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ABSTRACT

Nonparametric dimension reductions on Riemannian manifolds

Jongmin Lee

The Department of Statistics

The Graduate School

Seoul National University

Over the decades, parametric dimension reduction methods have been actively de-

veloped for non-Euclidean data analysis. Examples include Fletcher et al. (2004);

Huckemann et al. (2010); Jung et al. (2011, 2012); Zhang et al. (2013). Sometimes

the methods are not enough to capture the structure of data. This dissertation

presents newly developed nonparametric dimension reductions for data observed on

manifold, resulting in more flexible fits. More precisely, the main focus is on the

generalizations of principal curves into Riemannian manifold. The principal curve

is considered as a nonlinear generalization of principal component analysis (PCA).

The dissertation consists of four main parts as follows.

First, the approach given in Chapter 3 lie in the same lines of Hastie (1984);

Hastie and Stuetzle (1989) that introduced the definition of original principal curve

on Euclidean space. The main contributions of this study can be summarized as

follows: (a) We propose both extrinsic and intrinsic approaches to form principal

curves on D-sphere SD, D ≥ 2. (b) We establish the stationarity of the proposed

principal curves on SD. (c) In extensive numerical studies, we show the usefulness

of the proposed method through real seismological data and real Human motion

capture data as well as simulated data on 2-sphere, 4-sphere.

Secondly, As one of further work in the previous approach, a robust nonparamet-

ric dimension reduction is proposed. To this ends, L1- and Huber loss are used rather

than L2 loss. The contributions of this study can be summarized as follows: (a) We

study robust principal curves on spheres that are resistant to outliers. Specifically,
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we propose absolute-type and Huber-type principal curves, which go through the

median of data, to robustify the principal curves for a set of data which may contain

outliers. (b) For a theoretical aspect, the stationarity of the robust principal curves

is investigated. (c) We provide practical algorithms for implementing the proposed

robust principal curves, which are computationally feasible and more convenient to

implement.

Thirdly, An R package spherepc (Lee et al., 2022b) comprehensively providing

dimension reduction methods on a sphere is introduced with details for possible

reproducible research. To the best of our knowledge, no available R packages offer

the methods of dimension reduction and principal curves on a sphere. The existing

R packages providing principal curves, such as princurve (Hastie and Weingessel,

2015) and LPCM (Einbeck et al., 2015), are available only on Euclidean space. In

addition, existing nonparametric dimension reduction methods on manifold involve

somewhat complex intrinsic optimizations (Panaretos et al., 2014; Liu et al., 2017;

Yao et al., 2019). The proposed R package spherepc provides the state-of-the-art

principal curve technique on the sphere (Lee et al., 2021a) and comprehensively

collects and implements the existing techniques (Fletcher et al., 2004; Jung et al.,

2011; Hauberg, 2016).

Lastly, for an effective initial estimate of complex structured data on manifold,

local principal geodesics are first provided and the method is applied to various

simulated and real seismological data. For variance stabilization and theoretical in-

vestigations for the procedure, nextly, the focus is on the generalization of Kégl

(1999); Kégl et al. (2000), which provided the new definition of principal curve on

Euclidean space, into generic Riemannian manifolds. Theories including consistency

and convergence rate of the procedure by means of empirical risk minimization prin-

ciple, are further established on generic Riemannian manifolds. The consequences

on the real data analysis and simulation study show the promising characteristics

of the proposed approaches.
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ÃB

(C) = proj(C) and I ≥ 0. The

projection of C is an intersection point of two great circles. (b) The

case that C is projected onto B in a non-orthogonal way (red dotted

line), i.e., proj(C) ̸= proj
ÃB
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Chapter 1

Introduction

Dimension reduction methods are widely used in various fields, including statistics

and machine learning, by efficiently compressing data and removing noise (Benner

et al., 2005). A variety of dimension reduction techniques have been developed to

represent and analyze data on Euclidean space. Over the decades, there have been

growing interests in the analysis of non-Euclidean data with extensive applications:

directional data (Mardia and Gadsden, 1977; Gray et al., 1980; Jung et al., 2011;

Mardia, 2014; Liu et al., 2017; Mallasto and Feragen, 2018), shape data (Kendall,

1984; Jung et al., 2012; Fletcher et al., 2004; Huckemann and Ziezold, 2006; Fletcher

et al., 2009; Huckemann et al., 2010; Zhang and Fletcher, 2013; Mallasto and Fera-

gen, 2018; Shin and Oh, 2022), symmetric positive definite matrix-valued data (dif-

fusion tensor imaging) (Pennec et al., 2006; Fletcher and Joshi, 2007; Mallasto and

Feragen, 2018), torus-valued data (Eltzner et al., 2018; Jung et al., 2021), and Lie

group-valued data (Human kinetic study) (Hauberg, 2016; Mallasto and Feragen,

2018; Telschow et al., 2019). For example, Siddiqi and Pizer (2008) and Cippitelli

et al. (2016) introduced a Cartesian product of sphere S2 and R for medial represen-

tation and skeleton data, respectively. For these representations, the conventional

dimension reduction methods on Euclidean space have been modified by consider-

ing geodesics on non-Euclidean space as in Fletcher et al. (2004); Huckemann and

Ziezold (2006); Huckemann et al. (2010).
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The meaning of nonparametric that is contained in the title of this dissertation is

now given. To explain intuitively, we consider regression problem. In the regression

problem, the general model is written as

Y = f(X) + ϵ,

whereX, Y, ϵ denote explanatory, response variables, and random noise respectively.

In most cases, the aim is to find the mean functionm = E[Y |X = ·] and a procedure

for estimating the f is called as nonparametric when the functional form on f is

not imposed. (Rigorously, the dimension of space of f is infinite). In our problem,

for an M -valued random variable X and a continuous function f : [0, 1] → M ,

λf (X) ∈ [0, 1] is defined by the minimum parameter such that f(λf (X)) is the

closest point in f from X; formally,

λf (X) = min
λ∈[0, 1]

ß
d(X, f(λ)) = min

µ∈[0, 1]
d(X, f(µ))

™
where it is well defined due to the compactness of [0, 1]. In analogy, the model

considered in the thesis can be written as

X = f(λf (X)) + ϵ,

where ϵ, + denote a random noise and vector addition respectively when M = RD;

otherwise they need some care to be rigorously defined because M generally has

no vector operation +, owing to its inherent nonlinearity. For a given M -valued

random variable X, the aim is to find the principal curve f that goes through the

middle of data, as

f = EX

[
X |λf (X) = ·

]
,

where EX is the expectation with respect to X. It is the definition of principal curve

given later in Chapter 2. The model can be regarded as nonparamteric since the

functional form on f is not assumed and hence the dimension of the collection of

such f is infinite.

The rest of the dissertation is organized as follows. In Chapters 3 and 4, the

interest lies in dimension reduction (curve fitting) for data on spheres. As a non-

parametric and flexible way, Chapter 3 directly extended principal curves suggested
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by Hastie and Stuetzle (1989) onto spheres in both extrinsic and intrinsic ways

with corresponding theoretical properties. As a study closely related to the chap-

ters, Hauberg (2016) developed principal curves on Riemannian manifold. Hauberg

(2016), however, uses an approximate method by projecting data onto a finite set

of points, unlike the original principal curve in Hastie and Stuetzle (1989) which

projects data onto a continuous curve. This approximate projection causes a prob-

lem that may project different data points onto a single point mistakenly. Chapter

3 proposes a new principal curve for sphere-valued data by projecting the data

onto a continuous curve without any approximations, improving the performance

of dimension reduction. The curve is called as spherical principal curves (SPC).

The proposed approach in Chapter 3 is two-fold: One is an extrinsic approach that

requires the setting of additional embedding space for a given manifold. The other

is an intrinsic approach that does not need an embedding space. The chapter 3

investigates the stationarity of the principal curves on spheres in both extrinsic and

intrinsic ways.

In Chapter 4, spherical principal curves given in Chapter 3 are robustified by

using absolute loss and Huber loss. In literature, Hastie (1984) removed distant ob-

servations in estimating a robust curve; thus, it may lose data information. Banfield

and Raftery (1992) modified the ordinary algorithm suggested by Hastie (1984);

Hastie and Stuetzle (1989) to reduce the estimation bias when the curvature of the

underlying curve highly varies. Tibshirani (1992) suggested a probabilistic definition

of principal curves based on a Gaussian mixture model and applied an EM algo-

rithm for estimation to alleviate bias. Since real data sometimes contain large noises,

Stanford and Raftery (2000) proposed another probabilistic method for identifying

the curvilinear features from data with background spatial noises. In addition, some

studies in the field of directional statistics have provided robust point estimates for

sphere-valued data, e.g. He and Simpson (1992). On the other hand, few studies have

been conducted to study robust curve fitting methods for sphere-valued data. As

a notable extension of principal component analysis on manifolds, Panaretos et al.

(2014) proposed a smooth curve on the manifolds, termed as principal flow, which
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goes through the center of data and is estimated by using a nonparametric way with

preserving a canonical interpretation of PCA. There are several related follow-up

studies. For example, Liu et al. (2017) applied a level set-based approach to estimate

flexible and robust curves. Yao et al. (2019) relaxed the constraint of boundary con-

ditions on principal flows, and Yao and Zhang (2020) used a principal flow method

to deal with a classification problem on manifold. However, these methods used

variational approaches like the Euler-Lagrange equation involved with differential

equations on manifold, making it rather difficult to reproduce the methodologies.

As shown in Figure 1.1, the specific problem and objective considered in this study

Figure 1.1: Process of data generating is illustrated. The population curve (ground-

truth) f : [0, 1]→M is colored in black. A data point Xi is generated by adding a

random noise (colored in blue) to f(λi).

are as follows. Suppose that we observe {xi}ni=1 ⊂M generated from the population

curve f : [0, 1]→M . Specifically, {λi}ni=1 independently follow a uniform distribu-

tion U [0, 1], and xi are obtained by adding independent random noises to f(λi),
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i = 1, 2, . . . , n. Chapter 4 further assumes that observations are generated from a

single population curve f that is smooth and non-intersecting. The objective is to

recover the population curve f from the observations. In most cases, however, the

random noises are generally assumed to be Gaussian distributed, which is some-

times impractical in applications (Petrus, 1999; Huber, 2004). Chapter 4 deals with

cases where the random noises follow from heavy-tailed distributions. To the best

of our knowledge, this setting is not fully discussed in conventional curve fitting

methods on manifolds, including Fletcher et al. (2004); Huckemann et al. (2010);

Jung et al. (2012); Panaretos et al. (2014); Eltzner et al. (2018); Lee et al. (2021a).

The contributions of Chapter 4 can be summarized as follows: (a) On spheres SD

for D ≥ 2, study robust principal curves that are resistant to outliers. Specifically

L1-type and Huber-type principal curves, which go through the median of data, is

introduced to robustify the principal curves for dataset which may contain outliers.

(b) For a theoretical aspect, the stationarity of the robust principal curves is investi-

gated. (c) Provide practical algorithms for implementing the proposed L1-type and

Huber-type principal curves, which are computationally feasible and convenient to

implement.

Chapter 5 introduces an R package spherepc (Lee et al., 2022b) that consid-

ers several dimension reduction techniques on a sphere, which encompass recently

developed approaches such as SPC and LPG as well as some existing methods,

and discuss how to implement these methods through spherepc. The examples of

existing methods are principal geodesic analysis (Fletcher et al., 2004), exact prin-

cipal circle (Lee et al., 2021a), and principal curves proposed by Hauberg (2016).

Hauberg (2016) proposed an algorithm to find the principal curves on manifolds.

However, the principal curves proposed by Hauberg (2016) represent the data con-

tinuously because of the approximation of the projection step required to fit the

curves. Recently, Lee et al. (2021a) proposed a new method, termed spherical prin-

cipal curves (SPC), that constructs principal curves, ensuring a stationary property

on spheres. SPC is useful for representing circular or waveform data with smaller

reconstruction errors than conventional methods. In some cases, however, SPC has
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the disadvantage of being sensitive to initial estimate. As a result, there are some

data structures where SPC is not efficient, for example, spiral, zigzag, tree-shaped

data. To cope with such problem, a localized version of principal curve, called local

principal geodesics (LPG), is developed. A function for LPG is also provided in the

package spherepc.

To the best of our knowledge, no available R packages offer the methods of

dimension reduction and principal curves on a sphere. The existing R packages

providing principal curves, such as princurve (Hastie and Weingessel, 2015) and

LPCM (Einbeck et al., 2015), are available only on Euclidean space, not on a

sphere or a Riemannian manifold. The proposed package spherepc for R provides

the state-of-the-art principal curve technique on the sphere (Lee et al., 2021a) and

comprehensively collects and implements the existing techniques (Fletcher et al.,

2004; Hauberg, 2016; Lee et al., 2021b).

Chapter 6 will present the newly developed method capable of identifying the

structure of data that have complicated underlying structures and lie on Rieman-

nian manifold. Specifically, principal curve method proposed by Kégl (1999); Kégl

et al. (2000) is generalized to Riemannian manifold. Kégl (1999); Kégl et al. (2000)

proposed nonparametric dimension reduction method. The motivating example is

given in Figure 1.2, which illustrates the several procedures for data description

when M = RD. The top panels of Figure 1.2 show the zero (mean) and one dimen-

sional (first principal component) descriptions for the data, respectively. Note that

the mean of data points is the point which minimizes the sum of squares of distances

from the data points to itself and that (first) principal component is the line which

minimizes the sum of squares of (orthogonal) distances from data points to itself.

In this respect, Kégl (1999); Kégl et al. (2000) proposed a nonlinear description for

data, length-constrained principal curve, which minimizes the distances from data

points to the curve under a predetermined length constraint, as illustrated in the

bottom panel of Figure 1.2. Along this line, Chapter 6 will develop the method on

Riemannian manifold. The methodology is termed as local principal curves on Rie-

mannian manifold (LPCRM). The procedure is also applied to various simulated
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Figure 1.2: Data (blue) are distributed on M = RD and three procedures are il-

lustrated for data descriptions (red) based on minimization of least squares. Top

left: Data are represented as their mean (red). Top right: Data are compressed as a

linear line (first principal component). Bottom: Data are represented as a principal

curve (red) which minimizes the sum of squares of distances from the data to curve

under a predetermined length constraint.

data. Although this work is in progress, the theoretical characteristics including

consistency, cubic-convergence rate, and non-asymptotic concentration inequality

of the procedure are established by means of statistical learning theory.

Finally, Chapter 7 summarizes and emphasizes the contributions of the thesis

again and discusses the future topics.
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Chapter 2

Preliminaries

2.1 Principal curves

The principal curve firstly proposed by Hastie (1984); Hastie and Stuetzle (1989)

can be considered as a nonlinear generalization of PCA that finds an affine subspace

maximizing the variance of the projections of data. A curve is a function from one-

dimensional closed interval to a given space, that is, f : I → RD. A curve f is called

self-consistent or a principal curve of a RD-valued random variable X if the curve

satisfies

f(λ) = EX [X |λf (X) = λ], (2.1)

where EX is taken over with respect to X and

λf (x) := min

ß
λ ∈ I | ∥x− f(λ)∥ = min

µ∈I
∥x− f(µ)∥

™
is the projection index of a point x onto the curve f . The definition (2.1) means

that f(λ) is the average of all data points projected onto f(λ) itself.

One of the most important consequences of the self-consistency is that the prin-

cipal curve is a critical (stationary) point with respect to reconstruction error for

small perturbations (Hastie, 1984; Hastie and Stuetzle, 1989). However, it is difficult

to directly formulate a principal curve by solving the self-consistency equation of

(2.1). Thus, Hastie and Stuetzle (1989) represented a curve as the first order spline,
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connected by T points. Then, they iteratively updated the curve to achieve the

self-consistency condition using the following two steps, projection and expectation:

(a) In the projection step, the given data are projected onto the curve. (b) In the

expectation step, T points of the curve are updated to satisfy the self-consistency.

Before closing this section, we remark the meaning of self-consistency. The pro-

posed methods do not use an intrinsic optimization that involves complex com-

putational algorithms. Instead, the principal curves are based on a concept of self-

consistency (Efron, 1967; Hastie, 1984; Hastie and Stuetzle, 1989; Flury and Tarpey,

1996), which is a fundamental concept in statistics covering EM-algorithm (Demp-

ster et al., 1977), K-means clustering, and self-organizing maps (Kohonen, 1990),

as noted in Flury and Tarpey (1996). As for now, we deeply explain the definition

and estimation algorithm of principal curves, based on self-consistency. Equation

(2.1) means that the curve f goes through the “middle” of data. As one can see

in the definition of (2.1), the expression of f contains a term for f , λ‘f ′(X) = λ

in the right-hand side. This is the exact reason why it is called “self”-consistency.

The essence of this principle is to estimate a fixed point of (2.1). Our algorithm

iterates projection step and median step for a candidate curve f to satisfy equa-

tion (2.1). Specifically, for the i-th curve f i, we obtain f i+1 := E[X |λf i(X) = λ]

and have f i+2 by plugging f i+1. Then repeat the process for i = 1, 2, . . . until the

change is below a specific threshold (e.g., 0.01). In summary, the proposed principal

curves cannot be obtained in a way that minimizes a cost function. Instead, the

curves are estimated based on principle of self-consistency. The estimation method

based on self-consistency has two advantages: (1) computationally fast and (2) re-

producible, compared to an optimization framework. These advantages facilitates

the production of R package spherepc that will be concretely explained in Chapter

5.
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2.2 Riemannian manifolds and centrality on manifold

Manifold is a second-countable and Hausdorff topological space which locally resem-

bles a Euclidean space. A smooth manifold (e.g., the unit 2-sphere in Figure 2.1)

is a manifold equipped with a differentiable structure (or called atlas). Riemannian

manifold M is a smooth manifold equipped with smoothly varying inner product

< , >p on tangent bundle TM (=
⊔

p∈M TpM) (or called as Riemannian metric)

where the Riemannian metric can measures the magnitudes and angle of two tan-

gent vectors on a tangent space. A (minimal) geodesic is the shortest smooth curve

joining two points on M . The distance between the points along the curve is termed

as geodesic distance, d(·, ·), where the distance is different with Riemannian metric

but relies on the choice of Riemannian metric on M . For more details, see Boothby

(1986); Lee (2006).

Nextly, exponential and logarithm maps will be defined. For each p ∈M , expo-

nential map is a differentiable map from a neighborhood of p in TpM to M . For a

vector v in the neighborhood, the geodesic at p with direction v, γ : [0, 1] → M ,

uniquely exists so that γ satisfies that γ(0) = p, γ
′
(0) = v, and ∥γ′

(t)∥ = ∥v∥ for

any t ∈ [0, 1]. The exponential map at p is defined as

expp(v) := γ(1) ∈M. (2.2)

If (M, d) is connected and complete as a metric space, then the geodesic continues

as much as we want from the Hopf-Rinow theorem (e.g. Theorem 6.13. of Lee

(2006)). In other words, the exponential map at p, expp : TpM → M , is defined

on the entire TpM . For the simplest case, M = RD, since TpRD ≃ RD for any

p ∈ RD, the exponential and logarithm maps are both identity. In particular, when

M = SD :=
¶
(x1, x2, . . . xD+1) ∈ RD+1 |

∑D+1
i=1 x2i = 1

©
, naturally embedded into

the ambient space RD+1, the exponential map at p = (0, 0, . . . , 0, 1) ∈ RD+1 can

be written as

expp(v) = (v1
sin ∥v∥
∥v∥

, v2
sin ∥v∥
∥v∥

, . . . , vD
sin ∥v∥
∥v∥

, cos ∥v∥),
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for any v ∈ TpS
D ≃ RD with ∥v∥ ≤ π in which ∥·∥ denotes the standard norm in RD.

logmap is the inverse map of exponential map. The logmap at p, logp : S
D → TpS

D,

is written by

logp(w) = (w1
θ

sin θ
, w2

θ

sin θ
, . . . , wD

θ

sin θ
)

for any w = (w1, w2, . . . , wD+1) ∈ SD \ (0, 0, . . . , 0, −1) ⊂ RD+1, where θ =

arccos(wD+1). See Buss and Fillmore (2001) for details.

We now consider a probability distribution µ on a complete and connected Rie-

mannian manifold M with its geodesic distance d(·, ·). Before explaining the notion

of centrality on the manifold, a simple motivating example is given in Figure 2.1.

A typical example for manifold is sphere and the unit 2-sphere, in particular, is

considered, as S2 =
{
(x, y, z) ∈ R3 |x2 + y2 + z2 = 1

}
⊂ R3. In the left panel of

Figure 2.1: Left: The Euclidean mean (orange) of three points (blue) is not lying

on the unit 2-sphere. Right: The extrinsic and intrinsic means (green) of the three

points (blue).

Figure 2.1, the Euclidean mean of data points (blue) in R3, (1/3, 1/3, 1/3), is not

lying on the unit 2-sphere. the conventional (Euclidean) mean is not available on

manifolds. It stems from the fact that S2 is not vector space, inherently. Due to

the lack of linearity on SD or generic manifold, the centrality for data on manifold
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should be defined.

There are several ways to defining the centrality on manifolds. Note that Eu-

clidean space has the property that the arithmetic mean is the center of gravity,

which minimizes the sum of squares of the distances from each point to itself. As

an analog of this property, intrinsic mean (Fréchet mean or barycenter)(Fréchet,

1948) is

argmin
m∈M

∫
d2(m, x)µ(dx). (2.3)

Generally, it is not easy to treat the geodesic distance. Thus, regarding the manifold

M as an embedded subspace in Euclidean space RD for some D ≥ 2, the extrinsic

mean (Huckemann et al., 2010; Bhattacharya and Patrangenaru, 2003, 2005) can

be defined by replacing the geodesic distance in (2.3) with Euclidean distance in

RD. Formally, the extrinsic mean with respect to ξ is defined as

argmin
m∈M

∫
∥ξ(m)− ξ(x)∥2µ(dx), (2.4)

where ∥ · ∥ is a Euclidean norm in RD and ξ denotes an embedding from M to

RD. In the real line, the median of data is a point that minimizes the sum of the

distances from each data point to itself. The analog to multi-dimensional Euclidean

space or manifold case is termed as geometric median or spatial median (Fletcher

et al., 2009; Yang, 2010), which is defined as

argmin
m∈M

∫
d(m, x)µ(dx). (2.5)

The geometric median is an alternative measure for central tendency and is more

robust to outliers than the barycenter from empirical and theoretic perspectives

(Fletcher et al., 2009). Under a mild condition for µ, the geometric median uniquely

exists (Yang, 2010). For a set of data {x1, x2, . . . , xn} ⊂M , the sample version of

the geometric median is

argmin
m∈M

n∑
i=1

wid(m, xi), (2.6)

where wi denote nonnegative weights of xi with
∑n

i=1wi > 0. It is known that

geometric median has no closed-form (Fletcher et al., 2009). Thus, it should be
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obtained in an iterative way. For this purpose, we define a L1-type loss function

g : M → R as g(x) =
∑n

i=1wid(x, xi). By using the same arguments in Fletcher

et al. (2009), the derivative of g can be obtained as

∇g(x) = −
n∑

i=1

wilogx(xi)/∥logx(xi)∥ ∈ TxM,

for x /∈ {xi, x2, . . . , xn}. Based on the gradient method, Fletcher et al. (2009) sug-

gested an (Weiszfeld) algorithm for estimating the geometric median on Riemannian

manifold as follows. The algorithm is similar to the method of iteratively reweighted

least squares.

Algorithm 1: Geometric median on manifold

1 For a dataset {xi}ni=1 ⊂M and their nonnegative weights {wi}ni=1 with∑n
i=1wi > 0, set an initial value as m1 = x1. ;

2 while (∆m ≥ threshold) do

3 - w′
i = wi/∥logmk

(xi)∥, 1 ≤ i ≤ n ;

4 - ∆m =
∑

1≤i≤n, xi ̸=mk

w′
i∑n

i=1 w
′
i
logmk

(xi) ;

5 - mk+1 = expmk
(∆m) ;

6 end

Before closing this section, we remark that if a dataset is not collinear and

well-localized, e.g. on unit spheres d(x, y) < π
2 for any x, y of the dataset, the

corresponding geometric median uniquely exists. Specifically, consider two cases:

(i) Sectional curvatures of M are bounded above from κ > 0 and diam(M) :=

sup{d(x, y) |x, y ∈ M} < π/(2
√
κ). (ii) M has non-positive sectional curvatures.

If M satisfies either (i) or (ii), then the weighted geometric median uniquely ex-

ists (Theorem 1 in Fletcher et al. (2009)). Algorithm 1 moreover converges to the

geometric median. For more details, see Fletcher et al. (2009).
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2.3 Principal curves on Riemannian manifolds

Hauberg (2016) proposed principal curves on Riemannian manifolds by expressing

a curve as a set of T points, f = {C1, C2, . . . , CT }, joined by geodesics. The

estimation algorithm of the curve follows that of Hastie and Stuetzle (1989) with an

approximation. Specifically, the mean operation in the expectation step is performed

by intrinsic mean, and the projection is conducted by finding the nearest point in

f as

proj(x) = argmin
Ci∈f

d(x, Ci),

which is not an exact projection onto the continuous curve.
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Chapter 3

Spherical principal curves

This chapter is based on Lee et al. (2020) (archive preprint) and Lee et al. (2021a)

which has been published in IEEE Transactions on Pattern Analysis and Machine

Intelligence, 43, 2165-2171. The main contributions of this chapter can be summa-

rized as follows: (a) We propose both extrinsic and intrinsic approaches to form

principal curves on D-sphere, D ≥ 2. (b) We verify the stationarity of the proposed

principal curves on SD. (c) We show the usefulness of the proposed method through

real data analysis and simulation studies.

The main contributions of this chapter can be summarized as follows: (a) We

propose both extrinsic and intrinsic approaches to form principal curves onD-sphere

SD, D ≥ 2. (b) We verify the stationarity of the proposed principal curves on SD.

(c) We show the usefulness of the proposed method through real data analysis and

simulation study. The detailed proofs of the theoretical properties of the proposed

principal curves method are given in Section 3.4 and Appendix A.1.

The chapter is organized as follows. In Section 3.1, a newly developed exact

principal circle on spheres is studied, which is used for the initialization of the

proposed principal curves. Section 3.2 presents the proposed principal curves with

a practical algorithm and investigates the stationarity of them theoretically. In

Section 3.3, the experimental results of the proposed method are provided through

real earthquake data from the U.S. Geological Survey, real motion capture data,
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and simulation studies on S2 and S4. Section 3.4 discusses justifications of exact

projection step and theoretical properties of the proposed principal curves. Finally,

concluding remarks are given in Section 3.5.

3.1 Enhancement of principal circle for initialization

Methods for fitting circles to data on S2 are actively used in many applications, es-

pecially in astronomy and geology, to recognize undisclosed patterns of data (Mardia

and Gadsden, 1977; Gray et al., 1980). This section improves the principal circle to

be used as an initialization of the principal curves proposed in Section 3.2.

3.1.1 Principal geodesic and principal circle

The principal curve algorithm of Hastie and Stuetzle (1989) uses the first prin-

cipal component as the initial curve, which is easily calculated by singular value

decomposition (SVD) of the data matrix in Euclidean space. Along with this line,

the proposed principal curve algorithm in Section 3.2 requires an initial curve. The

principal geodesic analysis (PGA) by Fletcher et al. (2004) can be considered as a

generalization of PCA that performs dimension reduction of data on the Cartesian

product of simple manifolds, such as R3, S2, and R+. To this end, Fletcher et al.

(2004) projected each manifold component of the data into a tangent space at the

intrinsic mean of each component. As a result of the tangent space approximation of

each component, data are approximated by points in Euclidean space, so applying

PCA allows dimension reduction to be performed through the inverse process of the

tangent projection, i.e. exponential map that preserves a distance and angle at a

base point. For spherical cases, they mainly perform tangent space projection using

an inverse exponential map, called log map. The explicit forms of exponential and

log maps of S2 are described in Fletcher et al. (2004); Jung et al. (2011) and Jung

et al. (2012).

However, PGA always results in a great circle going through the intrinsic mean

on the sphere, as shown in Figure 3.1, and the class of great circles on a sphere is
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Figure 3.1: Left: Spherical distribution of significant earthquakes (blue) with its

intrinsic mean (green), the result (pink) by PGA, and the result (red) by our pro-

posed principal circle. Right: Circular simulated data (blue) with its intrinsic mean

(green), the result (pink) by PGA, and the result (red) by our proposed principal

circle.

sometimes limited to suitably fit a dataset on the sphere (Jung et al., 2011; Hauberg,

2016). For example, the left panel of Figure 3.1 shows earthquake data from the U.S.

Geological Survey showing the location (blue dot) of significant earthquakes with

Mb magnitude 8 or higher around the Pacific since 1900. The data will be analyzed

in detail in Section 3.3. In Figure 3.1, while the result (pink) by PGA does not fit the

data correctly, our principal circle (red), presented later in Section 3.1.2, improves

the representation of the data. Further, in the right panel of Figure 3.1, our principal

circle suitably fits the circular simulated data, whereas the result (pink) by PGA

does not capture the variation of the data. The failure of PGA stems from the fact

that the above two data sets are far from their intrinsic means, as noted in Jung

et al. (2011), Jung et al. (2012), and Hauberg (2016).

In the literature, there is an attempt by Jung et al. (2011) that generalizes the

PGA to a circle on S2. The circle on S2 that minimizes a reconstruction error is

called principal circle, where the reconstruction error is defined as the total sum of

squares of the geodesic distance between the curve and the data. Jung et al. (2011)

used a double iteration algorithm that uses the log map to project the data into
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the tangent space and then finds the principal circle. However, this approach has

two problems. First, using the tangent approximation when minimizing the distance

may causes numerical errors. If the data points are located away from the mean, the

numerical errors may increase because there is no local isometry between the sphere

and its tangent plane according to the Gauss’s Theorema Egregium (see p. 363-370

of Boothby (1986)). Second, due to the topological difference between the sphere and

the plane, the existence of principal circles in the tangent plane is not guaranteed.

For example, Figure 3.2 shows simulated data, where the underlying structure is

a great circle, and the intrinsic mean is the North Pole (0, 0, 1), where the data

points are mostly concentrated around the North Pole. From the compactness of

the sphere, the least-squares circle always exists regardless of the data structure. It

is an advantage of the intrinsic approaches. On the other hand, the least-squares

circle does not exist if the data points projected onto the tangent space at their

intrinsic mean are collinear, as shown in the middle and right panels of Figure 3.2.

It coincides that several circle fitting procedures in a plane, such as K̊asa (1976) and

Coope (1993), fail when the data points are collinear, as noted in Umbach and Jones

(2003). Moreover in this case, the (tangent) plane cannot consider the periodicity of

the data, as opposed to the left panel of Figure 3.2. Ignoring the periodic structure

of data, as noted in Eltzner et al. (2018), may reduces the efficiency of a method.

This study proposes a new principal circle that does not rely on tangent projection

for the effective initialization of the proposed principal curve presented in Section

3.2. We obtain the constraint-free optimization problem by expressing the center of

the circle using the spherical coordinate system in Section 3.1.2 and Section 3.1.3.

3.1.2 Exact principal circle

For our principal circle, we consider an intrinsic optimization algorithm that does

not use any approximations. Let d(x, y) be the geodesic distance between x, y ∈ S2.

For a given dataset D and a circle C on S2, let δ(D, C) be the sum of squares of
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Figure 3.2: Top Left: Simulated data points (blue) with the intrinsic mean (0, 0, 1)

(green) and the result of the proposed principal circle (red); Top Right: The pro-

jected points from the sphere onto the tangent plane at C = (0, 0, 1); Bottom: The

projected points viewed from above the Northern Hemisphere.
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distances between circle and data, defined as

δ(D, C) =
∑
x∈D

d
(
x, projC(x)

)2
,

where projC(x) denotes a projection of x on C. The goal is to find a circle C on S2

that minimizes δ(D, C). To solve this optimization problem, we represent a circle

C by a center c of the circle and a radius r ∈ [0, π], the geodesic distance between

the center c and the circle C. This representation is not unique Jung et al. (2011).

For example, let c′ ∈ S2 be the antipodal point of c that is diametrically opposite

to c on S2, then (c, r) and (c′, π − r) represent the same circle C. Nevertheless, it

is not crucial to the optimization problem because we simply find a representation

of the least square circle. By using a spherical coordinate system, it is able to

parameterize c as (θ, ρ), where θ denotes the azimuthal angle and ρ is the polar

angle. By symmetry of the circle, d
(
x, projC(x)

)
can be easily calculated by

d
(
x, projC(x)

)
= d(x, c)− r.

Thus, we have

δ(D, C) =
∑
x∈D

(
d(x, c)− r

)2
. (3.1)

With letting c = (θc, ρc) and x = (θx, ρx) in the spherical coordinate system, the

geodesic distance d(x, c) is given by the spherical law of cosines with three points

c, x, and the polar point (see Lemma 3 in Section 3.4. below for details)

d(x, c) = arccos
(
cos ρc cos ρx + sin ρc sin ρx cos(θc − θx)

)
. (3.2)

By putting (3.2) into (3.1), it follows that δ(D, C) is represented as a three-parameter

differentiable function δD(θc, ρc, r) in domain [0, 2π]× [0, π]× [0, π] as follows,

δD(θc, ρc, r) =
∑
x∈D

(
arccos

(
cos ρc cos ρx + sin ρc · sin ρx cos(θc − θx)

)
− r

)2
. (3.3)

Since [0, 2π] × [0, π] × [0, π] is compact, the function δD(θc, ρc, r) holds a global

minimum value. Thus, it can apply the gradient descent method to find the solution.

Here is the algorithm to find a principal circle from the above description.
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Algorithm 2: Exact principal circle by gradient descent

1 Initialize (θc, ρc, r) as (θ, ρ, π/2). ;

2 while (∆δ(D, C) ≥ threshold) do

3 - (θc, ρc, r)← (θc, ρc, r)− β∇δD(θc, ρc, r) ;

4 end

As in many nonlinear least-square algorithms, such as Gauss-Newton algorithm

and Levenberg-Marquardt algorithm (see Chapter 4 of Scales (1985) for details),

the above Algorithm 2 may converge to a local minimum or a saddle point instead

of the global minimum, since δD(θc, ρc, r) is non-convex. Thus, initial values should

be selected carefully. If the data points in D are not too apart and localized, then

it is reasonable to choose (θx, ρx, π/2) for some x ∈ D as an initial. The spherical

coordinates of the intrinsic mean of D with radius r = π/2, denoted by (θ, ρ, π/2),

if necessary with varying r ∈ [0, π], is also recommended as initial values. In the

case of a non-localized data set, one can implement the algorithm with various

initial settings as much as one wants, compare the consequences of δ, and finally

choose the circle with the lowest δ as the principal circle. Note that, in existing

methods for fitting circles to data on spheres, such as Gray et al. (1980); Jung

et al. (2011, 2012), there are no assurances that their algorithms finally achieve

the circle minimizing (3.1). Although δ is not convex globally, it is convex on a

neighborhood of a global minimum point. Hence, it is reasonably expected that if

an initial value is suitably close to an optimum point, then Algorithm 1 converges

to the optimum. A specification about the neighborhood for which δ is convex,

and rigorous proof for convergence of Algorithm 2 on that neighborhood remains

a challenge. In the real data analysis and the simulated studies later in Section

2.5, however, implementations of Algorithm 1 with several initial values result in

almost the same principal circles and converge rapidly. Thus, there are no practical

difficulties in our experiments. In addition, β is the step size of Algorithm 2, and

it relies on the dataset D. The algorithm may diverge when β is large (e.g., greater
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than 0.01). In simulated examples and real data on Section 2.5., we use 0.001. Since

too small β causes computational time to be high, an appropriate β should be

selected properly throughout experiments from a relatively larger value of β to the

lower one.

3.1.3 Extension to hyperspheres

In the case of high-dimensional spheres, to find a one-dimensional circle that at-

tempts to represent a given data closely, we provide both extrinsic and intrinsic

ways. The former is easy to implement and more computationally feasible because

it uses an extrinsic approach and is not exactly found. The latter directly extends

the exact principal circle in the previous section into higher-dimensional spheres us-

ing the framework of principal nested spheres (Jung et al., 2012); however, it takes

time to compute compared to the former approach.

Circle as an initialization

Later in Section 3.3.2, we will use the following extrinsic method as an initial esti-

mate of the spherical principal curves for waveform simulated data on S4. Specifi-

cally, we consider SD = {y = (y1, y2, . . . , yD+1) ∈ RD+1 |
∑D+1

i=1 y2i = 1} for D ≥ 2,

as an embedded surface in the ambient space RD+1. That is, {xi}ni=1 ⊂ SD ↪→ RD+1

are regarded as elements in RD+1, not taking into account a nonlinear dependence

of the data; though, ensuring lower computational complexity. Note that any one-

dimensional circle on SD is an intersection of a two-dimensional plane and SD.

Hence, the strategy is to find the 2-plane P ⊂ RD+1 that closely represents the

data {xi}ni=1 with respect to the standard distance in RD+1, rather than geodesic

distance in SD. That is, the plane P is the two-dimensional vector subspace of RD+1

spanned by first two principal components of the data, and then P ∩ SD is a one-

dimensional circle to find. Although the extrinsic circle is capable of approximating

the meaningful data, there may be some instances that need more precise initial

estimate for the data.
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Exact principal circle

For a better initial guess of the proposed principal curves, we provide an exact

principal circle on SD =
¶
y = (y1, y2, . . . , yD+1) ∈ RD+1 |

∑D+1
i=1 y2i = 1

©
for D ≥

3. The arguments in Section 3.1.2 can be applied to higher-dimensional spheres SD

for D ≥ 3 if the geodesic distance of (3.1) can be precisely calculated. To this end,

let D = {xi}ni=1 be a dataset on SD, and denote a (D − 1)-dimensional subsphere

on SD as C. Using a spherical coordinates for SD, x = (x1, x2, . . . , xD, xD+1) ∈

SD ⊂ RD+1 can be parametrized as

x1 = cos(φ1)

x2 = sin(φ1) cos(φ2),

x3 = sin(φ1) sin(φ2) cos(φ3)

...

xD = sin(φ1) · · · sin(φD−1) · cos(φD)

xD+1 = sin(φ1) · · · sin(φD−1) · sin(φD),

where φ1, φ2, · · · , φD−1, φD are angular coordinates with φD ∈ [0, 2π) and the

others ranging over [0, π). Note that d(x, c) = arccos(x · c), where · denotes the

(standard) inner product in RD+1. Thus,

d(x, c) = arccos
(
cos(φ1c) cos(φ1x) +

D−2∑
k=1

[ k∏
i=1

sin(φic) sin(φix)
]
· cos(φ(k+1)c) cos(φ(k+1)x)

+
[D−1∏

i=1

sin(φDc) sin(φDx)
]
· cos(φDc − φDx)

)
,

(3.4)

where {φic}Di=1 and {φix}Di=1 are the corresponding angular coordinates of c and

x, respectively. By putting (3.4) into (3.1), δ(D, C) is represented as the (n + 1)-

parameter differentiable function δD(φ1c, . . . , φDc, r) in domain [0, π]D−1×[0, 2π]×
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[0, π] as follows:

δD(φ1c, . . . , φDc, r) =
∑
x∈D

Å
arccos

(
cos(φ1c) cos(φ1x)

+

D−2∑
k=1

[ k∏
i=1

sin(φic) sin(φix)
]
· cos(φ(k+1)c) cos(φ(k+1)x)

+
[D−1∏

i=1

sin(φic) sin(φix)
]
· cos(φDc − φDx)

)
− r

ã2

.

(3.5)

Note that, in the case of D = 2, the above equation (3.5) becomes (3.3). δD holds a

global minimum value due to the compactness of the domain [0, π]D−1 × [0, 2π]×

[0, π]. Therefore, an exact principal circle on SD can be obtained by gradient de-

scent, the same way in Algorithm 2, except that the number of parameters is D+1.

Let (φ1, φ2, . . . , φD) denote the spherical coordinates of the intrinsic mean of D.

Here is the algorithm to find a principal circle on SD.

Algorithm 3: Exact principal nested sphere on hypersphere SD

1 Initialize (φ1c, φ2c, . . . , φDc, r) as (φ1, φ2, . . . , φD, π/2).;

2 while (∆δ(D, C) ≥ threshold) do

3 (φ1c, φ2c, . . . , φDc, r)←

(φ1c, φ2c, . . . , φDc, r)− β∇δD(φ1c, φ2c, . . . , φDc, r) ;

4 end

It is possible that Algorithm 3 converges to a local minimum or a saddle point

of δD, owing to its non-convexity. Therefore, an initial value should be carefully

chosen, for instance, a data point in D and the intrinsic mean of D. The discussions

about initial values and step size β are the same as those of Algorithm 2.

By applying Algorithm 3 to a given data iteratively, we can obtain a one-

dimensional sphere, i.e., an exact principal circle on SD that can be the initial-

ization of the spherical principal curves. For more details about the procedure, see

Jung et al. (2012). It is noteworthy that from the perspective of the principal nested
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spheres, our method can be applied to find nested spheres in an exact way.

3.2 Proposed principal curves

This section presents our new exact principal curves on D-sphere for D ≥ 2 from

both intrinsic and extrinsic perspectives. We further investigate the stationarity of

the proposed principal curves.

3.2.1 Exact projection step on SD

As mentioned in Section 2.3, the approach of Hauberg (2016) does not perform the

exact projections onto curves. On the other hand, the exact projections on SD are

carried out in our method, which results in more elaborated principal curves. To this

end, we parametrize the curve as a set of T points joined by geodesics as in Hauberg

(2016). Specifically, we first project the data point to each geodesic segment of the

curve and then obtain the exact projection on the curve by choosing the closest

geodesic segment. Let λf (x) be the projection index of a point x to the curve f(λ)

for λ ∈ [0, 1],

λf (x) = min
λ∈[0, 1]

{λ | d(x, f(λ)) = min
γ∈[0, 1]

d(x, f(γ))}, (3.6)

The projection of x onto the curve can be obtained as f
(
λf (x)

)
.

The following subsections describe a procedure for projecting a point onto a

geodesic segment on SD. Given A, B, C ∈ SD ⊂ RD+1, we find the closest point to

C on the geodesic segment joining A and B. When A = B, the process is obvious,

and in the case of A = −B ∈ RD+1, there is no unique geodesic connecting A and

B. Hence, we only consider the case that A and B are linearly independent, i.e.,

(A · B)2 ̸= 1, where · denotes the dot product in RD+1. We first deal with the

projection on S2 and then extend it into hyperspherical cases.
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Figure 3.3: Illustration of the projection procedure on S2: (a) The case that C is

projected inside ÃB, i.e., proj
ÃB

(C) = proj(C) and I ≥ 0. The projection of C

is an intersection point of two great circles. (b) The case that C is projected onto

B in a non-orthogonal way (red dotted line), i.e., proj(C) ̸= proj
ÃB

(C) = B and

I < 0. (c) An image of the sphere viewed from above the Northern Hemisphere in

the projection of C.

Projection on S2

Before describing the projection procedure on S2, it is important to notice that

(A ·B)2 ̸= 1 is equivalent to A×B ̸= 0, where × denotes the cross product in R3. In

addition, if A× B/ ∥A×B∥ = ±C, then any points on geodesic through A and B

have the same distance from C. From now on, we assume A×B/ ∥A×B∥ ≠ ±C.

Figure 3.3 shows the projection procedure. We define the North Pole N con-
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cerning A and B as N = A×B
∥A×B∥ ∈ S2 and a center Q of the great circle through N

and C as Q = N×C
∥N×C∥ ∈ S2 that is contained in the great circle through A and B.

Then, the projection of C onto the great circle through A and B, proj(C), becomes

an intersection point of two great circles, as shown in Figure 3.3a,

proj(C) = Q×N =
(A×B)× C

∥(A×B)× C∥
× (A×B)

∥A×B∥
∈ S2.

Note that proj(C) is not always included in the geodesic segment ÃB joining A

and B as Figure 3.3b. For this reason, we define an indicator I = −
(
A− proj(C)

)
·(

B − proj(C)
)
, indicating whether proj(C) is inside ÃB or not, i.e., orthogonally

projected onto ÃB or not. Finally, the projection of C onto ÃB, proj
ÃB

(C), is

proj
ÃB

(C) =

proj(C), if I ≥ 0

argminE∈{A,B} d(C, E), if I < 0.

Projection on hypersphere

For A, B, C ∈ SD ⊂ RD+1, if B ·C = C ·A = 0, then all points on ÃB have the same

geodesic distance of π/2 from C, which is verified in Section 3.4.1; hence, assume

that A, B, and C do not satisfy B · C = C · A = 0. Let V be a two-dimensional

vector space in RD+1 spanned by A and B.

As shown in Figure 3.4, we aim to find the projection of C onto V ∩SD, proj(C),

by following two steps: (Step 1) Locate the projection of C onto V , C ′. (Step 2) Find

the projection of C ′ onto V ∩ SD. Note that the resulting projection is equivalent

to the projection of C onto V ∩SD, proj(C). The rigorous justification of the above

procedure is provided in Section 3.4.1.

(Step 1): We find the closest point C ′ ∈ V from C. Let C ′ = µA+λB for µ, λ ∈

R. Then C ′ should satisfy the orthogonal condition, (C−C ′) ·A = (C−C ′) ·B = 0.

By plugging the equation C ′ = µA + λB into the above condition and solving the

systems of linear equations with respect to µ and λ, it follows that

C ′ =
C ·A− (A ·B)(B · C)

1− (A ·B)2
A+

B · C − (A ·B)(C ·A)

1− (A ·B)2
B,
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Figure 3.4: Illustration of the projection procedure on SD

where the denominator is non-zero and C ′ ̸= 0 ∈ RD+1 because of the assumptions;

(A ·B)2 ̸= 1, and A, B, and C do not satisfy B · C = C ·A = 0.

(Step 2): The projection of C ′ onto V ∩ SD, proj(C), is obtained by just nor-

malizing C ′ so that it is in SD. Therefore, we have

proj(C) =
C ′

∥C ′∥
=

(
C ·A− (A ·B)(B · C)

)
A+

(
B · C − (A ·B)(C ·A)

)
B∥∥(C ·A− (A ·B)(B · C)

)
A+

(
B · C − (A ·B)(C ·A)

)
B
∥∥ .

Similarly, we define the indicator I = −
(
A−proj(C)

)
·
(
B−proj(C)

)
to find the

projection of C onto ÃB, proj
ÃB

(C). Due to the fact that A, B, and proj(C) are in

the one-dimensional unit circle V ∩ SD, we obtain I ̸= 0 unless proj(C) = A or B.

Since I is continuous with respect to proj(C) ∈ V ∩ SD, it indicates that whether

proj(C) is in ÃB or not. We finally obtain proj
ÃB

(C) as

proj
ÃB

(C) =

proj(C), if I ≥ 0

argminE∈{A,B} d(C, E), if I < 0.

Note that the distance between C and ÃB is the geodesic distance from C to

proj
ÃB

(C), which can be calculated as

d(C, proj
ÃB

(C)) = arccos(C · proj
ÃB

(C)). (3.7)
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3.2.2 Expectation step on SD

The expectation step follows the principal curve of Hauberg (2016), i.e., updates the

weighted average with smoothing that makes the curve closer to the self-consistency

condition. Suppose that we have n data points D = {xi}ni=1 and the corresponding

projection indices {λi}ni=1, where λi = λf (xi) for i = 1, . . . , n. Let T denote the

number of points of an initial curve. Then, the local weighted smoother iteratively

updates the tth point of the principal curve, Ct, with the weighted mean of data

points. In this study, we use a quadratic kernel k(λ) = (1−λ2)2 · δ|λ|≤1, as Hauberg

(2016), and the weight of each data point is given by wt, i = k(|λf (Ct) − λi|/σ)

where σ = q · (length of f).

Extrinsic approach

The extrinsic mean on SD can be calculated by considering the canonical embedding

SD ↪→ RD+1. Specifically, for a curve f = {C1, . . . , CT } and each point Ct, the

extrinsic mean is obtained by averaging the data points represented in Euclidean

coordinates as

mt(D, f) =

n∑
i=1

wt, ixi/∥
n∑

i=1

wt,ixi∥, t = 1, 2, . . . , T (3.8)

where ∥·∥ is the standard norm in RD+1. Then Ct is updated by mt(D, f). The

extrinsic approach is advantageous in terms of the computational complexity com-

pared to the intrinsic approach. Furthermore, the extrinsic way ensures the station-

arity of the principal curves on hyperspheres SD for D ≥ 2, which will be discussed

in Section 3.2.4.

Intrinsic approach

From the intrinsic perspective, the weighted mean of data points can be obtained

by the optimization

mt(D, f) = argmin
x

n∑
i=1

wt, id
2(x, xi), t = 1, 2, . . . , T, (3.9)
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and then each Ct is updated by mt(D, f). The intrinsic mean exists uniquely if the

points are in an open hemisphere of SD, i.e., ∃p ∈ SD s.t. d(xi, p) <
π
2 for 1 ≤ i ≤ n

Buss and Fillmore (2001). Since the intrinsic mean cannot be obtained in a closed

form, to solve (3.9), algorithms based on tangent space approximation, such as Buss

and Fillmore (2001); Fletcher et al. (2004), can be used.

Before closing this section, as an alternative measure of the centrality of data, the

geometric median can be considered to robustify the principal curves for a dataset

that might contain outliers instead of the extrinsic or intrinsic mean. Median-based

principal curves and their associated characteristics can be developed along with

the same line of our procedure, which is the main topic in Chapter 4.

3.2.3 Algorithm

Initialization

For a better estimation of principal curves, we initialize a principal curve as an

exact principal circle on D-sphere SD. The detailed descriptions of the circle and

its algorithm were previously provided in Section 3.1.

Spherical principal curves

The proposed spherical principal curves on SD can be obtained by algorithm 4

below.

Note that d2
(
xi, f

(
λf (xi)

))
is calculated by (3.2). As far as Euclidean space

is concerned as embedding space, the extrinsic approach is advantageous for com-

putational efficiency (Bhattacharya et al., 2012). However, if the data points are

not contained within local regions at the expectation step, the intrinsic method

may have better performances than the extrinsic one. Furthermore, the intrinsic

approach can be attractive because of its inherent metric.
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Algorithm 4: Spherical principal curves

1 Initialize curve f = {C1, . . . , CT }. ;

2 Parameterize the curve as f(λ) by some constant speed. Calculate λf (xi) in

(3.6) for i = 1, 2, . . . , n. ;

3 Calculate errors δ(D, f) =
∑n

i=1 d
2
(
xi, f

(
λf (xi)

))
. ;

4 while (∆δ(D, f) ≥ threshold) do

5 (Expectation) Ct ← mt(D, f) for t = 1, 2, . . . , T . ;

6 Reparameterize the curve by some constant speed. ;

7 (Projection) Calculate λf (xi) for i = 1, 2, . . . , n. ;

8 Calculate δ(D, f) =
∑n

i=1 d
2
(
xi, f

(
λf (xi)

))
. ;

9 end

3.2.4 Stationarity of principal curves

For a random vector X in RD, D ∈ N, the stationarity of the principal curve of X

is given by Hastie and Stuetzle (1989) as

∂EX [d2(X, f + ϵg)]

∂ϵ

∣∣∣∣
ϵ=0

= 0, (3.10)

where f and g are smooth curves in RD satisfying ∥g∥ ≤ 1 and ∥g′∥ ≤ 1, and

d(X, f) denotes the (Euclidean) distance from X to the curve f .

However, since spheres are not vector spaces such as RD, additions are not

directly defined on spheres. Thus, it is necessary to redefine some concepts, such as

addition and perturbation, in order to extend the properties of the principal curves

in Euclidean space to spheres. To this end, we conversely consider f + g instead of

g. Specifically, let f and f + g be smooth curves on D-sphere parameterized with

λ ∈ [0, 1]. Then, we define f + ϵg in a pointwise sense as follows.

Definition 1. For a, b ∈ SD and ϵ ∈ [0, 1], div(a, b, ϵ) is a set of points on geodesics

between a and b satisfying ∀c ∈ div(a, b, ϵ), d(a, c) = ϵd(a, b) and c is on a geodesic

between a and b.
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Note that if d(a, b) < π, then the geodesic between a and b on SD is unique.

In this case, div(a, b, ϵ) is a single point set and div(a, b, −ϵ) can be defined as a

reflection of div(a, b, ϵ) with respect to a.

Definition 2. Let f and f + g be smooth curves on SD parameterized with λ ∈

[0, 1] satisfying ∥g∥ < π, where ∥g∥ := maxλ∈[0, 1] d
(
f(λ), (f + g)(λ)

)
. Then, for

ϵ ∈ [−1, 1], f + ϵg is a curve on SD, where (f + ϵg)(λ) = div(f(λ), (f + g)(λ), ϵ),

∀λ ∈ [0, 1].

Note that f + ϵg is a smooth curve on SD. For a detailed proof, refer to the

proposition 1 in Section 3.4.2. Let X be a SD-valued random variable that doesn’t

have a point mass. We call f as an extrinsic-type principal curve of X or self-

consistent if f satisfies

π
(
E[ξ(X) |λf (X) = λ]

)
= f(λ) for a.e. λ, (3.11)

where ξ : SD → RD+1 is the canonical embedding and π : RD+1 \ {0} → SD by

X → X
∥X∥ is the standard projection (retraction) from RD+1 to SD. In analogy

to (3.10), we provide the following theorem on spheres. Note that · represents the

standard inner product on RD+1 and d(X, f + ϵg) denotes the geodesic distance

from X to the curve f + ϵg. The definition of ϵ-perturbation, f + ϵg, coincides with

that of Euclidean case because geodesics on Euclidean space are straight lines. ∥g′∥

is also defined by mimicking the Euclidean case as follows.

Definition 3. ∥g′∥ = maxλ∈[0, 1] ∥g′(λ)∥, where ∥g′(λ)∥ = maxϵ∈[0, 1]

∥∥∥∂2(f+ϵg)(λ)
∂λ∂ϵ

∥∥∥.
The mild conditions for a f and a SD-valued random variable X are assumed

as follows:

(A1) f : [0, 1] → SD is smooth (C3), not self-intersecting (i.e. λ1 ̸= λ2 ∈ [0, 1) ⇒

f(λ1) ̸= f(λ2)), and parameterized by some constant speed, i.e. |f ′(λ)| = s > 0

for any λ ∈ [0, 1].

(A2) A SD-valued random variable X has no point mass and is supported on B(ζ)

where B(ζ) := {x ∈ SD | |f ′′(λf (x)) · x| > ζ} for some constant ζ > 0.
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(A3) λf (X) ∈ (0, 1) for a.e. X.

The reason for assumption (A1) is two-fold: One is for simplicity of discussion and

notation compared to parameterization by arc-length. The other is that this setting

covers only the class of finite-length curves on a sphere, i.e. L(f) =
∫ 1
0

√
1 + f ′′2(t)dt <

∞, where L(f) denotes the length of f and f ′′ has a maximum on the compact in-

terval [0, 1] from (A1). Therefore, we can exclude the pathological examples such as

space-filling curves and self-similar curves (e.g. fractal curves) on the sphere, which

may have infinite length. The support condition of X in (A2) is mild since it can

be shown that the area of SD \ B(ζ) → 0 as ζ → 0 from Lemma 4 in Section 3.4.

In other words, the condition is almost negligible by letting arbitrarily small ζ > 0.

The detailed explanations for the assumptions are given in Section 3.4.

Theorem 1. Under (A1)− (A3), f is an extrinsic principal curve of X if and only

if
∂EX [cos

(
d(X, f + ϵg)

)
]

∂ϵ

∣∣∣∣
ϵ=0

= 0. (3.12)

Proof. See Section 3.4.2.

Note that (3.12) can be interpreted as an analogy of (3.10) because 2−2 cosx ≈

x2 for small x. We further consider the intrinsic perspective of the stationarity. We

define a curve f as an intrinsic-type principal curve of X if the intrinsic mean of X

conditioned on λf (X) = λ is equal to f(λ) for a.e. λ,

Eint[X |λf (X) = λ] = f(λ) for a.e. λ, (3.13)

where Eint[·] denotes an intrinsic mean of a random variable on SD.

Note that the intrinsic mean of a SD-valued random variable Y is unique if

d(Y, p) < π
2 a.s. for ∃p ∈ SD, i.e., the support of Y is contained in an open hemi-

sphere (Pennec et al., 2006). We verify that the intrinsic principal curves on S2

satisfy the stationarity.
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Theorem 2. Under (A1)− (A3), f is an intrinsic principal curve of X if and only

if
∂EX [d2(X, f + ϵg)]

∂ϵ

∣∣∣∣
ϵ=0

= 0. (3.14)

Proof. See Section 3.4.2.

The constraints B(ζ) in Theorems 1 and 2 are required to ensure the differenti-

ation of the projection index λf+ϵg(X) with respect to ϵ. Note that the constraints

are almost negligible by letting ζ infinitesimally small; see Lemma 4 in Section 3.4.2

for details.

We finally remark that the stationarity of the principal curves in Euclidean space

provides a rationale for the principal curves of Hastie and Stuetzle (1989) that is a

nonlinear generalization of the linear principal component. Following the same line,

the above stationarity results provide a theoretical justification that the proposed

approaches directly generalize the principal curves of Hastie and Stuetzle (1989)

from Euclidean space to spheres. In the intrinsic approach, the case of SD with

D ≥ 3 remains a challenge.

3.3 Numerical experiments

This section conducts numerical experiments with real data analysis and simulated

examples to assess the practical performance of the proposed methods. The experi-

ments can be reproducible by R package, spherepc at https://cran.r-project.

org/package=spherepc (Lee et al., 2022a), which implements the spherical princi-

pal curves for a variety of datasets lying on S2. For more details, see Chapter 5 or

Lee et al. (2022a).

3.3.1 Real data analysis

Earthquake data on S2

We consider earthquake data from the U.S. Geological Survey (https://earthquake.

usgs.gov/earthquakes/map/) in Figure 3.5 that represent the distribution of sig-
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Figure 3.5: Top: Earthquake data is distributed in globally and they are visualized

by two-dimensional and three-dimensional view, from left to right. Bottom: The

proposed extrinsic principal curves of T = 500 with q = 0.01 (left) and q = 0.2

(right) are shown, respectively. Blue points represent the observations and red lines

are the fitted curves.

nificant earthquakes (8+ Mb magnitude) around the Pacific Ocean since 1900. As

shown in the figure, 77 observations are distributed in the vicinity of the borders

between the Pacific, Eurasian, and Nazca plates. Since the plates are gradually

moving towards different directions, recognizing the unrevealed patterns of borders

provides essential information about seismological events such as earthquakes and

volcanoes (Mardia and Gadsden, 1977; Biau and Fischer, 2011). In the following

experiment, we utilize the spherical principal curves to recover the plates’ borders

by extracting curvilinear features of the observations.

We have implemented the proposed principal curves connected by T = 500, with
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various values of hyperparameter q that is the bandwidth of kernel in the expectation

step. Figure 3.5 shows the results with q = 0.01, 0.2. We observe that a small q

produces a wiggly and overfitted curve. It is noteworthy that the choice of q affects

the quality of the fitted curve. Duchamp and Stuetzle (1996) proved that principal

curves are always the saddle point of the expectation of the squared distance from a

particular random variable, pointing out that cross-validation is not reliable for the

model selection of principal curves, i.e., determination of q. Kégl et al. (2000) defined

principal curves that minimize reconstruction errors in the constraint of the curve

length, but used a heuristic way to determine the corresponding hyperparameter,

the length of the curves. In the current study, the value of q is selected by visual

inspection through all our experiments. An objective way to select q is left for future

research.

Figure 3.6: Projection results by the proposed extrinsic method (left) and Hauberg’s

method (right) with T = 77 and q = 0.1.

As one can see, the proposed extrinsic curve represents a given data as a con-

tinuous curve, while Hauberg’s method projects several local data at one point.

We further compare the proposed extrinsic principal curves with the method of

Hauberg (2016). Figure 3.6 shows both results with q = 0.1, where the purple lines

represent the fitted curves, and the blue lines represent the projections from the

data to the curve. The proposed extrinsic principal curve continuously represents
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the given data on the curve, while the method of Hauberg (2016) projects several lo-

cal points to a single location. The comparison is further summarized in Table 1. As

a result, the number of distinct projections (# proj) by our method is much larger

than that of Hauberg’s method. It implies that the proposed principal curve con-

tinuously represents the data, whereas the method of Hauberg tends to cluster the

data. We also measure a reconstruction error (RE) defined as
∑n

i=1 d
2
(
xi, f̂

(
λf̂ (xi)

))
with observations {xi}ni=1 and fitted values {f̂

(
λf̂ (xi)

)
}ni=1. As listed in Table 1, our

method outperforms Hauberg’s method in terms of the reconstruction error.

Table 3.1: The values of RE and # proj by the proposed methods and Hauberg’s

method on the earthquake data

Extrinsic Intrinsic Hauberg

q = 0.2
RE 2.662 4.391 12.067

T = 77

# proj 74/77 72/77 22/77

q = 0.1
RE 0.463 0.467 4.920

# proj 76/77 76/77 9/77

q = 0.05
RE 0.359 0.359 1.313

# proj 74/77 73/77 16/77

q = 0.01
RE 0.061 0.061 0.227

# proj 75/77 75/77 27/77

q = 0.2
RE 2.193 3.460 11.300

T = 500

# proj 75/77 72/77 30/77

q = 0.1
RE 0.715 0.732 3.903

# proj 75/77 74/77 18/77

q = 0.05
RE 0.298 0.200 0.963

# proj 75/77 75/77 27/77

q = 0.01
RE 0.036 0.036 0.121

# proj 75/77 75/77 37/77
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Motion capture data on S2

We now consider a benchmark data on S2, motion capture data of a person walking

in a circular pattern (Ionescu et al., 2011, 2014; Hauberg, 2016; Mallasto and Fer-

agen, 2018). The data represent the orientation of the person’s left thigh bone and

naturally lie on S2. There are 338 data points in the data set that are periodic.

Figure 3.7: The results of the proposed extrinsic method (red) and Hauberg’s

method (yellow) with T = 100 are presented. The results with q = 0.03, q = 0.05

(top) and projection results (bottom) by the two methods with q = 0.05 are repre-

sented.

Figure 3.7 shows both results with q = 0.03, 0.05, where the red and yellow lines

represent the fitted curves, and the blue lines represent the projections from the data

to the curves. The proposed extrinsic principal curve continuously represents the
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given data on the curve, while the method of Hauberg (2016) projects several local

points to a single location. Furthermore, Table 3.2 lists the quantitative results of

the proposed methods and the method of Hauberg (2016). As listed, the proposed

methods outperform Hauberg’s method in terms of the reconstruction error and

represent the data more precisely.

Table 3.2: The values of RE and # proj by the proposed methods and Hauberg’s

method on the motion capture data

Extrinsic Intrinsic Hauberg

q = 0.05
RE 2.502 2.504 2.534

T = 500

# proj 336/338 337/338 223/338

q = 0.03
RE 1.741 1.741 2.637

# proj 332/338 333/338 119/338

q = 0.01
RE 0.669 0.669 1.253

# proj 315/338 317/338 92/338

3.3.2 Simulation study

Simulation on S2

We consider two types of functions on the unit sphere with spherical coordinates

(r = 1, θ, ϕ), where θ is the azimuthal angle and ϕ is the polar angle: (Circle) it

is formed of (r = 1, θ, ϕ) with 0 ≤ θ < 2π and ϕ = π/4. (Wave) it is defined as

(r = 1, θ, ϕ) with 0 ≤ θ < 2π and ϕ = α sin(θf) + π/2, where the frequency f = 4

and the amplitude α = 1/3.

For each type of functions, we generate n = 100 data points by sampling θ uni-

formly in [0, 2π) and adding Gaussian noises sampled from N(0, σ2) to ϕ. Figure 3.8

shows the results on the waveform data with T = 500 and q = 0.05. Both extrinsic

and intrinsic principal curves extract the true waveform effectively, while Hauberg’s

approach yields a rather sharp curve. In Section 3.3.2, we provide additional visual
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Figure 3.8: From top left to bottom right: True waveform and noisy data (blue

dots), the extrinsic principal curve, the intrinsic principal curve, and the curve by

Hauberg’s method with T = 100.

results with various parameter settings.

We next quantify the performance of the proposed methods by measuring a re-

construction error between the fitted and true curves to measure the reconstruction

ability of the methods. For the fitted curve f̂ , the reconstruction error is defined as∑n
i=1 d

2
(
xi, f̂

(
λf̂ (x̃i)

))
, where {xi}ni=1 denote the true values of the generating curves

(ground-truth) and {x̃i}ni=1 denote noisy sample values. We also count the number

of distinct projection points to evaluate the continuity of resulting curves of the

methods. Moreover, we compare the proposed spherical principal curves with exist-

ing method Hauberg (2016) over various settings T = 100, 500, q = 0.05, 0.03, 0.01,

40



T
a
b
le

3
.3
:
A
v
er
a
ge
s
o
f
re
co
n
st
ru
ct
io
n
er
ro
rs

an
d
th
ei
r
st
a
n
d
ar
d
d
ev
ia
ti
o
n
s
in

th
e
p
a
re
n
th
es
es

b
y
ea
ch

m
et
h
o
d

T
ru
e
fo
rm

M
et
h
o
d

N
oi
se

le
v
el

σ
=

0.
07

σ
=

0.
1

q
=

0.
05

q
=

0.
03

q
=

0.
01

q
=

0.
0
5

q
=

0.
0
3

q
=

0.
01

T
=

1
0
0

C
ir
cl
e

P
ro
p
os
ed

0.
0
93

(0
.0
26

)
0.
12

(0
.0
27

)
0.
09

5
(0
.0
13

)
0.
2
01

(0
.0
48

)
0.
21

6
(0
.0
46

)
0.
13

7
(0
.0
2
5
)

H
a
u
b
er
g

0.
1
17

(0
.0
73

)
0.
40

8
(0
.1
49

)
0.
29

8
(0
.0
38

)
0.
3
70

(0
.2
05

)
0.
74

(0
.2
0
8)

0
.4
94

(0
.0
6
3)

W
av
e

P
ro
p
os
ed

0
.7
1
(0
.1
14

)
0.
32

9
(0
.0
97

)
0.
08

4
(0
.0
23

)
0.
6
73

(0
.1
50

)
0.
34

6
(0
.1
13

)
0.
12

4
(0
.0
3
8
)

H
a
u
b
er
g

2.
4
44

(0
.0
59

)
2.
15

8
(0
.1
55

)
0.
56

8
(0
.0
55

)
2.
5
44

(0
.1
18

)
2.
10

3
(0
.5
63

)
0.
79

6
(0
.0
9
4
)

T
=

5
0
0

C
ir
cl
e

P
ro
p
os
ed

0.
0
88

(0
.0
26

)
0.
11

8
(0
.0
23

)
0.
09

1
(0
.0
18

)
0
.2
1
(0
.0
50

)
0.
20

7
(0
.0
43

)
0.
12

9
(0
.0
1
8
)

H
a
u
b
er
g

0.
0
89

(0
.0
27

)
0.
20

5
(0
.0
79

)
0.
26

9
(0
.0
34

)
0.
2
33

(0
.0
87

)
0.
45

3
(0
.1
77

)
0.
39

7
(0
.0
7
9
)

W
av
e

P
ro
p
os
ed

0.
5
35

(0
.0
65

)
0.
23

9
(0
.0
56

)
0.
07

2
(0
.0
20

)
0.
5
74

(0
.0
94

)
0.
23

7
(0
.0
82

)
0.
11

0
(0
.0
3
1
)

H
a
u
b
er
g

2.
0
06

(0
.6
97

)
1.
83

1
(0
.1
46

)
0.
52

9
(0
.0
43

)
1.
9
06

(0
.8
47

)
1.
75

6
(0
.6
96

)
0.
68

8
(0
.0
7
3
)

41



and σ = 0.07, 0.1.

Table 3.3 lists the average values of reconstruction errors and their standard de-

viations over 50 simulation sets. As listed, the proposed (intrinsic) principal curves

outperform Hauberg’s method, recovering the true curves accurately. Table 3.4 pro-

vides the average values of distinct projection points and their standard deviations.

The proposed method provides a very large number of distinct projection points

compared to that of Hauberg’s method. Overall, as listed in Tables 3.3 and 3.4, our

methods perform better than that of Hauberg (2016), including the case that the

number of points of the curves (T = 500) is much larger than the number of data

points (n = 100). In addition, the results of the intrinsic and extrinsic principal

curves are similar in terms of both reconstruction error and the number of distinct

projection points, which appear with the fact that the intrinsic and extrinsic means

are almost identical for localized data, as noted in Bhattacharya and Patrangenaru

(2005). The results of the extrinsic approach are almost identical to those of the

intrinsic one, and hence are omitted.

Influence of T and q

Here we discuss the influence of the hyperparameters T and q. To this end, we

consider the waveform simulated data used in Section 3.3.2. Figure 3.9 visualizes

the fitted curves by the proposed extrinsic method for various q’s in the range of

[0.01, 0.1] at intervals of 0.01 with a fixed T = 500. As shown in the top panels of

Figure 3.9, the resulting curve with q = 0.01 is wiggly, and the curve with q = 0.1

is almost flat. In general, the curves tend to overfit data when the q value is small,

whereas the curves tend to underfit data when the q value is large. On the other

hand, the bottom panels of Figure 3.9 show the fitted curves by the same method

for a fixed q = 0.06 and varying T in {10, 20, 50, 100, 200, 500}. The curve of

the bottom left panel implemented by a small T value, such as T = 10, does not

represent the data well. For appropriate T values, the spherical principal curves of

the right panel successfully recover the underlying structure of the data.
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Figure 3.9: Noisy waveform simulated data are colored in blue. Top left: Extrinsic-

type principal curves with q = 0.01 (green) and 0.02 (pink) for fixed T = 500; Top

right: Influence of varying q over [0.03, 0.1] with a step size 0.01 (from yellow to

brown) for fixed T = 500; Bottom left: Extrinsic-type principal curves (purple) with

T = 10 and q = 0.06; Bottom right: Influence of varying T in {20, 50, 100, 200, 500}

(from violet to red) for a fixed q = 0.06
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Simulation on hypersphere

Table 3.5: A simulation result of waveform data on S4

Method q = 0.03 q = 0.005 q = 0.002

Proposed (extrinsic) 0.211 (0.230) 0.179 (0.162) 0.199 (0.235)

Proposed (intrinsic) 0.729 (0.493) 0.267 (0.264) 0.150 (0.232)

Hauberg 1.990 (0.815) 0.481 (0.215) 0.357 (0.251)

We conduct a simulation study on a hypersphere. To this end, we consider a

waveform simulated data on S4 represented by four angular parameters φ1, φ2, φ3 ∈

[0, π), and φ4 ∈ [0, 2π). The explicit representation on SD,D ≥ 3 is given in Section

3.1.3. Mimicking a waveform dataset on S2 in Section 3.3.2, we craft simulation sets

(r = 1, φ1, φ2, φ3, φ4) with φ1 = φ2 = φ3 = α sin(φ4f) + π/2 and 0 ≤ φ4 < 2π,

frequency f = 2, and amplitude α = 1/2. Data points of n = 200 are generated

by sampling φ4 uniformly in [0, 2π) and adding the random noises sampled from

N(0, σ2) to φ1 with σ = 0.05. Table 3.5 lists the average values of reconstruction

errors defined on Section 3.3.2 and their standard deviations over 50 simulation sets

for each method with T = 300. As listed, the proposed principal curves outperform

Hauberg’s method, recovering the true curves more closely.

3.4 Proofs

3.4.1 Justification of the projection steps on SD

Let A = (a1, a2, . . . , aD+1), B = (b1, b2, . . . , bD+1), C = (c1, c2, . . . , cD+1) ∈

SD ⊂ RD+1 with (A ·B)2 ̸= 1. Any point P on ÃB is denoted by P = µA+ λB for

µ, λ ∈ R+ with µ2 + λ2 = 1. If B · C = C ·A = 0, then we have

d(C, P ) = arccos
(
C · (µA+ λB)

)
= π/2.

Hence, any points on ÃB have the same geodesic distance of π/2 from C. We may

assume that A, B, and C do not satisfy B · C = C ·A = 0.
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The orthogonal complement of V in RD+1, V ⊥, has a dimension of D − 1,

owing to the fact that RD+1 = V ⊕ V ⊥ with ⊕ denoting the direct sum. As a

column vector notation, we choose an orthonormal basis for V as R1, R2 ∈ RD+1

and an orthonormal basis for V ⊥ as R3, R4, . . . , RD+1 ∈ RD+1. Define a (D +

1) × (D + 1) matrix R = [R1, R2, R3, . . . , RD, RD+1]
T . Clearly, R is a rotation

(orthogonal) matrix, i.e. R ∈ O(n) =
{
X ∈MD+1, D+1(R) |XTX = I

}
and satisfies

that RA = (ã1, ã2, 0, 0, . . . , 0) and RB = (b̃1, b̃2, 0, 0, . . . , 0). Let Ã = RA, B̃ =

RB, and C̃ = RC = (c̃1, c̃2, . . . , c̃D, c̃D+1). Let Ṽ be a two-dimensional vector

space spanned by Ã and B̃, as shown in the right panel of Figure 3.10. It follows

that Ṽ = {x = (x1, x2, x3, . . . , xD+1) |x3 = x4 = · · · = xD+1 = 0}. We denote the

projection of C̃ onto Ṽ as C̃ ′ = (c̃1, c̃2, 0, . . . , 0) ∈ RD+1 with c̃21 + c̃22 ̸= 0. For any

P̃ = (p̃1, p̃2, 0, . . . , 0) ∈ Ṽ ∩ SD, it follows that

d(C̃, P̃ ) = arccos(c̃1p̃1 + c̃2p̃2) ≥ arccos(
»
c̃21 + c̃22), (3.15)

where the last inequality holds due to the Cauchy-Schwarz inequality (c̃1p̃1+c̃2p̃2)
2 ≤

(c̃21 + c̃22)(p̃
2
1 + p̃22) = (c̃21 + c̃22). The equality of (3.15) holds when (p̃1, p̃2) = t(c̃1, c̃2)

for some t ∈ R+. It means that the closest point P̃ on Ṽ ∩ SD from C̃ is found

by normalizing C̃ ′ so that it is in SD. Since R is an orthogonal matrix, for any

P ∈ V ∩ SD and P̃ = RP ∈ Ṽ ∩ SD, it follows, as a column vector notation, that

d(C̃, P̃ ) = arccos(C̃T P̃ ) = arccos(CTRTRP ) = arccos(CTP ) = d(C, P ).

Accordingly, proj(C) is obtained by applying R−1 to proj(C̃) that is the projection

of C̃ onto Ṽ ∩ SD. Since the rotation is a rigid motion, it completes the proof.

3.4.2 Stationarity of principal curves

Here we cover a smooth (C3) curve that does not cross on
(
i.e., λ1 ̸= λ2 ∈ [0, 1)⇒

f(λ1) ̸= f(λ2)
)
, including curves with end points and closed curves, which can be

both parameterized over interval [0, 1] by a constant speed, i.e. f ′(λ) = s > 0 for

any λ ∈ [0, 1]. In the latter case, a boundary condition is needed; any order partial

derivatives of f at end points are the same, i.e., f (k)(0) = f (k)(1) for all k ≥ 0. For a
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Figure 3.10: (Left) The projection process of C onto the one-dimensional great circle

V ∩ SD (red) in a hypersphere SD ⊂ RD+1: (i) find the projection of C onto V ,

C ′ and (ii) obtain the projection of C ′ onto V ∩ SD, proj(C). (Right) The rotated

configuration of the objects.

sphere-valued random variable X, we further assume that the curve f are not short

enough to cover the support of X well, i.e., λf (X) ̸= 0, 1 for a.e. X. For example,

any closed curve satisfies the condition λf (X) ̸= 0, 1 for a.e.X, meaning that almost

all X is orthogonally projected onto the curve f . Note that f is smooth on [0, 1], i.e.

f is smoothly extended on [0, 1]; thus any order its derivatives are continuous on

[0, 1]. Our main purpose is to prove the stationarity of extrinsic, intrinsic principal

curves f : [0, 1] → SD for D ≥ 2 that satisfy the (3.12) and (3.14) in Theorems 1

and 2. We first consider the 2-sphere, and then extend D-spheres, D ≥ 2.

When moving from Euclidean space to spherical surfaces, topological properties

such as measurability and continuity are preserved, while the formula using specific

distance should be modified. This modification could be obtained by embedding a

spherical surface SD into a (D + 1)-dimensional Euclidean space. Specifically, we

embed a spherical surface as a unit sphere centered at the origin, i.e. SD ↪→ RD+1,

and investigate further derivations. For a smooth curve f : [0, 1] → SD ⊂ RD+1,

47



suppose that f is parameterized by a constant speed with respect to λ. The lemma

is then held.

Lemma 1. f ′(λ) · f(λ) = 0 and f ′′(λ) · f ′(λ) = 0, ∀λ ∈ [0, 1], where · denotes the

standard inner product in RD+1.

Proof of Lemma 1. It is directly obtained by differentiating f(λ) · f(λ) = 1 and

f ′(λ) · f ′(λ) = constant by λ.

When D = 2, we assume that f is expressed as three-dimensional coordinates

(f(λ)1, f(λ)2, f(λ)3). Then the following lemmas are held.

Lemma 2. Suppose that f(λ) and x are expressed as three-dimensional vectors.

Then, it follows that d(f(λ), x) = arccos(f(λ) ·x), where arccos(f(λ) ·x) is the angle

between f(λ) and x. Then, df
dλ(λf (0, 0, 1))3 = 0. Thus, it follows that df

dλ(λf (0, 0, 1)) =

a
(
−f(λf (0, 0, 1))2, f(λf (0, 0, 1))1, 0

)
for some a ∈ R. Note that λf (x) denotes the

projection index of point x to the curve f .

Proof of Lemma 2. For p = (0, 0, 1), it follows that d(f(λ), p) = arccos(f(λ)3).

From the assumption that f(λ) is a smooth curve and the fact that d(f(λ), p) has the

minimum at λf (0, 0, 1), the remaining part of the lemma follows by differentiation

with respect to λ.

Lemma 3. (Spherical law of cosines) Let u, v, w be points on a sphere, and a, b and

c denote d(w, u), d(w, v) and d(u, v), respectively. If C is the angle between a and

b, i.e., the angle of the corner opposite c, then, cos c = cos a cos b+ sin a sin b cosC.

Further, with three-dimensional vectors u, v, w, it follows that sin a sin b cosC =

(w × u) · (w × v), where × denotes cross product in R3.

For arbitrary D ≤ 2, the following property can be obtained from Definition 2.

Proposition 1. Under the same conditions in Definition 2, f(ϵ, λ) := (f + ϵg)(λ)

is smooth on [−1, 1] × [0, 1]. Hence, for any ϵ ∈ [−1, 1], f + ϵg : [0, 1] → SD is a

smooth curve on SD and lim
ϵ→0

(f + ϵg)(λ) = f(λ) for λ ∈ [0, 1].
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Proof of Proposition 1. For simplicity, we denote f + g by h. Let Ra, b(θ) be a

rotation matrix that rotates points on SD by θ in the direction along the geodesic

from a to b with a, b ∈ SD ⊂ RD+1 satisfying a ̸= −b ∈ RD+1 and θ ranging

over [0, π). The rotation matrix has a closed form. Specifically, for a ̸= b Ra, b(θ) =

ID+1+sin(θ)B+(cos(θ)−1)(bbT + ccT ) where T denotes the transpose of a matrix,

c = (a − b(bTa))/
∥∥a− b(bTa)

∥∥, and B = bcT − cbT as a column vector notation.

(see Section 8.1 in Jung et al. (2012) for more details). In this respect we obtain

f(ϵ, λ) := (f + ϵg)(λ) = Rf(λ),h(λ)(θ) · f(λ), where θ = ϵ arccos(f(λ) · h(λ)). Thus,

(f + ϵg)(λ) (= f(ϵ, λ)) is smooth on [−1, 1]× [0, 1] since all functions f, h, R, and

θ are smooth. Therefore, for a fixed ϵ ∈ [0, 1], the smoothness of (f + ϵg)(λ) for

λ ∈ [0, 1] also follows. Moreover, the last equality is a direct consequence of the

definition of f + ϵg.

From now on, we present the detailed explanation for Definitions 2 and 3 stated

in Section 3.2.4. For a given f+g (= h), the ∥g∥ and ∥g′∥ is defined by mimicking the

Euclidean case. For examples, in Euclidean space (f +g)(λ) = f(λ)+g(λ). We thus

obtain that g(λ) = ∂
∂ϵfϵ(λ) where fϵ(λ) := f + ϵg(λ). From this fact, on spheres, the

magnitude of perturbation ∥h− f∥ is defined by g(ϵ0, λ) :=
∂
∂ϵ

∣∣
ϵ=ϵ0

fϵ(λ), ∥g(λ)∥ =

d(f(λ), g(λ)) =
∣∣g(ϵ0, λ)∣∣, and finally ∥h− f∥ = ∥g∥ = maxλ ∥g(λ)∥ ̸= π. The

boundedness of ∥g∥ guarantees that the ϵ-internal division between f and h, fϵ, uni-

formly converges to f on λ ∈ [0, 1] as ϵ→ 0. Notice that from the compactness of the

unit sphere, ∥h− f∥ is inherently not greater than π; thus, ∥h− f∥ ≠ π implies that

∥h− f∥ < π. Moreover, the norm of derivative of perturbation ∥(h− f)′∥ is defined

by g′(ϵ, λ0) =
∂
∂λ

∣∣
λ=λ0

g(ϵ, λ), ∥g′(λ0)∥ = maxϵ ∥g′(ϵ, λ0)∥, and finally ∥(h− f)′∥ =

∥g′∥ := maxλ0 ∥g′(λ0)∥. Let x be a point on a sphere. By the continuity of f and the

compactness of the domain [0, 1], minλ∈[0, 1] d(x, f(λ)) can be attained. Let d(x, f)

denote the geodesic distance from x to f , i.e., d(x, f) := minλ∈[0, 1] d(x, f(λ)). By

the continuity of f again, {λ ∈ [0, 1] | d(x, f(λ)) = d(x, f)} is closed and therefore

compact. Thus, the projection indices λf (x) = min{λ | d(x, f(λ)) = d(x, f)} and

λf+ϵg are well-defined. The latter holds due to the fact that f + ϵg is a continuous
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curve by Proposition 1. If the set {λ | d(x, f(λ)) = d(x, f)} not a singleton, then

the point x is called an ambiguity point of f . The set of ambiguity points of the

smooth curve has spherical measure 0; thus, the ambiguity points are negligible

when calculating the expected value.

Proposition 2. Spherical measure of the set of ambiguity points of smooth curve

f is 0.

Detailed steps for a proof of Proposition 2 are similar with those of Hastie and

Stuetzle (1989); thus, we omit the proof. Meanwhile, Hastie (1984) proved that the

index function λf : x 7→ λf (x) is measurable, while the proof is not perfectly correct.

The modified proof is shown as follows.

Proposition 3. (Measurability of index function) For a continuous curve f on SD,

the index function λf : SD → [0, 1] by x 7→ λf (x) is measurable.

Proof of Proposition 3. See Appendix A.1.

According to the Proposition 3, λf (X) is a random variable, provided that X is

a SD-valued random variable for D ≥ 2. Thus, a conditional expectation on λf (X)

is feasible.

Proposition 4. (Continuity of projection index under perturbation) If x is not an

ambiguity point for continuous curve f , then lim
ϵ→0

λf+ϵg(x) = λf (x).

Proof of Proposition 4. See Appendix A.1.

In the proof of Proposition 4, it is possible to apply the triangle inequality on

a sphere because the sphere is a metric space equipped with its geodesic distance.

The following proposition is an useful tool for proving the Theorems 1 and 2.

Proposition 5. (Uniform continuity of projection index under perturbation) lim
ϵ→0

λf+ϵg(x) =

λf (x) uniformly on the set of non-ambiguity points of f . That is, for every η > 0,

there exists a δ > 0 such that for any non-ambiguity points x, if |ϵ| < δ, then

|λfϵ(x)− λf (x)| < η.
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To show the uniform continuity of projection index, it is required that |f ′′| is

bounded. It is a direct result from the smoothness of f (C3) and compactness of

[0, 1]. A proof is similar to that of Proposition 4; thus, we omit the proof. Meanwhile,

to prove Theorems, it is needed to show that λfϵ is differentiable for ϵ and its

derivative is uniformly bounded. To this end, it is necessary to define a subset of

SD as B(ζ) = {x ∈ SD | |f ′′(λf (x)) · x| > ζ} for ζ ≥ 0. Obviously, the collection of

sets {B(ζ)}ζ≥0 is decreasing as ζ → 0. Moreover, the following lemma implies that

as ζ → 0 B(ζ) covers SD almost everywhere.

Lemma 4. The image of smooth function from [0, 1] to SD has measure 0. More-

over,

SD \B(0) = {x ∈ SD | |f ′′(λf (x)) · x| = 0}

is a union of images of two smooth functions from [0, 1] to SD, which implies

that SD \B(0) has spherical (D-dimensional Hausdorff) measure 0. Therefore, the

measure of SD \B(ζ)→ 0 as ζ → 0.

Proof. See Appendix A.1.

Note that Lemma 4 implies the constraints of a random variable X in Theorems

1 and 2 are almost negligible by letting ζ arbitrarily close to zero. Denote the set of

ambiguity points of smooth curve f on a sphere as A, which has measure zero by

Proposition 2.

Lemma 5. Let A be the set of ambiguity points of smooth curve f on a sphere.

Suppose that, for any x ∈ S2, λf (x) ∈ (0, 1), and x ∈ Ac∩B(ζ) for arbitrarily small

ζ > 0. Then λ(ϵ) := λfϵ(x) is a smooth function for ϵ on an open interval containing

0. Moreover, ∂λ(ϵ)
∂ϵ is uniformly bounded on Ac ∩B(ζ). That is, there are constants

C > 0 and δ > 0 such that if |ϵ0| < δ and x ∈ Ac ∩B(ζ), then
∣∣ ∂λfϵ (x)

∂ϵ

∣∣
ϵ=ϵ0

∣∣ < C.

Proof. See Appendix A.1.

Proof of Theorem 1
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Proof. First of all, we prove the theorem on S2. If f = h, then nothing to prove.

Thus, we assume that the curves f and f + g (= h) are not identical and further

both are parameterized by λ ∈ [0, 1]. To prove the result, we need to show that

the conditional expectation is zero after exchanging the order of the derivative and

expectation.

First, for order exchange, it is necessary to show that the following random

variable

Zϵ(X) =
cos

(
d(X, f + ϵg)

)
− cos

(
d(X, f)

)
ϵ

=
cos

(
d
(
X, (f + ϵg)(λf+ϵg(X))

))
− cos

(
d
(
X, f(λf (X))

))
ϵ

(3.16)

is uniformly bounded for any sufficiently small |ϵ| > 0. Then we apply bounded

convergence theorem. Since the projection index of X represents the closest point

in the curve,

Zϵ(X) ≤
cos

(
d
(
X, (f + ϵg)(λf+ϵg(X))

))
− cos

(
d
(
X, f(λf+ϵg(X))

))
ϵ

. (3.17)

For simplicity, Denote fg(λϵ) = (f+g)(λf+ϵg(X)), fϵ(λϵ) = (f+ϵg)(λf+ϵg(X)), and

f(λϵ) = f(λf+ϵg(X)). By applying Lemma 3 to cos
(
d(X, fϵ(λϵ))

)
, the inequality of

(3.17) becomes

Zϵ(X) ≤
cos

(
d
(
X, fϵ(λϵ)

))
− cos

(
d
(
X, f(λϵ)

))
ϵ

=
cos(d(X, f(λϵ)))(cos(d(fϵ(λϵ), f(λϵ)))− 1) + (f(λϵ)× fϵ(λϵ)) · (f(λϵ)×X)

ϵ
.

=
cos(d(X, f(λϵ)))(cos(ϵd(fg(λϵ), f(λϵ)))− 1) +Aϵ(f(λϵ)× fg(λϵ)) · (f(λϵ)×X)

ϵ
,

(3.18)

where

Aϵ = |f(λϵ)× fϵ(λϵ)|/|f(λϵ)× fg(λϵ)| = sin(ϵd(f(λϵ), fg(λϵ)))/|f(λϵ)× fg(λϵ)|.

The last equality is done by Definition 1. To get the upper bound of Zϵ(X), we

further use the following fact, | sin ϵC
ϵ | ≤ |C| and |

1−cos ϵC
ϵ | ≤ |ϵ|C2

2 for C ∈ R and
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ϵ ∈ R. Then, we have

Zϵ(X) ≤
∣∣ cos (d(X, f(λϵ)

))∣∣ |ϵ|B2

2
+

B

|f(λϵ)× fg(λϵ)|
∣∣(f(λϵ)× fg(λϵ)) · (f(λϵ)×X)

∣∣,
where B = d

(
f(λϵ), fg(λϵ)

)
≤ ∥g∥ < π. Note that any smallest geodesic distance

on a unit sphere is smaller than π. In addition, we can assume that ϵ is less than

1/π because we are only interested in ϵ near 0. Thus, we obtain the upper bound of

Zϵ(X) in (3.18)

Zϵ(X) ≤ π

2
+ π =

3π

2
.

A lower bound of Zϵ(X) can be similarly obtained. Let fg(λ) := (f + g)(λf (X)),

fϵ(λ) := (f + ϵg)(λf (X)) and f(λ) := f(λf (X)). By following the same path, we

have

Zϵ(X) ≥
cos

(
d
(
X, (f + ϵg)(λf (X))

))
− cos

(
d
(
X, f(λf (X))

))
ϵ

=
cos

(
d
(
X, f(λ)

))(
cos

(
d
(
fϵ(λ), f(λ)

))
− 1

)
+ (f(λ)× fϵ(λ)) · (f(λ)×X)

ϵ

=
cos

(
d
(
X, f(λ)

))(
cos

(
ϵd
(
fg(λ), f(λ)

))
− 1

)
+Bϵ(f(λ)× fg(λ)) · (f(λ)×X)

ϵ
,

(3.19)

where

Bϵ = |f(λ)× fϵ(λ)|/|f(λ)× fg(λ)| = sin(ϵd(f(λ), fg(λ)))/|f(λ)× fg(λ)|.

By the same way, it can be shown that

Zϵ(X) ≥ −3π

2
.

Hence, we show that

|Zϵ(X)| ≤ 3π

2
,

which is bounded for any 0 ̸= |ϵ| ≤ 1/π. Then, by Lebesgue’s dominated convergence

theorem, it follows that

∂EX cos(d
(
X, f + ϵg)

)
∂ϵ

∣∣∣
ϵ=0

= EX
∂ cos(d

(
X, f + ϵg)

)
∂ϵ

∣∣∣
ϵ=0

.
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Thus, the proof is completed provided that the following equation holds

E
[∂ cos

(
d(X, f + ϵg)

)
∂ϵ

∣∣∣
ϵ=0

∣∣∣ λf (X) = λ
]
= 0, for a.e. λ.

By the definition of derivative,

∂ cos
(
d(X, f + ϵg)

)
∂ϵ

∣∣∣
ϵ=0

= lim
ϵ→0

Zϵ(X),

and as shown, Zϵ(X) is bounded. Since f and f + g are continuous, by Proposition

1, if X is not an ambiguity point of f and f + g, then

lim
ϵ→0

fg(λϵ) = fg(λ), lim
ϵ→0

f(λϵ) = f(λ).

Next, to show the limit of Zϵ, we use the fact that limϵ→0
sin ϵC

ϵ = C and limϵ→0
1−cos ϵC

ϵ =

0 for C ∈ R and ϵ ∈ R. When fg(λ) ̸= f(λ), it follows that

lim
ϵ→0

RHS of (3.18) = d
(
f(λ), fg(λ)

) f(λ)× fg(λ)

|f(λ)× fg(λ)|
· (f(λ)×X) = µ(λ) · (f(λ)×X),

where µ(λ) = d(f(λ), fg(λ))(f(λ)× fg(λ))/|f(λ)× fg(λ)| if f(λ) ̸= (f + g)(λ) and

µ(λ) = 0 otherwise. Similarly, we obtain that

lim
ϵ→0

RHS of (3.19) = µ(λ) · (f(λ)×X).

In summary, if X is not an ambiguity point of f and f + g, and f(λf (X)) ̸=

(f + g)(λf (X)), then we have

∂ cos
(
d(X, f + ϵg)

)
∂ϵ

∣∣∣
ϵ=0

= µ(λf (X)) ·
(
f(λf (X))×X

)
. (3.20)

In the case of f(λf (X)) = (f + g)(λf (X)), the equation (3.20) also hold because its

left- and right-hand sides are 0. From Proposition 2, the limit of (3.20) is established

for a.e. X. Note that, since X is a random variable and λf (X) is measurable with

respect to X according to Proposition 3, λf (X) is a random variable. It implies that

conditional expectation on λf (X) is feasible. Hence, the following equality holds

EX

[∂ cos
(
d(X, f + ϵg)

)
∂ϵ

∣∣∣
ϵ=0

]
= EX

[
µ(λf (X)) ·

(
f(λf (X))×X

)]
. (3.21)
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Finally, if f is an extrinsic principal curve, then

EX

[
X |λf (X) = λ

]
= cf(λ)

for ∃c ∈ R. Hence, it follows that

E
[
µ(λf (X)) ·

(
f(λf (X))×X

)
|λf (X) = λ

]
= E

[
µ(λ) · (f(λ)×X) |λf (X) = λ

]
= µ(λ) · (f(λ)× cf(λ)) = 0.

Hence, we have

LHS of (3.21) = EX

[
µ(λ) · (f(λ)×X)

]
= Eλ

[
E
[
µ(λ) · (f(λ)×X) | λf (X) = λ

]]
= 0.

To prove the converse, we assume that

Eλ

[
E
(
µ(λ) · (f(λ)×X) | λf (X) = λ

)]
= Eλ

[
µ(λ) · E

[
f(λ)×X | λf (X) = λ

]]
= 0,

for all smooth f + g satisfying ∥g∥ < π and ∥g′∥ ≤ 1. Since f + g is only concerned

with µ(λ), it follows that

E
[
f(λ)×X | λf (X) = λ

]
= f(λ)× E

[
X | λf (X) = λ

]
= 0, for a.e. λ.

Therefore, we have

E
[
X |λf (X) = λ

]
= cf(λ)

for ∃c ≥ 0, which completes the proof.

Next, we consider the hypersphere case SD for D ≥ 3. For given smooth curves f

and h (= f + g) parametrized by λ ∈ [0, 1], if f = h, the result is obvious. Thus, we

assume that f and f+g(= h) are not identical. Suppose thatX ∈ Ac∩B(ζ) for some

small ζ > 0 and λf (X) ∈ (0, 1) for a.e. X, where A denotes the set of ambiguity

points of f . As the proof of the case of S2, we use the bounded convergence theorem
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to change the order of derivative and expectation. Since d(x, y) = arccos(x · y) for

any x, y ∈ SD ⊂ RD+1, we have

Zϵ(X) :=
cos

(
d(X, f + ϵg)

)
− cos

(
d(X, f)

)
ϵ

=
cos

(
d
(
X, (f + ϵg)(λf+ϵg(X))

))
− cos

(
d
(
X, f(λf (X))

))
ϵ

≤
cos

(
d
(
X, (f + ϵg)(λf+ϵg(X))

)
− cos

(
d
(
X, f(λf+ϵg(X))

)
ϵ

=
X · (f + ϵg)(λf+ϵg(X))−X · f(λf+ϵg(X))

ϵ

= X ·
(f + ϵg)(λf+ϵg(X))− f(λf+ϵg(X))

ϵ
, (3.22)

where · denotes the standard inner product in RD+1. Hence, we obtain the upper

bound of Zϵ(X),

Zϵ(X) ≤ ∥X∥
∥(f + ϵg)(λf+ϵg(X))− f(λf+ϵg(X))∥

ϵ

≤
d
(
(f + ϵg)(λf+ϵg(X)), f(λf+ϵg(X))

)
ϵ

≤ ∥g(λf+ϵg(X))∥ ≤ ∥g∥

≤ π,

where ∥·∥ denotes the standard norm in RD+1. Similarly, it follows that

Zϵ(X) ≥
cos

(
d
(
X, (f + ϵg)(λf (X))

))
− cos

(
d
(
X, f(λf (X))

))
ϵ

=
X · (f + ϵg)(λf (X))−X · f(λf (X))

ϵ

= X ·
(f + ϵg)(λf (X))− f(λf (X))

ϵ

≥ −∥X∥
∥(f + ϵg)(λf (X))− f(λf (X))∥

ϵ

≥ −
d
(
(f + ϵg)(λf (X)), f(λf (X))

)
ϵ

≥ −∥g(λf (X))∥ ≥ −∥g∥

≥ −π.

It means that Zϵ(X) is uniformly bounded for 0 ̸= |ϵ| ≤ 1. Next, to find the limit
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of Zϵ(X), we have

Zϵ(X) =
cos

(
d
(
X, (f + ϵg)(λf+ϵg(X))

))
− cos

(
d
(
X, f(λf (X))

))
ϵ

=
X · (f + ϵg)(λf+ϵg(X))−X · f(λf (X))

ϵ

= X ·
(f + ϵg)(λf+ϵg(X))− f(λf (X))

ϵ
.

According to Proposition 5,

lim
ϵ→0

Zϵ(X) = X · lim
ϵ→0

(f + ϵg)(λf+ϵg(X))− f(λf (X))

ϵ

=: X · ϕ(λf (X)).

For each X ∈ Ac ∩ B(ζ), define a curve C : I → SD by ϵ 7→ C(ϵ) = (f +

ϵg)(λf+ϵg(X)) ∈ SD ⊂ RD+1, where I is an open interval containing zero and

C(0) = f(λf (X)). For convenience, let (f + ϵg)(λ) = f(ϵ, λ), λf (X) = λ(0) and

λf+ϵg(X) = λ(ϵ). According to Proposition 1, λ(ϵ) is a smooth function on an in-

terval I containing zero. As f(·, ·) is smooth on [−1, 1] × [0, 1] by Proposition 1

and λ(ϵ) is smooth on ϵ ∈ I, C(ϵ) = f
(
ϵ, λ(ϵ)

)
is also smooth on ϵ ∈ I. Thus, ϕ(λ)

is well defined. Hence, by the definition of tangent space via tangent curves,

ϕ(λ) = lim
ϵ→0

C(ϵ)− C(0)

ϵ
= C ′(0) ∈ Tf(λ)S

d,

where Tf(λ)S
D is the tangent space of SD at f(λ). Note that, by the symmetry

of spheres, any tangent vector in Tf(λ)S
D is orthogonal to the vector f(λ), i.e.,

ϕ(λ) · f(λ) = 0. Finally, if f is an extrinsic principal curve, then

E
[
X |λf (X) = λ

]
= cf(λ)
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for ∃c ∈ R. Hence, it follows, by the bounded convergence theorem, that

∂EX

[
cos

(
d(X, f + ϵg)

)]
∂ϵ

∣∣∣
ϵ=0

= lim
ϵ→0

EX

[
cos

(
d(X, f + ϵg)

)]
− EX

[
cos

(
d(X, f)

)]
ϵ

= EX

[
lim
ϵ→0

cos(d(X, f + ϵg))− cos(d(X, f))

ϵ

]
= Eλ

[
E
[
lim
ϵ→0

Zϵ(X)
∣∣ λf (X) = λ

]]
= Eλ

[
E
[
ϕ(λ) ·X

∣∣ λf (X) = λ
]]

= Eλ

[
ϕ(λ) · E

[
X

∣∣ λf (X) = λ
]]

= Eλ

[
ϕ(λ) · cf(λ)

]
= 0.

To prove the converse, we assume that f satisfies

0 =
∂EX

[
cos

(
d(X, f + ϵg)

)]
∂ϵ

∣∣∣
ϵ=0

= lim
ϵ→0

EX

[
cos

(
d(X, f + ϵg)

)]
− EX

[
cos

(
d(X, f)

)]
ϵ

= EX

[
lim
ϵ→0

cos
(
d(X, f + ϵg)

)
− cos

(
d(X, f)

)
ϵ

]
= Eλ

[
E
[
lim
ϵ→0

Zϵ(X)
∣∣ λf (X) = λ

]]
= Eλ

[
E
[
ϕ(λ) ·X

∣∣ λf (X) = λ
]]

= Eλ

[
ϕ(λ) · E

[
X

∣∣ λf (X) = λ
]]
,

for any smooth curve h : [0, 1]→ SD. Since h is arbitrary, ϕ can become any vector

in Tf(λ)S
D. In addition, h is only concerned with ϕ. We thus obtain, for a.e. λ, the

following condition:

ϕ · E
[
X |λf (X) = λ

]
= 0 for any ϕ ∈ Tf(λ)S

D.

It means that E
[
X |λf (X) = λ

]
is orthogonal to Tf(λ)S

D. Therefore, it follows that

E
[
X |λf (X) = λ

]
= cf(λ)

for ∃c ≥ 0, which completes the proof.
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Proof of Theorem 2

Proof. In the case of f = h, the result is obvious. We thus assume that f and

f +g (= h) are not identical. Further, suppose that X ∈ Ac∩B(ζ) for a small ζ > 0

and λf (X) ∈ (0, 1) for a.e. X. As the proof of Theorem 1, we use the bounded

convergence theorem to change the order of derivative and expectation. For this

purpose, we define

Zϵ(X) =
d2(X, f + ϵg)− d2(X, f)

ϵ

=
d2(X, fϵ

(
λfϵ)

)
− d2

(
X, f(λf )

)
ϵ

,

where fϵ := f + ϵg for |ϵ| ≤ 1. Let θ(λ, X) be the angle between segments of

geodesics from f(λ) to X and from f(λ) to (f + g)(λ). Then, from Lemma 3, it

follows that

F (ϵ) := cos
(
d
(
X, fϵ(λfϵ)

))
=cos

(
d
(
X, f(λfϵ)

))
· cos

(
ϵ ∥g(λfϵ)∥

)
+ sin

(
d
(
X, f(λfϵ)

))
· sin

(
ϵ ∥g(λfϵ)∥

)
· cos

(
θ(λfϵ , X)

)
,

where ∥g(λ)∥ = d
(
f(λ), (f + g)(λ)

)
< π.

Firstly, we verify that Zϵ(X) is uniformly bounded for a small |ϵ| > 0. By

Lemma 5, there are constants C > 0 and η > 0 such that if 0 < |ϵ0| < η, then

λ(ϵ) is differentiable at ϵ = ϵ0 and
∣∣∂λ(ϵ)

∂ϵ

∣∣
ϵ=ϵ0

∣∣ < C, where λ(ϵ) = λfϵ(X). For

convenience, let λfϵ(X) = λϵ and λf (X) = λ0. If 0 < |ϵ0| < η, then by the triangle
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inequality on sphere and mean value theorem, we have

|Zϵ0(X)| =
∣∣∣∣∣d
(
X, fϵ0(λfϵ0

)
)
− d

(
X, f(λf )

)
ϵ0

∣∣∣∣∣ · (d(X, fϵ0(λfϵ0
)
)
+ d

(
X, f(λf )

))
≤ 2π ·

d
(
f(λ0), fϵ0(λϵ0)

)
ϵ0

≤ 2π ·
ï
d
(
f(λ0), f(λϵ0)

)
ϵ

+
d
(
f(λϵ0), fϵ0(λϵ0)

)
ϵ0

ò
< 2π ·

(
s · |λ0 − λϵ0 |

ϵ0
+ ∥g(λϵ0)∥

)
≤ 2π · (s · C + π),

where s = |f ′(λ)| for all λ. Therefore, Zϵ(X) is uniformly bounded on X ∈ Ac∩B(ζ)

for 0 < |ϵ| < η.

Secondly, we aim to find the limit of Zϵ(X). For this purpose, we define a map

u : (−1, 1] → (1,∞) by u(x) = arccos(x) · 1√
1−x2

if x ∈ (−1, 1), and u(1) = 1.

By simple calculations, u is a monotone decreasing continuous function on (−1, 1].

Note that F (ϵ) is differentiable for |ϵ| < η. By the mean value theorem to find the

limit of Zϵ(X), we have

Zϵ0(X) =
d2
(
X, fϵ0

(
λfϵ0

)
)
− d2

(
X, f(λf )

)
ϵ0

=
arccos2

(
F (ϵ0)

)
− arccos2

(
F (0)

)
ϵ0

= −2 arccos
(
F (ϵ1)

)
· 1√

1− F 2(ϵ1)
· dF (ϵ)

dϵ

∣∣∣
ϵ=ϵ1

(3.23)

for 0 < |ϵ1| < |ϵ0| < η. When F (ϵ1) = 1, the last equality is considered as a limit

that is well-defined, because limx→1 u(x) = 1 and u(x) is smoothly extended on an

open interval containing 1 such that u(x) is differentiable at x = 1. By applying

chain rule to the derivative of F , we obtain

lim
ϵ0→0

∂F (ϵ)

∂ϵ

∣∣∣
ϵ=ϵ0

= lim
ϵ0→0

[
sin

(
d
(
X, f(λfϵ0

)
))

· cos
(
θ(λfϵ0

, X)
)
·
(
∥g(λfϵ0

)∥+ ϵ0 ·
∂ ∥g(λfϵ)∥

∂ϵ

∣∣∣
ϵ=ϵ0

)]
− lim

ϵ0→0

[
sin

(
d
(
X, f(λfϵ0

)
))
·
∂d

(
X, f(λfϵ)

)
∂ϵ

∣∣∣
ϵ=ϵ0

]
.
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In addition,
∂ ∥g(λfϵ)∥

∂ϵ

∣∣∣
ϵ=ϵ0

=
∂ ∥g(λ)∥

∂λ

∣∣∣
λ=λfϵ0

∂λ(ϵ)

∂ϵ

∣∣∣
ϵ=ϵ0

,

which exists and does not diverge as ϵ0 → 0, since ∥g(λ)∥ = d
(
f(λ), (f + g)(λ)

)
is

continuously differentiable for λ and ∂λ(ϵ)
∂ϵ

∣∣
ϵ=0

is bounded by Lemma 5. Moreover,

lim
ϵ0→0

∂d
(
X, f(λfϵ)

)
∂ϵ

∣∣∣
ϵ=ϵ0

= lim
ϵ0→0

∂d
(
X, f(λ)

)
∂λ

∣∣∣
λ=λfϵ0

· ∂λ(ϵ)
∂ϵ

∣∣∣
ϵ=ϵ0

=
∂d

(
X, f(λ)

)
∂λ

∣∣∣
λ=λf

∂λ(ϵ)

∂ϵ

∣∣∣
ϵ=0

= 0,

where λ(ϵ) = λfϵ . The last equality is done by the definition of λf . We therefore get

lim
ϵ→0

∂F (ϵ)

∂ϵ
= ∥g(λf )∥ · cos

(
θ(λf , X)

)
· sin

(
d
(
X, f(λf )

))
. (3.24)

Thirdly, it follows from (3.23) and (3.24) that

lim
ϵ0→0

Zϵ0(X) = lim
ϵ1→0

[
− 2 arccosF (ϵ1) ·

1√
1− F 2(ϵ1)

· dF (ϵ)

dϵ

∣∣∣
ϵ=ϵ1

]
=− 2u

(
cos

(
d
(
X, f(λf )

)))
· ∥g(λf )∥ · cos

(
θ(λf , X)

)
· sin

(
d
(
X, f(λf )

))
(3.25)

=− 2d
(
X, f(λf )

)
· 1

sin
(
d
(
X, f(λf )

))
· ∥g(λf )∥ · cos

(
θ(λf , X)

)
· sin

(
d
(
X, f(λf )

))
(3.26)

=− 2d
(
X, f(λf )

)
· ∥g(λf )∥ · cos

(
θ(λf , X)

)
, (3.27)

In the case of d
(
X, f(λf )

)
= 0, the same result is obtained since both (3.25) and

(3.27) are zero. Thus, by Proposition 2, the equation (3.27) is established for a.e.

X ∈ B(ζ). Next, we notice that, for a smooth curve f , it can be shown that Mλ :=

{x ∈ S2 |λf (x) = λ} is a subset of the great circle perpendicular to f at f(λ) by

Lemma 1. Let Sλ be the great circle perpendicular to f at f(λ). That is, Mλ ⊂

Sλ
∼= S1. Moreover, a connected proper subset of Sλ is isometric to a line with the

same length in R, which makes the intrinsic mean on Mλ feasible. Note that if the

length is less than π/2, the intrinsic mean is unique. Thus, f is an intrinsic-type
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principal curve of X, by the definition of θ(λf , X) and cos(π− θ) = − cos(θ), if and

only if

E
[
d
(
X, f(λf )

)
· cos

(
θ(λf , X)

) ∣∣ λf (X) = λ
]
= 0, for a.e. λ.

By (3.27) and Lebesgue dominated convergence theorem,

∂EX

[
d2(X, f + ϵg)

]
∂ϵ

∣∣∣
ϵ=0

= lim
ϵ→0

[EX

[
d2(X, f + ϵg)

]
− EX

[
d2(X, f)

]
ϵ

]
= EX

[
lim
ϵ→0

d2(X, f + ϵg)− d2(X, f)

ϵ

]
= Eλ

[
E
[
lim
ϵ→0

Zϵ(X)
∣∣ λf (X) = λ

]]
= −2Eλ

[
E
[
d
(
X, f

(
λf (X)

))
·
∥∥g(λf (X)

)∥∥ · cos (θ(λf , X)
) ∣∣ λf (X) = λ

]]
= −2Eλ

[
∥g(λ)∥ · E

[
d
(
X, f

(
λf (X)

))
· cos

(
θ(λf , X)

) ∣∣ λf (X) = λ
)]]

= 0.

Conversely, we assume that

Eλ

[
∥g(λ)∥ · E

[
d
(
X, f

(
λf

))
· cos

(
θ(λf , X)

) ∣∣ λf (X) = λ
]]

= 0,

for all f + g (= h) such that ∥g∥ ≠ π and ∥g′∥ ≤ 1. It follows that

E
[
d
(
X, f(λf )

)
· cos

(
θ(λf , X)

) ∣∣ λf (X) = λ
]
= 0, for a.e. λ,

which is equivalent to that f is an intrinsic principal curve of X.

3.5 Concluding remarks

In this chapter, canonical principal curves are proposed for data on spheres. The

extrinsic and intrinsic perspectives are considered and the stationarity of the prin-

cipal curves is investigated, supporting that the proposed methods are a direct

generalization of the principal curves of Hastie and Stuetzle (1989) to spheres.
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For the data on spheres, both extrinsic and intrinsic approaches yield similar

performance. However, it is questionable whether the extrinsic approach on non-

homogeneous manifolds will still be efficient. For the spatially non-homogeneous

manifolds like a torus, the intrinsic approach may yield better performance due to

their inherency. Finally, the principal curve algorithm proposed in this study is a

top-down approach. It approximates the structure of data with an initial curve and

then gradually improves the estimation. However, for some data structures that are

divided into several pieces or containing intersections, the initial estimate (curve)

could significantly affect the final estimate. To cope with this limitation, it is worth

studying a bottom-up approach. The approach on manifold will be given in Chapter

6.
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Chapter 4

Robust spherical principal

curves

This chapter is based on a paper which is under revision with Pattern Recognition.

The chapter is organized as follows. The proposed robust method and its algorithm

are provided in Section 4.1. The theoretical property of the proposed method is

moreover provided in Section 4.2 and it rigorous proof is presented in Appendix

A.2. Numerical experiments, including simulation study and real data analysis, are

presented in Section 4.3. Conclusion and future work are finally given in Section

4.4.

4.1 The proposed robust principal curves

In practice, we denote a curve f by a sequence of T points, f = {C1, C2, . . . , CT }

joined by geodesic segments, as in Hastie (1984); Hastie and Stuetzle (1989); Hauberg

(2016); Lee et al. (2021a). Suppose that we observe a dataset D = {xi}ni=1. For each

point Ct, the weighted barycenter (intrinsic mean) of the dataset can be obtained

by the following optimization,

mt(D, f) = argmin
x∈M

n∑
i=1

wt, id
2(x, xi), t = 1, 2, . . . , T.
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Then Ct is replaced by mt(D, f) at each iteration in Algorithm 5.

Since the intrinsic mean is obtained by minimizing the sum of the squares of the

geodesic distances, the spherical principal curves by such an intrinsic way can be

sensitive to outliers. To overcome this problem, we consider the geometric median as

an alternative measure for the central tendency of data, rather than intrinsic mean

or extrinsic mean. Thus, we transform the expectation step of principal curves into

median step as follows,

mt(D, f) = argmin
x∈M

n∑
i=1

wt, id(x, xi), t = 1, . . . , T.

It is a sample version of the geometric median, as introduced in (2.6). Ct is then

updated by mt(D, f) at each iteration in Algorithm 5. The resulting curves pass

through the (geometric) median of given data. We now define an L1-type spherical

principal curve, by mimicking the definition of spherical principal curves (3.13), as

f(λ) = Median
[
X |λf (X) = λ

]
for a.e. λ, (4.1)

where Median denotes the geometric median.

4.1.1 Exact projection step on SD

Hauberg (2016) performed the projection step approximately, while Lee et al. (2021a)

used an accurate projection, resulting in smooth and elaborated curves. In this

study, we follow the exact projection step introduced in Lee et al. (2021a). The pro-

cedure of projection of x onto the curve f is as follows: (1) Find the projection point

of x to each geodesic segment of f , and (2) select the closest projection point. So, it

is sufficient to describe how to project a point into a one geodesic segment on SD.

Note that the geodesic distance on spheres is calculated by d(a, b) = arccos(a · b)

for a, b ∈ SD ⊂ RD+1, where · denotes the dot product in RD+1. For given u,

v, w ∈ SD ⊂ RD+1, we aim to identify the closest point of w on the geodesic seg-

ment joining u and v, say uv. The point is denoted as projuv(w). In the case of

u = v, obviously projuv(w) = u = v. If u = −v ∈ RD+1, the geodesic segment uv
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is not uniquely defined. Thus, the case (u · v)2 ̸= 1 is only considered. Note that if

v · w = w · u = 0, then a point x on uv is expressed by x = λu + ηv for λ, η ≥ 0

such that λ2 + η2 = 1. In this case, we obtain

d(w, x) = arccos(w · x) = arccos(λw · u+ ηv · w) = arccos(0) = π/2,

which means that the geodesic distance between a point on uv and w is π/2. In this

case, we can pick projuv(w) = λu+ ηv for appropriate λ, η ≥ 0, say, λ = η =
√
2/2.

Hence, we assume that u, v, and w do not hold the equation v · w = w · u = 0. Lee

et al. (2021a) showed that

projuv(w) =

proj(w), if I ≥ 0

argminy∈{u, v} d(w, y), if I < 0,

where I = −(u− proj(w)) · (v − proj(w)) and

proj(w) =
(w · u− (u · v)(v · w))u+ (v · w − (u · v)(w · u))v
∥(w · u− (u · v)(v · w))u+ (v · w − (u · v)(w · u))v∥

.

Then, the distance between w and uv can be calculated as

d(w, uv) := d(w, projuv(w)) = arccos(w · projuv(w)). (4.2)

For detailed description and justification, refer to Lee et al. (2021a,b).

4.1.2 Median step on SD

The technical details of the median step follow the expectation step of principal

curves (Hastie and Stuetzle, 1989; Lee et al., 2021a; Hauberg, 2016); that is, each

point of the current curve is updated with the weighted geometric median at each

iteration in Algorithm 5. Kernel smoothing can be used to produce stable curves.

Suppose that we have n observations D = {xi}ni=1 and the corresponding projection

indices {λf (xi)}ni=1. For each iteration, the tth point of the principal curve, say Ct, is

replaced with the weighted geometric median of neighborhood data. In this chapter,

the quartic kernel function k(λ) = (1−λ2)2I(|λ| ≤ 1) is applied to obtain the weight
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of each data point with respect to Ct. The larger the distance between Ct and the

projection point of xi onto f along with the curve f , the smaller weight is given

to xi. The weight of xi is defined as wt, i = k(|λf (Ct) − λf (xi)|/q). The weighted

geometric median of data points,

mt(D, f) = argmin
x∈SD

n∑
i=1

wt, id(x, xi), t = 1, 2, . . . , T

can be obtained by Algorithm 1.

4.1.3 L1-type principal curves

In this section, we propose an L1-type robust principal curve and its practical al-

gorithm based on the principle of self-consistency that is a fundamental concept

in statistics covering EM algorithm (Dempster et al., 1977), K-means clustering,

and self-organizing map (Kohonen, 1990), as noted in Flury and Tarpey (1996).

The key idea of this principle is to estimate a fixed point of (4.1). To this end,

the strategy is to iterate the projection and median steps described in Sections

4.1.1 and 4.1.2 for a candidate curve to satisfy (4.1). Specifically, for an initial-

ized curve f0, f1 = Median[X |λf0(X) = λ] is obtained through the first iter-

ation of the projection and median steps. Through the second iteration, we ob-

tain f2 = Median[X |λf1(X) = λ]. Recursively, for the i−th curve f i, we obtain

f i+1 := Median[X |λf i(X) = λ]. We repeat this procedure for i ∈ N until conver-

gence. The converged curve f satisfies f = Median[X |λf (X) = λ] for any λ that

is the definition of L1-type principal curve. The proposed algorithm for L1-type

principal curve is as follows:

Let f = {C1, C2, . . . , CT } be a curve, joined by geodesic segments in sequence,

and x ∈ D be a data point. For each projection step of the above algorithm, we

apply (4.2) to each geodesic segment CiCi+1 in order to find the exact projec-

tion of x onto f . Formally, by the definition of λf (x), we have d(x, f(λf (x))) =

min1≤i≤T−1 d(x, CiCi+1). Thus, for each x ∈ D, the projection of x onto f is ob-

tained by

f(λf (x)) = projCjCj+1
(x),
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Algorithm 5: L1-type spherical principal curves

1 - Initialize curve f = {C1, C2, . . . , CT }. ;

2 - Parameterize f with unit interval [0, 1] by some constant speed. ;

3 - Calculate λf (xi) in (3.6) for 1 ≤ i ≤ n. ;

4 - Calculate errors δ(D, f) =
∑n

i=1 d(xi, f(λf (xi))). ;

5 while (∆δ(D, f) ≥ threshold) do

6 - (Median step) Ct ← mt(D, f) = argminx∈SD

∑n
i=1wt, id(x, xi) for

1 ≤ t ≤ T . ;

7 - Reparameterize f with unit interval [0, 1] by some constant speed. ;

8 - (Projection step) Calculate λf (xi) for 1 ≤ i ≤ n. ;

9 - Calculate δ1(D, f) =
∑n

i=1 d(xi, f(λf (xi))). ;

10 end

where j = argmin1≤i≤T−1 d(x, CiCi+1). In addition, we calculate the δ1(D, f) using

(4.2) for each iteration of the above algorithm; that is, for each x ∈ D, we have

d(x, f(λf (x))) = d(x, projCjCj+1
(x)) = arccos(x · projCjCj+1

(x)).

The reconstruction error δ1(D, f) is obtained by the sum over x ∈ D, which is

related to the stopping condition of Algorithm 5. We iterate projection (P) and

median (M) steps until the relative change of δ1(D, f) =
∑n

i=1 d(xi, f) is below a

certain threshold (e.g., 0.01 in our experiments). The relative change of δ1 is defined

as |δ1(D, f i+1) − δ1(D, f i)|/δ1(D, f i). Note that δ1(D, f) is a sample version of

L1-type energy functional EX

[
d(X, f)

]
. This stopping condition comes from the

consequence of Theorem 3 in Section 4.2.

We remark that as in most conventional principal curves (Hastie and Stuetzle,

1989; Hauberg, 2016; Kégl et al., 2000; Einbeck et al., 2005; Ozertem and Erdogmus,

2011), the convergence property of the proposed method cannot be guaranteed. The

L1-type principal curve is a fixed point of Algorithm 5, and if Algorithm 5 converges,

the resulting curve satisfies the sample version of (4.1). In our experiments given

in Section 4.3, the proposed algorithm converges at least empirically. Furthermore,
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the L1-type principal curves obtained from Algorithm 5 are resistant to outliers,

as shown in Figure 4.1. However, the L1-type principal curve sometimes produces

an unwelcomed non-smooth curve, as, at each median step, the central points are

found by the L1-absolute loss that is singular at zero. It is a well-known property

of “median,” reported by several works of literature (Tukey, 1977; Arias-Castro

and Donoho, 2009). For example, in the fields of time series analysis, signal, and

image processing, the moving average (linear) filter smoothes out the sharp edges

of the interpolating curve of data, while the moving median filter preserves the

edges, as described in Justusson (1981); Petrus (1999). In the current study, the

edge-preserving property of the median would be problematic if it is aimed to find

a curve that smoothly represents the dataset. It motivates the Huber-type principal

curves. Finally, we initialize a principal curve by a circle that minimizes the sum of

squares of the distances from data on SD. A detailed description of the circle and

its algorithm is given in Lee et al. (2020) and Appendix B of Lee et al. (2021b).

Several methods are available for initial circles. For more details, refer to Jung et al.

(2012) or Section 4.1.2 in Hauberg (2016).

4.1.4 Huber-type principal curves

To define Huber-type principal curves, we consider the Huber loss function (Huber,

2004) defined as

ρ(t) =

t2, if |t| ≤ c

c(2|t| − c), if |t| > c,

where c > 0 is a cutoff value. This function can be considered as a mixture of L1

and L2 functions since it becomes the L1 or L2 functions as c goes to zero or infinity,

respectively.

In analogy, a Huber-type criterion on a manifold, h : M → R, can be defined as

h(x) = 1
2

∑n
i=1wiρ(d(x, xi)). The Huber-type centroid (Ilea et al., 2016) is defined
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as a minimizer of h. Namely, the Huber-type centroid is any

argmin
m∈M

n∑
i=1

wiρ(d(m, xi)), (4.3)

where wi denote nonnegative weights of xi with
∑n

i=1wi > 0. Note that the Huber-

type centroid goes to the geometric median as c→ 0, and goes to the barycenter as

c→∞. To find the Huber-type centroid, we obtain the derivative of h as

∇h(x) =
n∑

i=1

logx(xi)I(d(x, xi) ≤ c) + c · logx(xi)

∥ logx(xi)∥
I(d(x, xi) > c) ∈ TxM.

Using a gradient descent method, we have an algorithm for finding a Huber-type

centroid as follows:

Algorithm 6: Huber-type centroid on manifold

1 For a given dataset {xi}ni=1 ∈M and their nonnegative weights {wi}ni=1

with
∑n

i=1wi = 1, set an initial value as m1 = x1. ;

2 while (∆m ≥ threshold) do

3 - ∆m =
∑n

i=1

[
wi logmk

(xi)I(d(x, xi) ≤ c) + cwi logx xi

∥Logx(xi)∥I(d(x, xi) > c)
]
;

4 - mk+1 = expmk
(∆m) ;

5 end

In extensive experiments in Section 4.3, the algorithm converges for c > 0. That

is, the algorithm at least empirically converges. However, it needs to prove the exis-

tence and uniqueness of Huber-type centroid for localized data and the convergence

properties of the Algorithm 6, as in Fletcher and Joshi (2007). The algorithm for

the Huber-type principal curves is the same as that for the L1-type principal curves

(Algorithm 5), except for the median step and the stopping condition. That is, the

geometric median is replaced with the Huber-type measure

mt(D, f) = argmin
x

∑
i

wt, iρ(d(x, xi)), t = 1, 2, . . . , T.

Similarly, the algorithm for estimating the Huber-type principal curves is termi-

nated when the relative change of a reconstruction error, defined as |δ2(D, f i+1)−
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δ2(D, f i)|/δ2(D, f i), is less than a threshold, where δ2(D, f) :=
∑n

i=1 ρ(d(xi, f))

is a sample version of the Huber-type energy functional EX

[
ρ
(
d(X, f))

]
, which is

a connection to consequence of Theorem 4 in Section 4.2. Note that, by using the

Huber loss, the edge-preserving property of “median”, explained in Section 4.1.3,

is relieved as illustrated later in Figure 4.1c and Figure 4.1d in Section 4.3. Intu-

itively, for some constant t with t ≈ 0 and 0 < t < c, we have ρ(t) = t2 ≪ t = L1(t)

where L1(t) = |t|. In this respect, under a new observation, the solution of (4.3)

tends to less shrink to the location of the observation, compared to that of (2.6).

Consequently, the non-singularity of Huber loss at zero usually causes a more softer

and stable curves.

4.1.5 Roles and effects of parameters T, q, and c on fitted curves

There are several parameters related to the proposed algorithms. T is the number

of points constituting the resulting curve. Through our extensive experiments, T

has little effect on the performance of the proposed methods unless T is too small. q

plays the same role as the bandwidth does in kernel regression. The roles and effects

of T and q on the fitted curves are very similar to the original spherical principal

curves Lee et al. (2021a). For the influence of T and q on the fitted principal curves,

refer to Section 3.3.2 or Appendix D in Lee et al. (2021b).

The performance of the Huber-type principal curves changes as the predeter-

mined parameter c varies. The L1-type principal curves induced by c = 0 are less

affected by outliers, but they are coarser than the ordinary spherical principal curves

under the same data structure. As the value of c increases, the Huber-type princi-

pal curves become smoother but gradually loosen their robustness. Thus, the cutoff

value c controls the trade-off between the smoothness and robustness of the fitted

curve. Note that Figure 4.1e and Figure 4.3e in Section 4.3 show the effect of c

on the fitted curves. From this perspective, the Huber-type principal curves can

be considered as a generalization of the two methods. For the choice of c, we use

c = 0.1 in our experiments. Alternatively, it can be chosen in an objective way, such
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as cross-validation. Finally, in the experiments in Section 4.3, the above algorithm

converges on spheres for c > 0. In other words, the proposed algorithm converges

at least empirically. However, it is necessary to study the existence and uniqueness

of the Huber-type measure for localized data and the convergence properties of

Algorithm 6, as in Fletcher et al. (2009); Afsari (2011). It is left for future research.

4.2 Stationarity of robust spherical principal curves

In this section, we aim to provide the theoretical properties of the proposed methods.

It can be shown that f+ϵg : [0, 1]→ SD is differentiable for λ. (See Proposition 1 in

Section 3.4). Note that the definition of ϵ-perturbation, f+ϵg, coincides with that of

Euclidean case because geodesics on Euclidean space are straight lines. ∥g′∥ is also

defined by mimicking the Euclidean case as shown in Section 3.4. The properties of

stationarity of L1-type and Huber-type principal curves are then as follows.

Theorem 3. Under (A1) − (A3) with D = 2, f is a L1-type principal curve of X

if and only if
∂EX

[
d(X, f + ϵg)

]
∂ϵ

∣∣∣
ϵ=0

= 0, (4.4)

for any f + g with ∥g∥ < π and ∥g′∥ ≤ 1.

Proof. See Appendix A.2.

Theorem 4. Under (A1)− (A3) with D = 2, f is a Huber-type principal curve of

X if and only if
∂EX

[
ρ
(
d(X, f + ϵg)

)]
∂ϵ

∣∣∣
ϵ=0

= 0, (4.5)

for any f + g with ∥g∥ < π and ∥g′∥ ≤ 1.

Proof. See Appendix A.2.

It can be shown that the area of SD \ B(ζ) → 0 as ζ → 0. (For a proof, see

Lemma 4). Thus, the assumption (A2) in Theorems 3 and 4 is almost negligible for
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arbitrarily small ζ > 0. Theorems 3 and 4 respectively state that f is a robust prin-

cipal curve if and only if f is a stationary (critical) point of the energy functionals,

EX [d(X, f)] and EX [ρ
(
d(X, f)

)
], under the ϵ-perturbation f + ϵg for ϵ ∈ [−1, 1].

The stationarity property of the proposed curves on SD for D ≥ 3 remains as future

work.

The consequences of Theorems 3 and 4 are related to the stopping condition

of algorithms for estimating L1- and Huber-type principal curves. The reconstruc-

tion errors δ1(D, f) =
∑n

i=1 d(xi, f) and δ2(D, f) =
∑n

i=1 ρ(d(xi, f)), defined on

Sections 4.1.3 and 4.1.4, are sample versions of the energy functionals, EX [d(X, f)]

and EX [ρ(d(X, f))], respectively. The relative changes of δ1 and δ2 approximately

correspond to (4.4) and (4.5), respectively. Therefore, the proposed algorithms are

terminated when the relative changes of the errors are below a certain threshold to

obtain the robust principal curves.

We note that the stationarity of the principal curves in Euclidean space sup-

ports that the original principal curve (Hastie, 1984; Hastie and Stuetzle, 1989) is a

nonlinear generalization of the principal component. The stationarity of (4.4) and

(4.5) along the lines of Hastie (1984); Hastie and Stuetzle (1989); Lee et al. (2021a)

justifies that the L1 and Huber-type principal curves are proper extensions of the

principal curves. Moreover, it is noteworthy that the stationarity property of the

principal curves on Euclidean space is a path-breaking theorem of the curves, which

produces numerous variations of principal curves methods. For example, these in-

clude bias-corrected principal curves (Banfield and Raftery, 1992; Tibshirani, 1992;

Kégl et al., 2000), probabilistic approaches (Tibshirani, 1992; Stanford and Raftery,

2000; Chang and Ghosh, 2001), principal curves and surfaces generalizing total vari-

ance (Delicado, 2001), density estimation approaches (Einbeck et al., 2005; Ozertem

and Erdogmus, 2011), curves constructed by bottom-up ways (Kégl et al., 2000; Ein-

beck et al., 2005; Liu et al., 2017), and curves capable of identifying complex data

(Einbeck et al., 2005; Ozertem and Erdogmus, 2011; Wang and Lee, 2008; Zhang

et al., 2013).

Before closing this section, we remark that the robust principal curves are defined
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in a “almost everywhere” sense, instead of “everywhere”. For instance, we define

the notion of L1-type principal curves if f satisfies

f(λ) = Median[X |λf (X) = λ] for “a.e.” λ.

The condition of “almost everywhere” is related to our theoretical results. This

condition is necessary to make Theorems 3 and 4 “if and only if”. Specifically, if we

define the principal curve as f(λ) = Median[X |λf (X) = λ] for “any” λ, then the

“only if” part is still proved in Theorems 1 and 2, that is, if f is a L1-type principal

curve, then it can be shown that the stationarity,

∂E[d(X, f + ϵg)]

∂ϵ

∣∣∣∣
ϵ=0

= 0. (4.6)

However, the “if” part cannot be proven. Formally, if f satisfies the stationarity

of (4.6), then f should be f(λ) = Median[X |λf (X) = λ] for “a.e.” λ. Therefore,

the condition “almost everywhere” cannot be excluded. For the same reason, Hastie

Hastie (1984) and Hastie and Stuetzle Hastie and Stuetzle (1989) defined the prin-

cipal curves in “almost everywhere” way.

4.3 Numerical experiments

4.3.1 Simulation study on S2

In this section, we conduct a simulation study to evaluate the performances of

the proposed robust principal curves. To compare the ordinary spherical principal

curves and the proposed methods, we consider two types of data on S2, circular and

waveform data.

We generate a circular dataset on S2, which is formed of (r = 1, θ, ϕ) with

ϕ = π/4, where 0 ≤ θ < 2π and 0 ≤ ϕ < π denote azimuth and polar angles in the

spherical coordinates, respectively. Observations of n = 200 data are generated by

sampling θ uniformly in [0, 2π) and adding random noises from Cauchy(0, 0.05) on

ϕ. Figure 4.1 shows a realization (blue dots) of simulated dataset with the true curve

(solid red) and the fitting results by the ordinary spherical principal curves (SPC)
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and the proposed methods (L1- and Huber-type) with q = 0.1 and T = 100. As

one can see, the proposed curves are less influenced by outliers; thus, they represent

the underlying structure efficiently, compared to the conventional spherical principal

curve in panel (b) damaged by outliers. The Huber-type principal curve is smoother

than the L1-type curve, as described in Section 4.1.3. Furthermore, from the results

in panel (e), we observe that the Huber-type principal curve yields several results

over different c = 0.03, 0.1, 0.2, 0.3, and 0.5, which cover L1 and L2 fits.

(a) (b) (c)

(d) (e)

Figure 4.1: Simulated circular data with outliers (blue) and the resulting curves:

(a) true circular curve, (b) extrinsic spherical principal curve, (c) L1-type principal

curve, (d) Huber-type principal curve with c = 0.1, and (e) Huber-type principal

curves with c = 0.03, 0.1, 0.2, 0.3 and 0.5 (from yellow to brown). The proposed

methods are implemented with q = 0.1 and T = 100.

Next, we consider waveform data, as in Lee et al. (2021a); Liu et al. (2017);

Panaretos et al. (2014), which are formed of ϕ = α sin(θf) + π
6 , where α and f

denote amplitude and frequency of the wave, respectively. In the case of α = 0,

the waveform becomes a circle with radius 1/2 on the unit 2-sphere. We generate
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n = 200 data points by sampling θ uniformly in [0, 2π) and adding random noises

from Gaussian mixture 0.7N(0, 0.022) + 0.3N(0, 0.32) on ϕ. Figure 4.2 shows a

realization (blue dots) of simulated dataset with f = 4 and α = 0.2, the under-

lying curve marked by solid red, and the fitting results by the ordinary spherical

principal curves proposed by (Lee et al., 2020, 2021a) (SPC), principal geodesic

analysis (Fletcher et al., 2004) (PGA), principal nested spheres (Jung et al., 2012)

(PNS), and the proposed methods (L1- and Huber-type). For implementation of

the proposed methods, we use q = 0.05 and T = 100. As shown in Figure 4.2, the

proposed L1-type and Huber-type principal curves are capable of identifying the

true structure of data well with retaining their resistance to outliers, compared to

the others. Note that SPC in extrinsic and intrinsic ways provides similar results,

and SPC outperforms the principal curves proposed by Hauberg (2016) in terms

of reconstruction error. So, we only consider SPC in the extrinsic way. For more

information, see Lee et al. (2021a). To evaluate the performance of each method,

the reconstruction error
∑n

i=1 d
2
(
xi, f̂(λf̂ (x̃i))

)
is defined as an evaluation measure,

where {xi}ni=1, {x̃i}ni=1, and f̂ denote true points of population curve, noisy data

points, and the fitted curve, respectively. We generate n = 100 waveform data points

with f = 2, 4 and α = 0.2. Three noise types are considered as N(0, 2σ2), contam-

inated Gaussian mixtures 0.9N(0, 0.052) + 0.1N(0, 16σ2), and t-distribution with

degrees of freedom three, i.e., σ · t(3), where σ = 0.07 and 0.1. The proposed meth-

ods and spherical principal curves (SPC) are implemented with q = 0.03, 0.05, 0.07,

T = 50, and c = 0.1. For each combination of noise type, f , σ and q, we generate

waveform data points with size n = 100 and then compute the reconstruction error

by each method. Over 50 simulation data sets, Table 4.1 lists the average values

of the reconstruction errors and their standard deviations. In Table 4.1, we make

several observations: (a) SPC and the proposed methods provide similar results for

Gaussian noise errors. (b) When random noises occur in contaminated Gaussian

mixtures or t-distribution, the proposed L1-type and Huber-type principal curves

outperform others. (c) In all cases, SPC and the proposed methods are superior to

PGA and PNS.
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4.3.2 Simulation study on S4

This section conducts a simulation study on S4. For a point x = (x1, x2, x3, x4) ∈

S4 ⊂ R5, it can be parameterized by spherical coordinates, as x1 = cos(φ1), x2 =

sin(φ1) cos(φ2), x3 = sin(φ1) sin(φ2) cos(φ3), x4 = sin(φ1) sin(φ2) sin(φ3) cos(φ4),

and x5 = sin(φ1) sin(φ2) sin(φ3) sin(φ4) where φ1, φ2, φ3, and φ4 are angular coor-

dinates with φ4 ∈ [0, 2π) and the others ranging over [0, π). For our analysis, we

consider a simulated waveform dataset on S4 which is formed of ϕ1 = ϕ2 = ϕ3 =

α sin(ϕ4f) +
π
4 . When α = 0, the waveform becomes a one-dimensional circle with

radius
√
2/4 on the unit 4-sphere. Two noise types are considered as N(0, σ2) and

t-distribution with degrees of freedom three, i.e., σ · t(3), where σ = 0.03. We gen-

erate a dataset with size n = 200, α = 0.1 and f = 3, by sampling ϕ4 uniformly in

[0, 2π) and adding random noises from N(0, σ2) or σ · t(3) on ϕ1, where σ = 0.03.

Each method with q = 0.005, 0.007, 0.02, and T = 100 is applied to the dataset.

Over 50 simulation data sets, Table 4.2 lists the averages of reconstruction errors

defined on Section 4.3.1 and their standard deviations. As listed, we observe several

features: (a) SPC and the proposed methods provide similar results for Gaussian

noise errors. (b) When random noises occur in the t-distribution that is a heavy-

tailed distribution, the proposed L1- and Huber-type principal curves outperform

SPC, which implies that the proposed methods are more resistant to outliers. (c)

The L1-type principal curves appear to work slightly better than the Huber-type

principal curves for t-distributed noise errors.

Figure 4.3 shows the original motion capture data, the artificially contaminated

data, and the fitting results by SPC and the proposed methods. As shown, SPC

in Figure 4.3b is significantly distorted after the corruption, while the proposed

L1-type principal curve is less affected by the outliers, but somewhat rougher, as

shown in Figure 4.3c. The proposed Huber-type principal curve with c = 0.1 in

Figure 3(d) appears to be smooth with preserving robustness. In addition, Figure

4.3e shows several fitting results by the Huber-type principal curve according to

different c = 0.03, 0.1, 0.2, 0.3 and 0.5, ranging over L1 and SPC fits.
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Table 4.2: Averages of reconstruction errors and their standard deviations in the

parentheses by each method with T = 100 in waveform simulated data on S4

Noise type Method q = 0.005 q = 0.007 q = 0.02

N(0, σ2)

SPC (extrinsic) 0.372 (0.297) 0.317 (0.218) 0.401 (0.160)

Proposed (L1) 0.382 (0.461) 0.281 (0.259) 0.439 (0.304)

Proposed (Huber) 0.371 (0.561) 0.251 (0.228) 0.487 (0.386)

σ · t(3)

SPC (extrinsic) 0.563 (1.072) 0.661 (1.041) 0.766 (1.133)

Proposed (L1) 0.452 (0.657) 0.437 (0.571) 0.512 (0.751)

Proposed (Huber) 0.534 (0.997) 0.526 (1.023) 0.585 (0.542)

4.3.3 Real data analysis: motion capture data

In application, we consider motion capture data of a person walking in a periodic

pattern used in Lee et al. (2021a); Mallasto and Feragen (2018); Ionescu et al.

(2011, 2014); Hauberg (2016). The dataset represents the direction of the person’s

left femur and thus lie on S2. This dataset contains 338 observations {xi}338i=1 with

a circular pattern. To quantify the performance of each method, we artificially con-

taminate the data by generating 30 outliers from the original data points, as shown

in Figure 4.3. The contaminated data are denoted as {x̃i}338i=1. Unlike simulation

studies, the true structure of the real data is not available. Therefore, a spherical

principal curve with T = 300 and q = 0.1 is applied to the original (uncontami-

nated) data as a baseline curve, and the fitted curve in Figure 4.3a can be considered

as a pseudo-true structure of the data, denoted by f0.

To further evaluate the robustness of each method, we consider the following

reconstruction error for a fitted curve f̂ as

338∑
i=1

d2
(
f0(λf0(x̃i)), f̂(λf̂ (x̃i))

)
,

which measures how far f̂ deviates from the pseudo-true structure f0 in the presence

of outliers. We apply SPC and the proposed methods with q = 0.1, 0.12, 0.15, and, 0.17
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Table 4.3: Reconstruction errors by each method with T = 300 in the contaminated

motion capture data

q = 0.1 q = 0.12 q = 0.15 q = 0.17

SPC (extrinsic) 7.990 4.569 3.509 3.409

Proposed (L1) 0.641 0.583 0.623 0.639

Proposed (Huber) 0.753 0.539 0.567 0.635

to the contaminated data and compute the reconstruction errors. As listed in Table

4.3, the proposed methods are superior to SPC and both proposed methods provide

comparable results.

4.4 Summary and future work

In this chapter we have proposed robust principal curves for nonparametric dimen-

sionality reduction on spheres. For this purpose, we have considered L1-type and

Huber-type principal curves. The Huber-type principal curves can be considered as

a generalization of the L1-type principal curves and conventional L2-type principal

curves. Numerical experiments, including simulation studies and real data analysis,

demonstrate that the proposed methods are resistant to outliers; thus, they are more

capable of extracting true structures of data than other methods. For a theoretical

aspect, we have investigated the stationarity of the robust principal curves, which

is a theoretical justification that the proposed methods are a proper extension of

the conventional principal curves Hastie and Stuetzle (1989); Lee et al. (2021a).

As future work, the proposed L1- and Huber-type principal curves can be ex-

tended into model spaces such as hyperbolic space HD and RD and other mani-

folds, including space of symmetric positive definite matrices (SPD) and product

space of spheres such as torus or polyspheres (product of spheres), by modifying

the projection step of the proposed algorithms. In the empirical studies in Sec-
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tion 4.3, the Huber-type centroid appears to have a mixed property of the intrinsic

mean (barycenter) and the geometric median. Therefore, it is necessary to deeply

investigate the Huber-type centroid itself, such as the existence, uniqueness, and

convergence of related algorithm, as in Yang (2010); Afsari (2011). Finally, the pro-

posed principal curves go through the median of a given data. To explore the hidden

structures of the data, it is worth considering the principal curves that pass through

quantile, M -quantile, or expectile of a given data. We believe that this extension

provides more fruitful information beyond the centrality of the data.
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Figure 4.2: From left to right and top to bottom, contaminated waveform data (blue)

and population curve (red), principal geodesic analysis, principal nested sphere,

spherical principal curve obtained by an extrinsic way, L1-type principal curve and

Huber-type principal curve. The last three methods are implemented with q = 0.05

and T = 100. Huber-type is additionally implemented with c = 0.1.
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(a) (b)

(c) (d)

(e)

Figure 4.3: (a) Motion capture real data and a pseudo-true curve obtained by spher-

ical principal curve. (b)-(d) Contaminated motion capture data and fitted results by

spherical principal curve, the L1-type principal curve, and the Huber-type principal

curve with c = 0.1. (e) The fitted results by the Huber-type principal curves with

c = 0.03, 0.1, 0.2, 0.3 and 0.5 (from yellow to brown). The proposed method are

implemented with q = 0.1 and T = 300.
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Chapter 5

spherepc: An R package for

dimension reduction on a sphere

This chapter is based on Lee et al. (2022a) which has been published in R Journal,

14(1), 167-181. The purpose of this chapter is to introduce an R package spherepc

that considers several dimension reduction techniques on a sphere, which encom-

pass recently developed approaches such as SPC and LPG as well as some existing

methods, and discuss how to implement these methods through spherepc.

In recent times, Lee et al. (2021a) proposed a new method, termed spherical prin-

cipal curves (SPC), that constructs principal curves, ensuring a stationary property

on spheres. SPC is useful for representing circular or waveform data with smaller

reconstruction errors than conventional methods, including principal geodesic anal-

ysis (Fletcher et al., 2004), exact principal circle (Lee et al., 2021a), and principal

curves proposed by Hauberg (2016). However, SPC has the disadvantage of being

sensitive to initialization. As a result, there are some data structures that SPC does

not apply to, for example, data with spirals, zigzag, or branches like tree-shape. To

resolve such a problem, a localized version of SPC, called local principal geodesics

(LPG), is being developed. A function for LPG is also provided in the package

spherepc. Research on the LPG is underway progress.

This chapter is organized as follows. Section 5.1 introduces the existing meth-
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ods for dimension reduction on the sphere and relevant functions covered in the

package spherepc, which is available on CRAN. Furthermore, their usages are dis-

cussed with examples in detail. Spherical principal curves proposed by Lee et al.

(2021a) and principal curves of Hauberg (2016) are briefly described. In addition,

implementations of the SPC() and SPC.Hauberg() functions in the spherepc are

presented. Section 5.3 discusses local principal geodesics (LPG) with implementing

it to various simulated data, demonstrating its promising usability. In Section 5.4,

all the mentioned methods are performed for analysis of real seismological data.

Finally, conclusions are given in last section.

5.1 Existing methods

5.1.1 Principal geodesic analysis

Principal geodesic analysis (PGA) proposed by Fletcher et al. (2004) can be regarded

as a generalization of principal component analysis (PCA) to Riemannian manifolds.

Fletcher et al. (2004) particularly performed dimension reduction of data on the

Cartesian product space of the manifolds. In detail, the data are projected onto the

tangent spaces at the intrinsic means of each component of the manifolds; thus, the

given data are approximated as points on Euclidean vector space, and subsequently,

PCA is applied to the points. As a result, the dimension reduction can be performed

through the inverse of the tangent projections. For more details, see Fletcher et al.

(2004).

The principal geodesic analysis can be implemented by the PGA() function avail-

able in the spherepc. The detailed usage of the PGA() function is described as

follows.

PGA(data, col1 = "blue", col2 = "red")

Before using the PGA() function, it requires loading the packages rgl (Adler and

Murdoch, 2020), sphereplot (Robotham, 2013), and geosphere (Hijmans et al.,

2017). The following codes yield an implementation of the PGA() function.
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#### for all simulated datasets, longitude and latitude

#### are expressed in degrees

#### example 1: half-great circle data

> circle <- GenerateCircle(c(150, 60), radius = pi/2, T = 1000)

> sigma <- 2 # noise level

> half.circle <- circle[circle[, 1] < 0, , drop = FALSE]

> half.circle <- half.circle + sigma * rnorm(nrow(half.circle))

> PGA(half.circle)

#### example 2: S-shaped data

# the dataset consists of two parts: lon ~ Uniform[0, 20],

# lat = sqrt(20 * lon - lon^2) + N(0, sigma^2),

# lon ~ Uniform[-20, 0], lat = -sqrt(-20 * lon - lon^2) + N(0, sigma^2)

> n <- 500

> sigma <- 1 # noise level

> lon <- 60 * runif(n)

> lat <- (60 * lon - lon^2)^(1/2) + sigma * rnorm(n)

> simul.S1 <- cbind(lon, lat)

> lon2 <- -60 * runif(n)

> lat2 <- -(-60 * lon2 - lon2^2)^(1/2) + sigma * rnorm(n)

> simul.S2 <- cbind(lon2, lat2)

> simul.S <- rbind(simul.S1, simul.S2)

> PGA(simul.S)

Because a principal geodesic always is a great circle, the PGA() function is suitable

for identifying the global trend of data. The implementations to half-circle and

S-shaped data are displayed in Figure 5.1, where the principal geodesic properly

extracts the global trends in the half-great circle and S-shaped data, while it cannot

identify the circular variations in the S-shaped case. In addition, the arguments and

outputs of the PGA() function are described in Tables 5.1 and 5.2.
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Figure 5.1: From left to right, half-great circle and S-shaped data (blue) and the

results (red) of principal geodesic analysis (PGA). The principal geodesic detects

the global trends of the noisy half-great circle and the S-shaped data but cannot

identify the circular variation of the S-shaped data.

Argument Description

data matrix or data frame consisting of spatial locations with two columns.

Each row represents longitude and latitude (denoted by degrees).

col1 color of data. The default is blue.

col2 color of the principal geodesic line. The default is red.

Table 5.1: Arguments of the PGA()

Output Description

plot plotting of the result in 3D graphics.

line spatial locations (longitude and latitude by degrees) of points in the

principal geodesic line.

Table 5.2: Outputs of the PGA()
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5.1.2 Principal circle

In a spherical surface, as shown in Figure 5.1, the principal geodesic analysis always

results in a great circle, which cannot be sufficient to identify the non-geodesic

structure of data. The circle on a sphere that minimizes a reconstruction error is

called principal circle, where the reconstruction error is defined as the total sum

of squares of geodesic distances between the circle and data points. However, the

existing method for generating the principal circle is still based on the tangent space

approximation and its inverse process, thereby leading to numerical errors. Lee et al.

(2021a) have proposed an exact principal circle in an intrinsic way and its practical

algorithm based on gradient descent. The details are described in Section 3 of Lee

et al. (2020) and Appendix B of Lee et al. (2021b). The spherepc package provides

the PrincipalCircle() function to implement the intrinsic principal circle. Its usage is

followed by

PrincipalCircle(data, step.size = 1e-3, thres = 1e-5, maxit = 10000).

Argument Description

data matrix or data frame consisting of spatial locations (longitude and

latitude denoted by degrees) with two columns.

step.size step size of gradient descent algorithm. For convergence of the al-

gorithm, step.size is recommended to be below 0.01. The default is

1e-3.

thres threshold of the stopping condition. The default is 1e-5.

maxit maximum number of iterations. The default is 10000.

Table 5.3: Arguments of the PrincipalCircle()

The arguments of the PrincipalCircle() are described in Table 5.3, and its output

is a three-dimensional vector, where the first and second components are longitude

and latitude (represented by degrees) respectively. The last one is the radius of
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the principal circle. To display the circle, the GenerateCircle() function should be

implemented. Its usage is followed by

GenerateCircle(center, radius, T = 1000).

The output of the GenerateCircle() function is a matrix consisting of spatial locations

(longitude and latitude by degrees) with two columns, which can be plotted by the

sphereplot::rgl.sphgrid() and sphereplot::rgl.sphpoints() functions from the sphere-

plot package (Robotham, 2013). Note that the sphereplot package depends on

the rgl package (Adler and Murdoch, 2020). The detailed arguments of the Gener-

ateCircle() function are described in Table 5.4.

Argument Description

center center of circle with spatial locations (longitude and latitude denoted

by degrees).

radius radius of circle. It should be range from 0 to π.

T the number of points that make up a circle. The points in a circle

are equally spaced. The default is 1000.

Table 5.4: Arguments of the GenerateCircle()

The following codes implement principal circles by using the PrincipalCircle()

and GenerateCircle() functions.

#### for all the following examples, longitude and latitude

#### are denoted by degrees

#### example 1: half-great circle data

> circle <- GenerateCircle(c(150, 60), radius = pi/2, T = 1000)

> half.great.circle <- circle[circle[, 1] < 0, , drop = FALSE]

> sigma <- 2 # noise level

> half.great.circle <- half.great.circle

> + sigma * rnorm(nrow(half.great.circle))
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## find a principal circle

> PC <- PrincipalCircle(half.great.circle)

> result <- GenerateCircle(PC[1:2], PC[3], T = 1000)

## plot the half-great circle data and principal circle

> sphereplot::rgl.sphgrid(col.lat = "black", col.long = "black")

> sphereplot::rgl.sphpoints(half.great.circle, radius = 1, col = "blue"

> , size = 9)

> sphereplot::rgl.sphpoints(result, radius = 1, col = "red", size = 6)

#### example 2: circular data

> n <- 700 # the number of samples

> sigma <- 5 # noise level

> x <- seq(-180, 180, length.out = n)

> y <- 45 + sigma * rnorm(n)

> simul.circle <- cbind(x, y)

## find a principal circle

> PC <- PrincipalCircle(simul.circle)

> result <- GenerateCircle(PC[1:2], PC[3], T = 1000)

## plot the circular data and principal circle

> sphereplot::rgl.sphgrid(col.lat = "black", col.long = "black")

> sphereplot::rgl.sphpoints(simul.circle, radius = 1, col = "blue"

> , size = 9)

> sphereplot::rgl.sphpoints(result, radius = 1, col = "red", size = 6)

The results of principal circle are shown in Figure 5.2. As one can see, the principal

circle identifies the circular patterns of the noisy half-great circle and circular dataset

well.
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Figure 5.2: Half-great circle data and circular data (blue) and the results (red) of

the principal circle from left to right. The principal circle can identify the relatively

small circular structure (right) and the great circle structure (left).

5.2 Spherical principal curves

Principal curves proposed by Hastie and Stuetzle (1989) can be considered as a

nonlinear generalization of the principal component analysis, in the sense that the

principal curves pass through the middle of given data and reserve a stationary

property. The curve is a smooth function from a one-dimensional closed interval to

a given space; then, a curve f is said to be a principal curve of X or self-consistent

if the curve satisfies

f(λ) = EX

[
X |λf (X) = λ

]
,

where f(λf (x)) is the closest (projection) point in the curve f from the point x.

Hauberg (2016) provided an algorithm for principal curves on Riemannian mani-

fold. On the other hand, Hauberg (2016) used approximations for finding the closest

point of each data point, which may lead to numerical errors. Recently, Lee et al.

(2021a) presented theoretical results of principal curves on spheres and a practi-

cal algorithm for constructing principal curves without any approximations, called

spherical principal curves (SPC), thereby causing the given data to be represented
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more precisely and smoothly compared to principal curves of Hauberg (2016). In

the both ways of extrinsic and intrinsic approaches, the method of SPC updates

curves on the spherical surfaces to represent the given data and fits curves that

satisfy the stationary conditions. For more details, refer to Lee et al. (2020, 2021a).

The package spherepc provides the SPC() function for implementing spherical

principal curves and the SPC.Hauberg() function for principal curves of Hauberg

(2016). The usage of the SPC() function is as follows.

SPC(data, q = 0.05, T = nrow(data), step.size = 1e-3, maxit = 30,

type = "Intrinsic", thres = 1e-2, deletePoints = FALSE,

plot.proj = FALSE, kernel = "quartic", col1 = "blue",

col2 = "green", col3 = "red").

The usage of the SPC.Hauberg() function is the same to that of the SPC() function.

Before implementing the SPC() and SPC.Hauberg() functions, it requires loading the

rgl (Adler and Murdoch, 2020), sphereplot (Robotham, 2013), and geosphere

(Hijmans et al., 2017) packages. To implement the SPC() and SPC.Hauberg() func-

tions, we consider the waveform data used in Liu et al. (2017); Lee et al. (2020,

2021a). The generating equation of waveform is

ϕ = α · sin(fθ · π/180) + 10,

where ϕ, θ, α, and f denote the longitude, latitude in degrees, amplitude and

frequency of the waveform, respectively. θ is uniformly sampled from the inter-

val [−180, 180] and a Gaussian random noise from N(0, σ2) is added on each ϕ

where σ = 2, 10. The generating waveform data and implementations of the SPC()

and SPC.Hauberg() functions are as follows.

#### longitude and latitude are expressed in degrees

#### example: waveform data

> n <- 200

> alpha <- 1/3; freq <- 4 # amplitude and frequency of wave

> sigma1 <- 2; sigma2 <- 10 # noise levels
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> lon <- seq(-180, 180, length.out = n) # uniformly sampled longitude

> lat <- alpha * 180/pi * sin(freq * lon * pi/180) + 10 # latitude vector

## add Gaussian noises on the latitude vector

> lat1 <- lat + sigma1 * rnorm(length(lon))

> lat2 <- lat + sigma2 * rnorm(length(lon))

> wave1 <- cbind(lon, lat1); wave2 <- cbind(lon, lat2)

## implement Hauberg’s principal curves to the waveform data

> SPC.Hauberg(wave1, q = 0.05)

## implement SPC to the (noisy) waveform data

> SPC(wave1, q = 0.05)

> SPC(wave2, q = 0.05)

The above codes generate the results in Figure 5.3. As one can see, the SPC() and

SPC.Hauberg() functions identify the waveform pattern of the simulated data. Espe-

cially, the SPC() generates a smoother curve. The detailed arguments and outputs

of the SPC() are described in Tables 5.5 and 5.6 respectively, which are the same

for the SPC.Hauberg().

5.2.1 Options for spherical principal curves

There are some options for the SPC() and SPC.Hauberg() functions. In particular,

we implement using the arguments plot.proj and deletePoints, described in Table 5.5.

If plot.proj = TRUE is used, then the projection line for each data point is plotted.

If the argument deletePoints = TRUE is performed, the SPC() function deletes the

points in curves that do not have adjacent data for each expectation step required

to fit the principal curves, returning an open curve, i.e., a curve with endpoints.

As a result, the principal curves are more parsimonious since a redundant part of

the resulting curves is removed. The SPC.Hauberg() function also contains the same

options. For implementing these two arguments, the following codes are performed

through real earthquake data.
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> data(Earthquake)

## collect spatial locations

## (longitude and latitude denoted by degrees) of data

> earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)

#### example 1: plot the projection lines (option of plot.proj)

> SPC(earthquake, q = 0.1, plot.proj = TRUE)

#### example 2: open principal curves (option of deletePoints)

> SPC(earthquake, q = 0.04, deletePoints = TRUE)

The results are illustrated in Figure 5.4. The left panel shows a closed principal

curve (red) with projection lines (black) of each data point onto the curve, and the

right panel displays an open principal curve due to the option deletePoints = TRUE.

It is a parsimonious result because the redundant part on the upper right side of

sphere is removed.

5.3 Local principal geodesics

Suppose that observations have a non-geodesic structure. Then the PGA may not

be beneficial to represent such data because PGA always results in a geodesic line.

To overcome this problem, we consider performing PGA locally and repeatedly to

detect the non-geodesic and complex structures of data, which can be interpreted as

a localized version of the PGA. The newly proposed method is called local principal

geodesics (LPG). The main idea behind the LPG is that non-geodesic structures

can be regarded as a part of geodesic when viewed locally. Although there is no

reference to the LPG because research on LPG is underway, there is a localized

principal curve method on Euclidean space (Einbeck et al., 2005), which is similar

to LPG and may share some motivation with the LPG. For more details, refer to

Einbeck et al. (2005).
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The package spherepc offers the LPG() function, which can recognize the var-

ious structures of data such as spirals, zigzag, and tree data. The usage of the

function is

LPG(data, scale = 0.04, tau = scale/3, nu = 0, maxpt = 500,

seed = NULL, kernel = "indicator", thres = 1e-4, col1 = "blue",

col2 = "green", col3 = "red").

Like the previous functions, before the LPG() function is implemented, it requires

to load the rgl (Adler and Murdoch, 2020), sphereplot (Robotham, 2013), and

geosphere (Hijmans et al., 2017) packages. The detailed arguments and outputs

of this function are described in Tables 5.7 and 5.8. To apply the LPG() function to

the following spiral, zigzag, and tree simulated data illustrated in Figures 5.5, 5.6,

and 5.7 respectively, we implement the following codes.

## longitude and latitude are expressed in degrees

#### example 1: spiral data

> set.seed(40)

> n <- 900 # the number of samples

> sigma1 <- 1; sigma2 <- 2.5; # noise levels

> radius <- 73; slope <- pi/16 # radius and slope of the spiral

## polar coordinate of (longitude, latitude)

> r <- runif(n)^(2/3) * radius; theta <- -slope * r + 3

## transform to (longitude, latitude)

> correction <- (0.5 * r/radius + 0.3) # correction of noise level

> lon1 <- r * cos(theta) + correction * sigma1 * rnorm(n)

> lat1 <- r * sin(theta) + correction * sigma1 * rnorm(n)

> lon2 <- r * cos(theta) + correction * sigma2 * rnorm(n)

> lat2 <- r * sin(theta) + correction * sigma2 * rnorm(n)

> spiral1 <- cbind(lon1, lat1); spiral2 <- cbind(lon2, lat2)

## plot the spiral data

> rgl.sphgrid(col.lat = ’black’, col.long = ’black’)
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> rgl.sphpoints(spiral1, radius = 1, col = ’blue’, size = 12)

## implement the LPG to (noisy) spiral data

> LPG(spiral1, scale = 0.06, nu = 0.1, seed = 100)

> LPG(spiral2, scale = 0.12, nu = 0.1, seed = 100)

#### example 2: zigzag data

> set.seed(10)

> n <- 50 # the number of samples is 6 * n = 300

> sigma1 <- 2; sigma2 <- 5 # noise levels

> x1 <- x2 <- x3 <- x4 <- x5 <- x6 <- runif(n) * 20 - 20

> y1 <- x1 + 20 + sigma1 * rnorm(n); y2 <- -x2 + 20 + sigma1 * rnorm(n)

> y3 <- x3 + 60 + sigma1 * rnorm(n); y4 <- -x4 - 20 + sigma1 * rnorm(n)

> y5 <- x5 - 20 + sigma1 * rnorm(n); y6 <- -x6 - 60 + sigma1 * rnorm(n)

> x <- c(x1, x2, x3, x4, x5, x6); y <- c(y1, y2, y3, y4, y5, y6)

> simul.zigzag1 <- cbind(x, y)

## plot the zigzag data

> sphereplot::rgl.sphgrid(col.lat = ’black’, col.long = ’black’)

> sphereplot::rgl.sphpoints(simul.zigzag1, radius = 1, col = ’blue’

> , size = 12)

## implement the LPG to the zigzag data

> LPG(simul.zigzag1, scale = 0.1, nu = 0.1, maxpt = 45, seed = 50)

## noisy zigzag data

> set.seed(10)

> z1 <- z2 <- z3 <- z4 <- z5 <- z6 <- runif(n) * 20 - 20

> w1 <- z1 + 20 + sigma2 * rnorm(n); w2 <- -z2 + 20 + sigma2 * rnorm(n)

> w3 <- z3 + 60 + sigma2 * rnorm(n); w4 <- -z4 - 20 + sigma2 * rnorm(n)

> w5 <- z5 - 20 + sigma2 * rnorm(n); w6 <- -z6 - 60 + sigma2 * rnorm(n)

> z <- c(z1, z2, z3, z4, z5, z6); w <- c(w1, w2, w3, w4, w5, w6)

> simul.zigzag2 <- cbind(z, w)
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## implement the LPG to the noisy zigzag data

> LPG(simul.zigzag2, scale = 0.2, nu = 0.1, maxpt = 18, seed = 20)

Note that the LPG() function may return several curves. We now implement the

function in a complex simulation dataset composed of several curves. As shown in

the left panel of Figure 5.7, the tree object has twenty-six geodesic (linear) structures

composed of one stem, five branches, and twenty subbranches. It is not informa-

tive to show the generating formula for the tree dataset. Instead, we provide its

generating code with explanatory notes as follows.

#### example 3: tree dataset

## the tree dataset consists of stem, branches and subbranches

## generate stem

> set.seed(10)

> n1 <- 200; n2 <- 100 # the number of samples in a stem, a branch,

> n3 <- 15 # and a subbrach

> sigma1 <- 0.1; sigma2 <- 0.05; sigma3 <- 0.01 # noise levels

> noise1 <- sigma1 * rnorm(n1); noise2 <- sigma2 * rnorm(n2)

> noise3 <- sigma3 * rnorm(n3)

> l1 <- 70; l2 <- 20; # length of stem, branches,

> l3 <- 1 # and subbranches

> rep1 <- l1 * runif(n1) # repeated part of stem

> stem <- cbind(0 + noise1, rep1 - 10)

## generate branch

> rep2 <- l2 * runif(n2) # repeated part of branch

> branch1 <- cbind(-rep2, rep2 + 10 + noise2)

> branch2 <- cbind(rep2, rep2 + noise2)

> branch3 <- cbind(rep2, rep2 + 20 + noise2)

> branch4 <- cbind(rep2, rep2 + 40 + noise2)

> branch5 <- cbind(-rep2, rep2 + 30 + noise2)

> branch <- rbind(branch1, branch2, branch3, branch4, branch5)
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## generate subbranches

> rep3 <- l3 * runif(n3) # repeated part in subbranches

> branches1 <- cbind(rep3 - 10, rep3 + 20 + noise3)

> branches2 <- cbind(-rep3 + 10, rep3 + 10 + noise3)

> branches3 <- cbind(rep3 - 14, rep3 + 24 + noise3)

> branches4 <- cbind(-rep3 + 14, rep3 + 14 + noise3)

> branches5 <- cbind(-rep3 - 12, -rep3 + 22 + noise3)

> branches6 <- cbind(rep3 + 12, -rep3 + 12 + noise3)

> branches7 <- cbind(-rep3 - 16, -rep3 + 26 + noise3)

> branches8 <- cbind(rep3 + 16, -rep3 + 16 + noise3)

> branches9 <- cbind(rep3 + 10, -rep3 + 50 + noise3)

> branches10 <- cbind(-rep3 - 10, -rep3 + 40 + noise3)

> branches11 <- cbind(-rep3 + 12, rep3 + 52 + noise3)

> branches12 <- cbind(rep3 - 12, rep3 + 42 + noise3)

> branches13 <- cbind(rep3 + 14, -rep3 + 54 + noise3)

> branches14 <- cbind(-rep3 - 14, -rep3 + 44 + noise3)

> branches15 <- cbind(-rep3 + 16, rep3 + 56 + noise3)

> branches16 <- cbind(rep3 - 16, rep3 + 46 + noise3)

> branches17 <- cbind(-rep3 + 10, rep3 + 30 + noise3)

> branches18 <- cbind(-rep3 + 14, rep3 + 34 + noise3)

> branches19 <- cbind(rep3 + 16, -rep3 + 36 + noise3)

> branches20 <- cbind(rep3 + 12, -rep3 + 32 + noise3)

> sub.branches <- rbind(branches1, branches2, branches3, branches4,

> branches5, branches6, branches7, branches8, branches9, branches10,

> branches11, branches12, branches13, branches14, branches15, branches16,

> branches17, branches18, branches19, branches20)

## tree dataset consists of stem, branch, and subbranches

> tree <- rbind(stem, branch, sub.branches)

## plot the tree dataset

> sphereplot::rgl.sphgrid(col.lat = ’black’, col.long = ’black’)

98



> sphereplot::rgl.sphpoints(tree, radius = 1, col = ’blue’, size = 12)

## implement the LPG function to the tree dataset

> LPG(tree, scale = 0.03, nu = 0.2, seed = 10)

As displayed in Figures 5.5, 5.6, and 5.7, the LPG() function identifies the non-

geodesic or complex patterns of the simulated datasets well as long as the parameters

of scale and ν are properly chosen. The arguments and outputs of the function are

respectively described in Tables 5.7 and 5.8.

5.4 Application

In application, we use earthquake data from the U.S. Geological Survey that has

collected significant earthquakes (8+ Mb magnitude) around the Pacific Ocean since

1900. As shown in Figure 5.8, the data contain 77 observations distributed in the

borders between the Eurasian, Pacific, North American, and Nazca tectonic plates.

The data have three features: the observations are distributed globally, scattered,

and form non-geodesic structures. Because the tectonic plates are constantly moving

towards different directions, identifying the hidden patterns of borders is useful in

geostatistics and seismology, as noted in Biau and Fischer (2011); Mardia (2014).

It can be possible to identify the borders of plates by applying dimension reduction

methods to the earthquake data.

To apply the aforementioned dimension reduction methods to the earthquake

data, the code is performed.

> data(Earthquake)

## collect spatial locations of data

> earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)

#### example 1: principal geodesic analysis (PGA)

> PGA(earthquake)
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#### example 2: principal circle

## get center and radius of principal circle

> circle <- PrincipalCircle(earthquake)

## generate the principal circle

> PC <- GenerateCircle(circle[1:2], circle[3], T = 1000)

## plot the principal circle

> sphereplot::rgl.sphgrid(col.long = "black", col.lat = "black")

> sphereplot::rgl.sphpoints(earthquake, radius = 1, col = "blue"

> , size = 12)

> sphereplot::rgl.sphpoints(PC, radius = 1, col = "red", size = 9)

Examples 1 and 2 implement the principal geodesic and the principal circle respec-

tively. As illustrated in Figure 5.9, the principal geodesic (left) fails to identify the

variations of the earthquake data. The principal circle (right) captures the global

trend of the data; whereas the circle could not extract the local variations of the

data.

#### example 3: spherical principal curves

#### and principal curves of Hauberg

> SPC.Hauberg(earthquake, q = 0.1) # principal curves of Hauberg

> SPC(earthquake, q = 0.1) # spherical principal curves

Example 3 fits the spherical principal curve and Hauberg’s principal curve with

q = 0.1. As shown in Figure 5.10, both methods identify the curved feature of

the earthquake data. The spherical principal curve particularly tends to be more

continuous than Hauberg’s principal curve.

#### example 4: spherical principal curves with q = 0.15, 0.1

#### , 0.03, and 0.02

> SPC(earthquake, q = 0.15)

> SPC(earthquake, q = 0.1)
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> SPC(earthquake, q = 0.03)

> SPC(earthquake, q = 0.02)

Example 4 applies the spherical principal curve to the earthquake data with varying

q = 0.15, 0.1, 0.03, 0.02. The parameter q plays a role of the bandwidth in the SPC()

function. As shown in Figure 5.11, the smaller q is, the rougher the curve is. On the

contrary, the larger q is, the smoother the curve is.

#### example 5: local principal geodesics (LPG)

> LPG(earthquake, scale = 0.5, nu = 0.2, maxpt = 20, seed = 50)

> LPG(earthquake, scale = 0.4, nu = 0.3, maxpt = 22, seed = 50)

Lastly, example 5 implements the LPG() function with different scale and nu. As

shown in Figure 5.12, the function represents the curved pattern of the data, illus-

trating the slightly different features.

5.5 Conclusions

In this chapter, existing and newly developed dimension reduction methods on 2-

sphere that are covered in spherepc R package have been introduced with various

simulated examples. It includes not only principal geodesic analysis (PGA), prin-

cipal circle, and principal curves of Hauberg (2016) as existing methods but also

spherical principal curves (SPC) and local principal geodesics (LPG) as new ap-

proaches. The spherepc package has demonstrated its usefulness by applying the

functions to several simulation examples and real earthquake data. We believe that

spherepc is helpful for applications in various fields, ranging from statistics to

engineering such as geostatistics, image analysis, pattern recognition, and machine

learning.
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Figure 5.3: Top: The waveform data (blue) and the results (red) of Hauberg’s prin-

cipal curves (left) and spherical principal curves. Bottom: The noisy waveform data

(blue) and the result (red) of spherical principal curves. All cases are implemented

with q = 0.05. The two methods find the true waveform of the data well. In partic-

ular, the spherical principal curve tends to be smoother.

102



Argument Description

data matrix or data frame consisting of spatial locations with two columns.

Each row represents longitude and latitude (denoted by degrees).

q numeric value of the smoothing parameter. The parameter plays the

same role, as the bandwidth does in kernel regression, in the SPC

function. The value should be a numeric value between 0.01 and 0.5.

The default is 0.1.

T the number of points making up the resulting curve. The default is

1000.

step.size step size of the PrincipalCircle function. The default is 0.001. The

resulting principal circle is used as an initialization of the SPC func-

tion.

maxit maximum number of iterations. The default is 30.

type type of mean on the sphere. The default is “Intrinsic” and the other

choice is “Extrinsic”.

thres threshold of the stopping condition. The default is 0.01.

deletePoints logical value. The argument is an option of whether to delete points

or not. If deletePoints is FALSE, this function leaves the points in

curves that do not have adjacent data for each expectation step.

As a result, the function usually returns a closed curve, i.e. a curve

without endpoints. If deletePoints is TRUE, this function deletes the

points in curves that do not have adjacent data for each expectation

step. As a result, The SPC function usually returns an open curve,

i.e. a curve with endpoints. The default is FALSE.

plot.proj logical value. If the argument is TRUE, the projection line for each

data point is plotted. The default is FALSE.

kernel kind of kernel function. The default is the quartic kernel, and the

alternative is indicator or Gaussian.

col1 color of data. The default is blue.

col2 color of points in principal curves. The default is green.

col3 color of resulting principal curves. The default is red.

Table 5.5: Arguments of the SPC()
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Output Description

plot plotting of the result in 3D graphics.

prin.curves spatial locations (denoted by degrees) of points in the resulting prin-

cipal curves.

line connecting lines between points in prin.curves.

converged whether or not the algorithm converged.

iteration the number of iterations of the algorithm.

recon.error sum of squared distances between the data and their projections.

num.dist.pt the number of distinct projections.

Table 5.6: Outputs of the SPC()

Figure 5.4: Left: Projection result (black) of SPC with q = 0.1. The spherical

principal curve (red) continuously represents the earthquake data (blue). Right:

The open curve of SPC with q = 0.04 and deletePoints=TRUE. The less q is, the

more the curve tends to overfit the data.
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Figure 5.5: Left: Spiral data (blue) and the result (red) of LPG with scale = 0.06

and ν = 0.1. Right: Noisy spiral data (blue) and the result (red) of LPG with

scale = 0.12 and ν = 0.1. Local principal geodesics represent the spiral patterns of

the (noisy) spiral data well. The larger the noise is, the larger scale is required.

Figure 5.6: Left: zigzag data (blue); Middle: zigzag data (blue) and the result (red)

of with scale = 0.1 and ν = 0.1; Right: Noisy zigzag data (blue) and the result (red)

of LPG with scale = 0.2, and ν = 0.1; Local principal geodesics extract the zigzag

structures of the (noisy) zigzag data properly. The larger the noise is, the larger

scale is needed.
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Figure 5.7: Tree data (blue) and the result (red) of LPG with scale = 0.03 and ν =

0.2. The LPG function captures the complex structures of the data well, provided

that scale and ν are properly chosen.

Figure 5.8: Left: The distribution of significant (8+ Mb magnitude) earthquakes

(colored in blue); Right: The earthquake is represented in three-dimensional visual-

ization.
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Argument Description

data matrix or data frame consisting of spatial locations with two columns.

Each row represents longitude and latitude (denoted by degrees).

scale scale parameter for this function. The argument is the degree to

which the LPG function expresses data locally; thus, as the scale

grows, the result of the LPG becomes similar to that of the PGA

function. The default is 0.4.

tau forwarding or backwarding distance of each step. It is empirically

recommended to choose a third of scale, which is the default of this

argument.

nu parameter to alleviate bias of resulting curves. nu represents the vis-

cosity of the given data and it should be selected in [0, 1). The default

is zero. When nu is close to 1, the curve usually swirls similarly to

the motion of a large viscous fluid. The argument maxpt can control

the swirling.

maxpt maximum number of points in each curve. The default is 500.

seed random seed number.

kernel kind of kernel function. The default is the indicator kernel, and the

alternative is quartic or Gaussian.

thres threshold of the stopping condition for the IntrinsicMean function in

the process of the LPG function. The default is 1e-4.

col1 color of data. The default is blue.

col2 color of points in the resulting principal curves. The default is green.

col3 color of the resulting curves. The default is red.

Table 5.7: Arguments of the LPG()
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Output Description

plot plotting of the result in 3D graphics.

num.curves the number of resulting curves.

prin.curves spatial locations (represented by degrees) of points in the resulting

curves.

line connecting lines between points in prin.curves.

Table 5.8: Outputs of the LPG()

Figure 5.9: Earthquake data (blue) and the results (red) of the principal geodesic

analysis and principal circle, from left to right. The principal geodesic fails to find

the non-geodesic feature of the data, and the principal circle captures the circular

pattern but cannot identify the local variations of the data.
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Figure 5.10: Earthquake data (blue) and implementation results (red) with q = 0.1

of the SPC.Hauberg and SPC functions respectively, from left to right. Both meth-

ods can represent the non-geodesic structure of the earthquake data. The spherical

principal curve particularly tend to be smoother.
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Figure 5.11: From left to right and top to bottom, Earthquake data (blue) and the

results (red) of the SPC with q = 0.15, 0.1, 0.03 and 0.02. The larger the parameter

q is, the smoother the curve is, while it tends to underfit the data. Conversely, the

smaller the parameter q is, the rougher the curve is.
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Figure 5.12: From left to right, earthquake data (blue) and the results of the LPG

function with scale = 0.5, ν = 0.2 and scale = 0.4, ν = 0.3 are illustrated. Both the

local principal geodesics implemented by different parameters recognize the non-

geodesic and scattered pattern of the data, illustrating the different features.
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Chapter 6

Local principal curves on

Riemannian manifolds

Studies on dimension reduction on manifold domains have drawn attentions over the

recent decades. For examples, Dai and Müller (2018) proposed a extrinsic method

of functional principal component analysis on manifold, which takes into account

on structure of space living in data, with applications to longitudinal compositional

data and flight trajectories data. As a followup study, Lin and Yao (2019) have

provided a method of functional dimension reduction on manifold in an intrinsic

way. Subsequently, Dai et al. (2021) proposed sparse functional principal compo-

nent modeling for analyzing the brain data which can be treated as functions taking

values in manifolds. For examples, principal geodesic analysis (PGA) proposed by

Fletcher et al. (2004) is an extension of principal component analysis from Euclidean

space to Riemannian manifolds which are, roughly speaking, curved smooth surface

equipped with metric tensor and tangent plane for each point of that surface. How-

ever, if a set of data is not distributed on a local region, the variational feature of

the data is often not identified by geodesics. In regression problems, Fletcher (2013)

have proposed geodesic regression on symmetric spaces with applications to corpus

callosum shape data.

As related work, Jung et al. (2011) have suggested a dimension reduction method
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on direct product of manifold choosing geodesic or least square circle in some crite-

rion, as termed principal arc analysis. It is beneficial to the case of manifold whose

total intrinsic dimension is high, such as direct product of manifold. Furthermore,

Jung et al. (2012) have proposed principal nested sphere which is a dimension re-

duction for arbitrary dimension of hypersphere. Nevertheless, it seems that two

methods may not be effective if underlying distribution of data is not periodic or

has crossing structures like T-shape or X-shape data. Banfield and Raftery (1992)

modified the ordinary algorithm suggested by Hastie and Stuetzle (1989) to reduce

the estimation bias when the curvature of the underlying curve highly varies. Tib-

shirani (1992) suggested a probabilistic definition of principal curves based on a

Gaussian mixture model and applied an EM algorithm for estimation to alleviate

bias.

Panaretos et al. (2014) extended a canonical interpretation of principal compo-

nent analysis from Euclidean space to curved space, such as sphere or cone embedded

in R3. From a mechanics manner, they presented a smooth curve attempting to fol-

low the direction of maximal variation, subject to bounded length. However, because

this method starts at center of the data set, it may not work if the center of the

data set is far away from the data cloud like circle or C-shape structure. Moreover,

it may not be expected that the method captures complex data structures, such as

crossing or separated ones. There are several related follow-up studies. For example,

Liu et al. (2017) applied a level set-based approach to estimate flexible and robust

curves. Yao et al. (2019) relaxed the constraint of boundary conditions imposed

on principal flows, and Yao and Zhang (2020) used a principal flow method to deal

with a classification problem on manifolds. However, these methods used variational

approaches like the Euler-Lagrange equation involved with differential equations on

manifolds, making it rather difficult to reproduce the methodologies.

Hauberg (2016) proposed principal curves on Riemannian manifolds which uses

nonlinear approach; principal curves, firstly suggested by Hastie and Stuetzle (1989)

instead of linear one, PGA. It is more flexible than PGA from two reasons: First,

there is no reliance on starting point; mainly, intrinsic mean of the data points. Sec-
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ondly, it is also able to capture non-geodesic variation of data set. Since the method

of Hauberg (2016) depends on an initial estimate of the principal curve, it is effec-

tive in representing a simple curve. Unfortunately, it would be failed if underlying

structures of data are separated or self-intersecting. Meanwhile, Hauberg (2016)

suggested an algorithm of principal curves on Riemannian manifolds. Owing to the

large class of the Riemannian manifolds, the principal curves are estimated using

approximations. Recently, on spheres SD for D ≥ 2, Lee et al. (2021a) presented a

newly method, named spherical principal curve (SPC) that constructs a principal

curve without any approximations on spheres SD, resulting in the given data to

be represented more precisely and smoothly compared to the method of Hauberg

(2016), thereby making more elaborated curves. Moreover, SPC is a direct gener-

alization of original principal curves (Hastie and Stuetzle, 1989) to spheres since

SPC ensures the theoretical properties of stationarity on the spheres. However, the

above-mentioned methods both are the top-down approach of feature extraction in

the sense that this algorithm sets an initial curve and find a proper principal curves

adaptive to data set in an iterative manner. The initial curve have to capture the

structure of data set to some extent, if not, the consequence is wiggly and eventu-

ally fail, as shown in Figure 6.1. Therefore, selecting initial curves properly plays

an essential role to estimate a principal curve.

In Euclidean domain there are many variations of principal curves to cope with

choosing model complexity, model bias and existence of principal curves. For ex-

amples, Kégl et al. (2000) presented a new definition of principal curves which

always exist under some conditions. They also proved convergence of optimal prin-

cipal curves and proposed a practical algorithm, termed as polygonal line algorithm

where it is further studied by Biau and Fischer (2011). They selected smoothness

parameters such as the number of segments, the length, and the turn of the curve

via empirical risk minimization principle.

There are several methodology for finding complex structures which are either

crossing on itself or are divided into several pieces (Einbeck et al., 2005; Ozertem

and Erdogmus, 2011; Kirov and Slepčev, 2017) in Euclidean space. For examples,
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Figure 6.1: Noisy spiral data (blue) and the consequences (red) of principal circle

and principal curves (Hauberg, 2016) initialized by the principal circle for q = 0.07,

from left to right.

Einbeck et al. (2005) proposed an approach, termed local principal curves, which is

able to identify crossing or branching curves based on the density estimation like

mean-shift algorithm. This method and local principal geodesics have common in

that they are bottom up approaches and are able to capture a trend of complicated

structures of dataset. On the other hand, the proposed approach differs from that of

Einbeck et al. (2005) in that it interpreted the initial curve of main trend of data set

as a particle flow of fluid inspired by Panaretos et al. (2014). Specifically, leading

eigenvector of sample covariance, analogous to PCA, is the direction of maximal

variability which is interpreted in main flow of a particle. Moreover, cohesive force

between particles in fluid have to be considered, thus the resultant force of maximal

variability and cohesive is the finial direction of the particle for each step of the

local principal geodesics. Although the local principal curves identify the pattern

of complex structures, it somewhat lacks of theoretical background. On the other

hand, our method has a theoretical justification like canonicality which is described

and proved in Section 6.2. Moreover, the method can be applied to Riemannian

manifolds including Euclidean vector space.
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The aim of this chapter is to propose a novel framework for local principal curves

on Riemannian manifolds (LPCRM) which may be several one-dimensional descrip-

tions of a dataset which is observed from one or several curvilinear structures with

noises. The remainder of the chapter constructed as follows. Section 6.1 briefly de-

scribes the necessary notions for our method. In Section 6.2, a detailed procedure of

methodology are described and canonical property is proved. Section 6.2 also apply

the new procedure to various datasets such as spiral, T-shaped, X-shaped data.

LPCRM is presented and concrete theories including existence, consistency, and

convergence rate, are established by means of empirical risk minimization principle

in Section 6.3. Section 6.4 performs a seismological real data analysis. Section 6.5

lastly conclude this chapter with remarks about further work.

6.1 Preliminaries

For each p ∈M , exponential map is a differentiable map from a neighborhood of p

in TpM to M . For a vector v in the neighborhood, the geodesic at p with direction

v, γ : [0, 1] → M , uniquely exists so that γ satisfies that γ(0) = p, γ
′
(0) = v, and

∥γ′
(t)∥ = ∥v∥ for any t ∈ [0, 1]. The exponential map at p is defined as

expp(v) := γ(1) ∈M. (6.1)

If (M, d) is connected and complete as a metric space, then the geodesic continues

as much as we want from the Hopf-Rinow theorem (e.g., Theorem 6.13. of Lee

(2006)). In other words, the exponential map at p, expp : TpM → M , is defined

on the entire TpM . For the simplest case, M = RD, since TpRD ≃ RD for any

p ∈ RD, the exponential and logarithm maps are both identity. In particular, when

M = SD :=
¶
(x1, x2, . . . xD+1) ∈ RD+1 |

∑D+1
i=1 x2i = 1

©
, naturally embedded into

the ambient space RD+1, the exponential map at p = (0, 0, . . . , 0, 1) ∈ RD+1 can

be written as

expp(v) = (v1
sin ∥v∥
∥v∥

, v2
sin ∥v∥
∥v∥

, . . . , vD
sin ∥v∥
∥v∥

, cos ∥v∥),
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for any v ∈ TpS
D ≃ RD with ∥v∥ ≤ π in which ∥·∥ denotes the standard norm in RD.

logmap is the inverse map of exponential map. The logmap at p, logp : S
D → TpS

D,

is written by

logp(w) = (w1
θ

sin θ
, w2

θ

sin θ
, . . . , wD

θ

sin θ
)

for any w = (w1, w2, . . . , wD+1) ∈ SD \ (0, 0, . . . , 0, −1) ⊂ RD+1, where θ =

arccos(wD+1). See Buss and Fillmore (2001) for details. Principal geodesic analy-

sis (PGA) (Fletcher et al., 2004) can be regarded as a generalization of principal

component analysis (PCA) to Riemannian manifolds. Fletcher et al. (2004) espe-

cially performed dimension reduction of data on the Cartesian product space of the

manifolds. In details, the data are projected onto the tangent spaces at the intrinsic

means of each component of the manifolds; thus, the given data are approximated

as points on Euclidean vector space, and subsequently, PCA is applied to the points.

As a result, the dimension reduction can be performed through the inverse of the

tangent projections.

The main idea of PGA is that approximating a data set on a Riemmanian

manifold to its tangent space at the center of the data set via logarithm map and

then applying PCA to the approximated data. However, PGA does often not work

when global trend of data set is not captured by a single geodesic. On the other

hand, a single geodesic is still a good description for a localized data; thus, PGA

could work well in local region, which is the main motivation for the local principal

geodesics (LPG). To find the locally maximal direction of variability, locally defined

sample covariance should be defined. For a given Riemannian manifold M and a

data set D = {xi}ni=1 ⊂M , Panaretos et al. (2014) have naturally defined a (sample)

local tangent covariance by approximating a set of data on manifold to its tangent

space via logarithm map as follows.

Definition 4 (Definition 2.2 in Panaretos et al. (2014)). A h-scale local tangent

covariance at x ∈M is defined as

Σh(x) =
1∑

i Ih(xi, x)

n∑
i=1

(logx xi) · (logx xi)T Ih(xi, x),
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where logx xi is a D-dimensional column vector, I(x) = 1 if |x| ≤ 1, otherwise 0,

and Ih(x, x) = I(h−1 ∥logx x− x∥) for h > 0.

A h-scale local tangent covariance at x is a sample covariance of data points of

which distance from x is less than h. The h-scale local tangent covariance at x is

the sample covariance w nearby data points . We define a h-radius closed ball of x

as Bh(x) := {y ∈M | d(x, y) ≤ h}. Without loss of generality we may assume that

Bh(x) ∩ D = {x1, x2, . . . , xm} are a set of points whose distances from x ∈ M are

equal to or less than h. We further suppose that the intrinsic mean of them are

x ∈ M and Bh(x) ∩ D = {x1, x2, . . . , xm} for m ≥ 1 and h > 0. Then a scale h

tangent covariance at x is given by

Σ(x) =
1

m

m∑
i=1

(logxxi) · (logxxi)T ≈ 1

m

m∑
i=1

(logxxi − logxx) · (logxxi − logxx)
T

≈ 1

m

m∑
i=1

(logxxi) · (logxxi)T + (logxx) · (logxx)T

= Σ(x) + (logxx) · (logxx)T .

Thus, Σ(x) is approximately calculated by Σ(x) − (logx x) · (logx x)T . Note that if

M = RD then the above approximations are replaced by equals, since the logmap

is just subtraction; that is, logxy = y − x for any x, y ∈ RD, and the intrinsic mean

x becomes the center of gravity of {xi}mi=1,
1
m

∑m
i=1 xi.

6.2 Local principal geodesics

In this section, local principal geodesics (LPG) is introduced. LPG is a one-dimensional

description of data set lying on Riemannian manifolds, and can be an initial estimate

of local principal curves. The basic idea for LPG is that the method of principal

geodesic is applied and proceeded in local region alternatively. For a given Rieman-

nian manifold M with dimension D, scale parameter h > 0, step size τ > 0 and a

data set D = {xi}ni=1 ⊂ M . Suppose that the data set D is collected from one or

several curvilinear structures with noises.
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(1) Set c0 = x1 ∈ D randomly and c1 = argminx∈M
∑

xi∈Bh(f0)
d2(xi, x) (local cen-

tering), where Bx(h) = {y ∈M | d(x, y) < h} for all x ∈ M and c1 is the intrinsic

mean of nearby h-neighborhood points from a randomly chosen initial point c0 ∈ D.

For extracting various structures of data automatically, an initial point c0 can be

randomly chosen from the data set. However, if f0 is selected outside of data cloud,

then the curves may go outward, resulting in meaningless components. Therefore,

to obtain stable consequence of the curves, select a starting point as c1, the local

center of nearby points of c0. Although it is more likely to be inside the cloud of

data than c0, the local center c1 may not be actual center of nearby points of it-

self if c0 is chosen outside the cloud. To cope with this problem, one can select a

starting point after exploring the data, or perform local centering several times as

follows, cj+1 = argminx∈M
∑

xi∈Bcj (h)
d2(xi, x) for j ≥ 0, until its change below

some threshold and let f1 be the limit of this sequence.

(2) (Forward direction step) Find a h-scale local tangent covariance D ×D matrix

at c1, Σh and a unit eigenvector v1 ∈ RD corresponding to the largest eigenvalue of

Σh. Forward in that direction by τ ; that is, set c2 = expc1(τv1).

Repeat previous procedure using center ci+1 instead of ci for i ≥ 1. Recursively,

select a direction vi+1 so that vi+1 · vi ≥ 0 and define fi+1 = expci(τvi) until

Bh(fm) = ϕ for some m1 ≥ 1. Note that, for smoothness of curve, forward direction

is chosen so that the angle from the previous direction is less than π/2 for each step

of (2).

(3) (Backward direction step) Define c−1 = c1 and direction w1 = −v1. Induc-

tively, find a h-scale local tangent covariance D ×D matrix at c−i, Σh, and a unit

eigenvector wi ∈ RD corresponding to the largest eigenvalue of Σh. for each step,

backward in that direction by τ , that is, c−i−1 = expc−i
(τwi) recursively. Similarly

in (2), for each step wi+1 is selected, by satisfying wi+1 ·wi ≥ 0 until Bh(c−m2) = ϕ
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for some m2 ≥ 1. In the same way to (2), backward direction is also chosen so that

the angle from the previous direction is less than π/2 for each step of (3). From (2)

and (3), the set of points C1 := (cm1 , cm1−1, . . . , c1 = c−1, c−2, c−3, . . . , c−m2) is a

principal geodesic curve.

(4) Let D1 := {xi ∈ D | d(xi, C1) < h}. For the data set D \D1 ⊂M repeat (1), (2)

and (3) to find local principal geodesic segments C2 andD2 := {xi ∈ D | d(xi, C2) < h}.

Similarly, for data set D \ (D1 ∪ D2) find local principal geodesics C3 and D3 :=

{xi ∈ D | d(xi, C3) < h}. In the same way, for the data set D \ (
⋃i

j=1Dj) find Ci+1

and Di+1 iteratively, until D =
⋃s

i=1Ds for some s ≥ 1. Then, local principal

geodesic curves C1, C2, . . . , Cs and corresponding neighbor data set D1, D2, . . . , Ds

are the result of local principal geodesics (LPG).

LPG has an effect of clustering in that the data setD divided into {D1, D2, . . . , Ds}

which are chosen as maximally connected components via LPG, and its correspond-

ing of one-dimensional descriptions {C1, C2, . . . , Cs}. Although, strictly speaking, it

is not a clustering because D′
is are not disjoint, it is the reason why LPG works for

crossing curvilinear structures.

6.2.1 Bias relaxation

Here we improve a bias problem of LPG. Since the principal component analysis is

sensitive to centering, it is performed at the mean of the data points by centering

data matrix. However, when seeking a direction of maximal variability at each stage

of the local principal geodesics, the leading eigenvector of the covariance matrix is a

distorted result if the starting point is usually not placed on the neighborhood data

points. For this reason, once the local principal geodesic curve is out of the vicin-

ity of the data cloud, it will proceed in a more distorted direction, as the distance

between the starting point and data points surrounding it has increased. Eventu-

ally, if the local principal geodesic curve deviated from the data cloud, then it does
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not return to the distribution of the data, instead go outwardly, causing a negative

impact on the feature extraction of the data set. To cope with this bias, the follow-

ing improved local principal geodesics, the cohesive-maximum variation force local

principal geodesics, is considered. Inspired by Panaretos et al. (2014), specifically,

data points are considered fluid and local principal geodesic curve is the trajectory

in which one fluid particle travels. Then, the force at which the overall flow of the

fluid acts on the particle is a maximal variability force. Furthermore, we are able to

consider a cohesive force, the gravitational pull between the particles. If there is no

inter-fluid cohesion, it will not return when the fluid overflows from the waterways,

but will flow outward only. This is similar to the phenomenon of the local principal

geodesics without returning from the data cloud. Taking into account the cohesion

between the fluid particles, therefore, the direction of the two resultant force is the

one in which the particles finally move for each step. Thus, in forward and backward

direction step the followings below should be added.

(2)’ (forward direction step)

For i-th step, define a cohesion vector at fi as the normalized vector of
∑n

j=1(logcixj)Ih(ci, xj),

and new direction v
′
i as ν·cohesion+vi

∥ν·cohesion+vi∥ where ν is a predetermined viscosity ∀i =

1, 2, . . . , s.

(3)’ (backward direction step)

In the same way, define a cohesion vector at fi as the normalized vector of
∑n

j=1(logc−ixj)Ih(c−i, xj),

and new direction w
′
i as

ν·cohesion+wi
∥ν·cohesion+wi∥ ∀i = 1, 2, . . . , s.

The procedure of LPG with bias relaxation is illustrated in Figure 6.2. In Eu-

clidean space, the first principal component line is an one-dimensional reduction of

a data set maximizing the variability of it. Panaretos et al. (2014) have verified that

the first principal flows in Euclidean space is the first principal component and k-th

order principal flow in Euclidean space is the k-th principal component on local

region around the center of data; that is, it is an canonical extension of principal

component analysis. In the same way, it can be shown that the proposed method is

also a canonical extension of the first principal component from Euclidean space to
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Figure 6.2: Left: LPG starts at a point c0 and Σh(c0) is calculated in the h-

neighborhood (gray shade). It forward to the direction v′0 that is the resultant

direction between v0 and cohesion. Right: LPG moves forward by τv′0 from c0 and

then the next direction is calculated from Σh(c1) and cohesion. The procedure pro-

ceeds in the same way; that is, for i = 1, 2, 3, ..., ci+1 is found from ci.

Riemannian manifolds.

Theorem 5. The local principal geodesics becomes to be the first principal geodesic

when scale parameter h = ∞, step size τ > 0, and viscosity ν = 0. In particular,

LPG becomes to be first principal component line when M = RD.

Proof. See Appendix A.3.

As Theorem 5 states, LPG becomes to be the first principal geodesic when h =

τ =∞, which means that LPG is the non-geodesic generalization of first principal

geodesic analysis. Particularly, when M = RD, Theorem 5 implies that LPG is a

canonical extension of PCA from Euclidean space to Riemannian manifold and is

a justification that LPG proceeds in the largest eigenvector of tangent covariance

matrix for each forward and backward direction step.
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6.2.2 Overlap of curves and merging

In the process of local principal geodesics, if the data sets {D1, D2, . . . , Ds} are

disjoint then curves are separated and there is no overlap. If not, overlap of curves

may take place. If much energy is focused on an intersection of curves, then the local

principal geodesic curves have a common region to some degree. Nonetheless, the

share may not be a big problem. In such a case, various choice could be considered,

for examples, getting rid of the redundant or express the overlap as the mean of it.

6.2.3 Consideration of parameters

To implement locally defined principal curves, parameters which have to be chosen

are scale h, step size τ and viscosity ν. Choosing such parameters is very impor-

tant. Inadequate parameters have a negative effect on the result of local principal

geodesics. For example, step size τ should be set smaller than h, if not, local princi-

pal geodesics go outwardly from the data cloud, which result in failure of identifying

the features. Generally, the larger the noise level of the data, the greater h is re-

quired. At the extremes, the different values of scale h show the various features of

data. Specifically, if h ≈ 0 (e.g., h < mini, j d(xi, xj)), the number of the connected

component of result, s, becomes to n while the large h (e.g., h, τ > maxi, j d(xi, xj))

causes s = 1. In the case that we know the number of clusters s0 a priori, we can

choose the scale h by gradually decreasing it from large to zero until s = s0. We

suppose that s = s0 when h ∈ [hs, hs+1]. Under the interval [hs, hs+1], subse-

quently h is selected so that the goodness of fit measure, defined as
∑n

i=1 d
2(xi, f̂),

is minimized at h ∈ [hs, hs+1], where f̂ is the fitted local principal geodesics. In our

experiments, we have chosen h so that s ≤ 5. Moreover, the curve may be circulated

when step size τ is too small compared to the scale h, or viscosity ν is very large.

Throughout experiments, one third of h is recommended for τ empirically. That is,

we set τ = h/3 and ν = 0.1.
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6.2.4 Connection with existing methods

Principal flows

From the perspective for principal flows, a local principal geodesic is an integral

curve with respect to given covariance vector field W ; that is, f ′(p) compatible to

W (p) for each p in the local principal geodesic curve. Thus, both LPG and principal

flows maximally attempt to follow the vector field W . Although principal flows are

constrained in length limit for regularization, LPG has no upper bound for its length

so as to capture various patterns of data. When it comes to the regularization issue,

it can be relieved via principal curves algorithm, which is described in Section 6.3.

Local principal curves on Euclidean space

The method proposed by (Einbeck et al., 2005), termed as local principal curves, is

a method that can be used to detect the several curvilinear structures of data on

Euclidean space, along the line of Delicado (2001). The method and LPG both use

iterative algorithm to identify the complicated features of data. The local principal

curve (Einbeck et al., 2005) is based on the density estimation of underlying distribu-

tion, while LPG depends on covariance of given data. The method of Einbeck et al.

(2005) can be used only on M = RD while LPG can be applied to generic Rieman-

nian manifolds. Moreover, as Einbeck et al. (2005) stated, the method somewhat

little lacks of theoretical basis, while LPG is supported by a related justification

(Theorem 5 in this chapter).

6.2.5 Results of local principal geodesics

In this section, a variety of simulation data sets having curvilinear structures, such

as zigzag, spiral used in Kégl et al. (2000), T-shaped, X-shaped, doubly circular

used in Liu et al. (2017), and spherical helix data, are considered. The simulation

sets are involved in the example codes of R package spherepc (Lee et al., 2022a).

For each data set, we the proposed method is applied. Figure 6.3 shows the LPG

results of various synthetic datasets.
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6.3 Local principal curves

Even if the improved local principal geodesics already captures features of the data

set, due to the tangent approximation errors, it is slightly not the curves that

go through the middle of the data set. For regularization of the LPG, method

of principal curves is needed. To this end, we adopt the procedure proposed by

Kégl (1999); Kégl et al. (2000). The procedure and its algorithm (polygonal line

algorithm) are conceptually suitable for our method.

We assumeM to be generic Rimannian manifold. Specifically,M is complete and

connected as a metric space, which makes the Riemannian distance, d(·, ·) : M ×

M → [0, ∞), feasible. For any continuous curve f : [0, 1]→M and a point x ∈M ,

d(x, f) := infλ∈[0, 1] d(X, f(λ)). For an M -valued random variable X, let d(X, f) be

the random distance from X to f . We denote d(x, f) = infλ∈[0, 1] d(x, f(λ)). Then

risk of f is defined as

R(f) := Ed2(X, f) = E
[

inf
λ∈[0, 1]

d2(X, f(λ))
]
= E

[
d2(X, f(λf (X)))

]
, (6.2)

where λf (x) := min
{
λ ∈ [0, 1] | d(x, f(λ)) = infµ∈[0, 1] d(x, f(µ))

}
. Note that d(X, f) andR(f)

are invariant under parametrizations of f . That is, for any surjective monotone map

m : [0, 1]→ [0, 1],

d(x, f) = d(x, f ◦m), ∀x ∈M and R(f) = R(f ◦m), (6.3)

where ◦ denotes the composition of function. In other words, the distance a point

and a function f does not depends on any parametrization of f but on the graph

of f , Gf := {f(λ) |λ ∈ [0, 1]} ⊂M . We now denote the collection of all continuous

functions from [0, 1] to M by C([0, 1], M) and define that

G = {f ∈ C([0, 1], M) | d(f(λ1), f(λ2)) ≤ ℓ|λ1 − λ2| for any λ1, λ2 ∈ [0, 1]}

G0 = {f ∈ C([0, 1], M) |L(f) ≤ ℓ}

for some constant ℓ ≥ 0, where L(f) denotes the length of f and G0 is thus the

collection of functions in C([0, 1], M) whose lengths are not greater than ℓ. If f ∈ G,
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then

L(f) = sup
P

m−1∑
i=0

d(f(λi), f(λi+1)) ≤ ℓ

m−1∑
i=0

(λi − λi+1) = ℓ, (6.4)

where P = {0 = λ0 < λ1 < . . . < λm−1 < λm = 1} with m ≥ 1 is a partition of

[0, 1] and the above supremum is taken over all partitions of [0, 1]. That is, f ∈ G0
and then G0 ⊂ G0. Conversely, for a f ∈ C([0, 1], M) with L(f) ≤ ℓ, from (6.3) we

may assume that, without loss of generality, f is parametrized with the unit interval

[0, 1] by a constant speed s = L(f) ≤ ℓ. Then d(f(λ1), f(λ2)) = s|λ1 − λ2| ≤

ℓ|λ1 − λ2|, thereby implying that the reparametrization of f belongs to G. More

rigorously, the quotient space G0/ ∼ is same to G, in which ∼ denotes the equivalent

relation such that f ∼ g if and only if there is a monotone map m : [0, 1] → [0, 1]

such that g = f ◦m. It means that, by the reparametrization, G is nearly same to

G0 as far as the risk is concerned from (6.3). Therefore it is suffices to consider the

G if we inspect G0. For more details, see Kégl (1999) or Appendix A in Kégl et al.

(2000).

Definition 5. For an M -valued random variable X and some constant ℓ ≥ 0,

f∗ ∈ C([0, 1], M) is said to be a principal curve of X with length ℓ, if f∗ satisfies

R(f∗) = R∗ := inf
f∈C([0, 1],M)

{R(f) |L(f) ≤ ℓ} and L(f∗) ≤ ℓ (6.5)

Before investigating the existence of a principal curve, the following lemma needs

to be proved.

Lemma 6. G is a closed set in C([0, 1], M) with respect to the uniform distance

dist(f, g) := sup
λ∈[0, 1]

d(f(λ), g(λ)) for any f, g ∈ C([0, 1], M). (6.6)

Proof of Lemma 6. Suppose that {fn}n∈N ⊂ G ⊂ C([0, 1], M) converges to f , that

is, dist(fn, f) → 0 as n → ∞. It follows that f ∈ C([0, 1], M) owing to the fact

that the limit (with the uniform distance) of continuous functions is also continuous.

Since the uniform convergence implies the point convergence, for any λ1, λ2 ∈ [0, 1]

ℓ|λ2 − λ1| ≥ lim
n→∞

d(fn(λ1), fn(λ2)) = d(f(λ1), f(λ2)).
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Therefore f ∈ G, which completes the proof.

We now say that anM -valued random variableX has second moment if Ed2(X, p) <

∞ for some point p ∈ M . The point p ∈ M serves as an origin point in M . (When

M = RD, p is the origin). It is easy to show that Ed2(X, p) < ∞ is equivalent

to Ed2(X, p0) < ∞ for any point p0 ∈ M due to triangle inequality and Jensen’s

inequality. The following theorem shows that, for any given X with second moment

and nonnegative constant ℓ, there exists a principal curve with length ℓ.

Theorem 6 (Existence of principal curves). Assume that Ed2(X, p) <∞ for some

point p ∈ M . For any ℓ ≥ 0, there exists a principal curve of X with length ℓ, say

f∗ ∈ C([0, 1], M). Namely, f∗ satisfies (6.5).

Proof of Theorem 6. Denote R∗ = inff∈C([0, 1],M) {R(f) |L(f) ≤ ℓ} for simplicity.

By the definition, it follows that R∗ ≤ Ed2(X, p) by considering the constant func-

tion f ≡ p. In case R∗ = Ed2(X, p), the trivial curve f ≡ p is the principal

curve with length ℓ we wish to find and then the proof ends. For this reason,

we consider the case that R∗ < Ed2(X, p). Let P be a probability distribution

of X on M . Denote ∆ := [R∗ + Ed2(X, p)]/2 < Ed2(X, p) and a closed ball

B̄p(r) = {x ∈M | d(x, p) ≤ r}. Since Ed2(X, p) = limr→∞
∫
B̄p(r)

d2(x, p)P (dx),

some constant r0 > 0 can be chosen so that∫
B̄p(r0)

d2(x, p)P (dx) ≥ ∆.

Now set r1 = max(r0, ℓ). We first aim to prove that a candidate for principal

curve with length ℓ is totally contained in B̄p(3r1), which in turn means that it is

enough to only consider curves contained in the closed ball. Suppose that f is not

fully contained in the B̄p(3r1), meaning that Gf := {f(λ) |λ ∈ [0, 1]} ̸⊂ B̄p(3r1)

where Gf denotes the graph of f . It is easy to show that for any x ∈ B̄p(r1)

d(x, p) ≤ r1 ≤ d(x, f) from L(f) ≤ ℓ ≤ r1 and B̄p(2r1) ∩Gf = ϕ. Thus,

R∗ < ∆ ≤
∫
B̄p(r1)

d2(x, f)dP (x)

≤
∫
M

d2(x, f)dP (x) = R(f),
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which implies that

R∗ = inf
f∈C([0, 1],M)

{R(f) |L(f) ≤ ℓ}

= inf
f∈C([0, 1],M)

{R(f) |L(f) ≤ ℓ, Gf ⊂ B̄p(3r1) =: N}

= inf
f∈C([0, 1], N)

{R(f) |L(f) ≤ ℓ},

where N = B̄p(3r1) is the closed ball of center p with radius 3r1 (=: r) Secondly, it

is now enough to consider N , instead of M . Note that N is compact by Hopf-Rinow

theorem because N is also connected and complete. Let G ⊂ C([0, 1], N) be the

collection of all continuous functions from [0, 1] to N satisfying

d(f(λ1), f(λ2)) ≤ ℓ|λ1 − λ2| for any λ1, λ2 ∈ [0, 1]. (6.7)

As previously mentioned, it is suffices to consider the G if we inspect all the con-

tinuous functions f : [0, 1] → N with L(f) ≤ ℓ by reparametrization and (6.3) as

far as risk is concerned. Now, a generalization of Arzelà-Ascoli theorem (Chapter

7 in Kelly (1991)) is needed to end this proof. The generalization of Arzelà-Ascoli

theorem states that G ⊂ C([0, 1], N) is compact if and only if (i) G is closed, (ii)

equi-continuous, and (iii) for each λ ∈ [0, 1] Gλ := {f(λ) | f ∈ F} ⊂ N is relatively

compact, meaning that the closure of Gλ in N is compact. The condition (i) follows

by Lemma 6 and the condition (ii) follows by (6.7). Owing to the facts that N is

compact (by Hopf-Rinow theorem) and that a closed subset of a compact set is also

compact, the closure of Gλ ⊂ N is compact for each λ ∈ [0, 1]. Consequently, Gλ is

relatively compact and thus the condition (iii) follows.

According to the generalization of Arzelà-Ascoli theorem, G is compact in C([0, 1], N)

with respect to the uniform distance dist(f, g) := supλ∈[0, 1] d(f(λ), g(λ)) for f, g ∈

G. Denote R∗ = inff∈C([0, 1], N) {R(f) | l(f) ≤ ℓ} for simplicity. There exists a se-

quence {fn}n∈N ⊂ G satisfying R(fn) < R∗ + 1/n. Apparently, Gfn ⊂ N = Bp(r)

from the definition of G. Note that usual notion of compactness is equivalent to that

of sequential compactness on metric space by a well-known fact of point-set topol-

ogy. Because G is sequentially compact, there is a subsequence {fnk
}k∈N ⊂ {fn}n∈N
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and a limit f∗ ∈ G so that dist(fnk
, f∗) → 0 as k → ∞. At that time, the limit

f∗ is a candidate for a principal curve of X with length ℓ. The condition of length,

l(f∗) ≤ ℓ, is obtained by (6.4). The remaining part is to prove that f∗ achieves the

infimum in (6.5). We now denote {fnk
}k∈N by {fn}n∈N for simplicity. By definition,

limn→∞ dist(fn, f
∗) = 0 and limn→∞R(fn) = R∗. For a point x ∈M , suppose that

d2(x, f∗) ≤ d2(x, fn). Note that {fn}n∈N and f∗ are contained in the closed ball

N = B̄p(r). By triangle inequality,

|d2(x, f∗)− d2(x, fn)| = d2(x, fn)− d2(x, f∗)

≤ d2(x, fn(λf∗(x)))− d2(x, f∗(λf∗(x)))

≤
[
d(x, fn(λf∗(x))) + d(x, f∗(λf∗(x)))

]
· d(fn(λf∗(x)), f∗(λf∗(x)))

≤
[
d(x, p) + d(p, fn(λf∗(x))) + d(x, p) + d(p, f∗(λf∗(x)))

]
·d(fn(λf∗(x)), f∗(λf∗(x)))

≤ 2(r + d(x, p)) · sup
λ∈[0, 1]

d(fn(λ), f
∗(λ))

= 2(r + d(x, p)) · dist(fn, f∗) (6.8)

→ 0 as n→∞. (6.9)

In case d(x, f∗) < d(x, fn), the inequality (6.8) is also derived in the same way.

Namely, (6.8) holds for all x ∈M , thereby implying that

lim
n→∞

|R(fn)−R(f∗)| = lim
n→∞

|E[d2(X, fn)− d2(X, f∗)]|

≤ lim
n→∞

E|d2(X, f∗)− d2(X, fn)|
“LDCT”
= E lim

n→∞
|d2(X, f∗)− d2(X, fn)|

= 0

where the last equality holds by (6.9) and the second equality holds by |d2(X, f∗)−

d2(X, fn)| ≤ 2r+2d(X, p) from (6.8) for sufficiently large n, 2r+2Ed(X, p) ≤ 2r+

2
√

Ed2(X, p) < ∞ (Jensen’s inequality), and Lebesgue’s dominated convergence

theorem (LDCT). Accordingly, above limits exist and

R∗ = lim
n→∞

R(fn) = R(f∗).
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Therefore, f∗ ∈ C([0, 1], N) ⊂ C([0, 1], M) is a principal curve with length ℓ.

Theorem 6 shows that a principal curve with length ℓ always exists. The unique-

ness is not assured as in Kégl (1999); Kégl et al. (2000). It means that there can be

several principal curves for a given M -valued random variable X. However, their

risks are all same. Suppose that the observations {Xi}ni=1 are i.i.d. samples from an

M -valued random variable X, where n is the number of observations. Let k ≥ 1

be the number of vertex point of a curve to be estimated, let F be a family of

continuous curves in M whose lengths are not greater than ℓ ≥ 0, and denote

Fk as a family of curves whose lengths are not greater than ℓ consisting of k-

geodesic segments. With an increasing complexity of function classes, we clearly

have F1 ⊂ F2 ⊂ . . . ⊂ Fk ⊂ . . . ⊂ F since a single geodesic segment can considered

as two geodesic segments by splitting the single geodesic segment. Formally, the

principal curve with length ℓ is any f∗ such that

f∗ = argminf∈F Ed2(X, f) = argminf∈F R(f)

We proved that the principal curves f∗ always exists when X has second moment

by Theorem 6. Alternatively, the minimizer of risk in the restricted class Fk, say

f∗
k , is any

f∗
k = argminf∈Fk

Ed2(X, f) = argminf∈Fk
R(f), (6.10)

as long as it exists. The existence of f∗
k is guaranteed by the following Theorem 7.

Theorem 7. Under conditions (B1)− (B2) stated later in next page, f∗
k exists for

any k ≥ 1.

Proof. See Appendix A.3.

Theorem 7 means that (6.10) is well-defined. In practice, empirical minimizer

fk, n is naturally defined as

fk, n = argminf∈Fk

1

n

n∑
i=1

d2(Xi, f). (6.11)
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Kégl (1999); Kégl et al. (2000) proved the consistency of principal curve and more-

over proved its n−1/3-convergence rate of excess risk (accuracy) by means of em-

pirical risk minimization. In this work, this properties are extended into general

Riemannian manifolds with same sign of curvatures. To this end, the following are

assumed:

(B1) M is complete and connected as a metric space. The M -valued random vari-

able X is supported on some closed, bounded, and convex subset N ⊂M , i.e,

P(X ∈ N) = 1.

(B2) M satisfies either of the following:

(a) Any sectional curvatures of M are nonpositive.

(b) Any sectional curvatures of M , say K, are bounded below by some pos-

itive constant δ, i.e., 0 < δ ≤ K. It also holds that diam(N) < π/
√
κ

where κ is the supremum of curvatures on M .

In the case (b) of (B2), the curvature K is bounded below by δ > 0. By Bonnet’s

theorem (e.g., Chapter 11, page 200–201, in Lee (2006)), M is compact and then

the supremum of sectional curvature, say κ, is achieved. (For a proof, see Chapter

9.3, page 166, in Bishop and Crittenden (2011)). It means that κ <∞ and that the

condition, diam(N) < π/
√
κ ̸= 0, is hence meaningful. (In the case of D-sphere with

radius 1/
√
κ, the diameter of any half D-sphere equals to π/

√
k). In the assumption

(B2), we restrict that M has same sign of curvatures, as in Fletcher et al. (2009);

Dai and Müller (2018); Lin and Yao (2019). To the best of our knowledge, the class

of manifolds that is more wider than (B2) has not been covered in statistical and

computer science communities. The class of manifold with same sign of curvature

assumed in (B2) is sufficiently wide in statistical views, while a more larger class of

spaces, such as CAT(κ) (the collection of spaces with curvatures at most κ for some

κ ∈ R), mainly belongs to the area of differential geometry, a field of mathematics.

For two sequences {an}∞n=1 and {bn}∞n=1, we denote an ≍ bn when C1|bn| <

|an| < C2|bn| for some constants C1, C2 > 0. The number of vertices k is chosen by
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k ≍ n1/3. To prove the asymptotic properties of the proposed procedure thoroughly,

we lastly assume that

(B3) For any k ≥ 1,

fk, n = argmin
f∈Fk

1

n

n∑
i=1

d2(Xi, f)

exists.

Let Xn = {X1, X2, . . . , Xn} and X be the i.i.d. copies of a probability distribution

on M . By the definition of risk (6.2), we can denote R(fk, n) = E[d2(X, fk, n) | Xn]

where E is the expectation taken over X. EXn [R(fk, n) − R(f∗)] = EXn [R(fk, n)] −

R(f∗), is nonnegative by the definition of f∗ where EXn denotes the expectation

taken over Xn. By the following theorem, the procedure is consistent and its con-

vergence rate is n−1/3 order.

Theorem 8 (Consistency and cubic-convergence rate). Under (B1)− (B3), if k ≍

n1/3, then the procedure is consistent and has n−1/3-convergence rate in the sense

that

R(fk, n)
L1→ R(f∗) and EXn [R(fk, n)−R(f∗)] = O(n−1/3) as n→∞,

where
L1→ denotes the L1-convergence.

Proof. See Appendix A.3.

Note that L1-convergence implies convergence in probability by Markov’s in-

equality. The theorem thus implies that the procedure is consistent ; that is,

R(fk, n)
P→ R(f∗) as →∞

where
P→ denotes the convergence in probability. In the terminology of empirical

risk minimization principle, moreover, R(fk, n) − R(f∗) is termed as excess risk

(accuracy) of fk, n. A nonasymptotic concentration inequality for the excess risk of

fk, n can be established as follows.
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Theorem 9. Under (B1)− (B3), for any 0 < δ < 1, with probability at least 1− δ

we get

R(fk, n)−R(f∗) ≤

 
C(ℓ, r)k − 2r4 log δ

n
+

2(rℓ+ 1)

k
.

Proof. See Appendix A.3.

Theorem 9 is statistically important because it gives an 100(1− δ)% confidence

interval for R(f∗). Even if the theoretical properties for LPC is developed, the

practical algorithm for constructing LPC procedure is in progress.

6.4 Real data analysis

For real data analysis, seismological data near the East Sea (6.5+ Mb magnitude)

near the U.S. since 1900 are collected from U.S. Geological Survey. The data have

165 observations and are distributed vicinity from the borders of plates, as shown

in Figure 6.4.

Figure 6.5 represents the consequences of existing methods. As shown, the meth-

ods cannot identify the local structures of the seismological data. On the other

hands, Figure 6.6 shows the results which are implemented by LPG with h = 0.3,

ν = 0.05 (left) and h = 0.11 and ν = 0.05 (right). The consequence (right) of

LPG with suitably adjusted parameters is able to extract a local structure of the

seismological data.

6.5 Further work

As mentioned previously, the work for local principal curves on Riemannian mani-

folds (LPCRM) is in progress. So far, initialization method (LPG) to capture com-

plex structured data is provided and theoretical consequences on generic Rieman-

nian manifold with same sign of curvatures are established. The remaining part is

to thoroughly construct the practical algorithm (polygonal line algorithm) based
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on Kégl (1999); Kégl et al. (2000). There is another line of further work. To ro-

bustify the whole procedure, along the same line with Chapter 4, an M -type local

principal curve on Riemannian manifolds could be developed as a minimizer of L1-

or Huber type risk instead of L2 risk. In this case, the existence, consistency, and

convergence rate of the robust procedure could also be guaranteed in the similar

argument. However it is beyond the scope of a single study. We hence let this topic

be left as future study.
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Figure 6.3: From top to bottom and left to right, simulated zigzag, spiral, T-shaped,

X-shaped, doubly circular data are colored in blue. The LPG consequences of zigzag

for h = 0.07, spiral for h = 0.07, T-shaped for h = 0.05, X-shaped for h = 0.05,

double circle for h = 0.1, and helix for h = 0.15 are colored in red. In all cases,

viscosity is set to be ν = 0.1. 135



Figure 6.4: Left: The borders (red) of plates near the East Sea (source: U.S. geolog-

ical Survey); Right: The distribution of earthquakes (blue) near the East Sea
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Figure 6.5: From top to bottom and left to right, the consequences of PGA, principal

circle, principal curves of Hauberg, and SPC with q = 0.05, are colored in red.
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Figure 6.6: From left to right, the consequences of LPG with h = 0.3, ν = 0.05 and

with h = 0.11, ν = 0.05 are colored in red.
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Chapter 7

Conclusion

In the thesis, nonparametric dimension reduction methods on spheres and Rieman-

nian manifolds are presented. Specifically, Chapter 3 provided spherical principal

curves on spheres and establish the theoretical properties of the method. The pro-

cedure is robustified and corresponding theory is established in Chapter 4. The

methods are implemented to real earthquake data and real motion capture data.

Chapter 5 introduces an R package spherepc which provides existing methods

and the proposed methods throughout this thesis. Finally, local principal curves

on Riemannian manifolds (LPCRM) is presented in Chapter 6. The procedure has

advantages in that (i) it is capable of identifying the complicated structures of a

given data, (ii) the spaces to which the method can be applied is extended to generic

Riemannian manifolds, and (iii) solid theories on the procedure are established.

There are several ways to further work. Examples of possible future studies are

given as follows: (a) As shown in Chapter 3, we observe that for sphere-valued data

both extrinsic and intrinsic approaches yield similar performance. It is compatible

to the fact that the intrinsic and extrinsic means are indistinguishable if dis-

tribution of data has small support (Bhattacharya and Patrangenaru, 2003, 2005;

Bhattacharya et al., 2012). In my experience, moreover, the extrinsic and intrinsic

means are very close each other when data are symmetrically distributed and the

space where the data is lying are symmetric (e.g. RD, SD, Riemannian symmet-
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ric space, and homogeneous Lie group). In this case, it is worth to investigating

the upper and lower bounds on differences between the two means. On the one

hand, it is questionable whether the extrinsic approach on non-symmetric mani-

fold will still be efficient. For the non-symmetric manifold like a torus, it seems

that the intrinsic approach may yield better performance due to their inherency.

(b) Investigate the theoretical properties for Huber-type centroid in Chapter 4 such

as existence, uniqueness, and convergence of related algorithm, along the line of

Fletcher et al. (2009); Yang (2010); Afsari (2011). (c) Beyond the central tendency,

develop a quantile-based principal curve in the sense of Chaudhuri (1996); Chowd-

hury and Chaudhuri (2019). The quantile-based approach could be useful. (d) Apply

the consequence of dimension reduction presented in the thesis to other statistical

and machine learning tasks, such as clustering, regression or classification (Goh and

Vidal, 2008; Mallasto and Feragen, 2018; Yao and Zhang, 2020).
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Appendix A

Appendix

A.1 Appendix for Chapter 3

Proof of Proposition 3. It suffices to show that, for any constant c ∈ [0, 1],

{λf (x) ≥ c} is measurable. If c = 0, it is the entire space; thus, we may assume

that c ∈ (0, 1]. Let A be the set of ambiguity points. A is a measure zero set by

Proposition 2. It can be shown that the spherical measure inherits completeness

from the Lebesgue measure, which means that any subsets of a null set are mea-

surable. Therefore A, Ac, and their subsets are measurable in which Ac denotes the

complement of A. Note that

{λf (x) ≥ c} =
[
{λf (x) ≥ c} ∩A

]
∪
[
{λf (x) ≥ c} ∩Ac

]
,

where the former is measurable since it is a subset of A. In this respect, it is enough

to show that

{λf (x) ≥ c} ∩Ac

is measurable. y ∈
{
x ∈ SD |λf (x) ≥ c

}
∩Ac (∗)⇐=⇒ y is not an ambiguity point and

for any µ ∈ [0, c) ∩Q there exist a λ ∈ [c, 1] ∩Q such that d(y, f(λ)) < d(y, f(µ))

where Q is the set of rational numbers. Once this is proven,

{λf (x) ≥ c} ∩Ac =

 ⋂
µ∈[0, c)∩Q

⋃
λ∈[c, 1]∩Q

{d(x, f(λ)) < d(x, f(µ))}

 ∩Ac. (A.1)
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Each set in the right-hand side of (A.1) is measurable since, for any µ, λ, the

function x 7→ d(x, f(µ)) − d(x, f(λ)) is continuous. Accordingly, {λf (x) ≥ c} ∩ Ac

is measurable due to the fact that countable unions and intersections of measurable

sets are also measurable, which completes the assertion.

Proof of (*). (⇒): Since the closest point in f from y is unique, it follows from the

continuity of f and the definition of the projection index.

(⇐): Suppose that λf (y) < c. From the non-ambiguity of y, observe that

d(y, f(λf (y))) < min
λ∈[c, 1]

d(y, f(λ)).

By the continuity of f again, there exists a µ0 ∈ [0, c] ∩ Q such that for any

λ0 ∈ [c, 1] ∩Q

d(y, f(µ0)) < min
λ∈[c, 1]

d(y, f(λ)) ≤ d(y, f(λ0)).

It completes the (∗), as desired.

Proof of Proposition 4. The proof follows the line of the proof of Lemma 4.1

in Hastie and Stuetzle (1989). It is enough to show that, for any small η > 0

there exists a δ > 0 such that |ϵ| < δ implies |λfϵ(x) − λf (x)| < η. Define a set

C = [0, 1] ∩ (λf (x) − η, λf (x) + η)c and dC = infλ∈C d(x, f(λ)) > d(x, f(λf (x)))

where dC is achieved by some λ ∈ C from the compactness of C, and the inequality

holds since x is not an ambiguity point of f . Choose δ = 1
3

[
dC−d(x, f(λf (x)))

]
> 0.

Then if |ϵ| < δ then

inf
λ∈C

d
(
x, fϵ(λ)

)
−d

(
x, fϵ(λf (x))

)
≥ inf

λ∈C
d
(
x, f(λ)

)
− d(f(λ), fϵ(λ))− d(x, f(λf (x)))− d(f(λf (x)), fϵ(λf (x)))

≥dC − δ − d(x, f(λf (x)))− δ

=3δ − 2δ > 0.

Hence,

inf
λ∈C

d(x, fϵ(λ)) > d(x, fϵ(λf (x))).
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If λfϵ(x) ∈ C, then infλ∈C d(x, fϵ(λ)) = d(x, fϵ(λfϵ(x))) > d(x, fϵ(λf (x))), which

is a contradiction by the definition of λfϵ . It follows that λfϵ(x) /∈ C; thus, |λf (x)−

λfϵ(x)| < η. It completes the assertion.

Proof of Lemma 4. Suppose that I : [0, 1] → SD is smooth (actually C2). The

domain and range of I are the second countable (with usual topology) and differ-

entiable manifolds whose dimensions are 1 and D, respectively. Since f is C2 and

the differential dI has rank 1 that is less than intrinsic dimension of SD, by a gen-

eralization of Sard’s Theorem (for details see Theorem 1 in Sard (1965)), the image

I([0, 1]) = {I(x) ∈ SD |x ∈ [0, 1]} has (D-dimensional Hausdorff) measure zero.

Next, for simplicity, assume D = 2. The general case is also proved in the same way.

Each point x ∈ S2 \B(0) satisfying λf (x) ̸= 0, 1 is characterized by two equations

f ′(λ) · x = 0 and f ′′(λ) · x = 0 for some λ ∈ [0, 1]. Therefore, we define functions

I1, I2 as follows: For all λ ∈ [0, 1],

I1(λ) = f ′(λ)× f ′′(λ)/
∥∥f ′(λ)× f ′′(λ)

∥∥ ,
I2(λ) = −f ′(λ)× f ′′(λ)/

∥∥f ′(λ)× f ′′(λ)
∥∥ .

It is well known that the curvature of a smooth curve lying on the unit sphere is

more than 1. It implies that κ = |f ′′|/s2 ≥ 1 where κ is the curvature of f and

s := |f ′(λ)| > 0 for any λ ∈ [0, 1] and thus f ′′ ̸= 0. We have already known that

f ′ · f ′′ = 0 by Lemma 1. Hence, we have f ′ × f ′′ ̸= 0. It implies that I1 and I2

are well-defined and also smooth. Note that S2 \ B(ζ) is decreasing as n → ∞

by construction and that S2 \ B(0) ⊆ I1([0, 1])
⋃
I2([0, 1]), which completes the

assertion.

Proof of Lemma 5. By Proposition 5 and the assumptions that x is a non-ambiguity

point of f , and λf (x) ̸= 0, 1, we obtain λf+ϵg(x) ̸= 0, 1 for sufficiently small |ϵ|.

On an ϵ near 0, λ(ϵ) is characterized by orthogonality between f ′
ϵ(λ(ϵ)) and the

geodesic through x and fϵ(λ(ϵ)); that is, f ′
ϵ(λ) · (x − fϵ(λ)) = f ′

ϵ(λ) · x = 0 by the

same argument in Lemma 1. Then, we define a map F : [−1, 1] × [0, 1] → R as
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F (ϵ, λ) = f ′
ϵ(λ) · x. The map F is smooth by Proposition 1. By the definition of

B(ζ),

∂

∂λ
F (ϵ, λ)

∣∣
(0, λf (x))

= f ′′(λf (x)) · x ̸= 0.

By implicit function theorem, for each x ∈ Ac ∩ B(ζ), λ(ϵ) = λfϵ(x) is a smooth

function for ϵ and F (ϵ, λ(ϵ)) = 0 in an open interval containing zero. Next, so as

to prove uniform boundedness of ∂λ(ϵ)
∂ϵ , we should show that f ′′

ϵ (λfϵ(x)) uniformly

converges to f ′′(λf (x)) as ϵ→ 0 on x ∈ Ac ∩B(ζ). First of all, for any λ and ϵ0,

fϵ0(λ) = f(λ) +

∫ ϵ0

0
g(ϵ, λ) dϵ

⇒ f ′′
ϵ0(λ) = f ′′(λ) +

∫ ϵ0

0
g′′(ϵ, λ) dϵ

⇒
∥∥f ′′

ϵ0(λ)− f ′′(λ)
∥∥ ≤ ∫ ϵ0

0

∥∥g′′(ϵ, λ)∥∥ dϵ ≤ ϵ0M, (A.2)

for some M > 0. Note that the above derivatives are differentiation by λ. Also, the

second equation holds true since g(ϵ, ·) is a twice continuously differentiable function

for any ϵ; thus, it is able to change the order of derivative and the integration

by dominated convergence theorem. The last inequality holds because g′′(ϵ, λ)
(
=

∂2g(ϵ, λ)
∂λ2

)
is continuous on [−1, 1]× [0, 1]. Hence,

∥∥f ′′
ϵ (λfϵ(x)

)
− f ′′(λf (x))

∥∥ ≤
∥∥f ′′

ϵ (λfϵ(x))− f ′′(λfϵ(x))
∥∥

+
∥∥f ′′(λfϵ(x))− f ′′(λf (x))

∥∥
→ 0, (A.3)

as ϵ → 0 uniformly on x ∈ Ac ∩ B(ζ), because the first term uniformly converges

to 0 by (A.2) and the last one uniformly converges to 0 by Proposition 5 and the

boundedness of f ′′′ (assumption (A1)). We obtain that |x · f ′′(λf (x)
)
| > ζ owing to

x ∈ B(ζ). By (A.3), there exists a δ > 0 such that |ϵ| < δ ⇒ |x · f ′′
ϵ

(
λfϵ(x)

)
| ≥ ζ/2.

Since fϵ(λ) = f(ϵ, λ) has continuous second partial derivatives, it is able to change
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the order of partial derivatives by Schwarz’s theorem, as

∂

∂ϵ

∣∣∣
ϵ=ϵ0

f ′
ϵ

(
λ(ϵ0)

)
=

∂

∂ϵ

∣∣∣
ϵ=ϵ0

∂

∂λ

∣∣∣
λ=λ(ϵ0)

fϵ(λ)

=
∂

∂λ

∣∣∣
λ=λ(ϵ0)

∂

∂ϵ

∣∣∣
ϵ=ϵ0

fϵ(λ)

= g′(ϵ0, λ(ϵ0)),

for all |ϵ0| < δ. By applying the implicit function theorem to F again, it follows

that λ(ϵ) is differentiable at ϵ = ϵ0 and

|λ′(ϵ0)| =
∣∣∣∂λfϵ(x)

∂ϵ

∣∣∣
ϵ=ϵ0

∣∣∣ =
∣∣∣−∂F (ϵ, λ)/∂ϵ

∂F (ϵ, λ)/∂λ

∣∣∣
(ϵ0, λ(ϵ0))

∣∣∣
=

∣∣∣x · ∂
∂ϵ

∣∣
ϵ=ϵ0

f ′
ϵ(λ(ϵ0))

∣∣∣∣∣∣x · f ′′
ϵ0(λ(ϵ0))

∣∣∣ ≤ ∥g
′∥

ζ/2

≤ 2/ζ,

provided that |ϵ0| < δ, which completes the proof.

A.2 Appendix for Chapter 4

Proof of Theorem 3

Proof. For ease of notation, we denote f +g as h. If f = h then it is clear. For given

f ̸= h, we fix a point X ∈ S2 satisfying X ∈ Ac ∩B(ζ) for some ζ > 0 and λf (X) ∈

(0, 1). (Note assumption (A3)). Denote fϵ := f + ϵg and λ(ϵ) := λfϵ(X) for |ϵ| ≤ 1.

In particular, λ(0) = λf (X). In addition, we sometimes omit X and respectively

express λfϵ and λf , instead of λfϵ(X) and λf (X). We apply Lebesgue’s dominated

convergence theorem so as to change the order of derivative and expectation in (4.4).

To this end, we aim to show that Zϵ(X) is uniformly bounded on X ∈ Ac∩B(ζ) for

sufficiently small |ϵ|. According to Lemma 5, there are constants η > 0 and C > 0

such that if |ϵ0| < η then λ(ϵ) is differentiable at ϵ = ϵ0 and
∣∣∂λ(ϵ)

∂ϵ

∣∣
ϵ=ϵ0

∣∣ < C, where

λ(ϵ) := λfϵ(X) for brevity. If 0 < |ϵ0| < η, it follows from the triangular inequality

145



that

|Zϵ0(X)| :=

∣∣∣∣d(X, fϵ0(λfϵ0
))− d(X, f(λf ))

ϵ0

∣∣∣∣
=

∣∣∣∣d(X, fϵ0(λ(ϵ0)))− d(X, f(λ(0)))

ϵ0

∣∣∣∣
≤

∣∣∣∣d(fϵ0(λ(ϵ0)), f(λ(0)))ϵ0

∣∣∣∣
≤

∣∣∣∣∣d(f(λf ), f(λ(ϵ0))) + d(f(λ(ϵ0)), fϵ0(λ(ϵ0)))

ϵ0

∣∣∣∣∣
≤ s · |λ(0)− λ(ϵ0)|

ϵ0
+ ∥g(λ(ϵ0))∥ ,

≤ sC + π,

where s := |f ′(λ)| for all λ. The last inequality is done by mean value theorem.

Hence, Zϵ(X) is uniformly bounded on X ∈ Ac ∩B(ζ) for 0 < |ϵ| < η.

Next, we will find the limit of Zϵ(X) as ϵ → 0. Let θ(λ,X) be the angle be-

tween two geodesic segments that connect f(λ) with X and f(λ) with (f + g)(λ),

respectively. Define ang(λ) := | cos(θ(λ, X))| where X satisfies λf (X) = λ. The

well-definedness of ang(λ) can be easily proved. By Lemma 3,

F (ϵ) := cos(d(X, fϵ(λfϵ))) = cos(d(X, f(λfϵ))) · cos(ϵ ∥g(λfϵ)∥)

+ sin(d(X, f(λfϵ))) · sin(ϵ ∥g(λfϵ)∥) · cos(θ(λfϵ , X)),

where ∥g(λ)∥ = d(f(λ), (f + g)(λ)) < π. Using the chain rule to the derivative of

F ,

lim
ϵ0→0

∂F (ϵ)

∂ϵ

∣∣∣
ϵ=ϵ0

= lim
ϵ0→0

[
sin

(
d(X, f(λ(ϵ0)))

)
· cos(θ(λ(ϵ0), X))

·
(
∥g(λ(ϵ0))∥+ ϵ0 ·

∂ ∥g(λ(ϵ))∥
∂ϵ

∣∣∣
ϵ=ϵ0

)]
− lim

ϵ0→0

[
sin

(
d(X, f(λ(ϵ0)))

)
· ∂d(X, f(λ(ϵ)))

∂ϵ

∣∣∣
ϵ=ϵ0

]
.

In addition,
∂ ∥g(λ(ϵ))∥

∂ϵ

∣∣∣
ϵ=ϵ0

=
∂ ∥g(λ)∥

∂λ

∣∣∣
λ=λ(ϵ0)

∂λ(ϵ)

∂ϵ

∣∣∣
ϵ=ϵ0

,
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which does not diverge as ϵ0 → 0 and exists, since ∥g(λ)∥ = d(f(λ), (f + g)(λ)) is

continuously differentiable for λ and ∂λ(ϵ)
∂ϵ

∣∣
ϵ=0

is bounded by Lemma 5. Moreover

lim
ϵ0→0

∂d(X, f(λ(ϵ)))

∂ϵ

∣∣∣
ϵ=ϵ0

= lim
ϵ0→0

∂d(X, f(λ))

∂λ

∣∣∣
λ=λ(ϵ0)

· ∂λ(ϵ)
∂ϵ

∣∣∣
ϵ=ϵ0

=
∂d(X, f(λ))

∂λ

∣∣∣
λ=λf

∂λ(ϵ)

∂ϵ

∣∣∣
ϵ=0

= 0,

where λ(ϵ) = λfϵ(X). The last equality is done by the definition of λf (X). Accord-

ingly, we obtain that

lim
ϵ→0

∂F (ϵ)

∂ϵ
= ∥g(λf )∥ · cos(θ(λf , X)) · sin(d(X, f(λf ))). (A.4)

By mean value theorem, for any 0 < |ϵ0| < η, there exists a 0 < |ϵ1| < |ϵ0| such that

Zϵ0(X) =
d(X, fϵ0(λfϵ0

))− d(X, f(λf ))

ϵ0

=
arccos(F (ϵ0))− arccos(F (0))

ϵ0

= − 1√
1− F 2(ϵ1)

· dF (ϵ)

dϵ

∣∣∣
ϵ=ϵ1

.

By (A.4),

lim
ϵ0→0

Zϵ0(X) = lim
ϵ1→0

[
− 1√

1− F 2(ϵ1)
· dF (ϵ)

dϵ

∣∣∣
ϵ=ϵ1

]
= − 1

sin(d(X, f(λf )))
· ∥g(λf )∥ · cos(θ(λf , X)) · sin(d(X, f(λf )))

= −∥g(λf )∥ · cos(θ(λf , X)), (A.5)

where (A.5) holds for any X ∈ Ac ∩ B(ζ) satisfying d(X, f(λf )) > 0. Since the

trajectory of f , {f(λ) ∈ S2 |λ ∈ [0, 1]}, has measure zero by Lemma 4, (A.5)

holds for a.e. X ∈ B(ζ) (note assumption (A3)). In addition, since Mλ := {x ∈

S2 |λf (X) = λ} is contained in a great circle on S2, a proper connected subset of

Mλ is isometric to a same-length interval in R. Hence, it can be shown that f is a

L1-type principal curve of X if and only if

E
[
sgn

(
cos(θ(λf , X))

) ∣∣ λf (X) = λ
]
= 0 for a.e. λ,
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where sgn(x) = 1 if x ≥ 0 and otherwise -1.

Finally, by applying (A.5) and Lebesgue’s dominated convergence theorem, we ob-

tain

∂E
[
d(X, f + ϵg)

]
∂ϵ

∣∣∣
ϵ=0

= lim
ϵ→0

[E[d(X, f + ϵg)
]
− E

[
d(X, f)

]
ϵ

]
= E

[
lim
ϵ→0

d(X, f + ϵg)− d(X, f)

ϵ

]
= Eλ

[
E
[
lim
ϵ→0

Zϵ(X)
∣∣ λf (X) = λ

]]
= −Eλ

[
E
[
∥g(λf (X))∥ · cos(θ(λf , X))

∣∣ λf (X) = λ
]]

= −Eλ

[
∥g(λ)∥ · ang(λ) · E

[
sgn

(
cos(θ(λf , X))

) ∣∣ λf (X) = λ
)]]

= 0,

where cos(θ(λ, X)) = | cos(θ(λ, X))|·sgn
(
cos(θ(λ, X))

)
= ang(λ)·sgn

(
cos(θ(λ, X))

)
for λ = λf (X). To prove the converse, we assume that

Eλ

[
∥g(λ)∥ · ang(λ) · E

[
sgn

(
cos(θ(λf , X))

) ∣∣ λf (X) = λ
]]

= 0,

for any h (= f + g) such that ∥g∥ < π and ∥g′∥ ≤ 1. It follows that

E
[
sgn

(
cos(θ(λf , X))

) ∣∣ λf (X) = λ
]
= 0 for a.e. λ,

which is equivalent to that f is a L1-type principal curve of X.

Proof of Theorem 4

Proof. We use the same notations of proof in Theorem 3. Namely, denote f + g

as h. For a given f ̸= h, we fix a point X ∈ S2 satisfying X ∈ Ac ∩ B(ζ) for an

arbitrarily small ζ > 0 and λf (X) ∈ (0, 1). (Note assumption (A3)). As the proof

of Theorem 3, we apply Lebesgue’s dominated convergence theorem to change the

order of derivative and expectation. To this end, we define

Z(X, ϵ) =
ρ(d(X, f + ϵg))− ρ(d(X, f))

ϵ

=
ρ
(
d(X, fϵ(λfϵ))

)
− ρ

(
d(X, f(λf ))

)
ϵ

,

where a Huber loss ρ is defined by ρ(x) = x2 if |x| ≤ c, c(2|t| − c) if |x| > c, for a

constant c > 0.
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Firstly, we aim to show that Z(X, ϵ) is uniformly bounded on X ∈ Ac∩B(ζ) for

small |ϵ|. Note that the Huber loss ρ satisfies a Lipschitz condition by mean value

theorem, i.e., |ρ(x)−ρ(y)| ≤ 2c|x−y| for x, y ∈ R. According to Lemma 5, there are

positive constants η and C such that if 0 < |ϵ0| < η, λ(ϵ) is differentiable at ϵ = ϵ0

and |∂λ(ϵ)∂ϵ

∣∣
ϵ=ϵ0
| < C. Thus, if 0 < |ϵ| < η, it follows by the Lipschitz condition and

triangle inequality that

|Z(X, ϵ)| ≤ 2c ·
|d(X, fϵ(λ(ϵ)))− d(X, f(λf ))|

ϵ

≤ 2c ·
d(fϵ(λ(ϵ)), f(λf ))

ϵ

≤ 2c ·
d(fϵ(λ(ϵ)), f(λ(ϵ))) + d(f(λ(ϵ), f(λf )))

ϵ

≤ 2c · (s|λ(ϵ)− λ(0)|
ϵ

+ ∥g(λ(ϵ))∥)

≤ 2c · (sC + π),

where s = |f ′(λ)| for any λ ∈ [0, 1]. Thus Z(X, ϵ) is uniformly bounded on X ∈

Ac ∩B(ζ).

Secondly, we have to find the limit of Z(X, ϵ) as ϵ→ 0. Owing to the equality,

lim
ϵ→0

d(X, fϵ(λfϵ)) = lim
ϵ→0

d(X, fϵ(λ(ϵ))) = d(X, f(λf )).

Thus,

lim
ϵ→0

Z(X, ϵ) = 2c · lim
ϵ→0

Z1(X, ϵ)I(d(X, f(λf )) > c)

+ lim
ϵ→0

Z2(X, ϵ)I(d(X, f(λf )) ≤ c), (A.6)

provided that the limits of Z1 and Z2 exist and these are same when d(X, f(λf )) = c,

in which I denotes an indicator function and

Z1(X, ϵ) :=
d(X, fϵ(λfϵ))− d(X, f(λf ))

ϵ

Z2(X, ϵ) :=
d2(X, fϵ(λfϵ))− d2(X, f(λf ))

ϵ
.

We have already known that limϵ→0 Z1(X, ϵ) = −∥g(λf )∥ · cos(θ(λf , X)) holds for

X ∈ Ac ∩B(ζ) by (A.5) in the proof of Theorem 3. We now aim to show that

lim
ϵ→0

Z2(X, ϵ) = −2d(X, f(λf )) · ∥g(λf )∥ · cos(θ(λf , X)), (A.7)

149



for X ∈ Ac ∩ B(ζ). To this end, we define a map u : (−1, 1] → (1, ∞) by u(x) =

arccos(x) · 1√
1−x2

if x ∈ (−1, 1), and u(1) = 1. By simple calculations, u is a

monotone decreasing continuous function on (−1, 1]. Note that F (ϵ) is differentiable

for |ϵ| < η. Applying mean value theorem to find the limit of Z2(X, ϵ), we have

Z2(X, ϵ0) =
d2(X, fϵ0(λfϵ0

))− d2(X, f(λf ))

ϵ0

=
arccos2(F (ϵ0))− arccos2

(
F (0))

ϵ0

= −2 arccos(F (ϵ1)) ·
1√

1− F 2(ϵ1)
· dF (ϵ)

dϵ

∣∣∣
ϵ=ϵ1

(A.8)

for 0 < |ϵ1| < |ϵ0| < η. When F (ϵ1) = 1, the last equality is considered as a limit that

is well-defined, because limx→1 u(x) = 1 and u(x) is smoothly extended on an open

interval containing 1 such that u(x) is differentiable at x = 1. If d(X, f(λf )) > 0,

it follows from (A.4) and (A.8) that

lim
ϵ0→0

Z2(X, ϵ0) = lim
ϵ1→0

[
− 2 arccosF (ϵ1) ·

1√
1− F 2(ϵ1)

· dF (ϵ)

dϵ

∣∣∣
ϵ=ϵ1

]
= −2u

(
cos(d(X, f(λf )))

)
· ∥g(λf )∥ · cos(θ(λf , X)) · sin(d(X, f(λf )))

(A.9)

=
−2d(X, f(λf ))

sin(d(X, f(λf )))
· ∥g(λf )∥ · cos(θ(λf , X)) · sin(d(X, f(λf )))

= −2d(X, f(λf )) · ∥g(λf )∥ · cos(θ(λf , X)), (A.10)

In the case of d(X, f(λf )) = 0, the same result follows since both (A.9) and (A.10)

are zero. That is, (A.10) is established for X ∈ Ac ∩ B(ζ). From Lemma 4, (A.5)

and (A.7) hold for a.e. X ∈ B(ζ) (by the assumption (A3)).

Thirdly, we aim to find an equivalent condition to be a Huber-type principal

curve. Denote Mλ =
{
x ∈ S2 |λf (x) = λ

}
. Since Mλ is contained in a great circle

on S2, a proper connected subset of Mλ is isometric to a same-length interval in

R. Consider a random variable Y compactly supported on R and let µ0 ∈ R be a
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minimizer of m(µ) = E[ρ(Y − µ)]. The derivative of ρ is

ρ′(t) =


2c if t > c,

2t if |t| ≤ c,

−2c if t < −c.

By Lebesgue’s dominated convergence theorem,

0 =
∂m(µ)

∂µ

∣∣∣
µ=µ0

=
∂E[ρ(Y − µ)]

∂µ

∣∣∣
µ=µ0

= E[
∂ρ(Y − µ)

∂µ

∣∣∣
µ=µ0

]

=− 2E[cI(Y − µ0 > c) + (Y − µ0)I(|Y − µ0| ≤ c)− cI(Y − µ0 < −c)]

=− 2E[|Y − µ0| · sgn(Y − µ0)I(|Y − µ0| ≤ c)

+ c · sgn(Y − µ0)I(|Y − µ0| > c)], (A.11)

where sgn(x) = 1 if x ≥ 0 and otherwise -1. In our case, on Mλ, because f(λ) is a

Huber-type measure on X | λf (X) = λ, the distance Y − µ0 in (A.11) and its sign,

are replaced by d(X, f(λf )) and sgn
(
cos(θ(λf , X))

)
respectively. In this respect, f

is a Huber-type principal curve of X if and only if

E
[
d(X, f(λf )) · sgn

(
cos(θ(λf , X))

)
I(d(X, f(λf )) ≤ c)

+c · sgn
(
cos(θ(λf , x))

)
I(d(X, f(λf )) > c)

∣∣ λf (X) = λ
]
= 0 for a.e. λ.

Finally, using (A.5), (A.6), (A.7), and Lebesgue’s dominated convergence theorem

again,

∂E
[
ρ
(
d(X, f + ϵg)

)]
∂ϵ

∣∣∣
ϵ=0

= lim
ϵ→0

[E[ρ(d(X, f + ϵg)
)]
− E

[
ρ
(
d(X, f)

)]
ϵ

)]
= E

[
lim
ϵ→0

ρ
(
d(X, f + ϵg)

)
− ρ

(
d(X, f)

)
ϵ

]
= Eλ

[
E
[
lim
ϵ→0

Z(X, ϵ)
∣∣ λf (X) = λ

]]
= Eλ

[
E
[
2c lim

ϵ→0
Z1(X, ϵ)I(d(X, f(λf )) > c)

+ lim
ϵ→0

Z2(X, ϵ)I(d(X, f(λf )) ≤ c)
∣∣ λf (X) = λ

]]
= −2Eλ

[
∥g(λ)∥ · | cos(θ(λ, X))| · E

[
d(X, f(λf )) · sgn

(
cos(θ(λf , X))

)
· I(d(X, f(λf )) ≤ c) + c · sgn

(
cos(θ(λf , X))

)
I(d(X, f(λf )) > c)

∣∣ λf (X) = λ
]]

= 0.
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To prove the converse, suppose that

Eλ

[
∥g(λ)∥ · | cos(θ(λ, X))| · E

[
d(X, f(λf )) · sgn

(
cos(θ(λf , X))

)
I(d(X, f(λf )) ≤ c)

+c · sgn
(
cos(θ(λf , X))

)
I(d(X, f(λf )) > c)

∣∣ λf (X) = λ
]]

= 0

for any h (= f + g) such that ∥g∥ < π and ∥g′∥ ≤ 1. Then

E
[
d(X, f(λf )) · sgn

(
cos(θ(λf , X))

)
· I(d(X, f(λf )) ≤ c) + c · sgn

(
cos(θ(λf , X))

)
·I(d(X, f(λf )) > c)

∣∣ λf (X) = λ
]
= 0

for a.e. λ,

which is equivalent to that f is a Huber-type principal curve of X.

A.3 Appendix for Chapter 6

Proof of Theorem 5. The proof follows the line of Proposition 5.1 in Panaretos

et al. (2014). For a set of data D = {x1, x2, . . . xn} ⊂ RD and x = 1
n

∑n
i=1 xi ∈ RD.

Since h =∞, local principal geodesic procedure starts at x. A h-scale local tangent

covariance at x is defined as Σ(x) = 1
n

∑n
i=1(xi−x)(xi−x)T . Also, sample covariance

at x ∈ RD is

Σ(x) =
1

n

n∑
i=1

(xi − x+ x− x) · (xi − x+ x− x)T = Σ(x) + (x− x)(x− x)T .

Let v be the leading eigenvector of Σ(x) (i.e., Σv = λv and λ is the largest eigen-

value). If we prove that, for any x on the first principal component line, then the

leading eigenvector of Σ(x) is also v. Inductively, because the local principal geodesic

curve does not change its direction, it will be the first principal component line.

From a simple calculation, the first eigenvector and eigenvalue of (x − x)(x − x)T

are x−x
∥x−x∥ and ∥x− x∥2 respectively. Therefore, by Weyl’s matrix perturbation in-

equality, eigenvalue of Σ(x) is not greater than λ + ∥x− x∥2. For simplification of

notations, denote Σ(x) and Σ(x) as Σ and Σ
′
respectively. Since x−x is parallel to
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v, we obtain that

Σ
′ ·(x−x) =

(
Σ+(x−x)(x−x)T

)
·(x−x) = Σ·(x−x)+∥x− x∥2·(x−x) = (λ+∥x− x∥2)·(x−x).

Therefore, v is an eigenvector of Σ
′
(= Σ(x)) corresponding to the largest eigenvalue

λ+ ∥x− x∥2, thus, it is the first eigenvector. In the same way, it can be shown that

the direction of backward step is always -v.

Proof of Theorem 7. Let Gk ⊂ G be the collection of continuous functions that

have k-geodesic segments such that

d(f(λ1), f(λ2)) ≤ ℓ|λ1 − λ2| for any λ1, λ2 ∈ [0, 1]

and let G∞ ⊂ G be the collection of piecewise geodesic continuous functions with

their vertices at most countable. We now wish to show that Gk is a closed set in

G. For a sequence {fn}n∈N ⊂ Gk satisfying dist(fn, f) → 0 as n → ∞, clearly

f ∈ G by the uniform convergence. Moreover it can be shown that f ∈ G∞. Once

f ∈ Gk is shown, Gk is accordingly closed. To this end, suppose that f ∈ G∞ \ Gk.

Then f has at least (k + 1) geodesic segments and there are some constants 0 ≤

λ0 < λ1 < λ2 ≤ 1, N1 ∈ N such that f(λ1) is a vertex of f and for any n ≥ N1

fn(λ0), fn(λ1), and fn(λ2) are contained in a single geodesic segment of fn. Denote

the geodesic distance between f(λ1) and f(λ2) by ℓ0 (= d(f(λ1), f(λ2) ≥ 0) and the

external angle between two geodesics ˇ�f(λ1)f(λ0) and ˇ�f(λ1)f(λ2) by θ (0 ≤ θ < π).

Extend the geodesic segmentˇ�f(λ0)f(λ1) in the direction from f(λ0) to f(λ1) by the

distance ℓ0. The end point is then called q, i.e., d(f(λ1), q) = ℓ0. Choose a N1 ∈ N

such that if n ≥ N1 then dist(fn, f) ≤ (ℓ0 sin
θ
2)/2. So, if n ≥ max {N1, N2}, then

dist(fn, f) ≥ d(fn(λ2), f(λ2)) ≥ d(q, f(λ2))− d(q, fn(λ2))

> c · ℓ0 sin(
θ

2
) (A.12)

where c is some constant related to the assumption (B2), the sign of curvatures on

M . Note that the above inequality holds by triangle inequality and same argument

in Lemmas 8 and 9. (It involves a procedure using Toponogov and Rauch comparison
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theorems and then the computation of constant c is just tedious; hence, we omit

the procedure.) (A.12) implies that dist(fn, f) ↛ 0 as n→∞. It is a contradiction

and then Gk is therefore closed. The remaining proof is same to that of Theorem

6.

Proof of Theorem 8. The proof proceeds in the similar manner of Theorem 1

in Kégl (1999); Kégl et al. (2000), while there are some difficulties in an attempt

to extend the theorem from Euclidean space to generic Riemannian manifold with

same sign of curvature. To this end, it needs to prove the existence of finite ϵ-cover

of Fk for any k ≥ 1 and ϵ > 0. Specifically, for any k ≥ 1 and ϵ > 0, Fk, ϵ is a

nonempty and finite collection of curves N , i.e. Fk, ϵ ⊂ Fk, and is an ϵ-cover of Fk.

More precisely, to prove Theorem 8 we first prove the following Lemma which is

concerned with convergence rate of the proposed procedure.

Lemma 7 (ϵ-covering property). Under (B1) − (B2), for any k ≥ 1 and ϵ > 0,

there exists a finite collection of curves Fk, ϵ with ϕ ̸= Fk, ϵ ⊂ Fk, satisfying the

covering property: For any f ∈ Fk, there exists g ∈ Fk, ϵ such that

sup
x∈N
|d2(x, f)− d2(x, g)|< ϵ

The number of elements in Fk, ϵ is bounded above by some constant which is not

dependent on n; specifically,

|Fk, ϵ| ≤ 2
2c0c1rℓ

ϵ
+(c1+2)kV k+1

D

(2c0c1√Dr2

ϵ
+
√
D
)D(2c20c1√Drℓ

kϵ
+
(
c0(c1+1)+1

)√
D
)Dk

,

(A.13)

where r, D, VD, c0, and c1 denote the diameter of N , dimension of M , the volume

of the unit sphere in RD, the constant stated later in Lemma 8, and a Lipshitz

constant of exp, respectively.

Proof of Lemma 7. Lemma 7 can be proved in the similar way in Lemma 2 of

Kégl (1999) with some modifications. For the adaptation, the following Lemmas are

inevitable to prove Lemma 7.
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Lemma 8. Under (B1) − (B2), let p ∈ M be a point in M and v, w ∈ TpM be

tangent vectors with ∥v∥ , ∥w∥ < π/
√
κ. (In the case (a) of (B2), κ = 0). There

exists some constant c0 > 0 such that

∥v − w∥ ≤ c0d(expp v, exppw).

In the case (a) of (B2), c0 = 1. That is, logp is Lipshitz and c0 is the corresponding

Lipshitz constant.

Proof of Lemma 8. Case 1. Manifolds of nonpositive curvatures. Suppose that M

satisfies (a) of (B2). By applying Rauch comparison theorem (e.g., Chapter 11 of

Lee (2006)) to the case that any sectional curvatures are not greater than zero, i.e.

K ≤ 0, we obtain that for any v, w ∈ TpM

∥v − w∥ ≤ d(expp v, exppw).

In this case, c0 = 1.

Case 2. Manifolds of strictly positive curvatures. Suppose that (b) of (B2) holds.

On Riemannian manifolds of bounded sectional curvatures, comparison theorems of

Rauch and Toponogov (e.g., see Chapter 11 of Lee (2006) for details) are useful tool

to compare the deviations of geodesics emanating from a one point p. Specifically,

denote d(expp vt, exppwt) by L0(t), the angle between v and w by θ ∈ [0, π], and

Riemannian distance between exppvt and exppwt in D-dimensional sphere with

radius 1/
√
κ (that has constant sectional curvature κ) by L1(t), where exp is the

exponential map of the sphere. Specifically, by some calculation, we get

L1(t) = 1/
√
κ arccos

(
sin(vt

√
κ) sin(wt

√
κ) cos(θ) + cos(vt

√
κ) cos(wt

√
κ)
)
.

By the Rauch- and Toponogov comparision theorems with 0 < K ≤ κ,

0 ≤ L1(t) ≤ L0(t) ≤ t ∥v − w∥ (=: L2(t)) for 0 ≤ t ≤ 1.

By some calculation, it can be shown that

L2(1)

L1(1)
≤
√
2π/(π −

√
κ · diam(N)) (=: c0),
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which implying that L2(1)
L0(1)

≤ c0. Therefore,

∥v − w∥ ≤ c0d(expp v, exppw).

Lemma 9. Under (B1)− (B2), if γ, η : [0, 1]→M are two geodesics parametrized

by constant speeds, then for any λ ∈ [0, 1]

d(γ(λ), η(λ)) ≤ 2c0max {d(γ(0), η(0)), d(γ(1), η(1))} ,

where c0 is the constant stated in Lemma 8.

Proof of Lemma 9. Case 1. Manifolds of nonpositive curvatures.

Suppose that M satisfies (a) of (B2). Since M is connected and complete, M is

geodesically complete by Hopf-Rinow theorem (e.g., Chapter 6, pages 108–111, in

Lee (2006)). So, there is a geodesic ν : [0, 1] → M joining γ(0), η(1) parametrized

by a constant speed. Note that any geodesics emanating from a one point spread

out. In this regard, for any λ ∈ [0, 1]

d(γ(λ), η(λ)) ≤ d(γ(λ), ν(λ)) + d(ν(λ), η(λ))

≤ d(γ(0), η(0)) + d(η(1), γ(1))

= 2max {d(γ(0), η(0)), d(γ(1), η(1))} .

As mentioned in Lemma 8, c0 = 1 in this case.

Case 2. Manifolds of strictly positive curvatures.

Suppose that M satisfies (b) of (B2). Following the notations in the proof of Lemma

8, we note that

L2(1)

L1(1)
≤ c0.

Due to the monotonicity of L2(·), we get

L0(t) ≤ L2(1) ≤ c0L1(1) ≤ c0L0(1) for any 0 ≤ t ≤ 1. (A.14)
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Since M is geodesically complete by Hopf-Rinow theorem (e.g., Chapter 6, 108–111,

in Lee (2006)), there is a geodesic ν : [0, 1] → M joining γ(0), η(1) parametrized

by a constant speed with ν(0) = η(0), ν(1) = η(1). Using (A.14), we obtain that

for any λ ∈ [0, 1]

d(γ(λ), η(λ)) ≤ d(γ(λ), ν(λ)) + d(ν(λ), η(λ))

≤ c0[d(γ(1), η(1)) + d(γ(0), η(0))]

= 2c0max {d(γ(0), η(0)), d(γ(1), η(1))} ,

as desired.

Remark 1. If M is simply connected (meaning that roughly speaking M has no

“holes”) and is a manifold of nonpositive curvatures (Case 1.), it is a immediate

result from geodesic comparison inequality (Corollary 2.5 and Proposition 3.1 in

Sturm (2003)) that for any λ ∈ [0, 1]

d(γ(λ), η(λ)) ≤ λd(γ(0), η(0)) + (1− λ)d(γ(1), η(1))

≤ max {d(γ(0), η(0)), d(γ(1), η(1))} .

In this case, the constant in the right-hand side is thus halved.

We now enter into the main proof of Lemma 7. Notice that N is closed and

bounded from the assumption (B1); thus, N is compact by Hopf-Rinow theorem.

For any p ∈ N , N ⊂ Bp(r) where r = diam(N). One can show that expp is a

Lipshitz function by using the similar argument in Lemma 9. Fix a point p ∈ N and

let c1 > 0 be the Lipshitz constant of expp : logp[Bp(r)]→ Bp(r). It means that for

any x, y ∈ logp[Bp(r)] := {z ∈ TpM | ∥z − p∥ < r}

d(expp x, expp y) ≤ c1 ∥x− y∥ , (A.15)

where ∥·∥ is the norm in TpM ≃ RD. In the case (b) of (B2), c1 = 1 by Toponogov

comparison theorem. For a given ϵ > 0, let δ = ϵ/(2rc0c1
√
D) and consider the rect-

angular grid that is centered at p and has side length δ in TpM ≃ RD. An illustration
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Figure A.1: In the proof of Lemma 7, the configuration of M , TpM , V0 (blue dots)

and V (black dots) is illustrated.

of the configuration is given in Figure A.1. On this grid, let V0 = {vi}mi=1 be the set

of vertices of the grid whose distances to the set logp[N ] are not greater than δ
√
D.

Notice that the vertices inside logp[N ] is clearly included in V0 by construction.

Denote V = expp[V0] :=
{
expp x ∈M |x ∈ V0

}
⊂ Bp(r) in which c0 is the constant

stated in Lemma 8. For any f ∈ Fk and each 0 ≤ i ≤ k, let yi be the vertex of f in

sequence and ŷi be any closest point of yi among V, i.e., ŷj = argminy∈V d(yj , y).

For each 0 ≤ i ≤ k, there exists ṽi ∈ V0 such that

∥∥logp yi − ṽi
∥∥ < δ

√
D/2.
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It follows that expp ṽi ∈ V by construction. From the definition of ŷi and (A.15),

d(yi, ŷi) ≤ d(yi, expp ṽi) ≤ c1
∥∥logp yi − ṽi

∥∥ < c1δ
√
D/2 for any 0 ≤ i ≤ k.

(A.16)

Let f̂ be the piecewise-geodesic curve joining ŷ0, ŷ1, . . . , ŷk in sequence by geodesic

segments. Denote the length of f̂ by L(f̂). Then by triangular inequality,

L(f̂) ≤ ℓ+ c1kδ
√
D. (A.17)

Meanwhile, for any finite-length continuous curves g : I1 → M and h : I2 → M

with intervals I1, I2 ⊂ R, (asymmetric) Hausdorff distance between the curves, say

dH(g, h), is defined as

dH(g, h) = max
λ∈I1

min
µ∈I2

d(g(λ), h(µ))

By the definition of dH ,

dH(f, f̂) ≤ max
0≤i≤k−1

dH(yiŷi, yi+1ŷi+1)

where AB denotes the geodesic segment joining A and B. Since dH(g, h) is invariant

under parametrizations of g and h, without loss of generality we may assume that

the geodesic segments yiŷi, yi+1ŷi+1 are parametrized by respective constant speeds

over [0, 1]. By (A.16) and Lemma 9, we obtain that

dH(yiŷi, yi+1ŷi+1) ≤ dist(yiŷi, yi+1ŷi+1) < c0c1δ
√
D,

where dist(·, ·) is defined in (6.6). We thus get dH(f, f̂) < c0c1δ
√
D and dH(f̂ , f) <

c0c1δ
√
D also follows by symmetry. Using (A.26), we get

sup
x∈N
|d2(x, f)− d2(x, f̂)| ≤ 2r ·max

¶
dH(f, f̂), dH(f̂ , f)

©
< 2rc0c1δ

√
D = ϵ.

Define Fk, ϵ as the family of piecewise-geodesic curves whose lengths are not greater

than ℓ + c1kδ
√
D with (k + 1)-vertices (not necessarily different) being contained

in V. By (A.17), we get f̂ ∈ Fk, ϵ. We now wish to count the number of elements in

Fk, ϵ, say |Fk, ϵ|, or to find its upper bound. To this end, choose a function J ∈ Fk, ϵ.
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Then L(J) ≤ ℓ+c1kδ
√
D in which l(J) denotes the length of J . For each 0 ≤ j ≤ k,

denote the j-th vertex of J by vj and for each 0 ≤ i ≤ k − 1, denote the length of

i-th geodesic segment by ℓi (= d(vi, vi+1)). After that, define

ℓ̂i = ⌈ℓi/(δ
√
D)⌉δ

√
D,

where ⌈·⌉ denotes the ceiling function; that is, ⌈ℓ⌉ is the least integer no smaller

than ℓ and it holds that ℓi ≤ ℓ̂i < ℓi + δ
√
D. Note that the number of vertices on

the grid that are contained in any closed ball (in RD) centered at a vertex and with

radius L ≥ 0 is bounded by

VD

(L+ δ
√
D

δ

)D
(A.18)

where VD denotes the volume of the unit sphere in RD and this is known as Gauss

sphere problem. Fix the sequence ℓ̂0, ℓ̂1, . . . , ℓ̂k−1 and now count the number of

functions J ∈ Fk, ϵ generating ℓ̂0, ℓ̂1, . . . , ℓ̂k−1. The number of cases for choosing

the first vertex v0 equals to |V|. According to (A.18),

|V| ≤ |V0| ≤ VD

(r + δ
√
D

δ

)D
. (A.19)

We denote B̄·(·) and ¯̃B·(·) by the closed balls in M and TpM ≃ RD, respectively.

Inductively, for each 0 ≤ i ≤ k − 1, suppose that v0, v1, . . . , vi are determined. By

Lemma 8, for any x ∈ B̄vi(ℓ̂i)∥∥logp x− logp vi
∥∥ ≤ c0d(x, vi) ≤ c0ℓ̂i,

thereby meaning that

logp[B̄vi(ℓ̂i)] ⊂
¯̃Blogp vi(c0ℓ̂i). (A.20)

By (A.18), (A.20), the number of cases for choosing vi+1 among V ∩ B̄vi(ℓ̂i) is

bounded by

VD

(c0ℓ̂i + δ
√
D

δ

)D
for all 0 ≤ i ≤ k − 1. (A.21)

Meanwhile, by arithmetic and geometric means inequality (AM-GM),

k−1∏
i=0

[
c0ℓ̂i
δ

+
√
D]

“AM-GM”

≤
[ k−1∑
i=0

c0ℓ̂i
δ +

√
D

k

]k “ℓ̂i<ℓi+δ
√

D”

<
[ k−1∑
i=0

c0ℓi
δ + (c0 + 1)

√
D

k

]k
,

(A.22)
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in which the last inequality holds by ℓ̂i < ℓi + δ
√
D for any 0 ≤ i ≤ k − 1. By com-

bining (A.18), (A.19), (A.21) and (A.22), the number of such J with ℓ̂0, ℓ̂1, . . . , ℓ̂k−1

is bounded by

VD

(r + δ
√
D

δ

)D k−1∏
i=0

[
VD

(c0ℓ̂i + δ
√
D

δ

)D]
= V k+1

D (
r

δ
+
√
D)D

k−1∏
i=0

[
c0ℓ̂i
δ

+
√
D]D

(A.22)

≤ V k+1
D (

r

δ
+
√
D)D

[ k−1∑
i=0

c0ℓi
δ + (c0 + 1)

√
D

k

]Dk

≤ V k+1
D (

r

δ
+
√
D)D

[c0ℓ
kδ

+ (c0 + c0c1 + 1)
√
D
]Dk

(A.23)

where the first and second inequalities hold by (A.22) and
∑

i ℓi = L(J) ≤ ℓ +

c1kδ
√
D, respectively.

The remaining part is to derive an upper bound of the number of the curves

J generating ℓ̂0, ℓ̂1, . . . , ℓ̂k−1. From
∑

i ℓ̂i <
∑

i(ℓi + δ
√
D) = L(J) + kδ

√
D ≤

ℓ+ (c1 + 1)kδ
√
D,

k−1∑
i=0

ℓ̂i

δ
√
D︸ ︷︷ ︸

=:Li∈N

< ⌈ ℓ

δ
√
D

+ c1k⌉+ k.

Therefore, the number of the such J generating ℓ̂0, ℓ̂1, . . . , ℓ̂k−1 is same to that of

nonnegative integer solutions of the following equation:

L0 + L1 + ...+ Lk−1 ≤ ⌈
ℓ

δ
√
D

+ c1k⌉+ k − 1.

To count the number of nonnegative integer solutions of above, by means of com-

bination with repetition we get the number of solutions and its upper bound, as

⌈ ℓ

δ
√
D
+c1k⌉+2k−2∑
m=k−1

Ç
n

k

å
=

Ç
⌈ ℓ
δ
√
D
+ c1k⌉+ 2k − 1

k

å
≤ 2

⌈ ℓ

δ
√
D
+c1k⌉+2k−1

. (A.24)
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Combining (A.23), (A.24) and putting δ = ϵ/(2rc0c1
√
D), we finally get

|Fk, ϵ| ≤ 2
⌈ ℓ

δ
√
D
+c1k⌉+2k−1 · V k+1

D

(r
δ
+
√
D
)D(c0ℓ

kδ
+ (c0 + c0c1 + 1)

√
D
)Dk

= 2⌈
2c0c1rℓ

ϵ
+c1k⌉+2k−1 · V k+1

D

(2c0c1√Dr2

ϵ
+
√
D
)(2c20c1√Drℓ

kϵ
+

(
c0(c1 + 1) + 1

)√
D
)Dk

≤ 2
2c0c1rℓ

ϵ
+(c1+2)k · V k+1

D

(2c0c1√Dr2

ϵ
+
√
D
)(2c20c1√Drℓ

kϵ
+
(
c0(c1 + 1) + 1

)√
D
)Dk

,

as desired. So the proof of Lemma 7 ends.

Remark 2. When M = RD, the Euclidean version of Lemma 9 can be easily ob-

tained as ∥γ(λ)− η(λ)∥ ≤ max {∥γ(0)− η(0)∥ , ∥γ(1)− η(1)∥} by some calculation.

In this case, the consequence of Lemma 7 becomes to be that of Lemma 2 in Kégl

(1999); Kégl et al. (2000). In this fashion, Lemma 7 is a generalization of Lemma

2 in Kégl (1999); Kégl et al. (2000) to generic Riemannian manifolds with same

sign of curvatures.

We now enter into the main body of proof in Theorem 8. Recall that

f∗
k = argminf∈Fk

Ed2(X, f) = argminf∈Fk
R(f).

The excess risk of fk, n, EXn [R(fk, n)] − R(f∗), is separated into the two parts as

follows:

EXn [R(fk, n)]−R(f∗) = [

estimation error︷ ︸︸ ︷
EXn [R(fk, n)]−R(f∗

k )] + [

approximation error︷ ︸︸ ︷
R(f∗

k )−R(f∗) ].

We then wish to bound the approximation and estimation errors respectively. The

latter is more technical than the former.

Step 1: Approximation error

To obtain an upper bound of the approximation error, define the (asymmetric)

Hausdorff distance between two continuous functions f, g : [0, 1]→M as

dH(f, g) = max
λ∈[0, 1]

min
µ∈[0, 1]

d(f(λ), g(µ)). (A.25)
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Suppose that f∗ is parametrized by some constant speed with L(f∗) ≤ ℓ and let

g : [0, 1]→M be the piecewise-geodesic curve sequentially joining

{f∗(0), f∗(1/k), f∗(2/k), . . . , f∗((k − 1)/k), f∗(1)}

by geodesic segments. By construction, it follows from L(g) ≤ L(f∗) ≤ ℓ that

g ∈ Fk. For any λ ∈ [0, 1], there is an index 1 ≤ i ≤ k such that (i−1)/k ≤ λ ≤ i/k.

We thus get

min
µ∈[0, 1]

d(f∗(λ), g(µ)) ≤ d(f∗(λ), g((i− 1)/k)) = d(f∗(λ), f∗((i− 1)/k))

≤ L(f∗)/k

≤ ℓ/k,

thereby leading to

dH(f∗, g) = max
λ∈[0, 1]

min
µ∈[0, 1]

d(f∗(λ), g(µ)) ≤ ℓ/k.

For a given x ∈ N , denote λf∗(x) by λ for simplicity and choose a µ ∈ [0, 1] such that

d(f∗(λ), g(µ)) = minν∈[0, 1] d(f
∗(λ), g(ν)) where it can be possible because [0, 1] is

compact. By the definition of dH and triangle inequality, it holds from diam(N) = r

that

d2(x, g)− d2(x, f∗) ≤ d2(x, g(µ))− d2(x, f∗(λ)) = 2r[d(x, g(µ))− d(x, f∗(λ))]

≤ 2r · d(f∗(λ), g(µ))

≤ 2r · dH(f∗, g). (A.26)

Because (A.26) holds true for any x ∈ N , we get an upper bound of the approxi-

mation error as

R(f∗
k )−R(f∗) ≤ R(g)−R(f∗) = E[d2(X, g)− d2(X, f∗)]

≤ 2r · dH(f∗, g)

≤ 2rℓ/k. (A.27)
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Step 2: Estimation error

Xn = {X1, X2, . . . , Xn} and X are identically distributed and independent (i.i.d.).

Note that, for any real-valued random variable Z,

EZ = EZ+ − EZ− ≤ EZ+ =

∫ ∞

0
P(Z+ > u)du =

∫ ∞

0
P(Z > u)du, (A.28)

where Z+ = max {Z, 0} ≥ 0, Z− = −min {Z, 0} ≥ 0 and Z = Z+ − Z−. Note also

that R(fk, n) = E[d2(X, fk, n) | Xn] is random since fk, n is the function of Xn. Then,

by using (A.28),

EXn [R(fk, n)]−R(f∗
k ) = EXnE[d2(X, fk, n) | Xn]− Ed2(X, f∗

k )

= EXn

[
E[d2(X, fk, n) | Xn]− Ed2(X, f∗

k )
]

≤
∫ ∞

0
P
(
E[d2(X, fk, n) | Xn]− Ed2(X, f∗

k ) > u
)
du.

(A.29)

We now wish to bound (A.29). For a given ϵ > 0, via Lemma 7, there exists a

g ∈ Fk, ϵ such that supx∈N |d2(x, fk, n)− d2(x, g)| < ϵ. It implies that d2(x, fk, n) <

d2(x, g) + ϵ for any x ∈ N and that with probability one

1

n

n∑
i=1

d2(Xi, g)−
1

n

n∑
i=1

d2(Xi, fk, n) < ϵ

from P(Xn ⊂ N) = 1. From these facts, with probability one we get

R(fk, n)−R(f∗)

= E[d2(X, fk, n) | Xn]− Ed2(X, f∗
k )

= E[d2(X, fk, n) | Xn]−
1

n

n∑
i=1

d2(Xi, fk, n) +
1

n

n∑
i=1

d2(Xi, fk, n)− Ed2(X, f∗
k )

< 2ϵ+ E[d2(X, g) | Xn]−
1

n

n∑
i=1

d2(Xi, g) +
1

n

n∑
i=1

d2(Xi, fk, n)− Ed2(X, f∗
k )

≤ 2ϵ+ Ed2(X, g)− 1

n

n∑
i=1

d2(Xi, g) +
1

n

n∑
i=1

d2(Xi, f
∗
k )− Ed2(X, f∗

k )

≤ 2ϵ+ 2 max
h∈Fk, ϵ∪{f∗

k}
|Ed2(X, h)− 1

n

n∑
i=1

d2(Xi, h)|, (A.30)
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where second inequality holds by E[d2(X, g) | Xn] = Ed2(X, g) (since Xn and X are

independent) and (6.11). To bound (A.29), Hoeffding’s inequality should be applied.

The Hoeffding inequality (e.g., Chapter 3.5 of Van de Geer (2000)) states that for

any t ≥ 0 and independent real-valued random variables Z1, Z2, . . . Zn satisfying

ai ≤ Zi ≤ bi, 1 ≤ i ≤ n and
∑n

i=1(ai − bi)
2 > 0

P
(
|EZ1 −

1

n

n∑
i=1

Zi| > t
)
≤ 2 exp[−2n2t2/

n∑
i=1

(ai − bi)
2]. (A.31)

For a given h ∈ Fk, let Zi = d2(Xi, h) ≤ r2, 1 ≤ i ≤ n. By (A.31), for any t ≥ 0

P
(
|Ed2(X, h)− 1

n

n∑
i=1

d2(Xi, h)| > t
)
≤ 2 exp[−2nt2/r4]. (A.32)

According to (A.30), for any u ≥ 2ϵ, it holds that

P
(
E[d2(X, fk, n) | Xn]− Ed2(X, f∗

k ) > u
)

≤ P
(

max
h∈Fk, ϵ∪{f∗

k}
|Ed2(X, h)− 1

n

n∑
i=1

d2(Xi, h)| > u/2− ϵ
)

= P
( ⋃

h∈Fk, ϵ∪{f∗
k}

{
|Ed2(X, h)− 1

n

n∑
i=1

d2(Xi, h)| > u/2− ϵ

})

≤
∑

h∈Fk, ϵ∪{f∗
k}

P
(
|Ed2(X, h)− 1

n

n∑
i=1

d2(Xi, h)| > u/2− ϵ
)

≤ (|Fk, ϵ|+ 1) · max
h∈Fk, ϵ∪{f∗

k}
P
(
|Ed2(X, h)− 1

n

n∑
i=1

d2(Xi, h)| > u/2− ϵ
)

(A.32)

≤ 2(|Fk, ϵ|+ 1) exp[−2n · (u/2− ϵ)2/r4]

= 2(|Fk, ϵ|+ 1) exp[−n(u− 2ϵ)2/(2r4)], (A.33)

where |Fk, ϵ| denotes the number of elements in Fk, ϵ and the last inequality holds

true by (A.32). Meanwhile, according to (A.13) in Lemma 7 with choosing ϵ = 1/k,

it can be shown that there exists a constant C(ℓ, r) that is independent on both k

and n such that

2r4 log 2(|Fk, ϵ|+ 1) ≤ C(ℓ, r)k. (A.34)
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Due to the fact that (−e−x2
/2x)′ = e−x2

+ e−x2
/2x2 > e−x2

for x > 0, we obtain,

by the integration from x = t to x =∞ with respect to x, that∫ ∞

t
e−x2

dx < e−t2/2t for any t > 0. (A.35)

By plugging (A.33) into (A.29), letting v =
√

2r4 log[2(|Fk, ϵ|+ 1)]/n ≥ 0, and using

(A.35), we get

EXn [R(fk, n)]−R(f∗
k ) ≤ v + 2ϵ+ 2(|Fk, ϵ|+ 1)

∫ ∞

v+2ϵ
exp(−n(u− 2ϵ)2/(2r4))du

x=
√

n/2(u−2ϵ)/r2

= v + 2ϵ+ 2(|Fk, ϵ|+ 1)
»

2/nr2
∫ ∞

√
n/2v/r2

exp(−x2)dx

(A.35)

≤ v + 2ϵ+ 2(|Fk, ϵ|+ 1) · r4/(nv) · exp(−nv2/(2r4))︸ ︷︷ ︸
=O(n−1/2)

=
»

2r4 log[2(|Fk, ϵ|+ 1)]/n+ 2ϵ+O(n−1/2) as n→∞,

where the last equality holds by

r4/(nv) = r4/
»
2nr4 log 2(|Fk, ϵ|+ 1) ≤ r2/(

√
2n log 3) = O(n−1/2) as n→∞.

Finally, by the Step 1 and Step 2

EXn [R(fk, n)]−R(f∗) ≤
»
C(ℓ, r)k/n+ 2(rℓ+ 1)/k︸ ︷︷ ︸

leading term

+O(n−1/2)

= O(n−1/3) as n→∞,

where the last equality holds by balancing the first two terms (approximation and

estimation errors) with respect to n → ∞ and the optimal asymptotic order of k,

k ≍ n1/3, is achieved. Therefore the proof of Theorem 8 finally ends.

Proof of Theorem 9. In the proof of Theorem 8, by (A.33)

P
(
R(fk, n)−R(f∗) > u

)
≤ 2(|Fk, ϵ|+ 1) exp[−n(u− 2ϵ)2/(2r4)].

It suffices to find any u ≥ 2ϵ such that

2(|Fk, ϵ|+ 1) exp[−n(u− 2ϵ)2/(2r4)] ≤ δ, (A.36)
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By letting ϵ = 1/k, (A.36) is equivalent to»
[2r4 log 2(|Fk, ϵ|+ 1)− 2r4 log δ]/n+ 2/k ≤ u.

By 2r4 log 2(|Fk, ϵ|+ 1) ≤ C(ℓ, r)k, a sufficient condition for (A.36) is»
[C(ℓ, r)k − 2r4 log δ]/n+ 2/k = u.

Using the approximation bound (A.27), the result follows as desired.
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국문초록

본학위논문은다양체자료의변동성을더욱효과적으로찾아내기위해,다양체자료의

비모수적차원축소방법론을제시하였다.구체적으로,주곡선(principal curves)방법을

일반적인 다양체 공간으로 확장하는 것이 주요 연구 주제이다. 주곡선은 주성분분석

(PCA)의 비선형적 확장 중 하나이며, 본 학위논문은 크게 네 가지의 주제로 이루어져

있다.

첫 번째로, Hastie (1984); Hastie and Stuetzle (1989)의 방법을 임의의 차원의 구

면으로 표준적인 방식으로 확장한다. 이 연구 주제의 공헌은 다음과 같다. (a) D차원

구면 SD에서 내재적, 외재적인 방식의 주곡선 방법을 각각 제안한다. (b) 본 방법의

이론적 성질(정상성)을 규명한다. (c) 지질학적 자료 및 인간 움직임 자료와 같은 실

제 자료와 2차원, 4차원 구면 위의 모의실험 자료에 본 방법을 적용하여, 그 유용성을

보인다.

두번째로,첫번째주제의후속연구중하나로서,두꺼운꼬리분포를가지는자료

에 대하여 강건한 비모수적 차원축소 방법을 제안한다. 이를 위해, L2 손실함수 대신에

L1− 및 휴버(Huber) 손실함수를 활용한다. 이 연구 주제의 공헌은 다음과 같다. (a)

이상치에 덜 민감한 강건화주곡선(robust principal curves)을 구면에서 정의한다. 구

체적으로, 자료의 기하적 중심점을 지나는 L1− 및 휴버 손실함수에 대응되는 새로운

주곡선을 제안한다. (b) 이론적인 측면에서, 강건화주곡선의 정상성을 규명한다. (c)

강건화주곡선을 구현하기 위해 계산이 빠른 실용적인 알고리즘을 제안한다.

세 번째로, 기존의 차원축소방법 및 본 방법론을 제공하는 R 패키지를 구현하였으

며 이를 다양한 예제 및 설명과 함께 소개한다. 본 방법론의 강점은 다양체 위에서의

복잡한 최적화 방정식을 풀지않고, 직관적인 방식으로 구현 가능하다는 점이다. R 패

키지로구현되어제공된다는점이이를방증하며,본학위논문의연구를재현가능하게
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만든다.

마지막으로, 보다 복잡한 기저(underline) 구조를 갖는 다양체 자료의 효과적인

추정을 위해 국소주측지선분석(local principal geodesics) 방법을 우선 제안한다. 이

방법을 실제 지질학 자료 및 다양한 모의실험 자료에 적용하여 그 활용성을 보였다.

다음으로, 추정치의 분산안정화 및 이론적 정당화를 위하여 Kégl (1999); Kégl et al.

(2000) 방법을 일반적인 리만다양체로 확장한다. 더 나아가 방법론의 일치성 및 수렴

속도와 같은 점근적 성질을 비롯하여 비점근적 성질인 집중부등식(concentration in-

equality)을 통계적학습이론을 이용하여 규명한다.

주요어 : 곡선적합, 다양체 자료, 주곡선, 재현가능성, 차원축소방법, 통계적학습이론

학 번 : 2018–25763
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와준 성수에게 감사하다는 말을 전합니다. 언제나 맛있는 음식으로 환영해주신

매형과 누나, 사랑스러운 조카 이솔 ·이찬에게 고마움을 전합니다. 마지막으로,

항상 곁에서 힘이 되어주는 어머니에게 큰 사랑과 감사를 전합니다. 어머니의

이해와헌신그리고한없는배려가있었기에지금의결과를만들수있었습니다.

2022년 8월 이종민
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