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Abstract

Virtual pullbacks, cosection

localization, and Donaldson-Thomas
theory of Calabi-Yau 4-folds

Park, Hyeonjun

Department of Mathematical Sciences
The Graduate School
Seoul National University

This dissertation is based on the four papers [KP1, KP2, Parkl1, /AKLPR] and the
two papers in progress [BKP, BP].

The main purpose is to generalize Manolache’s virtual pullbacks and Kiem-
Li’s cosection localization to Donaldson-Thomas theory of Calabi-Yau 4-folds.
The three main applications are Lefschetz principle, Pairs/Sheaves correspon-
dence, and a foundation of surface counting theory.

A secondary purpose is to revisit virtual pullbacks and cosection localization
via the Kimura sequence for Artin stacks, derived algebraic geometry, and alge-
braic cobordism. We also prove Graber-Pandaripande’s torus localization formula
in full generality.

Key words: Virtual pullbacks, cosection localization, Donaldson-Thomas theory
of Calabi-Yau 4-folds
Student Number: 2018-20625
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Introduction

Modern enumerative geometry studies invariants defined through virtual cycles.
Moduli spaces are often singular and the fundamental cycles do not behave well.
A remarkable idea of Kontsevich [Konl is that these moduli spaces are actually
truncations of quasi-smooth derived moduli spaces, and the fundamental cycles
of these derived moduli spaces are well behaved. Conceptually, virtual cycles are
the fundamental cycles of these derived enhancements. A rigorous mathematical
foundation of virtual cycles was later established by Li-Tian [LT] and Behrend-
Fantechi [BF] through the formalism of perfect obstruction theories.

These virtual enumerative invariants have been studied intensively during the
last three decades and many interesting structures have been discovered. The
main examples are Gromov-Witten theory [BM, Behl] of counting curves and
Donaldson-Thomas theory [DT, Tho] of counting sheaves.

There are two powerful tools handling virtual cycles developed to compute the
virtual invariants.

A. Virtual pullbacks of Manolache [Man];
B. Cosection localization of Kiem-Li [KLI1]].

These two tools have vast applications in both the theoretical and computational
aspects. In particular, other effective tools such as the torus localization formula
[GP] and the degeneration formula [Lil}, [Li2, LW] can be shown as corollaries of
the virtual pullback formula [Manl.

Recently, a new type of virtual cycles was introduced for Donaldson-Thomas
theory of Calabi-Yau 4-folds (in short DT4 theory) by Borisov-Joyce [BJ] and
Oh-Thomas [OT]. Conceptually, these virtual cycles are the fundamental cycles
of quasi-smooth derived Lagrangians of (—2)-shifted symplectic derived moduli
spaces [PTVV]. There are already rich references on virtual invariants defined
through these new virtual cycles, see [CL, (CK1, CMTI1, ICMT2, I(CK2, I(CKM,
CT19,ICT20, CT21, Boj, ICOT1, ICOT2].
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The main purpose of this dissertation is to develop analogs of the above two
key tools in DT4 theory. In particular, this proves various conjectures in DT4
theory. Moreover, this opens a theory of counting surfaces on Calabi-Yau 4-folds.
This is based on [[Park1, [KP2| BKP].

A secondary purpose of this dissertation is to revisit the above two key tools
via recent developments in intersection theory of Artin stacks, derived algebraic
geometry, and algebraic cobordism. This is based on [BP,AKLPR} [KP1]].

Background: Virtual intersection theory

Virtual cycles

Heuristically, virtual cycles are the fundamental cycles of quasi-smooth derived
enhancements. The rigorous construction in [LT, BF] only uses a classical shadow
of a derived enhancement, called a perfect obstruction theory.

We briefly summarize the construction. There are two key ingredients.

1. A perfect obstruction theory ¢ : F — Ly for a scheme X induces a closed
embedding
L GX — ¢

of the intrinsic normal cone €y into a vector bundle stack € := h' /h°(FV).
2. We have a Gysin pullback of the vector bundle stack €,
Og : Ax(€) — AL(X),
given by the homotopy property of Chow groups [Kre2].

The virtual cycle is then defined as the cycle class

[X]'" 1= 0§[Cx] € AL (X).

Virtual pullbacks

Manolache [Man] introduced the notion of virtual pullbacks as relative versions
of virtual cycles. In the perspective of Fulton’s intersection theory [Ful], virtual
pullbacks are nothing but just the natural generalizations of the refined Gysin pull-
backs for closed embeddings to arbitrary morphisms. This is achieved through
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replacing normal cones by intrinsic normal cones and vector bundles by vector
bundle stacks.

More precisely, if f : X — Y is a morphism of schemes with a (relative)
perfect obstruction theory ¢ : F — Ly/y, then we have a closed embedding ¢ :
Cx/y — € of the (relative) intrinsic normal cone €y into a vector bundle stack
€ := h'/h°(F"), and the virtual pullback is defined as the composition

£ ALY) 2 AL (Cyy) 5 AL(€) 25 AL (X)
where sp : A,(Y) — A,(Cy/y) is the specialization map. Thus we may view vir-
tual cycles/virtual pullbacks as generalizations of intersection theory for schemes
to algebraic stacks.

The main property of virtual pullbacks is the functoriality. Indeed, if

xl.y_%.7
\_/
gof

is a commutative diagram of schemes with a compatible triple of perfect obstruc-
tion theories

Ey/z|x Ex/z Ex/y

L]

Ly/z|x Lx/z Lx/y

then we have
(gof)! = f! cg: A*(Z) _’A*(X)
In particular, when Z = Spec(C), we have a virtual pullback formula

[X]vir _ f![Y]vir EA*(X).

It is desired to extend virtual cycles/virtual pullbacks to obstruction theories
¢ : E — Ly/y of arbitrary tor-amplitude, where the above construction only works
when E is of tor-amplitude [—1, 0]. We will consider three variants of virtual pull-
backs in the following cases where E is of tor-amplitude [—2, 0].

1. Eis the cone of a map Ox[1] — F where F is of tor-amplitude [—1,0];
2. Eis a symmetric complex of tor-amplitude [—2,0];

3. Eis a G,,-equivariant complex where E®™* is of tor-amplitude [—1, 0].

3



CONTENTS

Cosection localization

Kiem-Li [KL1] showed that a virtual cycle can be localized to a smaller locus
when there is a cosection. We may view this cosection localization as a first variant
of considering an obstruction theory of tor-amplitude [—2, 0].

A precise statement for cosection localization can be divided into two parts,
analogous to the construction of virtual cycles in the previous subsection.

1. A cosection o : EV[1] — Oy for a scheme X with a perfect obstruction
theory ¢ : E — Ly gives rise to a cone reduction,

((SX)red < R,

where & := h'/h°(EY) is the kernel cone stack, defined as the abelian cone
stack associated to E, := cone(o ¥ [1] : Ox[1] — E).

2. We have a cosection-localized Gysin map
Og, 1 Ax(R) = AL (X(0))
where X (o) is the zero locus of & := h°(o) : h'(EY) — Oy in X.
The main outcome is the cosection-localized virtual cycle, defined as
[X] 1= 0, [€x] € A (X(0)).

In particular, the virtual cycle vanishes when o is surjective. In this case, the
kernel cone stack K is a vector bundle stack and we thus have an additional out-
come, the reduced virtual cycle, defined as

[X]™ := 04 [Cx] € Aui1(X).

Donaldson-Thomas theory of Calabi-Yau 4-folds

Donaldson-Thomas invariants were first introduced by Thomas [Thol] as virtual
counts of stable sheaves on Calabi-Yau 3-folds and Fano 3-folds. Many inter-
esting structures have been discovered, e.g. connection to Gromov-Witten the-
ory [MNOPI, MNOP2, [PP] and rationality [PT1), [PT2] for rank 1 invariants,
reduction of higher rank invariants via rank 1 invariants [ET], motivic property
[Beh2,JS], categorification [BBDJS, [KL2, MT], and modularity for rank O invari-
ants [[GS|, [TT].
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It was desired to extend the Donaldson-Thomas theory to higher-dimensional
varieties. The main difficulty was that the natural obstruction theory on moduli
spaces of sheaves on higher-dimensional varieties are no longer of tor-amplitude
[—1,0] and the standard method of constructing virtual cycles in [LT, BF] does
not work. Thus a completely new method was required.

For moduli spaces of sheaves on Calabi-Yau 4-folds, Cao-Leung [CL] first de-
fined virtual cycles in special cases and Borisov-Joyce later defined (topological)
virtual cycles in the general case. However computation of DT4 invariants through
the Borisov-Joyce virtual cycles was believed to be very difficult.

In the groundbreaking work [OT]], Oh-Thomas constructed algebraic virtual
cycles for Calabi-Yau 4-folds. This enabled us to extend the two key tools, virtual
pullbacks and cosection localization, to DT4 theory [Park1, [KP2].

Oh-Thomas virtual cycles

The crucial part of Oh-Thomas’s construction is the following local model. Let
E be a special orthogonal bundle on a scheme Y and s € I'(Y, E) be an isotropic
section. Let X be the zero locus of sin Y,

Oh-Thomas constructed a localization
Ve(E,s) : A(Y) — Au(X)

of the square root Euler class y/e(E) : A,(Y) — A,(Y) of Edidin-Graham [EGI],
using cosection localization of Kiem-Li [KL1].

The global construction is then given as follows. Let X be a moduli space of
stable sheaves on a Calabi-Yau 4-fold. Then X carries a symmetric obstruction
theory ¢ : E — Ly of tor-amplitude [—2, 0]. If we choose a symmetric resolution
E = [B — EY — BY|, then the stupid truncation gives us a closed embedding
€x — [E/B]. Form a fiber diagram

C———=EFE

L

Cx— [E/B].

5
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Then the zero section O¢ : X < C is the zero locus of the tautological section
eI (C, E|c),
E|c

)

x—*. ¢
The Oh-Thomas virtual cycle is then defined as

[X]"" := Ve(E|c,7)[C] € Au(X).

The tautological section 7 is isotropic by the derived Darboux theorem [BBJ,
BBBJ, BG| and the orthogonal bundle E is orientable by [[CGJ].

Square root virtual pullbacks

Oh-Thomas virtual cycles can be generalized to the relative setting, analogous to
Manlache’s virtual pullbacks.

Let f : X — Y be a morphism of schemes with an oriented symmetric ob-
struction theory ¢ : E — Ly/y of tor-amplitude [—2,0]. Then there exists a canon-
ical quadratic function gz : €(E) — Al on the associated abelian cone stack
€(E) := h'/h°(E") induced by the symmetric form of E.

1. If the intrinsic normal cone Cy is isotropic with respect to qg, then we have
a closed embedding
L: (SX/Y —> Q(E)

into the quadratic cone stack Q(E), defined as the zero locus of gg.

2. We have a square root Gysin pullback

/0L e AL(RAE)) — A, (X)

for the quadratic cone stack Q(E).

Definition A ([Parkl1]). Let f : X — Y be a morphism of schemes with an ori-
ented symmetric obstruction theory ¢ : E — Ly/y of tor-amplitude [—2,0] sat-
isfying the isotropic condition. We define the square root virtual pullback as the
composition

2V, 03:4(15)
e —

VI ALY) 2 AL (G yy) 2> AL(QUE)) A(X).

6
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The square root virtual pullbacks are functorial in the following sense.

Theorem B ([Parkl1]]). Let

x 1.yt 7
\_/
gof

is a commutative diagram of quasi-projective schemes with symmetric obstruction
theories ¢x/z : Ex/z — Lx/z, ¢v)z : Byjz — Ly/z of tor-amplitude [—2,0] satisfy-
ing the isotropic condition, and a perfect obstruction theory ¢xy : Ex;y — Lxy
of tor-amplitude |—1,0]. Assume that there exists a commutative diagram

DY[2] “> Ex/z Ex/y

lﬁv ﬁ la

Ey/z|x D Ex/y

\Llﬁy/z lﬁ/z l/

Ly/z|x Lx/z Lx/y

for some D, a, B, ¢, Iz such that ¢xz = ¢, 120@ and the horizontal sequences are
distinguished triangles. Then for each orientation of Ey,z, there exists an induced
orientation of Ex,z such that we have

\/ (gof)! :f!o \/?:A*(Z)_’A*(X)'

In particular, when Z = Spec(C), we have a virtual pullback formula
[X]vir _ f![Y]vir c A* (X)

The two main applications of the virtual pullback formula (Theorem[Bl) are the
Lefschetz principle (Corollary |[E)) and the Pairs/Sheaves correspondence (Corol-
lary [G).

Cosection localization

Kiem-Li’s cosection localization can be extended to Oh-Thomas virtual cycles.
In DT4 theory, there are two types of cone reduction. Let ¢ : E — Ly be a
symmetric obstruction theory on a scheme X satisfying the isotropic condition.

7
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1. If X : EV[1] — KV is an isotropic cosection, i.e. ¥* = 0 : K — KV, then
we have
(gX)red - D(E//K)

where the symmetric complex E k is given by the reduction diagram

DV[2] “—~E—2>K"[1]

R

B
Ejx —D—K"[1].

2. If £ : EV[1] — F is a non-degenerate cosection, i.e. ¥* : F¥ — F is an
isomorphism, then we have

(GZX)red = D(E/F)
where the symmetric complex E/r is given by the decomposition

E = E;r @ F[1].

From the above cone reductions, we can define two types of reduced Oh-Thomas
virtual cycles.

Definition C ([KP2]]). Let X be a quasi-projective scheme with an oriented sym-
metric obstruction theory ¢ : E — Ly of tor-amplitude [—2,0] satisfying the
isotropic condition. Let ¥ : EV[1] — KV be an isotropic cosection such that
(%) : h'(EY) — KV is surjective. We define the reduced Oh-Thomas virtual

cycle as

[X]red - O!Q(E//K)[GX] € A*_,_k(X)

where k := rank(K).

Definition D ([BKP]). Let X be a quasi-projective scheme with an oriented sym-
metric obstruction theory ¢ : E — Ly of tor-amplitude [—2,0] satisfying the
isotropic condition. Let X : EV[1] — F be a non-degenerate cosection. Choose an
orientation of the orthogonal bundle (F, X?). We define the reduced Oh-Thomas
virtual cycle as

[X]red = OIQ(E/F)[G:X] € A*+%f(X)

where f := rank(F).
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Definition[Clcan be used to count curves on hyperkihler 4-folds [[COT 1, /[COT?2]]
and Definition [Dl can be used to count surfaces on Calabi-Yau 4-folds [BKP].
For isotropic cosections, we can define localized Oh-Thomas virtual cycles.

Theorem E ([KP2]). Let X be a quasi-projective scheme with an oriented sym-
metric obstruction theory ¢ : E — Ly of tor-amplitude [—2,0]| satisfying the
isotropic condition. Let o : EY[1] — Oy be an isotropic cosection. Then there
exists a cosection-localized Oh-Thomas virtual cycle

[X]* € A.(X(@))
such that i,,[X]'° = [X]'F € A,(X), where X(T) is the zero locus of T := h°(0) :
h'(EY) — Ox and i : X(0°) — X is the inclusion map.

The key idea is to localize Edidin-Graham’s square root Euler classes by two
isotropic section.

Three applications

Recall that the quantum Lefschetz principle of Kim-Kresch-Pantev [KKP] re-
lates the genus zero Gromov-Witten invariants of an algebraic variety with the
Gromov-Witten invariants of its divisor. The virtual pullback formula (Theorem
provides an analogous formula in Donaldson-Thomas theory.

Corollary F ([Parkl1l]). Let X be a Calabi-Yau 4-fold and D be a smooth connected
divisor of a line bundle L on X. Let B € H>(X, Q) be a curve class and n € Z be
an integer. Consider the Hilbert schemes:
L, 5(X) := {closed subschemes Z = X with [Z] = 8 and x(Oz) = n}
L,5(D) := {closed subschemes Z < D with i,[Z] = 8 and x(Oz)=n}

where i : D — X is the inclusion map. Assume that the tautological complex
Ln,ﬁ = Rﬂ'* (OZ,\’ ) L)

is a vector bundle concentrated in degree 0, where Zx < I,5(X) x X is the
universal family and n : I,5(X) x X — 1I,5(X) is the projection map. Then for
any orientation on I, 5(X), there exists canonical signs (—1)°(© on the connected
components I, 3(D)¢ of I,5(D) such that

2D slLp(D) T = e(Lug) O up(X) 157

e

where j, : I, 5(D)® — I,5(D) — I,5(X) are the inclusion maps.

9
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If we apply Corollary [H to points, we can prove the Cao-Kool conjecture
[CK1]] for line bundles with smooth divisors using the corresponding result for
3-folds [Li3\ [LP]. If we apply Corollary [H to curves, we can prove the Cao-
Kool-Monavari conjecture [[CKM] on the DT/PT correspondence for line bundles
with Calabi-Yau divisors, using the corresponding result for Calabi-Yau 3-folds
[Toda, Bril]. Corollary [H can also be generalized to surfaces [BKP].

The virtual pullback formula (Theorem [B)) also provides a correspondence
between the moduli of stable pairs and the moduli of stable sheaves.

Corollary G ([Parkl]). Let X be a Calabi-Yau 4-fold with fixed very ample line
bundle. Let B € Hy(X,Q) be a curve class and n € Z be an integer. Consider the
following moduli spaces:

P,5(X) := {stable pairs (F, s) on X with ch(F) = (0,0,0,5,n)}
M, 5(X) := {stable sheaves G on X with ch(G) = (0,0,0,8,n)}

Assume that B is irreducible and M, g(X) has a universal family. Then we have a
well-defined forgetful map

p:Pus(X) = Mp(X) : (F,s) — F
which has a canonical perfect obstruction theory such that
[Pus(X)]" = p'[Map(X)]™ € As(Prg(X))
for certain choice of orientations.

Since the forgetful map p : P,s5(X) — M, z(X) is a virtual projective bundle,
we also have a pushforward formula. In particular, this proves the Cao-Maulik-
Toda conjecture [CMT1, ICMT2] on the primary PT/Katz correspondence. More-
over, we also have a tautological PT/Katz correspondence.

One application of the cosection localization [KP2, BKP] is a foundation of
a surface counting theory on Calabi-Yau 4-folds. Since a (2,2)-class does not
remain a (2, 2)-class under a deformation of a Calabi-Yau 4-fold in a generic sit-
uation, the Oh-Thomas virtual cycle usually vanishes. Hence we need to consider
the reduced virtual cycles almost always.

Theorem H ([BKP]). Let X be a Calabi-Yau 4-fold with nowhere vanishing Calabi-
Yau 4-form w € H°(X,Q3). Let v = (0,0,7,B,n — y - tdr(X)) € H*(X,Q) be

10
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a cohomology class. Let 1,(X) be the Hilbert schemes of surfaces S < X with
ch(Oys) = v. Then there exist a canonical reduced virtual cycle

[LOOT™ € Ay 1oy 1, (1(X)

where p,, is the rank of the symmetric bilinear form
B, : H'(X,Tx) ® H' (X, Tx) > C: &, ® & — J (tg,te,y L W).
X

Moreover, the reduced virtual cycle [I,(X)] is deformation invariant along the
Hodge locus of (X, ).

The Hodge conjecture predicts that for any smooth projective variety X, all
rational (p, p)-classes on X are algebraic. In [Grol]], Grothendieck introduced a
variant of the Hodge conjecture, called the variational Hodge conjecture: a defor-
mation of an algebraic class is algebraic.

From the deformation invariance of reduced virtual cycles, we obtain a con-
nection of DT4 theory with the variational Hodge conjecture.

Theorem I ([BKP]). Let X be a Calabi-Yau 4-fold and let y be a (2,2)-class on
X. If for some v € H*(X,Q) withvy, = y and g € {—1,0, 1}

[P (0] # 0 € AL (P (X))
then the variational Hodge conjecture holds for (X, ).

There is a technical issue in deformation invariance of DT4 theory. We resolve
this in [Park2]. Having a relative (—2)-shifted symplectic structure does not give
a Darboux chart in general and an additional condition is required. Fortunately,
this additional assumption is always satisfied if we choose sufficiently nice family
of Calabi-Yau 4-folds. We refer to [[Park2] for details.

Generalizations

Torus localization via equivariant virtual pullbacks

The torus localization formula of Graber-Pandharipande [GP] is an extremely
useful tool for computing virtual invariants when there is a torus action. How-
ever, some technical assumptions were required in [[GP]. This was significantly

11
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weakened by Chang-Kiem-Li [[CKL], but there are still some cases where the full
generality is desired (e.g. wall-crossing formula of Joyce [Joy, |GIT]).

In [AKLPR], we prove the torus localization formula for Deligne-Mumford
stacks, without any technical hypothesis. This inspired by Chang-Kiem-Li’s ap-
proach [CKL].

Theorem J ([AKLPRI). Let X be a separated Deligne-Mumford stack with a T-
action. Let ¢ : E — Ly be a T-equivariant perfect obstruction theory. let ¢pxr be
the induced perfect obstruction theory on the fixed locus X" (see Definition[Z.2.1).

Then we have [ T] .
. X vir

X vir _ '* : AT X s

X% = i (e ) €AT0)

where AL(X)s 1= A} (X) Qqps) Q[s™'] denotes the localization by the Euler class
s of the weight 1 representation of T, e¥(N'Y") is the Euler class of the virtual
normal bundle (see Definition[Z.2.4) and i : X* — X is the inclusion map.

The key idea is to define an equivariant virtual pullback
i’!l‘ : A:E(X)s - AT(XT)S

for the inclusion map i : X — X. There is a canonical relative obstruction theory
E[%" — Lyrx fori : XT — X, but it is of tor-amplitude [—2, —1] and thus we
needed a new construction.

Consider the following general situation: Let f : ¥ — X be a T-equivariant
morphism of Deligne-Mumford stacks with T-actions. Let ¢ : E — Ly/x be a
T-equivariant obstruction theory. Assume that the T-action on Y is trivial, E™*
is of tor-amplitude [—1, 0], and E™ is of tor-amplitude [—2, —1]. Then €(E) is
not necessarily a vector bundle stack, but we still have an equivariant homotopy
property

AL (E(B))s = AL(X)s.

Hence we can define the equivariant Gysin pullback
(Oc(s))7 : AL (C(E))s — AL(Y)s.
We then define the T-equivariant virtual pullback as the composition

, s " (Oe);
fi 1 AL(Y)s > AL (Cxyr)s > AL(C(E))s —— AT(X)s.

Then the above torus localization formula follows from the functoriality of equiv-
ariant virtual pullbacks (Theorem [Z.1.13)).

12
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Cosection localization via derived algebraic geometry

Kiem-Li’s cosection localization can be reinterpreted using derived algebraic ge-
ometry. Note that in derived algebraic geometry, quasi-smooth derived schemes
are natural analogs of schemes with perfect obstruction theories and (—1)-shifted
1-forms are natural analogs of cosections.

In [BKP, Appendix A], we prove scheme-theoretical cone reduction lemma
when cosections can be enhanced to (—1)-shifted closed 1-forms. This extends
Kiem-Li’s original cone reduction lemma.

Proposition K ([BKP]). Let X be a homotopically finitely presented derived scheme
and a be a (—1)-shifted closed 1-form. Let ¢ : E := Lx|x — Ly be an induced
obstruction theory on the classical truncation X := Xy and o := ayl|y : EV[1] —
Ox be the induced cosection. Let B, := cone(o ¥ [1] : Ox[1] — E). Then we have
a scheme-theoretical cone reduction

Cxc K

as substacks of € := h'/h°(EV), where & := h'/h°(EY) is the kernel cone stack.
Equivalently, we have a reduced obstruction theory

¢ B, — 77 Ly
that factors the original obstruction theory ¢.

The main idea is to use the derived Poincare lemma, i.e., a (—1)-shifted closed
1-form is locally exact, which can be shown by the arguments in Brav-Bussi-Joyce
[BBJ]]. Then the proposition follows directly from the approach of Schurg-Toen-
Vezzosi [STV]] to construct reduced obstruction theories.

In the construction of Oh-Thomas virtual cycles, Kiem-Li’s cosection local-
ization was crucially used. We speculate the following converse.

Speculation L. Let X be a quasi-smooth derived scheme and « be a (—1)-shifted
closed 1-form. Let a : Ox — Lx|[—1] be the underlying (—1)-shifted 1-form and
let X(@) be the derived zero locus. Then we have

(XIkL = [X(o)]or € Au(X(0))

where [X]' is Kiem-Li’s cosection-localized virtual cycle for the induced ob-
struction theory ¢ : E := Lx|x — Ly on the classical truncation X := X, and
the induced cosection o := ay|y, : EY[1] — Oy, and [X(0") |}, is the Oh-Thomas

virtual cycle for the (—2)-shifted symplectic derived scheme X(a).

13
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At least in the local model case, Speculation []is essentially shown in [KP2].
We plan to prove Speculation[L]in the general case in [KP3].

The cosection-localized virtual cycles are mostly used in the areas that are
not directly related to the DT4 theory (e.g. [ChLil]). Hence the above speculation
provides an unexpected connection of those areas to the DT4 theory.

Virtual intersection theory in algebraic cobordism

In [LM], Levine-Morel introduced algebraic coboridsm € as the universal ori-
ented Borel-Moore homology theory for schemes. In particular, we have natural
maps

Q.(X)

R

Ko(X)[p*'] Ax(X)

to the algebraic K-theory of coherent sheaves and the Chow groups for a quasi-
projective scheme X.

In [KP1]], we extend the theory of virtual cycles (including the two key tech-
niques) to algebraic cobordism. Since algebraic coboridsm is universal, this im-
plies the same result in any other oriented Borel-Moore homology theory.

Theorem M ([KP1]). Let f : X — Y be a morphism of quasi-projective schemes
with a perfect obstruction theory ¢ : E — Lyy.

1. Then there exists a virtual pullback
fHQu(Y) - Qu(X)
which is bivariant and functorial (see Chapter[9 for the precise statements).

2. Moreover, if Y = Spec(C) and o : EV[1] — Ox is a cosection, we have a
cosection-localized virtual cobordism class

[X]"* € Q.(X(0))
such that i, [X]'° = [X]|¥" where i : X(0) < X is the inclusion map.

3. IfY = Spec(C), T acts on X, and ¢ is induced from a T-equivariant perfect
obstruction theory, then we have

(X" = i, (}jﬁfj)) € Q; (X)ioc

14
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after inverting the Euler class of the weight 1 representation of T (see Chap-
ter|9 for the precise statements).

The key idea is to extend algebraic cobordism for schemes to Artin stacks via
limit construction.

Definition N ([KP1]]). Let X be an algebraic stack. We define the limit algebraic
coboridsm as

A~

Qu(X) := lim Qu gim(r/x)(T)
T—X

where 7" — X are all smooth morphisms from quasi-projective schemes 7.

Kimura sequence for Artin stacks

In [BP], we extend the Kimura sequence [Kiml|| to Kresch’s Chow groups of Artin
stacks [Kre2].

Proposition O ([BP]). Let p : Y — X be a proper representable surjective mor-
phism of algebraic stacks with affine stabilizers. Then we have a right exact se-
quence

ALY xx Y) LT 4y P AL (X) 0
where p1,p, : Y xx Y — Y are the projection maps. Here we used the proper

pushforwards developed by Bae-Schmitt-Skowera [BS, Appendix B].

In many cases, algebraic stacks have proper covers by global quotient stacks.
By the Kimura sequence, properties of Chow groups for these stacks can be re-
duced to those of global quotient stacks, which can be further reduced to those
of quasi-projective scheme via Totaro’s approximation [Tot]. This is technically
useful in virtual intersection theory, especially when we want to remove the hy-
pothesis on the resolution property. We plan to give various examples in [BP].

Notations and conventions

e All schemes and algebraic stacks are assumed to be of finite type over the
field of complex numbers C, unless stated otherwise.

15
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e For any morphism f : X — Y of algebraic stacks, denote by Ly/y the
full cotangent complex [Ill] and Ly/y := Tz_le/y the truncated cotangent
complex [HT].

e A perfect obstruction theory is assumed to be of tor-amplitude [—1,0] and
a symmetric obstruction theory is assumed to be of tor-amplitude [—2, 0],
unless stated otherwise.

e For any algebraic stack X, denote by A,(X) the Chow group of Kresch
[Kre2|] with Q-coefficients, unless stated otherwise.
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Virtual intersection theory
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Chapter 1

Intersection theory

This chapter collects basics on intersection theory for scheme and algebraic stacks
from [Ful, Vist, EG2, [Kre2] and algebraic coboridsm from [LM, [LP].

1.1 Intersection theory for schemes

In this section, we summarize basic properties of Chow groups for schemes and
DM stacks, based on [Ful, [Vist].

Definition 1.1.1 (Algebraic cycles). Let X be a Deligne-Mumford stack.
1. The cycle group of degree d € Z~, on X is defined as the Q-vector space
Z,(X) = Q([z])
generated by integral closed substacks Z of X of dimension d.

2. The cycle group on X is defined as the graded Q-vector space

Z.(X) = P Zs(X).

dez

Definition 1.1.2 (Proper pushforward). Let f : X — Y be a proper morphism of
Deligne-Mumford stacks. We define the proper pushforward as

, _ deg(Z/f(2)) - [f(2)] if dim(f(Z)) = dim(Z)
fo i 2e(X) = 2.(Y) 1 [Z] = {0 if dim(f(2)) < dim(2)

where the degree deg(Z/f(Z)) is given as follows:

18
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1. If Z — f(Z) is representable, then by generic flatness Z n f~1(U) — U is
finite flat for some non-empty open U < f(Z), and let deg(Z/f(Z)) be the
degree of the map Z n f~'(U) — U.

2. If Z — f(Z) is not representable, then choose a representable quasi-finite
dominant morphism V — Z such that V — Z — f(Z) is also representable,

and let deg(Z/f(Z)) := deg(V/f(Z))/deg(V/Z).

Definition 1.1.3 (Flat pullback). Let f : X — Y be a flat morphism of relative
dimension d of Deligne-Mumford stacks. We define the flat pullback as

f* 2 Zu(Y) = Zera(X) 1 [Z] = ) multy(£71(2)) - [V]

where the multiplicity multy (f~1(Z)) is given as follows:
1. If f~'(Z) is a scheme, then we let multy (f~'(Z)) := length(Os-1(z)v).

2. If f71(Z) is not a scheme, choose a smooth surjection Z' -» f~!(Z) and a
connected component V' < VX ;177" and let multy (f~'(Z)) := multy, (Z').

Definition 1.1.4 (Rational functions). Let V be an integral Deligne-Mumford
stack. The field of rational functions on V is defined as the direct limit

k(V) := lim T(U,Op)
ucv

where the limit is taken over all open substacks U < V and the transition maps
are given by the restriction maps for all U; < U,.

Definition 1.1.5 (Rational equivalence). Let X be a Deligne-Mumford stack.

1. The group of rational equivalences of degree d is defined as the Q-vector
space

Wi(X) := Pk(V)*®2Q

where the direct sum is taken over all integral closed substacks V of dimen-
siond + 1 and k(V)* denotes the unit group of k(V).

2. The group of rational equivalences is defined as the graded Q-vector space

W.(X) := P Wa(X).

dez
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Definition 1.1.6 (Boundary map). Let X be a Deligne-Mumford stack. We define
the boundary map
0: We(X) = Z(X)

as follows:

1. Case 1. Assume that X is a scheme. Then we define

0 Wi(X) > Zu(X): (f: U SV —Al) = Y ordy(f)[Z]

where ordz(f) := length,, (Ovz/a) — length,  (Oyz/b) for f = a/b and
a,be 0\1,2.

2. Case 2. Let X be a Deligne-Mumford stack. Then both the group of alge-
braic cycles Z, (X) and the group of rational equivalences W, (X) satisfy the
descent for the étale topology. We define the boundary map

0: We(X) - Z(X)
via descent.

Definition 1.1.7 (Chow group). Let X be a Deligne-Mumford stack. We define
the Chow group as the graded Q-vector space

A, (X) = coker(0 : Wi (X) — Z.(X)).

Proposition 1.1.8 (Basic properties). The proper pushforwards and flat pullbacks
are well-defined, functorial, and commute with each others. More precisely, we
have the followings:

1. Let f : X — Y be a proper morphism of Deligne-Mumford stacks. Then the
proper pushforward in Definition[[.1.21descends to the Chow groups

Moreover, if g : Y — Z is a proper morphism of Deligne-Mumford stacks,
then we have

(80 f)e = g« 0 fu : Au(X) — Au(2).
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2. Let f : X — Y be a flat morphism of relative dimension d of Deligne-
Mumford stacks. Then the flat pullback in Definition [[.1.3| descends to the
Chow groups

I A(Y) = Appa(X).

Moreover, if g : Y — Z is a flat morphism of relative dimension e Deligne-
Mumford stacks, then we have

(g0 f)* = f0g" 1 AulZ) = Asrase(X).

3. Let
X/ L Y/
ook
x—L-y
be a cartesian square of Deligne-Mumford stacks such that f is proper and
g is equi-dimensional flat. Then we have

ghofi=(f)eo(g)" 1 Au(X) = AL(Y').

Proposition 1.1.9 (Localization sequence). Let X be a Deligne-Mumford stack.
Let Z be a closed substack of X and U be the complement. Then we have a right
exact sequence

AL(Z) 2= AL (X) L= A, (U) —=0
wherei:Z — X and j: U — X are the inclusion maps.

Proposition 1.1.10 (Homotopy property). Let X be a Deligne-Mumford stack and
E be a vector bundle on X of rank r. Then the smooth pullback

75 Au(X) = Auy (E)
is an isomorphism where ny, : E — X is the projection map.

Proposition 1.1.11 (Chern classes). For each vector bundle E on a Deligne-
Mumford stack Xand an integer i € Z~, there exists unique maps

G(E) 1 Ax(X) = Au—i(X)
satisfying the following properties:
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1. If f : X — Y is a proper morphism of Deligne-Mumford stacks, then we
have

feoci(fYE) =ci(E)o fu: Au(X) = Aui(Y).
2. If f: X — Y is a flat morphism of relative dimension d, then we have

Gi(f*E)o f* = ffoci(E) : Ax(Y) = Asyei(X).

3. If D is an effective Cartier divisor of an integral Deligne-Mumford stack X
of dimension d, then we have

[D] = al(L)([X]) € Ag-1(X).

4. If Ly and L, are line bundles on X, then we have

C1(L1 ®L2) = CI(LI) + Cl(Lz) A*(X) — A*_l(X)

5. If E and F are vector bundles of rank r and s on X, then we have

GE®F) = Y ¢j(E)oci(F): Au(X) = Ayry(X).

i=j+k

Definition 1.1.12 (Intersection with an effective Cartier divisor). Let X be a Deligne-
Mumford stack and D be an effective Cartier divisor. We define the intersection
product map as

[Z A D] ifZ¢ D

D-:A.(X)— A, (D) :[Z] — {cl(Ox(D)) n[z] ifZ<D

Definition 1.1.13 (Normal cone). Let f : X — Y be an unramified morphism of
Deligne-Mumford stacks. We define the normal cone Cx y as follows:

1. Case I. Assume that f : X < Y is a closed embedding. We define

Cay = Spec(@D T,/ T4

n=0

where 7y /y is the ideal sheaf of X in Y.
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2. Case 2. Assume that f : X — Y is an unramified morphism. Then we can
find a fiber diagram of Deligne-Mumford stacks

X%Y

e

X——=Y

where vertical arrows are étale surjective and f : X — Y is a closed embed-
ding. We define

Cxyr = | Cxyyx/ix, 7 —= Cx/7 |

where the induced map X xx X — Y xy Yisaclosed embedding.

Definition 1.1.14 (Deformation space). Let f : X — Y be an unramified mor-

phism of Deligne-Mumford stacks. We define the deformation space M, Jy s fol-

lows:
1. Case I. Assume that f : X < Y is a closed embedding. We define
M;(/Y = My;y\Y
where My )y := Bly,o;(¥ x P') and Y = Bly, o} (Y x {0}).

2. Case 2. Assume that f : X — Y is an unramified morphism. Then we can
find a fiber diagram of Deligne-Mumford stacks

|,

X——Y

where vertical arrows are étale surjective and f : X — Y is a closed embed-
ding. We define

M)O(/Y .

[MS .. . —= M2 |
XxxX/YxyY XY
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Definition 1.1.15 (Specialization map). Let f : X — Y be an unramified mor-
phism of Deligne-Mumford stacks. We define the specialization map

SPx/y - A(Y) — A(Cxyy)

as the unique map that fits into the commutative diagram

Au(Cxyy) —= A (M2, ) —= A, (Y x A1) —0

X/Y
S
0 \
A* (CX/Y> <§Px/y ...... A*(Y)

where Dy = Cxyy © My, Iy and D, =Y < My )y are the effective Cartier divisors

given by the fibers of My, — P! over 0 € P! and £ € P'.

Definition 1.1.16 (Lci pullback). Let

Xl L Yl

)

X——Y

be a cartesian square of Deligne-Mumford stacks such that f : X — Y be a local
complete intersection morphism of codimension c¢. We define the Ici pullback as

prl/y/

fHALY) = AL (Cxyyr) = Au(Nypylxr) = Auo(X))
where i : Cx/jyr — NX/Y| x 1s the inclusion map.
We refer to [Ful, [Vist] for the proofs of the above propositions.

Remark 1.1.17 (Integral coefficient). For schemes, everything in this section
also works with Z-coefficients. However, for Deligne-Mumford stacks, the Chow
groups (with Z-coefficients) in this section do not give us a correct theory since
they do not the homotopy property.

Remark 1.1.18 (Naive Chow groups for Artin stacks). For an arbitrary Artin stack
X, we can still define a graded Q-vector space A, (X) as in this section. This is
what Kresch in [Kre2] calls the naive Chow group of X. These Chow groups do
not have the homotopy property as Remark [.T.T7l We will consider the correct
Chow theory, introduced by Kresch [Kre2l], in the next section.
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1.2 Intersection theory for Artin stacks

In this section, we summarize basic properties of Chow groups for Artin stacks,
based on [EG2, [Kre2]].

1.2.1 Equivariant Chow groups

Definition 1.2.1 (Totaro’s approximation). Let G be a linear algebraic group. We
say that that maps
EG,;/G — BG

for i € Z> are Totaro’s approximations of the classifying stack BG if there exist
G-representations V; and G-invariant closed subschemes Z; < V; of codimension
> i such that EG; = V;\Z; and the quotient stack [EG,/G] is a quasi-projective
scheme.

The existence of Totaro’s approximation is shown in [Tot].

Definition 1.2.2 (Equivariant Chow group). Let X be an algebraic space with an
action of a linear algebraic group G.

1. We define the equivariant Chow group of degree d as the Q-vector space
AG(X) := Agsdim(6)—dim@c) (X <6 EG;)
for big enough i, where EG,;/G — BG are Totaro’s approximations.

2. We define the equivariant Chow group as the graded Q-vector space

AS(X) == P AT (X).

It is easy to show that the equivariant Chow group is independent of the choice
of Totaro’s approximation.

Proposition 1.2.3 (Reductive to torus). Let X be an algebraic space with an action
of a connected reductive group G. Let T be a maximal torus of G. Then there is
an action of the Weyl group W on AY(X) such that

AT(X) = AL ()"
Proof. We refer to [EG2, Prop. 6] for the proof. O
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1.2.2 Kresch’s Chow groups

Definition 1.2.4 (Kresch’s Chow group). We define the Chow group of algebraic
stacks as follows:

1. Firstly, for any algebraic stack X, we define the naive Chow group of degree
d as
A(X) 1= coker(0 : Wy(X) — Z4(X))

where the group of algebraic cycles Z;(X), the group of rational equiva-
lence W,(X), and the boundary map 0 : W;(X) — Z,(X) are defined as in
Definition [[.T.1} Definition and Definition

2. (a) For a connected algebraic stack X, we define

~

d~+rank
E—-X

where E are vector bundles on X and the transition maps are given by
the smooth pullbacks between surjections E; - E; of vector bundles.

(b) For an algebraic stack X, we define

where X = | |, X; is the decomposition of the connected components.

3. (a) For a projective morphism f : X — Y of algebraic stacks such that X
is connected, we define

Ag(X) = h_r)n Ajz’Jrrank(E) (E|X)
E—-Y

where E are vector bundles on Y and the transition maps are given by
the smooth pullbacks for E||y — E»|x for all surjections E; — E,.

(b) For a projective morphism f : X — Y of algebraic stacks , we define
Aj(X) == DA(X)

where X = |_|, X; is the decomposition of the connected components.
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4. (a) For projective morphisms py,p, : T — X of algebraic stacks, we
define

~

B?7(X) := im(ker(AL (T) @ AP*(T) — Ay(T)) — Au(X)) S Ag(X).
(b) For any morphism f : X — Y of algebraic stacks, we define

BiX):== ) BI(X)<AdX)

p1,p2:T—X

where py, p, : T — X are morphisms from algebraic stacks T such
that f o p; = f o p,.

5. (a) For any algebraic stack X, we define the Chow group of degree d as

Aq(X) = f_lgn (Aq(Y)/BS(Y))

where f : ¥ — X are projective morphisms from algebraic stacks Y
and the transition maps are given by the pushforwards for open and
closed embeddings Y; — Y, over X.

(b) For any algebraic stack X, we define the Chow group as

A(X) = PAX).

dez

Proposition 1.2.5 (Compatibility). Let X be an algebraic stack.

1. If X is a Deligne-Mumford stack, then Kresch’s Chow group in Definition
equals to the Chow group in Definition[I.1.7

AL(X) = Au(X).

2. If X = |P/G] for an algebraic space P with an action of a linear alge-
braic group G, then Kresch’s Chow group in Definition equals to the
equivariant Chow group in Definition[[.2.2]

A(X) = Ag+dim(G) (P).

Proposition 1.2.6 (Basic operations). We have the following operations in Kresch’s
Chow groups.
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1. For any projection morphism f : X — Y of algebraic stacks, there exists a
pushforward
fe 1 AL(X) — AL(Y).

Moreover, the projective pushforwards are functorial.

2. For any flat morphism f : X — Y of relative dimension e, there exists a
pullback
fFrAL(Y) > A (X).

Moreover, the flat pullbacks are functorial and commute with projective
pushforwards.

3. For any vector bundle E on an algebraic stack X and an integer i, there
exists a Chern class

G(E) : Au(X) = Asi(X).

Moreover, Chern classes commute with projective pushforwards, flat pull-
backs, other Chern classes, and satisfies the Whitney sum formula.

4. For any fiber diagram of algebraic stacks

)(/(_> Y/

L,

X - Y

with a regular closed embedding f : X — Y of codimension c, there exists
a refined Gysin pullback

fiA(Y) - A (X).

Moreover, the refined Gysin pullbacks are functorial and commute with pro-
Jjective pushforward, flat pullbacks, Chern classes, and other refined Gysin
pullbacks.

Proposition 1.2.7 (Localization sequence). Let X be an algebraic stack. Let Z
be a closed substack of X and U be the complement. Then we have a right exact
sequence

i J

A(Z) = A (X)L AL (U) —0

wherei:Z — X and j: U — X are the inclusion maps.
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We also present one additional ingredient that was not developed in [Kre2].
The pushforwards for proper DM morphisms were later developed in [BS, Ap-
pendix B].

Proposition 1.2.8 (Skowera’s proper pushforward). For any proper DM mor-
phism f : X — Y of algebraic stacks, there exists a pushforward

fe 1 AL(X) = AL(Y).

Moreover, the proper DM pushforwards are functorial and commute with flat pull-
backs, Chern classes, and the refined Gysin pullbacks.

Remark 1.2.9 (Integral coefficients). Everything in this section (except Proposi-
tion[1.2.3)) work in Z-coefficients.

1.3 Algebraic cobordism

In this section, we review definition and basic properties of algebraic cobordism
of Levine-Morel [LM]. Basically, algebraic cobordism is an algebraic analog of
Quillen’s complex cobordism [Quil]

Levine-Morel introduced the notion of oriented Borel-Moore homology the-
ory as follows.

Definition 1.3.1 (Oriented Borel-Moore homology theory). An oriented Borel-
Moore homology theory H for schemes consists of the following data:

(D1) For each quasi-projective scheme X, we have a Z-graded abelian group
H.(X).
(D2) For each projective morphism f : X — Y of quasi-projective schemes, we
have a morphism of graded abelian groups
fo 1 Ho(X) = H.(Y).
(D3) For each local complete intersection morphism f : X — Y of quasi-projective
schemes of codimension ¢, we have a morphism of graded abelian groups
fl i H(Y) - Hy o (X).
We denote f' by f* when f is smooth.

For any line bundle L on a quasi-projective scheme X, we denote by ¢; (L) :=
(02)' 0 (01)4 : Hy(X) — H,_{(X) where 0, : X < L is the zero section.
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(D4) For each quasi-projective schemes X and Y, we have a morphism of graded
abelian groups

Xt Ho(X) @z He(Y) > Ho (X x Y).
These data are assume to satisfy the following assumptions:

(A1) Projective pushforwards in (D2) are functorial, i.e.

(a) For any quasi-projective scheme X, we have

(b) For projective morphisms f : X — Y and g : ¥ — Z of quasi-
projective schemes, we have

(g0 f)s = 8«0 fu : Hi(X) — H,(Z).
(A2) Lci pullbacks in (D3) are functorial, i.e.
(a) For any quasi-projective scheme X, we have
(idx)* = idp, (x) : Hi(X) — H.(X).

(b) For local complete intersection morphisms f: X — Yandg:Y — Z
of quasi-projective schemes of codimension ¢ and d, we have

(gof)' = fog :Hi(Z) > He——a(X).
(A3) External products in (D4) are unital, associative, and commutative, i.e.

(a) There exists an element 1 € Hy(Spec(C)) such that for any quasi-
projective scheme X and @ € H,(X), we have

Il x @ =ac H(X).

(b) For any quasi-projective schemes X, Y, Z, and @ € H,.(X), B € H.(Y),
v € H.(Z), we have

(axB)xy=ax (Bxy)e H (X xY x Z).
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(c) For any quasi-projective schemes X, Y and @ € H,(X), 8 € H.(Y), we
have
axfB=BxacH,(XxY).

(A4) Projective pushforwards, Ici pullbacks, and external products commute with
each others, i.e.

(a) For any cartesian square of quasi-projective schemes

x Loy

L

X——Y

which is tor-independent, if f is projective and g is Ici of codimension
¢, then we have

g! ofe=(fs0 (g/)! P Hy(X) = Hi o(Y').

(b) For any projective morphisms f; : X; — Yy, 2 : X — Y, of quasi-
projective schemes, and a| € H, (X)), @, € H,(X;), we have

(fi)elar) x (f2)«(@2) = (fi x fo)s(ar X @2) € Hy (Y] X Y3).
(c) For any local complete intersection morphisms f; : X; — Y, f> :

X, — Y, of quasi-projective schemes, and a| € H,.(Y;), @, € H.(Y>),
we have

(f1)'(@1) x (o) (@) = (fi x fo)l(@1 x @) € Ho (X1 x X3).

(A5) We have a projective bundle formula, i.e. if 7 : P(E) — X is a projective
bundle associated to a vector bundle E of rank n 4 1 over a quasi-projective
scheme X, then the map

ch(OP(E)(l))i onm*: éH*H(X) — H,,(P(E))

is an isomorphism.
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(A6) We have an extended homotopy property, i.e. if 1 : A — X is a torsor of a
vector bundle of rank n over a quasi-projective scheme X, then the smooth
pullback

7t Hy(X) = Hyin(A)

is an isomorphism.

(A7) We have a localization sequence, i.e. if i : Z <— X is a closed embedding of
quasi-projective schemes and j : U := X\Z — X is the complement, then
the sequence

H.(Z) —* H,(X) L~ H,(U) —0
1s exact.
Remark 1.3.2. Compared to [LM| Def. 5.1.3], there are two minor differences:

1. We use the category of quasi-projective schemes, while [LM] uses general
”admissible” subcategories of the category of schemes.

2. In (A7), we assumed the localization sequence, while [LM] uses a weaker
axiom called (CD).

Since our main objects, algebraic cobordism, Chow groups, and algebraic K-
theory are defined over all quasi-projective schemes and satisfy the axiom (A7),
this simpler convention does not affect anything in this paper.

Fulton’s Chow theory [Ful] and Grothendieck’s algebraic K-theory are the
basic examples.

Example 1.3.3 (Chow groups). The Chow groups A, (X) of rational equivalence
classes of algebraic cycles for quasi-projective schemes X in section [L.I] form an
oriented Borel-Moore homology theory.

Example 1.3.4 (Algebraic K-theory). The algebraic K-theory Ko (X)[8*'] of co-
herent sheaves for quasi-projective schemes X form an oriented Borel-Moore ho-
mology theory. More precisely, we define

Ko(X) := Ko(Coh(X))
to be the Grothendieck group of coherent sheaves. Then we define

K(X)[p*'] = D Ko(X) - B

deZ

for a formal parameter 8 of degree 1.
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Algebraic coborism is defined as the universal oriented Borel-Moore homol-
ogy theory.

Proposition 1.3.5 (Algebraic cobordism). There exists a universal oriented Borel-
Moore homology theory Q, called algebraic cobordism. More precisely, for any
oriented Borel-Moore homology theory H, there exists a unique map

0" (X) : Q.(X) — H,(X)

for each quasi-projective scheme X such that 6% commutes with projective push-
forwards, Ici pullbacks, and external products.

Algebraic cobordism has a geometric description via double point relations,
which was discovered by Levine-Pandharipande [LP].

Proposition 1.3.6 (Double point cobordism). Let X be a quasi-projective scheme.
Then there exists an isomorphism

Z(X)

D3(X)

Q.(X) =

that commutes with projective pushforwards and smooth pullbacks. Here the group
of cobordism cycles Z5(X) and the group of double points relations D (X) are de-
fined as follows:

1. A cobordism cycle of degree d is a projective morphism
f:Z—-X
from a smooth quasi-projective scheme Z of dimension d. We let
Z2(X) =Zf: Z X))

be the free abelian group generated by all cobordism cycles f : Z — X,
where the grading is given by the dimension of Z.

2. Let h : W — X x P! be a projective morphism from a smooth quasi-
projective scheme W such that the fiber W, over oo € P' is smooth and
the fiber Wy over 0 € P! is the sum of two smooth divisors A,B € W such
that A N B is smooth of codimension 2. The double point relation associated
to Wis

[A — X]+ [B — X] — [P(Nang/a ® Oung) — X] — [Weo — X] € Z3(X).
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We let
D}(X) = Z2(X)

be the subgroup generated by all double point relations.
Algebraic cobordism recovers Chow groups and algebraic K-theory.
Proposition 1.3.7. For any quasi-projective scheme X, we have isomorphisms
Ax(X) = Qu(X) Baq, (spec(c)) A (Spec(C))
Ko(X)[B*'] = Qu(X) @0, (specic)) Ko(Spee(C)) 5]

which commute with projective pushforwards, Ilci pullbacks, and external prod-
ucts.

Proof. The first isomorphism is shown in [LM, Thm. 4.5.1]. The second isomor-
phism for smooth X is shown in [LM, Cor. 4.2.12] and the general case is shown
in [Dail]. O

Algebraic coboridsm with rational coefficients has more concrete descrip-
tions.

Proposition 1.3.8 (Rational cobordism ring). The rational algebraic cobordism
ring of the point Spec(C) is the polynomial ring, freely generated by the projective
spaces,

Q. (Spec(C))q = Q[P P, -+ ].

Proof. 1t follows from [LM, Thm. 4.3.7]. |

Proposition 1.3.9. For any quasi-projective scheme X, we have an isomorphism
of graded Q-vector spaces

Q.(X)g = A.(X) ® Q[P', P, - -],

which commutes with projective pushforwards (but not necessarily with the Ici
pullbacks).

Proof. This is shown in [LM, Thm. 4.1.28]. |

Remark 1.3.10 (Proper pushforwards). In [GKI1l], Gonzalez-Karu constructed
proper pushforwards in algebraic cobordism.

Remark 1.3.11 (Flat pullbacks). In [Levl]], Levine showed that flat pullbacks do
not exist in algebraic cobordism.
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Virtual pullbacks

This chapter reviews the notions of virtual cycles of Behrend-Fantechi [BE] and
virtual pullbacks of Manolache [Manl].

Summary A remarkable idea of Fulton [Ful] on intersection theory is to define
a refine Gysin pullback via the deformation to normal cone instead of using the
moving lemma. More precisely, given a fiber square

X/(% Y/

L,

X——Y
with a regular closed embedding f, Fulton defined the refined Gysin pullback
fHALY) D A(Cxyy) = Au(Nyyvly) = AL(X')
where
1. the first map is given by the deformation to the normal cone,
2. the second map is given by the inclusion map Cy:/yr — NX/Y| x’, and
3. the third map is given by the homotopy property of vector bundles.

The virtual cycles/virtual pullbacks are natural generalization of Fulton’s re-
fined Gysin pullback to algebraic stacks. As the above paragraph, we need three
ingredients to do this:
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1. The intrinsic normal cone Cx/y for an arbitrary morphism f : X — Y and a
deformation ¥ ~> €y y.

2. A closed embedding €x/y < € of the intrinsinc normal cone into a vector
bundle stack. This data is equivalent to a perfect obstruction theory.

3. The homotopy property A,(€) = A,(X) for vector bundle stacks, which
gives us a Gysin pullback Oy : A.(€) — A, (X).

Based on the above three ingredients, we can define the virtual pullback for a DM
morphism f : X — ¥ with a perfect obstruction theory ¢ : €y — € as

FrAUY) D AL (Cr) 5 AL(€) % AL ().

In particular, the virtual cycle for a Deligne-Mumford stack X with a perfect ob-
struction theory can be defined as

[X]"" 1= 04[Cx] € Ax(X).

The most important property of virtual cycles is the deformation invariance.
This is a special case of functoriality of virtual pullbacks: given a commutative
diagram of DM morphisms of algebraic stacks

xLoy—f.7
\_/
gof
and a compatible triple of perfect obstruction theories, we have
(gof)! = f! og! : A*(Z) _’A*(X)

The key idea for proving the functoriality is to use the double deformation space
of Kim-Kresch-Pantev [KKP].

2.1 Intrinsic normal cones

In this section, we review the concept of intrinsic normal cones introduced by
Behrend-Fantechi in [BF]. These intrinsic normal cones are stacky generalizations
of the normal cones for closed embeddings to arbitrary morphisms.
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2.1.1 Abelian cone stacks

Recall that the cones are main objects in intersection theory [Ful, [Vist]. In virtual
intersection theory [BE, Manl, the cone stacks are the analogous main objects.
Roughly speaking, cone stacks are algebraic stacks with A'-actions and zero sec-
tions. For the precise definition, we refer to [BE, Def. 1.8].

Definition 2.1.1 (Abelian cone stack). Let X be an algebraic stack and let F e

Dghoo,o] (X). An abelian cone stack associated to FF is the cone stack

C(F) := h' /" (FY)
defined in [BE, Prop. 2.4].

An abelian cone stack has an explicit description as a quotient stack when
there is a global resolution. The general case can be regarded as a gluing of this
special case.

Example 2.1.2 (Global presentation). Let X be an algebraic stack and let F €
DL 20 (X).If F = [F — E] for a coherent sheaf F and a vector bundle E, then

coh
we have

C(F) = [C(F)/E"]
where C(F) := Spec(Sym(F)) is the abelian cone associated to F.

An abelian cone stack also has a derived interpretation. This allow us to view
an abelian cone stack as a natural generalization of an abelian cone.

Remark 2.1.3 (Derived enhancement). Let X be an algebraic stack and let F €

Dghoo,o] (X). Consider the derived linear stack defined as the co-functor

Spec(Sym(F[—1])) : sAlg x — sSet : (Spec(A) = X) — Mapy,,q, (x*F[—1],A)

such that Lgpec(sym(r[—1]))/x = F[—1] by [AG]. Then the abelian cone stack €(F) is
the classical truncation of the derived linear stack,

C(F) = Spec(Sym(F[—1]))a.

In particular, if F is a perfect complex, then the abelian cone stack €(F) is the
classical truncation of the total space of F¥[1],

C(F) = Tot(F"[1]).a.
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Recall that the (contravariant) functor
C : Coh(X) = {abelian cones on X} : F > C(F) := Spec(Sym*(F))

is an equivalence of categories (cf. [Siel]). There is a similar equivalence for abelian
cone stacks.

Proposition 2.1.4 (Equivalence). Let X be an algebraic stack. Then the 2-functor

¢:pl ' (X) 5 {abelian cone stacks on X} : F — G(F) := h' /i°(F")

coh

is an equivalence of 2-categories. Moreover, the 2-functor

{abelian cone stacks on X} — pl-10] (X) : Wi Lyjy := TZ_ILX/Q[

coh

is the inverse of C.

For complexes with global resolutions, the equivalence in Proposition 2.1.4]
can be described explicitly as Remark below. The general case can be shown
by descent (in the co-categorical sense). We omit the proof here.

Remark 2.1.5. Let X be an algebraic stack and let F € Dghoo,o] (X). Assume that
there is a global resolution

" 'F=[F - E]

by a coherent sheaf F" and a vector bundle E. Then the zero section of the abelian
cone stack €(F) can be factored as

C(F) X

]

X G(F) —— B(EY).

O ()

Hence we can simply obtain the following

IR

T Lyo(e) = [f xier/ Tyjery = Qery/se) Ix] [F— E]=7"'F

as desired.
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2.1.2 Intrinsic normal cones

We will work with morphisms that are relatively of Deligne-Mumford type.

Definition 2.1.6 (DM morphism). We say that a morphism f : X — Y of algebraic
stacks is a DM morphism if one of the following equivalent conditions is satisfied:

1. The diagonal Ayx/y : X — X xy X is unramified.

2. The fibers X7 := X xy T are DM stacks for all morphisms 7 — Y from DM
stacks 7.

3. We have Lyy € DU "%(X), i.e., ' (Ly)y) = 0.
It is easy to show that the above three conditions are indeed equivalent.

Definition 2.1.7 (Intrinsic normal sheaf). Let f : X — Y be a DM morphism of
algebraic stacks. We define the intrinsic normal sheaf as

ERX/Y = (‘:(LX/Y),
the abelian cone stack associated to the cotangent complex Ly y.
We define the main object in this section.

Definition 2.1.8 (Intrinsic normal cone). Let f : X — Y be a DM morphism of
algebraic stacks. We define the intrinsic normal cone

Cxy S MNxyy

to be the unique subcone stack satisfying the following property: for any commu-

tative square
X Y

x—L.y

[

with smooth vertical arrows, and a closed embedding f, we have a cartesian square

Cyy— Nz

o

(SX/?C—> Ny

for some dotted arrow. Here the map Ny 3 — 9tyy is induced by the canonical
map Ly/y|y — Ly 3 of cotangent complexes.
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Lemma 2.1.9 (Well-definedness). The intrinsic normal cone in Definition
exists.

Proof. We refer to [BFE, [Kre2, Man] for the proof. |

The intrinsic normal cone has a simple presentation as a quotient stack when
there is a global factorization.

Example 2.1.10 (Global presentation). Let f : X — Y be a DM morphism be-
tween algebraic stacks. If there exists a factorization

A,

X f
by a closed embedding X — Y and a smooth morphism Y — Y, then we have

Cxyy = [CX/?/ T;/le] < Nyyy = [NX/?/ T?/ylx] :
We provide one lemma which is technically quite useful.

Lemma 2.1.11. Let f : X — Y be a DM morphism of algebraic stacks. Then we
have canonical isomorphisms of the truncated cotangent complexes

LX/QZX/Y = LX/&RX/Y = LX/Y-

Proof. Since the cotangent complexes satisfy the étale descent (in the co-categorical
sense), we may assume that there is a global factorization

A,

X —

f

by a closed embedding X — Y and a smooth morphism Y — Y. Then we have
induced factorizations

NX/T’ CX/Y
X —Nyy X —Cyy
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of the zero sections of the intrinsic normal sheaf and the intrinsic normal cone.
Moreover, by the definitions of normal cones and normal sheaves, we have

Cyy = Spec(@)fg/?/j—g;), Nyjy = Spec(@ Symn(IX/;/Ii/;)).
nz

n=0

Hence the three truncated cotangent complexes Ly, o Lxmyy> Lx)y are all iso-
morphic to the complex

[Ix/?/fi/y - va/y|x] .
It completes the proof. O
We provide a heuristic explanation why we call €y an intrinsic normal cone.

Remark 2.1.12 (Heuristic description). For a Deligne-Mumford stack X, the in-
trinsic normal cone €y is an intrinsic object, which is homotopically equivalent to
the normal cone Cy/y whenever we have a closed embedding X < Y to a smooth
Deligne-Mumford stack Y. Here we say Cx/y is homotopically equivalent to €y
since it is a vector bundle torsor.

2.1.3 Deformation to the normal cone

Definition 2.1.13 (Deformation space). Let f : X — Y be a DM morphism of
algebraic stacks. The deformation space of f : X — Y is a flat family

o 1
MX/Y—>P

defined as follows:
1. Case 1. Assume that f : X — Y is a closed embedding. Then we define
My

/Y = Mx/y\i}

where Myy := Bly,(o;(Y x P') and ¥ := Bly, 10y (Y x {0}).

2. Case 2. Assume that f : X — Y is an unramified morphism. Then we can
find a fiber diagram of algebraic stacks

X~
P

41
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where vertical arrows are étale surjective and f : X — Y is a closed embed-
ding. We define

M; —= M

i = IMG gy == My ]
where the induced map X xx X — Y xy Yisaclosed embedding.

3. Case 3. Assume that f : X — Y is a DM morphism. Then we can find a
fiber diagram of algebraic stacks

)?C'_)
Xf

_—

(2.1.2)

~N=<—xN_

where vertical arrows are smooth surjective and f : X — Y is a closed
embedding. We define

iy = IMG gy ——= My ]

where the induced map X x x X > Y x y Y is unramified.
We note that the deformation space in Definition 2.1.13is well-defined.

Lemma 2.1.14 (Well-definedness). In the situation of Case 2 in Definition[2.1.13)
My, is independent of the choice of the fiber diagram @.1.0). Also, in the situa-
tion of Case 3 in Definition M5, . is independent of the choice of the fiber

diagram (2.1.2).
Proof. We refer to [Kre2, Manl] for the proof. |

/Y

Remark 2.1.15. The diagonal of the deformation space M, Jy may not be sepa-
rated, see [Kre2].

We recall the basic properties of the deformations spaces from [Ful, [Kre2].

Proposition 2.1.16 (Fibers). Let f : X — Y be a DM morphism of algebraic
stacks. Then there exists a canonical map
m:X x P! — My Jy

such that the fibers over ¢ € P! are given as follows:
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1. The fiber of the above map m over { # 0 € P! is the given map
f: XY
2. The fiber of the above map m over 0 € P! is the zero section
ng/y : X — Cxyy,

Proof. If f : X — Y is a closed embedding of schemes, then this is shown in
[Ful]. The general case follows by descent. O

Proposition 2.1.17 (Base change). Let

X—-=Y
|
x—.oy

be a fiber diagram of algebraic stacks such that f : X — Y is a DM morphism.
Then the canonical map

M, — My, xy ¥ (2.1.3)

is a closed embedding. Moreover, if g : Y > Yis flat, then the above canonical
map 2.1.3) is an isomorphism.

Proof. We refer to [Kre2|] for the proof. O

Heuristically, we may view M Jy @S the space of a deformation from Y to the

normal cone Cyy,

M;/Y Y~ Gx/y.
Rigorously, this does not give us a genuine map of algebraic stacks. However, we
indeed have a map between the Chow groups, called the specialization map.

Definition 2.1.18 (Specialization map). Let f : X — Y be a DM morphism of
algebraic stacks. We define the specialiation map

SPx/y - A(Y) — Au(Cxyy)
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as the unique map that fits into the commutative diagram

A (Cxpy) —= AL (M) —= A (Y x Al) —=0

X/Y
X l \L'!‘\ l
Ay (Cxpy) =gy AL(Y)

where ¢y : {0} — P' and ¢, : {¢} — P' are the inclusion maps and £ # 0.
The specialization maps are bivariant classes.

Proposition 2.1.19 (Bivariance). Let

Xl L Y/

N

X——Y

be a fiber diagram of algebraic stacks such that f is a DM morphism. Consider
the induced commutative diagram

Cxrpy L= Cxpy|xr — X'

s /
g/l/ l g L g

Cxy —=X

where the square is cartesian.

1. If g is a proper DM morphism, then we have
SPx/y © 8+ = (")« o SPxyyr - Ay (Y') — Au(Cxryy).
2. If g is an equi-dimensional flat morphism, then we have
SPx7/yr © g=go SPx/y * A (Y) — A*(G:X/Y|X’ = GX’/Y’)-

3. If g is a local complete intersection morphism and Y' have affine stabilizers,
then we have

J O SPyrjyr © g=go SPx/y tAL(Y) = Au(Cxprx).
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Proof. If follows directly from Proposition 2.1.17, Definition 2.1.18, and Propo-
sition[2.1.22] below. O

Remark 2.1.20. Proposition is slightly general than the corresponding
statements in [Man] since we use proper DM pushforwards, instead of projec-

tive pushforwards. This is based on the development of proper DM pushforwards
of Bae-Schmitt-Skowera [BS| Appendix B].

The proof of Proposition[2.1.1912 also works for a commutative square.

Lemma 2.1.21. Let
x Loy

o,k

x—L-y
be a commutative diagram of algebraic stacks (not necessarily cartesian) such
that g , g are smooth morphisms and f is a DM morphism. Then the canonical
map

g” : (SX’/Y’ - @X/Y
is smooth and we have
Py © 8" = 8" o pyyy 1 Au(Y) = Au(Cxrym).
We rephrase Vistoli’s rational equivalence [Vist, Lem. 3.16] as follows.

Proposition 2.1.22 (Vistoli’s rational equivalence). Let

X/ L Y/

L

X——Y
be a fiber diagram of algebraic stacks such that f and g are DM morphisms.
Consider the induced fiber diagram

fl/
G:X/Y|X’ X x! (SY’/Y|X’ - (SY’/Y|X’ - (SY’/Y

| L,

(SX/Y|X’ X/ Y/
.
Cx )y x—' -y
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and the canonical closed embeddings
c a b B
€¢X/Y|XI/GX/Y G:X/Y|X' XX CEY'/Y|X' (SGY’/Y‘X’/GY’/Y'
Then we have
@x O SPeyy , fexyy © SPxjy = by o SP&ys ylyr /6y )y © SPy )y

Proof. We follow the argument in [Krel]]. Form a commutative diagram

Y M ¢, (1
| Lk
M;%M; XyMg%M; Xy(ig Al
| .
@f%(gf XyM:;(—(Sf xy(ig {O}

{1} Ji Al Jo {O},
Choose an element a € A, (Y). Then there exists a cycle class
a €A (M; xy My)
such that
iy o ji(@) = jioi (@) = a.
By the definition of the specialization map in Definition 2.1.18] we have
spp(@) = ig 0 ji(@) = jioig(@),  spla) = joo i (@) = j; 0 jo(@).

Consider a commutative diagram

| Mf | (Sf/ ,

@f—>6:f XyM;<—6:f Xy(s:g

(1} — Al {0}
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induced by Proposition From the above diagram, we can easily show that
as 0 Py (spy(a)) = Jolip(@))-
Analogously, we can also deduce
bs 0 3p (3p,(@)) = iy (Jo(@))-
Since i o ji = j§ o iy, we have
s 0 8P (SPs(@)) = by 0 spsu(sp,(@)),
as desired. m|
We recall MacPherson’s graph construction from [Ful, Rem. 5.1.1].

Remark 2.1.23 (MacPherson’s graph construction). Consider a diagram

E

)

X——Y

where Y is a smooth scheme, E is a vector bundle on Y, s is a section of E, and
X is the zero locus of s. By [Ful, Rem. 5.1.1], the deformation space M Iy is the
closure of the embedding

Y xA' S ExP':(y,0)— (¢-y,[¢:1])
In particular, the normal cone is the flat limit

CX/Y = 11_11} [,
{0

where I';.;  E is the image of the embedding { - s : ¥ — E.

2.2 Perfect obstruction theories
In this section, we recall the notion of perfect obstruction theories introduced by

Behrend-Fantechi in [BE]. These perfect obstruction theories are the necessary
additional data to define the virtual cycles.
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2.2.1 Vector bundle stacks

Definition 2.2.1 (Vector bundle stack). Let X be an algebraic stack and F be a
perfect complex of tor-amplitude [—1, 0]. We define the vector bundle stack asso-
ciated to F as the abelian cone stack

G(F) 1= C(F).

Lemma 2.2.2 (Smoothness). Let X be an algebraic stack. A cone stack on X is a
vector bundle stack if and only if it is smooth over X.

Proof. If follows from [BF, Lem. 1.1] via descent. O

Proposition 2.2.3 (Cotangent complex). Let X be an algebraic stack and let F
be a perfect complex on X of tor-amplitude |—1,0]. Then we have a canonical
isomorphism

Ler)/x = T (F)[—1],

where me 1 €(F) — X denotes the projection map.
Proof. It follows from the Remark 2.2.4 below. o

Remark 2.2.4 (Derived interpretation). Let F be a perfect complex of tor-amplitude
[—1,0] on an algebraic stack X. Then the associated vector bundle stack €(F) is
the total space of the perfect complex F¥[1],

G(F) = Toty(F[1]).

Indeed, this follows from Remark 2.1.3]since Toty(F"[1]) is smooth.

2.2.2 Perfect obstruction theories

Definition 2.2.5 (Obstruction theory). Let f : X — Y be a DM morphism of
algebraic stacks. An obstruction theory for f : X — Y is a morphism

¢ :F— Lx/y = T>71Lx/y
in DU (X) such that
coh
1. h°%(¢) is bijective, h~1(¢) is surjective, and

2. Fis a perfect complex of tor-amplitude [—d, 0] for some d € Z.
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Definition 2.2.6 (Perfect obstruction theory). Let f : X — Y be a DM morphism
of algebraic stacks. A perfect obstruction theory for f : X — Y is an obstruction
theory ¢ : F — Lyy such that F is a perfect complex of tor-amplitude [—1, 0].

Remark 2.2.7. The notion of perfect obstruction theory is quite misleading. It
would be more natural to call an obstruction theory ¢ : F — L,y perfect when
F is a perfect complex. However, since the terminology is already standard in the
literatures, we will also follow this tradition in this paper.

We note that the classical truncation of a derived scheme has a canonical ob-
struction theory. Most of the practical examples of the obstruction theories arise
from derived structures.

Example 2.2.8 (Derived enhancement). Let X be a homotopically finitely pre-
sented derived scheme. Let X := X be the classical truncation.

1. The canonical map
LX|X(:1 - LX(:I - LXcl

is an obstruction theory by [STV, Prop. 1.2].

2. If X is quasi-smooth, i.e. Ly has tor-amplitude [—1, 0], then the above in-
duced obstruction theory Lx|y, — Ly, is a perfect obstruction theory.

A perfect obstruction theory is equivalent to a closed embedding of the intrin-
sic normal cone into a vector bundle stack.

Proposition 2.2.9 (Equivalence). Let f : X — Y be a DM morphism of algebraic
stacks.

1. If ¢ : F — Lyyy is perfect obstruction theory, then the composition

€
(‘:x/y - Enx/y = (‘:(LX/Y) —ﬂ (F)

is a closed embedding of cone stacks.

2. Conversely, if Cx)y — € is a closed embedding of cone stacks for some
vector bundle stack €, then the composition

Lx/e — LX/(‘:X/Y - LX/(‘:x/y = Lx)y

is a perfect obstruction theory.
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Moreover, the above two operations are inverse to each others.
Proof. Tt follows from Proposition2.1.4] Lemma[2.1.11 and [BF, Prop. 2.6]. O

Remark 2.2.10. Proposition is a folklore, but there are two technical issues
that are often ignored in the literatures:

1. We need to use the truncated cotangent complex Lyy := >~ 1Ly /Y-

2. The closed embedding €y < € should be Al-equivariant.

These are necessary to have the equivalence in Proposition [2.2.91

In various literatures, the full cotangent complex Ly/y is used in the defini-
tion of obstruction theories, instead of the truncated cotangent complex Ly :=
727 'Ly/y. Practically, this difference of definitions was not regarded seriously
since most of the examples have perfect obstruction theories in the stronger ver-
sion. However, there are some technical examples that only the existence of per-
fect obstruction theories in the weaker version is known. In general, these two
versions of perfect obstruction theories are not equivalent, see Example 2.2.12]be-
low. Thus Proposition[2.2.9 does not hold for the full cotangent complex version]

If we have a closed embedding €y /y < € which is not Al—equivariant, then we
still have an induced perfect obstruction theory Lyx/,¢ — Lx/y, but the associated
closed embedding €x,y — € may differ with the given embedding. Thus we
need to consider a closed embedding of cone stacks, i.e., an A'-equivariant closed
embedding, as in [BF, Def. 1.8].

Remark 2.2.11. In this paper, we use the truncated version of perfect obstruction
theories. Then we have Proposition as a technical advantage. On the other
hand, there is one technical disadvantage. We need to be careful when dealing
with distinguished triangles of truncated cotangent complexes. Indeed, consider a
commutative diagram of DM morphisms of algebraic stacks

x—Lloy—£.7
\_/
gof
Then the maps between the truncated cotangent complexes
f*Lyjz Lx/z Lyy

'Tt is stated in [Manl Prop. 3.11] (and [Qu, §1.5]) that Proposition holds for the full
cotangent complex version. However, the author expects that this is a mistake and actually it is
meant for the truncated cotangent complex version.
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do not form a distinguished triangle in generalﬁ

Here we provide an example of a perfect obstruction theory ¢ : F — Ly/y that
does not lift to a map F — Lyy.

Example 2.2.12. Let X = P? and let xg, x;, x; € I'(X,0z(1)) be the coordinate
sections so that

(X O]pz @ C- Xi.

0<i<2

Let Z = Tot(Op(1)®?) be a vector bundle on X. Let 7, denote the projection
map and 0z denote the zero section. Let #y,#,,1, € I'(Z, 75052(1)) be the three
tautological sections so that

F(Z, 71;01@2(1)) = X O]pz @ @ X O]pz - 1.

0<i<g?2

Then I'(Z, n50s2(2)) can be expressed as

XO]PZ @@ XO]PZ t@@ XO]pZ'l".

0<i<2 0<i,j<2
Let E = Tot(n;052(2)®?) be a vector bundle on Z. Consider a diagram

E

X—sY"—->=Z
\_/
0z
where Y is the zero locus of the section
my(x2) - 13 — 15 (x3) - 12
s = JT;(.X:;) - — n}(xl) ‘13 € F(Z, E)

ﬂ;(.xl) cfy) — JT;(.XQ) -+ l‘:’z‘

A simple local computation show that s is a regular section. Hence from the canon-
ical distinguished triangle

Ly/z|x Lx/z Lx/y

21t is stated in [KPI, Thm. 4.4(2)] that the truncated cotangent complexes form a distinguished
triangle, but this is not true in general. We explain how to fix this in §2.3.3
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we can deduce that
Lxyy = [OP2(—2)®3 2 O (—1)® — O]

where
0 X1 — X2
M = X2 0 —X0
X0 —X1 0

Consider a perfect obstruction theory
¢ = IOPZ[l] : Op2[1] » O [1] = Ly)y,

for the inclusion map X < Y. Then it does not lift to a map Op. — Ly/y. More
precisely, there is no map that fits into the commutative diagram

Oz[1]
A}El lq; R
Lx/y Lx)y Op2(—3)[3]

as the dotted arrow since the map Op2[1] — Oz2(—3)[3] is non-zero.

2.3 Virtual pullbacks and virtual cycles

In this section, we recall the definitions and main properties of virtual cycles and
virtual pullbacks associated to perfect obstruction theories from [BE, Man].

2.3.1 Gysin pullbacks

We begin with a special case. Note that the zero section
O(g X - €

of a vector bundle stack € on X has a canonical perfect obstruction theory since
it is a local complete intersection morphism. We construct the Gysin pullback 0&
via the homotopy property of vector bundle stacks.
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Proposition 2.3.1 (Homotopy property). Let X be an algebraic stack with affine
stabilizers. Let € be a vector bundle stack on X. Then the smooth pullback

T A(X) S AL(E)
is an isomorphism, where ng : € — X is the projection map.
Proof. We refer to [Kre2, Prop. 4.3.2] for the proof. O

Consequently, we have Kresch’s Gysin pullbacks [Kre2l] for the zero sections
of vector bundle stacks.

Definition 2.3.2 (Gysin pullback). Let X be an algebraic stack with affine stabi-
lizers. Let € be a vector bundle stack on X. Let 7z : € — X denote the projection
map and let Og : X — € denote the zero section. We define the Gysin pullback as

0k 1= (12) " : A(€) = A, (X)

where the smooth pullback 7§ is an isomorphism by Proposition 2.3

2.3.2 Virtual pullbacks

We then consider the general case. We define Manolache’s virtual pullbacks [Manl|
by reducing the situation to the special case in the previous subsection via defor-
mation to normal cone.

Definition 2.3.3 (Virtual pullback). Let f : X — Y be a DM morphism of alge-
braic stacks and let ¢ : F — Ly/y be a perfect obstruction theory. Assume that X
has affine stabilizers. We define the virtual pullback as the composition

|
C(F)

— A*(X)

SPx/y

f1ALY) =5 Ad(Cyyy) = AL(C(F))

where ¢ : €y/y — E(F) denotes the closed embedding induced by the obstruction
theory ¢. Here spy y is the specialization map in Definition 2.1.18 and O!@(F) is the
Gysin pullback in Definition[2.3.21

We explain three special cases of virtual pullbacks. Firstly, when ¥ = Spec(C),
we obtain Behrend-Fantechi’s virtual cycle [BE].
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Definition 2.3.4 (Virtual cycle). Let X be a Deligne-Mumford stack endowed with
a perfect obstruction theory ¢ : F — Lx. We define the virtual cycle as

[X]'" 1= p'[Spec(C)] = Oy [€x] € AL(X)

(F)
where p : X — Spec(C) denotes the projection map.

Secondly, when f is a closed embedding, we obtain Fulton’s refined Gysin
pullback [Ful].

Remark 2.3.5 (Refined Gysin pullbacks as virtual pullbacks). Let f : X — Y be
a closed embedding of schemes. Then a perfect obstruction theory is equivalent to
a closed embedding Cx/y < N of the normal cone into a vector bundle N. Then
the virtual pullback is the refined Gysin pullback

fli=0y0 Py : Ax(Y) — Ax(X).

Thirdly, when f is the zero section of a vector bundle stack, then we obtain
the Gysin pullback of the vector bundle stack in Definition2.3.2]

Remark 2.3.6 (Gysin pullbacks as virtual pullbacks). Let X be an algebraic stack
with affine stabilizers and € be a vector bundle stack. Then the zero section O¢ :
X — € has a canonical perfect obstruction theory by Proposition 2.2.9] and the
associated virtual pullback is the Gysin pullback in Definition[2.3.2

The virtual pullbacks are bivariant classes. This can be shown directly from
the bivariance of the specialization maps.

Proposition 2.3.7 (Bivariance). Consider a cartesian square

X/ f/ Y/
oo
x—l.y

of algebraic stacks. Assume that the two maps f and [’ are Deligne-Mumford
morphisms, and the two algebraic stacks X and X' have affine stabilizers. Let
¢ : F — Lx)y be a perfect obstruction theory. Then the composition

1\ % ¢
¢/ . (g/)*E (8)*(¢) (g/)*LX/Y - LX’/Y’

is a perfect obstruction theory satisfying the following properties:
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1. If g is a proper Deligne-Mumford morphism, then we have
floge=2g.o(f) 1 AY) — Au(X).
2. If g is an equi-dimensional flat morphism, then we have
(f) og* = (&) of 1 Au(Y) — Au(X).

3. If g is a local complete intersection morphism and Y' has affine stabilizers,
then we have

(f) og =(g) of 1 A(Y) - AL(X').

Proof. 1t follows immediately from Proposition 2. 1.19 |

Remark 2.3.8. In [Man, Thm. 4.1] (see also [Man, Rem. 4.2]), only the projective
morphisms are considered instead of the proper DM morphisms. Based on the
development of proper DM pushforwards in [BS, Appendix B], we can generalize
the result in [Man] to proper DM morphisms as in Proposition[2.3.7]

Remark 2.3.9 (Generalization). In Definition we need two technical as-
sumptions for defining virtual pullbacks:

1. f:X — Y is a DM morphism;
2. X has affine stabilizers.

These assumptions are required due to the foundational issues in Chow groups
for Artin stacks. The assumption 2 can be removed whenever we have homotopy
property for vector bundle stacks. The assumption 1 can be removed when we can
extend the Chow groups to higher Artin stacks. In particular, if we use Khan’s
motivic Borel-Moore homology theory [Khan, [KR]] and Aranha-Pstragowski’s in-
trinsic normal cone for Artin morphisms [AP], we can remove the above two
technical assumptions for defining virtual pullbacks.

2.3.3 Functoriality

We now prove the functoriality of virtual pullbacks, following the arguments in
[KKP, Man].
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Notation 2.3.10 (Distinguished triangle of truncated cotangent complexes). Let

x 1.yt 7

gof

be a commutative diagram of DM morphisms of algebraic stacks. The canonical
distinguished triangle of cotangent complexes

i (LY/Z> - LX/Z - LX/Y —

induces a distinguished triangle of truncated cotangent complexes

T>71f*(LY/Z) < Ly/z L;(/Y
where L, = cone(a). Let

r:L

Xy 7271(14;(/1/) = Lyyy

denote the canonical map.
Definition 2.3.11 (Compatible triple of obstruction theories). Let
xtoy-t.7
\_//
gof

be a commutative diagram of DM morphism of algebraic stacks. We say that
the triple (¢x v, Py z, x/z) of obstruction theories ¢x/y : Fxyy — Lxjv, vz :
Fy/z — Lyjz, and ¢x/7 : Fx;z — Lx/z is compatible if there exists a morphism of
distinguished triangles

f*(Fyz) Fx/z Fy/y
lf* (by/z) l‘l’X/Z Py
v
> f*(Lyyz) Ly/z Ly,

for some ¢;(/Y such that ¢y /y = ro ¢;{/Y.
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Theorem 2.3.12 (Functoriality). Let
x—Loy-2t.7
V
gof

be a commutative diagram of DM morphisms of algebraic stacks. Assume that
X and Y have affine stabilizers. Given a compatible triple of perfect obstruction
theories, we have

(8o f) =fog 1 AZ) — AuX).
We have a virtual pullback formula as an immediate corollary of the functori-
ality of virtual pullbacks in Theorem 2.3.12

Corollary 2.3.13 (Virtual pullback formula). Let f : X — Y be a morphism of
DM stacks. Given a compatible triple of perfect obstruction theories for

XLoy—— Spec(C),
we have a virtual pullback formula
X" = £[Y]" € AL(X).

The notion of a compatible triple of perfect obstrucion theories in Definition
2.3.11]is slightly general than the standard one in [Manl Def. 4.5] since we are
considering the truncated version of perfect obstruction theories.

Remark 2.3.14. Let us recall the notion of compatible triple in [Man, Def. 4.5].
Consider a commutative diagram of algebraic stacks
xLoy—t.7
\_//
gof

where f and g are DM morphisms. Let ¢x/y : Fxy — Lxyy, ¢yz @ Fy;z —
Ly/z, and ¢x/z : Fx;z — Lx,z be maps that induce perfect obstruction theories.
The triple (¢x/y, dy/z, dx/z) is said to be compatible if there is a morphism of
distinguished triangles

f*(FY/Z) - FX/Z FX/Y
lf* (¢y/2) lqﬁm lqﬁm
f*(Lyjz) — Lxjz —Lyyy —
where the lower triangle is the canonical one. If we apply the truncation functor,

we obtain the compatibility diagram in Definition Z.3.11].
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Note that a natural source of compatible triples of perfect obstruction theories
is quasi-smooth morphisms of derived schemes.

Example 2.3.15 (Derived enhancement). Consider a commutative diagram of de-

rived Artin stacks

_f)Y—g>Z
v

gof

X

where f and g are quasi-smooth DM morphisms. Then we have a canonical ho-
motopy cofiber sequence of cotangent complexes

f*(Lysz) Lx/z Lx/y .

By considering the classical truncations, we obtain a compatible triple of perfect
obstruction theories in the sense of [Man, Def. 4.5], see Remark 2.3.14] Hence
by applying the truncation functor, we obtain a compatible triple in the sense of

Definition 2.3.111

An elementary example of compatible triple is a modification of a relative
perfect obstruction theory for a smooth base to an absolute perfect obstruction
theory.

Example 2.3.16 (Relative to absolute). Let f : X — Y be a morphism of Deligne-
Mumford stacks. Let ¢x/y : Fx/y — Lx/y be a perfect obstruction theory. Assume
that Y is smooth. Then we can form a morphism of distinguished triangles

f*(Qy) FX Fy/y f(Qy)[1]
TR
5 (Qy) Lx Lxy fH(Qy)[1]

where Fy := cone(Fy/y Pur, Ly/y — Qy[1])[—1]. Then ¢x : Fx — Ly is a perfect
obstruction theory and we have

[X]™" = f1[Y] e Au(X)

by Theorem 2.3.12]
We note that this approach can be generalized to the case when Y is a smooth
Artin stack.
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We often want to lift a perfect obstruction theory by a smooth morphism. How-
ever there is an obstruction for such lifting in general.

Remark 2.3.17 (Lift along smooth morphism). Let f : X — Y be a smooth
morphism of DM stacks. Let ¢y : Fy — Ly be a perfect obstruction theory. We
want to find a perfect obstruction theory ¢y : Fx — Ly such that [X|"" = f*[Y]'F.
This can be achieved if there exists a commutative diagram

Qyy o - F(Fy)[1]
lf*((ﬁy)
Qyyy —= 7> f*(Ly)[1]

for some dotted arrow. This is possible for the following two cases:
1. If X is an affine scheme.

2. If f : X — Y can be enhanced to a smooth morphism X — Y of quasi-
smooth DM stacks.

A possible alternative approach for this situation is to use the Siebert formula
[Sie].

We now prove Theorem [2.3.12] through 3 steps.

Step 1: Special case via homotopy property We first consider the special case

f O¢

X—Y—

0@ Of

¢

where € is a cone stack over Y. The functoriality for this case can be shown easily
from the homotopy property of vector bundle stacks.

Lemma 2.3.18 (Cone stack case). Consider a commutative diagram of algebraic
stacks

X—f>Yi>(‘:

Ogof
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where f is a DM morphism, € is a cone stack over Y, and Og : Y — C is the zero
section. Let ¢xy : Fx)y — Lx)y and ¢ : F — Lys be perfect obstruction theories.
Form a compatible triple of perfect obstruction theories as

f*(F) J*(F) @ Fy)y Fx/y
lf* (¢) lf* (0)®ox/v ‘/tﬁx/y
=7 ¥ (Ly ) Ly /s Lyy

where Ly/c = f*(Lysc) ®Lx/y. Assume that X and Y have affine stabilizers. Then
we have

(Og o f)' = f o0 : Ax(€) — A(X).

Proof. We first reduce the situation to the vector bundle stack case,

X—Y—C ~ X—Y—CF
Oof Oof
Indeed, we can form a commutative diagram
Ogof
/\
|71
f O (g)
X Y E(F).
\/
Ogmyof

Since virtual pullbacks commute with proper pushforwards by Proposition 2.3.7]
replacing € by €(FF), we may assume that € is a vector bundle and ¢ : F — Ly/s
is an isomorphism. Let € := €.

By the homotopy property of the vector bundle stack €, if suffices to show the
functoriality for

x_ %S g Ly
\_/
f

where 7g : € — Y denotes the projection map. Indeed, we have
fi=10¢0 f) omg = f o0 = (0gof)
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since 0, = (7%) "
Consider the commutative diagram

x>

J’ﬂ.@
f

Y

X

where the vertical arrows are smooth. Hence by Lemma 2. 1.21] we have

(ide x 7e|x)™ o spyy = Spy/e © g : Ax(Y) = Au(Cx/c) (2.3.4)
where €y /s = €y/y x €|x. Applying the Gysin pullback Oé(FX/y)X@X to (2.3.4), we
obtain the desired identity. O

Step 2: Deformation to the normal cone We then consider the general case.
The main idea is to reduce the situation to the special case in the previous subsec-
tion via deformation to the normal cone,

f 8 f 0
X—sY——+7Z ~ X—sY—=Cy/y. 2.3.5
' — V=G ( )
gof Oof

Indeed, consider the composition
. 1 fxid 1 °
h: X xA — Y x A _’My/z
where the second arrow is the canonical map. Then the generic fiber of the map
hover { # 0 € Al is the formal diagram in (2.3.3) and the special fiber of the
map h over 0 € A' is the latter diagram in (2.3.3). In other words, we have a fiber
diagram

gof
/_\
Xy ——7 ()

|

Xx A TSy Al oy Al

Y/Z
f 0
Oof
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We will construct a perfect obstruction theory for 4 : X x Al — M iz

Lemma 2.3.19 (Deformation to normal cone). Consider a commutative diagram
of algebraic stacks

x 1.y _t.7
\_/
gof

where f and g are DM morphisms. Consider a compatible triple (¢x v, dy/z, Px/z)
of perfect obstruction theories. Then the composition

h:XxAl —>YxAl - My,
has a perfect obstruction theory
$:F— LXxAl/M;/Z
satisfying the following properties:
1. The fiber of g at{ # 0 € Al is
¢; = ¢x/z - Fxjz — Lx)z

2. The fiber of p at 0 € Al is

$o = <¢6/Z i) : f*(Fyiz) ®Fxyy — 7 f*(Lyjz) @ L)y

such that the diagram

f*(Fy/z) Fx/z Fx /v f*(Fyz)[1]
lf* (¢v/2) [{‘ﬁX/Z ¢;(/Yl s l
v
7 ¥ (Lyjz) — = Lz Ly = (L) (1]

commutes for some nf withn =ron.

Before we proof Lemma 2.3.19] we recall the following key result of Kim-
Kresch-Pantev in [KKP].
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Lemma 2.3.20 ([KKP]). Consider a commutative diagram of algebraic stacks
XxLoy—t.7
~_
gof

where f and g are DM morphisms. Form a distinguished triangle on X x Al

_ (T.a) _
> lf*(Ly/Z) X OAI — (T> lf*(Ly/Z) @ Lx/z) X OAI — L,/XXAI/M;/Z
for some L, 3, Then we have a canonical isomorphism
>-1 ~
T (L;(XA'/MS/Z) = LxxAl/M;/Z.

Proof of Lemma Form a morphism of distinguished triangles

(T.a)

f* (Fy/z> X OAI (f* (Fy/z) @ Fx/z) X OAI F
l%’/z ‘( (Py/z:9x/2) ¢’
. (Ta) . o_ !
T> 1f*(LY/Z> X OAI —_— (T> lf*(Ly/Z) @ Lx/z) X OAI —_— LA,XXAI/M;/Z
(2.3.6)
for some perfect complex F and a map ¢’ : F — L’ where the lower

XxA‘/Ml‘j/Z’

distinguished triangle is given by Lemma2.3.20l Let

. -
¢ F— LXXA'/M;/Z - LXXA'/M;/Z

be the composition. The long exact sequence associated to (2.3.6) assures that
¢ is a perfect obstruction theory. Then fibers of ¢ over ¢ € A' have the desired
properties. O

Step 3 By combining the deformation result in Lemma with the special
case in Lemma[2.3.18] we can now show the functoriality in Theorem 2.3.12

Proof of Theorem[2.3.121 By Lemma[2.3.19] we have

(g0 f) = (0g,, © f)y, P, (2.3.7)

63



CHAPTER 2. VIRTUAL PULLBACKS

where

$o = (¢6/Z i) L ¥ (Byjz) ®@Fxyy — 77 f*(Lyjz) ® Lyyy = Ly, ,-

Note that
¢Y/Z I f ) * >—1 p%
: F Fyxy — 1 L L
(() (1—1) n+10-dxy f*Fyiz) ®Fxyy — v f*(Lyjz) @ Lxyy

are perfect obstruction theories for all #; € A! and r, € A!. By a deformation
argument, we have

(OGY/Z © f>:l50 = (OQ:Y/Z © f)' (2.3.8)
where the second virtual pullback is given by

[ (byiz) @ dxyy : f*(Fyjz) ®Fxyy — T>71f*(LY/Z) @ Ly/y-

By Lemma[2.3.18] we have

(0g,, 0 f)' = f o0, - (2.3.9)
By combining the three equations (2.3.7), (2.3.8)), and (2.3.9)), we obtain the de-
sired formula. O

We explain one technical difference in the proof of functoriality given here
and the standard references [KKP, Manl.

Remark 2.3.21. There is one technical issue in the proof of functoriality that
was ignored in the standard references [KKP, Man]. In the construction of the
perfect obstruction theory ¢ : E — Ly, a1 /M5, it is not clear that the special

fiber ¢y over 0 € Al is f*(¢y/z) ® ¢X/y Hence here we provided additional
deformation argument (that was not given in [KKP, Man]) to compared the two
perfect obstruction theories ¢ and f*(¢y,z) ® ¢x/y. This issue was considered in
[Park1], in the context of DT4 theory.

3The author expects that this issue was not regarded seriously in the classical references [KKP,
Man]| since the Siebert formula [Siel] assures that the virtual cycle only depends on the K-theory
class [F] € K°(X), but not on the map ¢ : F — Ly (for quasi-projective schemes). However
the author does not know whether the Siebert type formula exists for arbitrary DM morphism of
algebraic stacks, or in other homology theories.
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Cosection localization

This chapter reviews the cosection localization technique of Kiem-Li [KL1].

Summary Recall from Chapter 2] that the virtual cycle of a Deligne-Mumford
stack X with a perfect obstruction theory €x — € is defined as

[X]¥" = 0g[Cx] € Ava(X).
Kiem-Li showed the followings for a cosection o : € — A].
1. There is a cone reduction, i.e., a smaller closed embedding
(Cx)red — R(E,0)
into the kernel cone stack R(€, o) := € x ;41 0 X < €.
2. There exists a localized Gysin pullback
0&’0 tAL(R(C,0)) > A (X(0))
to the zero locus X(o) of the cosection o in X.
The two main outcomes are the followings:
1. We have a localized virtual cycle
[XTioe 1= Ot [€x] € Awa(X(0r))

that localizes the ordinary virtual cycle [X]|" € A4(X).
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2. If the cosection o is nowhere vanishing, then the ordinary virtual cycle van-
ishes .
(X" =0€e Ay(X).

Moreover the kernel cone stack K(€, o) is a vector bundle stack and we
have a canonical reduced virtual cycle

[XThoe == 02}(@,0) [Cx] € Ava+1(X).

Usually the zero locus X (o) is much more smaller than the original space
X and the cosection-localized virtual cycles are very useful for computation in
this case (e.g. Gromov-Witten/Poincare invariants for surfaces with holomorphic
2-forms [KLI, [(CK]).

The reducing is required in many cases (e.g. GW/PT invariants for K3 surfaces
[MPT. K'T1, KT2]). The resulting reduced invariants in this cases have turned out
have rich structures.

Moreover, the cosection localization has a deep connection to the algebraic
foundation of Donaldson-Thomas theory of Calabi-Yau 4-folds [OT].

3.1 Cone reduction

In this section, we provide a basic framework for the theory of cosection localiza-
tion.

3.1.1 Kernel cone stacks

In the theory of cosection localization, the kernel cone stacks associated to cosec-
tions play the role of vector bundle stacks in Chapter 21
We first fix the notion of cosections.

Definition 3.1.1 (Cosection). Let F be a perfect complex on an algebraic stack X.
A cosection of F is a map
o:FY [1] - OX

in the derived category of X.

We observe that a cosection induces the canonical linear function on the as-
sociated abelian cone stack.
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Definition 3.1.2 (Canonical linear function). Let F be a perfect complex on an
algebraic stack X and let €(F) := h!/h°(F") denote the associated abelian cone
stack. Let o : F¥[1] — Ox be a cosection of F. We define the canonical linear
function on as

Iy := C(a"[1]) : €(F) — Ay.
We now define the kernel cone stacks.

Definition 3.1.3 (Kernel cone stack). Let F be a perfect complex on an algebraic
stack X and o : F¥[1] — Oy be a cosection of F. We define the kernel cone stack
as the abelian cone stack

K(F,0) := C(F,) = h' /h°(F))
where F,, := cone(oV[1] : Ox[1] — F).

Remark 3.1.4 (Base change). The construction of the kernel cone stack &(F, o)
is stable under the base change of X.

The following lemma justifies the terminology kernel cone stacks.

Lemma 3.1.5. Let F be a perfect complex on an algebraic stack X and o :
FY[1] — Ox be a cosection of F. Then we have a canonical cartesian square

K(F,0) —X

b

C(F) ——— Al

where 1, : €(F) — A, is the canonical linear function.

We compare the notions of cosections and kernel cone stacks given here with
those in the original paper of Kiem-Li [KL1].

Remark 3.1.6 (Comparison to Kiem-Li). Let F be a perfect complex of tor-
amplitude [—1, 0] on a Deligne-Mumford stack X.

1. A cosection o : FY[1] — Oy is equivalent to a map of coherent sheaves
h'(FY) — Ox,
which is the definition of a cosection in [KL1]].
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2. Let o : FY[1] — Ox be a cosection. Let X(o) denote the zero locus of the
induced map o : h'(F¥) — Oy and let U := X\X(co") be the complement.
Then we have a fiber diagram

@(F|X(U));> K(F, o) =<—C(F,|v)

L

X(0r)C X U

where both €(F|x(s)) := €(F|x(s)) and €(F,|y) := €(Fy|y) are vector bun-
dle stacks (of different ranks). Thus set-theoretically, we have

K(F, o) = E(Flx() U €(F,|y)

which is the definition of the kernel cone stack in [KL1 ]

3.1.2 Cone reduction

The cone reduction property is the crucial ingredient in the theory of cosection
localization.

Definition 3.1.7 (Cone reduction property). Let f : X — Y be a DM morphism of
algebraic stacks. We say that an obstruction theory ¢ : F — Ly y satisfies the cone
reduction property with respect to a cosection o : F¥[1] — Oy if the composition

(Cx/7)rea — Cxy — C(F) B Ay

is zero. Here (@X/y)red c Gy is the reduced closed substack of the intrinsic
normal cone, ¢ : €,y — C€(F) is the closed embedding induced by ¢, and [, :
€(F) — Ay is the canonical linear function in Definition 3.1.2]

We observe that an obstruction theory satisfying the cone reduction property
is equivalent to a closed embedding of the intrinsic normal cone into a kernel cone
stack.

Proposition 3.1.8 (Equivalence). Let f : X — Y be a DM morphism of algebraic
stacks.

'The author learned the scheme-theoretical description of the kernel cone stacks from
Jeongseok Oh.
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1. If  : F — Lxjy is an obstruction theory satisfying the cone reduction
property, then there exists a unique closed embedding

7 (Cxyy)red — K(F,0)

that fits into the commutative diagram

K(F,0) —=X

Lo‘,red 7 \[ [\

0

(@X/Y)red(—> GX/Y( @(F) A}{

as the dotted arrow.

2. If €y — K(F,0) is a closed embedding of cone stacks for some kernel
cone stack K(F, o) associated to a perfect complex F and a cosection o :
FY[1] — Oy, then the composition

F— v>7'F= Lyse — LysEe) — Ly /sy, = Lx)y
is an obstruction theory satisfying the cone reduction property.
Moreover, the above two operations are inverse to each others.
Proof. We omit the proof, see Proposition [2.2.91 |
There are two sources of the cone reduction property:
1. cone reduction lemma of Kiem-Li [[KL1];
2. Reductions via (—1)-shifted 1-forms (see Chapter [§).
Firstly, we recall Kiem-Li’s cone reduction lemma.

Proposition 3.1.9 (Kiem-Li’s cone reduction lemma). Let X be a Deligne-Mumford
stack, ¢ : F — Ly be an obstruction theory, and o : F¥[1] — Ox be a cosection.
Then ¢ satisfies the cone reduction property.

Proof. For perfect obstruction theories, this is shown in [KL1, Prop. 4.3]. The
general case of arbitrary tor-amplitude can be reduced to the perfect obstruction
theory case (cf. [BKP, Lem. 4.18]). O
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In Kiem-Li’s cone reduction lemma, it is crucial to take the reduced closed
substack (€x).eq of the intrinsic normal cone.

Remark 3.1.10 (Maulik-Pandharipande-Thomas’s counterexample). Consider a
commutative diagram

t
) ’
X'.u

where U = AL E = 0%, s = (T2,0),t = (T, 1), and X is the zero locus of s in
U. Then we have an induced perfect obstruction theory and a cosection

oV (1] tlx .
Ox[1] = E Ox Ely —&—Qulx
[q& ls
2 d
LX IX/U/IX/U—>QU|X-

Since the composition
dsot|x = (2T,0) o (T,1) = 0: Ox — Qulx = Ox
is zero, o given above is indeed a cosection. On the other hand, the composition
sotly = (T%0)0(T,1) = (T°) #0: Ox — Ixu/I%,, = (T*) /(T

is not zero, we have
NX/U ¢_ ker(0'|X . E|X - Ox>

Consequently, we also have
CX/U ¢_ ker(0'|X . E|X — Ox>
and the cone reduction property does not hold scheme-theoretically.

We also note that Kiem-Li’s cone reduction lemma does not hold for the rela-
tive setting in general.

Remark 3.1.11. Let f : X < Y be a regular closed embedding of schemes.
Assume that there is a surjection Ny/y —» Oy of coherent sheaves. Then the cone
reduction property does not hold for the canonical perfect obstruction theory F :=
Lxy = Lx/y.
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However, if the base is smooth, then Kiem-Li’s cone reduction lemma holds
under an additional assumption.

Example 3.1.12 (Relative cone reduction for smooth base). Let f : X — Y be a
DM morphism of algebraic stacks, let ¢ : F — Ly/y be an obstruction theory, and
o : FY[1] — Oy be a cosection. Assume that Y is smooth. If the composition

oV —1 KSx /v
OX e P[—l] M Lx/y[—l] —/> Qy|X

vanishes, then ¢ : F — Ly/y satisfies the cone reduction property. Indeed, this
can be shown by modifying the relative obstruction theory ¢ : F — Ly/y into an
absolute obstruction theory as in Example

Secondly, if a cosection can be enhanced to a (—1)-shifted closed 1-form
[PTVV], then the cone reduction property holds.

Example 3.1.13 (Reduction by (—1)-shifted 1-form). Let X be a homotopically
finitely presented derived Deligne-Mumford stack over an affine scheme Y and «
be a (—1)-shifted closed 1-form. Then the induced obstruction theory

¢ F = LX/Y|X — Lxyy — Lxyy

on the classical truncation X := X satisfies the scheme-theoretical cone reduc-
tion property with respect to the cosection

@y : FY[1] — Oy

induced by the underlying (—1)-shifted 1-form @y : Ox — Lx[—1] of a. In par-
ticular, the cone reduction property in Definition is satisfied. We refer to §??
for details.

Finally, we provide a straightforward generalization of Kiem-Li’s cone reduc-
tion lemma to multiple cosections.

Remark 3.1.14 (Multiple cosections). Let X be a Deligne-Mumford stack and
¢ : F — Ly be an obstruction theory. Consider a generalized cosection, i.e., a map

S:F'[1] > F
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in the derived category of X for some vector bundle F. Then we have a generalized
cone reduction property, i.e., there is a commutative diagram

K(F,2) —=X
LZ,red 7
e OF
(6x)ra— Ex— G(F) = F

for some dotted arrow, where Iy := €(2V[1]) : €(F) — A} is the canonical linear
function associated to X and the square is cartesian.

3.2 Reduced virtual cycles

In this section, we construct reduced virtual pullbacks for surjective cosections.

Definition 3.2.1 (Reduced virtual pullback). Let f : X — Y be a DM morphism
of algebraic stacks and ¢ : F — L,y be a perfect obstruction theory satisfying
the cone reduction property with respect to a cosection o~ : F¥[1] — Ox. Assume
that i°(o) : h!'(F¥) — Oy is surjective so that the kernel cone stack 8(F, o) is a
vector bundle stack. We define the reduced virtual pullback

fo!',red : A*(Y> - A*(X>
as the composition

SPx/y (e 0% a
Au(Y) =5 Au(Cxpr) = Au((Cxpr)rea) == AL(C(F,)) = AL(X)
where spy y is the specialization map in Definition Z.LI8, t**! : (Cx)rea —
K(E, o) is the closed embedding in Proposition 3.1.8l1, and Oé(F ) is the Gysin
pullback of the vector bundle stack €(F,.) = &(F, o) in Definition[2.3.2]

As a special case, we define the reduced virtual cycles. In this case, Kiem-Li’s
cone reduction lemma (Proposition [3.1.9)) assures the cone reduction property.

Definition 3.2.2 (Reduced virtual cycle). Let X be a Deligne-Mumford stack
equipped with a perfect obstruction theory ¢ : F — Ly and a cosection o :
FV[1] — Ox. Assume that i°(c") : h'(FY) — Oy is surjective so that the ker-
nel cone stack K(E, o) = €(E,,) is a vector bundle stack. We define the reduced
virtual cycles as

[X]e = 0 (5[ Cx] € Avgi1(X)

where vd = rank(E").

72



CHAPTER 3. COSECTION LOCALIZATION
The reduced virtual cycles are deformation invariant under an additional as-
sumption.

Proposition 3.2.3 (Deformation invariance). Let f : X — B be a morphism of
Deligne-Mumford stacks. Assume that B is smooth. Form a fiber diagram

Xpy——&X

b

)" >8

where b € B. Let ¢ : E — Lx/g be a perfect obstruction theory and o : E¥[1] —
Oy be a cosection. Assume that the composition

Oy T B[—1] % Ly/s[—1] &5 Qglx

vanishes. Then there exists a cycle class [X]|*® € A,(X) such that
(X5 = 3,[X]™ € AL(X5)
forall b € B, where i, : A, (X) — A,(X,) denotes the refined Gysin pullback.

Proof. As in Example we can modify the relative perfect obstruction the-
ory ¢ : E — Lx/g for f : X — B into an absolute perfect obstruction theory for
X. As explained in Example[3.1.12] the vanishing condition of the composition

Ox Z5 B[—1] % Ly/s[—1] &5 Qg

X

assures that the relative cosection o : EV[1] — Oy lifts to an absolute cosection
and hence we have a cone reduction property for f : X — B. Then we can define
a reduced virtual pullback

fo!',red : A*(’B) - A*<X)
By Vistoli’s rational equivalence in Proposition 2.1.22] we have

(Xl = (fo)er,ea([SPEC(C)]) = (i) ea © 85 ([B1) = i3, © firea[B])-

Then the cycle class [X]|™ := f]_[8] satisfies the desired property. i

a,

We can easily generalize the reduced virtual cycles to multiple cosections.
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Definition 3.2.4 (Reduced virtual cycle for multiple cosections). Let X be a Deligne-
Mumford stack equipped with a perfect obstruction theory ¢ : F — Ly and a map
Y : FY[1] — F to a vector bundle F. Assume that h1°(X) : h!(F) — F is surjec-
tive. Let (2™ : (€x)rq — K(F, X) be the induced closed embedding in Remark
[3.1.141 We define the reduced virtual cycle as

[X]fed = O&(Fz)[ch] € Avd+rank(F) (X)

where R(E,X) := €(F,) is a vector bundle stack since Fy := cone(XV[1] :
FY[1] — F) is of tor-amplitude [—1, 0].

Remark 3.2.5 (Compatibility). In the situation of Definition[3.2.2] we have
[X]V" = e(F) n [X]™ € A,(X).
In particular, the virtual cycle [X]*"" vanishes when e(F) = 0.

We note that the reduced obstruction theories may not exist in general.

Remark 3.2.6 (Reduced obstruction theory). Let X be a Deligne-Mumford stack
with a perfect obstruction theory ¢ : F — Ly and a cosection o : F¥[1] — Ox. We
would like to know whether the reduced obstruction theory exists. More precisely,
we would like to find a commutative diagram

Ox|1] ‘T—V>F—>_Fg

‘/ // ¢red
Ly

for some dotted arrow. This is equivalent to the scheme-theoretical cone reduction
property, i.e., there exists a commutative diagram

K(F,0) —=X
T
Cxy = G(F) ——— A}

for some dotted arrow. By [MPT], this property may not hold in general. However,
we will see in Chapter [8] that this property is satisfied when the cosection o~ can
be enhanced to a (—1)-shifted closed 1-form.
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3.3 Cosection-localized virtual pullbacks

In this section, we construct cosection-localized virtual pullbacks for perfect ob-
struction theories with cosections satisfying the cone reduction property.

3.3.1 Cosection-localized Gysin pullbacks

As a special case, we first construct the cosection-localized Gysin map for kernel
cone stacks.

Notation 3.3.1 (Blowup diagram). Let X be a Deligne-Mumford stack, F be a per-
fect complex of tor-amplitude [—1,0] on X, and o : F¥[1] — Oy be a cosection
of F. Form a fiber diagram

K(F,0) —X

b
G(F) =~ Al

where F, := cone(c'[1] : Ox[1] — F). Let X(0-) < X be the zero locus of the
induced map o : Ob := h'(FY) — Oy. Let X := Bly(»X be the blowup of X
along X (o). Form a fiber diagram

D(—]>)~(
lfl lp
X(o)—>X

where D is the exceptional divisor. Note that o|; factors as

where 7,3 = Oz(—D). Then K := cone(c"[1] : O3(D)[1] — Fl;) is of tor-
amplitude [—1, 0]. Hence we have an abstract blowup square

€(K|p)—— E(K)

Pk

(E(F|X(U))(L> R(F, 0')
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where €(K|p) := €(K|p), €(K) := €(K), and €(F|x()) := €(F|x()) are vector
bundle stacks.

Definition 3.3.2 (Cosection-localized Gysin map). Let X be a Deligne-Mumford
stack, F be a perfect complex of tor-amplitude [—1,0], and o : FY[1] — Ox
be a cosection. We use the notations in Notation 3.3.1l We define the cosection-
localized Gysin map

!

Og(eo * Ax(R(F, 0)) — Au(X(0))

as the unique map that fits into the commutative diagram

(—as,by) (cx.dx)
Ax(€(K]p)) A+(C(K)) © A (C(Flx()) A:(R(F, o)) ——0
\ W e Ol
A (X(0)) . A (X)

where the top horizontal sequence is the abstract blowup sequence (cf. Corollary
[A.2.7) and the two maps u and v are given as follows:

w: A(S(E)) 9 AL (R) s A,(D) 5 AL(X(0)

OQ(F\X((;))

v 1 A (€(Flx (o)) AL(X(0)).

We first show that the cosection-localized Gysin map is well-defined.

Lemma 3.3.3 (Well-definedness). In this situation of Definition[3.3.2] we have

. ! . |
Uoda, =Vvoby, l*ou=0¢(F)Ok*oc*, z*ov=0'®(F)Ok*Od*.

Proof. Firstly, we have

UOa, = (x oj! OO&(K) O ay

= —x 0 ' © a0 O,
~qx 0 ¢1(0%(D)) © O,
= G2 © Oz © €

= Oiﬁ(F\x((r)) ob, =vob,
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where e : €(K|p) < €(F|p) is the canonical inclusion map.
Secondly, we have
. . .l |
isyouU=—i,0¢s0J OO&(K)
= —Px©° ]* o j! % Oég(K)
= —px0¢1(03(D)) 0 O
= P, © OE(F‘;{) o fi

= O!@(F) ok, 0cCy

(K)

where f : €(K) < E(F|y) is the canonical inclusion map.
Finally, we have

i 0V =iy 0Oy = O © ki 0 ds.

It completes the proof. O

We note that the cosection-localized Gysin maps are bivariant classes.

Proposition 3.3.4 (Bivariance). Let f : Y — X be a morphism of Deligne-
Mumford stacks. Let F be a perfect complex of tor-amplitude [—1,0] on X and
o : FY[1] — Ox be a cosection. Form a fiber diagram

f
K(Fly,oly) —= K(F, o)

L,

Y X.

1. If f : Y — X is a proper morphism, then we have
f 0 ety = Ofgerr © fo + Ax(R(Fly, rly)) — A4 (X).
2. If f: Y — X is a equi-dimensional flat morphism, then we have
£ 0 0er, ) = Oy © ¥ ALR(E, o)) — AL(Y).
3. If f: Y — X isalocal complete intersection morphism, then we have
flo og(mm) - Oég(F),(, o f' 1 ALK(E,0)) — AL (Y).
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Proof. By the universal property of blowup, we can form a commutative diagram

y leX
l )
y—'ox

P

~
L\
<

where the square is cartesian. N

Then Proposition 3.3.411 follows immediately since f, f” are proper and all
the operations in Definition [3.3.2l commute with projective proper pushforwards.

Similarly, Proposition [3.3.412 follows immediately since the flatness of f im-
plies Y = Y’ and all the operations in Definition 3.3.2] commute with flat pull-
backs.

Finally, Proposition[3.3.413 follows from Lemma[3.3.3]below and Proposition
[3.3.4L1 since all the operations in Definition[3.3.2lcommute with Ici pullbacks. O

Lemma 3.3.5. Let X be a Deligne-Mumford stack, F be a perfect complex of tor-
amplitude [—1,0], and o : FY[1] — Ox be a cosection. Assume that there exists
a factorization

LV
T 7 l/
FY [1]..0'—> Ox

for some line bundle L and a map 7. Let F. := cone(tV[1] : L[1] — F). Then
K := C(F,) is a vector bundle stack and we have

0!03,0' oa, = —j 005 : A(8) — Au(X(0))
where a : & — K(E, o) is the inclusion map.

Proof. By the blowup sequence, we may reduce the situation to the case when
X (o) is a divisor of X and L = Ox(X(c)). Then the statement follows directly
from the definition. O
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Remark 3.3.6 (Uniqueness). The cosection-localized Gysin pullbacks Oéw in
Definition [3.3.2] are uniquely determined by the bivariance in Proposition [3.3.4]
the compatibility 0, = O, and the special case in Lemma[3.3.5

Remark 3.3.7 (Generalization). We may want to generalize the cosection-localized
Gysin pullbacks 0&’0 in Definition [3.3.2] to Artin stacks X. As long as we have a
generalized blowup sequence in Corollary [A.2.7] for arbitrary Artin stacks, then
everything in this subsection generalize to Artin stacks immediately.

3.3.2 Cosection-localized virtual pullbacks

We now consider the general case. We construct cosection-localized virtual pull-
backs for perfect obstruction theories with cosections

Definition 3.3.8 (Cosection-localized virtual pullback). Let f : X — Y be a
morphism from a DM stack X to an algebraic stack Y. Let ¢ : F — Ly/y be a
perfect obstruction theory satisfying the cone reduction property with respect to a
cosection o : FY[1] — Ly/y. We define the cosection-localized virtual pullback

fr 1 ALY) = Au(X(0))

as the composition

!
SPx/y ored Ose) o

A(Y) =5 Au(Cxpy) = Au((Cxpy)ea) = AL(K(F, o)) A.(X(0))

where spy y is the specialization map, 17 (Cxjy)red — K(F, o) is the closed
embedding to the kernel cone stack, and 0!@(19’) . 1s the cosection-localized Gysin
pullback in Definition [3.3.2]

We now define the cosection-localized virtual cycle as a special case of the
cosection-localized virtual pullback.

Definition 3.3.9 (Cosection-localized virtual cycle). Let X be a Deligne-Mumford
stack equipped with a perfect obstruction theory ¢ : F — Ly and a cosection
o : FY[1] — Ox. We define the cosection-localized virtual cycle as

XN = fL([Spec(C)]) = Ofyzy [64] € A (X(0))

where f} : A,(Spec(C)) — A, (X(c)) is the cosection-localized virtual pullback
in Definition 3.3.8
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The cosection-localized virtual pullbacks are bivariant classes.

Proposition 3.3.10 (Bivariance). Let

X/ L Y/

N

X——Y

be a cartesian square of algebraic stacks where X and X' are Deligne-Mumford
stacks. Let ¢ : F — Lx)y be a perfect obstruction theory satisfying the cone
reduction property with respect to a cosection o : F¥[1] — Oy. Let

/ N % (&")*(¢) N
¢ F = (¢)"(F) =5 (g)*(Lxyy) — Lyyy

be the induced perfect obstruction theory. Then ¢’ also satisfies the cone reduction
property with respect to the induced cosection

o' = (g")"(o) : (F)"[1] - Ox
and we have the following properties:

1. If g is a proper DM morphism, then we have
fro8e =80 (fN)e  Au(Y) = Au(X(0)).
2. If g is a equi-dimensional flat morphism, then we have
(f)or 08" = (&) 0 fr 1 Au(Y) = AL(X'(0)).

3. If g is a local complete intersection morphism and Y' has affine stabilizers,
then we have

(fer 08 = (8) o fy 1 Au(Y) = Au(X'(o7)).

Proof. 1f follows directly from Proposition and Proposition[3.3.4] O
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3.3.3 Functoriality

In this subsection, we collect functorility results of cosection-localized virtual cy-
cles shown in Chang-Kiem-Li [CKL].

Theorem 3.3.11 (Functoriality I). Let f : X — Y be a morphism of Deligne-
Mumford stacks. Let (¢ : Fy — L¢, ¢y : Fy — Ly, ¢x : Fx — Lx) be a compati-
ble triple of perfect obstruction theories in the sense of Definition[2.3. 11l Consider
a commutative triangle

Fy[1]

|

Fy[x[1] —=Ox

oylx

for some cosections ox : Ex|¥[1] — Ox and oy : Ey[1] — Oy. Then we have a
fiber diagram
X(ox) —=Y(ov)

.

and a virtual pullback formula

[X]ioe = 1Y ]iee € Ax(X(0))-

loc loc

Most of the arguments of Theorem [3.3.11] are straightforward generalizations
of Theorem 2.3.12] The crucial additional ingredient is [CKL, Lem. 2.7]: the in-
duced perfect obstruction theory

forh : X x Al — M, /7 in Lemma 2.3.19 satisfies the cone reduction property

with respect to a cosection
gy . E];/[l] — OXXAI
that fits into a morphism of distinguished triangles
By [1] — (FEy[1]| @B [1]) O, — f*Ey[1] m O,
éO'h lf*o'y@CTx la'y
v
Ox a1 @ Oxxa

OX><A1 OX><A1 .
We refer to [[CKL, Thm. 2.6] for details.
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Theorem 3.3.12 (Functoriality Il). Let f : X — Y be a morphism of Deligne-
Mumford stacks. Let (¢ : Fy — Ly, ¢y : Fy — Ly, ¢x : Fx — Ly) be a compati-
ble triple of perfect obstruction theories in the sense of Definition[2.3. 11l Consider
a commutative triangle

Fy[1]

N

Fy[1] — O«

for some cosections ox : Ey[1] — Ox and oy : EY[1] — Ox. Then ¢y satisfies
the cone reduction property with respect to the cosection oy and we have

cs[XTioe = £ Y] € Au(X(0y))

loc o
where ¢ : X(ox) — X(os) is the inclusion map.

The proof of Theorem [3.3.12]is relatively easier than that of Theorem [3.3.11]
since the cone reduction property for ¢, follows immediately from the cone re-
duction property for ¢x. We refer to [CKL, Thm. 2.10] for details.
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Part 11

Donaldson-Thomas theory of
Calabi-Yau 4-folds
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Chapter 4

Virtual pullbacks in
Donaldson-Thomas theory of
Calabi-Yau 4-folds

In this chapter, we generalize Manolache’s virtual pullbacks [Man] to Donaldson-
Thomas theory of Calabi-Yau 4-folds. This is based on [Park1].

Summary We first recall the local model of Behrend-Fantechi virtual cycles.
Let U be a smooth scheme, E be a vector bundle on U, s be a global section of E,
and X be the zero locus of s in U,

E

)

X——=U.
The Behrend-Fantechi virtual cycle is defined as the localized Euler class,
[X]55 = e(E, s)[U] € A (X).

Analogously, the local model of Oh-Thomas virtual cycles is given by the
following replacements:

vector bundle E  ~»  special orthogonal bundle E
section s of E  ~»  isotropic section s of E
localized Euler class e(E,s) ~»  localized square root Euler class v/e(E, s).
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where the construction of +/e(E, s) is the crucial part.

A general philosophy in DT4 theory is to replace everything in the virtual
intersection theory to the symmetric versions of them. In particular, we consider
the following global replacement:

perfect obstruction theories ~»  symmetric obstruction theories.

A new feature is that we need two additional ingredients: (1) isotropic condition
and (2) an orientation.

We briefly summarize the global construction of virtual cycles/virtual pull-
backs in DT4 theory. Let f : X — Y be a morphism of schemes and let ¢ :
E — Ly/y be a symmetric obstruction theory. Then there is a canonical quadratic

function
gg : €(E) — A

induced by the symmetric form of E. Let Q(E) be the quadratic cone stack, de-
fined as the zero locus of the canonical quadratic function gz in €(E).

1. We say that ¢ satisfies the isotropic condition if
€x < Q(E)
as substacks of €(E).

2. We will construct the square root Gysin pullback

\/Ohe) : A4 (R(E)) — AL (X)

for the quadratic cone stack Q(E), which depends on a choice of an orien-
tation o : Ox = det(E).

We define the square root virtual pullback as the composition

VI ALE) 2 A, () — AL(Q(E)) =2 A, (x).

The Oh-Thomas virtual cycle is then defined as a special case for Y = Spec(C),

(X155 = V/Fi[Spec(C)] = /05, [64] € Au(X).
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As virtual pullbacks, the most important property of square root virtual pull-
backs is a functoriality. If

x 1.y 8.7
\_/
gof

is a commutative diagram of schemes such that g, g o f are equipped with sym-
metric obstruction theories and f is equipped with a perfect obstruction theory,
then we have

(8o f)' = flo /g 1 AuZ) - AuX)

for a natural compatibility condition. In particular, when Z = Spec(C), we have a
virtual pullback formula

(X]or = f'[Y]or € A« (X).

We present various applications of the virtual pullback formula in Chapter [6l

4.1 Local models

In this section, we review the square root Euler classes +/e(E) for special orthog-
onal bundles E of Edidin-Graham [EGT] and its localization +/e(E, s) by isotropic
sections s of Oh-Thomas [OT]. Roughly speaking, +/e(E, s) are the local models
of the square root virtual pullbacks.

4.1.1 Orthogonal bundles

In this subsection, we fix the notions of orthogonal bundles and special orthogonal
bundles on algebraic stacks. We also present three basic operations of them.

Definition 4.1.1 (Orthogonal bundle). Let X be an algebraic stack. An orthogonal
bundle on X is a pair (E, 8) where

1. E is a vector bundle on X, and

2. 0 1is a non-degenerate symmetric bilinear form on E, i.e., a map
0:EQFE — Oy

satisfying the following properties:
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(a) 8o 0 = @ forthe transitionmap o : EQ E — EQR E;

(b) the induced map EY — E is an isomorphism.
By abuse of notation, we say that E is an orthogonal bundle on X.
We present some elementary facts on orthogonal bundles.

Remark 4.1.2. Let X be an algebraic stack. Then an orthogonal bundle of rank n
on X is equivalent to a map

X — BO(n)
to the classifying stack of the orthogonal group O(n).

Remark 4.1.3. Let X be a scheme. Then an orthogonal bundle on X is étale-
locally trivial, but not necessarily Zariski-locally trivial. A counterexample is pro-
vided in [EG1]. In other words, the orthogonal group O(n) is not a special group.

Remark 4.1.4 (Canonical quadratic function). Let E be an orthogonal bundle on
an algebraic stack X. Then there exists a canonical quadratic function

ae 1 E — Ay
defined by the symmetric form 6 € Sym*(E") where E = Spec(Sym(E")).
There are three basic operations for orthogonal bundles.
Example 4.1.5 (Three operations). Let X be an algebraic stack.

1. If E; and E, are orthogonal bundles, then we have a direct sum E; @ E; as
an orthogonal bundle.

2. If F is a non-degenerate subbundle of an orthogonal bundle E, i.e., a sub-
bundle such that 6| : F ® F — Oy is non-degenerate, then we have an
orthgonal complement F* as an orthogonal bundle. Moreover, we have a
canonical direct sum decomposition

E=F®F".

We sometimes denote the orthogonal complement F+ by E /F-
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3. If K is an isotropic subbundle of an orthogonal bundle E, i.e., a subbundle
such that f]x : K ® K — Oy is zero, then we have a reduction K+ /K as an
orthogonal bundle. Moreover, we have a canonical commutative diagram

0 K¢ Kf Kt/K—=0
0 K¢ E E/K 0

]

0——0——K" KY ——0

where the rows and columns are exact. We sometimes denote the reduction
K*/K by E k.

Definition 4.1.6 (Orientation). Let E be an orthogonal bundle on an algebraic
stack X. An orientation of E is an isomorphism of line bundles

0:Ox = det(E)

such that the square

%

0* : Ox 5 det(E) = det(E¥) % Oy

is the identity 1 € I'(X, Ox), where the second isomorphism det(E) = det(E") is
given by the symmetric form of E.

Remark 4.1.7 (Orientation bundle). Let E be an orthogonal bundle on an alge-
braic stack X. We define the orientation bundle of E as the functor

Or(E) : Sch(/)ﬁ’( — Set : (T — X) — {orientations of E|r}.
Consider the canonical short exact sequence of algebraic groups

0——=SO(n)—= 0(n) = 1 0.

Then the orientation bundle Or(E) fits into the fiber diagram

Or(E) — BS O(n) — Spec(C)

b

X—L = BO(n) —— Bu,.

Hence the orientation bundle Or(E) is a principal u,-bundle over X. In particular,
E is étale-locally orientable since the pullback E |Or(E) has a canonical orientation.
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There are canonical induced orientations for the three operations of orthogonal
bundles in Example

Example 4.1.8 (Induced orientations). Let X be an algebraic stack.

1. Let E = E| @ E; be the direct sum of two orthogonal bundles. Then we
have a canonical isomorphism of line bundles

det(E) = det(E;) ® det(E).
Hence orientations of £, and E, induce an orientation of E.

2. Let F* be the orthogonal complement of a non-degenerate subbundle F
of an orthogonal bundle E. Then we have a canonical isomorphism of line
bundles

det(F*) = det(E) ® det(F)".

Hence orientations of E and F induce an orientation of FL.

3. Let K*/K be the reduction of an isotropic subbundle K of an orthogonal
bundle E. Then we have a canonical isomorphism of line bundles

det(K*/K) = det(K*) ® det(K)"
= det(E) ® det(K" )Y ®@det(K)" = det(E).
Hence an orientation of E induces an orientation of K /K.

Definition 4.1.9 (Special orthogonal bundles). Let X be an algebraic stack. A
special orthogonal bundle on X is a triple (E, 6, 0) where

1. (E,0) is an orthogonal bundle on X, and

2. 0: Ox — det(E) is an orientation of E.
By abuse of notation, we say that E is a special orthogonal bundle on X.

Remark 4.1.10 (Maximal isotropic subbundles). Let E be a special orthogonal
bundle of rank 27 on an algebraic stack X.

1. We say that an isotropic subbundle M of E is maximal if rank(M) = n.

2. For a maximal isotropic subbundle M of E, the reduction M*/M of E by M
is zero. Thus an orientation of the orthogonal bundle M /M = 0 is equiva-
lent to a sign. We say that a maximal isotropic subbundle M of E is positive
if the induced orientation on M+ /M is 1. Otherwise, if the induced orienta-
tion is —1, then we say that M is a negative maximal isotropic subbundle.
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4.1.2 Edidin-Graham classes

In this subsection, we construct square root Euler classes of special orthogonal
bundles, introduced by Edidin-Graham [EGI1]].
We first recall the notion of isotropic flag bundles.

Definition 4.1.11 (Isotropic flag bundle). Let E be an orthogonal bundle of rank
2n on an algebraic stack X. We define the isotropic flag bundle of E as the functor

FIag(E) : SCh(/)?( —Set: T — {(Kl cK,c---cK, ;| S E|T)}
where K; are isotropic subbundle of E|; of rank i.

Proposition 4.1.12. Let E be an orthogonal bundle of even rank on an algebraic
stack X. Let Flag(E) be the isotropic flag bundle of E.

1. The canonical map
p:Flag(E) - X

is a smooth, projective, surjective morphism of algebraic stacks.

2. Given an orientation of E, there exists a canonical positive maximal isotropic
subbundle A of E|fiag(E)-

Proof. It follows from the results in [EG1]] for schemes via descent. O

We define the square root Euler classes through the isotropic flag bundles.

Definition 4.1.13 (Square root Euler class). Let E be a special orthogonal bundle
of rank 2n on a Deligne-Mumford stack X. Let p : F := Flag(E) — X denote
the isotropic flag bundle of E. We define the square root Euler class of E as the
unique map

Ve(E) : Au(X) = A,(X)

that fits into the commutative diagram

A*(F X x F) (pl)*f(pQ)* A*(F) P A*(X) 0
le(prm—e(p;‘m lem) Ve(E)
N
A, (F xx F) PP A, (F) —Ax(X) 0

as the dotted arrow. Here A < E|g is the canonical positive maximal isotropic
subbundle in Proposition 4.1.1212, the rows are exact by the Kimura sequence
(see Theorem [A.L1), and e(pjA) = e(p5A) by Fulton’s conjecture in Lemma
4. 1.14below.

90



CHAPTER 4. VIRTUAL PULLBACKS IN DT4 THEORY

We need the following version of Fulton’s conjecture to assure that the square
root Euler class in Definition is well-defined.

Lemma 4.1.14 (Fulton’s conjecture). Let E be a special orthogonal bundle on a
Deligne-Mumford stack X. If M\ and M, are positive maximal isotropic subbun-
dles of E, then we have

e(My) = e(M,) : Au(X) — AL (X).

Proof. By [EHKYV, Thm. 2.7], there exists a finite surjective map p : F — X from
a scheme F. Since the pushforward

fe 1 AL(F) > AL (X)

is surjective by the Kimura sequence in Theorem[A.1.1] the result for schemes in
[EG1, Thm. 1] completes the proof. |

We note that the square root Euler classes are bivariant classes.

Proposition 4.1.15 (Bivariance). Let f : Y — X be a morphism of Deligne-
Mumford stacks and E be a special orthogonal bundle on X.

1. If f : Y — X is a proper morphism, then we have
Ve(E) o fu = fuo \e(E).

2. If f Y — X is an equi-dimensional flat morphism, then we have
Ve(E)o f* = f*o v/e(E).

3. If f: Y — Xis alocal complete intersection morphism, then we have
Ve(E)o f' = f o Ve(E).

By abuse of notation, we denoted +/e(f*E) by +/e(E).

We describe how the square root Euler classes are related to the basic opera-
tions of special orthogonal bundles in Example (and Example [4.1.8).

Proposition 4.1.16 (Whitney sum formula). Let E| and E, be special orthogonal
bundles on a Deligne-Mumford stack X. Then we have

Ve(E\®E,) = ve(Ey) o Ve(Ey) : Au(X) — Ay(X).
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Proposition 4.1.17 (Reduction formula). Let E be a special orthogonal bundle
on a Deligne-Mumford stack X and K be an isotropic subbundle. Then we have

Ve(E) = e(K) o Ve(Ejx) : Au(X) — A, (X)
where E g := K* /K is the reduction of E by K.

We omit the proofs of Proposition4.1.15] Proposition and Proposition
4. 117 since they follow immediately from the definition.

Remark 4.1.18 (Uniqueness). Note that Fulton’s conjecture in Lemmad.T.14lis a
special case of the reduction formula in Proposition 4.1.17l Thus we can observe

that the square root Euler classes are uniquely determined by the bivariance in
Proposition and the reduction formula in Proposition

Remark 4.1.19 (Integral coefficients). Square root Euler classes can be defined
in the Chow groups with Z[1/2]-coefficients. However, Totaro [?] showed that
square root Euler class does not exists with Z-coefficients.

The square root Euler classes can be generalized to a certain class of Artin
stacks.

Remark 4.1.20 (Generalization). Let E be a special orthogonal bundle on an al-
gebraic stack X. Assume that X admits a proper cover by a quotient stack (in the
sense of Definition[A.2.T)). Then we can define a square root Euler

Ve(E) : Ay(X) — Ay (X)

as in Definition[4.1.13] since Fulton’s conjecture holds for the isotropic flag bundle
F := Flag(E) and F x x F by LemmaZ.T.21 below.

In particular, we have square root Euler classes for algebraic stacks with re-
ductive stabilizers and affine diagonals (see Proposition ??).

Lemma 4.1.21. Let E be a special orthogonal bundle on an algebraic stack X.
Let M| and M, be two positive maximal isotropic subbundles of E. Assume that X
admits a proper cover by a quotient stack (in the sense of Definition[A.2.1)). Then
we have

e(My) = e(M;) : A, (X) — AL (X).
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Proof. Let p : X > Xbea proper representable surjection from the quotient
stack X = [P/G] of a separated Deligne-Mumford stack P by an action of a linear
algebraic group G. By the Kimura sequence in Theorem [A.1.1l the pushforward

Je A*()?) - A*(X)

is surjective. Let EG;/G — BG be Totaro’s algebraic approximations [Tot]. By
the homotopy property, the pullback

A4([P/G]) = Adrdaim(ec) ([P x EG;/G])

for each d € Z, is an isomorphism for sufficiently large i. Hence Lemma 4.1.14]
completes the proof since [P x EG;/G] is a Deligne-Mumford stack. ]

4.1.3 Oh-Thomas classes

In this subsection, we construct localized square root Euler classes for special
orthogonal bundles with isotropic sections, introduced by Oh-Thomas in [OT].
Instead of following the construction in [OT] directly, we use the blowup con-
struction introduced in [KP2]. This construction is inspired by the cosection lo-
calization [KL1].

Notation 4.1.22 (Blowup diagram). Let E be a special orthogonal bundle on an
algebraic stack X. Let s be an isotropic section of E. Let X(s) denote the zero
locus of sin X. Let X := Blx ;)X denote the blowup of X along X (s). Form a fiber
diagram

DX
X(s)——X
where D is the exceptional divisor. Then the section s defines a surjection

Ely » Ox(=D) < Ox.

Since s is an isotropic section, L := Oy(D) is an isotropic subbundle of E|;. Let
L* /L be the reduction of E|; by L.

Definition 4.1.23 (Localized square root Euler class). Let X be a Deligne-Mumford
stack, E be a special orthogonal bundle on X, and s be an isotropic section of E.

93



CHAPTER 4. VIRTUAL PULLBACKS IN DT4 THEORY

We use the notations in Notation [5.3.1l We define the localized square root Euler
class of E by s as the unique map

Ve(E. s) : Ay (X) — A,(X(s))
that fits into the commutative diagram

(Pssix)

—fA*<X)
lx/E(E)
A (X)

0

A,(D) T 4 (R) @ AL (X(5))
w| e
A(X(s))

g
where the middle vertical arrow is given by the two maps

u: ALX) L AL (D) LD, 4, (D) 25 AL (X(s))

Ve(E|x(s))

v:AL(X(s)) A.(X(5))

and the top horizontal right exact sequence is the abstract blowup sequence in

Corollary[A.2.71

To show that the localized square root Euler class +/e(E,s) in Definition
is well-defined, we need the following identities.

Lemma 4.1.24 (Well-definedness). In the situation of Definition we have
the identities

UO ju =VOqy, ixou= +e(E)opy, i,ov=+/e(E)oi,.
Proof. Note that +/e(E) is a bivariant class by Proposition4.1.15]and we have
Ve(Elz) = Ve(L"/L) oe(L) = e(L) o e(L"/L) : Au(X) — A.(X)
by the reduction formula in Proposition[4.1.17l The first identity follows from
g © Ve(L*/L) 0 j o ju = qs o Ve(L* /L) o e(L) = gx 0 Ve(E) = v/e(E) 0 g,

the second identity follows from

[0y O \/E(LL/IJ Oj! = P« O jx O \/E(LL/L) Oj! = P« © Jx Oj! © \/E(LL/IJ
— puoe(L) o Ve(LH/L) = puo ve(E) = Ve(E) o pe

and the third identity follows from the bivariance of +/e(E). O
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The localized square root Euler classes are bivariant classes. This localizes the
results in Proposition

Proposition 4.1.25 (Bivariance). Let f : X — Y be a morphism of Deligne-
Mumford stacks. Let E be a special orthogonal bundle on X and s be an isotropic
section of E. Form a fiber diagram

Y(s)——Y
f(.v)l lf
X(s)——X.
1. If f : Y — X is a proper morphism, then

Ve(E,s)o fu = f(s)x 0 Ve(E,s) : Au(Y) — Au(X(s)).
2. If f . Y' — Y is an equi-dimensional flat morphism, then
(f(s))" o Ve(E,s) = Ve(E,s)o f*: Au(X) — Au(Y(s)).
3. If f: Y — X isalocal complete intersection morphism, then
flo/e(E,s) = ve(E,s)o f' : A, (X) — A (Y(5)).

By abuse of notation, we denoted +/e(f*E, f*s) by +/e(E, s).

We provide localized versions of the Whitney sum formula in Proposition
and the reduction formula in Proposition 4. 1.17]

Proposition 4.1.26 (Whitney sum formula). Let E| and E, be special orthogonal
bundles on a Deligne-Mumford stack X. Let s, and s, be isotropic sections of E,
and E,, respectively. Then we have

\/E((El D Ez), (51,52)) = \/E<E1, 51) © \/E(Ez, 52) 1 Ax(X) — Au(X(s1, 52))
where X(s1,52) 1= X(s1) N X(s2) is the common zero locus of 5| and s,.

Proposition 4.1.27 (Reduction formula). Let E be a special orthogonal bundle on
a Deligne-Mumford stack X and K be an isotropic subbundle. Let s be an isotropic
section of E such that s - K = 0. Let s, € T'(X, K*) and s, € T(X(51), K|x(s,)) be
the induced sections. Then we have

Ve(E.s) = e(Klx(u). 52) © Vel 1) : Au(X) = Au(X(5))

where E k.= K* /K is the reduction of E by K.
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We have the following corollary which will be use frequently in §4.31

Corollary 4.1.28. Let X be a Deligne-Mumford stack, E be a special orthogonal
bundle on X, and K be an isotropic subbundle. Let C be an isotropic subcone of
the reduction E jx := K* /K. Form a commutative diagram

Cc K¢ E

]

Oc

where the square is cartesian. Then we have
VelEjkle.™) = VelEle. ) o s A,(C) - Au(X)
where T € T'(C,E jyk|c) and T € I(C, E|s) are the tautological sections.

The proofs of Proposition Proposition Proposition and
Corollary 4.1.28] are straightforward. We refer to [KP2]| for the details.

Remark 4.1.29 (Uniqueness). As the ordinary square root Euler classes +/¢(E),
the localized square root Euler classes +/e(E, s) are uniquely determined by the
bivariance in Proposition the reduction formula in Proposition 4.1.27] and
the compatibility i, o 1/e(E,s) = +/e(E).

Remark 4.1.30. Following Remark everything in this subsection can be
generalized to algebraic stacks which admit proper covers by quotient stacks (in
the sense of Definition [A.2.1)).

We briefly review the original construction of +/e(E, s) in [OT].

Remark 4.1.31 (Oh-Thomas construction). Let E be a special orthogonal bundle
on a Deligne-Mumford stack X and s be an isotropic section of E.

e Case 1. Assume that E has a positive maximal isotropic subbundle M. Then
we have a short exact sequence

00— M—-FE=EY MY 0.

Let s; € (X, M") and s, € I'(X;, M|y, ) be the induced sections. Let X; < X
be the zero locus of s; in X. Then the zero locus X(s) of s in X is the zero
locus of s, in X;. Since s € T'(X, E) is isotropic, we have

Cx,/x € M|y, (sy)
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as subcones of M|y where M|y (s;) := M|y, X,y a1 X is the kernel cone.
We define
Ve(E,s, M)°" : A,(X) — A.(X(s))

as the composition

0!
SPx, /x My, -5y
Au(X) =5 Au(Cxypx) = Au(M3, (53) — = Au(Xi(s2))
where 0 . 1s the cosection-localized Gysin map.

M\;l 255

e Case 2. Consider the general case. Let 7 : F := Flag(E) — X be the
isotropic flag bundle of E. Then there exists a canonical operational class
h € A*(F) such that

a =m(hnrna) e Ay(X)

for all @ € A,(X). Let A be the canonical positive maximal isotropic sub-
bundle of E|g. We define

Ve(E, 5)7T 1 Au(X) — A(X(s))
as the composition

Ve(n* Em*s,A)OT * m(s)s
S AL(F(rs)) = Al(X(5))

Au(X) 5 AL(F)
where 71(s) : F(n*s) — X(s) is the restriction of 7 : F — X.
The two definitions of localized square root Euler class coincide,

Ve(E,s) = Ve(E,s)"".

We refer to [KP2, Thm. 5.2] for the proof of the comparison.

4.2 Symmetric obstruction theories

In this section, we fix the notion of symmetric obstruction theories. They are the
necessary additional data to define Oh-Thomas virtual cycles (or more generally,
square root virtual pullbacks). Compared to the ordinary virtual cycles (or virtual
pullbacks) associated to perfect obstruction theories in Chapter 2l a new feature
is that we now need an additional data, an orientation and an additional property,
the isotropic condition.
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4.2.1 Symmetric complexes

Definition 4.2.1 (Symmetric complex). Let X be an algebraic stack. We say that
a pair (E, 0) is a symmetric complex on X if

1. Eis a perfect complex on X of tor-amplitude [—2, 0], and

2. 6is a (—2)-shifted non-degenerate symmetric form, i.e., a morphism
0:0x - (EQE)[-2]
satisfying the following properties:

(a) o[—2] 0 6 = O for the transitionmap o : EQE — E®E;

(b) the induced map EY[2] — E is an isomorphism.
By abuse of notation, we say that E is a symmetric complex on X.

Remark 4.2.2. The notion of symmetric complexes in Definition 4.2.1] can be
generalized to d-shifted symmetric complexes of tor-amplitude |a, b] in a straight-
forward manner.

In this paper, we will always assume that symmetric complexes are (—2)-
shifted symmetric and of tor-amplitude [—2, 0], unless stated otherwise.

Three operations We note that there are three basic operations for symmetric
complexes:

1. The direct sum E; ® E, of two symmetric complexes E; and E,;

2. The orthogonal complement Er of a non-degenerate subcomplex F of a
symmetric complex E;

3. The reduction E x of a symmetric complex E by an isotropic subcomplex
K.

These operations are analogous to the basic operations of orthogonal bundles in
Example We now explain how to define these operations. The direct sum
operation is obvious. To define the other two operations, we introduce the notions
of non-degenerate subcomplexes and isotropic subcomplexes.
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Definition 4.2.3 (Non-degenerate subcomplex). Let E be a symmetric complex
on an algebraic stack X. We say that a perfect complex F on X is a non-degenerate
subcomplex of E with respect to € : E — F if the square

& 2 e LESTE
is an isomorphism.

Definition 4.2.4 (Isotropic subcomplex). Let E be a symmetric complex on an al-
gebraic stack X. We say that a perfect complex K on X is an isotropic subcomplex
of E with respect to ¢ : E — K if the square

& k2] X e LES K
is zero and K is of tor-amplitude [—1, 0].
We define the notions of orthogonal complements Er and reductions E x via
the following propositions.

Proposition 4.2.5 (Orthogonal complement). Let E be a symmetric complex on
an algebraic stack X. Let F be a non-degenerated subcomplex of E with respect to
€ : E — FE. Note that F is a symmetric complex with the induced symmetric form

€.(0): Ox 5 (E®E)[-2] LN rgr)-2].

Then there exists a unique symmetric complex E s that fits into an isomorphism of
symmetric complexes
where € : E — F corresponds to the projection (1,0) : (F®Es) — F.

We omit the proof of Proposition since it is straightforward.

Proposition 4.2.6 (Reduction). Let E be a symmetric complex on an algebraic
stack X. Let K be an isotropic subcomplex of E with respect to 6 : E — K.
Then there exists a unique symmetric complex Ex that fits into a morphism of
distinguished triangles

DV[2] “~E—-K
Pl
Ejx ——D—=K

for some D, a, B, where a”, B are the duals of «, 8 with respect to the identifica-
tions EY [2] =~ E and (E//K)V [2] = E//K.
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Unlike Proposition proving Proposition is quite difficult than it
seems. We refer to [Parkl, Appendix C] for the proof.

Definition 4.2.7 (Symmetric resolution). Let E be a symmetric complex on an
algebraic stack X. A symmetric resolution of E is an isomorphism

[B—~EY - B']| S E 4.2.1)
for some orthogonal bundle E and a vector bundle B such that the symmetric form

of E is represented by the chain map

EY B—%.g- 1 p
A L N
E[-2] Ev 4L Bv
where g : E — EV is the symmetric form of E.

We observe that the symmetric resolutions are special cases of the reduction
operation in Proposition 4.2.6

Lemma 4.2.8. Let E be a symmetric complex on an algebraic stack X and let

[B 4 v L BY| = E be a symmetric resolution. Then the symmetric complex
E is the reduction of the symmetric complex E" [1] by the isotropic subcomplex
BY[1] with respect to d” [1] : EV[1] — BY[1],

E=EY [1]//3\/[1].
Proof. This is immediate from the definitions. |

Proposition 4.2.9. Let X be an algebraic stack with the resolution property. Then
every symmetric complex on X has a symmetric resolution.

Sketch of the proof. Let E be a symmetric complex on X. By the resolution prop-
erty, there exists a resolution

EY=[A7? > A" - A"

for some vector bundles A=2, A~!, and A° such that the symmetric form of E is
represented by a self-dual map

EV[2] A2 A AO
S N
E (AO)V_>_(A71)V_>(A72)V.
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Consider the induced orthogonal bundle
E :=coker(A? - A" @ (A")Y) =ker(A™")Y ®A° —» (A%)V) = E".
Then we have a symmetric resolution
E=[A")Y - E=EY - A"
as desired. We refer to [[OT, Prop. 4.1] for the details. O

Lemma 4.2.10. Let X be an algebraic stack with the resolution property. Let E be
a symmetric complex on X and 6 : E — K be a map to a perfect complex K such
that h°(5) is surjective. Then there exists a symmetric resolution

[B—>EY —> BY| >
for some orthogonal bundle E and a vector bundle B and a resolution
[K¥ - D'] 5K

for some vector bundles K and D such that the map 6 is represented by a surjective
chain map

E B EY BY

N

K 0——KY——=D".

Proof. It is easy to show the statement from the proof of Proposition As
Proposition4.2.9, we refer to [OT, Prop. 4.1] for the details. m]

Corollary 4.2.11. Let X = [P/G] be the quotient stack of a quasi-projective
scheme P by a linear action of a linear algebraic group G. Then any symmetric
complex on X has a symmetric resolution.

Proof. The quotient stack X = [P/G] has the resolution property by [Tholl
Lem. 2.6]. Hence Proposition4.2.9] completes the proof. |

Definition 4.2.12 (Orientation). Let E be a symmetric complex on an algebraic
stack X. An orientation of E is an isomorphism of line bundles

0: Ox = det(E)

such that ;
0> =1:0x % det(E) = det(E¥) %~ Oy

where the second isomorphism is given by the symmetric form of E.
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As in Remark 417} we have an orientation bundle of a symmetric complex
as a u,-torsor.

Remark 4.2.13 (Orientation bundle). Let E be a symmetric complex on an alge-
braic stack X. We define the orientation bundle of E as the functor

Or(E)Sch’}, — Set : (T — X) — {orientations of E|}.

Then the orientation bundle Or(E) fits into the fiber diagram

Or(E) — Spec(C)
X det(E) B,uz

where the map X — By, is given by the line bundle det(E) and the isomorphism
Oy = det(E)®? induced by the symmetric form of E. Hence the orientation bundle
Or(E) — X is a principal u,-bundle. In particular, the symmetric complex E is
étale-locally orientable since the pullback E|or(s) has a canonical orientation.

Remark 4.2.14 (Induced orientations). Let X be an algebraic stack.

1. Let E = E; @ E,; be the direct sum of two symmetric complexes. Then we
have a canonical isomorphism of line bundles

det(E) = det(E;) ® det(E,).
Hence orientations of [E; and [E, induce an orientation of E.

2. Let E/r be the orthogonal complement of a non-degenerate subcomplex F
of a symmetric complex E (in the sense of Proposition4.2.3). Then we have
a canonical isomorphism of line bundles

det(E/r) = det(E) ® det(F)".
Hence orientations of E and F induce an orientation of E .

3. Let E/x be the reduction of an isotropic subcomplex K of a symmetric com-
plex E (in the sense of Proposition[4.2.6). Based on the notations in Propo-
sition[4.2.6, we have a canonical isomorphism of line bundles

det(Ex) = det(D) ® det(K)"”
= det(E) ® det(K¥[2])” ® det(K)" = det(E).

Hence an orientation of E induces an orientation of E .
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4.2.2 Quadratic cone stacks

In the DT4 theory, the quadratic cone stacks associated to symmetric complexes
play the role of the vector bundle stacks in virtual intersection theory.

We first define the canonical quadratic function on the abelian cone stack
associated to a symmetric complex.

Proposition 4.2.15 (Canonical quadratic function). For each symmetric complex
E on an algebraic stack X, there exists a canonical function

a : C€(E) — Ay
on the associated abelian cone stack C€(E) satisfying the following properties:
1. IfE = E|[1] for an orthogonal bundle E, then
g = ap : C(B) = E — A},
is the cannonical quadratic function on the orthogonal bundle E.

2. For any morphism f : Y — X of algebraic stacks, we have
fHag = apg : fFE(E) = €(f*E) — A%/'

3. IfE = E|®E, is the direct sum of two symmetric complexes E, and E,, then
we have

0z = Gg, © P1 + G5, © P2 : €(E) = €(E,) x €(E,) — Ay
where p; and p, denote the projection maps.
4. IfEx is the reduction of E by an isotropic subcomplex K, then the diagram

€(D) —~ G(E)

qﬂl lqﬁ

C(Bjx) — Ay

q}E//K
commutes, where a, B, D are given as in Propositiond.2.6labove.

Moreover, the functions qg are uniquely determined by the above properties.
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We can explicitly describe the canonical quadratic function qg as Example
below, when the symmetric complex E has a symmetric resolution. We
refer to [Park1, Prop. 1.7] for the proof of Propositiond.2.135]in the general case.

Example 4.2.16. Let E be a symmetric complex on an algebraic stack X. If there
exists a symmetric resolution E = [B — E — BY], then we have €(E) =
[C(D)/B], where D := coker(B — E). In this case, the restriction

aelcp) : C(D) — E — A}
is B-invariant and it descends to the canonical quadratic function
9z : €(E) = [C(D)/B] — Ay.

There is a simple description of the canonical quadratic function gz using de-
rived algebraic geometry.

Remark 4.2.17 (Derived interpretation). Let E be a symmetric complex on an
algebraic stack X. In Remark 2.1.3] we observed that

C(E) = Tot(E"[1]) := Spec(Sym*(E[—1]))a-
Then the symmetric form 6 € Sym?(E[—1]) defines a map
Tot(EV[1])) — A,.

The canonical quadratic function qg in Proposition [4.2.13]is the restriction of the
above function to the classical truncation €(E).

Remark 4.2.18. We note that the canonical quadratic function gg can be gen-
eralized to perfect complexes E with degenerate symmetric bilinear forms in a
straightforward manner.

We finally define our main object in this subsection, the quadratic cone stacks,
as follows.

Definition 4.2.19 (Quadratic cone stack). Let E be a symmetric complex on an al-
gebraic stack X. We define the quadratic cone stack associated to E as the subcone
stack

Q(E) < C(E)
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defined as the zero locus of the canonical quadratic function qg in Proposition
4.2.15l Equivalently, we have a fiber diagram

Q(E) —>T
C(E) =~ Al

of cone stacks.

4.2.3 Symmetric obstruction theories
In DT4 theory, the symmetric obstruction theories satisfying the isotropic condi-

tion play the role of perfect obstruction theories in virtual intersection theory.

Definition 4.2.20 (Symmetric obstruction theory). Let f : X — Y be a DM mor-
phism of algebraic stacks. We say that ¢ : E — Ly/y is a symmetric obstruction
theory for f : X — Y if

1. Eis a symmetric complex on X, and

2. ¢ : E — Ly/y is an obstruction theory for f : X — Y.
An important new ingredient in DT4 theory is the isotropic condition.

Definition 4.2.21 (Isotropic condition). Let f : X — Y be a DM morphism of al-
gebraic stacks. We say that a symmetric obstruction theory ¢ : E — Ly/y satisfies
the isotropic condition if the composition

Cxyy - C(E) = A;(
vanishes, where ¢ : €y/y < C(E) is the closed embedding induced by ¢ and
e : €(E) — A} is the canonical quadratic function.
We provide a technical generalization of the isotropic condition.

Remark 4.2.22 (Weak isotropic condition). In the situation of Definition [4.2.21]
we say that the symmetric obstruction theory ¢ : E — Ly satisfies the weak
isotropic condition if the composition

(G:X/Y)red — GX/Y - (‘:(E) = A)lf

vanishes, where (Cy/y)ea & Cx/y is the reduced closed substack of the intrinsic
normal cone Cy/y. This weak isotropic condition is sufficient to define the square
root virtual pullbacks in the next section.
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We observe that a symmetric obstruction theory satisfying the isotropic con-
dition is equivalent to a closed embedding of the intrinsic normal cones into a
quadratic cone stack. This is a DT4 analog of Proposition [2.2.9

Proposition 4.2.23. Let f : X — Y be a DM morphism of algebraic stacks.

1. If ¢ : E — Lyy is a symmetric obstruction theory satisfying the isotropic
condition, then there is a unique closed embedding

(SX/Y —> Q(E)
of cone stacks that fits into the commutative diagram

QE) —= X

(‘:X/fC—L‘ C(E) _E A)l(
as the dotted arrow.

2. If €y — RQ(E) is a closed embedding of cone stacks for some quadratic
cone stack associated to a symmetric complex E, then the composition

E— 77 'E = Lyx/s) = Lx/a@®) — Lx/sy,y = Lx)y
is a symmetric obstruction theory satisfying the isotropic condition.
Moreover, the above two operations are inverse to each others.
Proof. If follows immediately from Proposition[2.2.91and Definition 4221l O

Proposition 4.2.24 (Criterion for isotropic condition). Let f : X — Y be a DM
morphism of algebraic stacks and let ¢ : E — Lyy be a symmetric obstruction
theory. Assume that there is a factorizationof f : X — Y as

7

X —

f
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with a closed embedding f and a smooth morphism f, and a symmetric resolution
of E such that ¢ : E — Ly is represented by a surjective chain map

god dv

E B EY BY
Pk
Ly 0 I/1? Q7x

where I := 1 s the ideal sheaf. Then ¢ satisfies the isotropic condition if and
only if the induced symmetric obstruction theory

¢:EV[1] — I/T[1] = Ly 3
satisfies the isotropic condition.

Proof. Consider the commutative diagram

C; C—— C(Q)c E

RN

€/ E)—[E/B].

where the squares are cartesian, the horizontal arrows are closed embeddings, and
the vertical arrows are smooth morphisms. Here Q := coker(B — E). By Lemma
4.2.8] the symmetric complex E is the reduction of the symmetric complex EV[1]
by an isotropic subcomplex BY[1]. Hence by Proposition d.2.15l4, we have

r*(qE|¢f) = QE|Cf~.-

Since the projection map r : Cy — €, is smooth and surjective, the two isotropic
conditions are equivalent. O

Example 4.2.25 ((—2)-shifted symplectic derived schemes). Let X be a derived
DM stack with a (—2)-shifted symplectic structure w. Let X := X be the classical
truncation. Then the canonical map

¢:LX|X_’LX_)LX

is a symmetric obstruction theory by [STV. Prop 1.2]. Here the symmetric form
of Lx|x is induced by the underlying (—2)-shifted 2-form wy : Ox — AZLx[-2].
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The isotropic condition follows by the Darboux theorem [BBJ, BG]. Indeed,
since the isotropic condition can be shown locally, we may assume that X is the
zero locus of an isotropic section s of an orthogonal bundle E over a smooth
scheme U. Moreover, the symmetric obstruction theory ¢ can be written as

Lx|x Tyly —2—E|ly —%—Qulx
P |
LX O—>Ix/U/I§(/Ud—>QU|X

By the criterion in Proposition 4.2.24] it suffices to show that the normal cone
Cxu € Elx
is isotropic. By MacPherson’s graph construction [Ful, Rem. 5.1.1], we have
Cuu = fim .

where I',.; < E is the image of the section ¢ - s : U — E. Since the section s is
isotropic, the cone Cyy is also isotropic.

4.3 Square root virtual pullbacks

In this section, we construct square root virtual pullbacks for symmetric obstruc-
tion theories, based on [Park1l]. The Oh-Thomas virtual cycles [OT] will be de-
fined defined as a special case of square root virtual pullbacks.

4.3.1 Square root Gysin pullbacks

Definition 4.3.1 (Square root Gysin pullback). Let X be a separated Deligne-
Mumford stack. Let Q(E) be the quadratic cone stack associated to a symmetric

complex E on X. Choose an orientation o : Oy — det(E). We define the square

root Gysin pullback
Ogm : Ax(Q(E)) — Ay (X)

Q(E)

as follows:
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Case 1. Assume that X is a quasi-projecitve scheme. By Proposition4.2.9, we
have a symmetric resolution E = [B — EY — BY] for some special orthogonal
bundle £ and a vector bundle B. Form a fiber diagram

Q¢ E

lr |

Q(E)— ¢(E)— [E/B]

where the closed embedding €(E) < [E/B] is given by the stupid truncation
0> EY —BY|—>[B—E" —B'|=E
Consider the factorization of the zero section Og(g) as

Elp

)

x—2 .o

.
Og(g)

Q(E)

where 0, is the zero section of Q and 7 is the tautological section. We define the
square root Gysin pullback as the composition

VJOse 1 A(R(E)) T A,(0) YD, 4, (X)

where \/e(E|g, 7) is the localized square root Euler class in Definition 4.1.23
Case 2. Assume that X is a separated Deligne-Mumford stack. By the Chow
lemma [LMB], Cor. 16.6.1], there exists a projective surjective map p : X — X

from a quasi-projective scheme X. We define O!Q as the unique map that fits

(E)
into the commutative diagram

Ax(QE[3 7)) — A(R(E[)) — A«(Q(E)) —0

! ! [
l Oa@ly, 2 l Og8,) \;/x/%(E)

A(X xx X) A(X) —Z— A, (X) ——=0

where the rows are exact by the Kimura sequence in Theorem [A. 1.1l
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Lemma 4.3.2 (Well-definedness). In the situation of Definition the square

root Gysin pullback , /O’Q is well-defined, i.e.,

(E)

1. In Case I, , /OEQ(E) is independent of the choice of a symmetric resolution.

2. In Case 2, , /O’Q(E) is independent of the choice of a projective cover.
Proof. 1. We will only sketch the proof and refer to [OT]] for details. Let

be two symmetric resolutions. By a deformation argument, it suffices to consider
the following special case: there exists a surjective chain map

B,——E/ —>BY

L

KY =—K"

for some vector bundles such that there is an isomorphism of chain complexes
[(Bi/K) — (K*/K)" — (Bi/K)"] = [B, — EY — By].

Then we can form a commutative diagram

0 K E
el
0
X2 0y K'/K

SN

Q(E)— [(K*/K)/(B/K)|— [E/B]

where the squares are cartesian, the horizontal arrows are closed embeddings, and
the vertical arrows are smooth morphisms. By Corollary [£.1.28] we have

Ve(K*/K|g,,12) = Ve(E|g,, 1) 0 5* 1 Au(Q2) — Ai(X)

where 7 € T(Q), Elp,) and 7, € T(Q2, K*/K|p,) are the tautological section.
Consequently, we have the desired equality

Ve(K /K|, 12) 013 = e(Elg, 1) o rf : AL (Q(E)) — Ax(X)
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where r; :=r, o s.

2. Let p; : X, — X and P2 X, — X be two projective surjective maps from
quasi-projective schemes X, and X>. By replacing X by X, xxX>, we may assume
that there exists a factorization

~

X, =X,

e

X
for some dotted arrow. Then the commutative square
A« (Q(Elg,)) — AL (R(Elg,))

Ocel e
l N(E\Xl) v R(EIXZ)

Ay ()?1) b Ay ()?2)

completes the proof since A, (Q(E[z,) — A«(Q(E)) is surjective. o

Proposition 4.3.3 (Bivariance). Let f : Y — X be a morphism of separated

Deligne-Mumford stacks. Let E be a symmetric complex on X with an orientation
0 : Ox = det(E). Let

be a fiber diagram.

1. If f : Y — X is a proper morphism, then we have

fuo \/o!wm - \/Oia@a) o fut AL(Q(E|y)) — AL (X).

2. If f Y — X is an equi-dimensional flat morphism, then we have

170 0y = 05, 0 T AL(R(B) — AL(Y).
3. If f: Y — X isalocal complete intersection morphism, then we have

1o Ok = \f0ey, o F  AL(R(B) — AL ()

111



CHAPTER 4. VIRTUAL PULLBACKS IN DT4 THEORY

Proof. It follows immediately from Proposition 4.1.235l |

Proposition 4.3.4 (Whitney sum formula). Let E, be a symmetric complex on
a separated Deligne-Mumford stack X with an orientation and E, be a special
orthogonal bundle on X. Note that we have a canonical closed embedding

¢ Q(E)) x QE,) — QE, @ E,[1])

by Propositiond.2. 153, where Q(E,) := Q(E,[1]). Then we have

\/ Ogey) © \/ 00 lagey) = \/ Ocmerm © ¢ - Ax(R(E1) x Q(E2)) — AL(X).

Proof. Tt follows immediately from the Whitney sum formula of localized square
root Euler classes in Proposition O

Proposition 4.3.5 (Reduction formula). Let E be a symmetric complex on a sep-
arated Deligne-Mumford stack X and K be an isotropic subcomplex of E with
respect to 6 : E — K. We use the notations in Proposition Consider the
canonical diagram of cone stacks

Q(E k)

where Q(D) is the zero locus of aeleo) = g lso), @ : QD) — QE) is a
closed embedding, and b : Q(D) » Q(E x) is a torsor of the vector bundle stack
€(K) := €(K). Then we have

\/% = \/K@E)O a; © b* A*(Q(E//K)) — A*(X)

Proof. By the Kimura sequence in Theorem [A.1.1l we may assume that X is a
quasi-projective scheme. By Proposition (and Lemma 4.2.10), we have a
symmetric resolution E = [B — EY — B"] and a resolution K = [K¥Y — D]
such that ¢ is represented by a surjective chain map. Here E is a special orthogonal
bundle, K is an isotropic subbundle of E, B is a vector bundle, and D is a subbundle
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of B. Then the maps €(a) : €(D) — C(E) and €(B) : €¢(D) — E(E) can be
expressed as

B B
iG(ﬁ)

C(coker(B/D — K*+/K))
=

lC(coker(B/D — E/K))]( €(a) [C(coker(B — E))

Hence the desired equality follows from Corollary 4.1.28] m|

Remark 4.3.6 (Uniqueness). The square root Gysin pullbacks are uniquely deter-
mined by the bivariance in Proposition4.3.3] the reduction formula in Proposition
and the compatibility formula: if E is a special orthogonal bundle on a
quasi-projective scheme X, then

\/ O!Q(E) = \/E(E|Q(E), T) A*(D(E)) — A*(X)
where Q(E) := Q(E[1]) and 7 € T(Q(E), E|qr)) is the tautological section.

Remark 4.3.7. As in Remark and Remark everything in this sub-
section can be generalized to algebraic stacks which admit proper covers by quo-
tient stacks (in the sense of Definition[A.2.1)).

Based on this generalization, the Whitney sum formula in Proposition 4.3.4]
can be generalized as follows: Let E; and E, be symmetric complexes with orien-
tations on a separated Deligne-Mumford stack X. Then the quadratic cone stack
Q(E;) admits a proper cover by a quotient stack. Moreover, we have a Whitney
sum formula

VO ® Oy = 4O s As(B(ED x SED) — ALY

where ¢ : Q(E;) x Q(E;) — Q(E; @ E,) is the inclusion map.

4.3.2 Square root virtual pullbacks

Definition 4.3.8 (Square root virtual pullback). Let f : X — Y be a morphism
from a Deligne-Mumford stack X to an algebraic stack Y. Let ¢ : E — Ly/y be
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a symmetric obstruction theory satisfying the isotropic condition. Let 0 : Oy =
det(E) be an orientation. Then we define the square root virtual pullback

\/JT! P AL(Y) — A(X)
as the composition

0,
4 AL(X)

SPx/y

A (Y) =5 A(Cxpy) — AL(Q(R))

where spy y is the specialization map for f in Definition the second map
is the pushforward for the closed embedding €y /y < Q(E) in Proposition[4.2.23]

and , /053(15) is the square root Gysin pullack of the quadratic cone stack Q(E) in

Definition 4.3.11

Definition 4.3.9 (Oh-Thomas virtual cycle). Let X be a Deligne-Mumford stacks,
¢ : E — Ly be a symmetric obstruction theory satisfying the isotropic condition,
and o : Oy = det(E) be an orientation. We define the Oh-Thomas virtual cycle as

[X]Vir = \/?[SPGC(C)] = O!Q(E) [G:X] € A, (X)
where p : X — Spec(C) is the projection map.

Proposition 4.3.10 (Bivariance). Let

Xl L Y/

o,k

X——Y

be a cartesian square of algebraic stacks where X and X' are Deligne-Mumford
stacks. Let ¢ : E — Ly y be a symmetric obstruction theory satisfying the isotropic

condition. Let
1 onsm @)F(9) N\ %
¢ (¢)E ——= (¢)"(Lxyy) — Ly v

be the induced symmetric obstruction theory. Then ¢’ also satisfies the isotropic
condition and we have the following properties:

1. If g is a proper DM morphism, then we have

VIogs =80 \/(f)  ALY) = AL(X).
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2. If g is a equi-dimensional flat morphism, then we have
() og" = ()" o V[ Au(Y) = Au(X)).

3. If g is a local complete intersection morphism and Y' has affine stabilizers,
then we have

(f)eg = () o VI AuY) = Au(X)).
Proposition 4.3.11 (Commutativity). Let

X/ f’ Y/
oo
Xy

be a cartesian square of Deligne-Mumford stacks. Let ¢xy : Ex;y — Lx)y and
¢y yy - Byyy — Ly )y be symmetric obstruction theories with orientations satisfy-
ing the isotropic condition. Then we have

\/FO \/?: \/?O \/F3A*(Y) — A (X').
Proof. 1f follows directly from Proposition 2.1.22] and Remark [4.3.7. O

Proposition 4.3.12 (Reduction formula). Let f : X — Y be a morphism from a
Deligne-Mumford stack X to an algebraic stack Y. Let

E—°-K
X l‘”
Lx/y

be a commutative diagram such that ¢ : E — Lyy is a symmetric obstruction
theory,  : K — Lyy is a perfect obstruction theory, and K is an isotropic sub-
complex of E with respect to § (see Definitiond.2.4). Let o : Ox = det(E) be an
orientation. Then the symmetric obstruction theory ¢ satisfies the isotropic condi-
tion and we have

fy = Ve(G) o f, : Au(Y) — Au(X)

where G[1] is the reduction Ex of E by K.
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Corollary 4.3.13 (Local complete intersection). Let f : X — Y be a morphism
from a Deligne-Mumford stack X to an algebraic stack Y. Let ¢ : E — Lyyy
be a symmetric obstruction theory satisfying the isotropic condition. Assume that
f : X — Yisalocal complete intersection morphism. Then and we have

VI = Ve(G)o f AL(Y) = Al(X)
where G[1] is the reduction of E by Ly/y = Ly/y.

4.3.3 Functoriality

Definition 4.3.14 (Compatible triple of obstruction theories). Let

x1.y_$.7
\/
gof

be a commutative diagram of DM morphisms of algebraic stacks We use the no-
tations in Notation We say that a triple (Yx/y, dy/z, #x/z) of symmetric
obstruction theories ¢y,; : Ey;z — Lyz, ¢x/z : Ex;z — Lx/z, and a perfect ob-
struction theory ¢y : Kx/y — Ly/y is compatible if there exist two morphisms of
distinguished triangles

Dv[2] —= Ex/z —> Exy
b
fEyz D —">Eyy

lf*aﬁy/z [‘ﬁ;(/z l‘/b;(/y

7 Lyjz — = Lyjz == Ly

B

for some D, a, 3,7, 6, qﬁ;(/y, qﬁ;(/z such that ¢y /7 = qﬁ;(/z oaandyxyy =ro ¢;(/Y.
Theorem 4.3.15 (Functoriality). Let
Xxloy-f.z7
\_/
gof

be a commutative diagram of algebraic stacks. Assume that X, Y are Deligne-
Mumford stacks and X has the resolution property. Let (Yxy : Ex)y — Lxy, ¢y/z
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Ey;z — Ly/z, ¢x/z - Ex/z — Lx/z) be a compatible triple of obstruction theories in
the sense of Definitiond.3. 14 Assume that ¢x,; and ¢y 7 satisfy the isotropic con-
dition. Then for each orientation oy;; : Oy = det(Ey/z), there exists a canonical
orientation ox/z : Ox = det(Ex/z) such that we have

V(g0 =flo Vg 1 AuZ) - AuX).
Proof. We refer to [Park1]] for the proof. O

The isotropic condition for ¢, is redundant in Theorem 2?.

Lemma 4.3.16 (Redundancy of isotropic condition). Given a compatible triple
(Wx /v, v )z, Px/z of obstruction theories in the sense of Definitiond.3.14) the isotropic
condition for ¢y,z implies the isotropic condition for ¢x ;.

Proof. By Proposition 4.2.154, the diagram

Cx/z ¢(D) C(Ex/z)
l l lQ(EX/Z)
a(Byzlx)
(‘:Y/Z|X - @(EY/Z|X) = A)lf

commutes. Hence the isotropic condition for ¢y, implies the isotropic condition
for ¢X/Z' O

Corollary 4.3.17 (Virtual pullback formula). Let f : X — Y be a morphism of
Deligne-Mumford stacks. Assume that X has the resolution property. Let (Yxy :
Ex)y — Lx)y,¢y : Ey — Ly, ¢x : Ex — Lx) be a compatible triple of obstruc-
tion theories in the sense of Definition Assume that ¢y and ¢y satisfy the
isotropic condition. Then for each orientation oy : Oy = det(Ey), there exists a
canonical orientation oy : Ox = det(Ex) such that we have

X = F[Y] e 4,(X).

Remark 4.3.18 (Generalization). In the current version of the proof of Theorem
in [Park1, Thm. 2.2], the resolution property for X is necessary. However,
there is an alternative proof that does not use the resolution property. The details
will appear in [BP].
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Chapter 5

Cosection localization in
Donaldson-Thomas theory of
Calabi-Yau 4-folds

In this chapter, we generalize Kiem-Li’s cosection localization [KL1] to Donaldson-
Thomas theory of Calabi-Yau 4-folds. This is based on [KP2, BKP].

Summary We introduce reduced virtual cycles for two types of cosections:
1. isotropic cosections;
2. non-degenerate cosections.

The first one is studied in [[KP2] and the second one is studied in [BKP]. Both of
them are constructed by generalizing Kiem-Li’s cone reduction lemma [KL1] to
these cosections.

This cosection localization approach to the reduced theory become more im-
portant in DT4 theory. In the classical cases of surfaces and threefolds, the stan-
dard approach to the reduced theory is to use the algebraic twistor family of Kool-
Thomas [KT1]]. However, this algebraic twistor approach does not give us a re-
duced virtual cycle in DT4 theory. Thus we really need the cosection localization
approach to obtain a reduced virtual cycle.

We also introduce cosection-localized virtual cycles for isotropic cosections.
This is achieved by localizing the Edidin-Graham classes [EG1] by two isotropic
sections.
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5.1 Cone reductions

Recall that there are two special types of subbundles of an orthogonal bundle:

1. a non-degenerate subbundle F of an orthogonal bundle E.

2. an isotropic subbundle K of an orthogonal bundle E;

In the first case, we can form an orthogonal complement F* as an induced or-
thogonal bundle. In the second case, we can form a reduction K* /K as an induced
orthogonal bundle. We thus provide two versions of the cone reduction lemma in
this section.

We will work with generalized cosections.

Definition 5.1.1 (Generalized cosections). Let E be a symmetric complex on an
algebraic stack X. A generalized cosection is a map

S:E'[1]> F

in the derived category of X for some vector bundle F.
By abuse of notation, we sometimes drop the letter ”generalized” and simply
call the map X : EV[1] — F a cosection.

We now fix the notions of non-degenerate/isotropic cosections.

Definition 5.1.2 (Non-degenerate cosections). Let E be a symmetric complex on
an algebraic stack X. We say that a cosection

Y:EY[l] > F
is non-degenerate if the square
2. FY AL E[-1]=E[1] > F
is an isomorphism.

Definition 5.1.3 (Isotropic cosections). Let E be a symmetric complex on an al-
gebraic stack X. We say that a cosection

X:EY[1] - KV
is isotropic if the square

2K E5B[-1]=EY[1] S K

is zero.
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Recall the followings from subsection 4. 2.1k

1. Given a non-degenerate cosection X : EV[1] — F, the perfect complex
F[1] is a non-degenerate subcomplex of E with respect to X in the sense of
Definition 4.2.3] We then have an orthogonal complement E/s in the sense
of Proposition[4.2.51

2. Given an isotropic cosection X : EV[1] — KV, the perfect complex K" [1]
is an isotropic subcomplex of E with respect to X in the sense of Definition
4.2.4l We then have a reduction E s in the sense of Proposition 4.2.6]

The following two versions of the cone reduction lemma is the main result in
this section.

Proposition 5.1.4 (Cone reduction for non-degenerate cosections). Let X be a
Deligne-Mumford stack and ¢ : E — Ly be a symmetric obstruction theory satis-
fying the isotropic condition. Let ¥ : BV [1] — F be a non-degenerate cosection.
Then we have a closed embedding

(GZX)red - D<E/2>
that fits into the commutative diagram

Q(Es)

7

(€X>reé.&;) D<E)

as the dotted arrow. Here the closed embedding (€x)eq — Q(E) is induced by
the obstruction theory ¢ as in Propositiond.2.23]

Proof. Form a commutative diagram of cartesian squares

(gX)ret.i.g..—> Q(E>

) L A§(.
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Indeed, the middle bottom square is cartesian by the definition of Q(E), the right
upper square is cartesian since E/z := cone(XV[1] : F¥[1] — E), and the middle
upper square is cartesian by Proposition [4.2.1313 since

E—E;®F|[l]

as symmetric complexes. Then Kiem-Li’s cone reduction lemma (see Proposition
[3.1.9) gives us the desried dotted arrow. |

Proposition 5.1.5 (Cone reduction for isotropic cosections). Let X be a Deligne-
Mumford stack and ¢ : E — Lx be a symmetric obstruction theory satisfying
the isotropic condition. Let ¥ : EY[1] — K be an isotropic cosection such that
(%) : h'(EY) — KV is surjective. Then we have a closed embedding

(gX)red - D(E//Z)

that fits into the commutative diagram
(G:X )red /\

Q(E)x)

as the dotted arrow for some closed embedding (Cx)..q — Q(D). Here the perfect
complex D is given as in Proposition Q(D) is the zero locus of aglsm) =
05 |¢(py, and the closed embedding (Cx)req — Q(E) is induced by the obstruction
theory ¢ as in Proposition4.2.23]

Proof. Since the statement is local, we may assume that X is an affine scheme.
Since X is affine, the surjection h~!(E) - K has a right inverse

s:KY — h '(E)
Consider the morphism of distinguished triangles

h=*(E)[2] —=7=7'(B) —=h"'(E) —=h*(E)[3]

N |

h=2(B)[2]
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Since X is affine, we have
Homy (K [1], A *(E)[2]) = Homx(K"[1], A *(E)[3]) = 0.
Hence the map s gives us a right inverse of the composition

S[1]

T 'E—->E=E"[2] = K"[1].

Therefore we also have a right inverse
r:K[1] - E
of themap E — E = EV 2] LNy ¢ [1]. Then the map
Y= (rV[1,2):EY[1]] = (K®K")

is a non-degenerate cosection such that Es» = E/x. Hence the cone reduction for
non-degenerate cosection in Proposition[5.1.4] completes the proof. O

5.2 Reduced virtual cycles

In this section, we define reduced virtual cycles using the cone reduction lemmas
in the previous section.

Definition 5.2.1 (Reduced virtual cycle for non-degenerate cosection). Let X be a
Deligne-Mumford stack, ¢ : E — Ly be a symmetric obstruction theory satisfying
the isotropic condition, and o : Ox — det(E) be an orientation. LetX : EV[1] — F
be a non-degenerate cosection. Then we have a closed embedding (€x)eq —
Q(E/z) by Proposition Let 0, : Ox — det(F) be an orientation of the
orthogonal bundle (F, X). We define the reduced virtual cycle as

(XI5 = /0L o [€x] € AL(X)
/ (B/z)

where , /O!Q(E/Z) is the square root Gysin pullback in Definition 4.3.11
By abuse of notation, we drop the subscript /s if it is clear from the context.

Definition 5.2.2 (Reduced virtual cycle for isotropic cosection). Let X be a Deligne-
Mumford stack, ¢ : E — Ly be a symmetric obstruction theory satisfying the
isotropic condition, and o : Oy — det(E) be an orientation. Let X : EV[1] — K"
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be an isotropic cosection such that h°(X) is surjective. Then we have a closed em-
bedding (€x)rea — Q(E/x) by Proposition We define the reduced virtual

cycle as
red . !
[(XP5 = J0 g [6x] € A(X)

where , /0 is the square root Gysin pullback in Definition 4.3.11

(E/z)
By abuse of notation, we drop the subscript 5 if it is clear from the context.

We have the following compatibility results.

Proposition 5.2.3 (Compatibility). Let X be a Deligne-Mumford stack, ¢ : E —
Ly be a symmetric obstruction theory satisfying the isotropic condition, and o :
Oyx — det(E) be an orientation.

1. Let X : BV [1] — F be a non-degenerate cosection. Then we have
(X" = Ve(F) n [X]F.

2. Let X : EV[1] — K be an isotropic cosection such that h°(Z) is surjective.
Then we have .
(X" = e(K) N [X]]5.

3. Let X : EV[1] — F be a non-degenerate cosection. If M is a positive maxi-
mal isotropic subbundle of F, then we have

XT7, = [X]

where Sy : BY[1] 2 F = F¥ - M is the composition.

Proof. 1. Since we have
E=E;@F[1]

as symmetric complexes, Proposition 4.3.4] proves the desired formula.
2. The desired formula follows from Proposition since

QD) — Q(E5)

is a K-torsor.
3. The desired formula follows directly from the canonical isomorphism

E;s=E)s,

of symmetric complexes. O
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In particular, we have the following vanishing result.

Corollary 5.2.4 (Vanishing). Let X be a Deligne-Mumford stack, ¢ : E — Ly
be a symmetric obstruction theory satisfying the isotropic condition, o : Ox —
det(E) be an orientation, and X : EY [1] — Ox be a cosection. Assume one of the
following conditions:

1. ¥ € T'(X, Ox) is nowhere vanishing.
2. X% = 0 is isotropic and h°(X) : h' (EY) — Oy is surjective.

Then we have ‘
[X]"" = 0€e A.(X).

The reduced virtual cycles are deformation invariant under an additional as-
sumption.

Proposition 5.2.5 (Deformation invariance). Let f : X — B be a morphism of
Deligne-Mumford stacks. Assume that B is smooth. Form a fiber diagram

Xpy——&X

|,k

)" >8

where b € B. Let ¢ : E — Lx/g be a symmetric obstruction theory satisfying the
isotropic condition and o : Ox — det(E) be an orientation.

1. LetX : EV[1] — FV be a non-degenerate cosection. Let 0, : Ox — det(F)
be an orientation. Assume that the composition

FESE[-1]S Lys[-1] 55 Qg

X

vanishes. Then there exists a cycle class [X]"™® € A,(X) such that
I = K] € Au(Xs)

forall b € B, where %, : E|y [1] — F|y is the induced cosection.

2. LetX:EY[l] — K" be an isotropic cosection such that h°(X) is surjective.
Assume the followings:
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(a) The composition

KESE[-1]5 Lys[-11 5 Qqlx

vanishes.

(b) The induced map coker(Qg

x — h'(EY)) — KV is surjective.
Then there exists a cycle class [X]™® € A, (X) such that

[Xo]5, = i, X] € A(X;)
forall b € B, where %, : E|y [1] — K|y, is the induced cosection.

Proof. We refer to [KP2, Lem. 8.5] for the proof of the first cas and [BKP,
Thm. 5.1] for the proof of the second case. O

5.3 Cosection-localized virtual cycles

5.3.1 Local model

Notation 5.3.1 (Blowup diagram). Let E be a special orthogonal bundle on an
algebraic stack X. Let s and ¢ be an isotropic section of E such that s - = 0. Let
X(s) denote the zero locus of s in X. Let X = Blx(»X denote the blowup of X
along X(s) and D be the exceptional divisor. Then L := Oy(D) is an isotropic
subbundle of E|;. Let E ;. be the reduction of E|; by L. Since s - t = 0, we have
an induced isotropic section 7, of E ;. Let

X(s,0)* 1= p(D(t)) U X(s,1)

where D(1,) is the zero locus of ¢, in D and X (s, ¢) is the common zero locus of s
and ¢ in X. Form a commutative diagram

D(1,) D!

A

X(s, 1)~ X(s, )= X(5)—— X.

'Tt is written for the localized virtual cycles but the same proof work for the reduced virtual
cycles.
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Definition 5.3.2 (Localized square root Euler class for two cosections). Let X be
a Deligne-Mumford stack. Let E be a special orthogonal bundle on X. Let s and ¢
be an isotropic section of E such that s - = 0. We use the notations in Notation
[5.3.1l We define the localized square root Euler class

Ve(E,s, 1) : Ay (X) — A, (X(s,1)%)
as the unique map that fits into the commutative diagram

)

ALD) L 4,(R) @ AL (X(s)) — - 4, (X) 0
(w)l s l Ve(Es)
A(X(s.1)%) A(X(s))

where the middle vertical arrow is given by the two maps

w:ALX) D AL (D) B,

Ve(Elx(s)t)
_

Ax(D(1)) > Ax(X(s.1)")

v ALX(s)) AL(X(5,1)) 2 AL(X(5,0)%)

and the top horizontal right exact sequence is the abstract blowup sequence in

Corollary [A.2.7

To show that the localized square root Euler class +/e(E, s,t) in Definition
[5.3.2]is well-defined, we need the following identities.

Lemma 5.3.3 (Well-definedness). In the situation of Definition[5.3.2) we have the
identities

MOj*ZVO(]*, k*OMZ\/E(E,S)Op*, k*OVZ\/E(E,S)Oi*.

Proof. The first identity follows from the reduction formula in Proposition
and the bivariance of +/e(E, s) in Proposition d.1.13 The second identity follows
from the definition of +/e(E, s) in Definition4.1.23] the compatibility y/e(E,0) =
ve(E), and the bivariance of +/e(E, s). The third identity follows from the defi-
nition of +/e(E, s). o

We now state some basic properties of +/e(E, s, t). We omit the proofs since
they follow from standard arguments.
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Proposition 5.3.4 (Bivariance). Let f : Y — X be a morphism of Deligne-
Mumford stacks. Let E be a special orthogonal bundle on X and s, t be isotropic
sections of E such that s -t = 0. Then we have

Y(s, )" < f1(X(s,0)")

as substacks of Y. Form a fiber diagram

Y (s, )"~ f~1(X(s,1)*)C Y ()¢ Y

fs.) l l’f(s) lf

X(s, 1) X(s)¢ X.

1. If f : Y — X is a proper morphism, then
Ve(E,s,t)o f. = f(s,0)% 0 \e(E,s,t) : A,(Y) — A, (X(s,1)").

2. If f : Y — Y is an equi-dimensional flat morphism, then a is an isomor-
phism and

(f(s,t)")* o v/e(E,s,t) = v/e(E,s,t) o f*: A (X) — A (Y(s,)").
3. If f: Y — X isalocal complete intersection morphism, then
flo/e(E,s,t) =a,o ve(E, s t)of 1 Au(X) — A (f ' (X(s,0)%)).

By abuse of notation, we denoted Y (f*s), Y(f*s, f*t), and \/e(f*E, f*s, f*t) by
Y(s), Y(s,1), and \/e(E, s, t), respectively.

Proposition 5.3.5 (Reduction formula). Let E be a special orthogonal bundle
on a Deligne-Mumford stack X and K be an isotropic subbundle. Let s and t be
isotropic sections of E such that s-t = Qand s-K = t-K = 0. Let s, and t, be the
isotropic sections of the reduction K L /K. Let s, be the induced section of K| X(s1)-
Then for any cycle class @ € A,(X), we have

Ve(E, s,t)(a) = e(K, s5) o ve(K /K, s1,1)(a)

inA, (X(S, l)# U X(Sl, tl)#(Sz)).
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Corollary 5.3.6. Let X be a separated Deligne-Mumford stack, E be a special
orthogonal bundle on X, and K be an isotropic subbundle. Let C be an isotropic
subcone of the reduction E g := K* /K. Form a commutative diagram

Cc K¢ E

]

Oc

where the square is cartesian. Let T € T'(C,Ek|c) and T € [(C,E|s) be the
tautological sections. Let t be an vanishing isotropic section of E such thatt-K = 0
and tx - T = 0. Let t, be the induced isotropic section on E| k. Then for any cycle
class a € A, (C), we have

Ve(Ejkle.t.01)(@) = Ve(EleT.1) o r*(a)

in A, (C(T,0)* U C(t,1)%).

5.3.2 Global construction

Definition 5.3.7 (Cosection-localized virtual cycle). Let X be a DM stack which
has the resolution property. Let ¢ : E — Ly be a symmetric obstruction theory
satisfying the isotropic condition. Let 0 : Oy — det(E) be an orientation. Let
o : EY[1] — Ox be an isotropic section.

Choose a symmetric resolution of E such that the cosection o is represented
by a surjective chain map

EY[1] B—4 v 4. v (5.3.1)
Ox 0 Ox 0
Form a fiber diagram
Cc© E

| |

Cx—— C(E)—[E/B].
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where the closed embedding €x — €(E) is induced by ¢. Consider a diagram

E|p

([}

Xred;()) D

where D := Cq and 7 € T'(D, E|p) is the tautological section. Then D(7) = X;eq
and 7 - 0|}, = 0 by Proposition[5.1.3
We define the cosection-localized virtual cycle as

[XTe := Ve(Elp,7.5]5)[C] € A(X(T))
where X () is the zero locus of & := h°(c) : h'(EY) — Ox and
D(r,5[))" < X(7)
by Lemma[5.3.8| below.

Lemma 5.3.8 (Well-definedness). In the situation of Definition[5.3.7) we have the
followings.

1. D(7,0y)* < X (o).
2. [X[¥ is independent of the choice (3.3.1).

loc

Proof. 1. Replacing X by X\X(o), we may assume that & : h'(EY) — Oy is
surjective. Then it suffices to prove that

D(r.5|p)" = @.

Since 0 : E — Oy is surjective, D(7)(0|},) = &. Since D is a cone over X4, the
projective cone P(D) over X4 is the exceptional divisor of the blowup of D along
D(7) = Xieq- Hence it remains to show that

P(D)(0L) = &,
where L := Op(py(—1) and &, € I'(P(D), L* /L) is the induced isotropic section.

Since the composition
D — E -» E/{5Y)
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is a closed immersion by Proposition the composition

L — Elpp) » (E/{T))|ep)

is nowhere vanishing. Hence - is also a nowhere vanishing section, which com-
pletes the proof.
2. It follows from a deformation argument and Corollary [5.3.6| O

Remark 5.3.9. In [OT2], it is shown that the Oh-Thomas virtual cycles [[OT] map
to the Borisov-Joyce virtual cycles [BJ] under the cycle class map. It is desirable
to know whether the cosection-localization Oh-Thomas virtual cycles in [KP2]
map to the cosection-localized Borisov-Joyce virtual cycles of Savvas [Sav].
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Chapter 6

Applications to enumerative
geometry

In this chapter, we apply the tools in Chapterd|and Chapter[5]to the moduli spaces
of sheaves on Calabi-Yau 4-folds. This is based on [Park1l [KP2, BKP].

6.1 Moduli spaces, virtual cycles, and invariants

6.1.1 Moduli spaces
In this paper, we consider two types of moduli spaces:
1. moduli spaces of pairs;
2. moduli spaces of sheaves.
We first define the moduli stacks of all pairs/sheaves.

Definition 6.1.1 (Moduli stack of pairs). Let X be a smooth projective variety. We
define the moduli stack of pairs on X as the 2-functor

Pair(X) : Sch‘/’g — Groupoid : T — {palrs (F, s) of a coherent sheaf F on X x T}

flat over T and a section s e I'(X x T, F)

Definition 6.1.2 (Moduli stack of sheaves). Let X be a smooth projective variety.
We define the moduli stack of sheaves on X as the 2-functor

Coh(X) : Sch?é — Groupoid : T — {coherent sheaves F on X x T flat over T} .
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Proposition 6.1.3 (Representability). Let X be a smooth projective variety. Then
the moduli stacks Pair(X) and Coh(X) are representable by algebraic stacks of
locally of finite type.

Proof. We refer to [LMB| Thm. 4.6.2.1] for the representability of Coh(X). The
representability of Pair(X) follows from the fact that Pair(X) is an abelian cone
over Coh(X) (see for example [Bri, Lem. 2.4]). O

Remark 6.1.4 (Derived enhancement). Let X be a smooth projective variety. Then
the derived moduli stack of pairs and the derived moduli stack of sheaves defines
as the co-functors

RPair(X) : dSch‘/’g — co0—Groupoid

pairs (F, s) of a perfect complex F on X x T
T — and a map Oy 7 — F such that
the fibers F, are coherent sheaves for all € T(C)

RCoh(X) : dSch‘/’g — co—Groupoid

T perfect complexes F on X x T such that
the fibers F, are coherent sheaves for all ¢ € T(C)

are represeentable by derived Artin stacks.
The derived moduli stack of pairs is the total space of the derived moduli stack
of sheaves,
RPair(X) = Totgcon(x) (R« (F)),

where F is the universal complex of RCoh(X) x X and 7 : RCoh(X) x X —
RCoh(X) is the projection map.
The cotangent complexes of the derived moduli stacks can be expressed as

LRPLir(X) = (RﬂOmﬂ(]I, F)) v
LR%(X) = (R?-(omn (P, F) [1])

where I — Ogpair(x)xx — F is the universal homotopy cofiber sequence on
RPair(X) x X and the projection map RPair(X) x X — RPair(X) is denoted by
the same letter 7. This can be shown by the derived loop stacks.

Clearly, the moduli stacks in Definition [6.1.T/Definition are the classical
truncations of the above derived moduli stacks.
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Proposition 6.1.5 (Obstruction theories). Let X be a smooth projective variety of
dimension n.

1. The map

RHom, (B, 16 w)[n] 2 Lpgrcx)

is an obstruction theory, where At(F, s) is the Atiyah class of the universal
pair (F, s) (see Remarkl6.1.6lbelow), T = [Opyir(x)xx — F, and  : Pair(X) x
X — Pair(X) is the projection map.

2. The map

At(F
RHom(F, F® wy)[n — 1] 22 Lcon(x)

is an obstruction theory, where At(F) is the Atiyah class of the universal
sheaf F and m : Coh(X) x X — Coh(X) is the projection map.

Proof. Tt follows directly from Remark i

Remark 6.1.6 (Atiyah class of pair). Let X be a scheme. Let F be a perfect com-
plex on X and s : Ox — F be a map. Let

I —=0Ox—=F
be a distinguished triangle. We define the Atiyah class of the pair (F, s)
Atx(F, S) F— I@LX

as the unique dotted arrow given by the homotopy square in the diagram in the
stable co-category

RHomy(F, Ox) ——RHomy(F, F) —=RHomy(F,I)

ls ‘/Atx(F)
Atx(F,S)
Atx(OX)EO L
RHomy(Oy, Oy) =200y

Then the differential of the map (F, s) : X — RPair
LR@LX = R?'[Omx(F, I) e LX

can be identified to Aty (F, s).
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Since the moduli stacks Pair(X) and Coh(X) are not bounded in general, we

need stability conditions. We first consider the PT,-stability condition on pairs,
introduced in [BKP].

Definition 6.1.7 (PT,-stability condition). Let X be a smooth projective variety
and ¢ > —1 be an integer. We say that the pair (F, s) of a coherent sheaf F on X
and a section s € ['(X, F) is PT,-stable if

1. F e Coh,4(X), and
2. Q:=coker(s: Ox — F) € Cohg,(X).
By abbreviation, we also refer to PT,-stable pairs as PT, pairs.
The two extremes of PT -stability are the well-known DT/PT-stability.

Example 6.1.8 (DT /PT-stability condition). Let X be a smooth projective variety.
Let F be a coherent sheaf on X of dimension d and s € T'(X, F) be a section.

DT) The pair (F, s) is PT_;-stable if and only if s : Ox — F is surjective. Hence
the PT_, pairs on X correspond to the closed subschemes of X. Thus we
refer to PT_-stability as DT-stability.

PT) The pair (F,s) is PT,_;-stable if and only if F is pure and dim(Q) < d.
Hence PT,_; pairs are exactly the stable pairs in the sense of Le Potier
[Potll, Def. 4.2] that are natural generalization of Pandharipande-Thomas
stable pairs. Thus we sometimes refer to PT,_;-stability as PT-stability.

Heuristically, d-dimensional PT,-stable pairs are intermediate notions
DT :=PT_; ~»PTy~ ---~ PT, ,~ PT, | =: PT
between DT-stable pairs and PT-stable pairs.

Theorem 6.1.9 (Moduli space of PT-stable pairs). Let X be a smooth projective
variety of dimension n, and v € H*(X, Q) be a cohomology class such thatve, 3 =
0, and q € {—1,0, 1} be an integer. Then the open locus of PT,-stable pairs

P9 (X) := {PT, pairs (F, s) on X with ch(F) = v} < Pair(X)

is a projective scheme.
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Proof. When g = —1, then this is shown in [Gro2]. When v, , = 0and g = 0, or

q = 1, then this is shown in [Potl! [Pot2]]. When v, _, # 0 and g = 0, this is shown

in [BKP]. O
We will consider the following six moduli spaces of pairs:

1. X["l: Hilbert scheme of n-points [Gro2];

2. I, 3: Hilbert scheme of curves [[Gro2];

3. P,p: moduli space (1-dimensional) PT stable pairs [PT1, [Potl, [Pot2];
4. I,4,: Hilbert scheme of surfaces [Gro2];

5. Pfl(z’y: moduli space of (2-dimensional) PTy-stable pairs [BKP];

6. P,(:[Z’y: moduli space of (2-dimensional) PT;-stable pairs [Potl}, [Pot2]].
Secondly, we consider the Gieseker stability on sheaves.

Definition 6.1.10 (Gieseker stability). Let X be a smooth projective variety and
H be an ample line bundle. We say that a coherent sheaf F is H-stable (resp.
H-semi-stable) if

1. F is pure sheaf of dimension d;

2. for any subsheaf F’, we have
pr(t) < pr(t)  (resp. Ppi(t) < Pp(1))
where pr(t) is the reduced Hilbert polynomial of F with respect to H.

For any coherent sheaf F, the automophism group Aut(F) contains G,,. Hence
we will consider the rigidified moduli stack of coherent sheaves

Coh(X)/BGy,
defined as the quotient stack of the natural BG,,-action on Coh(X).

Theorem 6.1.11 (Moduli space of Gieseker-stable sheaves). Let X be a smooth
projective variety, v € H*(X, Q) be a cohomology class, and H be an ample line
bundle. Then the open locus of H-stable sheaves

M"(X) := {H-stable sheaves F with ch(F) = v} < Coh(X)/BG,,

is a quasi-projective scheme. Moreover, if there are no strictly semi-stable sheaves
of Chern character v, then M (X) is a projective scheme.

Proof. We refer to [HL] for the proof. O
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6.1.2 Virtual cycles and invariants

Let X be a Calabi-Yau 4-fold, i.e., a smooth projective variety of dimension 4
with trivial canonical line bundle. Let v € H*(X, Q) be a cohomology class. Let
Perf (X, v)*?! be the moduli stack of simple perfect complexes F on X with ch(F) =
v [Ina, Li€] (cf. [ToVa, [STV]). Then Perf(X, v)*® is always an Artin stack. Thus
we consider the two variants:

1. Perf(X,v)?": the moduli stack of simple perfect complexes on X with fixed

determinant L and Chern character v. More precisely, Perf (X )zpl is defined
as the fiber product

Perf(X, v);" — Spec(C)

| |
Perf (X, v)*"' —= Pic(X)

where Pic(X) is the Picard stack of line bundle on X and det : Perf(X) —
Pic(X) is the determinant map.

2. Perf(X,v)*'/BG,,: the moduli space of simple perfect complexes on X with
Chern character v, rigidified by the action of BG,,.

Then the two moduli stacks Perf(X, v)¥ (for vy # 0) and Perf(X, v)*'/BG,,
are Deligne-Mumford stacks.

Theorem 6.1.12. Let X be a smooth projective variety, v € H*(X,Q) be a co-
homology class such that v¢, 3 = 0, and q € {—1,0, 1} be an integer. Then the
canonical map

P (X) — Perf(X): : (F,s) = I := [Ox > F]
is an open embedding.

Corollary 6.1.13. Let X be a smooth projective variety of dimension n. Let v €
H*(X,Q) be a cohomology class such that ve, 3 = 0, and q € {—1,0, 1} be an
integer. Then the canonical map

At(T)

¢ : B := RHom,(LI® wx)o[n — 1] = Ly,

is a symmetric obstruction theory satisfying the isotropic condition, where 1 :=
(050 (x)x >, F] is the universal pair and n : P?(X) x X — P9(X) is the
projection map. Moreover, the symmetric complex E is orientable.
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Remark 6.1.14. The obstruction theory in Corollary is different with that
in Proposition 1.

Proposition 6.1.15. Let X be a smooth projective variety, v € H*(X,Q) be a
cohomology class, and H be an ample line bundle. Then the canonical map

M (X) = Perf(X)™/BG,
is an open embedding.

Corollary 6.1.16. Let X be a smooth projective variety of dimension n > 4,
v € H*(X,Q) be a cohomology class, and H be an ample line bundle. Then the
canonical map

¢ : B := T 29RHom, (F, F)[3] 2 Ly,
is a symmetric obstruction theory satisfying the isotropic condition, where F is the
universal sheaf and m : M¥(X) x X — M"(X) is the projection map. Moreover,
the symmetric complex E is orientable.

Definition 6.1.17 (Virtual cycle for moduli space of stable pairs). Let X be a
Calabi-Yau 4-fold, v € H*(X, Q) be a cohomology class such that v, ;3 = 0, and
g € {—1,0, 1} be an integer. We define the virtual cycle

[PV (X)) € Aw(PV (X)), vd = vy +tdr(X) vy — 112

as the Oh-Thomas virtual cycle (Definition 4.3.9) associated to the symmetric
obstruction theory ¢ : E — L, ) in Corollary for an orientation o :

o )= det(E).

P (x
Definition 6.1.18 (Virtual cycle for moduli space of stable sheaves). Let X be a

Calabi-Yau 4-fold, v € H*(X, Q) be a cohomology class, and H be an ample line
bundle. We define the virtual cycle

(M (O], € Aw(M (X)), vd=1-3(nv)

as the Oh-Thomas virtual cycle (Definition 4.3.9) associated to the symmetric
obstruction theory ¢ : E — Ly, in Corollary for an orientation o :

Remark 6.1.19 (Generalization). The constructions of Oh-Thomas virtual cycles
in Definition[6.1.17/and Definition[6.1.18|can be generalized to any open substack
of Perf(X,v)}” (for vy # 0) or Perf(X, v)*'/BG,,, which is a separated Deligne-
Mumford stack.
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6.1.3 Invariants and conjectures

Definition 6.1.20 (Tautological complex). Let X be a Calabi-Yau 4-fold, v €
H*(X, Q) be a cohomology class, g € {— 1,0, 1} be an integer, and H be an ample
line bundle. Write P,(k) = >, a; (H’;l) for integers a;.

1. Assume that vy = v; = 0. For any perfect complex £ on X, we define the
associated tautological complex on P\ (X)(X) as
®:(E) := R, (FQ ¢*E)
where (F, s) is the universal pair and 7 : pY (X) x X — P (X), q :
P&q) (X) x X — X are the projection maps.
We sometimes omit the subscript F in ®z(E) and just write ®(E).

2. Assume that g.c.d(a;) = 1. Fix a universal family G of M”(X). For any
perfect complex E on X, we define the associated tautological complex on
MP(X) as

O (E) := Rr.(GRg'E)

where 7 : M7 (X) x X — MY (X), g : MY (X) x X — X are the projection
maps.

The tautological complex ®g(E) depends on the choice of G.

Definition 6.1.21 (Primary insertions). Let X be a Calabi-Yau 4-fold, v € H*(X, Q)
be a cohomology class, g € {—_l, 0, 1} be an integer, and H be an ample line bun-
dle. Write P, (k) = Yoo @ (") for integers a;.

1. Assume that vp = v; = 0. For any cohomology class 6 € H*(X,Q), we
define the primary insertion as

Dy (6) := 7, (cha(F) U ¢*6) € H* (P (X), Q)

where (F, s) is the universal pair and 7 : P (X) x X — P (X), q :
Pﬁq) (X) x X — X are the projection maps.

2. Assume that g.c.d(a;) = 1. We define the primary insertion as
®y(0) := Rr.(G®q*E) € H*(M'(X),Q)

where G is a universal sheaf and 7 : M?(X) x X — MP(X), q : M?(X) x
X — X are the projection maps.

The primary insertion @y (5) is independent of the choice of G.
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In [[CK1], Cao-Kool conjectured that the tautoglogical Hilbert scheme invari-
ants can be expressed by the MacMahon function as follows.

Conjecture 6.1.22 (Tautological Hilbert scheme invariants). Let X be a Calabi-
Yau 4-fold. Let L be a line bundle on X. Then there exist orientations such that

ZJ e(L[n]) g = M(_q)SXC3(TX)c1(L)
[x1]

n=0

where LI" := ®(L) is the tautological bundle and M(q) := [ [,-,(1 —¢") ™" is the
MacMahon function.

In [CK2|, Conj. 0.3], Cao-Kool conjectured (1-dimensional) DT/PT correspon-
dence for primary insertions.

Conjecture 6.1.23 (Primary DT/PT correspondence). Let X be a Calabi-Yau 4-
fold, B € Hy(X, Q) be a curve class, and n € Z be an integer. Let y; € H*(X, Q) be
cohomology classes. Then there exist orientations such that

J Do(y1) U U @o(yk) = J CDo(y1) U U @o(yi)
[np(X)]V" [Pug(X)]V

In [[CKM, Conj. 0.13], Cao-Kool-Monavari conjectured (1-dimensional) DT/PT
correspondence for tautological insertions.

Conjecture 6.1.24 (Tautological DT/PT correspondence). Let X be a Calabi-Yau
4-fold and B € Hy(X, Q) be a curve class. Let L be a line bundle on X. Then there
exist orientations such that

20 S[[,,ﬁ(x)]vir e(®(L)) - 4" J
ano S[x[n]]vir e(L[n]) q" 1>0 ¥ [Prp(X)]¥Ir

In [CMTI. [CMT?2|], Cao-Maulik-Toda conjectured (1-dimensional) PT/Katz
corrspondence for primary insertions.

e(®(L)) - 4"

Conjecture 6.1.25 (Primary PT/Katz correspondence). Let X be a Calabi-Yau 4-
fold, B € Hy(X,Q) be a curve class, and n € Z be an integer. Let y € H*(X, Q) be
cohomology classes. Then there exist orientations such that

| ey - ¥ <f e _q>o<y>).
[Prp(X)]V —p \[Pogy ()] i—1 J[Mg(X)]""

Yiobi =
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In [BKP], a (2-dimensional) DT/PT correspondence for tautological inser-
tions were introduced.

Conjecture 6.1.26 (Tautological DT/PT, correspondence). Let X be a Calabi-
Yau 4-fold, y € Hy(X, Q) be a surface class, and B € Hy(X,Q) be a curve class.
Let L be a line bundle on X. Then there exist orientations such that

Zn>OS (L5 (X)]VIF 6( n
=D 0 (L) -q".
P Vlr

n>() S n v1r n>0

Remark 6.1.27 (Descendent insertions). In the situation of Definition we
can define the descendent insertion as

®,(6) := m.(chy;(F) U ¢*6) € H* (Pﬁq) (X),Q)

fori > 0.

6.2 Lefschetz principle

Recall [KKP] that the quantum Lefschetz principle relates the Gromov-Witten
invariants of an algebraic variety with the Gromov-Witten invariants of its divisor.
The virtual pullback formula in Theorem[4.3.17 provides an analogous formula in
Donaldson-Thomas theory. This section is based on [Park1].

Theorem 6.2.1 (Lefschetz principle). Let X be a Calabi-Yau 4-fold and D be a
smooth connected divisor of a line bundle L on X. Let v € H*(X,Q) be a coho-
mology class such that vo = vi = 0and q € {—1,0, 1} be an integer. Consider the
following moduli spaces:

P(X) := {PT, pairs (F, s) on X with ch(F) = v}
P(D) := {PT, pairs (F, s) on D with ch(i,F) = v}

where i : D — X is the inclusion map. Assume the followings:

Al) The tautological complex ®(L) is a vector bundle.
A2) The canonical map RHom,(Ip,1p ® L)o[2] Allo), Lppy is a perfect ob-
struction theory.
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Then for any orientation on P(X), there exists canonical signs (—1)7) on the
connected components P(D)¢ of P(D) such that

2 (DT [PD) 5 = e(@(L)) A [PX)]5;

where j, : P(D)® < P(D) — P(X) are the inclusion maps.
Sketch of the proof. |

Corollary 6.2.2 (Tautological Hilbert scheme invariants). Let X be a Calabi-Yau
4-fold. Let L be a line bundle on X. Assume that L has a smooth connected divisor.
Then Conjecturel6.1.22 holds for X and L.

Proof. Since D" is connected, the Lefschetz principle gives us

f e(L) = J 1.
[X[”]]Vif [D[rl]]vir

By [LP, Li3], the generating series of the degree zero MNOP invariants [MNOP1,
MNOP2] of a smooth projective 3-fold D can be expressed as

>0 [D[n]]vir

By an elementary argument, we can deduce

L a3(Tp ® Kp) = f c3(Tx)ei (L)

X

(cf. [CK1, (2.5)]). It completes the proof. O

Corollary 6.2.3 (Tautological DT/PT correspondence). Let X be a Calabi-Yau
4-fold and B € H,>(X,Q) be a curve class. Let L be a line bundle. Assume that
there is a smooth connected divisor D of L such that the following conditions are
satisfied:

Al) D is a Calabi-Yau 3-fold.

A2) For all pure 1-dimensional closed subschemes C of X with [C| = 8, we have
H'(C, L) = 0.
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A3) For all n, the inclusion maps I,5(D) — I,5(X) and P,g(D) — P,s5(X)
induce injective maps between the sets of connected components.

Then Conjecture holds for X, B, and L.
Proof. Applying the Lefschetz principle to the three moduli space 1, 5(X), P,s(X),
X" the 3-fold DT/PT correspondence [Bri, Toda]
Lzo S[ln.ﬂ(D)]Vir L = f 1-q"
2n>0 S[D["]]Vif g o
completes the proof. O

Corollary 6.2.4 (Tautological DT/PT, correspondence). Let X be a Calabi-Yau
4-fold, y € Hy(X,Q) be a surface class, and B € Hy(X,Q) be a curve class. Let
L be a line bundle. Assume that there is a smooth connected divisor D of L such
that the following conditions are satisfied:

Al) D is a Calabi-Yau 3-fold.

A2) For all 2-dimensional closed subschemes S of X with chy(Os) = 7y and
ch3(Os) = B, we have H'(S,L) = H*(S,L) = 0.

. : 0
A3) Foralln, the inclusion maps 1,5, (D) — I,5.,(X) and pPY npiy

n.Byy
induce injective maps between the sets of connected components.

Then Conjecturel6.1.26l holds for X, B, y, and L.
Proof. Applying the Lefschetz principle to the three moduli space 7, 45, (X), PY (X),

X)

n.B.y
X", the 3-fold (1-dimensional) DT/PT correspondence [Bri, [Toda]
2nz0 S0y 14 .
Dm0 S 10" S ipsoy
completes the proof. O

6.3 Pairs/Sheaves correspondence

In many cases, maps between moduli spaces of sheaves or complexes can be re-
alized as virtual projective bundles. Since there is a general pushforward formula
for virtual projective bundles, a virtual pullback formula for these cases is prac-
tically effective for computing invariants. We provide a correspondence between
the moduli of stable pairs and the moduli of stable sheaves as an example. This
section is based on [Park1]].
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6.3.1 Virtual projective bundles

We first fix the notion of virtual projective bundles.

Definition 6.3.1 (Virtual projective bundle). Let X be a scheme and K be a perfect
complex of tor-amplitude [0, 1]. We define the virtual projective bundle as the

projective cone
p : P(K) := Proj(Sym(h°(K"))) — X.

The virtual projective bundles are classical truncations of derived projective
bundles.

Remark 6.3.2 (Derived enhancement). Let X be a scheme and K be a perfect
complex of tor-amplitude [0, 1]. Then we have

P(K) = [(Totx (K)\0)/G]a
where 0 : X — Toty(K) is the zero section.

The quasi-smooth derived enhancements on the virtual projective bundles in-
duce perfect obstruction theories.

Proposition 6.3.3 (Obstruction theory). Let X be a scheme and K be a perfect
complex of tor-amplitude |0, 1]. Then the virtual projective cone

p : P(K) := Proj(Sym(h°(K¥))) — X
has a natural perfect obstruction theory
E := cone(Opx)y — p*K(1))" — Lpx)x.
There is a pushforward formula for virtual projective bundles.

Proposition 6.3.4 (Pushforward formula). Let p : P(K) — X be a virtual projec-
tive bundle over a quasi-projective scheme X. For any cycle class @ € A,(X) and
a K-theory class ¢ € K°(X), we have

P*(Cm(P*f(l)) N p!a/) = Z (I:’l_—ll) : Ci(f) N Cm—i-‘rl—r(_K) Na
0<i<m

where r is the rank of K and s is the rank of &.
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Proof. Fix a global resolution K = [K, — K| and consider the factorization

1(1)[e(xo)

U

P(K)—— P(K,)
\ L

where P(K) is the zero locus of the tautological section 7. Then

dt

E = (Kl(l))h\:{(K) P(Kp) /X|IP
d
Lecosw — Leyeeo)/ Lo e — ek lee)

is the perfect obstruction theory. Manolache’s virtual pullback formula p* = i' o g*
implies
px(en(é(1)) N p'a) = g:(cn(é(1)) N ey (Ki(1)) N g*)

where ry and r; are the ranks of K, and K, respectively. Note that

€)= 2, (S_i.)ci<f>c1<0<1>>"1f

o<i<m N1

by [Ful, Example 3.2.2]. Therefore, we have
) al€) m e(K)) A gul@(O(1)™ 7 A ga)
) -ci(é) N Cj<K1) N Sm+r17ifj7ro+1<KO) Nna
= L] Ci(f) N cmfiJrlfr(_K) Nna
o<is<m m— l)

where s,(Kj) denotes the Segre class of K. i
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6.3.2 Pairs/Sheaves correspondence

Theorem 6.3.5 (Pairs/Sheaves correspondence). Let X be a Calabi-Yau 4-fold,
v € H*(X,Q) be a cohomology class such that vy = v, = 0, and H be an ample
line bundle. Consider the following moduli spaces:

P(X) := {PT-stable pairs (F, s) on X with ch(F) = v}
M(X) := {H-stable sheaves G on X with ch(F) = v}

Assume the followings:

Al) (a) v, # 0is anirreducible surface class, or

(b) vo = 0 and v; # 0 is an irreducible curve class.

A2) There exists a universal family G on M (X) x X and the tautological complex
Og(x) := Rn,G is of tor-amplitude [0, 1].

Then the forgetful map
p:P(X) > MX):(F,s)—F

is the virtual projective bundle of O)A;I(X). Moreover;, for any orientation on M(X),
there exists a canonical orientation on P(X) such that

[PXO]™ = p'[MX)]™" € A.(P(X)).

Corollary 6.3.6 (Pushforward formula). In the situation of Theorem for any
perfect complex E of rank N on X, we have

Pi(cat(®(E)) N [PX)]™) = N - [M(X)]"" € A (M(X)).

Corollary 6.3.7 (Primary PT/Katz correspondence). Let X be a Calabi-Yau 4-
fold, B € Hy(X,Q) be a curve class, and n € Z be an integer. Let y € H*(X, Q) be
cohomology classes. Assume that B is irreducible. Then Conjecture holds
for X, B, n, and vy.

Corollary 6.3.8 (Tautological PT/Katz correspondence). Let X be a Calabi-Yau
4-fold, B € Hy(X,Q) be a curve class, n € Z be an integer, and H be an ample
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line bundle. Let E be a perfect complex on X. Assume that 8 is irreducible and
g.c.d(B- H,n) = 1. Then there exist orientations such that

f L, (D(E))
[Pnp(X)]Vir

_ {_(IZ) St €1(Ps(0x)) ifn =0
(o) 'S[Mnﬁ(x)]vir ¢1(®s(0x)) — () 'S[Mnﬁ(x)]m ci1(®Pc(0x)) ifn=>1

where G is the universal sheaf of M[;(X) and N = n - rank(E) + Sﬁ c1(E).

]vir

6.4 Counting surfaces on Calabi-Yau 4-folds

This section is based on [BKP].

Theorem 6.4.1 (Reduced virtual cycle). Let X be a Calabi-Yau 4-fold with nowhere
vanishing Calabi-Yau 4-form w € H°(X,Q3). Let v = (0,0,v,8,n — vy - tdy(X)) €
H*(X, Q) be a cohomology class, q € {—1,0, 1} be an integer, and H be an ample
line bundle. Then there exist canonical reduced virtual cycles

[PV OI™ € Ay pyo gy, (P (X))

[MEX)]™ € Ay, (ML(X)

where p, is the rank of the symmetric bilinear form

B,: H'(X,Tx) H' (X, Tx) »> C: &, @& — J (teyleyy U W).
X

The Hodge conjecture predicts that for any smooth projective variety X, all
rational (p, p)-classes on X are algebraic. In [Grol] Grothendieck introduced a
variant of the Hodge conjecture.

Conjecture 6.4.2 (variational Hodge conjecture). Let X be a smooth projective
variety and 'y be an algebraic (p, p)-class on X. For any smooth projective mor-
phism f : X — B to a smooth connected scheme B and a horizontal section v, of
F”?*{f,’;(X/B) such that Xy = X and (v,)o = vy for some closed point 0 € B, the
cohomology classes (v,), are algebraic for all closed points b € B.
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Theorem 6.4.3. Let X be a Calabi-Yau 4-fold and let y be a (2,2)-class on X. If
for some v e H*(X,Q) withv, = yand q € {—1,0, 1}

[P O] # 0 € AL (P (X))
then Conjecture holds for X and y.

This recovers the results of Buchweitz-Flenner [BuFl] (cf. Bloch [Blo|]) for
Calabi-Yau 4-folds since the reduced virtual cycle equals to the fundamental cycle
near the semi-regular point.
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Chapter 7

Torus localization via equivariant
virtual pullbacks

In this chapter, we prove Graber-Pandharipande’s torus localization formula [GP]
via equivariant virtual pullbacks. This chapter is based on [AKLPR]

Summary The torus localization formula is an extremely useful tool for com-
puting virtual enumerative invariants when there is a torus action. However, there
were some necessary technical assumptions in the original proof of [GP]. These
assumptions were significantly weakened by Chang-Kiem-Li [CKL] by using
Manolache’s virtual pullbacks [Manl]. However, it was still desired to fully re-
move the assumptions.

Inspired by Chang-Kiem-Li’s work, we fully remove the technical assump-
tions by developing equivariant virtual pullbacks for obstruction theories of tor-
amplitude [—2, 0], when the fixed part is of tor-amplitude [—1,0]. In this case,
the associated abelian cone stack is not necessarily a vector bundle stack, but we
still have the equivariant homotopy property in the localized Chow groups, which
allows us to define the equivariant virtual pullback.

Instead of using motivic Borel-Moore homology spectra as in [AKLPR], we
use Kresch’s Chow groups for simplicity.

7.1 Equivariant virtual pullbacks

In this section, we construct equivariant virtual pullbacks for good obstruction
theories, which are not necessary of tor-amplitude [—1, 0].
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7.1.1 Equivariant Chow groups

In this subection, we recall basic facts on equivariant Chow groups. We first fix
some notations.

Notations
e Let T := G,, be the 1-dimensional torus.
e Lett e Pic"(Spec(C)) be the 1-dimensional weight 1 representation.

e For an algebraic stack X with a T-action, we define the equivariant Chow
group as
AL (X) := A([X/T]).

e Lets := c(t) be the first Chern class. Then AT(Spec(C)) = Q[s].

e For an algebraic stack X with a T-action, we define
AT(X)s := AT(X) ®qps Q[s™']-
e For any vector bundle £ on X x BT, we have a weight decomposition

E=@®E(MW).

weZ
We let E™ := E(0) and E™ := @), ,, E(w).
We define the fixed locus as in [AHR].

Definition 7.1.1 (Fixed locus). Let X be a Deligne-Mumford stack with a T-
action. We define the fixed locus as

X' = lim Map” (Spec(C), X)
T

where MapT/ (—, —) denotes the equivariant mapping stack and the direct limit is
taken for all finite surjection T — T of tori.

By [AHRI, the fixed locus is a closed substack.
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Proposition 7.1.2. Let X be an Deligne-Mumford stack with a T-action. There
exists a finite surjection T" — T of tori such that

XT = Map" (Spec(C), X).
Moreover; the canonical map X* — X is a closed embedding.

We will use the following localization theorem of Kresch in [Kre2, Thm. 5.3.5].

Proposition 7.1.3 (Localization of Chow groups). Let X be a Deligne-Mumford
stack with a T-action. Let X* be the fixed locus and i : X* < X be the inclusion
map. Then the pushforward

IE : AE(XT)S - A}:(X)s
is an isomorphism.
We note that the reparametrization T — T does not affect the Chow groups.

Lemma 7.1.4. Let X be a Deligne-Mumford stack with a T-action. For any finite
surjection T" — T of tori, the smooth pullback

AL(X) = AT (X)
is an isomorphism.

Proof. Let ET; := t®\{0}. Then it suffices to show that the smooth pullback
A ([X x ET;/T]) — A, ([X x ET;/T'])

is an isomorphism. Since both [X x ET;/T| and [X x ET;/T’] are DM stacks with
the same coarse moduli space, [Vist, Prop. 6.1] completes the proof. m|

It is easy to show that the Euler class of vector bundle of non-zero weights
is invertible, directly from the definitions. Here we observe that this can also be
deduced as a corollary of Proposition

Corollary 7.1.5. Let X be a Deligne-Mumford stack with a trivial T-action. Let E
be a T-equivariant vector bundle on X. Assume that E™ = 0. Then the equivariant
Euler class

e (E) 1 AL (X)s — AL(X)s

is an isomorphism.

IThe reduced substack X}; i is T-invariant substack of X.
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Proof. Consider the zero section
OE : X —> E.

Since E* = 0, the fixed locus ET of E is the zero section Oz : X — E. Hence by
Proposition the pushforward

(Op)« : A:E(X)s - A:E(E)s
is an isomorphism. Therefore the Euler class
e (E) = 0p 0 (0g)s : A (X)s — AL(X)s

is also an isomorphism. O

7.1.2 Equivariant Gysin pullbacks

In this subsection, we introduce T-good cone stacks, which are analogues of vec-
tor bundle stacks in T-equivariant geometry. In particular, we will define equiv-
ariant Gysin pullbacks for T-good cone stacks.

We first generalized the equivariant Euler classes of vector bundles to perfect
complexes.

Definition 7.1.6 (Equivariant Euler class). Let X be a separated DM stack with
a trivial T-action. Let K be a perfect complex of tor-amplitude [0, 1] such that
K = 0. Then we define the T-equivariant Euler class

' (K) : AT(X)s — AT(X),
as follows:

1. Case 1) Assume that X is a quasi-projective scheme. Then there is a T-
equivariant resolution K = [K; — K] for some vector bundles K, and K,
on X of non-zero weights. We define the T-equivariant Euler class as

e"(Ky)

e (K):= TK)) AT (X)s — AT (X)s

where e (K;) is invertible by Corollary
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2. Case 2) Assume that X is a separated DM stack. Then by the Chow lemma
[LMB, Cor. 16.6.1], there is a projective surjective map p : X — X from a
quasi-projective scheme X. We define the T-equivariant Euler class as

AT(X xx X)g —= AT(X); —= AT(X)y —=0

J{eT(Klmﬁ) leT(Kf() T®)
v
AT(X xx X)y —=AT(X)s —=AT(X)s——=0
where the rows are exact by the Kimura sequence in Theorem[A. 1.1l

Remark 7.1.7. In the situation of Definition[Z.1.6] it is easy to show that eT(K) is
independent of the choices of a resolution K = [K, — K] and a projective cover
X - X

We will consider the following class of cone stacks.

Definition 7.1.8 (Good cone stacks). Let X be a separated DM stack with a trivial
T-action. Let F be a T-equivariant perfect complex on X. Let €(F) denote the
associated abelian cone stack. We say that €(F) is a T-good cone stack if

1. F™ has tor-amplitude [—1, 0], and
2. F™ has tor-amplitude [—2, —1].

We can simply define the equivariant Gysin pullbacks for T-good cone stacks
via the localization of Chow groups in Proposition[Z.1.3l

Definition 7.1.9 (Equivariant Gysin pullback). Let X be a separated DM stack
with a trivial T-action. Let €(FF) be a T-good cone stack on X associated to a T-
equivariant perfect complex F on X. We define the T-equivariant Gysin pullback

(Os())r 2 Ax (E(F))s — AL (X)s
of the zero section Og(r) : X — €(F) as follows:

1. Case 1) Assume that F™ = 0. Then €(F) is a cone and Og(r) : X — €(F) is
a closed embedding We define the T-equivariant Gysin pullback as

(Oc(e))y == € (FY[1]) © (Oce)), "+ AL (E(F))s — AL(X)s

where the pushforward (Og(r))« : A} (X), — A} (C(F))s is an isomorphism
by Proposition[Z.1.3]and e (F" [1]) is the T-equivariant Euler class in Defi-
nition
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2. Case 2) Consider the general case. Note that F = F™ @ F™ and
C(F) = G(F™) x C(F™)

where €(F™) is a vector bundle stack. We define the T-equivariant Gysin
pullback as the composition

!

(Ocge i AT(E(E))s 22 AT(S(E™)), 2, 47(x),
where the first map is the Gysin pullback of the vector bundle stack
G(F) = G(F™) x CE™) = C(E™|g(emr)) — CE™)
and the second map is given by Case 1.

Remark 7.1.10 (Equivariant homotopy property). In T-equivariant geometry, the
T-good cone stacks are the natural generalizations of vector bundle stacks since
we have T-equivariant homotopy property: for any T-good cone stack €(F) on a
separated DM stack X, the T-equivariant Gysin pullback gives us an isomorphism

(Os())7 + Ax (C(F))s = AL (X)s.

Proposition 7.1.11 (Whitney sum formula). Let X be a separated DM stack with
trivial T-action. Let €(F,) and €(F,) be two T-good cone stacks on X. Assume
that F* = 0. Then we have

(Ot = (0c(E:)1 © (Os(E[¢e,)))1 * Ax (C(F1 @ F2))s — AL (X)s.

7.1.3 Equivariant virtual pullbacks

Definition 7.1.12 (Good obstruction theories). Let f : X — Y be a T-equivariant
morphism of algebraic stacks with T-actions. Assume that X is a separated DM
stack and the T-action on X is trivial. Let ¢ : F — Ly/y be an obstruction theory.
We say that ¢ : F — Ly/y is a T-good obstruction theory if

1. F™ has tor-amplitude [—1,0], and

2. F™ has tor-amplitude [—2, —1].
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Definition 7.1.13 (Equivariant virtual pullback). Let f : X — Y be a T-equivariant
morphism of algebraic stacks with T-actions. Let ¢ : F — Lx/y be a T-good ob-
struction theory. Assume that X is a separated DM stack and the T-action on X is
trivial. We define the T-equivariant pullback as the composition

T
SPx/y

, L (O (g )
fr 1 AL(Y)s — AL(Cxyy)s <> AL(C(F))s —0 AT(X)

where sp} sy is the specialization map for the induced map [X/T|] — [Y/T], ¢ :

€x/y — C(F) is the closed embedding associated to the obstruction theory ¢, and
(Og(s) )y is the T-equivariant Gysin pullback for the T-good cone stack €(F) in
Definition

Proposition 7.1.14 (Bivariance). Let

X/ L Y/
oo
x—.y

be a cartesian square of T-equivariant morphisms of algebraic stacks with T-
actions. Assume that X and X' are separated Deligne-Mumford stacks and the
T-actions on X and X' are trivial. Let ¢ : F — Lyx)y be a T-good obstruction

theory. Let
7\ % ¢
¢/ . (g/)*F (8")*(¢) (g/)*(LX/Y) N LX’/Y’

be the induced T-good obstruction theory. Then we have the following properties:

1. If g is a proper DM morphism, then we have
froge =g o (fr: AdY) = Au(X),
2. If g is a equi-dimensional flat morphism, then we have
(f)rog" =(8) o fr:Au(Y) = AL(X).

3. If g is a local complete intersection morphism and Y' has affine stabilizers,
then we have

(frog =(8) ofp: AulY) — AL(X').
Proof. Tt follows immediately from Proposition[2.1.19 ]
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7.1.4 Funtoriality

Theorem 7.1.15 (Functoriality). Consider a commutative diagram of algebraic
stacks with T-actions _

xtoy-t.7

gof

where [ and g are T-equivariant DM morphisms. Assume that X is a separated
DM stack and the T-action on X is trivial. Assume that Y has affine stabilizers.
Let ¢xy = Fx)y — Lyjy, ¢x)z : Fx;z — Lx;z be T-good obstruction theories and
¢y/z : Fy;z — Lyjz be a T-equivariant perfect obstruction theory. Assume that
there exists a morphism of distinguished triangles

f*(Byz) Fx/z Fxy
lf* (by/z) l‘ﬁx/z ¢;(/Y
Y
=7 f*(Lyz) Ly/z Ly

for some ¢;(/Y such that ¢x;y = r o ¢;(/Y. Then we have

(80 flr = frog 1 ALZ)s — AL(X)s.

The proof is similar to the functoriality of ordinary virtual pullbacks in Theo-
rem[2.3.12] Asin Lemma[2.3.18 we begin with a special case

f Oc(#)
X—Y—C(F)
\_/
Og(myof
where Z = €(F) is a T-good cone stack over Y and g = Og(x) is the zero section.

Lemma 7.1.16. Let f : X — Y be a T-equivariant morphism of algebraic stacks
with T-actions. Assume that X is a separated DM stack and the T-action on X is
trivial. Let ¢x)y : Fx)y — Lx)y be a perfect obstruction theory for f : X — Y. Let
C(F) be a T-good cone stack for some T-equivariant perfect complex F. Let

¢ :F — Ly

be the canonical T-good obstruction theory of the zero section Og(w) : ¥ — C(F).
Then

(@) @ dxyy : f*(F) DFxyy — Lyjsry = 7 f*(Lyjsw)) @ Lxyy
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is a T-good obstruction theory for the composition
x Ly 2O, ¢(F)
and we have
(Os) © )y = f' 0 (Oc(e)y : AL (E(E))s — AL(X)s.

Proof. Note that
C(F) = G(F™) xy C(F™)

and €(F™) := €(F™) is a vector bundle stack. Consider the commutative diagram

Og(myof @(F)

Oc(JF)/ l”

X e ¥ Doggemony G (F),
OQ(FmOV)Olf

Then we can form a diagram

C(F) Lo Gy oy €5 x C(F)—— E(Fx,y) x C(F)

ln l lim lm

C(FY) ~ Lo Cy g (gmon) > €4 x C(F™Y) > E(Fy y) x C(F™)

where two right two squares are cartesian and the vertical arrows are €(F*) tor-
sors (curly arrows are not genuine morphisms). By Lemma[2.1.21] we have

r* o Spy g (amov) = SPx/s() O T -
Since the smooth pullback

7 AL(C(E™)) — AL (S(E))
is an isomorphism, it suffices to show the statement for

f 0@ (Fmov)
— '

0@ (Fmov ) Of

X

C(F™).
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Hence we may assume that F™* = 0 and F = F™,
Note that €(F) is a cone and Og(r : ¥ — €(F) is a closed embedding. Form a
cartesian diagram

x—L.y Y

| |
3 Og

X Loy ().

Since the pushforward
(Ose)) + Ay (Y)s — AL(C(F));

is an isomorphism, if suffices to show that

(0¢(F|x)x(€(IFX/y))T ©dy ©SPxry = f! o (O(E(IF))’![‘ © (O(E(IF))*
where b : Cxyy — €(Fyyy) LD, C(F|x) x €(Fx/y) is the inclusion map, and
t: €x)y — €E(Fy/y) is the closed embedding induced by ¢. By Proposition[Z.1.11]
this is equivalent to

Obieyy) © € (EV[1]) 0 10 spysy = f 0 € (B [1]).

Since the equivariant Euler class e (F¥[1]) commutes with Gysin pullbacks and
virtual pullbacks, we have the desired equality. O

As in Lemma[2.3.19] we use the double deformation space of [KKP] to reduce
the general case to the special case in Lemma [Z.1.16

Proof of Theorem [/ 1. 15 Let
h:XxA1—>Y><A1—>M;/Z
be the composition. Form a morphism of distinguished triangles

(T.a)

f*(Fy/z) R Op (f*(Fy/z) ®Fx/z) R Opt —— Eh
lf*lﬁy/z l(f*lﬁy/za(ﬁx/z) 4,

T.a v
Tz_lf*(Ly/Z) X OAI u> (Tz_lf*(Ly/Z) @ Lx/z) X OAI —_— L;l
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for some perfect complex Fj, and a map ¢, where the lower distinguished triangle
is given as in Lemma|2.3.20l Then the composition

& _
¢hIFh—h>L;’—>T2 thELh

is an obstruction theory. Since the fibers of F, over 1 € A! are

(P ) B FX/Z ifA#0
n)a = )
Fx)y ® f*Fy;; ifA1=0

¢y is also a T-good obstruction theory. Hence we have a T-equivariant virtual
pullback

hy @ Al(M,)

Viz) = Ax(X x Al

Since the T-equivariant virtual pullbacks are bivariant by Proposition [Z.1.14] we
have

(g © f)’vl‘ = (OGY/Z © f>"1' © Sp’II/‘/Z

where (Og, Lof )y is the T-equivariant virtual pullback of the fiber of ¢;. As in
the proof of Theorem[2.3.12] by a deformation argument, we have assume that the
T-good obstruction theory for (O, , o f) is given by

[ (byz) @ dxyy : f*(Fyjz) ®Fxyy — Tz_lf*(LY/Z) @ Lx)y.

Then Lemma completes the proof. i

7.2 Localization of virtual cycles

Definition 7.2.1 (Induced obstruction theory). Let X be a separated DM stack with
T-action. Let ¢ : F — Ly be a T-equivariant perfect obstruction theory. Choose
a reparemetrization T” — T such that T’ acts trivially on the fixed locus XT. We
define the induced obstruction theory as the composition
fix lyr
¢XT . P|XT — P|XT — LX|XT — LxT.
Lemma 7.2.2. In the situation of Definition[/. 2.1} the composition ¢xr is a perfect

obstruction theory. Moreover, ¢xr is independent of the choice of a reparametriza-
tionT — T.
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Proof. The independence is trivial. We will show that ¢yr is an obstruction the-
ory. By [AHR| Thm. 4.3], we may assume that X is an affine scheme. Then [GP),
Prop. 1] proves the claim (cf. [CKL, Lem. 3.3]). Moreover, P|§’; is clearly of tor-
amplitude [—1, 0]. O

If the perfect obstruction theory comes from a quasi-smooth derived enhance-
ment, then the above lemma follows from the general description of the cotangent
complexes of derived mapping stacks.

Remark 7.2.3 (Derived fixed locus). Let X be a quasi-smooth derived Deligne-
Mumford stack with T-action. (More generally, let X be a homotopically finitely
presented derived Artin stack.) We define the homotopy fixed locus as the equiv-
ariant derived mapping stack

X" := RMap” (Spec(C), X).

Equivalently, we can define the homotopy fixed locus via a homotopy fiber dia-
gram

XHT Spec(C)

Ju

M := RMap(BT, [X/T]) — RMap(BT, BT).

Then we can easily compute the cotangent complex of X as follows: Let
ev: M x BT — [X/T]

be the evaluation map and n : M x BT — M be the projection map. Then by
[HLP], we have
Ly = R Lev*Liy/r) = Lyy/ry[ior-

Hence we have

fix
Ly = cone(Ly[xn — Lemap(sT.8m)|307) = Liz/11/8T 501 5 -

In particular, this proves Lemma when the obstruction theory is induced by
a T-equivariant derived enhancement.

Definition 7.2.4 (Virtual normal bundle). Let X be a separated DM stack with
T-action. Let ¢ : F — Ly be a T-equivariant perfect obstruction theory. Choose
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a reparemetrization T” — T such that T’ acts trivially on the fixed locus XT. We
define the Euler class of the virtual normal bundle as

eT(N') = e ((FIRY[1]) V[1]) : AT(XT)s = AT(XT);

xT

where " ((F|%"[1]) ¥ [1]) is the equivariant Euler class in DefinitionZ.T.6land we

identified AT (XT) = AT(XT) via Lemma[7.1.4
Theorem 7.2.5 (Localization of virtual cycles). Let X be a separated Deligne-
Mumfor stack with T-action. Let ¢ : F — Ly be a T-equivariant perfect obstruc-

tion theory. Let XT be the fixed locus and ¢yr be the induced perfect obstruction
in Definition Then we have

[ XT] vir
eT (Nvir)

X =i (e ) € ALK

where €Y (NY¥) is the Euler class of the virtual normal bundle in Definition
and i : X' < X is the inclusion map.

Proof. Replacing T by a reparametrization, we may assume that T acts trivially
on XT. Consider a morphism of distinguished triangles

Flxr —— F[} —FI§'[1]

XT
ltﬁ XT ‘/¢XT
\
LX |XT LxT L;(T/X
for some dotted arrow where L, x = cone(Ly|yr — Lyr). By Theorem

we have _ _
[XT]Vlr _ i’!r[X]wr c A;I;:(XT>S-

Since i, : AT(XT); — AT(X); is an isomorphism by Proposition [Z.1.3, we may
write .
[X]™ = iu(a)

for some @ € AT(XT),. Then we have
(XTI = iy o ix(@) = (Occempp)r © Occempp)«(@) = € (N7)(a).

Since the equivariant Euler class T (N"¥) is invertible, we have the desired equal-
ity. O
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Remark 7.2.6 (Comparison to Graber-Pandharipande/Chang-Kiem-Li). In Graber-
Pandharipande [GP], Theorem is shown when there exist a T-equivariant

global embedding X <— Y to a smooth Deligne-Mumford stack Y and a T-

equivariant global resolution F = [F~! — F°] by vector bundles F~! and F°.

In Chang-Kiem-Li [CKL], Theorem is shown when the virtual normal bun-

dle F[#¥[1] has a global resolution F|¥¢"[1] = [N~> — N~'] by vector bundle

N~2and N~!. Theorem[7.2.3]fully removes these technical assumptions on global

embeddings/resolutions.

Remark 7.2.7 (Positive characteristic). Let X be an Artin stack with finite stabi-
lizers over an algebraically closed field k of characteristic p > 0. We note that X
is not necessarily a Deligne-Mumford stack since the stabilizers Aut, (x) may not
be étale. Moreover, if there is a T-action on X, the canonical map

u : Map” (Spec(C), X) — X

may not be a closed embedding (e.g. when X = Ba, with a natural non-trivial

T-action, where «, := ker(G, or, G, )). However, if "the ramifiedness of the

stabilizers only lie on the fixed part”, i.e. Q% , = 0 for all x € X (k) in the
_—X

image of the map u, then the map u is unramified. If we assume that u is quasi-

compact, then u is finite unramified, and we still have the formula

0 =i (S ) et

after a suitable reparametrization T — T. We refer to [AKLPR] for details.
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Chapter 8

Cosection localization via
(—1)-shifted 1-forms

In this chapter, we revisit Kiem-Li’s cosection localization [KL1] via derived al-
gebraic geometry [ToVe]. This chapter is based on [BKP, Appendix A].

Summary In derived algebraic geometry, quasi-smooth derived schemes are
natural analogs of schemes with perfect obstruction theories. Moreover, (—1)-
shifted 1-forms are natural analogs of cosections.

Firstly, we prove scheme-theoretical cone reduction lemma for (—1)-shifted
closed 1-forms. The key idea is to use the derived Poincare lemma, i.e. a (—1)-
shifted closed 1-form is locally exact.

Secondly, we speculate that the cosection-localized virtual cycles for quasi-
smooth derived schemes with (—1)-shifted closed 1-forms are the Oh-Thomas
virtual cycles of the derived zero locus, which is a (—2)-shifted symplectic.
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8.1 Three reductions
We consider the following hierarchy of structures

{derived schemes}

J/(a)

{schemes with obstruction theories}

l(b)

schemes with closed embedding of
their intrinsic normal cone into an abelian cone stack |

More precisely, the above two arrows can be given as follows:

(a) For any homotopically finitely presented derived scheme X, there is an in-
duced obstruction theory

¢ :E:=Lgly > Lx - Ly := 7 'Ly
on the classical truncation X := X by [STV| Prop. 1.2].

(b) For any scheme X with an obstruction theory ¢ : E — Ly, there is an
induced closed embedding

L: GX — @(E)
of the intrinsic normal cone €y into the abelian cone stack €(E).

We note that the (—1)-shifted 1-forms are natural analogs of cosections in
derived algebraic geometry. We have a similar hierarchy for them:

(a) Leta : Ox — Lx[—1] be a (—1)-shifted 1-form on a homotopically finitely
presented derived scheme X. Then we have an induced cosection

o:=aly :EY[1] - Oy

for the induced obstruction theory ¢ : E := Lg|x — Ly on the classical
truncation X := X.
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(b) Let o : EV[1] — Oy be a cosection for an obstruction theory ¢ : E — Ly
on a scheme X. Then we have an induced linear function

Iy := C(oV[1]) : €(B) — A}
on the associated cone stack €(E).

Now we state our main result in this subsection.

Theorem 8.1.1. Let X be a homotopically finitely presented derived scheme. Let
¢ : E — 1>~'Lx be the induced obstruction theory on the classical truncation
X ;=X andlet 1 : € — C(E) be the induced closed embedding.

1. (Cone reduction, [KL1]) For any (—1)-shifted 1-form « : Ox — Lx[—1],
we have a commutative diagram of cone stacks

C(E,) —X

red

| |

(€ Gyt G(E) 7~ A
or a unique dotted arrow where o .= «|y and &, := cone(o |
ique dotted h - v1

2. (Obstruction theory reduction) For any (—1)-shifted closed 1-form @, we
have a commutative diagram of complexes

E E,

l // ¢red
Tz_ ILX

for a unique dotted arrow where a := @, : Ox — Lx|—1] is the underlying
(—1)-shifted 1-form, o := a|y, and E, := cone(o " [1]).

3. (Derived reduction, [STV]) For any (—1)-shifted exact 1-forma = dpg(u),
we have a homotopy commutative diagram of derived schemes

xred X
S
X X AL[-1]

for some X™ where the square is homotopy cartesian and the triangle in-
duces isomorphisms X = (X™%), = X,
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Before we prove Theorem [8.1.1] we explain how the three reductions in The-
orem [8.1.1] are related.

Remark 8.1.2. In the situation of Theorem [8.1.1] we have the following:

1. The obstruction theory reduction in Theorem [8.1.1(2) is equivalent to the
scheme-theoretical cone reduction, i.e., there exists a commutative diagram
of cone stacks

€= G(E) =~ Al

for some dotted arrow. Hence the obstruction theory reduction in Theorem
[8.1.1(2) clearly implies the cone reduction in Theorem 8. 1.1(1).

2. The derived reduction in Theorem [8.1.1(3) implies the obstruction theory
reduction in Theorem[8.1.1(2). Indeed, the commutative diagram of derived
schemes induces a commutative diagram of cotangent complexes

dpr(u)o

OX[l] - LXred/X|X[_1:| LX|X Lxred X

Ly
where Lyra/x|x = Ly/atr-1 |x = Ox[2]. By composing with the canonical
map Ly — 7>~ 'Ly, we obtain the desired obstruction theory reduction.

Note that the cone reduction in Theorem [8.1.1((1) is shown by Kiem-Li [KLI1]]
(see Proposition [3.1.9) and the derived reduction in Theorem [B.1.1k3) is trivial.
(This approach was first introduced by Schiirg-Toén-Vezzosi [STV].) Thus the
essential part of Theorem [8.1.1] is the obstruction theory reduction in Theorem
[B.1.1(2). We will deduce this from the derived Poincaré lemma (which was essen-
tially shown by Brav-Bussi-Joyce [BBIJ]):

Proposition 8.1.3. Let X be a homotopically finitely presented derived scheme.
Let @ be a (—1)-shifted closed 1-form. Then there exists a Zariski open cover
U; — X such that @|y, are (—1)-shifted exact 1-forms.

Proof. This is essentially shown in [BBJ, Prop. 5.6]. Indeed, it follows from the
arguments in [BBJ, Prop. 5.7(a)], if we replace the closed 2-form by a closed
1-form. m|
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Now Theorem [8.1.1is a direct corollary.
Proof of Theorem[8_1.1(2). The uniqueness follows from

Homy(Ox[2],77 'Lx) = 0.
For the existence, it suffice to show that
¢ o ¥ [1] € Homy(Ox[1], 77 'Lyx) = T'(X, A~ ' (Ly))

vanishes. Hence the statement is local. By the derived Poincare lemma in Propo-
sition[8.1.3] we may assume that & is exact. Then Theorem B.1.1(3) completes the
proof by Remark [8.1.22). ]

8.2 Localized virtual cycles

Recall from Chapter 4 that the Oh-Thomas virtual cycles are constructed from
Kiem-Li’s cosection localization. We speculate that the converse is also true. We
provide a simple proof of the speculation in the local model case.

We first fix some notations.

Notation 8.2.1 (Twisted shifted cotangent bundle). Let X be a quasi-smooth de-
rived scheme and a be a (—1)-shifted closed 1-form. Consider a homotopy fiber
diagram

X(a) X

Ok

X —2 Q1]

where Qyx[—1] is the (—1)-shifted cotangent bundle, @y : Ox — Lx[—1] is the
underlying (—1)-shifted 1-form of «, and X(«) is the derived zero locus of «y.
The derived zero locus X () is sometimes called the ay-twisted (—2)-shifted con-
tangent bundle, and denoted by

X(a@) := Qx[—2]ap-

The shifted cotangent bundle Qx[—1] has a canonical (—1)-shifted symplectic
structure by [PTVV, Prop. 1.21] and the two sections 0, @y : X — Qyx[—1] have
Lagrangian structures associated to the closing structures by [Cal, Thm. 2.22].
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Hence the twisted shifted cotangent bundle X(«) also has a canonical (—2)-shifted
symplectic structure by [PTVV, Thm. 2.9].

Let X := X be the classical truncation and let ¢ : E := Lyx|x — Ly — Ly
be the induced perfect obstruction theory. Since the classical truncation commutes
with fiber products, we have a fiber diagram of closed embeddings

X(o)——X
[k

x—" - C(0Ob)

where Ob := h'(E|y) is the obstruction sheaf, o := h%(e|y) : Ob — Ox is the
induced cosection, and X (o) is the zero locus of o in X.

Speculation 8.2.2 (Localized virtual cycles are Oh-Thomas virtual cycles). Let X
be a quasi-smooth derived scheme and « be a (—1)-shifted closed 1-form. We use
the notations in Notation[8.2. 1) Then we have

(X]kL = [X(o)]or € Au(X(0))

where [X|'¢ is the cosection-localized virtual cycle for the induced obstruction
theory ¢ and the induced cosection o, and [X (o]} is the Oh-Thomas virtual
cycle of the (—2)-shifted symplectic derived scheme X ().

Remark 8.2.3 (Evidence). Consider the following local model: Let U be a smooth
scheme, E be a vector bundle on U, s € T'(U, E) be a section, and o : E — Oy be
a cosection such that oo s = 0. Let X := U(s) be the zero locus of s in U,

E—7-Al

)

X——U.
Then the cosection-localized virtual cycle is
[X]KL = Oy o, [Cxyu] € Au(X(0).
On the other hand, the Oh-Thomas virtual cycle of X (o) is
[X()]or = Ve(EDEY), (5,0))[U] € Ax(X(0)).
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Consider the compostion

X(o) x Al > X x Al — My .

By a deformation argument, we can show that

Ve(E®QEY), (s,0)[U] = Ve((EDE")|cyy» (1.0))[Cx/v]
where 7 € F(CX/U,E|CX/U) is the tautological section. In [KP2, Lem. 5.5], it is
shown that

!

Ve(E®EY)|g(e), (1.0)) = Op . : Au(E(0)) — Ax(X(0)).

Therefore, by the bivariance of localized square root Euler classes in Proposition
we have ‘
(X]R, = [X(o)o7 € Ax(X(0))

in this case.

The author expects that a similar argument will prove Speculation [8.2.2]in the
general case. We plan to give the details in [KP3|.
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Chapter 9

Virtual cycles in algebraic
cobordism

In this chapter, we generalize virtual pullbacks [Man|] and cosection localization
[KLI1] to algebraic cobordism. As a corollary, we extend the torus localization
formula [GP] to virtual cobordism classes of Shen [Shen|. This is based on [KP1]].

Summary We observed in Chapter 2] that virtual intersection theory [BF, Manl]
is a generalization of Fulton’s intersection theory [Ful] to algebraic stacks. Sim-
ilarly, we need to extend algebraic cobordism for schemes to algebraic stacks.
Here we use a shortcut, called limit algebraic cobordism, introduced in [KP1].
This limit algebraic cobordism is still incomplete for serving a general theory for
algebraic stacks, but it is sufficient for defining virtual pullbacks and cosection
localization, and proving the functoriality.

9.1 Limit algebraic cobordism
We recall from [KP1]] the notion of limit algebraic cobordism for algebraic stacks.

9.1.1 Definition and basic properties

Definition 9.1.1. Let X be an algebraic stack. Let Sm/x denote the category of all
pairs (7, t) of quasi-projective schemes 7 and smooth morphisms ¢ : T — X. The
morphisms in Sm y are given by the morphisms over X.
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Definition 9.1.2 (Limit algebraic cobordism). Let X be an algebraic stack. Con-
sider the functor
SmY — Ab: T — Q. (T)

where each morphism s : (71,1;) — (T»,%,) in Sm/x maps to the Ici pullback
5% 1 Qu(T2) = Qerdim(n)—dim (i) (T1)-

1. Define the limit algebraic coboridsm of degree d € Z as the abelian group

Qu(X) = Im  Qyp0)(T)
(T,1)eSm x

where d(t) is the relative dimension of 7 : T — X.

2. Define the limit algebraic coboridsm as the graded abelian group

Q. (X) := P Qu(X).

deZ

For any o € Qu(X) and (T,1) € Smx, we denote by a(t) € Q1 q4¢)(T) the corre-
sponding class.

Definition 9.1.3 (Projective pushforward). Let f : X — Y be a projective mor-
phism of algebraic stacks. We define the pushforward

via the formula
(fu(@))(s) = (fs)x(a(sx))

for @ € Q, (X) and (S, s) € Sm/y. Here the two maps fs and sy are given by the
fiber diagram

XxyS-Lor
lsx l/s
;

where X xy § is a quasi-projective scheme, sy is a smooth morphism, and fs is a
projective morphism.

The projective pushforward for limit algebraic cobordism Q in Definition0.1.3]
is well-defined since projective pushforwards commute with Ici pullbacks in ordi-
nary algebraic cobordism €.
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Definition 9.1.4 (Smooth pullback). Let f : X — Y be a smooth morphism of
algebraic stacks. We define the pullback

1 Qu(Y) = Quram(n(X)
via the formula
frB)(1) = B(fot)
forB e Q, (X) and (7T,t) € Sm .
The smooth pullback in Definition[9.1.4]is clearly well-defined.

Definition 9.1.5 (Chern class). Let E be a vector bundle on an algegbraic stack X.
We define the i-th Chern class

¢i(E) : Q.(X) = Q,i(X)
via the formula

ci(E)(@)(t) = ci(E[r)(a(r))
for @ € Q,(X) and (T, 1) € Smx.

The Chern classes for limit algebraic cobordism Q in Definition is well-
defined since the Chern classes commute with Ici pullbacks in ordinary algebraic
cobordism Q.

Proposition 9.1.6 (Basic properties). The limit algebraic cobordism Qin Defini-
tion satisfies the following properties:

1. If f: X — YandY — Z are projective morphisms of algebraic stacks, then
we have

(80 f)s = g 0 fu : Qu(X) = Q.(2).

22.If f : X - Yand Y — Z are smooth morphisms of algebraic stacks, then
we have

(gof)* = fog" 1 Qu(Z) = Qutdim(eor)(X).

3. Consider a fiber diagram of algebraic stacks

X/ L Y/

o]
x—.y

If f is projective and g is smooth, then we have
g o fu= (s 0(8)": Qu(X) = Qusaimie)(V):
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4. If f : X — Y is a projective morphism and E is a vector bundle on Y, then
we have

G(E) o fu = fu o ci( f1(E)) : QulX) — Qury(Y).

5. If f: X — Y is a smooth morphism and E is a vector bundle on Y, then we
have

Froa(E) = (f*(E) o f*: Qu(Y) = Quraing—i(X).

We omit the proof of Proposition since it follows directly from the basic
properties of the orinary algebraic cobordism € for schemes.

Example 9.1.7 (Equivariant algebraic cobordism). Let X = [P/G]| be the quotient
stack of a quasi-projective scheme by a linear action of a linear algebraic group
G. Let EG;/G — BG be Totaro’s approximation [Tot]. Then we have a canonical
isomorphism
ﬁd(X) = lin Qd+dim(EG,~) (P XG EGL) = Qngdim(G) (P)
i—00

where the last term QY(P) is the equivariant algebraic cobordism of Heller-
Malagon-Lopez [HMLI]] and Krishna [Krill]. We refer to [KP1, Cor. 3.8] for the
proof of the above comparison.

Remark 9.1.8. One small technical advantage of using the limit algebraic cobor-
dism for a global quotient stack X is that the definition of Q. (X) is stated without
any specific choice of a presentation X = [P/G] or an approximation EG;/G —
BG. Moreover, the limit algebraic cobordism also behaves well for cone stacks
and vector bundle stacks over global quotient stacks. Since they are the main ob-
jects in the virtual intersection theory, the limit algebraic cobordism is sufficient
in this thesis.

Remark 9.1.9. The main limitation of the limit algebraic cobordism Q is that
there is no excision sequence, even for global quotient stacks[] Thus we need
some tricks to avoid using the excision sequence in the subsequent sections.

Tn [HML), Thm. 20], it is claimed that there is an excision sequence, but the author thinks the
proof is not correct. In general, the Mittag-Leffler condition for each term in a right exact sequence
of inverse systems is not sufficient for its completion being right exact.
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9.1.2 Gysin maps for vector bundle stacks

Proposition 9.1.10 ((Extended) homotopy property). Let w : E — X be a vector
bundle torsor on an algebraic stack X. Then the smooth pullback

7 1 Qu(X) = Qurdimin) (E)
is an isomorphism.

Proof. By Lemmal[9.1.11lbelow, the smooth pullback 7* can be identified to

im (mr)*: lim Q(T)— lm Q.(E7)

(T,1)eSm x (T,1)eSm x (T,1)eSm x
where E7 := t*(E) and iy : Er — T is the base change of 7 to 7. Since each
(m7)* is an isomorphism, so is its inverse limit 77*. O

We need the following lemma to complete the proof of Proposition9.1.101

Lemma 9.1.11. Let f : X — Y be a smooth quasi-projective morphism of alge-
braic stacks. Consider the functor

Smy —8Smx:(s:85 = Y)— (sx:8 xy X — X).

Then the the induced map on the limits

QX)) = lim Quraim(T) — UM  Quigime(S xy X)
(T,1)eSm x (S,5)eSm )y
is an isomorphism.

Proof. We first express the above canonical map

®: lm  Qugime(T) = lim  Qyigim (S xv X)
(T,1)eSm x (S,5)eSm )y

as the following formula
Dla)(s:S - Y)=a(S xy X 5 X) e Q.(S xy X)

where p, is the second projection map.
We claim that the inverse of @ is the map

Y:oolim Quaim(Sx) = lim Quygim() (T)
(S,5)eSm )y (T,1)eSm x
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given by the formula
YPB)(t:T —>X)=I7B(fot:T — X)) eQ,(T)

where I, : T — T xy X is the graphof 7 : T — X over Y.
It is easy to show ¥ o @ = id. Indeed, from the definitions, we have

Yod(a)(t) =T (D(a)(fot)) =T (a(T xy X 22, X)) = a(t)
for a € lim /X Qqdim(n(T) and (T, 1) € Smx.

<~—(T,1)eSm
The other direction is quite subtle. We first write

o W(B)(5) = WB)(S xy X 25 X) =% (B(fops: S xy X — )
where '), = (p1,p2,p2) : S xy X — S xy X xy X. Since
fopr=s0p:§S xy X >V,

and B(—) commutes with the transition maps in liil( $.5)e8m)y Qidaim(n) (S Xy X), we
have

B(f o p2) = B(sopi) = pi5(B(s)).
where p13 1 S Xy X xy X — § xy X is the projection map to the first and the third
factor. Then we have

I7 o pi3(B(s)) = idg,x(B(s)) = B(s).
Hence ¥ o ® = id as desired. O

Corollary 9.1.12. Let r : € — X be a vector bundle stack on an algebraic stack
X. Assume that € is globally presented, i.e., € = [E|/Ey| for some vector bundle
Ey and E|. Then the smooth pullback

7 1 Q0 (X) = Quvdinin) (€)
is an isomorphism.

Proof. Letp : E; — € = [E|/E,] be the projection map. Then p is a Ey-torsor. By
the functoriality of smooth pullbacks in Proposition we have a commutative
diagram

T ~ p* ~

Q(X) == 0(€) L~ Q(E)).

By the extended homotopy property in Proposition@.I.T0, p* and r};, are isomor-
phisms. Hence 7 is also an isomorphism. O
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Definition 9.1.13 (Gysin pullback). Let ¢ : € — X be a vector bundle stack on
an algebraic stack X. We define the Gysin pullback

A~

0'@ : Q*((f) - Q*fdim(n@)<X>
of the zero section O¢ : X — € as follows:

1. Case I. Assume that X has the resolution property. Then the vector bundle
stack € is globally presented and the smooth pullback i : Q(X) — Q(€)
is an isomorphism by Corollary We define the Gysin pullback as the
inverse

~

0& = (ﬂz)il : Q*((E) - Q*—dim(mg)(X)‘
2. Case 2. Consider the general case. We define the Gysin pullback
Og : Qul(€) = Qudim(ne)(X)

via the formula
0g(@)(r) = O, (a(7))

for & € Q,(€) and (T,1) € Smyy, where 05 Qu(€lr) = Qs dimre, ) (T)
is the Gysin pullback in Case 1.

9.2 Virtual pullbacks

In this section, we generalize virtual pullbacks in Chow groups (see Chapter 2)) to
algebraic cobordism. The main obstruction is

9.2.1 Specialization maps

Let f : X — Y be a morphism of quasi-projective schemes. Given a global fac-
torization of f,1.e., a commutative triangle

Z

s
/f
!

X——Y
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where f is a closed closed embedding and £ is a smooth morphism, the intrinsic
normal cone can be written as a global quotient stack

Cx/z }
Tzvlx ]

Cxyy = {

Heuristically, we can form the following diagram

SPx/z

Z Cx/z
Y
Y M%@X/Y

where k is a T/y-torsor.

Definition 9.2.1 (Specialization map). Let f : X — Y be a morphism of quasi-
projective schemes. Given a global factorization

Z 9.2.1)

A

X——Y

by a closed closed embedding f and a smooth morphism f, we define the special-
ization map as the composition

SPx/z 3D BN

i (k")
SPx/y - Q.(Y) — Qu(Z) — Qu(Cx/z) —— Q.(Cxyy)
where k* is an isomorphism by the extended homotopy property.

Lemma 9.2.2 (Well-definedness). The specialization map spyy in Definition[9.2.1]
is independent of the choice of the global factorization (9.2.1).

Proof. Choose another factorization X Loz Loy of f by a closed immersion f/

—
and a smooth morphism f for some quasi-projective scheme Z’. After replacing
7' by Z xyZ', we may assume that there is a smooth morphisma : Z' — Z making
the diagram
Z/
/X
X7ty
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commute. Then we have a commutative diagram

/. M;(/Z' <—)CX/Z’

1
Z—— My, ~——Cxsz

where the square are cartesian and the vertical arrows are smooth. Since Gysin
pullbacks commute with smooth pullbacks, we have the equality

b* o spy; = spyz o a’.
Hence the functoriality of smooth pullbacks completes the proof. O

Remark 9.2.3 (Generalization). Let f : X — Y be a quasi-projective morphism
of algebraic stacks. Assume that Y has a vector bundle torsor Y’ which is a quasi-
projective scheme. Then we can define the specialization map spy y, via the com-

mutative square
SPx/y

Q,(Y) it - ﬁ*(@x/y)
L , prl/yl ~ l
Q*<Y> Q*(gX’/Y’>

where the vertical arrows are isomorphisms by the homotopy property in Propo-

sition[9.1.101

Proposition 9.2.4 (Bivariance). Let

X/ L Y/

L

X——Y

be a fiber diagram of quasi-projective schemes. Form a commutative diagram

(‘:X'/Y'(—j> G:X/Y|X’ —X

s /
g/l/ l g l g

Gx/y %X
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1. If g is a projective morphism, then we have
SPx/y © 8+ = (&")x 0 SPyryr 1 Qu(Y') — Q. (Cxpy).
2. If g is a smooth morphism, then j is an isomorphism and we have
Py © 8" = 8" 0 5Py 1 Qu(Y) = Qu(Cuyr).
Proof. Consider the commutative diagram

Vs M, <——Cpy

ok

Y My, ~——Cxy

of cartesian squares. The statements follow from the fact that the refined Gysin
pullbacks commute with projective pushforwards and smooth pullbacks. O

Proposition 9.2.5 (Vistoli’s equivalence). Let

x -y

ool
x—L.y

be a fiber diagram of quasi-projective schemes. Consider the fiber diagram

fl/
G:X/Y|X’ X x! (SY’/Y|X’ - (SY’/Y|X’ - (SY’/Y

| L,

(SX/Y|X’ X/ Y/

)
f

Cx/y X Y

and the canonical closed embeddings

c_a b 3
cgGx/y|x//¢x/y (SX/Y|X/ XX’ (SY//Y|X' @Gy’/y‘x’/csy’/y‘
Then we have

a; o SPGX/le,/GX/Y O Spxyy = by o SPeys ylyr /6y yy © SPyrjy

(see Remark[9.2.3)).
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Proof. Choose factorizations

J Ll

by closed embeddings and smooth morphisms. Consider the induced cartesian
square of closed embeddings

X =X sY:=ZxyY

|

Xi=Xxy We——sVY:=Zx, W

Then the argument in Proposition 2.1.22] also works for the above square and we
have
(9.2.2)

dy O Spg.

osSpss = b, o o SP /5
/715, v SPx/v by Sp@?l/?\f('/%'/? SPy/v-

Form a commutative diagram

a b
Coytorssys— Sy <2 Copale =8y 055

i | i

c a b B
€¢X/Y|x’/¢X/Y G:X/Y|X/ Xx’ G:Y//Y|X' G:Gy’/y‘x’/@y’/y'

where the horizontal maps are closed embeddings and the vertical maps are vec-
tor bundle torsors of same rank. Hence the squares are cartesian and the identity
(©.2.2) proves the desired identity. i

Proposition 9.2.6 (Kim-Kresch-Pantev’s equivalence). Let

x1.oy_%.7
\_/
gof

be a commutative diagram of quasi-projective schemes. Let

b
@X/Gy/z(—a> (SXXAI/M;/Z <—)(‘:X/Z
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be the canonical closed embeddings. Then we have

2y)

Y/Z

s © SPx/g,,, © SPyjz = by o SPx/z - Q.(2) — Q‘((SXXAl/M

(see Remark[9.2.3)).

Proof. Form a commutative diagram

)((H Y/(H Z//
f/ g//
N
Y(%, Z,
8
X l
Z
such that the horizontal arrows are closed immersions, the vertical arrows are
smooth and the square is cartesian. Then we have an induced factorization

1 o
X xP'—=M;,

Y

M,

This gives us a commutative diagram

CX/Cy/ /2 —— Cxxp /M° (—)CX/Z”

Y/ /Z//

| o,

b
(‘:X/Gy/Z% @xXPI/M;/Z (—)(SX/Z

of cone stacks. Since the vertical arrows are torsors of vector bundles of the
same rank, the two squares are cartesian. It suffices to prove the lemma for the
closed immersions ' : X — Y and g” : Y/ — Z” since specialization homo-
morphisms commute with smooth pullbacks. Then the usual arguments using the

double deformation space M} ., e (see Lemma[2.3.19] and the proof of The-

yl/Zl/
orem [2.3.12)) remain valid since all the deformations spaces and the cone stacks
are quasi-projective schemes in this case. O
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9.2.2 Virtual pullbacks and functoriality

Definition 9.2.7 (Virtual pullbacks). Let f : X — Y be a morphism of quasi-
projective schemes and let ¢ : F — Ly/y be a perfect obstruction theory. We
define the virtual pullback as the composition

Pxy A N A 0
f1 Q1) = Qu(Sxpy) 5 Qu(E(F)) = Au(X)
where ¢ : €y/y < €(F) denotes the closed embedding induced by the obstruction
theory ¢.

Definition 9.2.8 (Virtual cobordism classes). Let X be a quasi-projective scheme
equipped with a perfect obstruction theory ¢ : F — Ly. We define the virtual
cobordism class as

[X]"" := p'[Spec(C)] € Q.(X)

where p : X — Spec(C) denotes the projection map.

Remark 9.2.9 (Shen’s construction). The virtual pullback in Definition[9.2.7] can
be defined without using the limit algebraic cobordism Q. Indeed, let f : X — Y
be a morphism of quasi-projective schemes and let ¢ : F — Lx)y be a perfect
obstruction theory. Given a global factorization

A

X——Y

and a global resolution F = [F/F,], we can form a fiber diagram

D—roc ' .F

R

Cx/z Cx/x© C(Fxy).

Then we can define the virtual pullback as the composition

| SPx/z a* b*)~! i 0;
£ Qu(Y) 5 0,(Crj) > 0u(D) Lo 0.(C) 25 Qu(F1) =5 Qu(X).

(Here the obvious degree shifts are ignored.) This approach was introduced by
Shen in [Shenl] to define the virtual cobordism classes (when Y = Spec(C)).
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Proposition 9.2.10 (Bivariance). Let

Xl L Y/

o,k

X——Y

be a cartesian square of quasi-projective schemes. Let ¢ : F — Lyy be a perfect
obstruction theory and let r := rank(F).

1. If g is a prorjective morphism, then we have
frogi=2go(f) 1 QuY) - Qupr(X).

2. If g is a local complete intersection morphism, then we have
(f) og = (&) of 1 QuY) = Qui(X).

Proof. It follows directly from Proposition O

Proposition 9.2.11 (Commutativity). Let

x Loy

o,k

X——Y

be a fiber diagram of quasi-projective schemes. Let ¢x)y . Fx)y — Ly and
&y v : Fyryy — Ly )y be perfect obstruction theories. Then we have

gof=rfog 1 QuY) = Quirpire(X)
where r(f) := rank(Fy/y) and r(g) := rank(Fyy).
Proof. It follows directly from Proposition[0.2.5] m|
Theorem 9.2.12 (Functoriality). Let
xLoy—t.z

gof
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be a commutative diagram of quasi-projective schemes. Let

(bx/v : Fxyy = Lxyy, ¢vjz 1 Fyjz = Lyjz, ¢x/z : Fxjz = Lx/z)

be a compatible triple of perfect obstruction theories in the sense of Definition

2.3.11l Then we have
(go f)! = flog': Qu(Z) = Qi () 1r(5) (X))
where r(f) := rank(Fx/y) and r(g) := rank(Fy /).
Proof. If follows directly from Propostion m|

Corollary 9.2.13 (Virtual pullback formula). Let f : X — Y be a morphism
of quasi-projective schemes. Let (¢x/y, ¢y, ¢x) be a compatible triple of perfect
obstruction theoreis in the sense of Definition[2.3. 11l Then we have

X = £V e, x)
Corollary follows directly from Theorem and Definition

Remark 9.2.14. The compatibility condition in [KP1, Thm. 4.4] is not correct
since the truncated cotangent complexes does not form a distinguished triangle in

general. Thus we should use (1) the full cotangent complexes or (2) the compati-
bility in Definition 2.3.11]to make [KPI, Thm. 4.4] correct.

9.3 Cosection localization

In this section, we generalize Kiem-Li’s cosection localization [KL1]| to algebraic
cobordism.

9.3.1 Cosection-localized Gysin map

The cosection-localized Gysin map in Chow groups are defined via blowup method
and the abstract blowup sequence played a key role. We note that we also have an
abstract blowup sequence in algebraic cobordism.

Proposition 9.3.1 (Abstract blowup sequence). Let

Lk

7t ox
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be an abstract blowup square (see Definition|A.2.6) of quasi-projective schemes.
Then we have a right exact sequence

We refer to Vishik [Vish, Lem. 7.9] for the proof of Proposition©.3.11

Remark 9.3.2. An alternative proof of Proposition is to use Voevodsky’s
algebraic cobordism MGL in [?]. Indeed, In [Lev2], Levine constructed its Borel-
Moore version MGL' ([Lev2, Prop. 4.1]) and show that it has a long exact lo-
calization sequence ([Lev2, p. 559]). In [Lev3], Levine show that the canonical
map

Q. — MGL/

PER]

is an isomorphism. Then the abstract blowup sequence follows immediately from
the long exact localization sequence (as in [Ful, Prop. 18.3.2]).

Remark 9.3.3. We note that Proposition also holds when X is a cone stack
over a quasi-projective scheme. Indeed, the resolution property of quasi-projective
schemes assure that X has a vector bundle torsor which is a quasi-projective
scheme. Then the extended homotopy property in Proposition 2.3.1] reduce the
situation to the case when X is a quasi-projective scheme.

Recall that ¢;(LY) # —c;(L) in algebraic cobordism due to the formal group
law. Still we have a power series g(u) € Q. (Spec(C))[[u]] such that

ci(LY) = ci(L) - glei(L)) = Qu(X) = Qui(X)
for any line bundle L on a quasi-projective scheme X.

Definition 9.3.4 (Intersection product with anti-effective divisor). Let D be an
effective Cartier divisor of a quasi-projective scheme X. We define the intersection
product with the divisor —D as

(=D)- 1= gler(L)) o : Qu(X) > Q4 (D)
where L := Ox(D) and i : D — X is the inclusion map.

We can now define the cosection-localized Gysin map as in Definition [3.3.2]
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Definition 9.3.5 (Cosection-localized Gysin map). Let X be a quasi-projective
scheme, FF be a perfect complex of tor-amplitude [—1,0], and o : F¥[1] — Ox be
a cosection. We use the notations in the blowup diagram in subsection 3.3.11 We
define the cosection-localized Gysin map

0; (R(F,0)) = A«(X(0))

G(F),o ¥

as the unique map that fits into the commutative diagram

2, (E(K])) 2 Q4 (€(K)) @ u(€(Flx(r)) —> R (R(F. ) ——0

Q. (X(0)) Q.(X)

! !
(uv) _____OUE(P),(r Og (g Ok

where the top horizontal sequence is the abstract blowup sequence (see Remark
0.3.3) and the two maps u and v are given as follows:
w: Q,(6(5)) 22 0,(%) C2 u(D) = 0.(X(0))

G(]F\x((r))
v Qu(C(Flx(r) —

The cosection-localized Gysin map in Definition is well-defined (cf.
Lemma [3.3.3).

Proposition 9.3.6 (Bivariance). Let f : Y — X be a morphism of quasi-projective
scheme. Let F be a perfect complex of tor-amplitude [—1,0] on X and o : F¥[1] —
Ox be a cosection. Form a fiber diagram

Q. (X(0)).

f
K(Fly,oly) —= K(F, o)

L,

Y X.

1. If f : Y — X is a projective morphism, then we have
e 0 O0syy oty = Ocmyo o fu : Qu(R(Fly, oly)) — Qu(X).
2. If f: Y — Xis alocal complete intersection morphism, then we have
flo Og(mmy) = ogz(F)ﬂ of 1 Q(K(E,0)) — Q. (Y).

We omit the proof of Proposition[9.3.6]since it is identical to that in Proposition

B34
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9.3.2 Cosection-localized virtual cobordism classes

Definition 9.3.7 (Cosection-localized virtual cobordism class). Let X be a quasi-
projective scheme equipped with a perfect obstruction theory ¢ : F — Ly and a
cosection o : FY[1] — Ox. We define the cosection-localized virtual cobordism
class as

[X]'° = Oé(F)’U 0™ o SPx/Spec(C) [Spec(C)] € Q.(X(0))

B is the cosection-localized Gysin map in Definition 0.3.3] ("¢ :

(Cx)rea — K(F, o) is the inclusion map given by the cone reduction lemma in
Proposition 3.1.9] and spy spe.(c) 18 the specialization map in Definition0.2.11

where Oé

Proposition 9.3.8 (Deformation invariance). Let f : X — B be a morphism of
quasi-projective schemes. Assume that B is smooth. Form a fiber diagram

Xpy——&X

b

b} >8

where b € B. Let ¢ : E — Ly be a perfect obstruction theory and o : E¥[1] —
Oy be a cosection. Assume that the composition

Ox 5 E[-1] % Ly/p[—1] S, 0y

X

vanishes. Then there exists [X]™® € Q,.(X (o)) such that

[Xolloe = i3[X]ioe € Qu(Xb(0s))

loc — loc

forall b e B.

Remark 9.3.9 (Cosection-localized virtual pullback). Let f : X — Y be a mor-
phism of quasi-projective schemes equipped with a perfect obstruction theory
¢ : F — Lyy satisfying the cone reduction property (see Definition [3.1.7) and
a cosection o : F¥[1] — Oyx. We define the cosection-localized virtual pullback
as the composition

ored !
SPx/y

f()!_ . Q*(Y) _— A*(GX/Y) = ﬁ*((GX/Y)red) i*—_’ ﬁ*(R(F’ O-)) O—Q(r_) 'Q'*(X(O-))

o,red

where (7" 1 (€x/y)rea — K(F, o) is the inclusion map given by the cone reduc-
tion property.
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9.3.3 Reduced virtual cobordism classes

Definition 9.3.10 (Reduced virtual cobordism class). Let X be a quasi-projective
scheme equipped with a perfect obstruction theory ¢ : F — Ly and a cosection
o : FY[1] — Ox. Assume that h°(c") : h'(F¥) — Oy is surjective so that the
kernel cone stack R(E, o) = €(E,,) is a vector bundle stack. We define the reduced
virtual cycles as

[X]0 = Ofg(g, ) © 7 0 8Py sspec(cy [SPEC(C)] € Qu(X)

where OE(F ) is the Gysin map in Definition 0.I.13} ("¢ : (Cx)eq — C(F,) is
the inclusion map given by the cone reduction lemma in Proposition 3.1.9] and

SPx spec(c) 18 the specialization map in Definition0.2.11

Proposition 9.3.11 (Deformation invariance). Let f : X — B be a morphism of
quasi-projective schemes. Assume that B is smooth. Form a fiber diagram

Xp——X
lfb lf
{b)——3
where b € B. Let ¢ : E — Ly be a perfect obstruction theory and o : EV[1] —

Ox be a cosection such that h°(o) : h'(EY) — Oy is surjective. Assume that the
composition

Ox 5 E[-1] % Ly/p[—1] S, Q4
vanishes. Then there exists [X]|" € Q.. (X) such that

(X5 = 1, [X]™ € Q.(Xs)

X

forallb € B.

Remark 9.3.12 (Reduced virtual pullback). Let f : X — Y be a morphism of
quasi-projective schemes equipped with a perfect obstruction theory ¢ : F —
Ly/y satisfying the cone reduction property (see Definition[3.1.7) and a cosection
o : FY[1] — Ox. Assume that o := h%(0) : h' (F¥) — Oy is surjective. We define
the reduced virtual pullback as the composition

ored
SPx/y

! A A ’-* P 01‘3 o
Jo 1Y) = Qu(Cypy) = Qu((Cxyy)rea) = Qu(E(Fy)) — Q. (X)

where (7" : (Cx/y)rea — R(F, ) = €(F,) is the inclusion map given by the cone
reduction property and F,, := cone(o¥[1] : Ox[1] — F).
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9.4 Torus localization

In this section, we generalize torus localization of Edidin-Graham [EG3] and vir-
tual torus localization of Graber-Pandharipande [GP] in Chow groups to algebraic
cobordism. We follow the ideas and notations in Chapter[7|

9.4.1 Localization of algebraic cobordism

Notations We fix some notations on torus equivariant algebraic cobordism.

1. Let T := G,," be the r-dimensional torus.

2. Let T := Grp(T, G,,) = Pic"(Spec(C)) = Z®" be the character group.
3. Let QF(Spec(C))ioc := Q1 (Spec(C))[e1(&) ™ u0ei)-

4. For a quasi-projective scheme X with a linear action of T, we let

QI(X)IOC = Q}:(X) ®Q,Tk(5pec(C)) QE(SPGC(C))mc-

Theorem 9.4.1 (Localization of algebraic cobordism). Let X be a quasi-projective
scheme with a linear action of T. Let i : X* < X be the inclusion map of the fixed
locus and j : X\XT < X be the inclusion map of the complement.

1. Then we have a short exact sequence
0—— Q. (XTI~ QT(x) L= QT (X\XT) — 0.
2. Moreover we have an isomorphism
it (X ioe = QF(X)ioc

We refer to [KP1, Thm. 6.1] and [KP1, Cor. 6.4] for the proof of Theo-
rem [9.4.1] The proof is quite complicated than the standard arguments for Chow
groups and K-theory in Edidin-Graham [EG3]] and Thomason [Tho]. The main
difficulty is that there is no localization sequence for equivariant algebraic cobor-
dism.

Remark 9.4.2. The results in Theorem were originally claimed by Krishna
in [Kri2, Thm. 4.1] and [Kri2, Thm. 7.1], using the localization sequence of
Heller-Malogon-Lopez in [HML, Thm. 20]. However the author thinks the proof
of [HML!| Thm. 20] is not correct (see footnote [Ilin Remark [0.1.9).
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Corollary 9.4.3. Let X be a quasi-projective scheme and E be a vector bundle on
X x BT. Assume that E™ = 0. Then the equivariant Euler class

e"(E) : QL (X)ioe — QL (X)ioc
is an isomorphism.

Proof. By Theorem[9.4.1]
(0£) + Q4 (Xioc — Q4 (E)ioc
is an isomorphism. The formula
¢! (E) = 0z 0 (0r)s

completes the proof since 0}, is an isomorphism by the homotopy property. O

9.4.2 Localization of virtual cobordism classes

In this subsection, we prove the virtual torus localization formula for virtual cobor-
dism classes.

Definition 9.4.4 (Equivariant virtual pullback). Let f : X — Y be a T-equivariant
morphism of quasi-projective schemes with linear T-actions. Assume the T-action
on X is trivial. Let ¢ : F — Lx/y be a T-good obstruction theory (see Definition
[Z1.12)). Choose a resolution F™ = [F~2 — F~!]. Then the composition

w . Fﬁx @F_l[l] _ Fﬁx @Fmov =F — LX/Y

is a perfect obstruction theory. We define the T-equivariant pullback as the com-
position
| 1, eT(Fy))~!
fT . Q}:(Y)IOC —w’ QT(X)IOC M—’ QT(X)IOC
where fl/i is the virtual pullback associated to the perfect obstruction theory ¢ and

the equivariant Euler class e (F,) of F, := (F~2)" is invertible by Proposition
9.4.3

It is easy to show that the equivariant virtual pullback in Definition [9.4.4] is
independent of the choice of resolution F™¥ = [F~2 — F~!].
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Theorem 9.4.5 (Functoriality). Consider a commutative diagram of quasi-projective
schemes with linear T-actions

f g

X—Y——=7Z7

gof

where f and g are T-equivariant morphisms. Assume that the T-action on X is
trivial. Let ¢x)y . Fx)y — Lxyyv, ¢x/z : Fx;z — Lx;z be T-good obstruction
theories and ¢y;; : Fy;; — Ly;z be a T-equivariant perfect obstruction theory.
Assume that there exists a morphism of distinguished triangles

I*(Fyz) Fx/z Fx/y
lf* (¢v/z) l‘pX/Z ¢;(/Y
't
Tz_lf* (Ly/z) Lx/z L;(/Y

for some ¢;(/Y such that ¢xy = ro ¢;{/Y. Then we have

(8o f)vT = fT‘ og': QI(Z)IOC - QI(X>IOC~
Proof. Consider a resolution

mov —2 —1
P = [F2 - F' - 0]

by vector bundles 2 and F~!. Then we can form a compatible triple of perfect
obstruction theories as follows:

Fy)z|x If F%Y@F%[l] Fy/z|x[1]
\
|
‘ | \l//x/z l \ H
\ \
Fy)z|x Fy/z Py y Fyz|x[1]
/
¢y/zl ¢x/zl / ¢;(/yl/ ¢y/zl
¥
T>71Ly/z|x Lx/z L;(/Y T>71Ly/z|x[l].

By the functoriality of ordinary virtual pullbacks in Theorem [2.3.12] we have

(82 1)y, = fir, 08 ¢ AT(Z) — AT(X).
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By the octahedral axiom, we obtain a distinguished triangle

oY —— o — F2[2]

Hence F™" = F[1] for some vector bundle F and Fyiz = [F? - F — 0].
Therefore by the definition of equivariant virtual pullbacks in Definition[9.4.4] we
have

(gof)y =€"(F2)'o(go Py : QL (Z)1oe = Q4 (X)ioe
fr= () o f s QN (F)ioe — QX
where F, := (F~2)". Then we have the desired equality since the equivariant

Euler class eT(F,)~! commutes with the virtual pullback g'. O

Theorem 9.4.6 (Localization of virtual cobordism class). Let X be a quasi-projective
scheme with a linear T-action. Let ¢ : E — Ly be a T-equivariant perfect obstruc-
tion theory. Let XT be the fixed locus and ¢yr be the induced perfect obstruction
in Definition Then we have

] = . (&) c O1(X)

eT (Nvir)

where eY(N'F) := eT(Fy)/e*(F,) for a resolution F™ = [F~! — F°|, and and
i: XY < X is the inclusion map.

Proof. Tt follows from Theorem [9.4.1] and Theorem as in the proof of
Theorem [7.2.3] O
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Kimura sequence for Artin stacks

In this appendix, we extend the Kimura sequence [Kim] to Kresch’s Chow groups
[Kre2]] of Artin stacks. This is based on [BP].

A.1 Kimura sequence for Artin stacks

The main result in this section is the Kimura sequence for Artin stacks.

Theorem A.1.1 (Kimura sequence). Let p : Y — X be a proper representable
surjective morphism of algebraic stacks with affine stabilizers. Consider the in-
duced diagram

p1
Y xxY ?; ) e
2
where p, and p, are the projection maps. Then we have a right exact sequence

(Pl)*—(Pz)*

0

A (Y xx Y) A (Y) —E— A(X)
where (p1)«, (P2)s« and p, are the proper pushforwards of [BS| Appendix B].

Proof. Since the Chow groups are invariant under the nilpotent thickenings, we
may assume that X and Y are reduced.
We first prove the surjectivity of the proper pushforward

Ps s AL(Y) = Al(X).

‘We will use the Noetherian induction on X. Since X has affine stabilizers, there ex-
ists a non-empty open substack U which is the quotient stack of a quasi-projective
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scheme by a linear action of a linear algebraic group by [Kre2| Prop. 3.5.2]. Then
we have a morphism of right exact sequences

Ai(Zy) —=A,(Y) —= A, (Uy) —=0

L

A (Z) —=A,(X) —=A,(U) ——=0

where Z = X\U is the complement as a reduced closed substack of X. By the
induction hypothsis, the left vertical arrow is surjective. By a diagram chasing
argument, we may replace X by U, and assume that X is the quotient of a quasi-
projective scheme by a linear action of a linear algebraic group. By replacing X by
Totaro’s approximation [Tot], we may assume that X is a quasi-projective scheme.
Then Y is a separated algebraic space and hence there is a projective surjection
q: Y - Y froma quasi-projective scheme Y by [LMB! Cor. 16.6.1]. Since the
composition
AL(Y) 55 AL(Y) 75 ALX)

is surjective by [Kim|, Prop. 1.3], p. : A.(Y) — A.(X) is also surjective.

We then prove the exactness on the middle. As in the previous paragraph, we
will use the Noetherian induction on X. Choose a non-empty open substack U of
X which is the quotient stack of a quasi-projective scheme by a linear action of
a linear algebraic group. By generic smoothness, we may further assume that U
is smooth. Let Z = X\U be the complement as a reduced closed substack of X.
Form a commutative diagram

A*(ZY XZZY)—>A*(Y Xx Y)—>A*(UY XU Uy)HO

Ad(Uys 1) Au(Zy) AY) —— A, (Uy) 0
A (U3 1) A.(2) AL(X) A,(U) 0
(l) 0 0 0

where the rows are exact by [Kre2, Prop. 4.2.1] since U and Uy are global quotient
stacks. The first column is well-defined by [BS, Appendix B.12] and is surjective
by Lemma [A.1.2] below, after replacing U by Totaro’s approximation [Tot]. The
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second column is exact by the induction hypothesis. By a diagram chasing argu-
ment, it suffices to show that the fourth column is exact. Hence by replacing X by
U, we may assume that X is a quotient stack of a quasi-projective scheme by a
linear action of a linear algebraic group. Replacing U by Totaro’s approximation
[Tot], we may further assume that X is a quasi-projective scheme. Then Y is a sep-
arated algebraic space. By the Chow lemma in [LMB| Cor. 16.6.1], there exists a
projective surjective map q : Y - Y froma quasi-projective scheme Y. Form a
commutative diagram

ALY x5 Y) —= A, (Y) —= A (X) —=0

l o

A(Y x5 ¥) —= A, (Y) —= A (X) —=0

where the upper row is exact by [Kim, Thm. 1.8] and the colmumns are surjective
by the result in the first paragraph. A diagram chasing argument shows that the
lower row is also exact. O

We need the following lemma to complete the proof of Theorem [A. 1.1l

Lemma A.1.2. Let p : Y — X be a proper representable surjective morphism
from a separated DM stack Y to a smooth quasi-projective scheme X. Then the
proper pushforward (in [BS, Appendix B])

Pt ALY 1) > A(X5 1)
is surjective.

Proof. We may assume that Y is a smooth quasi-projective scheme. Indeed, by
the Chow lemma in [LMB, Cor. 16.6.1], there exists a projective surjective map
q: Y — Y from a quasi-projective scheme Y. By resolution of singularities, we
may further assume that Y is smooth. It suffices to show that the composition

~

A (Y1) 5 ALY D) 25 AL X 1)
is surjective. Replace Y by Y.

Choose an element B € A, (X; 1). Since p, : A.(Y) — A,(X) is surjective by
[Kim, Prop. 1.3], there exists a cycle class @ € A,(Y) such that

ps(a) = [X] € A(X).
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Consider a fiber diagram
Yel-y x X

lp lpxidx

XA xxX

where A is the diagonal map and I' is the graph of p. Since both ¥ x X and X x X
are smooth, we have

B =A([X] x B) = Ao (p xidy)s(a x B) = p«(T"(a x B)),
which completes the proof. O

There are technical obstructions for generalizing Theorem[A.T.T]to proper DM
morphisms.

Remark A.1.3 (Generalization to proper DM morphism). We may want to gen-
eralize the Kimura sequence in Theorem [A.I.1] to proper DM morphisms. There
are two technical obstructions for doing this:

1. We need a localization sequence
Ay (U 1) —= A (Z) —= A (X) — A, (U) —=0

for closed immersion Z <— X of algebraic stacks with affine stablizers when
U := X\Z is not a global quotient stack (for the quotient stack of a separated
DM stack by an action of a linear algebraic group).

2. We need a pushforward
Pt ALY 1) > A(X5 1)

for a proper DM morphism p : Y — X of algebraic stacks with affine
stabilizers.

Both of these obstructions can be resolved by comparing Kresch’s Chow groups
[Kre2] and Khan’s motivic Borel-Moore spectra [Khan]. We plan to study this in
[BP].
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A.2 Chow lemma for Artin stacks

The Kimura sequence in Theorem [A.T.1]is especially useful if an algebraic stack
has a proper cover by an algebraic stack whose intersection theory is well-understood,
e.g., global quotient stacks. For the Chow groups with rational coefficients, the
DM stacks behave like schemes. Thus we will work with the quotient stacks of
DM stacks by linear algebraic groups.

We introduce the following definition.

Definition A.2.1 (Proper cover by quotient stack). We say that an algebraic stack
X admits a proper cover by a quotient stack it there exists a proper representable
surjective morphism

p:Y—-X

from the quotient stack ¥ = [P/G] of a separated DM stack P by an action of a
linear algebraic group G.

We observe that the class of algebraic stacks that admit proper covers by quo-
tient stacks is stable under basic operations.

Proposition A.2.2. Let X, Y, and Z be algeabraic stacks.

1. Let f : X — Y be a proper representable surjective morphism. If X admits
a proper cover by a quotient stack, then so is Y.

2. Let f : X — Y be a separated DM morphism. If Y admits a proper cover by
a quotient stack, then so is X.

3. LAssume that the diagonal of Z is separated. If X, Y, and Z admit proper
covers by quotient stacks, then so is the fiber product X x Y.

The Chow lemma for Artin stacks is that étale-locally quotient stacks admit
proper covers by quotient stacks.

Proposition A.2.3 (Chow lemma). Let X be an algebraic stack. Assume that there
exists a separated, representable, étale, surjective map u : U — X such that U
is the quotient stack of a separated DM stack by an action of a linear algebraic
group. Then X admits a proper cover by a quotient stack.

Proposition follows by the arguments in [LMB) Cor. 16.6.1]. We refer
to [BP] for the details.
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Example A.2.4 (Stacks with reductive stabilzers). Let X be an algebraic stack
with reductive stabilizers and affine diagonal. Then X is étale-locally a quotient
stack by [AHR]. Consequently, X admits a proper cover by a quotient stack.

Example A.2.5 (Cone stacks). Let X be a separated DM stack. Let € be a cone
stack on X. Then € is étale-locally a quotient stack. Hence € admits a proper cover
by a quotient stack.

We obtain the abstract blowup sequence as a direct corollary. We first fix the
notion of an abstract blowup square.

Definition A.2.6 (Abstract blowup square). We say that a cartesian square of al-
gebraic stacks

J
b
SRR ¢
is an abstract blowup square if
1. pis a projective morphism,
2. iis aclosed embedding, and
3. plag: X\E — X\Z is an isomorphism.

Corollary A.2.7 (Abstract blowup sequence). Let

E—'-X
)
S ¢
be an abstract blowup square of algebraic stacks with affine stabilizers. Assume

that X admits a proper cover by a quotient stack. Then we have a right exact
sequence

(Pser i)

0.

AL (E) T2 4 (R) @ A,(2) A (X)

Proof. Choose a proper representable surjective map

f:Y—-X
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from the quotient stack of a separated DM stack by an action of a linear algebraic
group. Note that the abstract blowup square is stable under the base change. Form
a commutative diagram

A (Ey x5 Ey) — A, (Xy x5 Xy) DAL (Zy x7 Zy) = Ay (Y xx Y) =0

A.(Ey) A (Xy) ® AL (Zy) A (Y)—=0
A.(E) A(X) D AL(Z) Al (X) —=0
0 0 0

where the columns are exact by Theorem [A.I.Il A diagram chasing argument
shows that the exactness of the top two rows will imply the exactness of the third
row. Hence we may assume that X is the quotient stack of a separated DM stack
by an action of a linear algeabraic group.

Replacing X by Totaro’s approximation [Tot], we may assume that X is a sep-
arated DM stack. By [LMB|, Cor. 16.6.1], there exists a projective surjective map
f Y — X from a quasi-projective scheme Y. By repeating the argument in the
previous paragraph, we may assume that X is a quasi-projective scheme. Then the
abstract blowup sequence follows by [Ful, Ex. 1.8.1]. |

Remark A.2.8 (Operational Chow groups). In [BHPSSI|, operational Chow groups
for Artin stacks are introduced. Using the Kimura sequence in Theorem[A. 1.1l we
can show that the operation Chow groups equal to Kresch’s Chow groups when
the algebraic stack has a proper cover by a quotient stack. We refer to [BP] for the
details.
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