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Abstract

Regularity results for Orlicz phase problems

Sumiya Baasandor]

Department of Mathematical Sciences
The Graduate School

Seoul National University

In this thesis, we provide comprehensive regularity results and optimal
conditions for a general class of functionals involving Orlicz multi-phase,
which exhibits non-standard growth conditions and non-uniformly elliptic
properties.

First, we give a unified treatment to show various regularity results for
minima of Orlicz multi-phase type functionals with coefficient functions not
necessarily Holder continuous even for a lower level of the regularity. More-
over, assuming that minima of such functionals belong to better spaces such
as C"7(Q) or L*() for some v € (0,1) and s € (1, 00|, we address optimal
conditions on nonlinearity for each variant under which we build comprehen-
sive regularity results.

Second, we prove local Calderén-Zygmund type estimates under the opti-
mal conditions on the nonlinearity for distributional solutions to non-uniformly
elliptic equations of Orlicz double phase and multi-phase type in divergence
form with the coefficient functions not necessarily Holder continuous.

Lastly, we establish an optimal C"*-regularity for viscosity solutions of
a class of degenerate/singular fully nonlinear elliptic equations by finding
minimal regularity requirements on the associated operator.

Key words: Orlicz phase problem; regularity; non-standard growth; Calderon-
Zygmund theory; fully nonlinear degenerate/singular equations; viscosity so-
lutions

Student Number: 2017-33717
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Chapter 1

Introduction

The first part of this thesis is concerned with optimal and comprehensive
regularity results for minima of functionals featuring a non-standard growth
and a non-uniform ellipticity. The primary model keeping in mind under
investigation is given by an Orlicz multi-phase functional

WI(Q) 5 v s P(0,Q) = /\If(x, Do) da (1.0.1)

for a bounded open domain 2 C R"™ with n > 2, where throughout the thesis
we shall always denote by

U(z,t) = G(t) + a(x)Ha(t) + b(x)Hy(t) (x €D, t>0) (1.0.2)

for N-functions G, H,, H, € N in the sense of Definition 2.1.1 and 0 <
a(-),b(-) € L*>(R2). The Orlicz multi-phase functional P in (1.0.1) is natu-
rally defined for functions v € W*(Q), which is natural one including the
following examples of functionals for the regularity theory:

1. p-growth: ¥(z,t) = t¥ with p > 1, see for instance 82, 89, 109, 110,
112, 113, 133, 134].

2. Orlicz growth: ¥(z,t) = G(t), see for instance [74, 75, 111].

3. (p,q)-double phase: ¥(z,t) = t* +a(x)t? for 1 < p < ¢, see for instance
20, 22, 57, 58).
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4. Borderline case of double phase: U(x,t) = t* + a(x)t’ log(1 + t) for
1 < p, see for instance [21, 39].

5. Multi-phase: W(x,t) = t* + a(x)t? + b(x)t® for 1 < p < ¢, s, see for
instance [71].

6. Orlicz double phase: U(x,t) = G(t) + a(z)H,(t), see for instance [12,
39,

7. Orlicz multi-phase: V(z,t) = G(t) + a(x)Hu(t) + b(z)Hy(t), see for
instance [12].

Over last several years a systematic analysis of the functionals afore-
mentioned has been an object of intensive studies for the regularity theory.
Among them (p, ¢)-double phase functional is a significant example given by

WH(Q) 3 v P,u(v,Q) = / [|Dvl? + a(z)|Dv|?] dz, 1<p<q.

Q
(1.0.3)

Another example is the so-called borderline case of double phase defined by

WH(Q) 2 v = Prog(v,Q) := / [|Dvl? + a(z)|Dvl?log(1 + |Dvl|)| dz, 1< p.

Q
(1.0.4)

The last functional we would like to single out is the so-called multi-phase
functional introduced in [71] is of type

Wl’l(Q) SV Ppys(v,Q) = / [|Dv|? + a(x)|Dv|? + b(x)|Dvl|’| dz,
Q
1<p<yq,s. (1.0.5)

The (p,q)-double phase functional was initially introduced by Zhikov
[139, 140, 143] in order to study the feature of strongly anisotropic materials
in the context of homogenization and nonlinear elasticity. A main common
feature of the functionals P, 4, Ppqs and Pig in (1.0.3)-(1.0.5) is that their
integrand changes their growth and ellipticity ratio depending on the ge-
ometric behavior of the coefficient functions a(-) and b(-), which determine

2
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the geometry of the mixture of different materials. Each functional mentioned
above belongs to a family of functionals with nonstandard growth conditions
of (p, q)-type. These are functionals of type

WHHQ) s v /F(:U,Dv) dzx,
Q

whose energy density F'(z, z) satisfies
2P =15 Flr,z) Sl + 1, 1<p<yq,

according to Marcellini’s terminology [114, 115, 116]. Over the several decades,
functionals with nonstandard growth have been extensively investigated, see
for instance [3, 33, 61, 78, 79, 80, 86, 87, 129, 130] and see also [117, 118] for
an overview of the state of the art. Those functionals aforementioned give
a relevant example of the energy overlying in the so-called Musielak-Orlicz
space which will described in Chapter 2.

For the regularity theory, the optimal conditions for the gradient of a
local minimizer v of the functional P,, in (1.0.3) to be Hélder continuous
have been discovered in [22, 57, 58]. They are

T4 ? if v € Wh(Q), (1.0.6a)
P n

¢<p+a if v e WhP(Q) N L>(Q), (1.0.6b)
g<p+—2_ if v € WH(Q) N C%7(Q) with v € (0,1), (1.0.6¢c)

L—x

where 0 < a(-) € C%*(Q) for some « € (0, 1].

Remark 1.0.1. The conditions in (1.0.6a)-(1.0.6b) are essentially sharp in
the sense of Lavrentiev gap (see (1.0.26) for the definition) for the functional
Pp.q- Indeed, as shown in [80, 86], for every ¢ > 0, it is possible to construct
a suitable coefficient function 0 < a(-) € C%*(Q) for some a € (0,1) to find
exponents p, g with

n—e<p<n<nt+a<qg<n+e (1.0.7)

such that there exist bounded minima of the functional in (1.0.3) whose set
of discontinuity points has Hausdorff dimension larger than n — p — &, which
means that minima of the functional in (1.0.3) are as bad as any other W*?

3
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functions. The selection in (1.0.7) makes both conditions (1.0.6a) and (1.0.6b)
to be failed. Furthermore, there are recent results concerning the absence of
Lavrentiev phenomenon [18], which shows that the conditions (1.0.6b) and
(1.0.6¢) are sharp for the functional in (1.0.3) with a coefficient function
0 < a(-) € C"(Q) for some o € (0,1) by constructing appropriate coun-
terexamples based on Zhikov’s two-dimensional checkboard as introduced in
[139].

On the other hand, letting 0 < a(-) € C**(Q) with a continuous and
concave function w, : [0,00) — [0,00) vanishing at the origin in (1.0.4),
the conditions for a local minimizer v of the functional P, in (1.0.4) to be
regular have been discovered in [21], which are

(v is Holder continuous with an exponent

1
if lim sup w,(p) log (—) < 00, (1.0.8a)
p—0F p
v is Holder continuous with an arbitrary exponent
1
if limsup w,(p)log (—) =0, (1.0.8b)
p—0+ P

Dw is Holder continuous
if wy(p) < p® with a € (0, 1]. (1.0.8¢)

\

Furthermore, the optimal condition for the gradient of minima of the
multi-phase functional P,,, in (1.0.5) to be Holder continuous has been
obtained in [71], that is
<142 and <148 (1.0.9)

n D n

T I

where 0 < a(-) € C**(Q) and 0 < b(-) € C*(Q) for some o, 8 € (0,1]. In
fact, the condition (1.0.9) is a natural outcome of (1.0.6a) and sharp via Re-
mark 1.0.1. In the first part of the thesis, we intend to unify all conditions pre-
sented in (1.0.6a)-(1.0.6¢), (1.0.8a)-(1.0.8c) and (1.0.9) by considering more
general class of functionals modelled on Orlicz multi-phase energy functional
(1.0.1) under more weakened assumptions that the coefficient functions af(-)
and b(-) in (1.0.1) are not necessarily Hélder continuous even for a lower level
of the regularity. Moreover, under newly found conditions on the nonlinearity
depending upon a priori assumptions on minima for investigation, we prove

4
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various regularity results starting from local boundedness of minima up to
Holder continuity for the gradient of minima. More precisely, we consider a
class of general functionals of type

W) 3 v F(v,Q) = /F(a:,v,Dv) dx, (1.0.10)

Q

where the integral density F' : 2 x R x R" — R is a Caratheédory map
satisfying the double-sided bound with constants 0 < v < L < oo:

vVU(z,|2]) < F(z,y,2) < LY(z,|2]) (ze€Q yeR, zeR"), (1.0.11)

where U is the same function as in (1.0.2). Under the growth conditions
(1.0.11), local minima (Q-minima) of the functional F in (1.0.10) for some
number () > 1 is defined classically as follows:

Definition 1.0.1. A function u € W\ (Q) is a local minimizer (Q-minimizer)

of the functional F defined in (1.0.10) if ¥(z,|Du|) € L'(Q) and the mini-
mality condition

F(u, supp(u —v)) < F(v, supp(u — v))
(F (u, supp(u — v)) < QF (v, supp(u — v)))

is satisfied, whenever v € W21 () with supp(u — v) € Q.

loc

In what follows, we shall always assume 0 < a(-) € C**(Q) and 0 < b(+) €
C“*(2), where wg,wy : [0,00) — [0, 00) are continuous and concave functions
such that w,(0) = 0 and w,(0) = 0, unless they are specified. Then we define
the auxiliary function A : (0,00) x (0,00) — (0, 00) given by

wa(p) Ha(t) | wilp) Hi(t)

Ap,t) := T+ walp) GO + T+ wn(p) G(O) for any p,t>0. (1.0.12)

We shall consider a local @-minimizer u of the functional P in (1.0.1) or a
local minimizer u of the functional F in (1.0.10) under each of the following
basic assumptions:

ue WhH(Q),
A i=supA (p, G H(p™)) < o0, (1.0.13)
p>0
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we WHY(Q) N L=(Q),

1 1.0.14
Ay :=sup A (p, —) < 00, ( )
p>0 p
u e WH(Q)NC*(Q) for some v € (0,1),
1 1.0.15
A3 :=sup A <p11W, —) < 00. ( )
p>0 P

Here G~ is the inverse function of G. Let us neatly explain why those
conditions (1.0.13) — (1.0.15) make sense by considering some significant spe-
cial cases. In the case (G(t), H,(t), Hy(t)) = (t*,t9,t°) with 1 < p < ¢,s,
walp) = p* and wy(p) = p° for some «, B € (0,1], direct calculations yield
that

<1+ %md <142 @016
n

the condition (1.0.13), <=
p n

T I

the condition (1.0.14), <= g¢<p+aands<p+p (1.0.17)

and

the condition (1.0.14), <= g¢<p+ ] Q@ and s <p+ i

- L=~
(1.0.18)

In particular, in the case b(-) = 0, the conditions (1.0.13)-(1.0.15) are read as
(1.0.6a)-(1.0.6¢), respectively, except the borderline case of the last condition.
Clearly, the condition in (1.0.16) is the same one as in (1.0.9). Moreover, in
the case of (G(t), Hu(t), Hy(t)) = (t7, 1P log(1 + t), " log(1 + t)) with p > 1,
we see that the conditions (1.0.13), and (1.0.14), are equivalent to

lim sup (wa(p) log (%) + wy(p) log G)) < foo. (1.0.19)

p—0+t

In particular, for b(-) = 0, the above condition is equivalent to (1.0.8a).
Furthermore, we are also able to give more examples of functionals showing
how a modulus of continuity of a(-) and b(+) is exactly adjusted to the size of
the phase transition. The natural assumptions for showing further regularity
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properties of minima of the Zygmund multi-phase functional determined by
(G(t), Ha(t), By(t) = (t7[log(1 + )], 9[log(1 + £)], *[log(1 + £)]**) with

p,q,s > 1 and sg,qy = po = 1, are that

the condition (1.0.13),
<~

wa (P *log(1 + p)) %)
sup - 0
f»ol—%wa<ﬂ74bgﬂr+pﬂ’7
wy (07 log(1 + p)] )

+ sup

P20 1+ wy (p~Rllog(1+p)] )

pPllog(1 + p)| 7P

the condition (1.0.14),
—
Wa(ﬂ) » { ( 1)}!}0?0
sup ———— log (14 -
A TraE” [
+sup ———— log {1+ — < 00
S Tra@” [T

and

the condition (1.0.15),
—

Wq (pﬁ) 1 q0—Po
sup N ) [log (1 ; -)]
>0 1+ w, <pm> p
1
NES

S0—P0
+sup —————<p"° [log <1 + —>] < 00.
P>0 1 + wy <pﬁ> P

p  Pllog(1 + p)]*o7" < 0,

(1.0.20)

(1.0.21)

(1.0.22)

Another example of functionals can be determined by (G(t), H(t), Hy(t)) =
(17, t1oglog(e + t),t*loglog(e + t)) with 1 < p < ¢, s. Straightforwardly, it
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can be seen that

the condition (1.0.13),
<~

lim sup wa(p)pnf% log log <€ + Pig>

p—0t

+ lim sup wy(p)p" * loglog (e + ,07%) < 00, (1.0.23)

p—0F

the condition (1.0.14),
—

1
lim sup w,(p) pP~? log log <e + —)
P

p—0t

1
+ lim sup wy(p)pP~* log log (e + —) < 00. (1.0.24)
p

p—0t

and

the condition (1.0.15),
—

1
lim sup w, (pﬁ> PP 1loglog (e + —)
p

p—0t

1 1
+ lim sup wy (pﬁ> PP % loglog (e + —) < 00. (1.0.25)
p

p—07F

The assumptions (1.0.13)-(1.0.15) lead to exhibiting new instances of
Lavrantiev phenomenon [139, 140, 141, 142, 143]. According to the classi-
cal definition, the Lavrentiev gap for the functional F defined in (1.0.10)
under the growth assumption (1.0.11) may appear if

inf  F(v,B) < inf F(v, B) (1.0.26)

1,G Lot
vevo+ Wy (B) vevt WhC (B)nw, 2 (B)

loc

holds for a ball B € Q and a function vy € W"*(B), where U, is defined
+
in (2.1.3) below. That is, local minima of F may not belong to I/VIEC\PQ(B) in
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general. To see this more precisely, let us turn our attention to the classical
case that G(t) = t*, H,(t) = t9, w.(p) = p® and wy(-) = 0 for some 1 < p < ¢
and « € (0, 1] such that

l<p<n<n+a<g. (1.0.27)

Under classical double phase setting together with (1.0.27), the results of
[57, Theorem 4.1] and [80, Section 3] provide us the existence of a coefficient
function 0 < a(-) € C**(2) and a boundary datum uy € W'?(B) N L*®(B)
such that the Lavrentiev phenomenon (1.0.26) is occurred. In this regard,
we show that there is no Lavrentiev gap for the functional F in (1.0.10)
satisfying the basic structure assumption (1.0.11) under each of assumptions
(1.0.13),, (1.0.14), and (1.0.15),, see Theorem 2.3.1.

We shall investigate various regularity results of a local minimizer u of
the functional F in (1.0.10) comprehensively in Chapter 3 , the main con-
tents of Chapter 3 are Theorem 3.1.1 and Theorem 3.1.2 for functionals
modelled on Orlicz multi-phase energy (Theorem 3.6.1 and Theorem 3.6.2
for functionals modelled on Orlicz double phase energy), under each of as-
sumptions (1.0.13)-(1.0.15) for minima. We note that Holder regularity for
the gradient of a local minimizer in Theorem 3.1.1 (Theorem 3.6.1) is already
optimal in the classical p-Laplacian case that G(t) = t* and a(-) = b(-) =0
[133, 134]. The assumptions in (3.1.10a)-(3.1.10c) are optimal by Remark
1.0.1. The regularity results reported here complement in a unified way the
main results of [21, 22, 57, 58, 71], where the functions in (1.0.3)-(1.0.5) are
considered under the corresponding conditions we have discussed in (1.0.6a)-
(1.0.6¢),(1.0.8a)-(1.0.8¢c) and (1.0.9), respectively, and the arguments used
in these papers are strongly dependent of the number of phases along with
the Holder continuity of the coefficient functions in the non-linearity. Our
approaches for proving the above theorems are in fact independent of this
weakness. The approaches we present in Chapter 3 lead to avoiding the use of
difference quotient methods employed in [57, 58] for obtaining various regu-
larity properties of minima of the functional in (1.0.3). In fact, the difference
quotient techniques can deal with the case that the coefficient functions in the
nonlinearity are Holder continuous. On the other hand, we are treating the
case of not necessarily having Holder continuous coefficient functions in the
nonlinearity by applying a Harmonic type approximation (see Lemma 2.5.1)
for comparing a homogeneous equation with a limiting equation having the
lipschitz regularity property (see Lemma 3.3.3 and Lemma 3.3.4).
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The contents in Chapter 3 could provide a guideline to deal with a very
general class of non-autonomous functionals whose energy density behaves

like
F(z,y,z) = ®(x,|z]) (1.0.28)

for ® being a certain Young function as we shall introduce in Definition 2.1.1
below. The investigation of such problems has been a field of interest for re-
search activities over the decades. In fact, a main difficulty lies in discovering
the optimal conditions to be placed on ®(z,t) with respect to (z, t)-variables.
Here we mention a very recent and interesting paper [97] in which the au-
thors give a reasonable answer to such a question by considering a class of
functionals of Uhlenbeck type without any a priori assumption on minima
involved. Essensially, the assumption [97, (VA1)] is not comparable with the
assumption (1.0.13),. Moreover, the method used in [97] can not be applica-
ble to treat the regularity of minima of the functional F in (1.0.10) having
the solution dependence. Besides the papers mentioned before, there is a rich
literature, see for instance [4, 5, 25, 62, 81, 108, 124, 125, 132] and reference
therein. We also refer to a survey paper [117].

The second part of the thesis is devoted to analyzing the validity of local
Calderén-Zygmund type estimates for distributional solutions to the equation
of divergence form

div A(z, Du) =divB(z, F) in € (1.0.29)

for a bounded open subset 2 C R"™ with n > 2, where the vector field
A Q xR" — R" is continuous, differentiable with respect to the second
variable z € R™ \ {0}, and satisfies the following structural conditions with
fixed constants 0 < v < L < oo:

v
Az, 2)] + [ D.Ax, 22| < LX)

E
e < 0.4 26,0, (1.0.30)
A1) — Al 2) 2] < LW, =) — W, [2])]

whenever z € R" \ {0}, £ € R", z, 21,29 € Q. On the right-hand side of the
equation (1.0.29), we have that B :  x R" — R" is a Caratheodory vector

10
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field satisfying
|z||B(z, 2)| < LY(x,|z]) (x€Q,zeR"). (1.0.31)

In the structure assumptions (1.0.30) and (1.0.31) above, ¥ is the same one
as initially defined in (1.0.2). We shall consider a distributional solution u of
(1.0.29) under the assumptions (1.0.13) or (1.0.14). A primary model keeping
in mind of the equation (1.0.29) is of the form

Du

div (Qtlll(a:, | Dul) Dl

):divB(x,F) in €, (1.0.32)

where 0, stands for the partial derivative of W(x,t) with respect to t-variable,
which is the Euler-Lagrange equation of the following functional

Wh(Q) 3 v P(v,Q) — / (B(z, F), Dv) du, (1.0.33)

Q

where the functional P is initially given as in (1.0.1).

The main purpose of the second part of the thesis is to discover and de-
velop optimal conditions on both nonlinearity A(z,z) and the coefficient
function a(-) and b(-) (see (4.1.9) and (4.1.10)), that are not necessarily
Holder continuous, under which for any distributional solution u € W% ()
to (1.0.29) the following local Calderén-Zygmund type implication

U(x,|F|) € L (Q) = U(z,|Dul) € L () (1.0.34)

loc loc

with

][ Y(U(z, |Du])) dz < T ][\y(x, \Dul)dz | + ][T(\Il(:c, F)) da

(1.0.35)

holds for every T € N with an index s(Y) > 1 in the sense of Definition
2.1.1 and every ball Bg € . Let us now discuss previous known results
on Calderén-Zygmund type implications like (1.0.34) as special cases of the
problem we consider:

1. For W(z,t) = t” with p > 1, there has been historical progress of

11



CHAPTER 1. INTRODUCTION

studying the regularity theory of non-linear p-Laplacian type equations
of divergence form over the last several decades so that there is almost
no possibility to mention all the works that have been done up to now.
We only refer to some noteworthy results, see for instance [5, 10, 41,
44, 45, 47, 48, 49, 102, 103, 105].

2. For U(z,t) = G(t) with G € N, the global Calderén-Zygmund esti-
mates over the whole domain R" have been achieved in [135] and the
same result was proved for general equations involving a solution de-
pendence over bounded non-smooth domains [16, 42, 50]. Moreover,
the Lipschitz regularity has been proved in [54] for equations and [55]
for systems.

3. For U(z,t) = t* + a(z)t?! with 1 < p < g and 0 < a(-) € C"*(Q) for
some « € (0, 1], the implication (1.0.34) has been obtained in [59, 70]
under the main assumption (1.0.6a). The global implication of (1.0.34)
is proved in [37] over a suitable smooth domain and [36] over nonsmooth
domain under the same assumption (1.0.6a). We also note that the im-
plication (1.0.34) is proved in [59] for bounded solutions of (1.0.29)
under the assumption (1.0.6b), where the nonlinearity A(-) is of varia-
tional form as in (1.0.32) and an additional information on the vector
field F" in (1.0.29) is assumed (see [59, (1.27)]).

4. For ¥(xz,t) = tP+a(x)t? log(1+t) with 1 < pand 0 < a(-) € C**(R2) for
Wy : [0,00) — [0, 00) being a continuous and concave function vanishing
at the origin, the global Calderén-Zygmund estimates like (1.0.34) is
proved in [38] under the optimal assumption

1
lim sup w,(p) log (—) = 0.
P

p—0t

5. For WU(z,t) = G(t) + a(x)H,(t) + b(x)Hy(t) with G, H,, H, € N and
0 < al-) € C*Q) and 0 < b(-) € C*(Q) for some a, B € (0,1],
the above implication (1.0.34) has been proved in [14] under the main
assumption

H,
sup (p)

>0 G(p) + [G(p)ttn <0 (1.0.36)

12



CHAPTER 1. INTRODUCTION

when b(-) = 0. If () # 0, then the same result is proved in [15] under
the main condition on the nonlinearity

" H,y(p) Hy(t) -
»>0 (G(p) FIGOI™E T Gl + [G(p)]”5> )

and max{a, f} < 2min{a, 5}. (1.0.37)

The second assumption in (1.0.37) is unavoidable according to the ar-
guments and structure assumptions in (1.0.30). Recently, the author of
[69] proved the implication (1.0.34) under the condition (1.0.9) when
G(t) =1, H,(t) = t? and H,(t) = t° for 1 < p < ¢, s and the nonlinear-
ity A(-) is of variational form in (1.0.32). Notice that if the nonlinearity
A(+) is of variational form like in (1.0.32), then there are advantages
that solutions to corresponding homogeneous problems can be directly
treated as minima of the functional under the consideration.

5. Lastly, we only mention our recent result of [17] on the validity of
the implication of (1.0.34) with the estimate (1.0.35) for more gen-
eral settings involving variable exponents like W(z,t) = [G(t)]P@ +
a(z)[H,(t))9®) with G, H, € N, log-Holder continuous functions 1 <
p(+),q(-) and 0 < a(-) € C**(Q) for some a € (0, 1]. We refer reader to
(6, 122, 124, 125] for further regularity results on problems involving
variable exponents

For the Orlicz double phase case, we assume that the vector field A(-) in
(1.0.29) is general one satisfying (1.0.30) and, for the Orlicz multi-phase
case, we let

Az, z) = Ag(2) + a(z)An, (2) + b(x)An,(2) Ve, zeR")

in (1.0.30) for some reasons to apply harmonic type approximation Lemma
2.5.1, where the vector fields Aq, Ap,, Ay, : R" — R" satisty the growth
and ellipticity conditions (4.1.17) below, we prove the validity of implication
(1.0.34) for any distributional solution v € W¥(Q) of (1.0.29) under the
main assumptions (1.0.13) or (1.0.14), see Theorem 4.1.1 and Theorem 4.1.2.
Note that we are not allowed directly to apply the approaches employed in
(14, 15, 59, 70, 69] as they strongly rely on a difference quotient argument
which in turn strictly require the Holder continuity of the modulating co-
efficient functions a(-) and b(-) that are not always assumed to be Holder

13



CHAPTER 1. INTRODUCTION

continuous in Chapter 4. The main tool for establishing (1.0.34)-(1.0.35) is
a reverse Holder type inequality

d

f?N@ﬂDMﬂ%m gfwuwDMym (1.0.38)

Br/2 Br

for every d € (1,00) and ball B € §2, see Theorem 4.2.4, where w €
WY (Bg) is the weak solution to the Dirichlet problem

1.0.39
w € u+ Wy (Bg). ( )

{div A(z, Dw) =0 in Bg
We bypass such a nontrivial obstruction by treating the solution of (1.0.39)
as quasi-minima of the Orlicz multi-phase (double phase) energy functional
in (1.0.1) and combining harmonic type approximation with some delicate
decay estimates to conclude (1.0.38). We believe that, using approaches in
Chapter 4 together with adapting methods presented in [36], the global
Calder6n-Zygmund type estimates like (1.0.34) can be (should be) proved
on a non-smooth domain under each of assumptions (4.1.9) and (4.1.10).
We also point out that problems with Orlicz growth and generalized Or-
licz growth are central topics as natural generalizations of p-Laplacian prob-
lems which have been an object intensive studies over last decades. Besides
the papers mentioned above, there is a richness of literature on regularity
theory of elliptic/parabolic equations; see for instance, Lipschitz regular-
ity for elliptic/parabolic equations [23, 54, 55, 77, 81|, potential estimates
(19, 32, 43], Holder continuity [35, 94, 95, 96|, obstacle problems [11, 31],
Calderén-Zygmund estimates [7, 8, 40, 98, 138] and reference therein. We
also refer to the recent textbook [56].
In the last part of the thesis, we provide a unified way for proving Holder
regularity for the gradient of viscosity solutions to fully nonlinear elliptic
equations of the form

®(z,|Dul)F(D*u) = f(x) in By, (1.0.40)
where By = B1(0) C R" with n > 2 is the unit ball, ' : S(n) — R is a

uniformly (A, A)-elliptic operator in the sense of (A1) below (see Chapter 5)
and ® : By x [0,00) — [0,00) is a continuous map featuring a degeneracy

14



CHAPTER 1. INTRODUCTION

and singularity for the gradient described as in (A2) below (see Chapter 5).
From a variational point of view, the fully nonlinear equation (1.0.40) is
closely related to the energy functional

v /go(x, |Dv|) dz (1.0.41)
B

for a integral density ¢ : By x [0,00) — [0,00) in a way that the Euler-
Lagrange equation corresposnding to the functional (1.0.41) forms an equa-
tion of type (1.0.40). The functional in (1.0.41) is a highly general non-
autonomous functional with Uhlenbeck structure including significant models
such as p—, Orlicz-, p(z)—, double phase- and Orlicz multi-phase growth and
so on. For instance, Orlicz multi-phase functional in (1.0.1) is one of func-
tionals of type in (1.0.41) which we consider in the first parts of the thesis.
Hoélder continuity for the gradient of local minima of the functional (1.0.41)
under suitable optimal assumptions has been investigated in [97], where fun-
damental assumptions on the integral density function ¢ in (1.0.41) are that
there exist constants 1 < p < ¢ such that the map ¢t — go(txp, 2 is almost

o(x,t)
ta

Definition 3.1]. In this regard, our conditions on ® in (1.0.40) introduced in
(A2) is absolutely natural. Let us discuss known regularity results for vis-
cosity solutions of equations in the form of (1.0.40) for significant special
cases.

1. For ®(z,t) = ¥ with i(®) = d(P) = p > —1 in condition (A2), fully
nonlinear equations (1.0.40) with this type of ®(x,¢) have been studied
in a series of papers. The authors of [26] proved the comparison prin-
ciple and Liouville type theorems in the singular case (—1 < p < 0),
and showed the regularity and uniqueness of the first eigenfunction in
[27]. Alexandrov-Bakelman-Pucci estimates and the Harnack inequal-
ity have been also obtained in [63, 64, 99]. In particular, the authors of
[100] proved local Holder continuity for the gradient of viscosity solu-
tions of (5.1.1) in the degenerate case (p > 0). Moreover, the authors
of [9] proved the optimality of Holder regularity for the gradient of vis-
cosity solutions for the same problem in [100] by showing that viscosity

non-decreasing and the map ¢ — is almost non-increasing, see [97,

1
solutions are Cﬁf with f = min O_z,? and f € (0,a), where
p

15
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a € (0,1) is an universal Holder exponent coming from the Krylov-
Safonov regularity for the homogeneous equation F(D?h) = 0.

2. For ®(z,t) = t* + a(2)t? with —1 < p,q and 0 < a(-) € C(By),
the constants in (A2) can be determined as i(®) = min{p,¢} and
d(®) = max{p, ¢}. The author of [67] proved the local C** —regularity
of viscosity solutions of (5.1.1) for 0 < p < ¢. Moreover, in this de-
generate case, the sharpness of the local C''?-regularity estimates for
bounded viscosity solutions is shown in [65].

3. For ®(x,t) = 9 with p(-) € C(B), i(®) = ieng p(x) > —1 and
z 1

d(®) = sup p(z) in (A2), C*P-regularity of viscosity solutions has been
reB,
studied in [34]. In this paper, we provide a novel way to prove Holder

continuity for the gradient of viscosity solutions of (5.1.1) for both
degenerate/singular cases in the full generality.

4. For ®(x,t) = t*@ 4a(x)t9® with functions 0 < a(-) € C(By) and —1 <
p(+),q(-) in C(By), the constants in (A2) are i(®) = ing {p(z),q(z)}
TED1

and d(®) = sup{p(z),q(x)}. In [85], local Holder continuity for the
r€EB

gradient has been proved when 0 < p(-) < ¢().

For a variational point of these special cases we have discussed above,
we refer to the recent survey paper [118] presenting important results in
problems with nonstandard growth conditions. We also point out the very
recent paper [104] dealing with viscosity solutions of an equation of the form

where 5 : By x R x R" — R is a map satisfying 0 < 5,, < B(-) < Bu
for some positive constants /3, and Sy. In [104], local Hélder continuity
for the gradient of viscosity solutions of (1.0.42) is obtained under general
conditions on the exponent function 5(-) for the degenerate case, while the
singular case is not be treated due to the methods employed there and the
equation (1.0.40) can not be represented as (1.0.42) in general. The main
results of Chapter 5 are contained in Theorem 5.1.1, which are sharp in the
view of an example given in [100]. As we have discussed above, the results
of Theorem 5.1.1 cover the main results of the papers [34, 85, 67, 100] for
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both cases involving degenerate/singular terms in a unified way. Moreover,
the results of Theorem 5.1.1 cover another important cases such as

1. ®(z,t) =t + a(z)t’ log(e + t) with —1 < p and 0 < a(-) € C(By),
where the constants in (A2) are given by i(®) = p and d(®) = p+ ¢
for any € > 0,

2. O(z,t) = ¢(t) + a(x)y(t) for suitable functions ¢, » and 0 < a(-) €
C(B).

The rest of the thesis organized as follows. In the next chapter, we in-
troduce notations, functions spaces, analytic tools and basic results such as
Absence of Lavrentiev phenomenon, Sobolev Poincaré type inequalities and
Harmonic type approximation to be employed throughout the thesis. In chap-
ter 3, we discuss various regularity results of minima of Orlicz multi-phase
functionals. Chapter 4 is devoted to proving local Calderén-Zygmund esti-
mates for Orlicz multi-phase problems. In last chapter, we investigate Holder
regularity for the gradient of viscosity solutions to a class of fully nonlinear
equations.

17



Chapter 2

Preliminaries and auxiliary
tools

2.1 Notations

Throughout the thesis, we shall always denote by ¢ to mean a generic positive
constant, possibly varying from line to line, while special constants will be
denoted by ¢y, ¢, ¢y, ¢, and so on. All such constants will be always not smaller
than one; moreover relevant dependencies on parameters will be emphasized
using parentheses, that is, for example ¢ = ¢(n, s(G), v, L) means that ¢
depends only on n, s(G), v, L. We denote by Br(zo) = {z € R" : |[z—z¢| < R}
the open ball in R" centered at xy € R"™ with a radius R > 0. If the center is
clear in the context, we shall omit the center point by writing Bg = Bg(xo).
We shall also denote B; = B;(0) C R" unless the center is specified. With
f:B — RY (N > 1) being a measurable map for a measurable subset
B C R" having finite and positive measure, we denote by

= _i xT)ax
<f>B:l[f<x>dx—,B,Zf< )d

its integral average over B. For a measurable map f : 2 — R and an open
subset B C Q with ¢ : [0,00) — [0,00) being a continuous and concave
function such that o(0) = 0, we shall use the notation as

[flos :== sup M and  [flo = [flo:a-

r,yeB,xF£y 0'(|I - y|)

18



CHAPTER 2. PRELIMINARIES AND AUXILIARY TOOLS

We denote by C7(2) the space of uniformly continuous functions on 2 whose
modulus of continuity does not exceed o. The space C?(£?) is endowed with
the norm defined for a function f by

[fllca@y = 1flzoo @) + [floi-

In particular, if o(p) = p® for some « € (0, 1], then we denote

[floas == sup |f(=) = F)l

z,yEeB,x#y |l’ - y|a

and  [flo.a = [flo.a0-

For a given continuous and concave function o : [0,00) — [0, 00) vanishing
at the origin, we shall use some elementary properties in the future as

o(Mt) < Ao(t) forevery A>=1 and t>0 (2.1.1)

and

1 < 1 n 1
a(At) T a(t)  Ao(t)

for every A,t >0 wunless o is constant.

(2.1.2)

Throughout the thesis, for any given open subset B C €2, we shall also
use the notations by

a”(B) := inf a(z), a"(B):=supa(x),

xeB xeB
b~ (B) := ilelgb(x), bt (B) = sup b(z),
Us(t) :=G(t) + irelzfga(x)H“(t) + ;relg b(x)Hy(t),
Wi(t) :=G(t) + sup a(z)H,(t) + sup b(z) Hy(t) (2.1.3)

for every t > 0.

Definition 2.1.1. A measurable function ® : Q x [0, 00) — [0, 00) is called
an Young function if, for any fixed = € €, the function ®(z, -) increasing and

convex such that
DOz, t Oz, t
(@1 _ g and 1im 250 _ 4o
t—00 t

®(z,0) =0, lim ®(z,t) = o0, lim
t—o00

t—0t
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We denote by NV (Q) the set of Young functions @ : Q x [0,00) — [0, 00)
such that, for any fixed z € Q, ®(z,-) € C*([0,00)) N C?((0,00)) and there
exists a constant s(®) > 1 with

1 <6t2td>(m,t)t
s(®) ~ 0,®(z,1)

< () (2.1.4)

uniformly for all x € Q and ¢t > 0, where in the future we shall call this
number s(®) by an index of ®. Furthermore, we denote also N/ to mean the
set of Young functions ® € N () such that ® does not depend on the first
variable x.

As a direct consequence of the above definition, for any ® € N(Q) with
an index s(®) > 1 and any fixed point z € (), we can observe

POED(x,t) ~ t0,P(x,t) =~ ®(z,1) (2.1.5)

for uniformly all ¢ > 0, where note that all implied constants only depend
only on s(®). Now we state some important properties of functions of N'(Q),
see [14, 15, 39] for their proofs.

Lemma 2.1.1. Let ® € N(Q) with an index s(®) > 1. Then, for any fived
x € ), we have

141
1. A0+5<¢)®($>t) < @z, Aot) < AS@)H(I)(x,t) for any Ag =1 and t > 0.
41
2. /\(1)+5(®)q)($at) < Pz, Aot) < AS(Q)JF O(xz,t) for any 0 < N\g < 1 and
t>0.
1 _s(®)
3 A0 (2,) < Oz, Aot) < AT D, (2, t) for any Ay > 1 and
t>0.
s(P) 1
4o AP0 (@, t) < BN Mot) < AT R () for any 0 < Ag < 1
andt > 0.

In the above lemma, for a fixed point z € Q, ®; '(x,t) is understood by
the inverse function of ®(x,t) with respect to t-variable.

Remark 2.1.1. For a given ® € N(Q) with an index s(®) > 1, we notice
useful but direct consequences of Lemma 2.1.1 as

O(x,t +5) < O(x,2t) + B(x,25) < 2775 (B(x, 1) + B(z, 5)) (2.1.6)
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for every x € Q and t, s > 0. Furthermore, for any fixed x € 2, we have

A

@D < (1 + @) )] @z, ] o

0P (z,t) < (14 s(P))

for every 0 <t <1

and

K

1) (1 4 5(®)[®(x, 1)] 7@ [®(z, )] 0

0®(z,t) < (1+5(P)) ;

for every t > 1.

Putting together the last two inequalities, we have the following very useful
inequality which will be applied in the future

O(x,t)

t
< (14 5(@)) ([ (w, V)] [0, 0] + [0z, 1)] 0 [@(a, )] )

(2.1.7)

~ 8#@(1’, t)

for every x € Q and t > 0.
Lemma 2.1.2. Let ®, & € N(Q) with indices s(®),s(®) > 1. Then,

1. For any non-negative real numbers a,b satisfying a+b >0, a® + lﬁ) S
N(Q) with s(a® + bP) = 5(P) + s(P) and ¢ € N(Q) with s(PP) =
45(D)s(P)(s(P) + s(P)).

>

L, o™ € N(Q) with s(®™) = s(P) + (m —

2. For any number m

1)(s(®) +1).

3. For any number p > 0, ®,(z,t) = t'®(x,t) € N(Q) with s(P,) =
p+ 3[s(P)]2.

4. There ezists 0y € (0,1) depending only on s(®) such that ®° € N(Q)
for every 0 € (6, 1] with s(®°) depending only on s(®) and 6.

Lemma 2.1.3. Let ® € N with an index s(®) > 1. Then t — @ (tS@lHl) is

a concave function.
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Lemma 2.1.4. Let ® € N(Q) with an index s(®) > 1. Then there exists a
positive constant ¢ = c(s(®)) such that

$10,P(x, 89) + $20;P (1, 81) < eP(x,81) + —=

holds for all s1,s5 > 0 and 0 < e < 1.

Lemma 2.1.5. Let &1, Py € N with indices s(®1),s(Py) > 1. There exists
a constant dy = do(s(P1), s(P2)) such that the map

= (CI)l o CIDQ_I) (ﬁ)

is concave in (0,00) for every d > dy.

1

Proof. Let us denote by hg(t) := (®10®;") <t3> and g4(t) = @'

It suffices to check hl; < 0 in (0,00) for every d > do(s(®y), s(P3)). Direct
computations and (2.1.4) imply

ha(t) = Y (ga(t))[ga(V)]* + P} (ga(t)) g4 (t)

< @ (g(1) ((1 n 3@1))% n g;z<t>) |

Since @] > 0 in (0,00), we calculate the term in the bracket. By again
elementary calculations and recalling ®3 > 0 in (0, 00), we have

1 1

ta—1 1 (— — 1) ta
and ¢j(t) < 44—~

10 S @)

Then inserting the content of last display into the previous one and using
(2.1.5), we find

-2

[g:i(t)]Q " t%_Q d()
L@ 0w 90 S g (E - 1) <0

for every constant d > dy = do(s(P1), s(P2)). O

Remark 2.1.2. We note that ¥ € N(Q) with an index s(¥) = s(G)+s(H,)+
s(Hp) by Lemma 2.1.2. In particular, for every open subset B C €2, it holds

22



CHAPTER 2. PRELIMINARIES AND AUXILIARY TOOLS

that U, Uy € N with indices s (V) = s(G) + s(H,) + s(Hy) and s (¥5) =
s(G) + s(Hy) + s(Hy).

For a given Young function ® € N (Q) with an index s(®) > 1, we define
the vector field Vg : Q x R™\ {0} — R" as follows

0,® :
Vo(x,z) := {%] z (2.1.8)
z
Furthermore, we shall often use the following inequalities that
1
[olbn s 0otz y Sl
021 + (1 — 0) 2] (Iz1] + [220)
Vo (2, 21) = Va(@, 22) [ = 05 ®(, 21| + |22]) 21 — 2/
i)
ARl vl e (2.1.10)
21| + [ 22
|21 — 2|
Dz, |2 — < O(x, + —— 2.1.11
(@l =2) SO@lal+lah Dt @
and
21 Z9 2
<(?tq)(x, |21|)m — 0P (x, |22|)m, 2 — 22> ~ |Vo(z,21) — Vo(x, 29)|
1 2

(2.1.12)

hold true, whenever x € Q and z;, 2o € R™\ {0}, where all implied constants
in (2.1.9)-(2.1.12) depend on n and s(®) (see [73] for further discussions).
Moreover, we have the following useful inequality

0
(2.1.13)

1
df
Vo (z,22) — Va(z, 21)]* < / Vao(z,02 4+ (1 —0)21) — Va(z,21)|* — (Vo €Q),
0
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which follows from the following estimates that

40
/|V¢,(a:,922 F=0)2) Ve, ) G

1
(21100 [ ¢ 1—
> / (1‘,’9224—( 9)21|+’Z1D0|22_21|2d9

~ (1022 + (1 — 0)z1| + |21])?

1

Al O(z, |02 + (1 0 do
|Z2\-|-|Z1|2 [0z + (1= )z + [=1])

0
122—21\2

1
AL g [ a, [ (102 + (1= 0)z| + |21])0 dO
2 gl o [ (0 + (1= 0)a ]+ 1)
0

|29 — Zl|2 (2.1.10)
~ WQ) (@, |22 + |21]) = |Va(z,22) — Vt1><x721)|2

hold with having all implied constants in the above display depending on n
and s(®), whenever x € Q and 2y, zo € R"\ {0}, where in the third inequality
of the last display we have applied Jensen’s inequality to the convex function
®(z,-) with respect to measure 6 df.

Lemma 2.1.1. Let ® € N(Q) with an index s(®). Then there exists a con-
stant ¢ = ¢(s(P)) such that

c
O (z, |21 — 22|) < eP(x, |21]) + g|Vq>(x, 21) — Va(z, 29)|?

holds, whenever e € (0,1), z € Q and z, zo € R™\ {0}.

2.2 Musielak-Orlicz and Musielak-Orlicz-Sobolev
spaces

We now introduce the Musielak-Orlicz spaces (generalized Orlicz spaces),
which generalize the Orlicz spaces. Let @ : © x [0, 00) — [0, 00) be an Young
function. Here we present some definitions and properties associated to Young
functions.
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Definition 2.2.1. Let ® be a Young function.

1. @ is said to satisfy the As-condition, denoted by ® € A,, if there exists
a positive number Ay(®) such that ®(z,2t) < Ay(P) D(x,t) for all
zeQandt>0.

2. ® is said to satisfy the Vy-condition, denoted by ® € V,, if there exists
a positive number Vy(®) > 1 such that ®(z, Vo(P)t) = 2Vo(P) O(z, 1)
for all x € Q and ¢t > 0.

3. We write ® € Ay NV if ® € Ay and ® € V.

For a given Young function ®, we define the complementary function ®*
of ® by, for each z € Q and t > 0,

¢*(x,t) = sup{st — ®(x,s) : s > 0}.

Then ®* satisfies all the conditions to be a Young function. One can see that
(®*)" = @ and that ® € V, if and only if ®* € Ay with 2V, (P) = Ay(P).

For an Young function ®, the Musielak-Orlicz class K*(Q;RY), N > 1,
consists of all measurable functions v : Q — RY satisfying

/(ID(JS, ()] dz < +o0.

Q

The Musielak-Orlicz space L®(Q; R") is the vector space generated by K®(€; R™Y).
If ® € Ay, then K®(Q;RY) = L*(Q;RY) and this space is a Banach space
under the Luxemburg norm

0]l oy = inf { 0> 0 /cp (x @) do < 1

Q

The Musielak-Orlicz-Sobolev space W' (Q; RY) is the function space of
all measurable functions v € L®(Q;RY) such that its distributional gradient
vector Dv belongs to L*(Q; RY™). For v € WH?(Q; RY), we define its norm
to be

[vllwre@zryy = [Vl e @ry) + 1DVl Lo @ mam) -

The space W, ® (Q; RY) is defined as the closure of C3°(Q; RY) in Wh®(Q; RY).
For N = 1, we simply write L*(Q) := L*(Q;R) and W'®*(Q) := WH?(Q; R).
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For a detailed discussion of the Musielak-Orlicz spaces and the associated
Sobolev spaces, we refer the reader to [2, 24, 56, 72, 92, 93, 119, 127, 131]
and references therein.

We end up this preliminary section with presenting some standard tech-
nical lemmas which will be applied later, see for instance [90, 91, 109].

Lemma 2.2.1. Let h : [po, p1] = R be a non-negative and bounded function,
and 0 € (0,1), A,B >0, 7,72 = 0. Assume that

A N B
(s—t)n  (s—t)»

h(t) < Oh(s) +

holds for py < t < s < pi. Then there ezists a constant ¢ = c(6,7v,72)
satisfying the following inequality
cA cB
+ :
(p1—=po)™  (p1 — po)

h(po) <

Lemma 2.2.2. Let {Y;}2, be a sequence of nonnegative numbers satisfying
the following recursive inequalities

Y;—i—l < Obi}/il-i—m

with some fized positive constant C', b > 1 and 79 > 0 for everyi=10,1,2,....

If

-1 -

Yo<C 70b 70,

O“m‘ =

then Y; — 0 as i — oo.

Lemma 2.2.3. Let v € W"'(B,) for some ball B, C R". Then there exists
¢ = ¢(n) such that

B,|
I —k)|B,N e < 1B, / Dvl|d
( )l P {U> }‘ ’Bp\{?]>k}’ ‘ U‘ T

Byn{k<v<i}

holds, whenever | and k are real numbers with | > k.
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2.3 Absence of Lavrentiev phenomenon

Here we deal with the absence of Lavrantiev phenomenon under the assump-
tions introduced in (1.0.13),, (1.0.14), and (1.0.15),. The following theorem
widely covers the results of [57, Theorem 4.1], [58, Proposition 3.6}, [39, The-
orem 3.1}, [22, Theorem 4], [14, Theorem 4.1] and [15, Theorem 3.1].

Theorem 2.3.1. Let P be the functional defined in (1.0.1) with G, H,, Hy €
N and the coefficient functions 0 < a(-) € C“*(Q) and 0 < b(-) € C**(Q) for

the functions wy,wy being continuous, concave and vanishing at 0.

1. If the condition (1.0.13), is satisfied, then for any function v € VV;?(Q)

and ball B = Bgr(zo) € B € Q with P(v, B) < oo, there exists a
sequence of functions {v}32, C W'*°(Bg) such that

v = v in WHY(Bg) and P(v, Br) — P(v, Br). (2.3.1)

2. If the condition (1.0.14), is satisfied, then for any function v € W ()N
Ly () and ball Br = Bgr(xo) € B € Q with P(v, B) < 0o, there exists
a sequence of functions {vy,};>, C Wh(Bg) such that

Vp — U I Wl’G(BR), P(vx, Br) = P(v, Br)

and T sup el o sy < 0] - (2.3.2)
—00

3. Letv € WHY(Q)NC*(Q) with some v € (0,1) be a local Q-minimizer
of the functional P under the assumption (1.0.15),. Then, for every
ball Br € ), there exists a sequence of functions {vy}o>, C Wh(Bg)
such that

v = v in WHS(Bg) and P(vk, Br) — P(v, Br). (2.3.3)

Proof. Essentially, the proof for the first two parts is similar to the one of

[39, Theorem 3.1]. Since our assumptions are weaker than the assumptions

considered there, we provide the detailed proof in any case. First we fix g €

(0,1) such that B € Bgrys, € B € Q. Let p € C5°(B) be a non-negative
1

standard mollifier with /pdx = 1. Then we set p.(z) := —p (f) for x € B,
en \eg

R’ﬂ
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with 0 < € < gg. Clearly p. € C5°(B.), /p6 dr =1,0 < p. < ¢(n)e™™ and

Rn
|Dp.| < e(n)e=™V. For every 0 < & < £0/2, we consider the following
functions:

ve(z) = (v pe)(x), ac(z):= inf a(y), b.(x):= inf by) (2.34)

YEBa: (x) YEBa: (x)
and
U (x,t) = G(t) + ac(x)Hy(t) + be(z) Hy(t) (2.3.5)
for every x € B and t > 0.
1. By Jensen’s inequality, for a fixed x € Bg, we have
G(|Dve(z)]) = G (|(Dv * pe)(x)]) < /G(IDU(SL‘ —y)Dp=(y) dy < ce™".
Rn
It follows from (1.0.13), and the last display that

H, o G™") (G(|Dv.(x)]))
G(|Dv.(z)|)

< (14 [ (160D )] ) G0t

¢ (14 [wa(e)]™) G(|Dv.()])
c (1 + [wa(s)]’l) U (z,|Dv.(z)]). (2.3.6)

G(|Dve()])

H,(|Dv.(a)]) =

<
<

Similarly as above, we have

Hy(|Dvs(2)]) < ¢ (1 + [wy(e)] ™) e(a, | Dv.(z))). (2.3.7)
2. Since v is locally bounded in €2, we have

| Due ()] = [(v* Dp:)(x)] < /Iv(af —IDpe(y)l dy < c(n) [[vll ooy e
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Then, the assumption (1.0.14), and the last display imply

Hi(1Deda)) = G (Do)
< (14w (1Dve() )]‘1) G(|Du.(@))
<c(1+ wa(e)]™) G( |Dva
<c(1+ [wa(e)]™h) 0. |Dv€ ) (2.3.8)

with some constant ¢ = ¢ (n, Ag, HUHLOO(B)) for every x € Bg. Arguing
in the same way, for every x € Bg, we have

Hy(|Dvs(2)]) < ¢ (1 + [wy(e)] ™) Ye(a, | Dv.(z))). (2.3.9)

Using the continuity of the coefficient functions a(-) and b(-) and recalling
the definition of W, in (2.3.6), for every x € B, we have

V(z, |Dve(z)]) < Ve(z, [Due(2)]) + |a(z) — a-(z)|Ha(|D f:(2)])
+ [b(x) — be(2) | Hy (| D fo()])
< Ue(z, [Due(z)]) + 4a)w,wa(e) Ho(| Dve(2)])
+ 4[b]w,ws () Hy(| Dve(2)]). (2.3.10)

Therefore, taking into account (2.3.6)-(2.3.7) when the first case comes into
play, and (2.3.8)-(2.3.9) when the second case is considered, in any case, it
follows from (2.3.10) that

U(z, |Dv(w)]) < eWe(z, [ Dve(2)]) + cwa(e) (1 + [wal(e)] ) Ve, [ Due(2)])
cwb(&‘)(l + [Wb(g)]il)‘lj ( | (x D < C\Ds(wa ‘Dvs(x)’)
(2.3.11)

for some constant ¢ being independent of €. Therefore, by Jensen’s inequality,
we get

V. (z, | Dun()]) < / T, (z, | Du(y) ol — y) dy

Be()

29



CHAPTER 2. PRELIMINARIES AND AUXILIARY TOOLS

< / Wy, [Dv(y) )pe(z — ) dy
B.(z)

= [V [Do()]) * pel(a) = [W(, [Du()[le(z). (2.3.12)
Hence, in any case, using (2.3.11)-(2.3.12), we conclude that
U (z, |Dv(2)]) < e[, [Du()])]e() (2.3.13)

holds every = € By with a constant ¢ independent of €. Since [¥(-, | Dv(+)])]. —
(-, |Dv(-)|) strongly in L'(Bg), we are able to apply the general Lebesgue’s
dominated convergence theorem of [126, Theorem 19] to obtain a sequence
of functions {v;} := {v., } C C°(B) satisfying (2.3.1) for the first case and
(2.3.2), , for the second case with some suitable choice of e; — 0. Clearly, the

assertion (2.3.2), comes from the very definition of mollification of v defined
in (2.3.4).

3. Now we turn our attention to proving the last part of the theorem.
Applying a Caccioppoli type inequality of Lemma 3.2.2 under the as-
sumption (1.0.15), below, we see that

][ U (z,|Dv(z)|)dz < ¢ ][ U, (:U, v(2) = (V) Bt ) dz
€
(2.3.14)

B:(z) Bac(x)

for a constant ¢ independent of . Therefore, by the definition of the
convolution, the fact that W_(z,-) is convex for any fixed x € Br and
(2.3.14), we have

Do (2)] < e (Wa(a, ) o0 0 | o, ][ Do(2)| dz

B:(z)

<) | f e |Dea) iz

Be ()
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Bac (z)
(2.3.15)

with some constant ¢ independent of ¢, whenever x € Bg and ¢ €
(0,20/4), where we have also used the assumption v € C%7 () for some
v € (0,1) and Lemma 2.1.1 together with Remark 2.1.2. Recalling the
definition of W, in (2.3.5), using the modulus of continuity of functions
a(-), b(-) and the assumption (1.0.15),, for every x € By, we estimate

U(z, [Dve(z)]) < Ve(z, | De(2)]) + [ac(z) — alx)|Ha(| Dve(x)])
+ [b=() = b(x) | Hy(| Dve(2)])
< Ve(z, | Due(2)))

# @) (14 [o (1000 )] ) GOD0)

+ cwy(€) (1 + [wb <|Dva(fﬁ)|ll”>]l) G(|Dv.(z)])
< V. (z,|Dvc(x)|)

for a constant ¢ independent of €, where we have also used (2.3.15).
Then arguing in the same way as in (2.3.12)-(2.3.13), we find a sequence
of functions {v;}3>, C W'*°(Bg) satisfying (2.3.3). The proof is now
finished.

]

2.4 Sobolev-Poincaré type inequalities

In the present section we provide a Sobolev-Poincaré type inequality for
functions v € WY (Bg) with some ball Br C €, which is one of key points
for further investigations. For this, first we give a Sobolev-Poincaré type
inequality for functions of W'*(By) with ® € A" and a ball By C R".

Lemma 2.4.1. Let ® € N with an index s(®) > 1. For any dy € [1, Ll)’
n —
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there ezists 0 = 0(n, s(®), dy) € (0,1) such that

flo

holds for some constant ¢ = c(n, s(®),dy), whenever v € WH*(Bg) and
Br C R" is a ball. Moreover, the above estimate still holds with v — (v)p,,
replaced by v if v € Wy ®(Bg).

do

)}dodx S ¢ (ff@(ﬂﬁﬂﬂedx (2.4.1)

R

Proof. First note by Lemma 2.1.24 that there exists 6 = 6(n, s(®),dy) €
—1)d
u, 1 ) such that ®’ € A with an index s(®%) depending on n, s(®), dp.

Therefore, the following classical formula

() = (V) Byl < c(n) (2.4.2)
holds for a.e © € Bpg, see for instance [91, Lemma 7.14]. Letting E :=

]ZCDG(]DUD dx, one can assume that F > 0, otherwise v is constant on Bpg

Br
and the inequality (2.4.1) is trivial. Using (2.4.2), the fact that ® is increasing

and Lemma 2.1.1, we have
d o
’ | Do(y)
= P dr < d ——d d
7[{ ( )} 1< f (B/nyﬂl T
Br R
1
dy < c(n), where this constant

Br
with ¢ = ¢(n, s(®), dp). Since /

U= (U)BR

Rlx — y|m!

R
is independent of x € Bg and a ball Bg, we apply Jensen’s inequality to the
convex function ®? with respect to the measure R™!|z —y|~ "~ dy to obtain

i

ag
0

| Du(y)
d d
Lf(/fh7y"1 Y )
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dg
0

[}
:CRwe)doEr{oo][ ][[@(!DU(Z/)\)] Eldy | de

o=yl

(n 1)d0 |DU
7[][ o= 1)@0 E Ydy dz, (2.4.3)
|z =yl

Bgr Br

where in the last estimate we have applied again Jensen’s inequality to the

d,
convex function ¢ — ¢ with respect to the measure E~'®°(|Do(y)|) dy. We
observe that

1 1 1 _ (n=1)dg
][—(nl)dodx < I / iy dr < c(n,s(®),d)R~ 7 |
T Brl J =y

Br

(n — 1)d0

the inequality (2.4.1) follows. Finally, if we replace v — (v)p, by v if v €
Wy ®(Bg), then the estimate (2.4.1) still holds true since the following clas-
sical formula

which is possible since < n. Inserting the last estimate into (2.4.3),

[Do(y)]

|z —y|"!

[o(z)] < e(n)

Br

is valid for a.e z € Bp, whenever v € W, "' (Bg), see for instance [91, Lemma
7.14]. 0

Theorem 2.4.1. Let v € WY(Bg) for a ball B C Q with R < 1 under
G,H,,H, € N and 0 < a(-) € C¥(Q) and 0 < b(-) € C**(Q) for the

continuous and concave functions w,,wp vanishing at the origin. Then, for
2

any d € {1, #), there exist constants 0 = 0(n, s(G), s(H,),s(Hy),d) €

(0,1) and ¢ = ¢(n, s(G), s(Hy,), s(Hy),wa(1),ws(1),d) such that the following
Sobolev-Poincaré-type inequality holds:
1

][{xp <:r; )rda: <y ][[\If(:r;,]Dv])]gdx . (2.4.4)

R R

v (U)BR
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where

3=

L+ M ([ala, + [Bly) 1+(B/ (IDol)d

if v e WhY(Bg) with (1.0.13), (2.4.5a)
1+ da([al, + [bla,) (1+ ||v||Lm<BR))
if v € L®(Bg) with (1.0.14),. (2.4.5b)
1+ As([a)w, + [b]w,) (1 + [R” (J)gslg v] 117)

Lif v € C¥(Bg) with (1.0.15),. (2.4.5¢)

Moreover, the above estimate (2.4.4) is still valid with v—(v) g, replaced by v
depending on which one of (2.4.5a)-(2.4.5¢) comes into play if v € W, (Bg).

Proof. The above theorem widely covers the results of [14, Theorem 4.2], [15,
Theorem 32.] and also the results of [57, Theorem 1.6], which is a special case
when G(t) = tP, H,(t) = t7, wa(p) = p* and wy(-) = 0 for some constants
1<p<yq and a € (0, 1]. Then using the continuity of the coefficient functions

a(-) and b(-

, we find

=

v — )B

oo [sn (=)o

— 18[a %11 +18[b]., I + 9T, (2.4.6)
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where we have used the following elementary inequality
(b +to+t3) <3 (¢ +15 +19)  (Viy,ta,t5 > 0).

We now estimate the terms I; with ¢ € {1,2,3} in (2.4.6) depending on which
one of (1.0.13),, (1.0.14), and (1.0.15), is in force. In turn, using (1.0.13),

and (2.1.2), we see
(H, oG (G (

L = wa(R) ][ G(

< \wn(R) (B][ [(1+

v—(v)Bg

)

))G(u—mm )rdﬁ %

Uﬁ(v)BR

+9MR (B][ [G ( v = ()

R

) ) | o7

where we have used also that w,(-) is non-decreasing and R < 1. In the same
way, we have

oo (£[o
R 35
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+ 9\ R ][ {G(

R

)r*”md. 2.43)

Adding the estimates coming from the last two displays and applying Lemma
1

2.4.1 with ® = G for dy = d and dy = <1—|——>d <
n

6, = 01(n,s(G),d) € (0,1) such that

oo (fle( )
cone [ f [o(jrm )]

i o (1)
<eh ][[G(\Dv\)]eldx +cMR ][[G(]Dv])]glda:

LBr R

v (U>BR

, there exists
n JR—

: %
<ch |14 (B/ (|Dv])d ][G91(|Dv|) dx (2.4.9)

R

M

for some constant ¢ = ¢(n, s(G),w,(1),wy(1),d), where in the last inequality
of the above display we have used Holder’s inequality. Since Uy € N with
an index s(V) = s(G) + s(H,) + s(H,) by Remark 2.1.2, we are able to
apply Lemma 2.4.1 with & = Uy for dy = d. In turn, there exists 0y =
05(n, s(V),d) such that

Iy < ¢ ][ (W5, (1Do])]™ da (2.4.10)

R

with some constant ¢ = ¢(n, s(V),d). Inserting the estimates obtained in
(2.4.9)-(2.4.10) into (2.4.6), recalling the very definition of ¥y in (2.1.3) and
setting 6 := max{6,,0,}, we arrive at (2.4.5a). Now we turn our attention
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to proving (2.4.5b). For this, we estimate the terms I; for i € {1,2,3} for
v € L*®(Bg) under the assumption (1.0.14),. In turn, using (2.1.2) and the
assumption (1.0.14),, we see

In a similar way, one can see

I < 20 (1 (V) + ol s, ) (B][ [G (

Adding the estimates in (2.4.11)-(2.4.12) and applying Lemma 2.4.1 with
® = G for dy = d, there exists an exponent 6, = 6,(n, s(G),d) € (0,1) such
that

0=y )wa

(2.4.12)

1
o
L4 I < e (14 ol ][[G(|Dv|)]91 da (2.4.13)

R
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for some constant ¢ = ¢(n, $(G),w, (1), wp(1), d). This estimate together with
(2.4.10) and the very definition of W in (2.1.3), we find (2.4.5b). It remains
to prove (2.4.5¢). Essentially, it can proved in a similar manner we have shown
in (2.4.11)-(2.4.12). So using the assumption (1.0.15), and again (2.1.2), we
see

v=(v)p d d
I = w,(R) ][ a<v_(UR ; >G(U_g)BR ) dx
i )

I+ 1, < chs (1 + [R_'y%scv] ﬂ) ][ {G ( e

for some constant ¢ = ¢(s

with (2.4.10) leads to (2.

(2.4.15)

(G),wq(1),wp(1)). Finally, this estimate together
5¢). The proof is complete. ]
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Remark 2.4.1. We here remark that choosing d = 1 in a Sobolev-Poincaré
type inequality of Theorem 2.4.1, there exist an exponent 6 = 0(n, s(G), s(H,), s(Hy))
such that

][\1; <x ) dr < ch, ][ W(x, Do) dz| . (2.4.16)

R R

v (U)BR

holds for some constant ¢ = c¢(n, s(G), s(H,), s(Hp), wa(1),ws(1)), where

( 1
1+ M, + Pl) [ 1+ /G(le]) dz
R
if v € WY (Bg) with (1.0.13),. (2.4.17a)
A = 4 1 Nallalu, + Bluy) (14 0] sy
if v € L™(Bg) with (1.0.14),. (2.4.17D)
1+ As([a)w, + [0]w,) (1 + {R—v osc v] “/)
R
Lif v € C%7(Bg) with (1.0.15),. (2.4.17¢)

2.5 Harmonic type approximation

In this section, we discuss some important regularity results for the solution
to the following Dirichlet boundary value problem:

{—div Ao(Dh) =0 in Bg 25.1)

hewv+ Wyt (Bg),

where Br C R" is a given ball with n > 2, v € Wh¥°(By) is a given function,
and Ay : R" — R" is a vector field belonging to C*(R™) N C*(R™ \ {0}) and
satisfies the following ellipticity and coercivity assumptions:

ol 1+ DA < £
ozl 612 < (D Ay (), )

|2?

(2.5.2)

14
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for fixed constants 0 < v < L, whenever z € R" \ {0} and £ € R", in which
the function ¥, is given by

\Ifo(t) = G(t) + aoHa(t) + bpo(t) (G, H, H, € N) (253)
with fixed constants ag, by > 0 for every t > 0. By Lemma 2.1.2;, we get the

following

4

1 A0k
s(G) + s(Ha) + s(Hy) ~ Wy(t)

< s(G) + s(H,) + s(Hy) (2.5.4)

for every ¢ > 0, which means that ¥y € N with an index s(¥y) = s(G) +
s(H,) + s(Hy). Therefore, we note that the following monotonicity property
that

Va(21) = Va(22) P + a0l Vi, (21) — Vi, (22)1* + bo| Vi, (1) = Vi, (22) ]
R Vi (21) — Vg (22) 2
< c(Ao(z1) — Ao(22), 21 — 22) (2.5.5)

holds with some constant ¢ = ¢(n, s(Vy),v), whenever z,z5 € R™ \ {0},
where the map Vg for a function ® € A has been defined in (2.1.8).

Theorem 2.5.1. Let h € WY(Bg) be the weak solution to (2.5.1) under the
assumption (2.5.2). Suppose that there exists a higher integrability exponent
01 > 0 such that

Uo(|Dv|) € L' (Bg)  and ||\I/0(|DU|)||L1(BR) < Ly (2.5.6)

for some constant Ly > 0. Then there exists a positive exponent oy < Oy
depending on n,s(Vq),v, L and 61 such that the following inequality

(j[%(m)}“éo dx <c (B][[\Ifo(|m)]1+50 dx (2.5.7)

holds for some constant ¢ = ¢(n, s(Vy), v, L, Lo, d1).
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Proof. First the standard energy estimate implies that

/\IIO(|Dh|) dx < c/ Vo (|Dv|) dx < eLg (2.5.8)

Br Br

holds with some constant ¢ = ¢(n, s(¥y),v, L). For a fixed ball By, C B,
let n € Cy(Ba,) be a standard cut-off function satisfying XB, <N < XBy,
and |Dn| < 4/p. Let us take the function ¢ = 5*(Y0)+! (h—(h)p,,) as a test
function in the equation (2.5.1). Then using the monotonicity property of
Ap(-) and Lemma 2.1.4 with Wy, we have

/ h—(h
[t s < e [ ewyion [P0 g,
Bap Bs,
1 h—(h)g
s(To) 2
<o [ (nmaon + o (|P=2)) a
Ba,
(2.5.9)
Choosing ¢ sufficiently small in the last display, we conclude that
h—(h
][qfo(\DhDdx <ec ][ U, (‘J > dz (2.5.10)
p
B

P 2p

for a constant ¢ = ¢(n, s(Vy), v, L). By applying Lemma 2.4.1 to & = ¥,
with dy = 1, there exists 6y = 0y(n, s(Vy)) € (0,1) such that

B][\IJO(|Dh|)dx <c ][ T, (‘# ) dr < c ][[xpo(\pm)]% da

P 2p 2p

(2.5.11)

holds for some constant ¢ = c(n, s(¥), v, L), whenever B,, C Bp is a ball.

Now we prove a version of the last inequality near the boundary of Bg. For

1 B B
this, let By,(y) C R™ be a ball such that y € By and — < M.
10 | Bap(y)]

We take a test function by ¢ = n*™*(h — ), where € C}(By,) is a
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standard cut-off function as before so that x5, <1 < xs,, and |Dn| < 4/p.
This choice of ¢ is admissible since supp ¢ € Br N By,(y). Arguing similarly
as we have done above, we have

[ rerteonas<e [ pmuion |
BrNB2,(y) BrNB2,(y)
+c / n* Y)W (| Dh))|Dv| dz
BrNB2,(y)
<c / p*(vo) <(€n)k110(|Dh\) -+ ;\Do ('h —Y )) dx
(en)=(¥o) p
BrNBz,

1
+c / s (¥o) ((gn)\lfo(]DhD + —(gn)S(‘Po)\I}O (|Dv\)) dx.
BRﬂng

(2.5.12)

Again choosing € small enough and reabsorbing the terms, we find that

h—
][ n* Oy (|Dh|) dz < ¢ ][ U, (‘ v ) dx

p
BrNB2,(y) BrNB2,(y)
+e ][ ¥y (|Dv|) da
BrNB2,(y)

for some constant ¢ = ¢(n, s(¥y), v, L). Redefining h —v = 0 on By,(y) \ Bk,
we are able to apply Lemma 2.4.1 to & = ¥, with dy = 1. In turn, there
exists Oy = Op(n, s(Vy)) € (0,1) as appearing in (2.5.11) such that

b0

][ , (’h;” > iz < ][ Wo(|Dh — DU da

BrNB2p(y) BrNB2,(y)

1

1

9

N

f [ (| DAY de

BRQBQP (y)
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+c ][ [(Wo(|Dv|)] dz

BRmB2p (y)

for some constant ¢ = ¢(n, s(¥y)), where for the last inequality we have used
(2.1.6) and Hélder’s inequality. Combining the last two displays and (2.5.11),
we have

][[V(:c)]elodatgc ][ Viyde | +c ][ U)de  (2.5.13)

for some ¢ = ¢(n, s(Vy), v, L), where
V(@) = [o(| DRI X By, (@) and U(x) = Co(|Dv])xpy, ) ()

1 B B
for every ball By, (y) C R" satisfying either By,(y) C Bror — < | B2, (y) \ Bl

10 | B2 (y)]
with y € Bg. Applying a variant of Gehring’s lemma and a standard covering

argument, we arrive at the desired estimate (2.5.7). O

Essentially, the inequality (2.5.7) can be shown with 144, replaced by any
number v > 1 provided ¥o(|Dv|) € L7(B,). This type of estimate follows
from a combination of interior and boundary estimates of the same type
via a standard flattening of the boundary and covering argument similarly
as employed in [59, Theorem 5.1] along with arguments used in [14]. The
flattening of the boundary is standard, we refer for instance to [106, 107]
for more details. But the small higher integrability type estimate (2.5.7) is
sufficient for proving Lemma 2.5.1 below.

Before going on further, we recall a classical truncation lemma due to [1].
The statement involves the Hardy-Littlewood maximal operator, defined as

M(f)(x) = sup ][If(y)ldy, reR", (2.5.14)

B, (z)CR™
By ()

whenever f € L;, (R™).

Theorem 2.5.2 ([1]). Let Br C R™ be a ball and f € Wy (Bg). Then, for
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every \ > 0, there exists fr € Wy ™°(Bg) such that
1D fall oo () < €A (2.5.15)
for some constant ¢ depending only on n. Moreover, it holds that

{r € Br: fa(z) # f(x)} C{x € Bgr: M(|Df(x)|) > A} U negligible set.
(2.5.16)

We notice that in this theorem we may assume that f is defined on R"
by redefining f = 0 on R" \ Bgr. We are now ready to state the main result
of this section.

Lemma 2.5.1 (Harmonic type approximation). Let B C R" be a ball with
R<1,0€(0,1) and v € WHY(Byg) be a function satisfying

][ V(| Do) dz < co (2.5.17)
Byr
and
][[\Ifo(|Duy)]1+5l dr < ¢ (2.5.18)
Bgr

for some constants cy,c; = 1 and 6; > 0. Suppose that Wo(1) > 1. We further
assume that

][(AO(DU),Dgo) dz| < o ||Doll (g, holds for ¢ € C5°(Bg).  (2.5.19)

R

Then there exists h € v+ Wy '"°(Bg) such that

][ (Ao(Dh), Dy) dz =0 for all p € C3°(Bg), (2.5.20)

Br

][ [Wo(| DRI de < e, (o), v, L, 61, co, 1)

Br
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for some positive 5o = do(n, s(Vo), v, L,01), (2.5.21)

][ [V, (Dv) — Vo (DR)|? dz < e0™, (2.5.22)
Br

and

fol

R

—h
° - D dr < Go® (2.5.23)

for some constants with dependence as s; = si1(n,s(¥o),d1,c0) > 0, 59 =
so(n, s(Vg),01,¢0) > 0 and ¢ = ¢(n, s(Vy),v, L, 01,co,¢1) = 1.

Proof. By the standard approximation argument, if (2.5.19) holds for all
functions ¢ € CS°(Bg), then it also holds for all functions ¢ € Wy *(Bg).
The proof falls in three steps.

Step 1: Truncation. The standard energy estimate and (2.5.17) give us

][\IIO(|Dh|) dzr < ][\IIO(|DU|) dzx < c(n, s(¥o), v, L)co. (2.5.24)

Bgr Br

By applying Theorem 2.5.1, there exists an exponent 6y = do(n, s(Vy), v, L, §1)
satisfying

FUG(DRN " do < ¢ f (Bl D) o < e, 5(¥0). 1, LG coven)
BR BR
(2.5.25)

which is (2.5.21). We now set f := v —h € Wy""°(Bg) and let A > 1 to be
chosen later. We consider fy € W,>°(Bg) provided by Theorem 2.5.2, which
satisfies (2.5.15) and (2.5.16). By these properties, Chebyshev’s inequality
and then the maximal function theorem for Orlicz spaces (see for instance
[87, Proposition 1.2]), we have

[{f # K3 _ [BrO{M(DS]) > A}
Y | Br|
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1 1460 7,
< oo 1 (DA d

Br
C

< oo 1 DA ds

Bgr

c

< oo | D do ot f (Bl DR] e

R Br
C

S (2.5.26)

with ¢ = ¢(n, s(¥y), v, L, 1, co, ¢1), where we have used (2.5.21) and (2.5.25).
Now we test the equation (2.5.1) against f) to obtain

Iy i= f (Ao(Do) — AalDh), DF) xis-p do

Br

_ 7[ (Ao(Dv), Df,) dz — ][ (Ao(Dv) — Ag(Dh), Dfx) x££y dx

Br Br

Next we estimate each term appearing in the last equality. By using
(2.5.5), we have

1> ¢ f Vao(De) = Vay (DR)Pxiy=s da
Br
with ¢ = ¢(n, s(Vy)). Using (2.5.19), and then (2.5.15), we get

Pa| S TPl oo () < )N

For I's, we fix € € (0,1) to be chosen later and we estimate

Ty) < f(\Aowhn [ Ao(DO))) DA 12y de

Br
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(25.2) Uo(|Dv|)  Wo(|Dh|)
< LHDfAHLOO(BR)][|: | D + |Dh| X{s#hy dv

R

C
<= £ 1Wa(Do) + Bo(IDA)) do -+ s Bal 1D 15

Br

s ( ! [\Ifou)]léossww)

with some ¢ = ¢(n, s(Vy), v, L, 61, co, ¢1), where in the last two inequalities
we have used Lemma 2.1.1 together with (2.5.15) and (2.5.24). Merging the
estimates for I';, 'y and I's with (2.5.27), we deduce that

{f # K}
| Brl

f Vo (D) — Viro (DR) P g1,y dt
Br

1
Ty (V)P

< ¢ (a)\ +e+ (%)) =: S(o, \, €) (2.5.28)

for some constant ¢, = c.(n, s(Vy), v, L, d1, co, ¢1), where € € (0,1) is still to
be chosen later. Now let us use a short notation for the simplicity

7% = |V, (Dv) — Vi, (DR)|? (2.5.29)
and fix # € (0,1), again to be chosen later. Hélder’s inequality and (2.5.28)

imply

6
][Z%X{”A} dr | < S(o,)e). (2.5.30)
R

Again using Holder’s inequality, we get

0

][Z20X{f?ff>\} dr | < (%—Rjﬁ}') fZQ da

R Br
(2,5.26) _ (1=0)(1+3q)
< () fmumnwoumrn dz

Bgr
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(2.5.24) _ (1-8)(1+69)
—

< [ Wo(\)] (2.5.31)

for some constant ¢ = ¢(n, s(Vy), v, L, d1, co, ¢1, ). Consequently, (2.5.30) and
(2.5.31) yield that

(B][ Z%dr | <c (S(U, A €) + [\I]0<)\)]7%)

holds with again ¢ = ¢(n, s(Vy), v, L, §1, co, ¢1, 0). Recalling S(o, A, €) in (2.5.28)
and using Lemma 2.1.1, we find

1
0
(B][ 7% dr | de < <0/\ +e g Aol cmswo) = (sigrt) “”é”‘*”) 7
R

where at this moment we have used the assumption that ¥y(1) > 1. Choosing

1 : do ( 1 ) .
A=o0"2 and ¢ = ¢® with s = + 1), we obtain
45(@0) 8(\110)

=

F (VDo) ~ V(oW o | <o 252

R

with constants

mo = min{, - f&o) <S($O> +1),( (éo) +1> (=00 + ),

and ¢ = ¢(n, s(Vy), v, L, 01, co, c1,0). Recall that 6 is yet to be chosen.
Step 2: Proof of (2.5.22). By taking 6 properly, we can deduce (2.5.22)

2(1+9
from (2.5.32). Holder’s inequality with exponents (1(4_;250), 2(1+ 50)) yields
0
o) 2(1+50) 2(T160)
2(1+46,
][22 dxr = Z Zdx < (B][Z 17250 dx ][22(1+50) dr
Br g
(2.5.33)

48



CHAPTER 2. PRELIMINARIES AND AUXILIARY TOOLS

1+
1+ 24

We now choose 6 := € (0,1) in (2.5.32) in order to find that

1425

ATT30)
2(144¢) mq
][ Z %0 dx <co2. (2.5.34)

On the other hand, recalling (2.5.29) and (2.5.25), we have

][ Z21400) g = ][ Vg, (D) — Vg, (DR)[21H90) dy

Br Br
c ][[\IJO(|DU|)]1+5° dx + ¢ ][[\IIO(|Dh|)]1+5° dx < c(n, s(Wg), v, L, 01, co, C1)-
Bgr Br
(2.5.35)
We combine the estimates (2.5.33)-(2.5.35) to discover
][ (|Va, (D) — Vi (DR)?) dz < co™, (2.5.36)

Br

51 = 1mm L% 1 +1 L +1 %
T2 27 45(Wg) \ s(Tp) "\ s(W) 2
and ¢ = ¢(n, s(Vy), v, L, by, co, €1)-

where

Step 3: Proof of (2.5.23). By applying Lemma 2.4.1 to ® = ¥, with dy = 1,
we see that there exists 0y = 0y(n, s(¥g)) € (0, 1) such that
fo

][\1/0 ( D i < c ][[\1/0(|DU — DR da

Br R

v—~h

v |Dv—Dh| \" %
<c ][([\Ifo(!DvlﬂDh\)] m) [Wo(|Dv| + [Dh[)]? dx

R
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|Dv — Dh|?
" 2-6g

200
0
x ][[\Ilo(|Dv| + D)% da
R
1 1
2 2
<c ][ZQd:c ][\IJO(\DU|+|Dh])d:c

R R
s

ST

S
Lco?2 =co™

for some ¢ = ¢(n, s(Vy), v, L, 01, ¢y, 1), where in the last display we have ap-
2 2

02 — 6y

used (2.1.10) with (2.5.36). This proves (2.5.23). The proof is complete. [

plied Holder’s inequality with conjugate exponents ) , and finally
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Chapter 3

Regularity of minima of Orlicz
phase functionals

3.1 Hypotheses and Main results

It has been known that the assumption (1.0.11) is not enough already in the
special case of G(t) = t* for p > 1 together with a(-) = 0 and b(-) = 0 for
obtaining higher regularity of minima of the functional F in (1.0.10). In this
regard, we consider the energy density F' in (1.0.10) of type

F(x,y,z2) = Fg(z,y, 2) + a(x)Fu, (x,y, 2) + b(x) Fu, (2, y, 2) (3.1.1)

for every x € Q, y € R and 2z € R", where Fg(-), Fp,(-) and Fpg,(-) are
continuous functions belonging to C*(R"™ \ {0}) with respect to z-variable
and satisfying the following structure assumptions with fixed constants 0 <
v < L:

(1D Fa(x,y, 2)||=| + |D3.Fo (2., 2)[|2* < LE(|2),

’(|;V)|§|2 (D2, Fo(z,y,2)8,€),

’D Fq>(x1,y,z) - DzFé(x27y7 )HZ| Lw(’xl - $2D (‘Z’)7
\’F¢’(‘xay172) - F@(ZL’,yQ,Z” X Lw(’yl - 2‘) (‘ |)

for every ® € {G, H,, H,}, whenever x,x1,22 € Q, y, 11,92 € R, 2 € R"\ {0},
¢ € R", here either

(3.1.2)

w(t) = min{t", 1} with some p € (0,1) for all ¢ >0 (3.1.3)
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or
w: [0,400) — [0, +00) is concave such that w(0) =0 and w(-) < 1. (3.1.4)

The structure conditions in (3.1.2) are satisfied for instance by the model
functional

Wh(Q) > v /f(x,v)\lf(x, |Du|) dz,
Q

where 0 < 11 < f(z,y) < Ly for some constants vy, Ly and for some suitable
continuous function f(-) satisfying the following inequality

|f(z1,91) = f(w2,92)] < Lw(|rr — 22| + |y1 — v2l)

whenever x1,715 € R" and y1,y» € R, where w is the same as defined in
(3.1.3) or (3.1.4). We also remark that those general functionals mentioned
above have not been considered in the present literature for the regularity
theory as far as we are concerned, moreover the functionals in (1.0.10) with
structure assumptions (1.0.11) and (3.1.2) is not differentiable with respect
to the second variable and so it can not be treated by its Euler-Lagrange
equation.

Let us now formulate the monotonicity properties of the vector field
D.F(x,y, z) with respect to the gradient variable z and some growth prop-
erties of the integrand F' defined in (1.0.10) in terms of the maps introduced
in (2.1.8) .

Lemma 3.1.1. Let F : Q@ x R x R®" — R be a function defined in (3.1.1)
satisfying (1.0.11) and (3.1.2).Then there exist positive constants ci,co =
c1,co(n, $(G), s(Hy), s(Hy),v) and c3 = c3(n, s(G), s(H,), s(Hy), L) such that
the following inequalities

|V‘P($721) - V\p(.%',ZQ)‘z
< (D, F(z,y,21) — D.F(x,y,2),21 — 22) , (3.1.5)

’V‘I’(I7 Zl) - V‘I/<x7 ZQ)|2 + C2 <DZF(:E7 Y, Zl)7 29 — Zl)
< C2[F(xay7z2) - F(ib’,y, 21)] (316)
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and

|F(21,y,2) = F(22,y,2)]

< cw(fer = @) [G(|2]) + min{a(z1), a(22) } Ha(]2])
+min{b(z1), b(xz) } Hy(|2])]
+ csla(rr) — alxa)[Ha(|2]) + cs|b(1) — b(x2)[Ha(|2]) (3.1.7)

hold true, whenever z,z1,z2 € R"\ {0}, z, 21,29 € Q and y € R.

Proof. 1t follows from (3.1.2), that

<DZF(x7y7 Zl) - DZF(xaya 22)7 2 M Z2>
1
= / <D§ZF($, Y, 021 + (1 —0)z2)[21 — 2], 21 — zz> do

0
1

U (z,02 4+ (1 —0)z) 9
> - do
V/ |821 + (]_ — 8)22|2 |Zl 22‘

> | Vy(x,21) — Vi (0, 22) %,

where in the last inequality of the last display we have used (2.1.9) and
(2.1.10). Then (3.1.5) follows. The inequality (3.1.6) follows from the follow-
ing observation that

[F(xvyv'Z?) - F(xvya Zl)} - <D2F<x,y,21>,22 - Zl>

= / (D, F(z,y,0z0+ (1 —0)z1) — D, F(x,y,21), 22 — 1) df
0

(3.1.5) 1 2
2 [ Yo 0012 — Vot 2Pt

0

(2.1.13) )
> Vy(z,21) — Vel(x, 20)|".

Since F(x,y,0) = 0 for every z € 2 and y € R, using (3.1.1), we have

|F(‘T17y72) - F('r%ya Z)|
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< / \D.F(ar,y,02) — D.F(xs,y,62)] |2|d6

0

< /\DZFG(xl,y,Gz) D Fy(w,y,02)| || do

4 / (a(1) D, Fi, (21,9,02) — a(as) D Fu, (22,9, 02)| 2] d8

1
+ / \b(21) D, Fu,(21,y,0z) — b(x2) D, Fu,(x2,y,0z)||2] db.

0

Without loss of generality, we can assume a(z2) < a(z1) and b(xg) < b(xy).
Then using the structure assumption (3.1.2), we find

/‘a(ml)DzFHa(xlayﬁZ) —a(r2) D, Fy,(v2,y,02)| |2| dO

H,(0
< Lla(xy) — a(wy |/ Ha(012) db + a(zs)w(|zy

o

< ca(z) Ho(|2]) + cw(\xl — a|) Ha(|2])

for some constant ¢ = ¢(s(H,), L). Similarly, we get

/|b(x1)DzFHb(x1, y,0z) — b(za) D, Fp, (x2,y,02)| |2| df

< cb(w2) Hy(|2]) + cw(|z1 — o) Hy(]2]),

where the validity of the last display is ensured by (3.1.2),. Combining the
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last three displays, (3.1.7) follows. O

In order to shorten the notations in this chapter, for a given local min-
imizer u of the functional F in (1.0.10), we shall use a set of various basic
parameters which is “data of the problem” depending on which assumption
of (1.0.13)-(1.0.15) is considered as follows:

(

{nu )‘17 8(G>7 S(Ha>7 S(Hb)7 v, L7 Ha’HCWa(Q) ’ HbHC‘*’b(Q) ,LU('),
19 (@, [DuDll gy Iell iy a1, 5(1) }

if (1.0.13) is considered,

{’I’L, Az, S(G)7 S(Ha)7 S(Hb)7 v, L, ||a||Cwa(Q) ) ||b||CWb(Q) 7("}(')7
ol o ey » 00 (1), 5(1) }

if (1.0.14) is considered,

{n, )‘37 5(G>7 S(Ha>7 S(Hb)7 v, L7 HCLHCWa(Q) ) HbHC‘*’b(Q) 7("-)(')7

()05, wa (1), wp(1)}
if (1.0.15) is considered,

data = <

\

(3.1.8)

where Aj, A2, A3 are the same numbers as defined in (1.0.13)-(1.0.15) and
s(G),s(H,), s(Hp) are indices of the functions G, H,, Hy, in the sense of Def-
inition 2.1.1, respectively. For a given local )-minimizer u of the functional
P, data is understood by the above set of parameters with the constants L, v
having been replaced by @ in any case of (1.0.13)-(1.0.15) into the consider-
ation. With Qy € Q being a fixed open subset, we also denote by data()
the set of parameters in (3.1.8) together with dist(€)y, d€2) under one of the
assumptions (1.0.13)-(1.0.15):

data() = data, dist(Q2, 092). (3.1.9)
Now we are ready to state our main results in this chapter.

Theorem 3.1.1 (Maximal regularity). Let u € WHY(Q) be a local mini-
mizer of the functional F defined in (1.0.10), under the assumptions (1.0.11),
(3.1.2) and (3.1.3). Suppose that w.(p) = p* and wy(p) = p° for some
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a, € (0,1]. If one of the following assumptions

(1.0.13), (3.1.10a)
(1.0.14), (3.1.10b)
1
(L0.15) - with lim sup A <p11V, ;> =0 (3.1.10¢)
p—0

is satisfied, then there exists 0 € (0,1) depending only onn, s(G),s(H,),s(Hy),v, L, «, 3
and p such that Du € C2%(Q).

loc

Theorem 3.1.2 (Morrey decay). Let u € WY (Q) be a local minimizer of
the functional F defined in (1.0.10), under the assumptions (1.0.11), (3.1.2)
and (3.1.4). If one of the following assumptions

((1.0.13)  with limsupA (p,G'(p™)) =0, (3.1.11a)
p—0+t
1
(1.0.14)  with limsup A (p, —) =0, (3.1.11b)
p—0t p
11
(1.0.15) with limsup A (plv, —) =0, (3.1.11c)
p—07t P
(1.0.13)  with wa(p) = p® and wy(p) = p°
for some «, € (0,1], (3.1.11d)
(1.0.14)  with w.(p) = p* and wy(p) = p°
\ for some «, B € (0,1] (3.1.11e)
1s satisfied, then
uwe CYQ)  for every 6 e (0,1). (3.1.12)

Moreover, for every o € (0,n), there exists a positive constant ¢ = c(data($), o)
such that the decay estimate

/\IJ(x,|Du|)dx < c( )na/\ll(x,|Du|)dm (3.1.13)

B, Br

]S

holds for every concentric balls B, C Br C {2y € Q with R < 1.
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Remark 3.1.1. We would like to point out, in the same spirit as this chapter,
the results of Theorem 3.1.1 and Theorem 3.1.2 can be restated and proved
for the functional having a finite number of phases with replacing the function
in (1.0.2) by

U(z,t) :=G(t) + iai(x)ﬂi(t), m > 1, (3.1.14)

=1

where G, H; € N in the sense of the Definition 2.1.1 and a;(-) € C**(Q2) with
w; 1 [0,00) — [0,00) being a continuous and concave function vanishing at
the origin for every i € {1,..., N}. Under this setting we replace the function
in (1.0.12) by

; Hi(t
A(p,t) = Z 0 i p) GZ( ) for every p,t > 0. (3.1.15)

The coefficient functions in Theorem 3.1.1 along with (3.1.11d) and (3.1.11e)
in Theorem 3.1.2 are understood by letting w;(p) = p* with some «; € (0, 1]
for every i € {1,...,N}.

3.2 Basic regularity results

We start this section by stating the following Caccioppoli inequality as a
fundamental result for the further investigations. In what follows let @ = L/v
for the convenience in the future, but in general it could be any number larger
than one.

Lemma 3.2.1 (Caccioppoli Inequality). Let u € W'Y (Q) be a local Q-
minimizer of the functional P defined in (1.0.1) with G, H,, H, € N and 0 <
a(+),b(-) € L>=(QQ). Then there exists a constant ¢ = ¢(n, s(G), s(H,), s(Hyp), Q)
such that the following Caccioppoli inequality

/\I/(:c, D(u— k)|) dr < c/\I’ (q; %) dz (3.2.1)

B, Br

holds, whenever B, @ Br C ) are concentric balls and k € R.

o7



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

Proof. The proof is elementary as done for [39, Lemma 4.6]. The only differ-
ence lies in that we have an additional one phase. But the inequality (3.2.1)
is still valid since H, € N with an index s(H,) > 1. O

Remark 3.2.1. As a direct consequence of Lemma 3.2.1, with u € WY (Bg)
being a local @-minimizer of the functional P defined in (1.0.1) under the as-
sumptions of Lemma 3.2.1, there exists a constant ¢ = ¢(n, s(G), s(H,), s(Hp), Q)

such that
][ \If(x,\Du])dxgc][\If(x, ) dx

Br/o R

u— (u)BR

holds, whenever Br C €2 is a ball.

3.2.1 Local boundedness

Now we focus on local boundedness of a local ()-minimizer u of the functional
P defined in (1.0.1) with obtaining precise estimates under the assumption
(1.0.13),.

Theorem 3.2.1. Let u € WY (Q) be a local Q-minimizer of the functional P
defined in (1.0.1) under the assumption (1.0.13). Then there ezists a constant

¢ = c¢(data) such that
) < C][\P (x’ (u— (u)py)+
L>°(Bgy2) Br

R

(u— (u)Bg)+
R

o

) dz (3.2.2)

) < c][\IJ (z,|Du|) dz  for a.e x1,x2 € Bp)s,
Br

(3.2.3)

whenever Bgr = Br(xg) C 2 is a ball with R < 1. In particular, u € L. ().

loc

Proof. Let us consider the following scaling:

To + Rz) - (U)BR7 EL($) — a(xo + R;p)7 E(x) = b(l’o + Rx)a

u(zx) = u(
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U (x,t) = G(t) + al(z)Hy(t) + b(z) Hy(t),

A(k,s) == By(0)n{u >k} and B(k,s):= B,(0)N{u < k} (3.2.4)

for every z € B1(0),t > 0, s € (0,1) and k € R. The rest of the proof falls
in 3 steps.

Step 1: Sobolev-Poincaré inequality under the scaling. Before go-
ing on further, let us consider a Sobolev-Poincaré type inequality under the

new scaling introduced in (3.2.4). So we prove that there exists a positive
exponent 0 = 0(n, s(G), s(H,),s(Hy)) € (0,1) such that

=

/\If(x, |f]) dz < ckgp /[\If(x, |Df))]° dx (3.2.5)

Bl 1

for some constant ¢ = c(n, s(G), s(H,), s(Hy),wa(1),wy(1)), whenever f €
W, (By), where

I_isp =1+ ([Cb]wa + [b]wb) )\1 + /\1R (B/ G(|Df|) dx . (326)

Essentially, the proof of the inequality (3.2.5) comes from a careful revealing
of the arguments used in (2.4.7)-(2.4.9). So using continuity properties of a(-)
and b(-), we see

1= / (e, |f]) do < 2alu,wa(R) / H,(If)) de

B1

+ 20ty wn(R) / Hy(|f1) dz + / Ty (1)) de

Bl Bl
. Q[G]wall + Q[b]wblg + ]3, (327)

where

Uy (t) :=G@) + iné a(x)H,(t) + ing b(z)Hy(t) for every t > 0.
reED] reED]
(3.2.8)
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Now we estimate the terms I; for i € {1,2,3} similarly as in the proof of
Theorem 2.4.1. In turn, using the assumption (1.0.13), and (2.1.2), we have

R/Ha(lfl)Glf, ]
< AenlR ( G )] ) e a

<A ( [ b U] )6 ) do

<M1+ wa(1) / G(If]) de+2\R / G de. (329)

Bl Bl

In a similar manner, we find

L < )\1(1+wb(1))/G(|f\) d;cHlR/[Gqf\)]“i v, (3.2.10)

B1 B

Inserting the estimates (3.2.9)-(3.2.10) into (3.2.8), the inequality (3.2.5) fol-

lows from the similar arguments used in (2.4.9)-(2.4.10) and Lemma 2.4.1.
Step 2. Proof of (3.2.2). Since u — (u)p, is a local @-minimizer of the

functional P, we use a Caccioppoli inequality of Lemma 3.2.1 to see that

/\Il(x, D(i — k) ) dr < c/\lf (x %) dz (3.2.11)

B Bs

holds for some constant ¢ = ¢(s(G), s(Ha), s(Hp), Q), whenever 0 < t < s < 1

and & € R. Let us now consider the concentric balls B, € B, € B, with

1/2<p<s<landt:=(p+s)/2. Let n € C5°(B;) be a standard cut-off

function such that xp, <7 < xp, and |Dn| < = . Now we apply
—p S=p

inequality (3.2.5) from Step 1 above in order to have a positive exponent
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0 =0(n,s(G),s(H,),s(Hy)) such that

/ U(z,a — k) de < /\I/(x (i — k), dz

A(k,p)
ksp (B/ [V (z,|D(n(u — ))|)} dx (3.2.12)
s(H,

for some constant ¢ = ¢(n, s( 1),wy(1)), where

(Hb), wa(
E?sp =1+ ([a]u, + [0lw,) | A + MR (B/ G(ID(n(u — k)4)|) dx

(3.2.13)

By scaling back and using Lemma 2.1.1, for any k£ > 0, we have

Rep <c |1+ R ][G(\Du|)d:v

G)+1 (B][ ) dx

< m 1+ (B/ G(|Dul) dx (3.2.14)

with a constant ¢ = ¢(n, A1, [a]w, + [b]s,), Where we have also used Lemma
2.4.1to ® =G for dy = 1.

Then, inserting the last estimate into (3.2.12) and applying Holder in-
equality together with (3.2.11) yield that

c

—
K
=
|
|
=
&
N

1 - 1-0
ml%ﬂk,ﬂl ?
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X / (\T!(x,|Du|)+‘Il (x,u_k>) dx
_ S0P

A(kt)

1
<SGtk / (
k’

holds with some constant ¢ = c(data), where in the last display we have also
used (2.1.6). By the definition of A in (3.2.4), we observe

Y a

(3.2.15)

- U(z,u— h) 1 _
Ak s < [ =287 g — = | Sz a—h)d
A< [ Gl ds \If;xk—h)/ (v, — h) do
A(h,s) A(h,s)
and
/\I/(a:,ﬂ—k)dxg / U(z, @ — h)dr
A(k,s) A(h,s)

for any h < k. Putting the last two inequalities into (3.2.15) and applying
Lemma 2.1.1, we have the following inequality:

/ Uz, a— k) dr < — e
[\I/E (k’ i h)]T(S _ p>2(max{s(G),S(Ha)7S(Hb)}+1)
Ak.p) '
0
" / U(e,i—h)de | . (3.2.16)
i(h.s)

Now we set sequences of numbers as follows:

1 1 1
pPi = 3 (1 + §> ) ki = 2l <1 - 2i+1)

1
and M; == =— / U(x,u — k;)dx
Wy, (o)
A(ki,pi)

for any integer ¢+ > 0 and some number [, > 0 to be chosen in a few lines.
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Then applying (3.2.16) with the choices k = k;11, h = ki, p = pi;1 and
s = p;, we have, for every i > 0,

1-0
¢ 0

=

Mipr < [@1—31( lo )}%( 1 )maX{S(G),S(Ha)vs(Hb)}'f‘l [\Ilgl(lo)} Mi

2T 1tz

< o |:4(max{s(G),s(Ha),s(Hb)}Jrl)%]Z [
with ¢y = ¢p(data), where in the last inequality of the last display we have
used again Lemma 2.1.1. Now it’s turn to apply a standard iteration of
Lemma 2.2.2, which means that if
1 = -4 _ max{s s(Hg),s 0 __
_ / (.1 — Io) da = My < o T7 4~ (8@ s(Ha) s H ) it

U, (lo)
A(lo,l)

then we obtain
1Tt Lo, ) < 2lo-

Consequently, choosing [y > 0 in such a way that

_ _6

6 _
Uy (o) = o7 A mets(@)s(Ha) st H ) gy /\I’(I,ﬂ—i-) dz,

B
we have
H\Ilgl (a+>HLOO(Bl/2) < C/\D(x7ﬁ+) dil?,
B

which implies that

oo ()

holds with ¢ = ¢(data). Repeating the same argument for —u, which is also a
local @-minimizer of the functional P defined in (1.0.10), the last inequality
holds with (u — (u)p,)+ replaced by (u — (u)p,,)-.

Step 3. Proof of (3.2.3). Using (3.2.2) and (2.1.6), for a.e 1,22 € Bg/s,

< c][ U (95, %) dx
L>°(Bg/2) I R

R
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we have

v

u(r) — u(w,) u(r1) = (u)By

) o

)

R R
fov;, ( u(z2) - (4) By )
gc][qf(x, %) dxgc][xp(a:,wup da

for some constant ¢ = c(data), where in the last inequality of the above
display we have used a Sobolev-Poincaré type inequality of Theorem 2.4.1.
Clearly, the last display implies u € Li..(€2). The proof is complete. ]

loc

3.2.2 Almost standard Caccioppoli inequality

Now we present the primary results, the so-called almost standard Cacciop-
poli type inequality, for proving Holder continuity of a local @-minimizer of
the functional P.

Lemma 3.2.2 (Almost standard Caccioppoli inequality). Let u € W ()
be a local Q-minimizer of the functional P defined in (1.0.1) under one of
the assumptions (1.0.13), (1.0.14) and (1.0.15). Let Bag = Bag(z9) C 2 be
a ball with R < 1. Then there exists a constant ¢ = c¢(data) such that

[ w5, (D=l de < [ 9GPl - Ry da

Br, Br,

R S(\I/)+1 (U . k)i
< I — LU/ ~— = |d
‘ (Rz - Rl) / Br ( R > !

Br,

(3.2.17)

holds, whenever Br, € Bgr, C Br(xo) are concentric balls and k € R.

Proof. First we prove the inequality (3.2.17) for the values of £ € R with

iélfu < k < supu, depending on which one of the assumptions (1.0.13)-
R Br

(1.0.15) is in force. Firstly, by the definition of Wy in (2.1.3) and Lemma
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3.2.1, we see

[ = /\D;R(w(u—km) do

B,
< [v@pu-Rsde<e [ v ( %) dr

BR1 BRQ

u—Fk u—~k
< cwy(R) / H, (ﬁ) dx + cwp(R) / H, (ﬁ) dx
Br, Br,
+ Cy / L= w dr =: Cy ([1 —+ [2 -+ Ig) (3218)
Br\ Ry — R,
BR2

for some constant ¢, = c.(n, s(G), s(H,), s(Hp), Q, [a)w,, [b]w,)- Now we shall
estimate each term [; for i € {1, 2,3} in the above display. Then using Lemma
2.1.1, the assumption (1.0.13),, (2.1.2) and (3.2.3) of Lemma 3.2.1, we see

i [ 2o (b

Br, Ry—Ry
o) (R p Mo G (e (7)) o(@=h\
\wa( )<R2—R1> B/ G((u—éﬂ:ﬁ:) (R2—R1> T
R s(Ha)+1
<) (2 )

X
\
1
—
+

&
s}
/:E)—‘
+
&
@?EJ
/N
Q
A/~
)
av] RS
IS
N~ —
~
3
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R\ (u—Fk)s
<el1 U(z, |Dul)d G(E—rE) g
c|l+ / (x,|Dul) dzx <R2—R1) / <R2—R1> T

2R Brg,

<ec (%)SMH / G (%) da (3.2.19)

Ro

3=

for some constant ¢ = c¢(data). In a totally similar way, it can be shown that

R s(U)+1 (U . k)i
I, < G|l——|d 3.2.20
i 0(32—31) / ( R ) ’ ( )
Br,
with a constant ¢ = c¢(data). Clearly, recalling Remark 2.1.2 and using
Lemma 2.1.1, we have
R s(U)+1 (u . k)i
I3 < v, |——— | d 3.2.21
< (ptg) Jun (M) w (3.2.21)
Ra

Inserting the estimates obtained in (3.2.19)-(3.2.21) into (3.2.18) and recall-
ing the very definition of Wy in (2.1.3), we arrive at (3.2.17) under the
assumption (1.0.13). The second part of the proof is to show (3.2.17) un-
der the assumption (1.0.14). For this, we again estimate the terms I; with
i€{1,2,3} in (3.2.18). Applying Lemma 2.1.1, the assumption (1.0.14) and
(2.1.2), we see

noaw [ (@) (5mr) o () o

Br,
R\ H,\ ((u—k)s (u—Fk)y
< Ha) (BT M) Ww=r+
\wa(R)(Rz—Rl> /<G)( R )G(Rz—Rl)dx
s(Hq)+1
< 2/\2wa(R) (R RR )
2 1

S (e (] e ) o

Ro
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R s(Hq)+1
< chowy (R
cAawq( )<R2—R1>
1 [l oo () (u—Fk)x
1 i G|l ——=|d
/(* wolB) " wulR) (Rz—Rl) ’
B,
R S(\I/)—‘rl (U i k)i
< G|l——|d 3.2.22
(mrm)  [oltF) e (3:2.22)
BR2
for some constant ¢ = c¢(data). Arguing similarly, we have
R s(U)+1 (U . k)i
I, < —_— = 2.2
9 C(RQ—Rl) /G( 7 )d:z: (3.2.23)
B

Ro

with a constant ¢ = c(data). Plugging the estimates (3.2.21)-(3.2.23) into
(3.2.18), we conclude with (3.2.17) under the assumption (1.0.14). Finally,
the remaining part of the proof is to obtain the inequality (3.2.17) under
the assumption (1.0.15). In fact, we continue to estimate the terms /; with
i € {1,2,3} in (3.2.18). Therefore, using the assumption (1.0.15) and (2.1.2),
we find

e ] () (35 (5)

R\ SHaH H,\ [ (u—k)s (u—k)s
< a RS e RS2
\wa(R)(R2—Rl) /<G)( R )G(R2—Rl>dx
Ro
s(Hq)+1
< 2M3wq(R) (%)

([l o) «

< chgwa(R) ( 7 iz R1>S(HG)H / <1 + wazR)) G ((;2__%) da

Bk,
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o) (50 220

Br,

for some constant ¢ = c(data), where we have used Lemma 2.1.1 several
times. Using the same argument as above, we have

R s(U)+1 (U— k)i
< _— —_— 2.
IQ\C(RQ_Rl) /G( I )dm (3.2.25)

Ro

with a constant ¢ = c(data). Inserting the estimates (3.2.21), (3.2.24)-
(3.2.25) into (3.2.18), we arrive at (3.2.17) under the assumption (1.0.15).
So we have proved the inequality (3.2.17) for the values of £ € R such that

iélf u < k < supu. Now we consider the remaining cases. Suppose k < iélf u.
R Br R

In this case, using (3.2.17) with & = iélfu, we have
R
) dx

/\pgR<\D(u—k)+y> dz — /W;R(D(u—infu)Jr

Bgr
Br, Br,
< / v (x, D(u —infu), ) dx
Br
Br,

R s(W)+1 . (u — 1;)1}5 u) ay
< _
¢ (Rz - R1> / Br R v
Br,
s(U)+1 .
<ec r / Uy (u—k)y dx
Ry — Ry R R
Bhr,
(3.2.26)

for some constant ¢ = c¢(data). Similarly, it can seen that (3.2.26) is valid

for the values of £ > supu. Since —u is also the local ()-minimizer of the
Br

functional P in (1.0.1), the inequality (3.2.17) is valid for all & € R. The
proof is complete. O
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From now on also in the rest of the thesis, for a fixed ball B C €2, we
say that

(G — phase occurs in By
if a™(Bg) < 4[a]w,wa(R) and b~ (Br) < 4[bl,,ws(R). (3.2.27a)
(G, H,) — phase occurs in Bpg
if a™(Bg) > 4[a]w,wa(R) and b~ (Br) < 4[b],,ws(R). (3.2.27b)
(G, Hy) — phase occurs in Bg
if a™(Bg) < 4[a]w,wa(R) and b~ (Bgr) > 4[b].,ws(R). (3.2.27¢)
(G, H,, Hy) — phase occurs in Br

| if @™ (Bgr) > 4[a]u,wa(R) and b~ (Bgr) > 4[b].,ws(R). (3.2.27d)

Then we have the following lemma which will be applied later, see Section
3.4.

Lemma 3.2.3. Let u € WHY(Q) be a local Q-minimizer of the functional
P defined in (1.0.1) under one of the assumptions (1.0.13), (1.0.14) and
(1.0.15). Let Bor = Bag(xg) C Q be a ball with R < 1. Then there exists a
constant ¢ = c¢(data) such that

[ ¥, (DR do< [ W@~ R da

Bpr, Br,

R s(P)+1 (u . k)i
< |l ———=\d
‘ (R2 - Rl) / ( R ) !

Br,

(3.2.28)
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holds, whenever Br, @ Br, C Bgr(xo) are concentric balls and k € R, where

([ G(1)
if (3.2.27a) is satisfied in Bp, (3.2.29a)
G(t) +a (Br)Ha(t)

(1) = if (3.2.27b) is satisfied in Bp, (3.2.29b)

G(t) + b (Br) (1)
if (3.2.27¢) is satisfied in Bg, (3.2.29¢)
W5 (1)

L if (3.2.27d) is satisfied in Bp, (3.2.29d)

for every t > 0.

Proof. First we observe that if a™ (Br) > 4[a],,w.(R), then using the conti-
nuity of the function a(-), we have

~(Br) +a (Br)
_(BR) g 2CL_(BR) (3230)

ISE-

for every x € Bg. On the other hand, if ™ (Bg) < 4[a),,wa(R), then using
again the continuity of a(-), we see

a(z) = a(x) —a (Br) + a (Bgr) < 6[a)w,wq(R)

for every x € Bpg. Clearly, analogous estimates to the last two displays are
valid for the function b(-) in Bg. After those observations, we argue similarly
as in the proof of Lemma 3.2.2 depending on which case of (3.2.27b)-(3.2.27d)
occurs in the ball Bpg. O

3.2.3 Holder continuity

In this subsection we prove some local boundedness and Hoélder continuity
assertions of a local @)-minimizer of the functional P in (1.0.1) with various
constants having the precise dependencies.

Theorem 3.2.2. Let u € W'Y (Q) be a local Q-minimizer of the func-
tional P defined in (1.0.1) under the coefficient functions a(-) € C**(§2) and
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b(-) € C“*(2) for wa,wy being non-negative continuous and concave functions
vanishing at the origin.

1. If the assumption (1.0.13) is satisfied, then for every open subset )y €
Q, there exists a Holder continuity exponent v = vy(data()) € (0, 1)
such that

[l Lo 00y + [Woi00 < c(data($d)) (3.2.31)
and the oscillation estimate

PN\
< — 2.
oBspcu\c<R> cl)gs};:u (3.2.32)

holds for some ¢ = c(data($)y)) and all concentric balls B, € Br €
Qp € Q with R < 1.

2. If the assumption (1.0.14) is satisfied, then there exists a Hélder conti-
nuity exponent v = vy(data) € (0,1) such that

[u]o,4:0, < c(data($))) (3.2.33)
and the oscillation estimate

p)W
<cl3 3.2.34
%icu c (R 9sC u ( )

holds for some ¢ = c(data) and all concentric balls B, € Br C Q with
R<1.

Proof. Basically, we shall use De Giorgi’s methods to prove the local Holder
continuity of u based on arguments employed in [39, 57]. For the convenience
of the reader, we give a detailed proof. Note that, for any given ball Br € {2,
either

1 1
{x € Bpya : u(z) > supu — 5 %scu}‘ < 5\33/2\ (3.2.35)

Br R
or

1
< 5/Buy:| (3.2.36)

H € B (~ula)) > supl-u) — 5 e
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holds true. It is enough to deal with only the case of (3.2.35) is valid since —u
is a local @-minimizer of the functional P. The proof falls in three steps. In
what follows, let Bor = Bag(xg) C 9 € 2 be a fixed ball such that R < 1.

Let us also denote by

A(k,p) :={x € B,:u(x) >k} and B(k,p):={zr € B,:u(x) <k}
(3.2.37)

for every concentric ball B, C By and k € R.

Step 1. We suppose that (3.2.35) is satisfied. Then in this step we prove
that, for any € € (0, 1), there exists a natural number m = m(data(£),e) >
3if (1.0.13) is assumed, and m = m(data, ) > 3 if (1.0.14) is assumed, such
that

1
x € Bpyy i u(x) >supu — —oscu | < €|Bpal. (3.2.38)
Br 2™ Bp

Let m > 3 be a natural number to be determined in a few lines. For every
i€{1,2,...,m}, we set
1
k; :=supu — —oscu, D;:=A(k;,R/2)\ A(kis1, R/2)
Br 21 Br
and

ki—i—l — kz if U($) > ki+1,
0 it w(zr) < k.

Clearly w; € W'Y (Bgj2) with w; = 0 in Bpss \ A(ki, R/2) for all i €
{1,...,m}, and also | Bry2 \ A(k1, R/2)| = 1/2|Brs|. Then applying Hélder’s
inequality, Sobolev’s inequality and Lemma 2.1.4, for every 7 € (0,1), we
have

(ki =k o
|A(]€¢+17R/2)| ‘I]BR ( HR > S / \IJBR <E) dr

A(ki,R/2)
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<l R | [ (v, ()] s

A(ki,R/2)

ks
< c/@t\IfBR (u 7 Z) | Du| dz
D,

B c _ (u—k;

D; D;

Now we use a Caccioppoli type inequality of Lemma 3.2.2 in order to have

OSCUu
[ramioccc | ws ({5t oeee | v ()

D; A(ki,R) A(k;,R)

vy (%) A(k;, R)| < ¥ (%) -

N

One can see that

/\I'E;R (u ;Lkz) dr < /\I’E;R (%) de =V (%) D]
D D

7 2

Using the estimates coming from the last two displays in (3.2.39), for every
ie{l,...,m—1}, we see

A1, R/2) < A(kigr, R/2) < eTR" + —|Dy|.
T

Summing over i € {1,...,m — 1}, it yields that

|A(km_1, R/2)| < <cr + ;> R

(m — 1)o@

Now taking small enough 7 = 7(data(£), ) and large enough number m =
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m(data(€), ), we arrive at (3.2.38) when (1.0.13) is assumed. But in the
case that (1.0.14) is assumed, we choose small enough 7 = 7(data, ) and
large enough number m = m(data, ) to conclude (3.2.38).

Step 2. In this step, we prove that there exists a small positive gg =

eo(data(€)) € (0,1/2"1) such that if
1
0<vy<coscu and |{x € Bgy:u(zr)>supu— vy} < co|Bryal,
2 BR BR
(3.2.40)

then we have

sup u < supu — vp/2. (3.2.41)

Brja Br

Now we set the sequences by

R 1 1 1
pizzz(l—i-?) and ki:zs;fu_(§+2i+1)yo for every 1 =0,1,2, ...,

and we define

A k:ia %
Div1 = Alki, piy1) \ Alkiy1, piy1) and Y= M
| Brya|

Applying Lemma 3.2.2 together with (3.2.40), we discover

/ Uy, (|Dul) dx < 2 (i+3)(s(¥)+1) / v (%) .

A(ki,pit1) A(ki,pi)

i(s - Y
<G (2 |Alki, ).

where we have also used the very definition of k; and that (u — k;)+ < 1 <
llu]l ;o (Br)- Lhe last display and the convexity of W imply that

3 A kia 7 _
Uy, ][ |Duldz | < ][ \I/E;R(IDuDdx<02’(5(‘I’)+1)%@BR (%2)
i+1

Di+1 Di+1
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_ ; A(ks, pi)| vo
<0 (it [ A pi)[ Yo
br (C |Diy1| R

Therefore, we have

A(ki, pi)l o

Dul|dx < 216 +1)| A )
][| | Dii| R
z+1

On the other hand, applying Lemma 2.2.3 together with gy € (0,1/2"*),
we discover

_1 —-n
/ Dulde > elkis — k)| Alkist, pic) | By, \ Ak pist) o
'L+1

> 27| A(Kig1, pir1)|' ™7 (|Bryal — o Brpol) R
> 2 | Ak, pist)|

WV

, 1
2 R, T
for some constant ¢ = ¢(data(€)y)). Combining last two displays, we conclude

n(s(¥)+2) 1+
Vi e (275 )Y; ;

for some constant ¢, = c.(data(€))). Now we apply Lemma 2.2.2 in order
to have Y; — 0 as ¢ — oo, provided

Y, = |A(ko, R/2)| < g0 < c~(1Dgnn=D(s(V)+2)
| Bry2|

Therefore, (3.2.41) is satisfied since
‘A (supu — @,R/Zl) ‘ =
Br 2

Step 3: Proof of Holder continuity. Finally, we are now ready to prove
a local Holder continuity of u. For this, let m > 3 be the natural number
satisfying (3.2.38) for the choice ¢ = g € (0,1/2""!), where g is determined

I0)
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via (3.2.40). Then we have

1
oscu<|1-— 0SC U
BR/4 = ( 2m+1 Bgr

with m = m(data(€))), whenever Bog C € is a ball with R < 1. Clearly, the
above display implies that there exists a positive exponent v = y(data(£2)) €
(0,1) such that, for any fixed ball Bgg, C o with 8Ry < 1, the following

oscillation
R vy
oscu<c|— ) oscu
Br Ry Br,

holds with some constant ¢ = c(data(£2y)) for every R € (0, Ro]. Here we
note that in the case that the assumption (1.0.14) is in force, the constants
appearing in the above lemma depend only on data, but otherwise are inde-
pendent of the subset 2y. Finally, we have shown that

ue CY(Q)

loc

if either the assumption (1.0.13) or (1.0.14) is satisfied. Therefore by a stan-
dard covering argument, the estimates (3.2.31) and (3.2.32) are satisfied.
Clearly, if (1.0.14) is assumed instead of (1.0.13), v in (3.2.33) depends only
on data since [|ul[ (g < ||t foo (- The proof is complete. O

3.2.4 The Harnack inequality

In this subsection we prove the Harnack inequality for a local -minimizer u
of the functional P in (1.0.1) under one of the assumptions (1.0.13), (1.0.14)
and (1.0.15). The analysis similar to the one in Step 1 of the proof of Theorem
3.2.2 gives the following lemma.

Lemma 3.2.4. Let u € W'Y(Q) be a non-negative local Q-minimizer of
the functional P in (1.0.1) under the coefficient functions a(-) € C**(2) and
b(-) € C**(Q) for w,,wy being non-negative, continuous and concave functions
vanishing at the origin. Suppose that one of the assumptions (1.0.13), (1.0.14)
and (1.0.15) is satisfied. Let Ber C Qo € 2 be a ball with 6R < 1. Then for
any 11,72 € (0,1), there exists a large number m depending on data and
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71, T2 such that for any 0 <k < |[ull oo (p, ) o
{x € Bg :u(x) > k}| > 11| Bg| (3.2.42)
holds, then
[{z € Bog : u(z) <27"k}| < 72| Bagl.- (3.2.43)

Proof. Let m > 3 be a large number to be determined later. We set, for
i=01,...,m,

and

k; — ki+1 if U(SL’) < ki+17
wi(x) == ¢ uw(x) — ki if ki <ulx) <k,
0 it wu(z) > k.

We observe that Wy (w;) € W(Byg) and Uy, . (wi) = 0on Byr\ B(ko, 2R)
for every i € {0,1,...,m} and |Bog \ B(ko,2R)| > m|Bg|. Then using
Holder’s inequality, Sobolev’s inequality and Lemma 2.1.4, we have that

_ kl - kz _ W;
B(kis, 2R) U5, (T“) < / vy (ﬁ) dz

B(ki,2R)

(] ) e

B(ki,2R)

con( [ [rn () o

B(k; 2R)

_ U — kit
<c/(\IfBgR)’( e ) | Dul dr

D;

< |B(ki, 2R)
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_ c _ U — kiy

i D;

for every € € (0,1) and some constant ¢ = c(data, 1), where we have used
Remark 2.1.2 that ¥ € N with an index s(¥) = s(G) + s(Ha,) + s(Hy).
It follows from the almost standard Caccioppoli inequality of Lemma 3.2.2

that
_ _ kl — U
U, ([Dul)dx < c Vs.n 3R dx

2(k; — k;
< C / \Ijlg’gR (‘ ( 3R +1)

B(ki,2R)

2(k; — k;
< C|B(7€¢,2R)!\I’§3R ( M

ki — kip1

< Ry o ( IR

) , (3.2.45)

where we have also used the assumption that u is non-negative. Clearly, by
the very definition of D;, one can see that

_ u— kiq _ ki — kiq
[os. (5 o= oo (S5

i 'Di
ki — ks
< CIDA/\I!BSR (Tﬂ) da. (3.2.46)
D;

Combining the estimates obtained in (3.2.44)-(3.2.46), we find that
Bk, 2R)| < |Bkisr, 2R)| < c=R" + —5 D]

holds for some constant ¢ = ¢(data, 71 ), whenever ¢ € (0,1) andi € {0,1,...,m—
1}. Summing the last inequality above over the index i from 0 to m—1 implies

|B(km, 2R)| < ceR" + — c

Tm

Cx
|B(l€0,2R>‘ < (C*€+ m) |BQR|
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for some constant ¢, = c¢,.(data, 71). Now choosing small enough ¢ = (data, 71, 72)
and sufficiently large m = m(data, 71, 75) such that

Cyx
e+ ———— < T
* gs(qj)m\ 2

we arrive at the desired estimate (3.2.43).

[]

Lemma 3.2.5. Under the assumptions of Lemma 3.2.4, let u € WI‘P(Q)
be a non-negative Q-minimizer of the functional P in (1.0.1). Suppose that
one of the assumptions (1.0.13), (1.0.14) and (1.0.15) is satisfied. Then for
any T € (0,1), there exists a small § = 61(data(Qy)) such that for any
0 <k < ull poo(py s o

{x € Bg :u(x) > k}| > 7|Bg| (3.2.47)
holds, then
infu > 61k. (3.2.48)
Br

Proof. 1t’s enough to prove the lemma for 7 € (0, 2’(”“)). Let us fix mg € N,
and consider the sequences defined by

1 1 1
Pi =R (14‘5) and ]{Zz = <§+§) 270k (220,1,2,>
(3.2.49)
Next we also define
B kia )
D;.y = B(ki, pit1) \ B(kiy1, piy1) and Y= %, (3.2.50)
Pi

where the definition of B(k;, p;) has been introduced in (3.2.37). By using
the assumption that u is non-negative, we observe (u — k;)— < 27™°k. Then
by applying Lemma 3.2.2, we see

- (i43)(s(T)+1) _ ((u—Fk)_
/ Uy, ([Dul) dx < 2 / Uy . <—2R dx
B(ki,pi+1) B(ks,pi)
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27k
R

< cQ(i—&—S)(s(\IJ)—i-l)\szR < ) |B(k;, pi)|
for some constant ¢ = c¢(data). This estimate together with the convexity of
U5, implies

][|Du|dx < f Uy, (|Dul)dz
H—l

Dia

< Czi(S(\I’)Jrl)‘B(kiapi”\Ij— 27"k
h Dl P\ R

— zs |B(kl7pl)|2 mok
< Vg, <2 N+ 7o) I
’ z+1|

for some constant ¢ = c¢(data(£2y)). Therefore, using the fact that the func-
tion Wy  is increasing and Lemma 2.1.1, we have

w11 | Bki, pi)| 2™k
D4l R

][ |Du| dz < ¢2°¢

D1

Now applying Lemma 2.2.3 together with the fact that 7 € (O, 2*(7”1)), we
see

/ |Duldx > c(ki — kis1)|B(kis, pis1) |7 | Bpiy \ B(ki, pis1)| piyy
Dipa

271270 k| B(ksy1, piy1) |7 (|Bar| — 7| Br|) R™"
2727 k|B(k i+17/h’+1)‘17%

VoWV

<2712k R 1YZ+1 :
The combination of the last two displays yields
1 .
"< 622(5(\1/ +1 n‘B(k“plﬂ < 621(5(\11)+1)Y;.

1—
Yin
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and then we conclude

S(s(W)+Dn 141
}/i—f—l < 0*21 D A '

)

for some constant ¢ = c(data(€)y)). Now applying Lemma 3.2.4, we find a
large natural number my = mo(data(€)y)) such that

‘{x € Bog :u(x) < 2_7”0]{;}‘ < C;("—l)g—n(n—l)(s(\lf)Jrl).
With keeping the above choice of mg, we observe that

Y, — |B(|ko,2|R)| _ |z € Bsg 3’U(1’)| < 270k < ¢ (1-Dg-n(n-1)(s(V)+1).
Bor Bor :

Now we are at stage in applying Lemma 2.2.2 to obtain that ¥; — 0 as
1 — 00, which is equivalent to

|B(2~(mo*DE R)| = 0.

The last display implies the validity of (3.2.48) with the choice of d;
9 (motl),

O

From Lemma 3.2.5 and the covering arguments in [108, Section 7], we
obtain the following weak Harnack inequality for a local @-minima of the
functional P defined in (1.0.1). We also refer to [20, 39, 96] for the proof.

Theorem 3.2.3 (The weak Harnack inequality). Let W ¥(Q) be a local
non-negative Q-minimizer of the functional P defined in (1.0.1) with the co-
efficient functions a(-) € C“*(2) and b(-) € C**(§2) for functions w,,wy being
continuous and concave which vanish at 0. Suppose one of the assumptions
(1.0.13), (1.0.14) and (1.0.15) is satisfied. Let Bor = Bygr(xo) C Qo € 2 be
a ball with 9R < 1. Then there exist _ > 0 and a constant ¢ depending on
data($y) such that

1

1 .
inf > — =d . 2.51
xlenBRu(x) . ][u x (3.2.51)

2R

To conclude the result of Theorem 3.2.4 below, we need to obtain a local
sup-estimates for local quasiminizers of P.
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Lemma 3.2.6. Under the assumptions of Lemma 3.2.4, let u € WHY(Q)
be a non-negative local Q-minimizer of the functional P in (1.0.1) with the
coefficient functions a(-) € C**(Q) and b(-) € C**(Q) for functions wy,w,
being continuous and concave vanishing at the origin. Suppose that one of the
assumptions (1.0.13), (1.0.14) and (1.0.15) is satisfied. Let Byr = Bygr(zo) C
Qo € Q be a ball with 9R < 1. Then for any q. > 0, the local estimate holds

1
@t
supu < ¢ (B][ || dx (3.2.52)
Br
2R

for some constant ¢ = c(data(S)y)).

Proof. The proof consists of two steps. For the convenience, let us consider
the scaled functions

zo + Rx)

u(z) = u 7 for every x € By. (3.2.53)

Then the almost standard Caccioppoli inequality (3.2.17) of Lemma 3.2.2
can be written in the view of u as follows:

C

(7'2—7"1

[ 10— )y s <

By

)W)+ /‘I’EQR((a—k)i)dx (3.2.54)

By

with some constant ¢ = ¢(data), whenever B,, € B,, C B(0) are concentric
balls and k£ € R. Next for 1 <t < s < 2, we set sequences by

s—t 1
pi = (t+ 5 ) and k; := 2l (1 — 21.“) (3.2.55)

for some constant dy > 0 to be determined later. We also define

i + pi 1 _
o= PP e / Uy ((uw—ki)s)dz, (3.2.56)
2 Uy, (lo)
A(ki,pi)
where
Ak, p) :=={x € B, : u > k}. (3.2.57)
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Let n; € C3°(B;,) be a cut-off function such that 0 <7, < 1,7, =1 on
c(n)2’
(s —1)

Then using Holder’s inequality, Sobolev’s inequality and Lemma 2.1.4,
we have

B,.,, and |Dn;| <

Pi+1

Vi 0)Vis < [ W, (@ bisi)n) do

Bj,
S ’A(k”l’pi)’% / [\IJEZR ((u— ki+1)+77i)] 1 dx

<cmﬂkwhpoﬁK/(w;m)%@t—kwo+m>
X [|D(t = kig1)4|mi + (@ — kig1)4 | Dnil] do
<Ak )l [ (V5,,) (@ b)) D@ )] da

- 1 2 _ i _
+ c|A(kit1, pi)| ™ / (‘I’BQR)/ (@ = Kig1)4) (@ — kiy1) 4 do

s—t
Bﬁi

< | Alhisr po)l* /w&4w< ki)l da

Bp,

7

2i
s—t

b [ (@ b)) do

Bﬁi
21’ s(0)+1
(%) [ vt

By,

3=

< C|A<ki+17 i)l

for some constant ¢ = c(data), where in the last inequality of the above
display we also have used (3.2.54) and (3.2.57). Now applying Lemma 2.1.1,
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we see that
_ 1
A(kiz1, pi)| < = U, (U —Fi) d
Al o0 € ey [ W de
A(kit1,p:)
1 _
S W, (/27 / Wi,y (0 hi) do
2 A(kit1,0:)
_ i s(U)+1
< \IIBzR UO) Y; < 2(i+1)(3(‘1’)+1)Yi <c 2 Y.
Uy, (l/240) §—1
and

[ Wonn (0= b)) do = _ [ (ki) ds

Boi Alkiy1,00)

< / Uy, (@—k;) de =g (lp)Y.
A(ki,pi)
Combining the last three displays, we conclude with the following recursive
inequality:
2i(1+%)(s(‘11)+1)

1+1
Yisi < oo "

(8 _ t)(l—l-%)(s(\lf)-&-l) i

for some constant ¢y = ¢p(data). Now we are at the stage to apply Lemma
2.2.2. In turn, we have Y; — 0 as ¢ — oo, provided

B 1
Uy, (o)

Yo / Uy (@ — 1) dxgl “ ] 9—n(1+n)(s(¥)+1)

(s — t)(1+%)(s(‘l/)+l)

A(lo,s)

The inequality in the last display is satisfied if we choose [y > 0 in the
following way

) on(Em s+
Vi ) = ey | Vo (@)

s
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Therefore, we obtain u < 2lp in B;. This estimate together with the last
display yields

C

Y (Sgtp (ﬂ)+) S (5 S H0rGm ) ][ Vg, ((0)+) dr. (3.2.58)
Bg

Recalling ¥ = € N with an index s(¥) and applying Lemma 2.1.3 for

-

Baog?

one together with Jensen’s 1nequahty in (3.2.58), we see

Uy, . (SEF@)+) < CEDIE ][ B ( dx
B

S

. (¥)+1 W
- (S—t (1+n s( ][\IIBzR( ] ) dx
B

s

¢ - _\s(P)+1
S (8 — t)(1+")(3(‘1’)+1) ‘I;B2R ][(u)+ dx

(W
one can see that ¢t — Uy (t <‘1’>+1> is a concave function. Using this

1
s(U)+1

_ c —\s(U)+1
S Vs (s — )T H)+D) ][(“)+ du

Since Wy - is the increasing function, the last display implies

1
s(¥)+1

u ¢ _\s(T)+1
SlB}tp(U)—l— < (S . t)(1+”)(5(‘1’)+1) f(u)Jr dx

s

Since —u is a local Q-minimizer of the functional P, we find

1
s(¥)+1

C
— —1s(P)+1
sup [l < e ][|“| du
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Therefore, for 0 < ¢y < s(¥) + 1, we discover from Young’s inequality that

_ 1
s(¥)+1

e c B 1_W Sas g
Sgtp ] < (s — )01 Sgsp | || dx

B
at

1 i ¢ 7|9+
S 2 Sgp 2l + (4n)(s(¥)+1)2 [al* dz
: (s —t) o+

holds for every 1 < ¢ < s < 2. Then we apply Lemma 2.2.1 for h(t) = sup |u|
By
in order to have

1

at

sup la| < ][|u]‘” dx (3.2.59)

for ¢ = c¢(data, ¢, ). On the other hand, for ¢, > s(¥) + 1, the inequality
(3.2.59) is still valid by using Hélder’s inequality. Scaling back as we intro-
duced in (3.2.53), we arrive at the desired estimate (3.2.52). O

Finally, the main result of the this section is the following:

Theorem 3.2.4. Let u € W"Y(Q) be a non-negative local Q-minimizer u
of the functional P defined in (1.0.1) under the coefficient functions a(-) €
C¥(Q) and b(-) € C**(Q) for w,,w, being non-negative, continuous and con-
cave functions vanishing at the origin. Suppose that one of the assumptions
(1.0.13), (1.0.14) and (1.0.15) is satisfied. For every ball B with Byr C
with Qg € ) being an open subset, there exists a positive constant ¢ =
c(data()y)) such that

supu < cinfu (3.2.60)

Br Br
holds.

Proof. The proof is essentially based on the results we have obtained so far.
In fact, applying Theorem 3.2.3 and Lemma 3.2.6 with ¢_ = ¢, we obtain
(3.2.60). O
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Remark 3.2.2. The results of the above theorem refine the results of [95,
Theorem 1.3] without any extra term in (3.2.60) under our multi-phase set-

tings when the assumptions (1.0.13) and (1.0.14) come into play, and see also
(94, 96).

3.2.5 Higher integrability results

Next, we provide a higher integrability result for a local minimizer of the
functional F defined in (1.0.10).

Theorem 3.2.5 (Higher Integrability). Let v € W Y(Q) be a local mini-
mizer of the functional F defined in (1.0.10) under the assumption (1.0.11).
Assume that one of the assumptions (1.0.13), (1.0.14) and (1.0.15) is satis-
fied. Then there exists a higher integrability exponent 6 = d(data) € (0,1)
such that the following reverse type Holder inequality

f (U (x, |Du|)]' ™ da < c][ U(x,|Dul) dx (3.2.61)

Br/2 Br

holds for a constant ¢ = c¢(data), where data is clarified in (3.1.8), whenever
Br € Q is a ball with R < 1. In particular, for any open subset Qy € €2, it
holds that

1 (2, [ Du)l| 150y < e data()). (3.2.62)

Proof. Let Br € ) be a ball with R < 1 as in the statement. Since u is a
local @ := L/v-minimizer of the functional P in (1.0.1), we are able to apply
Lemma 3.2.1 with the choices p = R/2, r = R and k = (u)g,, in order to get

][ U(z, |Du|)dz < c][ v (:z:,

Bry2 Br

u— (u)BR

) dx (3.2.63)

with some constant ¢ = c¢(n, s(G),s(H,), s(Hy),v, L). Then, applying Re-
mark 2.4.1 depending on which one of the assumptions (1.0.13), (1.0.14) and
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(1.0.15) is assumed, we obtain the following reverse Hélder inequality:

S

][ U(z, |Dul) dz < ¢ ][[\I/(x,|Du|)]0dx | (3.2.64)

Br)2 R

where ¢ = ¢(data), and 6 € (0,1) is the same appearing in Remark 2.4.1.
At this point (3.2.61) follows using a variant of Gehring’s lemma on reverse
Holder inequalities, see for instance [90, Theorem 6.6]. ]

3.3 Comparison estimates

Throughout this section we fix a ball Byp = Bag(xg) C Q9 € Q with R < 1
and some open subset €2y € (2. We consider the functional defined by

W (Bog) 5 v s Fi, (0) = / F(z, (w)s,,, Dv) dz, (3.3.1)

Baog

where u is a local minimizer of the functional F in (1.0.10). Now we consider
a function w € u + VVO1 ’\II(B r) being the solution to the following variational
Dirichlet problem:

{w = min P, , (v) (3.3.2)

vEeEU+ WOL‘I}(BQR).

In the following we shall deal with first comparison estimates in order to
remove u-dependence in the original functional F in (1.0.10).

Lemma 3.3.1. Let w € WY (Bayg) be the solution to the variational problem
(3.3.2) under the assumptions (1.0.11), (3.1.2) and (3.1.4). Let the coefficient
functions a(-) € C**(Q) and b(-) € C**(QQ) for wq,wy being non-negative,
continuous and concave functions vanishing at the origin. Assume that one
of the assumptions (1.0.13), (1.0.14) and (1.0.15) is satisfied. Then there
exists a constant ¢ = c(data()y)) such that

][ |V (x, Du) — Vg (z, Dw)|* dz < cw(RY) ][ U(z,|Du|) dzx (3.3.3)

Baor Baor
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holds, where v = y(data($y)) is the Holder exponent determined via Theo-
rem 3.2.2. Moreover, the following estimates hold true:

L

][ U(z,|Dwl|) dz < = ][ U(z,|Du|) dz, (3.3.4)

BQR BZR
[l oo () < Nll Lo () (3.3.5)
0sCcw < 0SC U (3.3.6)

Bar Bsr

and

u—w 1

][ ¥ (x = D dz < clw(R)]? ][ U(z, |Du]) do (3.3.7)
2R Bar

for some constant ¢ = c¢(data(Qy)), where in the case that (1.0.15) is con-
sidered, v appearing in (3.3.3) and (3.3.7) is the same as in the assumption
(1.0.15).

Proof. The proof is very standard and we shall follow the structure of the
proof of [22, Lemma 4]. The Euler-Lagrange equation of the functional Fg, .,
which is

f (D,F(x,(u)p,,, Dw), Dp) dz =0, (3.3.8)

holds for any function ¢ € W, (Bag) (see for instance [14, Lemma 5.2]).
The minimality and growth condition (1.0.11) imply that

][ U(z, | Dwl) dz < % ][ Flo, (W), Dw) dz

Bor Baogr
1 L
<1 f Flz, (W), Du) dz < = ][ U(z, |Du|) da,
1% 14
Bar Baog

(3.3.9)
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which proves (3.3.4). Therefore, we conclude with

][ (D,F(z,(u)p,,, Dw), Du— Dw) dx = 0. (3.3.10)
Bsr
Letting ufy = sup u(z) and up  := inf u(z), the minimality of w yields
® 2eBog 2 weBap
Fp,n(w) < Fg,, (min{w,ugm}) and FBop(w) < Fp,,(max{w, ug, }).

Consequently, the last display together with (1.0.11) gives us

U(x, |Dw|)dx =0 and / U(x, |Dw|)dx = 0.
B2Rm{w>u§2R} BgRﬂ{wgung}
By coarea formula, we get that

i =u,_ < <uf = €. : 3.
$éIE1;ERu up,. <w(r) <upg, xSG%ERU(a:) a.e. * € Bog (3.3.11)

This proves (3.3.5) and (3.3.6). Using (3.1.6) and (3.3.10) together with the
minimality of u and w, we have that

][ Ve, Du) — Vi, Dw)[2 da

Bagr

(3.3.10) ][ \Va (2, Du) — Vi (z, Dw)|? dx
Bar

+ ¢, ][ (D.F(x,(u)p,,, Dw), Du — Dw) dx

<o f 1P (W) D) = Fla, () D) d
=, ][ [F(z, (u) By, Du) — F(x,u, Du)] dx
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+ c. ][ [F(z,u, Du) — F(z,w, Dw)| dx

Bagr

e Y (3.3.12)

with ¢, = ¢o(n, s(G), s(Hq), s(Hyp),v). Now we estimate each term I; for i €
{1,2,3,4} in the last display. We have

(3.1.2)
L€ cfwuu—<u>BzR|>\If<x,|Du|>dx
Bar
(3.2.31),(3.2.33)
< @i, ) f ¥ Dul)do

Bar
(2.1.1)

< c(data(Qo))w(RY) ][ U (z, | Dul) dz, (3.3.13)

Baor

where in the last display we have also used the fact that w(-) is concave. The
minimality of u implies

I, < 0. (3.3.14)
We have therefore
(3.1.2)
B e f wllw = @) ¥, Dul) ds
Bar
< c][w (oscw) U(z, |Dwl|)dx
Bar
Br
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(3.3.6)
< (%scu) ][ U(z, |Dwl|) dx

2R
Bagr

(3.2.31),(3.2.33)
< cwlliloga, ) £ V(o [ Dul do

Baog
(2.1.1)
< c(data(Q))w(R") ][ U(z,|Dul|) dz. (3.3.15)
Bar
Observing that
(3.3.11)
(W) By, — (W)B,,| < oscu, (3.3.16)
Bar
as in the estimate for I, we still have
Iy < cw(RY) f V(z,|Dul) dx. (3.3.17)

Bar

Inserting all the estimates obtained for I; with i € {1,2,3,4} into (3.3.12)
completes the proof of (3.3.3).
Let us now prove (3.3.7). By applying Theorem 2.4.1 with d = 1, there

exists 0 = 01(n, s(G), s(H,), s(Hyp)) € (0,1) such that

:f@@, /

Bor
Du—D 01
< (Bf ([w, Dul + |Dw|>J%M) U(x, |Du] + | Deol)| ¥ da
2R

01
u—w

R

Ddxgc fmmuwu—Dwm%m

%
| Du| + | Dw|
(3.3.18)

where in the last inequality of the last display we have used (2.1.11) for W.

2 2
Applying Holder’s inequality with conjugate exponents (9—, 50 ) to the
12— b0
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right hand side of the last display and (2.1.10), we get

|Du — Dw|?
J<e (B][ (e Dl + | D) i da
2R

2-0
26,

F 10 Dul + (Dl d

2R

N
[SIE

<c ][ Vi (x, Du) — Vi (z, Dw)|* do 7[ U(z,|Du| + |Dw|) dx

2R 2R

< c(data(Qo))[w(RV)]% ][ U(x, |Dul) dz, (3.3.19)

Bar

where in the last inequality of the above display we have used (3.3.3), and
then (3.3.4). Combining the last two displays we arrive at (3.3.7). O

Next we consider the functional defined by
W (Br) 5 v o Fu(v) = / Fu(z, Dv) da, (3.3.20)
Br

where the density function is given by

Fc(l‘, Z) = FG (l‘c, (U)Bzm Z) + CL(Z‘)FHa (xw <U>B2R7 Z) + b(x)FHb (JZC, (U)Bzm Z)
(3.3.21)

for some fixed point x. € Bg and for every z € ) and z € R". Now we
consider a function w. € w + I/VO1 ’\I’(BR) being the solution to the following
variational Dirichlet problem:

{wc — min F(v) (3.3.22)

v EW+ WOL\I/(BR>,

where w € W'Y (Byy) is the solution to the variational problem (3.3.2).
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Lemma 3.3.2. Let w. € WYY (Bg) be the solution to the variational prob-
lem (3.3.22) under the assumptions (1.0.11), (3.1.2) and (3.1.4). Let the
coefficient functions a(-) € C**(Q) and b(-) € C*(Q) for wa,wy being non-
negative, continuous and concave functions vanishing at the origin. Assume
that one of the assumptions (1.0.13), (1.0.14) and (1.0.15) is satisfied. Then
there exists a constant ¢ = c(data(€)y)) such that

][ [V (z, Dw) — Vy(z, Dw,)|* dz < cw(R) ][ U(x, |Dul) dz. (3.3.23)

Br Br

Moreover, the following estimates hold true:

L

][\If(x, | Dw.|) dx < = ][ U(z, |Dwl|)dz, (3.3.24)

BR BR
[well oo ) < N1l oo ) » (3.3.25)
0sC W, < 0SCw (3.3.26)

Br Br

and
][\1/ (m i ) dz < clw(R)]? ][\I/(x, |Dw|) da (3.3.27)
R Bgr

for some constant ¢ = c(data). Finally, there exists a higher integrability ex-
ponent 09 = do(data) with 6y < § with § having been determined via Theorem
3.2.5, and a constant ¢ = c¢(data) such that
)
][ [T (x, | Dw,|)] % da < c][ U(x, |Dw,|) dz. (3.3.28)

Br/2 Br

Proof. Essentially, the proof is similar to the proof of Lemma 3.3.1. The es-
timates (3.3.24)-(3.3.26) can be obtained as for (3.3.4)-(3.3.6). We now focus
on proving (3.3.23). The Euler-Lagrange equation arising from the functional
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F. defined in (3.3.20)

][ (D,F.(x,Dw.),Dp) dx =0 (3.3.29)

Bgr

is valid, whenever € W'" (Bg). Then using (3.1.2), we have

f’Vq,(x, Dw) — Vy(z, Dw,)|* dv
Br
< c][ (D,F.(x, Dw) — D,F.(x, Dw.), Dw — Dw,) dx
Br

<c ][ |D. Fo(e, (w)5,,,, Dw) — D.Fe(x, ()5, Dw)||Dw — Duw,| dz
Br

+c ][ a(z)|D,Fy,(z., (u)p,,, Dw) — D, Fy,(x, (u)p,,, Dw)||Dw — Dw,| dx

Bgr
+c ][ b(z)|D,Fp,(xc, () gy, Dw) — D, Fp, (x, (u)p,,, Dw)||Dw — Dw,| dx
Bgr
< aw(R) ][ U(z, |Dwl|)dx (3.3.30)
Br

for some constant ¢ = ¢(n, s(G), s(H,), s(Hy), v, L). This proves (3.3.23), and
(3.3.27) follows from this estimate together with applying the arguments used
in (3.3.18)-(3.3.19). Since w, is a L/v-minimizer of the functional F. defined
in (3.3.22), we are able to apply Lemma 3.2.1 with the choices of v = w,,
p=R/2,r=Rand k = (w.)p,. In turn, it gives us that

][ U (x, | Dw,|) dx < c][\IJ (q}

Bry2 Br

We — (wc)BR

) dx (3.3.31)

holds with ¢ = ¢(n, s(G), s(H,), s(Hy), L,v). Then applying Remark 2.4.1,
there exists a positive exponent 0 = 0(n, s(G), s(H,),s(Hp)) € (0,1) such
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that

=

][ U (z,|Dw,|) de < cRs)p ][[\IJ(:U, | Dw,|)]’ dx (3.3.32)

Br/2 R

holds with some constant ¢ = ¢(n, s(G), s(H,), s(Hyp), L, v, wa(1), wp(1)), where

( 1
n

1+ M([a)w, + [blw,) | 1+ (B/ G(|Dw,|) dz

if (1.0.13) is considered, (3.3.33a)
Fop = 4 1 Nallalu, + Blua) (14 el e,
if (1.0.14) is considered, (3.3.33b)

R

L+ s ([ale, + [Pl) <1 " {RW e wc] >

Lif (1.0.15) is considered. (3.3.33¢)

Furthermore, taking into account (3.3.4)-(3.3.6) and (3.3.24)-(3.3.26) in the
last display, we conclude that

][ U(z, |Dw.|)dx < ¢ ][[\IJ (z,|Dw,|)]’ dx (3.3.34)

Br/o R

holds for some constant 0 = 0(n, s(G), s(H,), s(Hp)) € (0,1) and ¢ = c¢(data).
The estimate (3.3.28) follows from applying a variant of Gehring’s lemma. [

To go further let us introduce the excess functional defined by

B(.B) = (15,)” (Bf v, (

for any function v € L'(By,) and a ball By, C €, where we note that (\I!E;QT)
is the inverse function of ¥ . By the convexity of ¥ ~together with Lemma

v — (v)B,
2r

) dx (3.3.35)

-1
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2.1.1 and Remark 2.1.2, one can see that

U—UQ

E(v,B,) < c(¥3,) ][B% )dx (3.3.36)

for some constant ¢ = ¢(s(¥)), whenever vy € R is an arbitrary number.

Lemma 3.3.3. Let u € W”’(Q) be a local minimizer of the functional F
defined in (1.0.10) under the assumptions (1.0.11), (3.1.2) and (3.1.4). Let
w, € WHY(Bg) be the solution to the variational problem (3.3.22). If one
of the assumptions (3.1.11a)-(3.1.11e) is satisfied, then for every e* € (0, 1),
there exists a positive radius

R* = R*(data(Q), ") (3.3.37)
such that
_ We — (wc>BT
f o ([

) dx
TR

w, — (w,
c (1 +T—(n+s(\11)+1)6*) ][ \DJ_S’R (‘—(R >BR/2

) da (3.3.38)

Br/2
for some constant ¢ = ¢ (data(€)y)), whenever 7 € (0,1/16) and R < R*.

Proof. We assume E(w., Br/2) > 0, otherwise (3.3.38) is trivial. For the sake
of simplicity during the proof, we write
) dz

(3.3.39)

E(R) := E(w., Bry2) = (‘Ing)_l ][ Uy (‘%

Br/2

The proof falls in several delicate steps.
Step 1: Initial settings on w.. Applying Lemma 3.2.2 to B/, with
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k = (we)py,,, we have

we — (W,
][ U (z,|Dw,|) de < ¢ ][ Vg, (‘#

BRrya Bry2

> da (3.3.40)

for some constant ¢ = ¢(data). Moreover, it follows from Lemma 3.3.2 that
there exists a higher integrability exponent dy = dp(data) such that

1

1+

][ [0 (z, | Dw )] da <c ][ U(z, |Dw,|) dz (3.3.41)

Br/s BRrja

for a constant ¢ = c(data).
Step 2: Scaling. We set the scaled functions of w.(-), a(-) and b(-) in
the ball By by

([ we(xo + Rx) — (We) By
W (1) 1= R 2 (3.3.42a)
() Ho(E(R))
a(x) := a(xo + Rx) ¥, (E(R)
Hy(E(R))

and  b(z) := b(zy + Rx) (3.3.42b)

\

for every x € By. Now we define the control function and energy integrand
associated to our scaling in (3.3.42a)-(3.3.42b) as

(W(z, |2]) = GJ2]) + alx) Ha(|2]) + () Ha(|2]). (3.3.43a)
F(z,2) = Fo(2) + a(z) Fp,(2) + b(x) Fi, (2), (3.3.43b)
- L F (xw(u)BzR?E(R)Z)
Fol) =y )
n — FHa(xm (U)B2R7E(R)Z)
Fy,(z) = H, (E(R)) )
Fiy, (2, 2) == FHM‘}}?EEZ%);E(R)Z) (3.3.43¢)
land  A(z,z) == D.F(z,2) (3.3.43d)
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for every x € B; and z € R", where the point . € Bg has been fixed in
(3.3.22) and

oy GE®RY) o HJBR)) o Hy(B(R)Y)
W=y Ewwy T mewy ™ LE®)

(3.3.44)

for every t > 0. Clearly, one can see that G, H,, H, € N with indices

t
s(G), s(H,), s(Hy), respectively, and also that
G(1)<1, H,(1)=1 and Hy(1)=1. (3.3.45)

Then one can check that the function w, minimizes the following functional

WY(By) 3 v /F(a:, Dv) dx, (3.3.46)

where the functions ¥(-) and F(-) have been defined in (3.3.43a) and (3.3.43b),
respectively. The Euler-Lagrange equation associated to the functional in
(3.3.46) becomes

f(fl(x, Dw,), Dy) dx = ][<DZF (z, Dw.), D) dz =0 (3.3.47)

Bl Bl

for every p € W&’Q(Bl). By the assumptions (1.0.11) and (3.1.2) via elemen-
tary computations, we have the following structure condition in the scaled
settings:

v (, [2]) < F(z,2) < LU(x, [2]), (3.3.48a)
]A_( 2)||z| + | D, Az, 2)||2]* < LY(x, |2]), (3.3.48b)
yICED 0 p A, )¢ 6) (3.3.48¢)

EEE
hold true for every = € B; and z € R" \ {0}.

Step 3: Freezing. Now we consider frozen functional and vector field
associated to F'(-) and A(-) defined in (3.3.43b)-(3.3.43d). Let z,, %, € B; be
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points such that @(z,) = inf a(x) and b(Z,) = inf b(z). Then we denote by

Fo(2) = Fo(2) + a(3) F, (2) + b(@) Fyr, (2), (3.3.49)
and
To(t) == C(t) + a(Ta) Ha(t) + b(T) Hy(t) (3.3.51)

for every x € By, z € R" and t > 0. By the very definition in (3.3.43a)-
(3.3.43d), straightforwardly one can see

Uy(1) = 1. (3.3.52)
In our new scaled settings, we now consider the functional
WP (Byjg) 30 / Fo(Dv) da. (3.3.53)
Byys

We observe that the newly defined integrand Fy(-) and vector field Ay(-)
satisfy the growth and ellipticity conditions as

I/EI_’O(|Z|) < Fo(z)ié Ly(|z|), . (3.3.54a)
[Ao(2)lI] + [D=Ao (2|21 < LWo([2]), (3.3.54b)
e < (D.Au)e,6) (33540

for every z € R" \ {0} and £ € R". Therefore, the estimates (3.3.40) and
(3.3.41) are written in the view of w, as

jerr
][\I/(x,|ch|)dx—i— ][[\I/(x,|ch|)]1+5°dx < c(data). (3.3.55)

Bis Bi1/s

Step 4: Harmonic type approximation. Let ¢ € VVOI’OO (Bl/g). Using
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(3.3.47), we see

Iy = ][ (Ao(Dw,), D) de| = ][ (Ao(Dw.) — A(x, Dw.), D) da

1/8 1/8
< f 1Au(Dw) ~ Aw, D) do 1Dl s, = 1 Do -
Byys
(3.3.56)
Now using (3.1.2), we see
H,(|Dw.|)
T4 d
<L o (o) - aa) 2420 do
By /s
. Hb(\chD
L b(z) — b(z dr =: L (I Iis) . 3.3.97
L f o) = b S e = L+ 1) (3357)
By s

Now we estimate the terms appearing in the last display. In turn, using

(2.1.7), (3.3.45) and (3.3.55), we have

Iy <c ][ la(x) — a(z,)] ([ o(| Db, \)]smam + [H,(| D, ‘)]sféf%) dx

1
s(Hqg)+1

s(Ha) _
<cla-a@)i5, | f oo h(Da) s

B1/s

s(Ha)
s(Ha)+1

+clla —a(z,)

T | f e m(pa) i

B1/s

1 s(Ha)
c(data) (Ha — a(7,) ;ﬁi‘ggig) + ||a — a(z,) ,:jﬁfggl/s)) : (3.3.58)

where we have used also Holder’s inequality and the fact that a(z,) < a(x)
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for every x € Bj. In a similar way, we have

s(Hyp)

1
s(Hp)+1 T T, N||S(HHT
L°°ZEB1/8) - ”b — b(z) Lool(;Bl/s)> . (3.3.59)

I < ¢(data) (Hb — b(Z)

Inserting those estimates into (3.3.57) and then (3.3.56), we find

Iy < c(data) <|ya — a(Z)ll; %5, + lla — a(@a) ;—ii’iz‘éi;))
s(Hb)

1 o W)
+ c(data) (Hb—b(mb) ;L’jggl/s)ﬂjb—b(fb) ;&flgg/s)). (3.3.60)

Now we estimate the terms ||a — d(i:a)HLm(Bl/g) and [[b— B<jb)||L°°(B1/8)

depending on which assumption of (3.1.11a)-(3.1.11e) comes into play. Re-
calling the definition of a(-), b(-) in (3.3.42b) and the excess functional in
(3.3.39), we have

Ho(E(R))

Lo = lla = a(Za)| (s, 4 < Wa(R)m (3.3.61)
and
Iy = ||b— B(;zb)HLm(BUS) < cwb(R)%. (3.3.62)

Case 1: Assumption (3.1.11a) is in force. The assumption (3.1.11a),
implies that for any ¢ € (0, 1) there exists p; > 0 depending on ¢ such that

A, G7H (™) <e forevery te€ (0,m). (3.3.63)
Then using this one and (1.0.13), we continue to estimate /, in (3.3.61) as

(Hqo G™Y) (Y5, (E(R)))

I, < cwq(R) v, (E(R))
1 1
< cwy(R)e cwal R
R (e H) ) (i)

(3.3.64)
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with ¢ = ¢([a),,, A1), where we have used the fact that (\IIE;R)_1 (t) <G
for every t > 0. Using (2.1.2) together with the energy estimates (3.3.24) and
(3.3.4), we observe that

1 c c We (wc)BR/2
O (T
— n a R a R f R
wa ([, (BRY) ) <all) - walB) S
c c c(data)
< VU (z,|Dul) dx < .
o(B) | wu(B) / (2, [Dul) dv < ==
Bar
(3.3.65)
Combining the last two displays, we conclude
I, < (+ (R)(1+ ! )) (3.3.66)
aXC| €T Wy .9
Wa(ﬂl)
with some constant ¢ = c(data). In the same manner, we see
1<c<g+w(3)<1+L)> (3.3.67)

for some constant ¢ = c(data). Therefore, inserting the estimates in the last
two displays into (3.3.60) and recalling (3.3.56), we have

][ (Ay(Di,), Dp) de| < c(data)pi(e. B) [ Dl s, ). (3368

1/8

where

pl(ﬁ, R) =
s(Ha)

[e+wa(R) <1+ ! )}S(Hian[e—kwa(R) (1+ ! )}S(HG)H

Wa(p41)
s(Hy)

v (1+ 50| L vt (1 o) |7
(3.3.69)
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Case 2: Assumption (3.1.11b) is in force. From the assumption (3.1.11b),
it holds that for every € € (0, 1) there exists uy > 0 depending on ¢ such that

1
A (t, ;) <e forevery te(0,pus). (3.3.70)
Then by the very definition of W in (2.1.3) together with (3.3.70) and

(1.0.14), we have

Ho(E(R))
G(E(R))

< cwy(R)e (1 +

I, < cw,y(R)

+ cwe(R) <1 + ) . (3.3.71)

1
wa([E(R)]‘l))

Again using (2.1.1) together with taking into account (3.3.25) and (3.3.5),
we see

Wq (ILLQ)

1 1 o c(data)

< < : (3.3.72)
BRI = 4 ()~ nlR)
@\ 2llwellpoo(Bp)
Combining the last two displays, we find
I, < (g+ (R) (1+ ! )) (3.3.73)
aXC Wq .O.
wa(fi2)
with some constant ¢ = ¢(data). Similarly, it holds that
I, < (e+ (R)(1+ ! )) (3.3.74)
<c w — . 3.
’ ’ Wa(MZ)

Then, plugging the estimates in the last two displays into (3.3.60) and re-
calling (3.3.56), we have

][ (Ao(Dw.), D) dz| < c(data)ps(e, R) HD(,@HLOO(BI/S), (3.3.75)

1/8
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where

pg(g, R) =
s(Ha)

[€+WAR)<1+QM&Q>}“£H1+[€+““R)(1+am&ﬂ)]ﬂ%Hl

s(Hy)

et (14 5| L v (1 ogm)]
(3.3.76)

Case 3: Assumption (3.1.11c) is in force. The assumption (3.1.11c),
implies that for any ¢ € (0, 1) there exists sz > 0 depending on ¢ such that

1
A (tli’v, ;) <e forevery te (0,us). (3.3.77)

This one together with recalling (3.3.61) and (1.0.15), we see

Ho(E(R))

I, < CW(R)W

< cawg(R)e [ 1+

(3.3.78)

Now using (3.3.26), (3.3.6) and (1.0.15), we have

1 1 dat
__< - < dldata) (3.3.79)
wn (B ) ({} ) ()
Wy i
Combining the last two displays, we find

1

I,<cledwiR) |1+ (3.3.80)
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for some constant ¢ = c¢(data). In the same way, we show

1

1
Wa <u§”>

for some constant ¢ = c¢(data). Using the estimates (3.3.80)-(3.3.81) in
(3.3.60), we conclude

Li<cletw(R) |1+ (3.3.81)

][ (Ag(Dw,), Dy) dz| < c(data)ps(e, R) HDQOHLOO(BI/S), (3.3.82)
1/8
where
pg(f—f, R) =
1 s(Ha)
s(Hg)+1 s(Ha)+1
1 1
£+ we(R) 1+T + e+ wu(R) 1+T
) )
I _s(Hp)
s(Hp)+1 s(Hp)+1
1 1

+ le+wy(R) | 1+ + le+w(R) |1+

1
0

(3.3.83)

1
)

Case 4. Assumption (3.1.11d) is in force. We treat this case in a
different way rather than the estimate used in (3.3.63)-(3.3.69). In fact, we
take an advantage that w,(+) is a power function. Then recalling I, introduced
in (3.3.61), we see that

o (Hao G71) (W5, (E(R)))

fos e (B(R))
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) dx

n «@

< cR* +c / Vg, ([Dwe|) dv | < cR"+c / U (z,|Dul) dx

Br/2 2R

We — (We 9
<cRY [ 1+ ][%RQ%

Br/2

@
n(1+9)

< cR® + cRT¥s (B/ [V (z, | Dul)]** da
2R

< c(data(Q)) R (3.3.84)

for a higher integrability exponent § coming from Theorem 3.2.5, where we
have used (3.3.24), (3.3.4) together with (3.2.62). By arguing similarly, we
estimate [, in (3.3.62) as

I, < c(data(Q))R175. (3.3.85)

Using estimates from the last two displays in (3.3.60) and recalling R < 1,
we see

][ (Ao(Dw.), Dy) dz| < c(data($))qi(R) HDcpHLOO(Bl/s) , (3.3.86)

1/8

where

u(R) := RUFICH0ay 4 RTFoat, (3.3.87)
Case 5: Assumption (3.1.11e) is in force. Again we estimate I, and I,

introduced in (3.3.61)-(3.3.62). Using the assumption (1.0.14), (3.3.26) and
(3.3.6), we have

107



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS
) dx

<ec (R"‘ + [osc u] a) < c(data(Q)) R, (3.3.88)

Bar

«

— We — (We 9
<eR |1+ | (95,)7" ][‘I’Em (‘—(R L

Br/2

where we have also used (3.2.33) and the Holder continuity exponent v came
from Theorem 3.2.2. Similarly, we see

I, < c(data(Q))R". (3.3.89)

Inserting the estimates from the last two displays into (3.3.60) and recall-
ing R < 1, we see

][ (Ao(Dwe), D) dz| < c(data(Q))g2(R) | D¢l s, , - (3-3.90)

1/8

where

ay By
¢2(R) := R0 4 Rieem) (3.3.91)

Collecting the estimates obtained in (3.3.68), (3.3.75),(3.3.82), (3.3.86)
and (3.3.90), we conclude with

F (Au(Dwa). Dp) de| < cad(e, B) D¢l 1 (33,92

1/8
for some constant ¢, = cj,(data(Q)), whenever o € Wy (B, /8), Where

pi(e, R) if (3.1.11a) is assumed,
o(e, R) if (3.1.11b) is assumed,

3(e, R) if (3.1.11c) is assumed, (3.3.93)
(R)  if (3.1.11d) is assumed,

¢(R) if (3.1.11e) is assumed,

3

d(e,R) :=

3

in which py, p2, p3, ¢1 and g, have been defined in (3.3.69), (3.3.76), (3.3.83),

108



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

(3.3.87) and (3.3.91), respectively. By (3.3.52), (3.3.54a)-(3.3.55) and (3.3.92),
we are able to apply Lemma 2.5.1 with Ag(z) = Ao(z), Vo(t) = Wo(t) with

ao = a(7,) and by = b(7), to discover that there exists h € .+ Wy "°(By )
such that

][ (Ao(Dh), D) dz =0 for all ¢ € Wy ™(Bys), (3.3.94)

Biys

][ Uo(|Dh|) dz + ][ [To(| DR do < ¢ for some 0; < 8y,  (3.3.95)

By By /s

][ (IVe(Dw,) — Ve (Dh)* + a(Z,)|Va, (D) — Vi, (Dh)|?
By /s
+b(z3)|Vig, (Dw.) — Vi, (Dh)[?) dx
< c[d(e, R)]* (3.3.96)

and finally

][ (G (J@we — h) + a(Zo)H, (|@e — R|) + () Hy (|@. — b)) do < cqld(e, R)]™

By s

(3.3.97)
with some constants ¢, cq = ¢, cq(data(€)y)) > 1 and sg, s; = s, s1(data) €

(0,1), but they are all independent of R. Therefore, for a given £* € (0, 1) as
in the statement of our lemma, we choose small enough € and R* to satisfy

cqld(e, R < &*. (3.3.98)

Since the constants ¢; and sy only depend on data(€)y) and data, respec-
tively, the last display gives us the dependence of R* as in (3.3.37). Further-
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more, by (3.3.97), we conclude with

][ |G (e — h]) + a(Za)Hy (|0 — h|) + b(Z) Hy (|@0, — h)] do < .
Bis

(3.3.99)

Proof of (3.3.38). We observe that by a standard density argument, the
relation in (3.3.94) still holds for every ¢ € Wy (Byg) with Uo(|Dy|) €
L'(Bys). Recalling (3.3.49) and (3.3.50), we see that h is a local minimizer
of the functional

WhY(Byg) 3 v - / Fo(Dv) dz. (3.3.100)
By /s

Since the conditions (3.3.54a)-(3.3.54c) are satisfied for the integrand Fy(-),
we are in a position to apply the results from [111] to obtain the following a
priori Lipschitz estimate:

sup Wo(|Dh|) < ¢ ][ o (|Dhl) dx (3.3.101)
By /16
By /s

with some constant ¢ = ¢(n, s(G), s(H,), s(Hy),v, L). For any 7 € (0,1/16),

we have that
f\I}O (‘wC - (wc)BT ) d,ﬁU < ][\IIO (‘wc - (h)BT ) de
T T
B- T
 Na—h
) d:c+][\llo(‘wc D da
T
T BT

YOG

(3.3.99) ~ -
< esup Uo(|Dh|) + er~ s+
BT

(3.3.101) - B
< C ][ ‘Ijo(’DhD dx + CT*(n+S(\P)+1)€*
By /g
(3.3.95)
< eor (e (3.3.102)

110



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

By scaling back to w. as introduced in (3.3.42a)-(3.3.42b), we obtain the
desired estimate (3.3.38). The proof is complete. [

Lemma 3.3.4. Under the assumptions and notations of Lemma 3.3.3, let
w, € WHY(Bg) be the solution to the problem defined in (3.3.22). If one of
the assumptions (3.1.11a)-(3.1.11e) is satisfied, then there exists h € w. +

WOL "R(Bgys) being a local minimizer of the functional defined by

WhH(Brys) 3 v — Fo(v) == / Fo(Dv) dx, (3.3.103)

Brys

where the integrand function is given by

Fo(2) := Fa (2, (U) Bop, 2) + al@a) Frr, (Xe; () Bags 2) + 0(20) Fir, (e, (4) Byg, 2)
(3.3.104)

for some firved point x, € B having been fived in (3.3.22) and 4,7, € Bg
being points such that a(z,) := iIle a(x) and b(xy) := irgf b(x), whenever
TEDR TEDR

z € R", such that

][ [[Ve(Du) — Va(DR)[? + alz) [Vir, (Du) — Vir, (Dh)|?
Brys

+b(xy) |V, (Du) — Vi, (Dh)[?] da
<c(w(RY)+[d(e, R)™) ][ U(z,|Du|) dzx (3.3.105)

Bar

for some constant ¢ = c(data()y)), where s; and d(e, R) have been defined
in (3.3.96) and (3.3.93), respectively. Moreover, we have the energy estimate

][ Wy, (IDh|)dr < ¢ ][ U(z, |Du]) do (3.3.106)
Brys Bar
for some constant ¢ = c¢(n,v, L).

Proof. We need to revisit the proof of Lemma 3.3.3, specially Step 3 and Step
4. Under the settings of the proof of Lemma 3.3.3, we consider a function
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h € w, + I/Vpl’%(Bl/g) satisfying (3.3.94)-(3.3.97). Let h be the scaled back
function of h in Bgg as

T — TIg

h(z) := E(w., Br2)Rh ( ) for every x € Bps(xo). (3.3.107)

Clearly, h € w. + T/VO1 ’WIER(BR/S) is a local minimizer of the functional Fj
defined in (3.3.103) which means that

Folh) = / Fo(Dh) dz < / Fo(Dh + Dg)de = Fo(h+¢)  (3.3.108)
Brys Brys

1w
holds for every ¢ € W,  "®(Bps). As we have shown in (3.3.9), recalling
(3.3.24) and (3.3.4), we see

L "L
][ (D)) dr <~ ][ Uy, (|Duwdl)yde < ][\1/(9;, \Duw,|) dz
1% 1%

Brys Brys Br

< ¢(n,v, L) ][ U(z, |Dw|)dx < ¢(n,v, L) ][ U(z,|Du|) dz,
Br Bor

(3.3.109)

which proves (3.3.106). We write the inequality (3.3.96) in view of G, H,, H,,
w, and h in order to have

][ [|[Va(Dw.) — Va(Dh)|? + a(za)|Vi, (Dw.) — Vi, (Dh)[? (3.3.110)

Brys
) dz

< cld(e, R)]" ][ Uy, (D) dr < cld(e, R)]* ][ U (2, | Dul) dz

BR/2 BR/2

+b<xb)‘VHb (ch) — VHb(Dh)‘Q] dx

<clite. i v, (

Bry2

we — (w,)
R

Bpr/2

(3.3.111)
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for some constant ¢ = c¢(data(£2y)), where we have applied Sobolev-Poincaré
inequality and (3.3.109). Combining this estimate together with (3.3.3) and
(3.3.23) via some elementary computations and recalling R < 1, we directly
arrive at (3.3.105). O

We finally finish this section with a crucial decay estimate on a local
minimizer u of the functional F.

Lemma 3.3.5. Under the assumptions and notations of Lemma 3.3.3, if one
of the conditions (3.1.11a)-(3.1.11e) is satisfied, then for every e, € (0,1),
there exists a positive radius R, with the dependence as

R. = R.(data(Qy),¢.) (3.3.112)
such that if R < R, then there exists a constant ¢ = c(data()y)) such that
u— (U)BTR

/ Uy, ( 7 > dz < c(t"+ T_(S(‘I’)“)s*) / U(x, |Dul) dz

TR Bar

(3.3.113)
holds for every T € (0,1/16).

Proof. First we apply Lemma 3.3.3 with € € (0,1) to be determined in a
few lines, and we can use (3.3.38) provided

R < R* = R*(data(Qy), ")

is found via (3.3.37). Therefore, using the convexity of Wy , Lemma 3.3.3
and a Sobolev-Poincaré inequality of Lemma 2.4.1 via some elementary ma-
nipulations, for every 7 € (0,1/32), we have that

U — (U)BTR ) dx

][@;R( Y )da:gc][\llgR(

TR TR

<c ][ Vs, (‘—wc _T(;;C)BTR ) dx

TR
U — We

+cr("+s(‘1’)“)][\DB (
R R

R

U — (wC)BTR
TR

)
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) dx

we — (w,
<o (14 7 sy ][ w (‘&

R
+ er(nFs(9)+1) ][ Uy (
R

)dm
R

<o (L4 7 ][ Uy, (|Dwd) de

Br

+ cr~(nts(N)+D) ][ e (
R

R

Bry2
U — w,

R

U — W,

) dx (3.3.114)

with some constant ¢ = c(data())), where throughout the last display
we have repeatedly used (2.1.6) and (3.3.36). The last display, (3.3.7) and
(3.3.27) with some elementary manipulations yield

aE=r

TR
o7 rCOE g O (R / V(z, |Dul) do

Bar

u— (U>BTR

TR

for every 7 € (0,1/16) and some ¢ = c¢(data())). Then we choose €, = £*/2
and R, < R" in such a way that [w(Rz)]% < £./2. This choice gives us the
dependence as described in (3.3.112) and yields (3.3.113). O

3.4 Proof of Theorem 3.1.2

Now we are ready to provide the proof of Theorem 3.1.2. In fact, it comes
from the combination of Lemma 3.2.3 and Lemma 3.3.5.

Step 1: Different alternatives. Now we consider the different alterna-
tives depending on which phase of (3.2.27a)-(3.2.27d) occurs in some fixed
ball Br = Bgr(zo) C Qo € Q2 with R < R, = R.(data(£), e,), which will be
determined via Lemma 3.3.5 depending on ¢, € (0, 1).

Alternative 1. Let 7, € (0,1/64) to be chosen in a few lines. Assume
that G-phase occurs in the ball B, ,r, which means that (3.2.27a) happens
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in B; ,r. In this situation, we have
a” (Bar,r) < 8[a)w,wa(TapR) and b (Bar,r) < 8[b]w,ws(TapR).  (3.4.1)

Then we are able to apply Lemma 3.2.3 in the ball Bs; ,r. In turn, this
one together with applying Lemma 3.3.5 implies that

,/ U(z, |Dul) dz < ¢ /ﬁc;( )dx

U= (U)BQTabR

QTabR
BTabR BZTabR
u = (u)Bz R
<c s ————T ) dx
= / Br ( 2TabR
27, R

<o+ e) [WeiDipde  (342)

Br

for ¢ = ¢(data(€)), provided R < R, (data(f),e.). Then, for every o €
(0,m), we write down the last inequality in the following form

/ U(z, |Du|)de < 707° <cangb + cangbf("H(qj)H)s*) /\If(x, | Dul) dz

Br R Br

for some constant ¢,y = cqp(data(€2)). We select small enough 7, £, depend-

ing on data(€) and o in such a way that c,7% < 1/2 and 77, " e, <

1/2. Then we have

/ U(x, |Dul|)de < 707° / U(z, |Dul|) dz (3.4.3)

B: R Bgr

for every R < Ru, = Ryp(data(Qy), o).

Alternative 2. Let 7, € (0,1/64) also to be determined later. This time
we assume that (G, H,)-phase occurs in By ((3.2.27b) happens in Bg) and
that b~ (Br,r) < 4[b]w,ws(7R). Then we have

b~ (Bar,i) < 8[bluywi(7oR). (3.4.4)
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Also we can observe that
a”(Br,r) 2 a” (Br) > 4[a]u,wa(R) = 4a]u,wa(TR) (3.4.5)

and
o~ (Br) < a(z) < 2[a)u,wa(R) + a~(Br) < 2a~(Bp) (¥x € Br). (3.4.6)

Applying Lemma 3.2.3 and then Lemma 3.3.5 together with recalling (3.4.6),
we have

/ U(z, |Dul) de < ¢ / {G(

U — (U)BQTbR U = (u>B27'bR

)]

) +a” (Bory) Ho (

o R 21, R
TR 27Ty R
_ u— (U)BQT R
< c / ‘IJBR < szb ) d$
BQTbR
<c <Tz? + T{(S(‘P)H)&) /‘I’(l’, | Dul) d (34.7)
Br

for some constant ¢ = c¢(data(€))), provided R < R.(data({),e.). Then,
for every o € (0,n), we write down the last display as

/ U(z,|Dul)dx < 7777 (cbrg’ - ch,f*(ms(\D)H)g*) /\If(;z;, | Dul) dz

Brr Br

for some constant ¢, = ¢,(data())). We select small enough 7, €, depending
on data(§) and o in such a way that ¢,7y < 1/2 and ch;_(n+S(W)+1)e* <
1/2. Then we have

/ U(z,|Dul)de < 77 / U(z,|Du|) dzx (3.4.8)
BTbR BR

for every R < Ry, = Ry(data($),0).
Alternative 3. Let 7, € (0,1/64) to be fixed later. Assume that (G, Hy)-
phase occurs in By ((3.2.27¢) happens in Bg) and a™ (B, r) < 4[a]w,wa (7. R).
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Then we have
a” (Bar,r) < 8a]y,wa(ToR). (3.4.9)

Applying Lemma 3.2.3 and then Lemma 3.3.5 together with recalling that
b= (Br) < b(z) < 2b”(Bg) holds for every x € By if b (Bgr) > 4[bl.,ws(R)
likewise in (3.4.6), we have

u—(u)

[ v [ o (|“2ee]) co e (|20 )| o
Bror Baror ¢ a
<e / vy ( B D _Q(f )gm ) dz
B2TaR
<c(mr+ T(l—(s(\ll)+1)g*) /\I}(;p7 | Dul) dx (3.4.10)
Br

for some constant ¢ = c(data(§2)), provided R < R.(data()),e.). Then,
for every o € (0,n), we write down the last display as

/ U(z, |Dul)dz < 7,77 (caTy + carg_(””(w)ﬂ)s*) /\Il(m, |Dul) dx

Bror Br

for some constant ¢, = ¢,(data(€y)). We select small enough 7,, . depending
on data(Q) and o in such a way that c,7¢ < 1/2 and ¢, 77~ "M+ <
1/2. Then we have

/ U(z, |Du|)de < 1077 / U(z, |Du|) dz (3.4.11)

B, r Br

for every R < R, = R,(data(Q), o).

Alternative 4. Let 75 € (0,1/64) to be chosen later. We assume that
(G, H,, Hy)-phase occurs in By, which means that (3.2.27d) happens in Bg.
In this situation, from the observation in (3.4.6) we see that ™ (Bg) < a(x) <
2a"(Bg) and b (Bgr) < b(z) < 207 (Bg) for every x € Bpg. Then again
applying Lemma 3.2.3 and Lemma 3.3.5, we find
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u— (u
/ U(z, |Du|)dz < c / \IJ]_32TOR ( 2<TO)]1%32TOR ) d
BTOR BQTaR
— U — (U)B2T R
<c / \IIBR ( TRO ) dx
B27'0R

<c (TSL + T(;(S(\I’)+1)€*) /\If(x, | Dul) dx (3.4.12)

Br

for some constant ¢ = ¢(data(€))), provided R < R.(data({),e.). Then,
for every o € (0,n), we write down the last display as

/ U(z, |Du|)de < 7377 <corg - corg_("Jrs(\P)H)s*) /‘If(x, | Dul|) dx

Bryr Bgr

for some constant ¢y = cy(data(£2y)). Then we choose 7y, ¢, depending on
data({)) and o in such a way that co77 < 1/2 and o7y " e, < 1/2,
Then we have

/ U(z, |Dul) dz < Tg—o/qf(x,ypupdx (3.4.13)

Bror Br

for every R < Ry = Ry(data(€)), o). Next we consider the double nested
exit time argument based on the proof of [71, Theorem 2.

Step 2: Double nested exit time and iteration. Now we shall com-
bine all the alternatives we have discussed with the estimates (3.4.3), (3.4.8),
(3.4.11) and (3.4.13). Take a ball B C Q € Q such that R < R,,, where
R,, = min{Ry, R,, Ry, Ro} depends on data({)) and o. We consider G-
phase in BT}Z@;l r for every integer k£ > 0 and define the exit time index

tep = min{k € N : G — phase in the ball B k1 does not occur}. (3.4.14)

If there does not exist such ¢4, then for any 0 < p < beR < R < R,,, there
exists an integer m > 1 such that T£+2R <p < TZLZHR. Using iterative
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(3.4.3), we have

/\I/(:L‘,|Du|)dm< / U(z,|Du|) dv

Bp BTm+1 R

ab

g 7 hine) / U(z, |Dul) dz

szR
= r{m¥2)n=o) - 8(n=0) / U(z, |Dul) dz
TgbR
< c(data(Q), o) (%) - / U(z, |Dul)de.  (3.4.15)

R

Clearly, the above inequality holds true when 73R < p < R < R,,. So we
consider the case of t,, < oo. For every k € {1,...,t,}, we apply (3.4.3)
repeatedly in order to obtain

/ U(z,|Du|) dr < T:lfn_a) / U(x,|Dul) dz. (3.4.16)

BTJbe Br
By the very definition of 7, in (3.4.14), we have three different scenarios:
either (G, H,)-phase occurs in B t,,+1,, (G, Hp)-phase occurs in B_t,y+1,, or
ab ab
(G, Ha, Hy)-phase occurs in B_t,,+1,. Clearly, the last condition is stable for
ab
shrinking balls. Since the first two conditions can be considered similarly, we

shall focus on the occurrence of (G, H,)-phase in the ball BTtab-‘rl R Let us
ab

define a second exit time index

ty == min{k € N: (G, H,) — phase in the ball B i+ _t,,+1, does not occur}.
b ab
(3.4.17)

Arguing similarly as in (3.4.15) by using (3.4.8) if there is no such a finite
number t, € N, we are able to arrive at the inequality (3.4.25) below. So
we only focus on the case of ¢, < oo. Iterating (3.4.8) with Bpr replaced by
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Bthb+1R, we have
a

/ U(z, |Du|) de < 770 / U(z, |Dul) dz (3.4.18)

B B
Lk tabtlp taptl
b ab

ab R

for every k € {1,...,t,}. By again the very definition of t;, there is only one
chance that (G, H,, Hy)-phase occurs in the ball B _iy+1_tg+1p,. But as this
b ab

condition is stable, we can iterate (3.4.13) for every k € N in order to have

/ U(z,|Du|)dr < Téc(n_a) / U(x, |Dul|)dz. (3.4.19)

B, 441t B
k. tytl tgptl tpt+l top+l
70" Tab R Tb Tab R

Now we have all the needed estimates (3.4.16), (3.4.18) and (3.4.19). For
0 < p< R < R, we consider the following cases.

Case 1: R > p > 7™ R. There exists m € {0,1,...,t,} such that
TR < p < 7 R. Then from (3.4.16), we have

/\If(x,|Du])dI< / U(z, |Du|) do

B, Bt'ng
< 7o) / U(z, |Dul) dz
Br
<oy [ Dl do
Br

< ¢(data(Qy), o) (%)H / U(z, |Dul)de,  (3.4.20)

Br

where the last inequality is valid since 7., depends on data()) and o.
Case 2: 75" R > p > 7,7 R. In this case, using (3.4.20), we see

/\If(x,|Du])dI< / U(z, |Du]) do

B, B
P Ttab+1 R
ab
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_ llart1)(n-0) / W (z, | Dul) dz
Br
< (myra )"0 pon / U(z, |Du|) da
Br
< c(data(Q), o) (%)H / U(z,|Dul)dz,  (3.4.21)

Bgr

where again the last inequality is possible by the dependencies of 7.

Case 3: Tbrzg”HR > p 2 sz+1T$Zb+lR. Again there exists a natural
number m € {1,...,%} so that 7"/ 'R > p > 7Pl R Therefore,

using (3.4.18) and (3.4.20), we have

/xp(a;,wuy)dxg / U(z, |Du]) do

B B
P 7_m,,_tabJrl R
b ab

Tbm(n_a) / U(x, |Dul|) dz

B tap+1,
ab

N

N

Br

< cl(data(0,),0) (2)" / U(o, D)) dz.  (3.4.22)

Br

Case 4: 7'l R > p > 7Tl ™y R Now by (3.4.22), we find

/\Il(x,|Du|)d:p < / U(z, | Dul) dz

B B
o Lty teptl
b ab

< o (i iptatt) e / U(z, |Du|) da
Br

<erd™ (ToT£b+lT$Zb+l)n_a / U (z, |Dul|) dx

Br
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< c(data(0), o) (£)"" / U(z, |Dul)dz.  (3.4.23)

Br

Case 5: Ttb+17'tgb+17' R > p > 0. This condition implies that there exists

ty+1 _t 1 tp+1 ¢ 1
a natural number m € N such that Tm+17'bb+ “b+ R<p< 7'517',)“r ag” R.

This time we apply (3.4.19) and (3.4.23) in order to have

/\IJ(:B, |Dul) da < / U(z, | Dul) do

B B
P m_ tp+1 _tgpt+1
0 b Tab T

Tén(n_a) / U(x, |Dul|) dz

B 4,41
ptl_tgptl
b Tab

N

R

< (el ) [ W Dul) da

<erd” ”(%) _U/\I/(x,|Du|)da:’
— ¢(data(Q), o) (%)H / U(z, |Dul)de.  (3.4.24)

As we discussed earlier after (3.4.16), we can proceed the same for the oc-
currence of (G, H,)-phase in the ball BTTEI,H R instead of the occurrence of
ab

(G, Hp)-phase in the ball B ot g Then we can directly jump to the case
that (G, H,, Hp,)-phase occurs in the ball B ety , which is trivial by (3.4.13).
Moreover, if we start with the occurrence of (G, H,, Hy)-phase in Bg, then
the procedure will be much easier by (3.4.13). Taking into account all the
possible cases that we considered above, we can conclude that, for every
o € (0,1), there exists ¢ = c¢(data(€y), o) such that

/\If(x,yDu\)dm < c(%)n_g/llf(x,\Du])d:U (3.4.25)
B, Br
holds true, whenever 0 < p < R < R,,, where R,, is some positive radius

depending only on data()y) and o in the beginning of the proof. In order
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to complete the proof, we need to consider the remaining cases. If 0 < R,,, <
p < R <1, then we have

/\If(x,|Du])dx <(&)"" (%)n_g/\ll(x,|Du|)dx

B, Br

<(8)" (%)n_oB/\p(gg, Du|) da
< c(data(Q), o) (}%)H / U(z, |Dul)dr,  (3.4.26)

where we have used the dependence of R,,. Finally, if 0 < p < R,, < R < 1,
then by (3.4.25) and (3.4.26), we see

/\Il(x,|Du|)dm <c (RL;)M / U(z, |Dul) da

B, Brp,

() () oo

R

— ¢(data(Q), o) (%)H / U(z,|Dul) dz.  (3.4.27)

Br

All in all, collecting the estimates obtained in (3.4.25)-(3.4.27), we arrive
at the validity of the Morrey type inequality (3.1.13). The proof is complete.

Now we consider a crucial outcome of Theorem 3.1.2, which plays a crucial
role for proving Theorem 3.1.1 afterwards.

Lemma 3.4.1. Under the assumptions of Lemma 3.3.3, let w, € WY (Bg)
be the solution to the problem defined in (3.3.22). Suppose that (3.1.11c) is
satisfied for wq(p) = p® and wy(p) = p® with some a, f € (0,1]. Then there

1,07
exists h € w. + W, BR(BR/g) being a local minimizer of the functional Fy
defined in (3.3.103) such that

][ (Ve (D) — Va(DR)? + alz) [Vir, (Du) — Vig, (Dh)[?

Brys
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+b(x3) Vi, (Du) — Vg, (DR)|?] dx

@ B8 S1
< c(w (R") + {Rmswaﬂ+R2<l+s<Hb>>} ) ][ U(z, [Dul)dr  (3.4.28)

Baor

for some constant ¢ = c(data($y)) and s; = si(data), respectively. More-
over, the energy estimate

][ , (IDh]) dz < ¢ ][ U(z, |Du|) do (3.4.29)

Brys Bagr

holds for some constant ¢ = ¢(n,v, L).

Proof. Essentially, the above lemma is a special case of Lemma 3.3.4 since
we consider a particular case that w,(p) = p® and wy(p) = p? for some
a, € (0,1). But our purpose here is to obtain an estimate such as (3.4.28)
with a different multiplier containing some power of R, which will be used
for proving Theorem 3.1.1. Therefore, we are able to apply Theorem 3.1.2.
In turn, for every 6 € (0,1) and open sunset 5 € €2, there exists a constant

¢ = c(data(€)), #) such that
[u]o.0.0, < c(data(), ). (3.4.30)

In particular, we choose 6 := (7 4 1)/2. Now we need to revisit the proof of
Lemma 3.3.3. Under the settings of the proof of Lemma 3.3.3, we turn our
attention to estimating the terms I, and I, introduced in (3.3.59)-(3.3.60).
Using (1.0.15), (3.3.26) and (3.3.6), we have

o _ -1 _ We — (wC)BR/2
I, <cRY |1+ |(¥5,) ][ Vs, (‘T dx
R/2
<c (Ra + R L%sc u} > < c(data(€))R*/?, (3.4.31)
2R

where we have used (3.4.30) with the choice of § := (1 ++)/2 and Bayg C Qo
with R < 1. In the same way, we show

I, < c(data(y))R%/2. (3.4.32)
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Inserting those estimates into (3.3.60), we see that

][ (Ao(Di), D) dr| < c(data(2))as(R) [ Dl s, o (34.33)

1/8

whenever ¢ € W,(Byg), where

¢5(R) 1= RFOF0Ty 4 RIS (3.4.34)

Note that the vector field Ay has been defined in (3.3.50). We consider a
function h € w, + Wol’%(Bl/g) satisfying (3.3.94)-(3.3.97) with the term
d(e, R) replaced by g3(R). Let h be the scaled back function of h in Bg/s as

r — Tg

h(z) := E(w., Brj2)Rh ( > for every x € Bps(xo).  (3.4.35)

Clearly, h € w. + WO1 ’\IIBR(BR/S) is a local minimizer of the functional Fj
defined in (3.3.103), which means that

fo(h) = / FO(Dh) dr < / FQ(Dh + Dgo) dr = fo(h + ip) (3.4.36)
Bprys Bprys

1,05
holds for every ¢ € W,  "F(Bgss). As we have shown in (3.3.9), we recall
(3.3.24) and (3.3.4) to see that

L 8"L
][ Wy, (Db dr < ][ Wy, (D) dr < ][\I/(x, \Duw,|) dz
Brys Brys Br
< ¢(n,v, L) ][ U(z, |Dw|)dx < ¢(n,v, L) ][ U(z,|Du|) dz,
Br Bar

(3.4.37)

which proves (3.3.106). We write the inequality (3.3.96) in view of G, H,, H,,

125



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

w,. and h in order to have

][ [V (Dwe) = Vo (Dh)* + a(wa) | Vi, (Dwe) — Vi, (Dh)J?

Bprys
> dx

+b(xp) |V, (Dwe) — Vig, (DR)|?] da
S T (e

Br/2

< (R f Wy, (|Duw.) da

Br/2

< cfgs(R)]* f VU (z,|Dul) dx (3.4.38)

Bgr/2

for some constant ¢ = c¢(data({2)), where we have applied Sobolev-Poincaré
inequality and (3.3.109). Combining this estimate together with (3.3.3) and
(3.3.23) alongside some elementary computations, we arrive at the desired
estimate (3.4.28). O

3.5 Proof of Theorem 3.1.1.

Finally, we are ready to prove Theorem 3.1.1. First applying Theorem 3.1.2
and a standard covering argument, we find that for every open subset 2y € 2
and any number k > 0, there exists a constant ¢ = c¢(data(), k) such that

][ U(x, |Dul) dr < cR7F, (3.5.1)

Bar

whenever Bor C () is a ball with R < 1. Now we fix an open subset 2 € (2
and a ball Bog = Bag(rg) C Qo with R < 1. Then applying Lemma 3.3.4
and Lemma 3.4.1,

][ ([Ve(Du) — Ve (DR + a(wa) Vi, (D) — Vi, (D)
Brys

+b(2) | Vi, (Du) — Vi, (DR)[?) da
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< c(R" + [q(R)]™) ][ U(z, |Dul) dz (3:5.2)
Bar
for some constant ¢ = c¢(data(£2y)) and s; = s;(data), where
RUFCE0) R<1+5><fiS<Hb>> if (3.1.10a) is assumed,

q(R) == R™0m) + R+ if (3.1.10b) is assumed,  (3.5.3)

o 8
R20+s(Ha)) 4~ R2(0+s(Hp) if (3.1.10c) is assumed,

in which -y is the Holder continuity exponent determined via Theorem 3.2.2
and ¢ is the higher integrability exponent coming from Theorem 3.2.5. We
denote by

i { ads; Bds; }
M U+ 0) (1 + s(H,) (T +0)(1+ s(Hy))
if (3.1.10a) is assumed,
min { 1y ansy Bysi
d = d(data()) := "1+ s(H,) 1+ s(Hy)
if (3.1.10b) is assumed,
min { a1 fsi }
Mo+ s(H,)) 201 + s(Hy))
if (3.1.10c) is assumed,

(3.5.4)

and z,, 1, € By are points such that a(z,) = inf a(x) and b(z;) = inf b(z).
r€BR r€EBR

Now choosing k = d/4 in (3.5.1), the inequality (3.5.2) can be written as

][ (]VG(Du) — Va(DR)|* + a(z4)| Vi, (Du) — Vi, (DR)|?
Br/s
+b(x) | Vi, (Du) — Vi, (Dh)[?) da
< cR3A (3.5.5)

for some constant ¢ = ¢(data(£2y)), where we again recall that the function
h has been defined via Lemma 3.3.4 and Lemma 3.4.1. Recalling, (3.3.106)
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and (3.4.29), we have the energy estimate

][ Vg (|Dh])dz < c ][ U(x, |Dul) dz (3.5.6)

Brys Bag

with a constant ¢ = ¢(n, v, L). Now using repeatedly (2.1.10), we have

][ V. (|Du — Dhl) dx

Brys

B 1 |Du— Dh| 3 1
< 2 2
\c][ ([q/BR(|Du|+|Dh|)} 1Dl T 1DA] [V, (|Du| + |Dh|)]* dx

Bprys

1
2

Du — Dh?
| Du .

|Dul + | Dh])?

<e ][ V5, ((Dul + D)

Br/s

2

« ][ ¥, (|Dul + |Dhl) dx

Br/s

2
(2.1.10),(3.5.5) (3.5.6),(3.5.1)
< cRMB ][\I!BR(|Du]+|Dh\)dx < cRYM
Br/s

(3.5.7)

with ¢ = ¢(data(€)), where d has been introduced in (3.5.3). Since h is a
minimizer of functional Fy defined in (3.3.103), and this functional satisfies
the growth and ellipticity conditions (3.1.2), , with a(z) = a(z,) and b(z) =
b(xp) , we are able to apply the theory in [111], which provides the gradient
Holder regularity with the estimates

F s (00— D)) s < e (52)" F v, (D0l da

B, Brys

(3.5.6) P\ B
< — 0.
< c<R> ][\Il(x,|Du|)dx, (3.5.8)

Bar
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whenever 0 < p < R/8, where the constants ¢, 51 depend only on n, s(G),
s(H,), s(Hy), v, L, but are independent of the values a(x,) and b(z;). There-
fore, for every 0 < p < R/8, we have

][G(]Du — (Du)p,|) d

By

c][ G(IDh — (Dh)g,|) de + c][ G(|Du — Dh|) dz

B, Bp
(358)  /pyB
< C(E) ][ U(z, |[Du|)dr+c | — ][ G(|Du — Dhl) dx
Bog Brys
(3.5.1),(3.5.7) B R\"
80) (g) Rt e (;) R/t (3.5.9)

with ¢ = c¢(data({), k). Notice that k£ € (0,1) is still arbitrary and d has
been defined in (3.5.3) depending only on data(€). Taking k = df;/(32n)
and p = (R/8)%16%) in the last display, after some elementary manipula-
tions, we get

][G |Du — (Du)p,|) dz < cpoi (3.5.10)

for every p € (0,1/8), provided Bg, € . In particular, using Jensen’s
inequality and Lemma 2.1.1;, we have

a1 1
][‘Du — (Du)p,| dr < cp™ (1+567) (3.5.11)

for every p € (0,1/8) with Bg, € €. By the integral characterization of
Holder continuity due to Campanato and Meyers and a standard covering

1
argument alongside (3.5.11), Du € C2%(Q) for 6 = b 1+ . This

64n s(G

proves the local Holder continuity of Du. But the proof is not ﬁ(nighed yet,
since 6 should be independent of {2y as in the statement of Theorem 3.1.1. In
order to obtain the full completeness, we apply some standard perturbation
methods. Indeed, once we have that Du is locally bounded, we shall revisit the
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proof of Lemma 3.3.4 and Lemma 3.4.1. We also observe that the functional
defined in (3.3.103) satisfies the bounded slope condition (see for instance
[32]). Then there exists a constant ¢ = c(n, s(G), s(Ha), s(Hy), v, L, || Dul[ 00 5,,))
such that

HDhHLoo(BR) S 6

Since Du is locally bounded, following the proof of Lemma 3.3.1, Lemma
3.3.4 and Lemma 3.4.1, specially the estimate in (3.3.3) can be modified with
v = 1. Moreover, the estimates in (3.4.28) and (3.3.105) can be upgraded by

F (Va(Du) = Va(DW + ataa) Vi, (Du) ~ Vi, (D)
Brys
+b(2) | Ve, (Du) — Vi, (DR)?) da
< cRmn{meB) (3.5.12)
with some constant ¢ depending only on n, s(G), s(H,), s(Hy), v, L, HaHLw(QO) ,

10l Lo gy and ([ D] oo (g, - In particular, the last estimate via (3.5.7) implies
that

][G(\Du — Dh|) dx < cR™n{me8/4, (3.5.13)

Br

Therefore, (3.5.8) implies that

)ﬁ1 , (3.5.14)

v RS

][G(|Dh — (Dh)p,dr < c

where (; depends on n, s(G), s(H,), s(Hy), v, L while the constant ¢ depends
Only on n78(G)7 S(Ha)vs(Hb)aya L’ ||Du||L°°(QO)’ ||a||L°°(QO) and ||b||L°°(Qo)'
Combining the last two estimates similarly as shown in (3.5.9), we deduce
the gradient Holder continuity with the exponent depending only on n, s(G),
s(Hy), s(Hyp), v, L, a, 5 and p, which is the desired dependence as described
in the statement. The proof is finally complete.
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3.6 Orlicz double phase problems

Let us consider a general class of functionals with double phase growth, which
is essentially the case when b(-) = 0 in (1.0.2). The functionals we shall deal
with is of type

WH(Q) 3 v Fy(v,Q) = /Fd(x,v,Dv) dz, (3.6.1)
Q

where Fy: QxR XxR" — R is a Carathedédory function fulfilling the following
double-sided growth

vWa(z,|2]) < Fi(z,y, 2) < LW4(x, |2]), (3.6.2)

whenever z € (), y € R and z € R", in which here and in the rest of the
chapter we denote by

Uy(z,) = G(t) + a(2)Ha(t) (Yo €Q,t>0). (3.6.3)

As we introduced before we assume G, H, € N with indices s(G), s(H,) > 1
and a(-) € C¥*(Q) with w, : [0,00) — [0, 00) being a continuous and concave
function such that w,(0) = 0. We shall consider a local minimizer u of the
functional Fy in (3.6.1) under one of the assumptions (1.0.13), (1.0.14) and
(1.0.15) with wy(-) = 0. Since the double sided growth assumption (3.6.3)
is not enough for higher regularity properties of a local minimizer u of the
functional Fy, we shall assume that Fj is a continuous integrand belonging to
the space C?(R™\ {0}) with respect to z-variable and having the the following
structure assumptions:

(
|D.Fu(,y, 2)||2] + | D2 Fal, y, 2)||2* < L¥a(z, |2]),
U, (x, |z
V%KF < <Dngd<$,y,Z)§,£>,
|D2Fa(x1,y,2) = D.Fa(xa,y, 2)||2] < Lw(|xy — 22])[Wal21, |2]) + Va2, [2])]
+ L|Wa(xy, |2]) — Walxa, |2])],

| [Fala. . 2) — Falw, e, 2)| < Lo — val) Wl |2)).

N\

(3.6.4)

whenever x, 21,29 € Q, y, 11,92 € R, z € R"\ {0}, £ € R", where 0 <v < L
are fixed constants, and the function w is the same as defined in (3.1.3) or
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(3.1.4). The structure conditions in (3.6.4) are satisfied for instance by the
model functional

W(Q) 5 v s / Fula, 0)Uy(z, | Do|) da. (3.6.5)

where the continuous function f,(-) satisfies 0 < vy < f(+,-) < Lo for some
constants vy, Lo and fulfills the following inequality

|fa(w1,y1) — fa(x2, 2)| < Low(|z1 — 22| + [y1 — 92]),

whenever x1,x5 € R" and y1,y2 € R, in which w is the same as defined in
(3.1.3) or (3.1.4). Another model case is given by

W(Q) 5 v s / [Fo(z, v, Dv) + a(x) P, (.0, Do) dz,  (3.6.6)

where Fg(-) and Fpy,(-) have G—growth and H,—growth respectively, and
satisfy the following suitable structure assumptions that

(|D.Fo(x,y, 2)||2| + | D2, Fo(w,y, 2)l|2* < Lo®(]2),

|(||Z2|)|§|2 < (D= Fa(@,3,2)6,6).

|1 D.Fo(x1,y, 2) — D:Fo(2,y, 2)||2| < Low(|z1 — 22])®(]2]),
o (2,1, 2) = Fo(2, 2, 2)| < Low(|yr — 32])@(]2])

hold with ® € {G, H,} for some positive constants vy, Ly, where w is as in
(3.1.3) or (3.1.4). The reason we consider the double phase case independently
is that we have discussed the various regularity properties of the functional F
in (1.0.10) in the sense of multi-phase of the type defined in (3.1.1) together
with the structure assumptions (3.1.2), but this one is a special case of (3.6.1)
together with the structure assumptions (3.6.4) in the sense of the double
phase structures. Now we restate and prove Lemma 3.1.1 in the double phase
settings which will be applied later.

Lemma 3.6.1. Let F; : Q@ x R x R" — R be a function defined in (3.6.1)
which satisfies (3.6.2) and (3.6.4). There exist positive constants c¢i,co =
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c1, ca(n, s(G), s(Hy,),v) such that the following inequalities

Vo (z1) = Va(z2)|* + a(@)|Va, (21) = Vi, (22)
g 1 <Dde($7 Y, Zl) - Dde(xa Y, 22)7 21— 22> ) (367>

Va(z1) = Vo (22) P 4 a(2) Vi, (21) = Vi, (22)P+eo (D Fy(x,y, 21), 20 — 21)
< 02[Fd<m’ Y, ZQ) - Fd<5€’ Y, Zl)]
(3.6.8)

and

|Fa(1,y,2) — Fa(x2,y, 2)| < Lw(|v1 — 22]) [Wa(z1, |2]) + Wa(2, [2])]
+ Lla(zy) — a(x2)|Hy(]2]) (3.6.9)

hold true, whenever z,zy,z2 € R"\ {0}, z, 21,29 € Q and y € R.

Proof. The arguments of the proof for (3.6.7) and (3.6.8) are essentially the
same as done for Lemma 3.1.1. Only difference lies in the one for (3.6.9).
Since Fy(z,y,0) =0 for every z € Q and y € R, we have

|Ey(z1,y,2) — Faxe,y, 2)|

= |(Fd(‘r1aya 2) - Fd(xlv Y, 0)) - (Fd(x%ya 2) - Fd(x% Y O))|

1
= /(DZFd(xl,y,Qz),z> d@—/(Dde(xg,y,Gz),z> do
0 0

1
< /\DZFd(:Ul,y,Gz) — D, Fy(x2,y,0z)| |2|d0
0

< Lw([zy = @) [Walwy, |2]) + Walws, [2))] + Lla(ey) — alza)[Ha(]2)),

where the last inequality of the last display is implied by (3.6.4),. This proves
(3.6.9). 0

In order to simplify the notations in the present section, we use the set of
parameters for a minimizer u of the functional F; depending on which one
of the assumptions (1.0.13)-(1.0.15) under wy(-) = 0 comes into play as the
data in this section.
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(

[0, 5(6), 5(HL). 0, L. al e 0. [0 DD

el 1) }

if (1.0.13) is considered under wy(+)
data, = {n Moy 5(G), s(Ha), v, Ly |l gy » @
if (1.0.14) is considered under wy(+)
{nu )\37 5(G>7 S(HCL)? v, L7 HaHCwa(Q) , W
if (1.0.15) is considered under wy(-)

~ I
< o

=
=
3
&
S

(@)

1}

Il
o

~—~
~—

[0 (1)}
0,

(3.6.10)

where i, A2, A3 are the same as defined in (1.0.13)-(1.0.15) and s(G), s(H,)
are indices of the functions G, H, in the sense of Definition 2.1.1, respectively.
With Qy € Q being a fixed open subset, we also denote by data,({2y) the
above set of parameters together with dist(2g, 02):

data,(Q2) = datay, dist(€, 092). (3.6.11)

Now we provide the main results in this section, which correspond to
Theorem 3.1.1 and Theorem 3.1.2.

Theorem 3.6.1 (Maximal regularity). Let u € W'Y4(Q) be a local mini-
mizer of the functional Fy defined in (3.6.1) under the assumptions (3.6.2),
(3.6.4) and (3.1.3) with wy(-) = 0. Suppose that w,(p) = p* for some o €
(0,1]. If one of the following assumptions

(1.0.13), (3.6.12a)
(1.0.14), (3.6.12b)
11
(1.0.15) with lim sErlpA (plv, ;) =0 (3.6.12¢)
p—0

is satisfied, then there exists 0 € (0,1) depending only onn, s(G), s(H,),v, L, «
and p such that Du € C?(Q).

loc

Theorem 3.6.2 (Morrey decay). Let u € WhY4(Q) be a local minimizer of
the functional Fy defined in (3.6.1), under the assumptions (3.6.2), (3.6.4)
and (3.1.4). Assume that wy(-) = 0 in what follows. If one of the following
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assumptions
((1.0.13)  with limsup A (p,G™(p™)) =0, (3.6.13a)
p—0+t
1
(1.0.14)  with limsup A <p, —) =0 (3.6.13D)
p—0t+ P
1
(1.0.15) with limsup A <p117,—> — 0, (3.6.13¢)
p—0t P
(1.0.13)  with w.(p) = p* for some « € (0,1], (3.6.13d)
[ (1.0.14)  with wq(p) = p* for some « € (0,1] (3.6.13e)
is satisfied, then
ue CY Q)  for every 6 € (0,1). (3.6.14)

Moreover, for every o € (0,n), there ezists a positive constant ¢ = c(datay($), o)
such that the decay estimate

/\Ild(a:,]Du\)da: < c(%)n_g/\yd(w,\l)ul)daz (3.6.15)

B, Br
holds for every concentric balls B, C Br C 2y € Q with R < 1.

The above theorems completely cover the main results of [22], where the
special case that G(t) = t*, H,(t) = t? and w,(p) = p* with some constants
g = p>1and a € (0,1] is considered. Also the results of [21] can be
considered for a general class of functionals not only for the model functional
in (1.0.4). Let us now briefly overview our arguments employed in proving
the above theorems comparing with the ones used in [21, 22]. We do not
distinguish between the G-phase, where an inequality of the type a(-) <
Muw,(R) is satisfied, and (G, H,)-phase, where a complementary inequality
a() = Muw,(R) holds in a certain ball Br under consideration for some
suitable large constant M, which has a drawback to deal with the multi-phase
type problems and even double phase type problems that we consider. Instead
we consider the function [W4]p () defined in (3.6.29) for a ball Bg C Q2
under the investigation to obtain various estimates, and the advantage of
considering this function is that [Wy]; € N with an index s(V,) = s(G) +
s(H,) by Remark 2.1.2, which is independent of the considered ball Bg. Also

135



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

the approach introduced in this chapter may open a gate to study parabolic
double phase equations of type

—div (G’(|Du|)m+a(x t)H, (|Du D|D |> 0,

which would be one of attracting topics for the regularity theory in the fu-
ture, we refer some recent results on this topic [35, 68]. Essentially, the idea
of the proofs of Theorem 3.6.2 and Theorem 3.6.1 is based on the arguments
previously used for proving Theorem 3.1.2 and Theorem 3.1.1, but the func-
tional Fy in (3.6.1) is much more general than the functional F in (1.0.10) for
the consideration under the double phase settings. In this regard, we need to
take care of some points in more detail depending on the structure assump-
tions (3.6.4), specially Lemma 3.6.3 below. Since u € W¥4(Q) is a local
L/v-minimizer of the functional P defined in (1.0.1) with b(-) = 0 if u is a
minimizer of the functional F, in (3.6.1), we are able to rewrite the results
together with their proofs under the double phase settings up to the end of
Section 3.2. Starting by Section 3.3, we shall investigate in a different way.
In what follows let B = Bgr(xo) be a ball such that Bog C Qy € €,
where () is some fixed open subset of 2. We define a functional given by

W (Bag) 3 v s Fap, (v) = / Fu(, (Wp,, Do)de  (3.6.16)

Bor

with u being a local minimizer of the functional F; defined in (3.6.1). Now we
consider a function w € u 4+ Wy'"*(Byg) being the solution to the following
variational Dirichlet problem:

(3.6.17)

w — min Fy g, (v)
v € u+ Wy (Bag).

As in Lemma 3.3.1 we shal consider the first comparison estimates in order
to remove u-dependence in the original functional F; defined in (3.6.1).

Lemma 3.6.2. Let w € WY (Byg) be the solution to the variational prob-
lem (3.6.17) under the assumptions (3.6.2), (3.6.4) and (3.1.4). Let the co-

efficient function a(-) € C**(Q) for w, being non-negative, continuous and
concave function vanishing at the origin. Assume that one of the assumptions
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(1.0.13), (1.0.14) and (1.0.15) under wy(-) = 0 is satisfied. Then there exists
a constant ¢ = c(datay()) such that

][ (IVa(Du) = Va(Dw)? + a(x)|Vy, (Du) = Vi, (Dw)[?) dzx
Bsyr
< aw(R7) ][ U,(z,|Dul) dx (3.6.18)
Bar
holds, where v = vy(datay(Q0)) is the Holder exponent determined via The-

orem 3.2.2 in the double phase settings. Moreover, the following estimates
holds true:

L
][ Uy(z, |Dw|) de < — ][ Uy(z, |Dul) dz, (3.6.19)
v
Bar Bar
”wHLOO(BQR) g HUHL"O(BQR)’ (3620)
oscw < 0SCu (3.6.21)
Bayr Bar
and
u—w 1
][ U, (x, 7 D dzx < c[w(R")]2 ][ U,(z,|Dul) dx (3.6.22)
2R 2R

for some constant ¢ = c(datay(2)). Moreover, there exist a positive higher
integrability exponent dg = do(datay) with 69 < §, where 6 has been deter-
mined via Theorem 3.2.5 under the double phase settings, and a constant
¢ = c¢(datay) satisfying the following reverse Hélder inequalities:

7%
][ Wz, |Dw)| o d| < ][ Uy(z, D)) da. (3.6.23)

Br/o Br

Here, in the case that (1.0.15) is considered, v appearing in (3.6.18) and
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(3.6.22) is the same as in the assumption (1.0.15).

Proof. First of all the meaning of data; and datay(€)y) has been defined
n (3.6.10) and (3.6.11), respectively. The proofs for (3.6.19)-(3.6.22) can be
done by arguing similarly as in the proof Lemma 3.3.1 together with Lemma
3.6.1. Since w is a L/v-minimizer of the functional F, p,, defined in (3.6.16),
we are able to apply Lemma 3.2.1 under the double phase settings. In turn,
it gives us that

][ Uy(x, |Dw|) dx < c][ Uy (:E,

Br/2 Br

w— (w)p

n ) dx (3.6.24)

holds with ¢ = ¢(n, s(G), s(H,), L,v). Then applying Theorem 2.4.1, there
exists 0 = 0(n, s(G), s(H,)) € (0, ) such that

][ 4 (2, |Dw|) dx < ckyp ][[\I/d(x,|Dw|)]9dx (3.6.25)

Br/2 R

holds with some constant ¢ = ¢(n, s(G), s(H,), L, v,w,(1)), where

1+/\1[ wa+/\1 (B/ |Dw|

3=

if (1.0.13) with wy(+) = (3.6.26a)
Rop = § 1+ Aolalu, + Asofalu, ||w||L°°(BR)
if (1.0.14) with wy(-) = 0, (3.6.26b)

ﬁ
1+ A3[a)w, + Aslalw, [R_7 osc w]

Lif (1.0.15) with wy(-) = 0. (3.6.26¢)

Furthermore, taking into account (3.6.19)-(3.6.22) in the last display, we
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conclude that

][ Uy(z, | Dw|)dx < ¢ ][[\Pd (z,|Dwl|)]’ dx (3.6.27)

Br/2 R

holds for some constants 0 = 0(n, s(G), s(H,)) € (0,1) and ¢ = ¢(data,). The
last display follows (3.6.23) by applying a variant of Gehring’s lemma. [

At this stage, we do not need to consider Lemma 3.3.2 because we shall
freeze x-variable in the non-linearity at once. For this, let us consider the
excess functional given by

Ea(v, B,) = ([Wdlp, ) (Bf Walp,, (

for any function v € Ll(Bzr) and ball By, C €2, where now and in the rest of
this section for every open subset B C €2, we shall denote by

v—(v)B,
2r

) dx (3.6.28)

[Ul5 (1) == G(t) + inf a(z)Ha(t) (¥t > 0), (3.6.2)

z€eB

and ([\I/d]l;)_l is the inverse function of [¥4],;. By convexity of the function
[W4] 5, and Lemma 2.1.1, there is a constant ¢ = ¢(s(G) + s(H,)) such that

B, B) < (W5,) (Bf i,

holds for every vy € R. Now we consider the estimates corresponding to the
outcome of Lemma 3.3.3 under our double phase settings.

UV — Vg
2r

) dx (3.6.30)

Lemma 3.6.3. Let u € WhY4(Q) be a local minimizer of the functional
Fu defined in (3.6.1) under the assumptions (3.6.2), (3.6.4) and (3.1.4). Let
w € WHY(Byg) be the solution to the variational problem (3.6.17). Suppose
wy(-) = 0 in what follows. If one of the assumptions (3.6.13a)-(3.6.13¢) is
satisfied, then for every e* € (0,1), there exists a positive radius

R* = R*(datay(), ") (3.6.31)
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such that

f o ==

) dx
B:r

w — (w
<ec (1 + T—(n+s(\11d)+1)€*) ][ [\Pd];R <‘ (R)BR/2

) dr  (3.6.32)

Br/2
for some constant ¢ = ¢ (datay(2)), whenever T € (0,1/16) and R < R*.

Proof. Again note that the meaning of data, and data,({2) already has
been introduced in (3.6.10)-(3.6.11). We can always assume Eq(w, Bgr/s) > 0,
otherwise there is nothing to prove in (3.6.32). For the simplicity, we shall
write

Ey(R) := Ey(w, Brys), (3.6.33)

where the notion E; has been defined in (3.6.28). The proof falls in several
steps, similarly as we have done in the proof of Lemma 3.3.3. For the sake of
completeness, we provide the proof in a full detail.

Step 1: Initial information on w. Applying Lemma 3.2.2 under the

double phase settings to Br/, with k = (w)g,,, we have

][ U, (z, |Dw|) de < ¢ ][ M ('%

Bprya Brya

) dz (3.6.34)

for some constant ¢ = ¢(datay). Moreover, it follows from Lemma 3.6.2 that
there exists a higher integrability exponent ¢y = do(datay) such that

=
][ [y, | Dw|)] ™ do <c ][ U,(z, |Dw|) dz (3.6.35)

Br/s Brya

for a constant ¢ = c(datay).
Step 2: Scaled functions. We consider scaled functions of w(-) and a(-)
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in the ball B; by setting

(3.6.36a)

Ha(Ed(R))

(x) := a(xo + Rx) [\de];R (EAR)

(3.6.36b)

Ql

for every x € By. Now we introduce the control function and energy density
associated to our scaling introduced above in (3.6.36a)-(3.6.36b) as

Wz, |z|) = G(|2]) + a(x)H,(|2]), (3.6.37a)
— L Fd<l’0+Rl’, (U)BQR;Ed(R)Z)
Fd(x, Z) = —
[Wa] g, (Ea(R))
and  Ay(x,2) = D,Fy(x,2) (3.6.37Dh)

for every x € By and z € R", where to the end of the proof of this lemma,
we always shall understand by

Gty CUEGRD)

and  H,(t) == Hu(E(R)Y)

(Val s, (Ea(R)) H, (Ea(R)) (3.6.38)

for every t > 0. By elementary computations, we can observe that G, H, € N
with indices s(G), s(H,), respectively, and also that

G(1)<1 and H,(1)=1. (3.6.39)

Clearly, the function w minimizes the following functional

WY (By) 3 v / Fy(x, Dv) dz, (3.6.40)
B1

where the functions W,(-) and Fy(-) have been defined in (3.6.37a) and
(3.6.37b), respectively. The Euler-Lagrange equation arising from the func-
tional in (3.6.40) can be written as

][ (Ay(z, Dw), Do) dz = ][ (D.Fy(z,Dw), Dy) dx =0 (3.6.41)

B1 B
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for every ¢ € Wol’@d(Bl). By the assumptions (3.6.2) and (3.6.4) via elemen-
tary computations, we have the following structure conditions in the scaled
settings:

(V04(x, |2]) < Fa(z,2) < LWa(z, |2]), (3.6.42a)

|Ag(z, 2)||2| + | D Ag(, 2)||2]* < LUy(, |2]), (3.6.42b)
U4z, |2 -

V%Iél2 < (D A4z, 2)€,€), (3.6.42¢)

‘fld(:cl, 2) — Ag(zo, Z)| |2
< Lw(Rlzy — @) [Walwy, |2]) + Va2, |2])] B
+ Lla(z1) — a(w2)|Ha(|2]) (3.6.42d)

\

for every x,x1,x9 € By and z € R"\ {0}.
Step 3: Freezing. Now we shall consider frozen functional and vector
field associated to Fy(-) and Ay(-) defined in (3.6.37b). Let Z, € B; such that

a(z,) = inlg a(x). Then we denote by
TED1

Fo(2) i= Fy(Za, 2), Ao(2) := D.Fy(Z,,2), (3.6.43)
and
Wo(t) == G(t) + a(x,) Hy () (3.6.44)

for every x € By, z € R" and t > 0. Here we single out that here is a difference
between Step 3 of the proof for Lemma 3.3.3 and our present situation. By
the very definition in (3.6.37a) and (3.6.38), one can check

To(1) = 1. (3.6.45)

In our newly scaled environment, let us now consider the functional

Wl’qlo (Bl/g) D0V / Fo(DU) dx. (3646)

Byys

We observe that the newly defined integrand Fy(-) and vector field Ay(-)
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satisfy the growth and ellipticity conditions as

uiifo(|z|) < Fo(z)_< Ly(|z]), i (3.6.47a)
[ Ao(2)[]2] + | D2 Ao (2)]]2]* < LWo(|z]), (3.6.47b)
e < (b.Ava1e ) (3.6.470

for every z € R"\ {0} and ¢ € R". Therefore, the energy and higher in-
tegralibility estimates in (3.6.34) and (3.6.35) can be seen in the view of w
as

B
][ U y(z, |Dwl|) dx + f [Uy(z, | Dw|)] 00 da < c(datay). (3.6.48)

B1/4 Bl/S

Step 4: Harmonic type approximation. Let ¢ € I/Vgl’<><> (Bl/g) be any
fixed function. Using (3.6.41), we see

Iy := ][ (Ao(Dw), D) dx| = ][ (Ag(Dw) — Ay(z, D), D) da

1/8 1/8
< f 1A0(Dw) = Aa(w, Do) d Dl ) = T 1DFl
By s

(3.6.49)

Now we estimate [; in the last display using (3.6.42d). In turn, we have

. ][ (@d<xa,|Dw|>+@d<x,|Dw|>) "

| Dw| | Dw|
By s
Duw|)
—I—L][|a Ta)| \(l’?w\’ dx
Byys
U y(z,, | Do
< 2Lw(R) ][ %db@
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H,(|Dw|)
2L(1
+ + w( ][ |a(z To)| ——— Do dx
By /s
=: 2Lw(R) 111 +2L(1 + w(R)) 1. (3.6.50)

Now we estimate the terms appearing in the last display. Recalling (3.6.44)
and (3.6.45) together with (2.1.7), we find

= — _s(¥g) _ 1
Ihn<c ][ Uo(|Dw|) dz < ¢ [To(1)] et ][ [Vo(|Dwl)] ) da
Buss By /s
_ 1 - a(wy)
+ ¢ [Wo(1)] 0 ][ [Wo(| D)) 000 da
Biys
1 _s(Tg)
1+s(¥q) TFs(¥y)
<ol f wgpapar| el f wipa)a
B1/s B /s
< c(datay), (3.6.51)

where we have applied the Holder’s inequality together with (3.6.48) and the
fact that Uy € N with an index s(¥,) = s(G) + s(H,) by Remark 2.1.2.
Next we shall deal with estimating the second term I3 in (3.6.50). In turn,
using (2.1.7) and (3.6.39), we have

Ly <e ][ la(x) — a(z,)] <[Ha(\Dw\)]m iy (‘Dw‘)]qéf?ll) da

By /s
1
s(Hqg)+1
S(Ha)
H, 1 —
<cla-a@)i5, | £ a@(Da)
Bi1/s
s(Ha)
s(Hq)+1
17 —
+ella - a@) T | f e m(Da) ds
B1/s

s(Ha)

). e

1
I+ lla — )

c(datay) (||a —a(z,)
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where we have used also Holder’s inequality and the fact that a(z,) < a(x)
for every x € B;. Inserting those estimates coming from the last two displays

into (3.6.50) and then (3.6.49), we find
IQ < c(datad(QO))

s(Ha)
x |w(R) + (1 +w(R)) <||a — a(xa)n;if“gjs +lla = a(za)l; <5 )}
6.53)

Now we shall estimate the term ||a — d(ja)HLOO(Bl/B) depending on which

one of the assumptions (3.6.13a)-(3.6.13e) comes into play. Recalling the
definition of a(-) in (3.6.36b) and the excess functional in (3.6.33), we have

H,(E4(R)) .
(Wal g, (Ea(R))

I o= 1 = a(E0) | (s, ) < walR) (3.6.54)

Case 1: Assumption (3.6.13a) is in force. It follows from the assump-
tion (3.6.13a), that for any ¢ € (0,1) there exists y; > 0 depending on ¢
such that

Ap, G (p™")) <e forevery pe (0,m). (3.6.55)

Then using the last display, (1.0.13) and the fact that ([\Ifd]gR)_l (t) < GH1t)
for every t > 0, I, in (3.6.54) can be estimated as

(Hoo G7Y) ([Walp, (Ea(R)))
(Walp, (Ea(R))

I, < cwy(R)

1 1
S ol R)e Hwa([[wd];R (Eu(R)] ) ol (”wa <m>>
(3.6.56)

with ¢ = ¢([al,,, A1). Using (2.1.2) and the energy estimate (3.6.19), we see

) i

<

1 - . - w—(w)p,,
Wa (H\I’dh—?R (Ed(R))}_%> wa(R) + wa(R) / [\Ifd]BR ('T/

Br/2
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c c c(datay)
< ot ”a<R>B/ Wy o, |Dul) dr < S
(3.6.57)

Combining the last two displays, we conclude

I, <c (e + wa(R) (1 + %(1”1))) (3.6.58)

with some constant ¢ = ¢(datay). Therefore, inserting the estimates in the
last two displays into (3.6.53) and recalling (3.6.49), we have

][ (Ao(Dw), D) da| < c(datan) (e, B) | D¢l s, ). (3:659)

1/8

where

PUe. B) = wlR) + (14 () [z () (14— )] T

F ) s+t (14— ) T (ae00)

Case 2: Assumption (3.6.13b) is in force. From the assumption (3.6.13b),
it holds that for every e € (0, 1) there exists po > 0 depending on € such that

1
A (,0, —) <e forevery pe (0,u2). (3.6.61)
p

Then by the very definition of [Wy], in (3.6.29) together with (3.6.61) and
(1.0.14) under wy, = 0, we have

Ha<Ed(R>>
I, < cwa(R)m
< cwn(R)e (1 + Edl( R)]_1>> + cwa(R) (1 +— (lm))  (3.6.62)
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Again using (2.1.1) together with taking into account (3.6.20), we see

1 1 c(datay)
< < : (3.6.63)
wo (BRI~ o, (qpl=) — “e®)
”w”LOO(BR)
Combining the last two displays, we find
1
I, <c <€ + wa(R) (1 + - 7 )>> (3.6.64)
a\M2

with some constant ¢ = ¢(datay). Then, plugging the estimates in the last
two displays into (3.6.53) and recalling (3.6.49), we have

][ (A(Dw), Dp) da| < cldatan) Po(e, B) | Dl s, ). (3:6.65)

where )
Py(g,R) == w(R) + (1 + w(R)) [5 + wa(R) (1 n ﬁ)] S

(Ha)

4 (1+w(R)) [e + wa(R) (1 + ﬁ)} o (3.6.66)

Case 3: Assumption (3.6.13c) is in force. The assumption (3.6.13c),
implies that for any € € (0,1), there exists 3 > 0 depending on ¢ such that

11
A (plw, —) <e forevery pe(0,pus). (3.6.67)
p

This one together with using (3.6.54) and (1.0.15) under wy(-) = 0 implies

Ha(Ed<R))

I, < cwa(R)m
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1 1
<cwa(R)e | 1+ — +cwo(R) [ 1+ —F—~
Wa <[Ed(R)] 1_”) We (,ué”)
(3.6.68)
Now using (3.6.21) and (1.0.15), we have
1 1 dat
< <X ; ];d). (3.6.69)
Waq ([Ed(R)] 17"’) W, <|:B2g } _W) *
Combining the last two displays, we find
1
I,<cledtw,R) |1+ (3.6.70)

for some constant ¢ = c¢(datay). Using the estimate (3.6.70) in (3.6.53), we
conclude

][ (Ao(Di), D) da| < c(data))Po(e, B) | Dgll s, . (3:6.71)

1/8

where

(3.6.72)
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Case 4. Assumption (3.6.13d) is in force. Now we take the advantage
that w,(+) is the power function. Recalling I, denoted in (3.6.54), we see that

(Ha o G7") ([Wa], (Ea(R)))
[Val g, (Ba(R))

<cRY |1+ ][ (Walg, (‘—w - (Z)BR/z

I, <cR”

3R

)

Bry2

3R

<CR e /[xpd]gRqu\) dx
Br/2
W(I150)
< cR® + cRTH / (W], ((Dw])] "™ de
Br/2

ad
< c(datag(Q)) R+, (3.6.73)

where we have used the higher integrability estimates (3.2.62) of Theorem
3.2.5 under the double phase settings. Using estimates from the last display
in (3.6.53) and recalling R < 1, we see

][ (Ao(Dw), Dy) dz| < c(datas(Q0))Qi(R) |1Doll o, ) (3.6.74)

1/8

where
ad
Q1(R) = w(R) + (1 + w(R)) RTF ) (3.6.75)

Case 5: Assumption (3.6.13e) is in force. Using the assumption
(1.0.14) and (3.6.21), I, in (3.6.54) can be estimated as

o Ha(Ea(R))

lo < B G B(R))

149



CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

«

<or® 14 (W) | f (i, (\%)d
o+ g < iy som

where we have also used (3.2.33) and ~ is the Hélder continuity exponent
coming from Theorem 3.2.2 under the double phase settings. Inserting the
estimate from the last display into (3.6.53) and recalling R < 1, we see

F (AuD0), D) de| < cldatan )R |Dplym sy (G67T)

1/8

where
Q2(R) := w(R) + (1 + w(R)) R (3.6.78)

Collecting the estimates obtained in (3.6.59), (3.6.65),(3.6.71), (3.6.74)
and (3.6.77), we conclude with

F (Au(Dw), D) do| < (e, R) 1Dl (3.6.79)

1/8
for some constant ¢, = ¢, (datay(Q)) for every p € Wy'™(B,g), where

(e, R)
(e, R)
(e, R)
Q1(R)
Q2(R)
in which P, P, P3, Q1 and )y have been defined in (3.6.60), (3.6.66),
(3.6.72), (3.6.75) and (3.6.78), respectively. By (3.6.45), (3.6.47a)-(3.6.47c)
and (3.6.79), we are able to apply Lemma 2.5.1 with Ay(z) = Ag(2), Yo(t) =

Wo(t) with ap = a(z,) and by = 0. By Lemma 2.5.1, there exists h €

if (3.6.13a) is assumed,
if (3.6.13b) is assumed,

P1 )

PQ )

Py if (3.6.13c¢) is assumed, (3.6.80)
)
)

D(e,R) := if
if (3.6.13d) is assumed,
if (3.6.13e) is assumed,
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w + Wol’%(Bl/g) such that

][ (Ao(Dh), D) dz =0 for all 0 € Wy™(Byg),  (3.6.81)

Byys

][ Bo(|DR|) dz + ][ [Bo(| DA da < ¢ for some 6, < G, (3.6.82)

By Byys

][ (Ve (D) = Vo (Dh)]? +@(7,)|Va, (D) — Vi, (Dh)|*) do < ¢[D(e, R)]™
By s

(3.6.83)

and finally

][ (G (1o — ) + a(@)H, (|@ — B)) de < calDe, R)®  (3.6.84)

By s

with some constants ¢, cg = ¢, cy(datay(€y)) = 1 and sg, s1 = so, s1(datay) €
(0,1), but they are all independent of R. The rest of the proof is similar as
the argument after (3.3.98) of Lemma 3.3.3. O

Lemma 3.6.4. Under the assumptions of Lemma 3.6.3, let w € WY (Byp)
be the solution to the problem defined in (3.6.17). If one of the assumptions

1L[Wa)5
(3.6.13a)-(3.6.13e) is satisfied, then there exists h € w+W, Wil (Brys) being
a local minimizer of the functional defined by

W (Bgss) 3 v — Fo(v) == / Fo(Dv) dw, (3.6.85)

Bprys

where the integrand function is given by
Fo(z) == F (x4, (u) By, 2) (3.6.86)

for x, € Bg being a point such that a(z,) = a~ (Br), whenever z € R™, such
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that

][ [|VG(Du) — Ve (DR)|? + a(z,) |V, (Du) — VHa(Dh)ﬂ dx

Brys

<c(w(R) 4+ [D(e, R)]™) ][ U,(z, | Dul) dx (3.6.87)

Baog

for some constant ¢ = c¢(datay(y)), where s; and D(e, R) have been defined
in (3.6.83) and (3.6.80), respectively. Moreover, we have the energy estimate

][ (Wa]p,, (|Dh])dz < c ][ y(z, |Dul) dv (3.6.88)
BR/S Bor
for some constant ¢ = c¢(n,v, L).

Proof. We need to revisit the proof of Lemma 3.6.3, specially Step 3 and Step
4. We consider a function h € w + VI_/OI’%(BUS) satisfying (3.6.81)-(3.6.84).
Let h be the scaled back function of i in Bg/s as

T — X

h(z) :== E4(w, Brj2)Rh ( ) for every x € Bpss(xo).  (3.6.89)

1,[w
Clearly, h € w+ W, Wala (Bgrys) is a local minimizer of the functional F
defined in (3.6.85) which means that

Folh) = / Fo(Dh) dz < / Fo(Dh+ Do) dz < Folh+¢)  (3.6.90)

Brys Brys

I \P B
holds for every ¢ € Wol[ d]BR(BR/g). As shown in (3.3.9), we recall (3.6.19)
to discover that

F ey, (Db de < 5 f [, (Du)da

Bprys Brys

"L
8 ][qfd(:a \Duwl) dz < c(n,v, L) ][ Uz, [Dul)de,  (3.6.91)

Br Bar

<
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which proves (3.6.88). We write the inequality (3.6.83) in view of G, H,, w
and h in order to have

][ [[Ve(Du) — Va(DB)? + ale)|Vis, (Du) — Vg, (DR)P] da

Brys
) dx

w — (w)BR/2

<anenp £ w, (|2~

Bgr/2

< DG R ][ W5 (D) da

Br2

< [D(e, R)™ ][ U, (z, | Dul) dz (3.6.92)

Bpr/2

for some constant ¢ = c(datay(€))), where we have applied the Sobolev-
Poincaré inequality and (3.6.91). Combining this estimate together with
(3.6.18) via some elementary computations, we directly reach (3.6.87). [

We finally finish the present subsection with a crucial decay estimate on
u.

Lemma 3.6.5. Under the assumptions of Lemma 3.6.3, if one of the condi-
tions (3.6.13a)-(3.6.13e) is satisfied, then for every e, € (0,1), there exists a
positive radius R, with the dependence as

R, = R.(datay(Q), ) (3.6.93)

such that if R < R, then there exists a constant cg = c(dataq,()) such

that
U — (u) Brr

[ i, ([F=522 ) do <o (ot remmbz) [ witepulydo

B:gr Baor

(3.6.94)
holds for every T € (0,1/32).

Proof. For the proof, we apply Lemma 3.6.3 with ¢* € (0, 1) to be determined
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in a few lines, and we can use (3.6.32) provided
R < R* = R*(datay(Q), ")

is found via (3.6.31). For every 7 € (0,1/32) with some elementary manipu-
lations, we see that

- u— (u)s, - u— (w)g,
][[q}d]BR<TR)dxgcf[\lld]BR(—TR R)d(lf
TR Brr
_ [|lw—(w)g, (s _ (|lu—w
TR BR
w — (w
<e(rronenz £, (|T0e) b
R/2
+ e~ (mHe(Ta)+D) f Wa] 5, ( - ;ng dr
Br
<c (1 + T—(n+s(‘1’d)+1)€>k> ][ [\I}d]B (|Dw|) dr
Br
+ CT—(n+s(‘1/d)+1) ][ [\I’d]E;R ( “ ;w ‘) dx (3695)
Bpgr

with some constant ¢ = c(datay(€)y)), where throughout the last display we
repeatedly used (2.1.6) and (3.3.36). The last display and (3.6.22) along with
some elementary manipulations yield

froin (=t

TR
<c (T” 4 7 (Wa x4 T_(S(\I’d)ﬂ)[w(Rv)]%) / Yale, |Dul) do

Bar

U — (U>BTR
TR

for every 7 € (0,1/16) and some ¢ = ¢(datay(€))). Then we choose ¢* = ¢, /2
and R, < R" in such a way that [w(RZ)]% < &,/2. This choice gives us the
dependence as described in (3.6.93) and yields (3.6.94). O
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We have now discovered all the necessary tools. They are Lemma 3.6.2,
Lemma 3.6.3 and Lemma 3.6.5 in the double phase settings for proving The-
orem 3.6.1 and Theorem 3.6.2. Applying those lemmas with arguing in a
similar manner as in the proofs of Theorem 3.1.2 and Theorem 3.1.1, we
are able to prove Theorem 3.6.1 and Theorem 3.6.2. For the sake of the
completeness, we provide a sketch of the proofs.

Proof of Theorem 3.6.2. The proof of Theorem 3.6.2 can be done
similarly as for the proof of Theorem 3.1.2. We just combine Lemma 3.2.3
under the double phase settings and Lemma 3.6.5, as we already have done
in (3.4.1)-(3.4.27).

Lemma 3.6.6. Under the assumptions and notations of Lemma 3.6.3 and
Lemma 3.6.4, let w € W Y4(Bg) be the function defined in (3.6.17). Suppose
that (3.6.13c) is satisfied for w,(t) = t* with some o € (0,1]. Then there

exists a function h € w + WO’[ dH;R(BR/g) being a local minimizer of the
functional Fo defined in (3.6.85) such that

][ [|VG(Du) — Ve (DR)|? + a(z,) |V, (Du) — VHa(Dh)ﬂ dx

Brys

< (w(B) + [w(B) + (1 + w(r) REwmm ] ) ][\Ifd(x, \Du]) da

(3.6.96)

for some constant ¢ = c(datay()) and s; = s1(datay), respectively. More-
over, the energy estimate

][ (Walg, (|DR])dz < c 7[ U,(x,|Dul) dx (3.6.97)
Brys Bar
holds for some constant ¢ = ¢(n, v, L).

Proof. First we apply Theorem 3.6.2 in order to obtain that, for every 6 €
(0, 1) and every open subset 2y € €2, there exists a constant ¢ = ¢(datay(€), 0)
such that

[u]oﬁ;go < c(datad(Qo), 6)) (3698)
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In particular, we choose § = (v + 1)/2. By revisiting the proof of Lemma
3.6.3, we shall estimate the term I, introduced in (3.6.54). Using (1.0.15) and
(3.6.21), we have

1—v
w— (w
I <cR* | 14 | ([Wdlp,) 1 ][ (Wl 5, (’ (R)Bm ) dz
Br/2
<c (RO‘ + R [%Sg u] ﬂ) < c(datag(Q))R/?, (3.6.99)

where we have used (3.6.98) with the choice of § = (1 +v)/2 and Bayg C
with R < 1. Plugging this estimate in (3.6.53), we find

][ (Ao(Dw), Dy) dz| < c(datas(Q))Qs(R) | Dol s,y »  (3.6.100)

1/8

where
Qs(R) := w(R) + (1 + w(R)) R (3.6.101)

where the vector field Ay has been defined in (3.6.43). We consider a func-
tion h € w + Wy'"°(Bys) satisfying (3.6.81)-(3.6.84) with the term D(z, R)
replaced by Q3(R) defined above. Let h be the scaled back function of A in
Brys as

T — 2o

h(z) := Eq(w, Brj2)Rh ( ) for every x € Bpss(zo). (3.6.102)

11045
Clearly, h € w + W, Wals, (Brys) is a local minimizer of the functional
defined in (3.6.85) which means that

Folh) = / Fo(Dh) dz < /FO(DthDgo)d:cgfo(thgo) (3.6.103)

Brys Brys

L[Walg

holds for every ¢ € W, "(Bprys). Arguing similarly as in the proof of
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Lemma 3.6.2 together with recalling (3.6.19), we see

F ey, (Db de < 5 f [, (Du)da

Br/s Brys
"L
<° ][\Ifd(x, Du|) de
1%
Br
< c(n,v, L) ][ (x| Dul) dz. (3.6.104)

Bar

which proves (3.6.97). We write the inequality (3.6.83) in view of G, H,, w
and h in order to have

][ [|[Ve(Dw) = Ve (DR)|? + a(z,)| Ve, (Dw) — Vi, (DR)|?] da

< f ey, (|“=522]) i
Bry2
<R f Wi, (Du) do
Bry2
< [Qs(R)|™ ][ U, (z,|Du|) dx (3.6.105)

for some constant ¢ = c(datay(€2)), where we have applied the Sobolev-
Poincaré inequality and (3.6.91). Combining this estimate together with
(3.6.18) via some elementary computations implies (3.6.96). O

Proof of Theorem 3.6.1. It follows from Theorem 3.6.2 and a standard
covering argument that, for every open subset €2y € 2 and any number k£ > 0,
there exists a constant ¢ = c¢(datay(€), k) such that

][ Uy(z,|Dul) dz < cR™" (3.6.106)

Bor

for every Bop C Qo with R < 1. Now we fix an open subset 2y € €2 and
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a ball Bag = Bag(rg) C Qo with R < 1. Then applying Lemma 3.6.4 and
Lemma 3.6.6,

][ (|Va(Du) — Ve (Dh) P + alz4)| Ve, (Du) — Vi, (DR)[?) dx

Brys

< c(RM+[Q(R)™) ][ U,(x, |Dul) dzx (3.6.107)

Bor

for some constant ¢ = c¢(datay(€2)) and s; = s;(data,), where

ad
RF 4+ (1+ R“)R(lﬁo)(lﬂswa)) if (3.6.12a) is assumed,

Q(R) == R*+ (14 R*)RT(m) if (3.6.12b) is assumed,
R" + (1 + R") R0y if (3.6.12¢) is assumed,
(3.6.108)

in which 7 is the Holder continuity exponent determined via Theorem 3.2.2
under the double phase settings and dq is the higher integrability exponent
coming from Lemma 3.6.2. Denoting by

. a5y

if (3.6.12a) is assumed,

e

. (098]
d = d(datas(Q)) = { TSI S(Ha)} (3.6.109)
if (3.6.12b) is assumed,
. asy
min S1ply v
Ky S1H, 2(1 + S(Ha))
if (3.6.12c) is assumed,

\

and choosing k = d/4 in (3.6.106), the inequality (3.6.107) can be written as

][ (IVa(Du) — Va(Dh)|* + a(x4)| Vi, (Du) — Vig,(Dh)[?) dz < cR**

Brys

(3.6.110)

for some constant ¢ = ¢(datay(€2)), where we again recall that the function
h has been defined via Lemma 3.6.4 and Lemma 3.6.6. Recalling (3.6.88) and
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(3.6.97), we have the energy estimate

][ [(Walg, (IDA])dz < c ][ U,(x, |Dul) dzx (3.6.111)

Bprys Bor

with a constant ¢ = ¢(n, v, L). Once we arrive at this stage, the rest of the
proof can be done in the same way as argued in the proof of Theorem 3.1.1.
The proof is complete.

3.7 Regularity results under additional inte-
grability

We turn our attention to studying properties of a local (-minimizer of the
functional P defined in (1.0.1) under some additional Lebesgue integrability
assumption. We shall consider a local @-minimizer u of the functional P
under the following assumptions:

u e WH)NLY Q) (k>1)
M (k) :=sup A (pnj—ﬁ7 1) < o0, (3.7.1)
p

p>0

where the function A : (0, 00) x (0, 00) — (0, 00) has been defined in (1.0.12)
together with w,,w;, : [0,00) — [0,00) being continuous and concave func-
tions vanishing at the origin such that a(-) € C*“*(Q) and b(-) € C***(Q2). To
see the meaning of the assumption (3.7.1),, let us consider the standard dou-
ble phase that G(t) = t*, H,(t) = t? and w,(p) = p*, b(-) =0 for 1 <p < ¢
and « € (0,1]. Under these standard double phase settings, the assumption
(3.7.1), is equivalent to the following one:

ar

q<p+ (3.7.2)

n+k
A local Q-minimizer u € W'Y (Q) implies that u € W'?(Q). It is clearly
interesting point that p < n, otherwise we can prove u € L;5.(€2) by using

Morrey-Embedding properties for p > n and using a higher integrability for
p = n. Then, for 1 < p < n, applying Sobolev embedding properties, one
np

can see that u € L " (). Choosing x = ﬂ, the condition (3.7.2) is
n—p

loc
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equivalent to the following one
o
g<p+2L
n

which generates the same condition as (1.0.6a), as we have discussed in the

introduction part. Now if x > , then we would have

n—p

ap akK
g<p+—<p-+
n n+k

Y

which tells us the possible range of ¢ is larger than the one in (1.0.6a).
Considering a local ()-minima of the functional P under the assumption
(3.7.1) , we shall show that u € L{S.(€2). To do this, we start by proving a
Sobolev-Poincaré inequality under the assumption (3.7.1),.

Theorem 3.7.1. Let v € W"Y(Bg) N L"(Bg) for a ball Br C Q with

R < 1 under the assumption (3.7.1),. Then, for any d € [1, M),
n(n+kr) —k

there exist constants 0 = 0(n,s(G),s(H,),s(Hy),k,d) € (0,1) and ¢ =

c(n,s(G),s(H,), s(Hyp),wa(1),wy(1), k,d) such that the following Sobolev-Poincaré-

type inequality holds:

=

][ {\p (m v= W, )r dr| <l ][[\I/(x, D)% dz| , (3.7.3)
. R
Ny = 1+ ([alo, + [Blon) | M) + Ml / o|* da N (3.7.4)

Moreover, the above estimate (3.7.3) is still valid with v — (v)g,, replaced

by v if v e Wy (Bgr) N L(Bg).

Proof. Note that the above theorem covers [123, Theorem 3.1], which is a
special case when G(t) = P, H(t) = t1, w,(p) = p® and wy(-) = 0 for
some constants 1 < p < ¢ and a € (0,1]. Also our proof is much more
elementary comparing with the approach used there. Using the continuity
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of the coefficient functions a(-) and b(-) and arguing in the same way as in
(2.4.6), we find

+3(Bf g

wod1 + 6[D]y, 12 + 315. (3.7.5)

We now shall deal with estimating the terms I; with ¢ € 1,2,3 in (3.7.5)
using the additional a priori assumption u € L"(Bg) under (3.7.1),. In turn,
using (2.1.2) and the assumption (3.7.1),, we see

Za(( )>G< = o, ﬂ dx_l
N(E =N

ISH
Q-

v—(v)Bg

vf(U)BR
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v (U)BR

e (k)R ][|v — (0)5, | =

R

o ()]

for the constant ¢, = 2(1 + w,(1)). Using Hélder’s inequality with conjugate
(n +Kk Ntk
exponents

h
d ’n+/<;—d)’ We Have
i
d
(va ) )
1 nt+rx—d
) ntr (n+r)d (ntr)d

n+rk—d
— " )] dx
(ntr)d (T
Fr—d
(B |v| da:) (B][ Y= \WBe )] dx)

for some constant ¢ = ¢(n
similarly for Iy, we dlscover

). Combining the last two displays and arguing

I+ 1y <

cAi(K) (B][ [G
R
n+r—d
n+k B :::23 (n+r)d
+ ek /\v| dx f[G(%D] da:)

162

-

Br

) o)

1




CHAPTER 3. REGULARITY OF MINIMA OF ORLICZ PHASE
FUNCTIONALS

for some constant ¢ = ¢(n,w,(1),wy(1)). Now we apply Lemma 2.4.1 to & =

—d
G with dy = d and dy = ntr—d in order to have an exponent #; =
(n+k)d
61(n,s(G), k,d) € (0,1) such that
e 7
L+ I < e | Als) + Al /|U| iz ][[G(|Dv|)]91 da
R
(3.7.6)

holds for some constant ¢ = ¢(n, s(G), w,(1),ws(1), &, d). On the other hand,
since W € N with an index s(¥) = s(G) +s(H,) + s(Hp) by Remark 2.1.2,
we are able to apply Lemma 2.4.1 with & = ¥ for dy = d. In turn, there
exists 0y = 03(n, s(V),d) such that

I<e ][ w5, (1Du])]” de (3.7.7)

R

with some constant ¢ = c¢(n,s(¥),d). Taking into account the estimates
obtained in (3.7.6)-(3.7.7) into (3.7.5), recalling the very definition of W}

in (2.1.3) and setting 6 := max{6y,6:}, we arrive at (3.7.3). The proof is
finished. [l

Remark 3.7.1. We here remark that choosing d = 1 in a Sobolev-Poincaré

type inequality of Theorem 3.7.1, we see that there exists an exponent 6§ =
0(n,s(G),s(H,),s(Hyp), k) such that

][\1/ (m ) dr < chg ][[\p(;p, |Du|))? dz (3.7.8)

R R

=

v = (U)BR

holds for some constant ¢ = ¢(n, s(G), s(H,), s(Hp),wa(1),ws(1), k), where
Asp 1s the one same as in (3.7.4).

Remark 3.7.2. With v € W5 (Q) being a local Q-minimizer of the functional
P, we here point out that it is also possible to suppose a priori u € W‘I)(Q)
for some Young function ®. In this case, discovering a relevant assumption
like (3.7.1), would be an interesting point to find how it is connected to
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Embedding properties in Orlicz-Sobolev spaces [51, 52, 53] likewise we have
discussed above in Lebesgue settings. Moreover, proving various regularity
results under a new relevant condition may generate a different phenomenon
even for a Lavrentiev gap. We can also a priori assume that local ()-minima
belong to certain Campanato, BMO, VMO, or some other spaces. Under all
those a priori assumptions, it should be necessary to discover out the relevant
optimal conditions under which various regularity results are obtainable.

For a local ()-minimizer u of the functional P under the assumption
(3.7.1), the data of the problem is understood by the following set of param-
eters:

data; = {n, A\y(k), K, s(G), s(Ha), s(Hp), wa(1), wp(1), [[ull pr (o) - @} (3.7.9)

As usual, for any open subset 2y € €2, we denote by data;(£2y) the set of pa-
rameters defined above together with dist(€2g, 9€2). Now we focus on showing
local boundedness estimates of a local ()-minimizer u of the functional P in
(1.0.1) under the assumption (3.7.1).

Theorem 3.7.2. Let u € WY(Q) be a local Q-minimizer of the functional
P in (1.0.1) under the assumption (3.7.1). Then there ezists a constant ¢ =

c(data;) such that
> < c][ Y (x, ) dx
L*(Bg/2) B

H‘PBR ( (u — (u)Bg)x
(3.7.10)

R

(u— (u)Bg)+
R

C][\I/ (z,|Du|) dz  for a.e x1,22 € Bpys,

Br

~——
N

(3.7.11)

whenever Bg = Bgr(xo) C 2 is a ball with R < 1. In particular, u € LiS.(£2).

loc

Proof. The meaning of data; under the assumption (3.7.1), already has been
introduced in (3.7.9). As in the proof of Theorem 3.2.1, we consider the
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following scaled functions as:

o) e u(wo + Rz) - (u)BR7 a(z) == a(zo + Rz), b(x) = b(zo + Ra),

U(x,t) = G(t) +a(z)H(t) + b(z)H(t),
A(k,s) == Bs(0)n{u >k} and B(k,s):= B,(0)Nn{u <k} (3.7.12)

I~}

for every z € B1(0),t > 0, s € (0,1) and k € R. The remaining part of the
proof consists of 3 steps as in the proof of Theorem 3.2.1.

Step 1: Sobolev-Poincaré under the scaling in (3.7.12). In this step,
we prove that there exists a positive exponent 6 = 0(n, s(G), s(H,), s(Hyp), k) €
(0,1) such that

|

/\If(a:, ) dz < chs, /[‘If(x, DF)’ da (3.7.13)

B1 1

for some constant ¢ = ¢(n, s(G), s(H,), s(Hp),wa(1), ws(1), &), whenever f €
Wy¥ (By) N L*(By), where

1
n+k

Fap = 1+ ([, + [Py | M+ MR (B/ fI* d

Using the continuity properties of a(-) and b(-), we see

I::/\I/(x,|f|)dx

B1

< 2fau.n(R) / H,(|f]) de + 2b)yn(R) / Hy(|f1) dz + / Ty (1)) de

B1
= Q[G]wall + Q[b]wbjg —I— I3,

where

Uy, (t) :==G(t) + inf a(x)H,(t) + inf b(x)Hy(t) for every t > 0.

r€B] r€B1
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Now we estimate the terms I; for i € {1,2,3} similarly as in the proof of
Theorem 3.7.1. In turn, using the assumption (3.7.1), and (2.1.2), we have

" /Ha(lfl)G Y

<) ( o (1775)] ) 651 do
<) ( e | 6 a
<ML+ (1) [ GIS1) do 20 / 175G (1f]) d.

Arguing in the same way, we have

I < (k) (1 + wy(1) /Gm ) de + 2 (k /\f|"+~ (1)) d

By

Then the inequality (3.7.13) follows from the arguments used in the proof of
Theorem 3.7.1 and Lemma 2.4.1.

Step 2. Proof of (3.7.10). Since u — (u)p, is a local Q-minimizer of the
functional P in (1.0.1), using a Caccioppoli inequality of Lemma 3.2.1, one
can see that

/@@JD@—@HMMéc/@(%@:%#)dx (3.7.14)

By Bs

holds for some constant ¢ = ¢(s(G), s(H,), s(Hp), @), whenever 0 < ¢ < s < 1
and & € R. Let us now consider the concentric balls B, @ B, € B, with
1/2<p<s<landt:=(p+s)/2. Let n € C5°(B:) be a standard cut-off

function such that yp, <n < xp, and |Dn| < P . Now we apply
—p  s—p
inequality (3.7.13) from Step 1 above in order to have a positive exponent
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0 =0(n,s(G),s(H,),s(Hyp), k) such that

/ U(z, @ — k) de < /\I/(x, (i — k), dz

A(k,p) B

for some constant ¢ = ¢(n, s(G), s(H,), s(Hp), wa(1),ws(1), k), where

e
Rop = 14 ([alu, + [Bly) [ Aa(r) + Aa(R) R (B/ [n(a —k))]" da
By recalling the definition of @ in (3.7.12), we have
1 1
n+k n+k

Rsp < C 1—|—R<B][u(% dx <ec 1+(B/u”dx
R R

with a constant ¢ = ¢(n, \y(k), [a]w, + [0]w, ). Once we arrive at this stage the
rest of the proof can be proceed in the same way as in the proof of Theorem
3.2.1. O

Theorem 3.7.3. Let u € WHY(Q) be a local Q-minimizer of the func-
tional P defined in (1.0.1) under the coefficient functions a(-) € C**(Q2) and
b(-) € C*(Q) for wa,wy being non-negative concave functions vanishing at
the origin. If the assumption (3.7.1) is satisfied, then for for every open subset
Qo € Q, there exists a Holder continuity exponent v = v(data;()) € (0,1)
such that

[ull oo ) + (U000 < c(data;($20)) (3.7.15)
and the oscillation estimate

P\
< — .
%S,JCU\C(R) oBsRcu (3.7.16)
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holds for some ¢ = c(data;(§))) and all concentric balls B, € B € )y €
with R < 1.

Proof. First let us observe that, for every ¢t > 1, we have

wm>1+%ﬁﬁﬂ

: <1+ : wal(t) :
L+ wa(t) (tﬁ) Wa <tm> + wo(t)wa (tw)
1 |
<1+ <1+

This same inequality holds true also for wy. Therefore, for every t > 1, we
see that

) wult) 14 w, (tﬁn> w(t) 14wy <tFL)
A (t, ;) < A4(K) 1+wi(t) o (tﬁﬁ> * 1~|—wi(t) W (pf%)

< (1 ) =

where we have used the assumption (3.7.1),. On the other hand, recalling
that the functions w, and wy are increasing, we have

1 w1
A (t; ;) <A (t”“’",;) < M(k) < Ao

for every t € (0,1]. Recalling that u € L;.(€2) by Theorem 3.7.2 and taking
into account the last two displays, we are able to apply Theorem 3.2.2 in
order to have (3.7.15) and (3.7.16). O

Remark 3.7.3. As a consequence of the last two theorems like we have that
if w € WhY(Q) is a local Q-minimizer of the functional P under the as-
sumption (3.7.1), then u € Lpy (2) and (1.0.14) is satisfied. Therefore, the
results of Theorem 3.1.1, Theorem 3.1.2, Theorem 3.6.1 and Theorem 3.6.2
are still available under the assumption (3.7.1). Furthermore, the results of
the present section can be considered under multi-phase settings, as we have
pointed out in Remark 3.1.1.
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Chapter 4

Calderén-Zygmund theory for
Orlicz phase problems

4.1 Hypotheses and Main results

In this chapter we investigate the local Calderén-Zygmund type estimates
for distributional solutions to the equation of the divergence form

div A(z, Du) = div B(z, F) in Q (4.1.1)

for a bounded open subset 2 C R"™ with n > 2, where the vector field
A Q xR" — R" is continuous, differentiable with respect to the second
variable z € R™ \ {0}, and satisfies the following structural conditions with
fixed constants 0 < v < L < oo:

v
Az, )] + | D.Ax, 22| < LZELED

]
yYEND 1 D A, e )

|22

| A1, 2) = Aa, 2)[[2] < LW (21, [2]) = W(a, [2])],

(4.1.2)

whenever z € R" \ {0}, £ € R", z, 21,22 € Q. On the right-hand side of the
equation (4.1.1), we have that B : Q x R" — R" is a Caratheodory vector
field satisfying

|z||B(z, 2)| < LY(x,|z|) (z€Q,2z€R"). (4.1.3)
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In the structure assumptions (4.1.2), (4.1.3) and the rest of the chapter we
shall always use the notation ¥ is the same one as in (1.0.2) for G, H,, H, € N
in the sense of Definition 2.1.1 and the coefficient function initially 0 <
a(-),b(-) € L>(£). As a consequence of (4.1.2),, there exists a constant
c =c(n,s(G),s(H,),s(Hy), v, L) such that

IV (2, 21) — Vi (2, 20))* < e (A(w, 21) — A2, 2), 21 — 29) . (4.1.4)

for all z € Q and 21, z2 € R"\ {0}, where the vector field V4 has been defined
in (2.1.8).
A primary model in mind of the equation (4.1.1) is of the form

Du

div (8t\11(x, | Dul) Dul

):div (at\lf(x,]FD’—;) noQ (415

which is the Euler-Lagrange equation of the following functional

F
Wh(Q) 3 v P, Q) — / <8t\11(x, ]F])|—F’,Dv> dz, (4.1.6)
Q
where the Orlicz double phase functional P is given as in (1.0.1). The main
purpose of the present chapter is to discover and develop optimal conditions
on both nonlinearity A(z,z) and the coefficient functions a(-) and b(-), not
necessarily Holder continuous, under which for any distributional solution v €
WH¥(Q) to (1.0.29) the following local Calderén-Zygmund type implication

U(z, |F]) € Ligo(2) = ¥(z, |Dul) € L () (4.1.7)
holds for every T € N. Throughout the chapter, we shall always assume that
0<a() e C*(Q) and 0<b(-) € C () (4.1.8)

for some continuous and concave functions wg,wy : [0,00) — [0,00) with
wa(0) = wp(0) = 0. Then we shall consider a distributional solution u €
W¥(Q) to the equation (4.1.1) under one of the following main assumptions:

ue WhHY(Q),
A i=supA (p,G7 (p™")) < o0 (4.1.9)
p>0
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and

ue WhH(Q)NL>(Q),
1 4.1.1
Ao :=sup A (p, ;) < 00, ( 0)

p>0

where A : (0,00) x (0,00) — (0, 00) is the same map introduced in (1.0.12).
For the sake of convenience, we use a set of parameters for a distributional
solution u € W¥(Q) to (4.1.1), which is “basic data of the problem” as
follows:

(

{n, A s(G), s(Ho), v, L lall un gy - wa ),

19 (2, 1Dul)l xay » lell o g }

datas = | if (4.1.9) is assumed and b(-) = 0. (4.1.11a)
{m2a.5(G). s (Ha). v, L Nl gy a0): e
_ if (4.1.10) is assumed and b(-) = 0. (4.1.11b)

Here s(G), s(H,) and s(Hp) are indices of G,H, and H,, respectively, in
the sense of Definition 2.1.1, respectively, while A\; and Ay are as in (4.1.9)-
(4.1.10).

The first main results of this chapter is the local Calderén-Zygmund type
implication (4.1.7) for Orlicz double phase problems.

Theorem 4.1.1 ([13]). Suppose that V is given as in (1.0.2) with b(-) = 0,
G,H, € N in the sense of Definition 2.1.1 and 0 < a(-) € C**(Q) for
some continuous and concave function w, : [0,00) — [0, 00) with w,(0) = 0.
Let u € WHY(Q) be a distributional solution to (4.1.1) with the assumptions
(4.1.2) and (4.1.3). Suppose that any of the following assumptions is satisfied:

((4.1.9) with limsupA (p, G~ (p™")) =0, (4.1.12a)
p—0+
1
(4.1.10)  with limsup A (p, —) =0, (4.1.12b)
p—0t P
|(4.1.9)  with wa(p) = p® for some a € (0,1]. (4.1.12¢)
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Then there holds that

U(x, |F|) € LE (Q) = U(x, |Du|) € LL.(Q)

loc

for every T € N with an indezx s(T) > 1. (4.1.13)
Moreover, for every X € N with an index s(T) > 1 and for every open subset

Qo € Q, there exist a radius Ry > 0 and a constant ¢ > 0 which depend on
datag,(Q) and s(T) such that the following inequality

][ Y [W(z, | Du)] dz < T ][\If(x, \Dul) dz | + c][ Y [0 (z, | F|)] do

Bry2 R Br
(4.1.14)
holds for every ball Br C Qg with R < Ry, where
data, for (4.1.12a)
datag(Q) = datay for (4.1.12b)
datay, dist(Qg, 09), || T[V(z, |F|)]||L1(Ql) for (4.1.12c¢)
(4.1.15)

in which Qy = {x € Q : dist(x, Q) < 1/2dist(Qp, 0N)}.

Now consider the case b(-) Z 0 in (4.1.9). For the reason to apply Har-
monic type approximation, we consider the map A :  x R" — R" of the
form

Az, 2) == Ag(2) + a(z)An, (2) + b(z) An, (2), (4.1.16)

where the continuous vector fields Ag, Ap,, An, : R" — R" are of a class
CH(R™\ {0}) and satisfy the following structure assumptions with fixed con-
stants 0 < v < L:

A0(a)] + 1D:A0() | < L2ED, .
IJ%KP < (D2 A8(2)E,€) N

for every ® € {G, H,, Hy}, whenever z € R" \ {0}, £ € R". Clearly, the
vector field given by (4.1.16) satisfies the structure assumptions (4.1.2) with
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constants v, L in (4.1.17). Then we consider a distributional solution u €
WY (Q) of the equation

div (Ag(Du) + a(z)An, (Du) + b(z)Ag, (Du)) = div B(z, F) (4.1.18)

under any of assumptions (4.1.9) and (4.1.10), where B : @ x R" — R" is a
Caratheodory vector field satisfying (4.1.3). For the simplicity of writing, we
use a set of parameters for a distributional solution u € W¥(Q) to (4.1.18),
which is “basic data of the problem” in this chapter as follows:

{n A, $(G),s(Hy), s(Hy), v, L, ”chwa HbHC“b(Q)’

(
wal:) (), 19 (@, 1Dl Huum)}

if (4.1.9) is assumed. (4.1.19a)

{1 X2, 5(G), 5(Ha), s(Hy). v, Ly alln o 1Dl coneny

wal) (), e
if (4.1.10) is assumed. (4.1.19b)

data =

\
The second main result of the chapter reads as follows:

Theorem 4.1.2. Suppose that V is given as in (1.0.2) with G, Hy, H, € N
in the sense of Definition 2.1.1, 0 < a(-) € C**(Q2) and 0 < b(-) € C**(Q?)
for some continuous and concave function w,,w, : [0,00) — [0,00) with
wa(0) = wy(0) = 0. Let u € WHY(Q) be a distributional solution to (4.1.18)
with the assumptions (4.1.3) and (4.1.17). Suppose that any of the following
assumptions is satisfied:

((4.1.9) with limsupA (p,G™" (p™")) =0, (4.1.20a)
p—0t
1
(4.1.10) with limsup A (p, —) =0, (4.1.20b)
p—0t P
(4.1.9)  with wa(p) = p* and wy(p) = p°
L for some «, B € (0, 1]. (4.1.20¢)

Then there holds that
U(z, |F|) € L (Q) = ¥(z,|Dul) € Ly, ()
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for every T € N with an index s(T) > 1. (4.1.21)
Moreover, for every T € N with an index s(Y) > 1 and for every open subset

Qo € (2, there exist a radius Ry > 0 and a constant ¢ > 0 which depend on
datay(€y) and s(Y) such that the following inequality

][ Y [W(z, | Dul)] dz < T ][\y(x, \Dul) dz | + c][ T [W(x, | F|)] do
Br)2 R Br
(4.1.22)
holds for every ball B C Qo with R < Ry, where
data for (4.1.20a)
data, () = { data for (4.1.20b)

data, dist(Q, 0Q), [|T[¥(z, |F|)]| 12 for (4.1.20c)

(4.1.23)

(1)

in which Q1 := {z € Q : dist(x, Qo) < 1/2dist(p,00N)}.

Remark 4.1.1. We remark that the results of Theorem 4.1.2 can be restated
and proved for the equation exhibiting a finite number of phases with replac-
ing the function in (1.0.2) by

Un(z,t) =Gt)+ > ap(x)Hi(t), N>1, (4.1.24)

k=1

where G, H; € N in the sense of Definition 2.1.1 and 0 < ax(-) € C“*(Q)
with wy : [0, 00) — [0, 00) being a continuous and concave function vanishing
at the origin for every k € {1,..., N}. We also replace the function in (1.0.12)
by

N Wi Hkt
_ 3 _wxle) Hult)

for every p,t > 0. 4.1.25
Trup) G Y 4129

k=1

Under this setting, with the same spirit as in the chapter, we are able to prove
the results of Theorem 4.1.2 for a distributional solution « € WH¥~(Q) to
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the equation of type

div (Ag(DU) + Z ak(x)AHk(Du)) =divB(z,F) in Q, (4.1.26)

k=1

where the continuous vector fields Ag, Ay, : R" — R" are C*(R"\ {0}) and
satisfy the structure assumptions with fixed constants 0 < v < L:

40211+ 1D.As(2)1] < 12D, -
e < (.40(16.0) B

for every ® € {G, Hy, ..., Hy}, whenever z € R"\ {0}, £ € R". Note that the
coefficient functions in Theorem 4.1.2 along with (4.1.20c¢) are understood by
letting wy(p) = p™* with some «ay € (0, 1] for every k € {1,...,N}.

4.2 Homogeneous equations

Proposition 4.2.1 (Existence of weak solutions). Suppose that ¥ is given
as in (1.0.2) with G, H,, H, € N in the sense of Definition 2.1.1, 0 < a(-) €
C*(Q) and 0 < b(-) € C**(Q) for some continuous and concave function
Wa, wyp : [0,00) = [0, 00) with w,(0) = wy(0) = 0. Suppose that either (4.1.9),
or (4.1.10), s satisfied. Let

1,0 , ‘
wo € { W% (Bg) if  (4.1.9), is assumed, (4.2.1)

WhY(Bg) N L>(Bg) if (4.1.10), is assumed

a given ball Bg C ). Then there exists a unique weak solution to the Dirichlet
problem

(4.2.2)

—div A(z, Dw) =0 in Bg
w € wy + Wy (Bg),
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where the vector field A : Q@ xR™\ {0} — R" is same one satisfying (4.1.2), ,,
with energy estimates

][\IJ(x, |Dw|) dz < c][ U(z, |Dwyl) dx (4.2.3)
BR BR
and
Hw“LOO(BR) < ”w(JHLoo(BR) (4.2.4)

for some constant ¢ = c¢(n, s(V),v, L).

Proof. First let us consider the case of the condition (4.1.9), is in force.
Letting v := w — wy, we rewrite (4.2.2) as

(4.2.5)

—div A(z, Dv + Dwy) = 0 in Bpg
v e Wy (Bg).

By the structure assumptions (4.1.2),,, we observe that the operator 7" :

WOL\II(BR) — <W01’\II(BR)> given by

(T(0))(¢) = / (A(z, Dv + Duy), D) de

Br

is continuous monotone operator. Since I/VO1 (Bp) is a separable reflexive
Banach space with endowed norm |[D¢|| v p,), Where ¢ € Wy¥ (Bg) is any,
via Poincaré type inequality of Theorem 2.4.1, we are able to apply classical
monotonicity method in order to find v € Wy'¥ (Bg) such that T'(v)(p) = 0
holds true for every ¢ € VVO1 ’\I’(BR). As a consequence, w = v + wy is a weak
solution of (4.2.2). If there are weak solutions wy,w, € wy + Wy'" (Bg) of
(4.2.2), then via (4.1.4), we have

0= ][ (A(z, Dwy) — A(z, Dws), Dwy — Dws) dx
Br

> c|Vy(x, 21) — Vi (z, 22) |2 (4.2.6)

for some constant ¢ = ¢(n, s(¥), v, L). Thus, w; = w,.
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To see (4.2.3), we take ¢ := w — wy as a test function to the equation
(4.2.2) together with using the structure assumptions (4.1.17) and applying
Young’s inequality of Lemma 2.1.4. In turn, we have

y][\ll(a:, |Dw|) dx < ][(A(a:, Dw), Dw) dx = ][ (A(z, Dw), Dwy) dx

BR BR BR
V(z,|Dw|)
<4 Y@Pu) pa
][ Du | Dwy| dz
Br
<c ][ W(a, | Dul) do+ —oo ][ U(z, |Dwy|)dr (4.2.7)
85
Br Br

for some constant ¢ = ¢(s(V), L) and every € € (0,1). Then choosing ¢ small

enough, we see (4.2.3). If wy ¢ L*°(Bg), then (4.2.4) is valid trivially. Suppose

wy € L*(Bg). Taking ¢ := (w — supwp)+ and ¢ := (w — infwo)_ as a test
R

Br

function in (4.2.2) and following the arguments in (4.2.16) below, we find
(4.2.4).

Now we consider the case of the condition (4.1.10) is in force. In fact,
we are not allowed to employ the monotonicity arguments as above since
a constant appearing in Sobolev-Poincaré type inequality of Theorem 2.4.1
for a function ¢ € W3¥(Bg) N L*°(Bg) depends on [l oo (5. The absence
of Lavrentiev phenomenon discussed in Theorem 2.3.1 allows us to find a
sequence of functions {w,, }>°_, € W*°(Bg) such that

wy — wy  in - WHE(Bg), /\Il(a:, |Dwy|) dz — /\I/(a:, | Dwg|) dx
Bgr Br

and i sup 1) < 101l (4.2.8)
—00

Then we define the new vector fields

Ap(,2) = A, 2) + 2nd V5 (|2)) = (2 € Br, 2 € R*\ {0}), (4.2.9)

2|

where the function W (-) has been defined in (2.1.3) and {e,,}5_, is the
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sequence of real numbers defined as
2y —1
Em = | m+ /\IIER(|Dwm|) dx , (4.2.10)
R

+
the functions v, € w,, € W, "%(Bg) as the unique solutions of the Dirichlet

problem

s (4.2.11)

—div Ay, (z, Dv,,) = 0 in Bp
1,07}

The existence of such sequence of functions {v,,}>_; follows by standard
monotonicity methods as we have discussed above since the newly defined

vector fields A,,(+) in (4.2.9) are coercive and monotone in W er by €m > 0.
The weak form of (4.2.11), is

R
/ (Ap(x, Dvp), Do) dz =0 forall o€ W, "*(Bg)  (4.2.12)
Br

By taking ¢ := v, — w,, as a test function in (4.2.12) and arguing similarly
as in (4.2.7) we see

/[\If(x, Do) + ¥, (IDvn)] dz < c/[\IJ(:U, Dwn]) + em ¥, (| D)) da

BR BR
(4.2.13)

for a constant ¢ = ¢(n, s(¥), v, L). For m large enough, (4.2.8) implies

/\If(x, D, |) dz < 2/\11(:1;, \Duy|) dz = Lo (4.2.14)
Br Br
and recalling also (4.2.10) we have

/\1;(1;, Do) da < c/ U(o, [Dwyl)dz +c < c(lo+1)  (4.2.15)

Br Br
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again for ¢ = ¢(n, s(V),v, L). Therefore, we can conclude that up to pass-
ing to not relabelled subsequences, v,, — w in W"¥(Bg) for some w €
wo + W'Y (Bg). By lower semi-continuity in (4.2.13) and (4.2.15), and again
recalling (4.2.10), we find (4.2.3). On the other hand, testing the equation

(4.2.12) against ¢ := (v, — SUpP Wy, )+, we have
Br

y f U, | D (v — sup )+ |) de

Br
Br
< ][ <Am(x, D(vy, — sup wy,)+ ), D(vy, — sup wm)+> dx
Br Br

Br

= ][ <Am(a:, Duv,,), D(vy,, — sup wm)+> dxr = 0. (4.2.16)
Br
Bgr

Using the co-area formula, we see that v,, < supw,, in Bg. Similarly, by
Br
taking a test function ¢ := (v, — iélf Wy, )— to the equation (4.2.11), we see
R

that v,, > iélf Wy, in Br. Combining those estimates and recalling (4.2.8), we
R

find (4.2.4). Finally, the uniqueness of weak solutions to (4.2.2) can shown

similarly as in (4.2.6). H

Lemma 4.2.1 (Density lemma). Suppose that ¥ is given as in (1.0.2) with
G, H,, Hy, € N in the sense of Definition 2.1.1, 0 < a(+) € C¥*(Q) and 0 <
b(-) € C“*(2) for some continuous and concave function wg,w, : [0,00) —
[0, 00) with w,(0) = w, = 0. Let a measurable vector field S : B — R" for
some ball B = B, € Q2 be a distributional solution to the equation

—divT'(z,5)=01in B (4.2.17)

with ¥ (x,|S|) € L'(B), where the vector field T : B x R™ — R™ satisfies the
growth condition
U(,|2)

T2, 2)| € L=~
2|

(4.2.18)

for every x € B and z € R". Then if the condition (4.1.9), is satisfied, then
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every ¢ € Wy''(B) with U(z, |Dy|) € L*(B) satisfies
/(T(m, S), Do) dx = 0. (4.2.19)
B

Also, if the condition (4.1.10), is satisfied, then (4.2.19) holds for every ¢ €
W, 1(3) N L®(B) with ¥ (x,|Dy|) € L'(B) .

Proof. An idea of the proof is similar to the proof of [14, Lemma 5.2]. Clearly

the proof can be reduced to the case B, = B1(0) by dilation and translation,

and we can assume ¢ € W, \P(R”) by zero extention outside of B. There

exists €9 > 0 such that B, (0) € Q. Let p € C;°(B1(0)) be a non-negative
1

standard mollifier with / pdx = 1. Then we set p.(z) = —p <£> for every
en \¢

Rn
x € B.(0). Directly, we observe that p. € C;°(B:(0)), /pa dr=1,0< p. <
R

c(n)e™™ and |Dp.| < c¢ln e~ () For every 0 < ¢ < L, we define
(m)=" and | Dp.| < e(n) y ST

pela) = (1—25> ' (1 —:C2e) be(e) ::b(l —3725)’

o (x) = (@ *p) (x), ac(z):= inf a(y), be(z):= inf b.(y) and

yEB: () yE€Be ()

U (2,1) i= G(t) + ac () H, (t) + bo(x) Hy(t) (4.2.20)

for every x € By and t > 0. It follows from the Jensen’s inequality and
properties of the convolution that

G([Dg:()]) < G (I(Dge * pe)(@)]) < /G(!D@(x—y)l)pa(y)dy<ce‘”

R
(4.2.21)
and
IDg. ()| =16 * Dp.)(a t/M@%-MW%(N@ () [0l gy =
(4.2.22)
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Arguing similarly as in [14, (5.4)], we have

Dy (1——25) D * p€‘| (z).  (4.2.23)

for some constant ¢ = ¢(s(V)) and for every = € By. Suppose now that the
condition (4.1.9), is satisfied. Then using (4.1.9), and (4.2.21),we see

e L

U(z, |Dee(z)]) < la(z) — ac(2)[Ha(|Dpe(x)]) + [b(x) — b=(2)[Hy (| Dep:=(2)])
+ Ve (x, | Dy ()])

< Wfdlucnle) [ 1+ | @)
wa (IG(Dp-(@))] )

Bl |1+ L] GUDe.))
o ([G(Dpe(@))] )

+ We(a, [Depe(2)])
< Ve(, [De:(x)]) (4.2.24)

for every x € B; with some constant ¢ independent of . If the condition
(4.1.10), is satisfied, then using this one and (4.2.22) we have

U(z, |[De:(2)]) < la(x) = ac(z)|Ha(|Dpe(x)]) + [b(z) — be(2)[Hy(| Dpe()])
+ W (z, |Dp:(z)])

< Dalilan(@) (14 — s ) GUDe(o))
Dalilain(@) (14 — s ) 61D )
(0, |D.(0))

< V. (x, | Dp(z)|) (4.2.25)

for every x € B; with some constant ¢ independent of € but depending on
||90||Loo(Bl)' Once we arrive at this stage, the rest of the proof can be argued
in the same way as in the proof of [14, Lemma 5.2]. O

Theorem 4.2.1 (Higher integrability). Let u € WY (Q) be a distributional
solution to (4.1.18) under the assumptions (4.1.3) and (4.1.17). Suppose ei-
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ther (4.1.9) or (4.1.10) is satisfied. Suppose also that W(z,|F|) € LL.(Q) for
some T € N with an index s(Y) > 1. Then there exists a positive higher
integrability exponent § = d(data,s(Y)) such that U(z,|Du|) € LiP(Q).
Moreover, the following inequality

1
1+5

][[\If(:z:, Du) [ dr | < ][ U(z, |Du]) do

-
1

1+6

+e (B][ 0 (z, |F)]' dz (4.2.26)

holds for a constant ¢ = c(data), whenever By, C Q is a ball with 2r <
1. In particular, for every open subset Qo € Q1 € Q with dist(g, 0Q) ~
dist(Q4, 0Q) ~ dist(Q0, 982), we have

19, | Dul) 1150,y < € ( data, dist(€, 09), 5(T), [ Y2, )] 11g0,)) -
(4.2.27)

Proof. Let By, C Q2 be a fixed ball with 2p < 1 and n € C5°(Bs,) be a cut-off
2

function such that xp, < n < xB,, With [Dn| < —. Applying the methods
p

employed in [14, Theorem 6.1] or [15, Theorem 5.1], we have
U — (U)BQp

/\If(a:,|Du|)77S(‘I')+1 dr < c/\If <x, ) da:+c/\lf(x,\F|)dx
p

Bs, Bs, Bs,

(4.2.28)

for some constant ¢ = ¢(n, s(¥), v, L). Now we apply Theorem 2.4.1 depend-
ing on which assumption of (4.1.9) and (4.1.10) comes into play. In turn, we
have

0

][\Il(x, |Dul) dx < ¢ ][[\I!(x, |Du|))’dx | +c ][ U(z, |F|)dx (4.2.29)

Bp BQp BQF’
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with some ¢ = ¢(data) and § = 0(n, s(¥)) € (0,1). Applying Lemma 2.1.1
for T, for every open subset 2y € €2, one can show that

/[\If(x, |F)] 00 da < | —i—c/T[\Il(x, |F|)]dz < +00.  (4.2.30)

QO Q0

Therefore, there exists a higher integrability exponent § = d(data, s(Y))
fulfilling the inequality (4.2.26) by a variant of Gehring’s lemma. Finally,
the estimate (4.2.27) implies from (4.2.26) together with a standard covering
argument. O

In the rest of the section, we shall always suppose that ¥ is given as in
(1.0.2) with G, H,, H, € N in the sense of Definition 2.1.1, 0 < a(-) € C**(Q)
and 0 < b(-) € C**(Q) for some continuous and concave functions wg,w; :
[0,00) — [0, 00) with w,(0) = w,(0) = 0, unless we specify. We also consider
the following Dirichlet boundary value problem:

(4.2.31)

—divA(z, Dw) =0 in Bg = Bg(zo),
w e u+ Wy (Bg)

for some fixed ball Br C Q4 € €2 with R < 1, where
Az, z) = Ag(2) + a(x)Ap, (2) + b(x)Ap,(2) (x €Q, z€R") (4.2.32)

as we introduced in (4.1.16) and u € WY (Bg) is a distributional solution to
(4.1.18). Furthermore, we shall always assume that W(z, |F|) € LL.(Q) for
some Y € N with an index s(7).

4.2.1 Local boundedness estimates

Next we start with the following direct outcome of the equation (4.2.31).

Proposition 4.2.2. Let w € W"Y(Bg) be the weak solution to (4.2.31)
under the assumptions (4.1.17). Suppose either (4.1.9) or (4.1.10) is satisfied.
There exists a constant Q = Q(s(V),v, L) > 1 such that w is a Q-minimizer
of the functional

W(Bg) 2 v+ P(v, Bg) = /\If(a:, |Dv|) dz. (4.2.33)

Bgr
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In particular, there exists a constant ¢ = c¢(s(V),v, L) such that

][\I/(a:, |Dw|) dx < c][ U(x, |Dul) dz. (4.2.34)

Bpr Br
Moreover, if u € L*°(Bg), then it holds that

0sCw < oscu and W] oo (g < N0ll oo (py) - (4.2.35)

Proof. Let ¢ € Wy'(Bg) with P(p, Bg) < oo if (4.1.9) is assumed or ¢ €
W, ' (Bg) N L®(Bg) with P(p, Bg) < oo if (4.1.10) is assumed , which can
be a test function in (4.2.31) by Lemma 4.2.1 below. Then by testing the

equation (4.2.31) by ¢ and using the structure assumption (4.1.17) together
with Young’s type inequality of Lemma 2.1.4, we have

V/\Il(x,]Dw])d:cg /(A(x,Dw),Dw) dxz/(A(x,Dw),Dw—i-Dgp) dx

Br Bgr Br

U(z,|D
L/M|Dw+Dgp|d:€
| Dw|

N

Br

< g/\Il(w,\Dw\)d:C+c/\I/(gc,\Dw—l—DgoDda;
BR BR

(4.2.36)

for some constant ¢ = ¢(s(V), L,v). For showing (4.2.35), if u ¢ L*°(Bg),

the estimates in (4.2.35) are trivial. Suppose u € L*(Bpg). Then we take a

test function ¢ := (w — supu); which is admissible by w € u + Wy'¥ (Bg)
B

R
and u € L*(Bpg) via Lemma 4.2.1. Then using (4.1.17), we have

I/][\I’(ZL‘, |D(w — supu)|)dx

Br
Bg
< ][ <A(a:, D(w —supu)), D(w — sup u)+> dx
P Br Br
R
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_ ][ <A(x, Dw), D(w — supu)+> dx = 0.

Br
Br

Using the co-area formula, we see that w < sup v in Bg. Similarly, by taking a

Br
test function ¢ := (w—i]glf u)— to the equation (4.2.31), we see that w > inf u
R R
in Br. Combining those estimates, we find (4.2.35). O

Proposition 4.2.3. Let w € W'Y (Bg) be the weak solution to (4.2.31) un-
der the assumption (4.1.17). Suppose that either (4.1.9) or (4.1.10) is satis-
fied. Then there exists a higher integrability exponent g = do(data, s(Y)) < 6
such that

][[\I/(a:, | Dw )] da < c][[lll(x, | Du)]* % dx (4.2.37)

for some constant ¢ = c¢(data), where § is the higher integrability expo-
nent determined by Theorem 4.2.1.

Proof. Since we have already obtained a Sobolev-Poincaré type inequality
of Theorem 2.4.1 under either (4.1.9) or (4.1.10), we follow the arguments
employed in the proof of [14, Lemma 5.3 and Lemma 5.4]. ]

Since w € W'¥(Bg) is a Q-minimizer of the functional in (4.2.33), we
are able to derive a Caccioppoli inequality for w, see Lemma 3.2.1.

Proposition 4.2.4. Let w € W"Y(Bg) be the weak solution to (4.2.31)
under the assumption (4.1.17). Suppose either (4.1.9) or (4.1.10) is satisfied.
Then there exists a constant ¢ = ¢(s(V),v,L) > 1 such that the following
Caccioppoli inequality

/\I/(x, |D(w — k)+|)de < c/\I/ (x, M) dx, (4.2.38)
T’ E—

By B. P

holds, whenever B, = B,(y) € B,(y) = B, C Bg are balls and k € R.

Theorem 4.2.2. Let w € WYY (Bg) be the weak solution to (4.2.31) under
the assumption (4.1.17). Suppose that either (4.1.9) or (4.1.10) is satisfied.
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Then there exists a constant ¢ = c¢(data) such that

' vy (m) o < c][ 7 (1: W) dr  (4.2.39)

vy (‘w(l’l) — w(xa)

T

w — (w)p,

) dr  for a.e x1,79 € By,

(4.2.40)

whenever B, = B,(y) C Bg is a ball.

Proof. We omit the proof since it is similar to the proof of Theorem 3.2.1 by
using the estimates (4.2.34) and (4.2.35) of Proposition 4.2.2. O

Let us also restate the results of Lemma 3.2.2 and Lemma 3.2.3 for w.

Lemma 4.2.2. Let w € W"Y(Bg) be the weak solution to (4.2.31) under
assumptions (4.1.17). Suppose that either (4.1.9) or (4.1.10) is satisfied. Let
By, = By,.(y) C Bgr be any fized ball. Then there exists a constant ¢ =
c(data) such that

[ w0t = ndr < [ 0Dkl di

Brl Brl

s(P)+1 .
o)™ o (5
9 — 7T T T

Bry

(4.2.41)

whenever B,, € B,, C B, are concentric balls and k € R.

Lemma 4.2.3. Let w € W Y(Bg) be the weak solution to (4.2.31) under
the assumption (4.1.17). Suppose either the assumption (4.1.9) or (4.1.10)
is satisfied. Let Ba, = Ba.(y) C Bgr be some fized ball. Then there exists a
constant ¢ = c¢(data) such that

/\If]gT(|D(w—k:)i|) iz < /\I/(x,|D(w—k)i|) da

B'rl BTl
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s(U)+1 .
o) o)
ro—T1 T

2

(4.2.42)
whenever B,, € B,, C B,(y) are concentric balls and k € R, where
[ G(t)
if (3.2.27a) is satisfied in B,, (4.2.43a)
G(t) +a” (By)Ha(t)
B(t) = if (3.2.27b) is satisfied in B;, (4.2.43b)
] G+ (B)H(t)
if (3.2.27¢) is satisfied in By, (4.2.43c)
U, (1)
| if (3.2.274d) is satisfied in B, (4.2.43d)

for every t > 0.

4.2.2 Decay estimates

We continue to consider the function w € WY (Bg) defined in (4.2.31) for
the fixed ball Bgr = Bgr(zg) C Qy € Q2 with R < 1. Throughout the present
subsection let us consider the excess functional given by

N A

for any ball By, = Bs.(y) C Bg. Using the convexity of Wy —together with
Lemma 2.1.1, one can see that

E(w,B,) <c (\Ifézr)_1 (B][ Vg, (’w _Two

for some constant ¢ = ¢(s(V)) and for every wy € R.

> dx (4.2.44)

) da (4.2.45)
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Lemma 4.2.4. Let w € WhY(Bg) be the weak solution to (4.2.31) under the
assumption (4.1.17). Let B, = B,(y) C Bg be any fized ball. If one of the
assumptions (4.1.20a)-(4.1.20c) is satisfied, then for every e* € (0, 1), there
exists a positive radius

r* =r*(datay(), ") (4.2.46)
such that
B w— (w)p
\J — )
fon ([
B)\T

r

<ec (1 + )\*(n+s(‘ll)+1)€*) ][ \I,ET (‘ w— (w)Br/2

) dx (4.2.47)

Br/2

holds for some constant ¢ = c(datay(€2)), whenever A € (0,1/16) and r <

*

.

Proof. First note that the meaning of data,(£2y) has been defined in (4.1.23).
We can always assume that E(w, B,2) > 0 otherwise the inequality (4.2.47)
is trivial. For the abbreviation, we shall denote

E(r) == E(w, B, ). (4.2.48)

The proof consists of several steps.
Step 1: Initial settings on w. Applying Lemma 4.2.2 in the ball B, 4
with k = (w)s, ,,, we find

f o ipuar <o f g (|20

r

) dx (4.2.49)
/4 B2

for some constant ¢ = ¢(data). Moreover, by Theorem 3.2.5, there exists a

higher integrability exponent dy = dp(data) such that

1
1+§O

][ (U (z, | Dw|)] % de <c ][ U (z, |Dwl|) dx (4.2.50)

Br/8 Br/4
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for a constant ¢ = c¢(data).
Step 2: Scaling and freezing. Now we consider the scaled functions of
w(+), a(-) and b(+) in the unit ball B;(0) by setting

ol PR ), H(E)
B T e A s P oy
and b(z) = b(y + rz) H(E(r)) (4.2.51)

Uy, (E(r))

for every x € B;. Now we define the vector field and energy density associated
to the scaling in (4.2.51) by

Alr,2) = Aly +rz, E(r)z)

Uy, (E(r))
_ Ag(E(r)z) ol Ap,(E(r)z) - . m,(E(r)z)
“ 0, @) T Ee) T E, Ee)
and W(z, |2]) = G(l2]) + a(@)Ba(l2]) + @ E(l)  (42.52)
for every x € By and z € R", where
A G(E()) _ _ H.(E(r)t) and B _ Hy(E(r)t)
0=y, mry = mEe) ™ S EEe)
(4.2.53)

One can check via elementary calculations that G, H,, H, € N with indices
s(G), s(H,), s(Hp) respectively, and that

G(1)<1, H,(1)=1 and Hy(1)=1. (4.2.54)

Then we see that w € WY (By) in (4.2.51) is a weak solution to the following
equation that

][</_1(x, Dw),Dy) dz =0 forall o€ Wol’\p(Bl), (4.2.55)

By

and the vector field A in (4.2.52) satisfies the following structure assumptions
via (4.1.17):
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|A(z, 2)||2] + | D, A(z, 2)||2]* < LY(z, |2]), (4.2.56a)
‘I’( |2])

ER

€] < (D:A(x, 2)¢,€), (4.2.56b)

for every x,x1, 29 € By, £ € R" and z € R" \ {0}. Furthermore, the inequal-
ities (4.2.49)-(4.2.50) can we written in the view of the scaling in (4.2.51)
as

_1
T+50

][ U(z, | D) do + ][ Gz, |Da))*" dz | < c(data).  (4.2.57)

B4 Bi1/s

Let Z,,Z, € B; be points such that a(z,) = ing a(z) and b(z,) =
reb1
inf b(z). Then we consider the associated vector field and frozen functional

x€eB;

denoted by

Au(e) = ) (e, AP, Sl

v, &) " H B i, (B(r)
and  Wo(t) := G(t) + a(Ta)Ha(t) + +b(zp) Hy(t) (2 € R™, t > 0). (4.2.58)

From the definition in (4.2.51)-(4.2.53), one can see that

Ao(2) 12| + D2 A=) |22 < Li(|2]), (4.2.59)
‘I’f(:"‘” €2 < (D Ao(2)6, €. (4.2.500)
Ty(1) = 1 (4.2.59¢)

for every z € R™\ {0} and & € R™.
Step 4: Harmonic approximation. In the following let € W,">(Bys)
be a fixed function. Then using (4.2.55) and (4.1.17), we see

][ (Ao(Dw), D) da| = f (Ao(Dw) - Alx, Dw), D) da

1/8 1/8
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f |Ao(Dw) — Az, D) de | Dl o,

By s
<2 f lat) - ate) 2L s D),
Bl s
s(any Pl
L f b = W) e D e
By s
= (I + 1) | Dgll e, oy - (4.2.60)

Now we estimate the terms I; with ¢ € {1,2} via (2.1.7), (4.2.54) and (4.2.57)
in order to have that

< f late) - a@,)| (E(D@)T + [H( D)5 ) da

By /s
1
s(Ha)+1
B B SIEIH)g‘il
<clla=a@Z, | f oDl d
B1/s
s(Ha)
s(Hqg)+1
+clla —a(z,) Lﬁf?gjs H,(|Dw|) dz
BI/S
s(Ha)
s(H, 1 H, 1
ctata) (|l - ate) 205+ la - a2, ) 2o

where we have used Holder’s inequality and the fact that a(z,) < a(x) for
every x € By. Similarly as above, we have

o 1 - o S(Hb)l
I, < c(data) (Hb—b(xb) Lt T 10— 0(Ts) Lgiffgg/s)). (4.2.62)
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Inserting the inequalities in the last two displays into (4.2.60), we find

][ (Ao(Dw), Dy) dx

1/8

< c(data) (H& —a(Z,)

s(Ha)

s(Hq)+1
Lw(Bl/s)) HDSOHLoo(Bl/g)

1
T+l a(z.)

s +
szBl/s)) HDSDHL‘X’(Bl/s) )
(4.2.63)

+ c(data) (Hb B[ + 15— ba)

By the definition of a(-) and b(-) in (4.2.51) and the excess functional in
(4.2.48), we find

_ a(E(r))

I,:=|a- a(fa)HLoo(Bl/g) < cwa(r)m. (4.2.64)
and
I, = Hl; — B(fb>||L°°(Bl/g) < cwb(r)%. (4.2.65)

Next we shall estimate the resulting terms of the last two display depend-
ing on which one of (4.1.20a)-(4.1.20c) comes into play.

Case 1: Assumption (4.1.20a) is in force. The assumption (4.1.20a),
implies that for every ¢ € (0, 1), there exists a constant p; = () > 0 such
that

A(p,G M p™) <e forevery pe (0,m). (4.2.66)
Then using this one and (4.1.9), we continue to estimate [, in (4.2.64) as

(Ho o G™1) (V5 (E(r)))

o < el TE)

192



CHAPTER 4. CALDERON-ZYGMUND THEORY FOR ORLICZ
PHASE PROBLEMS

with ¢ = ¢([a],,, A1), where we have used the fact that (\pgr)_l (t) <Gt
for every ¢ > 0. Using (2.1.2) and recalling (4.2.48) together with (4.2.44)
and (4.2.34), we have

1 w— (w
=
- n wWa(r) — wal(r 4 r
wo ([95,(BE()] ) 5,
_ 1
c c c(data)
< U (z,|Du|) d <
2 | e | <5
Br
(4.2.68)
Combining the last two displays, we conclude
I<c(6+ ()(1+ ! )) (4.2.69)
a X Wa T L.
wa (1)

with some constant ¢ = c¢(data). In a similar way as we have shown (4.2.67)-
(4.2.68), we also have

I, <c <5 + wp(1) (1 + ! )> (4.2.70)

wp(f1)

with some constant ¢ = c¢(data). Therefore, inserting the estimates in the
last two displays into (4.2.64) and (4.2.65) and recalling (4.2.63), we have

][ (Ao(Dw), D) dz| < c(datay(Q0)) Py (e, 7) HDgoHLOO(Bl/s), (4.2.71)

1/8

where

Pi(e,r) =

s(Ha)

{8 el (1 i Waéﬂl))] o " [g unlr) (1 " wa(lﬂl))] o
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v (14 )| . = +eal) (1 om)| "
(4.2.72)

Case 2: Assumption (4.1.20b) is in force. From the assumption (4.1.20b),,
for every e € (0,1), we see that there exists a constant pus = ps(e) > 0 such
that

1
A (p, —) <e forevery pe (0, us). (4.2.73)
p

This one together with (4.1.10) yields

Hq(E(r)) ( 1 > ( 1 )
I, <cw,(r)—5 <cwg(r)e |1+ —————— )| +aw,(r) [ 1+ —— )] .
WaEm) <O U Lmery ) el U G
(4.2.74)
Now recalling (4.2.48) together with (4.2.44) and (4.2.35), we have
1 1 c(datay(£2))
< < (4.2.75)
wy ([E(r)]1 r wy (T
O S o ) )
Inserting the estimate from the last display into (4.2.74), we find
1
1, < c(data,(Q2 et wa(r) {1+ . 4.2.76
ctdatan(sh) =+ a) (14— ) (4270
Similarly, we also find
1
I, < c(datay( e+wp(r) 1+ —— ) 4.2.77
s < datan(@) (=4 (14 =) (1:277)

Plugging this one in (4.2.63) together with recalling (4.2.64) and (4.2.65), we
see

][ (Ao(Di). D) da| < c(datay(Q))Po(e, 1) | Dl s, e (42.78)

1/8
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where

Py(e,r) =

{5 + walr) (1 ¥ wa(lw))} s {5 +walr) (1 . %(1#2))} st

s(Hp)

v (14 o) . ) ()]
(4.2.79)

Case 3: Assumption (4.1.20¢) is in force. At this point we shall take
an advantage that w,(-) and wy(-) are power functions. Recalling I, denoted
in (4.2.64), we have

(H oG (W, (E(r))

I, <or®

U, (E(r))
w — (w
Ler® |14 ][\111_3 (‘M> dz
" r
B'r/2

3e

<a®+e / Uy (|[Dwl) dx

B2
Al +50)
<or®+ er i / [U(x, | Dwl|)]* % da
B2
sy T sy
<er® 4 crtto /[\If(x, | Du|)]* % dx < c(datay(€))r+o,

R

(4.2.80)

where we have applied a Poincaré type inequality of Lemma 2.4.1 and Propo-
sition 4.2.3. Again similarly, we see

Bdg

I, < c(datay,(2))r oo, (4.2.81)
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Inserting the resulting estimates from the last two displays into (4.2.63)
and then (4.2.60), we find

][ (Ao(Dw), D) dz| < c(datay())Ps(r) HD(pHLOO(BI/S), (4.2.82)
1/8

where

adp Bég
Py(r) := r 0P 40y 4 TF50) (LT | (4.2.83)

Summarizing all the cases we considered so far, we conclude with
][ (Ao(Dw), D) dz| < ¢y P(e,r) HDngLOO(BI/B) (4.2.84)

for some constant c;, = ¢, (datay(€)), whenever ¢ € Wy (B, s), where

Pi(e,r) if (4.1.20a) is assumed,
P(e,R) := (¢ Ps(e,r) if (4.1.20b) is assumed, (4.2.85)
Ps(r)  if (4.1.20c) is assumed,

in which the functions P;, P, and P; have been defined in (4.2.72), (4.2.79)
and (4.2.83), respectively. Taking into account (4.2.57), (4.2.59a)-(4.2.59c¢)
and (4.2.84), it is possible to apply Lemma 2.5.1 by setting Ag(z) := Ay(2),
Wo(t) == Wo(t),ap := a(7,) and ag := b(Z). In turn, there exists h € w +

W, (Bi/s) such that

][ (A(DR),Dg) dz =0  forall e Wr™(Bis),  (4.2.86)

Byys

][ Bo(|DR|) dz + ][ G| DA™ da < ¢ for some 6, < 6o, (4.2.87)

By Biys
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][ Vg, (Dw) — Vi, (D) > dz < c[P(e, )] (4.2.88)
By /s
and finally
F ¥ (o~ H) do < clPe. ) (1.2.89)
By /s

with some constants ¢, ¢, which depend on data,(€2) and sg, s1 = sg, s1(data) €
(0,1), but they are all independent of r,e. Therefore, for a given £* € (0,1)
as in the statement of our lemma, we choose € and 7* small enough to satisfy

ca [P, r*)]° < e, (4.2.90)

Taking into account the dependence of the constants c¢; and sy as mentioned
above, the last display gives us the dependence of r* as in the statement of
the present lemma. Furthermore, by (4.2.89), we conclude with

][ Ty (j@ — F) de < <" (4.2.91)

Byys

Proof of (4.2.47). We observe that by a standard density argument, the
relation in (4.2.86) still holds for every ¢ € Wy''(Bys) with Wo(|Dyl]) €
L'(Bys). Since the structure conditions (4.2.59a)-(4.2.59b) are satisfied for
the vector field Ag(+) with respect to N-function Wy which also belongs to N/
with an index independent of a@(Z,) and b(z;), we are in a position to apply

the results from [111] to obtain the following a priori Lipschitz estimate:

Eup Uo(|Dh|) < ¢ ][ Uo(|Dh|) dz (4.2.92)
1/16 Bl s

with some constant ¢ = ¢(n, s(V),v, L). For any 7 € (0,1/16), we have that

(==t e (0

T T
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<ofwo () e fu (55 o
T T
B, B,

(4.2.91) _ _
< esup Uo(|Dh|) + er (s >
B,

(4.2.92) - B
< ¢ ][ \Ifo(|Dh|) dr + CT—(n—i-S(\Il)—i-l)g*
By/sg

(4.2.87)
< e+ er s x (4.2.93)

By returning back to w as introduced in (4.2.51), we obtain the desired
estimate (4.2.47). The proof is complete. O

4.2.3 Morrey decay estimate

Here we discuss an important outcome of Lemma 4.2.4, the so-called Morrey
decay estimate, which will play a crucial role later.

Theorem 4.2.3. Let w € WYY (Bg) be the weak solution to (4.2.31) under
the assumption (4.1.17). If one of the assumptions (4.1.20a)-(4.1.12¢) is sat-
isfied, then for every o € (0,n), there exists a constant ¢ = c(data,(€), o)
such that the following decay estimate

/\If(x,|Dw|)dx < c(§>“/qf(x,|pw|)dx (4.2.94)

B, B,
holds, whenever B,(y) € B,(y) C Br(xo).

Proof. In fact, the proof can be proceeded similarly as for the proof of Theo-
rem 3.1.2. We only show alternatives discussed in the proof of Theorem 3.1.2
for w. Let Br = Br(xo) C Qy € Q2 be a ball with R < 1 as fixed in (4.2.31).
Let B,(y) C Bgr be any fixed ball with r < r*(datay(€2), o) which will be
determined in a few lines.

Alternative 1: G-phase. Let 7,, € (0,1/64). Assume that G-phase
occurs in the ball B, ,, (see (3.2.27a) for the definition). In this case we have

a” (Bar,r) < 8la]w,wa(Tapr) and b (Bar,,r) < 8[b]w,ws(Tapr).  (4.2.95)
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Applying Lemma 4.2.3 in the ball By, ,, and Lemma 4.2.4, we find

w_<w)BQT s
/\If(x,]Dw|)dm<c / G| |—=—— | dx
2TabT

Tab” 2TapT

w — (w
<c / vy, ('—2(7 Zf

) dx
BQTab'r

<o+ 7 ) / (e, [Dul)de  (4.2.96)

B,

for some constant ¢ = c(data,(€))), provided r < r*(data,(€),e"). Now
for every o € (0,n), we rewrite the last display in the following form

[ v ipul e < w7 (carsy + cansy ) [ Dol ds

Br B,

ab™

(4.2.97)

Here we choose parameters 7., " having the dependence on datay({2y) and
o in such a way that c,75 < 1/2 and cabT;;(”Jrs(\P)H)g* < 1/2. With those
choices, we conclude with

/ U(z, |Dw|)dr < T(fb"/\lf(x, |Dw|) dz, (4.2.98)

B By

Tab”

provided r < rq(datay(€), o).
Alternative 2: (G, H,)-phase. Let 7, € (0,1/64). Suppose that (G, H,)-
phase occurs in B, and that b~ (B,,,) < 4[b,,ws(mr). Clearly, we have
b~ (Bar,r) < 8[b]w,ws(Tp7). (4.2.99)

On the other hand, we also see

a (B,,,) = a (B,) > 4[alw,wa(r) = 4]a]y,wa(Tr) (4.2.100)
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and
a”(B,) < a(r) < 2[a),,wa(r) +a (B,) < 2a (B,) (Vze€ B,). (4.2.101)

Applying Lemma 4.2.3 in the ball Bs,,, and then Lemma 4.2.4 together with
recalling (4.2.101), we have

/ U (z, | Dwl) dz

BTbT‘

< c / |:G (‘w - (w)BQTbT
27’57’

2Tyr

w—\w 21T
<c / Vg, ('%

21T

w — (w)BQTbr

27’1,7“

)]

)+ (B, (]

) i

<c (Tg + T,;<S<‘P>+1>g*) / U(z, | Dw|) do (4.2.102)

By

for some constant ¢ = c(datay(§))), provided r < r*(data,(€2),<*). Then,
for every o € (0,n), we write down the last display as

/ U(z, |Dw|)ds < 777 (chg’ + ch;_(n+S(\y)+1)5*> /\I/(x, |Dw|) dx
B‘rb'r B,

for some constant ¢, = ¢,(data,(2)). We select small enough 7, £ depend-
ing on data, () and o in such a way that ¢,77 < 1/2and ¢,y " <
1/2. In turn, we find

/ U(z,|Du|)de < Tg‘_"/llf(x, | Du|) dx (4.2.103)
B‘rbr B,

for every r < r, = rp(data,(Q), o).
Alternative 3: (G, Hy)-phase. Let 7, € (0,1/64) to be fixed later. As-
sume that (G, Hp)-phase occurs in B, ((3.2.27¢) happens in B,) and a™ (B;,,) <
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4[a),,wa(Tar). Then we have
a” (Bar,r) < 8[a]y,wa(ToR). (4.2.104)
Applying Lemma 4.2.3 and then Lemma 4.2.4 together with recalling that

b= (B,) < b(x) < 2b7(B,) holds for every x € B, if b (B,) > 4[b]u,ws(r)
likewise in (4.2.101), we have

/ U (z, | Dw|) dz

BTaR
< c / |:G (‘ w — (w)BZ‘ra'r
27,1

)]

) + b~ (Bayr,r ) Hy (‘%

27,7
B2Ta'r
w — (w)BQ
< vy — ) d
¢ / Br (' 27,7 ) *
e+ 7, ) /\Il(x, | Dw|) dz (4.2.105)

B,

for some constant ¢ = c(datay(€))), provided r < r*(data,(€2),<*). Then,
for every o € (0,n), we write down the last display as

/ U(a, | Duwl) de < 77 (77 + curg 00 2 / U(z, | Duw|) dz

B TaT B

for some constant ¢, = c¢,(data,(€))). We select small enough 7,, €* depend-
ing on datay () and o in such a way that c,77 < 1/2 and ¢,77~("FsWHD o
1/2. Then we have

/ U(z, | Duwl) dr < T;—U/xp(x,mwpdx (4.2.106)

Bryr Br

for every r < r, = r,(datay(£2), o).

Alternative 4 : (G, H,, H,)-phase. Let 75 € (0,1/64) to be chosen later.
We assume that (G, H,, Hy)-phase occurs in B,., which means that (3.2.27d)
happens in B,. In this situation, from the observation in (4.2.101) we see that
a (B, < a(x) < 2a (B,) and b (B,) < b(x) < 2b7(B,) for every z € B,.
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Then again applying Lemma 4.2.3 and Lemma 4.2.4, we find

\I] — w — (w)B2To’I‘
(x,|Dw|)dx < ¢ Vg, on o dx

B‘ro'r 2TgT
) dx

< c / \I/E (’ w — (w)B2Tor
r 277

2Tgr
By

for some constant ¢ = c(data,(2)), provided r < r*(data, (), e*). Then,
for every o € (0,n), we write down the last display as

/ U(x, |Dw|)dx < 7577 <co7'g + COTg_(nJrS(\I])H)s*) /‘I/(a:, |Dw|) dx

BT()’V‘ B

for some constant ¢y = c¢o(data,(£2)). Then we choose 1y, £* depending on
data,(€2) and o in such a way that co7g < 1/2 and corg "I e < 1/2,
Then we have

/ (. |Dwl) dr < TSL"/\I/(:C,\Dwax (4.2.108)
BTO’I’ BT‘
for every r < rg = ro(data, (), o).
Conclusion. Since we have alternatives discussed above, the remaining

part of the proof can be argued in a similar way as starting from Step 2 until
the end of the proof of Theorem 3.1.2. The proof is complete. O

4.2.4 Gradient estimates.

Now we shall focus on the gradient estimates of w € W'¥(Bg), the solution
to (4.2.31) under each assumption of (4.1.20a)-(4.1.20c).

Theorem 4.2.4. Let w € W"Y(Bg) be the weak solution to (4.2.31) un-
der the assumption (4.1.17). Suppose that one of the assumptions (4.1.20a)-
(4.1.20c) is satisfied.
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1. Then for every d > 1, there exists a constant ¢ = c(datay(Q),d) such
that

d

(B][ (W5, (1Dw])] dz | <e ][ U(z, |Dw|) dz (4.2.109)

Byr

holds true, whenever By, = By,.(y) C Br is a ball.

2. Then there exists a constant cqa, = cqp(datay(€y)) such that

][|\IIET(]DU)|) U, [Dw))| dr < cwQ(e,7) ][ U (z, | Dwl) dz
B Bs,-
(4.2.110)

holds, whenever Bg, = Bs,(y) C Bg is a ball and € € (0,1) is arbitrary,
where

e +anr) (1.+ m) T (r) (1 T m)
if (4.1.20a) is assumed,

1 1
Qeiryi= g e enln (1_+ @) H0 (1 )
if (4.1.20b) is assumed,

adg B3¢
rI¥0 4 1+

L if (4.1.20c) is assumed

(4.2.111)

for some constants p; and pe depending only on €.

Proof. First we prove (4.2.109). Let z1, x5 € B, be any points. Then applying
Theorem 4.2.2 and then Theorem 4.2.3, we have

e (’w<x1)_w<x2)|)<c ][ U(z, | Dw|) da

B2\zl—22\(x1) ’$1 — .1'2‘

B2\x1—x2|(x1)

<c (;> ][ U(z, | Dwl|) dz
|21 — 5

Boy (1)
(4.2.112)
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for some ¢ = ¢(data,(£2), o), whenever o € (0,n). Then last display implies

that
flo (=)

KB][ <m>“d dy ][‘I’(l‘alle)dx (4.2.113)

Byr

-

=

N
o

holds for some constant ¢ = c¢(data,(£2y), ). By a standard calculation, we
observe that

(57[ (ﬁ)od da d < (ncfnid); (4.2.114)

holds, whenever od < n. Now using the last display in (4.2.113) and choosing
o = n/2d, we see that

][ lxpgﬁr <|“’(‘Tl) - w(“)')]d dri| < c(datay(Q), d) ][ U(z, |Dwl|) dz

|z1 — 9
[ B4’l‘

=

(4.2.115)

holds for a.e o € B,. Finally, applying Fatou’s lemma, we arrive at the
desired estimate (4.2.109). Now we turn our attention to proving (4.2.110).
Using the definition of w,(-) and wy(+), we see

I ;:][mgr(mwp W, |Dw|)| dz (4.2.116)
< 2alu,wa(r) ][ Ho(|Duw]) dae + 2[B]., w0 (r) ][ Hy(|Dw|) dz
il T (4.2.117)

Now we estimate the terms I, and I, in the above display. For this, we shall
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consider three cases depending on which one of the assumptions (4.1.20a)-

(4.1.20c) comes into play.
Case 1: (4.1.20a) is in force. Recalling (4.2.66), for every ¢ € (0,1)
there exists p; = u1(e) such that

1 = 2alun(r) | (Hy 0 G (GUDYD) 1 oy

G(|Dwl)
1
< cwn )&?][ 1+ | 6(Dw)) dx
4\ w ((G0Dul) )
1

+ cwa(r) (1 >> ][G<|Dw|) da (4.2.118)

v/
for some constant ¢ = ¢([a],, A\1). Arguing similarly as we have done in

(4.2.68) and using (4.2.109) together with (4.2.34), we have

1
B]r[ B Wa <[G(]Dw|)]—%) G(|Dwl) dz

f (2

d"t"‘bQO (B/ v, |Dul)d ) } W Dul)ds

Bar

< (1 + M) ][\If(x, | Duw)|) dx. (4.2.119)

wa(T) E
4r
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Inserting the last display into (4.2.118) and recalling R < 1, we have

I, < c(datay()) (5 + wa(r) <1 + m)) ][ ¥(z, | D)) da.

(4.2.120)

In the exactly same way, we have

I, < c(datay(Q)) (5 () (1 + m» ][ U(z, |Dw) de.

(4.2.121)

Plugging the estimates of the last two displays into (4.2.116), we arrive at
the validity of (4.2.110) when (4.1.20a) is in force.

Case 2: (4.1.20b) is in force. First applying Lemma 2.1.5, there exists
a constant d = d(s(G), s(H,), s(Hp)) such that the maps

t (Ha o (\II;M)”) <t$> and t (Hb o (LII;M)”) <t5>

are concave in (0,00). Now applying Jensen’s inequality and (4.2.109), we
see

L= 2laln)  (Hoo (¥5,) ") (105, (Du))) ) ds

B

< 2lalu,n(r) (Hoo (V5,) ) wa&wawwx

1
d

< cwg(r) <Ha o (\II§4T)_1> ][ U(z,|Dwl|) dz (4.2.122)

4r

for some constant ¢ = c(data,(€2)). Recalling (4.2.73) and letting M :=
][ U(z, |Dw|) dz for the simplicity of writing, we continue to estimate the

B47'
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last display as follows

(H0(w5,)7") (M)
(Go(w5,)7") ()

I < cwg(r) M

1

o [(v5,) " 00 )

for some constant ¢ = c(data,(€)y)) and po = ps(e), whenever € € (0,1). At
this moment, we use a Caccioppoli type inequality of Proposition 4.2.4 and
then (4.1.10) to have

) dz

M<ec ][ v (x
< cwal(r) ][ H, ('—w — (W), ) dz + cun(r) ][ , (’—w - iw)BsT

< |we(r)e | 1+

+ wa () (1 + ;> M

Wa (NZ)

(4.2.123)

w — (w)BST
r

Bs

) i

”
8r 8r
+c][\I/B4 <‘w ()5, ) dx
" r
8r
1 _
< cwa(r)][ 1+ 1 (‘w (w) B, ) d
(‘w(w)Bgr - > r
Bs a r
1 _
+ cwn(r) ][ 14 1 (‘w ()5, ) .
()
Ba, Wy o
+c][\111_34r <‘w (Tw)Bgr ) dx
8r
N w — (w)p,, (1
<o ][ vy (‘78 > dv < ey, <;> (4.2.124)
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for some constant ¢ = c(data,(€2)), where we have used (4.2.35). Inserting
the resulting estimate of the previous display into (4.2.123) and recalling
R <1, we find

I, < c(datay(Q)) (s + w,(r) (1 + wd(lm))) f U(z, |Dw|)dr (4.2.125)

Bs

for some constant ps = ps(e), whenever € € (0,1). In a similar way, we also
have

1

I, < c(datay(£)) (5 + wy(7) <1 + )) ][ U(z, |Dw|)dx. (4.2.126)
wp(H2)
8r

Inserting the estimates in the last two displays into (4.2.116), we see (4.2.110)

when the condition (4.1.20b) is assumed.
Case 3: (4.1.20c) is in force. As before, in this case we shall take an
advantage of w,(p) = p® and wy(p) = p° for some a, f € (0,1]. Then using

(4.1.9) and applying (4.2.109), we have

I, = Q[Q]QTQfHaﬂDwD dx
B,

< cra][ [G(|Dw|) + [G(]Dw])]H%} dx

B
1+«
< cro‘][G(|Dw|) dx + cr® (B][ U(z, |Dw|) dx
BT 4r
=0
ad
<c|r 4t (B/ [0 (2, | Dw|)]"** da ][\If(a:, | Dwl) dz
4r By,
ad
< c(datay(Q))ro ][ U(z, | Dw|) dz, (4.2.127)

By

where in the last two inequalities of the last display we have used Proposition
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4.2.3 together with Theorem 4.2.1. In the same way, we find

B4,
I, < c(datay(Q))r i+ ][ U(z, | Dwl) dz. (4.2.128)

By

Again plugging the content of the last two displays into (4.2.116), we arrive
at the estimate (4.2.110) when the condition (4.1.20c) is assumed. O

4.3 Proof of Theorem 4.1.2

Basically, the structure of the proof is similar as the proof of [14, Theorem
2.1] or [15, Theorem 1.1}, which is initially introduced in [3, 59]. The proof
of Theorem 4.1.2 consists of several steps.

Step 1: Exit time and covering of the level sets. This step is essen-

tially classical and we provide it for the completeness. Let Br = Bgr(zo) C
Qo € Q be a fixed ball with R < Ry. The size of Ry will be determined by

the end of the proof. Now consider radii R/2 < R; < Ry < R and consider
the level sets

ES :={z € Bs(xp) : V(z,|Du|) > A\} forevery R/2<s< R and X>0.
(4.3.1)

Let us consider the map defined by
T(B, ()= | (o |Dul) + MU |[F)lds (132)
Br(y)

for every ball B,(y) C Br and some M > 1 to be determined later. Then it’s
clear that

lir(l]l+ T(B.(y)) >\ forae. yekF], R/2<s<R. (4.3.3)
r—
If y € Bg, and r € {%,Rg — Rll, then we see

T(B:(y)) < % ][[\I'(a:, |Dul) + MU(z, |F|)]dx == Xo.  (4.3.4)

Br,
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Taking into account (4.3.3) and (4.3.4), for the values of A > \g and for
Ry — Ry
such that

almost every y € Efl, there exists a radius r, <

T(B,,(y) =X and T(B.(y)) < Aforevery r € (ry, Ry — Ry]. (4.3.5)

The last display implies that the family {Bry (y)} covers Efl up to a negligible
set, and then applying Vitali’s covering theorem, there exists a countable
family of mutually disjoint balls { B, (yk)}zozl = { Bk}, such that

E¥ c | 5B (4.3.6)
k=1
and
T(B,, (yr)) =A and T(B.(yx)) < A for every r € (ry,, Ry — R1] (Vk € N).
(4.3.7)
In the rest of the proof, we shall denote
By =5B,, (yx) and 714 = 5ry,. (4.3.8)
By this construction, we here notice that
80B; = 16B), C Bg,, 1= bry, < i 1_6R1 (4.3.9)
and that
T(By) = V(o D)) + MU, [F])de = A
By (4.3.10)
T(16By) ][ Uz, | Dul) + MU (z, | F)] dz < A
16 By,

Step 2: Comparison estimates. Let us start with the following Dirich-
let boundary value problem

{— div A(z, Dwy,) = 0 in 16B;, (4311)

wy, € u+ W, (16By,).
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Using the arguments employed in the proof of [15, Theorem 1.1], we discover
that, for every 6§ € (0, 1), there exists a constant ¢ = ¢(n, s(¥), v, L,0) such
that

][ |V (x, Dwy,) — Vg (x, Du)|* dz < 6 ][ U(x, |Dul) dx + cq ][ U(z,|F|)dx,
16By, 16By, 16By,
(4.3.12)

where the vector field Vi has been defined in (2.1.8). At this moment applying
Lemma 2.1.1 together with the last display, we can show that

][ U(z,|Du— Dwy|)dr < 6 ][ U(z,|Du|)dx + cq ][ U(z,|F|)dx
16B;, 16By, 16By,

(4.3.13)

holds for some constant ¢y = cy(n, s(V), v, L, 0), whenever ¢ € (0,1). Now
let x4, , 2, € 2Bj be points such that a(z, ) = sup a(x) and b(xy,) =

{E€2Bk

sup b(z). Then we consider the following Dirichlet problem
(EEQBk

. (4.3.14)

—div Ak(ka) =0in 2Bk,
1,\1/2Bk
UV € W + WO (QBk),

where
Ap(z) == Ag(2) + alxe, )An, (2) + b(xy, ) Am, (2) (V2 € R"\ {0}) (4.3.15)
and

Uy, (£) = G(E) + a(way) Ha(t) + blan ) Hy(£) (2 > 0). (4.3.16)

The existence of the weak solution vy € i, (2By) to (3.5.14) is ensured
by Theorem 4.2.4 and Proposition 4.2.1. The weak formulation of the equa-
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tions (4.3.11) and (4.3.14) can be written as

][ (Ar(Duvy,) — Ap(Dwy), D) dax = ][ (A(z, Dw) — Ax(Dwy,), Dp) dx

(4.3.17)

for every ¢ € C§°(2By,). Taking into account Proposition 4.2.1 and Lemma
4.2.1, we find that the function ¢ = vy — wy is admissible in (4.3.17). There-
fore, using the structure assumption (4.1.17) and Young’s type inequality of
Lemma 2.1.4, we see

][ ’V\I];Bk (Dvy,) — V‘I’;Bk (Dwy)|? dx
2By,
H,(|Dwy|)
< ) = a(z) 2 Dy — Dl d
¢ f (alew) = ale) 2 D — D
2By,
Hy(|Dwyl)
— b)) 2R by — D
+c ][(b(xbk) b(x)) Dyl | Dwy, vg| dz
2By,
c
<7 ][ a(zq, )Hy(|Dwy — Dugl) do + —ED ][(CL(.CE%) —a(z))H,(|Dwy|) dx
2By o Lp
c
+ 7o ][ b(xbk)Hb(]Dwk — ka‘) dx + m ][(b(l'bk) - b(l’))Hb(’Dka dx
To

(4.3.18)

for some constant ¢ = ¢(s(G), s(H,), s(Hy), v, L), whenever 15 € (0,1), where
we have also used the fact that a(z) < a(z,,) and b(x) < b(xp,) for every
x € 2By,. Applying Lemma 2.1.1 for ¥, defined in (4.3.16) together with the
last display, we have

][ U}y (|Dw, — Duy) de
2By,

C
<t U (Dud) o+ £ f Wy, (Dw) -V,

2By, 2By,

(Dvp)|? dz

+
2By,
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<7 ][ \If;Bk(|Dwk|)dx + %7’0 ][ \P;Bk(|Dwk — D) dz

2By, 2B,
s
TS ][(a(xak) — () Ho(|Duwy|) dx
TT, .
c,
+—m ][(b(l“bk) — a(z))Hy(| Dwy|) dx (4.3.19)
TTy

for some constant c,

c(s(G),s(H,),s(Hy),v,L) > 1, whenever 7,79 €
and reabsorbing the terms in the last display, for

(0,1). Choosing 7y = 5

every 7 € (0,1), we have

][ U3, (|Dwy, — Do) da

2B,

<7 U (Du o+ i f 18, (1Dusl) — W [Du)| do
2B, 2B,

gr][ U(z, | Dwg]) dx—l— ][’\1’23,9 | Dwy|) — V(x, | Dwgl|)| dx
2B, 2B,

(4.3.20)

for some constant ¢ = ¢(s(G), s(H,), s(Hy),v, L), where s(¥) = s(G) +
s(H,) + s(Hp) (see Remark 2.1.2). At this moment we apply (4.2.110) of
Theorem 4.2.4 depending on which one of the assumptions (4.1.20a)-(4.1.20c)
comes into play. In turn, we have

7[ Uy, (|Dwy — Duy|)de < 7 ][ Uz, |Dwk|)d:v+cQ(8’ R) ][ U(z, | Dwy|) do

7s(¥)+1
2By 2By, 16By,

R
<C(T+ ?fg)ﬂ)) ][ U(z,|Dul)dr  (4.3.21)

168y,

for some constant ¢ = c¢(data,(€))), where
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[+ w(R) (1 4 m) +wy(R) (1 4 m>
if (4.1.20a) s assumed,

1 1
B = et wlR (1—1——)++w R (1+—>
Q1) ASPAIE)) A T T E)
if (4.1.20b) is assumed,
@ Bdg
R1+é0 + R1+d
( if (4.1.20c) is assumed

(4.3.22)

for any e € (0, 1). The constants y1, pe are determined by Theorem 4.2.4, and
g is a higher integrability exponent coming from Proposition 4.2.3 and The-
orem 4.2.1. Combining the estimates (4.3.13) and (4.3.21) and using (2.1.6),
we have

][ U(z,|Du — Dugl|) dx

2B,
< 25+t ][ U(xz,|Du — Dwy|) dx + 259+ ][ U(z, |Dwy, — Dug|) dx
2B}, 2B,
R
<o (9 T ?S((Z’)H)) ][ U(z, |Dul) dz + co ][ U(e, [F)dz (4.3.23)
16 By, 16 By

for some constants ¢y = co(data,(€)) and ¢y = co(n, s(G), s(H,), s(Hy), v, L, 0),
whenever 0,7, € (0,1), where the function Q(e, R) has been defined in
(4.3.22) depending on which one of the assumptions (4.1.20a)-(4.1.20c) is
under consideration. We use the auxiliary notation

Q(&R)) Co

@ + i (4.3.24)

SO, 7,e,R, M) := cq (9+7’+
and then using (4.3.10) directly in (4.3.23) to discover the desired estimate

][ V(z,|Du— Dug|)dx < S(0, 71,6, R, M)A, (4.3.25)

2B,

which is valid for all the balls By, from the covering constructed in (4.3.8).
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Step 3: A priori estimate for Dv,. The energy estimates for v, and
wy, together with Theorem 4.2.4 imply that

][ g, (|Dur]) do < ¢ ][ U3, (|Dwyl) do < ¢ ][ U(z, |Dwy]) dz

2By, 2By, 16B;,
<c ][ U(z,|Du|)de < cA (4.3.26)

168,

for some constant ¢ = c(data,(€2)). Then we apply the classical result of
[111, Theorem 1.2] together with the last display to have the Lipschitz esti-
mate

sup W(z, [Dvg|) < sup ¥3p (|Du(z)]) < ¢ ][ Uip, (|Dvr]) dz < a)
xGBk acEBk 0B
k

(4.3.27)

with ¢; = ¢(data,(€)).
Step 4: Estimates involving level sets. By using (2.1.6) and elemen-
tary calculations, we discover

213 \|B, N {W(z, | Dul) > 22+ W N} + % / U(x,|Dul) dx
Bpn{¥(z,|Dul)>22+s(¥) e A}

< / U(x, |Dul) dx

Bpn{¥(z,|Dul)>22+s(¥)¢; A}
< 21 / U(x, |Du— Dug|) dx

By
4 ol+s(¥) / U(x, |Dugl|) dx
Bpn{¥(z,|Dul)>22+s(¥) e A}

L 2Ms(W) / U(x, |Du — Duy|) dx

By,
2 e \| By N {W(z, | Dul) > 22\, (4.3.28)
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where we have also used (4.3.27) to get the last estimate. Therefore, we have

/ U(z, | Dul) dz < 22721, ][ U(x, | Du — Dug) da

BN {¥(z,|Dul)>22+5(¥) ¢ A} 2By,

(4.3.29)

Recalling (4.3.24) and (4.3.8) that [2By| = 10"| By, we get

/ U(z, | Dul) dz < 227*W10"S(6, 7,2, R, M)X| By
Bpn{¥(z,|Dul)>22+s(¥) e A}
(4.3.30)
Recalling (4.3.10), we find that
~ 1
Bl =5 /(\I/(x, \Dul) + MU(z, |F])) da. (4.3.31)
B,
Next, we estimate
-1 1 B
| Bi| < X / \If(a:,|Du|)d:c+X / M\I/(a:,|F\)dx+%,
Ben{¥(,|Dul)>%} Bun{¥(z,|F)> 27}
(4.3.32)
and hence
N 2 2
| Bi| < X \Il(x,]Du\)da:—l—X MV (z,|F|)dx.
Bun{¥(x,| Dul)> 3} Ben{(z,|F))> 27}
(4.3.33)
The last display in (4.3.30) yields
U(z, |Du|) dz
Brn{¥(x,|Du|)>22+s(¥); A}
< 2505M10"S(0,7,¢, R, M) / U(z, |Dul) dx

Bn{®(z,|Dul)>3}
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90080, 7. 2 R, M) / MUz, |F|)de.  (4.3.34)

Ben{¥ (x| F)> g7}

Since {B;}{2, is a covering of Ei* and E!% C Ef*, summing up

22+s(\I/)c by
over the covering { By }32;, we find

/ v, |Dul) d f: / U(z, | Dul) dz. (4.3.35)

Ry T Bn{ ¥ (z,|Du|)>22+5(¥) g A
B o (. Dul) )

Before going on, let us introduce the short notation

D3 = {x € Bs(xg) : Y(x, |F(x)]) > A}, R/2 < s <R, A>0.
(4.3.36)

Then recalling that the balls {Bk} are disjoint and using (4.3.9), we sum up
(4.3.34) over indices k to have

/ U(z, |Du|) da

Ry
By

< 2201080, 7,6, R, M) / U(z,|Du|) d

Jok
24+s \I/)Cl
+ 2305 10"5(6, 7,e, R, M) / MY (z,|F|) dz (4.3.37)
23+3(‘1’)CZM
for all A > 0 such that
23+s SOan
A A= 220G = 20 MG L f (Wl [Dul) + M (| ) do
(Rg — Ry)"

B,
Step 5: Conclusion. Let us define the truncated functions

[V (z, |Dul)]; := min{¥(x, |Dul),t} for ¢=>0. (4.3.38)
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Then for t > 24+*W¢,\g, we multiply the inequality (4.3.37) by T”(\) which
is positive since T € N, and then integrate over A to obtain

t

/ T”()\)/\Il(x,|Du|)dxd)\

22+s(¥) ¢y N Efl

t
<22 M10"5(0, 7,2, R, M) / () / V(@ |Dul) dzd)

22+s(\II)Cl)\O ER2 \
24+5(‘1’) c

t
+ 21078 (0, 7., R, M) / T'()) / MY (z,|F|) dz d).

22+5(¥) ¢; g pf2
24+s(W) ¢ s

(4.3.39)

Fubini’s theorem to the term on the left hand side of the last display
yields

t

/ T”()\)/\If(x,\DuDdxd)\: /T’([\If(x,|Du|)]t)\If(x,]Du\)dx

22+s(¥) ¢, N Effl Br,
22+s(\1/)cl>\0
- / T”(A)/\Il(x,]Du\)dxd)\.
0 E/I\%l
(4.3.40)

Using the fact T'(0) = 0 and Fubini’s theorem, we have

V(,| Dul)
/T’([\If(x,|Du|)]t)\11(x,]Du|)dx—/ / " (minf X, 1)) @ (z, | Dul) d\ da

_ //\{(x,x) € By, x (0,00) : U(z, |Dul) > A} [T (min{\, ¢})] U (x, | Du|) dA dz

By
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t

:/T”()\) / U(z, | Dul) de dX.

0 R
Ey

Recalling the definition of A\ in (4.3.4), we estimate the last integral in
(4.3.40) as follows:

92+s(¥) Mo

/ T”(/\)/\I/(a:,\Du])dxd)\

0 R
E>\1

22+5(‘I})q)\0

< / T/’(A)dA/@(x,\Du|)dx

0 Br,

<Y (277 W) / U(x, |Dul) dzx

B,

T (22+s(\ll)cl)\0)
(s(T) +1) 22+5(%) ¢, X\,

< (s(1) + 1) 225D (M) By |, (4.3.41)

N

>‘0|BT2|

where we have used 227°¢, > 1.
Now we treat the remaining terms in (4.3.39) similarly. By changing vari-
ables we have

t

/ T\ / U(z, | Du|) dz d\

22+s(¥) ¢ N Joue \
24-&-‘:(\11)6[
o+s() / T (24 )cl)\)/ (z,|Dul) dx dX
0 Ef2
24+e(\1’)cl
< [s(T)P (24D y)s™D / / U(z, Du) dz dX
0 ERQ
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< TP [ 1 (mf(x, |Du|>1f> W (e, | Dul) do

24+3(‘I’)cl

Br,

< [s(N)PP (20 / ' ([¥(z, [ Dul)le) ¥(x, |Dul) d,

Br,

(4.3.42)

where in the last inequality we have used the trivial fact that

T’ ([xp(g;, | Dul)] ) <Y ([¥(z, | Dul)];)

t
24+S(‘1’)cl

holds, whenever 2*+*)¢; > 1. Arguing as for (4.3.42), we use Fubini’s theo-
rem again for the last term in (4.3.39) to get

t

/ T\ / U(z, |F|) dz d\

22+s(‘ll)cl)\0 DR2 \
24+s(P) ) M

[e.e]

</T”(A) / U(z, |F|) dz d\
0 D2 N
24 +s(W) e, M
< [s(D)P (245 W ¢ M) / T (U(z,|F|)) du. (4.3.43)

B,

Putting the estimates in (4.3.41)-(4.3.43) into (4.3.39) and manipulating
the terms in a standard way, we deduce that

F 1 (¥, 1Dul))) W, [ Dul) do

Br,

<GS0, 1,2, R M) ][ Y ([¥(x,|Dul)],) ¥(z, | Dul) dz

Br,

OGO, 2 R M) £ T (8 D) da

Br,
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+ ST (), (4.3.44)
for every t > 247(W¢ )\, where ¢, = ¢/(data,(Qy)) was given in (4.3.27)

and ¢; = Cf( ,5(0)). This last inequality holds for any M > 1, R < 1 and
0,7,e € (0,1). Now we choose those constants in a such way to satlsfy

1
2’

where the quantity S(0,7,e, R, M) has been defined in (4.3.24). Indeed, we
take 0,7 = 6, 7(data, (), s(1)) € (0, 1) such that

@M S0, 7,6, R, M) < (4.3.45)

1
0=r1:= : (4.3.46)
8000;(’”+1CIS(T)+1

Since 6 is a fixed constant depending on data,(€2y) and s(T), we select M > 1
satisfying

s(Y)+1 s(T) Co

1
CoCy @ Sy (4.3.47)

Finally, we choose ¢, R small enough depending on data,(€2y) and s(T) such
that
()41 S(T)Q(ﬁ R) 1

All the above choices of constants as in (4.3.46)-(4.3.48) ensure that (4.3.45)
holds. Inserting these choices of constants in (4.3.46)-(4.3.48) into (4.3.44)
and using the definition of A\ in (4.3.4), we conclude that

F 0 (Wl [DuDl) Vo, | Da) d

Bpr,

fTWW%WWMM%WWM%QfNW@UMMw

Br

l\')l»—l

\

Br,
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CRn s(T)+1)
+ T
<R2 Rl) s(1)+1)

][[\If(x, \Dul) + MU(x, | F|)] da

R

(4.3.49)

for some constants ¢ = c(data, (), s(Y)) and M = M (data,(), s(Y)).
Notice that ¢ > 2475)¢,\ and all constants appearing in the above estimates
are independent of . We now apply Lemma 2.2.1 for a function

h(s) := ][T' ([Y(z, |Dul))s) ¥(x, |Du|) dzx

with 74 = n(s(Y) 4+ 1) and v2 = 0, which is a non-negative and bounded on
[R/2, R], to discover the following estimate:

][ Y ([ (z,|Dul|)];) ¥ (z, |Du|) de < YT ][[\D(m, |Du|) + MY (x, |F|)] dx

Br/2 R

+ cf T (V(x, |F|)) dx

Br

with ¢ = c¢(data, (), s(Y)). After some manipulations including Jensen’s
inequality, we conclude that

][ Y ([¥(z, |Dul)];) ¥(z, |Dul) dz < T (B][ U(z,|Dul) dz

Br/2

+ c][ Y (U(z,|F|) dz (4.3.50)

Br

with ¢ = e(data, (), s(Y)). Letting t — oo in the last display, we conclude

][ T (U (z, | Dul)) do < Y (B][ v, |Dul) dz —i—c][T 2 |F])

Bry2

(4.3.51)
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for all R < Ry with Ry = Ry(data,(£2), s(T)), where ¢ = c¢(data, (), s(T)).
This proves (4.1.22), and then (4.1.21) follows by a standard covering argu-
ment. This completes the proof.

4.4 Proof of Theorem 4.1.1

The proof of Theorem 4.1.1 can be done by following the proof of Theorem
4.1.2. A main difficulty lies in obtaining results of Lemma (4.2.4) for the
weak solution w € WY (Bg) of the equation (4.2.31), where the vector field
A:Q xR" — R" is not only in the form of (4.2.32). Essentially, the vector
field A(-) is of general type satisfying (4.1.2) under the Orlicz double phase
settings (b(-) = 0). All the results of Section 4.2 can be restated and proved for
the weak solution w except the result of Lemma 4.2.4. For the completeness,
we provide the proof of Lemma 4.2.4 under the Orlicz double phase settings.

Lemma 4.4.1. Let VU is given as in (1.0.2) with b(-) =0, G, H, € N in the
sense of Definition 2.1.1,0 < a(-) € C¥*(Q) for some continuous and concave
function w, : [0,00) — [0, 00) with w,(0) = 0. Suppose w € WY (Bg) be the
weak solution to (4.2.31) under the assumption (4.1.2). Let B, = B,.(y) C Bg
be any fized ball. If one of the assumptions (4.1.12a)-(4.1.12¢) is satisfied,
then for every €* € (0,1), there exists a positive radius

r* =r*(datag,(Q), %) (4.4.1)
such that
B w— (w)p
|\ — A g
7[ B (‘ A ) ’
B/\r

w — (w
e f o (|

) da (4.4.2)

r/2

holds for some constant ¢ = c(datag (L)), whenever A € (0,1/16) and
r<r.

Proof. Now we shall revisit the proof of Lemma 4.2.4 and keep the same
notations and steps employed there. In (4.2.58), we consider the vector field
and frozen functional by
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Ag(z) = %amd Uo(t) == G(t) +a(z,)Hy(t) (2 €R" t>0),
(4.4.3)

where A(:), G, H,, a(-) are defined as in (4.2.51)-(4.2.53) under the Orlicz
double phase settings. Using (4.1.2),, for every ¢ € Wy'™(Byg), we have

][ (Ao(Dw), D) de| = ][ (A(Dw) — A(x, Dw), D) da

1/8 1/8

< £ 1A(D0) ~ Aw, D0)| do Dl

H,(| Dw))

dx ||D o

Bys)

<L fala) - a(z.)
=1 ||D90||L°°(Bl/8) , (4.4.4)
which is a key difference comparing with the estimate (4.2.60) in the proof
of Lemma 4.2.4, where we only use (4.1.2), without setting the form as in

(4.2.32). The remaining part can be argued by following the remainder of the
proof of Lemma 4.2.4 with b(-) = 0. O
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Chapter 5

Regularity for
degenerate/singular fully
nonlinear elliptic equations

5.1 Hypotheses and Main results

We consider viscosity solutions to fully nonlinear elliptic equations of the
form

®(z,|Dul)F(D*u) = f(x) in By, (5.1.1)

where By = By(0) C R" with n > 2 is the unit ball, F' : S(n) — R is a
uniformly (A, A)-elliptic operator in the sense of (A1) and ® : B; x [0,00) —
[0,00) is a continuous map featuring a degeneracy and singularity for the
gradient described as in (A2). Let us recall main assumptions for the problem
(5.1.1) in this chapter for the simplicity of writing as we have introduced in
the introduction part:

(A1) The operator F' : S(n) — R in (5.1.1) is continuous and uniformly
(A, A)-elliptic in the sense that

Mr(N) < F(M) — F(M + N) < Atr(N)

holds with some constants 0 < A < A and F(0) = 0, whenever M, N €
S(n) with N > 0, where we denote by S(n) to mean the set of n x n
real symmetric matrices.
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(A2) ®: By x[0,00) — [0,00) is a continuous map satisfying the following
properties:

1. There exist constants d(®) > i(®) > —1 such that the map ¢ —
O(x,t)
$i(®)

is almost non-decreasing with constant L > 1 in (0, 0c0)

O(x,t)

and the map t — e
L >1in (0,00) for all z € B;.

2. There exist constants 0 < vy < vy such that vy < ®(z,1) < vy for
all x € B;.

is almost non-increasing with constant

(A3) The term f on the right hand side of (5.1.1) belongs to C'(B;)NL>(By).

The Pucci extremal operators PffA : S(n) — R are defined as
PY(M) ==X N—AD> N
Ar>0 <0

and

Piy(M) = =AD> M= A A,

>0 AL <0

where {\}5_; are the eigenvalues of the matrix M. The (A, A)-ellipticity of
the operator F' via the Pucci extremal operators can be formulated as

Pa(N) S F(M + N) = F(M) < Pyy(N)

for all M, N € S(n).
In what follows, for any vector £ € R", we define a map G¢ : By x R" x
S(n) — R by

Ge(x,p, M) := @(z, [§ + p[) (M) — f(x) (5.1.2)

under the assumptions prescribed in (A1)-(A3). Then we shall focus on vis-
cosity solutions of the equation

Ge(z, Du, D*u) = 0 in B;. (5.1.3)
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Now we give the definition of a viscosity solution u of the equation (5.1.3)
as follows.

Definition 5.1.1. A lower semicontinuous function v is called a viscosity
supersolution of (5.1.3) if for all zy € By and ¢ € C*(B;) such that v — ¢
has a local minimum at z(, then

Ge(xo, Dyp(w0), D*p(20)) > 0.

An upper semicontinuous function w is called is a viscosity subsolution of
(5.1.3) if for all 7y € By and ¢ € C?(B;) such that w — ¢ has a local
maximum at x, there holds

Ge(xo, Dp(z0), D*p(20)) < 0.

We say that v € C(By) is a viscosity solution of (5.1.3) if u is a viscosity
supersolution and a subsolution simultaneously.

Also we recall a concept of superjet and subjet introduced in [60].

Definition 5.1.2. Let v : By — R be an upper semicontinuous function and
w : By — R be a lower semicontinuous function.

1. A couple (p, M) € R" x S(n) is a superjet of v at x € By if

o(w+y) (&) + (o) + 5 (My,p) +O(lyP).

2. A couple (p, M) € R" x §(n) is a subjet of w at = € By if

w(e +) > wle) + (o) + 5 (My,) + O(lyP).

3. A couple (p, M) € R" x §(n) is a limiting superjet of v at = € By if
there exists a sequence {x, g, My} — {x,p, M} as k — oo in a such
way that {py, My} is a superjet of v at z;, and klim v(xg) = v(x).

—00

4. A couple (p, M) € R" x S§(n) is a limiting subjet of w at x € By if

there exists a sequence {x, pg, My} — {z,p, M} as k — oo in such a
way that {py, My} is a subjet of v at z;, and klim w(zg) = w(x).
— 00
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Finally, let us recall a consequence of the classical Krylov-Safonov Har-
nack inequality, see [46], that viscosity solutions to the homogeneous equation

F(D*h) =0 in B, (5.1.4)

under the assumption that F': S(n) — R satisfies (A1), are locally of class
C™%(By) for a universal constant & = a(n, A\, A) € (0,1) with the estimate

||h’||01,54(31/2) g C||h||LOO(B1) (515)

for some constant ¢ = ¢(n, A, A). The main results of this chapter read as
follows.

Theorem 5.1.1 (Hoélder continuity of the gradient). Let u € C(By) be a
viscosity solution of (5.1.1) under the assumptions (A1)-(A3). Then u €
01,,3(31) for all B > 0 satisfying

loc

. 1 o
min § &, Td(q))} Zf Z((D) = 0, (516)

A 1+d(<I>)—i(<I>)} if —1<i(®) <0,

where & is given in (5.1.5). Moreover, for every 3 in (5.1.6), there exists a
constant ¢ = c(n, \, A, i(®), L, B) such that
1
T+i(D)
Loo(Bl)>

(5.1.7)

D - D
Wl sy DV D)
V2 atyeBys |z =y

f
<e (1 il + |2

5.2 Basic regularity results

5.2.1 Small regime

Here we verify that, for a viscosity solution u of (5.1.3), we are able to assume

oscu <1 and |[|f|l (g, < €0 (5.2.1)
Bi 1

for some constant 0 < ¢y < 1 small enough, and also vy = v, = 1 without
loss of generality. In order to consider the problem in a small regime as in
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(5.2.1), for a fixed ball Br(xg) C By, we define u : B; — R by

a(x) = M (5.2.2)

for positive constants K > 1 > R to be determined later. It can be seen that

4 is a viscosity solution of
G¢(z, Du, D*u) := ®(x, |{ + Du|)F(D*u) — f(z) =0, (5.2.3)

where
_ R (xo + Rz, %t)
o (:)30 + Rz, %) ’
_ R? K
_ R2
flz) = ® (o + Rz, %) K

f(zo+ Rx) and & := %f.

Note that F is still a uniformly (), A)-elliptic operator, the map t

P(z,t P(z,t
t(i(xq;)) is almost non-decreasing and the map t % is almost non-
increasing with the same constants L > 1 and d(®) > i(®) > —1 as in (A2),

and ®(x,1) = 1 for all # € B;. Moreover, the assumption (A2) implies

_ LR2+i(<I>) L
HfHLoo(Bl) < W Hf”LOO(Bl) < V_o HfHLoo(Bl) :

By recalling i(®) > —1 and setting

L 1++@>)
K= 2 (14 ol [ 2 1

and
1
R == ¢)
R :=¢; ,

we see that u solves the equation (5.2.3) in the same class as (5.1.3) under
the small regime in (5.2.1).
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5.2.2 Auxiliary tools

In this subsection, we state some basic regularity results for (5.1.3). The first
key tool to be employed later is the classical Ishii-Lions lemma, see [60].

Lemma 5.2.1 (Ishii-Lions Lemma). Let u be a viscosity solution of (5.1.3)
with oscu < L and || fl| oo,y < €0 < 1 under the assumptions (A1)-(A3),
1

where & € R"™ s any vector. Suppose that B C By is an open subset and
Y € C*(B x B). Define a mapv:BxB—R as

v(z,y) = u(z) —uly).

Suppose further (z,y) € B x B is a local mazximum point of v — in B x B.
Then, for each § > 0, there exist matrices Xs,Ys € S(n) such that

G&(janw(jag)aXzs) g 0 < Gg(y, —Dyiﬂ(f’@),yb)

and

1 X5 0 )
—(5+||A||>I< (0 —3{;) < A+0A

with A := D*)(Z, 7).

Another important result to be applied afterwards is the results of [101]
in our settings.

Theorem 5.2.1 (Imbert-Silvestre). Let u € C(By) be a viscosity solution to
(5.1.3) for some & € R". Suppose there exists v > 0 such that

1. for all (x,p) € By x R™ with |p| > ~, it holds that

Gg(x7p70) < C0|p|

for some constant co > 0 and

2. for any fived (x,p) € By x R™ with |p| > v, Ge(x,p, M) is uniformly
elliptic with respect to M.

Then u € CLY(By) for some o € (0,1). In particular, the following estimate

[ullco.as, ) < cllull g s,
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holds true for some constant ¢ > 0. The constants o € (0,1) and ¢ > 0
depending on n, the ellipticity constants and the parameter v > 0.

5.3 Holder continuity

In this section we provide Holder regularity for solutions of (5.1.3), where ¢
is any vector, under the small regime.

Lemma 5.3.1 (Holder continuity). Let u be a wiscosity solution of (5.1.3)
under the assumptions (A1)-(A3) with oscu < Lo [fll ooy < €0 < 1 and
1

vy =11 = 1. Let Bg = Br(xo) C By be any ball. Then, we have the following
reqularity results:

(R1) If =1 < i(®) < 0 and |£| = 0, then u is Lipschitz continuous in Bps
with the estimate

[U]CO71(BR/2) < CS[ (531)
for some constant Cyq = Cy(n, \, A, i(P), L, R).
(R2) Ifi(®) = 0 and |&| > Ap with Ag = Ap(n, A\, A, i(P), L, R), then u is

Lipschitz continuous in Brjy with the estimate
(] ot (Ba < Ca (5.3.2)
for some constant Cy = Cyg(n, A\, A,i(P), L, R).
(R3) Ifi(®) = 0 and |¢| < Ay, then u € C*P(Bgjs) with the estimate
[U]COVB(BR/Q) < Cys, (5.3.3)
where = B(n,\, A, R, Ay) € (0,1) and Cgs = Cys(n, N\, A, R, Ap).

Proof. For the proof of (R1) and (R2), it suffices to show that there exist
positive constants L, and L, such that

L= sug (u(x) —u(y) — Liw(|lz —y|) — Lo (|$ — zo|2 + |y — z0|2)) <0
T, YeEDR
(5.3.4)
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for every zy € Bp/2, where

Pttt <ty = (2 2
w(t) = Wt BEST= A, ) (5.3.5)
u}(to) 1ft>t0

We choose wy € (0,2/3) in such a way that ¢, > 1. For instance, we take
any constant wy < 1/3. By the contradiction, suppose that there are no such
positive constants L, and L, satisfying (5.3.4) for every 2y € Bpjs. Then
there exists a point z9 € Bpgs so that £ > 0 for all numbers L; > 0 and
Lo > 0. Now we define two auxiliary functions ¢, : B X B — R given by

Y(@,y) = Liw(jz — yl) + Lo (Jz — 20|* + [y — 20]?) (5.3.6)
and
¢(x,y) = u(z) = uly) — ¥(z,y). (5:3.7)
Let (Z,7) € Br x Bg be a maximum point for ¢. Then we have
oz, y) =L>0
and

Liw(|Z — g]) + Lo (|7 — 20* + |7 — 20|*) < oscu <1

1

Now we select

64
L2 = ﬁ
This choice of Ly ensures
R R
|z — 20| + |7 — 20| < 7 and [T — 7| < T (5.3.8)

This means that the points  and y belong to the open ball Br and also we
are able to assume that T # y; otherwise £ < 0 clearly. The rest of the proof
is divided into several steps.

Step 1. We are in a position to apply Lemma 5.2.1 in order to ensure
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the existence of a limiting subjet (£;, X5) of v at T and a limiting superjet
(&5, Ys) of w at g, where

_ N _
5@ = Da:w(‘ray) = Llwl<|x - y|) |[f' _ g| + 2L2<ZE - ZO)
and
_ N _
fg = _Dyw(xay) = Llw/(‘x - y‘) |i‘ _ g| - 2L2<y - ZO)?

such that matrices X5 and Yj satisfy the matrix inequality

(ﬁﬁ _2%) < (j;,_zg)-+(2L2+wﬂI, (5.3.9)
where
Z = LiD*w(] - )z —9)
SE=3), (e o 2E=TD) E-DEE-7)
e Gl ) e

and the constant 9 > 0 only depends on the norm of Z, which can be selected
sufficiently small. Applying the inequality (5.3.9) for vectors of the form
(2,2) € R*™, we find

(X5 — V)2, 2) < (ALo + 26)|2]2.

The last inequality yields that all the eigenvalues of the matrix (X; — Y;) are
not larger than 4L, + 26. On the other hand, applying again (5.3.9) for the

T—9§ §—17
vector Z := ( y Y ), we have

1z =gl |z -9l
_ _ _ _ _ 12
_ T — X —
<<X5—Y5>_ vz %><<4L2+25+4L1w"<|x—y|>> L3
1z -9l |z -7 |z — 9
6&]0.[/1 > j}—g 2
— (4L, +25 — =02 S
( ? z—y|'?) ||z -3
_ _ 12
<(4L2+25—6(HOL1) :f g{ )
|z — 7|
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where we have used the definition of w in (5.3.5) together with |z — g| <
1/4 in (5.3.8). So at least one eigenvalue of (X5 — Y5) is not larger than
4Ly + 20 — 6wy Ly, where this quantity can be negative for large values of L.
By the definition of the extremal Pucci operator, we see

P p(X5 — Y5) = —A(4Ly + 20 — 6woLy) — A(n — 1)(4L5 + 20)
> —(A+ (n — 1)A)(4Ly + 26) + 6woALy.

From two viscosity inequalities and the uniform ellipticity, we have
(@, 1€+ &NF(X5) < (@), 05 |6+ &GDF(Ys) > £(7)
and
F(X) > F(Y;) + Py (X5 — Y3).
Combining last three displays, we have

f(@) f()
+ — - — . 5.3.10
e+ &) B IE+ &) o310
At this stage, we shall separate it into several cases depending on the
quantity of || and the positiveness of i(®).
Step 2: Proof of (R1). Suppose —1 < i(®) < 0 and £ = 0. By triangle
inequality and (5.3.8), we observe that

3 7
&2 < Ly (1 + §wo) + 2Ly < ZLl (5.3.11)
and
3 3L
ol >0 (1- 20 gt) —an > 2 snzan G

for all L; > 8L,. In the exactly same way, we see

7
[l < L1 and &[> 2L (5.3.13)
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for all L; > 8L5. Then we have

f(z) o CHfHLOO(Bl) < C
= e [\ (@) TS (@)
oz, &) S Tlar® S

(5.3.14)

and

—f(y) <C”f||L°°(Bl)< ¢
(7, |€41) &7 L@

(5.3.15)

for a constant ¢ = ¢(i(®), L). Using the last two displays in (5.3.10), we
obtain

1
for a constant ¢ = ¢(n, A\, A,i(®), L, R). Recalling —1 < i(®) < 0 and taking
Ly large enough, depending only on n, A\, A,i(®), L and R, we get a contra-
diction. Then the first part of the lemma is proved.
Step 3: Proof of (R2). We suppose that i(®) > 0 and |{| > A for a

constant Ay to be determined in a moment. We set

_ 35L4
2

for L; > 1 to be selected soon. This choice of A, together with (5.3.11) and
(5.3.14) leads to

§+&[ > A0 ——=—— and [+§]>—.

Ay 94, 9A,
10 10 10

Therefore, we have

f(z) o 1 Wl oo (1) < C

N & - X -
oz, e+ &) S Ter &f® S 4@

and

jf@) <e ||f||LW(B;) < ~C¢
(g, 1€+ &) 1€+ &M@ T 4@
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for a constant ¢ = ¢(i(®), L). Again using the last two displays in (5.3.10),
we obtain

6woALy < (A+ (n — 1)A)(4Ls + 26) + Lifq))
1

for a constant ¢ = ¢(n, \, A, i(®), L, R). By choosing L, large enough, depend-
ing only on n, A, A,i(®), L and R, we have again a contradiction. Indeed, we
have proved the second part of the lemma.

Step 4: Proof of (R3). Finally, we shall focus on proving (R3). Suppose
now |£| < Ay, where Ay has been determined in (5.3.16). We consider the
operator

Ge(x,p, M) := ®(z, € + p) (M) — f(x).

In fact, G¢(x, p, M) is uniformly elliptic, whenever |p| > 24,. At this stage,
we apply Theorem 5.2.1 to conclude the last part of the Lemma. The proof
is complete.

0O
5.4 Approximation

Now we prove a key approximation lemma, which plays a crucial role in later
arguments.

—_
-

Lemma 5.4.1. Let u € C(By) be a viscosity solution of (5.1.3) with osc <

1

where £ € R™ is arbitrarily given. Suppose (A1)-(A3) hold true for i(®) >
0 and v9 = v1 = 1. Then, for any p > 0, there exists a constant § =
d(n, \, A, i(P), L, ) such that if
11l oo ) < 05 (5.4.1)
then one can find h € C“*(Byy) with the estimate Hh||01,a(33/4) < c =
c(n, A\, A), for some 0 < & < 1, satisfying
|u— hHLOO(Bl/Q) < M (5.4.2)

Proof. By contradiction, we suppose the conclusion of the lemma fails. Then
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there exist po > 0 and sequences of {Fi}r2 1, {Pr}rcy, {fx}rey, and {ug}tic,
and a sequence of vectors {&;}72; such that

(C1) Fp e C(S(n),R) is uniformly (A, A)-elliptic,
(I)k<£l}, t)

me) is almost

(C2) &, € C(Byx][0,00),[0,00)) such that the map ¢ —
O(x,t)

$d(®)
constant L > 1, and ®x(z,1) =1 for all x € By,

non-decreasing and the map ¢ — is almost non-increasing with

, 1
(C3) fi € C(By) with || fellp(p,) <  and

(C4) uy € C(By) with oscuy < 1 solves the equation
1

O (, |& + Dug|) Fp(D*uy) = fi(), (5.4.3)
but
sgp lug(z) — h(x)] > po (5.4.4)
€D /2

for all h € CY*(Bs4) and every 0 < a < 1.

The condition (C1) implies that Fj converges to some uniformly (A, A)-
elliptic operator F, € C(S(n),R). Applying Lemma 5.3.1, uy € C’loo’f(Bl) N
C(B,) for some € (0,1). Using (5.3.2), (5.3.3) and Arzela-Ascoli theo-
rem, we have that the sequence {uy}re; converges to a function us, locally
uniformly in B;. In particular, there holds that

Uy € C(B;) and 08C too < 1L (5.4.5)

1

Now we prove that the limiting function u., is a viscosity solution of the
homogeneous equation

Fo(D?us) =0 in By (5.4.6)

For this, first we verify that u., is a viscosity supersolution. Let

(M(z —y),z —y) + (b,x — y) + ux(y)

N

p(r) =
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be a quadratic polynomial touching u. from below at a point y € Bsy.
Without loss of generality, let us assume |y| = u(y) = 0. Then there exists
a sequence x; — 0 as k — oo such that u; — ¢ has a local minimum at xy.
Observe that Dp(zy) — b and D*p(z;) — M. Since uy, is a viscosity solution
of (5.4.3), we have

Oy (r, & + Do(ap) ) Fi(D*o(ax)) = fr(z). (5.4.7)

For the ease of presentation, from now on we shall consider several cases
depending on the boundedness of sequence {&}7e ;.

Case 1: Sequence {{;}72; is unbounded. In this case, we can assume
|€k| — oo (up to a subsequence). As a consequence, we can show (up to a
subsequence) that

& + Do(w)| > |6l — IDep(ae)| > &l — (1b] + 1) > 1. (5.4.8)

which implies that

L ) . fi(xr)
FoolM) = lim F(D%plan)) = I e Do)

L
> — lim .
k=00 k& + Dp(ay) [(®)

=0,

where we have used (C2) and (5.4.7).

Case 2: Sequence {{;};2, bounded In the case we may assume &, —
£~ (up to a subsequence). Therefore, for the case |{ + b| # 0, in the exactly
same way as in (5.4.8), we infer that Fio(M) > 0. Then we focus on the case
|€oo + b] = 0. There are two possibilities as |b] = |{x| = 0 or b = —&,, with
6], |€o0| > 0. In those scenarios, we prove that F,(M) > 0. By contradiction
suppose

Foo(M) <0. (5.4.9)

From the uniformly ellipticity condition of F,,, the matrix M has at least
one positive eigenvalue. Let R" = E & @), where F = span{ey, ..., e,} is the
space consisting of those eigenvectors corresponding to positive eigenvalues
of M.
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Case 2-1: b = —{, with [b], [{x| > 0. Let v > 0 and set

Pa() 1= () + 1| Po(@)] = 5 (M, 7) + {b,2) + 1| Po(a)]

where Pg stands for the orthogonal projection on E. Since u; — u, locally
uniformly in By and ¢(x) touches us(z) from below at the origin, for =
small enough, p.(x) touches uy(z) from below at a point =) € B, (B, is a
small neighborhood of the origin). Moreover, there holds that =] — z for
some ) as k — oo. At this point we consider two scenarios: Pg(z]) = 0
for all £ € N (up to a subsequence) or Pg(z]) # 0 for all k € N (up to a
subsequence).

Scenario 1: Pg(x)) = 0 for all k € N (up to a subsequence). In this
scenario, first we note that

Pa(w) = 5 (Mo, 3) + {b,) +7 (e, Po(a))

touches uy from below at x] for every e € S"~'. A straightforward computa-
tion gives us

Dp.(x)) = Mz +b+~vPg(e) and D2]§7(ZL‘Z) = M.

Now we select e € E'NS" ! such that Pg(e) = e. Therefore, by u; being a
viscosity solution of (5.4.3), we see

Dp(y, €6 + My + b+ ve)Fi(M) > fi(ay).
We also notice that if Mz = 0, then for k£ enough large, we have
& + My +0] <v/2 and  37/2 > [§ + May + b+ ve| = /2.

Therefore, combining the last two displays and using (C2) together with
v < 1, we have

F(M) > filei)
- D], |&k + Mz + b+ vel)

—Lfe@)l L ( 2 )S“I’X

T+ Ma] + b+ e ® Tk
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Letting k& — oo in the last display, we obtain F.(M) > 0. Let us now
consider the situation |[Mx] | > 0. First we consider the case of E = R" and
select e € S"~! such that

|Mx), +~vPg(e)| = |[Mz], + ~ve| > 0.
There hold that, for k£ large enough,
| Mz + ve| > %\M&:Zo +ve| and [& +b] < %llszo + vel.
As a consequence, we see
€ + Ma) + b+ 7Pule)] > %|ngo + el > 0.

Again applying (C2) and taking into account the last display, we have

Fu(M) > filz)
(], [& + Mz + b+ el
L L
= — - + x7
(|£k + My +b+yel™® &+ Maj +b+ 76|5(‘I’)) el

—L4%®) 1 1
> 5 @ 5 :
k IMxd + ~vel® | Mzl + vel|5(®)
(5.4.10)

Again letting £ — oo in the last display, we again arrive at F,(M) > 0. On
the other hand, if £ # R™, then there exists e € S" ' N E* so that

\Maz), +vPg(e)| = | Mzl | > 0.
Therefore, for large enough k, there hold that
L1 1
|\Mzx]| > §]szo| and |& + 0| < Z|Mx;’o\
Using the last display, we get

1
€ + Ma + b+ yPp(e)] > 7| Mal | > 0.
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Repeating the same arguments as in (5.4.10), we arrive at Fo(M) > 0.

Scenario 2: Pg(x)) # 0 for all k € N (up to a subsequence). In this
scenario, we note that the map = — |Pg(z)| is smooth and convex in a small
neighborhood of z). Let us denote

CV — PE(xz) '
P | Pe(a))]
A direct computation yields
1
D(|1Pp(-))(z}) = ¢ and  D*(Pu(|-))(2}) = 75— (I = @)

| Pg(a])]

Hence, with uy, being a viscosity solution of (5.4.3), we have the following
viscosity inequality

Dol 16+ Ma? + b+ 1G] EL (M ; (I-Q c,z>) > fla]).

1
[P ()|

Observing that |¢/| = 1 and letting e := (], we can perform the same
procedure as in the first scenario of Pg(z]) = 0 by considering the cases
of Mzl = 0 and Mz] # 0. Finally, we conclude that (M) > 0 when
b= —{ # 0, which contradicts to (5.4.9).

Case 2-2: b = £, = 0. In fact, this case is much easier to handle. Since

1
— (Mx,x) touches u.(x) from below at the origin and up — u. locally

uniformly, the function

o() 1= 5 (M, ) + 1| Po(z)
touches uy from below at a point z; € B, (B, is a small neighborhood of
the origin) for v > 0 sufficiently small. Again the sequence {#]} is uniformly
bounded. As in Case 3, we analyze those two scenarios Pg(z)) = 0 for
all k € N (up to a subsequence) and Pg(#]) # 0 for all k € N (up to a
subsequence). All in all, we conclude F (M) > 0 in this case.

Finally, taking into account all cases we have analyzed above, we have
shown that u., is a viscosity supersolution of (5.4.6). In order to prove that
Uy 1S a viscosity subsolution of (5.4.6), we show that —u., is a viscosity
supersolution of i (D?h) = 0, where Fyo(M) = —Fs(—M) is uniformly
(A, A)-elliptic operator as well. Therefore, u, is a viscosity solution of (5.4.6).
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From the regularity results of [46, Chap. 5], we see u, € C\.%(Bs/4) for some
a € (0,1). Moreover, HUOOHCL&(BI/Q) < c=c(n, A\ A) via (5.4.5). So choosing

h := uy in (5.4.4), we have a contradiction. The proof is complete.
]

5.5 Proof of Theorem 5.1.1

Now we provide a proof of Theorem 5.1.1. Let u € C'(By) be a viscosity solu-
tion with osc u <L fll e,y < 6 <1 for a constant § = d(n, A, A, i(P), L)

to be determined in a moment and vy = v; = 1. The proof is divided into two

main parts, where in the first part we shall deal with the case i(®) > 0 and

the remaining case —1 < i(®) < 0 will be investigated in the second part.
Part 1: i(®) > 0. Let us first fix a point y € By, and an exponent with

1

0 < 8 < min {a, Td(@)} . (5.5.1)

We prove that there exist universal constants 0 < r < 1, Cy > 1 and a
sequence of affine functions

lp(z) = ap + (bx, x), (5.5.2)
where {ax}72, C R and {b;};2; C R", such that for every k € N:

(BE1)  sup |u(w) — l(z)] < rHOHD,
r€B k()

(E2) |ap — ap_y| < Cor®=D0+8) and
(E3) |b — bp_y| < CorF=D5,

We show these estimates by mathematical induction. For the simplicity, we
divide the proof into several steps.
Step 1. Basis of induction. Without loss of generality we can assume

1
y = 0 by translating z — y + 5% Let us set

li(x) := h(0) + (DR(0), x) ,
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where h is the approximation function coming from Lemma 5.4.1 for a certain
constant p > 0 to be determined in a few lines. Then there exists a constant

Co = Cy(n, A, A) > 1 such that

||hf||Cl,&(B3/8) <Cp and Sué? \h(z) — 1y (z)] < Cyrit®
TEDy

for every r < 3/8. The triangle inequality yields

sup |u(z) — Iy (z)] < p+ Cor' ™.
IEBT

We first select a universal constant 0 < r < 1 satisfying

- 1
P < 2 Cor'*® < §r1+5 and pl7A0H®) <1 (5.5.3)

which is possible by (5.5.1). In a sequel, we select a constant p > 0 as

1
_T1+B

5 (5.5.4)

p=
which fixes an arbitrary constant g > 0 in Lemma 5.4.1. In turn, there
exists a constant § = d(n, A\, A, i(P), L, §) verifying the smallness assumption
[ £l e,y < 6, but such a smallness assumption can be assumed without loss
of generality. Therefore, to conclude this step we set

ap:=0, ay:=h(0), by=0 and b := Dh(0).

These choices with (5.5.3) and (5.5.4) verify that the estimates (E1)-(E3) are
satisfied for k = 1.

Step 2: Induction process. Now we suppose that the hypotheses of
the induction have been established for £ = 1,2,...,m for m > 1. We show
that the estimates (E1)-(E3) hold true for & = m + 1. For this, we introduce
an auxiliary function as

u(rmz) — Ly (r’"e)
rm(1+8)

Wy () :=
We note that w,, solves the following equation in the viscosity sense

(I)m(xa ‘Tﬁmﬁbm + Dwm’)Fm(Dme) = fm<x>7
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where
Fp(M) := ¢ A p(pB=Dmpr),
which is uniformly (A, A)-operator, the function

O (rma, rmPt)

b, (r,t) ;= ——— (r€B,t>0
(z,1) O (rmg, rmh) ( ! )
. . . O, (x,t) .
still satisfies the properties that the map ¢t — @ is almost non-
. D, (2, 1) . . . .
decreasing, the map t @) is almost non-increasing with the same

constant L > 1 and ®,,(z,1) =1 for all x € By, and

f'ﬂm(lfﬁ)f(rml»)
O (rmax, rmpf)

fm(x) =

Using (A2) and (5.5.1), we notice that

Lm0 | | oo )

”meL"O(Bl) ~ rmﬂd(é) § L(S?"m(li(1+d(¢'))/3) g Lo,

Therefore, we are in a position to apply Lemma 5.4.1 to wy,. In turn,
there exists a function h € C%(By4) such that

sup |wp,(x) — h(x)| < p.
:EEBT

Arguing as in Step 1, we show that

sup [w () — I(2)] < '™
2€ B,
where
l(z):=a+ (b,z) forsome a€RandbecR"
Denoting

st i= L () + rm3FO(rmy),

244



CHAPTER 5. REGULARITY FOR DEGENERATE/SINGULAR FULLY
NONLINEAR ELLIPTIC EQUATIONS

we see

sup  |u(x) — by ()] < DO

l‘EBTm+1

and

|CLm+1 — Cbm‘ + Tm|bm+1 — bm| < C()T’m(l_'-ﬁ).

Therefore, the (m + 1)-th step of the induction is complete.
Step 3: Conclusion. Once we have the existence of universal constants
0 <r <1, Cy>1and asequence of affine functions in (5.5.2) verifying the
estimates (E1)-(E3), the remaining part of the proof is very standard, see for
instance [100, 67]. Therefore, the proof of (5.1.7) is complete when i(®) > 0.
Part 2: —1 < i(®) < 0. Now we shall with the case of —1 < i(®) < 0.
Again we fix a point y € Bj/,. Without loss of generality, we may assume

1
y = 0 by using the translation x — y + 5% Now we apply (R1) of Lemma

5.3.1 in order to ensure that
[u]co,1(33/4) < Osl (555)

for a constant Cy = Cy(n, A\, A, i(®), L). Therefore, it can be seen that u is
a viscosity solution of the equation

®(z,|Dv|)F(D*) = f(x) in By,

where

O(x,t) == t7Pd(x,t) (z € By,t>0),

which satisfies the properties that the map t — ®(x,t) is almost non-

D(x,t)
() —i(P)

L>1, ®&(z,1)=1for all z € By, and

f(z) = |Du(a)| " f(2).

increasing, the map ¢t — is almost non-increasing with constant
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Using the estimate (5.5.5) together with || f|| 5 <0 < 1, we sce

e, <5
L*>(Bs/4)

So we are able to apply Part 1 of the proof in order to have (E1)-(E3). This
means that we have the estimate (5.1.7) for —1 < i(®) < 0. The proof is
complete.
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