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Abstract

Virtual pullbacks, cosection
localization, and Donaldson-Thomas

theory of Calabi-Yau 4-folds

Park, Hyeonjun

Department of Mathematical Sciences

The Graduate School

Seoul National University

This dissertation is based on the four papers [KP1, KP2, Park1, AKLPR] and the

two papers in progress [BKP, BP].

The main purpose is to generalize Manolache’s virtual pullbacks and Kiem-

Li’s cosection localization to Donaldson-Thomas theory of Calabi-Yau 4-folds.

The three main applications are Lefschetz principle, Pairs/Sheaves correspon-

dence, and a foundation of surface counting theory.

A secondary purpose is to revisit virtual pullbacks and cosection localization

via the Kimura sequence for Artin stacks, derived algebraic geometry, and alge-

braic cobordism. We also prove Graber-Pandaripande’s torus localization formula

in full generality.

Key words: Virtual pullbacks, cosection localization, Donaldson-Thomas theory

of Calabi-Yau 4-folds

Student Number: 2018-20625
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Introduction

Modern enumerative geometry studies invariants defined through virtual cycles.

Moduli spaces are often singular and the fundamental cycles do not behave well.

A remarkable idea of Kontsevich [Kon] is that these moduli spaces are actually

truncations of quasi-smooth derived moduli spaces, and the fundamental cycles

of these derived moduli spaces are well behaved. Conceptually, virtual cycles are

the fundamental cycles of these derived enhancements. A rigorous mathematical

foundation of virtual cycles was later established by Li-Tian [LT] and Behrend-

Fantechi [BF] through the formalism of perfect obstruction theories.

These virtual enumerative invariants have been studied intensively during the

last three decades and many interesting structures have been discovered. The

main examples are Gromov-Witten theory [BM, Beh1] of counting curves and

Donaldson-Thomas theory [DT, Tho] of counting sheaves.

There are two powerful tools handling virtual cycles developed to compute the

virtual invariants.

A. Virtual pullbacks of Manolache [Man];

B. Cosection localization of Kiem-Li [KL1].

These two tools have vast applications in both the theoretical and computational

aspects. In particular, other effective tools such as the torus localization formula

[GP] and the degeneration formula [Li1, Li2, LW] can be shown as corollaries of

the virtual pullback formula [Man].

Recently, a new type of virtual cycles was introduced for Donaldson-Thomas

theory of Calabi-Yau 4-folds (in short DT4 theory) by Borisov-Joyce [BJ] and

Oh-Thomas [OT]. Conceptually, these virtual cycles are the fundamental cycles

of quasi-smooth derived Lagrangians of p´2q-shifted symplectic derived moduli

spaces [PTVV]. There are already rich references on virtual invariants defined

through these new virtual cycles, see [CL, CK1, CMT1, CMT2, CK2, CKM,

CT19, CT20, CT21, Boj, COT1, COT2].
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The main purpose of this dissertation is to develop analogs of the above two

key tools in DT4 theory. In particular, this proves various conjectures in DT4

theory. Moreover, this opens a theory of counting surfaces on Calabi-Yau 4-folds.

This is based on [Park1, KP2, BKP].

A secondary purpose of this dissertation is to revisit the above two key tools

via recent developments in intersection theory of Artin stacks, derived algebraic

geometry, and algebraic cobordism. This is based on [BP, AKLPR, KP1].

Background: Virtual intersection theory

Virtual cycles

Heuristically, virtual cycles are the fundamental cycles of quasi-smooth derived

enhancements. The rigorous construction in [LT, BF] only uses a classical shadow

of a derived enhancement, called a perfect obstruction theory.

We briefly summarize the construction. There are two key ingredients.

1. A perfect obstruction theory φ : F Ñ LX for a scheme X induces a closed

embedding

ι : CX ãÑ E
of the intrinsic normal cone CX into a vector bundle stack E :“ h1{h0pF_q.

2. We have a Gysin pullback of the vector bundle stack E,

0!
E : A˚pEq Ñ A˚pXq,

given by the homotopy property of Chow groups [Kre2].

The virtual cycle is then defined as the cycle class

rXsvir :“ 0!
ErCXs P A˚pXq.

Virtual pullbacks

Manolache [Man] introduced the notion of virtual pullbacks as relative versions

of virtual cycles. In the perspective of Fulton’s intersection theory [Ful], virtual

pullbacks are nothing but just the natural generalizations of the refined Gysin pull-

backs for closed embeddings to arbitrary morphisms. This is achieved through

2
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replacing normal cones by intrinsic normal cones and vector bundles by vector

bundle stacks.

More precisely, if f : X Ñ Y is a morphism of schemes with a (relative)

perfect obstruction theory φ : F Ñ LX{Y , then we have a closed embedding ι :

CX{Y ãÑ E of the (relative) intrinsic normal cone CX{Y into a vector bundle stack

E :“ h1{h0pF_q, and the virtual pullback is defined as the composition

f ! : A˚pYq spX{YÝÝÝÑ A˚pCX{Yq ι˚ÝÑ A˚pEq 0!
EÝÑ A˚pXq

where sp : A˚pYq Ñ A˚pCX{Yq is the specialization map. Thus we may view vir-

tual cycles/virtual pullbacks as generalizations of intersection theory for schemes

to algebraic stacks.

The main property of virtual pullbacks is the functoriality. Indeed, if

X
f //

g˝ f

77Y
g // Z.

is a commutative diagram of schemes with a compatible triple of perfect obstruc-

tion theories

EY{Z|X
//

��

EX{Z
//

��

EX{Y

��
LY{Z|X

// LX{Z
// LX{Y

then we have

pg ˝ f q! “ f ! ˝ g! : A˚pZq Ñ A˚pXq.
In particular, when Z “ SpecpCq, we have a virtual pullback formula

rXsvir “ f !rYsvir P A˚pXq.

It is desired to extend virtual cycles/virtual pullbacks to obstruction theories

φ : EÑ LX{Y of arbitrary tor-amplitude, where the above construction only works

when E is of tor-amplitude r´1, 0s. We will consider three variants of virtual pull-

backs in the following cases where E is of tor-amplitude r´2, 0s.

1. E is the cone of a map OXr1s Ñ F where F is of tor-amplitude r´1, 0s;

2. E is a symmetric complex of tor-amplitude r´2, 0s;

3. E is a Gm-equivariant complex where Efix is of tor-amplitude r´1, 0s.

3
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Cosection localization

Kiem-Li [KL1] showed that a virtual cycle can be localized to a smaller locus

when there is a cosection. We may view this cosection localization as a first variant

of considering an obstruction theory of tor-amplitude r´2, 0s.
A precise statement for cosection localization can be divided into two parts,

analogous to the construction of virtual cycles in the previous subsection.

1. A cosection σ : E_r1s Ñ OX for a scheme X with a perfect obstruction

theory φ : EÑ LX gives rise to a cone reduction,

pCXqred Ď K,

where K :“ h1{h0pE_
σ q is the kernel cone stack, defined as the abelian cone

stack associated to Eσ :“ conepσ_r1s : OXr1s Ñ Eq.

2. We have a cosection-localized Gysin map

0!
E,σ : A˚pKq Ñ A˚pXpσqq

where Xpσq is the zero locus of σ :“ h0pσq : h1pE_q Ñ OX in X.

The main outcome is the cosection-localized virtual cycle, defined as

rXsloc :“ 0!
E,σrCXs P A˚pXpσqq.

In particular, the virtual cycle vanishes when σ is surjective. In this case, the

kernel cone stack K is a vector bundle stack and we thus have an additional out-

come, the reduced virtual cycle, defined as

rXsred :“ 0!
KrCXs P A˚`1pXq.

Donaldson-Thomas theory of Calabi-Yau 4-folds

Donaldson-Thomas invariants were first introduced by Thomas [Tho] as virtual

counts of stable sheaves on Calabi-Yau 3-folds and Fano 3-folds. Many inter-

esting structures have been discovered, e.g. connection to Gromov-Witten the-

ory [MNOP1, MNOP2, PP] and rationality [PT1, PT2] for rank 1 invariants,

reduction of higher rank invariants via rank 1 invariants [FT], motivic property

[Beh2, JS], categorification [BBDJS, KL2, MT], and modularity for rank 0 invari-

ants [GS, TT].
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It was desired to extend the Donaldson-Thomas theory to higher-dimensional

varieties. The main difficulty was that the natural obstruction theory on moduli

spaces of sheaves on higher-dimensional varieties are no longer of tor-amplitude

r´1, 0s and the standard method of constructing virtual cycles in [LT, BF] does

not work. Thus a completely new method was required.

For moduli spaces of sheaves on Calabi-Yau 4-folds, Cao-Leung [CL] first de-

fined virtual cycles in special cases and Borisov-Joyce later defined (topological)

virtual cycles in the general case. However computation of DT4 invariants through

the Borisov-Joyce virtual cycles was believed to be very difficult.

In the groundbreaking work [OT], Oh-Thomas constructed algebraic virtual

cycles for Calabi-Yau 4-folds. This enabled us to extend the two key tools, virtual

pullbacks and cosection localization, to DT4 theory [Park1, KP2].

Oh-Thomas virtual cycles

The crucial part of Oh-Thomas’s construction is the following local model. Let

E be a special orthogonal bundle on a scheme Y and s P ΓpY, Eq be an isotropic

section. Let X be the zero locus of s in Y ,

E

��
X
� � // Y.

s

\\

Oh-Thomas constructed a localization

?
epE, sq : A˚pYq Ñ A˚pXq

of the square root Euler class
?

epEq : A˚pYq Ñ A˚pYq of Edidin-Graham [EG1],

using cosection localization of Kiem-Li [KL1].

The global construction is then given as follows. Let X be a moduli space of

stable sheaves on a Calabi-Yau 4-fold. Then X carries a symmetric obstruction

theory φ : EÑ LX of tor-amplitude r´2, 0s. If we choose a symmetric resolution

E � rB Ñ E_ Ñ B_s, then the stupid truncation gives us a closed embedding

CX ãÑ rE{Bs. Form a fiber diagram

C
� � //

����

E

����
CX

� � // rE{Bs.

5
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Then the zero section 0C : X ãÑ C is the zero locus of the tautological section

τ P ΓpC, E|Cq,

E|C

��
X
� � 0C // C.

τ

YY

The Oh-Thomas virtual cycle is then defined as

rXsvir :“
?

epE|C , τqrCs P A˚pXq.

The tautological section τ is isotropic by the derived Darboux theorem [BBJ,

BBBJ, BG] and the orthogonal bundle E is orientable by [CGJ].

Square root virtual pullbacks

Oh-Thomas virtual cycles can be generalized to the relative setting, analogous to

Manlache’s virtual pullbacks.

Let f : X Ñ Y be a morphism of schemes with an oriented symmetric ob-

struction theory φ : EÑ LX{Y of tor-amplitude r´2, 0s. Then there exists a canon-

ical quadratic function qE : CpEq Ñ A1
X on the associated abelian cone stack

CpEq :“ h1{h0pE_q induced by the symmetric form of E.

1. If the intrinsic normal cone CX is isotropic with respect to qE, then we have

a closed embedding

ι : CX{Y ãÑ QpEq
into the quadratic cone stack QpEq, defined as the zero locus of qE.

2. We have a square root Gysin pullback

b
0!
QpEq : A˚pQpEqq Ñ A˚pXq

for the quadratic cone stack QpEq.

Definition A ([Park1]). Let f : X Ñ Y be a morphism of schemes with an ori-

ented symmetric obstruction theory φ : E Ñ LX{Y of tor-amplitude r´2, 0s sat-

isfying the isotropic condition. We define the square root virtual pullback as the

composition

a
f ! : A˚pYq spX{YÝÝÝÑ A˚pCX{Yq ι˚ÝÑ A˚pQpEqq

b
0!
QpEqÝÝÝÝÑ A˚pXq.

6
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The square root virtual pullbacks are functorial in the following sense.

Theorem B ([Park1]). Let

X
f //

g˝ f

77Y
g // Z.

is a commutative diagram of quasi-projective schemes with symmetric obstruction

theories φX{Z : EX{Z Ñ LX{Z, φY{Z : EY{Z Ñ LY{Z of tor-amplitude r´2, 0s satisfy-

ing the isotropic condition, and a perfect obstruction theory φX{Y : EX{Y Ñ LX{Y

of tor-amplitude r´1, 0s. Assume that there exists a commutative diagram

D_r2s α_
//

β_

��

EX{Z
//

α

��

EX{Y

EY{Z|X

β //

φY{Z

��

D //

φ1
X{Z

��

EX{Y

��
LY{Z|X

// LX{Z
// LX{Y

for some D, α, β, φ1
X{Z

such that φX{Z “ φ1
X{Z

˝ α and the horizontal sequences are

distinguished triangles. Then for each orientation of EY{Z, there exists an induced

orientation of EX{Z such that we have

b
pg ˝ f q! “ f ! ˝

a
g! : A˚pZq Ñ A˚pXq.

In particular, when Z “ SpecpCq, we have a virtual pullback formula

rXsvir “ f !rYsvir P A˚pXq.

The two main applications of the virtual pullback formula (Theorem B) are the

Lefschetz principle (Corollary F) and the Pairs/Sheaves correspondence (Corol-

lary G).

Cosection localization

Kiem-Li’s cosection localization can be extended to Oh-Thomas virtual cycles.

In DT4 theory, there are two types of cone reduction. Let φ : E Ñ LX be a

symmetric obstruction theory on a scheme X satisfying the isotropic condition.

7
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1. If Σ : E_r1s Ñ K_ is an isotropic cosection, i.e. Σ2 “ 0 : K Ñ K_, then

we have

pCXqred Ď QpE{{Kq
where the symmetric complex E{{K is given by the reduction diagram

D_r2s α_
//

β_

��

E
Σ //

α

��

K_r1s

E{{K

β // D // K_r1s.

2. If Σ : E_r1s Ñ F is a non-degenerate cosection, i.e. Σ2 : F_ Ñ F is an

isomorphism, then we have

pCXqred Ď QpE{Fq

where the symmetric complex E{F is given by the decomposition

E “ E{F ‘ Fr1s.

From the above cone reductions, we can define two types of reduced Oh-Thomas

virtual cycles.

Definition C ([KP2]). Let X be a quasi-projective scheme with an oriented sym-

metric obstruction theory φ : E Ñ LX of tor-amplitude r´2, 0s satisfying the

isotropic condition. Let Σ : E_r1s Ñ K_ be an isotropic cosection such that

h0pΣq : h1pE_q Ñ K_ is surjective. We define the reduced Oh-Thomas virtual

cycle as

rXsred :“
b

0!
QpE{{KqrCXs P A˚`kpXq

where k :“ rankpKq.

Definition D ([BKP]). Let X be a quasi-projective scheme with an oriented sym-

metric obstruction theory φ : E Ñ LX of tor-amplitude r´2, 0s satisfying the

isotropic condition. Let Σ : E_r1s Ñ F be a non-degenerate cosection. Choose an

orientation of the orthogonal bundle pF,Σ2q. We define the reduced Oh-Thomas

virtual cycle as

rXsred :“
b

0!
QpE{F qrCXs P A˚` 1

2
f pXq

where f :“ rankpFq.

8
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Definition C can be used to count curves on hyperkähler 4-folds [COT1, COT2]

and Definition D can be used to count surfaces on Calabi-Yau 4-folds [BKP].

For isotropic cosections, we can define localized Oh-Thomas virtual cycles.

Theorem E ([KP2]). Let X be a quasi-projective scheme with an oriented sym-

metric obstruction theory φ : E Ñ LX of tor-amplitude r´2, 0s satisfying the

isotropic condition. Let σ : E_r1s Ñ OX be an isotropic cosection. Then there

exists a cosection-localized Oh-Thomas virtual cycle

rXsloc P A˚pXpσqq
such that i˚rXsloc “ rXsvir P A˚pXq, where Xpσq is the zero locus of σ :“ h0pσq :

h1pE_q Ñ OX and i : Xpσq ãÑ X is the inclusion map.

The key idea is to localize Edidin-Graham’s square root Euler classes by two

isotropic section.

Three applications

Recall that the quantum Lefschetz principle of Kim-Kresch-Pantev [KKP] re-

lates the genus zero Gromov-Witten invariants of an algebraic variety with the

Gromov-Witten invariants of its divisor. The virtual pullback formula (Theorem

B) provides an analogous formula in Donaldson-Thomas theory.

Corollary F ([Park1]). Let X be a Calabi-Yau 4-fold and D be a smooth connected

divisor of a line bundle L on X. Let β P H2pX,Qq be a curve class and n P Z be

an integer. Consider the Hilbert schemes:

In,βpXq :“ tclosed subschemes Z Ď X with rZs “ β and χpOZq “ nu
In,βpDq :“ tclosed subschemes Z Ď D with i˚rZs “ β and χpOZq=nu

where i : D ãÑ X is the inclusion map. Assume that the tautological complex

Ln,β :“ Rπ˚pOZX b Lq
is a vector bundle concentrated in degree 0, where ZX Ď In,βpXq ˆ X is the

universal family and π : In,βpXq ˆ X Ñ In,βpXq is the projection map. Then for

any orientation on In,βpXq, there exists canonical signs p´1qσpeq on the connected

components In,βpDqe of In,βpDq such that
ÿ

e

p´1qσpeqp jeq˚rIn,βpDqesvir
BF “ epLn,βq X rIn,βpXqsvir

OT

where je : In,βpDqe
ãÑ In,βpDq ãÑ In,βpXq are the inclusion maps.

9
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If we apply Corollary F to points, we can prove the Cao-Kool conjecture

[CK1] for line bundles with smooth divisors using the corresponding result for

3-folds [Li3, LP]. If we apply Corollary F to curves, we can prove the Cao-

Kool-Monavari conjecture [CKM] on the DT/PT correspondence for line bundles

with Calabi-Yau divisors, using the corresponding result for Calabi-Yau 3-folds

[Toda, Bri]. Corollary F can also be generalized to surfaces [BKP].

The virtual pullback formula (Theorem B) also provides a correspondence

between the moduli of stable pairs and the moduli of stable sheaves.

Corollary G ([Park1]). Let X be a Calabi-Yau 4-fold with fixed very ample line

bundle. Let β P H2pX,Qq be a curve class and n P Z be an integer. Consider the

following moduli spaces:

Pn,βpXq :“ tstable pairs pF, sq on X with chpFq “ p0, 0, 0, β, nqu
Mn,βpXq :“ tstable sheaves G on X with chpGq “ p0, 0, 0, β, nqu

Assume that β is irreducible and Mn,βpXq has a universal family. Then we have a

well-defined forgetful map

p : Pn,βpXq Ñ Mn,βpXq : pF, sq ÞÑ F

which has a canonical perfect obstruction theory such that

rPn,βpXqsvir “ p!rMn,βpXqsvir P A˚pPn,βpXqq

for certain choice of orientations.

Since the forgetful map p : Pn,βpXq Ñ Mn,βpXq is a virtual projective bundle,

we also have a pushforward formula. In particular, this proves the Cao-Maulik-

Toda conjecture [CMT1, CMT2] on the primary PT/Katz correspondence. More-

over, we also have a tautological PT/Katz correspondence.

One application of the cosection localization [KP2, BKP] is a foundation of

a surface counting theory on Calabi-Yau 4-folds. Since a p2, 2q-class does not

remain a p2, 2q-class under a deformation of a Calabi-Yau 4-fold in a generic sit-

uation, the Oh-Thomas virtual cycle usually vanishes. Hence we need to consider

the reduced virtual cycles almost always.

Theorem H ([BKP]). Let X be a Calabi-Yau 4-fold with nowhere vanishing Calabi-

Yau 4-form ω P H0pX,Ω4
X
q. Let v “ p0, 0, γ, β, n ´ γ ¨ td2pXqq P H˚pX,Qq be

10
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a cohomology class. Let IvpXq be the Hilbert schemes of surfaces S Ď X with

chpOS q “ v. Then there exist a canonical reduced virtual cycle

rIvpXqsred P An´ 1
2
γ2` 1

2
ργ

pIvpXqq

where ργ is the rank of the symmetric bilinear form

Bγ : H1pX, TXq b H1pX, TXq Ñ C : ξ1 b ξ2 ÞÑ
ż

X

pιξ1
ιξ2
γ Y ωq.

Moreover, the reduced virtual cycle rIvpXqsred is deformation invariant along the

Hodge locus of pX, γq.

The Hodge conjecture predicts that for any smooth projective variety X, all

rational pp, pq-classes on X are algebraic. In [Gro1], Grothendieck introduced a

variant of the Hodge conjecture, called the variational Hodge conjecture: a defor-

mation of an algebraic class is algebraic.

From the deformation invariance of reduced virtual cycles, we obtain a con-

nection of DT4 theory with the variational Hodge conjecture.

Theorem I ([BKP]). Let X be a Calabi-Yau 4-fold and let γ be a p2, 2q-class on

X. If for some v P H˚pX,Qq with v2 “ γ and q P t´1, 0, 1u

rPpqq
v pXqsred

, 0 P A˚pP
pqq
v pXqq

then the variational Hodge conjecture holds for pX, γq.

There is a technical issue in deformation invariance of DT4 theory. We resolve

this in [Park2]. Having a relative p´2q-shifted symplectic structure does not give

a Darboux chart in general and an additional condition is required. Fortunately,

this additional assumption is always satisfied if we choose sufficiently nice family

of Calabi-Yau 4-folds. We refer to [Park2] for details.

Generalizations

Torus localization via equivariant virtual pullbacks

The torus localization formula of Graber-Pandharipande [GP] is an extremely

useful tool for computing virtual invariants when there is a torus action. How-

ever, some technical assumptions were required in [GP]. This was significantly

11
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weakened by Chang-Kiem-Li [CKL], but there are still some cases where the full

generality is desired (e.g. wall-crossing formula of Joyce [Joy, GJT]).

In [AKLPR], we prove the torus localization formula for Deligne-Mumford

stacks, without any technical hypothesis. This inspired by Chang-Kiem-Li’s ap-

proach [CKL].

Theorem J ([AKLPR]). Let X be a separated Deligne-Mumford stack with a T-

action. Let φ : E Ñ LX be a T-equivariant perfect obstruction theory. let φXT be

the induced perfect obstruction theory on the fixed locus XT (see Definition 7.2.1).

Then we have

rXsvir “ i˚

ˆ rXTsvir

eTpNvirq

˙
P AT

˚pXqs

where AT
˚pXqs :“ AT

˚pXq bQrss Qrs˘1s denotes the localization by the Euler class

s of the weight 1 representation of T, eTpNvirq is the Euler class of the virtual

normal bundle (see Definition 7.2.4) and i : XT
ãÑ X is the inclusion map.

The key idea is to define an equivariant virtual pullback

i!
T : AT

˚pXqs Ñ ATpXTqs

for the inclusion map i : XT Ñ X. There is a canonical relative obstruction theory

E|mov

XT Ñ LXT{X for i : XT Ñ X, but it is of tor-amplitude r´2,´1s and thus we

needed a new construction.

Consider the following general situation: Let f : Y Ñ X be a T-equivariant

morphism of Deligne-Mumford stacks with T-actions. Let φ : E Ñ LY{X be a

T-equivariant obstruction theory. Assume that the T-action on Y is trivial, Efix

is of tor-amplitude r´1, 0s, and Emov is of tor-amplitude r´2,´1s. Then CpEq is

not necessarily a vector bundle stack, but we still have an equivariant homotopy

property

AT
˚pCpEqqs � AT

˚pXqs.

Hence we can define the equivariant Gysin pullback

p0CpEqq!
T : AT

˚pCpEqqs Ñ AT
˚pYqs.

We then define the T-equivariant virtual pullback as the composition

f !
T : AT

˚pYqs

spÝÑ AT
˚pCX{Yqs

ι˚ÝÑ AT
˚pCpEqqs

p0CpEqq!
TÝÝÝÝÑ AT

˚pXqs.

Then the above torus localization formula follows from the functoriality of equiv-

ariant virtual pullbacks (Theorem 7.1.15).

12
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Cosection localization via derived algebraic geometry

Kiem-Li’s cosection localization can be reinterpreted using derived algebraic ge-

ometry. Note that in derived algebraic geometry, quasi-smooth derived schemes

are natural analogs of schemes with perfect obstruction theories and p´1q-shifted

1-forms are natural analogs of cosections.

In [BKP, Appendix A], we prove scheme-theoretical cone reduction lemma

when cosections can be enhanced to p´1q-shifted closed 1-forms. This extends

Kiem-Li’s original cone reduction lemma.

Proposition K ([BKP]). LetX be a homotopically finitely presented derived scheme

and α be a p´1q-shifted closed 1-form. Let φ : E :“ LX|X Ñ LX be an induced

obstruction theory on the classical truncation X :“ Xcl and σ :“ α0|_
X

: E_r1s Ñ
OX be the induced cosection. Let Eσ :“ conepσ_r1s : OXr1s Ñ Eq. Then we have

a scheme-theoretical cone reduction

CX Ď K

as substacks of E :“ h1{h0pE_q, where K :“ h1{h0pE_
σ q is the kernel cone stack.

Equivalently, we have a reduced obstruction theory

φred : Eσ Ñ τě´1LX

that factors the original obstruction theory φ.

The main idea is to use the derived Poincare lemma, i.e., a p´1q-shifted closed

1-form is locally exact, which can be shown by the arguments in Brav-Bussi-Joyce

[BBJ]. Then the proposition follows directly from the approach of Schurg-Toen-

Vezzosi [STV] to construct reduced obstruction theories.

In the construction of Oh-Thomas virtual cycles, Kiem-Li’s cosection local-

ization was crucially used. We speculate the following converse.

Speculation L. Let X be a quasi-smooth derived scheme and α be a p´1q-shifted

closed 1-form. Let α0 : OX Ñ LXr´1s be the underlying p´1q-shifted 1-form and

let Xpαq be the derived zero locus. Then we have

rXsloc
KL “ rXpσqsvir

OT P A˚pXpσqq

where rXsloc
KL

is Kiem-Li’s cosection-localized virtual cycle for the induced ob-

struction theory φ : E :“ LX|X Ñ LX on the classical truncation X :“ Xcl and

the induced cosection σ :“ α0|_
X

: E_r1s Ñ OX, and rXpσqsvir
OT

is the Oh-Thomas

virtual cycle for the p´2q-shifted symplectic derived scheme Xpαq.

13
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At least in the local model case, Speculation L is essentially shown in [KP2].

We plan to prove Speculation L in the general case in [KP3].

The cosection-localized virtual cycles are mostly used in the areas that are

not directly related to the DT4 theory (e.g. [ChLi]). Hence the above speculation

provides an unexpected connection of those areas to the DT4 theory.

Virtual intersection theory in algebraic cobordism

In [LM], Levine-Morel introduced algebraic coboridsm Ω as the universal ori-

ented Borel-Moore homology theory for schemes. In particular, we have natural

maps

Ω˚pXq

xxqqq
qqq

qqq
q

$$■
■■

■■
■■

■■

K0pXqrβ˘1s A˚pXq
to the algebraic K-theory of coherent sheaves and the Chow groups for a quasi-

projective scheme X.

In [KP1], we extend the theory of virtual cycles (including the two key tech-

niques) to algebraic cobordism. Since algebraic coboridsm is universal, this im-

plies the same result in any other oriented Borel-Moore homology theory.

Theorem M ([KP1]). Let f : X Ñ Y be a morphism of quasi-projective schemes

with a perfect obstruction theory φ : EÑ LX{Y .

1. Then there exists a virtual pullback

f ! : Ω˚pYq Ñ Ω˚pXq
which is bivariant and functorial (see Chapter 9 for the precise statements).

2. Moreover, if Y “ SpecpCq and σ : E_r1s Ñ OX is a cosection, we have a

cosection-localized virtual cobordism class

rXsloc P Ω˚pXpσqq
such that i˚rXsloc “ rXsvir where i : Xpσq ãÑ X is the inclusion map.

3. If Y “ SpecpCq, T acts on X, and φ is induced from a T-equivariant perfect

obstruction theory, then we have

rXsvir “ i˚

ˆ rXTsvir

eTpNvirq

˙
P ΩT

˚pXqloc

14
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after inverting the Euler class of the weight 1 representation of T (see Chap-

ter 9 for the precise statements).

The key idea is to extend algebraic cobordism for schemes to Artin stacks via

limit construction.

Definition N ([KP1]). Let X be an algebraic stack. We define the limit algebraic

coboridsm as
pΩdpXq :“ limÐÝ

TÑX

Ωd`dimpT{XqpT q

where T Ñ X are all smooth morphisms from quasi-projective schemes T .

Kimura sequence for Artin stacks

In [BP], we extend the Kimura sequence [Kim] to Kresch’s Chow groups of Artin

stacks [Kre2].

Proposition O ([BP]). Let p : Y Ñ X be a proper representable surjective mor-

phism of algebraic stacks with affine stabilizers. Then we have a right exact se-

quence

A˚pY ˆX Yq pp1q˚´pp2q˚ // A˚pYq p˚ // A˚pXq // 0

where p1, p2 : Y ˆX Y Ñ Y are the projection maps. Here we used the proper

pushforwards developed by Bae-Schmitt-Skowera [BS, Appendix B].

In many cases, algebraic stacks have proper covers by global quotient stacks.

By the Kimura sequence, properties of Chow groups for these stacks can be re-

duced to those of global quotient stacks, which can be further reduced to those

of quasi-projective scheme via Totaro’s approximation [Tot]. This is technically

useful in virtual intersection theory, especially when we want to remove the hy-

pothesis on the resolution property. We plan to give various examples in [BP].

Notations and conventions

• All schemes and algebraic stacks are assumed to be of finite type over the

field of complex numbers C, unless stated otherwise.
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• For any morphism f : X Ñ Y of algebraic stacks, denote by LX{Y the

full cotangent complex [Ill] and LX{Y :“ τě´1LX{Y the truncated cotangent

complex [HT].

• A perfect obstruction theory is assumed to be of tor-amplitude r´1, 0s and

a symmetric obstruction theory is assumed to be of tor-amplitude r´2, 0s,
unless stated otherwise.

• For any algebraic stack X, denote by A˚pXq the Chow group of Kresch

[Kre2] with Q-coefficients, unless stated otherwise.
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Virtual intersection theory
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Chapter 1

Intersection theory

This chapter collects basics on intersection theory for scheme and algebraic stacks

from [Ful, Vist, EG2, Kre2] and algebraic coboridsm from [LM, LP].

1.1 Intersection theory for schemes

In this section, we summarize basic properties of Chow groups for schemes and

DM stacks, based on [Ful, Vist].

Definition 1.1.1 (Algebraic cycles). Let X be a Deligne-Mumford stack.

1. The cycle group of degree d P Zě0 on X is defined as the Q-vector space

Z˚pXq :“ QxrZsy

generated by integral closed substacks Z of X of dimension d.

2. The cycle group on X is defined as the graded Q-vector space

Z˚pXq :“
à
dPZ

ZdpXq.

Definition 1.1.2 (Proper pushforward). Let f : X Ñ Y be a proper morphism of

Deligne-Mumford stacks. We define the proper pushforward as

f˚ : Z˚pXq Ñ Z˚pYq : rZs ÞÑ
#

degpZ{ f pZqq ¨ r f pZqs if dimp f pZqq “ dimpZq
0 if dimp f pZqq ă dimpZq

where the degree degpZ{ f pZqq is given as follows:

18
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1. If Z Ñ f pZq is representable, then by generic flatness Z X f ´1pUq Ñ U is

finite flat for some non-empty open U Ď f pZq, and let degpZ{ f pZqq be the

degree of the map Z X f ´1pUq Ñ U.

2. If Z Ñ f pZq is not representable, then choose a representable quasi-finite

dominant morphism V Ñ Z such that V Ñ Z Ñ f pZq is also representable,

and let degpZ{ f pZqq :“ degpV{ f pZqq{ degpV{Zq.

Definition 1.1.3 (Flat pullback). Let f : X Ñ Y be a flat morphism of relative

dimension d of Deligne-Mumford stacks. We define the flat pullback as

f ˚ : Z˚pYq Ñ Z˚`dpXq : rZs ÞÑ
ÿ

VĎY

multVp f ´1pZqq ¨ rVs

where the multiplicity multVp f ´1pZqq is given as follows:

1. If f ´1pZq is a scheme, then we let multVp f ´1pZqq :“ lengthpO f ´1pZq,V q.

2. If f ´1pZq is not a scheme, choose a smooth surjection Z1
։ f ´1pZq and a

connected component V 1 Ď Vˆ f ´1pZqZ
1 and let multVp f ´1pZqq :“ multV 1pZ1q.

Definition 1.1.4 (Rational functions). Let V be an integral Deligne-Mumford

stack. The field of rational functions on V is defined as the direct limit

kpVq :“ limÝÑ
UĎV

ΓpU,OUq

where the limit is taken over all open substacks U Ď V and the transition maps

are given by the restriction maps for all U1 Ď U2.

Definition 1.1.5 (Rational equivalence). Let X be a Deligne-Mumford stack.

1. The group of rational equivalences of degree d is defined as the Q-vector

space

WdpXq :“
à

V

kpVq˚ bZ Q

where the direct sum is taken over all integral closed substacks V of dimen-

sion d ` 1 and kpVq˚ denotes the unit group of kpVq.

2. The group of rational equivalences is defined as the graded Q-vector space

W˚pXq :“
à
dPZ

WdpXq.
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Definition 1.1.6 (Boundary map). Let X be a Deligne-Mumford stack. We define

the boundary map

B : W˚pXq Ñ Z˚pXq
as follows:

1. Case 1. Assume that X is a scheme. Then we define

B : W˚pXq Ñ Z˚pXq : p f : U Ď V Ñ A1q ÞÑ
ÿ

ZĎX

ordZp f qrZs

where ordZp f q :“ lengthOV,Z
pOV,Z{aq ´ lengthOV,Z

pOV,Z{bq for f “ a{b and

a, b P OV,Z.

2. Case 2. Let X be a Deligne-Mumford stack. Then both the group of alge-

braic cycles Z˚pXq and the group of rational equivalences W˚pXq satisfy the

descent for the étale topology. We define the boundary map

B : W˚pXq Ñ Z˚pXq

via descent.

Definition 1.1.7 (Chow group). Let X be a Deligne-Mumford stack. We define

the Chow group as the graded Q-vector space

A˚pXq :“ cokerpB : W˚pXq Ñ Z˚pXqq.

Proposition 1.1.8 (Basic properties). The proper pushforwards and flat pullbacks

are well-defined, functorial, and commute with each others. More precisely, we

have the followings:

1. Let f : X Ñ Y be a proper morphism of Deligne-Mumford stacks. Then the

proper pushforward in Definition 1.1.2 descends to the Chow groups

f˚ : A˚pXq Ñ A˚pYq.

Moreover, if g : Y Ñ Z is a proper morphism of Deligne-Mumford stacks,

then we have

pg ˝ f q˚ “ g˚ ˝ f˚ : A˚pXq Ñ A˚pZq.
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2. Let f : X Ñ Y be a flat morphism of relative dimension d of Deligne-

Mumford stacks. Then the flat pullback in Definition 1.1.3 descends to the

Chow groups

f ˚ : A˚pYq Ñ A˚`dpXq.
Moreover, if g : Y Ñ Z is a flat morphism of relative dimension e Deligne-

Mumford stacks, then we have

pg ˝ f q˚ “ f ˚ ˝ g˚ : A˚pZq Ñ A˚`d`epXq.

3. Let

X1 f 1

//

g1

��

Y 1

g

��
X

f // Y

be a cartesian square of Deligne-Mumford stacks such that f is proper and

g is equi-dimensional flat. Then we have

g˚ ˝ f˚ “ p f 1q˚ ˝ pg1q˚ : A˚pXq Ñ A˚pY 1q.

Proposition 1.1.9 (Localization sequence). Let X be a Deligne-Mumford stack.

Let Z be a closed substack of X and U be the complement. Then we have a right

exact sequence

A˚pZq i˚ // A˚pXq j˚ // A˚pUq // 0

where i : Z ãÑ X and j : U ãÑ X are the inclusion maps.

Proposition 1.1.10 (Homotopy property). Let X be a Deligne-Mumford stack and

E be a vector bundle on X of rank r. Then the smooth pullback

π˚
E : A˚pXq Ñ A˚`rpEq

is an isomorphism where πE : E Ñ X is the projection map.

Proposition 1.1.11 (Chern classes). For each vector bundle E on a Deligne-

Mumford stack Xand an integer i P Zě0, there exists unique maps

cipEq : A˚pXq Ñ A˚´ipXq

satisfying the following properties:
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1. If f : X Ñ Y is a proper morphism of Deligne-Mumford stacks, then we

have

f˚ ˝ cip f ˚Eq “ cipEq ˝ f˚ : A˚pXq Ñ A˚´ipYq.

2. If f : X Ñ Y is a flat morphism of relative dimension d, then we have

cip f ˚Eq ˝ f ˚ “ f ˚ ˝ cipEq : A˚pYq Ñ A˚`e´ipXq.

3. If D is an effective Cartier divisor of an integral Deligne-Mumford stack X

of dimension d, then we have

rDs “ c1pLqprXsq P Ad´1pXq.

4. If L1 and L2 are line bundles on X, then we have

c1pL1 b L2q “ c1pL1q ` c1pL2q : A˚pXq Ñ A˚´1pXq.

5. If E and F are vector bundles of rank r and s on X, then we have

cipE ‘ Fq “
ÿ

i“ j`k

c jpEq ˝ ckpFq : A˚pXq Ñ A˚´r´spXq.

Definition 1.1.12 (Intersection with an effective Cartier divisor). Let X be a Deligne-

Mumford stack and D be an effective Cartier divisor. We define the intersection

product map as

D¨ : A˚pXq Ñ A˚´1pDq : rZs ÞÑ
#

rZ X Ds if Z * D

c1pOXpDqq X rZs if Z Ď D

Definition 1.1.13 (Normal cone). Let f : X Ñ Y be an unramified morphism of

Deligne-Mumford stacks. We define the normal cone CX{Y as follows:

1. Case 1. Assume that f : X ãÑ Y is a closed embedding. We define

CX{Y :“ Specp
à
ně0

In
X{Y

{In`1

X{Y
q

where IX{Y is the ideal sheaf of X in Y .
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2. Case 2. Assume that f : X Ñ Y is an unramified morphism. Then we can

find a fiber diagram of Deligne-Mumford stacks

rX � �
rf //

����

rY

����
X

f // Y

where vertical arrows are étale surjective and rf : rX Ñ rY is a closed embed-

ding. We define

CX{Y :“ r CrXˆX
rX{rYˆY

rY
// // CrX{rY s

where the induced map rX ˆX
rX Ñ rY ˆY

rY is a closed embedding.

Definition 1.1.14 (Deformation space). Let f : X Ñ Y be an unramified mor-

phism of Deligne-Mumford stacks. We define the deformation space M˝
X{Y

as fol-

lows:

1. Case 1. Assume that f : X ãÑ Y is a closed embedding. We define

M˝
X{Y

:“ MX{YzrY

where MX{Y :“ BlXˆt0upY ˆ P1q and rY :“ BlXˆt0upY ˆ t0uq.

2. Case 2. Assume that f : X Ñ Y is an unramified morphism. Then we can

find a fiber diagram of Deligne-Mumford stacks

rX � �
rf //

����

rY

����
X

f // Y

where vertical arrows are étale surjective and rf : rX Ñ rY is a closed embed-

ding. We define

M˝
X{Y

:“ r M˝
rXˆX

rX{rYˆY
rY

// // M˝
rX{rY s.
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Definition 1.1.15 (Specialization map). Let f : X Ñ Y be an unramified mor-

phism of Deligne-Mumford stacks. We define the specialization map

spX{Y : A˚pYq ÝÑ A˚pCX{Yq

as the unique map that fits into the commutative diagram

A˚pCX{Yq //

0 &&▲▲
▲▲▲

▲▲▲
▲▲▲

A˚pM˝
X{Y

q //

D0¨
��

Dζ ¨
◆◆◆

&&◆◆
◆◆◆

A˚pY ˆ A1q //

�

��

0

A˚pCX{Yq A˚pYqspX{Y

oo

where D0 “ CX{Y Ď M˝
X{Y

and Dζ “ Y Ď M˝
X{Y

are the effective Cartier divisors

given by the fibers of M˝
X{Y

Ñ P1 over 0 P P1 and ζ P P1.

Definition 1.1.16 (Lci pullback). Let

X1 f 1

//

g1

��

Y 1

g

��
X

f // Y

be a cartesian square of Deligne-Mumford stacks such that f : X Ñ Y be a local

complete intersection morphism of codimension c. We define the lci pullback as

f ! : A˚pY 1q
spX1{Y1ÝÝÝÑ A˚pCX1{Y1q i˚ÝÑ A˚pNX{Y |X1q � A˚´cpX1q

where i : CX1{Y1 ãÑ NX{Y |X1 is the inclusion map.

We refer to [Ful, Vist] for the proofs of the above propositions.

Remark 1.1.17 (Integral coefficient). For schemes, everything in this section

also works with Z-coefficients. However, for Deligne-Mumford stacks, the Chow

groups (with Z-coefficients) in this section do not give us a correct theory since

they do not the homotopy property.

Remark 1.1.18 (Naive Chow groups for Artin stacks). For an arbitrary Artin stack

X, we can still define a graded Q-vector space A˚pXq as in this section. This is

what Kresch in [Kre2] calls the naive Chow group of X. These Chow groups do

not have the homotopy property as Remark 1.1.17. We will consider the correct

Chow theory, introduced by Kresch [Kre2], in the next section.
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1.2 Intersection theory for Artin stacks

In this section, we summarize basic properties of Chow groups for Artin stacks,

based on [EG2, Kre2].

1.2.1 Equivariant Chow groups

Definition 1.2.1 (Totaro’s approximation). Let G be a linear algebraic group. We

say that that maps

EGi{G Ñ BG

for i P Zě0 are Totaro’s approximations of the classifying stack BG if there exist

G-representations Vi and G-invariant closed subschemes Zi Ď Vi of codimension

ě i such that EGi “ VizZi and the quotient stack rEGi{Gs is a quasi-projective

scheme.

The existence of Totaro’s approximation is shown in [Tot].

Definition 1.2.2 (Equivariant Chow group). Let X be an algebraic space with an

action of a linear algebraic group G.

1. We define the equivariant Chow group of degree d as the Q-vector space

AG
d pXq :“ Ad`dimpEGiq´dimpGqpX ˆG EGiq

for big enough i, where EGi{G Ñ BG are Totaro’s approximations.

2. We define the equivariant Chow group as the graded Q-vector space

AG
˚ pXq :“

à
dPZ

AG
d pXq.

It is easy to show that the equivariant Chow group is independent of the choice

of Totaro’s approximation.

Proposition 1.2.3 (Reductive to torus). Let X be an algebraic space with an action

of a connected reductive group G. Let T be a maximal torus of G. Then there is

an action of the Weyl group W on AT
˚pXq such that

AG
˚ pXq “ AT

˚pXqW .

Proof. We refer to [EG2, Prop. 6] for the proof. �
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1.2.2 Kresch’s Chow groups

Definition 1.2.4 (Kresch’s Chow group). We define the Chow group of algebraic

stacks as follows:

1. Firstly, for any algebraic stack X, we define the naive Chow group of degree

d as

A˝
dpXq :“ cokerpB : WdpXq Ñ ZdpXqq

where the group of algebraic cycles ZdpXq, the group of rational equiva-

lence WdpXq, and the boundary map B : WdpXq Ñ ZdpXq are defined as in

Definition 1.1.1, Definition 1.1.5, and Definition 1.1.6.

2. (a) For a connected algebraic stack X, we define

pAdpXq :“ limÝÑ
EÑX

A˝
d`rankpEqpEq

where E are vector bundles on X and the transition maps are given by

the smooth pullbacks between surjections E1 ։ E2 of vector bundles.

(b) For an algebraic stack X, we define

pAdpXq :“
à

i

pAdpXiq

where X “ Ů
i Xi is the decomposition of the connected components.

3. (a) For a projective morphism f : X Ñ Y of algebraic stacks such that X

is connected, we define

pA f

d
pXq :“ limÝÑ

EÑY

A˝
d`rankpEqpE|Xq

where E are vector bundles on Y and the transition maps are given by

the smooth pullbacks for E1|X Ñ E2|X for all surjections E1 Ñ E2.

(b) For a projective morphism f : X Ñ Y of algebraic stacks , we define

pA f

d
pXq :“

à
i

pA f

d
pXiq

where X “ Ů
i Xi is the decomposition of the connected components.
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4. (a) For projective morphisms p1, p2 : T Ñ X of algebraic stacks, we

define

pBp1,p2

d
pXq :“ impkerp pAp1

d
pT q ‘ pAp2

d
pT q Ñ pAdpT qq Ñ pAdpXqq Ď pAdpXq.

(b) For any morphism f : X Ñ Y of algebraic stacks, we define

pB f

d
pXq :“

ÿ

p1,p2:TÑX

pBp1,p2

d
pXq Ď pAdpXq

where p1, p2 : T Ñ X are morphisms from algebraic stacks T such

that f ˝ p1 � f ˝ p2.

5. (a) For any algebraic stack X, we define the Chow group of degree d as

AdpXq :“ limÝÑ
f :YÑX

p pAdpYq{pB f

d
pYqq

where f : Y Ñ X are projective morphisms from algebraic stacks Y

and the transition maps are given by the pushforwards for open and

closed embeddings Y1 ãÑ Y2 over X.

(b) For any algebraic stack X, we define the Chow group as

A˚pXq :“
à
dPZ

AdpXq.

Proposition 1.2.5 (Compatibility). Let X be an algebraic stack.

1. If X is a Deligne-Mumford stack, then Kresch’s Chow group in Definition

1.2.4 equals to the Chow group in Definition 1.1.7,

A˝
˚pXq “ A˚pXq.

2. If X “ rP{Gs for an algebraic space P with an action of a linear alge-

braic group G, then Kresch’s Chow group in Definition 1.2.4 equals to the

equivariant Chow group in Definition 1.2.2,

A˚pXq “ AG
˚`dimpGqpPq.

Proposition 1.2.6 (Basic operations). We have the following operations in Kresch’s

Chow groups.
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1. For any projection morphism f : X Ñ Y of algebraic stacks, there exists a

pushforward

f˚ : A˚pXq Ñ A˚pYq.
Moreover, the projective pushforwards are functorial.

2. For any flat morphism f : X Ñ Y of relative dimension e, there exists a

pullback

f ˚ : A˚pYq Ñ A˚`epXq.
Moreover, the flat pullbacks are functorial and commute with projective

pushforwards.

3. For any vector bundle E on an algebraic stack X and an integer i, there

exists a Chern class

cipEq : A˚pXq Ñ A˚´ipXq.

Moreover, Chern classes commute with projective pushforwards, flat pull-

backs, other Chern classes, and satisfies the Whitney sum formula.

4. For any fiber diagram of algebraic stacks

X1 � � //

��

Y 1

��
X
� � f // Y

with a regular closed embedding f : X ãÑ Y of codimension c, there exists

a refined Gysin pullback

f ! : A˚pY 1q Ñ A˚´cpX1q.

Moreover, the refined Gysin pullbacks are functorial and commute with pro-

jective pushforward, flat pullbacks, Chern classes, and other refined Gysin

pullbacks.

Proposition 1.2.7 (Localization sequence). Let X be an algebraic stack. Let Z

be a closed substack of X and U be the complement. Then we have a right exact

sequence

A˚pZq i˚ // A˚pXq j˚ // A˚pUq // 0

where i : Z ãÑ X and j : U ãÑ X are the inclusion maps.
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We also present one additional ingredient that was not developed in [Kre2].

The pushforwards for proper DM morphisms were later developed in [BS, Ap-

pendix B].

Proposition 1.2.8 (Skowera’s proper pushforward). For any proper DM mor-

phism f : X Ñ Y of algebraic stacks, there exists a pushforward

f˚ : A˚pXq Ñ A˚pYq.
Moreover, the proper DM pushforwards are functorial and commute with flat pull-

backs, Chern classes, and the refined Gysin pullbacks.

Remark 1.2.9 (Integral coefficients). Everything in this section (except Proposi-

tion 1.2.5) work in Z-coefficients.

1.3 Algebraic cobordism

In this section, we review definition and basic properties of algebraic cobordism

of Levine-Morel [LM]. Basically, algebraic cobordism is an algebraic analog of

Quillen’s complex cobordism [Quil]

Levine-Morel introduced the notion of oriented Borel-Moore homology the-

ory as follows.

Definition 1.3.1 (Oriented Borel-Moore homology theory). An oriented Borel-

Moore homology theory H for schemes consists of the following data:

(D1) For each quasi-projective scheme X, we have a Z-graded abelian group

H˚pXq.

(D2) For each projective morphism f : X Ñ Y of quasi-projective schemes, we

have a morphism of graded abelian groups

f˚ : H˚pXq Ñ H˚pYq.

(D3) For each local complete intersection morphism f : X Ñ Y of quasi-projective

schemes of codimension c, we have a morphism of graded abelian groups

f ! : H˚pYq Ñ H˚´cpXq.
We denote f ! by f ˚ when f is smooth.

For any line bundle L on a quasi-projective scheme X, we denote by c1pLq :“
p0Lq! ˝ p0Lq˚ : H˚pXq Ñ H˚´1pXq where 0L : X ãÑ L is the zero section.
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(D4) For each quasi-projective schemes X and Y , we have a morphism of graded

abelian groups

ˆ : H˚pXq bZ H˚pYq Ñ H˚pX ˆ Yq.

These data are assume to satisfy the following assumptions:

(A1) Projective pushforwards in (D2) are functorial, i.e.

(a) For any quasi-projective scheme X, we have

pidXq˚ “ idH˚pXq : H˚pXq Ñ H˚pXq.

(b) For projective morphisms f : X Ñ Y and g : Y Ñ Z of quasi-

projective schemes, we have

pg ˝ f q˚ “ g˚ ˝ f˚ : H˚pXq Ñ H˚pZq.

(A2) Lci pullbacks in (D3) are functorial, i.e.

(a) For any quasi-projective scheme X, we have

pidXq˚ “ idH˚pXq : H˚pXq Ñ H˚pXq.

(b) For local complete intersection morphisms f : X Ñ Y and g : Y Ñ Z

of quasi-projective schemes of codimension c and d, we have

pg ˝ f q! “ f ! ˝ g! : H˚pZq Ñ H˚´c´dpXq.

(A3) External products in (D4) are unital, associative, and commutative, i.e.

(a) There exists an element 1 P H0pSpecpCqq such that for any quasi-

projective scheme X and α P H˚pXq, we have

1 ˆ α “ α P H˚pXq.

(b) For any quasi-projective schemes X, Y , Z, and α P H˚pXq, β P H˚pYq,

γ P H˚pZq, we have

pα ˆ βq ˆ γ “ α ˆ pβ ˆ γq P H˚pX ˆ Y ˆ Zq.
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(c) For any quasi-projective schemes X, Y and α P H˚pXq, β P H˚pYq, we

have

α ˆ β “ β ˆ α P H˚pX ˆ Yq.

(A4) Projective pushforwards, lci pullbacks, and external products commute with

each others, i.e.

(a) For any cartesian square of quasi-projective schemes

X1 f 1
//

g1

��

Y 1

g

��
X

f // Y

which is tor-independent, if f is projective and g is lci of codimension

c, then we have

g! ˝ f˚ “ p f 1q˚ ˝ pg1q! : H˚pXq Ñ H˚´cpY 1q.

(b) For any projective morphisms f1 : X1 Ñ Y1, f2 : X2 Ñ Y2 of quasi-

projective schemes, and α1 P H˚pX1q, α2 P H˚pX2q, we have

p f1q˚pα1q ˆ p f2q˚pα2q “ p f1 ˆ f2q˚pα1 ˆ α2q P H˚pY1 ˆ Y2q.

(c) For any local complete intersection morphisms f1 : X1 Ñ Y1, f2 :

X2 Ñ Y2 of quasi-projective schemes, and α1 P H˚pY1q, α2 P H˚pY2q,

we have

p f1q!pα1q ˆ p f2q!pα2q “ p f1 ˆ f2q!pα1 ˆ α2q P H˚pX1 ˆ X2q.

(A5) We have a projective bundle formula, i.e. if π : PpEq Ñ X is a projective

bundle associated to a vector bundle E of rank n ` 1 over a quasi-projective

scheme X, then the map

nÿ

i“0

c1pOPpEqp1qqi ˝ π˚ :
nà

i“0

H˚`ipXq Ñ H˚`npPpEqq

is an isomorphism.
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(A6) We have an extended homotopy property, i.e. if π : A Ñ X is a torsor of a

vector bundle of rank n over a quasi-projective scheme X, then the smooth

pullback

π˚ : H˚pXq Ñ H˚`npAq
is an isomorphism.

(A7) We have a localization sequence, i.e. if i : Z ãÑ X is a closed embedding of

quasi-projective schemes and j : U :“ XzZ ãÑ X is the complement, then

the sequence

H˚pZq i˚ // H˚pXq j˚ // H˚pUq // 0

is exact.

Remark 1.3.2. Compared to [LM, Def. 5.1.3], there are two minor differences:

1. We use the category of quasi-projective schemes, while [LM] uses general

”admissible” subcategories of the category of schemes.

2. In (A7), we assumed the localization sequence, while [LM] uses a weaker

axiom called (CD).

Since our main objects, algebraic cobordism, Chow groups, and algebraic K-

theory are defined over all quasi-projective schemes and satisfy the axiom (A7),

this simpler convention does not affect anything in this paper.

Fulton’s Chow theory [Ful] and Grothendieck’s algebraic K-theory are the

basic examples.

Example 1.3.3 (Chow groups). The Chow groups A˚pXq of rational equivalence

classes of algebraic cycles for quasi-projective schemes X in section 1.1 form an

oriented Borel-Moore homology theory.

Example 1.3.4 (Algebraic K-theory). The algebraic K-theory K0pXqrβ˘1s of co-

herent sheaves for quasi-projective schemes X form an oriented Borel-Moore ho-

mology theory. More precisely, we define

K0pXq :“ K0pCohpXqq
to be the Grothendieck group of coherent sheaves. Then we define

K0pXqrβ˘1s “
à
dPZ

K0pXq ¨ βd

for a formal parameter β of degree 1.
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Algebraic coborism is defined as the universal oriented Borel-Moore homol-

ogy theory.

Proposition 1.3.5 (Algebraic cobordism). There exists a universal oriented Borel-

Moore homology theory Ω, called algebraic cobordism. More precisely, for any

oriented Borel-Moore homology theory H, there exists a unique map

θHpXq : Ω˚pXq Ñ H˚pXq

for each quasi-projective scheme X such that θH commutes with projective push-

forwards, lci pullbacks, and external products.

Algebraic cobordism has a geometric description via double point relations,

which was discovered by Levine-Pandharipande [LP].

Proposition 1.3.6 (Double point cobordism). Let X be a quasi-projective scheme.

Then there exists an isomorphism

Ω˚pXq � ZΩ˚ pXq
DΩ˚ pXq

that commutes with projective pushforwards and smooth pullbacks. Here the group

of cobordism cycles ZΩ˚ pXq and the group of double points relations DΩ˚ pXq are de-

fined as follows:

1. A cobordism cycle of degree d is a projective morphism

f : Z Ñ X

from a smooth quasi-projective scheme Z of dimension d. We let

ZΩ˚ pXq :“ Zxr f : Z Ñ Xsy

be the free abelian group generated by all cobordism cycles f : Z Ñ X,

where the grading is given by the dimension of Z.

2. Let h : W Ñ X ˆ P1 be a projective morphism from a smooth quasi-

projective scheme W such that the fiber W8 over 8 P P1 is smooth and

the fiber W0 over 0 P P1 is the sum of two smooth divisors A, B Ď W such

that A X B is smooth of codimension 2. The double point relation associated

to W is

rA Ñ Xs ` rB Ñ Xs ´ rPpNAXB{A ‘ OAXBq Ñ Xs ´ rW8 Ñ Xs P ZΩ˚ pXq.
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We let

DΩ˚ pXq Ď ZΩ˚ pXq
be the subgroup generated by all double point relations.

Algebraic cobordism recovers Chow groups and algebraic K-theory.

Proposition 1.3.7. For any quasi-projective scheme X, we have isomorphisms

A˚pXq � Ω˚pXq bΩ˚pSpecpCqq A˚pSpecpCqq
K0pXqrβ˘1s � Ω˚pXq bΩ˚pSpecpCqq K0pSpecpCqqrβ˘1s

which commute with projective pushforwards, lci pullbacks, and external prod-

ucts.

Proof. The first isomorphism is shown in [LM, Thm. 4.5.1]. The second isomor-

phism for smooth X is shown in [LM, Cor. 4.2.12] and the general case is shown

in [Dai]. �

Algebraic coboridsm with rational coefficients has more concrete descrip-

tions.

Proposition 1.3.8 (Rational cobordism ring). The rational algebraic cobordism

ring of the point SpecpCq is the polynomial ring, freely generated by the projective

spaces,

Ω˚pSpecpCqqQ “ QrP1, P2, ¨ ¨ ¨ s.
Proof. It follows from [LM, Thm. 4.3.7]. �

Proposition 1.3.9. For any quasi-projective scheme X, we have an isomorphism

of graded Q-vector spaces

Ω˚pXqQ � A˚pXq bQ QrP1, P2, ¨ ¨ ¨ s,

which commutes with projective pushforwards (but not necessarily with the lci

pullbacks).

Proof. This is shown in [LM, Thm. 4.1.28]. �

Remark 1.3.10 (Proper pushforwards). In [GK1], Gonzalez-Karu constructed

proper pushforwards in algebraic cobordism.

Remark 1.3.11 (Flat pullbacks). In [Lev1], Levine showed that flat pullbacks do

not exist in algebraic cobordism.
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Virtual pullbacks

This chapter reviews the notions of virtual cycles of Behrend-Fantechi [BF] and

virtual pullbacks of Manolache [Man].

Summary A remarkable idea of Fulton [Ful] on intersection theory is to define

a refine Gysin pullback via the deformation to normal cone instead of using the

moving lemma. More precisely, given a fiber square

X1 � � //

��

Y 1

��
X
� � f // Y

with a regular closed embedding f , Fulton defined the refined Gysin pullback

f ! : A˚pY 1q spÝÑ A˚pCX1{Y1q Ñ A˚pNX{Y |X1q �ÝÑ A˚pX1q

where

1. the first map is given by the deformation to the normal cone,

2. the second map is given by the inclusion map CX1{Y1 ãÑ NX{Y |X1 , and

3. the third map is given by the homotopy property of vector bundles.

The virtual cycles/virtual pullbacks are natural generalization of Fulton’s re-

fined Gysin pullback to algebraic stacks. As the above paragraph, we need three

ingredients to do this:
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1. The intrinsic normal cone CX{Y for an arbitrary morphism f : X Ñ Y and a

deformation Y { CX{Y .

2. A closed embedding CX{Y ãÑ E of the intrinsinc normal cone into a vector

bundle stack. This data is equivalent to a perfect obstruction theory.

3. The homotopy property A˚pEq � A˚pXq for vector bundle stacks, which

gives us a Gysin pullback 0!
E

: A˚pEq Ñ A˚pXq.

Based on the above three ingredients, we can define the virtual pullback for a DM

morphism f : X Ñ Y with a perfect obstruction theory ι : CX{Y ãÑ E as

f ! : A˚pYq spÝÑ A˚pCX{Yq ι˚ÝÑ A˚pEq 0!
EÝÑ A˚pXq.

In particular, the virtual cycle for a Deligne-Mumford stack X with a perfect ob-

struction theory can be defined as

rXsvir :“ 0!
ErCXs P A˚pXq.

The most important property of virtual cycles is the deformation invariance.

This is a special case of functoriality of virtual pullbacks: given a commutative

diagram of DM morphisms of algebraic stacks

X
f //

g˝ f

77Y
g // Z,

and a compatible triple of perfect obstruction theories, we have

pg ˝ f q! “ f ! ˝ g! : A˚pZq Ñ A˚pXq.

The key idea for proving the functoriality is to use the double deformation space

of Kim-Kresch-Pantev [KKP].

2.1 Intrinsic normal cones

In this section, we review the concept of intrinsic normal cones introduced by

Behrend-Fantechi in [BF]. These intrinsic normal cones are stacky generalizations

of the normal cones for closed embeddings to arbitrary morphisms.
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2.1.1 Abelian cone stacks

Recall that the cones are main objects in intersection theory [Ful, Vist]. In virtual

intersection theory [BF, Man], the cone stacks are the analogous main objects.

Roughly speaking, cone stacks are algebraic stacks with A1-actions and zero sec-

tions. For the precise definition, we refer to [BF, Def. 1.8].

Definition 2.1.1 (Abelian cone stack). Let X be an algebraic stack and let F P
D

p´8,0s
coh

pXq. An abelian cone stack associated to F is the cone stack

CpFq :“ h1{h0pF_q

defined in [BF, Prop. 2.4].

An abelian cone stack has an explicit description as a quotient stack when

there is a global resolution. The general case can be regarded as a gluing of this

special case.

Example 2.1.2 (Global presentation). Let X be an algebraic stack and let F P
D

p´8,0s
coh

pXq. If F � rF Ñ Es for a coherent sheaf F and a vector bundle E, then

we have

CpFq � rCpFq{E_s
where CpFq :“ SpecpSympFqq is the abelian cone associated to F.

An abelian cone stack also has a derived interpretation. This allow us to view

an abelian cone stack as a natural generalization of an abelian cone.

Remark 2.1.3 (Derived enhancement). Let X be an algebraic stack and let F P
D

p´8,0s
coh

pXq. Consider the derived linear stack defined as the 8-functor

SpecpSympFr´1sqq : sAlg{X Ñ sSet : pSpecpAq sÝÑ Xq ÞÑ MapModA
px˚Fr´1s, Aq

such that LSpecpSympFr´1sqq{X “ Fr´1s by [AG]. Then the abelian cone stack CpFq is

the classical truncation of the derived linear stack,

CpFq “ SpecpSympFr´1sqqcl.

In particular, if F is a perfect complex, then the abelian cone stack CpFq is the

classical truncation of the total space of F_r1s,

CpFq “ TotpF_r1sqcl.
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Recall that the (contravariant) functor

C : CohpXq �ÝÑ tabelian cones on Xu : F ÞÑ CpFq :“ SpecpSym‚pFqq

is an equivalence of categories (cf. [Sie]). There is a similar equivalence for abelian

cone stacks.

Proposition 2.1.4 (Equivalence). Let X be an algebraic stack. Then the 2-functor

C : D
r´1,0s
coh

pXq �ÝÑ tabelian cone stacks on Xu : F ÞÑ CpFq :“ h1{h0pF_q

is an equivalence of 2-categories. Moreover, the 2-functor

tabelian cone stacks on Xu Ñ D
r´1,0s
coh

pXq : A ÞÑ LX{A :“ τě´1LX{A

is the inverse of C.

For complexes with global resolutions, the equivalence in Proposition 2.1.4

can be described explicitly as Remark 2.1.5 below. The general case can be shown

by descent (in the 8-categorical sense). We omit the proof here.

Remark 2.1.5. Let X be an algebraic stack and let F P D
p´8,0s
coh

pXq. Assume that

there is a global resolution

τě´1F � rF Ñ Es

by a coherent sheaf F and a vector bundle E. Then the zero section of the abelian

cone stack CpFq can be factored as

CpFq

��

// X

��
X

0CpFq

//
.
�

0CpFq
==⑤⑤⑤⑤⑤⑤⑤⑤⑤
CpFq // BpE_q.

Hence we can simply obtain the following

τě´1LX{CpFq �
”
IX{CpFq{I2

X{CpFq Ñ ΩCpFq{CpFq|X

ı
� rF Ñ Es � τě´1F

as desired.
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2.1.2 Intrinsic normal cones

We will work with morphisms that are relatively of Deligne-Mumford type.

Definition 2.1.6 (DM morphism). We say that a morphism f : X Ñ Y of algebraic

stacks is a DM morphism if one of the following equivalent conditions is satisfied:

1. The diagonal ∆X{Y : X Ñ X ˆY X is unramified.

2. The fibers XT :“ X ˆY T are DM stacks for all morphisms T Ñ Y from DM

stacks T .

3. We have LX{Y P D
p´8,0s
coh

pXq, i.e., h1pLX{Yq “ 0.

It is easy to show that the above three conditions are indeed equivalent.

Definition 2.1.7 (Intrinsic normal sheaf). Let f : X Ñ Y be a DM morphism of

algebraic stacks. We define the intrinsic normal sheaf as

NX{Y :“ CpLX{Yq,
the abelian cone stack associated to the cotangent complex LX{Y .

We define the main object in this section.

Definition 2.1.8 (Intrinsic normal cone). Let f : X Ñ Y be a DM morphism of

algebraic stacks. We define the intrinsic normal cone

CX{Y Ď NX{Y

to be the unique subcone stack satisfying the following property: for any commu-

tative square

rX � �
rf //

��

rY

��
X

f // Y

with smooth vertical arrows, and a closed embedding rf , we have a cartesian square

CrX{rY
� � //

��

NrX{rY

��
CX{rY

� � // NX{Y

for some dotted arrow. Here the map NrX{rY Ñ NX{Y is induced by the canonical

map LX{Y|rX Ñ LrX{rY of cotangent complexes.
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Lemma 2.1.9 (Well-definedness). The intrinsic normal cone in Definition 2.1.8

exists.

Proof. We refer to [BF, Kre2, Man] for the proof. �

The intrinsic normal cone has a simple presentation as a quotient stack when

there is a global factorization.

Example 2.1.10 (Global presentation). Let f : X Ñ Y be a DM morphism be-

tween algebraic stacks. If there exists a factorization

rY
f

��
X

f
//

/
�

rf
@@��������
Y

by a closed embedding X ãÑ rY and a smooth morphism rY Ñ Y , then we have

CX{Y �

”
CX{rY{TrY{Y |X

ı
Ď NX{Y �

”
NX{rY{TrY{Y |X

ı
.

We provide one lemma which is technically quite useful.

Lemma 2.1.11. Let f : X Ñ Y be a DM morphism of algebraic stacks. Then we

have canonical isomorphisms of the truncated cotangent complexes

LX{CX{Y
� LX{NX{Y

� LX{Y .

Proof. Since the cotangent complexes satisfy the étale descent (in the 8-categorical

sense), we may assume that there is a global factorization

rY
f

��
X

f
//

/
�

rf
@@��������
Y

by a closed embedding X ãÑ rY and a smooth morphism rY Ñ Y . Then we have

induced factorizations

NX{rY

��
X //
.
�

>>⑥⑥⑥⑥⑥⑥⑥⑥
NX{Y

CX{rY

��
X //
.
�

>>⑥⑥⑥⑥⑥⑥⑥⑥
CX{Y

40



CHAPTER 2. VIRTUAL PULLBACKS

of the zero sections of the intrinsic normal sheaf and the intrinsic normal cone.

Moreover, by the definitions of normal cones and normal sheaves, we have

CX{rY “ Specp
à
ně0

In

X{rY{In`1

X{rY
q, NX{rY “ Specp

à
ně0

SymnpIX{rY{I2

X{rYqq.

Hence the three truncated cotangent complexes LX{CX{Y
, LX{NX{Y

, LX{Y are all iso-

morphic to the complex
”
IX{rY{I2

X{rY Ñ ΩrY{Y |X

ı
.

It completes the proof. �

We provide a heuristic explanation why we call CX an intrinsic normal cone.

Remark 2.1.12 (Heuristic description). For a Deligne-Mumford stack X, the in-

trinsic normal cone CX is an intrinsic object, which is homotopically equivalent to

the normal cone CX{Y whenever we have a closed embedding X ãÑ Y to a smooth

Deligne-Mumford stack Y . Here we say CX{Y is homotopically equivalent to CX

since it is a vector bundle torsor.

2.1.3 Deformation to the normal cone

Definition 2.1.13 (Deformation space). Let f : X Ñ Y be a DM morphism of

algebraic stacks. The deformation space of f : X Ñ Y is a flat family

M˝
X{Y

Ñ P1

defined as follows:

1. Case 1. Assume that f : X ãÑ Y is a closed embedding. Then we define

M˝
X{Y

:“ MX{YzrY

where MX{Y :“ BlXˆt0upY ˆ P1q and rY :“ BlXˆt0upY ˆ t0uq.

2. Case 2. Assume that f : X Ñ Y is an unramified morphism. Then we can

find a fiber diagram of algebraic stacks

rX � �
rf //

����

rY

����
X

f // Y

(2.1.1)
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where vertical arrows are étale surjective and rf : rX Ñ rY is a closed embed-

ding. We define

M˝
X{Y

:“ r M˝
rXˆX

rX{rYˆY
rY

// // M˝
rX{rY s

where the induced map rX ˆX
rX Ñ rY ˆY

rY is a closed embedding.

3. Case 3. Assume that f : X Ñ Y is a DM morphism. Then we can find a

fiber diagram of algebraic stacks

rX � �
rf //

����

rY

����
X

f // Y

(2.1.2)

where vertical arrows are smooth surjective and rf : rX Ñ rY is a closed

embedding. We define

M˝
X{Y

:“ r M˝
rXˆX

rX{rYˆY
rY

//// M˝
rX{rY s

where the induced map rX ˆX
rX Ñ rY ˆY

rY is unramified.

We note that the deformation space in Definition 2.1.13 is well-defined.

Lemma 2.1.14 (Well-definedness). In the situation of Case 2 in Definition 2.1.13,

M˝
X{Y

is independent of the choice of the fiber diagram (2.1.1). Also, in the situa-

tion of Case 3 in Definition 2.1.13, M˝
X{Y

is independent of the choice of the fiber

diagram (2.1.2).

Proof. We refer to [Kre2, Man] for the proof. �

Remark 2.1.15. The diagonal of the deformation space M˝
X{Y

may not be sepa-

rated, see [Kre2].

We recall the basic properties of the deformations spaces from [Ful, Kre2].

Proposition 2.1.16 (Fibers). Let f : X Ñ Y be a DM morphism of algebraic

stacks. Then there exists a canonical map

m : X ˆ P1 Ñ M˝
X{Y

such that the fibers over ζ P P1 are given as follows:
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1. The fiber of the above map m over ζ , 0 P P1 is the given map

f : X Ñ Y.

2. The fiber of the above map m over 0 P P1 is the zero section

0CX{Y
: X Ñ CX{Y ,

Proof. If f : X Ñ Y is a closed embedding of schemes, then this is shown in

[Ful]. The general case follows by descent. �

Proposition 2.1.17 (Base change). Let

rX //

��

rY
g

��
X

f // Y

be a fiber diagram of algebraic stacks such that f : X Ñ Y is a DM morphism.

Then the canonical map

M˝
rX{rY Ñ M˝

X{Y
ˆY

rY (2.1.3)

is a closed embedding. Moreover, if g : rY Ñ Y is flat, then the above canonical

map (2.1.3) is an isomorphism.

Proof. We refer to [Kre2] for the proof. �

Heuristically, we may view M˝
X{Y

as the space of a deformation from Y to the

normal cone CX{Y ,

M˝
X{Y

: Y { CX{Y .

Rigorously, this does not give us a genuine map of algebraic stacks. However, we

indeed have a map between the Chow groups, called the specialization map.

Definition 2.1.18 (Specialization map). Let f : X Ñ Y be a DM morphism of

algebraic stacks. We define the specialiation map

spX{Y : A˚pYq ÝÑ A˚pCX{Yq
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as the unique map that fits into the commutative diagram

A˚pCX{Yq //

0 &&▲▲
▲▲▲

▲▲▲
▲▲▲

A˚pM˝
X{Y

q //

ι!
0

��
ι!
ζ

◆◆◆
◆

&&◆◆
◆◆◆

A˚pY ˆ A1q //

�

��

0

A˚pCX{Yq A˚pYqspX{Y

oo

where ι0 : t0u ãÑ P1 and ιζ : tζu ãÑ P1 are the inclusion maps and ζ , 0.

The specialization maps are bivariant classes.

Proposition 2.1.19 (Bivariance). Let

X1 f 1
//

g1

��

Y 1

g

��
X

f // Y

be a fiber diagram of algebraic stacks such that f is a DM morphism. Consider

the induced commutative diagram

CX1{Y1
� � j //

g3
$$❍

❍❍
❍❍

❍❍
❍❍

CX{Y|X1 //

g2

��

X1

g1

��
CX{Y

// X

where the square is cartesian.

1. If g is a proper DM morphism, then we have

spX{Y ˝ g˚ “ pg3q˚ ˝ spX1{Y1 : A˚pY 1q Ñ A˚pCX1{Y1q.

2. If g is an equi-dimensional flat morphism, then we have

spX1{Y1 ˝ g˚ “ g˚ ˝ spX{Y : A˚pYq Ñ A˚pCX{Y|X1 “ CX1{Y1q.

3. If g is a local complete intersection morphism and Y 1 have affine stabilizers,

then we have

j˚ ˝ spX1{Y1 ˝ g! “ g! ˝ spX{Y : A˚pYq Ñ A˚pCX{Y |X1q.
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Proof. If follows directly from Proposition 2.1.17, Definition 2.1.18, and Propo-

sition 2.1.22 below. �

Remark 2.1.20. Proposition 2.1.19 is slightly general than the corresponding

statements in [Man] since we use proper DM pushforwards, instead of projec-

tive pushforwards. This is based on the development of proper DM pushforwards

of Bae-Schmitt-Skowera [BS, Appendix B].

The proof of Proposition 2.1.19.2 also works for a commutative square.

Lemma 2.1.21. Let

X1 f 1
//

g1

��

Y 1

g

��
X

f // Y

be a commutative diagram of algebraic stacks (not necessarily cartesian) such

that g , g1 are smooth morphisms and f is a DM morphism. Then the canonical

map

g2 : CX1{Y1 Ñ CX{Y

is smooth and we have

spX1{Y1 ˝ g˚ “ g˚ ˝ spX{Y : A˚pYq Ñ A˚pCX1{Y1q.
We rephrase Vistoli’s rational equivalence [Vist, Lem. 3.16] as follows.

Proposition 2.1.22 (Vistoli’s rational equivalence). Let

X1 f 1

//

g1

��

Y 1

g

��
X

f // Y

be a fiber diagram of algebraic stacks such that f and g are DM morphisms.

Consider the induced fiber diagram

CX{Y|X1 ˆX1 CY1{Y |X1 //

��

CY1{Y |X1
f 2

//

��

CY1{Y

��
CX{Y |X1 //

g2

��

X1 f 1

//

g1

��

Y 1

g

��
CX{Y

// X
f // Y
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and the canonical closed embeddings

CCX{Y |X1 {CX{Y

� � a // CX{Y |X1 ˆX1 CY1{Y |X1 CCY1{Y |X1 {CY1{Y
.? _

boo

Then we have

a˚ ˝ spCX{Y|
X1 {CX{Y

˝ spX{Y “ b˚ ˝ spCY1{Y |X1 {CY1{Y
˝ spY1{Y .

Proof. We follow the argument in [Kre1]. Form a commutative diagram

Y //

��

M˝
g

��

Cg
oo

��

t1u
i1

��
M˝

f
// M˝

f
ˆY M˝

g M˝
f

ˆY Cg
oo A1

C f
//

OO

C f ˆY M˝
g

OO

C f ˆY Cg

OO

oo t0u

i0

OO

t1u j1 // A1 t0u.j0oo

Choose an element α P A˚pYq. Then there exists a cycle class

rα P A˚pM˝
f ˆY M˝

gq

such that

i!
1 ˝ j!

1prαq “ j!
1 ˝ i!

1prαq “ α.

By the definition of the specialization map in Definition 2.1.18, we have

sp f pαq “ i!
0 ˝ j!

1prαq “ j!
1 ˝ i!

0prαq, spgpαq “ j!
0 ˝ i!

1prαq “ j!
1 ˝ j!

0prαq.

Consider a commutative diagram

C f
// M˝

g2
� _

��

Cg2
� _

a

��

oo

C f
// C f ˆY M˝

g C f ˆY Cg
oo

t1u j1 // A1 t0uj0oo
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induced by Proposition 2.1.16. From the above diagram, we can easily show that

a˚ ˝ spg2psp f pαqq “ j!
0pi!

0prαqq.

Analogously, we can also deduce

b˚ ˝ sp f 2pspgpαqq “ i!
0p j!

0prαqq.

Since i!
0

˝ j!
0

“ j!
0

˝ i!
0
, we have

a˚ ˝ spg2psp f pαqq “ b˚ ˝ sp f 2pspgpαqq,

as desired. �

We recall MacPherson’s graph construction from [Ful, Rem. 5.1.1].

Remark 2.1.23 (MacPherson’s graph construction). Consider a diagram

E

��
X
� � // Y

s

]]

where Y is a smooth scheme, E is a vector bundle on Y , s is a section of E, and

X is the zero locus of s. By [Ful, Rem. 5.1.1], the deformation space M˝
X{Y

is the

closure of the embedding

Y ˆ A1 Ñ E ˆ P1 : py, ζq ÞÑ pζ ¨ y, rζ : 1sq

In particular, the normal cone is the flat limit

CX{Y “ limÝÑ
ζÑ0

Γζ¨s,

where Γζ¨s Ď E is the image of the embedding ζ ¨ s : Y Ñ E.

2.2 Perfect obstruction theories

In this section, we recall the notion of perfect obstruction theories introduced by

Behrend-Fantechi in [BF]. These perfect obstruction theories are the necessary

additional data to define the virtual cycles.
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2.2.1 Vector bundle stacks

Definition 2.2.1 (Vector bundle stack). Let X be an algebraic stack and F be a

perfect complex of tor-amplitude r´1, 0s. We define the vector bundle stack asso-

ciated to F as the abelian cone stack

EpFq :“ CpFq.

Lemma 2.2.2 (Smoothness). Let X be an algebraic stack. A cone stack on X is a

vector bundle stack if and only if it is smooth over X.

Proof. If follows from [BF, Lem. 1.1] via descent. �

Proposition 2.2.3 (Cotangent complex). Let X be an algebraic stack and let F
be a perfect complex on X of tor-amplitude r´1, 0s. Then we have a canonical

isomorphism

LEpFq{X � π
˚
EpFqpFqr´1s,

where πEpFq : EpFq Ñ X denotes the projection map.

Proof. It follows from the Remark 2.2.4 below. �

Remark 2.2.4 (Derived interpretation). Let F be a perfect complex of tor-amplitude

r´1, 0s on an algebraic stack X. Then the associated vector bundle stack EpFq is

the total space of the perfect complex F_r1s,

EpFq “ TotXpF_r1sq.

Indeed, this follows from Remark 2.1.3 since TotXpF_r1sq is smooth.

2.2.2 Perfect obstruction theories

Definition 2.2.5 (Obstruction theory). Let f : X Ñ Y be a DM morphism of

algebraic stacks. An obstruction theory for f : X Ñ Y is a morphism

φ : FÑ LX{Y :“ τě´1LX{Y

in D
p´8,0s
coh

pXq such that

1. h0pφq is bijective, h´1pφq is surjective, and

2. F is a perfect complex of tor-amplitude r´d, 0s for some d P Zě0.

48



CHAPTER 2. VIRTUAL PULLBACKS

Definition 2.2.6 (Perfect obstruction theory). Let f : X Ñ Y be a DM morphism

of algebraic stacks. A perfect obstruction theory for f : X Ñ Y is an obstruction

theory φ : FÑ LX{Y such that F is a perfect complex of tor-amplitude r´1, 0s.

Remark 2.2.7. The notion of perfect obstruction theory is quite misleading. It

would be more natural to call an obstruction theory φ : F Ñ LX{Y perfect when

F is a perfect complex. However, since the terminology is already standard in the

literatures, we will also follow this tradition in this paper.

We note that the classical truncation of a derived scheme has a canonical ob-

struction theory. Most of the practical examples of the obstruction theories arise

from derived structures.

Example 2.2.8 (Derived enhancement). Let X be a homotopically finitely pre-

sented derived scheme. Let X :“ Xcl be the classical truncation.

1. The canonical map

LX|Xcl
Ñ LXcl

Ñ LXcl

is an obstruction theory by [STV, Prop. 1.2].

2. If X is quasi-smooth, i.e. LX has tor-amplitude r´1, 0s, then the above in-

duced obstruction theory LX|Xcl
Ñ LXcl

is a perfect obstruction theory.

A perfect obstruction theory is equivalent to a closed embedding of the intrin-

sic normal cone into a vector bundle stack.

Proposition 2.2.9 (Equivalence). Let f : X Ñ Y be a DM morphism of algebraic

stacks.

1. If φ : FÑ LX{Y is perfect obstruction theory, then the composition

CX{Y ãÑ NX{Y “ CpLX{Yq CpφqÝÝÑ EpFq

is a closed embedding of cone stacks.

2. Conversely, if CX{Y ãÑ E is a closed embedding of cone stacks for some

vector bundle stack E, then the composition

LX{E Ñ LX{CX{Y
Ñ LX{CX{Y

� LX{Y

is a perfect obstruction theory.
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Moreover, the above two operations are inverse to each others.

Proof. It follows from Proposition 2.1.4, Lemma 2.1.11 and [BF, Prop. 2.6]. �

Remark 2.2.10. Proposition 2.2.9 is a folklore, but there are two technical issues

that are often ignored in the literatures:

1. We need to use the truncated cotangent complex LX{Y :“ τě´1LX{Y .

2. The closed embedding CX{Y ãÑ E should be A1-equivariant.

These are necessary to have the equivalence in Proposition 2.2.9.

In various literatures, the full cotangent complex LX{Y is used in the defini-

tion of obstruction theories, instead of the truncated cotangent complex LX{Y :“
τě´1LX{Y . Practically, this difference of definitions was not regarded seriously

since most of the examples have perfect obstruction theories in the stronger ver-

sion. However, there are some technical examples that only the existence of per-

fect obstruction theories in the weaker version is known. In general, these two

versions of perfect obstruction theories are not equivalent, see Example 2.2.12 be-

low. Thus Proposition 2.2.9 does not hold for the full cotangent complex version.1

If we have a closed embedding CX{Y ãÑ Ewhich is notA1-equivariant, then we

still have an induced perfect obstruction theory LX{E Ñ LX{Y , but the associated

closed embedding CX{Y ãÑ E may differ with the given embedding. Thus we

need to consider a closed embedding of cone stacks, i.e., an A1-equivariant closed

embedding, as in [BF, Def. 1.8].

Remark 2.2.11. In this paper, we use the truncated version of perfect obstruction

theories. Then we have Proposition 2.2.9 as a technical advantage. On the other

hand, there is one technical disadvantage. We need to be careful when dealing

with distinguished triangles of truncated cotangent complexes. Indeed, consider a

commutative diagram of DM morphisms of algebraic stacks

X
f //

g˝ f

77Y
g // Z.

Then the maps between the truncated cotangent complexes

f ˚LY{Z
// LX{Z

// LX{Y

1It is stated in [Man, Prop. 3.11] (and [Qu, §1.5]) that Proposition 2.2.9 holds for the full

cotangent complex version. However, the author expects that this is a mistake and actually it is

meant for the truncated cotangent complex version.
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do not form a distinguished triangle in general.2

Here we provide an example of a perfect obstruction theory φ : FÑ LX{Y that

does not lift to a map FÑ LX{Y .

Example 2.2.12. Let X “ P2 and let x0, x1, x2 P ΓpX,OPp1qq be the coordinate

sections so that

ΓpX,OP2p1qq “
à

0ďiď2

C ¨ xi.

Let Z “ TotpOP2p1q‘3q be a vector bundle on X. Let πZ denote the projection

map and 0Z denote the zero section. Let t0, t1, t2 P ΓpZ, π˚
ZOP2p1qq be the three

tautological sections so that

ΓpZ, π˚
ZOP2p1qq � ΓpX,OP2p1qq ‘

à
0ďiď2

ΓpX,OP2q ¨ ti.

Then ΓpZ, π˚
Z
OP2p2qq can be expressed as

ΓpX,OP2p2qq ‘
à

0ďiď2

ΓpX,OP2p1qq ¨ ti ‘
à

0ďi, jď2

ΓpX,OP2q ¨ tit j.

Let E “ Totpπ˚
ZOP2p2q‘3q be a vector bundle on Z. Consider a diagram

E

��
X
� � //

0Z

77Y
� � // Z

s

]]

where Y is the zero locus of the section

s “

¨
˝

π˚
Zpx2q ¨ t3 ´ π˚

Zpx3q ¨ t2

π˚
Z
px3q ¨ t1 ´ π˚

Z
px1q ¨ t3

π˚
Z
px1q ¨ t2 ´ π˚

Z
px2q ¨ t1 ` t2

3

˛
‚P ΓpZ, Eq.

A simple local computation show that s is a regular section. Hence from the canon-

ical distinguished triangle

LY{Z|X
// LX{Z

// LX{Y

2It is stated in [KP1, Thm. 4.4(2)] that the truncated cotangent complexes form a distinguished

triangle, but this is not true in general. We explain how to fix this in §2.3.3.

51



CHAPTER 2. VIRTUAL PULLBACKS

we can deduce that

LX{Y “
”
OP2p´2q‘3 MÝÑ OP2p´1q‘3 Ñ 0

ı

where

M “

¨
˝

0 x1 ´x2

x2 0 ´x0

x0 ´x1 0

˛
‚.

Consider a perfect obstruction theory

φ :“ 1O
P2

r1s : OP2r1s։ OP2r1s “ LX{Y ,

for the inclusion map X ãÑ Y . Then it does not lift to a map OP2 Ñ LX{Y . More

precisely, there is no map that fits into the commutative diagram

OP2r1s
φ

��

,0

&&▲▲
▲▲▲

▲▲▲
▲▲

∄

{{
LX{Y

// LX{Y
// OP2p´3qr3s

as the dotted arrow since the map OP2r1s Ñ OP2p´3qr3s is non-zero.

2.3 Virtual pullbacks and virtual cycles

In this section, we recall the definitions and main properties of virtual cycles and

virtual pullbacks associated to perfect obstruction theories from [BF, Man].

2.3.1 Gysin pullbacks

We begin with a special case. Note that the zero section

0E : X Ñ E

of a vector bundle stack E on X has a canonical perfect obstruction theory since

it is a local complete intersection morphism. We construct the Gysin pullback 0!
E

via the homotopy property of vector bundle stacks.
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Proposition 2.3.1 (Homotopy property). Let X be an algebraic stack with affine

stabilizers. Let E be a vector bundle stack on X. Then the smooth pullback

π˚
E : A˚pXq �ÝÑ A˚pEq

is an isomorphism, where πE : EÑ X is the projection map.

Proof. We refer to [Kre2, Prop. 4.3.2] for the proof. �

Consequently, we have Kresch’s Gysin pullbacks [Kre2] for the zero sections

of vector bundle stacks.

Definition 2.3.2 (Gysin pullback). Let X be an algebraic stack with affine stabi-

lizers. Let E be a vector bundle stack on X. Let πE : EÑ X denote the projection

map and let 0E : X Ñ E denote the zero section. We define the Gysin pullback as

0!
E :“ pπ˚

Eq´1 : A˚pEq Ñ A˚pXq

where the smooth pullback π˚
E

is an isomorphism by Proposition 2.3.1.

2.3.2 Virtual pullbacks

We then consider the general case. We define Manolache’s virtual pullbacks [Man]

by reducing the situation to the special case in the previous subsection via defor-

mation to normal cone.

Definition 2.3.3 (Virtual pullback). Let f : X Ñ Y be a DM morphism of alge-

braic stacks and let φ : F Ñ LX{Y be a perfect obstruction theory. Assume that X

has affine stabilizers. We define the virtual pullback as the composition

f ! : A˚pYq spX{YÝÝÝÑ A˚pCX{Yq ι˚ÝÑ A˚pEpFqq
0!
EpFqÝÝÑ A˚pXq

where ι : CX{Y ãÑ EpFq denotes the closed embedding induced by the obstruction

theory φ. Here spX{Y is the specialization map in Definition 2.1.18 and 0!
EpFq is the

Gysin pullback in Definition 2.3.2.

We explain three special cases of virtual pullbacks. Firstly, when Y “ SpecpCq,

we obtain Behrend-Fantechi’s virtual cycle [BF].
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Definition 2.3.4 (Virtual cycle). Let X be a Deligne-Mumford stack endowed with

a perfect obstruction theory ψ : FÑ LX. We define the virtual cycle as

rXsvir :“ p!rSpecpCqs “ 0!
EpFqrCXs P A˚pXq

where p : X Ñ SpecpCq denotes the projection map.

Secondly, when f is a closed embedding, we obtain Fulton’s refined Gysin

pullback [Ful].

Remark 2.3.5 (Refined Gysin pullbacks as virtual pullbacks). Let f : X Ñ Y be

a closed embedding of schemes. Then a perfect obstruction theory is equivalent to

a closed embedding CX{Y ãÑ N of the normal cone into a vector bundle N. Then

the virtual pullback is the refined Gysin pullback

f ! :“ 0!
N ˝ spX{Y : A˚pYq Ñ A˚pXq.

Thirdly, when f is the zero section of a vector bundle stack, then we obtain

the Gysin pullback of the vector bundle stack in Definition 2.3.2.

Remark 2.3.6 (Gysin pullbacks as virtual pullbacks). Let X be an algebraic stack

with affine stabilizers and E be a vector bundle stack. Then the zero section 0E :

X Ñ E has a canonical perfect obstruction theory by Proposition 2.2.9, and the

associated virtual pullback is the Gysin pullback in Definition 2.3.2.

The virtual pullbacks are bivariant classes. This can be shown directly from

the bivariance of the specialization maps.

Proposition 2.3.7 (Bivariance). Consider a cartesian square

X1 f 1

//

g1

��

Y 1

g

��
X

f // Y

of algebraic stacks. Assume that the two maps f and f 1 are Deligne-Mumford

morphisms, and the two algebraic stacks X and X1 have affine stabilizers. Let

φ : FÑ LX{Y be a perfect obstruction theory. Then the composition

φ1 : pg1q˚E
pg1q˚pφqÝÝÝÝÑ pg1q˚LX{Y Ñ LX1{Y1

is a perfect obstruction theory satisfying the following properties:
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1. If g is a proper Deligne-Mumford morphism, then we have

f ! ˝ g˚ “ g1
˚ ˝ p f 1q! : A˚pY 1q Ñ A˚pXq.

2. If g is an equi-dimensional flat morphism, then we have

p f 1q! ˝ g˚ “ pg1q˚ ˝ f ! : A˚pYq Ñ A˚pX1q.

3. If g is a local complete intersection morphism and Y 1 has affine stabilizers,

then we have

p f 1q! ˝ g! “ pg1q! ˝ f ! : A˚pYq Ñ A˚pX1q.

Proof. It follows immediately from Proposition 2.1.19. �

Remark 2.3.8. In [Man, Thm. 4.1] (see also [Man, Rem. 4.2]), only the projective

morphisms are considered instead of the proper DM morphisms. Based on the

development of proper DM pushforwards in [BS, Appendix B], we can generalize

the result in [Man] to proper DM morphisms as in Proposition 2.3.7.

Remark 2.3.9 (Generalization). In Definition 2.3.3, we need two technical as-

sumptions for defining virtual pullbacks:

1. f : X Ñ Y is a DM morphism;

2. X has affine stabilizers.

These assumptions are required due to the foundational issues in Chow groups

for Artin stacks. The assumption 2 can be removed whenever we have homotopy

property for vector bundle stacks. The assumption 1 can be removed when we can

extend the Chow groups to higher Artin stacks. In particular, if we use Khan’s

motivic Borel-Moore homology theory [Khan, KR] and Aranha-Pstragowski’s in-

trinsic normal cone for Artin morphisms [AP], we can remove the above two

technical assumptions for defining virtual pullbacks.

2.3.3 Functoriality

We now prove the functoriality of virtual pullbacks, following the arguments in

[KKP, Man].
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Notation 2.3.10 (Distinguished triangle of truncated cotangent complexes). Let

X
f //

g˝ f

77Y
g // Z.

be a commutative diagram of DM morphisms of algebraic stacks. The canonical

distinguished triangle of cotangent complexes

f ˚pLY{Zq // LX{Z
// LX{Y

//

induces a distinguished triangle of truncated cotangent complexes

τě´1 f ˚pLY{Zq a // LX{Z
// L1

X{Y
//

where L1
X{Y

:“ conepaq. Let

r : L1
X{Y

Ñ τě´1pL1
X{Y

q � LX{Y

denote the canonical map.

Definition 2.3.11 (Compatible triple of obstruction theories). Let

X
f //

g˝ f

77Y
g // Z

be a commutative diagram of DM morphism of algebraic stacks. We say that

the triple pφX{Y , φY{Z, φX{Zq of obstruction theories φX{Y : FX{Y Ñ LX{Y , φY{Z :

FY{Z Ñ LY{Z , and φX{Z : FX{Z Ñ LX{Z is compatible if there exists a morphism of

distinguished triangles

f ˚pFY{Zq //

f ˚pφY{Zq
��

FX{Z
//

φX{Z

��

FX{Y

φ1
X{Y

��

//

τě´1 f ˚pLY{Zq // LX{Z
// L1

X{Y
//

for some φ1
X{Y

such that φX{Y “ r ˝ φ1
X{Y

.
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Theorem 2.3.12 (Functoriality). Let

X
f //

g˝ f

77Y
g // Z

be a commutative diagram of DM morphisms of algebraic stacks. Assume that

X and Y have affine stabilizers. Given a compatible triple of perfect obstruction

theories, we have

pg ˝ f q! “ f ! ˝ g! : A˚pZq Ñ A˚pXq.
We have a virtual pullback formula as an immediate corollary of the functori-

ality of virtual pullbacks in Theorem 2.3.12.

Corollary 2.3.13 (Virtual pullback formula). Let f : X Ñ Y be a morphism of

DM stacks. Given a compatible triple of perfect obstruction theories for

X
f // Y // SpecpCq,

we have a virtual pullback formula

rXsvir “ f !rYsvir P A˚pXq.
The notion of a compatible triple of perfect obstrucion theories in Definition

2.3.11 is slightly general than the standard one in [Man, Def. 4.5] since we are

considering the truncated version of perfect obstruction theories.

Remark 2.3.14. Let us recall the notion of compatible triple in [Man, Def. 4.5].

Consider a commutative diagram of algebraic stacks

X
f //

g˝ f

77Y
g // Z

where f and g are DM morphisms. Let φX{Y : FX{Y Ñ LX{Y , φY{Z : FY{Z Ñ
LY{Z, and φX{Z : FX{Z Ñ LX{Z be maps that induce perfect obstruction theories.

The triple pφX{Y , φY{Z, φX{Zq is said to be compatible if there is a morphism of

distinguished triangles

f ˚pFY{Zq //

f ˚pφY{Zq
��

FX{Z
//

φX{Z

��

FX{Y

φX{Y

��

//

f ˚pLY{Zq // LX{Z
// LX{Y

//

where the lower triangle is the canonical one. If we apply the truncation functor,

we obtain the compatibility diagram in Definition 2.3.11 .

57



CHAPTER 2. VIRTUAL PULLBACKS

Note that a natural source of compatible triples of perfect obstruction theories

is quasi-smooth morphisms of derived schemes.

Example 2.3.15 (Derived enhancement). Consider a commutative diagram of de-

rived Artin stacks

X
f //

g˝ f

77Y
g // Z

where f and g are quasi-smooth DM morphisms. Then we have a canonical ho-

motopy cofiber sequence of cotangent complexes

f ˚pLY{Zq // LX{Z // LX{Y .

By considering the classical truncations, we obtain a compatible triple of perfect

obstruction theories in the sense of [Man, Def. 4.5], see Remark 2.3.14. Hence

by applying the truncation functor, we obtain a compatible triple in the sense of

Definition 2.3.11.

An elementary example of compatible triple is a modification of a relative

perfect obstruction theory for a smooth base to an absolute perfect obstruction

theory.

Example 2.3.16 (Relative to absolute). Let f : X Ñ Y be a morphism of Deligne-

Mumford stacks. Let φX{Y : FX{Y Ñ LX{Y be a perfect obstruction theory. Assume

that Y is smooth. Then we can form a morphism of distinguished triangles

f ˚pΩYq // FX
//

φX

��

FX{Y
//

φX{Y

��

f ˚pΩYqr1s

f ˚pΩYq // LX
// LX{Y

// f ˚pΩYqr1s

where FX :“ conepFX{Y

φX{YÝÝÑ LX{Y Ñ ΩYr1sqr´1s.Then φX : FX Ñ LX is a perfect

obstruction theory and we have

rXsvir “ f !rYs P A˚pXq

by Theorem 2.3.12.

We note that this approach can be generalized to the case when Y is a smooth

Artin stack.
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We often want to lift a perfect obstruction theory by a smooth morphism. How-

ever there is an obstruction for such lifting in general.

Remark 2.3.17 (Lift along smooth morphism). Let f : X Ñ Y be a smooth

morphism of DM stacks. Let φY : FY Ñ LY be a perfect obstruction theory. We

want to find a perfect obstruction theory φX : FX Ñ LX such that rXsvir “ f ˚rYsvir.

This can be achieved if there exists a commutative diagram

ΩX{Y
// f ˚pFYqr1s

f ˚pφY q
��

ΩX{Y
// τě´1 f ˚pLYqr1s

for some dotted arrow. This is possible for the following two cases:

1. If X is an affine scheme.

2. If f : X Ñ Y can be enhanced to a smooth morphism X Ñ Y of quasi-

smooth DM stacks.

A possible alternative approach for this situation is to use the Siebert formula

[Sie].

We now prove Theorem 2.3.12 through 3 steps.

Step 1: Special case via homotopy property We first consider the special case

X
f //

0C˝ f

77Y
0C // C

where C is a cone stack over Y . The functoriality for this case can be shown easily

from the homotopy property of vector bundle stacks.

Lemma 2.3.18 (Cone stack case). Consider a commutative diagram of algebraic

stacks

X
f //

0C˝ f

77Y
0C // C
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where f is a DM morphism, C is a cone stack over Y, and 0C : Y Ñ C is the zero

section. Let φX{Y : FX{Y Ñ LX{Y and φ : FÑ LY{C be perfect obstruction theories.

Form a compatible triple of perfect obstruction theories as

f ˚pFq //

f ˚pφq
��

f ˚pFq ‘ FX{Y
//

f ˚pφq‘φX{Y

��

FX{Y

φX{Y

��
τě´1 f ˚pLY{Cq // LX{C // LX{Y

where LX{C “ f ˚pLY{Cq ‘LX{Y . Assume that X and Y have affine stabilizers. Then

we have

p0C ˝ f q! “ f ! ˝ 0!
C : A˚pCq Ñ A˚pXq.

Proof. We first reduce the situation to the vector bundle stack case,

X
f //

0˝ f

77Y
0 // C { X

f //

0˝ f

55Y
0 // EpFq .

Indeed, we can form a commutative diagram

X
f

//

0C˝ f

((
Y

0C

// C� _

��
X

f //

0EpFq˝ f

55Y
0EpFq // EpFq.

Since virtual pullbacks commute with proper pushforwards by Proposition 2.3.7,

replacing C by EpFq, we may assume that C is a vector bundle and φ : F Ñ LY{C
is an isomorphism. Let E :“ C.

By the homotopy property of the vector bundle stack E, if suffices to show the

functoriality for

X
0E˝ f //

f

77E
πE // Y

where πE : EÑ Y denotes the projection map. Indeed, we have

f ! “ p0E ˝ f q! ˝ π˚
E ùñ f ! ˝ 0!

E “ p0E ˝ f q!
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since 0!
E

“ pπ˚
E
q´1.

Consider the commutative diagram

X
0E˝ f // E

πE

��
X

f // Y

where the vertical arrows are smooth. Hence by Lemma 2.1.21, we have

pidE ˆ πE|Xq˚ ˝ spX{Y “ spX{E ˝ π˚
E : A˚pYq Ñ A˚pCX{Eq (2.3.4)

where CX{E “ CX{Y ˆ E|X. Applying the Gysin pullback 0!
EpFX{Y qˆE|X

to (2.3.4), we

obtain the desired identity. �

Step 2: Deformation to the normal cone We then consider the general case.

The main idea is to reduce the situation to the special case in the previous subsec-

tion via deformation to the normal cone,

X
f //

g˝ f

77Y
g // Z { X

f //

0˝ f

55Y
0 // CY{Z . (2.3.5)

Indeed, consider the composition

h : X ˆ A1 f ˆidÝÝÑ Y ˆ A1 ÝÑ M˝
Y{Z

where the second arrow is the canonical map. Then the generic fiber of the map

h over ζ , 0 P A1 is the formal diagram in (2.3.5) and the special fiber of the

map h over 0 P A1 is the latter diagram in (2.3.5). In other words, we have a fiber

diagram

X
f

//

��

g˝ f

''
Y g

//

��

Z //

��

tζu
ιζ

��
X ˆ A1 f ˆid // Y ˆ A1 // M˝

Y{Z
// A1

X
f //

OO

0˝ f

66Y
0 //

OO

CY{Z

OO

// t0u.

ι0

OO
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We will construct a perfect obstruction theory for h : X ˆ A1 Ñ M˝
Y{Z

.

Lemma 2.3.19 (Deformation to normal cone). Consider a commutative diagram

of algebraic stacks

X
f //

g˝ f

77Y
g // Z

where f and g are DM morphisms. Consider a compatible triple pφX{Y , φY{Z, φX{Zq
of perfect obstruction theories. Then the composition

h : X ˆ A1 ÝÑ Y ˆ A1 ÝÑ M˝
Y{Z

has a perfect obstruction theory

φ : FÑ LXˆA1{M˝
Y{Z

satisfying the following properties:

1. The fiber of φ at ζ , 0 P A1 is

φζ “ φX{Z : FX{Z Ñ LX{Z

2. The fiber of φ at 0 P A1 is

φ0 “
ˆ
φY{Z ξ

0 η

˙
: f ˚pFY{Zq ‘ FX{Y Ñ τě´1 f ˚pLY{Zq ‘ LX{Y

such that the diagram

f ˚pFY{Zq //

f ˚pφY{Zq
��

FX{Z
//

φX{Z

��

FX{Y

φ1
X{Y

��
η1

��

// f ˚pFY{Zqr1s

��
τě´1 f ˚pLY{Zq a // LX{Z

// L1
X{Y

// τě´1 f ˚pLY{Zqr1s

commutes for some η1 with η “ r ˝ η1.

Before we proof Lemma 2.3.19, we recall the following key result of Kim-

Kresch-Pantev in [KKP].
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Lemma 2.3.20 ([KKP]). Consider a commutative diagram of algebraic stacks

X
f //

g˝ f

77Y
g // Z

where f and g are DM morphisms. Form a distinguished triangle on X ˆ A1

τě´1 f ˚pLY{Zq ⊠ OA1

pT,aq // pτě´1 f ˚pLY{Zq ‘ LX{Zq ⊠ OA1
// L1

XˆA1{M˝
Y{Z

for some L1
XˆA1{M˝

Y{Z

. Then we have a canonical isomorphism

τě´1pL1
XˆA1{M˝

Y{Z

q � LXˆA1{M˝
Y{Z
.

Proof of Lemma 2.3.19. Form a morphism of distinguished triangles

f ˚pFY{Zq ⊠ OA1

pT,aq //

φY{Z

��

p f ˚pFY{Zq ‘ FX{Zq ⊠ OA1
//

pφY{Z ,φX{Zq
��

F

φ1

��
τě´1 f ˚pLY{Zq ⊠ OA1

pT,aq // pτě´1 f ˚pLY{Zq ‘ LX{Zq ⊠ OA1
// L1

XˆA1{M˝
Y{Z

(2.3.6)

for some perfect complex F and a map φ1 : F Ñ L1
XˆA1{M˝

Y{Z

, where the lower

distinguished triangle is given by Lemma 2.3.20. Let

φ : F
φ1

ÝÑ L1
XˆA1{M˝

Y{Z

Ñ LXˆA1{M˝
Y{Z

be the composition. The long exact sequence associated to (2.3.6) assures that

φ is a perfect obstruction theory. Then fibers of φ over ζ P A1 have the desired

properties. �

Step 3 By combining the deformation result in Lemma 2.3.19 with the special

case in Lemma 2.3.18, we can now show the functoriality in Theorem 2.3.12.

Proof of Theorem 2.3.12. By Lemma 2.3.19, we have

pg ˝ f q! “ p0CY{Z
˝ f q!

φ0
˝ spg (2.3.7)
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where

φ0 “
ˆ
φY{Z ξ

0 η

˙
: f ˚pFY{Zq ‘ FX{Y Ñ τě´1 f ˚pLY{Zq ‘ LX{Y “ LX{CY{Z

.

Note that

ˆ
φY{Z t1 ¨ ξ

0 p1 ´ t2q ¨ η ` t2 ¨ φX{Y

˙
: f ˚pFY{Zq ‘ FX{Y Ñ τě´1 f ˚pLY{Zq ‘ LX{Y

are perfect obstruction theories for all t1 P A1 and t2 P A1. By a deformation

argument, we have

p0CY{Z
˝ f q!

φ0
“ p0CY{Z

˝ f q! (2.3.8)

where the second virtual pullback is given by

f ˚pφY{Zq ‘ φX{Y : f ˚pFY{Zq ‘ FX{Y Ñ τě´1 f ˚pLY{Zq ‘ LX{Y .

By Lemma 2.3.18, we have

p0CY{Z
˝ f q! “ f ! ˝ 0!

CY{Z
. (2.3.9)

By combining the three equations (2.3.7), (2.3.8), and (2.3.9), we obtain the de-

sired formula. �

We explain one technical difference in the proof of functoriality given here

and the standard references [KKP, Man].

Remark 2.3.21. There is one technical issue in the proof of functoriality that

was ignored in the standard references [KKP, Man]. In the construction of the

perfect obstruction theory φ : E Ñ LXˆA1{M˝
Y{Z

, it is not clear that the special

fiber φ0 over 0 P A1 is f ˚pφY{Zq ‘ φX{Y.3 Hence here we provided additional

deformation argument (that was not given in [KKP, Man]) to compared the two

perfect obstruction theories φ0 and f ˚pφY{Zq ‘ φX{Y . This issue was considered in

[Park1], in the context of DT4 theory.

3The author expects that this issue was not regarded seriously in the classical references [KKP,

Man] since the Siebert formula [Sie] assures that the virtual cycle only depends on the K-theory

class rFs P K0pXq, but not on the map φ : F Ñ LX (for quasi-projective schemes). However

the author does not know whether the Siebert type formula exists for arbitrary DM morphism of

algebraic stacks, or in other homology theories.
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Chapter 3

Cosection localization

This chapter reviews the cosection localization technique of Kiem-Li [KL1].

Summary Recall from Chapter 2 that the virtual cycle of a Deligne-Mumford

stack X with a perfect obstruction theory CX ãÑ E is defined as

rXsvir “ 0!
ErCXs P AvdpXq.

Kiem-Li showed the followings for a cosection σ : EÑ A1
X
.

1. There is a cone reduction, i.e., a smaller closed embedding

pCXqred ãÑ KpE, σq

into the kernel cone stack KpE, σq :“ Eˆσ,A1
X
,0 X Ď E.

2. There exists a localized Gysin pullback

0!
E,σ : A˚pKpE, σqq Ñ A˚pXpσqq

to the zero locus Xpσq of the cosection σ in X.

The two main outcomes are the followings:

1. We have a localized virtual cycle

rXsvir
loc :“ 0!

E,σrCXs P AvdpXpσqq

that localizes the ordinary virtual cycle rXsvir P AvdpXq.
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2. If the cosection σ is nowhere vanishing, then the ordinary virtual cycle van-

ishes

rXsvir “ 0 P AvdpXq.
Moreover the kernel cone stack KpE, σq is a vector bundle stack and we

have a canonical reduced virtual cycle

rXsvir
loc :“ 0!

KpE,σqrCXs P Avd`1pXq.

Usually the zero locus Xpσq is much more smaller than the original space

X and the cosection-localized virtual cycles are very useful for computation in

this case (e.g. Gromov-Witten/Poincare invariants for surfaces with holomorphic

2-forms [KL1, CK]).

The reducing is required in many cases (e.g. GW/PT invariants for K3 surfaces

[MPT, KT1, KT2]). The resulting reduced invariants in this cases have turned out

have rich structures.

Moreover, the cosection localization has a deep connection to the algebraic

foundation of Donaldson-Thomas theory of Calabi-Yau 4-folds [OT].

3.1 Cone reduction

In this section, we provide a basic framework for the theory of cosection localiza-

tion.

3.1.1 Kernel cone stacks

In the theory of cosection localization, the kernel cone stacks associated to cosec-

tions play the role of vector bundle stacks in Chapter 2.

We first fix the notion of cosections.

Definition 3.1.1 (Cosection). Let F be a perfect complex on an algebraic stack X.

A cosection of F is a map

σ : F_r1s Ñ OX

in the derived category of X.

We observe that a cosection induces the canonical linear function on the as-

sociated abelian cone stack.
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Definition 3.1.2 (Canonical linear function). Let F be a perfect complex on an

algebraic stack X and let CpFq :“ h1{h0pF_q denote the associated abelian cone

stack. Let σ : F_r1s Ñ OX be a cosection of F. We define the canonical linear

function on as

lσ :“ Cpσ_r1sq : CpFq Ñ A1
X.

We now define the kernel cone stacks.

Definition 3.1.3 (Kernel cone stack). Let F be a perfect complex on an algebraic

stack X and σ : F_r1s Ñ OX be a cosection of F. We define the kernel cone stack

as the abelian cone stack

KpF, σq :“ CpFσq “ h1{h0pF_
σ q

where Fσ :“ conepσ_r1s : OXr1s Ñ Fq.

Remark 3.1.4 (Base change). The construction of the kernel cone stack KpF, σq
is stable under the base change of X.

The following lemma justifies the terminology kernel cone stacks.

Lemma 3.1.5. Let F be a perfect complex on an algebraic stack X and σ :

F_r1s Ñ OX be a cosection of F. Then we have a canonical cartesian square

KpF, σq //
� _

��

X� _

0
��

CpFq lσ // A1
X

where lσ : CpFq Ñ A1
X

is the canonical linear function.

We compare the notions of cosections and kernel cone stacks given here with

those in the original paper of Kiem-Li [KL1].

Remark 3.1.6 (Comparison to Kiem-Li). Let F be a perfect complex of tor-

amplitude r´1, 0s on a Deligne-Mumford stack X.

1. A cosection σ : F_r1s Ñ OX is equivalent to a map of coherent sheaves

h1pF_q Ñ OX,

which is the definition of a cosection in [KL1].
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2. Let σ : F_r1s Ñ OX be a cosection. Let Xpσq denote the zero locus of the

induced map σ : h1pF_q Ñ OX and let U :“ XzXpσq be the complement.

Then we have a fiber diagram

EpF|Xpσqq �
� //

��

KpF, σq

��

EpFσ|Uq

��

? _oo

Xpσq � � // X U?
_oo

where both EpF|Xpσqq :“ CpF|Xpσqq and EpFσ|Uq :“ CpFσ|Uq are vector bun-

dle stacks (of different ranks). Thus set-theoretically, we have

KpF, σq “ EpF|Xpσqq Y EpFσ|Uq

which is the definition of the kernel cone stack in [KL1].1

3.1.2 Cone reduction

The cone reduction property is the crucial ingredient in the theory of cosection

localization.

Definition 3.1.7 (Cone reduction property). Let f : X Ñ Y be a DM morphism of

algebraic stacks. We say that an obstruction theory φ : FÑ LX{Y satisfies the cone

reduction property with respect to a cosection σ : F_r1s Ñ OX if the composition

pCX{Yqred ãÑ CX{Y
ιÝÑ CpFq lσÝÑ A1

X

is zero. Here pCX{Yqred Ď CX{Y is the reduced closed substack of the intrinsic

normal cone, ι : CX{Y ãÑ CpFq is the closed embedding induced by φ, and lσ :

CpFq Ñ A1
X is the canonical linear function in Definition 3.1.2.

We observe that an obstruction theory satisfying the cone reduction property

is equivalent to a closed embedding of the intrinsic normal cone into a kernel cone

stack.

Proposition 3.1.8 (Equivalence). Let f : X Ñ Y be a DM morphism of algebraic

stacks.

1The author learned the scheme-theoretical description of the kernel cone stacks from

Jeongseok Oh.
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1. If φ : F Ñ LX{Y is an obstruction theory satisfying the cone reduction

property, then there exists a unique closed embedding

ισ,red : pCX{Yqred ãÑ KpF, σq

that fits into the commutative diagram

KpF, σq //
� _

��

X� _

0

��
pCX{Yqred

� � //

ισ,red

55

CX{Y
� � ι // CpFq lσ // A1

X

as the dotted arrow.

2. If CX{Y ãÑ KpF, σq is a closed embedding of cone stacks for some kernel

cone stack KpF, σq associated to a perfect complex F and a cosection σ :

F_r1s Ñ OX, then the composition

FÑ τě´1F � LX{CpFq Ñ LX{KpF,σq Ñ LX{CX{Y
� LX{Y

is an obstruction theory satisfying the cone reduction property.

Moreover, the above two operations are inverse to each others.

Proof. We omit the proof, see Proposition 2.2.9. �

There are two sources of the cone reduction property:

1. cone reduction lemma of Kiem-Li [KL1];

2. Reductions via p´1q-shifted 1-forms (see Chapter 8).

Firstly, we recall Kiem-Li’s cone reduction lemma.

Proposition 3.1.9 (Kiem-Li’s cone reduction lemma). Let X be a Deligne-Mumford

stack, φ : F Ñ LX be an obstruction theory, and σ : F_r1s Ñ OX be a cosection.

Then φ satisfies the cone reduction property.

Proof. For perfect obstruction theories, this is shown in [KL1, Prop. 4.3]. The

general case of arbitrary tor-amplitude can be reduced to the perfect obstruction

theory case (cf. [BKP, Lem. 4.18]). �
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In Kiem-Li’s cone reduction lemma, it is crucial to take the reduced closed

substack pCXqred of the intrinsic normal cone.

Remark 3.1.10 (Maulik-Pandharipande-Thomas’s counterexample). Consider a

commutative diagram

E
t //

π

��

A1
U

X
� � i // U

s

\\

where U “ A1, E “ O‘2
U

, s “ pT 2, 0q, t “ pT, 1q, and X is the zero locus of s in

U. Then we have an induced perfect obstruction theory and a cosection

OXr1s σ_r1s // E

φ

��

OX

t|X // E|_
X

ds //

s

��

ΩU |X

LX IX{U{I2
X{U

d // ΩU|X.

Since the composition

ds ˝ t|X “ p2T, 0q ˝ pT, 1q “ 0 : OX Ñ ΩU|X � OX

is zero, σ given above is indeed a cosection. On the other hand, the composition

s ˝ t|X “ pT 2, 0q ˝ pT, 1q “ pT 3q , 0 : OX Ñ IX{U{I2
X{U

“ pT 2q{pT 4q

is not zero, we have

NX{U * kerpσ|X : E|X Ñ OXq.
Consequently, we also have

CX{U * kerpσ|X : E|X Ñ OXq

and the cone reduction property does not hold scheme-theoretically.

We also note that Kiem-Li’s cone reduction lemma does not hold for the rela-

tive setting in general.

Remark 3.1.11. Let f : X ãÑ Y be a regular closed embedding of schemes.

Assume that there is a surjection NX{Y ։ OX of coherent sheaves. Then the cone

reduction property does not hold for the canonical perfect obstruction theory F :“
LX{Y

�ÝÑ LX{Y .
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However, if the base is smooth, then Kiem-Li’s cone reduction lemma holds

under an additional assumption.

Example 3.1.12 (Relative cone reduction for smooth base). Let f : X Ñ Y be a

DM morphism of algebraic stacks, let φ : FÑ LX{Y be an obstruction theory, and

σ : F_r1s Ñ OX be a cosection. Assume that Y is smooth. If the composition

OX
σ_

ÝÑ Fr´1s φr´1sÝÝÝÑ LX{Yr´1s KSX{YÝÝÝÑ ΩY |X

vanishes, then φ : F Ñ LX{Y satisfies the cone reduction property. Indeed, this

can be shown by modifying the relative obstruction theory φ : F Ñ LX{Y into an

absolute obstruction theory as in Example 2.3.16.

Secondly, if a cosection can be enhanced to a p´1q-shifted closed 1-form

[PTVV], then the cone reduction property holds.

Example 3.1.13 (Reduction by p´1q-shifted 1-form). Let X be a homotopically

finitely presented derived Deligne-Mumford stack over an affine scheme Y and α

be a p´1q-shifted closed 1-form. Then the induced obstruction theory

φ : F :“ LX{Y |X Ñ LX{Y Ñ LX{Y

on the classical truncation X :“ Xcl satisfies the scheme-theoretical cone reduc-

tion property with respect to the cosection

α0|_
X : F_r1s Ñ OX

induced by the underlying p´1q-shifted 1-form α0 : OX Ñ LXr´1s of α. In par-

ticular, the cone reduction property in Definition 3.1.7 is satisfied. We refer to §??

for details.

Finally, we provide a straightforward generalization of Kiem-Li’s cone reduc-

tion lemma to multiple cosections.

Remark 3.1.14 (Multiple cosections). Let X be a Deligne-Mumford stack and

φ : FÑ LX be an obstruction theory. Consider a generalized cosection, i.e., a map

Σ : F_r1s Ñ F
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in the derived category of X for some vector bundle F. Then we have a generalized

cone reduction property, i.e., there is a commutative diagram

KpF,Σq //
� _

��

X� _

0F

��
pCXqred

� � //

ιΣ,red

55

CX
� � ι // CpFq lΣ // F

for some dotted arrow, where lΣ :“ CpΣ_r1sq : CpFq Ñ A1
X

is the canonical linear

function associated to Σ and the square is cartesian.

3.2 Reduced virtual cycles

In this section, we construct reduced virtual pullbacks for surjective cosections.

Definition 3.2.1 (Reduced virtual pullback). Let f : X Ñ Y be a DM morphism

of algebraic stacks and φ : F Ñ LX{Y be a perfect obstruction theory satisfying

the cone reduction property with respect to a cosection σ : F_r1s Ñ OX. Assume

that h0pσq : h1pF_q Ñ OX is surjective so that the kernel cone stack KpF, σq is a

vector bundle stack. We define the reduced virtual pullback

f !
σ,red : A˚pYq Ñ A˚pXq

as the composition

A˚pYq spX{YÝÝÝÑ A˚pCX{Yq � A˚ppCX{Yqredq ι
σ,red
˚ÝÝÑ A˚pEpFσqq

0!
EpFσqÝÝÝÑ A˚pXq

where spX{Y is the specialization map in Definition 2.1.18, ισ,red : pCXqred ãÑ
KpE, σq is the closed embedding in Proposition 3.1.8.1, and 0!

EpFσq is the Gysin

pullback of the vector bundle stack EpFσq “ KpF, σq in Definition 2.3.2.

As a special case, we define the reduced virtual cycles. In this case, Kiem-Li’s

cone reduction lemma (Proposition 3.1.9) assures the cone reduction property.

Definition 3.2.2 (Reduced virtual cycle). Let X be a Deligne-Mumford stack

equipped with a perfect obstruction theory φ : F Ñ LX and a cosection σ :

F_r1s Ñ OX. Assume that h0pσq : h1pF_q Ñ OX is surjective so that the ker-

nel cone stack KpE, σq “ EpEσq is a vector bundle stack. We define the reduced

virtual cycles as

rXsred :“ 0!
EpFσqrCXs P Avd`1pXq

where vd “ rankpE_q.
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The reduced virtual cycles are deformation invariant under an additional as-

sumption.

Proposition 3.2.3 (Deformation invariance). Let f : X Ñ B be a morphism of

Deligne-Mumford stacks. Assume that B is smooth. Form a fiber diagram

Xb
� � //

fb
��

X

f

��
tbu � � ib // // B

where b P B. Let φ : E Ñ LX{B be a perfect obstruction theory and σ : E_r1s Ñ
OX be a cosection. Assume that the composition

OX
σ_

ÝÑ Er´1s φÝÑ LX{Br´1s KSÝÑ ΩB|X

vanishes. Then there exists a cycle class rXsred P A˚pXq such that

rXbsred “ i!
brXsred P A˚pXbq

for all b P B, where i!
b

: A˚pXq Ñ A˚pXbq denotes the refined Gysin pullback.

Proof. As in Example 2.3.16, we can modify the relative perfect obstruction the-

ory φ : E Ñ LX{B for f : X Ñ B into an absolute perfect obstruction theory for

X. As explained in Example 3.1.12, the vanishing condition of the composition

OX
σ_

ÝÑ Er´1s φÝÑ LX{Br´1s KSÝÑ ΩB|X

assures that the relative cosection σ : E_r1s Ñ OX lifts to an absolute cosection

and hence we have a cone reduction property for f : XÑ B. Then we can define

a reduced virtual pullback

f !
σ,red : A˚pBq Ñ A˚pXq.

By Vistoli’s rational equivalence in Proposition 2.1.22, we have

rXbsred :“ p fbq!
σb,redprSpecpCqsq “ p fbq!

σb,red ˝ i!
bprBsq “ i!

b ˝ f !
σ,redprBsq.

Then the cycle class rXsred :“ f !
σ,red

rBs satisfies the desired property. �

We can easily generalize the reduced virtual cycles to multiple cosections.
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Definition 3.2.4 (Reduced virtual cycle for multiple cosections). Let X be a Deligne-

Mumford stack equipped with a perfect obstruction theory φ : FÑ LX and a map

Σ : F_r1s Ñ F to a vector bundle F. Assume that h0pΣq : h1pF_q Ñ F is surjec-

tive. Let ιΣ,red : pCXqred ãÑ KpF,Σq be the induced closed embedding in Remark

3.1.14. We define the reduced virtual cycle as

rXsred :“ 0!
EpFΣqrCXs P Avd`rankpFqpXq

where KpE,Σq :“ CpFσq is a vector bundle stack since FΣ :“ conepΣ_r1s :

F_r1s Ñ Fq is of tor-amplitude r´1, 0s.

Remark 3.2.5 (Compatibility). In the situation of Definition 3.2.2, we have

rXsvir “ epFq X rXsred P A˚pXq.

In particular, the virtual cycle rXsvir vanishes when epFq “ 0.

We note that the reduced obstruction theories may not exist in general.

Remark 3.2.6 (Reduced obstruction theory). Let X be a Deligne-Mumford stack

with a perfect obstruction theory φ : FÑ LX and a cosectionσ : F_r1s Ñ OX. We

would like to know whether the reduced obstruction theory exists. More precisely,

we would like to find a commutative diagram

OXr1s σ_
// F //

φ

��

Fσ

φred
~~

LX

for some dotted arrow. This is equivalent to the scheme-theoretical cone reduction

property, i.e., there exists a commutative diagram

KpF, σq //
� _

��

X� _

0

��
CX{Y

� � ι //

;;

CpFq lσ // A1
X

for some dotted arrow. By [MPT], this property may not hold in general. However,

we will see in Chapter 8 that this property is satisfied when the cosection σ can

be enhanced to a p´1q-shifted closed 1-form.
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3.3 Cosection-localized virtual pullbacks

In this section, we construct cosection-localized virtual pullbacks for perfect ob-

struction theories with cosections satisfying the cone reduction property.

3.3.1 Cosection-localized Gysin pullbacks

As a special case, we first construct the cosection-localized Gysin map for kernel

cone stacks.

Notation 3.3.1 (Blowup diagram). Let X be a Deligne-Mumford stack, F be a per-

fect complex of tor-amplitude r´1, 0s on X, and σ : F_r1s Ñ OX be a cosection

of F. Form a fiber diagram

KpF, σq //
� _

k

��

X� _

0
��

EpFq lσ // A1
X

where Fσ :“ conepσ_r1s : OXr1s Ñ Fq. Let Xpσq Ď X be the zero locus of the

induced map σ : Ob :“ h1pF_q Ñ OX. Let rX :“ BlXpσqX be the blowup of X

along Xpσq. Form a fiber diagram

D
� � j //

q

��

rX
p

��
Xpσq � � i // X

where D is the exceptional divisor. Note that σ|rX factors as

F_r1s|rX
rσ //

σ|rX %%▲▲
▲▲▲

▲▲▲
▲▲▲

OrXp´Dq
� _

��
OrX

where ID{rX “ OrXp´Dq. Then K :“ coneprσ_r1s : OrXpDqr1s Ñ F|rXq is of tor-

amplitude r´1, 0s. Hence we have an abstract blowup square

EpK|Dq � � a //

b

��

EpKq
d

��
EpF|Xpσqq �

� c // KpF, σq
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where EpK|Dq :“ CpK|Dq, EpKq :“ CpKq, and EpF|Xpσqq :“ CpF|Xpσqq are vector

bundle stacks.

Definition 3.3.2 (Cosection-localized Gysin map). Let X be a Deligne-Mumford

stack, F be a perfect complex of tor-amplitude r´1, 0s, and σ : F_r1s Ñ OX

be a cosection. We use the notations in Notation 3.3.1. We define the cosection-

localized Gysin map

0!
EpFq,σ : A˚pKpF, σqq Ñ A˚pXpσqq

as the unique map that fits into the commutative diagram

A˚pEpK|Dqq p´a˚,b˚q //

0

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
A˚pEpKqq ‘ A˚pEpF|Xpσqqq pc˚,d˚q //

pu,vq

��

A˚pKpF, σqq //

0!
EpFq,σ

uu

0!
EpFq

˝k˚

��

0

A˚pXpσqq i˚ // A˚pXq

where the top horizontal sequence is the abstract blowup sequence (cf. Corollary

A.2.7) and the two maps u and v are given as follows:

u : A˚pEpKqq
0!
EpKqÝÝÝÑ A˚prXq ´ j!ÝÝÑ A˚pDq q˚ÝÑ A˚pXpσqq

v : A˚pEpF|Xpσqq
0!
EpF|Xpσqq

ÝÝÝÝÝÑ A˚pXpσqq.

We first show that the cosection-localized Gysin map is well-defined.

Lemma 3.3.3 (Well-definedness). In this situation of Definition 3.3.2, we have

u ˝ a˚ “ v ˝ b˚, i˚ ˝ u “ 0!
EpFq ˝ k˚ ˝ c˚, i˚ ˝ v “ 0!

EpFq ˝ k˚ ˝ d˚.

Proof. Firstly, we have

u ˝ a˚ “ q˚ ˝ j! ˝ 0!
EpKq ˝ a˚

“ ´q˚ ˝ j! ˝ j˚ ˝ 0!
EpK|Dq

“ ´q˚ ˝ c1pOrXpDqq ˝ 0!
EpK|Dq

“ q˚ ˝ 0!
EpF|Dq ˝ e˚

“ 0!
EpF|Xpσqq ˝ b˚ “ v ˝ b˚
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where e : EpK|Dq ãÑ EpF|Dq is the canonical inclusion map.

Secondly, we have

i˚ ˝ u “ ´i˚ ˝ q˚ ˝ j! ˝ 0!
EpKq

“ ´p˚ ˝ j˚ ˝ j! ˝ 0!
EpKq

“ ´p˚ ˝ c1pOrXpDqq ˝ 0!
EpKq

“ p˚ ˝ 0!
EpF|rXq ˝ f˚

“ 0!
EpFq ˝ k˚ ˝ c˚

where f : EpKq ãÑ EpF|rXq is the canonical inclusion map.

Finally, we have

i˚ ˝ v “ i˚ ˝ 0!
EpF|Xpσqq “ 0!

EpFq ˝ k˚ ˝ d˚.

It completes the proof. �

We note that the cosection-localized Gysin maps are bivariant classes.

Proposition 3.3.4 (Bivariance). Let f : Y Ñ X be a morphism of Deligne-

Mumford stacks. Let F be a perfect complex of tor-amplitude r´1, 0s on X and

σ : F_r1s Ñ OX be a cosection. Form a fiber diagram

KpF|Y , σ|Yq
pf //

��

KpF, σq

��
Y

f // X.

1. If f : Y Ñ X is a proper morphism, then we have

f˚ ˝ 0!
EpF|Y q,σ|Y

“ 0!
EpFq,σ ˝ pf˚ : A˚pKpF|Y , σ|Yqq Ñ A˚pXq.

2. If f : Y Ñ X is a equi-dimensional flat morphism, then we have

f ˚ ˝ 0!
EpF|Y ,σY q “ 0!

EpFq,σ ˝ pf ˚ : A˚pKpE, σqq Ñ A˚pYq.

3. If f : Y Ñ X is a local complete intersection morphism, then we have

f ! ˝ 0!
EpF|Y ,σY q “ 0!

EpFq,σ ˝ f ! : A˚pKpE, σqq Ñ A˚pYq.
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Proof. By the universal property of blowup, we can form a commutative diagram

rY
rf //

��

rX
p

��
Y

f // X

for some rf . Then we can form a commutative diagram

rY

rf

$$

f 2
//

��❄
❄❄

❄❄
❄❄

❄ Y 1
f 1

//

��

rX
p

��
Y

f // X

where the square is cartesian.

Then Proposition 3.3.4.1 follows immediately since rf , f 2 are proper and all

the operations in Definition 3.3.2 commute with projective proper pushforwards.

Similarly, Proposition 3.3.4.2 follows immediately since the flatness of f im-

plies rY “ Y 1 and all the operations in Definition 3.3.2 commute with flat pull-

backs.

Finally, Proposition 3.3.4.3 follows from Lemma 3.3.5 below and Proposition

3.3.4.1 since all the operations in Definition 3.3.2 commute with lci pullbacks. �

Lemma 3.3.5. Let X be a Deligne-Mumford stack, F be a perfect complex of tor-

amplitude r´1, 0s, and σ : F_r1s Ñ OX be a cosection. Assume that there exists

a factorization

L_

��
F_r1s σ

//

τ

<<

OX

for some line bundle L and a map τ. Let Fτ :“ conepτ_r1s : Lr1s Ñ Fq. Then

K :“ CpFτq is a vector bundle stack and we have

0!
E,σ ˝ a˚ “ ´ j! ˝ 0!

K : A˚pKq Ñ A˚pXpσqq
where a : K ãÑ KpE, σq is the inclusion map.

Proof. By the blowup sequence, we may reduce the situation to the case when

Xpσq is a divisor of X and L “ OXpXpσqq. Then the statement follows directly

from the definition. �
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Remark 3.3.6 (Uniqueness). The cosection-localized Gysin pullbacks 0!
E,σ

in

Definition 3.3.2 are uniquely determined by the bivariance in Proposition 3.3.4,

the compatibility 0!
E,0

“ 0!
E
, and the special case in Lemma 3.3.5.

Remark 3.3.7 (Generalization). We may want to generalize the cosection-localized

Gysin pullbacks 0!
E,σ

in Definition 3.3.2 to Artin stacks X. As long as we have a

generalized blowup sequence in Corollary A.2.7 for arbitrary Artin stacks, then

everything in this subsection generalize to Artin stacks immediately.

3.3.2 Cosection-localized virtual pullbacks

We now consider the general case. We construct cosection-localized virtual pull-

backs for perfect obstruction theories with cosections

Definition 3.3.8 (Cosection-localized virtual pullback). Let f : X Ñ Y be a

morphism from a DM stack X to an algebraic stack Y . Let φ : F Ñ LX{Y be a

perfect obstruction theory satisfying the cone reduction property with respect to a

cosection σ : F_r1s Ñ LX{Y . We define the cosection-localized virtual pullback

f !
σ : A˚pYq Ñ A˚pXpσqq

as the composition

A˚pYq spX{YÝÝÝÑ A˚pCX{Yq � A˚ppCX{Yqredq ισ,red

ÝÝÑ A˚pKpF, σqq
0!
EpFq,σÝÝÝÑ A˚pXpσqq

where spX{Y is the specialization map, ισ,red : pCX{Yqred ãÑ KpF, σq is the closed

embedding to the kernel cone stack, and 0!
EpFq,σ is the cosection-localized Gysin

pullback in Definition 3.3.2

We now define the cosection-localized virtual cycle as a special case of the

cosection-localized virtual pullback.

Definition 3.3.9 (Cosection-localized virtual cycle). Let X be a Deligne-Mumford

stack equipped with a perfect obstruction theory φ : F Ñ LX and a cosection

σ : F_r1s Ñ OX. We define the cosection-localized virtual cycle as

rXsvir
loc :“ f !

σprSpecpCqsq “ 0!
EpFq,σrCXs P A˚pXpσqq

where f !
σ : A˚pSpecpCqq Ñ A˚pXpσqq is the cosection-localized virtual pullback

in Definition 3.3.8.
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The cosection-localized virtual pullbacks are bivariant classes.

Proposition 3.3.10 (Bivariance). Let

X1 f 1

//

g1

��

Y 1

g

��
X

f // Y

be a cartesian square of algebraic stacks where X and X1 are Deligne-Mumford

stacks. Let φ : F Ñ LX{Y be a perfect obstruction theory satisfying the cone

reduction property with respect to a cosection σ : F_r1s Ñ OX. Let

φ1 : F1 :“ pg1q˚pFq pg1q˚pφqÝÝÝÝÑ pg1q˚pLX{Yq Ñ LX1{Y1

be the induced perfect obstruction theory. Then φ1 also satisfies the cone reduction

property with respect to the induced cosection

σ1 :“ pg1q˚pσq : pF1q_r1s Ñ OX1

and we have the following properties:

1. If g is a proper DM morphism, then we have

f !
σ ˝ g˚ “ g1

˚ ˝ p f 1q!
σ : A˚pY 1q Ñ A˚pXpσqq.

2. If g is a equi-dimensional flat morphism, then we have

p f 1q!
σ1 ˝ g˚ “ pg1q˚ ˝ f !

σ : A˚pYq Ñ A˚pX1pσ1qq.

3. If g is a local complete intersection morphism and Y 1 has affine stabilizers,

then we have

p f 1q!
σ1 ˝ g! “ pg1q! ˝ f !

σ : A˚pYq Ñ A˚pX1pσ1qq.

Proof. If follows directly from Proposition 2.1.19 and Proposition 3.3.4. �
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3.3.3 Functoriality

In this subsection, we collect functorility results of cosection-localized virtual cy-

cles shown in Chang-Kiem-Li [CKL].

Theorem 3.3.11 (Functoriality I). Let f : X Ñ Y be a morphism of Deligne-

Mumford stacks. Let pφ f : F f Ñ L f , φY : FY Ñ LY , φX : FX Ñ LXq be a compati-

ble triple of perfect obstruction theories in the sense of Definition 2.3.11. Consider

a commutative triangle

F_
X

r1s

��

σX

##❋
❋❋

❋❋
❋❋

❋❋

FY |_
X r1s

σY |X

// OX

for some cosections σX : EX|_r1s Ñ OX and σY : E_
Y

r1s Ñ OY . Then we have a

fiber diagram

XpσXq
� _

��

// YpσYq

��
X

f // Y

and a virtual pullback formula

rXsvir
loc “ f !rYsvir

loc P A˚pXpσXqq.
Most of the arguments of Theorem 3.3.11 are straightforward generalizations

of Theorem 2.3.12. The crucial additional ingredient is [CKL, Lem. 2.7]: the in-

duced perfect obstruction theory

Eh Ñ Lh

for h : X ˆ A1 Ñ M˝
Y{Z

in Lemma 2.3.19 satisfies the cone reduction property

with respect to a cosection

σh : E_
h r1s Ñ OXˆA1

that fits into a morphism of distinguished triangles

E_
h

r1s //

σh

��

p f ˚E_
Y

r1s ‘ E_
X

r1sq ⊠ OA1
//

f ˚σY ‘σX

��

f ˚E_
Y

r1s ⊠ OA1

σY

��
OXˆA1

// OXˆA1 ‘ OXˆA1
// OXˆA1 .

We refer to [CKL, Thm. 2.6] for details.
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Theorem 3.3.12 (Functoriality II). Let f : X Ñ Y be a morphism of Deligne-

Mumford stacks. Let pφ f : F f Ñ L f , φY : FY Ñ LY , φX : FX Ñ LXq be a compati-

ble triple of perfect obstruction theories in the sense of Definition 2.3.11. Consider

a commutative triangle

F_
f
r1s

��

σ f

!!❉
❉❉

❉❉
❉❉

❉

F_
X r1s σX

// OX

for some cosections σX : E_
X

r1s Ñ OX and σ f : E_
f
r1s Ñ OX. Then φ f satisfies

the cone reduction property with respect to the cosection σ f and we have

c˚rXsvir
loc “ f !

σrYsvir P A˚pXpσ f qq

where c : XpσXq ãÑ Xpσ f q is the inclusion map.

The proof of Theorem 3.3.12 is relatively easier than that of Theorem 3.3.11

since the cone reduction property for φh follows immediately from the cone re-

duction property for φX. We refer to [CKL, Thm. 2.10] for details.
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Part II

Donaldson-Thomas theory of

Calabi-Yau 4-folds
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Chapter 4

Virtual pullbacks in

Donaldson-Thomas theory of

Calabi-Yau 4-folds

In this chapter, we generalize Manolache’s virtual pullbacks [Man] to Donaldson-

Thomas theory of Calabi-Yau 4-folds. This is based on [Park1].

Summary We first recall the local model of Behrend-Fantechi virtual cycles.

Let U be a smooth scheme, E be a vector bundle on U, s be a global section of E,

and X be the zero locus of s in U,

E

��
X
� � // U.

s

\\

The Behrend-Fantechi virtual cycle is defined as the localized Euler class,

rXsvir
BF :“ epE, sqrUs P A˚pXq.

Analogously, the local model of Oh-Thomas virtual cycles is given by the

following replacements:

vector bundle E { special orthogonal bundle E

section s of E { isotropic section s of E

localized Euler class epE, sq { localized square root Euler class
?

epE, sq.
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where the construction of
?

epE, sq is the crucial part.

A general philosophy in DT4 theory is to replace everything in the virtual

intersection theory to the symmetric versions of them. In particular, we consider

the following global replacement:

perfect obstruction theories { symmetric obstruction theories.

A new feature is that we need two additional ingredients: (1) isotropic condition

and (2) an orientation.

We briefly summarize the global construction of virtual cycles/virtual pull-

backs in DT4 theory. Let f : X Ñ Y be a morphism of schemes and let φ :

EÑ LX{Y be a symmetric obstruction theory. Then there is a canonical quadratic

function

qE : CpEq Ñ A1
X

induced by the symmetric form of E. Let QpEq be the quadratic cone stack, de-

fined as the zero locus of the canonical quadratic function qE in CpEq.

1. We say that φ satisfies the isotropic condition if

CX Ď QpEq

as substacks of CpEq.

2. We will construct the square root Gysin pullback

b
0!
QpEq : A˚pQpEqq Ñ A˚pXq

for the quadratic cone stack QpEq, which depends on a choice of an orien-

tation o : OX
�ÝÑ detpEq.

We define the square root virtual pullback as the composition

a
f ! : A˚pYq spÝÑ A˚pCX{Yq ÝÑ A˚pQpEqq

0!
QpEqÝÝÝÑ A˚pXq.

The Oh-Thomas virtual cycle is then defined as a special case for Y “ SpecpCq,

rXsvir
OT :“

a
f !rSpecpCqs “

b
0!
QpEqrCXs P A˚pXq.
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As virtual pullbacks, the most important property of square root virtual pull-

backs is a functoriality. If

X
f //

g˝ f

77Y
g // Z,

is a commutative diagram of schemes such that g, g ˝ f are equipped with sym-

metric obstruction theories and f is equipped with a perfect obstruction theory,

then we have b
pg ˝ f q! “ f ! ˝

a
g! : A˚pZq Ñ A˚pXq

for a natural compatibility condition. In particular, when Z “ SpecpCq, we have a

virtual pullback formula

rXsvir
OT “ f !rYsvir

OT P A˚pXq.

We present various applications of the virtual pullback formula in Chapter 6.

4.1 Local models

In this section, we review the square root Euler classes
?

epEq for special orthog-

onal bundles E of Edidin-Graham [EG1] and its localization
?

epE, sq by isotropic

sections s of Oh-Thomas [OT]. Roughly speaking,
?

epE, sq are the local models

of the square root virtual pullbacks.

4.1.1 Orthogonal bundles

In this subsection, we fix the notions of orthogonal bundles and special orthogonal

bundles on algebraic stacks. We also present three basic operations of them.

Definition 4.1.1 (Orthogonal bundle). Let X be an algebraic stack. An orthogonal

bundle on X is a pair pE, θq where

1. E is a vector bundle on X, and

2. θ is a non-degenerate symmetric bilinear form on E, i.e., a map

θ : E b E Ñ OX

satisfying the following properties:
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(a) θ ˝ σ “ θ for the transition map σ : E b E Ñ E b E;

(b) the induced map E_ Ñ E is an isomorphism.

By abuse of notation, we say that E is an orthogonal bundle on X.

We present some elementary facts on orthogonal bundles.

Remark 4.1.2. Let X be an algebraic stack. Then an orthogonal bundle of rank n

on X is equivalent to a map

X Ñ BOpnq
to the classifying stack of the orthogonal group Opnq.

Remark 4.1.3. Let X be a scheme. Then an orthogonal bundle on X is étale-

locally trivial, but not necessarily Zariski-locally trivial. A counterexample is pro-

vided in [EG1]. In other words, the orthogonal group Opnq is not a special group.

Remark 4.1.4 (Canonical quadratic function). Let E be an orthogonal bundle on

an algebraic stack X. Then there exists a canonical quadratic function

qE : E Ñ A1
X

defined by the symmetric form θ P Sym2pE_q where E “ SpecpSympE_qq.

There are three basic operations for orthogonal bundles.

Example 4.1.5 (Three operations). Let X be an algebraic stack.

1. If E1 and E2 are orthogonal bundles, then we have a direct sum E1 ‘ E2 as

an orthogonal bundle.

2. If F is a non-degenerate subbundle of an orthogonal bundle E, i.e., a sub-

bundle such that θ|F : F b F Ñ OX is non-degenerate, then we have an

orthgonal complement FK as an orthogonal bundle. Moreover, we have a

canonical direct sum decomposition

E “ F ‘ FK.

We sometimes denote the orthogonal complement FK by E{F.
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3. If K is an isotropic subbundle of an orthogonal bundle E, i.e., a subbundle

such that θ|K : K b K Ñ OX is zero, then we have a reduction KK{K as an

orthogonal bundle. Moreover, we have a canonical commutative diagram

0 // K
� � // KK // //

� _

��

KK{K //
� _

��

0

0 // K
� � //

��

E // //

����

E{K //

����

0

0 // 0 // K_ K_ // 0

where the rows and columns are exact. We sometimes denote the reduction

KK{K by E{{K.

Definition 4.1.6 (Orientation). Let E be an orthogonal bundle on an algebraic

stack X. An orientation of E is an isomorphism of line bundles

o : OX
�ÝÑ detpEq

such that the square

o2 : OX
oÝÑ detpEq � detpE_q o_

ÝÑ OX

is the identity 1 P ΓpX,OXq, where the second isomorphism detpEq � detpE_q is

given by the symmetric form of E.

Remark 4.1.7 (Orientation bundle). Let E be an orthogonal bundle on an alge-

braic stack X. We define the orientation bundle of E as the functor

OrpEq : Sch
op

{X
Ñ Set : pT Ñ Xq ÞÑ torientations of E|T u.

Consider the canonical short exact sequence of algebraic groups

0 // S Opnq � � // Opnq det // // µ2
// 0 .

Then the orientation bundle OrpEq fits into the fiber diagram

OrpEq //

��

BS Opnq //

��

SpecpCq

��
X

E // BOpnq det // Bµ2.

Hence the orientation bundle OrpEq is a principal µ2-bundle over X. In particular,

E is étale-locally orientable since the pullback E|OrpEq has a canonical orientation.
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There are canonical induced orientations for the three operations of orthogonal

bundles in Example 4.1.5.

Example 4.1.8 (Induced orientations). Let X be an algebraic stack.

1. Let E “ E1 ‘ E2 be the direct sum of two orthogonal bundles. Then we

have a canonical isomorphism of line bundles

detpEq � detpE1q b detpE2q.
Hence orientations of E1 and E2 induce an orientation of E.

2. Let FK be the orthogonal complement of a non-degenerate subbundle F

of an orthogonal bundle E. Then we have a canonical isomorphism of line

bundles

detpFKq � detpEq b detpFq_.

Hence orientations of E and F induce an orientation of FK.

3. Let KK{K be the reduction of an isotropic subbundle K of an orthogonal

bundle E. Then we have a canonical isomorphism of line bundles

detpKK{Kq � detpKKq b detpKq_

� detpEq b detpK_q_ b detpKq_
� detpEq.

Hence an orientation of E induces an orientation of KK{K.

Definition 4.1.9 (Special orthogonal bundles). Let X be an algebraic stack. A

special orthogonal bundle on X is a triple pE, θ, oq where

1. pE, θq is an orthogonal bundle on X, and

2. o : OX Ñ detpEq is an orientation of E.

By abuse of notation, we say that E is a special orthogonal bundle on X.

Remark 4.1.10 (Maximal isotropic subbundles). Let E be a special orthogonal

bundle of rank 2n on an algebraic stack X.

1. We say that an isotropic subbundle M of E is maximal if rankpMq “ n.

2. For a maximal isotropic subbundle M of E, the reduction MK{M of E by M

is zero. Thus an orientation of the orthogonal bundle MK{M “ 0 is equiva-

lent to a sign. We say that a maximal isotropic subbundle M of E is positive

if the induced orientation on MK{M is 1. Otherwise, if the induced orienta-

tion is ´1, then we say that M is a negative maximal isotropic subbundle.
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4.1.2 Edidin-Graham classes

In this subsection, we construct square root Euler classes of special orthogonal

bundles, introduced by Edidin-Graham [EG1].

We first recall the notion of isotropic flag bundles.

Definition 4.1.11 (Isotropic flag bundle). Let E be an orthogonal bundle of rank

2n on an algebraic stack X. We define the isotropic flag bundle of E as the functor

FlagpEq : Sch
op

{X
Ñ Set : T ÞÑ tpK1 Ď K2 Ď ¨ ¨ ¨ Ď Kn´1 Ď E|T qu

where Ki are isotropic subbundle of E|T of rank i.

Proposition 4.1.12. Let E be an orthogonal bundle of even rank on an algebraic

stack X. Let FlagpEq be the isotropic flag bundle of E.

1. The canonical map

p : FlagpEq Ñ X

is a smooth, projective, surjective morphism of algebraic stacks.

2. Given an orientation of E, there exists a canonical positive maximal isotropic

subbundle Λ of E|FlagpEq.

Proof. It follows from the results in [EG1] for schemes via descent. �

We define the square root Euler classes through the isotropic flag bundles.

Definition 4.1.13 (Square root Euler class). Let E be a special orthogonal bundle

of rank 2n on a Deligne-Mumford stack X. Let p : F :“ FlagpEq Ñ X denote

the isotropic flag bundle of E. We define the square root Euler class of E as the

unique map ?
epEq : A˚pXq Ñ A˚pXq

that fits into the commutative diagram

A˚pF ˆX Fq pp1q˚´pp2q˚ //

epp˚
1
Λq“epp˚

2
Λq

��

A˚pFq p˚ //

epΛq
��

A˚pXq //

?
epEq

��

0

A˚pF ˆX Fq pp1q˚´pp2q˚

// A˚pFq p˚

// A˚pXq // 0

as the dotted arrow. Here Λ Ď E|F is the canonical positive maximal isotropic

subbundle in Proposition 4.1.12.2, the rows are exact by the Kimura sequence

(see Theorem A.1.1), and epp˚
1
Λq “ epp˚

2
Λq by Fulton’s conjecture in Lemma

4.1.14 below.
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We need the following version of Fulton’s conjecture to assure that the square

root Euler class in Definition 4.1.13 is well-defined.

Lemma 4.1.14 (Fulton’s conjecture). Let E be a special orthogonal bundle on a

Deligne-Mumford stack X. If M1 and M2 are positive maximal isotropic subbun-

dles of E, then we have

epM1q “ epM2q : A˚pXq Ñ A˚pXq.

Proof. By [EHKV, Thm. 2.7], there exists a finite surjective map p : F Ñ X from

a scheme F. Since the pushforward

f˚ : A˚pFq Ñ A˚pXq

is surjective by the Kimura sequence in Theorem A.1.1, the result for schemes in

[EG1, Thm. 1] completes the proof. �

We note that the square root Euler classes are bivariant classes.

Proposition 4.1.15 (Bivariance). Let f : Y Ñ X be a morphism of Deligne-

Mumford stacks and E be a special orthogonal bundle on X.

1. If f : Y Ñ X is a proper morphism, then we have

?
epEq ˝ f˚ “ f˚ ˝

?
epEq.

2. If f : Y Ñ X is an equi-dimensional flat morphism, then we have

?
epEq ˝ f ˚ “ f ˚ ˝

?
epEq.

3. If f : Y Ñ X is a local complete intersection morphism, then we have

?
epEq ˝ f ! “ f ! ˝

?
epEq.

By abuse of notation, we denoted
?

ep f ˚Eq by
?

epEq.

We describe how the square root Euler classes are related to the basic opera-

tions of special orthogonal bundles in Example 4.1.5 (and Example 4.1.8).

Proposition 4.1.16 (Whitney sum formula). Let E1 and E2 be special orthogonal

bundles on a Deligne-Mumford stack X. Then we have

?
epE1 ‘ E2q “

?
epE1q ˝

?
epE2q : A˚pXq Ñ A˚pXq.
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Proposition 4.1.17 (Reduction formula). Let E be a special orthogonal bundle

on a Deligne-Mumford stack X and K be an isotropic subbundle. Then we have

?
epEq “ epKq ˝

?
epE{{Kq : A˚pXq Ñ A˚pXq

where E{{K :“ KK{K is the reduction of E by K.

We omit the proofs of Proposition 4.1.15, Proposition 4.1.16, and Proposition

4.1.17 since they follow immediately from the definition.

Remark 4.1.18 (Uniqueness). Note that Fulton’s conjecture in Lemma 4.1.14 is a

special case of the reduction formula in Proposition 4.1.17. Thus we can observe

that the square root Euler classes are uniquely determined by the bivariance in

Proposition 4.1.15 and the reduction formula in Proposition 4.1.17.

Remark 4.1.19 (Integral coefficients). Square root Euler classes can be defined

in the Chow groups with Zr1{2s-coefficients. However, Totaro [?] showed that

square root Euler class does not exists with Z-coefficients.

The square root Euler classes can be generalized to a certain class of Artin

stacks.

Remark 4.1.20 (Generalization). Let E be a special orthogonal bundle on an al-

gebraic stack X. Assume that X admits a proper cover by a quotient stack (in the

sense of Definition A.2.1). Then we can define a square root Euler

?
epEq : A˚pXq Ñ A˚pXq

as in Definition 4.1.13, since Fulton’s conjecture holds for the isotropic flag bundle

F :“ FlagpEq and F ˆX F by Lemma 4.1.21 below.

In particular, we have square root Euler classes for algebraic stacks with re-

ductive stabilizers and affine diagonals (see Proposition ??).

Lemma 4.1.21. Let E be a special orthogonal bundle on an algebraic stack X.

Let M1 and M2 be two positive maximal isotropic subbundles of E. Assume that X

admits a proper cover by a quotient stack (in the sense of Definition A.2.1). Then

we have

epM1q “ epM2q : A˚pXq Ñ A˚pXq.

92



CHAPTER 4. VIRTUAL PULLBACKS IN DT4 THEORY

Proof. Let p : rX Ñ X be a proper representable surjection from the quotient

stack rX “ rP{Gs of a separated Deligne-Mumford stack P by an action of a linear

algebraic group G. By the Kimura sequence in Theorem A.1.1, the pushforward

f˚ : A˚prXq Ñ A˚pXq

is surjective. Let EGi{G Ñ BG be Totaro’s algebraic approximations [Tot]. By

the homotopy property, the pullback

AdprP{Gsq Ñ Ad`dimpEGiqprP ˆ EGi{Gsq

for each d P Z, is an isomorphism for sufficiently large i. Hence Lemma 4.1.14

completes the proof since rP ˆ EGi{Gs is a Deligne-Mumford stack. �

4.1.3 Oh-Thomas classes

In this subsection, we construct localized square root Euler classes for special

orthogonal bundles with isotropic sections, introduced by Oh-Thomas in [OT].

Instead of following the construction in [OT] directly, we use the blowup con-

struction introduced in [KP2]. This construction is inspired by the cosection lo-

calization [KL1].

Notation 4.1.22 (Blowup diagram). Let E be a special orthogonal bundle on an

algebraic stack X. Let s be an isotropic section of E. Let Xpsq denote the zero

locus of s in X. Let rX :“ BlXpsqX denote the blowup of X along Xpsq. Form a fiber

diagram

D
� � j //

q

��

rX
p

��
Xpsq � � i // X

where D is the exceptional divisor. Then the section s defines a surjection

E|rX ։ OrXp´Dq Ď OrX.

Since s is an isotropic section, L :“ OrXpDq is an isotropic subbundle of E|rX. Let

LK{L be the reduction of E|rX by L.

Definition 4.1.23 (Localized square root Euler class). Let X be a Deligne-Mumford

stack, E be a special orthogonal bundle on X, and s be an isotropic section of E.

93



CHAPTER 4. VIRTUAL PULLBACKS IN DT4 THEORY

We use the notations in Notation 5.3.1. We define the localized square root Euler

class of E by s as the unique map

?
epE, sq : A˚pXq Ñ A˚pXpsqq

that fits into the commutative diagram

A˚pDq p´ j˚,q˚q // A˚prXq ‘ A˚pXpsqq pp˚,i˚q //

pu,vq
��

A˚pXq
?

epE,sq
vv

//

?
epEq

��

0

A˚pXpsqq
i˚

// A˚pXq

where the middle vertical arrow is given by the two maps

u : A˚prXq j!ÝÑ A˚pDq
?

epLK{LqÝÝÝÝÝÑ A˚pDq q˚ÝÑ A˚pXpsqq

v : A˚pXpsqq
?

epE|XpsqqÝÝÝÝÝÝÑ A˚pXpsqq

and the top horizontal right exact sequence is the abstract blowup sequence in

Corollary A.2.7.

To show that the localized square root Euler class
?

epE, sq in Definition

4.1.23 is well-defined, we need the following identities.

Lemma 4.1.24 (Well-definedness). In the situation of Definition 4.1.23, we have

the identities

u ˝ j˚ “ v ˝ q˚, i˚ ˝ u “
?

epEq ˝ p˚, i˚ ˝ v “
?

epEq ˝ i˚.

Proof. Note that
?

epEq is a bivariant class by Proposition 4.1.15 and we have

?
epE|rXq “

?
epLK{Lq ˝ epLq “ epLq ˝

?
epLK{Lq : A˚prXq Ñ A˚prXq

by the reduction formula in Proposition 4.1.17. The first identity follows from

q˚ ˝
?

epLK{Lq ˝ j! ˝ j˚ “ q˚ ˝
?

epLK{Lq ˝ epLq “ q˚ ˝
?

epEq “
?

epEq ˝ q˚,

the second identity follows from

i˚ ˝ q˚ ˝
?

epLK{Lq ˝ j! “ p˚ ˝ j˚ ˝
?

epLK{Lq ˝ j! “ p˚ ˝ j˚ ˝ j! ˝
?

epLK{Lq
“ p˚ ˝ epLq ˝

?
epLK{Lq “ p˚ ˝

?
epEq “

?
epEq ˝ p˚,

and the third identity follows from the bivariance of
?

epEq. �
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The localized square root Euler classes are bivariant classes. This localizes the

results in Proposition 4.1.15.

Proposition 4.1.25 (Bivariance). Let f : X Ñ Y be a morphism of Deligne-

Mumford stacks. Let E be a special orthogonal bundle on X and s be an isotropic

section of E. Form a fiber diagram

Ypsq
f psq

��

� � // Y

f

��
Xpsq � � i // X.

1. If f : Y Ñ X is a proper morphism, then
?

epE, sq ˝ f˚ “ f psq˚ ˝
?

epE, sq : A˚pYq Ñ A˚pXpsqq.

2. If f : Y 1 Ñ Y is an equi-dimensional flat morphism, then

p f psqq˚ ˝
?

epE, sq “
?

epE, sq ˝ f ˚ : A˚pXq Ñ A˚pYpsqq.

3. If f : Y Ñ X is a local complete intersection morphism, then

f ! ˝
?

epE, sq “
?

epE, sq ˝ f ! : A˚pXq Ñ A˚pYpsqq.

By abuse of notation, we denoted
?

ep f ˚E, f ˚sq by
?

epE, sq.

We provide localized versions of the Whitney sum formula in Proposition

4.1.16 and the reduction formula in Proposition 4.1.17.

Proposition 4.1.26 (Whitney sum formula). Let E1 and E2 be special orthogonal

bundles on a Deligne-Mumford stack X. Let s1 and s2 be isotropic sections of E1

and E2, respectively. Then we have
?

eppE1 ‘ E2q, ps1, s2qq “
?

epE1, s1q ˝
?

epE2, s2q : A˚pXq Ñ A˚pXps1, s2qq
where Xps1, s2q :“ Xps1q X Xps2q is the common zero locus of s1 and s2.

Proposition 4.1.27 (Reduction formula). Let E be a special orthogonal bundle on

a Deligne-Mumford stack X and K be an isotropic subbundle. Let s be an isotropic

section of E such that s ¨ K “ 0. Let s1 P ΓpX,KKq and s2 P ΓpXps1q,K|Xps1qq be

the induced sections. Then we have
?

epE, sq “ epK|Xps1q, s2q ˝
?

epE{{K, s1q : A˚pXq Ñ A˚pXpsqq
where E{{K :“ KK{K is the reduction of E by K.
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We have the following corollary which will be use frequently in §4.3.

Corollary 4.1.28. Let X be a Deligne-Mumford stack, E be a special orthogonal

bundle on X, and K be an isotropic subbundle. Let C be an isotropic subcone of

the reduction E{{K :“ KK{K. Form a commutative diagram

rC � � //

r
����

KK � � //

����

E

X
� �

0C

//
0
�

0 rC

@@✂✂✂✂✂✂✂✂
C
� � // E{{K

where the square is cartesian. Then we have
?

epE{{K|C , τq “
?

epE| rC ,rτq ˝ r˚ : A˚pCq Ñ A˚pXq

where τ P ΓpC, E{{K|Cq and rτ P Γp rC, E| rCq are the tautological sections.

The proofs of Proposition 4.1.25, Proposition 4.1.26, Proposition 4.1.27, and

Corollary 4.1.28 are straightforward. We refer to [KP2] for the details.

Remark 4.1.29 (Uniqueness). As the ordinary square root Euler classes
?

epEq,

the localized square root Euler classes
?

epE, sq are uniquely determined by the

bivariance in Proposition 4.1.25, the reduction formula in Proposition 4.1.27, and

the compatibility i˚ ˝ ?
epE, sq “ ?

epEq.

Remark 4.1.30. Following Remark 4.1.20, everything in this subsection can be

generalized to algebraic stacks which admit proper covers by quotient stacks (in

the sense of Definition A.2.1).

We briefly review the original construction of
?

epE, sq in [OT].

Remark 4.1.31 (Oh-Thomas construction). Let E be a special orthogonal bundle

on a Deligne-Mumford stack X and s be an isotropic section of E.

• Case 1. Assume that E has a positive maximal isotropic subbundle M. Then

we have a short exact sequence

0 // M
� � // E � E_ // // M_ // 0.

Let s1 P ΓpX, M_q and s2 P ΓpX1, M|X1
q be the induced sections. Let X1 Ď X

be the zero locus of s1 in X. Then the zero locus Xpsq of s in X is the zero

locus of s2 in X1. Since s P ΓpX, Eq is isotropic, we have

CX1{X Ď M|_
X1

ps_
2 q
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as subcones of M|_
X1

where M|_
X1

ps_
2

q :“ M|_
X1

ˆs_
2
,A1,0 X is the kernel cone.

We define ?
epE, s, MqOT : A˚pXq Ñ A˚pXpsqq

as the composition

A˚pXq
spX1{XÝÝÝÑ A˚pCX1{Xq ÝÑ A˚pM|_

X1
ps_

2 qq
0!

M|_
X1

,s_
2ÝÝÝÝÑ A˚pX1ps2qq

where 0!
M|_

X1
,s_

2

is the cosection-localized Gysin map.

• Case 2. Consider the general case. Let π : F :“ FlagpEq Ñ X be the

isotropic flag bundle of E. Then there exists a canonical operational class

h P A˚pFq such that

α “ π˚ph X π˚αq P A˚pXq

for all α P A˚pXq. Let Λ be the canonical positive maximal isotropic sub-

bundle of E|F. We define

?
epE, sqOT : A˚pXq Ñ A˚pXpsqq

as the composition

A˚pXq π˚

ÝÑ A˚pFq
?

epπ˚E,π˚s,ΛqOT

ÝÝÝÝÝÝÝÝÝÝÑ A˚pFpπ˚sqq πpsq˚ÝÝÝÑ A˚pXpsqq

where πpsq : Fpπ˚sq Ñ Xpsq is the restriction of π : F Ñ X.

The two definitions of localized square root Euler class coincide,

?
epE, sq “

?
epE, sqOT .

We refer to [KP2, Thm. 5.2] for the proof of the comparison.

4.2 Symmetric obstruction theories

In this section, we fix the notion of symmetric obstruction theories. They are the

necessary additional data to define Oh-Thomas virtual cycles (or more generally,

square root virtual pullbacks). Compared to the ordinary virtual cycles (or virtual

pullbacks) associated to perfect obstruction theories in Chapter 2, a new feature

is that we now need an additional data, an orientation and an additional property,

the isotropic condition.
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4.2.1 Symmetric complexes

Definition 4.2.1 (Symmetric complex). Let X be an algebraic stack. We say that

a pair pE, θq is a symmetric complex on X if

1. E is a perfect complex on X of tor-amplitude r´2, 0s, and

2. θ is a p´2q-shifted non-degenerate symmetric form, i.e., a morphism

θ : OX Ñ pEb Eqr´2s

satisfying the following properties:

(a) σr´2s ˝ θ “ θ for the transition map σ : Eb EÑ Eb E;

(b) the induced map E_r2s Ñ E is an isomorphism.

By abuse of notation, we say that E is a symmetric complex on X.

Remark 4.2.2. The notion of symmetric complexes in Definition 4.2.1 can be

generalized to d-shifted symmetric complexes of tor-amplitude ra, bs in a straight-

forward manner.

In this paper, we will always assume that symmetric complexes are p´2q-

shifted symmetric and of tor-amplitude r´2, 0s, unless stated otherwise.

Three operations We note that there are three basic operations for symmetric

complexes:

1. The direct sum E1 ‘ E2 of two symmetric complexes E1 and E2;

2. The orthogonal complement E{F of a non-degenerate subcomplex F of a

symmetric complex E;

3. The reduction E{{K of a symmetric complex E by an isotropic subcomplex

K.

These operations are analogous to the basic operations of orthogonal bundles in

Example 4.1.5. We now explain how to define these operations. The direct sum

operation is obvious. To define the other two operations, we introduce the notions

of non-degenerate subcomplexes and isotropic subcomplexes.
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Definition 4.2.3 (Non-degenerate subcomplex). Let E be a symmetric complex

on an algebraic stack X. We say that a perfect complex F on X is a non-degenerate

subcomplex of E with respect to ǫ : EÑ F if the square

ǫ2 : F_r2s ǫ_r2sÝÝÝÑ E_r2s θÝÑ E ǫÝÑ F
is an isomorphism.

Definition 4.2.4 (Isotropic subcomplex). Let E be a symmetric complex on an al-

gebraic stack X. We say that a perfect complex K on X is an isotropic subcomplex

of E with respect to δ : EÑ K if the square

δ2 : K_r2s δ_r2sÝÝÝÑ E_r2s θÝÑ E δÝÑ K
is zero and K is of tor-amplitude r´1, 0s.

We define the notions of orthogonal complements E{F and reductions E{{K via

the following propositions.

Proposition 4.2.5 (Orthogonal complement). Let E be a symmetric complex on

an algebraic stack X. Let F be a non-degenerated subcomplex of E with respect to

ǫ : EÑ F. Note that F is a symmetric complex with the induced symmetric form

ǫ˚pθq : OX
θÝÑ pEb Eqr´2s pǫbǫqr´2sÝÝÝÝÝÑ pFb Fqr´2s.

Then there exists a unique symmetric complex E{F that fits into an isomorphism of

symmetric complexes

E � pF‘ E{Fq
where ǫ : EÑ F corresponds to the projection p1, 0q : pF‘ E{Fq Ñ F.

We omit the proof of Proposition 4.2.5 since it is straightforward.

Proposition 4.2.6 (Reduction). Let E be a symmetric complex on an algebraic

stack X. Let K be an isotropic subcomplex of E with respect to δ : E Ñ K.

Then there exists a unique symmetric complex E{{K that fits into a morphism of

distinguished triangles

D_r2s α_
//

β_

��

E
δ //

α

��

K //

E{{K
β // D // K //

for some D, α, β, where α_, β_ are the duals of α, β with respect to the identifica-

tions E_r2s � E and pE{{Kq_r2s � E{{K.
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Unlike Proposition 4.2.5, proving Proposition 4.2.6 is quite difficult than it

seems. We refer to [Park1, Appendix C] for the proof.

Definition 4.2.7 (Symmetric resolution). Let E be a symmetric complex on an

algebraic stack X. A symmetric resolution of E is an isomorphism

rB Ñ E_ Ñ B_s �ÝÑ E (4.2.1)

for some orthogonal bundle E and a vector bundle B such that the symmetric form

of E is represented by the chain map

E_

θ
��

B
d // E

d_˝q //

q

��

B_

Er´2s B
q˝d // E_ d_

// B_

where q : E Ñ E_ is the symmetric form of E.

We observe that the symmetric resolutions are special cases of the reduction

operation in Proposition 4.2.6.

Lemma 4.2.8. Let E be a symmetric complex on an algebraic stack X and let

rB dÝÑ E_ d_

ÝÑ B_s � E be a symmetric resolution. Then the symmetric complex

E is the reduction of the symmetric complex E_r1s by the isotropic subcomplex

B_r1s with respect to d_r1s : E_r1s Ñ B_r1s,
E � E_r1s{{B_r1s.

Proof. This is immediate from the definitions. �

Proposition 4.2.9. Let X be an algebraic stack with the resolution property. Then

every symmetric complex on X has a symmetric resolution.

Sketch of the proof. Let E be a symmetric complex on X. By the resolution prop-

erty, there exists a resolution

E_
� rA´2 Ñ A´1 Ñ A0s

for some vector bundles A´2, A´1, and A0 such that the symmetric form of E is

represented by a self-dual map

E_r2s
θ

��

A´2 //

��

A´1 //

��

A0

��
E pA0q_ // pA´1q_ // pA´2q_.
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Consider the induced orthogonal bundle

E :“ cokerpA´2 Ñ A´1 ‘ pA0q_q � kerppA´1q_ ‘ A0 Ñ pA´2q_q “ E_.

Then we have a symmetric resolution

E � rpA0q_ Ñ E � E_ Ñ A0s

as desired. We refer to [OT, Prop. 4.1] for the details. �

Lemma 4.2.10. Let X be an algebraic stack with the resolution property. Let E be

a symmetric complex on X and δ : E Ñ K be a map to a perfect complex K such

that h0pδq is surjective. Then there exists a symmetric resolution

rB Ñ E_ Ñ B_s �ÝÑ E

for some orthogonal bundle E and a vector bundle B and a resolution

rK_ Ñ D_s �ÝÑ K

for some vector bundles K and D such that the map δ is represented by a surjective

chain map

E

δ

��

B //

��

E_ //

��

B_

��
K 0 // K_ // D_.

Proof. It is easy to show the statement from the proof of Proposition 4.2.9. As

Proposition 4.2.9, we refer to [OT, Prop. 4.1] for the details. �

Corollary 4.2.11. Let X “ rP{Gs be the quotient stack of a quasi-projective

scheme P by a linear action of a linear algebraic group G. Then any symmetric

complex on X has a symmetric resolution.

Proof. The quotient stack X “ rP{Gs has the resolution property by [Tho1,

Lem. 2.6]. Hence Proposition 4.2.9 completes the proof. �

Definition 4.2.12 (Orientation). Let E be a symmetric complex on an algebraic

stack X. An orientation of E is an isomorphism of line bundles

o : OX
�ÝÑ detpEq

such that

o2 “ 1 : OX
oÝÑ detpEq � detpE_q o_

ÝÑ OX

where the second isomorphism is given by the symmetric form of E.
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As in Remark 4.1.7, we have an orientation bundle of a symmetric complex

as a µ2-torsor.

Remark 4.2.13 (Orientation bundle). Let E be a symmetric complex on an alge-

braic stack X. We define the orientation bundle of E as the functor

OrpEqSch
op

{X
Ñ Set : pT Ñ Xq ÞÑ torientations of E|T u.

Then the orientation bundle OrpEq fits into the fiber diagram

OrpEq //

��

SpecpCq

��
X

detpEq // Bµ2

where the map X Ñ Bµ2 is given by the line bundle detpEq and the isomorphism

OX � detpEqb2 induced by the symmetric form of E. Hence the orientation bundle

OrpEq Ñ X is a principal µ2-bundle. In particular, the symmetric complex E is

étale-locally orientable since the pullback E|OrpEq has a canonical orientation.

Remark 4.2.14 (Induced orientations). Let X be an algebraic stack.

1. Let E “ E1 ‘ E2 be the direct sum of two symmetric complexes. Then we

have a canonical isomorphism of line bundles

detpEq � detpE1q b detpE2q.
Hence orientations of E1 and E2 induce an orientation of E.

2. Let E{F be the orthogonal complement of a non-degenerate subcomplex F
of a symmetric complex E (in the sense of Proposition 4.2.5). Then we have

a canonical isomorphism of line bundles

detpE{Fq � detpEq b detpFq_.

Hence orientations of E and F induce an orientation of E{F.

3. Let E{{K be the reduction of an isotropic subcomplexK of a symmetric com-

plex E (in the sense of Proposition 4.2.6). Based on the notations in Propo-

sition 4.2.6, we have a canonical isomorphism of line bundles

detpE{{Kq � detpDq b detpKq_

� detpEq b detpK_r2sq_ b detpKq_
� detpEq.

Hence an orientation of E induces an orientation of E{{K.
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4.2.2 Quadratic cone stacks

In the DT4 theory, the quadratic cone stacks associated to symmetric complexes

play the role of the vector bundle stacks in virtual intersection theory.

We first define the canonical quadratic function on the abelian cone stack

associated to a symmetric complex.

Proposition 4.2.15 (Canonical quadratic function). For each symmetric complex

E on an algebraic stack X, there exists a canonical function

qE : CpEq Ñ A1
X

on the associated abelian cone stack CpEq satisfying the following properties:

1. If E “ Er1s for an orthogonal bundle E, then

qE “ qE : CpEq “ E Ñ A1
X,

is the cannonical quadratic function on the orthogonal bundle E.

2. For any morphism f : Y Ñ X of algebraic stacks, we have

f ˚qE “ q f ˚E : f ˚CpEq “ Cp f ˚Eq Ñ A1
Y .

3. If E “ E1 ‘E2 is the direct sum of two symmetric complexes E1 and E2, then

we have

qE “ qE1
˝ p1 ` qE2

˝ p2 : CpEq “ CpE1q ˆ CpE2q Ñ A1
X

where p1 and p2 denote the projection maps.

4. If E{{K is the reduction of E by an isotropic subcomplex K, then the diagram

CpDq Cα //

Cβ

��

CpEq
qE

��
CpE{{Kq

qE{{K

// A1
X

commutes, where α, β, D are given as in Proposition 4.2.6 above.

Moreover, the functions qE are uniquely determined by the above properties.
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We can explicitly describe the canonical quadratic function qE as Example

4.2.16 below, when the symmetric complex E has a symmetric resolution. We

refer to [Park1, Prop. 1.7] for the proof of Proposition 4.2.15 in the general case.

Example 4.2.16. Let E be a symmetric complex on an algebraic stack X. If there

exists a symmetric resolution E � rB Ñ E Ñ B_s, then we have CpEq “
rCpDq{Bs, where D :“ cokerpB Ñ Eq. In this case, the restriction

qE|CpDq : CpDq ãÑ E Ñ A1
X

is B-invariant and it descends to the canonical quadratic function

qE : CpEq “ rCpDq{Bs Ñ A1
X.

There is a simple description of the canonical quadratic function qE using de-

rived algebraic geometry.

Remark 4.2.17 (Derived interpretation). Let E be a symmetric complex on an

algebraic stack X. In Remark 2.1.3, we observed that

CpEq “ TotpE_r1sq :“ SpecpSym‚pEr´1sqqcl.

Then the symmetric form θ P Sym2pEr´1sq defines a map

TotpE_r1sqq Ñ A1
X.

The canonical quadratic function qE in Proposition 4.2.15 is the restriction of the

above function to the classical truncation CpEq.

Remark 4.2.18. We note that the canonical quadratic function qE can be gen-

eralized to perfect complexes E with degenerate symmetric bilinear forms in a

straightforward manner.

We finally define our main object in this subsection, the quadratic cone stacks,

as follows.

Definition 4.2.19 (Quadratic cone stack). Let E be a symmetric complex on an al-

gebraic stack X. We define the quadratic cone stack associated to E as the subcone

stack

QpEq Ď CpEq
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defined as the zero locus of the canonical quadratic function qE in Proposition

4.2.15. Equivalently, we have a fiber diagram

QpEq //
� _

��

X� _

0

��
CpEq qE // A1

X

of cone stacks.

4.2.3 Symmetric obstruction theories

In DT4 theory, the symmetric obstruction theories satisfying the isotropic condi-

tion play the role of perfect obstruction theories in virtual intersection theory.

Definition 4.2.20 (Symmetric obstruction theory). Let f : X Ñ Y be a DM mor-

phism of algebraic stacks. We say that φ : E Ñ LX{Y is a symmetric obstruction

theory for f : X Ñ Y if

1. E is a symmetric complex on X, and

2. φ : EÑ LX{Y is an obstruction theory for f : X Ñ Y .

An important new ingredient in DT4 theory is the isotropic condition.

Definition 4.2.21 (Isotropic condition). Let f : X Ñ Y be a DM morphism of al-

gebraic stacks. We say that a symmetric obstruction theory φ : EÑ LX{Y satisfies

the isotropic condition if the composition

CX{Y
ιÝÑ CpEq qEÝÑ A1

X

vanishes, where ι : CX{Y ãÑ CpEq is the closed embedding induced by φ and

qE : CpEq Ñ A1
X is the canonical quadratic function.

We provide a technical generalization of the isotropic condition.

Remark 4.2.22 (Weak isotropic condition). In the situation of Definition 4.2.21,

we say that the symmetric obstruction theory φ : E Ñ LX{Y satisfies the weak

isotropic condition if the composition

pCX{Yqred ãÑ CX{Y
ιÝÑ CpEq qEÝÑ A1

X

vanishes, where pCX{Yqred Ď CX{Y is the reduced closed substack of the intrinsic

normal cone CX{Y . This weak isotropic condition is sufficient to define the square

root virtual pullbacks in the next section.
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We observe that a symmetric obstruction theory satisfying the isotropic con-

dition is equivalent to a closed embedding of the intrinsic normal cones into a

quadratic cone stack. This is a DT4 analog of Proposition 2.2.9.

Proposition 4.2.23. Let f : X Ñ Y be a DM morphism of algebraic stacks.

1. If φ : E Ñ LX{Y is a symmetric obstruction theory satisfying the isotropic

condition, then there is a unique closed embedding

CX{Y ãÑ QpEq

of cone stacks that fits into the commutative diagram

QpEq
� _

��

// X� _

0

��
CX{Y

<<

� � ι / CpEq qE //// A1
X

as the dotted arrow.

2. If CX{Y ãÑ QpEq is a closed embedding of cone stacks for some quadratic

cone stack associated to a symmetric complex E, then the composition

EÑ τě´1E � LX{CpEq Ñ LX{QpEq Ñ LX{CX{Y
� LX{Y

is a symmetric obstruction theory satisfying the isotropic condition.

Moreover, the above two operations are inverse to each others.

Proof. If follows immediately from Proposition 2.2.9 and Definition 4.2.21. �

Proposition 4.2.24 (Criterion for isotropic condition). Let f : X Ñ Y be a DM

morphism of algebraic stacks and let φ : E Ñ LX{Y be a symmetric obstruction

theory. Assume that there is a factorization of f : X Ñ Y as

rY
f

��
X
/
�

rf
@@��������

f
// Y
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with a closed embedding rf and a smooth morphism f , and a symmetric resolution

of E such that φ : EÑ L f is represented by a surjective chain map

E

φ

��

B
q˝d //

��

E_ d_
//

rφ
��

B_

��
L f 0 // I{I2 // Ω f |X

where I :“ IX{rY is the ideal sheaf. Then φ satisfies the isotropic condition if and

only if the induced symmetric obstruction theory

rφ : E_r1s ÝÑ I{I2r1s � LX{rY

satisfies the isotropic condition.

Proof. Consider the commutative diagram

C rf
//

r �� ��❄
❄❄

❄❄
❄❄

❄
C
� � //

����

CpQq � � //

����

E

����
C f

� � // CpEq � � // rE{Bs.

where the squares are cartesian, the horizontal arrows are closed embeddings, and

the vertical arrows are smooth morphisms. Here Q :“ cokerpB Ñ Eq. By Lemma

4.2.8, the symmetric complex E is the reduction of the symmetric complex E_r1s
by an isotropic subcomplex B_r1s. Hence by Proposition 4.2.15.4, we have

r˚pqE|C f
q “ qE|C rf

.

Since the projection map r : C rf Ñ C f is smooth and surjective, the two isotropic

conditions are equivalent. �

Example 4.2.25 (p´2q-shifted symplectic derived schemes). Let X be a derived

DM stack with a p´2q-shifted symplectic structureω. Let X :“ Xcl be the classical

truncation. Then the canonical map

φ : LX|X Ñ LX Ñ LX

is a symmetric obstruction theory by [STV, Prop 1.2]. Here the symmetric form

of LX|X is induced by the underlying p´2q-shifted 2-form ω0 : OX Ñ ^2LXr´2s.
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The isotropic condition follows by the Darboux theorem [BBJ, BG]. Indeed,

since the isotropic condition can be shown locally, we may assume that X is the

zero locus of an isotropic section s of an orthogonal bundle E over a smooth

scheme U. Moreover, the symmetric obstruction theory φ can be written as

LX|X

φ

��

TU |X
ds //

��

E|_
X

ds //

s

��

ΩU |X

LX 0 // IX{U{I2
X{U

d // ΩU|X.

By the criterion in Proposition 4.2.24, it suffices to show that the normal cone

CX{U Ď E|X

is isotropic. By MacPherson’s graph construction [Ful, Rem. 5.1.1], we have

CX{U “ lim
tÑ8
Γt¨s

where Γt¨s Ď E is the image of the section t ¨ s : U ãÑ E. Since the section s is

isotropic, the cone CX{U is also isotropic.

4.3 Square root virtual pullbacks

In this section, we construct square root virtual pullbacks for symmetric obstruc-

tion theories, based on [Park1]. The Oh-Thomas virtual cycles [OT] will be de-

fined defined as a special case of square root virtual pullbacks.

4.3.1 Square root Gysin pullbacks

Definition 4.3.1 (Square root Gysin pullback). Let X be a separated Deligne-

Mumford stack. Let QpEq be the quadratic cone stack associated to a symmetric

complex E on X. Choose an orientation o : OX
�ÝÑ detpEq. We define the square

root Gysin pullback b
0!
QpEq : A˚pQpEqq Ñ A˚pXq

as follows:
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Case 1. Assume that X is a quasi-projecitve scheme. By Proposition 4.2.9, we

have a symmetric resolution E � rB Ñ E_ Ñ B_s for some special orthogonal

bundle E and a vector bundle B. Form a fiber diagram

Q
� � //

r

��

E

��
QpEq � � // CpEq � � // rE{Bs

where the closed embedding CpEq ãÑ rE{Bs is given by the stupid truncation

r0 Ñ E_ Ñ B_s Ñ rB Ñ E_ Ñ B_s � E

Consider the factorization of the zero section 0QpEq as

E|Q

��
X
� �

0Q //

0QpEq !!❈
❈❈

❈❈
❈❈

❈ Q

τ

XX

r

��
QpEq

where 0Q is the zero section of Q and τ is the tautological section. We define the

square root Gysin pullback as the composition

b
0!
QpEq : A˚pQpEqq r˚

ÝÑ A˚pQq
?

epE|Q,τqÝÝÝÝÝÑ A˚pXq

where
?

epE|Q, τq is the localized square root Euler class in Definition 4.1.23.

Case 2. Assume that X is a separated Deligne-Mumford stack. By the Chow

lemma [LMB, Cor. 16.6.1], there exists a projective surjective map p : rX Ñ X

from a quasi-projective scheme X. We define
b

0!
QpEq as the unique map that fits

into the commutative diagram

A˚pQpE|rXˆX
rXqq //

c
0!
QpE| rXˆX

rX q

��

A˚pQpE|rXqq //
c

0!
QpE| rX q

��

A˚pQpEqq //

b
0!
QpEq

��

0

A˚prX ˆX
rXq // A˚prXq p˚ // A˚pXq // 0

where the rows are exact by the Kimura sequence in Theorem A.1.1.
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Lemma 4.3.2 (Well-definedness). In the situation of Definition 4.3.1, the square

root Gysin pullback
b

0!
QpEq is well-defined, i.e.,

1. In Case 1,
b

0!
QpEq is independent of the choice of a symmetric resolution.

2. In Case 2,
b

0!
QpEq is independent of the choice of a projective cover.

Proof. 1. We will only sketch the proof and refer to [OT] for details. Let

rB1 Ñ E_
1 Ñ B_

1 s � E � rB2 Ñ E_
2 Ñ B_

2 s

be two symmetric resolutions. By a deformation argument, it suffices to consider

the following special case: there exists a surjective chain map

B1
// E_

1
//

��

B_
1

��
K_ K_

for some vector bundles such that there is an isomorphism of chain complexes

rpB1{Kq Ñ pKK{Kq_ Ñ pB1{Kq_s � rB2 Ñ E_
2 Ñ B_

2 s.

Then we can form a commutative diagram

Q1

s
����

� � // KK � � //

����

E

����

X
� �

0Q2 //
.
�

0Q1

==⑤⑤⑤⑤⑤⑤⑤⑤⑤

0QpEq   ❇
❇❇

❇❇
❇❇

❇❇
Q2

r2

����

� � // KK{K

����
QpEq � � // rpKK{Kq{pB{Kqs � � // rE{Bs

where the squares are cartesian, the horizontal arrows are closed embeddings, and

the vertical arrows are smooth morphisms. By Corollary 4.1.28, we have

?
epKK{K|Q2

, τ2q “
?

epE|Q1
, τ1q ˝ s˚ : A˚pQ2q Ñ A˚pXq

where τ1 P ΓpQ1, E|Q1
q and τ2 P ΓpQ2,K

K{K|Q2
q are the tautological section.

Consequently, we have the desired equality

?
epKK{K|Q2

, τ2q ˝ r˚
2 “

?
epE|Q1

, τ1q ˝ r˚
1 : A˚pQpEqq Ñ A˚pXq
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where r1 :“ r2 ˝ s.

2. Let p1 : rX1 Ñ X and p2 : rX2 Ñ X be two projective surjective maps from

quasi-projective schemes rX1 and rX2. By replacing rX1 by rX1 ˆX
rX2, we may assume

that there exists a factorization

rX1

p1
  ❅

❅❅
❅❅

❅❅
❅

q // rX2

p2

��
X

for some dotted arrow. Then the commutative square

A˚pQpE|rX1
qq //

c
0!
QpE| rX1

q

��

A˚pQpE|rX2
qq

c
0!
QpE| rX2

q

��

A˚prX1q p˚ // A˚prX2q

completes the proof since A˚pQpE|rX1
q Ñ A˚pQpEqq is surjective. �

Proposition 4.3.3 (Bivariance). Let f : Y Ñ X be a morphism of separated

Deligne-Mumford stacks. Let E be a symmetric complex on X with an orientation

o : OX � detpEq. Let

QpE|Yq
rf //

��

QpEq

��
Y

f // X

be a fiber diagram.

1. If f : Y Ñ X is a proper morphism, then we have

f˚ ˝
b

0!
QpE|Yq “

b
0!
QpEq ˝ rf˚ : A˚pQpE|Yqq Ñ A˚pXq.

2. If f : Y Ñ X is an equi-dimensional flat morphism, then we have

f ˚ ˝
b

0!
QpEq “

b
0!
QpE|Y q ˝ rf ˚ : A˚pQpEqq Ñ A˚pYq.

3. If f : Y Ñ X is a local complete intersection morphism, then we have

f ! ˝
b

0!
QpEq “

b
0!
QpE|Y q ˝ f ! : A˚pQpEqq Ñ A˚pYq.
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Proof. It follows immediately from Proposition 4.1.25. �

Proposition 4.3.4 (Whitney sum formula). Let E1 be a symmetric complex on

a separated Deligne-Mumford stack X with an orientation and E2 be a special

orthogonal bundle on X. Note that we have a canonical closed embedding

c : QpE1q ˆQpE2q ãÑ QpE1 ‘ E2r1sq

by Proposition 4.2.15.3, where QpE2q :“ QpE2r1sq. Then we have

b
0!
QpE2q ˝

b
0!
QpE1|QpE2qq “

b
0!
QpE1‘E2r1sq ˝ c˚ : A˚pQpE1q ˆQpE2qq Ñ A˚pXq.

Proof. It follows immediately from the Whitney sum formula of localized square

root Euler classes in Proposition 4.1.26. �

Proposition 4.3.5 (Reduction formula). Let E be a symmetric complex on a sep-

arated Deligne-Mumford stack X and K be an isotropic subcomplex of E with

respect to δ : E Ñ K. We use the notations in Proposition 4.2.6. Consider the

canonical diagram of cone stacks

EpKq

��
QpDq � � a //

b
����

QpEq

QpE{{Kq

where QpDq is the zero locus of qE|CpDq “ qE{{K
|CpDq, a : QpDq ãÑ QpEq is a

closed embedding, and b : QpDq։ QpE{{Kq is a torsor of the vector bundle stack

EpKq :“ CpKq. Then we have

b
0!
QpE{{Kq “

b
0!
QpEq ˝ a˚ ˝ b˚ : A˚pQpE{{Kqq Ñ A˚pXq.

Proof. By the Kimura sequence in Theorem A.1.1, we may assume that X is a

quasi-projective scheme. By Proposition 4.2.9 (and Lemma 4.2.10), we have a

symmetric resolution E � rB Ñ E_ Ñ B_s and a resolution K � rK_ Ñ D_s
such that δ is represented by a surjective chain map. Here E is a special orthogonal

bundle, K is an isotropic subbundle of E, B is a vector bundle, and D is a subbundle
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of B. Then the maps Cpαq : CpDq ãÑ CpEq and Cpβq : CpDq Ñ CpEq can be

expressed as

„
CpcokerpB{D Ñ E{Kqq

B


� � Cpαq //

Cpβq
����

„
CpcokerpB Ñ Eqq

B



„
CpcokerpB{D Ñ KK{Kqq

B{D


.

Hence the desired equality follows from Corollary 4.1.28. �

Remark 4.3.6 (Uniqueness). The square root Gysin pullbacks are uniquely deter-

mined by the bivariance in Proposition 4.3.3, the reduction formula in Proposition

4.3.5, and the compatibility formula: if E is a special orthogonal bundle on a

quasi-projective scheme X, then

b
0!
QpEq “

?
epE|QpEq, τq : A˚pQpEqq Ñ A˚pXq

where QpEq :“ QpEr1sq and τ P ΓpQpEq, E|QpEqq is the tautological section.

Remark 4.3.7. As in Remark 4.1.20 and Remark 4.1.30, everything in this sub-

section can be generalized to algebraic stacks which admit proper covers by quo-

tient stacks (in the sense of Definition A.2.1).

Based on this generalization, the Whitney sum formula in Proposition 4.3.4

can be generalized as follows: Let E1 and E2 be symmetric complexes with orien-

tations on a separated Deligne-Mumford stack X. Then the quadratic cone stack

QpE1q admits a proper cover by a quotient stack. Moreover, we have a Whitney

sum formula

b
0!
QpE2q ˝

b
0!
QpE1|QpE2qq “

b
0!
QpE1‘E2q ˝ c˚ : A˚pQpE1q ˆQpE2qq Ñ A˚pXq

where c : QpE1q ˆQpE2q ãÑ QpE1 ‘ E2q is the inclusion map.

4.3.2 Square root virtual pullbacks

Definition 4.3.8 (Square root virtual pullback). Let f : X Ñ Y be a morphism

from a Deligne-Mumford stack X to an algebraic stack Y . Let φ : E Ñ LX{Y be
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a symmetric obstruction theory satisfying the isotropic condition. Let o : OX �

detpEq be an orientation. Then we define the square root virtual pullback

a
f ! : A˚pYq Ñ A˚pXq

as the composition

A˚pYq spX{YÝÝÝÑ A˚pCX{Yq ÝÑ A˚pQpEqq
b

0!
QpEqÝÝÝÝÑ A˚pXq

where spX{Y is the specialization map for f in Definition 2.1.18, the second map

is the pushforward for the closed embedding CX{Y ãÑ QpEq in Proposition 4.2.23,

and
b

0!
QpEq is the square root Gysin pullack of the quadratic cone stack QpEq in

Definition 4.3.1.

Definition 4.3.9 (Oh-Thomas virtual cycle). Let X be a Deligne-Mumford stacks,

φ : E Ñ LX be a symmetric obstruction theory satisfying the isotropic condition,

and o : OX � detpEq be an orientation. We define the Oh-Thomas virtual cycle as

rXsvir :“
a

p!rSpecpCqs “
b

0!
QpEqrCXs P A˚pXq

where p : X Ñ SpecpCq is the projection map.

Proposition 4.3.10 (Bivariance). Let

X1 f 1
//

g1

��

Y 1

g

��
X

f // Y

be a cartesian square of algebraic stacks where X and X1 are Deligne-Mumford

stacks. Let φ : EÑ LX{Y be a symmetric obstruction theory satisfying the isotropic

condition. Let

φ1 : pg1q˚E
pg1q˚pφqÝÝÝÝÑ pg1q˚pLX{Yq Ñ LX1{Y1

be the induced symmetric obstruction theory. Then φ1 also satisfies the isotropic

condition and we have the following properties:

1. If g is a proper DM morphism, then we have

a
f ! ˝ g˚ “ g1

˚ ˝
b

p f 1q! : A˚pY 1q Ñ A˚pXq.
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2. If g is a equi-dimensional flat morphism, then we have

b
p f 1q! ˝ g˚ “ pg1q˚ ˝

a
f ! : A˚pYq Ñ A˚pX1q.

3. If g is a local complete intersection morphism and Y 1 has affine stabilizers,

then we have
b

p f 1q! ˝ g! “ pg1q! ˝
a

f ! : A˚pYq Ñ A˚pX1q.

Proposition 4.3.11 (Commutativity). Let

X1 f 1

//

g1

��

Y 1

g

��
X

f // Y

be a cartesian square of Deligne-Mumford stacks. Let φX{Y : EX{Y Ñ LX{Y and

φY1{Y : EY1{Y Ñ LY1{Y be symmetric obstruction theories with orientations satisfy-

ing the isotropic condition. Then we have
a

f ! ˝
a

g! “
a

g! ˝
a

f ! : A˚pYq Ñ A˚pX1q.

Proof. If follows directly from Proposition 2.1.22 and Remark 4.3.7. �

Proposition 4.3.12 (Reduction formula). Let f : X Ñ Y be a morphism from a

Deligne-Mumford stack X to an algebraic stack Y. Let

E
δ //

φ !!❇
❇❇

❇❇
❇❇

❇ K

ψ

��
LX{Y

be a commutative diagram such that φ : E Ñ LX{Y is a symmetric obstruction

theory, ψ : K Ñ LX{Y is a perfect obstruction theory, and K is an isotropic sub-

complex of E with respect to δ (see Definition 4.2.4). Let o : OX � detpEq be an

orientation. Then the symmetric obstruction theory φ satisfies the isotropic condi-

tion and we have
b

f !
φ

“
?

epGq ˝ f !
ψ : A˚pYq Ñ A˚pXq

where Gr1s is the reduction E{{K of E by K.
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Corollary 4.3.13 (Local complete intersection). Let f : X Ñ Y be a morphism

from a Deligne-Mumford stack X to an algebraic stack Y. Let φ : E Ñ LX{Y

be a symmetric obstruction theory satisfying the isotropic condition. Assume that

f : X Ñ Y is a local complete intersection morphism. Then and we have

a
f ! “

?
epGq ˝ f ! : A˚pYq Ñ A˚pXq

where Gr1s is the reduction of E by LX{Y “ LX{Y .

4.3.3 Functoriality

Definition 4.3.14 (Compatible triple of obstruction theories). Let

X
f //

g˝ f

77Y
g // Z

be a commutative diagram of DM morphisms of algebraic stacks We use the no-

tations in Notation 2.3.10. We say that a triple pψX{Y , φY{Z, φX{Zq of symmetric

obstruction theories φY{Z : EY{Z Ñ LY{Z , φX{Z : EX{Z Ñ LX{Z, and a perfect ob-

struction theory ψ f : KX{Y Ñ LX{Y is compatible if there exist two morphisms of

distinguished triangles

D_r2s α_
//

β_

��

EX{Z
δ //

α

��

EX{Y
//

f ˚EY{Z

β //

f ˚φY{Z

��

D
γ //

φ1
X{Z

��

EX{Y

φ1
X{Y

��

//

τě´1 f ˚LY{Z
a // LX{Z

b // L1
X{Y

//

for some D, α, β, γ, δ, φ1
X{Y
, φ1

X{Z
such that φX{Z “ φ1

X{Z
˝ α and ψX{Y “ r ˝ φ1

X{Y
.

Theorem 4.3.15 (Functoriality). Let

X
f //

g˝ f

77Y
g // Z

be a commutative diagram of algebraic stacks. Assume that X, Y are Deligne-

Mumford stacks and X has the resolution property. Let pψX{Y : EX{Y Ñ LX{Y , φY{Z :
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EY{Z Ñ LY{Z , φX{Z : EX{Z Ñ LX{Zq be a compatible triple of obstruction theories in

the sense of Definition 4.3.14. Assume that φX{Z and φY{Z satisfy the isotropic con-

dition. Then for each orientation oY{Z : OY � detpEY{Zq, there exists a canonical

orientation oX{Z : OX � detpEX{Zq such that we have

b
pg ˝ f q! “ f ! ˝

a
g! : A˚pZq Ñ A˚pXq.

Proof. We refer to [Park1] for the proof. �

The isotropic condition for φg˝ f is redundant in Theorem ??.

Lemma 4.3.16 (Redundancy of isotropic condition). Given a compatible triple

pψX{Y , φY{Z, φX{Z of obstruction theories in the sense of Definition 4.3.14, the isotropic

condition for φY{Z implies the isotropic condition for φX{Z.

Proof. By Proposition 4.2.15.4, the diagram

CX{Z
//

��

CpDq //

��

CpEX{Zq
qpEX{Z q
��

CY{Z|X
// CpEY{Z|Xq

qpEY{Z |Xq
// A1

X

commutes. Hence the isotropic condition for φY{Z implies the isotropic condition

for φX{Z. �

Corollary 4.3.17 (Virtual pullback formula). Let f : X Ñ Y be a morphism of

Deligne-Mumford stacks. Assume that X has the resolution property. Let pψX{Y :

EX{Y Ñ LX{Y , φY : EY Ñ LY , φX : EX Ñ LXq be a compatible triple of obstruc-

tion theories in the sense of Definition 4.3.14. Assume that φX and φY satisfy the

isotropic condition. Then for each orientation oY : OY � detpEYq, there exists a

canonical orientation oX : OX � detpEXq such that we have

rXsvir “ f !rYsvir P A˚pXq.

Remark 4.3.18 (Generalization). In the current version of the proof of Theorem

4.3.15 in [Park1, Thm. 2.2], the resolution property for X is necessary. However,

there is an alternative proof that does not use the resolution property. The details

will appear in [BP].
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Chapter 5

Cosection localization in

Donaldson-Thomas theory of

Calabi-Yau 4-folds

In this chapter, we generalize Kiem-Li’s cosection localization [KL1] to Donaldson-

Thomas theory of Calabi-Yau 4-folds. This is based on [KP2, BKP].

Summary We introduce reduced virtual cycles for two types of cosections:

1. isotropic cosections;

2. non-degenerate cosections.

The first one is studied in [KP2] and the second one is studied in [BKP]. Both of

them are constructed by generalizing Kiem-Li’s cone reduction lemma [KL1] to

these cosections.

This cosection localization approach to the reduced theory become more im-

portant in DT4 theory. In the classical cases of surfaces and threefolds, the stan-

dard approach to the reduced theory is to use the algebraic twistor family of Kool-

Thomas [KT1]. However, this algebraic twistor approach does not give us a re-

duced virtual cycle in DT4 theory. Thus we really need the cosection localization

approach to obtain a reduced virtual cycle.

We also introduce cosection-localized virtual cycles for isotropic cosections.

This is achieved by localizing the Edidin-Graham classes [EG1] by two isotropic

sections.
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5.1 Cone reductions

Recall that there are two special types of subbundles of an orthogonal bundle:

1. a non-degenerate subbundle F of an orthogonal bundle E.

2. an isotropic subbundle K of an orthogonal bundle E;

In the first case, we can form an orthogonal complement FK as an induced or-

thogonal bundle. In the second case, we can form a reduction KK{K as an induced

orthogonal bundle. We thus provide two versions of the cone reduction lemma in

this section.

We will work with generalized cosections.

Definition 5.1.1 (Generalized cosections). Let E be a symmetric complex on an

algebraic stack X. A generalized cosection is a map

Σ : E_r1s Ñ F

in the derived category of X for some vector bundle F.

By abuse of notation, we sometimes drop the letter ”generalized” and simply

call the map Σ : E_r1s Ñ F a cosection.

We now fix the notions of non-degenerate/isotropic cosections.

Definition 5.1.2 (Non-degenerate cosections). Let E be a symmetric complex on

an algebraic stack X. We say that a cosection

Σ : E_r1s Ñ F

is non-degenerate if the square

Σ2 : F_ Σ_

ÝÑ Er´1s � E_r1s ΣÝÑ F

is an isomorphism.

Definition 5.1.3 (Isotropic cosections). Let E be a symmetric complex on an al-

gebraic stack X. We say that a cosection

Σ : E_r1s Ñ K_

is isotropic if the square

Σ2 : K
Σ_

ÝÑ Er´1s � E_r1s ΣÝÑ K_

is zero.
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Recall the followings from subsection 4.2.1:

1. Given a non-degenerate cosection Σ : E_r1s Ñ F, the perfect complex

Fr1s is a non-degenerate subcomplex of E with respect to Σ in the sense of

Definition 4.2.3. We then have an orthogonal complement E{Σ in the sense

of Proposition 4.2.5.

2. Given an isotropic cosection Σ : E_r1s Ñ K_, the perfect complex K_r1s
is an isotropic subcomplex of E with respect to Σ in the sense of Definition

4.2.4. We then have a reduction E{{Σ in the sense of Proposition 4.2.6.

The following two versions of the cone reduction lemma is the main result in

this section.

Proposition 5.1.4 (Cone reduction for non-degenerate cosections). Let X be a

Deligne-Mumford stack and φ : EÑ LX be a symmetric obstruction theory satis-

fying the isotropic condition. Let Σ : E_r1s Ñ F be a non-degenerate cosection.

Then we have a closed embedding

pCXqred ãÑ QpE{Σq

that fits into the commutative diagram

QpE{Σq� _

��
pCXqred

� � //

::

QpEq

as the dotted arrow. Here the closed embedding pCXqred ãÑ QpEq is induced by

the obstruction theory φ as in Proposition 4.2.23.

Proof. Form a commutative diagram of cartesian squares

QpE{Σq� _

��

� � // CpE{Σq� _

��

// X� _

0F

��
pCXqred

� � //

::

QpEq � � //

��

CpEq lΣ //

qE

��

F

X
� � 0 // A1

X.
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Indeed, the middle bottom square is cartesian by the definition of QpEq, the right

upper square is cartesian since E{Σ :“ conepΣ_r1s : F_r1s Ñ Eq, and the middle

upper square is cartesian by Proposition 4.2.15.3 since

E “ E{Σ ‘ Fr1s

as symmetric complexes. Then Kiem-Li’s cone reduction lemma (see Proposition

3.1.9) gives us the desried dotted arrow. �

Proposition 5.1.5 (Cone reduction for isotropic cosections). Let X be a Deligne-

Mumford stack and φ : E Ñ LX be a symmetric obstruction theory satisfying

the isotropic condition. Let Σ : E_r1s Ñ K_ be an isotropic cosection such that

h0pΣq : h1pE_q Ñ K_ is surjective. Then we have a closed embedding

pCXqred ãÑ QpE{{Σq

that fits into the commutative diagram

pCXqred

%%❏
❏❏

❏❏
❏❏

❏❏

��

((

QpDq � � //

����

QpEq

QpE{{Σq

as the dotted arrow for some closed embedding pCXqred ãÑ QpDq. Here the perfect

complex D is given as in Proposition 4.2.6, QpDq is the zero locus of qE|CpDq “
qE{{Σ

|CpDq, and the closed embedding pCXqred ãÑ QpEq is induced by the obstruction

theory φ as in Proposition 4.2.23.

Proof. Since the statement is local, we may assume that X is an affine scheme.

Since X is affine, the surjection h´1pEq։ K_ has a right inverse

s : K_ Ñ h´1pEq

Consider the morphism of distinguished triangles

h´2pEqr2s // τď´1pEq //

��

h´1pEq //

��

h´2pEqr3s

h´2pEqr2s // E // τě´1pEq // h´2pEqr3s.
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Since X is affine, we have

HomXpK_r1s, h´2pEqr2sq “ HomXpK_r1s, h´2pEqr3sq “ 0.

Hence the map s gives us a right inverse of the composition

τě´1EÑ E � E_r2s Σr1sÝÝÑ K_r1s.

Therefore we also have a right inverse

r : K_r1s Ñ E

of the map EÑ E � E_r2s Σr1sÝÝÑ K_r1s. Then the map

Σ1 :“ pr_r1s,Σq : E_r1s Ñ pK ‘ K_q

is a non-degenerate cosection such that E{Σ1 “ E{{Σ. Hence the cone reduction for

non-degenerate cosection in Proposition 5.1.4 completes the proof. �

5.2 Reduced virtual cycles

In this section, we define reduced virtual cycles using the cone reduction lemmas

in the previous section.

Definition 5.2.1 (Reduced virtual cycle for non-degenerate cosection). Let X be a

Deligne-Mumford stack, φ : EÑ LX be a symmetric obstruction theory satisfying

the isotropic condition, and o : OX Ñ detpEq be an orientation. Let Σ : E_r1s Ñ F

be a non-degenerate cosection. Then we have a closed embedding pCXqred ãÑ
QpE{Σq by Proposition 5.1.4. Let o2 : OX Ñ detpFq be an orientation of the

orthogonal bundle pF,Σq. We define the reduced virtual cycle as

rXsred
{Σ :“

b
0!
QpE{ΣqrCXs P A˚pXq

where
b

0!
QpE{Σq is the square root Gysin pullback in Definition 4.3.1.

By abuse of notation, we drop the subscript {Σ if it is clear from the context.

Definition 5.2.2 (Reduced virtual cycle for isotropic cosection). Let X be a Deligne-

Mumford stack, φ : E Ñ LX be a symmetric obstruction theory satisfying the

isotropic condition, and o : OX Ñ detpEq be an orientation. Let Σ : E_r1s Ñ K_
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be an isotropic cosection such that h0pΣq is surjective. Then we have a closed em-

bedding pCXqred ãÑ QpE{{Σq by Proposition 5.1.5. We define the reduced virtual

cycle as

rXsred
{{Σ :“

b
0!
QpE{{ΣqrCXs P A˚pXq

where
b

0!
QpE{{Σq is the square root Gysin pullback in Definition 4.3.1.

By abuse of notation, we drop the subscript {{Σ if it is clear from the context.

We have the following compatibility results.

Proposition 5.2.3 (Compatibility). Let X be a Deligne-Mumford stack, φ : E Ñ
LX be a symmetric obstruction theory satisfying the isotropic condition, and o :

OX Ñ detpEq be an orientation.

1. Let Σ : E_r1s Ñ F be a non-degenerate cosection. Then we have

rXsvir “
?

epFq X rXsred
{Σ .

2. Let Σ : E_r1s Ñ K_ be an isotropic cosection such that h0pΣq is surjective.

Then we have

rXsvir “ epKq X rXsred
{{Σ.

3. Let Σ : E_r1s Ñ F be a non-degenerate cosection. If M is a positive maxi-

mal isotropic subbundle of F, then we have

rXsred
{{ΣM

“ rXsred
{Σ

where ΣM : E_r1s ΣÝÑ F � F_
։ M_ is the composition.

Proof. 1. Since we have

E “ E{Σ ‘ Fr1s
as symmetric complexes, Proposition 4.3.4 proves the desired formula.

2. The desired formula follows from Proposition 4.3.5 since

QpDq Ñ QpE{{Σq

is a K-torsor.

3. The desired formula follows directly from the canonical isomorphism

E{Σ � E{{ΣM

of symmetric complexes. �
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In particular, we have the following vanishing result.

Corollary 5.2.4 (Vanishing). Let X be a Deligne-Mumford stack, φ : E Ñ LX

be a symmetric obstruction theory satisfying the isotropic condition, o : OX Ñ
detpEq be an orientation, and Σ : E_r1s Ñ OX be a cosection. Assume one of the

following conditions:

1. Σ2 P ΓpX,OXq is nowhere vanishing.

2. Σ2 “ 0 is isotropic and h0pΣq : h1pE_q Ñ OX is surjective.

Then we have

rXsvir “ 0 P A˚pXq.

The reduced virtual cycles are deformation invariant under an additional as-

sumption.

Proposition 5.2.5 (Deformation invariance). Let f : X Ñ B be a morphism of

Deligne-Mumford stacks. Assume that B is smooth. Form a fiber diagram

Xb
� � //

��

X

f

��
tbu � � ib // // B

where b P B. Let φ : E Ñ LX{B be a symmetric obstruction theory satisfying the

isotropic condition and o : OX Ñ detpEq be an orientation.

1. Let Σ : E_r1s Ñ F_ be a non-degenerate cosection. Let o2 : OX Ñ detpFq
be an orientation. Assume that the composition

F
Σ_

ÝÑ Er´1s φÝÑ LX{Br´1s KSÝÑ ΩB|X

vanishes. Then there exists a cycle class rXsred P A˚pXq such that

rXbsred
{Σb

“ i!
brXs P A˚pXbq

for all b P B, where Σb : E|_
Xb

r1s Ñ F|_
Xb

is the induced cosection.

2. Let Σ : E_r1s Ñ K_ be an isotropic cosection such that h0pΣq is surjective.

Assume the followings:

124



CHAPTER 5. COSECTION LOCALIZATION IN DT4 THEORY

(a) The composition

K
Σ_

ÝÑ Er´1s φÝÑ LX{Br´1s KSÝÑ ΩB|X

vanishes.

(b) The induced map cokerpΩB|X Ñ h1pE_qq Ñ K_ is surjective.

Then there exists a cycle class rXsred P A˚pXq such that

rXbsred
{{Σb

“ i!
brXs P A˚pXbq

for all b P B, where Σb : E|_
Xb

r1s Ñ K|_
Xb

is the induced cosection.

Proof. We refer to [KP2, Lem. 8.5] for the proof of the first case1 and [BKP,

Thm. 5.1] for the proof of the second case. �

5.3 Cosection-localized virtual cycles

5.3.1 Local model

Notation 5.3.1 (Blowup diagram). Let E be a special orthogonal bundle on an

algebraic stack X. Let s and t be an isotropic section of E such that s ¨ t “ 0. Let

Xpsq denote the zero locus of s in X. Let rX :“ BlXpsqX denote the blowup of X

along Xpsq and D be the exceptional divisor. Then L :“ OrXpDq is an isotropic

subbundle of E|rX. Let E{{L be the reduction of E|rX by L. Since s ¨ t “ 0, we have

an induced isotropic section tL of E{{L. Let

Xps, tq# :“ ppDptLqq Y Xps, tq

where DptLq is the zero locus of tL in D and Xps, tq is the common zero locus of s

and t in X. Form a commutative diagram

DptLq � � //

r

��

D
� � j //

q

��

rX
p

��
Xps, tq � � l // Xps, tq# �

� k // Xpsq � � i // X.

1It is written for the localized virtual cycles but the same proof work for the reduced virtual

cycles.
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Definition 5.3.2 (Localized square root Euler class for two cosections). Let X be

a Deligne-Mumford stack. Let E be a special orthogonal bundle on X. Let s and t

be an isotropic section of E such that s ¨ t “ 0. We use the notations in Notation

5.3.1. We define the localized square root Euler class

?
epE, s, tq : A˚pXq Ñ A˚pXps, tq#q

as the unique map that fits into the commutative diagram

A˚pDq p´ j˚,q˚q // A˚prXq ‘ A˚pXpsqq pp˚,i˚q //

pu,vq
��

A˚pXq
?

epE,s,tq
uu

//

?
epE,sq

��

0

A˚pXps, tq#q
k˚

// A˚pXpsqq

where the middle vertical arrow is given by the two maps

u : A˚prXq j!ÝÑ A˚pDq
?

epE{{L ,tLqÝÝÝÝÝÝÑ A˚pDptLqq r˚ÝÑ A˚pXps, tq#q

v : A˚pXpsqq
?

epE|Xpsq ,tqÝÝÝÝÝÝÑ A˚pXps, tqq l˚ÝÑ A˚pXps, tq#q

and the top horizontal right exact sequence is the abstract blowup sequence in

Corollary A.2.7.

To show that the localized square root Euler class
?

epE, s, tq in Definition

5.3.2 is well-defined, we need the following identities.

Lemma 5.3.3 (Well-definedness). In the situation of Definition 5.3.2, we have the

identities

u ˝ j˚ “ v ˝ q˚, k˚ ˝ u “
?

epE, sq ˝ p˚, k˚ ˝ v “
?

epE, sq ˝ i˚.

Proof. The first identity follows from the reduction formula in Proposition 4.1.17

and the bivariance of
?

epE, sq in Proposition 4.1.15. The second identity follows

from the definition of
?

epE, sq in Definition 4.1.23, the compatibility
?

epE, 0q “?
epEq, and the bivariance of

?
epE, sq. The third identity follows from the defi-

nition of
?

epE, sq. �

We now state some basic properties of
?

epE, s, tq. We omit the proofs since

they follow from standard arguments.
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Proposition 5.3.4 (Bivariance). Let f : Y Ñ X be a morphism of Deligne-

Mumford stacks. Let E be a special orthogonal bundle on X and s, t be isotropic

sections of E such that s ¨ t “ 0. Then we have

Yps, tq# Ď f ´1pXps, tq#q

as substacks of Y. Form a fiber diagram

Yps, tq# �
� a //

f ps,tq# &&◆◆
◆◆◆

◆◆◆
◆◆◆

f ´1pXps, tq#q � � //

��

Ypsq � � //

f psq
��

Y

f

��
Xps, tq# �

� // Xpsq � � // X.

1. If f : Y Ñ X is a proper morphism, then

?
epE, s, tq ˝ f˚ “ f ps, tq#

˚ ˝
?

epE, s, tq : A˚pYq Ñ A˚pXps, tq#q.

2. If f : Y 1 Ñ Y is an equi-dimensional flat morphism, then a is an isomor-

phism and

p f ps, tq#q˚ ˝
?

epE, s, tq “
?

epE, s, tq ˝ f ˚ : A˚pXq Ñ A˚pYps, tq#q.

3. If f : Y Ñ X is a local complete intersection morphism, then

f ! ˝
?

epE, s, tq “ a˚ ˝
?

epE, s, tq ˝ f ! : A˚pXq Ñ A˚p f ´1pXps, tq#qq.

By abuse of notation, we denoted Yp f ˚sq, Yp f ˚s, f ˚tq, and
?

ep f ˚E, f ˚s, f ˚tq by

Ypsq, Yps, tq, and
?

epE, s, tq, respectively.

Proposition 5.3.5 (Reduction formula). Let E be a special orthogonal bundle

on a Deligne-Mumford stack X and K be an isotropic subbundle. Let s and t be

isotropic sections of E such that s ¨ t “ 0 and s ¨ K “ t ¨ K “ 0. Let s1 and t1 be the

isotropic sections of the reduction KK{K. Let s2 be the induced section of K|Xps1q.
Then for any cycle class α P A˚pXq, we have

?
epE, s, tqpαq “ epK, s2q ˝

?
epKK{K, s1, t1qpαq

in A˚pXps, tq# Y Xps1, t1q#ps2qq.

127



CHAPTER 5. COSECTION LOCALIZATION IN DT4 THEORY

Corollary 5.3.6. Let X be a separated Deligne-Mumford stack, E be a special

orthogonal bundle on X, and K be an isotropic subbundle. Let C be an isotropic

subcone of the reduction E{{K :“ KK{K. Form a commutative diagram

rC � � //

r
����

KK � � //

����

E

X
� �

0C

//
0
�

0 rC

@@✂✂✂✂✂✂✂✂
C
� � // E{{K

where the square is cartesian. Let τ P ΓpC, E{{K|Cq and rτ P Γp rC, E| rCq be the

tautological sections. Let t be an vanishing isotropic section of E such that t¨K “ 0

and t rC ¨ rτ “ 0. Let t1 be the induced isotropic section on E|{{K. Then for any cycle

class α P A˚pCq, we have

?
epE{{K|C , τ, t1qpαq “

?
epE| rC ,rτ, tq ˝ r˚pαq

in A˚p rCprτ, tq# Y Cpτ, t1q#q.

5.3.2 Global construction

Definition 5.3.7 (Cosection-localized virtual cycle). Let X be a DM stack which

has the resolution property. Let φ : E Ñ LX be a symmetric obstruction theory

satisfying the isotropic condition. Let o : OX Ñ detpEq be an orientation. Let

σ : E_r1s Ñ OX be an isotropic section.

Choose a symmetric resolution of E such that the cosection σ is represented

by a surjective chain map

E_r1s
σ

��

B
d //

��

E_ d_
//

rσ
��

B_

��
OX 0 // OX

// 0.

(5.3.1)

Form a fiber diagram

C
� � //

��

E

��
CX

� � // CpEq � � // rE{Bs.
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where the closed embedding CX ãÑ CpEq is induced by φ. Consider a diagram

E|D

��
Xred

� � 0 // D

τ

EE
rσ|_

D

YY

where D :“ Cred and τ P ΓpD, E|Dq is the tautological section. Then Dpτq “ Xred

and τ ¨ rσ|_
D “ 0 by Proposition 5.1.5.

We define the cosection-localized virtual cycle as

rXsvir
loc :“

?
epE|D, τ, rσ|_

DqrCs P A˚pXpσqq

where Xpσq is the zero locus of σ :“ h0pσq : h1pE_q Ñ OX and

Dpτ, rσ|_
Dq# Ď Xpσq

by Lemma 5.3.8 below.

Lemma 5.3.8 (Well-definedness). In the situation of Definition 5.3.7, we have the

followings.

1. Dpτ, rσ|_
D

q# Ď Xpσq.

2. rXsvir
loc

is independent of the choice (5.3.1).

Proof. 1. Replacing X by XzXpσq, we may assume that σ : h1pE_q Ñ OX is

surjective. Then it suffices to prove that

Dpτ, rσ|_
Dq# “ H.

Since rσ : E Ñ OX is surjective, Dpτqprσ|_
D

q “ H. Since D is a cone over Xred, the

projective cone PpDq over Xred is the exceptional divisor of the blowup of D along

Dpτq “ Xred. Hence it remains to show that

PpDqprσLq “ H,

where L :“ OPpDqp´1q and rσL P ΓpPpDq, LK{Lq is the induced isotropic section.

Since the composition

D ãÑ E ։ E{xrσ_y
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is a closed immersion by Proposition 5.1.5, the composition

L ãÑ E|PpDq ։ pE{xrσ_yq|PpDq

is nowhere vanishing. Hence rσL is also a nowhere vanishing section, which com-

pletes the proof.

2. It follows from a deformation argument and Corollary 5.3.6. �

Remark 5.3.9. In [OT2], it is shown that the Oh-Thomas virtual cycles [OT] map

to the Borisov-Joyce virtual cycles [BJ] under the cycle class map. It is desirable

to know whether the cosection-localization Oh-Thomas virtual cycles in [KP2]

map to the cosection-localized Borisov-Joyce virtual cycles of Savvas [Sav].
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Chapter 6

Applications to enumerative

geometry

In this chapter, we apply the tools in Chapter 4 and Chapter 5 to the moduli spaces

of sheaves on Calabi-Yau 4-folds. This is based on [Park1, KP2, BKP].

6.1 Moduli spaces, virtual cycles, and invariants

6.1.1 Moduli spaces

In this paper, we consider two types of moduli spaces:

1. moduli spaces of pairs;

2. moduli spaces of sheaves.

We first define the moduli stacks of all pairs/sheaves.

Definition 6.1.1 (Moduli stack of pairs). Let X be a smooth projective variety. We

define the moduli stack of pairs on X as the 2-functor

PairpXq : Sch
op

{C Ñ Groupoid : T ÞÑ
"

pairs pF, sq of a coherent sheaf F on X ˆ T

flat over T and a section s P ΓpX ˆ T, Fq

*
.

Definition 6.1.2 (Moduli stack of sheaves). Let X be a smooth projective variety.

We define the moduli stack of sheaves on X as the 2-functor

CohpXq : Sch
op

{C Ñ Groupoid : T ÞÑ tcoherent sheaves F on X ˆ T flat over Tu .
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Proposition 6.1.3 (Representability). Let X be a smooth projective variety. Then

the moduli stacks PairpXq and CohpXq are representable by algebraic stacks of

locally of finite type.

Proof. We refer to [LMB, Thm. 4.6.2.1] for the representability of CohpXq. The

representability of PairpXq follows from the fact that PairpXq is an abelian cone

over CohpXq (see for example [Bri, Lem. 2.4]). �

Remark 6.1.4 (Derived enhancement). Let X be a smooth projective variety. Then

the derived moduli stack of pairs and the derived moduli stack of sheaves defines

as the 8-functors

RPairpXq : dSch
op

{C Ñ 8–Groupoid

T ÞÑ

$
&
%

pairs pF, sq of a perfect complex F on X ˆ T

and a map OXˆT Ñ F such that

the fibers Ft are coherent sheaves for all t P T pCq

,
.
-

RCohpXq : dSch
op

{C Ñ 8–Groupoid

T ÞÑ
"

perfect complexes F on X ˆ T such that

the fibers Ft are coherent sheaves for all t P T pCq

*

are represeentable by derived Artin stacks.

The derived moduli stack of pairs is the total space of the derived moduli stack

of sheaves,

RPairpXq “ TotRCohpXqpRπ˚pFqq,
where F is the universal complex of RCohpXq ˆ X and π : RCohpXq ˆ X Ñ
RCohpXq is the projection map.

The cotangent complexes of the derived moduli stacks can be expressed as

LRPairpXq “ pRHomπpI, Fqq_

LRCohpXq “ pRHomπpF, Fqr1sq

where I Ñ ORPairpXqˆX Ñ F is the universal homotopy cofiber sequence on

RPairpXq ˆ X and the projection map RPairpXq ˆ X Ñ RPairpXq is denoted by

the same letter π. This can be shown by the derived loop stacks.

Clearly, the moduli stacks in Definition 6.1.1/Definition 6.1.2 are the classical

truncations of the above derived moduli stacks.
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Proposition 6.1.5 (Obstruction theories). Let X be a smooth projective variety of

dimension n.

1. The map

RHomπpF, Ib ωXqrns AtpF,sqÝÝÝÑ LPairpXq

is an obstruction theory, where AtpF, sq is the Atiyah class of the universal

pair pF, sq (see Remark 6.1.6 below), I “ rOPairpXqˆX
sÝÑ F, and π : PairpXqˆ

X Ñ PairpXq is the projection map.

2. The map

RHomπpF, Fb ωXqrn ´ 1s AtpFqÝÝÝÑ LCohpXq

is an obstruction theory, where AtpFq is the Atiyah class of the universal

sheaf F and π : CohpXq ˆ X Ñ CohpXq is the projection map.

Proof. It follows directly from Remark 6.1.4. �

Remark 6.1.6 (Atiyah class of pair). Let X be a scheme. Let F be a perfect com-

plex on X and s : OX Ñ F be a map. Let

I // OX
s // F

be a distinguished triangle. We define the Atiyah class of the pair pF, sq

AtXpF, sq : F Ñ I b LX

as the unique dotted arrow given by the homotopy square in the diagram in the

stable 8-category

RHomXpF,OXq s //

s

��

RHomXpF, Fq //

AtXpFq
��

RHomXpF, Iq

AtXpF,sq
vv

RHomXpOX,OXq AtXpOX q�0 // LX.

Then the differential of the map pF, sq : X Ñ RPair

LRPair|X “ RHomXpF, Iq Ñ LX

can be identified to AtXpF, sq.
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Since the moduli stacks PairpXq and CohpXq are not bounded in general, we

need stability conditions. We first consider the PTq-stability condition on pairs,

introduced in [BKP].

Definition 6.1.7 (PTq-stability condition). Let X be a smooth projective variety

and q ě ´1 be an integer. We say that the pair pF, sq of a coherent sheaf F on X

and a section s P ΓpX, Fq is PTq-stable if

1. F P Cohěq`1pXq, and

2. Q :“ cokerps : OX Ñ Fq P CohďqpXq.

By abbreviation, we also refer to PTq-stable pairs as PTq pairs.

The two extremes of PTq-stability are the well-known DT{PT-stability.

Example 6.1.8 (DT{PT-stability condition). Let X be a smooth projective variety.

Let F be a coherent sheaf on X of dimension d and s P ΓpX, Fq be a section.

DT) The pair pF, sq is PT´1-stable if and only if s : OX Ñ F is surjective. Hence

the PT´1 pairs on X correspond to the closed subschemes of X. Thus we

refer to PT´1-stability as DT-stability.

PT) The pair pF, sq is PTd´1-stable if and only if F is pure and dimpQq ă d.

Hence PTd´1 pairs are exactly the stable pairs in the sense of Le Potier

[Pot1, Def. 4.2] that are natural generalization of Pandharipande-Thomas

stable pairs. Thus we sometimes refer to PTd´1-stability as PT-stability.

Heuristically, d-dimensional PTq-stable pairs are intermediate notions

DT :“ PT´1 { PT0 { ¨ ¨ ¨{ PTd´2 { PTd´1 “: PT

between DT-stable pairs and PT-stable pairs.

Theorem 6.1.9 (Moduli space of PTq-stable pairs). Let X be a smooth projective

variety of dimension n, and v P H˚pX,Qq be a cohomology class such that vďn´3 “
0, and q P t´1, 0, 1u be an integer. Then the open locus of PTq-stable pairs

P
pqq
v pXq :“ tPTq pairs pF, sq on X with chpFq “ vu Ď PairpXq

is a projective scheme.
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Proof. When q “ ´1, then this is shown in [Gro2]. When vn´2 “ 0 and q “ 0, or

q “ 1, then this is shown in [Pot1, Pot2]. When vn´2 , 0 and q “ 0, this is shown

in [BKP]. �

We will consider the following six moduli spaces of pairs:

1. Xrns: Hilbert scheme of n-points [Gro2];

2. In,β: Hilbert scheme of curves [Gro2];

3. Pn,β: moduli space (1-dimensional) PT stable pairs [PT1, Pot1, Pot2];

4. In,β,γ: Hilbert scheme of surfaces [Gro2];

5. P
p0q
n,β,γ

: moduli space of (2-dimensional) PT0-stable pairs [BKP];

6. P
p1q
n,β,γ

: moduli space of (2-dimensional) PT1-stable pairs [Pot1, Pot2].

Secondly, we consider the Gieseker stability on sheaves.

Definition 6.1.10 (Gieseker stability). Let X be a smooth projective variety and

H be an ample line bundle. We say that a coherent sheaf F is H-stable (resp.

H-semi-stable) if

1. F is pure sheaf of dimension d;

2. for any subsheaf F 1, we have

pF1ptq ă pFptq presp. PF1 ptq ď PFptqq
where pFptq is the reduced Hilbert polynomial of F with respect to H.

For any coherent sheaf F, the automophism group AutpFq containsGm. Hence

we will consider the rigidified moduli stack of coherent sheaves

CohpXq{BGm,

defined as the quotient stack of the natural BGm-action on CohpXq.

Theorem 6.1.11 (Moduli space of Gieseker-stable sheaves). Let X be a smooth

projective variety, v P H˚pX,Qq be a cohomology class, and H be an ample line

bundle. Then the open locus of H-stable sheaves

MH
v pXq :“ tH-stable sheaves F with chpFq “ vu Ď CohpXq{BGm

is a quasi-projective scheme. Moreover, if there are no strictly semi-stable sheaves

of Chern character v, then MH
v pXq is a projective scheme.

Proof. We refer to [HL] for the proof. �

135



CHAPTER 6. APPLICATIONS TO ENUMERATIVE GEOMETRY

6.1.2 Virtual cycles and invariants

Let X be a Calabi-Yau 4-fold, i.e., a smooth projective variety of dimension 4

with trivial canonical line bundle. Let v P H˚pX,Qq be a cohomology class. Let

PerfpX, vqspl be the moduli stack of simple perfect complexes F on X with chpFq “
v [Ina, Lie] (cf. [ToVa, STV]). Then PerfpX, vqspl is always an Artin stack. Thus

we consider the two variants:

1. PerfpX, vqspl

L
: the moduli stack of simple perfect complexes on X with fixed

determinant L and Chern character v. More precisely, PerfpXqspl

L
is defined

as the fiber product

PerfpX, vqspl

L
//

��

SpecpCq
L

��
PerfpX, vqspl det // PicpXq

where PicpXq is the Picard stack of line bundle on X and det : PerfpXq Ñ
PicpXq is the determinant map.

2. PerfpX, vqspl{BGm: the moduli space of simple perfect complexes on X with

Chern character v, rigidified by the action of BGm.

Then the two moduli stacks PerfpX, vqspl

L
(for v0 , 0) and PerfpX, vqspl{BGm

are Deligne-Mumford stacks.

Theorem 6.1.12. Let X be a smooth projective variety, v P H˚pX,Qq be a co-

homology class such that vďn´3 “ 0, and q P t´1, 0, 1u be an integer. Then the

canonical map

P
pqq
v pXq Ñ PerfpXqspl

OX
: pF, sq ÞÑ I :“ rOX

sÝÑ Fs
is an open embedding.

Corollary 6.1.13. Let X be a smooth projective variety of dimension n. Let v P
H˚pX,Qq be a cohomology class such that vďn´3 “ 0, and q P t´1, 0, 1u be an

integer. Then the canonical map

φ : E :“ RHomπpI, Ib ωXq0rn ´ 1s AtpIqÝÝÑ L
P

pqq
v pXq

is a symmetric obstruction theory satisfying the isotropic condition, where I :“
rO

P
pqq
v pXqˆX

sÝÑ Fs is the universal pair and π : P
pqq
v pXq ˆ X Ñ P

pqq
v pXq is the

projection map. Moreover, the symmetric complex E is orientable.
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Remark 6.1.14. The obstruction theory in Corollary 6.1.13 is different with that

in Proposition 6.1.5.1.

Proposition 6.1.15. Let X be a smooth projective variety, v P H˚pX,Qq be a

cohomology class, and H be an ample line bundle. Then the canonical map

MH
v pXq Ñ PerfpXqspl{BGm

is an open embedding.

Corollary 6.1.16. Let X be a smooth projective variety of dimension n ě 4,

v P H˚pX,Qq be a cohomology class, and H be an ample line bundle. Then the

canonical map

φ : E :“ τr´2,0sRHomπpF, Fqr3s AtpFqÝÝÝÑ LMH
v pXq

is a symmetric obstruction theory satisfying the isotropic condition, where F is the

universal sheaf and π : MH
v pXq ˆ X Ñ MH

v pXq is the projection map. Moreover,

the symmetric complex E is orientable.

Definition 6.1.17 (Virtual cycle for moduli space of stable pairs). Let X be a

Calabi-Yau 4-fold, v P H˚pX,Qq be a cohomology class such that vďn´3 “ 0, and

q P t´1, 0, 1u be an integer. We define the virtual cycle

rPpqq
v pXqsvir

o P AvdpP
pqq
v pXqq, vd “ v4 ` td2pXq ¨ v2 ´ 1

2
v2

2

as the Oh-Thomas virtual cycle (Definition 4.3.9) associated to the symmetric

obstruction theory φ : E Ñ L
P

pqq
v pXq in Corollary 6.1.13 for an orientation o :

O
P

pqq
v pXq � detpEq.

Definition 6.1.18 (Virtual cycle for moduli space of stable sheaves). Let X be a

Calabi-Yau 4-fold, v P H˚pX,Qq be a cohomology class, and H be an ample line

bundle. We define the virtual cycle

rMH
v pXqsvir

o P AvdpMH
v pXqq, vd “ 1 ´ 1

2
xv, vy

as the Oh-Thomas virtual cycle (Definition 4.3.9) associated to the symmetric

obstruction theory φ : E Ñ LMH
v pXq in Corollary 6.1.16 for an orientation o :

OMH
v pXq � detpEq.

Remark 6.1.19 (Generalization). The constructions of Oh-Thomas virtual cycles

in Definition 6.1.17 and Definition 6.1.18 can be generalized to any open substack

of PerfpX, vqspl

L
(for v0 , 0) or PerfpX, vqspl{BGm, which is a separated Deligne-

Mumford stack.
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6.1.3 Invariants and conjectures

Definition 6.1.20 (Tautological complex). Let X be a Calabi-Yau 4-fold, v P
H˚pX,Qq be a cohomology class, q P t´1, 0, 1u be an integer, and H be an ample

line bundle. Write Pvpkq “
ř

iě0 ai

`
k`i´1

i

˘
for integers ai.

1. Assume that v0 “ v1 “ 0. For any perfect complex E on X, we define the

associated tautological complex on P
pqq
v pXqpXq as

ΦFpEq :“ Rπ˚pFb q˚Eq

where pF, sq is the universal pair and π : P
pqq
v pXq ˆ X Ñ P

pqq
v pXq, q :

P
pqq
v pXq ˆ X Ñ X are the projection maps.

We sometimes omit the subscript F in ΦFpEq and just write ΦpEq.

2. Assume that g.c.dpaiq “ 1. Fix a universal family G of MH
v pXq. For any

perfect complex E on X, we define the associated tautological complex on

MH
v pXq as

ΦGpEq :“ Rπ˚pGb q˚Eq
where π : MH

v pXq ˆ X Ñ MH
v pXq, q : MH

v pXq ˆ X Ñ X are the projection

maps.

The tautological complex ΦGpEq depends on the choice of G.

Definition 6.1.21 (Primary insertions). Let X be a Calabi-Yau 4-fold, v P H˚pX,Qq
be a cohomology class, q P t´1, 0, 1u be an integer, and H be an ample line bun-

dle. Write Pvpkq “
ř

iě0 ai

`
k`i´1

i

˘
for integers ai.

1. Assume that v0 “ v1 “ 0. For any cohomology class δ P H˚pX,Qq, we

define the primary insertion as

Φ0pδq :“ π˚pch2pFq Y q˚δq P H˚pP
pqq
v pXq,Qq

where pF, sq is the universal pair and π : P
pqq
v pXq ˆ X Ñ P

pqq
v pXq, q :

P
pqq
v pXq ˆ X Ñ X are the projection maps.

2. Assume that g.c.dpaiq “ 1. We define the primary insertion as

Φ0pδq :“ Rπ˚pGb q˚Eq P H˚pMH
v pXq,Qq

where G is a universal sheaf and π : MH
v pXq ˆ X Ñ MH

v pXq, q : MH
v pXq ˆ

X Ñ X are the projection maps.

The primary insertion Φ0pδq is independent of the choice of G.
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In [CK1], Cao-Kool conjectured that the tautoglogical Hilbert scheme invari-

ants can be expressed by the MacMahon function as follows.

Conjecture 6.1.22 (Tautological Hilbert scheme invariants). Let X be a Calabi-

Yau 4-fold. Let L be a line bundle on X. Then there exist orientations such that

ÿ

ně0

ż

rXrnss
epLrnsq ¨ qn “ Mp´qq

ş
X c3pTXqc1pLq

where Lrns :“ ΦpLq is the tautological bundle and Mpqq :“ ś
ně1p1 ´ qnq´n is the

MacMahon function.

In [CK2, Conj. 0.3], Cao-Kool conjectured (1-dimensional) DT{PT correspon-

dence for primary insertions.

Conjecture 6.1.23 (Primary DT{PT correspondence). Let X be a Calabi-Yau 4-

fold, β P H2pX,Qq be a curve class, and n P Z be an integer. Let γi P H˚pX,Qq be

cohomology classes. Then there exist orientations such that

ż

rIn,βpXqsvir

Φ0pγ1q Y ¨ ¨ ¨ Y Φ0pγkq “
ż

rPn,βpXqsvir

Φ0pγ1q Y ¨ ¨ ¨ Y Φ0pγkq.

In [CKM, Conj. 0.13], Cao-Kool-Monavari conjectured (1-dimensional) DT{PT

correspondence for tautological insertions.

Conjecture 6.1.24 (Tautological DT{PT correspondence). Let X be a Calabi-Yau

4-fold and β P H2pX,Qq be a curve class. Let L be a line bundle on X. Then there

exist orientations such that
ř

ně0

ş
rIn,βpXqsvir epΦpLqq ¨ qn

ř
ně0

ş
rXrnssvir epLrnsq ¨ qn

“
ÿ

ně0

ż

rPn,βpXqsvir

epΦpLqq ¨ qn .

In [CMT1, CMT2], Cao-Maulik-Toda conjectured (1-dimensional) PT{Katz

corrspondence for primary insertions.

Conjecture 6.1.25 (Primary PT{Katz correspondence). Let X be a Calabi-Yau 4-

fold, β P H2pX,Qq be a curve class, and n P Z be an integer. Let γ P H4pX,Qq be

cohomology classes. Then there exist orientations such that

ż

rPn,βpXqsvir

Φ0pγqn “
ÿ

řn
i“0 βi“β

˜ż

rP0,β0
pXqsvir

1 ¨
nź

i“1

ż

rM1,βpXqsvir

Φ0pγq
¸
.
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In [BKP], a (2-dimensional) DT{PT0 correspondence for tautological inser-

tions were introduced.

Conjecture 6.1.26 (Tautological DT{PT0 correspondence). Let X be a Calabi-

Yau 4-fold, γ P H4pX,Qq be a surface class, and β P H2pX,Qq be a curve class.

Let L be a line bundle on X. Then there exist orientations such that

ř
ně0

ş
rIn,β,γpXqsvir epΦpLqq ¨ qn

ř
ně0

ş
rXrnssvir epLrnsq ¨ qn

“
ÿ

ně0

ż

rP
p0q
n,β,γ

pXqsvir

epΦpLqq ¨ qn .

Remark 6.1.27 (Descendent insertions). In the situation of Definition 6.1.21, we

can define the descendent insertion as

Φipδq :“ π˚pch2`ipFq Y q˚δq P H˚pP
pqq
v pXq,Qq

for i ą 0.

6.2 Lefschetz principle

Recall [KKP] that the quantum Lefschetz principle relates the Gromov-Witten

invariants of an algebraic variety with the Gromov-Witten invariants of its divisor.

The virtual pullback formula in Theorem 4.3.17 provides an analogous formula in

Donaldson-Thomas theory. This section is based on [Park1].

Theorem 6.2.1 (Lefschetz principle). Let X be a Calabi-Yau 4-fold and D be a

smooth connected divisor of a line bundle L on X. Let v P H˚pX,Qq be a coho-

mology class such that v0 “ v1 “ 0 and q P t´1, 0, 1u be an integer. Consider the

following moduli spaces:

PpXq :“ tPTq pairs pF, sq on X with chpFq “ vu
PpDq :“ tPTq pairs pF, sq on D with chpi˚Fq “ vu

where i : D ãÑ X is the inclusion map. Assume the followings:

A1) The tautological complex ΦpLq is a vector bundle.

A2) The canonical map RHomπpID, ID b Lq0r2s AtpIDqÝÝÝÑ LPpDq is a perfect ob-

struction theory.
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Then for any orientation on PpXq, there exists canonical signs p´1qσpeq on the

connected components PpDqe of PpDq such that

ÿ

e

p´1qσpeqp jeq˚rPpDqesvir
BF “ epΦpLqq X rPpXqsvir

OT

where je : PpDqe
ãÑ PpDq ãÑ PpXq are the inclusion maps.

Sketch of the proof. �

Corollary 6.2.2 (Tautological Hilbert scheme invariants). Let X be a Calabi-Yau

4-fold. Let L be a line bundle on X. Assume that L has a smooth connected divisor.

Then Conjecture 6.1.22 holds for X and L.

Proof. Since Drns is connected, the Lefschetz principle gives us

ż

rXrnssvir

epLrnsq “
ż

rDrnssvir

1.

By [LP, Li3], the generating series of the degree zero MNOP invariants [MNOP1,

MNOP2] of a smooth projective 3-fold D can be expressed as

ÿ

ně0

ż

rDrnssvir

1 ¨ qn “ Mp´qq
ş

D c3pTDbKDq.

By an elementary argument, we can deduce

ż

D

c3pTD b KDq “
ż

X

c3pTXqc1pLq

(cf. [CK1, (2.5)]). It completes the proof. �

Corollary 6.2.3 (Tautological DT{PT correspondence). Let X be a Calabi-Yau

4-fold and β P H2pX,Qq be a curve class. Let L be a line bundle. Assume that

there is a smooth connected divisor D of L such that the following conditions are

satisfied:

A1) D is a Calabi-Yau 3-fold.

A2) For all pure 1-dimensional closed subschemes C of X with rCs “ β, we have

H1pC, Lq “ 0.
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A3) For all n, the inclusion maps In,βpDq ãÑ In,βpXq and Pn,βpDq ãÑ Pn,βpXq
induce injective maps between the sets of connected components.

Then Conjecture 6.1.24 holds for X, β, and L.

Proof. Applying the Lefschetz principle to the three moduli space In,βpXq, Pn,βpXq,

Xrns, the 3-fold DT/PT correspondence [Bri, Toda]
ř

ně0

ş
rIn,βpDqsvir 1 ¨ qn

ř
ně0

ş
rDrnssvir 1 ¨ qn

“
ÿ

ně0

ż

rPn,βpDqsvir

1 ¨ qn

completes the proof. �

Corollary 6.2.4 (Tautological DT{PT0 correspondence). Let X be a Calabi-Yau

4-fold, γ P H4pX,Qq be a surface class, and β P H2pX,Qq be a curve class. Let

L be a line bundle. Assume that there is a smooth connected divisor D of L such

that the following conditions are satisfied:

A1) D is a Calabi-Yau 3-fold.

A2) For all 2-dimensional closed subschemes S of X with ch2pOS q “ γ and

ch3pOS q “ β, we have H1pS , Lq “ H2pS , Lq “ 0.

A3) For all n, the inclusion maps In,β,γpDq ãÑ In,β,γpXq and P
p0q
n,β,γ

pDq ãÑ P
p0q
n,β,γ

pXq
induce injective maps between the sets of connected components.

Then Conjecture 6.1.26 holds for X, β, γ, and L.

Proof. Applying the Lefschetz principle to the three moduli space In,β,γpXq, P
p0q
n,β,γ

pXq,

Xrns, the 3-fold (1-dimensional) DT/PT correspondence [Bri, Toda]
ř

ně0

ş
rIn,βpDqsvir 1 ¨ qn

ř
ně0

ş
rDrnssvir 1 ¨ qn

“
ÿ

ně0

ż

rPn,βpDqsvir

1 ¨ qn

completes the proof. �

6.3 Pairs/Sheaves correspondence

In many cases, maps between moduli spaces of sheaves or complexes can be re-

alized as virtual projective bundles. Since there is a general pushforward formula

for virtual projective bundles, a virtual pullback formula for these cases is prac-

tically effective for computing invariants. We provide a correspondence between

the moduli of stable pairs and the moduli of stable sheaves as an example. This

section is based on [Park1].
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6.3.1 Virtual projective bundles

We first fix the notion of virtual projective bundles.

Definition 6.3.1 (Virtual projective bundle). Let X be a scheme and K be a perfect

complex of tor-amplitude r0, 1s. We define the virtual projective bundle as the

projective cone

p : PpKq :“ ProjpSymph0pK_qqq Ñ X.

The virtual projective bundles are classical truncations of derived projective

bundles.

Remark 6.3.2 (Derived enhancement). Let X be a scheme and K be a perfect

complex of tor-amplitude r0, 1s. Then we have

PpKq “ rpTotXpKqz0q{Gmscl

where 0 : X Ñ TotXpKq is the zero section.

The quasi-smooth derived enhancements on the virtual projective bundles in-

duce perfect obstruction theories.

Proposition 6.3.3 (Obstruction theory). Let X be a scheme and K be a perfect

complex of tor-amplitude r0, 1s. Then the virtual projective cone

p : PpKq :“ ProjpSymph0pK_qqq Ñ X

has a natural perfect obstruction theory

E :“ conepOPpKq Ñ p˚Kp1qq_ Ñ LPpKq{X.

There is a pushforward formula for virtual projective bundles.

Proposition 6.3.4 (Pushforward formula). Let p : PpKq Ñ X be a virtual projec-

tive bundle over a quasi-projective scheme X. For any cycle class α P A˚pXq and

a K-theory class ξ P K0pXq, we have

p˚pcmpp˚ξp1qq X p!αq “
ÿ

0ďiďm

ˆ
s ´ i

m ´ i

˙
¨ cipξq X cm´i`1´rp´Kq X α

where r is the rank of K and s is the rank of ξ.
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Proof. Fix a global resolution K � rK0 Ñ K1s and consider the factorization

K1p1q|PpK0q

��
PpKq � � i //

p

&&▲▲
▲▲▲

▲▲▲
▲▲▲

PpK0q
q

��

t

[[

X

where PpKq is the zero locus of the tautological section t. Then

E

��

“ pK1p1qq|_
PpKq

dt //

t

��

ΩPpK0q{X|PpKq

LPpKq{X “IPpKq{PpK0q{I2
PpKq{PpK0q

d // ΩPpK0q{X|PpKq

is the perfect obstruction theory. Manolache’s virtual pullback formula p! “ i! ˝q˚

implies

p˚pcmpξp1qq X p!αq “ q˚pcmpξp1qq X cr1
pK1p1qq X q˚αq

where r0 and r1 are the ranks of K0 and K1, respectively. Note that

cmpξp1qq “
ÿ

0ďiďm

ˆ
s ´ i

m ´ i

˙
cipξqc1pOp1qqm´i

by [Ful, Example 3.2.2]. Therefore, we have

p˚pcmpξp1qq X p!αq

“
ÿ

0ďiďm

ÿ

0ď jďr1

ˆ
s ´ i

m ´ i

˙
¨ cipξq X c jpK1q X q˚pc1pOp1qqm`r1´i´ j X q˚αq

“
ÿ

0ďiďm

ÿ

0ď jďr1

ˆ
s ´ i

m ´ i

˙
¨ cipξq X c jpK1q X sm`r1´i´ j´r0`1pK0q X α

“
ÿ

0ďiďm

ˆ
s ´ i

m ´ i

˙
¨ cipξq X cm´i`1´rp´Kq X α

where s‚pK0q denotes the Segre class of K0. �
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6.3.2 Pairs/Sheaves correspondence

Theorem 6.3.5 (Pairs/Sheaves correspondence). Let X be a Calabi-Yau 4-fold,

v P H˚pX,Qq be a cohomology class such that v0 “ v1 “ 0, and H be an ample

line bundle. Consider the following moduli spaces:

PpXq :“ tPT-stable pairs pF, sq on X with chpFq “ vu
MpXq :“ tH-stable sheaves G on X with chpFq “ vu

Assume the followings:

A1) (a) v2 , 0 is an irreducible surface class, or

(b) v2 “ 0 and v3 , 0 is an irreducible curve class.

A2) There exists a universal familyG on MpXqˆX and the tautological complex

O
MpXq
X

:“ Rπ˚G is of tor-amplitude r0, 1s.

Then the forgetful map

p : PpXq Ñ MpXq : pF, sq ÞÑ F

is the virtual projective bundle of O
MpXq
X

. Moreover, for any orientation on MpXq,

there exists a canonical orientation on PpXq such that

rPpXqsvir “ p!rMpXqsvir P A˚pPpXqq.

Corollary 6.3.6 (Pushforward formula). In the situation of Theorem 6.3.5, for any

perfect complex E of rank N on X, we have

p˚pcn´1pΦpEqq X rPpXqsvirq “ N ¨ rMpXqsvir P A˚pMpXqq.

Corollary 6.3.7 (Primary PT/Katz correspondence). Let X be a Calabi-Yau 4-

fold, β P H2pX,Qq be a curve class, and n P Z be an integer. Let γ P H4pX,Qq be

cohomology classes. Assume that β is irreducible. Then Conjecture 6.1.25 holds

for X, β, n, and γ.

Corollary 6.3.8 (Tautological PT/Katz correspondence). Let X be a Calabi-Yau

4-fold, β P H2pX,Qq be a curve class, n P Z be an integer, and H be an ample
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line bundle. Let E be a perfect complex on X. Assume that β is irreducible and

g.c.dpβ ¨ H, nq “ 1. Then there exist orientations such that

ż

rPn,βpXqsvir

cnpΦpEqq

“
#

´
`

N

n

˘
¨
ş

rMn,βpXqsvir c1pΦGpOXqq if n “ 0`
N´1

n´1

˘
¨

ş
rMn,βpXqsvir c1pΦGpOXqq ´

`
N

n

˘
¨
ş

rMn,βpXqsvir c1pΦGpOXqq if n ě 1

where G is the universal sheaf of MH
n,β

pXq and N “ n ¨ rankpEq `
ş
β

c1pEq.

6.4 Counting surfaces on Calabi-Yau 4-folds

This section is based on [BKP].

Theorem 6.4.1 (Reduced virtual cycle). Let X be a Calabi-Yau 4-fold with nowhere

vanishing Calabi-Yau 4-form ω P H0pX,Ω4
X
q. Let v “ p0, 0, γ, β, n ´ γ ¨ td2pXqq P

H˚pX,Qq be a cohomology class, q P t´1, 0, 1u be an integer, and H be an ample

line bundle. Then there exist canonical reduced virtual cycles

rPpqq
v pXqsred P An´ 1

2
γ2` 1

2
ργ

pP
pqq
v pXqq

rMH
v pXqsred P A1´ 1

2
γ2` 1

2
ργ

pMvpXqq

where ργ is the rank of the symmetric bilinear form

Bγ : H1pX, TXq b H1pX, TXq Ñ C : ξ1 b ξ2 ÞÑ
ż

X

pιξ1
ιξ2
γ Y ωq.

The Hodge conjecture predicts that for any smooth projective variety X, all

rational pp, pq-classes on X are algebraic. In [Gro1] Grothendieck introduced a

variant of the Hodge conjecture.

Conjecture 6.4.2 (variational Hodge conjecture). Let X be a smooth projective

variety and γ be an algebraic pp, pq-class on X. For any smooth projective mor-

phism f : XÑ B to a smooth connected scheme B and a horizontal section rvp of

F pH
2p

DR
pX{Bq such that X0 � X and prvpq0 “ γ for some closed point 0 P B, the

cohomology classes prvpqb are algebraic for all closed points b P B.

146



CHAPTER 6. APPLICATIONS TO ENUMERATIVE GEOMETRY

Theorem 6.4.3. Let X be a Calabi-Yau 4-fold and let γ be a p2, 2q-class on X. If

for some v P H˚pX,Qq with v2 “ γ and q P t´1, 0, 1u

rPpqq
v pXqsred

, 0 P A˚pP
pqq
v pXqq

then Conjecture 6.4.2 holds for X and γ.

This recovers the results of Buchweitz-Flenner [BuFl] (cf. Bloch [Blo]) for

Calabi-Yau 4-folds since the reduced virtual cycle equals to the fundamental cycle

near the semi-regular point.
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Generalizations
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Chapter 7

Torus localization via equivariant

virtual pullbacks

In this chapter, we prove Graber-Pandharipande’s torus localization formula [GP]

via equivariant virtual pullbacks. This chapter is based on [AKLPR]

Summary The torus localization formula is an extremely useful tool for com-

puting virtual enumerative invariants when there is a torus action. However, there

were some necessary technical assumptions in the original proof of [GP]. These

assumptions were significantly weakened by Chang-Kiem-Li [CKL] by using

Manolache’s virtual pullbacks [Man]. However, it was still desired to fully re-

move the assumptions.

Inspired by Chang-Kiem-Li’s work, we fully remove the technical assump-

tions by developing equivariant virtual pullbacks for obstruction theories of tor-

amplitude r´2, 0s, when the fixed part is of tor-amplitude r´1, 0s. In this case,

the associated abelian cone stack is not necessarily a vector bundle stack, but we

still have the equivariant homotopy property in the localized Chow groups, which

allows us to define the equivariant virtual pullback.

Instead of using motivic Borel-Moore homology spectra as in [AKLPR], we

use Kresch’s Chow groups for simplicity.

7.1 Equivariant virtual pullbacks

In this section, we construct equivariant virtual pullbacks for good obstruction

theories, which are not necessary of tor-amplitude r´1, 0s.
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7.1.1 Equivariant Chow groups

In this subection, we recall basic facts on equivariant Chow groups. We first fix

some notations.

Notations

• Let T :“ Gm be the 1-dimensional torus.

• Let t P PicTpSpecpCqq be the 1-dimensional weight 1 representation.

• For an algebraic stack X with a T-action, we define the equivariant Chow

group as

AT
˚pXq :“ A˚prX{Tsq.

• Let s :“ c1ptq be the first Chern class. Then AT
˚pSpecpCqq “ Qrss.

• For an algebraic stack X with a T-action, we define

ATpXqs :“ ATpXq bQrss Qrs˘1s.

• For any vector bundle E on X ˆ BT, we have a weight decomposition

E “
à
wPZ

Epwq.

We let Efix :“ Ep0q and Emov :“ À
w,0 Epwq.

We define the fixed locus as in [AHR].

Definition 7.1.1 (Fixed locus). Let X be a Deligne-Mumford stack with a T-

action. We define the fixed locus as

XT :“ limÝÑ
T1ÑT

MapT1pSpecpCq, Xq

where MapT1p´,´q denotes the equivariant mapping stack and the direct limit is

taken for all finite surjection T1 Ñ T of tori.

By [AHR], the fixed locus is a closed substack.
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Proposition 7.1.2. Let X be an Deligne-Mumford stack with a T-action. There

exists a finite surjection T1 Ñ T of tori such that

XT “ MapT1pSpecpCq, Xq.

Moreover, the canonical map XT Ñ X is a closed embedding.

We will use the following localization theorem of Kresch in [Kre2, Thm. 5.3.5].

Proposition 7.1.3 (Localization of Chow groups). Let X be a Deligne-Mumford

stack with a T-action. Let XT be the fixed locus and i : XT
ãÑ X be the inclusion

map. Then the pushforward

iT
˚ : AT

˚pXTqs Ñ AT
˚pXqs

is an isomorphism.1

We note that the reparametrization T1 Ñ T does not affect the Chow groups.

Lemma 7.1.4. Let X be a Deligne-Mumford stack with a T-action. For any finite

surjection T1 Ñ T of tori, the smooth pullback

AT
˚pXq Ñ AT1

˚ pXq

is an isomorphism.

Proof. Let ETi :“ t‘izt0u. Then it suffices to show that the smooth pullback

A˚prX ˆ ETi{Tsq Ñ A˚prX ˆ ETi{T1sq

is an isomorphism. Since both rX ˆ ETi{Ts and rX ˆ ETi{T1s are DM stacks with

the same coarse moduli space, [Vist, Prop. 6.1] completes the proof. �

It is easy to show that the Euler class of vector bundle of non-zero weights

is invertible, directly from the definitions. Here we observe that this can also be

deduced as a corollary of Proposition 7.1.3.

Corollary 7.1.5. Let X be a Deligne-Mumford stack with a trivial T-action. Let E

be a T-equivariant vector bundle on X. Assume that Efix “ 0. Then the equivariant

Euler class

eTpEq : AT
˚pXqs Ñ AT

˚pXqs

is an isomorphism.

1The reduced substack XT
red

is T-invariant substack of X.
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Proof. Consider the zero section

0E : X ãÑ E.

Since Efix “ 0, the fixed locus ET of E is the zero section 0E : X ãÑ E. Hence by

Proposition 7.1.3, the pushforward

p0Eq˚ : AT
˚pXqs Ñ AT

˚pEqs

is an isomorphism. Therefore the Euler class

eTpEq “ 0!
E ˝ p0Eq˚ : AT

˚pXqs Ñ AT
˚pXqs

is also an isomorphism. �

7.1.2 Equivariant Gysin pullbacks

In this subsection, we introduce T-good cone stacks, which are analogues of vec-

tor bundle stacks in T-equivariant geometry. In particular, we will define equiv-

ariant Gysin pullbacks for T-good cone stacks.

We first generalized the equivariant Euler classes of vector bundles to perfect

complexes.

Definition 7.1.6 (Equivariant Euler class). Let X be a separated DM stack with

a trivial T-action. Let K be a perfect complex of tor-amplitude r0, 1s such that

Kfix “ 0. Then we define the T-equivariant Euler class

eTpKq : ATpXqs Ñ ATpXqs

as follows:

1. Case 1) Assume that X is a quasi-projective scheme. Then there is a T-

equivariant resolution K � rK0 Ñ K1s for some vector bundles K0 and K1

on X of non-zero weights. We define the T -equivariant Euler class as

eTpKq :“ eTpK0q
eTpK1q : ATpXqs Ñ ATpXqs

where eTpK1q is invertible by Corollary 7.1.5.
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2. Case 2) Assume that X is a separated DM stack. Then by the Chow lemma

[LMB, Cor. 16.6.1], there is a projective surjective map p : rX Ñ X from a

quasi-projective scheme rX. We define the T -equivariant Euler class as

AT
˚prX ˆX

rXqs
//

eT pK|rXˆX
rXq

��

AT
˚prXqs

//

eT pK|rXq
��

ATpXqs
//

eT pKq
��

0

AT
˚prX ˆX

rXqs
// AT

˚prXqs
// ATpXqs

// 0

where the rows are exact by the Kimura sequence in Theorem A.1.1.

Remark 7.1.7. In the situation of Definition 7.1.6, it is easy to show that eTpKq is

independent of the choices of a resolution K � rK0 Ñ K1s and a projective cover
rX Ñ X.

We will consider the following class of cone stacks.

Definition 7.1.8 (Good cone stacks). Let X be a separated DM stack with a trivial

T-action. Let F be a T-equivariant perfect complex on X. Let CpFq denote the

associated abelian cone stack. We say that CpFq is a T-good cone stack if

1. Ffix has tor-amplitude r´1, 0s, and

2. Fmov has tor-amplitude r´2,´1s.
We can simply define the equivariant Gysin pullbacks for T-good cone stacks

via the localization of Chow groups in Proposition 7.1.3.

Definition 7.1.9 (Equivariant Gysin pullback). Let X be a separated DM stack

with a trivial T-action. Let CpFq be a T-good cone stack on X associated to a T-

equivariant perfect complex F on X. We define the T-equivariant Gysin pullback

p0CpFqq!
T : AT

˚pCpFqqs Ñ AT
˚pXqs

of the zero section 0CpFq : X Ñ CpFq as follows:

1. Case 1) Assume that Ffix “ 0. Then CpFq is a cone and 0CpFq : X Ñ CpFq is

a closed embedding We define the T -equivariant Gysin pullback as

p0CpFqq!
T :“ eTpF_r1sq ˝ p0CpFqq´1

˚ : AT
˚pCpFqqs Ñ AT

˚pXqs

where the pushforward p0CpFqq˚ : AT
˚pXqt Ñ AT

˚pCpFqqs is an isomorphism

by Proposition 7.1.3 and eTpF_r1sq is the T-equivariant Euler class in Defi-

nition 7.1.6.

153



CHAPTER 7. TORUS LOCALIZATION VIA VIRTUAL PULLBACKS

2. Case 2) Consider the general case. Note that F “ Ffix ‘ Fmov and

CpFq “ EpFfixq ˆ CpFmovq

where EpFfixq is a vector bundle stack. We define the T-equivariant Gysin

pullback as the composition

p0CpFqq!
T : AT

˚pCpFqqs

0!

EpFfixqÝÝÝÑ AT
˚pCpFmovqqs

p0CpFmovqq!
TÝÝÝÝÝÝÑ AT

˚pXqs

where the first map is the Gysin pullback of the vector bundle stack

CpFq “ EpFfixq ˆ CpFmovq “ EpFfix|CpFmovqq Ñ CpFmovq

and the second map is given by Case 1.

Remark 7.1.10 (Equivariant homotopy property). In T-equivariant geometry, the

T-good cone stacks are the natural generalizations of vector bundle stacks since

we have T-equivariant homotopy property: for any T-good cone stack CpFq on a

separated DM stack X, the T-equivariant Gysin pullback gives us an isomorphism

p0CpFqq!
T : AT

˚pCpFqqs � AT
˚pXqs.

Proposition 7.1.11 (Whitney sum formula). Let X be a separated DM stack with

trivial T-action. Let CpF1q and CpF2q be two T-good cone stacks on X. Assume

that Ffix
2 “ 0. Then we have

p0CpF1‘F2qq!
T “ p0CpF2qq!

T ˝ p0CpF1|CpF2qqq!
T : AT

˚pCpF1 ‘ F2qqs Ñ AT
˚pXqs.

7.1.3 Equivariant virtual pullbacks

Definition 7.1.12 (Good obstruction theories). Let f : X Ñ Y be a T-equivariant

morphism of algebraic stacks with T-actions. Assume that X is a separated DM

stack and the T-action on X is trivial. Let φ : F Ñ LX{Y be an obstruction theory.

We say that φ : FÑ LX{Y is a T-good obstruction theory if

1. Ffix has tor-amplitude r´1, 0s, and

2. Fmov has tor-amplitude r´2,´1s.
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Definition 7.1.13 (Equivariant virtual pullback). Let f : X Ñ Y be a T-equivariant

morphism of algebraic stacks with T-actions. Let φ : F Ñ LX{Y be a T-good ob-

struction theory. Assume that X is a separated DM stack and the T-action on X is

trivial. We define the T-equivariant pullback as the composition

f !
T : AT

˚pYqs

spT
X{YÝÝÝÑ AT

˚pCX{Yqs
ι˚ÝÑ AT

˚pCpFqqs

p0CpFqq!
TÝÝÝÝÑ AT

˚pXqs

where spT
X{Y

is the specialization map for the induced map rX{Ts Ñ rY{Ts, ι :

CX{Y ãÑ CpFq is the closed embedding associated to the obstruction theory φ, and

p0CpFqq!
T

is the T-equivariant Gysin pullback for the T-good cone stack CpFq in

Definition 7.1.9.

Proposition 7.1.14 (Bivariance). Let

X1 f 1
//

g1

��

Y 1

g

��
X

f // Y

be a cartesian square of T-equivariant morphisms of algebraic stacks with T-

actions. Assume that X and X1 are separated Deligne-Mumford stacks and the

T-actions on X and X1 are trivial. Let φ : F Ñ LX{Y be a T-good obstruction

theory. Let

φ1 : pg1q˚F
pg1q˚pφqÝÝÝÝÑ pg1q˚pLX{Yq Ñ LX1{Y1

be the induced T-good obstruction theory. Then we have the following properties:

1. If g is a proper DM morphism, then we have

f !
T ˝ g˚ “ g1

˚ ˝ p f 1q!
T : A˚pY 1q Ñ A˚pXq.

2. If g is a equi-dimensional flat morphism, then we have

p f 1q!
T ˝ g˚ “ pg1q˚ ˝ f !

T : A˚pYq Ñ A˚pX1q.

3. If g is a local complete intersection morphism and Y 1 has affine stabilizers,

then we have

p f 1q!
T ˝ g! “ pg1q! ˝ f !

T : A˚pYq Ñ A˚pX1q.

Proof. It follows immediately from Proposition 2.1.19. �
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7.1.4 Funtoriality

Theorem 7.1.15 (Functoriality). Consider a commutative diagram of algebraic

stacks with T-actions

X
f //

g˝ f

77Y
g // Z

where f and g are T-equivariant DM morphisms. Assume that X is a separated

DM stack and the T-action on X is trivial. Assume that Y has affine stabilizers.

Let φX{Y : FX{Y Ñ LX{Y , φX{Z : FX{Z Ñ LX{Z be T-good obstruction theories and

φY{Z : FY{Z Ñ LY{Z be a T-equivariant perfect obstruction theory. Assume that

there exists a morphism of distinguished triangles

f ˚pFY{Zq //

f ˚pφY{Zq
��

FX{Z
//

φX{Z

��

FX{Y

φ1
X{Y

��

//

τě´1 f ˚pLY{Zq // LX{Z
// L1

X{Y
//

for some φ1
X{Y

such that φX{Y “ r ˝ φ1
X{Y

. Then we have

pg ˝ f q!
T “ f !

T ˝ g! : AT
˚pZqs Ñ AT

˚pXqs.

The proof is similar to the functoriality of ordinary virtual pullbacks in Theo-

rem 2.3.12. As in Lemma 2.3.18, we begin with a special case

X
f //

0CpFq˝ f

55Y
0CpFq // CpFq

where Z “ CpFq is a T-good cone stack over Y and g “ 0CpFq is the zero section.

Lemma 7.1.16. Let f : X Ñ Y be a T-equivariant morphism of algebraic stacks

with T-actions. Assume that X is a separated DM stack and the T-action on X is

trivial. Let φX{Y : FX{Y Ñ LX{Y be a perfect obstruction theory for f : X Ñ Y. Let

CpFq be a T-good cone stack for some T-equivariant perfect complex F. Let

φ : FÑ LY{CpFq

be the canonical T-good obstruction theory of the zero section 0CpFq : Y Ñ CpFq.

Then

f ˚pφq ‘ φX{Y : f ˚pFq ‘ FX{Y Ñ LX{CpFq “ τě´1 f ˚pLY{CpFqq ‘ LX{Y
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is a T-good obstruction theory for the composition

X
fÝÑ Y

0CpFqÝÝÑ CpFq

and we have

p0CpFq ˝ f q!
T “ f ! ˝ p0CpFqq!

T : AT
˚pCpFqqs Ñ AT

˚pXqs.

Proof. Note that

CpFq “ EpFfixq ˆY CpFmovq
and EpFfixq :“ CpFfixq is a vector bundle stack. Consider the commutative diagram

CpFq
π

��
X f //

0CpFmovq˝ f

66

0CpFq˝ f ..

Y 0CpFmovq //

0CpFq♣♣♣♣♣

88♣♣♣♣♣

CpFmovq.

Then we can form a diagram

CpFq sp ///o/o/o/o/o

π

��

CX{CpFq
� � //

r

��

C f ˆ CpFq � � //

idˆπ
��

EpFX{Yq ˆ CpFq
idˆπ
��

CpFmovq sp ///o/o/o CX{CpFmovq
� � // C f ˆ CpFmovq � � // EpFX{Yq ˆ CpFmovq

where two right two squares are cartesian and the vertical arrows are EpFfixq tor-

sors (curly arrows are not genuine morphisms). By Lemma 2.1.21, we have

r˚ ˝ spX{CpFmovq “ spX{CpFq ˝ π˚.

Since the smooth pullback

π˚ : A˚pCpFmovqq Ñ A˚pCpFqq

is an isomorphism, it suffices to show the statement for

X
f //

0CpFmovq˝ f

44
Y

0CpFmovq // CpFmovq.
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Hence we may assume that Ffix “ 0 and F “ Fmov.

Note that CpFq is a cone and 0CpF : Y ãÑ CpFq is a closed embedding. Form a

cartesian diagram

X
f // Y Y� _

0CpFq

��
X

f // Y
� �

0CpFq // CpFq.
Since the pushforward

p0EpFqq˚ : AT
˚pYqs Ñ AT

˚pCpFqqs

is an isomorphism, if suffices to show that

p0CpF|XqˆEpFX{Y qq!
T ˝ a˚ ˝ spX{Y “ f ! ˝ p0CpFqq!

T ˝ p0CpFqq˚

where b : CX{Y
ιÝÑ EpFX{Yq p0,1qÝÝÑ CpF|Xq ˆ EpFX{Yq is the inclusion map, and

ι : CX{Y ãÑ EpFX{Yq is the closed embedding induced by φ. By Proposition 7.1.11,

this is equivalent to

0!
EpFX{Y q ˝ eTpF_r1sq ˝ ι ˝ spX{Y “ f ! ˝ eTpF_r1sq.

Since the equivariant Euler class eTpF_r1sq commutes with Gysin pullbacks and

virtual pullbacks, we have the desired equality. �

As in Lemma 2.3.19, we use the double deformation space of [KKP] to reduce

the general case to the special case in Lemma 7.1.16.

Proof of Theorem 7.1.15. Let

h : X ˆ A1 Ñ Y ˆ A1 Ñ M˝
Y{Z

be the composition. Form a morphism of distinguished triangles

f ˚pFY{Zq ⊠ OA1

pT,aq //

f ˚φY{Z

��

p f ˚pFY{Zq ‘ FX{Zq ⊠ OA1
//

p f ˚φY{Z ,φX{Z q
��

Fh

φ1
h

��
τě´1 f ˚pLY{Zq ⊠ OA1

pT,aq // pτě´1 f ˚pLY{Zq ‘ LX{Zq ⊠ OA1
// L1

h
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for some perfect complex Fh and a map φ1
h
, where the lower distinguished triangle

is given as in Lemma 2.3.20. Then the composition

φh : Fh

φ1
hÝÑ L1

h Ñ τě´1Lh � Lh

is an obstruction theory. Since the fibers of Fh over λ P A1 are

pFhqλ “
#
FX{Z if λ , 0

FX{Y ‘ f ˚FY{Z if λ “ 0

φh is also a T-good obstruction theory. Hence we have a T-equivariant virtual

pullback

h!
T : A˚pM˝

Y{Z
q Ñ A˚pX ˆ A1q.

Since the T-equivariant virtual pullbacks are bivariant by Proposition 7.1.14, we

have

pg ˝ f q!
T “ p0CY{Z

˝ f q!
T ˝ spT

Y{Z

where p0CY{Z
˝ f q!

T
is the T-equivariant virtual pullback of the fiber of φh. As in

the proof of Theorem 2.3.12, by a deformation argument, we have assume that the

T-good obstruction theory for p0CY{Z
˝ f q is given by

f ˚pφY{Zq ‘ φX{Y : f ˚pFY{Zq ‘ FX{Y Ñ τě´1 f ˚pLY{Zq ‘ LX{Y .

Then Lemma 7.1.16 completes the proof. �

7.2 Localization of virtual cycles

Definition 7.2.1 (Induced obstruction theory). Let X be a separated DM stack with

T-action. Let φ : F Ñ LX be a T-equivariant perfect obstruction theory. Choose

a reparemetrization T1 Ñ T such that T1 acts trivially on the fixed locus XT. We

define the induced obstruction theory as the composition

φXT : F|fix
XT Ñ F|XT

φ|
XTÝÝÑ LX|XT Ñ LXT .

Lemma 7.2.2. In the situation of Definition 7.2.1, the composition φXT is a perfect

obstruction theory. Moreover, φXT is independent of the choice of a reparametriza-

tion T1 Ñ T.
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Proof. The independence is trivial. We will show that φXT is an obstruction the-

ory. By [AHR, Thm. 4.3], we may assume that X is an affine scheme. Then [GP,

Prop. 1] proves the claim (cf. [CKL, Lem. 3.3]). Moreover, F|fix
XT is clearly of tor-

amplitude r´1, 0s. �

If the perfect obstruction theory comes from a quasi-smooth derived enhance-

ment, then the above lemma follows from the general description of the cotangent

complexes of derived mapping stacks.

Remark 7.2.3 (Derived fixed locus). Let X be a quasi-smooth derived Deligne-

Mumford stack with T-action. (More generally, let X be a homotopically finitely

presented derived Artin stack.) We define the homotopy fixed locus as the equiv-

ariant derived mapping stack

XhT :“ RMapTpSpecpCq,Xq.

Equivalently, we can define the homotopy fixed locus via a homotopy fiber dia-

gram

XhT //

��

SpecpCq
id

��
M :“ RMappBT, rX{Tsq // RMappBT, BTq.

Then we can easily compute the cotangent complex of XhT as follows: Let

ev : M ˆ BT Ñ rX{Ts

be the evaluation map and π : M ˆ BT Ñ M be the projection map. Then by

[HLP], we have

LM “ Rπ˚Lev˚LrX{T s “ LrX{T s|fix
MˆBT.

Hence we have

LXhT “ conepLM|XhT Ñ LRMappBT,BTq|XhTq “ LrX{Ts{BT|fix
XhTˆBT

.

In particular, this proves Lemma 7.2.2, when the obstruction theory is induced by

a T-equivariant derived enhancement.

Definition 7.2.4 (Virtual normal bundle). Let X be a separated DM stack with

T-action. Let φ : F Ñ LX be a T-equivariant perfect obstruction theory. Choose
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a reparemetrization T1 Ñ T such that T1 acts trivially on the fixed locus XT. We

define the Euler class of the virtual normal bundle as

eTpNvirq :“ eT1ppF|mov

XT r1sq_r1sq : ATpXTqs
�ÝÑ ATpXTqs

where eT1ppF|mov

XT r1sq_r1sq is the equivariant Euler class in Definition 7.1.6 and we

identified AT1

˚ pXTq “ AT
˚pXTq via Lemma 7.1.4.

Theorem 7.2.5 (Localization of virtual cycles). Let X be a separated Deligne-

Mumfor stack with T-action. Let φ : F Ñ LX be a T-equivariant perfect obstruc-

tion theory. Let XT be the fixed locus and φXT be the induced perfect obstruction

in Definition 7.2.1. Then we have

rXsvir “ i˚

ˆ rXTsvir

eTpNvirq

˙
P AT

˚pXqs

where eTpNvirq is the Euler class of the virtual normal bundle in Definition 7.2.4

and i : XT
ãÑ X is the inclusion map.

Proof. Replacing T by a reparametrization, we may assume that T acts trivially

on XT. Consider a morphism of distinguished triangles

F|XT
//

φ|
XT

��

F|fix
XT

//

φ
XT

��

F|mov
XT r1s

��
LX|XT

// LXT
// L1

XT{X

for some dotted arrow where L1
XT{X

:“ conepLX|XT Ñ LXTq. By Theorem 7.1.15,

we have

rXTsvir “ i!
TrXsvir P AT

˚pXTqs.

Since i˚ : AT
˚pXTqs Ñ AT

˚pXqs is an isomorphism by Proposition 7.1.3, we may

write

rXsvir “ i˚pαq
for some α P AT

˚pXTqs. Then we have

rXTsvir “ i!
T ˝ i˚pαq “ p0CpF|mov

XT
r1sqq!

T ˝ p0CpF|mov

XT
r1sqq˚pαq “ eTpNvirqpαq.

Since the equivariant Euler class eTpNvirq is invertible, we have the desired equal-

ity. �

161



CHAPTER 7. TORUS LOCALIZATION VIA VIRTUAL PULLBACKS

Remark 7.2.6 (Comparison to Graber-Pandharipande/Chang-Kiem-Li). In Graber-

Pandharipande [GP], Theorem 7.2.5 is shown when there exist a T-equivariant

global embedding X ãÑ Y to a smooth Deligne-Mumford stack Y and a T-

equivariant global resolution F � rF´1 Ñ F0s by vector bundles F´1 and F0.

In Chang-Kiem-Li [CKL], Theorem 7.2.5 is shown when the virtual normal bun-

dle F|mov

XT r1s has a global resolution F|mov

XT r1s � rN´2 Ñ N´1s by vector bundle

N´2 and N´1. Theorem 7.2.5 fully removes these technical assumptions on global

embeddings/resolutions.

Remark 7.2.7 (Positive characteristic). Let X be an Artin stack with finite stabi-

lizers over an algebraically closed field k of characteristic p ą 0. We note that X

is not necessarily a Deligne-Mumford stack since the stabilizers Aut
X
pxq may not

be étale. Moreover, if there is a T-action on X, the canonical map

u : MapTpSpecpCq, Xq Ñ X

may not be a closed embedding (e.g. when X “ Bαp with a natural non-trivial

T-action, where αp :“ kerpGa

p´qp

ÝÝÑ Gaq). However, if ”the ramifiedness of the

stabilizers only lie on the fixed part”, i.e. Ωmov
AutXpxq “ 0 for all x P Xpkq in the

image of the map u, then the map u is unramified. If we assume that u is quasi-

compact, then u is finite unramified, and we still have the formula

rXsvir “ i˚

ˆ rXTsvir

eTpNvirq

˙
P AT

˚pXqs

after a suitable reparametrization T Ñ T. We refer to [AKLPR] for details.
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Chapter 8

Cosection localization via

p´1q-shifted 1-forms

In this chapter, we revisit Kiem-Li’s cosection localization [KL1] via derived al-

gebraic geometry [ToVe]. This chapter is based on [BKP, Appendix A].

Summary In derived algebraic geometry, quasi-smooth derived schemes are

natural analogs of schemes with perfect obstruction theories. Moreover, p´1q-

shifted 1-forms are natural analogs of cosections.

Firstly, we prove scheme-theoretical cone reduction lemma for p´1q-shifted

closed 1-forms. The key idea is to use the derived Poincare lemma, i.e. a p´1q-

shifted closed 1-form is locally exact.

Secondly, we speculate that the cosection-localized virtual cycles for quasi-

smooth derived schemes with p´1q-shifted closed 1-forms are the Oh-Thomas

virtual cycles of the derived zero locus, which is a p´2q-shifted symplectic.
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8.1 Three reductions

We consider the following hierarchy of structures

tderived schemesu
paq
��

tschemes with obstruction theoriesu
pbq
��"

schemes with closed embedding of

their intrinsic normal cone into an abelian cone stack

*
.

More precisely, the above two arrows can be given as follows:

(a) For any homotopically finitely presented derived scheme X, there is an in-

duced obstruction theory

φ : E :“ LX|X Ñ LX Ñ LX :“ τě´1LX

on the classical truncation X :“ Xcl by [STV, Prop. 1.2].

(b) For any scheme X with an obstruction theory φ : E Ñ LX, there is an

induced closed embedding

ι : CX ãÑ CpEq

of the intrinsic normal cone CX into the abelian cone stack CpEq.

We note that the p´1q-shifted 1-forms are natural analogs of cosections in

derived algebraic geometry. We have a similar hierarchy for them:

(a) Let α : OX Ñ LXr´1s be a p´1q-shifted 1-form on a homotopically finitely

presented derived scheme X. Then we have an induced cosection

σ :“ α|_
X : E_r1s Ñ OX

for the induced obstruction theory φ : E :“ LX|X Ñ LX on the classical

truncation X :“ Xcl.
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(b) Let σ : E_r1s Ñ OX be a cosection for an obstruction theory φ : E Ñ LX

on a scheme X. Then we have an induced linear function

lσ :“ Cpσ_r1sq : CpEq Ñ A1
X

on the associated cone stack CpEq.

Now we state our main result in this subsection.

Theorem 8.1.1. Let X be a homotopically finitely presented derived scheme. Let

φ : E Ñ τě´1LX be the induced obstruction theory on the classical truncation

X :“ Xcl and let ι : CX ãÑ CpEq be the induced closed embedding.

1. (Cone reduction, [KL1]) For any p´1q-shifted 1-form α : OX Ñ LXr´1s,
we have a commutative diagram of cone stacks

CpEσq
� _

��

// X� _

0
��

pCXqred

ιred

66

� � // CX
� � ι // CpEq lσ // A1

X

for a unique dotted arrow where σ :“ α|_
X and Eσ :“ conepσ_r1sq.

2. (Obstruction theory reduction) For any p´1q-shifted closed 1-form rα, we

have a commutative diagram of complexes

OXr1s σ_r1s // E //

φ

��

Eσ

φred
{{

τě´1LX

for a unique dotted arrow where α :“ rα0 : OX Ñ LXr´1s is the underlying

p´1q-shifted 1-form, σ :“ α|_
X

, and Eσ :“ conepσ_r1sq.

3. (Derived reduction, [STV]) For any p´1q-shifted exact 1-form rα “ dDRpuq,

we have a homotopy commutative diagram of derived schemes

Xred //

��

X

0
��

X //

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥
X

u // A1
Xr´1s

for some Xred where the square is homotopy cartesian and the triangle in-

duces isomorphisms X � pXredqcl � Xcl.
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Before we prove Theorem 8.1.1, we explain how the three reductions in The-

orem 8.1.1 are related.

Remark 8.1.2. In the situation of Theorem 8.1.1, we have the following:

1. The obstruction theory reduction in Theorem 8.1.1(2) is equivalent to the

scheme-theoretical cone reduction, i.e., there exists a commutative diagram

of cone stacks

CpEσq
� _

��

// X� _

0
��

CX

<<

� � ι // CpEq lσ // A1
X

for some dotted arrow. Hence the obstruction theory reduction in Theorem

8.1.1(2) clearly implies the cone reduction in Theorem 8.1.1(1).

2. The derived reduction in Theorem 8.1.1(3) implies the obstruction theory

reduction in Theorem 8.1.1(2). Indeed, the commutative diagram of derived

schemes induces a commutative diagram of cotangent complexes

OXr1s “ LXred{X|Xr´1s dDRpuq0 // LX|X
//

��

LXred|X

yy
LX

where LXred{X|X “ LX{A1
X

r´1s|X “ OXr2s. By composing with the canonical

map LX Ñ τě´1LX, we obtain the desired obstruction theory reduction.

Note that the cone reduction in Theorem 8.1.1(1) is shown by Kiem-Li [KL1]

(see Proposition 3.1.9) and the derived reduction in Theorem 8.1.1(3) is trivial.

(This approach was first introduced by Schürg-Toën-Vezzosi [STV].) Thus the

essential part of Theorem 8.1.1 is the obstruction theory reduction in Theorem

8.1.1(2). We will deduce this from the derived Poincaré lemma (which was essen-

tially shown by Brav-Bussi-Joyce [BBJ]):

Proposition 8.1.3. Let X be a homotopically finitely presented derived scheme.

Let rα be a p´1q-shifted closed 1-form. Then there exists a Zariski open cover

Ui Ñ X such that rα|Ui
are p´1q-shifted exact 1-forms.

Proof. This is essentially shown in [BBJ, Prop. 5.6]. Indeed, it follows from the

arguments in [BBJ, Prop. 5.7(a)], if we replace the closed 2-form by a closed

1-form. �
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Now Theorem 8.1.1 is a direct corollary.

Proof of Theorem 8.1.1(2). The uniqueness follows from

HomXpOXr2s, τě´1LXq “ 0.

For the existence, it suffice to show that

φ ˝ σ_r1s P HomXpOXr1s, τě´1LXq “ ΓpX, h´1pLXqq

vanishes. Hence the statement is local. By the derived Poincare lemma in Propo-

sition 8.1.3, we may assume that rα is exact. Then Theorem 8.1.1(3) completes the

proof by Remark 8.1.2(2). �

8.2 Localized virtual cycles

Recall from Chapter 4 that the Oh-Thomas virtual cycles are constructed from

Kiem-Li’s cosection localization. We speculate that the converse is also true. We

provide a simple proof of the speculation in the local model case.

We first fix some notations.

Notation 8.2.1 (Twisted shifted cotangent bundle). Let X be a quasi-smooth de-

rived scheme and α be a p´1q-shifted closed 1-form. Consider a homotopy fiber

diagram

Xpαq //

��

X

α0

��
X

0 // ΩXr´1s
where ΩXr´1s is the p´1q-shifted cotangent bundle, α0 : OX Ñ LXr´1s is the

underlying p´1q-shifted 1-form of α, and Xpαq is the derived zero locus of α0.

The derived zero locus Xpαq is sometimes called the α0-twisted p´2q-shifted con-

tangent bundle, and denoted by

Xpαq :“ ΩXr´2sα0
.

The shifted cotangent bundle ΩXr´1s has a canonical p´1q-shifted symplectic

structure by [PTVV, Prop. 1.21] and the two sections 0, α0 : X Ñ ΩXr´1s have

Lagrangian structures associated to the closing structures by [Cal, Thm. 2.22].
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Hence the twisted shifted cotangent bundleXpαq also has a canonical p´2q-shifted

symplectic structure by [PTVV, Thm. 2.9].

Let X :“ Xcl be the classical truncation and let φ : E :“ LX|X Ñ LX Ñ LX

be the induced perfect obstruction theory. Since the classical truncation commutes

with fiber products, we have a fiber diagram of closed embeddings

Xpσq � � //
� _

��

X� _

σ

��
X
� � 0 // CpObq

where Ob :“ h1pE|_
X

q is the obstruction sheaf, σ :“ h0pα0|_
X

q : Ob Ñ OX is the

induced cosection, and Xpσq is the zero locus of σ in X.

Speculation 8.2.2 (Localized virtual cycles are Oh-Thomas virtual cycles). Let X
be a quasi-smooth derived scheme and α be a p´1q-shifted closed 1-form. We use

the notations in Notation 8.2.1. Then we have

rXsloc
KL “ rXpσqsvir

OT P A˚pXpσqq

where rXsloc
KL

is the cosection-localized virtual cycle for the induced obstruction

theory φ and the induced cosection σ, and rXpσqsvir
OT

is the Oh-Thomas virtual

cycle of the p´2q-shifted symplectic derived scheme Xpαq.

Remark 8.2.3 (Evidence). Consider the following local model: Let U be a smooth

scheme, E be a vector bundle on U, s P ΓpU, Eq be a section, and σ : E Ñ OU be

a cosection such that σ ˝ s “ 0. Let X :“ Upsq be the zero locus of s in U,

E

��

σ // A1
U

X
� � // U.

s

\\

Then the cosection-localized virtual cycle is

rXsloc
KL “ 0!

E|X ,σ|X
rCX{Us P A˚pXpσqq.

On the other hand, the Oh-Thomas virtual cycle of Xpσq is

rXpσqsvir
OT “

?
eppE ‘ E_q, ps, σqqrUs P A˚pXpσqq.
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Consider the compostion

Xpσq ˆ A1
ãÑ X ˆ A1

ãÑ M˝
X{U

.

By a deformation argument, we can show that

?
eppE ‘ E_q, ps, σqqrUs “

?
eppE ‘ E_q|CX{U

, pτ, σqqrCX{Us

where τ P ΓpCX{U , E|CX{U
q is the tautological section. In [KP2, Lem. 5.5], it is

shown that

?
eppE ‘ E_q|Epσq, pτ, σqq “ 0!

E,σ : A˚pEpσqq Ñ A˚pXpσqq.

Therefore, by the bivariance of localized square root Euler classes in Proposition

4.1.25, we have

rXsloc
KL “ rXpσqsvir

OT P A˚pXpσqq
in this case.

The author expects that a similar argument will prove Speculation 8.2.2 in the

general case. We plan to give the details in [KP3].
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Chapter 9

Virtual cycles in algebraic

cobordism

In this chapter, we generalize virtual pullbacks [Man] and cosection localization

[KL1] to algebraic cobordism. As a corollary, we extend the torus localization

formula [GP] to virtual cobordism classes of Shen [Shen]. This is based on [KP1].

Summary We observed in Chapter 2 that virtual intersection theory [BF, Man]

is a generalization of Fulton’s intersection theory [Ful] to algebraic stacks. Sim-

ilarly, we need to extend algebraic cobordism for schemes to algebraic stacks.

Here we use a shortcut, called limit algebraic cobordism, introduced in [KP1].

This limit algebraic cobordism is still incomplete for serving a general theory for

algebraic stacks, but it is sufficient for defining virtual pullbacks and cosection

localization, and proving the functoriality.

9.1 Limit algebraic cobordism

We recall from [KP1] the notion of limit algebraic cobordism for algebraic stacks.

9.1.1 Definition and basic properties

Definition 9.1.1. Let X be an algebraic stack. Let Sm{X denote the category of all

pairs pT, tq of quasi-projective schemes T and smooth morphisms t : T Ñ X. The

morphisms in Sm{X are given by the morphisms over X.
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Definition 9.1.2 (Limit algebraic cobordism). Let X be an algebraic stack. Con-

sider the functor

Sm
op

X
Ñ Ab : T ÞÑ Ω˚pT q

where each morphism s : pT1, t1q Ñ pT2, t2q in Sm{X maps to the lci pullback

s˚ : Ω˚pT2q Ñ Ω˚`dimpt1q´dimpt2qpT1q.

1. Define the limit algebraic coboridsm of degree d P Z as the abelian group

pΩdpXq :“ limÐÝ
pT,tqPSm{X

Ωd`dptqpT q

where dptq is the relative dimension of t : T Ñ X.

2. Define the limit algebraic coboridsm as the graded abelian group

pΩ˚pXq :“
à
dPZ

pΩdpXq.

For any α P pΩdpXq and pT, tq P Sm{X, we denote by αptq P Ωd`dptqpT q the corre-

sponding class.

Definition 9.1.3 (Projective pushforward). Let f : X Ñ Y be a projective mor-

phism of algebraic stacks. We define the pushforward

f˚ : pΩ˚pXq Ñ pΩ˚pYq

via the formula

p f˚pαqqpsq “ p fS q˚pαpsXqq
for α P pΩ˚pXq and pS , sq P Sm{Y . Here the two maps fS and sX are given by the

fiber diagram

X ˆY S
fS //

sX

��

T

s

��
X

f // Y

where X ˆY S is a quasi-projective scheme, sX is a smooth morphism, and fS is a

projective morphism.

The projective pushforward for limit algebraic cobordism pΩ in Definition 9.1.3

is well-defined since projective pushforwards commute with lci pullbacks in ordi-

nary algebraic cobordism Ω.
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Definition 9.1.4 (Smooth pullback). Let f : X Ñ Y be a smooth morphism of

algebraic stacks. We define the pullback

f ˚ : pΩ˚pYq Ñ pΩ˚`dimp f qpXq
via the formula

f ˚pβqptq “ βp f ˝ tq
for β P pΩ˚pXq and pT, tq P Sm{X.

The smooth pullback in Definition 9.1.4 is clearly well-defined.

Definition 9.1.5 (Chern class). Let E be a vector bundle on an algegbraic stack X.

We define the i-th Chern class

cipEq : pΩ˚pXq Ñ pΩ˚´ipXq
via the formula

cipEqpαqptq “ cipE|T qpαptqq
for α P pΩ˚pXq and pT, tq P Sm{X.

The Chern classes for limit algebraic cobordism pΩ in Definition 9.1.5 is well-

defined since the Chern classes commute with lci pullbacks in ordinary algebraic

cobordism Ω.

Proposition 9.1.6 (Basic properties). The limit algebraic cobordism pΩ in Defini-

tion 9.1.2 satisfies the following properties:

1. If f : X Ñ Y and Y Ñ Z are projective morphisms of algebraic stacks, then

we have

pg ˝ f q˚ “ g˚ ˝ f˚ : pΩ˚pXq Ñ pΩ˚pZq.

2. If f : X Ñ Y and Y Ñ Z are smooth morphisms of algebraic stacks, then

we have

pg ˝ f q˚ “ f ˚ ˝ g˚ : pΩ˚pZq Ñ pΩ˚`dimpg˝ f qpXq.

3. Consider a fiber diagram of algebraic stacks

X1 f 1
//

g1

��

Y 1

g

��
X

f // Y.

If f is projective and g is smooth, then we have

g˚ ˝ f˚ “ p f 1q˚ ˝ pg1q˚ : pΩ˚pXq Ñ pΩ˚`dimpgqpY 1q.
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4. If f : X Ñ Y is a projective morphism and E is a vector bundle on Y, then

we have

cipEq ˝ f˚ “ f˚ ˝ cip f ˚pEqq : pΩ˚pXq Ñ pΩ˚´ipYq.

5. If f : X Ñ Y is a smooth morphism and E is a vector bundle on Y, then we

have

f ˚ ˝ cipEq “ cip f ˚pEqq ˝ f ˚ : pΩ˚pYq Ñ pΩ˚`dimp f q´ipXq.

We omit the proof of Proposition 9.1.6 since it follows directly from the basic

properties of the orinary algebraic cobordism Ω for schemes.

Example 9.1.7 (Equivariant algebraic cobordism). Let X “ rP{Gs be the quotient

stack of a quasi-projective scheme by a linear action of a linear algebraic group

G. Let EGi{G Ñ BG be Totaro’s approximation [Tot]. Then we have a canonical

isomorphism

pΩdpXq � limÐÝ
iÑ8
Ωd`dimpEGiqpP ˆG EGiq “: ΩG

d`dimpGqpPq

where the last term ΩG
˚ pPq is the equivariant algebraic cobordism of Heller-

Malagon-Lopez [HML] and Krishna [Kri1]. We refer to [KP1, Cor. 3.8] for the

proof of the above comparison.

Remark 9.1.8. One small technical advantage of using the limit algebraic cobor-

dism for a global quotient stack X is that the definition of pΩ˚pXq is stated without

any specific choice of a presentation X � rP{Gs or an approximation EGi{G Ñ
BG. Moreover, the limit algebraic cobordism also behaves well for cone stacks

and vector bundle stacks over global quotient stacks. Since they are the main ob-

jects in the virtual intersection theory, the limit algebraic cobordism is sufficient

in this thesis.

Remark 9.1.9. The main limitation of the limit algebraic cobordism pΩ is that

there is no excision sequence, even for global quotient stacks.1 Thus we need

some tricks to avoid using the excision sequence in the subsequent sections.

1In [HML, Thm. 20], it is claimed that there is an excision sequence, but the author thinks the

proof is not correct. In general, the Mittag-Leffler condition for each term in a right exact sequence

of inverse systems is not sufficient for its completion being right exact.
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9.1.2 Gysin maps for vector bundle stacks

Proposition 9.1.10 ((Extended) homotopy property). Let π : E Ñ X be a vector

bundle torsor on an algebraic stack X. Then the smooth pullback

π˚ : pΩ˚pXq Ñ pΩ˚`dimpπqpEq

is an isomorphism.

Proof. By Lemma 9.1.11 below, the smooth pullback π˚ can be identified to

limÐÝ
pT,tqPSm{X

pπT q˚ : limÐÝ
pT,tqPSm{X

Ω˚pT q Ñ limÐÝ
pT,tqPSm{X

Ω˚pET q

where ET :“ t˚pEq and πT : ET Ñ T is the base change of π to T . Since each

pπT q˚ is an isomorphism, so is its inverse limit π˚. �

We need the following lemma to complete the proof of Proposition 9.1.10.

Lemma 9.1.11. Let f : X Ñ Y be a smooth quasi-projective morphism of alge-

braic stacks. Consider the functor

Sm{Y Ñ Sm{X : ps : S Ñ Yq ÞÑ psX : S ˆY X Ñ Xq.

Then the the induced map on the limits

pΩdpXq “ limÐÝ
pT,tqPSm{X

Ωd`dimptqpT q Ñ limÐÝ
pS ,sqPSm{Y

Ωd`dimptqpS ˆY Xq

is an isomorphism.

Proof. We first express the above canonical map

Φ : limÐÝ
pT,tqPSm{X

Ωd`dimptqpT q Ñ limÐÝ
pS ,sqPSm{Y

Ωd`dimptqpS ˆY Xq

as the following formula

Φpαqps : S Ñ Yq “ αpS ˆY X
p2ÝÑ Xq P Ω˚pS ˆY Xq

where p2 is the second projection map.

We claim that the inverse of Φ is the map

Ψ : limÐÝ
pS ,sqPSm{Y

Ωd`dimptqpS Xq Ñ limÐÝ
pT,tqPSm{X

Ωd`dimptqpT q
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given by the formula

Ψpβqpt : T Ñ Xq “ Γ˚
t pβp f ˝ t : T Ñ Xqq P Ω˚pT q

where Γt : T Ñ T ˆY X is the graph of t : T Ñ X over Y .

It is easy to show Ψ ˝ Φ “ id. Indeed, from the definitions, we have

Ψ ˝ Φpαqptq “ Γ˚
t pΦpαqp f ˝ tqq “ Γ˚

t pαpT ˆY X
p2ÝÑ Xqq “ αptq

for α P limÐÝpT,tqPSm{X
Ωd`dimptqpT q and pT, tq P Sm{X.

The other direction is quite subtle. We first write

Φ ˝ Ψpβqpsq “ ΨpβqpS ˆY X
p2ÝÑ Xq “ Γ˚

p2
pβp f ˝ p2 : S ˆY X Ñ Yqq

where Γp2
“ pp1, p2, p2q : S ˆY X Ñ S ˆY X ˆY X. Since

f ˝ p2 “ s ˝ p1 : S ˆY X Ñ Y,

and βp´q commutes with the transition maps in limÐÝpS ,sqPSm{Y
Ωd`dimptqpS ˆY Xq, we

have

βp f ˝ p2q “ βps ˝ p1q “ p˚
13pβpsqq.

where p13 : S ˆY X ˆY X Ñ S ˆY X is the projection map to the first and the third

factor. Then we have

Γ˚
t ˝ p˚

13pβpsqq “ id˚
S ˆY Xpβpsqq “ βpsq.

Hence Ψ ˝ Φ “ id as desired. �

Corollary 9.1.12. Let π : E Ñ X be a vector bundle stack on an algebraic stack

X. Assume that E is globally presented, i.e., E � rE1{E0s for some vector bundle

E0 and E1. Then the smooth pullback

π˚ : pΩ˚pXq Ñ pΩ˚`dimpπqpEq
is an isomorphism.

Proof. Let p : E1 Ñ E “ rE1{E0s be the projection map. Then p is a E0-torsor. By

the functoriality of smooth pullbacks in Proposition 9.1.6, we have a commutative

diagram

pΩpXq
π˚
E //

π˚
E1

44
pΩpEq p˚

// pΩpE1q.

By the extended homotopy property in Proposition 9.1.10, p˚ and π˚
E1

are isomor-

phisms. Hence π˚
E

is also an isomorphism. �
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Definition 9.1.13 (Gysin pullback). Let πE : E Ñ X be a vector bundle stack on

an algebraic stack X. We define the Gysin pullback

0!
E : pΩ˚pEq Ñ pΩ˚´dimpπEqpXq

of the zero section 0E : X Ñ E as follows:

1. Case 1. Assume that X has the resolution property. Then the vector bundle

stack E is globally presented and the smooth pullback π˚
E

: pΩpXq Ñ pΩpEq
is an isomorphism by Corollary 9.1.12. We define the Gysin pullback as the

inverse

0!
E :“ pπ˚

Eq´1 : pΩ˚pEq Ñ pΩ˚´dimpπEqpXq.

2. Case 2. Consider the general case. We define the Gysin pullback

0!
E : pΩ˚pEq Ñ pΩ˚´dimpπEqpXq

via the formula

0!
Epαqptq “ 0!

E|T
pαptqq

for α P pΩ˚pEq and pT, tq P Sm{X, where 0!
E|T

: pΩ˚pE|T q Ñ pΩ˚´dimpπE|T
qpT q

is the Gysin pullback in Case 1.

9.2 Virtual pullbacks

In this section, we generalize virtual pullbacks in Chow groups (see Chapter 2) to

algebraic cobordism. The main obstruction is

9.2.1 Specialization maps

Let f : X Ñ Y be a morphism of quasi-projective schemes. Given a global fac-

torization of f , i.e., a commutative triangle

Z

f
��

X

rf
??⑧⑧⑧⑧⑧⑧⑧ f // Y
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where rf is a closed closed embedding and f is a smooth morphism, the intrinsic

normal cone can be written as a global quotient stack

CX{Y “
„

CX{Z

TZ{Y |X


.

Heuristically, we can form the following diagram

Z
spX{Z ///o/o/o/o/o/o

f

��

CX{Z

k

��
Y

spX{Y ///o/o/o/o/o/o CX{Y

where k is a TZ{Y -torsor.

Definition 9.2.1 (Specialization map). Let f : X Ñ Y be a morphism of quasi-

projective schemes. Given a global factorization

Z

f
��

X

rf
??⑧⑧⑧⑧⑧⑧⑧ f // Y

(9.2.1)

by a closed closed embedding rf and a smooth morphism f , we define the special-

ization map as the composition

spX{Y : Ω˚pYq f
˚

ÝÑ Ω˚pZq spX{ZÝÝÑ Ω˚pCX{Zq pk˚q´1

ÝÝÝÝÑ pΩ˚pCX{Yq

where k˚ is an isomorphism by the extended homotopy property.

Lemma 9.2.2 (Well-definedness). The specialization map spX{Y in Definition 9.2.1

is independent of the choice of the global factorization (9.2.1).

Proof. Choose another factorization X
rf 1

ÝÑ Z1 f
1

ÝÑ Y of f by a closed immersion rf 1

and a smooth morphism f
1

for some quasi-projective scheme Z1. After replacing

Z1 by Z ˆY Z1, we may assume that there is a smooth morphism a : Z1 Ñ Z making

the diagram

Z1

a

��

g1

��❄
❄❄

❄❄
❄❄

❄

X
/
�

??⑦⑦⑦⑦⑦⑦⑦⑦
� � // Z

g // Y
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commute. Then we have a commutative diagram

Z1

a

��

� � // M˝
X{Z1

��

CX{Z1

b

��

? _oo

Z
� � // M˝

X{Z
CX{Z
? _oo

where the square are cartesian and the vertical arrows are smooth. Since Gysin

pullbacks commute with smooth pullbacks, we have the equality

b˚ ˝ spX{Z “ spX{Z1 ˝ a˚.

Hence the functoriality of smooth pullbacks completes the proof. �

Remark 9.2.3 (Generalization). Let f : X Ñ Y be a quasi-projective morphism

of algebraic stacks. Assume that Y has a vector bundle torsor Y 1 which is a quasi-

projective scheme. Then we can define the specialization map spX{Y via the com-

mutative square

pΩ˚pYq
spX{Y //

�

��

pΩ˚pCX{Yq
�

��

Ω˚pY 1q
spX1{Y1

// pΩ˚pCX1{Y1q
where the vertical arrows are isomorphisms by the homotopy property in Propo-

sition 9.1.10.

Proposition 9.2.4 (Bivariance). Let

X1 f 1
//

g1

��

Y 1

g

��
X

f // Y

be a fiber diagram of quasi-projective schemes. Form a commutative diagram

CX1{Y1
� � j //

g3
$$❍

❍❍
❍❍

❍❍
❍❍

CX{Y|X1 //

g2

��

X1

g1

��
CX{Y

// X.
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1. If g is a projective morphism, then we have

spX{Y ˝ g˚ “ pg3q˚ ˝ spX1{Y1 : Ω˚pY 1q Ñ pΩ˚pCX{Yq.

2. If g is a smooth morphism, then j is an isomorphism and we have

spX1{Y1 ˝ g˚ “ g˚ ˝ spX{Y : Ω˚pYq Ñ pΩ˚pCX1{Y1q.

Proof. Consider the commutative diagram

Y 1

g

��

� � // M˝
X1{Y1

��

CX1{Y1

k

��

? _oo

Y
� � // M˝

X{Y
CX{Y
? _oo

of cartesian squares. The statements follow from the fact that the refined Gysin

pullbacks commute with projective pushforwards and smooth pullbacks. �

Proposition 9.2.5 (Vistoli’s equivalence). Let

X1 f 1

//

g1

��

Y 1

g

��
X

f // Y

be a fiber diagram of quasi-projective schemes. Consider the fiber diagram

CX{Y|X1 ˆX1 CY1{Y |X1 //

��

CY1{Y |X1
f 2

//

��

CY1{Y

��
CX{Y |X1 //

g2

��

X1 f 1

//

g1

��

Y 1

g

��
CX{Y

// X
f // Y

and the canonical closed embeddings

CCX{Y |X1 {CX{Y

� � a // CX{Y |X1 ˆX1 CY1{Y |X1 CCY1{Y |X1 {CY1{Y
.? _

boo

Then we have

a˚ ˝ spCX{Y|
X1 {CX{Y

˝ spX{Y “ b˚ ˝ spCY1{Y |X1 {CY1{Y
˝ spY1{Y

(see Remark 9.2.3).
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Proof. Choose factorizations

Z

��
X
/
�

??⑧⑧⑧⑧⑧⑧⑧ f // Y

W

��
Y 1
.
�

>>⑥⑥⑥⑥⑥⑥⑥⑥ g // Y

by closed embeddings and smooth morphisms. Consider the induced cartesian

square of closed embeddings

rX1 :“ X1 � � //
� _

��

rY :“ Z ˆY Y 1
� _

��
rX :“ X ˆY W

� � // rY :“ Z ˆY W.

Then the argument in Proposition 2.1.22 also works for the above square and we

have

(9.2.2)

ra˚ ˝ spCrX{rY| rX1
{CrX{rY

˝ sprX{rY “ rb˚ ˝ spCrY1{rY |rX1 {CrY1{rY
˝ sprY1{rY .

Form a commutative diagram

CCrX{rY |rX1 {CrX{rY
� � ra //

����

CrX{rY |rX1 ˆrX1 CrY1{rY |X1

����

CCrY1{rY |rX1 {CrY1{rY
? _

rboo

����
CCX{Y |X1 {CX{Y

� � a // CX{Y |X1 ˆX1 CY1{Y |X1 CCY1{Y |X1 {CY1{Y
.? _

boo

where the horizontal maps are closed embeddings and the vertical maps are vec-

tor bundle torsors of same rank. Hence the squares are cartesian and the identity

(9.2.2) proves the desired identity. �

Proposition 9.2.6 (Kim-Kresch-Pantev’s equivalence). Let

X
f //

g˝ f

77Y
g // Z

be a commutative diagram of quasi-projective schemes. Let

CX{CY{Z

� � a // CXˆA1{M˝
Y{Z

CX{Z
? _

boo
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be the canonical closed embeddings. Then we have

a˚ ˝ spX{CY{Z
˝ spY{Z “ b˚ ˝ spX{Z : Ω˚pZq Ñ pΩpCXˆA1{M˝

Y{Z
q

(see Remark 9.2.3).

Proof. Form a commutative diagram

X
� �

f 1
//

f ��❄
❄❄

❄❄
❄❄

❄ Y 1

��

� �

g2
// Z2

��
Y

g
  ❆

❆❆
❆❆

❆❆
❆
� �

g1
// Z1

��
Z

such that the horizontal arrows are closed immersions, the vertical arrows are

smooth and the square is cartesian. Then we have an induced factorization

X ˆ P1 //

##❍
❍❍

❍❍
❍❍

❍❍
❍❍

M˝
Y1{Z2

��
M˝

Y{Z
.

This gives us a commutative diagram

CX{CY1{Z2

� � //

��

CXˆP1{M˝
Y1{Z2

��

CX{Z2

��

? _oo

CX{CY{Z

� � a // CXˆP1{M˝
Y{Z

CX{Z
? _

boo

of cone stacks. Since the vertical arrows are torsors of vector bundles of the

same rank, the two squares are cartesian. It suffices to prove the lemma for the

closed immersions f 1 : X Ñ Y 1 and g2 : Y 1 Ñ Z2 since specialization homo-

morphisms commute with smooth pullbacks. Then the usual arguments using the

double deformation space M˝
XˆP1{M˝

Y1{Z2
(see Lemma 2.3.19 and the proof of The-

orem 2.3.12) remain valid since all the deformations spaces and the cone stacks

are quasi-projective schemes in this case. �
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9.2.2 Virtual pullbacks and functoriality

Definition 9.2.7 (Virtual pullbacks). Let f : X Ñ Y be a morphism of quasi-

projective schemes and let φ : F Ñ LX{Y be a perfect obstruction theory. We

define the virtual pullback as the composition

f ! : Ω˚pYq spX{YÝÝÝÑ pΩ˚pCX{Yq ι˚ÝÑ pΩ˚pEpFqq
0!
EpFqÝÝÑ A˚pXq

where ι : CX{Y ãÑ EpFq denotes the closed embedding induced by the obstruction

theory φ.

Definition 9.2.8 (Virtual cobordism classes). Let X be a quasi-projective scheme

equipped with a perfect obstruction theory ψ : F Ñ LX. We define the virtual

cobordism class as

rXsvir :“ p!rSpecpCqs P Ω˚pXq
where p : X Ñ SpecpCq denotes the projection map.

Remark 9.2.9 (Shen’s construction). The virtual pullback in Definition 9.2.7 can

be defined without using the limit algebraic cobordism pΩ. Indeed, let f : X Ñ Y

be a morphism of quasi-projective schemes and let φ : F Ñ LX{Y be a perfect

obstruction theory. Given a global factorization

Z

f
��

X
/
�

rf
??⑧⑧⑧⑧⑧⑧⑧ f // Y

and a global resolution F � rF1{F0s, we can form a fiber diagram

D
b // //

a
����

C
� � i //

����

F1

����
CX{Z

// // CX{Y
� � // EpFX{Yq.

Then we can define the virtual pullback as the composition

f ! : Ω˚pYq spX{ZÝÝÑ Ω˚pCX{Zq a˚

ÝÑ Ω˚pDq pb˚q´1

ÝÝÝÝÑ Ω˚pCq i˚ÝÑ Ω˚pF1q
0!

F1ÝÝÑ Ω˚pXq.

(Here the obvious degree shifts are ignored.) This approach was introduced by

Shen in [Shen] to define the virtual cobordism classes (when Y “ SpecpCq).
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Proposition 9.2.10 (Bivariance). Let

X1 f 1
//

g1

��

Y 1

g

��
X

f // Y

be a cartesian square of quasi-projective schemes. Let φ : F Ñ LX{Y be a perfect

obstruction theory and let r :“ rankpFq.

1. If g is a prorjective morphism, then we have

f ! ˝ g˚ “ g1
˚ ˝ p f 1q! : Ω˚pY 1q Ñ Ω˚`rpXq.

2. If g is a local complete intersection morphism, then we have

p f 1q! ˝ g! “ pg1q! ˝ f ! : Ω˚pYq Ñ Ω˚`rpX1q.

Proof. It follows directly from Proposition 9.2.4. �

Proposition 9.2.11 (Commutativity). Let

X1 f 1

//

g1

��

Y 1

g

��
X

f // Y

be a fiber diagram of quasi-projective schemes. Let φX{Y : FX{Y Ñ LX{Y and

φY1{Y : FY1{Y Ñ LY1{Y be perfect obstruction theories. Then we have

g! ˝ f ! “ f ! ˝ g! : Ω˚pYq Ñ Ω˚`rp f q`rpgqpX1q

where rp f q :“ rankpFX{Yq and rpgq :“ rankpFY1{Yq.

Proof. It follows directly from Proposition 9.2.5. �

Theorem 9.2.12 (Functoriality). Let

X
f //

g˝ f

77Y
g // Z
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be a commutative diagram of quasi-projective schemes. Let

pφX{Y : FX{Y Ñ LX{Y , φY{Z : FY{Z Ñ LY{Z , φX{Z : FX{Z Ñ LX{Zq
be a compatible triple of perfect obstruction theories in the sense of Definition

2.3.11. Then we have

pg ˝ f q! “ f ! ˝ g! : Ω˚pZq Ñ Ω˚`rp f q`rpgqpXq.
where rp f q :“ rankpFX{Yq and rpgq :“ rankpFY{Zq.

Proof. If follows directly from Propostion 9.2.6 �

Corollary 9.2.13 (Virtual pullback formula). Let f : X Ñ Y be a morphism

of quasi-projective schemes. Let pφX{Y, φY , φXq be a compatible triple of perfect

obstruction theoreis in the sense of Definition 2.3.11. Then we have

rXsvir “ f !rYsvir P Ω˚pXq.
Corollary 9.2.13 follows directly from Theorem 9.2.12 and Definition 9.2.8.

Remark 9.2.14. The compatibility condition in [KP1, Thm. 4.4] is not correct

since the truncated cotangent complexes does not form a distinguished triangle in

general. Thus we should use (1) the full cotangent complexes or (2) the compati-

bility in Definition 2.3.11 to make [KP1, Thm. 4.4] correct.

9.3 Cosection localization

In this section, we generalize Kiem-Li’s cosection localization [KL1] to algebraic

cobordism.

9.3.1 Cosection-localized Gysin map

The cosection-localized Gysin map in Chow groups are defined via blowup method

and the abstract blowup sequence played a key role. We note that we also have an

abstract blowup sequence in algebraic cobordism.

Proposition 9.3.1 (Abstract blowup sequence). Let

E
� � j //

q

��

rX
p

��
Z
� � i // X
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be an abstract blowup square (see Definition A.2.6) of quasi-projective schemes.

Then we have a right exact sequence

Ω˚pEq p´ j˚, q˚q // Ω˚prXq ‘Ω˚pZq pp˚, i˚q // Ω˚pXq // 0.

We refer to Vishik [Vish, Lem. 7.9] for the proof of Proposition 9.3.1.

Remark 9.3.2. An alternative proof of Proposition 9.3.1 is to use Voevodsky’s

algebraic cobordism MGL in [?]. Indeed, In [Lev2], Levine constructed its Borel-

Moore version MGL1 ([Lev2, Prop. 4.1]) and show that it has a long exact lo-

calization sequence ([Lev2, p. 559]). In [Lev3], Levine show that the canonical

map

Ω˚ ÝÑ MGL1
2˚,˚

is an isomorphism. Then the abstract blowup sequence follows immediately from

the long exact localization sequence (as in [Ful, Prop. 18.3.2]).

Remark 9.3.3. We note that Proposition 9.3.1 also holds when X is a cone stack

over a quasi-projective scheme. Indeed, the resolution property of quasi-projective

schemes assure that X has a vector bundle torsor which is a quasi-projective

scheme. Then the extended homotopy property in Proposition 2.3.1 reduce the

situation to the case when X is a quasi-projective scheme.

Recall that c1pL_q , ´c1pLq in algebraic cobordism due to the formal group

law. Still we have a power series gpuq P Ω˚pSpecpCqqrruss such that

c1pL_q “ c1pLq ¨ gpc1pLqq : Ω˚pXq Ñ Ω˚´1pXq

for any line bundle L on a quasi-projective scheme X.

Definition 9.3.4 (Intersection product with anti-effective divisor). Let D be an

effective Cartier divisor of a quasi-projective scheme X. We define the intersection

product with the divisor ´D as

p´Dq¨ :“ gpc1pLqq ˝ i! : Ω˚pXq Ñ Ω˚´1pDq

where L :“ OXpDq and i : D ãÑ X is the inclusion map.

We can now define the cosection-localized Gysin map as in Definition 3.3.2.
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Definition 9.3.5 (Cosection-localized Gysin map). Let X be a quasi-projective

scheme, F be a perfect complex of tor-amplitude r´1, 0s, and σ : F_r1s Ñ OX be

a cosection. We use the notations in the blowup diagram in subsection 3.3.1. We

define the cosection-localized Gysin map

0!
EpFq,σ :˚ pKpF, σqq Ñ A˚pXpσqq

as the unique map that fits into the commutative diagram

Ω˚pEpK|Dqq p´a˚,b˚q //

0

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
Ω˚pEpKqq ‘Ω˚pEpF|Xpσqqq pc˚,d˚q //

pu,vq

��

Ω˚pKpF, σqq //

0!
EpFq,σ

uu

0!
EpFq

˝k˚

��

0

Ω˚pXpσqq i˚ // Ω˚pXq
where the top horizontal sequence is the abstract blowup sequence (see Remark

9.3.3) and the two maps u and v are given as follows:

u : Ω˚pEpKqq
0!
EpKqÝÝÝÑ Ω˚prXq p´Dq¨ÝÝÝÑ Ω˚pDq q˚ÝÑ Ω˚pXpσqq

v : Ω˚pEpF|Xpσqq
0!
EpF|Xpσqq

ÝÝÝÝÝÑ Ω˚pXpσqq.
The cosection-localized Gysin map in Definition 9.3.5 is well-defined (cf.

Lemma 3.3.3).

Proposition 9.3.6 (Bivariance). Let f : Y Ñ X be a morphism of quasi-projective

scheme. Let F be a perfect complex of tor-amplitude r´1, 0s on X andσ : F_r1s Ñ
OX be a cosection. Form a fiber diagram

KpF|Y , σ|Yq
rf //

��

KpF, σq

��
Y

f // X.

1. If f : Y Ñ X is a projective morphism, then we have

f˚ ˝ 0!
EpF|Y q,σ|Y

“ 0!
EpFq,σ ˝ rf˚ : Ω˚pKpF|Y , σ|Yqq Ñ Ω˚pXq.

2. If f : Y Ñ X is a local complete intersection morphism, then we have

f ! ˝ 0!
EpF|Y ,σY q “ 0!

EpFq,σ ˝ f ! : Ω˚pKpE, σqq Ñ Ω˚pYq.

We omit the proof of Proposition 9.3.6 since it is identical to that in Proposition

3.3.4.
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9.3.2 Cosection-localized virtual cobordism classes

Definition 9.3.7 (Cosection-localized virtual cobordism class). Let X be a quasi-

projective scheme equipped with a perfect obstruction theory φ : F Ñ LX and a

cosection σ : F_r1s Ñ OX. We define the cosection-localized virtual cobordism

class as

rXsloc :“ 0!
EpFq,σ ˝ ισ,red ˝ spX{SpecpCqrSpecpCqs P Ω˚pXpσqq

where 0!
EpFq,σ is the cosection-localized Gysin map in Definition 9.3.5, ισ,red :

pCXqred ãÑ KpF, σq is the inclusion map given by the cone reduction lemma in

Proposition 3.1.9, and spX{SpecpCq is the specialization map in Definition 9.2.1.

Proposition 9.3.8 (Deformation invariance). Let f : X Ñ B be a morphism of

quasi-projective schemes. Assume that B is smooth. Form a fiber diagram

Xb
� � //

fb
��

X

f

��
tbu � � ib // // B

where b P B. Let φ : E Ñ LX{B be a perfect obstruction theory and σ : E_r1s Ñ
OX be a cosection. Assume that the composition

OX
σ_

ÝÑ Er´1s φÝÑ LX{Br´1s KSÝÑ ΩB|X
vanishes. Then there exists rXsred P Ω˚pXpσqq such that

rXbsvir
loc “ i!

brXsvir
loc P Ω˚pXbpσbqq

for all b P B.

Remark 9.3.9 (Cosection-localized virtual pullback). Let f : X Ñ Y be a mor-

phism of quasi-projective schemes equipped with a perfect obstruction theory

φ : F Ñ LX{Y satisfying the cone reduction property (see Definition 3.1.7) and

a cosection σ : F_r1s Ñ OX. We define the cosection-localized virtual pullback

as the composition

f !
σ : Ω˚pYq spX{YÝÝÝÑ pΩ˚pCX{Yq � pΩ˚ppCX{Yqredq ι

σ,red
˚ÝÝÑ pΩ˚pKpF, σqq

0!
E,σÝÝÑ Ω˚pXpσqq

where ισ,red
˚ : pCX{Yqred ãÑ KpF, σq is the inclusion map given by the cone reduc-

tion property.
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9.3.3 Reduced virtual cobordism classes

Definition 9.3.10 (Reduced virtual cobordism class). Let X be a quasi-projective

scheme equipped with a perfect obstruction theory φ : F Ñ LX and a cosection

σ : F_r1s Ñ OX. Assume that h0pσq : h1pF_q Ñ OX is surjective so that the

kernel cone stack KpE, σq “ EpEσq is a vector bundle stack. We define the reduced

virtual cycles as

rXsred :“ 0!
EpFσq ˝ ισ,red ˝ spX{SpecpCqrSpecpCqs P Ω˚pXq

where 0!
EpFσq is the Gysin map in Definition 9.1.13, ισ,red : pCXqred ãÑ EpFσq is

the inclusion map given by the cone reduction lemma in Proposition 3.1.9, and

spX{SpecpCq is the specialization map in Definition 9.2.1.

Proposition 9.3.11 (Deformation invariance). Let f : X Ñ B be a morphism of

quasi-projective schemes. Assume that B is smooth. Form a fiber diagram

Xb
� � //

fb
��

X

f

��
tbu � � ib // // B

where b P B. Let φ : E Ñ LX{B be a perfect obstruction theory and σ : E_r1s Ñ
OX be a cosection such that h0pσq : h1pE_q Ñ OX is surjective. Assume that the

composition

OX
σ_

ÝÑ Er´1s φÝÑ LX{Br´1s KSÝÑ ΩB|X
vanishes. Then there exists rXsred P Ω˚pXq such that

rXbsred “ i!
brXsred P Ω˚pXbq

for all b P B.

Remark 9.3.12 (Reduced virtual pullback). Let f : X Ñ Y be a morphism of

quasi-projective schemes equipped with a perfect obstruction theory φ : F Ñ
LX{Y satisfying the cone reduction property (see Definition 3.1.7) and a cosection

σ : F_r1s Ñ OX. Assume that σ :“ h0pσq : h1pF_q Ñ OX is surjective. We define

the reduced virtual pullback as the composition

f !
σ : Ω˚pYq spX{YÝÝÝÑ pΩ˚pCX{Yq � pΩ˚ppCX{Yqredq ι

σ,red
˚ÝÝÑ pΩ˚pEpFσqq

0!
EpFσqÝÝÝÑ Ω˚pXq

where ισ,red
˚ : pCX{Yqred ãÑ KpF, σq “ EpFσq is the inclusion map given by the cone

reduction property and Fσ :“ conepσ_r1s : OXr1s Ñ Fq.
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9.4 Torus localization

In this section, we generalize torus localization of Edidin-Graham [EG3] and vir-

tual torus localization of Graber-Pandharipande [GP] in Chow groups to algebraic

cobordism. We follow the ideas and notations in Chapter 7.

9.4.1 Localization of algebraic cobordism

Notations We fix some notations on torus equivariant algebraic cobordism.

1. Let T :“ Gˆr
m be the r-dimensional torus.

2. Let pT :“ GrppT,Gmq “ PicTpSpecpCqq “ Z‘r be the character group.

3. Let ΩT
˚pSpecpCqqloc :“ ΩT

˚pSpecpCqqrc1pζq´1stζ,0PpTu.

4. For a quasi-projective scheme X with a linear action of T, we let

ΩT
˚pXqloc :“ ΩT

˚pXq bΩT
˚pSpecpCqq Ω

T
˚pSpecpCqqloc.

Theorem 9.4.1 (Localization of algebraic cobordism). Let X be a quasi-projective

scheme with a linear action of T. Let i : XT
ãÑ X be the inclusion map of the fixed

locus and j : XzXT
ãÑ X be the inclusion map of the complement.

1. Then we have a short exact sequence

0 // Ω˚pXTq � � i˚ // ΩT
˚pXq j˚ // // ΩT

˚pXzXTq // 0.

2. Moreover we have an isomorphism

i˚ : ΩT
˚pXTqloc Ñ ΩT

˚pXqloc.

We refer to [KP1, Thm. 6.1] and [KP1, Cor. 6.4] for the proof of Theo-

rem 9.4.1. The proof is quite complicated than the standard arguments for Chow

groups and K-theory in Edidin-Graham [EG3] and Thomason [Tho]. The main

difficulty is that there is no localization sequence for equivariant algebraic cobor-

dism.

Remark 9.4.2. The results in Theorem 9.4.1 were originally claimed by Krishna

in [Kri2, Thm. 4.1] and [Kri2, Thm. 7.1], using the localization sequence of

Heller-Malogon-Lopez in [HML, Thm. 20]. However the author thinks the proof

of [HML, Thm. 20] is not correct (see footnote 1 in Remark 9.1.9).

189



CHAPTER 9. VIRTUAL CYCLES IN ALGEBRAIC COBORDISM

Corollary 9.4.3. Let X be a quasi-projective scheme and E be a vector bundle on

X ˆ BT. Assume that Efix “ 0. Then the equivariant Euler class

eTpEq : ΩT
˚pXqloc Ñ ΩT

˚pXqloc

is an isomorphism.

Proof. By Theorem 9.4.1,

p0Eq˚ : ΩT
˚pXqloc Ñ ΩT

˚pEqloc

is an isomorphism. The formula

eTpEq “ 0!
E ˝ p0Eq˚

completes the proof since 0!
E

is an isomorphism by the homotopy property. �

9.4.2 Localization of virtual cobordism classes

In this subsection, we prove the virtual torus localization formula for virtual cobor-

dism classes.

Definition 9.4.4 (Equivariant virtual pullback). Let f : X Ñ Y be a T-equivariant

morphism of quasi-projective schemes with linear T-actions. Assume the T-action

on X is trivial. Let φ : F Ñ LX{Y be a T-good obstruction theory (see Definition

7.1.12). Choose a resolution Fmov
� rF´2 Ñ F´1s. Then the composition

ψ : Ffix ‘ F´1r1s Ñ Ffix ‘ Fmov “ FÑ LX{Y

is a perfect obstruction theory. We define the T-equivariant pullback as the com-

position

f !
T : ΩT

˚pYqloc

f !
ψÝÑ ΩTpXqloc

peTpF2qq´1

ÝÝÝÝÝÝÑ ΩTpXqloc

where f !
ψ is the virtual pullback associated to the perfect obstruction theory ψ and

the equivariant Euler class eTpF2q of F2 :“ pF´2q_ is invertible by Proposition

9.4.3.

It is easy to show that the equivariant virtual pullback in Definition 9.4.4 is

independent of the choice of resolution Fmov
� rF´2 Ñ F´1s.

190



CHAPTER 9. VIRTUAL CYCLES IN ALGEBRAIC COBORDISM

Theorem 9.4.5 (Functoriality). Consider a commutative diagram of quasi-projective

schemes with linear T-actions

X
f //

g˝ f

77Y
g // Z

where f and g are T-equivariant morphisms. Assume that the T-action on X is

trivial. Let φX{Y : FX{Y Ñ LX{Y , φX{Z : FX{Z Ñ LX{Z be T-good obstruction

theories and φY{Z : FY{Z Ñ LY{Z be a T-equivariant perfect obstruction theory.

Assume that there exists a morphism of distinguished triangles

f ˚pFY{Zq //

f ˚pφY{Zq
��

FX{Z
//

φX{Z

��

FX{Y

φ1
X{Y

��

//

τě´1 f ˚pLY{Zq // LX{Z
// L1

X{Y
//

for some φ1
X{Y

such that φX{Y “ r ˝ φ1
X{Y

. Then we have

pg ˝ f q!
T “ f !

T ˝ g! : ΩT
˚pZqloc Ñ ΩT

˚pXqloc.

Proof. Consider a resolution

Fmov
X{Y

“ rF´2 Ñ F´1 Ñ 0s

by vector bundles F´2 and F´1. Then we can form a compatible triple of perfect

obstruction theories as follows:

FY{Z|X
// F //

��✤
✤
✤
✤

ψX{Z

��

✶
✰
✪
✤

✙
✓

✌

Ffix
X{Y

‘ F´1r1s

��

//

ψX{Y

��

FY{Z|Xr1s

FY{Z|X
//

φY{Z

��

FX{Z
//

φX{Z

��

FX{Y

φ1
X{Y

��

// FY{Z|Xr1s
φY{Z

��
τě´1LY{Z|X

// LX{Z
// L1

X{Y
// τě´1LY{Z|Xr1s.

By the functoriality of ordinary virtual pullbacks in Theorem 2.3.12, we have

pg ˝ f q!
ψX{Z

“ f !
ψX{Y

˝ g! : AT
˚pZq Ñ AT

˚pXq.
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By the octahedral axiom, we obtain a distinguished triangle

Fmov // Fmov
X{Z

// F´2r2s .

Hence Fmov “ Fr1s for some vector bundle F and Fmov
X{Z

“ rF´2 Ñ F Ñ 0s.
Therefore by the definition of equivariant virtual pullbacks in Definition 9.4.4, we

have

pg ˝ f q!
T “ eTpF2q´1 ˝ pg ˝ f q!

ψX{Z
: ΩT

˚pZqloc Ñ ΩT
˚pXqloc

f !
T “ eTpF2q´1 ˝ f !

ψX{Y
: ΩT

˚pYqloc Ñ ΩT
˚pXqloc

where F2 :“ pF´2q_. Then we have the desired equality since the equivariant

Euler class eTpF2q´1 commutes with the virtual pullback g!. �

Theorem 9.4.6 (Localization of virtual cobordism class). Let X be a quasi-projective

scheme with a linear T-action. Let φ : FÑ LX be a T-equivariant perfect obstruc-

tion theory. Let XT be the fixed locus and φXT be the induced perfect obstruction

in Definition 7.2.1. Then we have

rXsvir “ i˚

ˆ rXTsvir

eTpNvirq

˙
P ΩT

˚pXqloc

where eTpNvirq :“ eTpF0q{eTpF1q for a resolution Fmov “ rF´1 Ñ F0s, and and

i : XT
ãÑ X is the inclusion map.

Proof. It follows from Theorem 9.4.1 and Theorem 9.2.12, as in the proof of

Theorem 7.2.5 �
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Kimura sequence for Artin stacks

In this appendix, we extend the Kimura sequence [Kim] to Kresch’s Chow groups

[Kre2] of Artin stacks. This is based on [BP].

A.1 Kimura sequence for Artin stacks

The main result in this section is the Kimura sequence for Artin stacks.

Theorem A.1.1 (Kimura sequence). Let p : Y Ñ X be a proper representable

surjective morphism of algebraic stacks with affine stabilizers. Consider the in-

duced diagram

Y ˆX Y
p1 //
p2

// Y
p // X

where p1 and p2 are the projection maps. Then we have a right exact sequence

A˚pY ˆX Yq pp1q˚´pp2q˚ // A˚pYq p˚ // A˚pXq // 0

where pp1q˚, pp2q˚, and p˚ are the proper pushforwards of [BS, Appendix B].

Proof. Since the Chow groups are invariant under the nilpotent thickenings, we

may assume that X and Y are reduced.

We first prove the surjectivity of the proper pushforward

p˚ : A˚pYq Ñ A˚pXq.

We will use the Noetherian induction on X. Since X has affine stabilizers, there ex-

ists a non-empty open substack U which is the quotient stack of a quasi-projective
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scheme by a linear action of a linear algebraic group by [Kre2, Prop. 3.5.2]. Then

we have a morphism of right exact sequences

A˚pZYq //

��

A˚pYq //

p˚

��

A˚pUYq //

��

0

A˚pZq // A˚pXq // A˚pUq // 0

where Z “ XzU is the complement as a reduced closed substack of X. By the

induction hypothsis, the left vertical arrow is surjective. By a diagram chasing

argument, we may replace X by U, and assume that X is the quotient of a quasi-

projective scheme by a linear action of a linear algebraic group. By replacing X by

Totaro’s approximation [Tot], we may assume that X is a quasi-projective scheme.

Then Y is a separated algebraic space and hence there is a projective surjection

q : rY Ñ Y from a quasi-projective scheme rY by [LMB, Cor. 16.6.1]. Since the

composition

A˚prYq q˚ÝÑ A˚pYq p˚ÝÑ A˚pXq
is surjective by [Kim, Prop. 1.3], p˚ : A˚pYq Ñ A˚pXq is also surjective.

We then prove the exactness on the middle. As in the previous paragraph, we

will use the Noetherian induction on X. Choose a non-empty open substack U of

X which is the quotient stack of a quasi-projective scheme by a linear action of

a linear algebraic group. By generic smoothness, we may further assume that U

is smooth. Let Z “ XzU be the complement as a reduced closed substack of X.

Form a commutative diagram

A˚pZY ˆZ ZYq //

��

A˚pY ˆX Yq //

��

A˚pUY ˆU UYq

��

// 0

A˚pUY ; 1q //

��

A˚pZYq //

��

A˚pYq //

��

A˚pUYq //

��

0

A˚pU; 1q //

��

A˚pZq //

��

A˚pXq //

��

A˚pUq //

��

0

0 0 0 0

where the rows are exact by [Kre2, Prop. 4.2.1] since U and UY are global quotient

stacks. The first column is well-defined by [BS, Appendix B.12] and is surjective

by Lemma A.1.2 below, after replacing U by Totaro’s approximation [Tot]. The
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second column is exact by the induction hypothesis. By a diagram chasing argu-

ment, it suffices to show that the fourth column is exact. Hence by replacing X by

U, we may assume that X is a quotient stack of a quasi-projective scheme by a

linear action of a linear algebraic group. Replacing U by Totaro’s approximation

[Tot], we may further assume that X is a quasi-projective scheme. Then Y is a sep-

arated algebraic space. By the Chow lemma in [LMB, Cor. 16.6.1], there exists a

projective surjective map q : rY Ñ Y from a quasi-projective scheme rY . Form a

commutative diagram

A˚prY ˆX
rYq //

��

A˚prYq //

��

A˚pXq // 0

A˚pY ˆX Yq // A˚pYq // A˚pXq // 0

where the upper row is exact by [Kim, Thm. 1.8] and the colmumns are surjective

by the result in the first paragraph. A diagram chasing argument shows that the

lower row is also exact. �

We need the following lemma to complete the proof of Theorem A.1.1.

Lemma A.1.2. Let p : Y Ñ X be a proper representable surjective morphism

from a separated DM stack Y to a smooth quasi-projective scheme X. Then the

proper pushforward (in [BS, Appendix B])

p˚ : A˚pY; 1q Ñ A˚pX; 1q

is surjective.

Proof. We may assume that Y is a smooth quasi-projective scheme. Indeed, by

the Chow lemma in [LMB, Cor. 16.6.1], there exists a projective surjective map

q : rY Ñ Y from a quasi-projective scheme rY . By resolution of singularities, we

may further assume that rY is smooth. It suffices to show that the composition

A˚prY; 1q q˚ÝÑ A˚pY; 1q p˚ÝÑ A˚pX; 1q

is surjective. Replace Y by rY .

Choose an element β P A˚pX; 1q. Since p˚ : A˚pYq Ñ A˚pXq is surjective by

[Kim, Prop. 1.3], there exists a cycle class α P A˚pYq such that

p˚pαq “ rXs P A˚pXq.
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Consider a fiber diagram

Y
� � Γ //

p

��

Y ˆ X

pˆidX

��
X
� � ∆ // X ˆ X

where ∆ is the diagonal map and Γ is the graph of p. Since both Y ˆ X and X ˆ X

are smooth, we have

β “ ∆!prXs ˆ βq “ ∆! ˝ pp ˆ idXq˚pα ˆ βq “ p˚pΓ!pα ˆ βqq,

which completes the proof. �

There are technical obstructions for generalizing Theorem A.1.1 to proper DM

morphisms.

Remark A.1.3 (Generalization to proper DM morphism). We may want to gen-

eralize the Kimura sequence in Theorem A.1.1 to proper DM morphisms. There

are two technical obstructions for doing this:

1. We need a localization sequence

A˚pU; 1q // A˚pZq // A˚pXq // A˚pUq // 0

for closed immersion Z ãÑ X of algebraic stacks with affine stablizers when

U :“ XzZ is not a global quotient stack (for the quotient stack of a separated

DM stack by an action of a linear algebraic group).

2. We need a pushforward

p˚ : A˚pY; 1q Ñ A˚pX; 1q

for a proper DM morphism p : Y Ñ X of algebraic stacks with affine

stabilizers.

Both of these obstructions can be resolved by comparing Kresch’s Chow groups

[Kre2] and Khan’s motivic Borel-Moore spectra [Khan]. We plan to study this in

[BP].
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A.2 Chow lemma for Artin stacks

The Kimura sequence in Theorem A.1.1 is especially useful if an algebraic stack

has a proper cover by an algebraic stack whose intersection theory is well-understood,

e.g., global quotient stacks. For the Chow groups with rational coefficients, the

DM stacks behave like schemes. Thus we will work with the quotient stacks of

DM stacks by linear algebraic groups.

We introduce the following definition.

Definition A.2.1 (Proper cover by quotient stack). We say that an algebraic stack

X admits a proper cover by a quotient stack it there exists a proper representable

surjective morphism

p : Y Ñ X

from the quotient stack Y “ rP{Gs of a separated DM stack P by an action of a

linear algebraic group G.

We observe that the class of algebraic stacks that admit proper covers by quo-

tient stacks is stable under basic operations.

Proposition A.2.2. Let X, Y, and Z be algeabraic stacks.

1. Let f : X Ñ Y be a proper representable surjective morphism. If X admits

a proper cover by a quotient stack, then so is Y.

2. Let f : X Ñ Y be a separated DM morphism. If Y admits a proper cover by

a quotient stack, then so is X.

3. LAssume that the diagonal of Z is separated. If X, Y, and Z admit proper

covers by quotient stacks, then so is the fiber product X ˆZ Y.

The Chow lemma for Artin stacks is that étale-locally quotient stacks admit

proper covers by quotient stacks.

Proposition A.2.3 (Chow lemma). Let X be an algebraic stack. Assume that there

exists a separated, representable, étale, surjective map u : U Ñ X such that U

is the quotient stack of a separated DM stack by an action of a linear algebraic

group. Then X admits a proper cover by a quotient stack.

Proposition A.2.3 follows by the arguments in [LMB, Cor. 16.6.1]. We refer

to [BP] for the details.
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Example A.2.4 (Stacks with reductive stabilzers). Let X be an algebraic stack

with reductive stabilizers and affine diagonal. Then X is étale-locally a quotient

stack by [AHR]. Consequently, X admits a proper cover by a quotient stack.

Example A.2.5 (Cone stacks). Let X be a separated DM stack. Let C be a cone

stack on X. Then C is étale-locally a quotient stack. Hence C admits a proper cover

by a quotient stack.

We obtain the abstract blowup sequence as a direct corollary. We first fix the

notion of an abstract blowup square.

Definition A.2.6 (Abstract blowup square). We say that a cartesian square of al-

gebraic stacks

E
� � j //

q

��

rX
p

��
Z
� � i // X

is an abstract blowup square if

1. p is a projective morphism,

2. i is a closed embedding, and

3. p|rXzE : rXzE Ñ XzZ is an isomorphism.

Corollary A.2.7 (Abstract blowup sequence). Let

E
� � j //

q

��

rX
p

��
Z
� � i // X

be an abstract blowup square of algebraic stacks with affine stabilizers. Assume

that X admits a proper cover by a quotient stack. Then we have a right exact

sequence

A˚pEq p´ j˚, q˚q // A˚prXq ‘ A˚pZq pp˚, i˚q // A˚pXq // 0.

Proof. Choose a proper representable surjective map

f : Y Ñ X
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from the quotient stack of a separated DM stack by an action of a linear algebraic

group. Note that the abstract blowup square is stable under the base change. Form

a commutative diagram

A˚pEY ˆE EYq //

��

A˚prXY ˆrX
rXYq ‘ A˚pZY ˆZ ZYq //

��

A˚pY ˆX Yq //

��

0

A˚pEYq //

��

A˚prXYq ‘ A˚pZYq //

��

A˚pYq //

��

0

A˚pEq //

��

A˚prXq ‘ A˚pZq //

��

A˚pXq //

��

0

0 0 0

where the columns are exact by Theorem A.1.1. A diagram chasing argument

shows that the exactness of the top two rows will imply the exactness of the third

row. Hence we may assume that X is the quotient stack of a separated DM stack

by an action of a linear algeabraic group.

Replacing X by Totaro’s approximation [Tot], we may assume that X is a sep-

arated DM stack. By [LMB, Cor. 16.6.1], there exists a projective surjective map

f : Y Ñ X from a quasi-projective scheme Y . By repeating the argument in the

previous paragraph, we may assume that X is a quasi-projective scheme. Then the

abstract blowup sequence follows by [Ful, Ex. 1.8.1]. �

Remark A.2.8 (Operational Chow groups). In [BHPSS], operational Chow groups

for Artin stacks are introduced. Using the Kimura sequence in Theorem A.1.1, we

can show that the operation Chow groups equal to Kresch’s Chow groups when

the algebraic stack has a proper cover by a quotient stack. We refer to [BP] for the

details.
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[PTVV] T. Pantev, B. Töen, M. Vaquié, and G. Vezzosi, Shifted symplectic

structures, Publ. Math. I.H.E.S. 117 (2013), 271–328.

[Park1] H. Park, Virtual pullbacks in Donaldson-Thomas theory of Calabi-Yau

4-folds, arXiv:2110.03631.

[Park2] H. Park, Deformation invariance in Donaldson-Thomas theory of

Calabi-Yau 4-folds, in preparation.
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국문초록

이 학위 논문의 주요 목적은 가상 당김과 여절단 국소화를 칼라비-야우 4차원

다양체의 도널드슨-토마스 이론으로 확장하는 것입니다. 이차적인 목적은 가

상당김과여절단국소화를아틴스택의교차이론,파생대수기하학및대수적

코보디즘을이용하여일반화하는것입니다.

주요어휘:가상당김,여절단국소화, 4차원칼라비-야우다양체의도널드슨-토

마스이론

학번: 2018-20625
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