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Abstract

Image clustering is important task in machine learning, deep learning and
industry. Especially in deep learning, clustering is becoming increasingly im-
portant because it is used not only for clustering but also for other purposes
such as pretext task in self-supervised learning. Many previous literatures have
shown excellent performance in benchmark datasets, but these datasets are
not rotated. However, in practically there is no guarantee that the dataset
will always be placed right. We tackle that existing prior algorithms do not
work well when images are randomly rotated. In this paper, by leveraging
Implicit Neural Representations(INR), 1. We obtain a latent vector, where
latent rotation angle and rotationally invariant latent vector are disentangled
from each other. 2. We show that clustering by rotationally invariant latent
vectors have superior performance on randomly rotated datasets than other
methods. To the best of our knowledge, it is the first approach to cluster with

Implicit Neural Representations.

Keywords: Rotationally invariant, Clustering, Deep learning, Implicit neural
representations, Artificial intelligence.

Student ID: 2020-21133
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1 Review the Implicit Neural Representations

1.1 Introduction to INR

In machine learning, data is traditionally represented by discrete signal. For
example, images are represented by their 2D array pixels(Figl.1), audio is
vectors of discretely sampled waveforms, and 3D shapes are usually parame-

terized as grids of voxels, point clouds, or meshes. In image, all we know is
0123456 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27
. . EEEE-

(a) Image (b) Represented as 2D pixel arrays

Figure 1.1 Traditional representation of image.

RGB values of finite points in spatial domain of the image. For example, if
spatial domain of the image is normalized to [0, 1]2 box and resolution of the
image is 28 * 28, we know RGB values at 784 points(e.g, (0,0), (0, %), cl)

in [0,1]? box. However, the underlying real image not only has RGB values



at 784 points, but also has RGB values at all points in the box [0,1]%(i.e,
infinite resolution). Of course, it is possible to measure the RGB values at
any point in the spatial domain by taking multiple pictures. Underlying
signals of other domains are often continous as well as image. Therefore, it
is natural to try to represent these signals as continuous manner. However,
these continuous expressions of signals are not tractable in the sense that
it is impossible write down to a mathematical formula. Implicit Neural
Representations(INR) parameterize these signals by neural network that
maps domain of the signal(e.g, coordinates of pixel in image) to some values
of at that domain(e.g, RGB value of image).

In INR, general signals are parametrized by continuous function as follow-

ing:

f:AXxRY— RF

()\, (.%‘1, . ,:L‘d)) — f ()\, (a:l, - ,xd))

where A is parameter space of neural network, d is domain dimension, and k is
feature dimension of the signal. For each one A € A represents one signal.
For example, in 2-dimensional images, d(dimension of zy coordinate) and
k(dimension of RGB value) is going to be 2 and 3 respectively. So 2-dimensional

images can be represented by the following form:
f:AxR? —R3
(A (z,9) — (A (2,9)) = (R, G, B)

Note again, the one A € A corresponds to one image, so if we fix the parameter

A € A, then f) represents one image(Fig 1.2), where



H R —R?
(@,y) — (2, y)

=f ()‘7 (ﬂf,y))

— (R,G, B)

The goal of the INR is to find A € A. We obtain A\ through training the neural

S O

q

Figure 1.2 FEach ) represents different images.

network. After obtaining the A, then we can express a discrete signal again. For
example, assume that the scale of coordinates system is normalized to [0, 1]?
and we want to generate 2-dimensional discrete grey image with resolution

28 x 28. All we have to do is input the 784 coordinates to the fy, i.e. input

(an)v (%70)7 (%70% T ’(%v )a

(07 %)7 (21787 %)7 (%7 QLS): ) (07 %)7

(07 %)7 (%7 %)7 (%7 %)7 e (%7 %)




then collect 784 outputs, and finally reshape it to 28 * 28 dimensional vector
to obtain an image. It is possible to obtain any other resolutions(Fig 1.3).

Not only represents these discrete signals, INR have some nice properties

0 28, 28 28
f2(0.59) : - |G

28
£2(0,0) fa(zg:0)

(a) 28 % 28 resolution

49 9
£0.59 /G539

49
£:(0,0) fiGg:®

(b) 49 * 49 resolution

Figure 1.3 Generate any resolution of an image.

and applications. First, memory efficient. Data can be stored and expressed
regardless of spatial resolution(e.g, resolution of the 2-d image), depending
only on the complexity of the underlying signal (i.e, complex signal needs
many parameters and simple signal needs a few parameters of neural network).
Second, super resolution. Since INR is a function defined on spatial domain(e.g,
2-D plane), it can represent any resolution. Thrid, gradient of data. Gradients
of derivative of the data can be analytically calculated, which makes INR to

a new method for solving inverse problems and differential equations. And

S—



there exist many other applications, such as image inpainting. We review these

properties in the following section.

1.2 Applications of INR

There are some reasons that Implicit Neural Reprsentations(INR) is interesting.
First,memory efficient. The way of expressing pixel grid image or 3D-scene data
depends on spatial resolution. For example, spatial dimension of the image is 2,
so if the image becomes n times larger, the required memory becomes n? more.
And spatial resolution of volumetric scene is 5(spatial location (z,y, z) with
(0, ¢) view direction, so if the 3d-scene becomes n times larger, the required

memory becomes n’

more. However, in INR, data doesn’t depend on their
spatial resolution, but depends only on the complexity of the underlying signal
(i.e, complex signal needs many parameters and simple signal needs a few
parameters of neural network). This memory efficient property becomes huge
advantage in 3D computer vision. NeRF[22] parametrizes volumetric scene
using MLP, whose input is 5d coordinate (3-dimensional spatial location and
viewing direction (6, ¢)) and whose output is the volume density and view-

dependent RGB value. (Fig 1.4)

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss

- (x,y,.-,aaﬂ)—-[pﬂ—-mcso) s ) N

’t)" o Ray'2 gy o Ray 1 b || - z
2 R Ray 2 2
) || -g.t.
2
Ray Distance
(b) (c) (d)

Figure 1.4 Diagram of NeRF[22]

and succesfully and memory efficiently representing the 3d scene (Fig 1.5).



Figure 1.5 reconstruct 3-dimensional scene by NeRF[22]

Second, since INR is a function defined on spatial domain, it can do super
resolution very easily: just input the coordinates corresponding to the resolution

to the neural network.

N A

Figure 1.6 Superresolution. The first column is original resolution, the

second column is 4 times resolution than the original, and the third column is
bicubic upsampling[11]

Thrid, INR provides analytically calculable gradient of data. Using this
fact, there are some applications of solving inverse problems, differential equa-
tions and others. For example, SIREN solved Helmholtz equations using INR.

6 g e ko1
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Helmholtz equation is formulated as

where p(x) is the unknown wavefield, ¢(x) is known source, and ¢(x) is a
function of the wave velocity. SIREN solved this equation by parameterizing
unkwon wavefield p(x by implicit neural representations. Domain is Q =
{x € R? | [|x]|c < 1}. So input randomly sampled x € © to p to minimize

the loss function: Luemmnoltz = Jq [|(V? + %)p(x) + q(x)|1dx.

(x
Scene Grid SIREN RBF Tanh  ReLU
05 I =]
— .c .O -0.3 03
3
E
-0.-5 0 2 Al
Dh
o
1@0@
= NN

Figure 1.7 Single point source(green dot) is located in the center of
[—0.5,0.5]2 box with uniform wave propagation(top left). SIREN (second

column of right image) obtained a similar solution of the helmholtz equation
compared to principled grid solver(first column of right image). while other
activation function based methods failed to solve.(thrid, fourth and fifth column
of right image)[35]

Also, there are interesting observations with implicit neural representations.
For example, extrapolating. [11] build generative models that generate image as
a parametrized continuous function. They used a hypernetwork to generate the
parameters of the image function, and a discriminator that takes coordinates
(e.g. pixel locations) and features (e.g. RGB values) as an input, and trained

with an adversarial approach. (Figl.8)

7 s )8t

e



Generated data Real data Discriminator

real
s - T /
,,,,,,,,,, . ¥l Do . fake

Figure 1.8 Generating image function by hypernetwork[11]

In contrast to existing generative models are based on discrete signal(e.g,
pixel grid), it learns distributions of continuous signals, and hence to agnostic
to discretization. Not only they succeeded to generate a continuous signal well,
they observed one interesting thing. During training, the coordinates used
for training were normalized to [0, 1], but after training, it was observed that
realistic images are generated even for coordinates that are out of this range(e.g,

[0.3,1.3]). (Fig 1.9)

Figure 1.9 Extrapolating. During training, only [0, 1]? squared coordinates

was used, and evaluate it on coordinates from [—0.3,1.3]% square.[11]

This would be an interesting example to observe in a generative model
using implicit neural representations. In the next section, we will discuss the
important techniques of the implicit neural representations that improves the
quality and hence make these applications possible.

8 5 A= 8w

e,



1.3 Techniques of INR

We reviewed some applications in the previous section. However, these applica-
tions are not achieved by naively apply to idea of implicit neural representations.
In this section, we will review the techniques from two perspectives of INR.
The first is “how to catch the high frequency of the data”, and the second is
“how to construct the weight of the function representation”. We will first review

at the first perspective. In previous works, ReLU based multilayer perceptron

Ground Truth RelLU Tanh ReLUPE. RBF—RE:LUﬁ SIREN
o

Figure 1.10 SIREN cathes the high frequency, and first and second order
derivative.[35]

was used for parametrizing continuous signal, but it lacks in accurately rep-
resenting the fine detail of the underlying signal[35]. For solving this issue,
SIREN assumes that this problem occurs due to the second order derivative
of RelLU is zero for almost everywhere. And SIREN shows that implicit neural
representations using periodic activation functions(which has non vanishing
higher order derivative) can catch the complicate signals and their derivatives

robustly(Fig 1.10). SIREN used sine function for activation function, which

9 ;4 ! CI:I : ]_-_]
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can be formulated by:
J(x) =W, (fa10 fn20...0 fo) (x) + b, X fi(x;) =sin(W;x; +b;)

where f; : RNi — RNi+1 is the 4 layer of the neural network, weight matrix
W, € RVNi+1xNi hias b; € RYi+1 applied on the input x; € RV,

For representing the high frequency in INR, different from SIREN[35],
NeRF[22] proposed the positional encoding. And [38, 11] developed the idea of
positional encoding, and they proposed random fourier feature(F). F proposed
not to naively input the coordinate to the neural network, but to transform the
coordinate and then input to the neural network. Given a coordinate x € R?,

F : R® — R?™ is defined as

cos(2mBx
P | conenB

sin(27Bx)

where B € R"** is a random matrix whose entries are sampled from N (0, o?I )

and can be learnable. The number of frequencies m and the variance o2 are

hyperparameters.

Figure 1.11 Using random fourier features(right) and not(left)[11]

L 5 A &)
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[38] further researched F in an NTK framework, and showed that mapping
input vectors to simple fourier feature before input to the neural network
enables to learn a good representation of the high-frequency components, and
[1] observed the relationship between SIREN and Fourier mapping before
passing the MLP. Fourier mapping is structurally equal to one hidden layer
SIREN.

And then, we will review at the second perspective. The purpose of INR
is to obtain weights A\; € A of the function representation corresponding to
data I. Let f, : R? — R* be a function representation where R? be a spatial
coordinates space. Then “how to construct(obtain) the weight of the function
representation?” In the context of learning function representation, there are
two types: 1. embedding based method[37, 10] and 2.hypernetworks based
method[11, 36, 35].

Embedding based method learns a fixed function that takes the form fy, =
q(z,e(I)) where e(I) is an encoded as a conditioning vector[13]. For example,
modulation[31] is one of the embedding based methods. Following [31], INR-
GAN]I37] proposes factorized multiplicative modulation to build continuous
image GAN. Using e(]) encoded with input I, INR-GAN|[37] obtains a function

representation corresponding to I by modulating the fixed function:
W =W, ©o(Wp)

where W is desired weight of function representation, Wy is weight of fixed
function, Wy, is obtained through e(/) and o is non-linear function(weights of
fixed function are shared to every data).

Hypernetworks based method parametrizes a function representation us-

ing a hypernetworks[11, 35, 36, 15]. e(I) is fed to the Hypernetwork h and

11 ¥ [, -1 =1 —
M=



then h generate A\; = h(e(I)) which is the set of parameters of the function
representation(Fig 1.12). In this case, function representation takes the form
I, = g(z; A1) = g(x; h(e(I)). For example, [11] builds generative models over
implicit neural representations by adversarial approach, and they set generator
using the hypernetwork approach.

Generator

a2 |E

A i A

Hypernetwork

e(l)

Figure 1.12 Diagram of hypernetwork

There are some studies such as [13, 21] on which is better, the embedding
based method or the hypernetwork based method. However, since it is estab-
lished under the limited assumptions, hence, it is necessary to study the theory

established in more practical assumptions.

12 ;4 _CI:I : ]_-_]



2 Review the Clustering

Clustering is the unsupervised task of grouping data points for the same group

to be contain more similar features or properties to each other than other groups.

Clustering is important task in machine learning, data analysis, statistical
analysis, pattern recognition, computer vision and has a various application
in practical. There are various clustering algorithms depending on the dataset
and specific the goal of the clustering. In this chapter, firstly, we review some
clustering algorithms which is widely used in machine learning(section 2.1) and
second, we review some clustering algorithms based on deep learning(section

2.2).

2.1 Classic Algorithms

2.1.1 Centroid Based Clustering

Basic intuition of centroid based clustering is that the data point is assigned
to closest center. For this reason, the result of the centroid based clustering
makes the shape of the each cluster to be circular. Hence, it may be suitable for
if the actual clustering results are circular shape. The most popular method of
the centroid based clustering is K-Means Clustering. The standard k-means

clustering algorithm is as below:

13 :l_=-| '-\.I:_'l'



Algorithm 1 K-means clustering

Input: Given dataset {x1,---,xx}, K := the number of clusters
1: Randomly choose the centers mi, mo,...,mg € dataset
- while Assignment converges do

2
3: S; = {x e — m1|]2 < H:E — ijQVj, 1<5< K} > Assignment step
4

m; = ﬁ > x > Update center
K
TES;

o

return S1,59,...5k

K-means clustering algorithm can be proved to always terminated in finite
iterations. But it is not global optimum but local optimum and is not garunteed

to converge same result because of the randomly initialized centers.

2.1.2 Hierarchical Clustering

We might consider that data can be described by simple partitions. For exam-
ple, if data consists of dogs, cats and dolphins. we might cluster it by some
hierarchies. A : {(dogs), (cats), (dolphins)}, B : {(dogs, cats), (dolphins)}, C' :
{(dogs, cats, dolphins) }, where A is classified according to species, B is classified
according to class, and C is classified according to kingdom. Hierarchical
clustering is a method of cluster analysis that finds A, B and C in this case.
Also, unlike k-means clustering, hierarchical clustering method does not need to
predetermine the number of clusters. Hierarchical clustering builds a tree over
the data. Individual data make up the leaves, but the root is a single cluster that
consists of all of the data. Intermediate clusters exist between the root and the
leaves, including subsets of the data. The primary principle behind hierarchical
clustering is to build a tree by creating ‘clusters of clusters’ that travel upwards.
To create such a tree, there are two basic methods. 1. Each datum is placed
in its own singleton cluster at the bottom of the hierarchy before groupings

are combined using hierarchical agglomerative clustering (HAC). 2. Divisive

14 1 O 1



clustering begins with all the data in a single, large group and slices it up
until each piece of data gets its own singleton group. In this section, we only
review the hierarchical agglomerative clustering(HAC) method which is the

most popular algorithm in hierarchical clustering.

Algorithm 2 Hierarchical agglomerative clustering

Input: Given data {1, - ,zn} and groupwise distance Dist(Gy, Gs)

A0 > Initialize active set to empty
2: forn«<1---N do > Loop over the data
3: A+ AU {{z,}} > Add one data to one cluster.
4: T+ A > Store the tree as a sequence of merges
5. while |A| > 1 do > Loop until the active set has one item
6: ¥, G5 < argmin Dist(G1,G2) > Choose pair in A with best distance
G1,G2eA
7: A+ (A\{G7}) \ {G3} > Remove each from active set
8 A+ AU{G1,G%} > Add union to active set
9: T« T U{G71,G3} > Add union to tree

10: return 7

Algorithm 2 displays the general algorithm for hierarchical agglomerative
clustering. Active set A contains clusters which is merged in each stage. In the
first stage, one data constitutes one cluster, and after that, clusters with the
best distance are merged to one cluster. Finally, we get a tree that records this
series of processes. There are various methods, such as defining the distance
between cluster groups as the distance between centroids or the average of the
distances between each point. Hierarchical agglometrative clustering can be

visualized through a dendrogram.

2.1.3 Density Based Clustering

Since the k-means algorithm’s result is depend on ‘distance function’. The
most common choice is euclidean distance, and in this distance metric, k-

means algorithm forms only circular clusters. Hence, it may not be suitable for

15 :l_=-| '-\.:_'l'



Hierarchical Clustering Dendrogram

30 A

25

20 A

15 4

10 4

[ 1 [ 1
0

(7) (8) 41 (5)(10)(7) (4) (8) (9)(15)(5) (7) (4) (22)15)23)
Number of points in node (or index of point if no parenthesis).

Figure 2.1 Visualization of HAC through dendrogram.

clustering non-circular shape. Also, k-means clustering is sensitive to outliers,
the cluster results may become strange. Density based clustering algorithm
may solve these issues. The fundamental premise of density-based clustering is
that each point in the cluster must have a minimum number of points within a
predetermined radius. i.e, the density must be exceeded at least a certain level.
we briefly review the density-based spatial clustering of applications with noise
(DBSCAN) which is the most popular algorithm in density based method.

We define some definitions for describing the algorithm.

Definition 2.1 (e-neighborhood of a point) The e-neighborhood of a point

p, denoted by N.(p), is defined by N.(p) = {q € D | dist(p,q) < €}.

Definition 2.2 (directly density-reachable) A point p is directly density-

reachable from a point q with respect to €, MinPts if

16 _ "H _L‘I:r_ ]_..” .



L[]

p: border point ¢ o . M ﬂ ¢ p: directly density reachable from q

q: core point ° ° o Q:notdirectly density reachable from p
° .

(a) Border point and core

point (b) Directly density reachable point

Figure 2.2 Definition 3.2

(1) p € Ne(q)

(2) |N=(q)| > MinPts (core point condition)

i.e, a point p is directly density reachable from a point q means that q is

not a border point and contains minimum points in the e-neighborhood.

Definition 2.3 (density-reachable) A point p is density reachable from a
point q with respect to ¢ and MinPts if there is a chain of points p1,...,pn, p1 =

q,Pn = p such that pj;1 is directly density-reachable from p;.

Even if two points are in the same cluster, if both points are the border
point, then they are not density-reachable. Therefore, a new definition which

is called density-connected is needed for this problem.

Definition 2.4 (density-connected) A point p is density connected to a point
q with respect to € and MinPts if there is a point o such that both, p and q

are density-reachable from o with respect to € and MinPts.
Based on what we defined so far, finally, we can define cluster and noise.

Definition 2.5 (cluster) Let D be a database of points. A cluster C with
respect to € and MinPts is a non-empty subset of D satisfying the following

conditions:

17 ¥ [, -1 =1 —
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[ ]
LA .
o ’ p: density reachable from q ¢
b g: not density reachable from p

(a) Density reachable point

(b) Density connected points

Figure 2.3 Definition 3.3 and 3.4

(1) Vp,q:if p € C and q is density-reachable from p with respect to ¢ and
MinPts, then q € C. (Maximality)
(2) Vp,q € C : p is density-connected to q with respect to ¢ and MinPts.

(Connectivity)

Definition 2.6 (noise) Let Ci,...,Cg be the clusters of the database D
with respect to parameters ¢; and MinPts;,7 = 1,..., k. Then we define the
noise as the set of points in the database D not belonging to any cluster C;,

i.e.noise ={pe D|Vi:p ¢ C;}.

DBSCAN requires predefined ¢, minimum points(MinPts) and distance
measure function(DistFunc). And then classifies the points as core point, border
point and noise. And finally DBSCAN groups the reachable points as single

one cluster. The algorithm is shown below.
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Algorithm 3 DBSCAN

Input: Dataset, e, MinPts and DistFunc
1: C:=0 > Label of cluster
2: for point P in Dataset do

3: if label(P) # undefined then

4: continue

5: Neighbors N := FindNeighbor(Dataset, DistFunc, P, €)
6: if |[N| < MinPts then

7: label(P) = Noise

8: continue

9: C=C+1

10 label(P) .= C
11: SeedSet .= N \ {P}
12: for point Q in S do

13: if label(Q) = Noise then

14: label(Q) ==

15: if label(Q@) # undefined then

16: continue

17: label(Q) = C

18: Neighbors N := FinedNeighbor(Dataset, DistFunc, Q, €)
19: if |N| > MinPts then

20: S=SUN

1: function FINDNEIGHBOR((Dataset, DistFunc, Q, €)
2: Neighbors N := empty list

3: for point P in dataset do

4: if DistFunc(Q,P) < e then

5: N =NU {P}

6: return N

2.2 Deep Learning based Clustering

Many fields of machine learning are being replaced by deep learning-based
methods. Clustering is no exception. Recently, deep learning is showing superior
performance in image clustering. SOTA on the benchmark datasets are also

established by deep learning-based methods. In this chapter, we review the two
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types of the clustering methods which we called 1.two-stage learning method
and 2.end-to-end learning method.

The first one, two-stage learning method(such as DEC[41],DAC[6],Deep
Cluster[5]) obtains semantic features of the unlabeled dataset through pretext
tasks on the first stage. The first stage can be regarded as self-supervised
learning, and there are various tasks for pretext task. For example, predicting
the patch context [9, 25], inpainting patches[30], solving jigsaw puzzles [26, 27],
colorizing images [45, 20], predicting noise[4], predicting rotations[14], spotting
artifacts[17], generating images[32], and so on. And then, in the second stage,
fine tunning step is performed to solve clustering task.

The second one, end-to-end learning method(such as IIC[18], IMSAT|16],
SeLa[42]) simultaneously learns both the feature representation and clustering
assignment without explicitly optimizing the clustering task. However, this
method is prone to result degenerate solution which is predicting the all data
into one cluster[18]. To prevent this problem, many literatures maximizes the
mutual information between the class assignments of the paired data to learn
similar representations, and then establish the high accuracy of clustering.
However, there is a question that whether these learned representations are
really meaningful and similar between positive pairs and different from negative
pairs. Hence other methods have been introduced to prevent this problem.

Also very recently, contrastive learning has achieved good performance in
clustering task. The basic concept of contrastive learning is to map feature
vectors of positive pair data close and map feature vectors of negative pair
data far away. There are clustering methods based on contrastive learning([46,

7, 34, 8, 39, 43]). For example, [39] proposed two-stage clustering method with
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contrastive pre-training and then fine-tuning for clustering task. And [43]
proposed to use infoNCE loss[29] with clustering by end to end manner.
The most representative of each method will be reviewed in the upcoming

sections.

2.2.1 Two-Stage Learning Method

DEC(Deep Embedded Clustering)[41] is one of the first work to apply deep
learning to clustering. Instead of directly clustering on the data space, DEC
maps data through nonlinear mapping fy : X — Z, where 6 are learnable
parameters and Z is the latent space. DEC has a two stages:
1. feature space is obtained by the encoder of the autoencoder, (i.e, encoder
is fa).
2. simultaneously optimizing for cluster assignment and 6 for optimizing
underlying feature space.
However, the second stage is challenging, because optimizing cluster assignment
needs true label of the data. However, in unsupervised setting, the label
is unknown. Hence, DEC proposed to optimizing clusters with an auxilary
target distribution which is obtained by the current soft cluster assignments.

Definitions are as follows:

Definition 2.7 (Soft assignment)

2, \ "%
(14 [zt = il /)
dij = “arl

Xy (1l =l )

where z; = fp(z;) € Z corresponds to z; € X after embedding, o are the

degrees of freedom of the Student’s ¢ distribution and ¢;; can be interpreted
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as the probability of assigning sample i to cluster j (i.e., a soft assignment).

The authors set « = 1 for all experiments.

Definition 2.8 (Auxiliary target distribution)
b= a;/ [
ij = 2
2 Gyl Fi

where fj = Zz qij

DEC updates the feature representation (i.e, #) and cluster centroid for
every iteration by minimizing KL-divergence between auxiliary target distri-
bution p; and soft assignments ¢;. Hence the loss function is L = KL(P||Q) =

D ; pijlog %. Overall algorithm for DEC is as follows:

Algorithm 4 DEC

1: pre-training the fy by autoencoder
Input: fy, initial centroid uj, (j =1,...,k)
2: while Cluster assignments converge do
3: calculate soft assignment ) and auxiliary target distribution P
4: updates 6 and p; by the gradient of the loss > loss is KL-divergence
between P and Q.

Another two-stage learning approch is SCAN(Semantic Clustering by Adopt-
ing Nearest neighbors)[40]. In a first stage, SCAN pretrains neural network ®g
to learn a feature representations through a pretext task 7. However, the feature
representation of data belonging to the same cluster may not be invariant. To
solve this problem, SCAN includes minimization of the distance between data
X; and their augmentations 7' [X;] in pretext task 7, which can be expressed
as:

mind (B, (X,), &y (T (X))

And naively applying K-means clustering on the obtained features can lead to

degenerate solution which means all data belongs to one cluster. To overcome
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this problem, SCAN proposed to mining nearest neighbors. i.e, for every sample
X;, SCAN mines its K nearest neighbors in the feature space ®y. SCAN defines
the set N, as the neighborhood of X; in the dataset.

In a second stage, SCAN classifies each data and its mined neighbors
together by using a following loss function:

1
A= —@ Z Z log <<Pn(X),<Pn(k)> —i-/\Z(I)%Clog(I);)c,

XeDkeNx ceC

, 1
with @ = Dl > P(X)
XeD

where ®,, is clustering function parameterized by 7 and final layer of ®, is
softmax function to obtain probability of assignment over the each cluster label
C={1,...,C},with ®,(X;) € [0,1]%, Ny, is mined neighborhood of X;. The
probability of X; being assigned to cluster c¢ is denoted by ®,°(X;). Algorithm

is as below:

Algorithm 5 SCAN
Input: Dataset D, Clusters C, Task 7, ®g, ®,, Neighbors Np = {}.
1: Pretraining ®¢ with task 7.
for X; € D do
Np < Np UN,, with Ny, = K neighboring samples of ®y (X;)
while SCAN Loss converges do
Update ®,, with SCAN-loss, i.e. A (®,(D),Np,C)

while Len(Y) increases do
Y < (®,(D) > threshold )
Update ®,, with cross-entropy loss, i.e. H (<I>7,(D), Y)

return ¢, (D)

2.2.2 End-to-End Learning Method

Invariant information clustering(IIC)[18] is one of the end-to-end learning
method. Let x,x” € X be a paired data. For example, x and x’ could be different

images but containing same semantic information. The goal of IIC(Information
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Invariant Clustering) is to learn ® : X — Y = [0,1]¥, where ®(x) can be
interpreted as the distribution of a discrete random variable z over k classes,
formally given by P(z = c|x) = ®.(x).(z can be considered as assignment
random variable) ® will learn what is in common information between x and
x’ while removing instance level details, and induces high probability to be
assigned to the same cluster label between x and x’. It achieved by maximizing
the mutual information between z and 2’ where z, 2’ are assignment random
variable. However, in unsupervised setting, we don’t know what x and x’
are paried. Therefore, X' can be generated by augmentation function g, i.e,

x' = g(x). Hence, The goal of IIC is maximizing the mutual information:

k
maXMI (Z z) = maXZ ZPCC In PP P,

e=1c¢'=1
The authors assume that P(z = ¢,z = |x,x') = P(z = ¢|x) - P(c/|x’). This
means that z and 2’ are independent when specific x and x’ are given. Then
the joint probability over z and 2’ is calculated by the output of the neural
network &:

P(z=c2 =) :ZP(Z =c, 2 =d|x,x') P(x,x)

x,x/

= E [P(z=c,7 =[x,x)]

x,x/
1 n
—E (z=c,2' =|x;, %

Then the joint probability distribution over z and 2’ can be expressed as matrix

3

P where each element at cth row and ¢/th column denoted as P, = P(z =
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And the lastly, P(z = ¢)(P(z' = ¢’)) are obtained by summing the row(column)
of the P.

Since M1(z,2') = H(z) — H(z|7'), maximizing mutual information has
a trade-off between maximizing individual cluster assignments entropy H (z)
and minimizing the conditional cluster assignment entropy H(z|z’). The first
one H(z) is maximzed when all cluster assignment probability be same which
prevents a degenerate solution. However, if H(z) is fully maximzed, then P(z)
will be uniform distribution which means no clustering. The authors claims
that the second term H(z|z') can prevents this problem, and it is minimized

when the cluster assignments are exactly predictable from each other.
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3 chapter3

3.1 Related Works

Our works are related to transformation invariant feature extraction meth-
ods[14, 23, 12, 19, 28, 33, 44, 26] and deep learning based clustering methods|[24,
41, 18, 40]. Transformation invariant feature extractions are mainly studied on
self-supervised learning for pretext tasks for learning semantic informations of
the data. Especially, [23, 12] proposed to learning rotation invariant feature
for pretext task. However, these studies have limitations in that the rotation
degrees are finite(0, 5, , %77), and only show that there is a performance gain
in the downstream task, but do not show how rotation invariant features are
learned in the pretext task stage. Also, there are methods that the ultimate goal
is to learn rotation invariant features and rotation degrees are infinite(i.e, 0 ~
27) [2, 3]. Spatial-VAE[2] disentangles image rotation from other unstructured
latent factors in a variational autoencoder (VAE) framework. Spatial-VAE
formulates the generative model as a function of the spatial coordinate(i.e,
implicit neural representations perspective). By leveraging this perspective,
predicted rotation degree which is obtained by front part of output of an encoder
rotates input spatial coordinates, Spatial-VAE makes the reconstruction error
be able to differentiate with respect to predicted rotation degree. Also, by

minimizing the KL-divergence term so that the distribution of inferenced
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rotation degree by the front part of the encoder output becomes the prior
distribution of rotation degree, the rear part of the encoder becomes a rotation
invariant feature. However, Spatial-VAE assumed that the rotation degrees of
the dataset are sampled from gaussian distribution such as N ( , g—ﬁ) instead
of uniform distribution over [0, 27]. This makes that many data are rotated by
close to zero degree. And, although they measured the correlation between the
latent variable inferred by the encoder and the ground truth rotation degree
for the performance of learning rotation invariant feature, but NOT directly
verified how the rotation invariant features were learned well. It is different from
that our work learned rotation invariant features and showed good performance

in a downstream task(i.e, clustering).

Latent
a) variables b)
v/
E ! f(x,2) I flatten \;
I Input image Inference
Spatial Spatial generator Pixel network
coordinates network values

Figure 3.1 Diagram of Spatial-VAE. a) Modelling generative model as
mapping coordinates and latent variables to the pixel intensity(RGB) at
that coordinate. b) Inference network(encoder) inferences the rotation and
unstructured latent variables.

3.2 Aim of The Proposed Method

Most of the literature focuses on achieving high performance on benchmark
datasets. However, in the case of image domain, datasets such as MNIST,
FashionMNIST, CIFAR10, STL10, ImageNet and etc contain human’s prior

knowledge. For example, the number digits in MNIST are not rotated and are
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Figure 3.2 Diagram of the propsed method.

placed at the ‘zero degree’ which is considered as a natrual and normal image
to human sense. However, in practically, dataset of the number digits may
be randomly rotated by 0 to 27 degree. In generally, there are no reason to
neural network to recognize 2 and rotated 2 are same digit. However, in many
situations, we want to our neural network recognize these images are same. To
make this possible, the feature output by the neural network should be equal
to 2 and rotated 2. That is, the neural network needs to extract feature of the
data in rotation invariant manner. This problem can be formally defined in the
more general context not only rotation. Let X is a dataset, and G is a Group,
and a: G x X = X a group action and f : X — Z is a neural network. Let

x € X, then we want to train the neural network satisfying:

f(x) = flalg,x)) = f(gx)), for all g € G. (3.1)

Also, we define ¢f is invariant under action of G’ and ‘f is G invariant’

if f satisfies equation 3.1.
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In this paper, when G = SO(2), i.e, G is rotation group, our goal is to train
the neural network be rotation invariant, and cluster the randomly rotated
images by its rotation invariant feature. It can be established by two stage:

1. Training the neural network to explicitly extract rotationally invariant
latent vector(we call it latent) and latent rotation angle(we call it latent
angle). And by formulating the image as INR, reconstruction loss can
be differentialbe with respect to latent angle, and it is the easy way to
obtain good latent angle and latent. In addition, since INR catch the high
frequency of the image, our method are robustly worked on semiconductor
dataset(non-INR methods failed to reconstruct the semiconductor).

2. Using the (pre-trained) encoder and latent, we cluster the randomly
rotated images by DEC[41] manner, i.e, rotationally invariant clustering.

Our contributions can be summuraized as:

e We propose novel method to learn the rotaion invariant feature by
leveraging implicit neural representations. We explicitly disentangle the
latent rotation angle(latent angle) and rotationally invariant latent vec-
tor(latent) from the output of the encoder.

e We show that our method is high performance on rotationally invariant
clustering task than other methods. To the best of our knowledge, it is

first attempt to cluster with implicit neural representations.

3.3 Breaking the Symmetry

When we inference the rotation angle 6 of the image, we need to know what
is the unrotated image, which is called by reference image. Until the reference

image is given, 0 is not well defined due to the symmetry. We tried to find
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y @ Coordinates of mass center

= Direction of mass center

(b) Our actual training data
image W € W where 6 is rota-
tion degree from the reference

(a) Reference image X € X
whose direction of the center
mass is parallel to the positive
y direction. image X.

Figure 3.3 Reference image and our actual training data image. Red arrow
is direction of the center mass.

a reference image by the neural network itself without any supervision, but
this problem may too hard to neural network, and hence it failed. Hence we
propose the rule to define reference image for breaking the symmetry. For
breaking the symmetry, we define the reference image is to be the image whose
the center of mass is parallel to positive y-axis direction. Note that this rule
works even in unsupervised setting. Let’s denote {X;}Y,; € X is reference
image. Now our dataset can be considered as a set of images rotated from the
reference dataset, denoted by {Wz}f\i1 € W. Note that W; = Ry, X;, where

R is rotation operator and 6; is rotation angle.

3.4 Encoder

Let Ency be an encoder network where ¢ is learnable parameters. Our goal is
to obtain a latent vector of W € W from the encoder, where rotation angle of
the image and rotationally invariant latent vector(latent) are disentangled. We
denote that former is Enc‘;”gle (W), and later is Encf"(W). There are some

details about the encoder.
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Enc(p
= (Tﬁxvﬁy)
W —  Encoder Encé””
reparam
o Enc¢

Encgux O €

Figure 3.4 Encoder.

First, in rotation angle. We found that it is not appropriate to naively
representing rotation angle as 6 € R!. Instead, we represent rotation angle as
coordinates of center of mass Mcenter (W) = Meenter(RoX) = (my, my). Using
inner product, it can be easily shown that there is one-to-one correspondence
between rotation degree and the center of mass.

Enc;”g ' estimates 6

estimates W

reparam

Enc¢ estimates X

Figure 3.5 Encoder estimates latent angle and latent.

inv

Second, We found that reparametrizing Ency* before input to hypernet-

work performs better. So encoder not only output Encfb””, but also output

auxilary latent vector Enc?f’“z . Proposed reparametrization is simple as follow-
ing:

Encfbep (W) = Encfb"” (W) + ¢ © Ency"* (W)
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where ¢ ~ N(0, ). This reparametrization makes latent vectors around near
the Encfﬁ"”(W) to have the similar feature as W.

Hence, our encoder output three latent vectors as following;:

Ency(W) = (Encj;"QZE(W), Enc/" (W), Enci* (W))

wMﬂW?WW%ME@WW%MEﬁWW%MmMS

resolution of the image, d is dimension of the latent.

3.5 Hypernetwork

| Fa FC2 FC3

Ency P e Hypernetwork

Figure 3.6 Hyper Network

Let Hy, be a hypernetwork where v is learnable parameters. Hy, receives
Encf;p 4% as an input. By doing this, we induce points near Encg1V to ouptut
the same function representation. Therefore, it helps to form a latent space
be a cluster friendly. We experimentally confirmed that this reparametrization
process improves clustering performance.

And H,, outputs the parameter of the function representation generator G

that corresponding to implicit neural representations of the input image W.
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Function Representation Generator

Xy

<coordinates>

@ @ | | R[]

FC1 FC2 FC3

Hypernetwork

Figure 3.7 Function Representation Generator.

3.6 Function Representation Generator

Naive function representation generator G"%"¢ recieves parameters of function
representation and transformed coordinates as inputs, and then outputs RGB

Gnaive

value. Hence, is function such that:

Gnaive ‘0 x RS —s le

where (2 is space of function representations, s is dimension of spatial coor-
dinates(e.g, s = 2 for 2-dimensional image), and k is dimension of feature

value(e.g, k = 3 for RGB value). hence in our case,
Gt (Hy (Bnc™ ™), (z,y)) = (R,G, B)

Note that there are no learnable parameter in G™*v¢. However, we suggest
different form of function representation generator. First, pixel coordinates are

angle

rotated by 6 which is obtained from rotation angle Enc 6 Second, following

[11], coordinates are transformed by random fourier features(which is called

33 2 2 11



by F). Random fourier feature F : R® — R?™ is defined as

cos(2rBx
ppg < | P@BR)

sin(2rBx)

where x € R* is spatial coordinate, B € R™**® is a (potentially learnable)
random matrix whose entries are sampled from A (0, 02). The number of fre-

2

quencies m and the variance o“ are hyperparameters. Therefore, our proposed

function representation generator G is as following;:

G (Hw(Enc;eP“mm), F(Ry(z, y))) — (R,G, B)

3.7 Objective Function

Objective function is consisted of three terms:

L= )\angle : »Cangle + AConsis : ['(:onsis + )\recon ’ Erecon

Angle Loss Langle

In section 3.3, we break the symmetry problem by setting the rule so that the
rotation angle 8 becomes well defined. Our proposed reference image is that the
center of mass direction is parallel to the positive y-axis. This rule works well
even in unsupervised setting. Assume that W € W is our training data, hence,
there exists the reference image X and rotation angle 6 such that W = RyX.
Our goal is to obtain a 6 from the input image. We found that minimize
euclidean distance between rotation angle and predicted rotation angle, (i.e, 6
and é) does not work well. Instead, we minimize euclidean distance between

Meenter (W) (= Enci"gle(W)) and the real center of mass mcenter (W).
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Proposed angle loss Lapgle is as following:

2
ﬁangle - I)E{ Ig: |:Hmcenter(R9X) — Encgngle (RQX) H :|
~[0,27)

=L |:Hmcenter(w) - cmgle H :|
\%\%

We follow the empirical risk minimization. So empirical angle loss ﬁangle is

as following:

2

N

N 1

Langle = N Z Hmcenter (W;) — Enc;ngle(wi)
i=1

where N is the number of samples.

Consistency Loss Lconsis

One of our goal is Enc”w to be rotationally invariant, i.e, for W € W, and for
all ¢ € [0, 2m),

Enc"“’ (W) = Encm”(RQ/W)

To accomplish this property, we propose the consistency loss Leonsis as following;:

X0

. . 2
Lowis = B E [HEnch””(RQX) —Encgyv(ne,X)H }
9/
~[0.2)

E [HEncfg‘“(W) — Enci™(Rg'W) H }

Since 6, 6’ are uniform, the second equality holds. Next, we follow the empirical

risk minimization. So empirical consistency loss Liny is as following:

2

con51s = NM Z Z HEnCmv Encznv (RG W )

=1 j=1
where 6;;’ are randomly sampled from UJ0,27n] and M is the number of

sampling.
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Reconstruction Loss Lrecon

Minimizing reconstruction loss makes our latent space to be more meaningful.

2]

where (W), denotes feature value at rth coordinates, (z,,y,) denotes rth

We propose reconstruction 1oss Lyecon as following:

Res
_ 1 reparam R
Lrecon = 7~ 2%% !H(W)r -G <H¢(Enc¢ (W)), F(Rg(xr,yr))>

coordinates, and Res denotes resolution of the training image. We follow

the empirical risk minimization. So empirical reconstruction loss Lyecon is as

following:

1 Res N 2
A o ) _ reparam . N
Lueon = Firy 37 2 2 | (Wil = G (HLu(Bnel ™" (W) F(Ry(er. )

where N is the number of samples.
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4 Experiments

Dataset

We use randomly rotated MNIST, randomly rotated FashionMNIST (rotate
0 degree for all images, where 6 ~ Uniform[0, 27] and WMS811k. MNIST is
a dataset of handwritten digits with 10 labels, since rotated 6 and rotated
9 should be treated same, we removed both 9 from the training and testing
phases. The reason why 6 and 9 are not merged as same label is to balance the
number of each labels. FashionMNIST is a dataset of article images with 10
labels and WMS811k is a dataset of wafer maps of semiconductor with 9 labels.
Since original WMS811k is very unbalenced between the number of each labels,
we adjusted the number between labels (data augmentation was not applied
because it could result in changing the label of the wafer map). In particular,
in the case of WMS811k, since each data is already randomly rotated, there
is no need to create a rotated dataset separately. WMS&11k is a dataset that

shows rotationally invariant clustering is important task in practically.

Architecture

We use only MLP architecture for encoder, hypernetwork and function repre-
sentation generator. Encoder is 5-layer MLP such that 32(input dim)-128-128-

128-66(2+32+32). Hypernetwork is 3-layer MLP such that 32(latent dim)-128-
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(a) MNIST(9 is removed)

T-shirt Trouser Pullover Dress Coat Shirt Sneaker Boot

HUNINE@AZEDY

6000

(b) FashionMNIST

Near-Full None Random Scratch

Center Donut Edge-Loc Edge-Ring

1000 499 1000 1000 1000

(c) WM811k

Figure 4.1 Sample of the training dataset. The number below the image
indicates the number of that label.

128-256-66049. Function representation generator is 3-layer MLP such that

256-128-128-1(grey scale).

Hyperparameter

We set Aangle = 15, Aconsis = 1, Arecon = 1. Random matrix B of fourier random
feature F is 128 by 2 matrix. The number of samples in consistency loss is

M = 3. Learning rate is 1074 and use 107° weight decay for all parameters.

Evaluation of output images

We visualize input images from randomly rotated training dataset, and output
images obtained by input coordinates are rotated by 6 (Figure 4.2). These

results are shown in Figure 4.4, 4.7 and 4.10.
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Function Representation Generator

[ r | |Fa FC2 FC3 7

<coordinates>

FcL [ Fc2 | FCG3

W % Encoder Hypernetwork

Figure 4.2 Input coordinates are rotated by 0.

In addition, we generate new images by rotating 0 ~ 27 degree from fixed
image. And then input to the neural network while input coordinates are NOT
rotated (Figure 4.3). These results are shown in Figure 4.5, 4.9, 4.8, 4.9 and
4.11. The reconstructed images are consistently almost same, i.e, it means that

Encf;”’ is rotationally invariant.

Function Representation Generator

<coordinates>

-{ FCL FC2 FC3 }> “ﬂ

FC1 FC2 [FE3

W—- Encoder [ Hypernetwork

Figure 4.3 Input coordinates are NOT rotated.
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Figure 4.4 Reconstruction - MNIST. Input coordinates are rotated by 6.
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Figure 4.5 Rotation invariant reconstruction(1)- MNIST. Input coordinates

are NOT rotated.
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(b) Reconstructed images
- MNIST. Input coordinates
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(a) Rotated images
Figure 4.6 Rotation invariant reconstruction(2)

are NOT rotated.
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Figure 4.7 Reconstruction - Fashion MNIST. Input coordinates are rotated
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(a) Rotated images (b) Reconstructed images

Figure 4.8 Rotation invariant reconstruction(1) - Fashion MNIST. Input
coordinates are NOT rotated.
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(a) Rotated images

Figure 4.9 Rotation invariant reconstruction(2) - Fashion MNIST. Input
coordinates are NOT rotated.
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(a) Input images (b) Reconstructed images

Figure 4.10 Reconstruction - WMS811k. Input coordinates are rotated by 0.
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(a) Rotated images (b) Reconstructed images

Figure 4.11 Rotation invariant reconstruction - WM811k. Input coordinates
are NOT rotated.
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Clustering Results

We show that our method has better performance than other clustering algorithms(k-

means, DEC and Spatial VAE) on fully rotated MNIST, fully rotated FashionM-
NIST and WMS811k. Explanation on clustering algorithms used in experiments
is as below:

e k-means: Apply k-means directly to datasets.

e DEC: Apply DEC(section 2.2.1) to datasets. All hyper-parameters were
used as suggested in the DEC paper.

e Spatial VAE: Pretraining the Spatial-VAE(section 3.1). And then apply
k-means to the learned latent space(i.e, output space of the encoder). All
hyper-parameters were used as suggested in the Spatial-VAE paper.

e AE base-line: Apply our algorithm to AutoEncoder, NOT based on
Implicit Neural Representations(INR). The AE base-line shows that INR
is an essential element in our methodology. In the AE base-line, the
architecture used the same encoder structure as in our proposed method,
but since the AE base-line is based on Auto-Encoder, rather than an
INR based structure, a structure such as a hypernetwork or a function
representation is not used. Instead, the AE base-line used the decoder
with a reversed structure of the encoder. The objective function and
learning algorithm of AE base-line are almost same as we proposed. The
front part of the encoder output inferences the reference degree, and the
rest part goes through reparameterization and input into the decoder.
Finally, the decoder is trained to generate a reference image. Let E and

D be the encoder and decoder respectively. The loss function £Ag base-line
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is as follows.

EAE base-line — »Cangle + /v‘consis + £recon

Langle and Leonsis are same as we propsed in section 3.7, and

Lrecon = % RX_;‘I% [H(W)r ~ Ry(D(E(W))), 2}

where R is rotation function with rotation degree 6. The overall diagram

is shown in Figure 4.12. And then apply k-means to the learned latent

) S Inference §
¢
// = (1M, M)
/
/
/

/ .
W" Encoder [—— Encg”

\ Decoder

\
\
\Enc$“” O €

Figure 4.12 AE base-line

space(i.e, output space of the encoder).

e Ours: Pretrain with INR which is proposed method in this paper. And
then apply k-means to the learned latent space(i.e, output space of the
encoder)

e Ours+DEC: With pretrained model which is obtained by Ours. And
then apply DEC to the learned latent space. We set @ = 0.0001 for
degree of the freedom of the student distribution in DEC.

Naively applying k-means clustering on learned latent space of the encoder
already outperformed to other methods. Our method with DEC showed the best
performance on rotated MNIST, rotated FashionMNIST and WM811k(Table

4.1).
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Table 4.1 Clustering results

Rotated MNIST Rotated Fashion MNIST WM&811k

k-means 26.7% 25.64 % 44.1 %
DEC 28.6 % 26.1 % 36.3%
Spatial VAE 56.4% 41.2 % 27.4%
AE base-line 53.9% 46.8% 49.8 %
Ours 79.3% 49.3 % 55.5 %
Ours+DEC 81.1% 50.2 % 56.1%

Also, we show that the images belonging to each predicted label after
clustering(Fig 4.13, 4.14, 4.15). We randomly sample the images, not cherry

picking.

0008990
[eNeRcNeNoN« NoXe)
gosYOQooe
ad6Q00Q¢
[=X=Xo ' Hu RVE- RV
50008500
QOo00Oo®9RC
SCoemrNIOD

YUY IRST
R AR E X
ER RN
LOVEHLWPRS
DEeLEEl LN
Wez33mpEws

bALT P2 R

RN WA RS 5 . 7\

eyl =xqg NS EDA A
ERENEEE AR T4 ) b ZINS NEAT
£ 4L A 4w K <NSALTDL
XU AP A X - ) VA ~AN~3 N
w4 gAY S

CRTTrITUE S

12 7AP R

—~

Figure 4.14 Clustered FashionMNIST by Ours+DEC.
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Figure 4.15 Clustered WM811k by Ours+DEC.
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5 Conclusion

In this paper, we posed the necessity for breaking the symmetry in the task
that predicting the rotation degree in unsupervised setting. We proposed
to use the center of mass as a rule to break the symmetry. Using this rule
and Implicit Neural Representations (INR), we proposed two-stage method to
cluster randomly rotated image datasets. First stage, training the encoder to
output the latent vector which is disentangled to latent rotation angle(latent
angle) and rotationally invariant latent vector(latent). Second stage, clustering
latent according to the DEC[41] has superior performance on randomly rotated
datasets than other methods. It is first approach to cluster with implicit neural
representations (INR) as far as we know.

Of course, various other methods can be applied to our method. For example,
in the first stage, the consistency loss in the section 3.7 has the effect that
collapsing the latent space, contrastive learning method can be applied instead
of our consistency loss for similar features becomes closer and disimilar features
becomes far. And also in the second stage, we IIC[18], SCAN[40] and other

methods can be applied instead of DEC[41].
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