Dv|) dx

 1
n


 
BR

Gθ1(|Dv|) dx

 1
θ1

(2.4.9)

for some constant c ≡ c(n, s(G), ωa(1), ωb(1), d), where in the last inequality
of the above display we have used Hölder’s inequality. Since Ψ−

BR
∈ N with

an index s(Ψ) = s(G) + s(Ha) + s(Hb) by Remark 2.1.2, we are able to
apply Lemma 2.4.1 with Φ ≡ Ψ−

BR
for d0 ≡ d. In turn, there exists θ2 ≡

θ2(n, s(Ψ), d) such that

I3 ⩽ c

 
BR

[
Ψ−

BR
(|Dv|)

]θ2 dx
 1

θ2

(2.4.10)

with some constant c ≡ c(n, s(Ψ), d). Inserting the estimates obtained in
(2.4.9)-(2.4.10) into (2.4.6), recalling the very definition of Ψ−

BR
in (2.1.3) and

setting θ := max{θ1, θ2}, we arrive at (2.4.5a). Now we turn our attention
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to proving (2.4.5b). For this, we estimate the terms Ii for i ∈ {1, 2, 3} for
v ∈ L∞(BR) under the assumption (1.0.14)2. In turn, using (2.1.2) and the
assumption (1.0.14)2, we see

I1 = ωa(R)

 

BR

Ha

(∣∣∣v−(v)BR

R

∣∣∣)
G
(∣∣∣v−(v)BR

R

∣∣∣) G
(∣∣∣∣v − (v)BR

R

∣∣∣∣)
d

dx


1
d

⩽ λ2ωa(R)

 

BR

1 +

[
ωa

((∣∣∣∣v − (v)BR

R

∣∣∣∣)−1
)]−1


× G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
) 1

d

⩽ λ2ωa(R)

 

BR

[(
1 +

[
1

ωa(R)
+

|v − (v)BR
|

ωa(R)

])
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

⩽ 2λ2

(
1 + ωa(1) + ∥v∥L∞(BR)

) 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

.

(2.4.11)

In a similar way, one can see

I2 ⩽ 2λ2

(
1 + ωb(1) + ∥v∥L∞(BR)

) 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

.

(2.4.12)

Adding the estimates in (2.4.11)-(2.4.12) and applying Lemma 2.4.1 with
Φ ≡ G for d0 ≡ d, there exists an exponent θ1 ≡ θ1(n, s(G), d) ∈ (0, 1) such
that

I1 + I2 ⩽ cλ2

(
1 + ∥v∥L∞(BR)

) 
BR

[G(|Dv|)]θ1 dx

 1
θ1

(2.4.13)
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for some constant c ≡ c(n, s(G), ωa(1), ωb(1), d). This estimate together with
(2.4.10) and the very definition of Ψ−

BR
in (2.1.3), we find (2.4.5b). It remains

to prove (2.4.5c). Essentially, it can proved in a similar manner we have shown
in (2.4.11)-(2.4.12). So using the assumption (1.0.15)2 and again (2.1.2), we
see

I1 = ωa(R)

 

BR

Ha

(∣∣∣v−(v)BR

R

∣∣∣)
G
(∣∣∣v−(v)BR

R

∣∣∣) G
(∣∣∣∣v − (v)BR

R

∣∣∣∣)
d

dx


1
d

⩽ λ3ωa(R)

 

BR

1 +

[
ωa

((∣∣∣∣v − (v)BR

R

∣∣∣∣)− 1
1−γ

)]−1


× G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
) 1

d

⩽ λ3ωa(R)

 

BR

[(
1 +

[
1

ωa(R)
+

R
−γ
1−γ

ωa(R)
|v − (v)BR

|
1

1−γ

])

× G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
) 1

d

⩽ 2λ3

(
1 + ωa(1) +

[
R−γ osc

BR

v

] 1
1−γ

) 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

.

(2.4.14)

By arguing in the same way, we see

I1 + I2 ⩽ cλ3

(
1 +

[
R−γ osc

BR

v

] 1
1−γ

) 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

.

(2.4.15)

for some constant c ≡ c(s(G), ωa(1), ωb(1)). Finally, this estimate together
with (2.4.10) leads to (2.4.5c). The proof is complete.
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Remark 2.4.1. We here remark that choosing d ≡ 1 in a Sobolev-Poincaré
type inequality of Theorem 2.4.1, there exist an exponent θ ≡ θ(n, s(G), s(Ha), s(Hb))
such that

 

BR

Ψ

(
x,

∣∣∣∣v − (v)BR

R

∣∣∣∣) dx ⩽ cλsp

 
BR

[Ψ(x, |Dv|)]θ dx

 1
θ

, (2.4.16)

holds for some constant c ≡ c(n, s(G), s(Ha), s(Hb), ωa(1), ωb(1)), where

λsp =



1 + λ1([a]ωa + [b]ωb
)

1 +

ˆ

BR

G(|Dv|) dx

 1
n


if v ∈ W 1,Ψ(BR) with (1.0.13)2.

1 + λ2([a]ωa + [b]ωb
)
(
1 + ∥v∥L∞(BR)

)
if v ∈ L∞(BR) with (1.0.14)2.

1 + λ3([a]ωa + [b]ωb
)

(
1 +

[
R−γ osc

BR

v

] 1
1−γ

)
if v ∈ C0,γ(BR) with (1.0.15)2.

(2.4.17a)

(2.4.17b)

(2.4.17c)

2.5 Harmonic type approximation

In this section, we discuss some important regularity results for the solution
to the following Dirichlet boundary value problem:{

− divA0(Dh) = 0 in BR

h ∈ υ +W 1,Ψ0

0 (BR),
(2.5.1)

where BR ⊂ Rn is a given ball with n ⩾ 2, υ ∈ W 1,Ψ0(BR) is a given function,
and A0 : Rn → Rn is a vector field belonging to C0(Rn) ∩ C1(Rn \ {0}) and
satisfies the following ellipticity and coercivity assumptions:|A0(z)||z|+ |DzA0(z)||z|2 ⩽ LΨ0(|z|)

ν
Ψ0(|z|)
|z|2

|ξ|2 ⩽ ⟨DzA0(z)ξ, ξ⟩
(2.5.2)
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for fixed constants 0 < ν ⩽ L, whenever z ∈ Rn \ {0} and ξ ∈ Rn, in which
the function Ψ0 is given by

Ψ0(t) := G(t) + a0Ha(t) + b0Hb(t) (G,Ha, Hb ∈ N ) (2.5.3)

with fixed constants a0, b0 ⩾ 0 for every t ⩾ 0. By Lemma 2.1.21, we get the
following

1

s(G) + s(Ha) + s(Hb)
⩽

Ψ
′′
0(t)t

Ψ
′
0(t)

⩽ s(G) + s(Ha) + s(Hb) (2.5.4)

for every t > 0, which means that Ψ0 ∈ N with an index s(Ψ0) = s(G) +
s(Ha) + s(Hb). Therefore, we note that the following monotonicity property
that

|VG(z1)− VG(z2)|2 + a0|VHa(z1)− VHa(z2)|2 + b0|VHb
(z1)− VHb

(z2)|2

≈ |VΨ0(z1)− VΨ0(z2)|2

⩽ c ⟨A0(z1)− A0(z2), z1 − z2⟩ (2.5.5)

holds with some constant c ≡ c(n, s(Ψ0), ν), whenever z1, z2 ∈ Rn \ {0},
where the map VΦ for a function Φ ∈ N has been defined in (2.1.8).

Theorem 2.5.1. Let h ∈ W 1,Ψ0(BR) be the weak solution to (2.5.1) under the
assumption (2.5.2). Suppose that there exists a higher integrability exponent
δ1 > 0 such that

Ψ0(|Dυ|) ∈ L1+δ1(BR) and ∥Ψ0(|Dυ|)∥L1(BR) ⩽ L0 (2.5.6)

for some constant L0 ⩾ 0. Then there exists a positive exponent δ0 ⩽ δ1
depending on n, s(Ψ0), ν, L and δ1 such that the following inequality 

BR

[Ψ0(|Dh|)]1+δ0 dx

 1
1+δ0

⩽ c

 

BR

[Ψ0(|Dυ|)]1+δ0 dx

 1
1+δ0

(2.5.7)

holds for some constant c ≡ c(n, s(Ψ0), ν, L, L0, δ1).
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Proof. First the standard energy estimate implies that

ˆ

BR

Ψ0(|Dh|) dx ⩽ c

ˆ

BR

Ψ0(|Dυ|) dx ⩽ cL0 (2.5.8)

holds with some constant c ≡ c(n, s(Ψ0), ν, L). For a fixed ball B2ρ ⊂ BR,
let η ∈ C1

0(B2ρ) be a standard cut-off function satisfying χBρ ⩽ η ⩽ χB2ρ

and |Dη| ⩽ 4/ρ. Let us take the function φ = ηs(Ψ0)+1
(
h− (h)B2ρ

)
as a test

function in the equation (2.5.1). Then using the monotonicity property of
A0(·) and Lemma 2.1.4 with Ψ0, we have

ˆ

B2ρ

ηs(Ψ0)+1Ψ0(|Dh|) dx ⩽ c

ˆ

B2ρ

ηs(Ψ0)Ψ
′

0(|Dh|)
∣∣∣∣h− (h)B2ρ

ρ

∣∣∣∣ dx
⩽ c

ˆ

B2ρ

ηs(Ψ0)

(
(εη)Ψ0(|Dh|) +

1

(εη)s(Ψ0)
Ψ0

(∣∣∣∣h− (h)B2ρ

ρ

∣∣∣∣)) dx.

(2.5.9)

Choosing ε sufficiently small in the last display, we conclude that

 

Bρ

Ψ0(|Dh|) dx ⩽ c

 

B2ρ

Ψ0

(∣∣∣∣h− (h)B2ρ

ρ

∣∣∣∣) dx (2.5.10)

for a constant c ≡ c(n, s(Ψ0), ν, L). By applying Lemma 2.4.1 to Φ ≡ Ψ0

with d0 ≡ 1, there exists θ0 ≡ θ0(n, s(Ψ0)) ∈ (0, 1) such that

 

Bρ

Ψ0(|Dh|) dx ⩽ c

 

B2ρ

Ψ0

(∣∣∣∣h− (h)B2ρ

ρ

∣∣∣∣) dx ⩽ c

 

B2ρ

[Ψ0(|Dh|)]θ0 dx


1
θ0

(2.5.11)

holds for some constant c ≡ c(n, s(Ψ0), ν, L), whenever B2ρ ⊂ BR is a ball.
Now we prove a version of the last inequality near the boundary of BR. For

this, let B2ρ(y) ⊂ Rn be a ball such that y ∈ BR and
1

10
<

|B2ρ(y) \BR|
|B2ρ(y)|

.

We take a test function by φ ≡ ηs(Ψ0)+1(h − υ), where η ∈ C1
0(B2ρ) is a
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standard cut-off function as before so that χBρ ⩽ η ⩽ χB2ρ and |Dη| ⩽ 4/ρ.
This choice of φ is admissible since suppφ ⋐ BR ∩B2ρ(y). Arguing similarly
as we have done above, we have

ˆ

BR∩B2ρ(y)

ηs(Ψ0)+1Ψ0(|Dh|) dx ⩽ c

ˆ

BR∩B2ρ(y)

ηs(Ψ0)Ψ
′

0(|Dh|)
∣∣∣∣h− υ

ρ

∣∣∣∣ dx
+ c

ˆ

BR∩B2ρ(y)

ηs(Ψ0)Ψ
′

0(|Dh|)|Dυ| dx

⩽ c

ˆ

BR∩B2ρ

ηs(Ψ0)

(
(εη)Ψ0(|Dh|) +

1

(εη)s(Ψ0)
Ψ0

(∣∣∣∣h− υ

ρ

∣∣∣∣)) dx

+ c

ˆ

BR∩B2ρ

ηs(Ψ0)

(
(εη)Ψ0(|Dh|) +

1

(εη)s(Ψ0)
Ψ0 (|Dυ|)

)
dx.

(2.5.12)

Again choosing ε small enough and reabsorbing the terms, we find that

 

BR∩B2ρ(y)

ηs(Ψ0)+1Ψ0(|Dh|) dx ⩽ c

 

BR∩B2ρ(y)

Ψ0

(∣∣∣∣h− υ

ρ

∣∣∣∣) dx

+ c

 

BR∩B2ρ(y)

Ψ0 (|Dυ|) dx

for some constant c ≡ c(n, s(Ψ0), ν, L). Redefining h− υ ≡ 0 on B2ρ(y) \BR,
we are able to apply Lemma 2.4.1 to Φ ≡ Ψ0 with d0 ≡ 1. In turn, there
exists θ0 ≡ θ0(n, s(Ψ0)) ∈ (0, 1) as appearing in (2.5.11) such that

 

BR∩B2ρ(y)

Ψ0

(∣∣∣∣h− υ

ρ

∣∣∣∣) dx ⩽

  

BR∩B2ρ(y)

[Ψ0(|Dh−Dυ|)]θ0 dx


1
θ0

⩽

  

BR∩B2ρ(y)

[Ψ0(|Dh|)]θ0 dx


1
θ0
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+ c

 

BR∩B2ρ(y)

[Ψ0(|Dυ|)] dx

for some constant c ≡ c(n, s(Ψ0)), where for the last inequality we have used
(2.1.6) and Hölder’s inequality. Combining the last two displays and (2.5.11),
we have

 

Bρ(y)

[V (x)]
1
θ0 dx ⩽ c

  

B2ρ(y)

V (x) dx


1
θ0

+ c

 

B2ρ(y)

U(x) dx (2.5.13)

for some c ≡ c(n, s(Ψ0), ν, L), where

V (x) := [Ψ0(|Dh|)]θ0χB2ρ(y)(x) and U(x) := Ψ0(|Dυ|)χB2ρ(y)(x)

for every ballB2ρ(y) ⊂ Rn satisfying eitherB2ρ(y) ⊂ BR or
1

10
<

|B2ρ(y) \BR|
|B2ρ(y)|

with y ∈ BR. Applying a variant of Gehring’s lemma and a standard covering
argument, we arrive at the desired estimate (2.5.7).

Essentially, the inequality (2.5.7) can be shown with 1+δ0 replaced by any
number γ > 1 provided Ψ0(|Dv|) ∈ Lγ(Br). This type of estimate follows
from a combination of interior and boundary estimates of the same type
via a standard flattening of the boundary and covering argument similarly
as employed in [59, Theorem 5.1] along with arguments used in [14]. The
flattening of the boundary is standard, we refer for instance to [106, 107]
for more details. But the small higher integrability type estimate (2.5.7) is
sufficient for proving Lemma 2.5.1 below.

Before going on further, we recall a classical truncation lemma due to [1].
The statement involves the Hardy-Littlewood maximal operator, defined as

M(f)(x) := sup
Br(x)⊂Rn

 

Br(x)

|f(y)| dy, x ∈ Rn, (2.5.14)

whenever f ∈ L1
loc(Rn).

Theorem 2.5.2 ([1]). Let BR ⊂ Rn be a ball and f ∈ W 1,1
0 (BR). Then, for
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every λ > 0, there exists fλ ∈ W 1,∞
0 (BR) such that

∥Dfλ∥L∞(BR) ⩽ cλ (2.5.15)

for some constant c depending only on n. Moreover, it holds that

{x ∈ BR : fλ(x) ̸= f(x)} ⊂ {x ∈ BR :M(|Df(x)|) > λ} ∪ negligible set.
(2.5.16)

We notice that in this theorem we may assume that f is defined on Rn

by redefining f ≡ 0 on Rn \ BR. We are now ready to state the main result
of this section.

Lemma 2.5.1 (Harmonic type approximation). Let BR ⊂ Rn be a ball with
R ⩽ 1, σ ∈ (0, 1) and υ ∈ W 1,Ψ0(B2R) be a function satisfying

 

B2R

Ψ0(|Dυ|) dx ⩽ c0 (2.5.17)

and  

BR

[Ψ0(|Dυ|)]1+δ1 dx ⩽ c1 (2.5.18)

for some constants c0, c1 ⩾ 1 and δ1 > 0. Suppose that Ψ0(1) ⩾ 1. We further
assume that∣∣∣∣∣∣

 

BR

⟨A0(Dυ), Dφ⟩ dx

∣∣∣∣∣∣ ⩽ σ ∥Dφ∥L∞(BR) holds for φ ∈ C∞
0 (BR). (2.5.19)

Then there exists h ∈ υ +W 1,Ψ0

0 (BR) such that

 

BR

⟨A0(Dh), Dφ⟩ dx = 0 for all φ ∈ C∞
0 (BR), (2.5.20)

 

BR

[Ψ0(|Dh|)]1+δ0 dx ⩽ c(n, s(Ψ0), ν, L, δ1, c0, c1)
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for some positive δ0 ≡ δ0(n, s(Ψ0), ν, L, δ1), (2.5.21)

 

BR

|VΨ0(Dυ)− VΨ0(Dh)|2 dx ⩽ c̄σs1 , (2.5.22)

and
 

BR

Ψ0

(∣∣∣∣υ − h

R

∣∣∣∣) dx ⩽ c̄σs0 (2.5.23)

for some constants with dependence as s1 ≡ s1(n, s(Ψ0), δ1, c0) > 0, s0 ≡
s0(n, s(Ψ0), δ1, c0) > 0 and c̄ ≡ c̄(n, s(Ψ0), ν, L, δ1, c0, c1) ⩾ 1.

Proof. By the standard approximation argument, if (2.5.19) holds for all
functions φ ∈ C∞

0 (BR), then it also holds for all functions φ ∈ W 1,∞
0 (BR).

The proof falls in three steps.
Step 1: Truncation. The standard energy estimate and (2.5.17) give us

 

BR

Ψ0(|Dh|) dx ⩽
 

BR

Ψ0(|Dυ|) dx ⩽ c(n, s(Ψ0), ν, L)c0. (2.5.24)

By applying Theorem 2.5.1, there exists an exponent δ0 ≡ δ0(n, s(Ψ0), ν, L, δ1)
satisfying

 

BR

[Ψ0(|Dh|)]1+δ0 dx ⩽ c

 

BR

[Ψ0(|Dυ|)]1+δ0 dx ⩽ c(n, s(Ψ0), ν, L, δ1, c0, c1),

(2.5.25)

which is (2.5.21). We now set f := υ − h ∈ W 1,Ψ0

0 (BR) and let λ ⩾ 1 to be
chosen later. We consider fλ ∈ W 1,∞

0 (BR) provided by Theorem 2.5.2, which
satisfies (2.5.15) and (2.5.16). By these properties, Chebyshev’s inequality
and then the maximal function theorem for Orlicz spaces (see for instance
[87, Proposition 1.2]), we have

|{f ̸= fλ}|
|BR|

⩽
|BR ∩ {M(|Df |) > λ}|

|BR|
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⩽
1

[Ψ0(λ)]1+δ0

 

BR

[Ψ0(M(|Df |))]1+δ0 dx

⩽
c

[Ψ0(λ)]1+δ0

 

BR

[Ψ0(|Df |)]1+δ0 dx

⩽
c

[Ψ0(λ)]1+δ0

 
BR

[Ψ0(|Dυ|)]1+δ0 dx+

 

BR

[Ψ0(|Dh|)]1+δ0 dx


⩽

c

[Ψ0(λ)]1+δ0
(2.5.26)

with c ≡ c(n, s(Ψ0), ν, L, δ1, c0, c1), where we have used (2.5.21) and (2.5.25).
Now we test the equation (2.5.1) against fλ to obtain

Γ1 :=

 

BR

⟨A0(Dυ)− A0(Dh), Dfλ⟩χ{f=fλ} dx

=

 

BR

⟨A0(Dυ), Dfλ⟩ dx−
 

BR

⟨A0(Dυ)− A0(Dh), Dfλ⟩χ{f ̸=fλ} dx

=: Γ2 + Γ3. (2.5.27)

Next we estimate each term appearing in the last equality. By using
(2.5.5), we have

Γ1 ⩾ c

 

BR

|VΨ0(Dυ)− VΨ0(Dh)|2χ{f=fλ} dx

with c ≡ c(n, s(Ψ0)). Using (2.5.19), and then (2.5.15), we get

|Γ2| ⩽ σ ∥Dfλ∥L∞(BR) ⩽ c(n)σλ.

For Γ3, we fix ε ∈ (0, 1) to be chosen later and we estimate

|Γ3| ⩽
 

BR

(|A0(Dh)|+ |A0(Dυ)|) |Dfλ|χ{f ̸=fλ} dx
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(2.5.2)

⩽ L ∥Dfλ∥L∞(BR)

 

BR

[
Ψ0(|Dυ|)
|Dυ|

+
Ψ0(|Dh|)
|Dh|

]
χ{f ̸=fλ} dx

⩽ ε

 

BR

[Ψ0(|Dυ|) + Ψ0(|Dh|)] dx+
c

εs(Ψ0)
Ψ0(∥Dfλ∥L∞(BR))

|{f ̸= fλ}|
|BR|

⩽ c

(
ε+

1

[Ψ0(λ)]δ0εs(Ψ0)

)
with some c ≡ c(n, s(Ψ0), ν, L, δ1, c0, c1), where in the last two inequalities
we have used Lemma 2.1.1 together with (2.5.15) and (2.5.24). Merging the
estimates for Γ1,Γ2 and Γ3 with (2.5.27), we deduce that

 

BR

|VΨ0(Dυ)− VΨ0(Dh)|2χ{f=fλ} dx

⩽ c∗

(
σλ+ ε+

1

[Ψ0(λ)]δ0εs(Ψ0)

)
=: S(σ, λ, ε) (2.5.28)

for some constant c∗ ≡ c∗(n, s(Ψ0), ν, L, δ1, c0, c1), where ε ∈ (0, 1) is still to
be chosen later. Now let us use a short notation for the simplicity

Z2 := |VΨ0(Dυ)− VΨ0(Dh)|2 (2.5.29)

and fix θ ∈ (0, 1), again to be chosen later. Hölder’s inequality and (2.5.28)
imply  

BR

Z2θχ{f=fλ} dx

 1
θ

⩽ S(σ, λ, ε). (2.5.30)

Again using Hölder’s inequality, we get 

BR

Z2θχ{f ̸=fλ} dx

 1
θ

⩽

(
|{f ̸= fλ}|

|BR|

) 1−θ
θ
 

BR

Z2 dx

(2.5.26)

⩽ c[Ψ0(λ)]
− (1−θ)(1+δ0)

θ

 

BR

[Ψ0(|Dυ|) + Ψ0(|Dh|)] dx
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(2.5.24)

⩽ c[Ψ0(λ)]
− (1−θ)(1+δ0)

θ (2.5.31)

for some constant c ≡ c(n, s(Ψ0), ν, L, δ1, c0, c1, θ). Consequently, (2.5.30) and
(2.5.31) yield that 

BR

Z2θ dx

 1
θ

⩽ c
(
S(σ, λ, ε) + [Ψ0(λ)]

− (1−θ)(1+δ0)
θ

)
holds with again c ≡ c(n, s(Ψ0), ν, L, δ1, c0, c1, θ). Recalling S(σ, λ, ε) in (2.5.28)
and using Lemma 2.1.1, we find 

BR

Z2θ dx

 1
θ

dx ⩽ c

(
σλ+ ε+ λ

−δ0
(

1
s(Ψ0)

+1
)
ε−s(Ψ0) + λ

−
(

1
s(Ψ0)

+1
)

(1−θ)(1+δ0)
θ

)
,

where at this moment we have used the assumption that Ψ0(1) ⩾ 1. Choosing

λ = σ− 1
2 and ε = σs with s =

δ0
4s(Ψ0)

(
1

s(Ψ0)
+ 1

)
, we obtain

 

BR

(
|VΨ0(Dυ)− VΨ0(Dh)|2

)θ
dx

 1
θ

⩽ cσm0 (2.5.32)

with constants

m0 = min{1
2
,

δ0
4s(Ψ0)

(
1

s(Ψ0)
+ 1

)
,

(
1

s(Ψ0)
+ 1

)
(1− θ)(1 + δ0)

2θ
}

and c ≡ c(n, s(Ψ0), ν, L, δ1, c0, c1, θ). Recall that θ is yet to be chosen.
Step 2: Proof of (2.5.22). By taking θ properly, we can deduce (2.5.22)

from (2.5.32). Hölder’s inequality with exponents

(
2(1 + δ0)

1 + 2δ0
, 2(1 + δ0)

)
yields

 

BR

Z2 dx =

 

BR

Z · Z dx ⩽

 

BR

Z
2(1+δ0)
1+2δ0 dx


1+2δ0
2(1+δ0)

 

BR

Z2(1+δ0) dx

 1
2(1+δ0)

.

(2.5.33)
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We now choose θ :=
1 + δ0
1 + 2δ0

∈ (0, 1) in (2.5.32) in order to find that

 

BR

Z
2(1+δ0)
1+2δ0 dx


1+2δ0
2(1+δ0)

⩽ cσ
m0
2 . (2.5.34)

On the other hand, recalling (2.5.29) and (2.5.25), we have

 

BR

Z2(1+δ0) dx =

 

BR

|VΨ0(Dυ)− VΨ0(Dh)|2(1+δ0) dx

⩽ c

 

BR

[Ψ0(|Dυ|)]1+δ0 dx+ c

 

BR

[Ψ0(|Dh|)]1+δ0 dx ⩽ c(n, s(Ψ0), ν, L, δ1, c0, c1).

(2.5.35)

We combine the estimates (2.5.33)-(2.5.35) to discover

 

BR

(
|VΨ0(Dυ)− VΨ0(Dh)|2

)
dx ⩽ cσs1 , (2.5.36)

where

s1 =
1

2
min

{
1

2
,

δ0
4s(Ψ0)

(
1

s(Ψ0)
+ 1

)
,

(
1

s(Ψ0)
+ 1

)
δ0
2

}
and c ≡ c(n, s(Ψ0), ν, L, δ0, c0, c1).

Step 3: Proof of (2.5.23). By applying Lemma 2.4.1 to Φ ≡ Ψ0 with d0 ≡ 1,
we see that there exists θ0 ≡ θ0(n, s(Ψ0)) ∈ (0, 1) such that

 

BR

Ψ0

(∣∣∣∣υ − h

R

∣∣∣∣) dx ⩽ c

 

BR

[Ψ0(|Dυ −Dh|)]θ0 dx

 1
θ0

⩽ c

 

BR

(
[Ψ0(|Dυ|+ |Dh|)]

1
2

|Dυ −Dh|
(|Dυ|+ |Dh|)

)θ0

[Ψ0(|Dυ|+ |Dh|)]
θ0
2 dx

 1
θ0
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⩽ c

 

BR

Ψ0(|Dυ|+ |Dh|) |Dυ −Dh|2

(|Dυ|+ |Dh|)2
dx

 1
2

×

 

BR

[Ψ0(|Dυ|+ |Dh|)]
θ0

2−θ0 dx


2−θ0
2θ0

⩽ c

 

BR

Z2 dx

 1
2
 

BR

Ψ0(|Dυ|+ |Dh|) dx

 1
2

⩽ cσ
s1
2 = cσs0

for some c ≡ c(n, s(Ψ0), ν, L, δ1, c0, c1), where in the last display we have ap-

plied Hölder’s inequality with conjugate exponents

(
2

θ0
,

2

2− θ0

)
, and finally

used (2.1.10) with (2.5.36). This proves (2.5.23). The proof is complete.
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Chapter 3

Regularity of minima of Orlicz
phase functionals

3.1 Hypotheses and Main results

It has been known that the assumption (1.0.11) is not enough already in the
special case of G(t) ≡ tp for p > 1 together with a(·) ≡ 0 and b(·) ≡ 0 for
obtaining higher regularity of minima of the functional F in (1.0.10). In this
regard, we consider the energy density F in (1.0.10) of type

F (x, y, z) := FG(x, y, z) + a(x)FHa(x, y, z) + b(x)FHb
(x, y, z) (3.1.1)

for every x ∈ Ω, y ∈ R and z ∈ Rn, where FG(·), FHa(·) and FHb
(·) are

continuous functions belonging to C2(Rn \ {0}) with respect to z-variable
and satisfying the following structure assumptions with fixed constants 0 <
ν ⩽ L:

|DzFΦ(x, y, z)||z|+ |D2
zzFΦ(x, y, z)||z|2 ⩽ LΦ(|z|),

ν
Φ(|z|)
|z|2

|ξ|2 ⩽
〈
D2

zzFΦ(x, y, z)ξ, ξ
〉
,

|DzFΦ(x1, y, z)−DzFΦ(x2, y, z)||z| ⩽ Lω(|x1 − x2|)Φ(|z|),
|FΦ(x, y1, z)− FΦ(x, y2, z)| ⩽ Lω(|y1 − y2|)Φ(|z|)

(3.1.2)

for every Φ ∈ {G,Ha, Hb}, whenever x, x1, x2 ∈ Ω, y, y1, y2 ∈ R, z ∈ Rn\{0},
ξ ∈ Rn, here either

ω(t) = min{tµ, 1} with some µ ∈ (0, 1) for all t ⩾ 0 (3.1.3)
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or

ω : [0,+∞) → [0,+∞) is concave such that ω(0) = 0 and ω(·) ⩽ 1. (3.1.4)

The structure conditions in (3.1.2) are satisfied for instance by the model
functional

W 1,1(Ω) ∋ υ 7→
ˆ

Ω

f(x, υ)Ψ(x, |Dυ|) dx,

where 0 < ν1 ⩽ f(x, y) ⩽ L1 for some constants ν1, L1 and for some suitable
continuous function f(·) satisfying the following inequality

|f(x1, y1)− f(x2, y2)| ⩽ Lω(|x1 − x2|+ |y1 − y2|)

whenever x1, x2 ∈ Rn and y1, y2 ∈ R, where ω is the same as defined in
(3.1.3) or (3.1.4). We also remark that those general functionals mentioned
above have not been considered in the present literature for the regularity
theory as far as we are concerned, moreover the functionals in (1.0.10) with
structure assumptions (1.0.11) and (3.1.2) is not differentiable with respect
to the second variable and so it can not be treated by its Euler-Lagrange
equation.

Let us now formulate the monotonicity properties of the vector field
DzF (x, y, z) with respect to the gradient variable z and some growth prop-
erties of the integrand F defined in (1.0.10) in terms of the maps introduced
in (2.1.8) .

Lemma 3.1.1. Let F : Ω × R × Rn → R be a function defined in (3.1.1)
satisfying (1.0.11) and (3.1.2).Then there exist positive constants c1, c2 ≡
c1, c2(n, s(G), s(Ha), s(Hb), ν) and c3 ≡ c3(n, s(G), s(Ha), s(Hb), L) such that
the following inequalities

|VΨ(x, z1)− VΨ(x, z2)|2

⩽ c1 ⟨DzF (x, y, z1)−DzF (x, y, z2), z1 − z2⟩ , (3.1.5)

|VΨ(x, z1)− VΨ(x, z2)|2 + c2 ⟨DzF (x, y, z1), z2 − z1⟩
⩽ c2[F (x, y, z2)− F (x, y, z1)] (3.1.6)
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and

|F (x1, y, z)− F (x2, y, z)|
⩽ c3ω(|x1 − x2|) [G(|z|) + min{a(x1), a(x2)}Ha(|z|)
+min{b(x1), b(x2)}Hb(|z|)]
+ c3|a(x1)− a(x2)|Ha(|z|) + c3|b(x1)− b(x2)|Hb(|z|) (3.1.7)

hold true, whenever z, z1, z2 ∈ Rn \ {0}, x, x1, x2 ∈ Ω and y ∈ R.

Proof. It follows from (3.1.2)2 that

⟨DzF (x, y, z1)−DzF (x, y, z2), z1 − z2⟩

=

1ˆ

0

〈
D2

zzF (x, y, θz1 + (1− θ)z2)[z1 − z2], z1 − z2
〉
dθ

⩾ ν

1ˆ

0

Ψ(x, θz1 + (1− θ)z2)

|θz1 + (1− θ)z2|2
|z1 − z2|2 dθ

⩾ c|VΨ(x, z1)− VΨ(x, z2)|2,

where in the last inequality of the last display we have used (2.1.9) and
(2.1.10). Then (3.1.5) follows. The inequality (3.1.6) follows from the follow-
ing observation that

[F (x, y, z2)− F (x, y, z1)]− ⟨DzF (x, y, z1), z2 − z1⟩

=

1ˆ

0

⟨DzF (x, y, θz2 + (1− θ)z1)−DzF (x, y, z1), z2 − z1⟩ dθ

(3.1.5)

⩾ c

1ˆ

0

1

θ
|VΨ(x, θz2 + (1− θ)z1)− VΨ(x, z1)|2 dθ

(2.1.13)

⩾ c|VΨ(x, z1)− VΨ(x, z2)|2.

Since F (x, y, 0) = 0 for every x ∈ Ω and y ∈ R, using (3.1.1), we have

|F (x1, y, z)− F (x2, y, z)|
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= |(F (x1, y, z)− F (x1, y, 0))− (F (x2, y, z)− F (x2, y, 0))|

=

∣∣∣∣∣∣
1ˆ

0

⟨DzF (x1, y, θz), z⟩ dθ −
1ˆ

0

⟨DzF (x2, y, θz), z⟩ dθ

∣∣∣∣∣∣
⩽

1ˆ

0

|DzF (x1, y, θz)−DzF (x2, y, θz)| |z|dθ

⩽

1ˆ

0

|DzFG(x1, y, θz)−DzFG(x2, y, θz)| |z| dθ

+

1ˆ

0

|a(x1)DzFHa(x1, y, θz)− a(x2)DzFHa(x2, y, θz)| |z| dθ

+

1ˆ

0

|b(x1)DzFHb
(x1, y, θz)− b(x2)DzFHb

(x2, y, θz)| |z| dθ.

Without loss of generality, we can assume a(x2) ⩽ a(x1) and b(x2) ⩽ b(x1).
Then using the structure assumption (3.1.2), we find

1ˆ

0

|a(x1)DzFHa(x1, y, θz)− a(x2)DzFHa(x2, y, θz)| |z| dθ

⩽ L|a(x1)− a(x2)|
1ˆ

0

Ha(θ|z|)
θ

dθ + a(x2)ω(|x1 − x2|)
1ˆ

0

Ha(θ|z|)
θ

dθ

⩽ ca(x2)Ha(|z|) + cω(|x1 − x2|)Ha(|z|)

for some constant c ≡ c(s(Ha), L). Similarly, we get

1ˆ

0

|b(x1)DzFHb
(x1, y, θz)− b(x2)DzFHb

(x2, y, θz)| |z| dθ

⩽ cb(x2)Hb(|z|) + cω(|x1 − x2|)Hb(|z|),

where the validity of the last display is ensured by (3.1.2)3. Combining the
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last three displays, (3.1.7) follows.

In order to shorten the notations in this chapter, for a given local min-
imizer u of the functional F in (1.0.10), we shall use a set of various basic
parameters which is “data of the problem” depending on which assumption
of (1.0.13)-(1.0.15) is considered as follows:

data ≡



{
n, λ1, s(G), s(Ha), s(Hb), ν, L, ∥a∥Cωa (Ω) , ∥b∥Cωb (Ω) , ω(·),

∥Ψ(x, |Du|)∥L1(Ω) , ∥u∥L1(Ω) , ωa(1), ωb(1)
}

if (1.0.13) is considered,{
n, λ2, s(G), s(Ha), s(Hb), ν, L, ∥a∥Cωa (Ω) , ∥b∥Cωb (Ω) , ω(·),

∥u∥L∞(Ω) , ωa(1), ωb(1)
}

if (1.0.14) is considered,{
n, λ3, s(G), s(Ha), s(Hb), ν, L, ∥a∥Cωa (Ω) , ∥b∥Cωb (Ω) , ω(·),

[u]0,γ, ωa(1), ωb(1)}
if (1.0.15) is considered,

(3.1.8)

where λ1, λ2, λ3 are the same numbers as defined in (1.0.13)-(1.0.15) and
s(G), s(Ha), s(Hb) are indices of the functions G,Ha, Hb in the sense of Def-
inition 2.1.1, respectively. For a given local Q-minimizer u of the functional
P , data is understood by the above set of parameters with the constants L, ν
having been replaced by Q in any case of (1.0.13)-(1.0.15) into the consider-
ation. With Ω0 ⋐ Ω being a fixed open subset, we also denote by data(Ω0)
the set of parameters in (3.1.8) together with dist(Ω0, ∂Ω) under one of the
assumptions (1.0.13)-(1.0.15):

data(Ω0) ≡ data, dist(Ω0, ∂Ω). (3.1.9)

Now we are ready to state our main results in this chapter.

Theorem 3.1.1 (Maximal regularity). Let u ∈ W 1,Ψ(Ω) be a local mini-
mizer of the functional F defined in (1.0.10), under the assumptions (1.0.11),
(3.1.2) and (3.1.3). Suppose that ωa(ρ) = ρα and ωb(ρ) = ρβ for some
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α, β ∈ (0, 1]. If one of the following assumptions
(1.0.13),

(1.0.14),

(1.0.15) with lim sup
ρ→0+

Λ

(
ρ

1
1−γ ,

1

ρ

)
= 0

(3.1.10a)

(3.1.10b)

(3.1.10c)

is satisfied, then there exists θ ∈ (0, 1) depending only on n, s(G), s(Ha), s(Hb), ν, L, α, β
and µ such that Du ∈ C0,θ

loc (Ω).

Theorem 3.1.2 (Morrey decay). Let u ∈ W 1,Ψ(Ω) be a local minimizer of
the functional F defined in (1.0.10), under the assumptions (1.0.11), (3.1.2)
and (3.1.4). If one of the following assumptions

(1.0.13) with lim sup
ρ→0+

Λ
(
ρ,G−1(ρ−n)

)
= 0,

(1.0.14) with lim sup
ρ→0+

Λ

(
ρ,

1

ρ

)
= 0,

(1.0.15) with lim sup
ρ→0+

Λ

(
ρ

1
1−γ ,

1

ρ

)
= 0,

(1.0.13) with ωa(ρ) = ρα and ωb(ρ) = ρβ

for some α, β ∈ (0, 1],

(1.0.14) with ωa(ρ) = ρα and ωb(ρ) = ρβ

for some α, β ∈ (0, 1]

(3.1.11a)

(3.1.11b)

(3.1.11c)

(3.1.11d)

(3.1.11e)

is satisfied, then

u ∈ C0,θ
loc (Ω) for every θ ∈ (0, 1). (3.1.12)

Moreover, for every σ ∈ (0, n), there exists a positive constant c ≡ c(data(Ω0), σ)
such that the decay estimate

ˆ

Bρ

Ψ(x, |Du|) dx ⩽ c
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx (3.1.13)

holds for every concentric balls Bρ ⊂ BR ⊂ Ω0 ⋐ Ω with R ⩽ 1.
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Remark 3.1.1. We would like to point out, in the same spirit as this chapter,
the results of Theorem 3.1.1 and Theorem 3.1.2 can be restated and proved
for the functional having a finite number of phases with replacing the function
in (1.0.2) by

Ψ(x, t) := G(t) +
N∑
i=1

ai(x)Hi(t), m ⩾ 1, (3.1.14)

where G,Hi ∈ N in the sense of the Definition 2.1.1 and ai(·) ∈ Cωi(Ω) with
ωi : [0,∞) → [0,∞) being a continuous and concave function vanishing at
the origin for every i ∈ {1, . . . , N}. Under this setting we replace the function
in (1.0.12) by

Λ(ρ, t) :=
N∑
i=1

ωi(ρ)

1 + ωi(ρ)

Hi(t)

G(t)
for every ρ, t > 0. (3.1.15)

The coefficient functions in Theorem 3.1.1 along with (3.1.11d) and (3.1.11e)
in Theorem 3.1.2 are understood by letting ωi(ρ) = ραi with some αi ∈ (0, 1]
for every i ∈ {1, . . . , N}.

3.2 Basic regularity results

We start this section by stating the following Caccioppoli inequality as a
fundamental result for the further investigations. In what follows let Q = L/ν
for the convenience in the future, but in general it could be any number larger
than one.

Lemma 3.2.1 (Caccioppoli Inequality). Let u ∈ W 1,Ψ(Ω) be a local Q-
minimizer of the functional P defined in (1.0.1) with G,Ha, Hb ∈ N and 0 ⩽
a(·), b(·) ∈ L∞(Ω). Then there exists a constant c ≡ c(n, s(G), s(Ha), s(Hb), Q)
such that the following Caccioppoli inequality

ˆ

Bρ

Ψ(x, |D(u− k)±|) dx ⩽ c

ˆ

BR

Ψ

(
x,

(u− k)±
R− ρ

)
dx (3.2.1)

holds, whenever Bρ ⋐ BR ⊂ Ω are concentric balls and k ∈ R.
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Proof. The proof is elementary as done for [39, Lemma 4.6]. The only differ-
ence lies in that we have an additional one phase. But the inequality (3.2.1)
is still valid since Hb ∈ N with an index s(Hb) ⩾ 1.

Remark 3.2.1. As a direct consequence of Lemma 3.2.1, with u ∈ W 1,Ψ(BR)
being a local Q-minimizer of the functional P defined in (1.0.1) under the as-
sumptions of Lemma 3.2.1, there exists a constant c ≡ c(n, s(G), s(Ha), s(Hb), Q)
such that

 

BR/2

Ψ(x, |Du|) dx ⩽ c

 

BR

Ψ

(
x,

∣∣∣∣u− (u)BR

R

∣∣∣∣) dx

holds, whenever BR ⊂ Ω is a ball.

3.2.1 Local boundedness

Now we focus on local boundedness of a local Q-minimizer u of the functional
P defined in (1.0.1) with obtaining precise estimates under the assumption
(1.0.13)2.

Theorem 3.2.1. Let u ∈ W 1,Ψ(Ω) be a local Q-minimizer of the functional P
defined in (1.0.1) under the assumption (1.0.13). Then there exists a constant
c ≡ c(data) such that∥∥∥∥Ψ−

BR

(∣∣∣∣(u− (u)BR
)±

R

∣∣∣∣)∥∥∥∥
L∞(BR/2)

⩽ c

 

BR

Ψ

(
x,

∣∣∣∣(u− (u)BR
)±

R

∣∣∣∣) dx (3.2.2)

and

Ψ−
BR

(∣∣∣∣u(x1)− u(x2)

R

∣∣∣∣) ⩽ c

 

BR

Ψ(x, |Du|) dx for a.e x1, x2 ∈ BR/2,

(3.2.3)

whenever BR ≡ BR(x0) ⊂ Ω is a ball with R ⩽ 1. In particular, u ∈ L∞
loc(Ω).

Proof. Let us consider the following scaling:

ū(x) :=
u(x0 +Rx)− (u)BR

R
, ā(x) := a(x0 +Rx), b̄(x) := b(x0 +Rx),
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Ψ̄(x, t) := G(t) + ā(x)Ha(t) + b̄(x)Hb(t),

Ā(k, s) := Bs(0) ∩ {ū > k} and B̄(k, s) := Bs(0) ∩ {ū < k} (3.2.4)

for every x ∈ B1(0), t ⩾ 0, s ∈ (0, 1) and k ∈ R. The rest of the proof falls
in 3 steps.

Step 1: Sobolev-Poincaré inequality under the scaling. Before go-
ing on further, let us consider a Sobolev-Poincaré type inequality under the
new scaling introduced in (3.2.4). So we prove that there exists a positive
exponent θ ≡ θ(n, s(G), s(Ha), s(Hb)) ∈ (0, 1) such that

ˆ

B1

Ψ̄(x, |f |) dx ⩽ ck̄sp

ˆ
B1

[Ψ̄(x, |Df |)]θ dx

 1
θ

(3.2.5)

for some constant c ≡ c(n, s(G), s(Ha), s(Hb), ωa(1), ωb(1)), whenever f ∈
W 1,Ψ̄

0 (B1), where

κ̄sp = 1 + ([a]ωa + [b]ωb
)

λ1 + λ1R

ˆ
B1

G(|Df |) dx

 1
n

 . (3.2.6)

Essentially, the proof of the inequality (3.2.5) comes from a careful revealing
of the arguments used in (2.4.7)-(2.4.9). So using continuity properties of ā(·)
and b̄(·), we see

I : =

ˆ

B1

Ψ̄(x, |f |) dx ⩽ 2[a]ωaωa(R)

ˆ

B1

Ha(|f |) dx

+ 2[b]ωb
ωb(R)

ˆ

B1

Hb(|f |) dx+
ˆ

B1

Ψ̄−
B1
(|f |) dx

: 2[a]ωaI1 + 2[b]ωb
I2 + I3, (3.2.7)

where

Ψ̄−
B1
(t) := G(t) + inf

x∈B1

ā(x)Ha(t) + inf
x∈B1

b̄(x)Hb(t) for every t ⩾ 0.

(3.2.8)
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Now we estimate the terms Ii for i ∈ {1, 2, 3} similarly as in the proof of
Theorem 2.4.1. In turn, using the assumption (1.0.13)2 and (2.1.2), we have

I1 = ωa(R)

ˆ

B1

Ha(|f |)
G(|f |)

G(|f |) dx

⩽ λ1ωa(R)

ˆ

B1

(
1 +

[
ωa

(
[G (|f |)]−

1
n

)]−1
)
G (|f |) dx

⩽ λ1ωa(R)

ˆ

B1

(
1 +

[
1

ωa(R)
+

R

ωa(R)
[G (|f |)]

1
n

])
G (|f |) dx

⩽ λ1(1 + ωa(1))

ˆ

B1

G (|f |) dx+ 2λ1R

ˆ

B1

[G (|f |)]1+
1
n dx. (3.2.9)

In a similar manner, we find

I2 ⩽ λ1(1 + ωb(1))

ˆ

B1

G (|f |) dx+ λ1R

ˆ

B1

[G (|f |)]1+
1
n dx. (3.2.10)

Inserting the estimates (3.2.9)-(3.2.10) into (3.2.8), the inequality (3.2.5) fol-
lows from the similar arguments used in (2.4.9)-(2.4.10) and Lemma 2.4.1.

Step 2. Proof of (3.2.2). Since u− (u)BR
is a local Q-minimizer of the

functional P , we use a Caccioppoli inequality of Lemma 3.2.1 to see that

ˆ

Bt

Ψ̄(x, |D(ū− k)±|) dx ⩽ c

ˆ

Bs

Ψ̄

(
x,

(ū− k)±
s− t

)
dx (3.2.11)

holds for some constant c ≡ c(s(G), s(Ha), s(Hb), Q), whenever 0 < t < s ⩽ 1
and k ∈ R. Let us now consider the concentric balls Bρ ⋐ Bt ⋐ Bs with
1/2 ⩽ ρ < s ⩽ 1 and t := (ρ + s)/2. Let η ∈ C∞

0 (Bt) be a standard cut-off

function such that χBρ ⩽ η ⩽ χBt and |Dη| ⩽ 2

t− ρ
=

4

s− ρ
. Now we apply

inequality (3.2.5) from Step 1 above in order to have a positive exponent
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θ ≡ θ(n, s(G), s(Ha), s(Hb)) such that

ˆ

Ā(k,ρ)

Ψ̄(x, ū− k) dx ⩽
ˆ

B1

Ψ̄(x, η(ū− k)+) dx

⩽ ck̄sp

ˆ
B1

[
Ψ̄(x, |D(η(ū− k)+)|)

]θ
dx

 1
θ

(3.2.12)

for some constant c ≡ c(n, s(G), s(Ha), s(Hb), ωa(1), ωb(1)), where

k̄sp = 1 + ([a]ωa + [b]ωb
)

λ1 + λ1R

ˆ
B1

G(|D(η(ū− k)+)|) dx

 1
n

 .

(3.2.13)

By scaling back and using Lemma 2.1.1, for any k ⩾ 0, we have

κ̄sp ⩽ c

1 +R

 

BR

G(|Du|) dx

 1
n

+
R

(s− ρ)
s(G)+1

n

 

BR

G

(∣∣∣∣u− (u)BR

R

∣∣∣∣) dx

 1
n


⩽

c

(s− ρ)s(G)+1

1 +
ˆ

BR

G(|Du|) dx

 1
n

 (3.2.14)

with a constant c ≡ c(n, λ1, [a]ωa + [b]ωb
), where we have also used Lemma

2.4.1 to Φ ≡ G for d0 ≡ 1.
Then, inserting the last estimate into (3.2.12) and applying Hölder in-

equality together with (3.2.11) yield that

ˆ

Ā(k,ρ)

Ψ̄(x, ū− k) dx ⩽ c
1

(s− ρ)1+s(G)
|Ā(k, t)|

1−θ
θ
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×
ˆ

Ā(k,t)

(
Ψ̄(x, |Dū|) + Ψ̄

(
x,
ū− k

s− ρ

))
dx

⩽ c
1

(s− ρ)1+s(G)
|Ā(k, s)|

1−θ
θ

ˆ

Ā(k,s)

Ψ̄

(
x,
ū− k

s− ρ

)
dx

(3.2.15)

holds with some constant c ≡ c(data), where in the last display we have also
used (2.1.6). By the definition of Ā in (3.2.4), we observe

|Ā(k, s)| ⩽
ˆ

Ā(h,s)

Ψ̄(x, ū− h)

Ψ̄(x, k − h)
dx ⩽

1

Ψ̄−
B1
(k − h)

ˆ

Ā(h,s)

Ψ̄(x, ū− h) dx

and ˆ

Ā(k,s)

Ψ̄(x, ū− k) dx ⩽
ˆ

Ā(h,s)

Ψ̄(x, ū− h) dx

for any h < k. Putting the last two inequalities into (3.2.15) and applying
Lemma 2.1.1, we have the following inequality:

ˆ

Ã(k,ρ)

Ψ̄(x, ū− k) dx ⩽
c

[Ψ̄−
B1
(k − h)]

1−θ
θ (s− ρ)2(max{s(G),s(Ha),s(Hb)}+1)

×

 ˆ

Ā(h,s)

Ψ̄(x, ū− h) dx


1
θ

. (3.2.16)

Now we set sequences of numbers as follows:

ρi :=
1

2

(
1 +

1

2i

)
, ki := 2l0

(
1− 1

2i+1

)
and Mi :=

1

Ψ̄−
B1
(l0)

ˆ

Ā(ki,ρi)

Ψ̄(x, ū− ki) dx

for any integer i ⩾ 0 and some number l0 > 0 to be chosen in a few lines.
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Then applying (3.2.16) with the choices k ≡ ki+1, h ≡ ki, ρ ≡ ρi+1 and
s ≡ ρi, we have, for every i ⩾ 0,

Mi+1 ⩽
c[

Ψ̄−
B1

(
l0

2i+1

)] 1−θ
θ
(

1
4i+2

)max{s(G),s(Ha),s(Hb)}+1

[
Ψ̄−

B1
(l0)
] 1−θ

θ M
1
θ
i

⩽ c0

[
4(max{s(G),s(Ha),s(Hb)}+1) 1

θ

]i
M

1+ 1−θ
θ

i

with c0 ≡ c0(data), where in the last inequality of the last display we have
used again Lemma 2.1.1. Now it’s turn to apply a standard iteration of
Lemma 2.2.2, which means that if

1

Ψ̄−
B1
(l0)

ˆ

Ā(l0,1)

Ψ̄(x, ū− l0) dx =M0 ⩽ c
− θ

1−θ

0 4
−(max{s(G),s(Ha),s(Hb)}+1) θ

(1−θ)2 ,

then we obtain

∥ū+∥L∞(B1/2)
⩽ 2l0.

Consequently, choosing l0 > 0 in such a way that

Ψ̄−
B1
(l0) = c

θ
1−θ

0 4
(max{s(G),s(Ha),s(Hb)}+1) θ

(1−θ)2

ˆ

B1

Ψ̄(x, ū+) dx,

we have ∥∥Ψ̄−
B1

(ū+)
∥∥
L∞(B1/2)

⩽ c

ˆ

B1

Ψ̄(x, ū+) dx,

which implies that∥∥∥∥Ψ−
BR

(
(u− (u)BR

)+
R

)∥∥∥∥
L∞(BR/2)

⩽ c

 

BR

Ψ

(
x,

(u− (u)BR
)+

R

)
dx

holds with c ≡ c(data). Repeating the same argument for −u, which is also a
local Q-minimizer of the functional P defined in (1.0.10), the last inequality
holds with (u− (u)BR

)+ replaced by (u− (u)BR
)−.

Step 3. Proof of (3.2.3). Using (3.2.2) and (2.1.6), for a.e x1, x2 ∈ BR/2,
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we have

Ψ−
BR

(∣∣∣∣u(x1)− u(x2)

R

∣∣∣∣) ⩽ cΨ−
BR

(∣∣∣∣u(x1)− (u)BR

R

∣∣∣∣)
+ cΨ−

BR

(∣∣∣∣u(x2)− (u)BR

R

∣∣∣∣)
⩽ c

 

BR

Ψ

(
x,

∣∣∣∣u− (u)BR

R

∣∣∣∣) dx ⩽ c

 

BR

Ψ(x, |Du|) dx

for some constant c ≡ c(data), where in the last inequality of the above
display we have used a Sobolev-Poincaré type inequality of Theorem 2.4.1.
Clearly, the last display implies u ∈ L∞

loc(Ω). The proof is complete.

3.2.2 Almost standard Caccioppoli inequality

Now we present the primary results, the so-called almost standard Cacciop-
poli type inequality, for proving Hölder continuity of a local Q-minimizer of
the functional P .

Lemma 3.2.2 (Almost standard Caccioppoli inequality). Let u ∈ W 1,Ψ(Ω)
be a local Q-minimizer of the functional P defined in (1.0.1) under one of
the assumptions (1.0.13), (1.0.14) and (1.0.15). Let B2R ≡ B2R(x0) ⊂ Ω be
a ball with R ⩽ 1. Then there exists a constant c ≡ c(data) such that

ˆ

BR1

Ψ−
BR

(|D(u− k)±|) dx ⩽
ˆ

BR1

Ψ(x, |D(u− k)±|) dx

⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

Ψ−
BR

(
(u− k)±

R

)
dx

(3.2.17)

holds, whenever BR1 ⋐ BR2 ⊂ BR(x0) are concentric balls and k ∈ R.

Proof. First we prove the inequality (3.2.17) for the values of k ∈ R with
inf
BR

u ⩽ k ⩽ sup
BR

u, depending on which one of the assumptions (1.0.13)-

(1.0.15) is in force. Firstly, by the definition of Ψ−
BR

in (2.1.3) and Lemma
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3.2.1, we see

I :=

ˆ

BR1

Ψ−
BR

(|D(u− k)±|) dx

⩽
ˆ

BR1

Ψ(x, |D(u− k)±|) dx ⩽ c∗

ˆ

BR2

Ψ

(
x,

(u− k)±
R2 −R1

)
dx

⩽ c∗ωa(R)

ˆ

BR2

Ha

(
(u− k)±
R2 −R1

)
dx+ c∗ωb(R)

ˆ

BR2

Hb

(
(u− k)±
R2 −R1

)
dx

+ c∗

ˆ

BR2

Ψ−
BR

(
(u− k)±
R2 −R1

)
dx =: c∗ (I1 + I2 + I3) (3.2.18)

for some constant c∗ ≡ c∗(n, s(G), s(Ha), s(Hb), Q, [a]ωa , [b]ωb
). Now we shall

estimate each term Ii for i ∈ {1, 2, 3} in the above display. Then using Lemma
2.1.1, the assumption (1.0.13)2, (2.1.2) and (3.2.3) of Lemma 3.2.1, we see

I1 = ωa(R)

ˆ

BR2

Ha

(
(u−k)±
R2−R1

)
G
(

(u−k)±
R2−R1

) G((u− k)±
R2 −R1

)
dx

⩽ ωa(R)

(
R

R2 −R1

)s(Ha)+1 ˆ

BR2

(Ha ◦G−1)
(
G
(

(u−k)±
R

))
G
(

(u−k)±
R

) G

(
(u− k)±
R2 −R1

)
dx

⩽ λ1ωa(R)

(
R

R2 −R1

)s(Ha)+1

×
ˆ

BR2

1 +

[
ωa

([
G

(
(u− k)±

R

)]− 1
n

)]−1
G

(
(u− k)±
R2 −R1

)
dx

⩽ cωa(R)

(
R

R2 −R1

)s(Ha)+1

×
ˆ

BR2

1 + 1

ωa(R)
+

R

ωa(R)

(
G

(osc
BR

u

R

)) 1
n

G((u− k)±
R2 −R1

)
dx
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⩽ c

1 +
 ˆ

B2R

Ψ(x, |Du|) dx

 1
n

( R

R2 −R1

)s(Ha)+1 ˆ

BR2

G

(
(u− k)±
R2 −R1

)
dx

⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

G

(
(u− k)±

R

)
dx (3.2.19)

for some constant c ≡ c(data). In a totally similar way, it can be shown that

I2 ⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

G

(
(u− k)±

R

)
dx (3.2.20)

with a constant c ≡ c(data). Clearly, recalling Remark 2.1.2 and using
Lemma 2.1.1, we have

I3 ⩽

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

Ψ−
BR

(
(u− k)±

R

)
dx (3.2.21)

Inserting the estimates obtained in (3.2.19)-(3.2.21) into (3.2.18) and recall-
ing the very definition of Ψ−

BR
in (2.1.3), we arrive at (3.2.17) under the

assumption (1.0.13). The second part of the proof is to show (3.2.17) un-
der the assumption (1.0.14). For this, we again estimate the terms Ii with
i ∈ {1, 2, 3} in (3.2.18). Applying Lemma 2.1.1, the assumption (1.0.14) and
(2.1.2), we see

I1 = ωa(R)

ˆ

BR2

(
Ha

G

)(
(u− k)±
R2 −R1

)
G

(
(u− k)±
R2 −R1

)
dx

⩽ ωa(R)

(
R

R2 −R1

)s(Ha)+1 ˆ

BR2

(
Ha

G

)(
(u− k)±

R

)
G

(
(u− k)±
R2 −R1

)
dx

⩽ 2λ2ωa(R)

(
R

R2 −R1

)s(Ha)+1

×
ˆ

BR2

(
1 +

[
ωa

(
R

(u− k)±

)]−1
)
G

(
(u− k)±
R2 −R1

)
dx
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⩽ cλ2ωa(R)

(
R

R2 −R1

)s(Ha)+1

×
ˆ

BR2

(
1 +

[
1

ωa(R)
+

∥u∥L∞(BR)

ωa(R)

])
G

(
(u− k)±
R2 −R1

)
dx

⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

G

(
(u− k)±

R

)
dx (3.2.22)

for some constant c ≡ c(data). Arguing similarly, we have

I2 ⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

G

(
(u− k)±

R

)
dx (3.2.23)

with a constant c ≡ c(data). Plugging the estimates (3.2.21)-(3.2.23) into
(3.2.18), we conclude with (3.2.17) under the assumption (1.0.14). Finally,
the remaining part of the proof is to obtain the inequality (3.2.17) under
the assumption (1.0.15). In fact, we continue to estimate the terms Ii with
i ∈ {1, 2, 3} in (3.2.18). Therefore, using the assumption (1.0.15) and (2.1.2),
we find

I1 = ωa(R)

ˆ

BR2

(
Ha

G

)(
(u− k)±
R2 −R1

)
G

(
(u− k)±
R2 −R1

)
dx

⩽ ωa(R)

(
R

R2 −R1

)s(Ha)+1 ˆ

BR2

(
Ha

G

)(
(u− k)±

R

)
G

(
(u− k)±
R2 −R1

)
dx

⩽ 2λ3ωa(R)

(
R

R2 −R1

)s(Ha)+1

×
ˆ

BR2

1 +

[
ωa

([
R

(u− k)±

] 1
1−γ

)]−1
G

(
(u− k)±
R2 −R1

)
dx

⩽ cλ3ωa(R)

(
R

R2 −R1

)s(Ha)+1 ˆ

BR2

(
1 +

1

ωa(R)

)
G

(
(u− k)±
R2 −R1

)
dx
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⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

G

(
(u− k)±

R

)
dx (3.2.24)

for some constant c ≡ c(data), where we have used Lemma 2.1.1 several
times. Using the same argument as above, we have

I2 ⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

G

(
(u− k)±

R

)
dx (3.2.25)

with a constant c ≡ c(data). Inserting the estimates (3.2.21), (3.2.24)-
(3.2.25) into (3.2.18), we arrive at (3.2.17) under the assumption (1.0.15).
So we have proved the inequality (3.2.17) for the values of k ∈ R such that
inf
BR

u ⩽ k ⩽ sup
BR

u. Now we consider the remaining cases. Suppose k < inf
BR

u.

In this case, using (3.2.17) with k ≡ inf
BR

u, we have

ˆ

BR1

Ψ−
BR

(|D(u− k)+|) dx =

ˆ

BR1

Ψ−
BR

(∣∣∣∣D(u− inf
BR

u)+

∣∣∣∣) dx

⩽
ˆ

BR1

Ψ

(
x,

∣∣∣∣D(u− inf
BR

u)+

∣∣∣∣) dx

⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

Ψ−
BR


(
u− inf

BR

u

)
+

R

 dx

⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

Ψ−
BR

(
(u− k)+

R

)
dx

(3.2.26)

for some constant c ≡ c(data). Similarly, it can seen that (3.2.26) is valid
for the values of k > sup

BR

u. Since −u is also the local Q-minimizer of the

functional P in (1.0.1), the inequality (3.2.17) is valid for all k ∈ R. The
proof is complete.
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From now on also in the rest of the thesis, for a fixed ball BR ⊂ Ω, we
say that

G− phase occurs in BR

if a−(BR) ⩽ 4[a]ωaωa(R) and b
−(BR) ⩽ 4[b]ωb

ωb(R).

(G,Ha)− phase occurs in BR

if a−(BR) > 4[a]ωaωa(R) and b
−(BR) ⩽ 4[b]ωb

ωb(R).

(G,Hb)− phase occurs in BR

if a−(BR) ⩽ 4[a]ωaωa(R) and b
−(BR) > 4[b]ωb

ωb(R).

(G,Ha, Hb)− phase occurs in BR

if a−(BR) > 4[a]ωaωa(R) and b
−(BR) > 4[b]ωb

ωb(R).

(3.2.27a)

(3.2.27b)

(3.2.27c)

(3.2.27d)

Then we have the following lemma which will be applied later, see Section
3.4.

Lemma 3.2.3. Let u ∈ W 1,Ψ(Ω) be a local Q-minimizer of the functional
P defined in (1.0.1) under one of the assumptions (1.0.13), (1.0.14) and
(1.0.15). Let B2R ≡ B2R(x0) ⊂ Ω be a ball with R ⩽ 1. Then there exists a
constant c ≡ c(data) such that

ˆ

BR1

Ψ−
BR

(|D(u− k)±|) dx ⩽
ˆ

BR1

Ψ(x, |D(u− k)±|) dx

⩽ c

(
R

R2 −R1

)s(Ψ)+1 ˆ

BR2

Φ

(
(u− k)±

R

)
dx

(3.2.28)
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holds, whenever BR1 ⋐ BR2 ⊂ BR(x0) are concentric balls and k ∈ R, where

Φ(t) =



G(t)

if (3.2.27a) is satisfied in BR,

G(t) + a−(BR)Ha(t)

if (3.2.27b) is satisfied in BR,

G(t) + b−(BR)Hb(t)

if (3.2.27c) is satisfied in BR,

Ψ−
BR

(t)

if (3.2.27d) is satisfied in BR,

(3.2.29a)

(3.2.29b)

(3.2.29c)

(3.2.29d)

for every t ⩾ 0.

Proof. First we observe that if a−(BR) > 4[a]ωaωa(R), then using the conti-
nuity of the function a(·), we have

a−(BR) ⩽ a(x) = a(x)− a−(BR) + a−(BR)

⩽ 2[a]ωaωa(R) + a−(BR) ⩽ 2a−(BR) (3.2.30)

for every x ∈ BR. On the other hand, if a−(BR) ⩽ 4[a]ωaωa(R), then using
again the continuity of a(·), we see

a(x) = a(x)− a−(BR) + a−(BR) ⩽ 6[a]ωaωa(R)

for every x ∈ BR. Clearly, analogous estimates to the last two displays are
valid for the function b(·) in BR. After those observations, we argue similarly
as in the proof of Lemma 3.2.2 depending on which case of (3.2.27b)-(3.2.27d)
occurs in the ball BR.

3.2.3 Hölder continuity

In this subsection we prove some local boundedness and Hölder continuity
assertions of a local Q-minimizer of the functional P in (1.0.1) with various
constants having the precise dependencies.

Theorem 3.2.2. Let u ∈ W 1,Ψ(Ω) be a local Q-minimizer of the func-
tional P defined in (1.0.1) under the coefficient functions a(·) ∈ Cωa(Ω) and
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b(·) ∈ Cωb(Ω) for ωa, ωb being non-negative continuous and concave functions
vanishing at the origin.

1. If the assumption (1.0.13) is satisfied, then for every open subset Ω0 ⋐
Ω, there exists a Hölder continuity exponent γ ≡ γ(data(Ω0)) ∈ (0, 1)
such that

∥u∥L∞(Ω0)
+ [u]0,γ;Ω0 ⩽ c(data(Ω0)) (3.2.31)

and the oscillation estimate

osc
Bρ

u ⩽ c
( ρ
R

)γ
osc
BR

u (3.2.32)

holds for some c ≡ c(data(Ω0)) and all concentric balls Bρ ⋐ BR ⋐
Ω0 ⋐ Ω with R ⩽ 1.

2. If the assumption (1.0.14) is satisfied, then there exists a Hölder conti-
nuity exponent γ ≡ γ(data) ∈ (0, 1) such that

[u]0,γ;Ω0 ⩽ c(data(Ω0)) (3.2.33)

and the oscillation estimate

osc
Bρ

u ⩽ c
( ρ
R

)γ
osc
BR

u (3.2.34)

holds for some c ≡ c(data) and all concentric balls Bρ ⋐ BR ⊂ Ω with
R ⩽ 1.

Proof. Basically, we shall use De Giorgi’s methods to prove the local Hölder
continuity of u based on arguments employed in [39, 57]. For the convenience
of the reader, we give a detailed proof. Note that, for any given ball BR ⋐ Ω,
either ∣∣∣∣{x ∈ BR/2 : u(x) > sup

BR

u− 1

2
osc
BR

u

}∣∣∣∣ ⩽ 1

2
|BR/2| (3.2.35)

or ∣∣∣∣{x ∈ BR/2 : (−u(x)) > sup
BR

(−u)− 1

2
osc
BR

u

}∣∣∣∣ ⩽ 1

2
|BR/2| (3.2.36)
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holds true. It is enough to deal with only the case of (3.2.35) is valid since −u
is a local Q-minimizer of the functional P . The proof falls in three steps. In
what follows, let B2R ≡ B2R(x0) ⊂ Ω0 ⋐ Ω be a fixed ball such that R ⩽ 1.
Let us also denote by

A(k, ρ) := {x ∈ Bρ : u(x) > k} and B(k, ρ) := {x ∈ Bρ : u(x) < k}
(3.2.37)

for every concentric ball Bρ ⊂ B2R and k ∈ R.
Step 1. We suppose that (3.2.35) is satisfied. Then in this step we prove

that, for any ε ∈ (0, 1), there exists a natural number m ≡ m(data(Ω0), ε) ⩾
3 if (1.0.13) is assumed, and m ≡ m(data, ε) ⩾ 3 if (1.0.14) is assumed, such
that ∣∣∣∣{x ∈ BR/2 : u(x) > sup

BR

u− 1

2m
osc
BR

u

}∣∣∣∣ ⩽ ε|BR/2|. (3.2.38)

Let m ⩾ 3 be a natural number to be determined in a few lines. For every
i ∈ {1, 2, . . . ,m}, we set

ki := sup
BR

u− 1

2i
osc
BR

u, Di := A(ki, R/2) \ A(ki+1, R/2)

and

wi(x) :=


ki+1 − ki if u(x) > ki+1,
u(x)− ki if ki < u(x) ⩽ ki+1,
0 if u(x) ⩽ ki.

Clearly wi ∈ W 1,Ψ(BR/2) with wi ≡ 0 in BR/2 \ A(k1, R/2) for all i ∈
{1, . . . ,m}, and also |BR/2\A(k1, R/2)| ⩾ 1/2|BR/2|. Then applying Hölder’s
inequality, Sobolev’s inequality and Lemma 2.1.4, for every τ ∈ (0, 1), we
have

|A(ki+1, R/2)|Ψ−
BR

(
ki+1 − ki

R

)
⩽ c

ˆ

A(ki,R/2)

Ψ−
BR

(wi

R

)
dx
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⩽ |A(ki, R/2)|
1
n

 ˆ

A(ki,R/2)

[
Ψ−

BR

(wi

R

)] n
n−1

dx


n−1
n

⩽ cR

 ˆ

A(ki,R/2)

[
Ψ−

BR

(wi

R

)] n
n−1

dx


n−1
n

⩽ c

ˆ

Di

∂tΨ
−
BR

(
u− ki
R

)
|Du| dx

⩽ τ

ˆ

Di

Ψ−
BR

(|Du|) dx+ c

τ s(Ψ)

ˆ

Di

Ψ−
BR

(
u− ki
R

)
dx. (3.2.39)

Now we use a Caccioppoli type inequality of Lemma 3.2.2 in order to have

ˆ

Di

Ψ−
BR

(|Du|) dx ⩽ c

ˆ

A(ki,R)

Ψ−
BR

(∣∣∣∣u− ki
R

∣∣∣∣) dx ⩽ c

ˆ

A(ki,R)

Ψ−
BR

(osc
BR

u

2iR

)
dx

⩽ cΨ−
BR

(
ki+1 − ki

R

)
|A(ki, R)| ⩽ cΨ−

BR

(
ki+1 − ki

R

)
Rn.

One can see that
ˆ

Di

Ψ−
BR

(
u− ki
R

)
dx ⩽

ˆ

Di

Ψ−
BR

(
ki+1 − ki

R

)
dx = Ψ−

BR

(
ki+1 − ki

R

)
|Di|.

Using the estimates coming from the last two displays in (3.2.39), for every
i ∈ {1, . . . ,m− 1}, we see

A(km−1, R/2) ⩽ A(ki+1, R/2) ⩽ cτRn +
c

τ s(Ψ)
|Di|.

Summing over i ∈ {1, . . . ,m− 1}, it yields that

|A(km−1, R/2)| ⩽
(
cτ +

c

(m− 1)τ s(Ψ)

)
Rn.

Now taking small enough τ ≡ τ(data(Ω0), ε) and large enough number m ≡
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m(data(Ω0), ε), we arrive at (3.2.38) when (1.0.13) is assumed. But in the
case that (1.0.14) is assumed, we choose small enough τ ≡ τ(data, ε) and
large enough number m ≡ m(data, ε) to conclude (3.2.38).

Step 2. In this step, we prove that there exists a small positive ε0 ≡
ε0(data(Ω0)) ∈ (0, 1/2n+1) such that if

0 < ν0 <
1

2
osc
BR

u and

∣∣∣∣{x ∈ BR/2 : u(x) > sup
BR

u− ν0}
∣∣∣∣ ⩽ ε0|BR/2|,

(3.2.40)

then we have

sup
BR/4

u ⩽ sup
BR

u− ν0/2. (3.2.41)

Now we set the sequences by

ρi :=
R

4

(
1 +

1

2i

)
and ki := sup

BR

u−
(
1

2
+

1

2i+1

)
ν0 for every i = 0, 1, 2, . . . ,

and we define

Di+1 := A(ki, ρi+1) \ A(ki+1, ρi+1) and Yi :=
|A(ki, ρi)|
|BR/2|

.

Applying Lemma 3.2.2 together with (3.2.40), we discover

ˆ

A(ki,ρi+1)

Ψ−
BR

(|Du|) dx ⩽ c2(i+3)(s(Ψ)+1)

ˆ

A(ki,ρi)

Ψ−
BR

(
(u− ki)+

R

)
dx

⩽ c2i(s(Ψ)+1)Ψ−
BR

(ν0
R

)
|A(ki, ρi)|,

where we have also used the very definition of ki and that (u− ki)+ ⩽ ν0 ⩽
∥u∥L∞(BR). The last display and the convexity of Ψ−

BR
imply that

Ψ−
BR

  

Di+1

|Du| dx

 ⩽
 

Di+1

Ψ−
BR

(|Du|) dx ⩽ c2i(s(Ψ)+1) |A(ki, ρi)|
|Di+1|

Ψ−
BR

(ν0
R

)
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⩽ Ψ−
BR

(
c2i(s(Ψ)+1) |A(ki, ρi)|

|Di+1|
ν0
R

)
.

Therefore, we have

 

Di+1

|Du| dx ⩽ c2i(s(Ψ)+1) |A(ki, ρi)|
|Di+1|

ν0
R
.

On the other hand, applying Lemma 2.2.3 together with ε0 ∈ (0, 1/2n+1),
we discoverˆ

Di+1

|Du| dx ⩾ c(ki+1 − ki)|A(ki+1, ρi+1)|1−
1
n |Bρi+1

\ A(ki, ρi+1)|ρ−n
i+1

⩾ c2−iν0|A(ki+1, ρi+1)|1−
1
n

(
|BR/4| − ε0|BR/2|

)
R−n

⩾ c2−iν0|A(ki+1, ρi+1)|1−
1
n

⩾ c2−iν0R
n−1Y

1− 1
n

i+1

for some constant c ≡ c(data(Ω0)). Combining last two displays, we conclude

Yi+1 ⩽ c∗

(
2

n(s(Ψ)+2)
n−1

)i
Y

1+ 1
n−1

i

for some constant c∗ ≡ c∗(data(Ω0)). Now we apply Lemma 2.2.2 in order
to have Yi → 0 as i→ ∞, provided

Y0 =
|A(k0, R/2)|

|BR/2|
⩽ ε0 ⩽ c−(n−1)

∗ 2−n(n−1)(s(Ψ)+2).

Therefore, (3.2.41) is satisfied since∣∣∣∣A(sup
BR

u− ν0
2
, R/4

)∣∣∣∣ = 0.

Step 3: Proof of Hölder continuity. Finally, we are now ready to prove
a local Hölder continuity of u. For this, let m ⩾ 3 be the natural number
satisfying (3.2.38) for the choice ε ≡ ε0 ∈ (0, 1/2n+1), where ε0 is determined
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via (3.2.40). Then we have

osc
BR/4

u ⩽

(
1− 1

2m+1

)
osc
BR

u

withm ≡ m(data(Ω0)), whenever B2R ⊂ Ω0 is a ball with R ⩽ 1. Clearly, the
above display implies that there exists a positive exponent γ ≡ γ(data(Ω0)) ∈
(0, 1) such that, for any fixed ball B8R0 ⊂ Ω0 with 8R0 ⩽ 1, the following
oscillation

osc
BR

u ⩽ c

(
R

R0

)γ

osc
BR0

u

holds with some constant c ≡ c(data(Ω0)) for every R ∈ (0, R0]. Here we
note that in the case that the assumption (1.0.14) is in force, the constants
appearing in the above lemma depend only on data, but otherwise are inde-
pendent of the subset Ω0. Finally, we have shown that

u ∈ C0,γ
loc (Ω0)

if either the assumption (1.0.13) or (1.0.14) is satisfied. Therefore by a stan-
dard covering argument, the estimates (3.2.31) and (3.2.32) are satisfied.
Clearly, if (1.0.14) is assumed instead of (1.0.13), γ in (3.2.33) depends only
on data since ∥u∥L∞(Ω0)

⩽ ∥u∥L∞(Ω). The proof is complete.

3.2.4 The Harnack inequality

In this subsection we prove the Harnack inequality for a local Q-minimizer u
of the functional P in (1.0.1) under one of the assumptions (1.0.13), (1.0.14)
and (1.0.15). The analysis similar to the one in Step 1 of the proof of Theorem
3.2.2 gives the following lemma.

Lemma 3.2.4. Let u ∈ W 1,Ψ(Ω) be a non-negative local Q-minimizer of
the functional P in (1.0.1) under the coefficient functions a(·) ∈ Cωa(Ω) and
b(·) ∈ Cωb(Ω) for ωa, ωb being non-negative, continuous and concave functions
vanishing at the origin. Suppose that one of the assumptions (1.0.13), (1.0.14)
and (1.0.15) is satisfied. Let B6R ⊂ Ω0 ⋐ Ω be a ball with 6R ⩽ 1. Then for
any τ1, τ2 ∈ (0, 1), there exists a large number m depending on data and
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τ1, τ2 such that for any 0 < k ⩽ ∥u∥L∞(B3R), if

|{x ∈ BR : u(x) ⩾ k}| ⩾ τ1|BR| (3.2.42)

holds, then ∣∣{x ∈ B2R : u(x) ⩽ 2−mk}
∣∣ ⩽ τ2 |B2R| . (3.2.43)

Proof. Let m ⩾ 3 be a large number to be determined later. We set, for
i = 0, 1, . . . ,m,

ki :=
k

2i
, Di := B(ki, 2R) \B(ki+1, 2R)

and

wi(x) :=


ki − ki+1 if u(x) < ki+1,
u(x)− ki+1 if ki+1 ⩽ u(x) < ki,
0 if u(x) ⩾ ki.

We observe that Ψ−
B3R

(wi) ∈ W 1,1(B2R) and Ψ−
B3R

(wi) ≡ 0 on B2R\B(k0, 2R)
for every i ∈ {0, 1, . . . ,m} and |B2R \ B(k0, 2R)| ⩾ τ1|BR|. Then using
Hölder’s inequality, Sobolev’s inequality and Lemma 2.1.4, we have that

B(ki+1, 2R)Ψ
−
B3R

(
ki − ki+1

3R

)
⩽

ˆ

B(ki,2R)

Ψ−
B3R

( wi

3R

)
dx

⩽ |B(ki, 2R)|
1
n

 ˆ

B(ki,2R)

[
Ψ−

B3R

( wi

3R

)] n
n−1

dx


n−1
n

⩽ cR

 ˆ

B(ki,2R)

[
Ψ−

B3R

( wi

3R

)] n
n−1

dx


n−1
n

⩽ c

ˆ

Di

(
Ψ−

B3R

)′(u− ki+1

3R

)
|Du| dx

77



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

⩽ ε

ˆ

Di

Ψ−
B3R

(|Du|) dx+ c

εs(Ψ)

ˆ

Di

Ψ−
B3R

(
u− ki+1

3R

)
dx (3.2.44)

for every ε ∈ (0, 1) and some constant c ≡ c(data, τ1), where we have used
Remark 2.1.2 that Ψ−

B3R
∈ N with an index s(Ψ) = s(G) + s(Ha) + s(Hb).

It follows from the almost standard Caccioppoli inequality of Lemma 3.2.2
that

ˆ

Di

Ψ−
B3R

(|Du|) dx ⩽ c

ˆ

B(ki,2R)

Ψ−
B3R

(
ki − u

3R

)
dx

⩽ c

ˆ

B(ki,2R)

Ψ−
B3R

(∣∣∣∣2(ki − ki+1)

3R

∣∣∣∣) dx

⩽ c|B(ki, 2R)|Ψ−
B3R

(∣∣∣∣2(ki − ki+1)

3R

∣∣∣∣)
⩽ cRnΨ−

B3R

(∣∣∣∣ki − ki+1

3R

∣∣∣∣) , (3.2.45)

where we have also used the assumption that u is non-negative. Clearly, by
the very definition of Di, one can see that

ˆ

Di

Ψ−
B3R

(
u− ki+1

3R

)
dx ⩽

ˆ

Di

Ψ−
B3R

(
ki − ki+1

3R

)
dx

⩽ c|Di|
ˆ

Di

Ψ−
B3R

(
ki − ki+1

3R

)
dx. (3.2.46)

Combining the estimates obtained in (3.2.44)-(3.2.46), we find that

|B(km, 2R)| ⩽ |B(ki+1, 2R)| ⩽ cεRn +
c

εs(Ψ)
|Di|

holds for some constant c ≡ c(data, τ1), whenever ε ∈ (0, 1) and i ∈ {0, 1, . . . ,m−
1}. Summing the last inequality above over the index i from 0 tom−1 implies

|B(km, 2R)| ⩽ cεRn +
c

εs(Ψ)m
|B(k0, 2R)| ⩽

(
c∗ε+

c∗
εs(Ψ)m

)
|B2R|
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for some constant c∗ ≡ c∗(data, τ1). Now choosing small enough ε ≡ (data, τ1, τ2)
and sufficiently large m ≡ m(data, τ1, τ2) such that

c∗ε+
c∗

εs(Ψ)m
⩽ τ2,

we arrive at the desired estimate (3.2.43).

Lemma 3.2.5. Under the assumptions of Lemma 3.2.4, let u ∈ W 1,Ψ(Ω)
be a non-negative Q-minimizer of the functional P in (1.0.1). Suppose that
one of the assumptions (1.0.13), (1.0.14) and (1.0.15) is satisfied. Then for
any τ ∈ (0, 1), there exists a small δ1 ≡ δ1(data(Ω0)) such that for any
0 < k ⩽ ∥u∥L∞(B3R), if

|{x ∈ BR : u(x) ⩾ k}| ⩾ τ |BR| (3.2.47)

holds, then

inf
BR

u ⩾ δ1k. (3.2.48)

Proof. It’s enough to prove the lemma for τ ∈
(
0, 2−(n+1)

)
. Let us fixm0 ∈ N,

and consider the sequences defined by

ρi := R

(
1 +

1

2i

)
and ki :=

(
1

2
+

1

2i

)
2−m0k (i = 0, 1, 2, . . .) .

(3.2.49)

Next we also define

D−
i+1 := B(ki, ρi+1) \B(ki+1, ρi+1) and Yi :=

|B(ki, ρi)|
|Bρi |

, (3.2.50)

where the definition of B(ki, ρi) has been introduced in (3.2.37). By using
the assumption that u is non-negative, we observe (u− ki)− ⩽ 2−m0k. Then
by applying Lemma 3.2.2, we see

ˆ

B(ki,ρi+1)

Ψ−
B2R

(|Du|) dx ⩽ c2(i+3)(s(Ψ)+1)

ˆ

B(ki,ρi)

Ψ−
B2R

(
(u− ki)−

2R

)
dx

79



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

⩽ c2(i+3)(s(Ψ)+1)Ψ−
B2R

(
2−m0k

R

)
|B(ki, ρi)|

for some constant c ≡ c(data). This estimate together with the convexity of
Ψ−

B2R
implies

Ψ−
B2R

  

D−
i+1

|Du| dx

 ⩽
 

D−
i+1

Ψ−
B2R

(|Du|) dx

⩽ c2i(s(Ψ)+1) |B(ki, ρi)|
|D−

i+1|
Ψ−

B2R

(
2−m0k

R

)
⩽ cΨ−

B2R

(
2i(s(Ψ)+1) |B(ki, ρi)|

|D−
i+1|

2−m0k

R

)
for some constant c ≡ c(data(Ω0)). Therefore, using the fact that the func-
tion Ψ−

B2R
is increasing and Lemma 2.1.1, we have

 

D−
i+1

|Du| dx ⩽ c2i(s(Ψ)+1) |B(ki, ρi)|
|D−

i+1|
2−m0k

R
.

Now applying Lemma 2.2.3 together with the fact that τ ∈
(
0, 2−(n+1)

)
, we

see ˆ

D−
i+1

|Du| dx ⩾ c(ki − ki+1)|B(ki+1, ρi+1)|1−
1
n

∣∣Bρi+1
\B(ki, ρi+1)

∣∣ ρni+1

⩾ c2−i2−m0k|B(ki+1, ρi+1)|1−
1
n (|B2R| − τ |BR|)R−n

⩾ c2−i2−m0k|B(ki+1, ρi+1)|1−
1
n

⩽ c2−i2−m0kRn−1Y
1− 1

n
i+1 .

The combination of the last two displays yields

Y
1− 1

n
i+1 ⩽ c2i(s(Ψ)+1)R−n|B(ki, ρi)| ⩽ c2i(s(Ψ)+1)Yi
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and then we conclude

Yi+1 ⩽ c∗2
i
(s(Ψ)+1)n

n−1 Y
1+ 1

n−1

i

for some constant c ≡ c(data(Ω0)). Now applying Lemma 3.2.4, we find a
large natural number m0 ≡ m0(data(Ω0)) such that∣∣{x ∈ B2R : u(x) ⩽ 2−m0k}

∣∣ ⩽ c−(n−1)
∗ 2−n(n−1)(s(Ψ)+1).

With keeping the above choice of m0, we observe that

Y0 =
|B(k0, 2R)|

|B2R|
=

|x ∈ B2R : u(x) ⩽ 2−m0k|
|B2R|

⩽ c−(n−1)
∗ 2−n(n−1)(s(Ψ)+1).

Now we are at stage in applying Lemma 2.2.2 to obtain that Yi → 0 as
i→ ∞, which is equivalent to

|B(2−(m0+1)k,R)| = 0.

The last display implies the validity of (3.2.48) with the choice of δ1 ≡
2−(m0+1).

From Lemma 3.2.5 and the covering arguments in [108, Section 7], we
obtain the following weak Harnack inequality for a local Q-minima of the
functional P defined in (1.0.1). We also refer to [20, 39, 96] for the proof.

Theorem 3.2.3 (The weak Harnack inequality). Let W 1,Ψ(Ω) be a local
non-negative Q-minimizer of the functional P defined in (1.0.1) with the co-
efficient functions a(·) ∈ Cωa(Ω) and b(·) ∈ Cωb(Ω) for functions ωa, ωb being
continuous and concave which vanish at 0. Suppose one of the assumptions
(1.0.13), (1.0.14) and (1.0.15) is satisfied. Let B9R ≡ B9R(x0) ⊂ Ω0 ⋐ Ω be
a ball with 9R ⩽ 1. Then there exist q− > 0 and a constant c depending on
data(Ω0) such that

inf
x∈BR

u(x) ⩾
1

c

  

B2R

uq− dx

 1
q−

. (3.2.51)

To conclude the result of Theorem 3.2.4 below, we need to obtain a local
sup-estimates for local quasiminizers of P .

81



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

Lemma 3.2.6. Under the assumptions of Lemma 3.2.4, let u ∈ W 1,Ψ(Ω)
be a non-negative local Q-minimizer of the functional P in (1.0.1) with the
coefficient functions a(·) ∈ Cωa(Ω) and b(·) ∈ Cωb(Ω) for functions ωa, ωb

being continuous and concave vanishing at the origin. Suppose that one of the
assumptions (1.0.13), (1.0.14) and (1.0.15) is satisfied. Let B9R ≡ B9R(x0) ⊂
Ω0 ⋐ Ω be a ball with 9R ⩽ 1. Then for any q+ > 0, the local estimate holds

sup
BR

u ⩽ c

  

B2R

|u|q+ dx

 1
q+

(3.2.52)

for some constant c ≡ c(data(Ω0)).

Proof. The proof consists of two steps. For the convenience, let us consider
the scaled functions

ū(x) :=
u(x0 +Rx)

R
for every x ∈ B4. (3.2.53)

Then the almost standard Caccioppoli inequality (3.2.17) of Lemma 3.2.2
can be written in the view of ū as follows:ˆ

Br1

Ψ−
B2R

(|D(ū− k)±|) dx ⩽
c

(r2 − r1)s(Ψ)+1

ˆ

Br2

Ψ−
B2R

((ū− k)±) dx (3.2.54)

with some constant c ≡ c(data), whenever Br1 ⋐ Br2 ⊂ B2(0) are concentric
balls and k ∈ R. Next for 1 ⩽ t ⩽ s ⩽ 2, we set sequences by

ρi :=

(
t+

s− t

2i

)
and ki := 2l0

(
1− 1

2i+1

)
(3.2.55)

for some constant d0 > 0 to be determined later. We also define

ρ̄i :=
ρi + ρi+1

2
and Yi :=

1

Ψ−
B2R

(l0)

ˆ

Ā(ki,ρi)

Ψ−
B2R

((u− ki)+) dx, (3.2.56)

where

Ā(k, ρ) := {x ∈ Bρ : ū > k}. (3.2.57)
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Let ηi ∈ C∞
0 (Bρ̄i) be a cut-off function such that 0 ⩽ ηi ⩽ 1, ηi ≡ 1 on

Bρi+1
and |Dηi| ⩽

c(n)2i

(s− t)
.

Then using Hölder’s inequality, Sobolev’s inequality and Lemma 2.1.4,
we have

Ψ−
B2R

(l0)Yi+1 ⩽
ˆ

Bρ̄i

Ψ−
B2R

((ū− ki+1)ηi) dx

⩽ |Ā(ki+1, ρi)|
1
n

ˆ

Bρ̄i

[
Ψ−

B2R
((ū− ki+1)+ηi)

] n
n−1 dx


n−1
n

⩽ c|Ā(ki+1, ρi)|
1
n

ˆ

Bρ̄i

(
Ψ−

B2R

)′
((ū− ki+1)+ηi)

× [|D(ū− ki+1)+|ηi + (ū− ki+1)+|Dηi|] dx

⩽ c|Ā(ki+1, ρi)|
1
n

ˆ

Bρ̄i

(
Ψ−

B2R

)′
((ū− ki+1)+) |D(ū− ki+1)+| dx

+ c|Ā(ki+1, ρi)|
1
n

2i

s− t

ˆ

Bρ̄i

(
Ψ−

B2R

)′
((ū− ki+1)+) (ū− ki+1)+ dx

⩽ c|Ā(ki+1, ρi)|
1
n

ˆ

Bρ̄i

Ψ−
B2R

(|D(ū− ki+1)+|) dx

+
2i

s− t

ˆ

Bρ̄i

Ψ−
B2R

((ū− ki+1)+) dx


⩽ c|Ā(ki+1, ρi)|

1
n

(
2i

s− t

)s(Ψ)+1 ˆ

Bρi

Ψ−
B2R

((ū− ki+1)+) dx

for some constant c ≡ c(data), where in the last inequality of the above
display we also have used (3.2.54) and (3.2.57). Now applying Lemma 2.1.1,
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we see that

|Ā(ki+1, ρi)| ⩽
1

Ψ−
B2R

(ki+1 − ki)

ˆ

Ā(ki+1,ρi)

Ψ−
B2R

(ū− ki) dx

⩽
1

Ψ−
B2R

(l0/2i+1)

ˆ

Ā(ki+1,ρi)

Ψ−
B2R

(ū− ki) dx

⩽
Ψ−

B2R
(l0)

Ψ−
B2R

(l0/2i+1)
Yi ⩽ 2(i+1)(s(Ψ)+1)Yi ⩽ c

(
2i

s− t

)s(Ψ)+1

Yi.

and ˆ

Bρi

Ψ−
B2R

((ū− ki+1)+) dx =

ˆ

Ā(ki+1,ρi)

Ψ−
B2R

(ū− ki+1) dx

⩽
ˆ

Ā(ki,ρi)

Ψ−
B2R

(ū− ki) dx = Ψ−
B2R

(l0)Yi.

Combining the last three displays, we conclude with the following recursive
inequality:

Yi+1 ⩽ c0
2i(1+

1
n)(s(Ψ)+1)

(s− t)(1+
1
n)(s(Ψ)+1)

Y
1+ 1

n
i

for some constant c0 ≡ c0(data). Now we are at the stage to apply Lemma
2.2.2. In turn, we have Yi → 0 as i→ ∞, provided

Y0 =
1

Ψ−
B2R

(l0)

ˆ

Ā(l0,s)

Ψ−
B2R

(ū− l0) dx ⩽

[
c0

(s− t)(1+
1
n)(s(Ψ)+1)

]−n

2−n(1+n)(s(Ψ)+1).

The inequality in the last display is satisfied if we choose l0 > 0 in the
following way

Ψ−
B2R

(l0) =
cn02

n(1+n)(s(Ψ)+1)

(s− t)(1+n)(s(Ψ)+1)

ˆ

Bs

Ψ−
B2R

((ū)+) dx.
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Therefore, we obtain ū ⩽ 2l0 in Bt. This estimate together with the last
display yields

Ψ−
B2R

(
sup
Bt

(ū)+

)
⩽

c

(s− t)(1+n)(s(Ψ)+1)

 

Bs

Ψ−
B2R

((ū)+) dx. (3.2.58)

Recalling Ψ−
B2R

∈ N with an index s(Ψ) and applying Lemma 2.1.3 for

Ψ−
B2R

, one can see that t 7→ Ψ−
B2R

(
t

1
s(Ψ)+1

)
is a concave function. Using this

one together with Jensen’s inequality in (3.2.58), we see

Ψ−
B2R

(
sup
Bt

(ū)+

)
⩽

c

(s− t)(1+n)(s(Ψ)+1)

 

Bs

Ψ−
B2R

((ū)+) dx

=
c

(s− t)(1+n)(s(Ψ)+1)

 

Bs

Ψ−
B2R

([
(ū)

s(Ψ)+1
+

] 1
s(Ψ)+1

)
dx

⩽
c

(s− t)(1+n)(s(Ψ)+1)
Ψ−

B2R


 
Bs

(ū)
s(Ψ)+1
+ dx

 1
s(Ψ)+1


⩽ Ψ−

B2R

 c

(s− t)(1+n)(s(Ψ)+1)

 
Bs

(ū)
s(Ψ)+1
+ dx

 1
s(Ψ)+1

 .

Since Ψ−
B2R

is the increasing function, the last display implies

sup
Bt

(ū)+ ⩽
c

(s− t)(1+n)(s(Ψ)+1)

 
Bs

(ū)
s(Ψ)+1
+ dx

 1
s(Ψ)+1

.

Since −u is a local Q-minimizer of the functional P , we find

sup
Bt

|ū| ⩽ c

(s− t)(1+n)(s(Ψ)+1)

 
Bs

|ū|s(Ψ)+1 dx

 1
s(Ψ)+1

.
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Therefore, for 0 < q+ < s(Ψ) + 1, we discover from Young’s inequality that

sup
Bt

|ū| ⩽ c

(s− t)(1+n)(s(Ψ)+1)

(
sup
Bs

|ū|
)1− q+

s(Ψ)+1

 
Bs

|ū|q+ dx

 1
s(Ψ)+1

⩽
1

2
sup
Bs

|ū|+ c

(s− t)
(1+n)(s(Ψ)+1)2

q+

 
B2

|ū|q+ dx

 1
q+

holds for every 1 ⩽ t < s ⩽ 2. Then we apply Lemma 2.2.1 for h(t) = sup
Bt

|ū|

in order to have

sup
B1

|ū| ⩽ c

 
B2

|ū|q+ dx

 1
q+

(3.2.59)

for c ≡ c(data, q+). On the other hand, for q+ ⩾ s(Ψ) + 1, the inequality
(3.2.59) is still valid by using Hölder’s inequality. Scaling back as we intro-
duced in (3.2.53), we arrive at the desired estimate (3.2.52).

Finally, the main result of the this section is the following:

Theorem 3.2.4. Let u ∈ W 1,Ψ(Ω) be a non-negative local Q-minimizer u
of the functional P defined in (1.0.1) under the coefficient functions a(·) ∈
Cωa(Ω) and b(·) ∈ Cωb(Ω) for ωa, ωb being non-negative, continuous and con-
cave functions vanishing at the origin. Suppose that one of the assumptions
(1.0.13), (1.0.14) and (1.0.15) is satisfied. For every ball BR with B9R ⊂ Ω0

with Ω0 ⋐ Ω being an open subset, there exists a positive constant c ≡
c(data(Ω0)) such that

sup
BR

u ⩽ c inf
BR

u (3.2.60)

holds.

Proof. The proof is essentially based on the results we have obtained so far.
In fact, applying Theorem 3.2.3 and Lemma 3.2.6 with q− = q+, we obtain
(3.2.60).
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Remark 3.2.2. The results of the above theorem refine the results of [95,
Theorem 1.3] without any extra term in (3.2.60) under our multi-phase set-
tings when the assumptions (1.0.13) and (1.0.14) come into play, and see also
[94, 96].

3.2.5 Higher integrability results

Next, we provide a higher integrability result for a local minimizer of the
functional F defined in (1.0.10).

Theorem 3.2.5 (Higher Integrability). Let u ∈ W 1,Ψ(Ω) be a local mini-
mizer of the functional F defined in (1.0.10) under the assumption (1.0.11).
Assume that one of the assumptions (1.0.13), (1.0.14) and (1.0.15) is satis-
fied. Then there exists a higher integrability exponent δ ≡ δ(data) ∈ (0, 1)
such that the following reverse type Hölder inequality  

BR/2

[Ψ(x, |Du|)]1+δ dx


1

1+δ

⩽ c

 

BR

Ψ(x, |Du|) dx (3.2.61)

holds for a constant c ≡ c(data), where data is clarified in (3.1.8), whenever
BR ⋐ Ω is a ball with R ⩽ 1. In particular, for any open subset Ω0 ⋐ Ω, it
holds that

∥Ψ(x, |Du|)∥L1+δ(Ω0)
⩽ c(data(Ω0)). (3.2.62)

Proof. Let BR ⋐ Ω be a ball with R ⩽ 1 as in the statement. Since u is a
local Q := L/ν-minimizer of the functional P in (1.0.1), we are able to apply
Lemma 3.2.1 with the choices ρ ≡ R/2, r ≡ R and k ≡ (u)BR

in order to get

 

BR/2

Ψ(x, |Du|) dx ⩽ c

 

BR

Ψ

(
x,

∣∣∣∣u− (u)BR

R

∣∣∣∣) dx (3.2.63)

with some constant c ≡ c(n, s(G), s(Ha), s(Hb), ν, L). Then, applying Re-
mark 2.4.1 depending on which one of the assumptions (1.0.13), (1.0.14) and
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(1.0.15) is assumed, we obtain the following reverse Hölder inequality:

 

BR/2

Ψ(x, |Du|) dx ⩽ c

 

BR

[Ψ(x, |Du|)]θ dx

 1
θ

, (3.2.64)

where c ≡ c(data), and θ ∈ (0, 1) is the same appearing in Remark 2.4.1.
At this point (3.2.61) follows using a variant of Gehring’s lemma on reverse
Hölder inequalities, see for instance [90, Theorem 6.6].

3.3 Comparison estimates

Throughout this section we fix a ball B2R ≡ B2R(x0) ⊂ Ω0 ⋐ Ω with R ⩽ 1
and some open subset Ω0 ⋐ Ω. We consider the functional defined by

W 1,1(B2R) ∋ υ 7→ FB2R
(υ) :=

ˆ

B2R

F (x, (u)B2R
, Dυ) dx, (3.3.1)

where u is a local minimizer of the functional F in (1.0.10). Now we consider
a function w ∈ u+W 1,Ψ

0 (BR) being the solution to the following variational
Dirichlet problem: {

w 7→ min
υ

FB2R
(υ)

υ ∈ u+W 1,Ψ
0 (B2R).

(3.3.2)

In the following we shall deal with first comparison estimates in order to
remove u-dependence in the original functional F in (1.0.10).

Lemma 3.3.1. Let w ∈ W 1,Ψ(B2R) be the solution to the variational problem
(3.3.2) under the assumptions (1.0.11), (3.1.2) and (3.1.4). Let the coefficient
functions a(·) ∈ Cωa(Ω) and b(·) ∈ Cωb(Ω) for ωa, ωb being non-negative,
continuous and concave functions vanishing at the origin. Assume that one
of the assumptions (1.0.13), (1.0.14) and (1.0.15) is satisfied. Then there
exists a constant c ≡ c(data(Ω0)) such that

 

B2R

|VΨ(x,Du)− VΨ(x,Dw)|2 dx ⩽ cω(Rγ)

 

B2R

Ψ(x, |Du|) dx (3.3.3)
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holds, where γ ≡ γ(data(Ω0)) is the Hölder exponent determined via Theo-
rem 3.2.2. Moreover, the following estimates hold true:

 

B2R

Ψ(x, |Dw|) dx ⩽
L

ν

 

B2R

Ψ(x, |Du|) dx, (3.3.4)

∥w∥L∞(B2R) ⩽ ∥u∥L∞(B2R) , (3.3.5)

osc
B2R

w ⩽ osc
B2R

u (3.3.6)

and
 

B2R

Ψ

(
x,

∣∣∣∣u− w

R

∣∣∣∣) dx ⩽ c[ω(Rγ)]
1
2

 

B2R

Ψ(x, |Du|) dx (3.3.7)

for some constant c ≡ c(data(Ω0)), where in the case that (1.0.15) is con-
sidered, γ appearing in (3.3.3) and (3.3.7) is the same as in the assumption
(1.0.15).

Proof. The proof is very standard and we shall follow the structure of the
proof of [22, Lemma 4]. The Euler-Lagrange equation of the functional FB2R

,
which is  

B2R

⟨DzF (x, (u)B2R
, Dw), Dφ⟩ dx = 0, (3.3.8)

holds for any function φ ∈ W 1,Ψ
0 (B2R) (see for instance [14, Lemma 5.2]).

The minimality and growth condition (1.0.11) imply that

 

B2R

Ψ(x, |Dw|) dx ⩽
1

ν

 

B2R

F (x, (u)B2R
, Dw) dx

⩽
1

ν

 

B2R

F (x, (u)B2R
, Du) dx ⩽

L

ν

 

B2R

Ψ(x, |Du|) dx,

(3.3.9)
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which proves (3.3.4). Therefore, we conclude with

 

B2R

⟨DzF (x, (u)B2R
, Dw), Du−Dw⟩ dx = 0. (3.3.10)

Letting u+B2R
:= sup

x∈B2R

u(x) and u−B2R
:= inf

x∈B2R

u(x), the minimality of w yields

FB2R
(w) ⩽ FB2R

(
min{w, u+B2R

}
)

and FB2R
(w) ⩽ FB2R

(max{w, u−B2R
}).

Consequently, the last display together with (1.0.11) gives us

ˆ

B2R∩
{
w⩾u+

B2R

} Ψ(x, |Dw|) dx = 0 and

ˆ

B2R∩
{
w⩽u−

B2R

} Ψ(x, |Dw|) dx = 0.

By coarea formula, we get that

inf
x∈B2R

u ≡ u−B2R
⩽ w(x) ⩽ u+B2R

≡ sup
x∈B2R

u(x) a.e. x ∈ B2R. (3.3.11)

This proves (3.3.5) and (3.3.6). Using (3.1.6) and (3.3.10) together with the
minimality of u and w, we have that

 

B2R

|VΨ(x,Du)− VΨ(x,Dw)|2 dx

(3.3.10)
=

 

B2R

|VΨ(x,Du)− VΨ(x,Dw)|2 dx

+ c∗

 

B2R

⟨DzF (x, (u)B2R
, Dw), Du−Dw⟩ dx

⩽ c∗

 

B2R

[F (x, (u)B2R
, Du)− F (x, (u)B2R

, Dw)] dx

= c∗

 

B2R

[F (x, (u)B2R
, Du)− F (x, u,Du)] dx
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+ c∗

 

B2R

[F (x, u,Du)− F (x,w,Dw)] dx

+ c∗

 

B2R

[F (x,w,Dw)− F (x, (w)B2R
, Dw)] dx

+ c∗

 

B2R

[F (x, (w)B2R
, Dw)− F (x, (u)B2R

, Dw)] dx

=: c∗

4∑
i=1

Ii (3.3.12)

with c∗ ≡ c∗(n, s(G), s(Ha), s(Hb), ν). Now we estimate each term Ii for i ∈
{1, 2, 3, 4} in the last display. We have

I1
(3.1.2)

⩽ c

 

B2R

ω(|u− (u)B2R
|)Ψ(x, |Du|) dx

(3.2.31),(3.2.33)

⩽ cω(2[u]0,γ;Ω0R
γ)

 

B2R

Ψ(x, |Du|) dx

(2.1.1)

⩽ c(data(Ω0))ω(R
γ)

 

B2R

Ψ(x, |Du|) dx, (3.3.13)

where in the last display we have also used the fact that ω(·) is concave. The
minimality of u implies

I2 ⩽ 0. (3.3.14)

We have therefore

I3
(3.1.2)

⩽ c

 

B2R

ω(|w − (w)B2R
|)Ψ(x, |Dw|) dx

⩽ c

 

BR

ω

(
osc
B2R

w

)
Ψ(x, |Dw|) dx
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(3.3.6)

⩽ cω

(
osc
B2R

u

)  

B2R

Ψ(x, |Dw|) dx

(3.2.31),(3.2.33)

⩽ cω(2[u]0,γ;Ω0R
γ)

 

B2R

Ψ(x, |Du|) dx

(2.1.1)

⩽ c(data(Ω0))ω(R
γ)

 

B2R

Ψ(x, |Du|) dx. (3.3.15)

Observing that

|(w)B2R
− (u)B2R

|
(3.3.11)

⩽ osc
B2R

u, (3.3.16)

as in the estimate for I1, we still have

I4 ⩽ cω(Rγ)

 

B2R

Ψ(x, |Du|) dx. (3.3.17)

Inserting all the estimates obtained for Ii with i ∈ {1, 2, 3, 4} into (3.3.12)
completes the proof of (3.3.3).

Let us now prove (3.3.7). By applying Theorem 2.4.1 with d ≡ 1, there
exists θ1 ≡ θ1(n, s(G), s(Ha), s(Hb)) ∈ (0, 1) such that

J :=

 

B2R

Ψ

(
x,

∣∣∣∣u− w

R

∣∣∣∣) dx ⩽ c

  

B2R

[Ψ(x, |Du−Dw|)]θ1 dx

 1
θ1

⩽ c

  

B2R

(
[Ψ(x, |Du|+ |Dw|)]

1
2
|Du−Dw|
|Du|+ |Dw|

)θ1

[Ψ(x, |Du|+ |Dw|)]
θ1
2 dx

 1
θ1

,

(3.3.18)

where in the last inequality of the last display we have used (2.1.11) for Ψ.

Applying Hölder’s inequality with conjugate exponents

(
2

θ1
,

2

2− θ1

)
to the
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right hand side of the last display and (2.1.10), we get

J ⩽ c

  

B2R

Ψ(x, |Du|+ |Dw|) |Du−Dw|2

(|Du|+ |Dw|)2
dx

 1
2

  

B2R

[Ψ(x, |Du|+ |Dw|)]
θ1

2−θ1 dx


2−θ1
2θ1

⩽ c

  

B2R

|VΨ(x,Du)− VΨ(x,Dw)|2 dx

 1
2
  

B2R

Ψ(x, |Du|+ |Dw|) dx

 1
2

⩽ c(data(Ω0))[ω(R
γ)]

1
2

 

B2R

Ψ(x, |Du|) dx, (3.3.19)

where in the last inequality of the above display we have used (3.3.3), and
then (3.3.4). Combining the last two displays we arrive at (3.3.7).

Next we consider the functional defined by

W 1,1(BR) ∋ υ 7→ Fc(υ) :=

ˆ

BR

Fc(x,Dυ) dx, (3.3.20)

where the density function is given by

Fc(x, z) := FG (xc, (u)B2R
, z) + a(x)FHa (xc, (u)B2R

, z) + b(x)FHb
(xc, (u)B2R

, z)
(3.3.21)

for some fixed point xc ∈ BR and for every x ∈ Ω and z ∈ Rn. Now we
consider a function wc ∈ w +W 1,Ψ

0 (BR) being the solution to the following
variational Dirichlet problem:{

wc 7→ min
v

Fc(v)

v ∈ w +W 1,Ψ
0 (BR),

(3.3.22)

where w ∈ W 1,Ψ(B2R) is the solution to the variational problem (3.3.2).
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Lemma 3.3.2. Let wc ∈ W 1,Ψ(BR) be the solution to the variational prob-
lem (3.3.22) under the assumptions (1.0.11), (3.1.2) and (3.1.4). Let the
coefficient functions a(·) ∈ Cωa(Ω) and b(·) ∈ Cωb(Ω) for ωa, ωb being non-
negative, continuous and concave functions vanishing at the origin. Assume
that one of the assumptions (1.0.13), (1.0.14) and (1.0.15) is satisfied. Then
there exists a constant c ≡ c(data(Ω0)) such that

 

BR

|VΨ(x,Dw)− VΨ(x,Dwc)|2 dx ⩽ cω(R)

 

BR

Ψ(x, |Du|) dx. (3.3.23)

Moreover, the following estimates hold true:

 

BR

Ψ(x, |Dwc|) dx ⩽
L

ν

 

BR

Ψ(x, |Dw|) dx, (3.3.24)

∥wc∥L∞(BR) ⩽ ∥w∥L∞(BR) , (3.3.25)

osc
BR

wc ⩽ osc
BR

w (3.3.26)

and
 

BR

Ψ

(
x,

∣∣∣∣w − wc

R

∣∣∣∣) dx ⩽ c[ω(R)]
1
2

 

BR

Ψ(x, |Dw|) dx (3.3.27)

for some constant c ≡ c(data). Finally, there exists a higher integrability ex-
ponent δ0 ≡ δ0(data) with δ0 ⩽ δ with δ having been determined via Theorem
3.2.5, and a constant c ≡ c(data) such that  

BR/2

[Ψ(x, |Dwc|)]1+δ0 dx


1

1+δ0

⩽ c

 

BR

Ψ(x, |Dwc|) dx. (3.3.28)

Proof. Essentially, the proof is similar to the proof of Lemma 3.3.1. The es-
timates (3.3.24)-(3.3.26) can be obtained as for (3.3.4)-(3.3.6). We now focus
on proving (3.3.23). The Euler-Lagrange equation arising from the functional
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Fc defined in (3.3.20)

 

BR

⟨DzFc(x,Dwc), Dφ⟩ dx = 0 (3.3.29)

is valid, whenever φ ∈ W 1,Ψ
0 (BR). Then using (3.1.2), we have

 

BR

|VΨ(x,Dw)− VΨ(x,Dwc)|2 dx

⩽ c

 

BR

⟨DzFc(x,Dw)−DzFc(x,Dwc), Dw −Dwc⟩ dx

⩽ c

 

BR

|DzFG(xc, (u)B2R
, Dw)−DzFG(x, (u)B2R

, Dw)||Dw −Dwc| dx

+ c

 

BR

a(x)|DzFHa(xc, (u)B2R
, Dw)−DzFHa(x, (u)B2R

, Dw)||Dw −Dwc| dx

+ c

 

BR

b(x)|DzFHb
(xc, (u)B2R

, Dw)−DzFHb
(x, (u)B2R

, Dw)||Dw −Dwc| dx

⩽ cω(R)

 

BR

Ψ(x, |Dw|) dx (3.3.30)

for some constant c ≡ c(n, s(G), s(Ha), s(Hb), ν, L). This proves (3.3.23), and
(3.3.27) follows from this estimate together with applying the arguments used
in (3.3.18)-(3.3.19). Since wc is a L/ν-minimizer of the functional Fc defined
in (3.3.22), we are able to apply Lemma 3.2.1 with the choices of υ ≡ wc,
ρ ≡ R/2, r ≡ R and k ≡ (wc)BR

. In turn, it gives us that

 

BR/2

Ψ(x, |Dwc|) dx ⩽ c

 

BR

Ψ

(
x,

∣∣∣∣wc − (wc)BR

R

∣∣∣∣) dx (3.3.31)

holds with c ≡ c(n, s(G), s(Ha), s(Hb), L, ν). Then applying Remark 2.4.1,
there exists a positive exponent θ ≡ θ(n, s(G), s(Ha), s(Hb)) ∈ (0, 1) such
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that

 

BR/2

Ψ(x, |Dwc|) dx ⩽ cκ̄sp

 
BR

[Ψ(x, |Dwc|)]θ dx

 1
θ

(3.3.32)

holds with some constant c ≡ c(n, s(G), s(Ha), s(Hb), L, ν, ωa(1), ωb(1)), where

κ̄sp =



1 + λ1([a]ωa + [b]ωb
)

1 +

ˆ

BR

G(|Dwc|) dx

 1
n


if (1.0.13) is considered,

1 + λ2([a]ωa + [b]ωb
)
(
1 + ∥wc∥L∞(BR)

)
if (1.0.14) is considered,

1 + λ3([a]ωa + [b]ωb
)

(
1 +

[
R−γ osc

BR

wc

] 1
1−γ

)
if (1.0.15) is considered.

(3.3.33a)

(3.3.33b)

(3.3.33c)

Furthermore, taking into account (3.3.4)-(3.3.6) and (3.3.24)-(3.3.26) in the
last display, we conclude that

 

BR/2

Ψ(x, |Dwc|) dx ⩽ c

 
BR

[Ψ (x, |Dwc|)]θ dx

 1
θ

(3.3.34)

holds for some constant θ ≡ θ(n, s(G), s(Ha), s(Hb)) ∈ (0, 1) and c ≡ c(data).
The estimate (3.3.28) follows from applying a variant of Gehring’s lemma.

To go further let us introduce the excess functional defined by

E(v,Br) :=
(
Ψ−

B2r

)−1

 
Br

Ψ−
B2r

(∣∣∣∣v − (v)Br

2r

∣∣∣∣) dx

 (3.3.35)

for any function v ∈ L1(B2r) and a ball B2r ⊂ Ω, where we note that
(
Ψ−

B2r

)−1

is the inverse function of Ψ−
B2r

. By the convexity of Ψ−
B2r

together with Lemma
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2.1.1 and Remark 2.1.2, one can see that

E(v,Br) ⩽ c
(
Ψ−

B2r

)−1

 
Br

Ψ−
B2r

(∣∣∣∣v − v0
2r

∣∣∣∣) dx

 (3.3.36)

for some constant c ≡ c(s(Ψ)), whenever v0 ∈ R is an arbitrary number.

Lemma 3.3.3. Let u ∈ W 1,Ψ(Ω) be a local minimizer of the functional F
defined in (1.0.10) under the assumptions (1.0.11), (3.1.2) and (3.1.4). Let
wc ∈ W 1,Ψ(BR) be the solution to the variational problem (3.3.22). If one
of the assumptions (3.1.11a)-(3.1.11e) is satisfied, then for every ε∗ ∈ (0, 1),
there exists a positive radius

R∗ ≡ R∗(data(Ω0), ε
∗) (3.3.37)

such that
 

BτR

Ψ−
BR

(∣∣∣∣wc − (wc)BτR

τR

∣∣∣∣) dx

⩽ c
(
1 + τ−(n+s(Ψ)+1)ε∗

)  

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx (3.3.38)

for some constant c ≡ c (data(Ω0)), whenever τ ∈ (0, 1/16) and R ⩽ R∗.

Proof. We assume E(wc, BR/2) > 0, otherwise (3.3.38) is trivial. For the sake
of simplicity during the proof, we write

E(R) := E(wc, BR/2) =
(
Ψ−

BR

)−1

  

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx

 .

(3.3.39)

The proof falls in several delicate steps.
Step 1: Initial settings on wc. Applying Lemma 3.2.2 to BR/2 with
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k ≡ (wc)BR/2
, we have

 

BR/4

Ψ(x, |Dwc|) dx ⩽ c

 

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx (3.3.40)

for some constant c ≡ c(data). Moreover, it follows from Lemma 3.3.2 that
there exists a higher integrability exponent δ0 ≡ δ0(data) such that  

BR/8

[Ψ(x, |Dwc|)]1+δ0 dx


1

1+δ0

⩽ c

 

BR/4

Ψ(x, |Dwc|) dx (3.3.41)

for a constant c ≡ c(data).
Step 2: Scaling. We set the scaled functions of wc(·), a(·) and b(·) in

the ball B1 by 

w̄c(x) :=
wc(x0 +Rx)− (wc)BR/2

E(R)R
,

ā(x) := a(x0 +Rx)
Ha(E(R))

Ψ−
BR

(E(R))

and b̄(x) := b(x0 +Rx)
Hb(E(R))

Ψ−
BR

(E(R))
.

(3.3.42a)

(3.3.42b)

for every x ∈ B1. Now we define the control function and energy integrand
associated to our scaling in (3.3.42a)-(3.3.42b) as

Ψ̄(x, |z|) := Ḡ(|z|) + ā(x)H̄a(|z|) + b̄(x)H̄b(|z|),
F̄ (x, z) := F̄G(z) + ā(x)F̄Ha(z) + b̄(x)F̄Hb

(z),

F̄G(z) :=
FG(xc, (u)B2R

, E(R)z)

Ψ−
BR

(E(R))
,

F̄Ha(z) :=
FHa(xc, (u)B2R

, E(R)z)

Ha (E(R))
,

F̄Hb
(x, z) :=

FHb
(xc, (u)B2R

, E(R)z)

Hb (E(R))

and Ā(x, z) := DzF̄ (x, z)

(3.3.43a)

(3.3.43b)

(3.3.43c)

(3.3.43d)
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for every x ∈ B1 and z ∈ Rn, where the point xc ∈ BR has been fixed in
(3.3.22) and

Ḡ(t) :=
G(E(R)t)

Ψ−
BR

(E(R))
, H̄a(t) :=

Ha(E(R)t)

Ha (E(R))
, H̄b(t) :=

Hb(E(R)t)

Hb (E(R))

(3.3.44)

for every t ⩾ 0. Clearly, one can see that Ḡ, H̄a, H̄b ∈ N with indices
s(G), s(Ha), s(Hb), respectively, and also that

Ḡ(1) ⩽ 1, H̄a(1) = 1 and H̄b(1) = 1. (3.3.45)

Then one can check that the function w̄c minimizes the following functional

W 1,Ψ̄(B1) ∋ v 7→
ˆ

B1

F̄ (x,Dv) dx, (3.3.46)

where the functions Ψ̄(·) and F̄ (·) have been defined in (3.3.43a) and (3.3.43b),
respectively. The Euler-Lagrange equation associated to the functional in
(3.3.46) becomes

 

B1

〈
Ā(x,Dw̄c), Dφ

〉
dx =

 

B1

〈
DzF̄ (x,Dw̄c) , Dφ

〉
dx = 0 (3.3.47)

for every φ ∈ W 1,Ψ̄
0 (B1). By the assumptions (1.0.11) and (3.1.2) via elemen-

tary computations, we have the following structure condition in the scaled
settings: 

νΨ̄(x, |z|) ⩽ F̄ (x, z) ⩽ LΨ̄(x, |z|),
|Ā(x, z)||z|+ |DzĀ(x, z)||z|2 ⩽ LΨ̄(x, |z|),

ν
Ψ̄(x, |z|)

|z|2
|ξ|2 ⩽

〈
DzĀ(x, z)ξ, ξ

〉
(3.3.48a)

(3.3.48b)

(3.3.48c)

hold true for every x ∈ B1 and z ∈ Rn \ {0}.
Step 3: Freezing. Now we consider frozen functional and vector field

associated to F̄ (·) and Ā(·) defined in (3.3.43b)-(3.3.43d). Let x̄a, x̄b ∈ B1 be
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points such that ā(x̄a) = inf
x∈B1

ā(x) and b̄(x̄b) = inf
x∈B1

b̄(x). Then we denote by

F̄0(z) := F̄G(z) + ā(x̄a)F̄Ha(z) + b̄(x̄b)F̄Hb
(z), (3.3.49)

Ā0(z) := DzF̄0(z) (3.3.50)

and

Ψ̄0(t) := Ḡ(t) + ā(x̄a)H̄a(t) + b̄(x̄b)H̄b(t) (3.3.51)

for every x ∈ B1, z ∈ Rn and t ⩾ 0. By the very definition in (3.3.43a)-
(3.3.43d), straightforwardly one can see

Ψ̄0(1) = 1. (3.3.52)

In our new scaled settings, we now consider the functional

W 1,Ψ̄0
(
B1/8

)
∋ v 7→

ˆ

B1/8

F̄0(Dv) dx. (3.3.53)

We observe that the newly defined integrand F̄0(·) and vector field Ā0(·)
satisfy the growth and ellipticity conditions as

νΨ̄0(|z|) ⩽ F̄0(z) ⩽ LΨ̄0(|z|),
|Ā0(z)||z|+ |DzĀ0(z)||z|2 ⩽ LΨ̄0(|z|),

ν
Ψ̄0(|z|)
|z|2

|ξ|2 ⩽
〈
DzĀ0(z)ξ, ξ

〉
(3.3.54a)

(3.3.54b)

(3.3.54c)

for every z ∈ Rn \ {0} and ξ ∈ Rn. Therefore, the estimates (3.3.40) and
(3.3.41) are written in the view of w̄c as

 

B1/4

Ψ̄(x, |Dw̄c|) dx+

  

B1/8

[Ψ̄(x, |Dw̄c|)]1+δ0 dx


1

1+δ0

⩽ c(data). (3.3.55)

Step 4: Harmonic type approximation. Let φ ∈ W 1,∞
0

(
B1/8

)
. Using
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(3.3.47), we see

I0 :=

∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄c)− Ā(x,Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣
⩽

 

B1/8

|Ā0(Dw̄c)− Ā(x,Dw̄c)| dx ∥Dφ∥L∞(B1/8)
=: I1 ∥Dφ∥L∞(B1/8)

.

(3.3.56)

Now using (3.1.2), we see

I1 ⩽ L

 

B1/8

|ā(x)− ā(x̄a)|
H̄a(|Dw̄c|)
|Dw̄c|

dx

+ L

 

B1/8

|b̄(x)− b̄(x̄b)|
H̄b(|Dw̄c|)
|Dw̄c|

dx =: L (I11 + I12) . (3.3.57)

Now we estimate the terms appearing in the last display. In turn, using
(2.1.7), (3.3.45) and (3.3.55), we have

I11 ⩽ c

 

B1/8

|ā(x)− ā(x̄a)|
(
[H̄a(|Dw̄c|)]

1
s(Ha)+1 + [H̄a(|Dw̄c|)]

s(Ha)
s(Ha)+1

)
dx

⩽ c ∥ā− ā(x̄a)∥
s(Ha)

s(Ha)+1

L∞(B1/8)

  

B1/8

ā(x)H̄a(|Dw̄c|) dx


1

s(Ha)+1

+ c ∥ā− ā(x̄a)∥
1

s(Ha)+1

L∞(B1/8)

  

B1/8

ā(x)H̄a(|Dw̄c|) dx


s(Ha)

s(Ha)+1

⩽ c(data)

(
∥ā− ā(x̄a)∥

1
s(Ha)+1

L∞(B1/8)
+ ∥ā− ā(x̄a)∥

s(Ha)
s(Ha)+1

L∞(B1/8)

)
, (3.3.58)

where we have used also Hölder’s inequality and the fact that ā(x̄a) ⩽ ā(x)

101



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

for every x ∈ B1. In a similar way, we have

I12 ⩽ c(data)

(∥∥b̄− b̄(x̄b)
∥∥ 1

s(Hb)+1

L∞(B1/8)
+
∥∥b̄− b̄(x̄b)

∥∥ s(Hb)

s(Hb)+1

L∞(B1/8)

)
. (3.3.59)

Inserting those estimates into (3.3.57) and then (3.3.56), we find

I0 ⩽ c(data)

(
∥ā− ā(x̄a)∥

1
s(Ha)+1

L∞(B1/8)
+ ∥ā− ā(x̄a)∥

s(Ha)
s(Ha)+1

L∞(B1/8)

)
+ c(data)

(∥∥b̄− b̄(x̄b)
∥∥ 1

s(Hb)+1

L∞(B1/8)
+
∥∥b̄− b̄(x̄b)

∥∥ s(Hb)

s(Hb)+1

L∞(B1/8)

)
. (3.3.60)

Now we estimate the terms ∥ā− ā(x̄a)∥L∞(B1/8)
and

∥∥b̄− b̄(x̄b)
∥∥
L∞(B1/8)

depending on which assumption of (3.1.11a)-(3.1.11e) comes into play. Re-
calling the definition of ā(·), b̄(·) in (3.3.42b) and the excess functional in
(3.3.39), we have

Ia := ∥ā− ā(x̄a)∥L∞(B1/8)
⩽ cωa(R)

Ha(E(R))

Ψ−
BR

(E(R))
(3.3.61)

and

Ib :=
∥∥b̄− b̄(x̄b)

∥∥
L∞(B1/8)

⩽ cωb(R)
Hb(E(R))

Ψ−
BR

(E(R))
. (3.3.62)

Case 1: Assumption (3.1.11a) is in force. The assumption (3.1.11a)2
implies that for any ε ∈ (0, 1) there exists µ1 > 0 depending on ε such that

Λ
(
t, G−1

(
t−n
))

⩽ ε for every t ∈ (0, µ1). (3.3.63)

Then using this one and (1.0.13), we continue to estimate Ia in (3.3.61) as

Ia ⩽ cωa(R)
(Ha ◦G−1)

(
Ψ−

BR
(E(R))

)
Ψ−

BR
(E(R))

⩽ cωa(R)ε

1 +
1

ωa

(
[Ψ−

BR
(E(R))]−

1
n

)
+ cωa(R)

(
1 +

1

ωa (µ1)

)
(3.3.64)
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with c ≡ c([a]ωa , λ1), where we have used the fact that
(
Ψ−

BR

)−1
(t) ⩽ G−1(t)

for every t ⩾ 0. Using (2.1.2) together with the energy estimates (3.3.24) and
(3.3.4), we observe that

1

ωa

([
Ψ−

BR
(E(R))

]− 1
n

) ⩽
c

ωa(R)
+

c

ωa(R)

ˆ

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx

⩽
c

ωa(R)
+

c

ωa(R)

ˆ

B2R

Ψ(x, |Du|) dx ⩽
c(data)

ωa(R)
.

(3.3.65)

Combining the last two displays, we conclude

Ia ⩽ c

(
ε+ ωa(R)

(
1 +

1

ωa(µ1)

))
(3.3.66)

with some constant c ≡ c(data). In the same manner, we see

Ib ⩽ c

(
ε+ ωb(R)

(
1 +

1

ωb(µ1)

))
(3.3.67)

for some constant c ≡ c(data). Therefore, inserting the estimates in the last
two displays into (3.3.60) and recalling (3.3.56), we have∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(data)p1(ε, R) ∥Dφ∥L∞(B1/8)
, (3.3.68)

where

p1(ε, R) :=[
ε+ ωa(R)

(
1 +

1

ωa(µ1)

)] 1
s(Ha)+1

+

[
ε+ ωa(R)

(
1 +

1

ωa(µ1)

)] s(Ha)
s(Ha)+1

+

[
ε+ ωb(R)

(
1 +

1

ωb(µ1)

)] 1
s(Hb)+1

+

[
ε+ ωb(R)

(
1 +

1

ωb(µ1)

)] s(Hb)

s(Hb)+1

.

(3.3.69)
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Case 2: Assumption (3.1.11b) is in force. From the assumption (3.1.11b)2
it holds that for every ε ∈ (0, 1) there exists µ2 > 0 depending on ε such that

Λ

(
t,
1

t

)
⩽ ε for every t ∈ (0, µ2). (3.3.70)

Then by the very definition of Ψ−
BR

in (2.1.3) together with (3.3.70) and
(1.0.14), we have

Ia ⩽ cωa(R)
Ha(E(R))

G(E(R))

⩽ cωa(R)ε

(
1 +

1

ωa ([E(R)]−1)

)
+ cωa(R)

(
1 +

1

ωa (µ2)

)
. (3.3.71)

Again using (2.1.1) together with taking into account (3.3.25) and (3.3.5),
we see

1

ωa ([E(R)]−1)
⩽

1

ωa

(
R

2∥wc∥L∞(BR)

) ⩽
c(data)

ωa(R)
. (3.3.72)

Combining the last two displays, we find

Ia ⩽ c

(
ε+ ωa(R)

(
1 +

1

ωa(µ2)

))
(3.3.73)

with some constant c ≡ c(data). Similarly, it holds that

Ib ⩽ c

(
ε+ ωb(R)

(
1 +

1

ωa(µ2)

))
. (3.3.74)

Then, plugging the estimates in the last two displays into (3.3.60) and re-
calling (3.3.56), we have∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(data)p2(ε, R) ∥Dφ∥L∞(B1/8)
, (3.3.75)
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where

p2(ε, R) :=[
ε+ ωa(R)

(
1 +

1

ωa(µ2)

)] 1
s(Ha)+1

+

[
ε+ ωa(R)

(
1 +

1

ωa(µ2)

)] s(Ha)
s(Ha)+1

+

[
ε+ ωb(R)

(
1 +

1

ωb(µ2)

)] 1
s(Hb)+1

+

[
ε+ ωb(R)

(
1 +

1

ωb(µ2)

)] s(Hb)

s(Hb)+1

.

(3.3.76)

Case 3: Assumption (3.1.11c) is in force. The assumption (3.1.11c)2
implies that for any ε ∈ (0, 1) there exists µ3 > 0 depending on ε such that

Λ

(
t

1
1−γ ,

1

t

)
⩽ ε for every t ∈ (0, µ3). (3.3.77)

This one together with recalling (3.3.61) and (1.0.15), we see

Ia ⩽ cω(R)
Ha(E(R))

G(E(R))

⩽ cωa(R)ε

1 +
1

ωa

(
[E(R)]−

1
1−γ

)
+ cωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)
 .

(3.3.78)

Now using (3.3.26), (3.3.6) and (1.0.15), we have

1

ωa

(
[E(R)]−

1
1−γ

) ⩽
1

ωa

([
osc
B2R

u

R

]− 1
1−γ

) ⩽
c(data)

ωa(R)
. (3.3.79)

Combining the last two displays, we find

Ia ⩽ c

ε+ ωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)

 (3.3.80)
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for some constant c ≡ c(data). In the same way, we show

Ib ⩽ c

ε+ ωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)

 (3.3.81)

for some constant c ≡ c(data). Using the estimates (3.3.80)-(3.3.81) in
(3.3.60), we conclude∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(data)p3(ε, R) ∥Dφ∥L∞(B1/8)
, (3.3.82)

where

p3(ε, R) :=ε+ ωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)



1
s(Ha)+1

+

ε+ ωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)



s(Ha)
s(Ha)+1

+

ε+ ωb(R)

1 +
1

ωb

(
µ

1
1−γ

3

)



1
s(Hb)+1

+

ε+ ωb(R)

1 +
1

ωb

(
µ

1
1−γ

3

)



s(Hb)

s(Hb)+1

.

(3.3.83)

Case 4. Assumption (3.1.11d) is in force. We treat this case in a
different way rather than the estimate used in (3.3.63)-(3.3.69). In fact, we
take an advantage that wa(·) is a power function. Then recalling Ia introduced
in (3.3.61), we see that

Ia ⩽ cRα
(Ha ◦G−1)

(
Ψ−

BR
(E(R))

)
Ψ−

BR
(E(R))
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⩽ cRα

1 +

  

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx


α
n



⩽ cRα + c

 ˆ

BR/2

Ψ−
BR

(|Dwc|) dx


α
n

⩽ cRα + c

 ˆ

B2R

Ψ(x, |Du|) dx

α
n

⩽ cRα + cR
αδ
1+δ

 ˆ

B2R

[Ψ (x, |Du|)]1+δ dx

 α
n(1+δ)

⩽ c(data(Ω0))R
αδ
1+δ (3.3.84)

for a higher integrability exponent δ coming from Theorem 3.2.5, where we
have used (3.3.24), (3.3.4) together with (3.2.62). By arguing similarly, we
estimate Ib in (3.3.62) as

Ib ⩽ c(data(Ω0))R
βδ
1+δ . (3.3.85)

Using estimates from the last two displays in (3.3.60) and recalling R ⩽ 1,
we see∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(data(Ω0))q1(R) ∥Dφ∥L∞(B1/8)
, (3.3.86)

where

q1(R) := R
αδ

(1+δ)(1+s(Ha)) +R
βδ

(1+δ)(1+s(Hb)) . (3.3.87)

Case 5: Assumption (3.1.11e) is in force. Again we estimate Ia and Ib
introduced in (3.3.61)-(3.3.62). Using the assumption (1.0.14), (3.3.26) and
(3.3.6), we have

Ia ⩽ cRαHa(E(R))

G(E(R))
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⩽ cRα

1 +

(Ψ−
BR

)−1

  

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx




α
⩽ c

(
Rα +

[
osc
B2R

u

]α)
⩽ c(data(Ω0))R

γα, (3.3.88)

where we have also used (3.2.33) and the Hölder continuity exponent γ came
from Theorem 3.2.2. Similarly, we see

Ib ⩽ c(data(Ω0))R
γβ. (3.3.89)

Inserting the estimates from the last two displays into (3.3.60) and recall-
ing R ⩽ 1, we see∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(data(Ω0))q2(R) ∥Dφ∥L∞(B1/8)
, (3.3.90)

where

q2(R) := R
αγ

1+s(Ha) +R
βγ

1+s(Hb) (3.3.91)

Collecting the estimates obtained in (3.3.68), (3.3.75),(3.3.82), (3.3.86)
and (3.3.90), we conclude with∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ chd(ε, R) ∥Dφ∥L∞(B1/8)
(3.3.92)

for some constant ch ≡ ch(data(Ω0)), whenever φ ∈ W 1,∞
0 (B1/8), where

d(ε, R) :=


p1(ε, R) if (3.1.11a) is assumed,
p2(ε, R) if (3.1.11b) is assumed,
p3(ε, R) if (3.1.11c) is assumed,
q1(R) if (3.1.11d) is assumed,
q2(R) if (3.1.11e) is assumed,

(3.3.93)

in which p1, p2, p3, q1 and q2 have been defined in (3.3.69), (3.3.76), (3.3.83),
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(3.3.87) and (3.3.91), respectively. By (3.3.52), (3.3.54a)-(3.3.55) and (3.3.92),
we are able to apply Lemma 2.5.1 with A0(z) ≡ Ā0(z), Ψ0(t) ≡ Ψ̄0(t) with

a0 ≡ ā(x̄a) and b0 ≡ b̄(x̄b), to discover that there exists h̄ ∈ w̄c+W
1,Ψ̄0

0 (B1/8)
such that 

B1/8

〈
Ā0(Dh̄), Dφ

〉
dx = 0 for all φ ∈ W 1,∞

0 (B1/8), (3.3.94)

 

B1/4

Ψ̄0(|Dh̄|) dx+
 

B1/8

[Ψ̄0(|Dh̄|)]1+δ1 dx ⩽ c for some δ1 ⩽ δ0, (3.3.95)

 

B1/8

(
|VḠ(Dw̄c)− VḠ(Dh̄)|2 + ā(x̄a)|VH̄a

(Dw̄c)− VH̄a
(Dh̄)|2

+b̄(x̄b)|VH̄b
(Dw̄c)− VH̄b

(Dh̄)|2
)
dx

⩽ c[d(ε, R)]s1 (3.3.96)

and finally

 

B1/8

(
Ḡ
(
|w̄c − h̄|

)
+ ā(x̄a)H̄a

(
|w̄c − h̄|

)
+ b̄(x̄b)H̄b

(
|w̄c − h̄|

))
dx ⩽ cd[d(ε, R)]

s0

(3.3.97)

with some constants c, cd ≡ c, cd(data(Ω0)) ⩾ 1 and s0, s1 ≡ s0, s1(data) ∈
(0, 1), but they are all independent of R. Therefore, for a given ε∗ ∈ (0, 1) as
in the statement of our lemma, we choose small enough ε and R∗ to satisfy

cd [d(ε, R
∗)]s0 ⩽ ε∗. (3.3.98)

Since the constants cd and s0 only depend on data(Ω0) and data, respec-
tively, the last display gives us the dependence of R∗ as in (3.3.37). Further-
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more, by (3.3.97), we conclude with

 

B1/8

[
Ḡ
(
|w̄c − h̄|

)
+ ā(x̄a)H̄a

(
|w̄c − h̄|

)
+ b̄(x̄b)H̄b

(
|w̄c − h̄|

)]
dx ⩽ ε∗.

(3.3.99)

Proof of (3.3.38). We observe that by a standard density argument, the
relation in (3.3.94) still holds for every φ ∈ W 1,1

0 (B1/8) with Ψ̄0(|Dφ|) ∈
L1(B1/8). Recalling (3.3.49) and (3.3.50), we see that h̄ is a local minimizer
of the functional

W 1,Ψ̄0(B1/8) ∋ υ 7→
ˆ

B1/8

F̄0(Dυ) dx. (3.3.100)

Since the conditions (3.3.54a)-(3.3.54c) are satisfied for the integrand F̄0(·),
we are in a position to apply the results from [111] to obtain the following a
priori Lipschitz estimate:

sup
B1/16

Ψ̄0(|Dh̄|) ⩽ c

 

B1/8

Ψ̄0(|Dh̄|) dx (3.3.101)

with some constant c ≡ c(n, s(G), s(Ha), s(Hb), ν, L). For any τ ∈ (0, 1/16),
we have that
 

Bτ

Ψ̄0

(∣∣∣∣w̄c − (w̄c)Bτ

τ

∣∣∣∣) dx ⩽
 

Bτ

Ψ̄0

(∣∣∣∣w̄c − (h̄)Bτ

τ

∣∣∣∣) dx

⩽
 

Bτ

Ψ̄0

(∣∣∣∣ h̄− (h̄)Bτ

τ

∣∣∣∣) dx+

 

Bτ

Ψ̄0

(∣∣∣∣w̄c − h̄

τ

∣∣∣∣) dx

(3.3.99)

⩽ c sup
Bτ

Ψ̄0(|Dh̄|) + cτ−(n+s(Ψ)+1)ε∗

(3.3.101)

⩽ c

 

B1/8

Ψ̄0(|Dh̄|) dx+ cτ−(n+s(Ψ)+1)ε∗

(3.3.95)

⩽ c+ cτ−(n+s(Ψ)+1)ε∗. (3.3.102)
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By scaling back to wc as introduced in (3.3.42a)-(3.3.42b), we obtain the
desired estimate (3.3.38). The proof is complete.

Lemma 3.3.4. Under the assumptions and notations of Lemma 3.3.3, let
wc ∈ W 1,Ψ(BR) be the solution to the problem defined in (3.3.22). If one of
the assumptions (3.1.11a)-(3.1.11e) is satisfied, then there exists h ∈ wc +

W
1,Ψ−

BR
0 (BR/8) being a local minimizer of the functional defined by

W 1,1(BR/8) ∋ v 7→ F0(v) :=

ˆ

BR/8

F0(Dv) dx, (3.3.103)

where the integrand function is given by

F0(z) := FG (xc, (u)B2R
, z) + a(xa)FHa (xc, (u)B2R

, z) + b(xb)FHb
(xc, (u)B2R

, z)
(3.3.104)

for some fixed point xc ∈ BR having been fixed in (3.3.22) and xa, xb ∈ BR

being points such that a(xa) := inf
x∈BR

a(x) and b(xb) := inf
x∈BR

b(x), whenever

z ∈ Rn, such that

 

BR/8

[
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

+b(xb)|VHb
(Du)− VHb

(Dh)|2
]
dx

⩽ c (ω (Rγ) + [d(ε, R)]s1)

 

B2R

Ψ(x, |Du|) dx (3.3.105)

for some constant c ≡ c(data(Ω0)), where s1 and d(ε, R) have been defined
in (3.3.96) and (3.3.93), respectively. Moreover, we have the energy estimate

 

BR/8

Ψ−
BR

(|Dh|) dx ⩽ c

 

B2R

Ψ(x, |Du|) dx (3.3.106)

for some constant c ≡ c(n, ν, L).

Proof. We need to revisit the proof of Lemma 3.3.3, specially Step 3 and Step
4. Under the settings of the proof of Lemma 3.3.3, we consider a function
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h̄ ∈ w̄c +W 1,Ψ̄0

0 (B1/8) satisfying (3.3.94)-(3.3.97). Let h be the scaled back
function of h̄ in BR/8 as

h(x) := E(wc, BR/2)Rh̄

(
x− x0
R

)
for every x ∈ BR/8(x0). (3.3.107)

Clearly, h ∈ wc + W
1,Ψ−

BR
0 (BR/8) is a local minimizer of the functional F0

defined in (3.3.103) which means that

F0(h) =

ˆ

BR/8

F0(Dh) dx ⩽
ˆ

BR/8

F0(Dh+Dφ) dx = F0(h+ φ) (3.3.108)

holds for every φ ∈ W
1,Ψ−

BR
0 (BR/8). As we have shown in (3.3.9), recalling

(3.3.24) and (3.3.4), we see

 

BR/8

Ψ−
BR

(|Dh|) dx ⩽
L

ν

 

BR/8

Ψ−
BR

(|Dwc|) dx ⩽
8nL

ν

 

BR

Ψ(x, |Dwc|) dx

⩽ c(n, ν, L)

 

BR

Ψ(x, |Dw|) dx ⩽ c(n, ν, L)

 

B2R

Ψ(x, |Du|) dx,

(3.3.109)

which proves (3.3.106). We write the inequality (3.3.96) in view of G,Ha, Hb,
wc and h in order to have

 

BR/8

[
|VG(Dwc)− VG(Dh)|2 + a(xa)|VHa(Dwc)− VHa(Dh)|2 (3.3.110)

+b(xb)|VHb
(Dwc)− VHb

(Dh)|2
]
dx

⩽ c[d(ε, R)]s1
 

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx

⩽ c[d(ε, R)]s1
 

BR/2

Ψ−
BR

(|Dwc|) dx ⩽ c[d(ε, R)]s1
 

BR/2

Ψ(x, |Du|) dx

(3.3.111)
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for some constant c ≡ c(data(Ω0)), where we have applied Sobolev-Poincaré
inequality and (3.3.109). Combining this estimate together with (3.3.3) and
(3.3.23) via some elementary computations and recalling R ⩽ 1, we directly
arrive at (3.3.105).

We finally finish this section with a crucial decay estimate on a local
minimizer u of the functional F .

Lemma 3.3.5. Under the assumptions and notations of Lemma 3.3.3, if one
of the conditions (3.1.11a)-(3.1.11e) is satisfied, then for every ε∗ ∈ (0, 1),
there exists a positive radius R∗ with the dependence as

R∗ ≡ R∗(data(Ω0), ε∗) (3.3.112)

such that if R ⩽ R∗, then there exists a constant c ≡ c(data(Ω0)) such that

ˆ

BτR

Ψ−
BR

(∣∣∣∣u− (u)BτR

τR

∣∣∣∣) dx ⩽ c
(
τn + τ−(s(Ψ)+1)ε∗

) ˆ
B2R

Ψ(x, |Du|) dx

(3.3.113)

holds for every τ ∈ (0, 1/16).

Proof. First we apply Lemma 3.3.3 with ε∗ ∈ (0, 1) to be determined in a
few lines, and we can use (3.3.38) provided

R ⩽ R∗ ≡ R∗(data(Ω0), ε
∗)

is found via (3.3.37). Therefore, using the convexity of Ψ−
BR

, Lemma 3.3.3
and a Sobolev-Poincaré inequality of Lemma 2.4.1 via some elementary ma-
nipulations, for every τ ∈ (0, 1/32), we have that

 

BτR

Ψ−
BR

(∣∣∣∣u− (u)BτR

τR

∣∣∣∣) dx ⩽ c

 

BτR

Ψ−
BR

(∣∣∣∣u− (wc)BτR

τR

∣∣∣∣) dx

⩽ c

 

BτR

Ψ−
BR

(∣∣∣∣wc − (wc)BτR

τR

∣∣∣∣) dx

+ cτ−(n+s(Ψ)+1)

 

BR

Ψ−
BR

(∣∣∣∣u− wc

R

∣∣∣∣) dx
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⩽ c
(
1 + τ−(n+s(Ψ)+1)ε∗

)  

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx

+ cτ−(n+s(Ψ)+1)

 

BR

Ψ−
BR

(∣∣∣∣u− wc

R

∣∣∣∣) dx

⩽ c
(
1 + τ−(n+s(Ψ)+1)ε∗

)  
BR

Ψ−
BR

(|Dwc|) dx

+ cτ−(n+s(Ψ)+1)

 

BR

Ψ−
BR

(∣∣∣∣u− wc

R

∣∣∣∣) dx (3.3.114)

with some constant c ≡ c(data(Ω0)), where throughout the last display
we have repeatedly used (2.1.6) and (3.3.36). The last display, (3.3.7) and
(3.3.27) with some elementary manipulations yield

ˆ

BτR

Ψ−
BR

(∣∣∣∣u− (u)BτR

τR

∣∣∣∣) dx

⩽ c
(
τn + τ−(s(Ψ)+1)ε∗ + τ−(s(Ψ)+1)[ω(Rγ)]

1
2

) ˆ

B2R

Ψ(x, |Du|) dx

for every τ ∈ (0, 1/16) and some c ≡ c(data(Ω0)). Then we choose ε∗ ≡ ε∗/2

and R∗ ⩽ R∗ in such a way that [ω(Rγ
∗)]

1
2 ⩽ ε∗/2. This choice gives us the

dependence as described in (3.3.112) and yields (3.3.113).

3.4 Proof of Theorem 3.1.2

Now we are ready to provide the proof of Theorem 3.1.2. In fact, it comes
from the combination of Lemma 3.2.3 and Lemma 3.3.5.

Step 1: Different alternatives. Now we consider the different alterna-
tives depending on which phase of (3.2.27a)-(3.2.27d) occurs in some fixed
ball BR ≡ BR(x0) ⊂ Ω0 ⋐ Ω with R ⩽ R∗ ≡ R∗(data(Ω0), ε∗), which will be
determined via Lemma 3.3.5 depending on ε∗ ∈ (0, 1).

Alternative 1. Let τab ∈ (0, 1/64) to be chosen in a few lines. Assume
that G-phase occurs in the ball BτabR, which means that (3.2.27a) happens
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in BτabR. In this situation, we have

a−(B2τabR) ⩽ 8[a]ωaωa(τabR) and b−(B2τabR) ⩽ 8[b]ωb
ωb(τabR). (3.4.1)

Then we are able to apply Lemma 3.2.3 in the ball B2τabR. In turn, this
one together with applying Lemma 3.3.5 implies that

ˆ

BτabR

Ψ(x, |Du|) dx ⩽ c

ˆ

B2τabR

G

(∣∣∣∣u− (u)B2τabR

2τabR

∣∣∣∣) dx

⩽ c

ˆ

B2τabR

Ψ−
BR

(∣∣∣∣u− (u)B2τabR

2τabR

∣∣∣∣) dx

⩽ c
(
τnab + τ

−(s(Ψ)+1)
ab ε∗

) ˆ
BR

Ψ(x, |Du|) dx (3.4.2)

for c ≡ c(data(Ω0)), provided R ⩽ R∗ (data(Ω0), ε∗). Then, for every σ ∈
(0, n), we write down the last inequality in the following form

ˆ

BτabR

Ψ(x, |Du|) dx ⩽ τn−σ
ab

(
cabτ

σ
ab + cabτ

σ−(n+s(Ψ)+1)
ab ε∗

) ˆ
BR

Ψ(x, |Du|) dx

for some constant cab ≡ cab(data(Ω0)). We select small enough τab, ε∗ depend-

ing on data(Ω0) and σ in such a way that cabτ
σ
ab ⩽ 1/2 and cabτ

σ−(n+s(Ψ)+1)
ab ε∗ ⩽

1/2. Then we have

ˆ

BτabR

Ψ(x, |Du|) dx ⩽ τn−σ
ab

ˆ

BR

Ψ(x, |Du|) dx (3.4.3)

for every R ⩽ Rab ≡ Rab(data(Ω0), σ).
Alternative 2. Let τb ∈ (0, 1/64) also to be determined later. This time

we assume that (G,Ha)-phase occurs in BR ((3.2.27b) happens in BR) and
that b−(BτbR) ⩽ 4[b]ωb

ωb(τbR). Then we have

b−(B2τbR) ⩽ 8[b]ωb
ωb(τbR). (3.4.4)
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Also we can observe that

a−(BτbR) ⩾ a−(BR) > 4[a]ωaωa(R) ⩾ 4[a]ωaωa(τbR) (3.4.5)

and

a−(BR) ⩽ a(x) ⩽ 2[a]ωaωa(R) + a−(BR) ⩽ 2a−(BR) (∀x ∈ BR). (3.4.6)

Applying Lemma 3.2.3 and then Lemma 3.3.5 together with recalling (3.4.6),
we have

ˆ

BτbR

Ψ(x, |Du|) dx ⩽ c

ˆ

B2τbR

[
G

(∣∣∣∣u− (u)B2τbR

2τbR

∣∣∣∣)+ a−(B2τbR)Ha

(∣∣∣∣u− (u)B2τbR

2τbR

∣∣∣∣)] dx
⩽ c

ˆ

B2τbR

Ψ−
BR

(∣∣∣∣u− (u)B2τbR

2τbR

∣∣∣∣) dx

⩽ c
(
τnb + τ

−(s(Ψ)+1)
b ε∗

) ˆ
BR

Ψ(x, |Du|) dx (3.4.7)

for some constant c ≡ c(data(Ω0)), provided R ⩽ R∗(data(Ω0), ε∗). Then,
for every σ ∈ (0, n), we write down the last display as

ˆ

BτbR

Ψ(x, |Du|) dx ⩽ τn−σ
b

(
cbτ

σ
b + cbτ

σ−(n+s(Ψ)+1)
b ε∗

) ˆ
BR

Ψ(x, |Du|) dx

for some constant cb ≡ cb(data(Ω0)). We select small enough τb, ε∗ depending

on data(Ω0) and σ in such a way that cbτ
σ
b ⩽ 1/2 and cbτ

σ−(n+s(Ψ)+1)
b ε∗ ⩽

1/2. Then we have

ˆ

BτbR

Ψ(x, |Du|) dx ⩽ τn−σ
b

ˆ

BR

Ψ(x, |Du|) dx (3.4.8)

for every R ⩽ Rb ≡ Rb(data(Ω0), σ).
Alternative 3. Let τa ∈ (0, 1/64) to be fixed later. Assume that (G,Hb)-

phase occurs in BR ((3.2.27c) happens in BR) and a
−(BτaR) ⩽ 4[a]ωaωa(τaR).
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Then we have

a−(B2τaR) ⩽ 8[a]ωaωa(τaR). (3.4.9)

Applying Lemma 3.2.3 and then Lemma 3.3.5 together with recalling that
b−(BR) ⩽ b(x) ⩽ 2b−(BR) holds for every x ∈ BR if b−(BR) > 4[b]ωb

ωb(R)
likewise in (3.4.6), we have

ˆ

BτaR

Ψ(x, |Du|) dx ⩽ c

ˆ

B2τaR

[
G

(∣∣∣∣u− (u)B2τaR

2τaR

∣∣∣∣)+ b−(B2τaR)Hb

(∣∣∣∣u− (u)B2τaR

2τaR

∣∣∣∣)] dx
⩽ c

ˆ

B2τaR

Ψ−
BR

(∣∣∣∣u− (u)B2τaR

2τaR

∣∣∣∣) dx

⩽ c
(
τna + τ−(s(Ψ)+1)

a ε∗
) ˆ
BR

Ψ(x, |Du|) dx (3.4.10)

for some constant c ≡ c(data(Ω0)), provided R ⩽ R∗(data(Ω0), ε∗). Then,
for every σ ∈ (0, n), we write down the last display as

ˆ

BτaR

Ψ(x, |Du|) dx ⩽ τn−σ
a

(
caτ

σ
a + caτ

σ−(n+s(Ψ)+1)
a ε∗

) ˆ
BR

Ψ(x, |Du|) dx

for some constant ca ≡ ca(data(Ω0)). We select small enough τa, ε∗ depending
on data(Ω0) and σ in such a way that caτ

σ
a ⩽ 1/2 and caτ

σ−(n+s(Ψ)+1)
a ε∗ ⩽

1/2. Then we have

ˆ

BτaR

Ψ(x, |Du|) dx ⩽ τn−σ
a

ˆ

BR

Ψ(x, |Du|) dx (3.4.11)

for every R ⩽ Ra ≡ Ra(data(Ω0), σ).
Alternative 4. Let τ0 ∈ (0, 1/64) to be chosen later. We assume that

(G,Ha, Hb)-phase occurs in BR, which means that (3.2.27d) happens in BR.
In this situation, from the observation in (3.4.6) we see that a−(BR) ⩽ a(x) ⩽
2a−(BR) and b−(BR) ⩽ b(x) ⩽ 2b−(BR) for every x ∈ BR. Then again
applying Lemma 3.2.3 and Lemma 3.3.5, we find
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ˆ

Bτ0R

Ψ(x, |Du|) dx ⩽ c

ˆ

B2τaR

Ψ−
B2τ0R

(∣∣∣∣u− (u)B2τ0R

2τ0R

∣∣∣∣) dx

⩽ c

ˆ

B2τ0R

Ψ−
BR

(∣∣∣∣u− (u)B2τ0R

2τ0R

∣∣∣∣) dx

⩽ c
(
τn0 + τ

−(s(Ψ)+1)
0 ε∗

) ˆ
BR

Ψ(x, |Du|) dx (3.4.12)

for some constant c ≡ c(data(Ω0)), provided R ⩽ R∗(data(Ω0), ε∗). Then,
for every σ ∈ (0, n), we write down the last display as

ˆ

Bτ0R

Ψ(x, |Du|) dx ⩽ τn−σ
0

(
c0τ

σ
0 + c0τ

σ−(n+s(Ψ)+1)
0 ε∗

) ˆ
BR

Ψ(x, |Du|) dx

for some constant c0 ≡ c0(data(Ω0)). Then we choose τ0, ε∗ depending on

data(Ω0) and σ in such a way that c0τ
σ
0 ⩽ 1/2 and c0τ

σ−(n+s(Ψ)+1)
0 ε∗ ⩽ 1/2.

Then we have ˆ

Bτ0R

Ψ(x, |Du|) dx ⩽ τn−σ
0

ˆ

BR

Ψ(x, |Du|) dx (3.4.13)

for every R ⩽ R0 ≡ R0(data(Ω0), σ). Next we consider the double nested
exit time argument based on the proof of [71, Theorem 2].

Step 2: Double nested exit time and iteration. Now we shall com-
bine all the alternatives we have discussed with the estimates (3.4.3), (3.4.8),
(3.4.11) and (3.4.13). Take a ball BR ⊂ Ω0 ⋐ Ω such that R ⩽ Rm, where
Rm = min{Rab, Ra, Rb, R0} depends on data(Ω0) and σ. We consider G-
phase in Bτk+1

ab R for every integer k ⩾ 0 and define the exit time index

tab = min{k ∈ N : G− phase in the ball Bτk+1
ab R does not occur}. (3.4.14)

If there does not exist such tab, then for any 0 < ρ < τ 2abR < R ⩽ Rm, there
exists an integer m ⩾ 1 such that τm+2

ab R ⩽ ρ < τm+1
ab R. Using iterative
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(3.4.3), we have

ˆ

Bρ

Ψ(x, |Du|) dx ⩽
ˆ

B
τm+1
ab

R

Ψ(x, |Du|) dx

⩽ τ
(m−1)(n−σ)
ab

ˆ

τ2abR

Ψ(x, |Du|) dx

= τ
(m+2)(n−σ)
ab τ

−3(n−σ)
ab

ˆ

τ2abR

Ψ(x, |Du|) dx

⩽ c(data(Ω0), σ)
( ρ
R

)n−σ
ˆ

R

Ψ(x, |Du|) dx. (3.4.15)

Clearly, the above inequality holds true when τ 2abR ⩽ ρ ⩽ R ⩽ Rm. So we
consider the case of tab < ∞. For every k ∈ {1, . . . , tab}, we apply (3.4.3)
repeatedly in order to obtain

ˆ

B
τk
ab

R

Ψ(x, |Du|) dx ⩽ τ
k(n−σ)
ab

ˆ

BR

Ψ(x, |Du|) dx. (3.4.16)

By the very definition of τab in (3.4.14), we have three different scenarios:
either (G,Ha)-phase occurs in B

τ
tab+1

ab R
, (G,Hb)-phase occurs in B

τ
tab+1

ab R
or

(G,Ha, Hb)-phase occurs in B
τ
tab+1

ab R
. Clearly, the last condition is stable for

shrinking balls. Since the first two conditions can be considered similarly, we
shall focus on the occurrence of (G,Ha)-phase in the ball B

τ
tab+1

ab R
. Let us

define a second exit time index

tb := min{k ∈ N : (G,Ha)− phase in the ball B
τk+1
b τ

tab+1

ab R
does not occur}.

(3.4.17)

Arguing similarly as in (3.4.15) by using (3.4.8) if there is no such a finite
number tb ∈ N, we are able to arrive at the inequality (3.4.25) below. So
we only focus on the case of tb < ∞. Iterating (3.4.8) with BR replaced by
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B
τ
tab+1

ab R
, we have

ˆ

B
τk
b
τ
tab+1
ab

R

Ψ(x, |Du|) dx ⩽ τ
k(n−σ)
b

ˆ

B
τ
tab+1
ab

R

Ψ(x, |Du|) dx (3.4.18)

for every k ∈ {1, . . . , tb}. By again the very definition of tb, there is only one
chance that (G,Ha, Hb)-phase occurs in the ball B

τ
tb+1

b τ
tab+1

ab R
. But as this

condition is stable, we can iterate (3.4.13) for every k ∈ N in order to have

ˆ

B
τk0 τ

tb+1
b

τ
tab+1
ab

R

Ψ(x, |Du|) dx ⩽ τ
k(n−σ)
0

ˆ

B
τ
tb+1
b

τ
tab+1
ab

R

Ψ(x, |Du|) dx. (3.4.19)

Now we have all the needed estimates (3.4.16), (3.4.18) and (3.4.19). For
0 < ρ < R ⩽ Rm, we consider the following cases.

Case 1: R > ρ ⩾ τ tab+1
ab R. There exists m ∈ {0, 1, . . . , tab} such that

τm+1
ab R ⩽ ρ < τmabR. Then from (3.4.16), we have

ˆ

Bρ

Ψ(x, |Du|) dx ⩽
ˆ

Btm
ab

R

Ψ(x, |Du|) dx

⩽ τ
m(n−σ)
ab

ˆ

BR

Ψ(x, |Du|) dx

⩽ τ
(m+1)(n−σ)
ab τσ−n

ab

ˆ

BR

Ψ(x, |Du|) dx

⩽ c(data(Ω0), σ)
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx, (3.4.20)

where the last inequality is valid since τab depends on data(Ω0) and σ.
Case 2: τ tab+1

ab R > ρ ⩾ τbτ
tab+1
ab R. In this case, using (3.4.20), we see

ˆ

Bρ

Ψ(x, |Du|) dx ⩽
ˆ

B
τ
tab+1
ab

R

Ψ(x, |Du|) dx
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= τ
(tab+1)(n−σ)
ab

ˆ

BR

Ψ(x, |Du|) dx

⩽
(
τbτ

tab+1
ab

)n−σ
τσ−n
b

ˆ

BR

Ψ(x, |Du|) dx

⩽ c(data(Ω0), σ)
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx, (3.4.21)

where again the last inequality is possible by the dependencies of τb.
Case 3: τbτ

tab+1
ab R > ρ ⩾ τ tb+1

b τ tab+1
ab R. Again there exists a natural

number m ∈ {1, . . . , tb} so that τmb τ
tab+1
ab R > ρ ⩾ τm+1

b τ tab+1
ab R. Therefore,

using (3.4.18) and (3.4.20), we have

ˆ

Bρ

Ψ(x, |Du|) dx ⩽
ˆ

B
τm
b

τ
tab+1
ab

R

Ψ(x, |Du|) dx

⩽ τ
m(n−σ)
b

ˆ

B
τ
tab+1
ab

R

Ψ(x, |Du|) dx

⩽ τ
(m+1)(n−σ)
b τσ−n

b τ
(tab+1)(n−σ)
ab

ˆ

BR

Ψ(x, |Du|) dx

⩽ c(data(Ω0), σ)
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx. (3.4.22)

Case 4: τ tb+1
b τ tab+1

ab R > ρ ⩾ τ tb+1
b τ tab+1

ab τ0R. Now by (3.4.22), we find

ˆ

Bρ

Ψ(x, |Du|) dx ⩽
ˆ

B
τ
tb+1
b

τ
tab+1
ab

R

Ψ(x, |Du|) dx

⩽ c
(
τ tb+1
b τ tab+1

ab

)n−σ
ˆ

BR

Ψ(x, |Du|) dx

⩽ cτσ−n
0

(
τ0τ

tb+1
b τ tab+1

ab

)n−σ
ˆ

BR

Ψ(x, |Du|) dx
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⩽ c(data(Ω0), σ)
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx. (3.4.23)

Case 5: τ tb+1
b τ tab+1

ab τ0R > ρ > 0. This condition implies that there exists
a natural number m ∈ N such that τm+1

0 τ tb+1
b τ tab+1

ab R ⩽ ρ < τm0 τ
tb+1
b τ tab+1

ab R.
This time we apply (3.4.19) and (3.4.23) in order to have

ˆ

Bρ

Ψ(x, |Du|) dx ⩽
ˆ

B
τm0 τ

tb+1
b

τ
tab+1
ab

R

Ψ(x, |Du|) dx

⩽ τ
m(n−σ)
0

ˆ

B
τ
tb+1
b

τ
tab+1
ab

R

Ψ(x, |Du|) dx

⩽ τ
m(n−σ)
0

(
τ tb+1
b τ tab+1

ab

)n−σ
ˆ

BR

Ψ(x, |Du|) dx

⩽ cτσ−n
0

( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx

= c(data(Ω0), σ)
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx. (3.4.24)

As we discussed earlier after (3.4.16), we can proceed the same for the oc-
currence of (G,Ha)-phase in the ball B

τ
τab+1

ab R
instead of the occurrence of

(G,Hb)-phase in the ball B
τ
τab+1

ab R
. Then we can directly jump to the case

that (G,Ha, Hb)-phase occurs in the ball B
τ
τab+1

ab R
, which is trivial by (3.4.13).

Moreover, if we start with the occurrence of (G,Ha, Hb)-phase in BR, then
the procedure will be much easier by (3.4.13). Taking into account all the
possible cases that we considered above, we can conclude that, for every
σ ∈ (0, 1), there exists c ≡ c(data(Ω0), σ) such that

ˆ

Bρ

Ψ(x, |Du|) dx ⩽ c
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx (3.4.25)

holds true, whenever 0 < ρ < R ⩽ Rm, where Rm is some positive radius
depending only on data(Ω0) and σ in the beginning of the proof. In order
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to complete the proof, we need to consider the remaining cases. If 0 < Rm ⩽
ρ < R ⩽ 1, then we have

ˆ

Bρ

Ψ(x, |Du|) dx ⩽
( ρ
R

)n−σ
(
R

ρ

)n−σ ˆ

BR

Ψ(x, |Du|) dx

⩽
( ρ
R

)n−σ
(
R

Rm

)n−σ ˆ

BR

Ψ(x, |Du|) dx

⩽ c(data(Ω0), σ)
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx, (3.4.26)

where we have used the dependence of Rm. Finally, if 0 < ρ < Rm ⩽ R ⩽ 1,
then by (3.4.25) and (3.4.26), we see

ˆ

Bρ

Ψ(x, |Du|) dx ⩽ c

(
ρ

Rm

)n−σ ˆ

BRm

Ψ(x, |Du|) dx

⩽ c

(
ρ

Rm

)n−σ (
Rm

R

)n−σ ˆ

BR

Ψ(x, |Du|) dx

= c(data(Ω0), σ)
( ρ
R

)n−σ
ˆ

BR

Ψ(x, |Du|) dx. (3.4.27)

All in all, collecting the estimates obtained in (3.4.25)-(3.4.27), we arrive
at the validity of the Morrey type inequality (3.1.13). The proof is complete.

Now we consider a crucial outcome of Theorem 3.1.2, which plays a crucial
role for proving Theorem 3.1.1 afterwards.

Lemma 3.4.1. Under the assumptions of Lemma 3.3.3, let wc ∈ W 1,Ψ(BR)
be the solution to the problem defined in (3.3.22). Suppose that (3.1.11c) is
satisfied for ωa(ρ) = ρα and ωb(ρ) = ρβ with some α, β ∈ (0, 1]. Then there

exists h ∈ wc +W
1,Ψ−

BR
0 (BR/8) being a local minimizer of the functional F0

defined in (3.3.103) such that

 

BR/8

[
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2
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+b(xb)|VHb
(Du)− VHb

(Dh)|2
]
dx

⩽ c
(
ω (Rγ) +

[
R

α
2(1+s(Ha)

) +R
β

2(1+s(Hb))

]s1)  

B2R

Ψ(x, |Du|) dx (3.4.28)

for some constant c ≡ c(data(Ω0)) and s1 ≡ s1(data), respectively. More-
over, the energy estimate

 

BR/8

Ψ−
BR

(|Dh|) dx ⩽ c

 

B2R

Ψ(x, |Du|) dx (3.4.29)

holds for some constant c ≡ c(n, ν, L).

Proof. Essentially, the above lemma is a special case of Lemma 3.3.4 since
we consider a particular case that ωa(ρ) = ρα and ωb(ρ) = ρβ for some
α, β ∈ (0, 1). But our purpose here is to obtain an estimate such as (3.4.28)
with a different multiplier containing some power of R, which will be used
for proving Theorem 3.1.1. Therefore, we are able to apply Theorem 3.1.2.
In turn, for every θ ∈ (0, 1) and open sunset Ω0 ⋐ Ω, there exists a constant
c ≡ c(data(Ω0), θ) such that

[u]0,θ;Ω0 ⩽ c(data(Ω0), θ). (3.4.30)

In particular, we choose θ := (γ + 1)/2. Now we need to revisit the proof of
Lemma 3.3.3. Under the settings of the proof of Lemma 3.3.3, we turn our
attention to estimating the terms Ia and Ib introduced in (3.3.59)-(3.3.60).
Using (1.0.15), (3.3.26) and (3.3.6), we have

Ia ⩽ cRα

1 +

(Ψ−
BR

)−1

  

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx




α
1−γ


⩽ c

(
Rα +R− αγ

1−γ

[
osc
B2R

u

] α
1−γ

)
⩽ c(data(Ω0))R

α/2, (3.4.31)

where we have used (3.4.30) with the choice of θ := (1 + γ)/2 and B2R ⊂ Ω0

with R ⩽ 1. In the same way, we show

Ib ⩽ c(data(Ω0))R
β/2. (3.4.32)
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Inserting those estimates into (3.3.60), we see that∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄c), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(data(Ω0))q3(R) ∥Dφ∥L∞(B1/8)
, (3.4.33)

whenever φ ∈ W 1,∞
0 (B1/8), where

q3(R) := R
α

2(1+s(Ha)) +R
β

2(1+s(Hb)) . (3.4.34)

Note that the vector field Ā0 has been defined in (3.3.50). We consider a

function h̄ ∈ w̄c + W 1,Ψ̄0

0 (B1/8) satisfying (3.3.94)-(3.3.97) with the term
d(ε, R) replaced by q3(R). Let h be the scaled back function of h̄ in BR/8 as

h(x) := E(wc, BR/2)Rh̄

(
x− x0
R

)
for every x ∈ BR/8(x0). (3.4.35)

Clearly, h ∈ wc + W
1,Ψ−

BR
0 (BR/8) is a local minimizer of the functional F0

defined in (3.3.103), which means that

F0(h) =

ˆ

BR/8

F0(Dh) dx ⩽
ˆ

BR/8

F0(Dh+Dφ) dx = F0(h+ φ) (3.4.36)

holds for every φ ∈ W
1,Ψ−

BR
0 (BR/8). As we have shown in (3.3.9), we recall

(3.3.24) and (3.3.4) to see that

 

BR/8

Ψ−
BR

(|Dh|) dx ⩽
L

ν

 

BR/8

Ψ−
BR

(|Dwc|) dx ⩽
8nL

ν

 

BR

Ψ(x, |Dwc|) dx

⩽ c(n, ν, L)

 

BR

Ψ(x, |Dw|) dx ⩽ c(n, ν, L)

 

B2R

Ψ(x, |Du|) dx,

(3.4.37)

which proves (3.3.106). We write the inequality (3.3.96) in view of G,Ha, Hb,
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wc and h in order to have
 

BR/8

[
|VG(Dwc)− VG(Dh)|2 + a(xa)|VHa(Dwc)− VHa(Dh)|2

+b(xb)|VHb
(Dwc)− VHb

(Dh)|2
]
dx

⩽ c[q3(R)]
s1

 

BR/2

Ψ−
BR

(∣∣∣∣wc − (wc)BR/2

R

∣∣∣∣) dx

⩽ c[q3(R)]
s1

 

BR/2

Ψ−
BR

(|Dwc|) dx

⩽ c[q3(R)]
s1

 

BR/2

Ψ(x, |Du|) dx (3.4.38)

for some constant c ≡ c(data(Ω0)), where we have applied Sobolev-Poincaré
inequality and (3.3.109). Combining this estimate together with (3.3.3) and
(3.3.23) alongside some elementary computations, we arrive at the desired
estimate (3.4.28).

3.5 Proof of Theorem 3.1.1.

Finally, we are ready to prove Theorem 3.1.1. First applying Theorem 3.1.2
and a standard covering argument, we find that for every open subset Ω0 ⋐ Ω
and any number k > 0, there exists a constant c ≡ c(data(Ω0), k) such that

 

B2R

Ψ(x, |Du|) dx ⩽ cR−k, (3.5.1)

whenever B2R ⊂ Ω0 is a ball with R ⩽ 1. Now we fix an open subset Ω0 ⋐ Ω
and a ball B2R ≡ B2R(x0) ⊂ Ω0 with R ⩽ 1. Then applying Lemma 3.3.4
and Lemma 3.4.1,

 

BR/8

(
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

+b(xb)|VHb
(Du)− VHb

(Dh)|2
)
dx
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⩽ c (Rµγ + [q(R)]s1)

 

B2R

Ψ(x, |Du|) dx (3.5.2)

for some constant c ≡ c(data(Ω0)) and s1 ≡ s1(data), where

q(R) :=


R

αδ
(1+δ)(1+s(Ha)) +R

βδ
(1+δ)(1+s(Hb)) if (3.1.10a) is assumed,

R
αγ

1+s(Ha) +R
βγ

1+s(Hb) if (3.1.10b) is assumed,

R
α

2(1+s(Ha)) +R
β

2(1+s(Hb)) if (3.1.10c) is assumed,

(3.5.3)

in which γ is the Hölder continuity exponent determined via Theorem 3.2.2
and δ is the higher integrability exponent coming from Theorem 3.2.5. We
denote by

d ≡ d(data(Ω0)) :=



min

{
µγ,

αδs1
(1 + δ)(1 + s(Ha))

,
βδs1

(1 + δ)(1 + s(Hb))

}
if (3.1.10a) is assumed,

min

{
µγ,

αγs1
1 + s(Ha)

,
βγs1

1 + s(Hb)

}
if (3.1.10b) is assumed,

min

{
µγ,

αs1
2(1 + s(Ha))

,
βs1

2(1 + s(Hb))

}
if (3.1.10c) is assumed,

(3.5.4)

and xa, xb ∈ BR are points such that a(xa) = inf
x∈BR

a(x) and b(xb) = inf
x∈BR

b(x).

Now choosing k ≡ d/4 in (3.5.1), the inequality (3.5.2) can be written as

 

BR/8

(
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

+b(xb)|VHb
(Du)− VHb

(Dh)|2
)
dx

⩽ cR3d/4 (3.5.5)

for some constant c ≡ c(data(Ω0)), where we again recall that the function
h has been defined via Lemma 3.3.4 and Lemma 3.4.1. Recalling, (3.3.106)
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and (3.4.29), we have the energy estimate

 

BR/8

Ψ−
BR

(|Dh|) dx ⩽ c

 

B2R

Ψ(x, |Du|) dx (3.5.6)

with a constant c ≡ c(n, ν, L). Now using repeatedly (2.1.10), we have

 

BR/8

Ψ−
BR

(|Du−Dh|) dx

⩽ c

 

BR/8

([
Ψ−

BR
(|Du|+ |Dh|)

] 1
2
|Du−Dh|
|Du|+ |Dh|

)[
Ψ−

BR
(|Du|+ |Dh|)

] 1
2 dx

⩽ c

  

BR/8

Ψ−
BR

(|Du|+ |Dh|) |Du−Dh|2

(|Du|+ |Dh|)2
dx


1
2

×

  

BR/8

Ψ−
BR

(|Du|+ |Dh|) dx


1
2

(2.1.10),(3.5.5)

⩽ cR3d/8

  

BR/8

Ψ−
BR

(|Du|+ |Dh|) dx


1
2

(3.5.6),(3.5.1)

⩽ cRd/4

(3.5.7)

with c ≡ c(data(Ω0)), where d has been introduced in (3.5.3). Since h is a
minimizer of functional F0 defined in (3.3.103), and this functional satisfies
the growth and ellipticity conditions (3.1.2)1,2 with a(x) ≡ a(xa) and b(x) ≡
b(xb) , we are able to apply the theory in [111], which provides the gradient
Hölder regularity with the estimates

 

Bρ

Ψ−
BR

(|Dh− (Dh)Bρ|) dx ⩽ c
( ρ
R

)β1
 

BR/8

Ψ−
BR

(|Dh|) dx

(3.5.6)

⩽ c
( ρ
R

)β1
 

B2R

Ψ(x, |Du|) dx, (3.5.8)

128



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

whenever 0 < ρ ⩽ R/8, where the constants c, β1 depend only on n, s(G),
s(Ha), s(Hb), ν, L, but are independent of the values a(xa) and b(xb). There-
fore, for every 0 < ρ ⩽ R/8, we have

 

Bρ

G(|Du− (Du)Bρ|) dx

⩽ c

 

Bρ

G(|Dh− (Dh)Bρ|) dx+ c

 

Bρ

G(|Du−Dh|) dx

(3.5.8)

⩽ c
( ρ
R

)β1
 

B2R

Ψ(x, |Du|) dx+ c

(
R

ρ

)n  

BR/8

G(|Du−Dh|) dx

(3.5.1),(3.5.7)

⩽ c
( ρ
R

)β1

R−k + c

(
R

ρ

)n

Rd/4 (3.5.9)

with c ≡ c(data(Ω0), k). Notice that k ∈ (0, 1) is still arbitrary and d has
been defined in (3.5.3) depending only on data(Ω0). Taking k ≡ dβ1/(32n)
and ρ ≡ (R/8)1+d/(16n) in the last display, after some elementary manipula-
tions, we get

 

Bρ

G(|Du− (Du)Bρ|) dx ⩽ cρ
dβ1
64n (3.5.10)

for every ρ ∈ (0, 1/8), provided B8ρ ⋐ Ω0. In particular, using Jensen’s
inequality and Lemma 2.1.11, we have

 

Bρ

|Du− (Du)Bρ| dx ⩽ cρ
dβ1
64n(1+

1
s(G)) (3.5.11)

for every ρ ∈ (0, 1/8) with B8ρ ⋐ Ω0. By the integral characterization of
Hölder continuity due to Campanato and Meyers and a standard covering

argument alongside (3.5.11), Du ∈ C0,θ
loc (Ω) for θ ≡ dβ1

64n

(
1 +

1

s(G)

)
. This

proves the local Hölder continuity of Du. But the proof is not finished yet,
since θ should be independent of Ω0 as in the statement of Theorem 3.1.1. In
order to obtain the full completeness, we apply some standard perturbation
methods. Indeed, once we have thatDu is locally bounded, we shall revisit the
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proof of Lemma 3.3.4 and Lemma 3.4.1. We also observe that the functional
defined in (3.3.103) satisfies the bounded slope condition (see for instance
[32]). Then there exists a constant c ≡ c(n, s(G), s(Ha), s(Hb), ν, L, ∥Du∥L∞(BR))
such that

∥Dh∥L∞(BR) ⩽ c.

Since Du is locally bounded, following the proof of Lemma 3.3.1, Lemma
3.3.4 and Lemma 3.4.1, specially the estimate in (3.3.3) can be modified with
γ ≡ 1. Moreover, the estimates in (3.4.28) and (3.3.105) can be upgraded by

 

BR/8

(
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

+b(xb)|VHb
(Du)− VHb

(Dh)|2
)
dx

⩽ cRmin{µ,α,β} (3.5.12)

with some constant c depending only on n, s(G), s(Ha), s(Hb), ν, L, ∥a∥L∞(Ω0)
,

∥b∥L∞(Ω0)
and ∥Du∥L∞(B2R). In particular, the last estimate via (3.5.7) implies

that  

BR

G(|Du−Dh|) dx ⩽ cRmin{µ,α,β}/4. (3.5.13)

Therefore, (3.5.8) implies that

 

Bρ

G(|Dh− (Dh)Bρ|) dx ⩽ c
( ρ
R

)β1

, (3.5.14)

where β1 depends on n, s(G), s(Ha), s(Hb), ν, L while the constant c depends
only on n, s(G), s(Ha), s(Hb), ν, L, ∥Du∥L∞(Ω0)

, ∥a∥L∞(Ω0)
and ∥b∥L∞(Ω0)

.
Combining the last two estimates similarly as shown in (3.5.9), we deduce
the gradient Hölder continuity with the exponent depending only on n, s(G),
s(Ha), s(Hb), ν, L, α, β and µ, which is the desired dependence as described
in the statement. The proof is finally complete.
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3.6 Orlicz double phase problems

Let us consider a general class of functionals with double phase growth, which
is essentially the case when b(·) ≡ 0 in (1.0.2). The functionals we shall deal
with is of type

W 1,1(Ω) ∋ v 7→ Fd(v,Ω) :=

ˆ

Ω

Fd(x, v,Dv) dx, (3.6.1)

where Fd : Ω×R×Rn → R is a Caratheódory function fulfilling the following
double-sided growth

νΨd(x, |z|) ⩽ Fd(x, y, z) ⩽ LΨd(x, |z|), (3.6.2)

whenever x ∈ Ω, y ∈ R and z ∈ Rn, in which here and in the rest of the
chapter we denote by

Ψd(x, t) := G(t) + a(x)Ha(t) (∀x ∈ Ω, t ⩾ 0). (3.6.3)

As we introduced before we assume G,Ha ∈ N with indices s(G), s(Ha) ⩾ 1
and a(·) ∈ Cωa(Ω) with ωa : [0,∞) → [0,∞) being a continuous and concave
function such that ωa(0) = 0. We shall consider a local minimizer u of the
functional Fd in (3.6.1) under one of the assumptions (1.0.13), (1.0.14) and
(1.0.15) with ωb(·) ≡ 0. Since the double sided growth assumption (3.6.3)
is not enough for higher regularity properties of a local minimizer u of the
functional Fd, we shall assume that Fd is a continuous integrand belonging to
the space C2(Rn\{0}) with respect to z-variable and having the the following
structure assumptions:

|DzFd(x, y, z)||z|+ |D2
zzFd(x, y, z)||z|2 ⩽ LΨd(x, |z|),

ν
Ψa(x, |z|)

|z|2
|ξ|2 ⩽

〈
D2

zzFd(x, y, z)ξ, ξ
〉
,

|DzFd(x1, y, z)−DzFd(x2, y, z)||z| ⩽ Lω(|x1 − x2|)[Ψd(x1, |z|) + Ψd(x2, |z|)]
+ L|Ψd(x1, |z|)−Ψd(x2, |z|)|,

|Fd(x, y1, z)− Fd(x, y2, z)| ⩽ Lω(|y1 − y2|)Ψd(x, |z|),
(3.6.4)

whenever x, x1, x2 ∈ Ω, y, y1, y2 ∈ R, z ∈ Rn \ {0}, ξ ∈ Rn, where 0 < ν ⩽ L
are fixed constants, and the function ω is the same as defined in (3.1.3) or
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(3.1.4). The structure conditions in (3.6.4) are satisfied for instance by the
model functional

W 1,1(Ω) ∋ υ 7→
ˆ

Ω

fd(x, υ)Ψd(x, |Dυ|) dx, (3.6.5)

where the continuous function fd(·) satisfies 0 < ν0 ⩽ f(·, ·) ⩽ L0 for some
constants ν0, L0 and fulfills the following inequality

|fd(x1, y1)− fd(x2, y2)| ⩽ L0ω(|x1 − x2|+ |y1 − y2|),

whenever x1, x2 ∈ Rn and y1, y2 ∈ R, in which ω is the same as defined in
(3.1.3) or (3.1.4). Another model case is given by

W 1,1(Ω) ∋ υ 7→
ˆ

Ω

[FG(x, υ,Dυ) + a(x)FHa(x, υ,Dυ)] dx, (3.6.6)

where FG(·) and FHa(·) have G−growth and Ha−growth respectively, and
satisfy the following suitable structure assumptions that

|DzFΦ(x, y, z)||z|+ |D2
zzFΦ(x, y, z)||z|2 ⩽ L0Φ(|z|),

ν0
Φ(|z|)
|z|2

|ξ|2 ⩽
〈
D2

zzFΦ(x, y, z)ξ, ξ
〉
,

|DzFΦ(x1, y, z)−DzFΦ(x2, y, z)||z| ⩽ L0ω(|x1 − x2|)Φ(|z|),
|FΦ(x, y1, z)− FΦ(x, y2, z)| ⩽ L0ω(|y1 − y2|)Φ(|z|)

hold with Φ ∈ {G,Ha} for some positive constants ν0, L0, where ω is as in
(3.1.3) or (3.1.4). The reason we consider the double phase case independently
is that we have discussed the various regularity properties of the functional F
in (1.0.10) in the sense of multi-phase of the type defined in (3.1.1) together
with the structure assumptions (3.1.2), but this one is a special case of (3.6.1)
together with the structure assumptions (3.6.4) in the sense of the double
phase structures. Now we restate and prove Lemma 3.1.1 in the double phase
settings which will be applied later.

Lemma 3.6.1. Let Fd : Ω × R × Rn → R be a function defined in (3.6.1)
which satisfies (3.6.2) and (3.6.4). There exist positive constants c1, c2 ≡
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c1, c2(n, s(G), s(Ha), ν) such that the following inequalities

|VG(z1)− VG(z2)|2 + a(x)|VHa(z1)− VHa(z2)|2

⩽ c1 ⟨DzFd(x, y, z1)−DzFd(x, y, z2), z1 − z2⟩ , (3.6.7)

|VG(z1)− VG(z2)|2 + a(x)|VHa(z1)− VHa(z2)|2+c2 ⟨DzFd(x, y, z1), z2 − z1⟩
⩽ c2[Fd(x, y, z2)− Fd(x, y, z1)]

(3.6.8)

and

|Fd(x1, y, z)− Fd(x2, y, z)| ⩽ Lω(|x1 − x2|) [Ψd(x1, |z|) + Ψd(x2, |z|)]
+ L|a(x1)− a(x2)|Ha(|z|) (3.6.9)

hold true, whenever z, z1, z2 ∈ Rn \ {0}, x, x1, x2 ∈ Ω and y ∈ R.

Proof. The arguments of the proof for (3.6.7) and (3.6.8) are essentially the
same as done for Lemma 3.1.1. Only difference lies in the one for (3.6.9).
Since Fd(x, y, 0) = 0 for every x ∈ Ω and y ∈ R, we have

|Fd(x1, y, z)− Fd(x2, y, z)|
= |(Fd(x1, y, z)− Fd(x1, y, 0))− (Fd(x2, y, z)− Fd(x2, y, 0))|

=

∣∣∣∣∣∣
1ˆ

0

⟨DzFd(x1, y, θz), z⟩ dθ −
1ˆ

0

⟨DzFd(x2, y, θz), z⟩ dθ

∣∣∣∣∣∣
⩽

1ˆ

0

|DzFd(x1, y, θz)−DzFd(x2, y, θz)| |z|dθ

⩽ Lω(|x1 − x2|) [Ψd(x1, |z|) + Ψd(x2, |z|)] + L|a(x1)− a(x2)|Ha(|z|),

where the last inequality of the last display is implied by (3.6.4)3. This proves
(3.6.9).

In order to simplify the notations in the present section, we use the set of
parameters for a minimizer u of the functional Fd depending on which one
of the assumptions (1.0.13)-(1.0.15) under ωb(·) ≡ 0 comes into play as the
data in this section.
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datad ≡



{
n, λ1, s(G), s(Ha), ν, L, ∥a∥Cωa (Ω) , ω(·), ∥Ψ(x, |Du|)∥L1(Ω) ,

∥u∥L1(Ω) , ωa(1)
}

if (1.0.13) is considered under ωb(·) ≡ 0,{
n, λ2, s(G), s(Ha), ν, L, ∥a∥Cωa (Ω) , ω(·), ∥u∥L∞(Ω) , ωa(1)

}
if (1.0.14) is considered under ωb(·) ≡ 0,{
n, λ3, s(G), s(Ha), ν, L, ∥a∥Cωa (Ω) , ω(·), [u]0,γ, ωa(1)

}
if (1.0.15) is considered under ωb(·) ≡ 0,

(3.6.10)

where λ1, λ2, λ3 are the same as defined in (1.0.13)-(1.0.15) and s(G), s(Ha)
are indices of the functions G,Ha in the sense of Definition 2.1.1, respectively.
With Ω0 ⋐ Ω being a fixed open subset, we also denote by datad(Ω0) the
above set of parameters together with dist(Ω0, ∂Ω):

datad(Ω0) ≡ datad, dist(Ω0, ∂Ω). (3.6.11)

Now we provide the main results in this section, which correspond to
Theorem 3.1.1 and Theorem 3.1.2.

Theorem 3.6.1 (Maximal regularity). Let u ∈ W 1,Ψd(Ω) be a local mini-
mizer of the functional Fd defined in (3.6.1) under the assumptions (3.6.2),
(3.6.4) and (3.1.3) with ωb(·) ≡ 0. Suppose that ωa(ρ) = ρα for some α ∈
(0, 1]. If one of the following assumptions

(1.0.13),

(1.0.14),

(1.0.15) with lim sup
ρ→0+

Λ

(
ρ

1
1−γ ,

1

ρ

)
= 0

(3.6.12a)

(3.6.12b)

(3.6.12c)

is satisfied, then there exists θ ∈ (0, 1) depending only on n, s(G), s(Ha), ν, L, α
and µ such that Du ∈ C0,θ

loc (Ω).

Theorem 3.6.2 (Morrey decay). Let u ∈ W 1,Ψd(Ω) be a local minimizer of
the functional Fd defined in (3.6.1), under the assumptions (3.6.2), (3.6.4)
and (3.1.4). Assume that ωb(·) ≡ 0 in what follows. If one of the following
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assumptions

(1.0.13) with lim sup
ρ→0+

Λ
(
ρ,G−1(ρ−n)

)
= 0,

(1.0.14) with lim sup
ρ→0+

Λ

(
ρ,

1

ρ

)
= 0,

(1.0.15) with lim sup
ρ→0+

Λ

(
ρ

1
1−γ ,

1

ρ

)
= 0,

(1.0.13) with ωa(ρ) = ρα for some α ∈ (0, 1],

(1.0.14) with ωa(ρ) = ρα for some α ∈ (0, 1]

(3.6.13a)

(3.6.13b)

(3.6.13c)

(3.6.13d)

(3.6.13e)

is satisfied, then

u ∈ C0,θ
loc (Ω) for every θ ∈ (0, 1). (3.6.14)

Moreover, for every σ ∈ (0, n), there exists a positive constant c ≡ c(datad(Ω0), σ)
such that the decay estimate

ˆ

Bρ

Ψd(x, |Du|) dx ⩽ c
( ρ
R

)n−σ
ˆ

BR

Ψd(x, |Du|) dx (3.6.15)

holds for every concentric balls Bρ ⊂ BR ⊂ Ω0 ⋐ Ω with R ⩽ 1.

The above theorems completely cover the main results of [22], where the
special case that G(t) = tp, Ha(t) = tq and ωa(ρ) = ρα with some constants
q ⩾ p > 1 and α ∈ (0, 1] is considered. Also the results of [21] can be
considered for a general class of functionals not only for the model functional
in (1.0.4). Let us now briefly overview our arguments employed in proving
the above theorems comparing with the ones used in [21, 22]. We do not
distinguish between the G-phase, where an inequality of the type a(·) ⩽
Mωa(R) is satisfied, and (G,Ha)-phase, where a complementary inequality
a(·) ⩾ Mωa(R) holds in a certain ball BR under consideration for some
suitable large constantM , which has a drawback to deal with the multi-phase
type problems and even double phase type problems that we consider. Instead
we consider the function [Ψd]

−
BR

(·) defined in (3.6.29) for a ball BR ⊂ Ω
under the investigation to obtain various estimates, and the advantage of
considering this function is that [Ψd]

−
BR

∈ N with an index s(Ψd) = s(G) +
s(Ha) by Remark 2.1.2, which is independent of the considered ball BR. Also
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the approach introduced in this chapter may open a gate to study parabolic
double phase equations of type

ut − div

(
G′(|Du|) Du

|Du|
+ a(x, t)H ′

a(|Du|)
Du

|Du|

)
= 0,

which would be one of attracting topics for the regularity theory in the fu-
ture, we refer some recent results on this topic [35, 68]. Essentially, the idea
of the proofs of Theorem 3.6.2 and Theorem 3.6.1 is based on the arguments
previously used for proving Theorem 3.1.2 and Theorem 3.1.1, but the func-
tional Fd in (3.6.1) is much more general than the functional F in (1.0.10) for
the consideration under the double phase settings. In this regard, we need to
take care of some points in more detail depending on the structure assump-
tions (3.6.4), specially Lemma 3.6.3 below. Since u ∈ W 1,Ψd(Ω) is a local
L/ν-minimizer of the functional P defined in (1.0.1) with b(·) ≡ 0 if u is a
minimizer of the functional Fd in (3.6.1), we are able to rewrite the results
together with their proofs under the double phase settings up to the end of
Section 3.2. Starting by Section 3.3, we shall investigate in a different way.

In what follows let BR ≡ BR(x0) be a ball such that B2R ⊂ Ω0 ⋐ Ω,
where Ω0 is some fixed open subset of Ω. We define a functional given by

W 1,1(B2R) ∋ υ 7→ Fd,B2R
(υ) :=

ˆ

B2R

Fd(x, (u)B2R
, Dυ) dx (3.6.16)

with u being a local minimizer of the functional Fd defined in (3.6.1). Now we
consider a function w ∈ u +W 1,Ψd

0 (B2R) being the solution to the following
variational Dirichlet problem:{

w 7→ min
υ

Fd,B2R
(υ)

υ ∈ u+W 1,Ψd
0 (B2R).

(3.6.17)

As in Lemma 3.3.1 we shal consider the first comparison estimates in order
to remove u-dependence in the original functional Fd defined in (3.6.1).

Lemma 3.6.2. Let w ∈ W 1,Ψ(B2R) be the solution to the variational prob-
lem (3.6.17) under the assumptions (3.6.2), (3.6.4) and (3.1.4). Let the co-
efficient function a(·) ∈ Cωa(Ω) for ωa being non-negative, continuous and
concave function vanishing at the origin. Assume that one of the assumptions

136



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

(1.0.13), (1.0.14) and (1.0.15) under ωb(·) ≡ 0 is satisfied. Then there exists
a constant c ≡ c(datad(Ω0)) such that

 

B2R

(
|VG(Du)− VG(Dw)|2 + a(x)|VHa(Du)− VHa(Dw)|2

)
dx

⩽ cω(Rγ)

 

B2R

Ψd(x, |Du|) dx (3.6.18)

holds, where γ ≡ γ(datad(Ω0)) is the Hölder exponent determined via The-
orem 3.2.2 in the double phase settings. Moreover, the following estimates
holds true:  

B2R

Ψd(x, |Dw|) dx ⩽
L

ν

 

B2R

Ψd(x, |Du|) dx, (3.6.19)

∥w∥L∞(B2R) ⩽ ∥u∥L∞(B2R) , (3.6.20)

osc
B2R

w ⩽ osc
B2R

u (3.6.21)

and
 

B2R

Ψd

(
x,

∣∣∣∣u− w

R

∣∣∣∣) dx ⩽ c[ω(Rγ)]
1
2

 

B2R

Ψd(x, |Du|) dx (3.6.22)

for some constant c ≡ c(datad(Ω0)). Moreover, there exist a positive higher
integrability exponent δ0 ≡ δ0(datad) with δ0 ⩽ δ, where δ has been deter-
mined via Theorem 3.2.5 under the double phase settings, and a constant
c ≡ c(datad) satisfying the following reverse Hölder inequalities:  

BR/2

[Ψd(x, |Dw|)]1+δ0 dx


1

1+δ0

⩽ c

 

BR

Ψd(x, |Dw|) dx. (3.6.23)

Here, in the case that (1.0.15) is considered, γ appearing in (3.6.18) and

137



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

(3.6.22) is the same as in the assumption (1.0.15).

Proof. First of all the meaning of datad and datad(Ω0) has been defined
in (3.6.10) and (3.6.11), respectively. The proofs for (3.6.19)-(3.6.22) can be
done by arguing similarly as in the proof Lemma 3.3.1 together with Lemma
3.6.1. Since w is a L/ν-minimizer of the functional Fd,B2R

defined in (3.6.16),
we are able to apply Lemma 3.2.1 under the double phase settings. In turn,
it gives us that

 

BR/2

Ψd(x, |Dw|) dx ⩽ c

 

BR

Ψd

(
x,

∣∣∣∣w − (w)BR

R

∣∣∣∣) dx (3.6.24)

holds with c ≡ c(n, s(G), s(Ha), L, ν). Then applying Theorem 2.4.1, there
exists θ ≡ θ(n, s(G), s(Ha)) ∈ (0, 1) such that

 

BR/2

Ψd (x, |Dw|) dx ⩽ cκ̄sp

 
BR

[Ψd(x, |Dw|)]θ dx

 1
θ

(3.6.25)

holds with some constant c ≡ c(n, s(G), s(Ha), L, ν, ωa(1)), where

κ̄sp =



1 + λ1[a]ωa + λ1[a]ωa

ˆ

BR

G(|Dw|) dx

 1
n

if (1.0.13) with ωb(·) ≡ 0,

1 + λ2[a]ωa + λ2[a]ωa ∥w∥L∞(BR)

if (1.0.14) with ωb(·) ≡ 0,

1 + λ3[a]ωa + λ3[a]ωa

[
R−γ osc

BR

w

] 1
1−γ

if (1.0.15) with ωb(·) ≡ 0.

(3.6.26a)

(3.6.26b)

(3.6.26c)

Furthermore, taking into account (3.6.19)-(3.6.22) in the last display, we
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conclude that

 

BR/2

Ψd(x, |Dw|) dx ⩽ c

 
BR

[Ψd (x, |Dw|)]θ dx

 1
θ

(3.6.27)

holds for some constants θ ≡ θ(n, s(G), s(Ha)) ∈ (0, 1) and c ≡ c(datad). The
last display follows (3.6.23) by applying a variant of Gehring’s lemma.

At this stage, we do not need to consider Lemma 3.3.2 because we shall
freeze x-variable in the non-linearity at once. For this, let us consider the
excess functional given by

Ed(v,Br) :=
(
[Ψd]

−
B2r

)−1

 
Br

[Ψd]
−
B2r

(∣∣∣∣v − (v)Br

2r

∣∣∣∣) dx

 (3.6.28)

for any function v ∈ L1(B2r) and ball B2r ⊂ Ω, where now and in the rest of
this section for every open subset B ⊂ Ω, we shall denote by

[Ψd]
−
B (t) := G(t) + inf

x∈B
a(x)Ha(t) (∀t ⩾ 0), (3.6.29)

and
(
[Ψd]

−
B
)−1

is the inverse function of [Ψd]
−
B . By convexity of the function

[Ψd]
−
B2r

and Lemma 2.1.1, there is a constant c ≡ c(s(G) + s(Ha)) such that

Ed(v,Br) ⩽ c
(
[Ψd]

−
B2r

)−1

 
Br

[Ψd]
−
B2r

(∣∣∣∣v − v0
2r

∣∣∣∣) dx

 (3.6.30)

holds for every v0 ∈ R. Now we consider the estimates corresponding to the
outcome of Lemma 3.3.3 under our double phase settings.

Lemma 3.6.3. Let u ∈ W 1,Ψd(Ω) be a local minimizer of the functional
Fd defined in (3.6.1) under the assumptions (3.6.2), (3.6.4) and (3.1.4). Let
w ∈ W 1,Ψ(B2R) be the solution to the variational problem (3.6.17). Suppose
ωb(·) ≡ 0 in what follows. If one of the assumptions (3.6.13a)-(3.6.13e) is
satisfied, then for every ε∗ ∈ (0, 1), there exists a positive radius

R∗ ≡ R∗(datad(Ω0), ε
∗) (3.6.31)
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such that
 

BτR

[Ψd]
−
BR

(∣∣∣∣w − (w)BτR

τR

∣∣∣∣) dx

⩽ c
(
1 + τ−(n+s(Ψd)+1)ε∗

)  

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx (3.6.32)

for some constant c ≡ c (datad(Ω0)), whenever τ ∈ (0, 1/16) and R ⩽ R∗.

Proof. Again note that the meaning of datad and datad(Ω0) already has
been introduced in (3.6.10)-(3.6.11). We can always assume Ed(w,BR/2) > 0,
otherwise there is nothing to prove in (3.6.32). For the simplicity, we shall
write

Ed(R) := Ed(w,BR/2), (3.6.33)

where the notion Ed has been defined in (3.6.28). The proof falls in several
steps, similarly as we have done in the proof of Lemma 3.3.3. For the sake of
completeness, we provide the proof in a full detail.

Step 1: Initial information on w. Applying Lemma 3.2.2 under the
double phase settings to BR/2 with k ≡ (w)BR/2

, we have

 

BR/4

Ψd (x, |Dw|) dx ⩽ c

 

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx (3.6.34)

for some constant c ≡ c(datad). Moreover, it follows from Lemma 3.6.2 that
there exists a higher integrability exponent δ0 ≡ δ0(datad) such that  

BR/8

[Ψd(x, |Dw|)]1+δ0 dx


1

1+δ0

⩽ c

 

BR/4

Ψd(x, |Dw|) dx (3.6.35)

for a constant c ≡ c(datad).
Step 2: Scaled functions. We consider scaled functions of w(·) and a(·)
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in the ball B1 by setting
w̄(x) :=

w(x0 +Rx)− (w)BR/2

Ed(R)R
,

ā(x) := a(x0 +Rx)
Ha(Ed(R))

[Ψd]
−
BR

(Ed(R))

(3.6.36a)

(3.6.36b)

for every x ∈ B1. Now we introduce the control function and energy density
associated to our scaling introduced above in (3.6.36a)-(3.6.36b) as

Ψ̄d(x, |z|) := Ḡ(|z|) + ā(x)H̄a(|z|),

F̄d(x, z) :=
Fd(x0 +Rx, (u)B2R

, Ed(R)z)

[Ψd]
−
BR

(Ed(R))

and Ād(x, z) := DzF̄d(x, z)

(3.6.37a)

(3.6.37b)

for every x ∈ B1 and z ∈ Rn, where to the end of the proof of this lemma,
we always shall understand by

Ḡ(t) :=
G(E(R)t)

[Ψd]
−
BR

(Ed(R))
and H̄a(t) :=

Ha(E(R)t)

Ha (Ed(R))
(3.6.38)

for every t ⩾ 0. By elementary computations, we can observe that Ḡ, H̄a ∈ N
with indices s(G), s(Ha), respectively, and also that

Ḡ(1) ⩽ 1 and H̄a(1) = 1. (3.6.39)

Clearly, the function w̄ minimizes the following functional

W 1,Ψ̄d(B1) ∋ v 7→
ˆ

B1

F̄d(x,Dv) dx, (3.6.40)

where the functions Ψ̄d(·) and F̄d(·) have been defined in (3.6.37a) and
(3.6.37b), respectively. The Euler-Lagrange equation arising from the func-
tional in (3.6.40) can be written as

 

B1

〈
Ād(x,Dw̄), Dφ

〉
dx =

 

B1

〈
DzF̄d (x,Dw̄) , Dφ

〉
dx = 0 (3.6.41)
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for every φ ∈ W 1,Ψ̄d
0 (B1). By the assumptions (3.6.2) and (3.6.4) via elemen-

tary computations, we have the following structure conditions in the scaled
settings:

νΨ̄d(x, |z|) ⩽ F̄d(x, z) ⩽ LΨ̄d(x, |z|),
|Ād(x, z)||z|+ |DzĀd(x, z)||z|2 ⩽ LΨ̄d(x, |z|),

ν
Ψ̄d(x, |z|)

|z|2
|ξ|2 ⩽

〈
DzĀd(x, z)ξ, ξ

〉
,∣∣Ād(x1, z)− Ād(x2, z)

∣∣ |z|
⩽ Lω(R|x1 − x2|)

[
Ψ̄d(x1, |z|) + Ψ̄d(x2, |z|)

]
+ L|ā(x1)− ā(x2)|H̄a(|z|)

(3.6.42a)

(3.6.42b)

(3.6.42c)

(3.6.42d)

for every x, x1, x2 ∈ B1 and z ∈ Rn \ {0}.
Step 3: Freezing. Now we shall consider frozen functional and vector

field associated to F̄d(·) and Ād(·) defined in (3.6.37b). Let x̄a ∈ B1 such that
ā(x̄a) = inf

x∈B1

ā(x). Then we denote by

F̄0(z) := F̄d(x̄a, z), Ā0(z) := DzF̄d(x̄a, z), (3.6.43)

and

Ψ̄0(t) := Ḡ(t) + ā(x̄a)H̄a(t) (3.6.44)

for every x ∈ B1, z ∈ Rn and t ⩾ 0. Here we single out that here is a difference
between Step 3 of the proof for Lemma 3.3.3 and our present situation. By
the very definition in (3.6.37a) and (3.6.38), one can check

Ψ̄0(1) = 1. (3.6.45)

In our newly scaled environment, let us now consider the functional

W 1,Ψ̄0
(
B1/8

)
∋ v 7→

ˆ

B1/8

F̄0(Dv) dx. (3.6.46)

We observe that the newly defined integrand F̄0(·) and vector field Ā0(·)
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satisfy the growth and ellipticity conditions as
νΨ̄0(|z|) ⩽ F̄0(z) ⩽ LΨ̄0(|z|),
|Ā0(z)||z|+ |DzĀ0(z)||z|2 ⩽ LΨ̄0(|z|),

ν
Ψ̄0(|z|)
|z|2

|ξ|2 ⩽
〈
DzĀ0(z)ξ, ξ

〉
(3.6.47a)

(3.6.47b)

(3.6.47c)

for every z ∈ Rn \ {0} and ξ ∈ Rn. Therefore, the energy and higher in-
tegralibility estimates in (3.6.34) and (3.6.35) can be seen in the view of w̄
as

 

B1/4

Ψ̄d(x, |Dw̄|) dx+

  

B1/8

[Ψ̄d(x, |Dw̄|)]1+δ0 dx


1

1+δ0

⩽ c(datad). (3.6.48)

Step 4: Harmonic type approximation. Let φ ∈ W 1,∞
0

(
B1/8

)
be any

fixed function. Using (3.6.41), we see

I0 :=

∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄)− Ād(x,Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣
⩽

 

B1/8

|Ā0(Dw̄)− Ād(x,Dw̄)| dx ∥Dφ∥L∞(B1/8)
=: I1 ∥Dφ∥L∞(B1/8)

.

(3.6.49)

Now we estimate I1 in the last display using (3.6.42d). In turn, we have

I1 ⩽ Lω(R)

 

B1/8

(
Ψ̄d(x̄a, |Dw̄|)

|Dw̄|
+

Ψ̄d(x, |Dw̄|)
|Dw̄|

)
dx

+ L

 

B1/8

|ā(x)− ā(x̄a)|
H̄a(|Dw̄|)
|Dw̄|

dx

⩽ 2Lω(R)

 

B1/8

Ψ̄d(x̄a, |Dw̄|)
|Dw̄|

dx
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+ 2L(1 + ω(R))

 

B1/8

|ā(x)− ā(x̄a)|
H̄a(|Dw̄|)
|Dw̄|

dx

=: 2Lω(R)I11 + 2L(1 + ω(R))I12. (3.6.50)

Now we estimate the terms appearing in the last display. Recalling (3.6.44)
and (3.6.45) together with (2.1.7), we find

I11 ⩽ c

 

B1/8

Ψ̄′
0(|Dw̄|) dx ⩽ c

[
Ψ̄0(1)

] s(Ψd)

1+s(Ψd)

 

B1/8

[
Ψ̄0(|Dw̄|)

] 1
1+s(Ψd) dx

+ c
[
Ψ̄0(1)

] 1
1+s(Ψd)

 

B1/8

[
Ψ̄0(|Dw̄|)

] s(Ψd)

1+s(Ψd) dx

⩽ c

  

B1/8

Ψ̄0(|Dw̄|) dx


1

1+s(Ψd)

+ c

  

B1/8

Ψ̄0(|Dw̄|) dx


s(Ψd)

1+s(Ψd)

⩽ c(datad), (3.6.51)

where we have applied the Hölder’s inequality together with (3.6.48) and the
fact that Ψ̄0 ∈ N with an index s(Ψd) = s(G) + s(Ha) by Remark 2.1.2.
Next we shall deal with estimating the second term I12 in (3.6.50). In turn,
using (2.1.7) and (3.6.39), we have

I12 ⩽ c

 

B1/8

|ā(x)− ā(x̄a)|
(
[H̄a(|Dw̄|)]

1
s(Ha)+1 + [H̄a(|Dw̄|)]

s(Ha)
s(Ha)+1

)
dx

⩽ c ∥ā− ā(x̄a)∥
s(Ha)

s(Ha)+1

L∞(B1/8)

  

B1/8

ā(x)H̄a(|Dw̄|) dx


1

s(Ha)+1

+ c ∥ā− ā(x̄a)∥
1

s(Ha)+1

L∞(B1/8)

  

B1/8

ā(x)H̄a(|Dw̄|) dx


s(Ha)

s(Ha)+1

⩽ c(datad)

(
∥ā− ā(x̄a)∥

1
s(Ha)+1

L∞(B1/8)
+ ∥ā− ā(x̄a)∥

s(Ha)
s(Ha)+1

L∞(B1/8)

)
, (3.6.52)
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where we have used also Hölder’s inequality and the fact that ā(x̄a) ⩽ ā(x)
for every x ∈ B1. Inserting those estimates coming from the last two displays
into (3.6.50) and then (3.6.49), we find

I0 ⩽ c(datad(Ω0))

×
[
ω(R) + (1 + ω(R))

(
∥ā− ā(x̄a)∥

1
s(Ha)+1

L∞(B1/8)
+ ∥ā− ā(x̄a)∥

s(Ha)
s(Ha)+1

L∞(B1/8)

)]
.

(3.6.53)

Now we shall estimate the term ∥ā− ā(x̄a)∥L∞(B1/8)
depending on which

one of the assumptions (3.6.13a)-(3.6.13e) comes into play. Recalling the
definition of ā(·) in (3.6.36b) and the excess functional in (3.6.33), we have

Ia := ∥ā− ā(x̄a)∥L∞(B1/8)
⩽ cωa(R)

Ha(Ed(R))

[Ψd]
−
BR

(Ed(R))
. (3.6.54)

Case 1: Assumption (3.6.13a) is in force. It follows from the assump-
tion (3.6.13a)2 that for any ε ∈ (0, 1) there exists µ1 > 0 depending on ε
such that

Λ
(
ρ,G−1

(
ρ−n
))

⩽ ε for every ρ ∈ (0, µ1). (3.6.55)

Then using the last display, (1.0.13) and the fact that
(
[Ψd]

−
BR

)−1
(t) ⩽ G−1(t)

for every t ⩾ 0, Ia in (3.6.54) can be estimated as

Ia ⩽ cωa(R)
(Ha ◦G−1)

(
[Ψd]

−
BR

(Ed(R))
)

[Ψd]
−
BR

(Ed(R))

⩽ cωa(R)ε

1 +
1

ωa

([
[Ψd]

−
BR

(Ed(R))
]− 1

n

)
+ cωa(R)

(
1 +

1

ωa (µ1)

)
(3.6.56)

with c ≡ c([a]ωa , λ1). Using (2.1.2) and the energy estimate (3.6.19), we see

1

ωa

([
[Ψd]

−
BR

(Ed(R))
]− 1

n

) ⩽
c

ωa(R)
+

c

ωa(R)

ˆ

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx
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⩽
c

ωa(R)
+

c

ωa(R)

ˆ

B2R

Ψd (x, |Du|) dx ⩽
c(datad)

ωa(R)
.

(3.6.57)

Combining the last two displays, we conclude

Ia ⩽ c

(
ε+ ωa(R)

(
1 +

1

ωa(µ1)

))
(3.6.58)

with some constant c ≡ c(datad). Therefore, inserting the estimates in the
last two displays into (3.6.53) and recalling (3.6.49), we have∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datad)P1(ε, R) ∥Dφ∥L∞(B1/8)
, (3.6.59)

where

P1(ε, R) := ω(R) + (1 + ω(R))

[
ε+ ωa(R)

(
1 +

1

ωa(µ1)

)] 1
s(Ha)+1

+ (1 + ω(R))

[
ε+ ωa(R)

(
1 +

1

ωa(µ1)

)] s(Ha)
s(Ha)+1

(3.6.60)

Case 2: Assumption (3.6.13b) is in force. From the assumption (3.6.13b)2
it holds that for every ε ∈ (0, 1) there exists µ2 > 0 depending on ε such that

Λ

(
ρ,

1

ρ

)
⩽ ε for every ρ ∈ (0, µ2). (3.6.61)

Then by the very definition of [Ψd]
−
BR

in (3.6.29) together with (3.6.61) and
(1.0.14) under ωb ≡ 0, we have

Ia ⩽ cωa(R)
Ha(Ed(R))

G(Ed(R))

⩽ cωa(R)ε

(
1 +

1

ωa ([Ed(R)]−1)

)
+ cωa(R)

(
1 +

1

ωa (µ2)

)
. (3.6.62)
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Again using (2.1.1) together with taking into account (3.6.20), we see

1

ωa ([Ed(R)]−1)
⩽

1

ωa

(
R

2∥w∥L∞(BR)

) ⩽
c(datad)

ωa(R)
. (3.6.63)

Combining the last two displays, we find

Ia ⩽ c

(
ε+ ωa(R)

(
1 +

1

ωa(µ2)

))
(3.6.64)

with some constant c ≡ c(datad). Then, plugging the estimates in the last
two displays into (3.6.53) and recalling (3.6.49), we have∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datad)P2(ε, R) ∥Dφ∥L∞(B1/8)
, (3.6.65)

where

P2(ε, R) := ω(R) + (1 + ω(R))

[
ε+ ωa(R)

(
1 +

1

ωa(µ2)

)] 1
s(Ha)+1

+ (1 + ω(R))

[
ε+ ωa(R)

(
1 +

1

ωa(µ2)

)] s(Ha)
s(Ha)+1

. (3.6.66)

Case 3: Assumption (3.6.13c) is in force. The assumption (3.6.13c)2
implies that for any ε ∈ (0, 1), there exists µ3 > 0 depending on ε such that

Λ

(
ρ

1
1−γ ,

1

ρ

)
⩽ ε for every ρ ∈ (0, µ3). (3.6.67)

This one together with using (3.6.54) and (1.0.15) under ωb(·) ≡ 0 implies

Ia ⩽ cωa(R)
Ha(Ed(R))

G(Ed(R))
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⩽ cωa(R)ε

1 +
1

ωa

(
[Ed(R)]

− 1
1−γ

)
+ cωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)
 .

(3.6.68)

Now using (3.6.21) and (1.0.15), we have

1

ωa

(
[Ed(R)]

− 1
1−γ

) ⩽
1

ωa

([
osc
B2R

u

R

]− 1
1−γ

) ⩽
c(datad)

ωa(R)
. (3.6.69)

Combining the last two displays, we find

Ia ⩽ c

ε+ ωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)

 (3.6.70)

for some constant c ≡ c(datad). Using the estimate (3.6.70) in (3.6.53), we
conclude∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datad)P3(ε, R) ∥Dφ∥L∞(B1/8)
, (3.6.71)

where

P3(ε, R) := ω(R) + (1 + ω(R))

ε+ ωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)



1
s(Ha)+1

+ (1 + ω(R))

ε+ ωa(R)

1 +
1

ωa

(
µ

1
1−γ

3

)



s(Ha)
s(Ha)+1

. (3.6.72)
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Case 4. Assumption (3.6.13d) is in force. Now we take the advantage
that wa(·) is the power function. Recalling Ia denoted in (3.6.54), we see that

Ia ⩽ cRα
(Ha ◦G−1)

(
[Ψd]

−
BR

(Ed(R))
)

[Ψd]
−
BR

(Ed(R))

⩽ cRα

1 +

  

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx


α
n



⩽ cRα + c

 ˆ

BR/2

[Ψd]
−
BR

(|Dw|) dx


α
n

⩽ cRα + cR
αδ0
1+δ0

 ˆ

BR/2

[
[Ψd]

−
BR

(|Dw|)
]1+δ0

dx


α

n(1+δ0)

⩽ c(datad(Ω0))R
αδ0
1+δ0 , (3.6.73)

where we have used the higher integrability estimates (3.2.62) of Theorem
3.2.5 under the double phase settings. Using estimates from the last display
in (3.6.53) and recalling R ⩽ 1, we see∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datad(Ω0))Q1(R) ∥Dφ∥L∞(B1/8)
, (3.6.74)

where

Q1(R) := ω(R) + (1 + ω(R))R
αδ0

(1+δ0)(1+s(Ha)) . (3.6.75)

Case 5: Assumption (3.6.13e) is in force. Using the assumption
(1.0.14) and (3.6.21), Ia in (3.6.54) can be estimated as

Ia ⩽ cRαHa(Ed(R))

G(Ed(R))
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⩽ cRα

1 +

([Ψd]
−
BR

)−1

  

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx




α
⩽ c

(
Rα +

[
osc
B2R

u

]α)
⩽ c(datad(Ω0))R

γα, (3.6.76)

where we have also used (3.2.33) and γ is the Hölder continuity exponent
coming from Theorem 3.2.2 under the double phase settings. Inserting the
estimate from the last display into (3.6.53) and recalling R ⩽ 1, we see∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datad(Ω0))Q2(R) ∥Dφ∥L∞(B1/8)
, (3.6.77)

where

Q2(R) := ω(R) + (1 + ω(R))R
αγ

1+s(Ha) . (3.6.78)

Collecting the estimates obtained in (3.6.59), (3.6.65),(3.6.71), (3.6.74)
and (3.6.77), we conclude with∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ chD(ε, R) ∥Dφ∥L∞(B1/8)
(3.6.79)

for some constant ch ≡ ch(datad(Ω0)) for every φ ∈ W 1,∞
0 (B1/8), where

D(ε, R) :=


P1(ε, R) if (3.6.13a) is assumed,
P2(ε, R) if (3.6.13b) is assumed,
P3(ε, R) if (3.6.13c) is assumed,
Q1(R) if (3.6.13d) is assumed,
Q2(R) if (3.6.13e) is assumed,

(3.6.80)

in which P1, P2, P3, Q1 and Q2 have been defined in (3.6.60), (3.6.66),
(3.6.72), (3.6.75) and (3.6.78), respectively. By (3.6.45), (3.6.47a)-(3.6.47c)
and (3.6.79), we are able to apply Lemma 2.5.1 with A0(z) ≡ Ā0(z), Ψ0(t) ≡
Ψ̄0(t) with a0 ≡ ā(x̄a) and b0 ≡ 0. By Lemma 2.5.1, there exists h̄ ∈
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w̄ +W 1,Ψ̄0

0 (B1/8) such that

 

B1/8

〈
Ā0(Dh̄), Dφ

〉
dx = 0 for all φ ∈ W 1,∞

0 (B1/8), (3.6.81)

 

B1/4

Ψ̄0(|Dh̄|) dx+
 

B1/8

[Ψ̄0(|Dh̄|)]1+δ1 dx ⩽ c for some δ1 ⩽ δ0, (3.6.82)

 

B1/8

(
|VḠ(Dw̄)− VḠ(Dh̄)|2 + ā(x̄a)|VH̄a

(Dw̄)− VH̄a
(Dh̄)|2

)
dx ⩽ c[D(ε, R)]s1

(3.6.83)

and finally

 

B1/8

(
Ḡ
(
|w̄ − h̄|

)
+ ā(x̄a)H̄a

(
|w̄ − h̄|

))
dx ⩽ cd[D(ε, R)]s0 (3.6.84)

with some constants c, cd ≡ c, cd(datad(Ω0)) ⩾ 1 and s0, s1 ≡ s0, s1(datad) ∈
(0, 1), but they are all independent of R. The rest of the proof is similar as
the argument after (3.3.98) of Lemma 3.3.3.

Lemma 3.6.4. Under the assumptions of Lemma 3.6.3, let w ∈ W 1,Ψ(B2R)
be the solution to the problem defined in (3.6.17). If one of the assumptions

(3.6.13a)-(3.6.13e) is satisfied, then there exists h ∈ w+W
1,[Ψd]

−
BR

0 (BR/8) being
a local minimizer of the functional defined by

W 1,1(BR/8) ∋ v 7→ F0(v) :=

ˆ

BR/8

F0(Dv) dx, (3.6.85)

where the integrand function is given by

F0(z) := F (xa, (u)B2R
, z) (3.6.86)

for xa ∈ BR being a point such that a(xa) := a−(BR), whenever z ∈ Rn, such
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that  

BR/8

[
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

]
dx

⩽ c (ω (Rγ) + [D(ε, R)]s1)

 

B2R

Ψd(x, |Du|) dx (3.6.87)

for some constant c ≡ c(datad(Ω0)), where s1 and D(ε, R) have been defined
in (3.6.83) and (3.6.80), respectively. Moreover, we have the energy estimate

 

BR/8

[Ψd]
−
BR

(|Dh|) dx ⩽ c

 

B2R

Ψd(x, |Du|) dx (3.6.88)

for some constant c ≡ c(n, ν, L).

Proof. We need to revisit the proof of Lemma 3.6.3, specially Step 3 and Step

4. We consider a function h̄ ∈ w̄ +W 1,Ψ̄0

0 (B1/8) satisfying (3.6.81)-(3.6.84).
Let h be the scaled back function of h̄ in BR/8 as

h(x) := Ed(w,BR/2)Rh̄

(
x− x0
R

)
for every x ∈ BR/8(x0). (3.6.89)

Clearly, h ∈ w +W
1,[Ψd]

−
BR

0 (BR/8) is a local minimizer of the functional F0

defined in (3.6.85) which means that

F0(h) =

ˆ

BR/8

F0(Dh) dx ⩽
ˆ

BR/8

F0(Dh+Dφ) dx ⩽ F0(h+ φ) (3.6.90)

holds for every φ ∈ W
1,[Ψd]

−
BR

0 (BR/8). As shown in (3.3.9), we recall (3.6.19)
to discover that 

BR/8

[Ψd]
−
BR

(|Dh|) dx ⩽
L

ν

 

BR/8

[Ψd]
−
BR

(|Dw|) dx

⩽
8nL

ν

 

BR

Ψd(x, |Dw|) dx ⩽ c(n, ν, L)

 

B2R

Ψd(x, |Du|) dx, (3.6.91)
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which proves (3.6.88). We write the inequality (3.6.83) in view of G,Ha, w
and h in order to have 

BR/8

[
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

]
dx

⩽ c[D(ε, R)]s1
 

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx

⩽ c[D(ε, R)]s1
 

BR/2

[Ψd]
−
BR

(|Dw|) dx

⩽ c[D(ε, R)]s1
 

BR/2

Ψd (x, |Du|) dx (3.6.92)

for some constant c ≡ c(datad(Ω0)), where we have applied the Sobolev-
Poincaré inequality and (3.6.91). Combining this estimate together with
(3.6.18) via some elementary computations, we directly reach (3.6.87).

We finally finish the present subsection with a crucial decay estimate on
u.

Lemma 3.6.5. Under the assumptions of Lemma 3.6.3, if one of the condi-
tions (3.6.13a)-(3.6.13e) is satisfied, then for every ε∗ ∈ (0, 1), there exists a
positive radius R∗ with the dependence as

R∗ ≡ R∗(datad(Ω0), ε∗) (3.6.93)

such that if R ⩽ R∗, then there exists a constant cG ≡ cG(datad(Ω0)) such
that
ˆ

BτR

[Ψd]
−
BR

(∣∣∣∣u− (u)BτR

τR

∣∣∣∣) dx ⩽ cG
(
τn + τ−(s(Ψd)+1)ε∗

) ˆ
B2R

Ψd(x, |Du|) dx

(3.6.94)

holds for every τ ∈ (0, 1/32).

Proof. For the proof, we apply Lemma 3.6.3 with ε∗ ∈ (0, 1) to be determined
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in a few lines, and we can use (3.6.32) provided

R ⩽ R∗ ≡ R∗(datad(Ω0), ε
∗)

is found via (3.6.31). For every τ ∈ (0, 1/32) with some elementary manipu-
lations, we see that

 

BτR

[Ψd]
−
BR

(∣∣∣∣u− (u)BτR

τR

∣∣∣∣) dx ⩽ c

 

BτR

[Ψd]
−
BR

(∣∣∣∣u− (w)BτR

τR

∣∣∣∣) dx

⩽ c

 

BτR

[Ψd]
−
BR

(∣∣∣∣w − (w)BτR

τR

∣∣∣∣) dx+ cτ−(n+s(Ψd)+1)

 

BR

[Ψd]
−
BR

(∣∣∣∣u− w

R

∣∣∣∣) dx

⩽ c
(
1 + τ−(n+s(Ψd)+1)ε∗

)  

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx

+ cτ−(n+s(Ψd)+1)

 

BR

[Ψd]
−
BR

(∣∣∣∣u− w

R

∣∣∣∣) dx

⩽ c
(
1 + τ−(n+s(Ψd)+1)ε∗

)  
BR

[Ψd]
−
BR

(|Dw|) dx

+ cτ−(n+s(Ψd)+1)

 

BR

[Ψd]
−
BR

(∣∣∣∣u− w

R

∣∣∣∣) dx (3.6.95)

with some constant c ≡ c(datad(Ω0)), where throughout the last display we
repeatedly used (2.1.6) and (3.3.36). The last display and (3.6.22) along with
some elementary manipulations yield

ˆ

BτR

[Ψd]
−
BR

(∣∣∣∣u− (u)BτR

τR

∣∣∣∣) dx

⩽ c
(
τn + τ−(s(Ψd)+1)ε∗ + τ−(s(Ψd)+1)[ω(Rγ)]

1
2

) ˆ

B2R

Ψd(x, |Du|) dx

for every τ ∈ (0, 1/16) and some c ≡ c(datad(Ω0)). Then we choose ε∗ ≡ ε∗/2

and R∗ ⩽ R∗ in such a way that [ω(Rγ
∗)]

1
2 ⩽ ε∗/2. This choice gives us the

dependence as described in (3.6.93) and yields (3.6.94).
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We have now discovered all the necessary tools. They are Lemma 3.6.2,
Lemma 3.6.3 and Lemma 3.6.5 in the double phase settings for proving The-
orem 3.6.1 and Theorem 3.6.2. Applying those lemmas with arguing in a
similar manner as in the proofs of Theorem 3.1.2 and Theorem 3.1.1, we
are able to prove Theorem 3.6.1 and Theorem 3.6.2. For the sake of the
completeness, we provide a sketch of the proofs.

Proof of Theorem 3.6.2. The proof of Theorem 3.6.2 can be done
similarly as for the proof of Theorem 3.1.2. We just combine Lemma 3.2.3
under the double phase settings and Lemma 3.6.5, as we already have done
in (3.4.1)-(3.4.27).

Lemma 3.6.6. Under the assumptions and notations of Lemma 3.6.3 and
Lemma 3.6.4, let w ∈ W 1,Ψd(BR) be the function defined in (3.6.17). Suppose
that (3.6.13c) is satisfied for ωa(t) = tα with some α ∈ (0, 1]. Then there

exists a function h ∈ w + W
1,[Ψd]

−
BR

0 (BR/8) being a local minimizer of the
functional F0 defined in (3.6.85) such that

 

BR/8

[
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

]
dx

⩽ c
(
ω (Rγ) +

[
ω(R) + (1 + ω(R))R

α
2(1+s(Ha)

]s1)  

B2R

Ψd(x, |Du|) dx

(3.6.96)

for some constant c ≡ c(datad(Ω0)) and s1 ≡ s1(datad), respectively. More-
over, the energy estimate

 

BR/8

[Ψd]
−
BR

(|Dh|) dx ⩽ c

 

B2R

Ψd(x, |Du|) dx (3.6.97)

holds for some constant c ≡ c(n, ν, L).

Proof. First we apply Theorem 3.6.2 in order to obtain that, for every θ ∈
(0, 1) and every open subset Ω0 ⋐ Ω, there exists a constant c ≡ c(datad(Ω0), θ)
such that

[u]0,θ;Ω0 ⩽ c(datad(Ω0), θ). (3.6.98)
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In particular, we choose θ ≡ (γ + 1)/2. By revisiting the proof of Lemma
3.6.3, we shall estimate the term Ia introduced in (3.6.54). Using (1.0.15) and
(3.6.21), we have

Ia ⩽ cRα

1 +

([Ψd]
−
BR

)−1

  

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx




α
1−γ


⩽ c

(
Rα +R− αγ

1−γ

[
osc
B2R

u

] α
1−γ

)
⩽ c(datad(Ω0))R

α/2, (3.6.99)

where we have used (3.6.98) with the choice of θ ≡ (1 + γ)/2 and B2R ⊂ Ω0

with R ⩽ 1. Plugging this estimate in (3.6.53), we find∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datad(Ω0))Q3(R) ∥Dφ∥L∞(B1/8)
, (3.6.100)

where

Q3(R) := ω(R) + (1 + ω(R))R
α

2(1+s(Ha) , (3.6.101)

where the vector field Ā0 has been defined in (3.6.43). We consider a func-

tion h̄ ∈ w̄ +W 1,Ψ̄0

0 (B1/8) satisfying (3.6.81)-(3.6.84) with the term D(ε, R)
replaced by Q3(R) defined above. Let h be the scaled back function of h̄ in
BR/8 as

h(x) := Ed(w,BR/2)Rh̄

(
x− x0
R

)
for every x ∈ BR/8(x0). (3.6.102)

Clearly, h ∈ w +W
1,[Ψd]

−
BR

0 (BR/8) is a local minimizer of the functional F0

defined in (3.6.85) which means that

F0(h) =

ˆ

BR/8

F0(Dh) dx ⩽
ˆ

BR/8

F0(Dh+Dφ) dx ⩽ F0(h+ φ) (3.6.103)

holds for every φ ∈ W
1,[Ψd]

−
BR

0 (BR/8). Arguing similarly as in the proof of
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Lemma 3.6.2 together with recalling (3.6.19), we see

 

BR/8

[Ψd]
−
BR

(|Dh|) dx ⩽
L

ν

 

BR/8

[Ψd]
−
BR

(|Dw|) dx

⩽
8nL

ν

 

BR

Ψd(x, |Dw|) dx

⩽ c(n, ν, L)

 

B2R

Ψd(x, |Du|) dx, (3.6.104)

which proves (3.6.97). We write the inequality (3.6.83) in view of G,Ha, w
and h in order to have 

BR/8

[
|VG(Dw)− VG(Dh)|2 + a(xa)|VHa(Dw)− VHa(Dh)|2

]
dx

⩽ c[Q3(R)]
s1

 

BR/2

[Ψd]
−
BR

(∣∣∣∣w − (w)BR/2

R

∣∣∣∣) dx

⩽ c[Q3(R)]
s1

 

BR/2

[Ψd]
−
BR

(|Dw|) dx

⩽ c[Q3(R)]
s1

 

B2R

Ψd (x, |Du|) dx (3.6.105)

for some constant c ≡ c(datad(Ω0)), where we have applied the Sobolev-
Poincaré inequality and (3.6.91). Combining this estimate together with
(3.6.18) via some elementary computations implies (3.6.96).

Proof of Theorem 3.6.1. It follows from Theorem 3.6.2 and a standard
covering argument that, for every open subset Ω0 ⋐ Ω and any number k > 0,
there exists a constant c ≡ c(datad(Ω0), k) such that

 

B2R

Ψd(x, |Du|) dx ⩽ cR−k (3.6.106)

for every B2R ⊂ Ω0 with R ⩽ 1. Now we fix an open subset Ω0 ⋐ Ω and
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a ball B2R ≡ B2R(x0) ⊂ Ω0 with R ⩽ 1. Then applying Lemma 3.6.4 and
Lemma 3.6.6,

 

BR/8

(
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

)
dx

⩽ c (Rµγ + [Q(R)]s1)

 

B2R

Ψd(x, |Du|) dx (3.6.107)

for some constant c ≡ c(datad(Ω0)) and s1 ≡ s1(datad), where

Q(R) :=


Rµ + (1 +Rµ)R

αδ0
(1+δ0)(1+s(Ha)) if (3.6.12a) is assumed,

Rµ + (1 +Rµ)R
αγ

1+s(Ha) if (3.6.12b) is assumed,

Rµ + (1 +Rµ)R
α

2(1+s(Ha)) if (3.6.12c) is assumed,

(3.6.108)

in which γ is the Hölder continuity exponent determined via Theorem 3.2.2
under the double phase settings and δ0 is the higher integrability exponent
coming from Lemma 3.6.2. Denoting by

d ≡ d(datad(Ω0)) :=



min

{
µγ, s1µ,

αδ0s1
(1 + δ0)(1 + s(Ha))

}
if (3.6.12a) is assumed,

min

{
µγ, s1µ,

αγs1
1 + s(Ha)

}
if (3.6.12b) is assumed,

min

{
µγ, s1µ,

αs1
2(1 + s(Ha))

}
if (3.6.12c) is assumed,

(3.6.109)

and choosing k ≡ d/4 in (3.6.106), the inequality (3.6.107) can be written as

 

BR/8

(
|VG(Du)− VG(Dh)|2 + a(xa)|VHa(Du)− VHa(Dh)|2

)
dx ⩽ cR3d/4

(3.6.110)

for some constant c ≡ c(datad(Ω0)), where we again recall that the function
h has been defined via Lemma 3.6.4 and Lemma 3.6.6. Recalling (3.6.88) and
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(3.6.97), we have the energy estimate

 

BR/8

[Ψd]
−
BR

(|Dh|) dx ⩽ c

 

B2R

Ψd(x, |Du|) dx (3.6.111)

with a constant c ≡ c(n, ν, L). Once we arrive at this stage, the rest of the
proof can be done in the same way as argued in the proof of Theorem 3.1.1.
The proof is complete.

3.7 Regularity results under additional inte-

grability

We turn our attention to studying properties of a local Q-minimizer of the
functional P defined in (1.0.1) under some additional Lebesgue integrability
assumption. We shall consider a local Q-minimizer u of the functional P
under the following assumptions:u ∈ W 1,Ψ(Ω) ∩ Lκ(Ω) (κ ⩾ 1)

λ4(κ) := sup
ρ>0

Λ

(
ρ

κ
n+κ ,

1

ρ

)
<∞,

(3.7.1)

where the function Λ : (0,∞)× (0,∞) → (0,∞) has been defined in (1.0.12)
together with ωa, ωb : [0,∞) → [0,∞) being continuous and concave func-
tions vanishing at the origin such that a(·) ∈ C0,ωa(Ω) and b(·) ∈ C0,ωb(Ω). To
see the meaning of the assumption (3.7.1)2, let us consider the standard dou-
ble phase that G(t) = tp, Ha(t) = tq and ωa(ρ) = ρα, b(·) ≡ 0 for 1 < p ⩽ q
and α ∈ (0, 1]. Under these standard double phase settings, the assumption
(3.7.1)2 is equivalent to the following one:

q ⩽ p+
ακ

n+ κ
. (3.7.2)

A local Q-minimizer u ∈ W 1,Ψ(Ω) implies that u ∈ W 1,p(Ω). It is clearly
interesting point that p < n, otherwise we can prove u ∈ L∞

loc(Ω) by using
Morrey-Embedding properties for p > n and using a higher integrability for
p = n. Then, for 1 < p < n, applying Sobolev embedding properties, one

can see that u ∈ L
np
n−p

loc (Ω). Choosing κ ≡ np

n− p
, the condition (3.7.2) is
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equivalent to the following one

q ⩽ p+
αp

n
,

which generates the same condition as (1.0.6a), as we have discussed in the

introduction part. Now if κ >
np

n− p
, then we would have

q ⩽ p+
αp

n
< p+

ακ

n+ κ
,

which tells us the possible range of q is larger than the one in (1.0.6a).
Considering a local Q-minima of the functional P under the assumption
(3.7.1) , we shall show that u ∈ L∞

loc(Ω). To do this, we start by proving a
Sobolev-Poincaré inequality under the assumption (3.7.1)2.

Theorem 3.7.1. Let v ∈ W 1,Ψ(BR) ∩ Lκ(BR) for a ball BR ⊂ Ω with

R ⩽ 1 under the assumption (3.7.1)2. Then, for any d ∈
[
1,

n(n+ κ)

n(n+ κ)− κ

)
,

there exist constants θ ≡ θ(n, s(G), s(Ha), s(Hb), κ, d) ∈ (0, 1) and c ≡
c(n, s(G), s(Ha), s(Hb), ωa(1), ωb(1), κ, d) such that the following Sobolev-Poincaré-
type inequality holds: 

BR

[
Ψ

(
x,

∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

⩽ cλsp

 
BR

[Ψ(x, |Dv|)]θ dx

 1
θ

, (3.7.3)

where

λsp = 1 + ([a]ωa + [b]ωb
)

λ4(κ) + λ4(κ)

ˆ

BR

|v|κ dx

 1
n+κ

 (3.7.4)

Moreover, the above estimate (3.7.3) is still valid with v− (v)BR
replaced

by v if v ∈ W 1,Ψ
0 (BR) ∩ Lκ(BR).

Proof. Note that the above theorem covers [123, Theorem 3.1], which is a
special case when G(t) = tp, H(t) = tq, ωa(ρ) = ρα and ωb(·) ≡ 0 for
some constants 1 < p ⩽ q and α ∈ (0, 1]. Also our proof is much more
elementary comparing with the approach used there. Using the continuity
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of the coefficient functions a(·) and b(·) and arguing in the same way as in
(2.4.6), we find

I :=

 

BR

[
Ψ

(
x,

∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

⩽ 6[a]ωaωa(R)

 

BR

[
Ha

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

+ 6[b]ωb
ωb(R)

 

BR

[
Hb

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

+ 3

 

BR

[
Ψ−

BR

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

=: 6[a]ωaI1 + 6[b]ωb
I2 + 3I3. (3.7.5)

We now shall deal with estimating the terms Ii with i ∈ 1, 2, 3 in (3.7.5)
using the additional a priori assumption u ∈ Lκ(BR) under (3.7.1)2. In turn,
using (2.1.2) and the assumption (3.7.1)2, we see

I1 = ωa(R)

 

BR

Ha

(∣∣∣v−(v)BR

R

∣∣∣)
G
(∣∣∣v−(v)BR

R

∣∣∣) G
(∣∣∣∣v − (v)BR

R

∣∣∣∣)
d

dx


1
d

⩽ λ4(κ)ωa(R)

 

BR

1 +

[
ωa

((∣∣∣∣v − (v)BR

R

∣∣∣∣)− κ
n+κ

)]−1


G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
) 1

d

⩽ λ4(κ)ωa(R)

 

BR

[(
1 +

[
1

ωa(R)
+

R

ωa(R)

∣∣∣∣v − (v)BR

R

∣∣∣∣ κ
n+κ

])
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G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
) 1

d

⩽ c∗λ4(κ)

 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

+ c∗λ4(κ)R
n

n+κ

 

BR

|v − (v)BR
|

dκ
n+κ

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

for the constant c∗ = 2(1 + ωa(1)). Using Hölder’s inequality with conjugate

exponents

(
n+ κ

d
,

n+ κ

n+ κ− d

)
, we have

R
n

n+κ

 

BR

|v − (v)BR
|

dκ
n+κ

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

⩽ R
n

n+κ

 

BR

|v − (v)BR
|κ dx

 1
n+κ
 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]
(n+κ)d
n+κ−d

dx

n+κ−d
(n+κ)d

⩽ c

ˆ

BR

|v|κ dx

 1
n+κ
 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]
(n+κ)d
n+κ−d

dx

n+κ−d
(n+κ)d

for some constant c ≡ c(n). Combining the last two displays and arguing
similarly for I2, we discover

I1 + I2 ⩽

cλ4(κ)

 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]d dx
 1

d

+ cλ4(κ)

ˆ

BR

|v|κ dx

 1
n+κ
 

BR

[
G

(∣∣∣∣v − (v)BR

R

∣∣∣∣)]
(n+κ)d
n+κ−d

dx

n+κ−d
(n+κ)d
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for some constant c ≡ c(n, ωa(1), ωb(1)). Now we apply Lemma 2.4.1 to Φ ≡
G with d0 ≡ d and d0 ≡ n+ κ− d

(n+ κ)d
in order to have an exponent θ1 ≡

θ1(n, s(G), κ, d) ∈ (0, 1) such that

I1 + I2 ⩽ c

λ4(κ) + λ4(κ)

ˆ

BR

|v|κ dx

 1
n+κ


 

BR

[G (|Dv|)]θ1 dx

 1
θ1

(3.7.6)

holds for some constant c ≡ c(n, s(G), ωa(1), ωb(1), κ, d). On the other hand,
since Ψ−

BR
∈ N with an index s(Ψ) = s(G)+s(Ha)+s(Hb) by Remark 2.1.2,

we are able to apply Lemma 2.4.1 with Φ ≡ Ψ−
BR

for d0 ≡ d. In turn, there
exists θ2 ≡ θ2(n, s(Ψ), d) such that

I3 ⩽ c

 
BR

[
Ψ−

BR
(|Dv|)

]θ2 dx
 1

θ2

(3.7.7)

with some constant c ≡ c(n, s(Ψ), d). Taking into account the estimates
obtained in (3.7.6)-(3.7.7) into (3.7.5), recalling the very definition of Ψ−

BR

in (2.1.3) and setting θ := max{θ1, θ2}, we arrive at (3.7.3). The proof is
finished.

Remark 3.7.1. We here remark that choosing d ≡ 1 in a Sobolev-Poincaré
type inequality of Theorem 3.7.1, we see that there exists an exponent θ ≡
θ(n, s(G), s(Ha), s(Hb), κ) such that

 

BR

Ψ

(
x,

∣∣∣∣v − (v)BR

R

∣∣∣∣) dx ⩽ cλsp

 
BR

[Ψ(x, |Dv|)]θ dx

 1
θ

(3.7.8)

holds for some constant c ≡ c(n, s(G), s(Ha), s(Hb), ωa(1), ωb(1), κ), where
λsp is the one same as in (3.7.4).

Remark 3.7.2. With u ∈ W 1,Ψ(Ω) being a local Q-minimizer of the functional
P , we here point out that it is also possible to suppose a priori u ∈ WΦ(Ω)
for some Young function Φ. In this case, discovering a relevant assumption
like (3.7.1)2 would be an interesting point to find how it is connected to
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Embedding properties in Orlicz-Sobolev spaces [51, 52, 53] likewise we have
discussed above in Lebesgue settings. Moreover, proving various regularity
results under a new relevant condition may generate a different phenomenon
even for a Lavrentiev gap. We can also a priori assume that local Q-minima
belong to certain Campanato, BMO, VMO, or some other spaces. Under all
those a priori assumptions, it should be necessary to discover out the relevant
optimal conditions under which various regularity results are obtainable.

For a local Q-minimizer u of the functional P under the assumption
(3.7.1), the data of the problem is understood by the following set of param-
eters:

datai ≡ {n, λ4(κ), κ, s(G), s(Ha), s(Hb), ωa(1), ωb(1), ∥u∥Lκ(Ω) , Q}. (3.7.9)

As usual, for any open subset Ω0 ⋐ Ω, we denote by datai(Ω0) the set of pa-
rameters defined above together with dist(Ω0, ∂Ω). Now we focus on showing
local boundedness estimates of a local Q-minimizer u of the functional P in
(1.0.1) under the assumption (3.7.1).

Theorem 3.7.2. Let u ∈ W 1,Ψ(Ω) be a local Q-minimizer of the functional
P in (1.0.1) under the assumption (3.7.1). Then there exists a constant c ≡
c(datai) such that∥∥∥∥Ψ−

BR

(∣∣∣∣(u− (u)BR
)±

R

∣∣∣∣)∥∥∥∥
L∞(BR/2)

⩽ c

 

BR

Ψ

(
x,

∣∣∣∣(u− (u)BR
)±

R

∣∣∣∣) dx

(3.7.10)

and

Ψ−
BR

(∣∣∣∣u(x1)− u(x2)

R

∣∣∣∣) ⩽ c

 

BR

Ψ(x, |Du|) dx for a.e x1, x2 ∈ BR/2,

(3.7.11)

whenever BR ≡ BR(x0) ⊂ Ω is a ball with R ⩽ 1. In particular, u ∈ L∞
loc(Ω).

Proof. The meaning of datai under the assumption (3.7.1), already has been
introduced in (3.7.9). As in the proof of Theorem 3.2.1, we consider the
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following scaled functions as:

ū(x) :=
u(x0 +Rx)− (u)BR

R
, ā(x) := a(x0 +Rx), b̄(x) := b(x0 +Rx),

Ψ̄(x, t) := G(t) + ā(x)H(t) + b̄(x)H(t),

Ā(k, s) := Bs(0) ∩ {ū > k} and B̄(k, s) := Bs(0) ∩ {ū < k} (3.7.12)

for every x ∈ B1(0), t ⩾ 0, s ∈ (0, 1) and k ∈ R. The remaining part of the
proof consists of 3 steps as in the proof of Theorem 3.2.1.

Step 1: Sobolev-Poincaré under the scaling in (3.7.12). In this step,
we prove that there exists a positive exponent θ ≡ θ(n, s(G), s(Ha), s(Hb), κ) ∈
(0, 1) such that

ˆ

B1

Ψ̄(x, |f |) dx ⩽ ck̄sp

ˆ
B1

[Ψ̄(x, |Df |)]θ dx

 1
θ

(3.7.13)

for some constant c ≡ c(n, s(G), s(Ha), s(Hb), ωa(1), ωb(1), κ), whenever f ∈
W 1,Ψ̄

0 (B1) ∩ Lκ(B1), where

κ̄sp = 1 + ([a]ωa + [b]ωb
)

λ1 + λ1R

ˆ
B1

|f |κ dx

 1
n+κ

 .

Using the continuity properties of ā(·) and b̄(·), we see

I : =

ˆ

B1

Ψ̄(x, |f |) dx

⩽ 2[a]ωaωa(R)

ˆ

B1

Ha(|f |) dx+ 2[b]ωb
ωb(R)

ˆ

B1

Hb(|f |) dx+
ˆ

B1

Ψ̄−
B1
(|f |) dx

=: 2[a]ωaI1 + 2[b]ωb
I2 + I3,

where

Ψ̄−
B1
(t) := G(t) + inf

x∈B1

ā(x)Ha(t) + inf
x∈B1

b̄(x)Hb(t) for every t ⩾ 0.
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Now we estimate the terms Ii for i ∈ {1, 2, 3} similarly as in the proof of
Theorem 3.7.1. In turn, using the assumption (3.7.1)2 and (2.1.2), we have

I1 = ωa(R)

ˆ

B1

Ha(|f |)
G(|f |)

G(|f |) dx

⩽ λ4(κ)ωa(R)

ˆ

B1

(
1 +

[
ωa

(
|f |−

κ
n+κ

)]−1
)
G (|f |) dx

⩽ λ4(κ)ωa(R)

ˆ

B1

(
1 +

[
1

ωa(R)
+

R

ωa(R)
|f |

κ
n+κ

])
G (|f |) dx

⩽ λ4(κ)(1 + ωa(1))

ˆ

B1

G (|f |) dx+ 2λ4(κ)R

ˆ

B1

|f |
κ

n+κG (|f |) dx.

Arguing in the same way, we have

I2 ⩽ λ4(κ)(1 + ωb(1))

ˆ

B1

G (|f |) dx+ 2λ4(κ)R

ˆ

B1

|f |
κ

n+κG (|f |) dx.

Then the inequality (3.7.13) follows from the arguments used in the proof of
Theorem 3.7.1 and Lemma 2.4.1.

Step 2. Proof of (3.7.10). Since u− (u)BR
is a local Q-minimizer of the

functional P in (1.0.1), using a Caccioppoli inequality of Lemma 3.2.1, one
can see that

ˆ

Bt

Ψ̄(x, |D(ū− k)±|) dx ⩽ c

ˆ

Bs

Ψ̄

(
x,

(ū− k)±
s− t

)
dx (3.7.14)

holds for some constant c ≡ c(s(G), s(Ha), s(Hb), Q), whenever 0 < t < s ⩽ 1
and k ∈ R. Let us now consider the concentric balls Bρ ⋐ Bt ⋐ Bs with
1/2 ⩽ ρ < s ⩽ 1 and t := (ρ + s)/2. Let η ∈ C∞

0 (Bt) be a standard cut-off

function such that χBρ ⩽ η ⩽ χBt and |Dη| ⩽ 2

t− ρ
=

4

s− ρ
. Now we apply

inequality (3.7.13) from Step 1 above in order to have a positive exponent
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θ ≡ θ(n, s(G), s(Ha), s(Hb), κ) such that

ˆ

Ā(k,ρ)

Ψ̄(x, ū− k) dx ⩽
ˆ

B1

Ψ̄(x, η(ū− k)+) dx

⩽ ck̄sp

ˆ
B1

[Ψ̄(x, |D(η(ū− k)+)|)]θ dx

 1
θ

for some constant c ≡ c(n, s(G), s(Ha), s(Hb), ωa(1), ωb(1), κ), where

κ̄sp = 1 + ([a]ωa + [b]ωb
)

λ4(κ) + λ4(κ)R

ˆ
B1

[η(ū− k)+)]
κ dx

 1
n+κ

 .

By recalling the definition of ū in (3.7.12), we have

κ̄sp ⩽ c

1 +R

 

BR

∣∣∣∣u− (u)BR

R

∣∣∣∣κ dx
 1

n+κ

 ⩽ c

1 +
ˆ

BR

|u|κ dx

 1
n+κ


with a constant c ≡ c(n, λ4(κ), [a]ωa + [b]ωb

). Once we arrive at this stage the
rest of the proof can be proceed in the same way as in the proof of Theorem
3.2.1.

Theorem 3.7.3. Let u ∈ W 1,Ψ(Ω) be a local Q-minimizer of the func-
tional P defined in (1.0.1) under the coefficient functions a(·) ∈ Cωa(Ω) and
b(·) ∈ Cωb(Ω) for ωa, ωb being non-negative concave functions vanishing at
the origin. If the assumption (3.7.1) is satisfied, then for for every open subset
Ω0 ⋐ Ω, there exists a Hölder continuity exponent γ ≡ γ(datai(Ω0)) ∈ (0, 1)
such that

∥u∥L∞(Ω0)
+ [u]0,γ;Ω0 ⩽ c(datai(Ω0)) (3.7.15)

and the oscillation estimate

osc
Bρ

u ⩽ c
( ρ
R

)γ
osc
BR

u (3.7.16)
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holds for some c ≡ c(datai(Ω0)) and all concentric balls Bρ ⋐ BR ⋐ Ω0 ⋐ Ω
with R ⩽ 1.

Proof. First let us observe that, for every t ⩾ 1, we have

ωa(t)

1 + ωa(t)

1 + ωa

(
t

κ
n+κ

)
ωa

(
t

κ
n+κ

) ⩽ 1 +
ωa(t)

ωa

(
t

κ
n+κ

)
+ ωa(t)ωa

(
t

κ
n+κ

)
⩽ 1 +

1

ωa

(
t

κ
n+κ

) ⩽ 1 +
1

ωa(1)
.

This same inequality holds true also for ωb. Therefore, for every t ⩾ 1, we
see that

Λ

(
t,
1

t

)
⩽ λ4(κ)

 ωa(t)

1 + ωa(t)

1 + ωa

(
t

κ
n+κ

)
ωa

(
t

κ
n+κ

) +
ωb(t)

1 + ωb(t)

1 + ωb

(
t

κ
n+κ

)
ωb

(
t

κ
n+κ

)


⩽ λ4(κ)

(
1 +

1

ωa(1)
+

1

ωb(1)

)
=: λ2,

where we have used the assumption (3.7.1)2. On the other hand, recalling
that the functions ωa and ωb are increasing, we have

Λ

(
t,
1

t

)
⩽ Λ

(
t

κ
n+κ ,

1

t

)
⩽ λ4(κ) ⩽ λ2

for every t ∈ (0, 1]. Recalling that u ∈ L∞
loc(Ω) by Theorem 3.7.2 and taking

into account the last two displays, we are able to apply Theorem 3.2.2 in
order to have (3.7.15) and (3.7.16).

Remark 3.7.3. As a consequence of the last two theorems like we have that
if u ∈ W 1,Ψ(Ω) is a local Q-minimizer of the functional P under the as-
sumption (3.7.1), then u ∈ L∞

loc(Ω) and (1.0.14) is satisfied. Therefore, the
results of Theorem 3.1.1, Theorem 3.1.2, Theorem 3.6.1 and Theorem 3.6.2
are still available under the assumption (3.7.1). Furthermore, the results of
the present section can be considered under multi-phase settings, as we have
pointed out in Remark 3.1.1.
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Chapter 4

Calderón-Zygmund theory for
Orlicz phase problems

4.1 Hypotheses and Main results

In this chapter we investigate the local Calderón-Zygmund type estimates
for distributional solutions to the equation of the divergence form

divA(x,Du) = divB(x, F ) in Ω (4.1.1)

for a bounded open subset Ω ⊂ Rn with n ⩾ 2, where the vector field
A : Ω × Rn → Rn is continuous, differentiable with respect to the second
variable z ∈ Rn \ {0}, and satisfies the following structural conditions with
fixed constants 0 < ν ⩽ L <∞:

|A(x, z)|+ |DzA(x, z)||z| ⩽ L
Ψ(x, |z|)

|z|
,

ν
Ψ(x, |z|)

|z|2
|ξ|2 ⩽ ⟨DzA(x, z)ξ, ξ⟩ ,

|A(x1, z)− A(x2, z)||z| ⩽ L |Ψ(x1, |z|)−Ψ(x2, |z|)| ,

(4.1.2)

whenever z ∈ Rn \ {0}, ξ ∈ Rn, x, x1, x2 ∈ Ω. On the right-hand side of the
equation (4.1.1), we have that B : Ω × Rn → Rn is a Caratheodory vector
field satisfying

|z||B(x, z)| ⩽ LΨ(x, |z|) (x ∈ Ω, z ∈ Rn). (4.1.3)
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In the structure assumptions (4.1.2), (4.1.3) and the rest of the chapter we
shall always use the notation Ψ is the same one as in (1.0.2) forG,Ha, Hb ∈ N
in the sense of Definition 2.1.1 and the coefficient function initially 0 ⩽
a(·), b(·) ∈ L∞(Ω). As a consequence of (4.1.2)2, there exists a constant
c ≡ c(n, s(G), s(Ha), s(Hb), ν, L) such that

|VΨ(x, z1)− VΨ(x, z2)|2 ⩽ c ⟨A(x, z1)− A(x, z2), z1 − z2⟩ . (4.1.4)

for all x ∈ Ω and z1, z2 ∈ Rn \{0}, where the vector field VΨ has been defined
in (2.1.8).

A primary model in mind of the equation (4.1.1) is of the form

div

(
∂tΨ(x, |Du|) Du

|Du|

)
= div

(
∂tΨ(x, |F |) F

|F |

)
in Ω, (4.1.5)

which is the Euler-Lagrange equation of the following functional

W 1,1(Ω) ∋ v 7→ P(v,Ω)−
ˆ

Ω

〈
∂tΨ(x, |F |) F

|F |
, Dv

〉
dx, (4.1.6)

where the Orlicz double phase functional P is given as in (1.0.1). The main
purpose of the present chapter is to discover and develop optimal conditions
on both nonlinearity A(x, z) and the coefficient functions a(·) and b(·), not
necessarily Hölder continuous, under which for any distributional solution u ∈
W 1,Ψ(Ω) to (1.0.29) the following local Calderón-Zygmund type implication

Ψ(x, |F |) ∈ LΥ
loc(Ω) =⇒ Ψ(x, |Du|) ∈ LΥ

loc(Ω) (4.1.7)

holds for every Υ ∈ N . Throughout the chapter, we shall always assume that

0 ⩽ a(·) ∈ Cωa(Ω) and 0 ⩽ b(·) ∈ Cωb(Ω) (4.1.8)

for some continuous and concave functions ωa, ωb : [0,∞) → [0,∞) with
ωa(0) = ωb(0) = 0. Then we shall consider a distributional solution u ∈
W 1,Ψ(Ω) to the equation (4.1.1) under one of the following main assumptions:u ∈ W 1,Ψ(Ω),

λ1 := sup
ρ>0

Λ
(
ρ,G−1

(
ρ−n
))
<∞ (4.1.9)
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andu ∈ W 1,Ψ(Ω) ∩ L∞(Ω),

λ2 := sup
ρ>0

Λ

(
ρ,

1

ρ

)
<∞,

(4.1.10)

where Λ : (0,∞)× (0,∞) → (0,∞) is the same map introduced in (1.0.12).
For the sake of convenience, we use a set of parameters for a distributional
solution u ∈ W 1,Ψ(Ω) to (4.1.1), which is “basic data of the problem” as
follows:

datad ≡



{
n, λ1, s(G), s(Ha), ν, L, ∥a∥Cωa (Ω) , ωa(·),

∥Ψ(x, |Du|)∥L1(Ω) , ∥u∥L1(Ω)

}
if (4.1.9) is assumed and b(·) ≡ 0.{
n, λ2, s(G), s(Ha), ν, L, ∥a∥Cωa (Ω) , ωa(·), ∥u∥L∞(Ω)

}
if (4.1.10) is assumed and b(·) ≡ 0.

(4.1.11a)

(4.1.11b)

Here s(G), s(Ha) and s(Hb) are indices of G,Ha and Hb, respectively, in
the sense of Definition 2.1.1, respectively, while λ1 and λ2 are as in (4.1.9)-
(4.1.10).

The first main results of this chapter is the local Calderón-Zygmund type
implication (4.1.7) for Orlicz double phase problems.

Theorem 4.1.1 ([13]). Suppose that Ψ is given as in (1.0.2) with b(·) ≡ 0,
G,Ha ∈ N in the sense of Definition 2.1.1 and 0 ⩽ a(·) ∈ Cωa(Ω) for
some continuous and concave function ωa : [0,∞) → [0,∞) with ωa(0) = 0.
Let u ∈ W 1,Ψ(Ω) be a distributional solution to (4.1.1) with the assumptions
(4.1.2) and (4.1.3). Suppose that any of the following assumptions is satisfied:

(4.1.9) with lim sup
ρ→0+

Λ
(
ρ,G−1

(
ρ−n
))

= 0,

(4.1.10) with lim sup
ρ→0+

Λ

(
ρ,

1

ρ

)
= 0,

(4.1.9) with ωa(ρ) ≡ ρα for some α ∈ (0, 1].

(4.1.12a)

(4.1.12b)

(4.1.12c)
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Then there holds that

Ψ(x, |F |) ∈ LΥ
loc(Ω) =⇒ Ψ(x, |Du|) ∈ LΥ

loc(Ω)

for every Υ ∈ N with an index s(Υ) ⩾ 1. (4.1.13)

Moreover, for every Υ ∈ N with an index s(Υ) ⩾ 1 and for every open subset
Ω0 ⋐ Ω, there exist a radius R0 > 0 and a constant c > 0 which depend on
datadb(Ω0) and s(Υ) such that the following inequality

 

BR/2

Υ [Ψ(x, |Du|)] dx ⩽ cΥ

 
BR

Ψ(x, |Du|) dx

+ c

 

BR

Υ [Ψ(x, |F |)] dx

(4.1.14)

holds for every ball BR ⊂ Ω0 with R ⩽ R0, where

datadb(Ω0) ≡


datad for (4.1.12a)
datad for (4.1.12b)
datad, dist(Ω0, ∂Ω), ∥Υ[Ψ(x, |F |)]∥L1(Ω1)

for (4.1.12c)

(4.1.15)

in which Ω1 := {x ∈ Ω : dist(x,Ω0) < 1/2 dist(Ω0, ∂Ω)}.

Now consider the case b(·) ̸≡ 0 in (4.1.9). For the reason to apply Har-
monic type approximation, we consider the map A : Ω × Rn → Rn of the
form

A(x, z) := AG(z) + a(x)AHa(z) + b(x)AHb
(z), (4.1.16)

where the continuous vector fields AG, AHa , AHb
: Rn → Rn are of a class

C1(Rn \ {0}) and satisfy the following structure assumptions with fixed con-
stants 0 < ν ⩽ L: 

|AΦ(z)|+ |DzAΦ(z)||z| ⩽ L
Φ(|z|)
|z|

,

ν
Φ(|z|)
|z|2

|ξ|2 ⩽ ⟨DzAΦ(z)ξ, ξ⟩
(4.1.17)

for every Φ ∈ {G,Ha, Hb}, whenever z ∈ Rn \ {0}, ξ ∈ Rn. Clearly, the
vector field given by (4.1.16) satisfies the structure assumptions (4.1.2) with
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constants ν, L in (4.1.17). Then we consider a distributional solution u ∈
W 1,Ψ(Ω) of the equation

div (AG(Du) + a(x)AHa(Du) + b(x)AHb
(Du)) = divB(x, F ) (4.1.18)

under any of assumptions (4.1.9) and (4.1.10), where B : Ω× Rn → Rn is a
Caratheodory vector field satisfying (4.1.3). For the simplicity of writing, we
use a set of parameters for a distributional solution u ∈ W 1,Ψ(Ω) to (4.1.18),
which is “basic data of the problem” in this chapter as follows:

data ≡



{
n, λ1, s(G), s(Ha), s(Hb), ν, L, ∥a∥Cωa (Ω) , ∥b∥Cωb (Ω) ,

ωa(·), ωb(·), ∥Ψ(x, |Du|)∥L1(Ω) , ∥u∥L1(Ω)

}
if (4.1.9) is assumed.{
n, λ2, s(G), s(Ha), s(Hb), ν, L, ∥a∥Cωa (Ω) , ∥b∥Cωb (Ω) ,

ωa(·), ωb(·), ∥u∥L∞(Ω)

}
if (4.1.10) is assumed.

(4.1.19a)

(4.1.19b)

The second main result of the chapter reads as follows:

Theorem 4.1.2. Suppose that Ψ is given as in (1.0.2) with G,Ha, Hb ∈ N
in the sense of Definition 2.1.1, 0 ⩽ a(·) ∈ Cωa(Ω) and 0 ⩽ b(·) ∈ Cωb(Ω)
for some continuous and concave function ωa, ωb : [0,∞) → [0,∞) with
ωa(0) = ωb(0) = 0. Let u ∈ W 1,Ψ(Ω) be a distributional solution to (4.1.18)
with the assumptions (4.1.3) and (4.1.17). Suppose that any of the following
assumptions is satisfied:

(4.1.9) with lim sup
ρ→0+

Λ
(
ρ,G−1

(
ρ−n
))

= 0,

(4.1.10) with lim sup
ρ→0+

Λ

(
ρ,

1

ρ

)
= 0,

(4.1.9) with ωa(ρ) ≡ ρα and ωb(ρ) ≡ ρβ

for some α, β ∈ (0, 1].

(4.1.20a)

(4.1.20b)

(4.1.20c)

Then there holds that

Ψ(x, |F |) ∈ LΥ
loc(Ω) =⇒ Ψ(x, |Du|) ∈ LΥ

loc(Ω)
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for every Υ ∈ N with an index s(Υ) ⩾ 1. (4.1.21)

Moreover, for every Υ ∈ N with an index s(Υ) ⩾ 1 and for every open subset
Ω0 ⋐ Ω, there exist a radius R0 > 0 and a constant c > 0 which depend on
datab(Ω0) and s(Υ) such that the following inequality

 

BR/2

Υ [Ψ(x, |Du|)] dx ⩽ cΥ

 
BR

Ψ(x, |Du|) dx

+ c

 

BR

Υ [Ψ(x, |F |)] dx

(4.1.22)

holds for every ball BR ⊂ Ω0 with R ⩽ R0, where

datab(Ω0) ≡


data for (4.1.20a)
data for (4.1.20b)
data, dist(Ω0, ∂Ω), ∥Υ[Ψ(x, |F |)]∥L1(Ω1)

for (4.1.20c)

(4.1.23)

in which Ω1 := {x ∈ Ω : dist(x,Ω0) < 1/2 dist(Ω0, ∂Ω)}.

Remark 4.1.1. We remark that the results of Theorem 4.1.2 can be restated
and proved for the equation exhibiting a finite number of phases with replac-
ing the function in (1.0.2) by

ΨN(x, t) = G(t) +
N∑
k=1

ak(x)Hk(t), N ⩾ 1, (4.1.24)

where G,Hk ∈ N in the sense of Definition 2.1.1 and 0 ⩽ ak(·) ∈ Cωk(Ω)
with ωk : [0,∞) → [0,∞) being a continuous and concave function vanishing
at the origin for every k ∈ {1, . . . , N}. We also replace the function in (1.0.12)
by

ΛN(ρ, t) :=
N∑
k=1

ωk(ρ)

1 + ωk(ρ)

Hk(t)

G(t)
for every ρ, t > 0. (4.1.25)

Under this setting, with the same spirit as in the chapter, we are able to prove
the results of Theorem 4.1.2 for a distributional solution u ∈ W 1,ΨN (Ω) to
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the equation of type

div

(
AG(Du) +

N∑
k=1

ak(x)AHk
(Du)

)
= divB(x, F ) in Ω, (4.1.26)

where the continuous vector fields AG, AHk
: Rn → Rn are C1(Rn \ {0}) and

satisfy the structure assumptions with fixed constants 0 < ν ⩽ L:
|AΦ(z)|+ |DzAΦ(z)||z| ⩽ L

Φ(|z|)
|z|

,

ν
Φ(|z|)
|z|2

|ξ|2 ⩽ ⟨DzAΦ(z)ξ, ξ⟩
(4.1.27)

for every Φ ∈ {G,H1, . . . , HN}, whenever z ∈ Rn\{0}, ξ ∈ Rn. Note that the
coefficient functions in Theorem 4.1.2 along with (4.1.20c) are understood by
letting ωk(ρ) = ραk with some αk ∈ (0, 1] for every k ∈ {1, . . . , N}.

4.2 Homogeneous equations

Proposition 4.2.1 (Existence of weak solutions). Suppose that Ψ is given
as in (1.0.2) with G,Ha, Hb ∈ N in the sense of Definition 2.1.1, 0 ⩽ a(·) ∈
Cωa(Ω) and 0 ⩽ b(·) ∈ Cωb(Ω) for some continuous and concave function
ωa, ωb : [0,∞) → [0,∞) with ωa(0) = ωb(0) = 0. Suppose that either (4.1.9)2
or (4.1.10)2 is satisfied. Let

w0 ∈
{
W 1,Ψ(BR) if (4.1.9)2 is assumed,
W 1,Ψ(BR) ∩ L∞(BR) if (4.1.10)2 is assumed

(4.2.1)

a given ball BR ⊂ Ω. Then there exists a unique weak solution to the Dirichlet
problem {

− divA(x,Dw) = 0 in BR

w ∈ w0 +W 1,Ψ
0 (BR),

(4.2.2)
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where the vector field A : Ω×Rn \{0} → Rn is same one satisfying (4.1.2)1,2,
with energy estimates

 

BR

Ψ(x, |Dw|) dx ⩽ c

 

BR

Ψ(x, |Dw0|) dx (4.2.3)

and

∥w∥L∞(BR) ⩽ ∥w0∥L∞(BR) (4.2.4)

for some constant c ≡ c(n, s(Ψ), ν, L).

Proof. First let us consider the case of the condition (4.1.9)2 is in force.
Letting v := w − w0, we rewrite (4.2.2) as{

− divA(x,Dv +Dw0) = 0 in BR

v ∈ W 1,Ψ
0 (BR).

(4.2.5)

By the structure assumptions (4.1.2)1,2, we observe that the operator T :

W 1,Ψ
0 (BR) →

(
W 1,Ψ

0 (BR)
)∗

given by

(T (v))(φ) =

ˆ

BR

⟨A(x,Dv +Dw0), Dφ⟩ dx

is continuous monotone operator. Since W 1,Ψ
0 (BR) is a separable reflexive

Banach space with endowed norm ∥Dφ∥LΨ(BR), where φ ∈ W 1,Ψ
0 (BR) is any,

via Poincaré type inequality of Theorem 2.4.1, we are able to apply classical
monotonicity method in order to find v ∈ W 1,Ψ

0 (BR) such that T (v)(φ) = 0
holds true for every φ ∈ W 1,Ψ

0 (BR). As a consequence, w = v +w0 is a weak
solution of (4.2.2). If there are weak solutions w1, w2 ∈ w0 +W 1,Ψ

0 (BR) of
(4.2.2), then via (4.1.4), we have

0 =

 

BR

⟨A(x,Dw1)− A(x,Dw2), Dw1 −Dw2⟩ dx

⩾ c|VΨ(x, z1)− VΨ(x, z2)|2 (4.2.6)

for some constant c ≡ c(n, s(Ψ), ν, L). Thus, w1 ≡ w2.
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To see (4.2.3), we take φ := w − w0 as a test function to the equation
(4.2.2) together with using the structure assumptions (4.1.17) and applying
Young’s inequality of Lemma 2.1.4. In turn, we have

ν

 

BR

Ψ(x, |Dw|) dx ⩽
 

BR

⟨A(x,Dw), Dw⟩ dx =

 

BR

⟨A(x,Dw), Dw0⟩ dx

⩽ L

 

BR

Ψ(x, |Dw|)
|Dw|

|Dw0| dx

⩽ ε

 

BR

Ψ(x, |Dw|) dx+ c

εs(Ψ)

 

BR

Ψ(x, |Dw0|) dx (4.2.7)

for some constant c ≡ c(s(Ψ), L) and every ε ∈ (0, 1). Then choosing ε small
enough, we see (4.2.3). If w0 ̸∈ L∞(BR), then (4.2.4) is valid trivially. Suppose
w0 ∈ L∞(BR). Taking φ := (w − sup

BR

w0)+ and φ := (w − inf
BR

w0)− as a test

function in (4.2.2) and following the arguments in (4.2.16) below, we find
(4.2.4).

Now we consider the case of the condition (4.1.10) is in force. In fact,
we are not allowed to employ the monotonicity arguments as above since
a constant appearing in Sobolev-Poincaré type inequality of Theorem 2.4.1
for a function φ ∈ W 1.Ψ

0 (BR)∩L∞(BR) depends on ∥φ∥L∞(BR). The absence
of Lavrentiev phenomenon discussed in Theorem 2.3.1 allows us to find a
sequence of functions {wm}∞m=1 ∈ W 1,∞(BR) such that

wk → w0 in W 1,G(BR),

ˆ

BR

Ψ(x, |Dwk|) dx→
ˆ

BR

Ψ(x, |Dw0|) dx

and lim sup
k→∞

∥wk∥L∞(BR) ⩽ ∥w0∥L∞(BR) . (4.2.8)

Then we define the new vector fields

Am(x, z) := A(x, z) + εm∂tΨ
+
BR

(|z|) z
|z|

(x ∈ BR, z ∈ Rn \ {0}), (4.2.9)

where the function Ψ+
BR

(·) has been defined in (2.1.3) and {εm}∞m=1 is the
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sequence of real numbers defined as

εm :=

m+

ˆ
BR

Ψ+
BR

(|Dwm|) dx

2−1

, (4.2.10)

the functions vm ∈ wm ∈ W
1,Ψ+

BR
0 (BR) as the unique solutions of the Dirichlet

problem {
− divAm(x,Dvm) = 0 in BR

vm ∈ wm +W
1,Ψ+

BR
0 (BR).

(4.2.11)

The existence of such sequence of functions {vm}∞m=1 follows by standard
monotonicity methods as we have discussed above since the newly defined

vector fields Am(·) in (4.2.9) are coercive and monotone inW
1,Ψ+

BR by εm > 0.
The weak form of (4.2.11)1 is

ˆ

BR

⟨Am(x,Dvm), Dφ⟩ dx = 0 for all φ ∈ W
1,Ψ+

BR
0 (BR) (4.2.12)

By taking φ := vm − wm as a test function in (4.2.12) and arguing similarly
as in (4.2.7) we see

ˆ

BR

[Ψ(x, |Dvm|) + εmΨ
+
BR

(|Dvm|)] dx ⩽ c

ˆ

BR

[Ψ(x, |Dwm|) + εmΨ
+
BR

(|Dwm|)] dx

(4.2.13)

for a constant c ≡ c(n, s(Ψ), ν, L). For m large enough, (4.2.8) implies

ˆ

BR

Ψ(x, |Dwm|) dx ⩽ 2

ˆ

BR

Ψ(x, |Dw0|) dx =: L0 (4.2.14)

and recalling also (4.2.10) we have

ˆ

BR

Ψ(x, |Dvm|) dx ⩽ c

ˆ

BR

Ψ(x, |Dw0|) dx+ c ⩽ c(L0 + 1) (4.2.15)
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CHAPTER 4. CALDERÓN-ZYGMUND THEORY FOR ORLICZ
PHASE PROBLEMS

again for c ≡ c(n, s(Ψ), ν, L). Therefore, we can conclude that up to pass-
ing to not relabelled subsequences, vm ⇀ w in W 1,Ψ(BR) for some w ∈
w0 +W 1,Ψ

0 (BR). By lower semi-continuity in (4.2.13) and (4.2.15), and again
recalling (4.2.10), we find (4.2.3). On the other hand, testing the equation
(4.2.12) against φ := (vm − sup

BR

wm)+, we have

ν

 

BR

Ψ(x, |D(vm − sup
BR

wm)+|) dx

⩽
 

BR

〈
Am(x,D(vm − sup

BR

wm)+), D(vm − sup
BR

wm)+

〉
dx

=

 

BR

〈
Am(x,Dvm), D(vm − sup

BR

wm)+

〉
dx = 0. (4.2.16)

Using the co-area formula, we see that vm ⩽ sup
BR

wm in BR. Similarly, by

taking a test function φ := (vm − inf
BR

wm)− to the equation (4.2.11), we see

that vm ⩾ inf
BR

wm in BR. Combining those estimates and recalling (4.2.8), we

find (4.2.4). Finally, the uniqueness of weak solutions to (4.2.2) can shown
similarly as in (4.2.6).

Lemma 4.2.1 (Density lemma). Suppose that Ψ is given as in (1.0.2) with
G,Ha, Hb ∈ N in the sense of Definition 2.1.1, 0 ⩽ a(·) ∈ Cωa(Ω) and 0 ⩽
b(·) ∈ Cωb(Ω) for some continuous and concave function ωa, ωb : [0,∞) →
[0,∞) with ωa(0) = ωb = 0. Let a measurable vector field S : B → Rn for
some ball B ≡ Br ⋐ Ω be a distributional solution to the equation

− div T (x, S) = 0 in B (4.2.17)

with Ψ(x, |S|) ∈ L1(B), where the vector field T : B × Rn → Rn satisfies the
growth condition

|T (x, z)| ⩽ L
Ψ(x, |z|)

|z|
(4.2.18)

for every x ∈ B and z ∈ Rn. Then if the condition (4.1.9)2 is satisfied, then
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every φ ∈ W 1,1
0 (B) with Ψ(x, |Dφ|) ∈ L1(B) satisfies

ˆ

B

⟨T (x, S), Dφ⟩ dx = 0. (4.2.19)

Also, if the condition (4.1.10)2 is satisfied, then (4.2.19) holds for every φ ∈
W 1,1

0 (B) ∩ L∞(B) with Ψ(x, |Dφ|) ∈ L1(B) .

Proof. An idea of the proof is similar to the proof of [14, Lemma 5.2]. Clearly
the proof can be reduced to the case Br ≡ B1(0) by dilation and translation,
and we can assume φ ∈ W 1,Ψ

0 (Rn) by zero extention outside of B. There
exists ε0 > 0 such that B1+ε0(0) ⋐ Ω. Let ρ ∈ C∞

0 (B1(0)) be a non-negative

standard mollifier with

ˆ

Rn

ρ dx = 1. Then we set ρε(x) =
1

εn
ρ
(x
ε

)
for every

x ∈ Bε(0). Directly, we observe that ρε ∈ C∞
0 (Bε(0)),

ˆ

Rn

ρε dx = 1, 0 ⩽ ρε ⩽

c(n)ε−n and |Dρε| ⩽ c(n)ε−(n+1). For every 0 < ε <
ε0

2(1 + ε0)
, we define

φ̃ε(x) := φ

(
x

1− 2ε

)
, ãε(x) := a

(
x

1− 2ε

)
, b̃ε(x) := b

(
x

1− 2ε

)
,

φε(x) := (φ̃ ∗ ρε) (x), aε(x) := inf
y∈Bε(x)

ãε(y), bε(x) := inf
y∈Bε(x)

b̃ε(y) and

Ψε(x, t) := G(t) + aε(x)Ha(t) + bε(x)Hb(t) (4.2.20)

for every x ∈ B1 and t ⩾ 0. It follows from the Jensen’s inequality and
properties of the convolution that

G(|Dφε(x)|) ⩽ G (|(Dφ̃ε ∗ ρε)(x)|) ⩽
ˆ

Rn

G(|Dφ̃ε(x− y)|)ρε(y) dy ⩽ cε−n

(4.2.21)

and

|Dφε(x)| = |(φ̃ε ∗Dρε)(x)| ⩽
ˆ

Rn

|φ̃ε(x− y)||Dρε(y)| dy ⩽ c(n) ∥φ∥L∞(B1)
ε−1.

(4.2.22)
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Arguing similarly as in [14, (5.4)], we have

Ψε (x, |Dφε(x)|) ⩽ c

[
Ψ

(
·

1− 2ε
,

∣∣∣∣Dφ( ·
1− 2ε

)∣∣∣∣) ∗ ρε
]
(x). (4.2.23)

for some constant c ≡ c(s(Ψ)) and for every x ∈ B1. Suppose now that the
condition (4.1.9)2 is satisfied. Then using (4.1.9)2 and (4.2.21),we see

Ψ(x, |Dφε(x)|) ⩽ |a(x)− aε(x)|Ha(|Dφε(x)|) + |b(x)− bε(x)|Hb(|Dφε(x)|)
+ Ψε(x, |Dφε(x)|)

⩽ 2λ1[a]ωaωa(ε)

1 +
1

ωa

(
[G(|Dφε(x)|)]−

1
n

)
G(|Dφε(x)|)

+ 2λ1[b]ωb
ωb(ε)

1 +
1

ωb

(
[G(|Dφε(x)|)]−

1
n

)
G(|Dφε(x)|)

+ Ψε(x, |Dφε(x)|)
⩽ cΨε(x, |Dφε(x)|) (4.2.24)

for every x ∈ B1 with some constant c independent of ε. If the condition
(4.1.10)2 is satisfied, then using this one and (4.2.22) we have

Ψ(x, |Dφε(x)|) ⩽ |a(x)− aε(x)|Ha(|Dφε(x)|) + |b(x)− bε(x)|Hb(|Dφε(x)|)
+ Ψε(x, |Dφε(x)|)

⩽ 2λ2[a]ωaωa(ε)

(
1 +

1

ωa (|Dφε(x)|−1)

)
G(|Dφε(x)|)

2λ2[b]ωb
ωb(ε)

(
1 +

1

ωb (|Dφε(x)|−1)

)
G(|Dφε(x)|)

+ Ψε(x, |Dφε(x)|)
⩽ cΨε(x, |Dφε(x)|) (4.2.25)

for every x ∈ B1 with some constant c independent of ε but depending on
∥φ∥L∞(B1)

. Once we arrive at this stage, the rest of the proof can be argued
in the same way as in the proof of [14, Lemma 5.2].

Theorem 4.2.1 (Higher integrability). Let u ∈ W 1,Ψ(Ω) be a distributional
solution to (4.1.18) under the assumptions (4.1.3) and (4.1.17). Suppose ei-
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ther (4.1.9) or (4.1.10) is satisfied. Suppose also that Ψ(x, |F |) ∈ LΥ
loc(Ω) for

some Υ ∈ N with an index s(Υ) ⩾ 1. Then there exists a positive higher
integrability exponent δ ≡ δ(data, s(Υ)) such that Ψ(x, |Du|) ∈ L1+δ

loc (Ω).
Moreover, the following inequality 

Br

[Ψ(x, |Du|)]1+δ dx

 1
1+δ

⩽ c

 

B2r

Ψ(x, |Du|) dx

+ c

 

B2r

[Ψ(x, |F |)]1+δ dx

 1
1+δ

(4.2.26)

holds for a constant c ≡ c(data), whenever B2r ⊂ Ω is a ball with 2r ⩽
1. In particular, for every open subset Ω0 ⋐ Ω1 ⋐ Ω with dist(Ω0, ∂Ω) ≈
dist(Ω1, ∂Ω) ≈ dist(Ω0, ∂Ω1), we have

∥Ψ(x, |Du|)∥L1+δ(Ω0)
⩽ c

(
data, dist(Ω0, ∂Ω), s(Υ), ∥Υ[Ψ(x, |F |)]∥L1(Ω1)

)
.

(4.2.27)

Proof. Let B2ρ ⊂ Ω be a fixed ball with 2ρ ⩽ 1 and η ∈ C∞
0 (B2ρ) be a cut-off

function such that χBρ ⩽ η ⩽ χB2ρ with |Dη| ⩽ 2

ρ
. Applying the methods

employed in [14, Theorem 6.1] or [15, Theorem 5.1], we have

ˆ

B2ρ

Ψ(x, |Du|)ηs(Ψ)+1 dx ⩽ c

ˆ

B2ρ

Ψ

(
x,

∣∣∣∣u− (u)B2ρ

ρ

∣∣∣∣) dx+ c

ˆ

B2ρ

Ψ(x, |F |) dx

(4.2.28)

for some constant c ≡ c(n, s(Ψ), ν, L). Now we apply Theorem 2.4.1 depend-
ing on which assumption of (4.1.9) and (4.1.10) comes into play. In turn, we
have

 

Bρ

Ψ(x, |Du|) dx ⩽ c

 

B2ρ

[Ψ(x, |Du|)]θ dx


1
θ

+ c

 

B2ρ

Ψ(x, |F |) dx (4.2.29)
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with some c ≡ c(data) and θ ≡ θ(n, s(Ψ)) ∈ (0, 1). Applying Lemma 2.1.1
for Υ, for every open subset Ω0 ⋐ Ω, one can show that

ˆ

Ω0

[Ψ(x, |F |)]1+
1

s(Υ) dx ⩽ |Ω0|+ c

ˆ

Ω0

Υ[Ψ(x, |F |)] dx < +∞. (4.2.30)

Therefore, there exists a higher integrability exponent δ ≡ δ(data, s(Υ))
fulfilling the inequality (4.2.26) by a variant of Gehring’s lemma. Finally,
the estimate (4.2.27) implies from (4.2.26) together with a standard covering
argument.

In the rest of the section, we shall always suppose that Ψ is given as in
(1.0.2) with G,Ha, Hb ∈ N in the sense of Definition 2.1.1, 0 ⩽ a(·) ∈ Cωa(Ω)
and 0 ⩽ b(·) ∈ Cωb(Ω) for some continuous and concave functions ωa, ωb :
[0,∞) → [0,∞) with ωa(0) = ωb(0) = 0, unless we specify. We also consider
the following Dirichlet boundary value problem:{

− divA(x,Dw) = 0 in BR ≡ BR(x0),

w ∈ u+W 1,Ψ
0 (BR)

(4.2.31)

for some fixed ball BR ⊂ Ω0 ⋐ Ω with R ⩽ 1, where

A(x, z) = AG(z) + a(x)AHa(z) + b(x)AHb
(z) (x ∈ Ω, z ∈ Rn) (4.2.32)

as we introduced in (4.1.16) and u ∈ W 1,Ψ(BR) is a distributional solution to
(4.1.18). Furthermore, we shall always assume that Ψ(x, |F |) ∈ LΥ

loc(Ω) for
some Υ ∈ N with an index s(Υ).

4.2.1 Local boundedness estimates

Next we start with the following direct outcome of the equation (4.2.31).

Proposition 4.2.2. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31)
under the assumptions (4.1.17). Suppose either (4.1.9) or (4.1.10) is satisfied.
There exists a constant Q ≡ Q(s(Ψ), ν, L) ⩾ 1 such that w is a Q-minimizer
of the functional

W 1,1(BR) ∋ v 7→ P(v,BR) =

ˆ

BR

Ψ(x, |Dv|) dx. (4.2.33)
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In particular, there exists a constant c ≡ c(s(Ψ), ν, L) such that

 

BR

Ψ(x, |Dw|) dx ⩽ c

 

BR

Ψ(x, |Du|) dx. (4.2.34)

Moreover, if u ∈ L∞(BR), then it holds that

osc
BR

w ⩽ osc
BR

u and ∥w∥L∞(BR) ⩽ ∥u∥L∞(BR) . (4.2.35)

Proof. Let φ ∈ W 1,1
0 (BR) with P(φ,BR) < ∞ if (4.1.9) is assumed or φ ∈

W 1,1
0 (BR) ∩ L∞(BR) with P(φ,BR) < ∞ if (4.1.10) is assumed , which can

be a test function in (4.2.31) by Lemma 4.2.1 below. Then by testing the
equation (4.2.31) by φ and using the structure assumption (4.1.17) together
with Young’s type inequality of Lemma 2.1.4, we have

ν

ˆ

BR

Ψ(x, |Dw|) dx ⩽
ˆ

BR

⟨A(x,Dw), Dw⟩ dx =

ˆ

BR

⟨A(x,Dw), Dw +Dφ⟩ dx

⩽ L

ˆ

BR

Ψ(x, |Dw|)
|Dw|

|Dw +Dφ| dx

⩽
ν

2

ˆ

BR

Ψ(x, |Dw|) dx+ c

ˆ

BR

Ψ(x, |Dw +Dφ|) dx

(4.2.36)

for some constant c ≡ c(s(Ψ), L, ν). For showing (4.2.35), if u ̸∈ L∞(BR),
the estimates in (4.2.35) are trivial. Suppose u ∈ L∞(BR). Then we take a
test function φ := (w − sup

BR

u)+ which is admissible by w ∈ u +W 1,Ψ
0 (BR)

and u ∈ L∞(BR) via Lemma 4.2.1. Then using (4.1.17), we have

ν

 

BR

Ψ(x, |D(w − sup
BR

u)+|) dx

⩽
 

BR

〈
A(x,D(w − sup

BR

u)+), D(w − sup
BR

u)+

〉
dx
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=

 

BR

〈
A(x,Dw), D(w − sup

BR

u)+

〉
dx = 0.

Using the co-area formula, we see that w ⩽ sup
BR

u in BR. Similarly, by taking a

test function φ := (w− inf
BR

u)− to the equation (4.2.31), we see that w ⩾ inf
BR

u

in BR. Combining those estimates, we find (4.2.35).

Proposition 4.2.3. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31) un-
der the assumption (4.1.17). Suppose that either (4.1.9) or (4.1.10) is satis-
fied. Then there exists a higher integrability exponent δ0 ≡ δ0(data, s(Υ)) ⩽ δ
such that  

BR

[Ψ(x, |Dw|)]1+δ0 dx ⩽ c

 

BR

[Ψ(x, |Du|)]1+δ0 dx (4.2.37)

for some constant c ≡ c(data), where δ is the higher integrability expo-
nent determined by Theorem 4.2.1.

Proof. Since we have already obtained a Sobolev-Poincaré type inequality
of Theorem 2.4.1 under either (4.1.9) or (4.1.10), we follow the arguments
employed in the proof of [14, Lemma 5.3 and Lemma 5.4].

Since w ∈ W 1,Ψ(BR) is a Q-minimizer of the functional in (4.2.33), we
are able to derive a Caccioppoli inequality for w, see Lemma 3.2.1.

Proposition 4.2.4. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31)
under the assumption (4.1.17). Suppose either (4.1.9) or (4.1.10) is satisfied.
Then there exists a constant c ≡ c(s(Ψ), ν, L) ⩾ 1 such that the following
Caccioppoli inequality

ˆ

Bρ

Ψ(x, |D(w − k)±|) dx ⩽ c

ˆ

Br

Ψ

(
x,

(w − k)±
r − ρ

)
dx, (4.2.38)

holds, whenever Bρ ≡ Bρ(y) ⋐ Br(y) ≡ Br ⊂ BR are balls and k ∈ R.

Theorem 4.2.2. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31) under
the assumption (4.1.17). Suppose that either (4.1.9) or (4.1.10) is satisfied.
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Then there exists a constant c ≡ c(data) such that∥∥∥∥Ψ−
Br

(
(w − (w)Br)±

r

)∥∥∥∥
L∞(Br/2)

⩽ c

 

Br

Ψ

(
x,

(w − (w)Br)±
r

)
dx (4.2.39)

and

Ψ−
Br

(∣∣∣∣w(x1)− w(x2)

r

∣∣∣∣) ⩽ c

 

Br

Ψ

(
x,

∣∣∣∣w − (w)Br

r

∣∣∣∣) dx for a.e x1, x2 ∈ Br/2,

(4.2.40)

whenever Br ≡ Br(y) ⊂ BR is a ball.

Proof. We omit the proof since it is similar to the proof of Theorem 3.2.1 by
using the estimates (4.2.34) and (4.2.35) of Proposition 4.2.2.

Let us also restate the results of Lemma 3.2.2 and Lemma 3.2.3 for w.

Lemma 4.2.2. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31) under
assumptions (4.1.17). Suppose that either (4.1.9) or (4.1.10) is satisfied. Let
B2r ≡ B2r(y) ⊂ BR be any fixed ball. Then there exists a constant c ≡
c(data) such that

ˆ

Br1

Ψ−
Br
(|D(w − k)±|) dx ⩽

ˆ

Br1

Ψ(x, |D(w − k)±|) dx

⩽ c

(
r

r2 − r1

)s(Ψ)+1 ˆ

Br2

Ψ−
Br

(
(w − k)±

r

)
dx,

(4.2.41)

whenever Br1 ⋐ Br2 ⊂ Br are concentric balls and k ∈ R.

Lemma 4.2.3. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31) under
the assumption (4.1.17). Suppose either the assumption (4.1.9) or (4.1.10)
is satisfied. Let B2r ≡ B2r(y) ⊂ BR be some fixed ball. Then there exists a
constant c ≡ c(data) such that

ˆ

Br1

Ψ−
Br

(|D(w − k)±|) dx ⩽
ˆ

Br1

Ψ(x, |D(w − k)±|) dx
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⩽ c

(
r

r2 − r1

)s(Ψ)+1 ˆ

Br2

Φ

(
(w − k)±

r

)
dx,

(4.2.42)

whenever Br1 ⋐ Br2 ⊂ Br(y) are concentric balls and k ∈ R, where

Φ(t) =



G(t)

if (3.2.27a) is satisfied in Br,

G(t) + a−(Br)Ha(t)

if (3.2.27b) is satisfied in Br,

G(t) + b−(Br)Hb(t)

if (3.2.27c) is satisfied in Br,

Ψ−
Br
(t)

if (3.2.27d) is satisfied in Br,

(4.2.43a)

(4.2.43b)

(4.2.43c)

(4.2.43d)

for every t ⩾ 0.

4.2.2 Decay estimates

We continue to consider the function w ∈ W 1,Ψ(BR) defined in (4.2.31) for
the fixed ball BR ≡ BR(x0) ⊂ Ω0 ⋐ Ω with R ⩽ 1. Throughout the present
subsection let us consider the excess functional given by

E(w,Br) :=
(
Ψ−

B2r

)−1

 
Br

Ψ−
B2r

(∣∣∣∣w − (w)Br

r

∣∣∣∣) dx

 (4.2.44)

for any ball B2r ≡ B2r(y) ⊂ BR. Using the convexity of Ψ−
B2r

together with
Lemma 2.1.1, one can see that

E(w,Br) ⩽ c
(
Ψ−

B2r

)−1

 
Br

Ψ−
B2r

(∣∣∣∣w − w0

r

∣∣∣∣) dx

 (4.2.45)

for some constant c ≡ c(s(Ψ)) and for every w0 ∈ R.
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Lemma 4.2.4. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31) under the
assumption (4.1.17). Let Br ≡ Br(y) ⊂ BR be any fixed ball. If one of the
assumptions (4.1.20a)-(4.1.20c) is satisfied, then for every ε∗ ∈ (0, 1), there
exists a positive radius

r∗ ≡ r∗(datab(Ω0), ε
∗) (4.2.46)

such that
 

Bλr

Ψ−
Br

(∣∣∣∣w − (w)Bλr

λr

∣∣∣∣) dx

⩽ c
(
1 + λ−(n+s(Ψ)+1)ε∗

)  
Br/2

Ψ−
Br

(∣∣∣∣w − (w)Br/2

r

∣∣∣∣) dx (4.2.47)

holds for some constant c ≡ c(datab(Ω0)), whenever λ ∈ (0, 1/16) and r ⩽
r∗.

Proof. First note that the meaning of datab(Ω0) has been defined in (4.1.23).
We can always assume that E(w,Br/2) > 0 otherwise the inequality (4.2.47)
is trivial. For the abbreviation, we shall denote

E(r) := E(w,Br/2). (4.2.48)

The proof consists of several steps.
Step 1: Initial settings on w. Applying Lemma 4.2.2 in the ball Br/4

with k ≡ (w)Br/2
, we find

 

Br/4

Ψ(x, |Dw|) dx ⩽ c

 

Br/2

Ψ−
Br

(∣∣∣∣w − (w)Br/2

r

∣∣∣∣) dx (4.2.49)

for some constant c ≡ c(data). Moreover, by Theorem 3.2.5, there exists a
higher integrability exponent δ0 ≡ δ0(data) such that  

Br/8

[Ψ(x, |Dw|)]1+δ0 dx


1

1+δ0

⩽ c

 

Br/4

Ψ(x, |Dw|) dx (4.2.50)
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for a constant c ≡ c(data).
Step 2: Scaling and freezing. Now we consider the scaled functions of

w(·), a(·) and b(·) in the unit ball B1(0) by setting

w̄(x) :=
w(y + rx)− (w)Br/2

E(r)r
, ā(x) := a(y + rx)

Ha(E(r))

Ψ−
Br

(E(r))

and b̄(x) := b(y + rx)
Hb(E(r))

Ψ−
Br

(E(r))
(4.2.51)

for every x ∈ B1. Now we define the vector field and energy density associated
to the scaling in (4.2.51) by

Ā(x, z) :=
A(y + rx, E(r)z)

Ψ−
Br

(E(r))

=
AG(E(r)z)

Ψ−
Br

(E(r))
+ ā(x)

AHa(E(r)z)

Ha (E(r))
+ b̄(x)

AHb
(E(r)z)

Hb (E(r))

and Ψ̄(x, |z|) := Ḡ(|z|) + ā(x)H̄a(|z|) + b̄(x)H̄b(|z|) (4.2.52)

for every x ∈ B1 and z ∈ Rn, where

Ḡ(t) :=
G(E(r)t)

Ψ−
Br
(E(r))

, H̄a(t) :=
Ha(E(r)t)

Ha(E(r))
and H̄b(t) :=

Hb(E(r)t)

Hb(E(r))
.

(4.2.53)

One can check via elementary calculations that Ḡ, H̄a, H̄b ∈ N with indices
s(G), s(Ha), s(Hb) respectively, and that

Ḡ(1) ⩽ 1, H̄a(1) = 1 and H̄b(1) = 1. (4.2.54)

Then we see that w̄ ∈ W 1,Ψ̄(B1) in (4.2.51) is a weak solution to the following
equation that

 

B1

〈
Ā(x,Dw̄), Dφ

〉
dx = 0 for all φ ∈ W 1,Ψ̄

0 (B1), (4.2.55)

and the vector field Ā in (4.2.52) satisfies the following structure assumptions
via (4.1.17):
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|Ā(x, z)||z|+ |DzĀ(x, z)||z|2 ⩽ LΨ̄(x, |z|),

ν
Ψ̄(x, |z|)

|z|2
|ξ|2 ⩽

〈
DzĀ(x, z)ξ, ξ

〉
,

(4.2.56a)

(4.2.56b)

for every x, x1, x2 ∈ B1, ξ ∈ Rn and z ∈ Rn \ {0}. Furthermore, the inequal-
ities (4.2.49)-(4.2.50) can we written in the view of the scaling in (4.2.51)
as

 

B1/4

Ψ̄(x, |Dw̄|) dx+

  

B1/8

[Ψ̄(x, |Dw̄|)]1+δ0 dx


1

1+δ0

⩽ c(data). (4.2.57)

Let x̄a, x̄b ∈ B1 be points such that ā(x̄a) = inf
x∈B1

ā(x) and b̄(x̄b) =

inf
x∈B1

b̄(x). Then we consider the associated vector field and frozen functional

denoted by

Ā0(z) :=
AG(E(r)z)

Ψ−
Br

(E(r))
+ ā(x̄a)

AHa(E(r)z)

Ha (E(r))
+ b̄(x̄b)

AHb
(E(r)z)

Hb (E(r))

and Ψ̄0(t) := Ḡ(t) + ā(x̄a)H̄a(t) + +b̄(x̄b)H̄b(t) (z ∈ Rn, t ⩾ 0). (4.2.58)

From the definition in (4.2.51)-(4.2.53), one can see that
|Ā0(z)||z|+ |DzĀ0(z)||z|2 ⩽ LΨ̄0(|z|),

ν
Ψ̄0(|z|)
|z|2

|ξ|2 ⩽
〈
DzĀ0(z)ξ, ξ

〉
,

Ψ̄0(1) = 1

(4.2.59a)

(4.2.59b)

(4.2.59c)

for every z ∈ Rn \ {0} and ξ ∈ Rn.
Step 4: Harmonic approximation. In the following let φ ∈ W 1,∞

0 (B1/8)
be a fixed function. Then using (4.2.55) and (4.1.17), we see∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄)− Ā(x,Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣
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⩽
 

B1/8

|Ā0(Dw̄)− Ā(x,Dw̄)| dx ∥Dφ∥L∞(B1/8)

⩽ L

 

B1/8

|ā(x)− ā(x̄a)|
H̄a(|Dw̄|)
|Dw̄|

dx ∥Dφ∥L∞(B1/8)

+ L

 

B1/8

|b̄(x)− b̄(x̄b)|
H̄b(|Dw̄|)
|Dw̄|

dx ∥Dφ∥L∞(B1/8)

=: (I1 + I2) ∥Dφ∥L∞(B1/8)
. (4.2.60)

Now we estimate the terms Ii with i ∈ {1, 2} via (2.1.7), (4.2.54) and (4.2.57)
in order to have that

I1 ⩽ c

 

B1/8

|ā(x)− ā(x̄a)|
(
[H̄a(|Dw̄|)]

1
s(Ha)+1 + [H̄a(|Dw̄|)]

s(Ha)
s(H)a+1

)
dx

⩽ c ∥ā− ā(x̄a)∥
s(Ha)

s(Ha)+1

L∞(B1/8)

  

B1/8

ā(x)H̄a(|Dw̄|) dx


1

s(Ha)+1

+ c ∥ā− ā(x̄a)∥
1

s(Ha)+1

L∞(B1/8)

  

B1/8

ā(x)H̄a(|Dw̄|) dx


s(Ha)

s(Ha)+1

⩽ c(data)

(
∥ā− ā(x̄a)∥

1
s(Ha)+1

L∞(B1/8)
+ ∥ā− ā(x̄a)∥

s(Ha)
s(Ha)+1

L∞(B1/8)

)
, (4.2.61)

where we have used Hölder’s inequality and the fact that ā(x̄a) ⩽ ā(x) for
every x ∈ B1. Similarly as above, we have

I2 ⩽ c(data)

(∥∥b̄− b̄(x̄b)
∥∥ 1

s(Hb)+1

L∞(B1/8)
+
∥∥b̄− b̄(x̄b)

∥∥ s(Hb)

s(Hb)+1

L∞(B1/8)

)
. (4.2.62)
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CHAPTER 4. CALDERÓN-ZYGMUND THEORY FOR ORLICZ
PHASE PROBLEMS

Inserting the inequalities in the last two displays into (4.2.60), we find∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣
⩽ c(data)

(
∥ā− ā(x̄a)∥

1
s(Ha)+1

L∞(B1/8)
+ ∥ā− ā(x̄a)∥

s(Ha)
s(Ha)+1

L∞(B1/8)

)
∥Dφ∥L∞(B1/8)

+ c(data)

(∥∥b̄− b̄(x̄b)
∥∥ 1

s(Hb)+1

L∞(B1/8)
+
∥∥b̄− b̄(x̄b)

∥∥ s(Hb)

s(Hb)+1

L∞(B1/8)

)
∥Dφ∥L∞(B1/8)

.

(4.2.63)

By the definition of ā(·) and b̄(·) in (4.2.51) and the excess functional in
(4.2.48), we find

Ia := ∥ā− ā(x̄a)∥L∞(B1/8)
⩽ cωa(r)

Ha(E(r))

Ψ−
Br
(E(r))

. (4.2.64)

and

Ib :=
∥∥b̄− b̄(x̄b)

∥∥
L∞(B1/8)

⩽ cωb(r)
Hb(E(r))

Ψ−
Br
(E(r))

. (4.2.65)

Next we shall estimate the resulting terms of the last two display depend-
ing on which one of (4.1.20a)-(4.1.20c) comes into play.

Case 1: Assumption (4.1.20a) is in force. The assumption (4.1.20a)2
implies that for every ε ∈ (0, 1), there exists a constant µ1 ≡ µ1(ε) > 0 such
that

Λ
(
ρ,G−1(ρ−n)

)
⩽ ε for every ρ ∈ (0, µ1). (4.2.66)

Then using this one and (4.1.9), we continue to estimate Ia in (4.2.64) as

Ia ⩽ cωa(r)
(Ha ◦G−1)

(
Ψ−

Br
(E(r))

)
Ψ−

Br
(E(r))

⩽ cωa(r)ε

1 +
1

ωa

(
[Ψ−

Br
(E(r))]−

1
n

)
+ cωa(r)

(
1 +

1

ω (µ1)

)
(4.2.67)
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with c ≡ c([a]ωa , λ1), where we have used the fact that
(
Ψ−

Br

)−1
(t) ⩽ G−1(t)

for every t ⩾ 0. Using (2.1.2) and recalling (4.2.48) together with (4.2.44)
and (4.2.34), we have

1

ωa

([
Ψ−

Br
(E(r))

]− 1
n

) ⩽
c

ωa(r)
+

c

ωa(r)

 ˆ

Br/2

Ψ−
Br

(∣∣∣∣w − (w)Br/2

r

∣∣∣∣) dx


1
n

⩽
c

ωa(r)
+

c

ωa(r)

ˆ
BR

Ψ(x, |Du|) dx

 1
n

⩽
c(data)

ωa(r)
.

(4.2.68)

Combining the last two displays, we conclude

Ia ⩽ c

(
ε+ ωa(r)

(
1 +

1

ωa(µ1)

))
(4.2.69)

with some constant c ≡ c(data). In a similar way as we have shown (4.2.67)-
(4.2.68), we also have

Ib ⩽ c

(
ε+ ωb(r)

(
1 +

1

ωb(µ1)

))
(4.2.70)

with some constant c ≡ c(data). Therefore, inserting the estimates in the
last two displays into (4.2.64) and (4.2.65) and recalling (4.2.63), we have∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datab(Ω0))P1(ε, r) ∥Dφ∥L∞(B1/8)
, (4.2.71)

where

P1(ε, r) :=[
ε+ ωa(r)

(
1 +

1

ωa(µ1)

)] 1
s(Ha)+1

+

[
ε+ ωa(r)

(
1 +

1

ωa(µ1)

)] s(Ha)
s(Ha)+1
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+

[
ε+ ωb(r)

(
1 +

1

ωb(µ1)

)] 1
s(Hb)+1

+

[
ε+ ωb(r)

(
1 +

1

ωb(µ1)

)] s(Hb)

s(Hb)+1

.

(4.2.72)

Case 2: Assumption (4.1.20b) is in force. From the assumption (4.1.20b)2,
for every ε ∈ (0, 1), we see that there exists a constant µ2 ≡ µ2(ε) > 0 such
that

Λ

(
ρ,

1

ρ

)
⩽ ε for every ρ ∈ (0, µ2). (4.2.73)

This one together with (4.1.10) yields

Ia ⩽ cωa(r)
Ha(E(r))

G(E(r))
⩽ cωa(r)ε

(
1 +

1

ωa ([E(r)]−1)

)
+ cωa(r)

(
1 +

1

ωa(µ2)

)
.

(4.2.74)

Now recalling (4.2.48) together with (4.2.44) and (4.2.35), we have

1

ωa ([E(r)]−1)
⩽

1

ωa

(
r

2∥w∥L∞(Br)

) ⩽
c(datab(Ω0))

ωa(r)
. (4.2.75)

Inserting the estimate from the last display into (4.2.74), we find

Ia ⩽ c(datab(Ω0))

(
ε+ ωa(r)

(
1 +

1

ωa(µ2)

))
. (4.2.76)

Similarly, we also find

Ib ⩽ c(datab(Ω0))

(
ε+ ωb(r)

(
1 +

1

ωb(µ2)

))
. (4.2.77)

Plugging this one in (4.2.63) together with recalling (4.2.64) and (4.2.65), we
see ∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datab(Ω0))P2(ε, r) ∥Dφ∥L∞(B1/8)
, (4.2.78)
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where

P2(ε, r) :=[
ε+ ωa(r)

(
1 +

1

ωa(µ2)

)] 1
s(Ha)+1

+

[
ε+ ωa(r)

(
1 +

1

ωa(µ2)

)] s(Ha)
s(Ha)+1

+

[
ε+ ωb(r)

(
1 +

1

ωb(µ2)

)] 1
s(Hb)+1

+

[
ε+ ωb(r)

(
1 +

1

ωb(µ2)

)] s(Hb)

s(Hb)+1

.

(4.2.79)

Case 3: Assumption (4.1.20c) is in force. At this point we shall take
an advantage that ωa(·) and ωb(·) are power functions. Recalling Ia denoted
in (4.2.64), we have

Ia ⩽ crα
(H ◦G−1)(Ψ−

Br
(E(r)))

Ψ−
Br
(E(r))

⩽ crα

1 +

  

Br/2

Ψ−
Br

(∣∣∣∣w − (w)Br/2

r

∣∣∣∣) dx


α
n



⩽ crα + c

 ˆ

Br/2

Ψ−
Br
(|Dw|) dx


α
n

⩽ crα + cr
αδ0
1+δ0

 ˆ

Br/2

[Ψ(x, |Dw|)]1+δ0 dx


α

n(1+δ0)

⩽ crα + cr
αδ0
1+δ0

ˆ

BR

[Ψ(x, |Du|)]1+δ0 dx

 α
n(1+δ0)

⩽ c(datab(Ω0))r
αδ0
1+δ0 ,

(4.2.80)

where we have applied a Poincaré type inequality of Lemma 2.4.1 and Propo-
sition 4.2.3. Again similarly, we see

Ib ⩽ c(datab(Ω0))r
βδ0
1+δ0 , (4.2.81)
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Inserting the resulting estimates from the last two displays into (4.2.63)
and then (4.2.60), we find∣∣∣∣∣∣∣

 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ c(datab(Ω0))P3(r) ∥Dφ∥L∞(B1/8)
, (4.2.82)

where

P3(r) := r
αδ0

(1+δ0)(1+s(Ha)) + r
βδ0

(1+δ0)(1+s(Hb)) . (4.2.83)

Summarizing all the cases we considered so far, we conclude with∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ ⩽ chP (ε, r) ∥Dφ∥L∞(B1/8)
(4.2.84)

for some constant ch ≡ ch(datab(Ω0)), whenever φ ∈ W 1,∞
0 (B1/8), where

P (ε, R) :=


P1(ε, r) if (4.1.20a) is assumed,
P2(ε, r) if (4.1.20b) is assumed,
P3(r) if (4.1.20c) is assumed,

(4.2.85)

in which the functions P1, P2 and P3 have been defined in (4.2.72), (4.2.79)
and (4.2.83), respectively. Taking into account (4.2.57), (4.2.59a)-(4.2.59c)
and (4.2.84), it is possible to apply Lemma 2.5.1 by setting A0(z) := Ā0(z),
Ψ0(t) := Ψ̄0(t),a0 := ā(x̄a) and a0 := b̄(x̄b). In turn, there exists h̄ ∈ w̄ +

W 1,Ψ̄0

0 (B1/8) such that

 

B1/8

〈
Ā0(Dh̄), Dφ

〉
dx = 0 for all φ ∈ W 1,∞

0 (B1/8), (4.2.86)

 

B1/4

Ψ̄0(|Dh̄|) dx+
 

B1/8

[Ψ̄0(|Dh̄|)]1+δ1 dx ⩽ c for some δ1 ⩽ δ0, (4.2.87)
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B1/8

|VΨ̄0
(Dw̄)− VΨ̄0

(Dh̄)|2 dx ⩽ c[P (ε, r)]s1 (4.2.88)

and finally

 

B1/8

Ψ̄0

(
|w̄ − h̄|

)
dx ⩽ cd[P (ε, r)]

s0 (4.2.89)

with some constants c, cd which depend on datab(Ω0) and s0, s1 ≡ s0, s1(data) ∈
(0, 1), but they are all independent of r, ε. Therefore, for a given ε∗ ∈ (0, 1)
as in the statement of our lemma, we choose ε and r∗ small enough to satisfy

cd [P (ε, r
∗)]s0 ⩽ ε∗. (4.2.90)

Taking into account the dependence of the constants cd and s0 as mentioned
above, the last display gives us the dependence of r∗ as in the statement of
the present lemma. Furthermore, by (4.2.89), we conclude with

 

B1/8

Ψ̄0

(
|w̄ − h̄|

)
dx ⩽ ε∗. (4.2.91)

Proof of (4.2.47). We observe that by a standard density argument, the
relation in (4.2.86) still holds for every φ ∈ W 1,1

0 (B1/8) with Ψ̄0(|Dφ|) ∈
L1(B1/8). Since the structure conditions (4.2.59a)-(4.2.59b) are satisfied for
the vector field Ā0(·) with respect to N -function Ψ̄0 which also belongs to N
with an index independent of ā(x̄a) and b̄(x̄b), we are in a position to apply
the results from [111] to obtain the following a priori Lipschitz estimate:

sup
B1/16

Ψ̄0(|Dh̄|) ⩽ c

 

B1/8

Ψ̄0(|Dh̄|) dx (4.2.92)

with some constant c ≡ c(n, s(Ψ), ν, L). For any τ ∈ (0, 1/16), we have that

 

Bτ

Ψ̄0

(∣∣∣∣w̄ − (w̄)Bτ

τ

∣∣∣∣) dx ⩽
 

Bτ

Ψ̄0

(∣∣∣∣w̄ − (h̄)Bτ

τ

∣∣∣∣) dx
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⩽ c

 

Bτ

Ψ̄0

(∣∣∣∣ h̄− (h̄)Bτ

τ

∣∣∣∣) dx+ c

 

Bτ

Ψ̄0

(∣∣∣∣w̄ − h̄

τ

∣∣∣∣) dx

(4.2.91)

⩽ c sup
Bτ

Ψ̄0(|Dh̄|) + cτ−(n+s(Ψ)+1)ε∗

(4.2.92)

⩽ c

 

B1/8

Ψ̄0(|Dh̄|) dx+ cτ−(n+s(Ψ)+1)ε∗

(4.2.87)

⩽ c+ cτ−(n+s(Ψ)+1)ε∗. (4.2.93)

By returning back to w as introduced in (4.2.51), we obtain the desired
estimate (4.2.47). The proof is complete.

4.2.3 Morrey decay estimate

Here we discuss an important outcome of Lemma 4.2.4, the so-called Morrey
decay estimate, which will play a crucial role later.

Theorem 4.2.3. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31) under
the assumption (4.1.17). If one of the assumptions (4.1.20a)-(4.1.12c) is sat-
isfied, then for every σ ∈ (0, n), there exists a constant c ≡ c(datab(Ω0), σ)
such that the following decay estimate

ˆ

Bρ

Ψ(x, |Dw|) dx ⩽ c
(ρ
r

)n−σ
ˆ

Br

Ψ(x, |Dw|) dx (4.2.94)

holds, whenever Bρ(y) ⋐ Br(y) ⊂ BR(x0).

Proof. In fact, the proof can be proceeded similarly as for the proof of Theo-
rem 3.1.2. We only show alternatives discussed in the proof of Theorem 3.1.2
for w. Let BR ≡ BR(x0) ⊂ Ω0 ⋐ Ω be a ball with R ⩽ 1 as fixed in (4.2.31).
Let Br(y) ⊂ BR be any fixed ball with r ⩽ r∗(datab(Ω0), σ) which will be
determined in a few lines.

Alternative 1: G-phase. Let τab ∈ (0, 1/64). Assume that G-phase
occurs in the ball Bτabr (see (3.2.27a) for the definition). In this case we have

a−(B2τabr) ⩽ 8[a]ωaωa(τabr) and b−(B2τabr) ⩽ 8[b]ωb
ωb(τabr). (4.2.95)
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Applying Lemma 4.2.3 in the ball B2τabr and Lemma 4.2.4, we find

ˆ

Bτabr

Ψ(x, |Dw|) dx ⩽c
ˆ

B2τabr

G

(∣∣∣∣w − (w)B2τabr

2τabr

∣∣∣∣) dx

⩽ c

ˆ

B2τabr

Ψ−
Br

(∣∣∣∣w − (w)B2τabr

2τabr

∣∣∣∣) dx

⩽ c
(
τnab + τ

−(s(Ψ)+1)
ab ε∗

) ˆ
Br

Ψ(x, |Dw|) dx (4.2.96)

for some constant c ≡ c(datab(Ω0)), provided r ⩽ r∗(datab(Ω0), ε
∗). Now

for every σ ∈ (0, n), we rewrite the last display in the following form

ˆ

Bτabr

Ψ(x, |Dw|) dx ⩽ τn−σ
ab

(
cabτ

σ
ab + cabτ

σ−(n+s(Ψ)+1)
ab ε∗

)ˆ
Br

Ψ(x, |Dw|) dx.

(4.2.97)

Here we choose parameters τab, ε
∗ having the dependence on datab(Ω0) and

σ in such a way that cabτ
σ
ab ⩽ 1/2 and cabτ

σ−(n+s(Ψ)+1)
ab ε∗ ⩽ 1/2. With those

choices, we conclude with

ˆ

Bτabr

Ψ(x, |Dw|) dx ⩽ τn−σ
ab

ˆ

Br

Ψ(x, |Dw|) dx, (4.2.98)

provided r ⩽ rab(datab(Ω0), σ).
Alternative 2: (G,Ha)-phase. Let τb ∈ (0, 1/64). Suppose that (G,Ha)-

phase occurs in Br and that b−(Bτbr) ⩽ 4[b]ωb
ωb(τbr). Clearly, we have

b−(B2τbr) ⩽ 8[b]ωb
ωb(τbr). (4.2.99)

On the other hand, we also see

a−(Bτbr) ⩾ a−(Br) > 4[a]ωaωa(r) ⩾ 4[a]ωaωa(τbr) (4.2.100)
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and

a−(Br) ⩽ a(x) ⩽ 2[a]ωaωa(r) + a−(Br) ⩽ 2a−(Br) (∀x ∈ Br). (4.2.101)

Applying Lemma 4.2.3 in the ball B2τbr and then Lemma 4.2.4 together with
recalling (4.2.101), we have

ˆ

Bτbr

Ψ(x, |Dw|) dx

⩽ c

ˆ

B2τbr

[
G

(∣∣∣∣w − (w)B2τbr

2τbr

∣∣∣∣)+ a−(B2τbr)Ha

(∣∣∣∣w − (w)B2τbr

2τbr

∣∣∣∣)] dx
⩽ c

ˆ

B2τbr

Ψ−
Br

(∣∣∣∣w − (w)B2τbr

2τbr

∣∣∣∣) dx

⩽ c
(
τnb + τ

−(s(Ψ)+1)
b ε∗

)ˆ
Br

Ψ(x, |Dw|) dx (4.2.102)

for some constant c ≡ c(datab(Ω0)), provided r ⩽ r∗(datab(Ω0), ε
∗). Then,

for every σ ∈ (0, n), we write down the last display as

ˆ

Bτbr

Ψ(x, |Dw|) dx ⩽ τn−σ
b

(
cbτ

σ
b + cbτ

σ−(n+s(Ψ)+1)
b ε∗

)ˆ
Br

Ψ(x, |Dw|) dx

for some constant cb ≡ cb(datab(Ω0)). We select small enough τb, ε
∗ depend-

ing on datab(Ω0) and σ in such a way that cbτ
σ
b ⩽ 1/2 and cbτ

σ−(n+s(Ψ)+1)
b ε∗ ⩽

1/2. In turn, we find

ˆ

Bτbr

Ψ(x, |Du|) dx ⩽ τn−σ
b

ˆ

Br

Ψ(x, |Du|) dx (4.2.103)

for every r ⩽ rb ≡ rb(datab(Ω0), σ).
Alternative 3: (G,Hb)-phase. Let τa ∈ (0, 1/64) to be fixed later. As-

sume that (G,Hb)-phase occurs inBr ((3.2.27c) happens inBr) and a
−(Bτar) ⩽
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4[a]ωaωa(τar). Then we have

a−(B2τaR) ⩽ 8[a]ωaωa(τaR). (4.2.104)

Applying Lemma 4.2.3 and then Lemma 4.2.4 together with recalling that
b−(Br) ⩽ b(x) ⩽ 2b−(Br) holds for every x ∈ Br if b−(Br) > 4[b]ωb

ωb(r)
likewise in (4.2.101), we have

ˆ

BτaR

Ψ(x, |Dw|) dx

⩽ c

ˆ

B2τar

[
G

(∣∣∣∣w − (w)B2τar

2τar

∣∣∣∣)+ b−(B2τar)Hb

(∣∣∣∣w − (w)B2τar

2τar

∣∣∣∣)] dx
⩽ c

ˆ

B2τar

Ψ−
Br

(∣∣∣∣w − (w)B2τar

2τar

∣∣∣∣) dx

⩽ c
(
τna + τ−(s(Ψ)+1)

a ε∗
) ˆ
Br

Ψ(x, |Dw|) dx (4.2.105)

for some constant c ≡ c(datab(Ω0)), provided r ⩽ r∗(datab(Ω0), ε
∗). Then,

for every σ ∈ (0, n), we write down the last display as

ˆ

Bτar

Ψ(x, |Dw|) dx ⩽ τn−σ
a

(
caτ

σ
a + caτ

σ−(n+s(Ψ)+1)
a ε∗

) ˆ
Br

Ψ(x, |Dw|) dx

for some constant ca ≡ ca(datab(Ω0)). We select small enough τa, ε
∗ depend-

ing on datab(Ω0) and σ in such a way that caτ
σ
a ⩽ 1/2 and caτ

σ−(n+s(Ψ)+1)
a ε∗ ⩽

1/2. Then we have

ˆ

Bτar

Ψ(x, |Dw|) dx ⩽ τn−σ
a

ˆ

BR

Ψ(x, |Dw|) dx (4.2.106)

for every r ⩽ ra ≡ ra(datab(Ω0), σ).
Alternative 4 : (G,Ha, Hb)-phase. Let τ0 ∈ (0, 1/64) to be chosen later.

We assume that (G,Ha, Hb)-phase occurs in Br, which means that (3.2.27d)
happens in Br. In this situation, from the observation in (4.2.101) we see that
a−(Br) ⩽ a(x) ⩽ 2a−(Br) and b−(Br) ⩽ b(x) ⩽ 2b−(Br) for every x ∈ Br.
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Then again applying Lemma 4.2.3 and Lemma 4.2.4, we find

ˆ

Bτ0r

Ψ(x, |Dw|) dx ⩽ c

ˆ

B2τ0r

Ψ−
B2τ0R

(∣∣∣∣w − (w)B2τ0r

2τ0r

∣∣∣∣) dx

⩽ c

ˆ

B2τ0r

Ψ−
Br

(∣∣∣∣w − (w)B2τ0r

2τ0r

∣∣∣∣) dx

⩽ c
(
τn0 + τ

−(s(Ψ)+1)
0 ε∗

) ˆ
Br

Ψ(x, |Dw|) dx (4.2.107)

for some constant c ≡ c(datab(Ω0)), provided r ⩽ r∗(datab(Ω0), ε
∗). Then,

for every σ ∈ (0, n), we write down the last display as

ˆ

Bτ0r

Ψ(x, |Dw|) dx ⩽ τn−σ
0

(
c0τ

σ
0 + c0τ

σ−(n+s(Ψ)+1)
0 ε∗

)ˆ
Br

Ψ(x, |Dw|) dx

for some constant c0 ≡ c0(datab(Ω0)). Then we choose τ0, ε
∗ depending on

datab(Ω0) and σ in such a way that c0τ
σ
0 ⩽ 1/2 and c0τ

σ−(n+s(Ψ)+1)
0 ε∗ ⩽ 1/2.

Then we haveˆ

Bτ0r

Ψ(x, |Dw|) dx ⩽ τn−σ
0

ˆ

Br

Ψ(x, |Dw|) dx (4.2.108)

for every r ⩽ r0 ≡ r0(datab(Ω0), σ).
Conclusion. Since we have alternatives discussed above, the remaining

part of the proof can be argued in a similar way as starting from Step 2 until
the end of the proof of Theorem 3.1.2. The proof is complete.

4.2.4 Gradient estimates.

Now we shall focus on the gradient estimates of w ∈ W 1,Ψ(BR), the solution
to (4.2.31) under each assumption of (4.1.20a)-(4.1.20c).

Theorem 4.2.4. Let w ∈ W 1,Ψ(BR) be the weak solution to (4.2.31) un-
der the assumption (4.1.17). Suppose that one of the assumptions (4.1.20a)-
(4.1.20c) is satisfied.
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1. Then for every d ⩾ 1, there exists a constant c ≡ c(datab(Ω0), d) such
that  

Br

[
Ψ−

B4r
(|Dw|)

]d
dx

 1
d

⩽ c

 

B4r

Ψ(x, |Dw|) dx (4.2.109)

holds true, whenever B4r ≡ B4r(y) ⊂ BR is a ball.

2. Then there exists a constant cab ≡ cab(datab(Ω0)) such that

 

Br

|Ψ+
Br
(|Dw|)−Ψ(x, |Dw|)| dx ⩽ cabQ(ε, r)

 

B8r

Ψ(x, |Dw|) dx

(4.2.110)

holds, whenever B8r ≡ B8r(y) ⊂ BR is a ball and ε ∈ (0, 1) is arbitrary,
where

Q(ε, r) :=



ε+ ωa(r)

(
1 +

1

ωa(µ1(ε))

)
+ ωb(r)

(
1 +

1

ωb(µ1(ε))

)
if (4.1.20a) is assumed,

ε+ ωa(r)

(
1 +

1

ωa(µ2(ε))

)
+ ωb(r)

(
1 +

1

ωb(µ2(ε))

)
if (4.1.20b) is assumed,

r
αδ0
1+δ0 + r

βδ0
1+δ0

if (4.1.20c) is assumed

(4.2.111)

for some constants µ1 and µ2 depending only on ε.

Proof. First we prove (4.2.109). Let x1, x2 ∈ Br be any points. Then applying
Theorem 4.2.2 and then Theorem 4.2.3, we have

Ψ−
B2|x1−x2|(x1)

(
|w(x1)− w(x2)|

|x1 − x2|

)
⩽ c

 

B2|x1−x2|(x1)

Ψ(x, |Dw|) dx

⩽ c

(
r

|x1 − x2|

)σ  

B2r(x1)

Ψ(x, |Dw|) dx

(4.2.112)
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for some c ≡ c(datab(Ω0), σ), whenever σ ∈ (0, n). Then last display implies
that  

Br

[
Ψ−

B4r

(
|w(x1)− w(x2)|

|x1 − x2|

)]d
dx1

 1
d

⩽ c

 
Br

(
r

|x1 − x2|

)σd

dx1

 1
d  

B4r

Ψ(x, |Dw|) dx (4.2.113)

holds for some constant c ≡ c(datab(Ω0), σ). By a standard calculation, we
observe that 

Br

(
r

|x1 − x2|

)σd

dx1

 1
d

⩽

(
c(n)

n− σd

) 1
d

(4.2.114)

holds, whenever σd < n. Now using the last display in (4.2.113) and choosing
σ = n/2d, we see that 

Br

[
Ψ−

B4r

(
|w(x1)− w(x2)|

|x1 − x2|

)]d
dx1

 1
d

⩽ c(datab(Ω0), d)

 

B4r

Ψ(x, |Dw|) dx

(4.2.115)

holds for a.e x2 ∈ Br. Finally, applying Fatou’s lemma, we arrive at the
desired estimate (4.2.109). Now we turn our attention to proving (4.2.110).
Using the definition of ωa(·) and ωb(·), we see

I :=

 

Br

|Ψ+
Br
(|Dw|)−Ψ(x, |Dw|)| dx (4.2.116)

⩽ 2[a]ωaωa(r)

 

Br

Ha(|Dw|) dx+ 2[b]ωb
ωb(r)

 

Br

Hb(|Dw|) dx

=: Ia + Ib (4.2.117)

Now we estimate the terms Ia and Ib in the above display. For this, we shall
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consider three cases depending on which one of the assumptions (4.1.20a)-
(4.1.20c) comes into play.

Case 1: (4.1.20a) is in force. Recalling (4.2.66), for every ε ∈ (0, 1)
there exists µ1 ≡ µ1(ε) such that

Ia = 2[a]ωaωa(r)

 

Br

(Ha ◦G−1) (G(|Dw|))
G(|Dw|)

G(|Dw|) dx

⩽ cωa(r)ε

 

Br

1 +
1

ωa

(
[G(|Dw|)]− 1

n

)
G(|Dw|) dx

+ cωa(r)

(
1 +

1

ωa(µ1)

)  

Br

G(|Dw|) dx (4.2.118)

for some constant c ≡ c([a]ω, λ1). Arguing similarly as we have done in
(4.2.68) and using (4.2.109) together with (4.2.34), we have

 

Br

1 +
1

ωa

(
[G(|Dw|)]− 1

n

)
G(|Dw|) dx

⩽
 

Br

(
1 +

1

ωa(r)
+
r[G(|Dw|)] 1n

ωa(r)

)
G(|Dw|) dx

⩽

(
1 +

1

ωa(r)

)  

Br

G(|Dw|) dx

+
c(datab(Ω0))

ωa(r)

ˆ

B4r

Ψ(x, |Dw|) dx

 1
n  

B4r

Ψ(x, |Dw|) dx

⩽

(
1 +

c(datab(Ω0))

ωa(r)

)  

B4r

Ψ(x, |Dw|) dx. (4.2.119)
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Inserting the last display into (4.2.118) and recalling R ⩽ 1, we have

Ia ⩽ c(datab(Ω0))

(
ε+ ωa(r)

(
1 +

1

ωa(µ1(ε))

))  

B8r

Ψ(x, |Dw|) dx.

(4.2.120)

In the exactly same way, we have

Ib ⩽ c(datab(Ω0))

(
ε+ ωb(r)

(
1 +

1

ωb(µ1(ε))

))  

B8r

Ψ(x, |Dw|) dx.

(4.2.121)

Plugging the estimates of the last two displays into (4.2.116), we arrive at
the validity of (4.2.110) when (4.1.20a) is in force.

Case 2: (4.1.20b) is in force. First applying Lemma 2.1.5, there exists
a constant d ≡ d(s(G), s(Ha), s(Hb)) such that the maps

t 7→
(
Ha ◦

(
Ψ−

B4r

)−1
)(

t
1
d

)
and t 7→

(
Hb ◦

(
Ψ−

B4r

)−1
)(

t
1
d

)
are concave in (0,∞). Now applying Jensen’s inequality and (4.2.109), we
see

Ia := 2[a]ωaωa(r)

 

Br

(
Ha ◦

(
Ψ−

B4r

)−1
)((

[Ψ−
B4r

(|Dw|)]d
) 1

d

)
dx

⩽ 2[a]ωaωa(r)
(
Ha ◦

(
Ψ−

B4r

)−1
)

 
Br

[Ψ−
B4r

(|Dw|)]d dx

 1
d


⩽ cωa(r)

(
Ha ◦

(
Ψ−

B4r

)−1
) 

B4r

Ψ(x, |Dw|) dx

 (4.2.122)

for some constant c ≡ c(datab(Ω0)). Recalling (4.2.73) and letting M := 

B4r

Ψ(x, |Dw|) dx for the simplicity of writing, we continue to estimate the
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last display as follows

I ⩽ cωa(r)

(
H ◦

(
Ψ−

B4r

)−1
)
(M)(

G ◦
(
Ψ−

B4r

)−1
)
(M)

M

⩽ c

ωa(r)ε

1 +
1

ωa

([(
Ψ−

B4r

)−1
(M)

]−1
)
+ ωa(r)

(
1 +

1

ωa(µ2)

)M
(4.2.123)

for some constant c ≡ c(datab(Ω0)) and µ2 ≡ µ2(ε), whenever ε ∈ (0, 1). At
this moment, we use a Caccioppoli type inequality of Proposition 4.2.4 and
then (4.1.10) to have

M ⩽ c

 

B8r

Ψ

(
x,

∣∣∣∣w − (w)B8r

r

∣∣∣∣) dx

⩽ cωa(r)

 

B8r

Ha

(∣∣∣∣w − (w)B8r

r

∣∣∣∣) dx+ cωb(r)

 

B8r

Hb

(∣∣∣∣w − (w)B8r

r

∣∣∣∣) dx

+ c

 

B8r

Ψ−
B4r

(∣∣∣∣w − (w)B8r

r

∣∣∣∣) dx

⩽ cωa(r)

 

B8r

1 +
1

ωa

(∣∣∣w−(w)B8r

r

∣∣∣−1
)
G

(∣∣∣∣w − (w)B8r

r

∣∣∣∣) dx

+ cωb(r)

 

B8r

1 +
1

ωb

(∣∣∣w−(w)B8r

r

∣∣∣−1
)
G

(∣∣∣∣w − (w)B8r

r

∣∣∣∣) dx

+ c

 

B8r

Ψ−
B4r

(∣∣∣∣w − (w)B8r

r

∣∣∣∣) dx

⩽ c

 

B8r

Ψ−
B4r

(∣∣∣∣w − (w)B8r

r

∣∣∣∣) dx ⩽ cΨ−
B4r

(
1

r

)
(4.2.124)
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for some constant c ≡ c(datab(Ω0)), where we have used (4.2.35). Inserting
the resulting estimate of the previous display into (4.2.123) and recalling
R ⩽ 1, we find

Ia ⩽ c(datab(Ω0))

(
ε+ ωa(r)

(
1 +

1

ωa(µ2)

))  

B8r

Ψ(x, |Dw|) dx (4.2.125)

for some constant µ2 ≡ µ2(ε), whenever ε ∈ (0, 1). In a similar way, we also
have

Ib ⩽ c(datab(Ω0))

(
ε+ ωb(r)

(
1 +

1

ωb(µ2)

))  

B8r

Ψ(x, |Dw|) dx. (4.2.126)

Inserting the estimates in the last two displays into (4.2.116), we see (4.2.110)
when the condition (4.1.20b) is assumed.

Case 3: (4.1.20c) is in force. As before, in this case we shall take an
advantage of ωa(ρ) = ρα and ωb(ρ) = ρβ for some α, β ∈ (0, 1]. Then using
(4.1.9) and applying (4.2.109), we have

Ia = 2[a]αr
α

 

Br

Ha(|Dw|) dx

⩽ crα
 

Br

[
G(|Dw|) + [G(|Dw|)]1+

α
n

]
dx

⩽ crα
 

Br

G(|Dw|) dx+ crα

 

B4r

Ψ(x, |Dw|) dx

 1+α
n

⩽ c

rα + r
αδ0
1+δ0

ˆ

B4r

[Ψ(x, |Dw|)]1+δ0 dx

 1
1+δ0

  

B4r

Ψ(x, |Dw|) dx

⩽ c(datab(Ω0))r
αδ0
1+δ0

 

B4r

Ψ(x, |Dw|) dx, (4.2.127)

where in the last two inequalities of the last display we have used Proposition
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4.2.3 together with Theorem 4.2.1. In the same way, we find

Ib ⩽ c(datab(Ω0))r
βδ0
1+δ0

 

B4r

Ψ(x, |Dw|) dx. (4.2.128)

Again plugging the content of the last two displays into (4.2.116), we arrive
at the estimate (4.2.110) when the condition (4.1.20c) is assumed.

4.3 Proof of Theorem 4.1.2

Basically, the structure of the proof is similar as the proof of [14, Theorem
2.1] or [15, Theorem 1.1], which is initially introduced in [3, 59]. The proof
of Theorem 4.1.2 consists of several steps.

Step 1: Exit time and covering of the level sets. This step is essen-
tially classical and we provide it for the completeness. Let BR ≡ BR(x0) ⊂
Ω0 ⋐ Ω be a fixed ball with R ⩽ R0. The size of R0 will be determined by
the end of the proof. Now consider radii R/2 ⩽ R1 < R2 ⩽ R and consider
the level sets

Es
λ := {x ∈ Bs(x0) : Ψ(x, |Du|) > λ} for every R/2 ⩽ s ⩽ R and λ > 0.

(4.3.1)

Let us consider the map defined by

T (Br(y)) :=

 

Br(y)

[Ψ(x, |Du|) +MΨ(x, |F |)] dx (4.3.2)

for every ball Br(y) ⊂ BR and some M ⩾ 1 to be determined later. Then it’s
clear that

lim
r→0+

T (Br(y)) > λ for a.e. y ∈ Es
λ, R/2 ⩽ s ⩽ R. (4.3.3)

If y ∈ BR1 and r ∈
[
R2 −R1

80
, R2 −R1

]
, then we see

T (Br(y)) ⩽
80nRn

2

(R2 −R1)n

 

BR2

[Ψ(x, |Du|) +MΨ(x, |F |)] dx := λ0. (4.3.4)
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Taking into account (4.3.3) and (4.3.4), for the values of λ > λ0 and for

almost every y ∈ ER1
λ , there exists a radius ry <

R2 −R1

80
such that

T (Bry(y)) = λ and T (Br(y)) < λ for every r ∈ (ry, R2 −R1]. (4.3.5)

The last display implies that the family
{
Bry(y)

}
covers ER1

λ up to a negligible
set, and then applying Vitali’s covering theorem, there exists a countable
family of mutually disjoint balls

{
Bryk (yk)

}∞
k=1

≡ {B̃k}∞k=1 such that

ER1
λ ⊂

∞⋃
k=1

5B̄k (4.3.6)

and

T (Bryk
(yk)) = λ and T (Br(yk)) < λ for every r ∈ (ryk , R2 −R1] (∀k ∈ N).

(4.3.7)

In the rest of the proof, we shall denote

Bk ≡ 5Bryk
(yk) and rk = 5ryk . (4.3.8)

By this construction, we here notice that

80B̃k = 16Bk ⊂ BR2 , rk = 5ryk ⩽
R2 −R1

16
(4.3.9)

and that
T (B̃k) =

 

B̃k

[Ψ(x, |Du|) +MΨ(x, |F |)] dx = λ

T (16Bk) =

 

16Bk

[Ψ(x, |Du|) +MΨ(x, |F |)] dx ⩽ λ
(4.3.10)

Step 2: Comparison estimates. Let us start with the following Dirich-
let boundary value problem{

− divA(x,Dwk) = 0 in 16Bk,

wk ∈ u+W 1,Ψ
0 (16Bk).

(4.3.11)
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CHAPTER 4. CALDERÓN-ZYGMUND THEORY FOR ORLICZ
PHASE PROBLEMS

Using the arguments employed in the proof of [15, Theorem 1.1], we discover
that, for every θ ∈ (0, 1), there exists a constant c ≡ c(n, s(Ψ), ν, L, θ) such
that 

16Bk

|VΨ(x,Dwk)− VΨ(x,Du)|2 dx ⩽ θ

 

16Bk

Ψ(x, |Du|) dx+ cθ

 

16Bk

Ψ(x, |F |) dx,

(4.3.12)

where the vector field VΨ has been defined in (2.1.8). At this moment applying
Lemma 2.1.1 together with the last display, we can show that

 

16Bk

Ψ(x, |Du−Dwk|) dx ⩽ θ

 

16Bk

Ψ(x, |Du|) dx+ cθ

 

16Bk

Ψ(x, |F |) dx

(4.3.13)

holds for some constant cθ ≡ cθ(n, s(Ψ), ν, L, θ), whenever ε ∈ (0, 1). Now
let xak , xbk ∈ 2Bk be points such that a(xak) = sup

x∈2Bk

a(x) and b(xbk) =

sup
x∈2Bk

b(x). Then we consider the following Dirichlet problem

{
− divAk(Dvk) = 0 in 2Bk,

vk ∈ wk +W
1,Ψ+

2Bk
0 (2Bk),

(4.3.14)

where

Ak(z) := AG(z) + a(xak)AHa(z) + b(xbk)AHb
(z) (∀z ∈ Rn \ {0}) (4.3.15)

and

Ψ+
2Bk

(t) = G(t) + a(xak)Ha(t) + b(xbk)Hb(t) (∀t ⩾ 0). (4.3.16)

The existence of the weak solution vk ∈ W
1,Ψ+

2Bk (2Bk) to (3.5.14) is ensured
by Theorem 4.2.4 and Proposition 4.2.1. The weak formulation of the equa-
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tions (4.3.11) and (4.3.14) can be written as

 

2Bk

⟨Ak(Dvk)− Ak(Dwk), Dφ⟩ dx =

 

2Bk

⟨A(x,Dw)− Ak(Dwk), Dφ⟩ dx

(4.3.17)

for every φ ∈ C∞
0 (2Bk). Taking into account Proposition 4.2.1 and Lemma

4.2.1, we find that the function φ = vk −wk is admissible in (4.3.17). There-
fore, using the structure assumption (4.1.17) and Young’s type inequality of
Lemma 2.1.4, we see

 

2Bk

|VΨ+
2Bk

(Dvk)− VΨ+
2Bk

(Dwk)|2 dx

⩽ c

 

2Bk

(a(xak)− a(x))
Ha(|Dwk|)
|Dwk|

|Dwk −Dvk| dx

+ c

 

2Bk

(b(xbk)− b(x))
Hb(|Dwk|)
|Dwk|

|Dwk −Dvk| dx

⩽ τ0

 

2Bk

a(xak)Ha(|Dwk −Dvk|) dx+
c

τ
s(Ha)
0

 

2Bk

(a(xak)− a(x))Ha(|Dwk|) dx

+ τ0

 

2Bk

b(xbk)Hb(|Dwk −Dvk|) dx+
c

τ
s(Hb)
0

 

2Bk

(b(xbk)− b(x))Hb(|Dwk|) dx

(4.3.18)

for some constant c ≡ c(s(G), s(Ha), s(Hb), ν, L), whenever τ0 ∈ (0, 1), where
we have also used the fact that a(x) ⩽ a(xak) and b(x) ⩽ b(xbk) for every
x ∈ 2Bk. Applying Lemma 2.1.1 for Ψk defined in (4.3.16) together with the
last display, we have

 

2Bk

Ψ+
2Bk

(|Dwk −Dvk|) dx

⩽ τ

 

2Bk

Ψ+
2Bk

(|Dwk|) dx+
c

τ

 

2Bk

|VΨ+
2Bk

(Dwk)− VΨ+
2Bk

(Dvk)|2 dx
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⩽ τ

 

2Bk

Ψ+
2Bk

(|Dwk|) dx+
c∗
τ
τ0

 

2Bk

Ψ+
2Bk

(|Dwk −Dvk|) dx

+
c∗

ττ
s(Ha)
0

 

2Bk

(a(xak)− a(x))Ha(|Dwk|) dx

+
c∗

ττ
s(Hb)
0

 

2Bk

(b(xbk)− a(x))Hb(|Dwk|) dx (4.3.19)

for some constant c∗ ≡ c(s(G), s(Ha), s(Hb), ν, L) ⩾ 1, whenever τ, τ0 ∈
(0, 1). Choosing τ0 =

τ

2c∗
and reabsorbing the terms in the last display, for

every τ ∈ (0, 1), we have

 

2Bk

Ψ+
2Bk

(|Dwk −Dvk|) dx

⩽ τ

 

2Bk

Ψ+
2Bk

(|Dwk|) dx+
c

τ s(Ψ)+1

 

2Bk

|Ψ+
2Bk

(|Dwk|)−Ψ(x, |Dwk|)| dx

⩽ τ

 

2Bk

Ψ(x, |Dwk|) dx+
c

τ s(Ψ)+1

 

2Bk

|Ψ+
2Bk

(|Dwk|)−Ψ(x, |Dwk|)| dx

(4.3.20)

for some constant c ≡ c(s(G), s(Ha), s(Hb), ν, L), where s(Ψ) = s(G) +
s(Ha) + s(Hb) (see Remark 2.1.2). At this moment we apply (4.2.110) of
Theorem 4.2.4 depending on which one of the assumptions (4.1.20a)-(4.1.20c)
comes into play. In turn, we have

 

2Bk

Ψ+
2Bk

(|Dwk −Dvk|) dx ⩽ τ

 

2Bk

Ψ(x, |Dwk|) dx+ c
Q(ε, R)

τ s(Ψ)+1

 

16Bk

Ψ(x, |Dwk|) dx

⩽ c

(
τ +

Q(ε, R)

τ s(Ψ)+1

)  

16Bk

Ψ(x, |Du|) dx (4.3.21)

for some constant c ≡ c(datab(Ω0)), where
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Q(ε, R) :=



ε+ ωa(R)

(
1 +

1

ωa(µ1(ε))

)
+ ωb(R)

(
1 +

1

ωb(µ1(ε))

)
if (4.1.20a) is assumed,

ε+ ωa(R)

(
1 +

1

ωa(µ2(ε))

)
++ωb(R)

(
1 +

1

ωb(µ2(ε))

)
if (4.1.20b) is assumed,

R
αδ0
1+δ0 +R

βδ0
1+δ0

if (4.1.20c) is assumed

(4.3.22)

for any ε ∈ (0, 1). The constants µ1, µ2 are determined by Theorem 4.2.4, and
δ0 is a higher integrability exponent coming from Proposition 4.2.3 and The-
orem 4.2.1. Combining the estimates (4.3.13) and (4.3.21) and using (2.1.6),
we have 

2Bk

Ψ(x, |Du−Dvk|) dx

⩽ 2s(Ψ)+1

 

2Bk

Ψ(x, |Du−Dwk|) dx+ 2s(Ψ)+1

 

2Bk

Ψ(x, |Dwk −Dvk|) dx

⩽ c0

(
θ + τ +

Q(ε, R)

τ s(Ψ)+1

)  

16Bk

Ψ(x, |Du|) dx+ cθ

 

16Bk

Ψ(x, |F |) dx (4.3.23)

for some constants c0 ≡ c0(datab(Ω0)) and cθ ≡ cθ(n, s(G), s(Ha), s(Hb), ν, L, θ),
whenever θ, τ, ε ∈ (0, 1), where the function Q(ε, R) has been defined in
(4.3.22) depending on which one of the assumptions (4.1.20a)-(4.1.20c) is
under consideration. We use the auxiliary notation

S(θ, τ, ε, R,M) := c0

(
θ + τ +

Q(ε, R)

τ s(Ψ)+1

)
+
cθ
M

(4.3.24)

and then using (4.3.10) directly in (4.3.23) to discover the desired estimate

 

2Bk

Ψ(x, |Du−Dvk|) dx ⩽ S(θ, τ, ε, R,M)λ, (4.3.25)

which is valid for all the balls Bk from the covering constructed in (4.3.8).
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Step 3: A priori estimate for Dvk. The energy estimates for vk and
wk together with Theorem 4.2.4 imply that

 

2Bk

Ψ+
2Bk

(|Dvk|) dx ⩽ c

 

2Bk

Ψ+
2Bk

(|Dwk|) dx ⩽ c

 

16Bk

Ψ(x, |Dwk|) dx

⩽ c

 

16Bk

Ψ(x, |Du|) dx ⩽ cλ (4.3.26)

for some constant c ≡ c(datab(Ω0)). Then we apply the classical result of
[111, Theorem 1.2] together with the last display to have the Lipschitz esti-
mate

sup
x∈Bk

Ψ(x, |Dvk|) ⩽ sup
x∈Bk

Ψ+
2Bk

(|Dvk(x)|) ⩽ c

 

2Bk

Ψ+
2Bk

(|Dvk|) dx ⩽ clλ

(4.3.27)

with cl ≡ cl(datab(Ω0)).
Step 4: Estimates involving level sets. By using (2.1.6) and elemen-

tary calculations, we discover

21+s(Ψ)clλ|Bk ∩ {Ψ(x, |Du|) > 22+s(Ψ)clλ}|+
1

2

ˆ

Bk∩{Ψ(x,|Du|)>22+s(Ψ)clλ}

Ψ(x, |Du|) dx

⩽
ˆ

Bk∩{Ψ(x,|Du|)>22+s(Ψ)clλ}

Ψ(x, |Du|) dx

⩽ 21+s(Ψ)

ˆ

Bk

Ψ(x, |Du−Dvk|) dx

+ 21+s(Ψ)

ˆ

Bk∩{Ψ(x,|Du|)>22+s(Ψ)clλ}

Ψ(x, |Dvk|) dx

⩽ 21+s(Ψ)

ˆ

Bk

Ψ(x, |Du−Dvk|) dx

21+s(Ψ)clλ|Bk ∩ {Ψ(x, |Du|) > 22+s(Ψ)clλ}|, (4.3.28)
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where we have also used (4.3.27) to get the last estimate. Therefore, we haveˆ

Bk∩{Ψ(x,|Du|)>22+s(Ψ)clλ}

Ψ(x, |Du|) dx ⩽ 22+s(Ψ)|2Bk|
 

2Bk

Ψ(x, |Du−Dvk|) dx

(4.3.29)

Recalling (4.3.24) and (4.3.8) that |2Bk| = 10n|B̃k|, we get

ˆ

Bk∩{Ψ(x,|Du|)>22+s(Ψ)clλ}

Ψ(x, |Du|) dx ⩽ 22+s(Ψ)10nS(θ, τ, ε, R,M)λ|B̃k|.

(4.3.30)

Recalling (4.3.10), we find that

|B̃k| =
1

λ

ˆ

B̃k

(Ψ(x, |Du|) +MΨ(x, |F |)) dx. (4.3.31)

Next, we estimate

|B̃k| ⩽
1

λ

ˆ

B̃k∩{Ψ(x,|Du|)>λ
4
}

Ψ(x, |Du|) dx+ 1

λ

ˆ

B̃k∩{Ψ(x,|F |)> λ
4M

}

MΨ(x, |F |) dx+ |B̃k|
2
,

(4.3.32)

and hence

|B̃k| ⩽
2

λ

ˆ

B̃k∩{Ψ(x,|Du|)>λ
4
}

Ψ(x, |Du|) dx+ 2

λ

ˆ

B̃k∩{Ψ(x,|F |)> λ
4M

}

MΨ(x, |F |) dx.

(4.3.33)

The last display in (4.3.30) yields

ˆ

Bk∩{Ψ(x,|Du|)>22+s(Ψ)clλ}

Ψ(x, |Du|) dx

⩽ 23+s(Ψ)10nS(θ, τ, ε, R,M)

ˆ

B̃k∩{Ψ(x,|Du|)>λ
4
}

Ψ(x, |Du|) dx
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+ 23+s(Ψ)10nS(θ, τ, ε, R,M)

ˆ

B̃k∩{Ψ(x,|F |)> λ
4M

}

MΨ(x, |F |) dx. (4.3.34)

Since {Bk}∞k=1 is a covering of ER1
λ and ER1

22+s(Ψ)clλ
⊂ ER1

λ , summing up

over the covering {Bk}∞k=1, we find

ˆ

E
R1

22+s(Ψ)clλ

Ψ(x, |Du|) dx ⩽
∞∑
k=1

ˆ

Bk∩{Ψ(x,|Du|)>22+s(Ψ)clλ}

Ψ(x, |Du|) dx. (4.3.35)

Before going on, let us introduce the short notation

Ds
λ := {x ∈ Bs(x0) : Ψ(x, |F (x)|) > λ}, R/2 ⩽ s ⩽ R, λ > 0.

(4.3.36)

Then recalling that the balls {B̃k} are disjoint and using (4.3.9), we sum up
(4.3.34) over indices k to have

ˆ

E
R1
λ

Ψ(x, |Du|) dx

⩽ 23+s(Ψ)10nS(θ, τ, ε, R,M)

ˆ

E
R2

λ

24+s(Ψ)cl

Ψ(x, |Du|) dx

+ 23+s(Ψ)10nS(θ, τ, ε, R,M)

ˆ

D
R2

λ

23+s(Ψ)clM

MΨ(x, |F |) dx (4.3.37)

for all λ > 0 such that

λ ⩾ λ1 := 22+s(Ψ)clλ0 =
23+s(Ψ)cl80

nRn
2

(R2 −R1)n

 

BR2

[Ψ(x, |Du|) +MΨ(x, |F |)] dx.

Step 5: Conclusion. Let us define the truncated functions

[Ψ(x, |Du|)]t := min{Ψ(x, |Du|), t} for t ⩾ 0. (4.3.38)
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Then for t ⩾ 24+s(Ψ)clλ0, we multiply the inequality (4.3.37) by Υ′′(λ) which
is positive since Υ ∈ N , and then integrate over λ to obtain

tˆ

22+s(Ψ)clλ0

Υ′′(λ)

ˆ

E
R1
λ

Ψ(x, |Du|) dx dλ

⩽ 23+s(Ψ)10nS(θ, τ, ε, R,M)

tˆ

22+s(Ψ)clλ0

Υ′′(λ)

ˆ

E
R2

λ

24+s(Ψ)cl

Ψ(x, |Du|) dx dλ

+ 23+s(Ψ)10nS(θ, τ, ε, R,M)

tˆ

22+s(Ψ)clλ0

Υ′′(λ)

ˆ

D
R2

λ

24+s(Ψ)clM

MΨ(x, |F |) dx dλ.

(4.3.39)

Fubini’s theorem to the term on the left hand side of the last display
yields

tˆ

22+s(Ψ)clλ0

Υ′′(λ)

ˆ

E
R1
λ

Ψ(x, |Du|) dx dλ =

ˆ

BR1

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx

−
22+s(Ψ)clλ0ˆ

0

Υ′′(λ)

ˆ

E
R1
λ

Ψ(x, |Du|) dx dλ.

(4.3.40)

Using the fact Υ′(0) = 0 and Fubini’s theorem, we have

ˆ

BR1

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx =

ˆ

BR1

Ψ(x,|Du|)ˆ

0

[Υ′ (min{λ, t})]′ Ψ(x, |Du|) dλ dx

=

ˆ

Br1

∞̂

0

|{(x, λ) ∈ BR1 × (0,∞) : Ψ(x, |Du|) > λ}| [Υ′ (min{λ, t})]′Ψ(x, |Du|) dλ dx

218
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=

tˆ

0

Υ′′(λ)

ˆ

E
R1
λ

Ψ(x, |Du|) dx dλ.

Recalling the definition of λ0 in (4.3.4), we estimate the last integral in
(4.3.40) as follows:

22+s(Ψ)clλ0ˆ

0

Υ′′(λ)

ˆ

E
R1
λ

Ψ(x, |Du|) dx dλ

⩽

22+s(Ψ)clλ0ˆ

0

Υ′′(λ) dλ

ˆ

BR1

Ψ(x, |Du|) dx

⩽ Υ′ (22+s(Ψ)clλ0
) ˆ
Br2

Ψ(x, |Du|) dx

⩽ (s(Υ) + 1)
Υ
(
22+s(Ψ)clλ0

)
22+s(Ψ)clλ0

λ0|Br2|

⩽ (s(Υ) + 1)(22+s(Ψ)cl)
s(Υ)Υ(λ0)|Br2|, (4.3.41)

where we have used 22+s(Ψ)cl ⩾ 1.
Now we treat the remaining terms in (4.3.39) similarly. By changing vari-

ables we have

tˆ

22+s(Ψ)clλ0

Υ′′(λ)

ˆ

E
R2

λ

24+s(Ψ)cl

Ψ(x, |Du|) dx dλ

⩽ 24+s(Ψ)cl

t

24+s(Ψ)clˆ

0

Υ′′ (24+s(Ψ)clλ
) ˆ
E

R2
λ

Ψ(x, |Du|) dx dλ

⩽ [s(Υ)]3(24+s(Ψ)cl)
s(Υ)

t

24+s(Ψ)clˆ

0

Υ′′(λ)

ˆ

E
R2
λ

Ψ(x,Du) dx dλ
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⩽ [s(Υ)]3(24+s(Ψ)cl)
s(Υ)

ˆ

BR2

Υ′
(
[Ψ(x, |Du|)] t

24+s(Ψ)cl

)
Ψ(x, |Du|) dx

⩽ [s(Υ)]3(24+s(Ψ)cl)
s(Υ)

ˆ

BR2

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx,

(4.3.42)

where in the last inequality we have used the trivial fact that

Υ′
(
[Ψ(x, |Du|)] t

24+s(Ψ)cl

)
⩽ Υ′ ([Ψ(x, |Du|)]t)

holds, whenever 24+s(Ψ)cl ⩾ 1. Arguing as for (4.3.42), we use Fubini’s theo-
rem again for the last term in (4.3.39) to get

tˆ

22+s(Ψ)clλ0

Υ′′(λ)

ˆ

D
R2

λ

24+s(Ψ)clM

Ψ(x, |F |) dx dλ

⩽

∞̂

0

Υ′′(λ)

ˆ

D
r2

λ

24+s(Ψ)clM

Ψ(x, |F |) dx dλ

⩽ [s(Υ)]3(24+s(Ψ)clM)s(Υ)

ˆ

BR2

Υ(Ψ(x, |F |)) dx. (4.3.43)

Putting the estimates in (4.3.41)-(4.3.43) into (4.3.39) and manipulating
the terms in a standard way, we deduce that

 

BR1

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx

⩽ c
s(Υ)+1
f c

s(Υ)
l S(θ, τ, ε, R,M)

 

BR2

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx

+ c
s(Υ)+1
f c

s(Υ)
l M s(Υ)S(θ, τ, ε, R,M)

 

BR2

Υ([Ψ(x, |F |)]) dx
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+ c
s(Υ)+1
f c

s(Υ)
l Υ(λ0), (4.3.44)

for every t ⩾ 24+s(Ψ)clλ0, where cl ≡ cl(datab(Ω0)) was given in (4.3.27)
and cf ≡ cf (n, s(Ψ)). This last inequality holds for any M ⩾ 1, R ⩽ 1 and
θ, τ, ε ∈ (0, 1). Now we choose those constants in a such way to satisfy

c
s(Υ)+1
f c

s(Υ)
l S(θ, τ, ε, R,M) ⩽

1

2
, (4.3.45)

where the quantity S(θ, τ, ε, R,M) has been defined in (4.3.24). Indeed, we
take θ, τ ≡ θ, τ(datab(Ω0), s(Υ)) ∈ (0, 1) such that

θ = τ :=
1

8c0c
s(Υ)+1
f c

s(Υ)+1
l

. (4.3.46)

Since θ is a fixed constant depending on datab(Ω0) and s(Υ), we selectM ⩾ 1
satisfying

c0c
s(Υ)+1
f c

s(Υ)
l

cθ
M

⩽
1

8
. (4.3.47)

Finally, we choose ε, R small enough depending on datab(Ω0) and s(Υ) such
that

c0c
s(Υ)+1
f c

s(Υ)
l

Q(ε, R)

τ s(Ψ)+1
⩽

1

8
. (4.3.48)

All the above choices of constants as in (4.3.46)-(4.3.48) ensure that (4.3.45)
holds. Inserting these choices of constants in (4.3.46)-(4.3.48) into (4.3.44)
and using the definition of λ0 in (4.3.4), we conclude that

 

BR1

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx

⩽
1

2

 

BR2

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx+ c

 

BR

Υ([Ψ(x, |F |)]) dx
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+
cRn(s(Υ)+1)

(R2 −R1)n(s(Υ)+1)
Υ

 

BR

[Ψ(x, |Du|) +MΨ(x, |F |)] dx


(4.3.49)

for some constants c ≡ c(datab(Ω0), s(Υ)) and M ≡ M(datab(Ω0), s(Υ)).
Notice that t ⩾ 24+s(Ψ)clλ0 and all constants appearing in the above estimates
are independent of t. We now apply Lemma 2.2.1 for a function

h(s) :=

 

Bs

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx

with γ1 ≡ n(s(Υ) + 1) and γ2 ≡ 0, which is a non-negative and bounded on
[R/2, R], to discover the following estimate:

 

BR/2

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx ⩽ cΥ

 

BR

[Ψ(x, |Du|) +MΨ(x, |F |)] dx


+ c

 

BR

Υ(Ψ(x, |F |)) dx

with c ≡ c(datab(Ω0), s(Υ)). After some manipulations including Jensen’s
inequality, we conclude that

 

BR/2

Υ′ ([Ψ(x, |Du|)]t)Ψ(x, |Du|) dx ⩽ cΥ

 

BR

Ψ(x, |Du|) dx


+ c

 

BR

Υ(Ψ(x, |F |)) dx (4.3.50)

with c ≡ c(datab(Ω0), s(Υ)). Letting t→ ∞ in the last display, we conclude

 

BR/2

Υ(Ψ(x, |Du|)) dx ⩽ cΥ

 

BR

Ψ(x, |Du|) dx

+ c

 

BR

Υ(Ψ(x, |F |)) dx

(4.3.51)
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for allR ⩽ R0 withR0 ≡ R0(datab(Ω0), s(Υ)), where c ≡ c(datab(Ω0), s(Υ)).
This proves (4.1.22), and then (4.1.21) follows by a standard covering argu-
ment. This completes the proof.

4.4 Proof of Theorem 4.1.1

The proof of Theorem 4.1.1 can be done by following the proof of Theorem
4.1.2. A main difficulty lies in obtaining results of Lemma (4.2.4) for the
weak solution w ∈ W 1,Ψ(BR) of the equation (4.2.31), where the vector field
A : Ω× Rn → Rn is not only in the form of (4.2.32). Essentially, the vector
field A(·) is of general type satisfying (4.1.2) under the Orlicz double phase
settings (b(·) ≡ 0). All the results of Section 4.2 can be restated and proved for
the weak solution w except the result of Lemma 4.2.4. For the completeness,
we provide the proof of Lemma 4.2.4 under the Orlicz double phase settings.

Lemma 4.4.1. Let Ψ is given as in (1.0.2) with b(·) ≡ 0, G,Ha ∈ N in the
sense of Definition 2.1.1, 0 ⩽ a(·) ∈ Cωa(Ω) for some continuous and concave
function ωa : [0,∞) → [0,∞) with ωa(0) = 0. Suppose w ∈ W 1,Ψ(BR) be the
weak solution to (4.2.31) under the assumption (4.1.2). Let Br ≡ Br(y) ⊂ BR

be any fixed ball. If one of the assumptions (4.1.12a)-(4.1.12c) is satisfied,
then for every ε∗ ∈ (0, 1), there exists a positive radius

r∗ ≡ r∗(datadb(Ω0), ε
∗) (4.4.1)

such that
 

Bλr

Ψ−
Br

(∣∣∣∣w − (w)Bλr

λr

∣∣∣∣) dx

⩽ c
(
1 + λ−(n+s(Ψ)+1)ε∗

)  
Br/2

Ψ−
Br

(∣∣∣∣w − (w)Br/2

r

∣∣∣∣) dx (4.4.2)

holds for some constant c ≡ c(datadb(Ω0)), whenever λ ∈ (0, 1/16) and
r ⩽ r∗.

Proof. Now we shall revisit the proof of Lemma 4.2.4 and keep the same
notations and steps employed there. In (4.2.58), we consider the vector field
and frozen functional by
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Ā0(z) :=
Ā(x̄a, E(r)z)

Ψ−
Br

(E(r))
and Ψ̄0(t) := Ḡ(t) + ā(x̄a)H̄a(t) (z ∈ Rn, t ⩾ 0),

(4.4.3)

where Ā(·), Ḡ, H̄a, ā(·) are defined as in (4.2.51)-(4.2.53) under the Orlicz
double phase settings. Using (4.1.2)3, for every φ ∈ W 1,∞

0 (B1/8), we have∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
 

B1/8

〈
Ā0(Dw̄)− Ā(x,Dw̄), Dφ

〉
dx

∣∣∣∣∣∣∣
⩽

 

B1/8

|Ā0(Dw̄)− Ā(x,Dw̄)| dx ∥Dφ∥L∞(B1/8)

⩽ L

 

B1/8

|ā(x)− ā(x̄a)|
H̄a(|Dw̄|)
|Dw̄|

dx ∥Dφ∥L∞(B1/8)

=: I1 ∥Dφ∥L∞(B1/8)
, (4.4.4)

which is a key difference comparing with the estimate (4.2.60) in the proof
of Lemma 4.2.4, where we only use (4.1.2)3 without setting the form as in
(4.2.32). The remaining part can be argued by following the remainder of the
proof of Lemma 4.2.4 with b(·) ≡ 0.
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Chapter 5

Regularity for
degenerate/singular fully
nonlinear elliptic equations

5.1 Hypotheses and Main results

We consider viscosity solutions to fully nonlinear elliptic equations of the
form

Φ(x, |Du|)F (D2u) = f(x) in B1, (5.1.1)

where B1 ≡ B1(0) ⊂ Rn with n ⩾ 2 is the unit ball, F : S(n) → R is a
uniformly (λ,Λ)-elliptic operator in the sense of (A1) and Φ : B1 × [0,∞) →
[0,∞) is a continuous map featuring a degeneracy and singularity for the
gradient described as in (A2). Let us recall main assumptions for the problem
(5.1.1) in this chapter for the simplicity of writing as we have introduced in
the introduction part:

(A1) The operator F : S(n) → R in (5.1.1) is continuous and uniformly
(λ,Λ)-elliptic in the sense that

λtr(N) ⩽ F (M)− F (M +N) ⩽ Λtr(N)

holds with some constants 0 < λ ⩽ Λ and F (0) = 0, whenever M,N ∈
S(n) with N ⩾ 0, where we denote by S(n) to mean the set of n × n
real symmetric matrices.
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(A2) Φ : B1 × [0,∞) → [0,∞) is a continuous map satisfying the following
properties:

1. There exist constants d(Φ) ⩾ i(Φ) > −1 such that the map t 7→
Φ(x, t)

ti(Φ)
is almost non-decreasing with constant L ⩾ 1 in (0,∞)

and the map t 7→ Φ(x, t)

td(Φ)
is almost non-increasing with constant

L ⩾ 1 in (0,∞) for all x ∈ B1.

2. There exist constants 0 < ν0 ⩽ ν1 such that ν0 ⩽ Φ(x, 1) ⩽ ν1 for
all x ∈ B1.

(A3) The term f on the right hand side of (5.1.1) belongs to C(B1)∩L∞(B1).

The Pucci extremal operators P±
λ,Λ : S(n) → R are defined as

P+
λ,Λ(M) := −λ

∑
λk>0

λk − Λ
∑
λk<0

λk

and

P−
λ,Λ(M) := −Λ

∑
λk>0

λk − λ
∑
λk<0

λk,

where {λk}nk=1 are the eigenvalues of the matrix M . The (λ,Λ)-ellipticity of
the operator F via the Pucci extremal operators can be formulated as

P−
λ,Λ(N) ⩽ F (M +N)− F (M) ⩽ P+

λ,Λ(N)

for all M,N ∈ S(n).
In what follows, for any vector ξ ∈ Rn, we define a map Gξ : B1 × Rn ×

S(n) → R by

Gξ(x, p,M) := Φ(x, |ξ + p|)F (M)− f(x) (5.1.2)

under the assumptions prescribed in (A1)-(A3). Then we shall focus on vis-
cosity solutions of the equation

Gξ(x,Du,D
2u) = 0 in B1. (5.1.3)
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Now we give the definition of a viscosity solution u of the equation (5.1.3)
as follows.

Definition 5.1.1. A lower semicontinuous function v is called a viscosity
supersolution of (5.1.3) if for all x0 ∈ B1 and φ ∈ C2(B1) such that v − φ
has a local minimum at x0, then

Gξ(x0, Dφ(x0), D
2φ(x0)) ⩾ 0.

An upper semicontinuous function w is called is a viscosity subsolution of
(5.1.3) if for all x0 ∈ B1 and φ ∈ C2(B1) such that w − φ has a local
maximum at x0, there holds

Gξ(x0, Dφ(x0), D
2φ(x0)) ⩽ 0.

We say that u ∈ C(B1) is a viscosity solution of (5.1.3) if u is a viscosity
supersolution and a subsolution simultaneously.

Also we recall a concept of superjet and subjet introduced in [60].

Definition 5.1.2. Let v : B1 → R be an upper semicontinuous function and
w : B1 → R be a lower semicontinuous function.

1. A couple (p,M) ∈ Rn × S(n) is a superjet of v at x ∈ B1 if

v(x+ y) ⩽ v(x) + ⟨p, y⟩+ 1

2
⟨My, y⟩+O(|y|2).

2. A couple (p,M) ∈ Rn × S(n) is a subjet of w at x ∈ B1 if

w(x+ y) ⩾ w(x) + ⟨p, y⟩+ 1

2
⟨My, y⟩+O(|y|2).

3. A couple (p,M) ∈ Rn × S(n) is a limiting superjet of v at x ∈ B1 if
there exists a sequence {xk, pk,Mk} → {x, p,M} as k → ∞ in a such
way that {pk,Mk} is a superjet of v at xk and lim

k→∞
v(xk) = v(x).

4. A couple (p,M) ∈ Rn × S(n) is a limiting subjet of w at x ∈ B1 if
there exists a sequence {xk, pk,Mk} → {x, p,M} as k → ∞ in such a
way that {pk,Mk} is a subjet of v at xk and lim

k→∞
w(xk) = w(x).
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Finally, let us recall a consequence of the classical Krylov-Safonov Har-
nack inequality, see [46], that viscosity solutions to the homogeneous equation

F (D2h) = 0 in B1, (5.1.4)

under the assumption that F : S(n) → R satisfies (A1), are locally of class
C1,ᾱ(B1) for a universal constant ᾱ ≡ ᾱ(n, λ,Λ) ∈ (0, 1) with the estimate

∥h∥C1,ᾱ(B1/2)
⩽ c ∥h∥L∞(B1)

(5.1.5)

for some constant c ≡ c(n, λ,Λ). The main results of this chapter read as
follows.

Theorem 5.1.1 (Hölder continuity of the gradient). Let u ∈ C(B1) be a
viscosity solution of (5.1.1) under the assumptions (A1)-(A3). Then u ∈
C1,β

loc (B1) for all β > 0 satisfying

β <


min

{
ᾱ,

1

1 + d(Φ)

}
if i(Φ) ⩾ 0,

min

{
ᾱ,

1

1 + d(Φ)− i(Φ)

}
if − 1 < i(Φ) < 0,

(5.1.6)

where ᾱ is given in (5.1.5). Moreover, for every β in (5.1.6), there exists a
constant c ≡ c(n, λ,Λ, i(Φ), L, β) such that

∥u∥L∞(B1/2)
+ sup

x ̸=y∈B1/2

|Du(x)−Du(y)|
|x− y|β

⩽ c

(
1 + ∥u∥L∞(B1)

+

∥∥∥∥ fν0
∥∥∥∥ 1

1+i(Φ)

L∞(B1)

)
.

(5.1.7)

5.2 Basic regularity results

5.2.1 Small regime

Here we verify that, for a viscosity solution u of (5.1.3), we are able to assume

osc
B1

u ⩽ 1 and ∥f∥L∞(B1)
⩽ ε0 (5.2.1)

for some constant 0 < ε0 < 1 small enough, and also ν0 = ν1 = 1 without
loss of generality. In order to consider the problem in a small regime as in
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(5.2.1), for a fixed ball BR(x0) ⊂ B1, we define ū : B1 → R by

ū(x) :=
u(x0 +Rx)

K
(5.2.2)

for positive constants K ⩾ 1 ⩾ R to be determined later. It can be seen that
ū is a viscosity solution of

Ḡξ̄(x,Dū,D
2ū) := Φ̄(x, |ξ̄ +Dū|)F̄ (D2ū)− f̄(x) = 0, (5.2.3)

where

Φ̄(x, t) :=
Φ
(
x0 +Rx, K

R
t
)

Φ
(
x0 +Rx, K

R

) ,
F̄ (M) :=

R2

K
F

(
K

R2
M

)
,

f̄(x) :=
R2

Φ
(
x0 +Rx, K

R

)
K
f(x0 +Rx) and ξ̄ :=

R

K
ξ.

Note that F̄ is still a uniformly (λ,Λ)-elliptic operator, the map t 7→
Φ̄(x, t)

ti(Φ)
is almost non-decreasing and the map t 7→ Φ̄(x, t)

td(Φ)
is almost non-

increasing with the same constants L ⩾ 1 and d(Φ) ⩾ i(Φ) > −1 as in (A2),
and Φ̄(x, 1) = 1 for all x ∈ B1. Moreover, the assumption (A2) implies

∥∥f̄∥∥
L∞(B1)

⩽
LR2+i(Φ)

ν0K1+i(Φ)
∥f∥L∞(B1)

⩽
L

ν0
∥f∥L∞(B1)

.

By recalling i(Φ) > −1 and setting

K := 2

(
1 + ∥u∥L∞(B1)

+

[
L

ν0
∥f∥L∞(B1)

] 1
1+i(Φ)

)

and

R := ε
1

2+i(Φ)

0 ,

we see that ū solves the equation (5.2.3) in the same class as (5.1.3) under
the small regime in (5.2.1).
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5.2.2 Auxiliary tools

In this subsection, we state some basic regularity results for (5.1.3). The first
key tool to be employed later is the classical Ishii-Lions lemma, see [60].

Lemma 5.2.1 (Ishii-Lions Lemma). Let u be a viscosity solution of (5.1.3)
with osc

B1

u ⩽ 1 and ∥f∥L∞(B1)
⩽ ε0 ≪ 1 under the assumptions (A1)-(A3),

where ξ ∈ Rn is any vector. Suppose that B ⊂ B1 is an open subset and
ψ ∈ C2(B × B). Define a map v : B × B → R as

v(x, y) := u(x)− u(y).

Suppose further (x̄, ȳ) ∈ B × B is a local maximum point of v − ψ in B × B.
Then, for each δ > 0, there exist matrices Xδ, Yδ ∈ S(n) such that

Gξ(x̄, Dxψ(x̄, ȳ), Xδ) ⩽ 0 ⩽ Gξ(ȳ,−Dyψ(x̄, ȳ), Yδ)

and

−
(
1

δ
+ ∥A∥

)
I ⩽

(
Xδ 0
0 −Yδ

)
⩽ A+ δA2

with A := D2ψ(x̄, ȳ).

Another important result to be applied afterwards is the results of [101]
in our settings.

Theorem 5.2.1 (Imbert-Silvestre). Let u ∈ C(B1) be a viscosity solution to
(5.1.3) for some ξ ∈ Rn. Suppose there exists γ > 0 such that

1. for all (x, p) ∈ B1 × Rn with |p| > γ, it holds that

Gξ(x, p, 0) ⩽ c0|p|

for some constant c0 > 0 and

2. for any fixed (x, p) ∈ B1 × Rn with |p| > γ, Gξ(x, p,M) is uniformly
elliptic with respect to M .

Then u ∈ C0,α
loc (B1) for some α ∈ (0, 1). In particular, the following estimate

∥u∥C0,α(B1/2)
⩽ c ∥u∥L∞(B1)
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holds true for some constant c > 0. The constants α ∈ (0, 1) and c > 0
depending on n, the ellipticity constants and the parameter γ > 0.

5.3 Hölder continuity

In this section we provide Hölder regularity for solutions of (5.1.3), where ξ
is any vector, under the small regime.

Lemma 5.3.1 (Hölder continuity). Let u be a viscosity solution of (5.1.3)
under the assumptions (A1)-(A3) with osc

B1

u ⩽ 1, ∥f∥L∞(B1)
⩽ ε0 < 1 and

ν0 = ν1 = 1. Let BR ≡ BR(x0) ⊂ B1 be any ball. Then, we have the following
regularity results:

(R1) If −1 < i(Φ) < 0 and |ξ| = 0, then u is Lipschitz continuous in BR/2

with the estimate

[u]C0,1(BR/2) ⩽ Csl (5.3.1)

for some constant Csl ≡ Csl(n, λ,Λ, i(Φ), L,R).

(R2) If i(Φ) ⩾ 0 and |ξ| > A0 with A0 ≡ A0(n, λ,Λ, i(Φ), L,R), then u is
Lipschitz continuous in BR/2 with the estimate

[u]C0,1(BR/2) ⩽ Cdl (5.3.2)

for some constant Cdl ≡ Cdl(n, λ,Λ, i(Φ), L,R).

(R3) If i(Φ) ⩾ 0 and |ξ| ⩽ A0, then u ∈ C0,β(BR/2) with the estimate

[u]C0,β(BR/2)
⩽ Cds, (5.3.3)

where β ≡ β(n, λ,Λ, R,A0) ∈ (0, 1) and Cds ≡ Cds(n, λ,Λ, R,A0).

Proof. For the proof of (R1) and (R2), it suffices to show that there exist
positive constants L1 and L2 such that

L := sup
x,y∈BR

(
u(x)− u(y)− L1ω(|x− y|)− L2

(
|x− z0|2 + |y − z0|2

))
⩽ 0

(5.3.4)
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for every z0 ∈ BR/2, where

ω(t) =

t− ω0t
3
2 if t ⩽ t0 :=

(
2

3ω0

)2

,

ω(t0) if t ⩾ t0.

(5.3.5)

We choose ω0 ∈ (0, 2/3) in such a way that t0 ⩾ 1. For instance, we take
any constant ω0 ⩽ 1/3. By the contradiction, suppose that there are no such
positive constants L1 and L2 satisfying (5.3.4) for every z0 ∈ BR/2. Then
there exists a point z0 ∈ BR/2 so that L > 0 for all numbers L1 > 0 and
L2 > 0. Now we define two auxiliary functions ϕ, ψ : BR ×BR → R given by

ψ(x, y) := L1ω(|x− y|) + L2

(
|x− z0|2 + |y − z0|2

)
(5.3.6)

and

ϕ(x, y) := u(x)− u(y)− ψ(x, y). (5.3.7)

Let (x̄, ȳ) ∈ BR ×BR be a maximum point for ϕ. Then we have

ϕ(x̄, ȳ) = L > 0

and

L1ω(|x̄− ȳ|) + L2

(
|x̄− z0|2 + |ȳ − z0|2

)
⩽ osc

B1

u ⩽ 1.

Now we select

L2 :=
64

R2
.

This choice of L2 ensures

|x̄− z0|+ |ȳ − z0| ⩽
R

4
and |x̄− ȳ| ⩽ R

4
. (5.3.8)

This means that the points x̄ and ȳ belong to the open ball BR and also we
are able to assume that x̄ ̸= ȳ; otherwise L ⩽ 0 clearly. The rest of the proof
is divided into several steps.

Step 1. We are in a position to apply Lemma 5.2.1 in order to ensure
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the existence of a limiting subjet (ξx̄, Xδ) of u at x̄ and a limiting superjet
(ξȳ, Yδ) of u at ȳ, where

ξx̄ := Dxψ(x̄, ȳ) = L1ω
′(|x̄− ȳ|) x̄− ȳ

|x̄− ȳ|
+ 2L2(x̄− z0)

and

ξȳ := −Dyψ(x̄, ȳ) = L1ω
′(|x̄− ȳ|) x̄− ȳ

|x̄− ȳ|
− 2L2(ȳ − z0),

such that matrices Xδ and Yδ satisfy the matrix inequality(
Xδ 0
0 −Yδ

)
⩽

(
Z −Z
−Z Z

)
+ (2L2 + δ)I, (5.3.9)

where

Z := L1D
2(ω(| · |))(x̄− ȳ)

= L1

[
ω′(|x̄− ȳ|)
|x̄− ȳ|

I +

(
ω′′(|x̄− ȳ|)− ω′(|x̄− ȳ|)

|x̄− ȳ|

)
(x̄− ȳ)⊗ (x̄− ȳ)

|x̄− ȳ|2

]
and the constant δ > 0 only depends on the norm of Z, which can be selected
sufficiently small. Applying the inequality (5.3.9) for vectors of the form
(z, z) ∈ R2n, we find

⟨(Xδ − Yδ)z, z⟩ ⩽ (4L2 + 2δ)|z|2.

The last inequality yields that all the eigenvalues of the matrix (Xδ−Yδ) are
not larger than 4L2 + 2δ. On the other hand, applying again (5.3.9) for the

vector z̄ :=

(
x̄− ȳ

|x̄− ȳ|
,
ȳ − x̄

|x̄− ȳ|

)
, we have

〈
(Xδ − Yδ)

x̄− ȳ

|x̄− ȳ|
,
x̄− ȳ

|x̄− ȳ|

〉
⩽ (4L2 + 2δ + 4L1ω

′′(|x̄− ȳ|))
∣∣∣∣ x̄− ȳ

|x̄− ȳ|

∣∣∣∣2
=

(
4L2 + 2δ − 6ω0L1

|x̄− ȳ|1/2

) ∣∣∣∣ x̄− ȳ

|x̄− ȳ|

∣∣∣∣2
⩽ (4L2 + 2δ − 6ω0L1)

∣∣∣∣ x̄− ȳ

|x̄− ȳ|

∣∣∣∣2 ,
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where we have used the definition of ω in (5.3.5) together with |x̄ − ȳ| ⩽
1/4 in (5.3.8). So at least one eigenvalue of (Xδ − Yδ) is not larger than
4L2 +2δ− 6ω0L1, where this quantity can be negative for large values of L1.
By the definition of the extremal Pucci operator, we see

P−
λ,Λ(Xδ − Yδ) ⩾ −λ(4L2 + 2δ − 6ω0L1)− Λ(n− 1)(4L2 + 2δ)

⩾ −(λ+ (n− 1)Λ)(4L2 + 2δ) + 6ω0λL1.

From two viscosity inequalities and the uniform ellipticity, we have

Φ(x̄, |ξ + ξx̄|)F (Xδ) ⩽ f(x̄), Φ(ȳ, |ξ + ξȳ|)F (Yδ) ⩾ f(ȳ)

and

F (Xδ) ⩾ F (Yδ) + P−
λ,Λ(Xδ − Yδ).

Combining last three displays, we have

6ω0λL1 ⩽ (λ+ (n− 1)Λ)(4L2 + 2δ)

+
f(x̄)

Φ(x̄, |ξ + ξx̄|)
− f(ȳ)

Φ(ȳ, |ξ + ξȳ|)
. (5.3.10)

At this stage, we shall separate it into several cases depending on the
quantity of |ξ| and the positiveness of i(Φ).

Step 2: Proof of (R1). Suppose −1 < i(Φ) < 0 and ξ = 0. By triangle
inequality and (5.3.8), we observe that

|ξx̄| ⩽ L1

(
1 +

3

2
ω0

)
+ 2L2 ⩽

7

4
L1 (5.3.11)

and

|ξx̄| ⩾ L1

(
1− 3ω0

2
|x̄− ȳ|

1
2

)
− 3L2 ⩾

3L1

4
− 3L2 ⩾ 3L2 (5.3.12)

for all L1 ⩾ 8L2. In the exactly same way, we see

|ξȳ| ⩽
7

4
L1 and |ξȳ| ⩾ 2L2 (5.3.13)
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for all L1 ⩾ 8L2. Then we have

f(x̄)

Φ(x̄, |ξx̄|)
⩽ c

∥f∥L∞(B1)

|ξx̄|i(Φ)
⩽

c

L
i(Φ)
1

(5.3.14)

and

−f(ȳ)
Φ(ȳ, |ξȳ|)

⩽ c
∥f∥L∞(B1)

|ξȳ|i(Φ)
⩽

c

L
i(Φ)
1

(5.3.15)

for a constant c ≡ c(i(Φ), L). Using the last two displays in (5.3.10), we
obtain

6ω0λL1 ⩽ (λ+ (n− 1)Λ)(4L2 + 2δ) +
c

L
i(Φ)
1

for a constant c ≡ c(n, λ,Λ, i(Φ), L,R). Recalling −1 < i(Φ) < 0 and taking
L1 large enough, depending only on n, λ,Λ, i(Φ), L and R, we get a contra-
diction. Then the first part of the lemma is proved.

Step 3: Proof of (R2). We suppose that i(Φ) ⩾ 0 and |ξ| > A0 for a
constant A0 to be determined in a moment. We set

A0 :=
35L1

2
(5.3.16)

for L1 > 1 to be selected soon. This choice of A0 together with (5.3.11) and
(5.3.14) leads to

|ξ + ξx̄| ⩾ A0 −
A0

10
=

9A0

10
and |ξ + ξȳ| ⩾

9A0

10
.

Therefore, we have

f(x̄)

Φ(x̄, |ξ + ξx̄|)
⩽ c

∥f∥L∞(B1)

|ξ + ξx̄|i(Φ)
⩽

c

A
i(Φ)
0

and

−f(ȳ)
Φ(ȳ, |ξ + ξȳ|)

⩽ c
∥f∥L∞(B1)

|ξ + ξȳ|i(Φ)
⩽

c

A
i(Φ)
0
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for a constant c ≡ c(i(Φ), L). Again using the last two displays in (5.3.10),
we obtain

6ω0λL1 ⩽ (λ+ (n− 1)Λ)(4L2 + 2δ) +
c

L
i(Φ)
1

for a constant c ≡ c(n, λ,Λ, i(Φ), L,R). By choosing L1 large enough, depend-
ing only on n, λ,Λ, i(Φ), L and R, we have again a contradiction. Indeed, we
have proved the second part of the lemma.

Step 4: Proof of (R3). Finally, we shall focus on proving (R3). Suppose
now |ξ| ⩽ A0, where A0 has been determined in (5.3.16). We consider the
operator

Gξ(x, p,M) := Φ(x, |ξ + p|)F (M)− f(x).

In fact, Gξ(x, p,M) is uniformly elliptic, whenever |p| > 2A0. At this stage,
we apply Theorem 5.2.1 to conclude the last part of the Lemma. The proof
is complete.

5.4 Approximation

Now we prove a key approximation lemma, which plays a crucial role in later
arguments.

Lemma 5.4.1. Let u ∈ C(B1) be a viscosity solution of (5.1.3) with osc
B1

⩽ 1,

where ξ ∈ Rn is arbitrarily given. Suppose (A1)-(A3) hold true for i(Φ) ⩾
0 and ν0 = ν1 = 1. Then, for any µ > 0, there exists a constant δ ≡
δ(n, λ,Λ, i(Φ), L, µ) such that if

∥f∥L∞(B1)
⩽ δ, (5.4.1)

then one can find h ∈ C1,ᾱ(B3/4) with the estimate ∥h∥C1,ᾱ(B3/4)
⩽ c ≡

c(n, λ,Λ), for some 0 < ᾱ < 1, satisfying

∥u− h∥L∞(B1/2)
⩽ µ. (5.4.2)

Proof. By contradiction, we suppose the conclusion of the lemma fails. Then
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there exist µ0 > 0 and sequences of {Fk}∞k=1, {Φk}∞k=1, {fk}∞k=1, and {uk}∞k=1

and a sequence of vectors {ξk}∞k=1 such that

(C1) Fk ∈ C(S(n),R) is uniformly (λ,Λ)-elliptic,

(C2) Φk ∈ C(B1× [0,∞), [0,∞)) such that the map t 7→ Φk(x, t)

ti(Φ)
is almost

non-decreasing and the map t 7→ Φ(x, t)

td(Φ)
is almost non-increasing with

constant L ⩾ 1, and Φk(x, 1) = 1 for all x ∈ B1,

(C3) fk ∈ C(B1) with ∥fk∥L∞(B1)
⩽

1

k
and

(C4) uk ∈ C(B1) with osc
B1

uk ⩽ 1 solves the equation

Φk(x, |ξk +Duk|)Fk(D
2uk) = fk(x), (5.4.3)

but

sup
x∈B1/2

|uk(x)− h(x)| > µ0 (5.4.4)

for all h ∈ C1,ᾱ(B3/4) and every 0 < ᾱ < 1.
The condition (C1) implies that Fk converges to some uniformly (λ,Λ)-

elliptic operator F∞ ∈ C(S(n),R). Applying Lemma 5.3.1, uk ∈ C0,β
loc (B1) ∩

C(B1) for some β ∈ (0, 1). Using (5.3.2), (5.3.3) and Arzela-Ascoli theo-
rem, we have that the sequence {uk}∞k=1 converges to a function u∞ locally
uniformly in B1. In particular, there holds that

u∞ ∈ C(B1) and osc
B1

u∞ ⩽ 1. (5.4.5)

Now we prove that the limiting function u∞ is a viscosity solution of the
homogeneous equation

F∞(D2u∞) = 0 in B3/4. (5.4.6)

For this, first we verify that u∞ is a viscosity supersolution. Let

φ(x) :=
1

2
⟨M(x− y), x− y⟩+ ⟨b, x− y⟩+ u∞(y)
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be a quadratic polynomial touching u∞ from below at a point y ∈ B3/4.
Without loss of generality, let us assume |y| = u∞(y) = 0. Then there exists
a sequence xk → 0 as k → ∞ such that uk − φ has a local minimum at xk.
Observe that Dφ(xk) → b and D2φ(xk) →M . Since uk is a viscosity solution
of (5.4.3), we have

Φk(xk, |ξk +Dφ(xk)|)Fk(D
2φ(xk)) ⩾ fk(xk). (5.4.7)

For the ease of presentation, from now on we shall consider several cases
depending on the boundedness of sequence {ξk}∞k=1.

Case 1: Sequence {ξk}∞k=1 is unbounded. In this case, we can assume
|ξk| → ∞ (up to a subsequence). As a consequence, we can show (up to a
subsequence) that

|ξk +Dφ(xk)| ⩾ |ξk| − |Dφ(xk)| ⩾ |ξk| − (|b|+ 1) ⩾ 1, (5.4.8)

which implies that

F∞(M) = lim
k→∞

Fk(D
2φ(xk)) ⩾ lim

k→∞

fk(xk)

Φk(xk, |ξk +Dφ(xk)|)

⩾ − lim
k→∞

L

k|ξk +Dφ(xk)|i(Φ)
= 0,

where we have used (C2) and (5.4.7).
Case 2: Sequence {ξk}∞k=1 bounded In the case we may assume ξk →

ξ∞ (up to a subsequence). Therefore, for the case |ξ∞+ b| ≠ 0, in the exactly
same way as in (5.4.8), we infer that F∞(M) ⩾ 0. Then we focus on the case
|ξ∞ + b| = 0. There are two possibilities as |b| = |ξ∞| = 0 or b = −ξ∞ with
|b|, |ξ∞| > 0. In those scenarios, we prove that F∞(M) ⩾ 0. By contradiction
suppose

F∞(M) < 0. (5.4.9)

From the uniformly ellipticity condition of F∞, the matrix M has at least
one positive eigenvalue. Let Rn = E ⊕Q, where E = span{e1, . . . , em} is the
space consisting of those eigenvectors corresponding to positive eigenvalues
of M .

238



CHAPTER 5. REGULARITY FOR DEGENERATE/SINGULAR FULLY
NONLINEAR ELLIPTIC EQUATIONS

Case 2-1: b = −ξ∞ with |b|, |ξ∞| > 0. Let γ > 0 and set

pγ(x) := φ(x) + γ|PE(x)| =
1

2
⟨Mx, x⟩+ ⟨b, x⟩+ γ|PE(x)|,

where PE stands for the orthogonal projection on E. Since uk → u∞ locally
uniformly in B1 and φ(x) touches u∞(x) from below at the origin, for γ
small enough, pγ(x) touches uk(x) from below at a point xγk ∈ Br (Br is a
small neighborhood of the origin). Moreover, there holds that xγk → xγ∞ for
some xγ∞ as k → ∞. At this point we consider two scenarios: PE(x

γ
k) = 0

for all k ∈ N (up to a subsequence) or PE(x
γ
k) ̸= 0 for all k ∈ N (up to a

subsequence).
Scenario 1: PE(x

γ
k) = 0 for all k ∈ N (up to a subsequence). In this

scenario, first we note that

p̄γ(x) :=
1

2
⟨Mx, x⟩+ ⟨b, x⟩+ γ ⟨e, PE(x)⟩

touches uk from below at xγk for every e ∈ Sn−1. A straightforward computa-
tion gives us

Dp̄γ(x
γ
k) =Mxγk + b+ γPE(e) and D2p̄γ(x

γ
k) =M.

Now we select e ∈ E ∩ Sn−1 such that PE(e) = e. Therefore, by uk being a
viscosity solution of (5.4.3), we see

Φk(x
γ
k, |ξk +Mxγk + b+ γe|)Fk(M) ⩾ fk(x

γ
k).

We also notice that if Mxγ∞ = 0, then for k enough large, we have

|ξk +Mxγk + b| ⩽ γ/2 and 3γ/2 ⩾ |ξk +Mxγk + b+ γe| ⩾ γ/2.

Therefore, combining the last two displays and using (C2) together with
γ ≪ 1, we have

Fk(M) ⩾
fk(x

γ
k)

Φk(x
γ
k, |ξk +Mxγk + b+ γe|)

⩾
−L|fk(xγk)|

|ξk +Mxγk + b+ γe|s(Φ)
⩾ −L

k

(
2

3γ

)s(Φ)

.
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Letting k → ∞ in the last display, we obtain F∞(M) ⩾ 0. Let us now
consider the situation |Mxγ∞| > 0. First we consider the case of E ≡ Rn and
select e ∈ Sn−1 such that

|Mxγ∞ + γPE(e)| = |Mxγ∞ + γe| > 0.

There hold that, for k large enough,

|Mxγk + γe| > 1

2
|Mxγ∞ + γe| and |ξk + b| < 1

4
|Mxγ∞ + γe|.

As a consequence, we see

|ξk +Mxγk + b+ γPE(e)| >
1

4
|Mxγ∞ + γe| > 0.

Again applying (C2) and taking into account the last display, we have

Fk(M) ⩾
fk(x

γ
k)

Φk(x
γ
k, |ξk +Mxγk + b+ γe|)

⩾ −
(

L

|ξk +Mxγk + b+ γe|i(Φ)
+

L

|ξk +Mxγk + b+ γe|s(Φ)

)
|fk(xγk)|

⩾
−L4s(Φ)

k

(
1

|Mxγ∞ + γe|i(Φ)
+

1

|Mxγ∞ + γe|s(Φ)

)
.

(5.4.10)

Again letting k → ∞ in the last display, we again arrive at F∞(M) ⩾ 0. On
the other hand, if E ̸≡ Rn, then there exists e ∈ Sn−1 ∩ E⊥ so that

|Mxγ∞ + γPE(e)| = |Mxγ∞| > 0.

Therefore, for large enough k, there hold that

|Mxγk| >
1

2
|Mxγ∞| and |ξk + b| < 1

4
|Mxγ∞|.

Using the last display, we get

|ξk +Mxγk + b+ γPE(e)| >
1

4
|Mxγ∞| > 0.
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Repeating the same arguments as in (5.4.10), we arrive at F∞(M) ⩾ 0.
Scenario 2: PE(x

γ
k) ̸= 0 for all k ∈ N (up to a subsequence). In this

scenario, we note that the map x 7→ |PE(x)| is smooth and convex in a small
neighborhood of xγk. Let us denote

ζγk :=
PE(x

γ
k)

|PE(x
γ
k)|
.

A direct computation yields

D(|PE(·)|)(xγk) = ζγk and D2(PE(| · |))(xγk) =
1

|PE(x
γ
k)|

(I − ζγk ⊗ ζγk ) .

Hence, with uk being a viscosity solution of (5.4.3), we have the following
viscosity inequality

Φk(x
γ
k, |ξk +Mxγk + b+ γζγk |)Fk

(
M +

1

|PE(x
γ
k)|

(I − ζγk ⊗ ζγk )

)
⩾ fk(x

γ
k).

Observing that |ζγk | = 1 and letting e := ζγk , we can perform the same
procedure as in the first scenario of PE(x

γ
k) = 0 by considering the cases

of Mxγ∞ = 0 and Mxγ∞ ̸= 0. Finally, we conclude that F∞(M) ⩾ 0 when
b = −ξ∞ ̸= 0, which contradicts to (5.4.9).

Case 2-2: b = ξ∞ = 0. In fact, this case is much easier to handle. Since
1

2
⟨Mx, x⟩ touches u∞(x) from below at the origin and uk → u∞ locally

uniformly, the function

p̂γ(x) :=
1

2
⟨Mx, x⟩+ γ|PE(x)|

touches uk from below at a point x̂γk ∈ Br (Br is a small neighborhood of
the origin) for γ > 0 sufficiently small. Again the sequence {x̂γk} is uniformly
bounded. As in Case 3, we analyze those two scenarios PE(x̂

γ
k) = 0 for

all k ∈ N (up to a subsequence) and PE(x̂
γ
k) ̸= 0 for all k ∈ N (up to a

subsequence). All in all, we conclude F∞(M) ⩾ 0 in this case.
Finally, taking into account all cases we have analyzed above, we have

shown that u∞ is a viscosity supersolution of (5.4.6). In order to prove that
u∞ is a viscosity subsolution of (5.4.6), we show that −u∞ is a viscosity
supersolution of F̂∞(D2h) = 0, where F̂∞(M) = −F∞(−M) is uniformly
(λ,Λ)-elliptic operator as well. Therefore, u∞ is a viscosity solution of (5.4.6).
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From the regularity results of [46, Chap. 5], we see u∞ ∈ C1,ᾱ
loc (B3/4) for some

ᾱ ∈ (0, 1). Moreover, ∥u∞∥C1,ᾱ(B1/2)
⩽ c ≡ c(n, λ,Λ) via (5.4.5). So choosing

h := u∞ in (5.4.4), we have a contradiction. The proof is complete.

5.5 Proof of Theorem 5.1.1

Now we provide a proof of Theorem 5.1.1. Let u ∈ C(B1) be a viscosity solu-
tion with osc

B1

u ⩽ 1, ∥f∥L∞(B1)
⩽ δ ≪ 1 for a constant δ ≡ δ(n, λ,Λ, i(Φ), L)

to be determined in a moment and ν0 = ν1 = 1. The proof is divided into two
main parts, where in the first part we shall deal with the case i(Φ) ⩾ 0 and
the remaining case −1 < i(Φ) < 0 will be investigated in the second part.

Part 1: i(Φ) ⩾ 0. Let us first fix a point y ∈ B1/2 and an exponent with

0 < β < min

{
ᾱ,

1

1 + d(Φ)

}
. (5.5.1)

We prove that there exist universal constants 0 < r ≪ 1, C0 > 1 and a
sequence of affine functions

lk(x) := ak + ⟨bk, x⟩ , (5.5.2)

where {ak}∞k=1 ⊂ R and {bk}∞k=1 ⊂ Rn, such that for every k ∈ N:

(E1) sup
x∈B

rk
(y)

|u(x)− lk(x)| ⩽ rk(1+β),

(E2) |ak − ak−1| ⩽ C0r
(k−1)(1+β) and

(E3) |bk − bk−1| ⩽ C0r
(k−1)β.

We show these estimates by mathematical induction. For the simplicity, we
divide the proof into several steps.

Step 1. Basis of induction. Without loss of generality we can assume

y = 0 by translating x 7→ y +
1

2
x. Let us set

l1(x) := h(0) + ⟨Dh(0), x⟩ ,
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where h is the approximation function coming from Lemma 5.4.1 for a certain
constant µ > 0 to be determined in a few lines. Then there exists a constant
C0 ≡ C0(n, λ,Λ) > 1 such that

∥h∥C1,ᾱ(B3/8)
⩽ C0 and sup

x∈Br

|h(x)− l1(x)| ⩽ C0r
1+ᾱ

for every r ⩽ 3/8. The triangle inequality yields

sup
x∈Br

|u(x)− l1(x)| ⩽ µ+ C0r
1+ᾱ.

We first select a universal constant 0 < r ≪ 1 satisfying

rβ ⩽
1

2
, C0r

1+ᾱ ⩽
1

2
r1+β and r1−β(1+d(Φ)) ⩽ 1, (5.5.3)

which is possible by (5.5.1). In a sequel, we select a constant µ > 0 as

µ :=
1

2
r1+β, (5.5.4)

which fixes an arbitrary constant µ > 0 in Lemma 5.4.1. In turn, there
exists a constant δ ≡ δ(n, λ,Λ, i(Φ), L, β) verifying the smallness assumption
∥f∥L∞(B1)

⩽ δ, but such a smallness assumption can be assumed without loss
of generality. Therefore, to conclude this step we set

a0 := 0, a1 := h(0), b0 = 0 and b1 := Dh(0).

These choices with (5.5.3) and (5.5.4) verify that the estimates (E1)-(E3) are
satisfied for k = 1.

Step 2: Induction process. Now we suppose that the hypotheses of
the induction have been established for k = 1, 2, . . . ,m for m ⩾ 1. We show
that the estimates (E1)-(E3) hold true for k = m+ 1. For this, we introduce
an auxiliary function as

wm(x) :=
u(rmx)− lm(r

mx)

rm(1+β)
.

We note that wm solves the following equation in the viscosity sense

Φm(x, |r−mβbm +Dwm|)Fm(D
2wm) = fm(x),
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where

Fm(M) := rm(1−β)F (r(β−1)mM),

which is uniformly (λ,Λ)-operator, the function

Φm(x, t) :=
Φ(rmx, rmβt)

Φ(rmx, rmβ)
(x ∈ B1, t > 0)

still satisfies the properties that the map t 7→ Φm(x, t)

ti(Φ)
is almost non-

decreasing, the map t 7→ Φm(x, t)

td(Φ)
is almost non-increasing with the same

constant L ⩾ 1 and Φm(x, 1) = 1 for all x ∈ B1, and

fm(x) :=
rm(1−β)f(rmx)

Φ(rmx, rmβ)
.

Using (A2) and (5.5.1), we notice that

∥fm∥L∞(B1)
⩽
Lrm(1−β) ∥f∥L∞(B1)

rmβd(Φ)
⩽ Lδrm(1−(1+d(Φ))β) ⩽ Lδ.

Therefore, we are in a position to apply Lemma 5.4.1 to wm. In turn,
there exists a function h̄ ∈ C1,ᾱ(B3/4) such that

sup
x∈Br

|wm(x)− h̄(x)| ⩽ µ.

Arguing as in Step 1, we show that

sup
x∈Br

|wm(x)− l̄(x)| ⩽ r1+β,

where

l̄(x) := ā+
〈
b̄, x
〉

for some ā ∈ R and b̄ ∈ Rn.

Denoting

lm+1 := lm(x) + rm(1+β)l̄(r−mx),
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we see

sup
x∈Brm+1

|u(x)− lm+1(x)| ⩽ r(m+1)(1+β)

and

|am+1 − am|+ rm|bm+1 − bm| ⩽ C0r
m(1+β).

Therefore, the (m+ 1)-th step of the induction is complete.
Step 3: Conclusion. Once we have the existence of universal constants

0 < r ≪ 1, C0 > 1 and a sequence of affine functions in (5.5.2) verifying the
estimates (E1)-(E3), the remaining part of the proof is very standard, see for
instance [100, 67]. Therefore, the proof of (5.1.7) is complete when i(Φ) ⩾ 0.

Part 2: −1 < i(Φ) < 0. Now we shall with the case of −1 < i(Φ) < 0.
Again we fix a point y ∈ B1/2. Without loss of generality, we may assume

y = 0 by using the translation x 7→ y +
1

2
x. Now we apply (R1) of Lemma

5.3.1 in order to ensure that

[u]C0,1(B3/4) ⩽ Csl (5.5.5)

for a constant Csl ≡ Csl(n, λ,Λ, i(Φ), L). Therefore, it can be seen that u is
a viscosity solution of the equation

Φ̃(x, |Dv|)F (D2v) = f̃(x) in B3/4,

where

Φ̃(x, t) := t−i(Φ)Φ(x, t) (x ∈ B1, t > 0),

which satisfies the properties that the map t 7→ Φ̃(x, t) is almost non-

increasing, the map t 7→ Φ̃(x, t)

td(Φ)−i(Φ)
is almost non-increasing with constant

L ⩾ 1, Φ̃(x, 1) = 1 for all x ∈ B1, and

f̃(x) = |Du(x)|−i(Φ)f(x).
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Using the estimate (5.5.5) together with ∥f∥L∞B1
⩽ δ ≪ 1, we see∥∥∥f̃∥∥∥

L∞(B3/4)
⩽ C

−i(Φ)
sl δ.

So we are able to apply Part 1 of the proof in order to have (E1)-(E3). This
means that we have the estimate (5.1.7) for −1 < i(Φ) < 0. The proof is
complete.
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(1986), 391-409.

[115] P. Marcellini, Regularity of minimizers of integrals of the calculus of
variations with nonstandard growth conditions, Arch. Ration. Mech.
Anal. 105 (3) (1989), 267-284.

256



BIBLIOGRAPHY

[116] P. Marcellini, Regularity and existence of solutions of elliptic equations
with p, q-growth conditions, J. Differential Equations 90 (1) (1991), 1-30.

[117] G. Mingione, Regularity of minima: an invitation to the dark side of
the calculus of variations, Appl. Math. 51 (2006), 355-425.

[118] G. Mingione and V. Radulescu, Recent developments in problems with
nonstandard growth and nonuniformly ellipticity, J. Math. Anal. Appl.
501 (2021), 125197.

[119] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math-
ematics, 1034, Springer-Verlag, Berlin, 1983.

[120] T. Nguyen and T. Phan, Interior gradient estimates for quasilinear
elliptic equations, Calc. Var. Partial Differential Equations 55, (3)(2016)
Art. 59, 33.

[121] J. Ok, Regularity of ω-minimizers for a class of functionals with non-
standard growth, Calc. Var. Partial Differential Equations 56 (2) (2017),
Art. 48, 31 pp.
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국문초록

이학위논문에서는오리츠다상문제를포함하고비표준성장조건및불균

일한타원형특성을나타내는일반적인종류의범함수에대한종합적인정칙성

결과와, 이를 위한 최적의 조건에 대해 조사한다. 우선, 조절 계수가 횔더 연
속보다 약화된 경우의 오리츠 다상 범함수의 최소자에 대한 다양한 정칙성

결과를 보이기 위한 통일된 논의를 새롭게 이용한다. 더 나아가, 이러한 범
함수의 최소자에 대해 특정 르벡 공간에 포함되거나 횔더 연속이라는 추가

조건이있을경우,정칙성결과들을얻기위해비선형성에주어져야할최적의
조건들을 찾는다.
두 번째로, 오리츠 이중 위상 및 다중 위상 형태의 발산형 타원 방정식을

고려한다. 비선형성에 최소의 조건을 부여하면서, 이러한 타원 방정식의 분포
해에 대한 국소적 칼데론-지그문드 추정을 얻는다. 마지막으로 축퇴/특이 완
전 비선형 타원 방정식의 점성 해에 대해 관련 연산자의 최소 정칙성 조건을

찾아, 이 해의 그래디언트 횔더 정칙성을 보인다.

주요어휘: 오리츠 위상 문제, 정칙성, 비표준 성장, 칼데론-지그문드 이론, 축
퇴/특이 완전 비선형 방정식, 점성해
학번: 2017-33717
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