

저작자표시-비영리-동일조건변경허락 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

l 이차적 저작물을 작성할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

동일조건변경허락. 귀하가 이 저작물을 개작, 변형 또는 가공했을 경우
에는, 이 저작물과 동일한 이용허락조건하에서만 배포할 수 있습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

이학석사 학위논문

Rotationally Invariant

Clustering with

Implicit Neural Representations

음적 신경망 표현을 활용한 회전 불변 군집화

 2022년 8월

서울대학교 대학원
수리과학부

권 세 현

Rotationally Invariant

Clustering with

Implicit Neural Representations

지도교수 Ernest K.Ryu

이 논문을 이학석사 학위논문으로 제출함

2022년 8월

서울대학교 대학원

수리과학부

권 세 현

권세현의 이학석사 학위논문을 인준함

 2022년 8월

위 원 장 강명주 (인)

부위원장 Ernest K.Ryu (인)

위 원 Otto van Koert (인)

Abstract

Image clustering is important task in machine learning, deep learning and

industry. Especially in deep learning, clustering is becoming increasingly im-

portant because it is used not only for clustering but also for other purposes

such as pretext task in self-supervised learning. Many previous literatures have

shown excellent performance in benchmark datasets, but these datasets are

not rotated. However, in practically there is no guarantee that the dataset

will always be placed right. We tackle that existing prior algorithms do not

work well when images are randomly rotated. In this paper, by leveraging

Implicit Neural Representations(INR), 1. We obtain a latent vector, where

latent rotation angle and rotationally invariant latent vector are disentangled

from each other. 2. We show that clustering by rotationally invariant latent

vectors have superior performance on randomly rotated datasets than other

methods. To the best of our knowledge, it is the first approach to cluster with

Implicit Neural Representations.

Keywords: Rotationally invariant, Clustering, Deep learning, Implicit neural

representations, Artificial intelligence.

Student ID: 2020-21133

i

Contents

Abstract i

Contents ii

List of Figures iv

List of Tables vii

1 Review the Implicit Neural Representations 1

1.1 Introduction to INR . 1

1.2 Applications of INR . 5

1.3 Techniques of INR . 9

2 Review the Clustering 13

2.1 Classic Algorithms . 13

2.1.1 Centroid Based Clustering . 13

2.1.2 Hierarchical Clustering . 14

2.1.3 Density Based Clustering . 15

2.2 Deep Learning based Clustering . 19

2.2.1 Two-Stage Learning Method . 21

2.2.2 End-to-End Learning Method . 23

3 Rotationally Invariant Clustering with INR 26

3.1 Related Works . 26

3.2 Aim of The Proposed Method . 27

ii

3.3 Breaking the Symmetry . 29

3.4 Encoder . 30

3.5 Hypernetwork . 32

3.6 Function Representation Generator . 33

3.7 Objective Function . 34

4 Experiments 37

5 Conclusion 52

Bibliography 53

초 록 59

iii

List of Figures

1.1 Traditional representation of image. 1

1.2 Each λ represents different images. 3

1.3 Generate any resolution of an image. 4

1.4 Diagram of NeRF[22] . 5

1.5 reconstruct 3-dimensional scene by NeRF[22] 6

1.6 Superresolution. The first column is original resolution, the

second column is 4 times resolution than the original, and the

third column is bicubic upsampling[11] . 6

1.7 Single point source(green dot) is located in the center of

[−0.5, 0.5]2 box with uniform wave propagation(top left).

SIREN (second column of right image) obtained a similar

solution of the helmholtz equation compared to principled

grid solver(first column of right image). while other activation

function based methods failed to solve.(thrid, fourth and fifth

column of right image)[35] . 7

1.8 Generating image function by hypernetwork[11] 8

1.9 Extrapolating. During training, only [0, 1]2 squared coor-

dinates was used, and evaluate it on coordinates from

[−0.3, 1.3]2 square.[11] . 8

1.10 SIREN cathes the high frequency, and first and second order

derivative.[35] . 9

1.11 Using random fourier features(right) and not(left)[11] 10

iv

1.12 Diagram of hypernetwork . 12

2.1 Visualization of HAC through dendrogram. 16

2.2 Definition 3.2 . 17

2.3 Definition 3.3 and 3.4 . 18

3.1 Diagram of Spatial-VAE. a) Modelling generative model as

mapping coordinates and latent variables to the pixel inten-

sity(RGB) at that coordinate. b) Inference network(encoder)

inferences the rotation and unstructured latent variables. 27

3.2 Diagram of the propsed method. 28

3.3 Reference image and our actual training data image. Red

arrow is direction of the center mass. 30

3.4 Encoder. 31

3.5 Encoder estimates latent angle and latent. 31

3.6 Hyper Network . 32

3.7 Function Representation Generator. 33

4.1 Sample of the training dataset. The number below the image

indicates the number of that label. 38

4.2 Input coordinates are rotated by θ̂. 39

4.3 Input coordinates are NOT rotated. 39

4.4 Reconstruction - MNIST. Input coordinates are rotated by θ̂. . . . 40

4.5 Rotation invariant reconstruction(1)- MNIST. Input coordi-

nates are NOT rotated. 41

4.6 Rotation invariant reconstruction(2) - MNIST. Input coordi-

nates are NOT rotated. 42

4.7 Reconstruction - Fashion MNIST. Input coordinates are

rotated by θ̂. 43

v

4.8 Rotation invariant reconstruction(1) - Fashion MNIST. Input

coordinates are NOT rotated. 44

4.9 Rotation invariant reconstruction(2) - Fashion MNIST. Input

coordinates are NOT rotated. 45

4.10 Reconstruction - WM811k. Input coordinates are rotated by θ̂. . . 46

4.11 Rotation invariant reconstruction - WM811k. Input coordi-

nates are NOT rotated. 47

4.12 AE base-line . 49

4.13 Clustered MNIST by Ours+DEC. 50

4.14 Clustered FashionMNIST by Ours+DEC. 50

4.15 Clustered WM811k by Ours+DEC. 51

vi

List of Tables

4.1 Clustering results . 50

vii

1 Review the Implicit Neural Representations

1.1 Introduction to INR

In machine learning, data is traditionally represented by discrete signal. For

example, images are represented by their 2D array pixels(Fig1.1), audio is

vectors of discretely sampled waveforms, and 3D shapes are usually parame-

terized as grids of voxels, point clouds, or meshes. In image, all we know is

(a) Image (b) Represented as 2D pixel arrays

Figure 1.1 Traditional representation of image.

RGB values of finite points in spatial domain of the image. For example, if

spatial domain of the image is normalized to [0, 1]2 box and resolution of the

image is 28 ∗ 28, we know RGB values at 784 points(e.g, (0, 0), (0, 1
28), . . .)

in [0, 1]2 box. However, the underlying real image not only has RGB values

1

at 784 points, but also has RGB values at all points in the box [0, 1]2(i.e,

infinite resolution). Of course, it is possible to measure the RGB values at

any point in the spatial domain by taking multiple pictures. Underlying

signals of other domains are often continous as well as image. Therefore, it

is natural to try to represent these signals as continuous manner. However,

these continuous expressions of signals are not tractable in the sense that

it is impossible write down to a mathematical formula. Implicit Neural

Representations(INR) parameterize these signals by neural network that

maps domain of the signal(e.g, coordinates of pixel in image) to some values

of at that domain(e.g, RGB value of image).

In INR, general signals are parametrized by continuous function as follow-

ing:

f : Λ× Rd −→ Rk(
λ, (x1, . . . , xd)

)
7−→ f

(
λ, (x1, . . . , xd)

)
where Λ is parameter space of neural network, d is domain dimension, and k is

feature dimension of the signal. For each one λ ∈ Λ represents one signal.

For example, in 2-dimensional images, d(dimension of xy coordinate) and

k(dimension of RGB value) is going to be 2 and 3 respectively. So 2-dimensional

images can be represented by the following form:

f : Λ× R2 −→ R3

(
λ, (x, y)

)
7−→

(
λ, (x, y)

)
= (R,G,B)

Note again, the one λ ∈ Λ corresponds to one image, so if we fix the parameter

λ ∈ Λ, then fλ represents one image(Fig 1.2), where

2

fλ : R2 −→R3

(x, y) 7−→fλ(x, y)

= f
(
λ, (x, y)

)
= (R,G,B)

The goal of the INR is to find λ ∈ Λ. We obtain λ through training the neural

Figure 1.2 Each λ represents different images.

network. After obtaining the λ, then we can express a discrete signal again. For

example, assume that the scale of coordinates system is normalized to [0, 1]2

and we want to generate 2-dimensional discrete grey image with resolution

28 ∗ 28. All we have to do is input the 784 coordinates to the fλ, i.e. input

(0, 0), (1
28 , 0), (

2
28 , 0), · · · , (

28
28 , 0),

(0, 1
28), (

1
28 ,

1
28), (

2
28 ,

1
28), · · · , (0,

28
28),

...

(0, 2828), (
1
28 ,

28
28), (

2
28 ,

28
28), · · · (

28
28 ,

28
28)

3

then collect 784 outputs, and finally reshape it to 28 ∗ 28 dimensional vector

to obtain an image. It is possible to obtain any other resolutions(Fig 1.3).

Not only represents these discrete signals, INR have some nice properties

(a) 28 ∗ 28 resolution

(b) 49 ∗ 49 resolution

Figure 1.3 Generate any resolution of an image.

and applications. First, memory efficient. Data can be stored and expressed

regardless of spatial resolution(e.g, resolution of the 2-d image), depending

only on the complexity of the underlying signal (i.e, complex signal needs

many parameters and simple signal needs a few parameters of neural network).

Second, super resolution. Since INR is a function defined on spatial domain(e.g,

2-D plane), it can represent any resolution. Thrid, gradient of data. Gradients

of derivative of the data can be analytically calculated, which makes INR to

a new method for solving inverse problems and differential equations. And

4

there exist many other applications, such as image inpainting. We review these

properties in the following section.

1.2 Applications of INR

There are some reasons that Implicit Neural Reprsentations(INR) is interesting.

First,memory efficient. The way of expressing pixel grid image or 3D-scene data

depends on spatial resolution. For example, spatial dimension of the image is 2,

so if the image becomes n times larger, the required memory becomes n2 more.

And spatial resolution of volumetric scene is 5(spatial location (x, y, z) with

(θ, ϕ) view direction, so if the 3d-scene becomes n times larger, the required

memory becomes n5 more. However, in INR, data doesn’t depend on their

spatial resolution, but depends only on the complexity of the underlying signal

(i.e, complex signal needs many parameters and simple signal needs a few

parameters of neural network). This memory efficient property becomes huge

advantage in 3D computer vision. NeRF[22] parametrizes volumetric scene

using MLP, whose input is 5d coordinate (3-dimensional spatial location and

viewing direction (θ, ϕ)) and whose output is the volume density and view-

dependent RGB value. (Fig 1.4)

Figure 1.4 Diagram of NeRF[22]

and succesfully and memory efficiently representing the 3d scene (Fig 1.5).

5

Figure 1.5 reconstruct 3-dimensional scene by NeRF[22]

Second, since INR is a function defined on spatial domain, it can do super

resolution very easily: just input the coordinates corresponding to the resolution

to the neural network.

Figure 1.6 Superresolution. The first column is original resolution, the

second column is 4 times resolution than the original, and the third column is

bicubic upsampling[11]
.

Thrid, INR provides analytically calculable gradient of data. Using this

fact, there are some applications of solving inverse problems, differential equa-

tions and others. For example, SIREN solved Helmholtz equations using INR.

6

Helmholtz equation is formulated as(
∇2 +

w2

c(x)2

)
p(x) = −q(x)

where p(x) is the unknown wavefield, q(x) is known source, and c(x) is a

function of the wave velocity. SIREN solved this equation by parameterizing

unkwon wavefield p(x by implicit neural representations. Domain is Ω ={
x ∈ R2 | ∥x∥∞ < 1

}
. So input randomly sampled x ∈ Ω to p to minimize

the loss function: LHelmholtz =
∫
Ω ∥(∇

2 + w2

c(x)2
)p(x) + q(x)∥1dx.

Figure 1.7 Single point source(green dot) is located in the center of

[−0.5, 0.5]2 box with uniform wave propagation(top left). SIREN (second

column of right image) obtained a similar solution of the helmholtz equation

compared to principled grid solver(first column of right image). while other

activation function based methods failed to solve.(thrid, fourth and fifth column

of right image)[35]

Also, there are interesting observations with implicit neural representations.

For example, extrapolating. [11] build generative models that generate image as

a parametrized continuous function. They used a hypernetwork to generate the

parameters of the image function, and a discriminator that takes coordinates

(e.g. pixel locations) and features (e.g. RGB values) as an input, and trained

with an adversarial approach. (Fig1.8)

7

Figure 1.8 Generating image function by hypernetwork[11]

In contrast to existing generative models are based on discrete signal(e.g,

pixel grid), it learns distributions of continuous signals, and hence to agnostic

to discretization. Not only they succeeded to generate a continuous signal well,

they observed one interesting thing. During training, the coordinates used

for training were normalized to [0, 1], but after training, it was observed that

realistic images are generated even for coordinates that are out of this range(e.g,

[−0.3, 1.3]). (Fig 1.9)

Figure 1.9 Extrapolating. During training, only [0, 1]2 squared coordinates

was used, and evaluate it on coordinates from [−0.3, 1.3]2 square.[11]

This would be an interesting example to observe in a generative model

using implicit neural representations. In the next section, we will discuss the

important techniques of the implicit neural representations that improves the

quality and hence make these applications possible.

8

1.3 Techniques of INR

We reviewed some applications in the previous section. However, these applica-

tions are not achieved by naively apply to idea of implicit neural representations.

In this section, we will review the techniques from two perspectives of INR.

The first is “how to catch the high frequency of the data”, and the second is

“how to construct the weight of the function representation”. We will first review

at the first perspective. In previous works, ReLU based multilayer perceptron

Figure 1.10 SIREN cathes the high frequency, and first and second order

derivative.[35]

was used for parametrizing continuous signal, but it lacks in accurately rep-

resenting the fine detail of the underlying signal[35]. For solving this issue,

SIREN assumes that this problem occurs due to the second order derivative

of ReLU is zero for almost everywhere. And SIREN shows that implicit neural

representations using periodic activation functions(which has non vanishing

higher order derivative) can catch the complicate signals and their derivatives

robustly(Fig 1.10). SIREN used sine function for activation function, which

9

can be formulated by:

f(x) = Wn (fn−1 ◦ fn−2 ◦ . . . ◦ f0) (x) + bn, xi 7→ fi (xi) = sin (Wixi + bi)

where fi : RNi 7→ RNi+1 is the iit layer of the neural network, weight matrix

Wi ∈ RNi+1×Ni , bias bi ∈ RNi+1 applied on the input xi ∈ RNi .

For representing the high frequency in INR, different from SIREN[35],

NeRF[22] proposed the positional encoding. And [38, 11] developed the idea of

positional encoding, and they proposed random fourier feature(F). F proposed

not to naively input the coordinate to the neural network, but to transform the

coordinate and then input to the neural network. Given a coordinate x ∈ Rs,

F : Rs → R2m is defined as

F(x) =

 cos(2πBx)

sin(2πBx)


whereB ∈ Rm×s is a random matrix whose entries are sampled fromN

(
0, σ2I

)
and can be learnable. The number of frequencies m and the variance σ2 are

hyperparameters.

Figure 1.11 Using random fourier features(right) and not(left)[11]

10

[38] further researched F in an NTK framework, and showed that mapping

input vectors to simple fourier feature before input to the neural network

enables to learn a good representation of the high-frequency components, and

[1] observed the relationship between SIREN and Fourier mapping before

passing the MLP. Fourier mapping is structurally equal to one hidden layer

SIREN.

And then, we will review at the second perspective. The purpose of INR

is to obtain weights λI ∈ Λ of the function representation corresponding to

data I. Let fλI : Rd → Rk be a function representation where Rd be a spatial

coordinates space. Then “how to construct(obtain) the weight of the function

representation?” In the context of learning function representation, there are

two types: 1. embedding based method[37, 10] and 2.hypernetworks based

method[11, 36, 35].

Embedding based method learns a fixed function that takes the form fλI =

q(x, e(I)) where e(I) is an encoded as a conditioning vector[13]. For example,

modulation[31] is one of the embedding based methods. Following [31], INR-

GAN[37] proposes factorized multiplicative modulation to build continuous

image GAN. Using e(I) encoded with input I, INR-GAN[37] obtains a function

representation corresponding to I by modulating the fixed function:

W = Ws ⊙ σ(Wh)

where W is desired weight of function representation, Ws is weight of fixed

function, Wh is obtained through e(I) and σ is non-linear function(weights of

fixed function are shared to every data).

Hypernetworks based method parametrizes a function representation us-

ing a hypernetworks[11, 35, 36, 15]. e(I) is fed to the Hypernetwork h and

11

then h generate λI = h(e(I)) which is the set of parameters of the function

representation(Fig 1.12). In this case, function representation takes the form

fλI = g(x;λI) = g(x;h(e(I)). For example, [11] builds generative models over

implicit neural representations by adversarial approach, and they set generator

using the hypernetwork approach.

Figure 1.12 Diagram of hypernetwork

There are some studies such as [13, 21] on which is better, the embedding

based method or the hypernetwork based method. However, since it is estab-

lished under the limited assumptions, hence, it is necessary to study the theory

established in more practical assumptions.

12

2 Review the Clustering

Clustering is the unsupervised task of grouping data points for the same group

to be contain more similar features or properties to each other than other groups.

Clustering is important task in machine learning, data analysis, statistical

analysis, pattern recognition, computer vision and has a various application

in practical. There are various clustering algorithms depending on the dataset

and specific the goal of the clustering. In this chapter, firstly, we review some

clustering algorithms which is widely used in machine learning(section 2.1) and

second, we review some clustering algorithms based on deep learning(section

2.2).

2.1 Classic Algorithms

2.1.1 Centroid Based Clustering

Basic intuition of centroid based clustering is that the data point is assigned

to closest center. For this reason, the result of the centroid based clustering

makes the shape of the each cluster to be circular. Hence, it may be suitable for

if the actual clustering results are circular shape. The most popular method of

the centroid based clustering is K-Means Clustering. The standard k-means

clustering algorithm is as below:

13

Algorithm 1 K-means clustering

Input: Given dataset {x1, · · · , xN}, K := the number of clusters
1: Randomly choose the centers m1,m2, . . . ,mK ∈ dataset
2: while Assignment converges do

3: Si =
{
x : ∥x−mi∥2 ≤

∥∥x−mj

∥∥2 ∀j, 1 ≤ j ≤ K} ▷ Assignment step

4: mi =
1

|Si|
∑
x∈Si

x ▷ Update center

5: return S1, S2, . . . SK

K-means clustering algorithm can be proved to always terminated in finite

iterations. But it is not global optimum but local optimum and is not garunteed

to converge same result because of the randomly initialized centers.

2.1.2 Hierarchical Clustering

We might consider that data can be described by simple partitions. For exam-

ple, if data consists of dogs, cats and dolphins. we might cluster it by some

hierarchies. A : {(dogs), (cats), (dolphins)}, B : {(dogs, cats), (dolphins)}, C :

{(dogs, cats,dolphins)}, where A is classified according to species, B is classified

according to class, and C is classified according to kingdom. Hierarchical

clustering is a method of cluster analysis that finds A,B and C in this case.

Also, unlike k-means clustering, hierarchical clustering method does not need to

predetermine the number of clusters. Hierarchical clustering builds a tree over

the data. Individual data make up the leaves, but the root is a single cluster that

consists of all of the data. Intermediate clusters exist between the root and the

leaves, including subsets of the data. The primary principle behind hierarchical

clustering is to build a tree by creating ‘clusters of clusters’ that travel upwards.

To create such a tree, there are two basic methods. 1. Each datum is placed

in its own singleton cluster at the bottom of the hierarchy before groupings

are combined using hierarchical agglomerative clustering (HAC). 2. Divisive

14

clustering begins with all the data in a single, large group and slices it up

until each piece of data gets its own singleton group. In this section, we only

review the hierarchical agglomerative clustering(HAC) method which is the

most popular algorithm in hierarchical clustering.

Algorithm 2 Hierarchical agglomerative clustering

Input: Given data {x1, · · · , xN} and groupwise distance Dist(G1,G2)
1: A ← ∅ ▷ Initialize active set to empty
2: for n← 1 · · ·N do ▷ Loop over the data
3: A ← A∪ {{xn}} ▷ Add one data to one cluster.

4: T ← A ▷ Store the tree as a sequence of merges
5: while |A| > 1 do ▷ Loop until the active set has one item
6: G⋆1, G

⋆
2 ← argmin

G1,G2∈A
Dist(G1, G2) ▷ Choose pair in A with best distance

7: A ←
(
A \ {G⋆1}

)
\ {G⋆2} ▷ Remove each from active set

8: A ← A∪ {G⋆1, G⋆2} ▷ Add union to active set
9: T ← T ∪ {G⋆1, G⋆2} ▷ Add union to tree

10: return T

Algorithm 2 displays the general algorithm for hierarchical agglomerative

clustering. Active set A contains clusters which is merged in each stage. In the

first stage, one data constitutes one cluster, and after that, clusters with the

best distance are merged to one cluster. Finally, we get a tree that records this

series of processes. There are various methods, such as defining the distance

between cluster groups as the distance between centroids or the average of the

distances between each point. Hierarchical agglometrative clustering can be

visualized through a dendrogram.

2.1.3 Density Based Clustering

Since the k-means algorithm’s result is depend on ‘distance function’. The

most common choice is euclidean distance, and in this distance metric, k-

means algorithm forms only circular clusters. Hence, it may not be suitable for

15

Figure 2.1 Visualization of HAC through dendrogram.

clustering non-circular shape. Also, k-means clustering is sensitive to outliers,

the cluster results may become strange. Density based clustering algorithm

may solve these issues. The fundamental premise of density-based clustering is

that each point in the cluster must have a minimum number of points within a

predetermined radius. i.e, the density must be exceeded at least a certain level.

we briefly review the density-based spatial clustering of applications with noise

(DBSCAN) which is the most popular algorithm in density based method.

We define some definitions for describing the algorithm.

Definition 2.1 (ε-neighborhood of a point) The ε-neighborhood of a point

p, denoted by Nε(p), is defined by Nε(p) = {q ∈ D | dist(p, q) ≤ ε}.

Definition 2.2 (directly density-reachable) A point p is directly density-

reachable from a point q with respect to ε, MinPts if

16

(a) Border point and core

point (b) Directly density reachable point

Figure 2.2 Definition 3.2

(1) p ∈ Nε(q)

(2)
∣∣Nε(q)

∣∣ ≥ MinPts (core point condition)

i.e, a point p is directly density reachable from a point q means that q is

not a border point and contains minimum points in the ε-neighborhood.

Definition 2.3 (density-reachable) A point p is density reachable from a

point q with respect to ε and MinPts if there is a chain of points p1, . . . , pn, p1 =

q,pn = p such that pi+1 is directly density-reachable from pi.

Even if two points are in the same cluster, if both points are the border

point, then they are not density-reachable. Therefore, a new definition which

is called density-connected is needed for this problem.

Definition 2.4 (density-connected) A point p is density connected to a point

q with respect to ε and MinPts if there is a point o such that both, p and q

are density-reachable from o with respect to ε and MinPts.

Based on what we defined so far, finally, we can define cluster and noise.

Definition 2.5 (cluster) Let D be a database of points. A cluster C with

respect to ε and MinPts is a non-empty subset of D satisfying the following

conditions:

17

(a) Density reachable point (b) Density connected points

Figure 2.3 Definition 3.3 and 3.4

(1) ∀p, q : if p ∈ C and q is density-reachable from p with respect to ε and

MinPts, then q ∈ C. (Maximality)

(2) ∀p, q ∈ C : p is density-connected to q with respect to ε and MinPts.

(Connectivity)

Definition 2.6 (noise) Let C1, . . . ,Ck be the clusters of the database D

with respect to parameters εi and MinPtsi, i = 1, . . . , k. Then we define the

noise as the set of points in the database D not belonging to any cluster Ci,

i.e. noise = {p ∈ D | ∀i : p /∈ Ci
}
.

DBSCAN requires predefined ε, minimum points(MinPts) and distance

measure function(DistFunc). And then classifies the points as core point, border

point and noise. And finally DBSCAN groups the reachable points as single

one cluster. The algorithm is shown below.

18

Algorithm 3 DBSCAN

Input: Dataset, ε, MinPts and DistFunc
1: C := 0 ▷ Label of cluster
2: for point P in Dataset do
3: if label(P) ̸= undefined then
4: continue
5: Neighbors N := FindNeighbor(Dataset, DistFunc, P, ε)
6: if |N | < MinPts then
7: label(P) := Noise
8: continue
9: C := C + 1

10: label(P) := C
11: SeedSet := N \ {P}
12: for point Q in S do
13: if label(Q) = Noise then
14: label(Q) :== C

15: if label(Q) ̸= undefined then
16: continue
17: label(Q) := C
18: Neighbors N := FinedNeighbor(Dataset, DistFunc, Q, ε)
19: if |N | ≥ MinPts then
20: S := S ∪N

1: function FindNeighbor((Dataset, DistFunc, Q, ε)
2: Neighbors N := empty list
3: for point P in dataset do
4: if DistFunc(Q,P) ≤ ε then
5: N := N ∪ {P}
6: return N

2.2 Deep Learning based Clustering

Many fields of machine learning are being replaced by deep learning-based

methods. Clustering is no exception. Recently, deep learning is showing superior

performance in image clustering. SOTA on the benchmark datasets are also

established by deep learning-based methods. In this chapter, we review the two

19

types of the clustering methods which we called 1.two-stage learning method

and 2.end-to-end learning method.

The first one, two-stage learning method(such as DEC[41],DAC[6],Deep

Cluster[5]) obtains semantic features of the unlabeled dataset through pretext

tasks on the first stage. The first stage can be regarded as self-supervised

learning, and there are various tasks for pretext task. For example, predicting

the patch context [9, 25], inpainting patches[30], solving jigsaw puzzles [26, 27],

colorizing images [45, 20], predicting noise[4], predicting rotations[14], spotting

artifacts[17], generating images[32], and so on. And then, in the second stage,

fine tunning step is performed to solve clustering task.

The second one, end-to-end learning method(such as IIC[18], IMSAT[16],

SeLa[42]) simultaneously learns both the feature representation and clustering

assignment without explicitly optimizing the clustering task. However, this

method is prone to result degenerate solution which is predicting the all data

into one cluster[18]. To prevent this problem, many literatures maximizes the

mutual information between the class assignments of the paired data to learn

similar representations, and then establish the high accuracy of clustering.

However, there is a question that whether these learned representations are

really meaningful and similar between positive pairs and different from negative

pairs. Hence other methods have been introduced to prevent this problem.

Also very recently, contrastive learning has achieved good performance in

clustering task. The basic concept of contrastive learning is to map feature

vectors of positive pair data close and map feature vectors of negative pair

data far away. There are clustering methods based on contrastive learning([46,

7, 34, 8, 39, 43]). For example, [39] proposed two-stage clustering method with

20

contrastive pre-training and then fine-tuning for clustering task. And [43]

proposed to use infoNCE loss[29] with clustering by end to end manner.

The most representative of each method will be reviewed in the upcoming

sections.

2.2.1 Two-Stage Learning Method

DEC(Deep Embedded Clustering)[41] is one of the first work to apply deep

learning to clustering. Instead of directly clustering on the data space, DEC

maps data through nonlinear mapping fθ : X → Z, where θ are learnable

parameters and Z is the latent space. DEC has a two stages:

1. feature space is obtained by the encoder of the autoencoder, (i.e, encoder

is fθ).

2. simultaneously optimizing for cluster assignment and θ for optimizing

underlying feature space.

However, the second stage is challenging, because optimizing cluster assignment

needs true label of the data. However, in unsupervised setting, the label

is unknown. Hence, DEC proposed to optimizing clusters with an auxilary

target distribution which is obtained by the current soft cluster assignments.

Definitions are as follows:

Definition 2.7 (Soft assignment)

qij =

(
1 +

∥∥zi − µj∥∥2 /α)−α+1
2

∑
j′

(
1 +

∥∥zi − µj′∥∥2 /α)−α+1
2

where zi = fθ (xi) ∈ Z corresponds to xi ∈ X after embedding, α are the

degrees of freedom of the Student’s t distribution and qij can be interpreted

21

as the probability of assigning sample i to cluster j (i.e., a soft assignment).

The authors set α = 1 for all experiments.

Definition 2.8 (Auxiliary target distribution)

pij =
q2ij/fj∑
j′ q

2
ij′/fj′

where fj =
∑

i qij

DEC updates the feature representation (i.e, θ) and cluster centroid for

every iteration by minimizing KL-divergence between auxiliary target distri-

bution pi and soft assignments qi. Hence the loss function is L = KL(P∥Q) =∑
i

∑
j pij log

pij
qij

. Overall algorithm for DEC is as follows:

Algorithm 4 DEC

1: pre-training the fθ by autoencoder
Input: fθ, initial centroid µj , (j = 1, . . . , k)
2: while Cluster assignments converge do
3: calculate soft assignment Q and auxiliary target distribution P
4: updates θ and µj by the gradient of the loss ▷ loss is KL-divergence

between P and Q.

Another two-stage learning approch is SCAN(Semantic Clustering by Adopt-

ing Nearest neighbors)[40]. In a first stage, SCAN pretrains neural network Φθ

to learn a feature representations through a pretext task τ . However, the feature

representation of data belonging to the same cluster may not be invariant. To

solve this problem, SCAN includes minimization of the distance between data

Xi and their augmentations T [Xi] in pretext task τ , which can be expressed

as:

min
θ
d
(
Φθ (Xi) ,Φθ

(
T [Xi]

))
And naively applying K-means clustering on the obtained features can lead to

degenerate solution which means all data belongs to one cluster. To overcome

22

this problem, SCAN proposed to mining nearest neighbors. i.e, for every sample

Xi, SCAN mines its K nearest neighbors in the feature space Φθ. SCAN defines

the set NXi as the neighborhood of Xi in the dataset.

In a second stage, SCAN classifies each data and its mined neighbors

together by using a following loss function:

Λ = − 1

|D|
∑
X∈D

∑
k∈NX

log
〈
Φη(X),Φη(k)

〉
+ λ

∑
c∈C

Φ′c
η log Φ′c

η ,

with Φ′c
η =

1

|D|
∑
X∈D

Φcη(X)

where Φη is clustering function parameterized by η and final layer of Φη is

softmax function to obtain probability of assignment over the each cluster label

C = {1, . . . , C},with Φη(Xi) ∈ [0, 1]C , NXi is mined neighborhood of Xi. The

probability of Xi being assigned to cluster c is denoted by Φη
c(Xi). Algorithm

is as below:

Algorithm 5 SCAN

Input: Dataset D, Clusters C, Task τ , Φθ,Φη, Neighbors ND = {}.
1: Pretraining Φθ with task τ .
2: for Xi ∈ D do
3: ND ← ND ∪NXi , with NXi = K neighboring samples of Φθ (Xi)

4: while SCAN Loss converges do
5: Update Φη with SCAN-loss, i.e. Λ

(
Φη(D),ND, C

)
6: while Len(Y) increases do
7: Y ←

(
Φη(D) > threshold)

8: Update Φη with cross-entropy loss, i.e. H
(
Φη(D), Y

)
9: return Φη(D)

2.2.2 End-to-End Learning Method

Invariant information clustering(IIC)[18] is one of the end-to-end learning

method. Let x,x′ ∈ X be a paired data. For example, x and x′ could be different

images but containing same semantic information. The goal of IIC(Information

23

Invariant Clustering) is to learn Φ : X → Y = [0, 1]k, where Φ(x) can be

interpreted as the distribution of a discrete random variable z over k classes,

formally given by P (z = c|x) = Φc(x).(z can be considered as assignment

random variable) Φ will learn what is in common information between x and

x′ while removing instance level details, and induces high probability to be

assigned to the same cluster label between x and x′. It achieved by maximizing

the mutual information between z and z′ where z, z′ are assignment random

variable. However, in unsupervised setting, we don’t know what x and x′

are paried. Therefore, x′ can be generated by augmentation function g, i.e,

x′ = g(x). Hence, The goal of IIC is maximizing the mutual information:

max
Φ

MI
(
z, z′

)
= max

Φ

k∑
c=1

k∑
c′=1

Pcc′ · ln
Pcc′

Pc ·Pc′
,

The authors assume that P (z = c, z = c′|x,x′) = P (z = c|x) · P (c′|x′). This

means that z and z′ are independent when specific x and x′ are given. Then

the joint probability over z and z′ is calculated by the output of the neural

network Φ:

P (z = c, z′ = c′) =
∑
x,x′

P (z = c, z′ = c′|x,x′) · P (x,x′)

= E
x,x′

[
P (z = c, z′ = c′|x,x′)

]
≈ 1

n

n∑
i=1

P (z = c, z′ = c′|xi,x′
i)

Then the joint probability distribution over z and z′ can be expressed as matrix

P where each element at cth row and c′th column denoted as Pcc′ = P (z =

c, z′ = c′):

P =
1

n

n∑
i=1

Φ (xi) · Φ
(
x′
i

)⊤
.

24

And the lastly, P (z = c)(P (z′ = c′)) are obtained by summing the row(column)

of the P.

Since MI(z, z′) = H(z) − H(z|z′), maximizing mutual information has

a trade-off between maximizing individual cluster assignments entropy H(z)

and minimizing the conditional cluster assignment entropy H(z|z′). The first

one H(z) is maximzed when all cluster assignment probability be same which

prevents a degenerate solution. However, if H(z) is fully maximzed, then P (z)

will be uniform distribution which means no clustering. The authors claims

that the second term H(z|z′) can prevents this problem, and it is minimized

when the cluster assignments are exactly predictable from each other.

25

3 chapter3

3.1 Related Works

Our works are related to transformation invariant feature extraction meth-

ods[14, 23, 12, 19, 28, 33, 44, 26] and deep learning based clustering methods[24,

41, 18, 40]. Transformation invariant feature extractions are mainly studied on

self-supervised learning for pretext tasks for learning semantic informations of

the data. Especially, [23, 12] proposed to learning rotation invariant feature

for pretext task. However, these studies have limitations in that the rotation

degrees are finite(0, π2 , π,
3
2π), and only show that there is a performance gain

in the downstream task, but do not show how rotation invariant features are

learned in the pretext task stage. Also, there are methods that the ultimate goal

is to learn rotation invariant features and rotation degrees are infinite(i.e, 0 ∼

2π) [2, 3]. Spatial-VAE[2] disentangles image rotation from other unstructured

latent factors in a variational autoencoder (VAE) framework. Spatial-VAE

formulates the generative model as a function of the spatial coordinate(i.e,

implicit neural representations perspective). By leveraging this perspective,

predicted rotation degree which is obtained by front part of output of an encoder

rotates input spatial coordinates, Spatial-VAE makes the reconstruction error

be able to differentiate with respect to predicted rotation degree. Also, by

minimizing the KL-divergence term so that the distribution of inferenced

26

rotation degree by the front part of the encoder output becomes the prior

distribution of rotation degree, the rear part of the encoder becomes a rotation

invariant feature. However, Spatial-VAE assumed that the rotation degrees of

the dataset are sampled from gaussian distribution such as N
(
0, π

2

42

)
instead

of uniform distribution over [0, 2π]. This makes that many data are rotated by

close to zero degree. And, although they measured the correlation between the

latent variable inferred by the encoder and the ground truth rotation degree

for the performance of learning rotation invariant feature, but NOT directly

verified how the rotation invariant features were learned well. It is different from

that our work learned rotation invariant features and showed good performance

in a downstream task(i.e, clustering).

Figure 3.1 Diagram of Spatial-VAE. a) Modelling generative model as

mapping coordinates and latent variables to the pixel intensity(RGB) at

that coordinate. b) Inference network(encoder) inferences the rotation and

unstructured latent variables.

3.2 Aim of The Proposed Method

Most of the literature focuses on achieving high performance on benchmark

datasets. However, in the case of image domain, datasets such as MNIST,

FashionMNIST, CIFAR10, STL10, ImageNet and etc contain human’s prior

knowledge. For example, the number digits in MNIST are not rotated and are

27

Figure 3.2 Diagram of the propsed method.

placed at the ‘zero degree’ which is considered as a natrual and normal image

to human sense. However, in practically, dataset of the number digits may

be randomly rotated by 0 to 2π degree. In generally, there are no reason to

neural network to recognize 2 and rotated 2 are same digit. However, in many

situations, we want to our neural network recognize these images are same. To

make this possible, the feature output by the neural network should be equal

to 2 and rotated 2. That is, the neural network needs to extract feature of the

data in rotation invariant manner. This problem can be formally defined in the

more general context not only rotation. Let X is a dataset, and G is a Group,

and α : G × X → X a group action and f : X → Z is a neural network. Let

x ∈ X , then we want to train the neural network satisfying:

f(x) = f(α(g,x)) = f(gx)), for all g ∈ G. (3.1)

Also, we define ‘f is invariant under action of G’ and ‘f is G invariant’

if f satisfies equation 3.1.

28

In this paper, when G = SO(2), i.e, G is rotation group, our goal is to train

the neural network be rotation invariant, and cluster the randomly rotated

images by its rotation invariant feature. It can be established by two stage:

1. Training the neural network to explicitly extract rotationally invariant

latent vector(we call it latent) and latent rotation angle(we call it latent

angle). And by formulating the image as INR, reconstruction loss can

be differentialbe with respect to latent angle, and it is the easy way to

obtain good latent angle and latent. In addition, since INR catch the high

frequency of the image, our method are robustly worked on semiconductor

dataset(non-INR methods failed to reconstruct the semiconductor).

2. Using the (pre-trained) encoder and latent, we cluster the randomly

rotated images by DEC[41] manner, i.e, rotationally invariant clustering.

Our contributions can be summuraized as:

• We propose novel method to learn the rotaion invariant feature by

leveraging implicit neural representations. We explicitly disentangle the

latent rotation angle(latent angle) and rotationally invariant latent vec-

tor(latent) from the output of the encoder.

• We show that our method is high performance on rotationally invariant

clustering task than other methods. To the best of our knowledge, it is

first attempt to cluster with implicit neural representations.

3.3 Breaking the Symmetry

When we inference the rotation angle θ of the image, we need to know what

is the unrotated image, which is called by reference image. Until the reference

image is given, θ is not well defined due to the symmetry. We tried to find

29

(a) Reference image X ∈ X
whose direction of the center

mass is parallel to the positive

y direction.

(b) Our actual training data

image W ∈ W where θ is rota-

tion degree from the reference

image X.

Figure 3.3 Reference image and our actual training data image. Red arrow

is direction of the center mass.

a reference image by the neural network itself without any supervision, but

this problem may too hard to neural network, and hence it failed. Hence we

propose the rule to define reference image for breaking the symmetry. For

breaking the symmetry, we define the reference image is to be the image whose

the center of mass is parallel to positive y-axis direction. Note that this rule

works even in unsupervised setting. Let’s denote {Xi}Ni=1 ∈ X is reference

image. Now our dataset can be considered as a set of images rotated from the

reference dataset, denoted by {Wi}Ni=1 ∈ W. Note that Wi = RθiXi, where

R is rotation operator and θi is rotation angle.

3.4 Encoder

Let Encϕ be an encoder network where ϕ is learnable parameters. Our goal is

to obtain a latent vector of W ∈ W from the encoder, where rotation angle of

the image and rotationally invariant latent vector(latent) are disentangled. We

denote that former is Encangleϕ (W), and later is Encinvϕ (W). There are some

details about the encoder.

30

Figure 3.4 Encoder.

First, in rotation angle. We found that it is not appropriate to naively

representing rotation angle as θ ∈ R1. Instead, we represent rotation angle as

coordinates of center of mass mcenter(W) = mcenter(RθX) = (mx,my). Using

inner product, it can be easily shown that there is one-to-one correspondence

between rotation degree and the center of mass.

Figure 3.5 Encoder estimates latent angle and latent.

Second, We found that reparametrizing Encinvϕ before input to hypernet-

work performs better. So encoder not only output Encinvϕ , but also output

auxilary latent vector Encauxϕ . Proposed reparametrization is simple as follow-

ing:

Encreparamϕ (W) = Encinvϕ (W) + ε⊙Encauxϕ (W)

31

where ε ∼ N (0, I). This reparametrization makes latent vectors around near

the Encinvϕ (W) to have the similar feature as W.

Hence, our encoder output three latent vectors as following:

Encϕ(W) =
(
Encangleϕ (W),Encinvϕ (W),Encauxϕ (W)

)
where Encangleϕ : Rr → R2,Encinvϕ : Rr → Rd,Encauxϕ : Rr → Rd, and r is

resolution of the image, d is dimension of the latent.

3.5 Hypernetwork

Figure 3.6 Hyper Network

Let Hψ be a hypernetwork where ψ is learnable parameters. Hψ receives

Encreparamϕ as an input. By doing this, we induce points near Encinvϕ to ouptut

the same function representation. Therefore, it helps to form a latent space

be a cluster friendly. We experimentally confirmed that this reparametrization

process improves clustering performance.

And Hψ outputs the parameter of the function representation generator G

that corresponding to implicit neural representations of the input image W.

32

Figure 3.7 Function Representation Generator.

3.6 Function Representation Generator

Naive function representation generator Gnaive recieves parameters of function

representation and transformed coordinates as inputs, and then outputs RGB

value. Hence, Gnaive is function such that:

Gnaive : Ω× Rs −→ Rk

where Ω is space of function representations, s is dimension of spatial coor-

dinates(e.g, s = 2 for 2-dimensional image), and k is dimension of feature

value(e.g, k = 3 for RGB value). hence in our case,

Gnaive
(
Hψ(Encreparamϕ), (x, y)

)
= (R,G,B)

Note that there are no learnable parameter in Gnaive. However, we suggest

different form of function representation generator. First, pixel coordinates are

rotated by θ̂ which is obtained from rotation angle Encangleϕ . Second, following

[11], coordinates are transformed by random fourier features(which is called

33

by F). Random fourier feature F : Rs → R2m is defined as

F(x) =

 cos(2πBx)

sin(2πBx)


where x ∈ Rs is spatial coordinate, B ∈ Rm×s is a (potentially learnable)

random matrix whose entries are sampled from N
(
0, σ2

)
. The number of fre-

quencies m and the variance σ2 are hyperparameters. Therefore, our proposed

function representation generator G is as following:

G
(
Hψ(Encreparamϕ),F(Rθ̂(x, y))

)
= (R,G,B)

3.7 Objective Function

Objective function is consisted of three terms:

L = λangle · Langle + λconsis · Lconsis + λrecon · Lrecon

Angle Loss Langle

In section 3.3, we break the symmetry problem by setting the rule so that the

rotation angle θ becomes well defined. Our proposed reference image is that the

center of mass direction is parallel to the positive y-axis. This rule works well

even in unsupervised setting. Assume that W ∈ W is our training data, hence,

there exists the reference image X and rotation angle θ such that W = RθX.

Our goal is to obtain a θ from the input image. We found that minimize

euclidean distance between rotation angle and predicted rotation angle, (i.e, θ

and θ̂) does not work well. Instead, we minimize euclidean distance between

m̂center(W)(= Encangleϕ (W)) and the real center of mass mcenter(W).

34

Proposed angle loss Langle is as following:

Langle = E
X

E
θ

∼[0,2π)

[∥∥∥mcenter(RθX)−Encangleϕ (RθX)
∥∥∥2]

= E
W

[∥∥∥mcenter(W)−Encangleϕ (W)
∥∥∥2]

We follow the empirical risk minimization. So empirical angle loss L̂angle is

as following:

L̂angle =
1

N

N∑
i=1

∥∥∥mcenter(Wi)−Encangleϕ (Wi)
∥∥∥2

where N is the number of samples.

Consistency Loss Lconsis

One of our goal is Encinvϕ to be rotationally invariant, i.e, for W ∈ W, and for

all θ′ ∈ [0, 2π),

Encinvϕ (W) = Encinvϕ (Rθ′W)

To accomplish this property, we propose the consistency loss Lconsis as following:

Lconsis = E
X,θ

E
θ′

∼[0,2π)

[∥∥∥Encinvϕ (RθX)−Encinvϕ (Rθ′X)
∥∥∥2]

= E
W

E
θ′

∼[0,2π)

[∥∥∥Encinvϕ (W)−Encinvϕ (Rθ′W)
∥∥∥2]

Since θ, θ′ are uniform, the second equality holds. Next, we follow the empirical

risk minimization. So empirical consistency loss L̂inv is as following:

L̂consis =
1

NM

N∑
i=1

M∑
j=1

∥∥∥Encinvϕ (Wi)−Encinvϕ (Rθij ′Wi)
∥∥∥2

where θij
′ are randomly sampled from U [0, 2π] and M is the number of

sampling.

35

Reconstruction Loss Lrecon

Minimizing reconstruction loss makes our latent space to be more meaningful.

We propose reconstruction loss Lrecon as following:

Lrecon =
1

Res

Res∑
r=1

E
W

[∥∥∥∥(W)r −G
(
Hψ(Encreparamϕ (W)),F(Rθ̂(xr, yr))

)∥∥∥∥2
]

where (W)r denotes feature value at rth coordinates, (xr, yr) denotes rth

coordinates, and Res denotes resolution of the training image. We follow

the empirical risk minimization. So empirical reconstruction loss L̂recon is as

following:

L̂recon =
1

Res ·N

Res∑
r=1

N∑
i=1

∥∥∥∥(Wi)r −G
(
Hψ(Encreparamϕ (Wi)),F(Rθ̂(xr, yr))

)∥∥∥∥2
where N is the number of samples.

36

4 Experiments

Dataset

We use randomly rotated MNIST, randomly rotated FashionMNIST(rotate

θ degree for all images, where θ ∼ Uniform[0, 2π] and WM811k. MNIST is

a dataset of handwritten digits with 10 labels, since rotated 6 and rotated

9 should be treated same, we removed both 9 from the training and testing

phases. The reason why 6 and 9 are not merged as same label is to balance the

number of each labels. FashionMNIST is a dataset of article images with 10

labels and WM811k is a dataset of wafer maps of semiconductor with 9 labels.

Since original WM811k is very unbalenced between the number of each labels,

we adjusted the number between labels (data augmentation was not applied

because it could result in changing the label of the wafer map). In particular,

in the case of WM811k, since each data is already randomly rotated, there

is no need to create a rotated dataset separately. WM811k is a dataset that

shows rotationally invariant clustering is important task in practically.

Architecture

We use only MLP architecture for encoder, hypernetwork and function repre-

sentation generator. Encoder is 5-layer MLP such that 32(input dim)-128-128-

128-66(2+32+32). Hypernetwork is 3-layer MLP such that 32(latent dim)-128-

37

(a) MNIST(9 is removed)

(b) FashionMNIST

(c) WM811k

Figure 4.1 Sample of the training dataset. The number below the image

indicates the number of that label.

128-256-66049. Function representation generator is 3-layer MLP such that

256-128-128-1(grey scale).

Hyperparameter

We set λangle = 15, λconsis = 1, λrecon = 1. Random matrix B of fourier random

feature F is 128 by 2 matrix. The number of samples in consistency loss is

M = 3. Learning rate is 10−4 and use 10−5 weight decay for all parameters.

Evaluation of output images

We visualize input images from randomly rotated training dataset, and output

images obtained by input coordinates are rotated by θ̂ (Figure 4.2). These

results are shown in Figure 4.4, 4.7 and 4.10.

38

Figure 4.2 Input coordinates are rotated by θ̂.

In addition, we generate new images by rotating 0 ∼ 2π degree from fixed

image. And then input to the neural network while input coordinates are NOT

rotated (Figure 4.3). These results are shown in Figure 4.5, 4.9, 4.8, 4.9 and

4.11. The reconstructed images are consistently almost same, i.e, it means that

Encinvϕ is rotationally invariant.

Figure 4.3 Input coordinates are NOT rotated.

39

(a) Input images (b) Reconstructed images

Figure 4.4 Reconstruction - MNIST. Input coordinates are rotated by θ̂.

40

(a) Rotated images (b) Reconstructed images

Figure 4.5 Rotation invariant reconstruction(1)- MNIST. Input coordinates

are NOT rotated.

41

(a) Rotated images (b) Reconstructed images

Figure 4.6 Rotation invariant reconstruction(2) - MNIST. Input coordinates

are NOT rotated.

42

(a) Input images (b) Reconstructed images

Figure 4.7 Reconstruction - Fashion MNIST. Input coordinates are rotated

by θ̂.

43

(a) Rotated images (b) Reconstructed images

Figure 4.8 Rotation invariant reconstruction(1) - Fashion MNIST. Input

coordinates are NOT rotated.

44

(a) Rotated images (b) Reconstructed images

Figure 4.9 Rotation invariant reconstruction(2) - Fashion MNIST. Input

coordinates are NOT rotated.

45

(a) Input images (b) Reconstructed images

Figure 4.10 Reconstruction - WM811k. Input coordinates are rotated by θ̂.

46

(a) Rotated images (b) Reconstructed images

Figure 4.11 Rotation invariant reconstruction - WM811k. Input coordinates

are NOT rotated.

47

Clustering Results

We show that ourmethod has better performance than other clustering algorithms(k-

means, DEC and Spatial VAE) on fully rotated MNIST, fully rotated FashionM-

NIST and WM811k. Explanation on clustering algorithms used in experiments

is as below:

• k-means: Apply k-means directly to datasets.

• DEC: Apply DEC(section 2.2.1) to datasets. All hyper-parameters were

used as suggested in the DEC paper.

• Spatial VAE: Pretraining the Spatial-VAE(section 3.1). And then apply

k-means to the learned latent space(i.e, output space of the encoder). All

hyper-parameters were used as suggested in the Spatial-VAE paper.

• AE base-line: Apply our algorithm to AutoEncoder, NOT based on

Implicit Neural Representations(INR). The AE base-line shows that INR

is an essential element in our methodology. In the AE base-line, the

architecture used the same encoder structure as in our proposed method,

but since the AE base-line is based on Auto-Encoder, rather than an

INR based structure, a structure such as a hypernetwork or a function

representation is not used. Instead, the AE base-line used the decoder

with a reversed structure of the encoder. The objective function and

learning algorithm of AE base-line are almost same as we proposed. The

front part of the encoder output inferences the reference degree, and the

rest part goes through reparameterization and input into the decoder.

Finally, the decoder is trained to generate a reference image. Let E and

D be the encoder and decoder respectively. The loss function LAE base-line

48

is as follows.

LAE base-line = Langle + Lconsis + Lrecon

Langle and Lconsis are same as we propsed in section 3.7, and

Lrecon =
1

Res

Res∑
r=1

E
W

[∥∥∥(W)r −Rθ̂(D(E(W)))r

∥∥∥2]

where Rθ̂ is rotation function with rotation degree θ̂. The overall diagram

is shown in Figure 4.12. And then apply k-means to the learned latent

Figure 4.12 AE base-line

space(i.e, output space of the encoder).

• Ours: Pretrain with INR which is proposed method in this paper. And

then apply k-means to the learned latent space(i.e, output space of the

encoder)

• Ours+DEC: With pretrained model which is obtained by Ours. And

then apply DEC to the learned latent space. We set α = 0.0001 for

degree of the freedom of the student distribution in DEC.

Naively applying k-means clustering on learned latent space of the encoder

already outperformed to other methods. Our method with DEC showed the best

performance on rotated MNIST, rotated FashionMNIST and WM811k(Table

4.1).

49

Table 4.1 Clustering results

Rotated MNIST Rotated Fashion MNIST WM811k

k-means 26.7% 25.64 % 44.1 %
DEC 28.6 % 26.1 % 36.3%
Spatial VAE 56.4% 41.2 % 27.4%
AE base-line 53.9% 46.8% 49.8 %
Ours 79.3% 49.3 % 55.5 %
Ours+DEC 81.1% 50.2 % 56.1%

Also, we show that the images belonging to each predicted label after

clustering(Fig 4.13, 4.14, 4.15). We randomly sample the images, not cherry

picking.

Figure 4.13 Clustered MNIST by Ours+DEC.

Figure 4.14 Clustered FashionMNIST by Ours+DEC.

50

Figure 4.15 Clustered WM811k by Ours+DEC.

51

5 Conclusion

In this paper, we posed the necessity for breaking the symmetry in the task

that predicting the rotation degree in unsupervised setting. We proposed

to use the center of mass as a rule to break the symmetry. Using this rule

and Implicit Neural Representations (INR), we proposed two-stage method to

cluster randomly rotated image datasets. First stage, training the encoder to

output the latent vector which is disentangled to latent rotation angle(latent

angle) and rotationally invariant latent vector(latent). Second stage, clustering

latent according to the DEC[41] has superior performance on randomly rotated

datasets than other methods. It is first approach to cluster with implicit neural

representations (INR) as far as we know.

Of course, various other methods can be applied to our method. For example,

in the first stage, the consistency loss in the section 3.7 has the effect that

collapsing the latent space, contrastive learning method can be applied instead

of our consistency loss for similar features becomes closer and disimilar features

becomes far. And also in the second stage, we IIC[18], SCAN[40] and other

methods can be applied instead of DEC[41].

52

Bibliography

[1] Nuri Benbarka, Timon Höfer, Hamd ul Moqeet Riaz, and Andreas Zell:

Seeing implicit neural representations as fourier series. 2022 IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV) (2022),

2283–2292.

[2] Tristan Bepler, Ellen Zhong, Kotaro Kelley, Edward Brignole, and Bonnie

Berger: Explicitly disentangling image content from translation and

rotation with spatial-vae. Advances in Neural Information Processing

Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-

Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019.

[3] Koby Bibas, Gili Weiss-Dicker, Dana Cohen, Noa Cahan, and Hayit

Greenspan: Learning Rotation Invariant Features For Cryogenic Elec-

tron Microscopy Image Reconstruction. 2021 IEEE 18th International

Symposium on Biomedical Imaging (ISBI). Apr. 2021, 563–566. doi:

10.1109/ISBI48211.2021.9433789.

[4] Piotr Bojanowski, and Armand Joulin: Unsupervised learning by predict-

ing noise. ArXiv, abs/1704.05310 (2017).

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze:

Deep clustering for unsupervised learning of visual features. ECCV. 2018.

[6] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and

Chunhong Pan: Deep adaptive image clustering. Oct. 2017, 5880–5888.

doi: 10.1109/ICCV.2017.626.

[7] Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and Heng Huang: Near-

est neighbor matching for deep clustering. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). June

2021, 13693–13702.

53

https://doi.org/10.1109/ISBI48211.2021.9433789
https://doi.org/10.1109/ICCV.2017.626

[8] Kien Do, Truyen Tran, and Svetha Venkatesh: Clustering by maximizing

mutual information across views. Oct. 2021, 9908–9918. doi: 10.1109/

ICCV48922.2021.00978.

[9] Carl Doersch, Abhinav Gupta, and Alexei Efros: Unsupervised visual

representation learning by context prediction (May 2015). doi: 10.1109/

ICCV.2015.167.

[10] Emilien Dupont, Hyunjik Kim, Ali Eslami, Danilo Rezende, and Dan

Rosenbaum: From data to functa: your data point is a function and you

should treat it like one. arXiv preprint arXiv: 2201.12204 (2022).

[11] Emilien Dupont, Yee Whye Teh, and Arnaud Doucet: Generative models

as distributions of functions. CoRR, abs/2102.04776 (2021).

[12] Zeyu Feng, Chang Xu, and Dacheng Tao: Self-supervised representation

learning by rotation feature decoupling. The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). June 2019.

[13] Tomer Galanti, and Lior Wolf: On the modularity of hypernetworks. Ad-

vances in Neural Information Processing Systems. Ed. by H. Larochelle,

M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran

Associates, Inc., 2020, 10409–10419.

[14] Spyros Gidaris, Praveer Singh, and Nikos Komodakis: Unsupervised

representation learning by predicting image rotations. International Con-

ference on Learning Representations. 2018.

[15] David Ha, Andrew M. Dai, and Quoc V. Le: Hypernetworks. 5th Inter-

national Conference on Learning Representations, ICLR 2017, Toulon,

France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,

2017.

[16] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi

Sugiyama: Learning discrete representations via information maximizing

self augmented training. Aug. 2017.

[17] S. Jenni, and Paolo Favaro: Self-supervised feature learning by learning

to spot artifacts. 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (2018), 2733–2742.

54

https://doi.org/10.1109/ICCV48922.2021.00978
https://doi.org/10.1109/ICCV48922.2021.00978
https://doi.org/10.1109/ICCV.2015.167
https://doi.org/10.1109/ICCV.2015.167

[18] Xu Ji, Andrea Vedaldi, and Joao Henriques: Invariant Information Clus-

tering for Unsupervised Image Classification and Segmentation. 2019

IEEE/CVF International Conference on Computer Vision (ICCV). Seoul,

Korea (South): IEEE, Oct. 2019, 9864–9873. isbn: 978-1-72814-803-8.

doi: 10.1109/ICCV.2019.00996.

[19] Angjoo Kanazawa, David W. Jacobs, and Manmohan Chandraker: Warp-

net: weakly supervised matching for single-view reconstruction. Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR). June 2016.

[20] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich: Coloriza-

tion as a proxy task for visual understanding. 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (2017), 840–849.

[21] Etai Littwin, Tomer Galanti, Lior Wolf, and Greg Yang: On infinite-width

hypernetworks. Advances in Neural Information Processing Systems. Ed.

by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin.

Vol. 33. Curran Associates, Inc., 2020, 13226–13237.

[22] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.

Barron, Ravi Ramamoorthi, and Ren Ng: Nerf: representing scenes as

neural radiance fields for view synthesis. ECCV. 2020.

[23] Ishan Misra, and Laurens van der Maaten: Self-supervised learning of

pretext-invariant representations. Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR). June

2020.

[24] TomMonnier, Thibault Groueix, andMathieu Aubry: Deep transformation-

invariant clustering. Advances in Neural Information Processing Systems.

Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin.

Vol. 33. Curran Associates, Inc., 2020, 7945–7955.

[25] T. Mundhenk, Daniel Ho, and Barry Chen: Improvements to context

based self-supervised learning (Nov. 2017).

[26] Mehdi Noroozi, and Paolo Favaro: Unsupervised learning of visual rep-

resentations by solving jigsaw puzzles. Computer Vision – ECCV 2016.

Ed. by Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling. Cham:

Springer International Publishing, 2016, 69–84. isbn: 978-3-319-46466-4.

55

https://doi.org/10.1109/ICCV.2019.00996

[27] Mehdi Noroozi, Ananth Vinjimoor, Paolo Favaro, and Hamed Pirsiavash:

Boosting self-supervised learning via knowledge transfer. June 2018,

9359–9367. doi: 10.1109/CVPR.2018.00975.

[28] David Novotny, Samuel Albanie, Diane Larlus, and Andrea Vedaldi: Self-

supervised learning of geometrically stable features through probabilistic

introspection. Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). June 2018.

[29] Aaron van den Oord, Yazhe Li, and Oriol Vinyals: Representation learn-

ing with contrastive predictive coding. 2018. doi: 10.48550/ARXIV.1807.

03748.

[30] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and

Alexei A. Efros: Context encoders: feature learning by inpainting. 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(2016), 2536–2544.

[31] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron

C. Courville: Film: visual reasoning with a general conditioning layer.

AAAI. 2018.

[32] Zhongzheng Ren, and Yong Jae Lee: Cross-domain self-supervised multi-

task feature learning using synthetic imagery. 2018 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (2018), 762–771.

[33] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic: Convolutional neural

network architecture for geometric matching. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). July

2017.

[34] Yuming Shen, Ziyi Shen, Menghan Wang, Jie Qin, Philip Torr, and

Ling Shao: You never cluster alone. Advances in Neural Information

Processing Systems. Ed. by M. Ranzato, A. Beygelzimer, Y. Dauphin,

P.S. Liang, and J. Wortman Vaughan. Vol. 34. Curran Associates, Inc.,

2021, 27734–27746.

[35] Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David

B. Lindell, and Gordon Wetzstein: Implicit neural representations with

periodic activation functions. Proc. NeurIPS. 2020.

56

https://doi.org/10.1109/CVPR.2018.00975
https://doi.org/10.48550/ARXIV.1807.03748
https://doi.org/10.48550/ARXIV.1807.03748

[36] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein: Scene rep-

resentation networks: continuous 3d-structure-aware neural scene repre-

sentations. Advances in Neural Information Processing Systems. 2019.

[37] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny: Adversarial

generation of continuous images. Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR). June 2021,

10753–10764.

[38] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-

Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T.

Barron, and Ren Ng: Fourier features let networks learn high frequency

functions in low dimensional domains. NeurIPS (2020).

[39] Tsung Wei Tsai, Chongxuan Li, and Jun Zhu: Mi{ce}: mixture of con-

trastive experts for unsupervised image clustering. International Confer-

ence on Learning Representations. 2021.

[40] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc

Proesmans, and Luc Van Gool: SCAN: Learning to Classify Images

Without Labels. Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi,

Horst Bischof, Thomas Brox, and Jan-Michael Frahm. Vol. 12355. Cham:

Springer International Publishing, 2020, 268–285. isbn: 978-3-030-58606-

5 978-3-030-58607-2. doi: 10.1007/978-3-030-58607-2_16.

[41] Junyuan Xie, Ross Girshick, and Ali Farhadi: Unsupervised Deep Em-

bedding for Clustering Analysis (), 10.

[42] Asano YM., Rupprecht C., and Vedaldi A.: Self-labelling via simultane-

ous clustering and representation learning. International Conference on

Learning Representations. 2020.

[43] Dejiao Zhang, Feng Nan, Xiaokai Wei, Shang-Wen Li, Henghui Zhu,

Kathleen McKeown, Ramesh Nallapati, Andrew O. Arnold, and Bing

Xiang: Supporting clustering with contrastive learning. Proceedings of

the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. Online:

Association for Computational Linguistics, June 2021, 5419–5430. doi:

10.18653/v1/2021.naacl-main.427.

57

https://doi.org/10.1007/978-3-030-58607-2_16
https://doi.org/10.18653/v1/2021.naacl-main.427

[44] Liheng Zhang, Guo-Jun Qi, Liqiang Wang, and Jiebo Luo: Aet vs. aed:

unsupervised representation learning by auto-encoding transformations

rather than data. Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). June 2019.

[45] Richard Zhang, Phillip Isola, and Alexei A. Efros: Colorful image col-

orization. ECCV. 2016.

[46] Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, and

Nicu Sebe: Neighborhood contrastive learning for novel class discovery.

Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). June 2021, 10867–10875.

58

초 록

이미지 군집화는 머신 러닝, 딥 러닝 및 산업에서 중요한 과제이다. 특히,

딥러닝에서 이미지 군집화는 자기주도학습(self-supervised learning)에서 사전

과제(pretext task)로 사용되는 등 다양한 용도로 활용되기 시작했다. 많은 선행

연구들이 벤치마크 데이터셋에서 우수한 성능을 보여주었지만, 이러한 데이터셋

의이미지들은회전되어있지않고모두올바른방향으로놓여있다.하지만,실제

세계에서 얻은 데이터셋이 항상 이와 같이 올바로 놓여 있을 것이라는 보장은 없

다. 우리는 이미지가 무작위로 회전되어 있을 때, 선행 연구들에서의 알고리즘이

잘 작동하지 않다는 것을 지적한다. 본 논문에서는 음적 신경망 표현(Implicit

Neural Representations)을활용하여 1. 이미지의잠재회전각도(latent rotation

angle)와 회전 불변인 잠재 벡터(rotationally invariant latent vector)가 분리되

어 있는 잠재 벡터(latent vector)를 얻으며, 2. 회전 불변인 잠재 벡터를 이용한

군집화가 무작위로 회전된 데이터셋에서 우수한 성능을 가짐을 보인다. 우리가

아는 한, 이것은 음적 신경망 표현을 이용하여 군집화 하려는 첫 번째 시도이다.

주요어: 회전불변, 클러스터링, 딥러닝, 음적신경망표현, 인공지능

학 번: 2020-21133

59

	1 Review the Implicit Neural Representations
	1.1 Introduction to INR
	1.2 Applications of INR
	1.3 Techniques of INR

	2 Review the Clustering
	2.1 Classic Algorithms
	2.1.1 Centroid Based Clustering
	2.1.2 Hierarchical Clustering
	2.1.3 Density Based Clustering

	2.2 Deep Learning based Clustering
	2.2.1 Two-Stage Learning Method
	2.2.2 End-to-End Learning Method

	3 Rotationally Invariant Clustering with INR
	3.1 Related Works
	3.2 Aim of The Proposed Method
	3.3 Breaking the Symmetry
	3.4 Encoder
	3.5 Hypernetwork
	3.6 Function Representation Generator
	3.7 Objective Function

	4 Experiments
	5 Conclusion
	Bibliography
	초 록

<startpage>12
1 Review the Implicit Neural Representations 1
 1.1 Introduction to INR 1
 1.2 Applications of INR 5
 1.3 Techniques of INR 9
2 Review the Clustering 13
 2.1 Classic Algorithms 13
 2.1.1 Centroid Based Clustering 13
 2.1.2 Hierarchical Clustering 14
 2.1.3 Density Based Clustering 15
 2.2 Deep Learning based Clustering 19
 2.2.1 Two-Stage Learning Method 21
 2.2.2 End-to-End Learning Method 23
3 Rotationally Invariant Clustering with INR 26
 3.1 Related Works 26
 3.2 Aim of The Proposed Method 27
 3.3 Breaking the Symmetry 29
 3.4 Encoder 30
 3.5 Hypernetwork 32
 3.6 Function Representation Generator 33
 3.7 Objective Function 34
4 Experiments 37
5 Conclusion 52
Bibliography 53
초 록 59
</body>

